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1 Polarized Light from the Sun
2 Fundamentals of Polarized Light
3 Descriptions of Polarized Light

Polarized Light in the Universe
Polarization indicates anisotropy⇒ not all directions are equal

Typical anisotropies introduced by
geometry (not everything is spherically symmetric)
temperature gradients
magnetic fields
electrical fields
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Solar Magnetic Field Maps from Longitudinal Zeeman Effect
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Second Solar Spectrum from Scattering Polarization

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 5: Polarimetry 1 3



Fundamentals of Polarized Light

Electromagnetic Waves in Matter
Maxwell’s equations⇒ electromagnetic waves
optics: interaction of electromagnetic waves with matter as
described by material equations
polarization of electromagnetic waves are integral part of optics

Maxwell’s Equations in Matter

∇ · ~D = 4πρ

∇× ~H − 1
c
∂~D
∂t

=
4π
c
~j

∇× ~E +
1
c
∂~B
∂t

= 0

∇ · ~B = 0

Symbols
~D electric displacement
ρ electric charge density
~H magnetic field
c speed of light in vacuum
~j electric current density
~E electric field
~B magnetic induction
t time
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Linear Material Equations

~D = ε~E
~B = µ~H
~j = σ~E

Symbols
ε dielectric constant
µ magnetic permeability
σ electrical conductivity

Isotropic Media
isotropic media: ε and µ are scalars
for most materials: µ = 1
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Wave Equation in Matter
static, homogeneous medium with no net charges: ρ = 0
combine Maxwell, material equations⇒ differential equations for
damped (vector) wave

∇2~E − µε

c2
∂2~E
∂t2 −

4πµσ
c2

∂~E
∂t

= 0

∇2~H − µε

c2
∂2~H
∂t2 −

4πµσ
c2

∂~H
∂t

= 0

damping controlled by conductivity σ
~E and ~H are equivalent⇒ sufficient to consider ~E
interaction with matter almost always through ~E
but: at interfaces, boundary conditions for ~H are crucial
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Plane-Wave Solutions
Plane Vector Wave ansatz

~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase
|~k | wave number
~x spatial location
ω angular frequency (2π× frequency)
t time

~E0 (generally complex) vector independent of time and space

could also use ~E = ~E0e−i(~k ·~x−ωt)

damping if ~k is complex
real electric field vector given by real part of ~E
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Complex Index of Refraction
temporal derivatives⇒ Helmholtz equation

∇2~E +
ω2µ

c2

(
ε+ i

4πσ
ω

)
~E = 0

dispersion relation between ~k and ω

~k · ~k =
ω2µ

c2

(
ε+ i

4πσ
ω

)
complex index of refraction

ñ2 = µ

(
ε+ i

4πσ
ω

)
, ~k · ~k =

ω2

c2 ñ2

split into real (n: index of refraction) and imaginary parts (k :
extinction coefficient)

ñ = n + ik
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Transverse Waves

plane-wave solution must also fulfill Maxwell’s equations

~E0 · ~k = 0, ~H0 · ~k = 0, ~H0 =
ñ
µ

~k

|~k |
× ~E0

isotropic media: electric, magnetic field vectors normal to wave
vector⇒ transverse waves
~E0, ~H0, and ~k orthogonal to each other, right-handed vector-triple
conductive medium⇒ complex ñ, ~E0 and ~H0 out of phase
~E0 and ~H0 have constant relationship⇒ consider only ~E
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Energy Propagation in Isotropic Media
Poynting vector

~S =
c

4π

(
~E × ~H

)
|~S|: energy through unit area perpendicular to ~S per unit time
direction of ~S is direction of energy flow
time-averaged Poynting vector given by〈

~S
〉

=
c

8π
Re
(
~E0 × ~H∗0

)
Re real part of complex expression
∗ complex conjugate
〈.〉 time average

energy flow parallel to wave vector (in isotropic media)

〈
~S
〉

=
c

8π
|ñ|
µ
|E0|2

~k

|~k |
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Polarization

Plane Vector Wave ansatz ~E = ~E0ei(~k ·~x−ωt)

spatially, temporally constant vector ~E0 lays in plane
perpendicular to propagation direction ~k
represent ~E0 in 2-D basis, unit vectors ~e1 and ~e2, both
perpendicular to ~k

~E0 = E1~e1 + E2~e2.

E1, E2: arbitrary complex scalars
damped plane-wave solution with given ω, ~k has 4 degrees of
freedom (two complex scalars)
additional property is called polarization
many ways to represent these four quantities
if E1 and E2 have identical phases, ~E oscillates in fixed plane
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Polarization Ellipse

Polarization Ellipse Polarization

~E (t) = ~E0ei(~k ·~x−ωt)

~E0 = E1eiδ1~ex + E2eiδ2~ey

wave vector in z-direction
~ex , ~ey : unit vectors in x , y
E1, E2: (real) amplitudes
δ1,2: (real) phases

Polarization Description
2 complex scalars not the most useful description
at given ~x , time evolution of ~E described by polarization ellipse
ellipse described by axes a, b, orientation ψ
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Jones Formalism

Jones Vectors

~E0 = Ex~ex + Ey~ey

beam in z-direction
~ex , ~ey unit vectors in x , y -direction
complex scalars Ex ,y

Jones vector
~e =

(
Ex
Ey

)
phase difference between Ex , Ey multiple of π, electric field vector
oscillates in a fixed plane⇒ linear polarization
phase difference ±π

2 ⇒ circular polarization
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Summing and Measuring Jones Vectors

~E0 = Ex~ex + Ey~ey

~e =

(
Ex
Ey

)

Maxwell’s equations linear⇒ sum of two solutions again a
solution
Jones vector of sum of two waves = sum of Jones vectors of
individual waves if wave vectors ~k the same
addition of Jones vectors: coherent superposition of waves
elements of Jones vectors are not observed directly
observables always depend on products of elements of Jones
vectors, i.e. intensity

I = ~e · ~e∗ = exe∗x + eye∗y
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Jones matrices
influence of medium on polarization described by 2× 2 complex
Jones matrix J

~e′ = J~e =

(
J11 J12
J21 J22

)
~e

assumes that medium not affected by polarization state
different media 1 to N in order of wave direction⇒ combined
influence described by

J = JNJN−1 · · · J2J1

order of matrices in product is crucial
Jones calculus describes coherent superposition of polarized light

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 5: Polarimetry 1 16



Linear Polarization

horizontal:
(

1
0

)
vertical:

(
0
1

)
45◦: 1√

2

(
1
1

)

Circular Polarization

left: 1√
2

(
1
i

)
right: 1√

2

(
1
−i

)

Notes on Jones Formalism
Jones formalism operates on amplitudes, not intensities
coherent superposition important for coherent light (lasers,
interference effects)
Jones formalism describes 100% polarized light
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Quasi-Monochromatic Light
monochromatic light: purely theoretical concept
monochromatic light wave always fully polarized
real life: light includes range of wavelengths⇒
quasi-monochromatic light
quasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range δλ around central wavelength λ0

δλ

λ
� 1

measurement of quasi-monochromatic light: integral over
measurement time tm
amplitude, phase (slow) functions of time for given spatial location
slow: variations occur on time scales much longer than the mean
period of the wave
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Polarization of Quasi-Monochromatic Light

electric field vector for quasi-monochromatic plane wave is sum of
electric field vectors of all monochromatic beams

~E (t) = ~E0 (t) ei(~k ·~x−ωt)

can write this way because δλ� λ0

measured intensity of quasi-monochromatic beam〈
~Ex ~E∗x

〉
+
〈
~Ey ~E∗y

〉
= lim

tm−>∞

1
tm

∫ tm/2

−tm/2

~Ex (t)~E∗x (t) + ~Ey (t)~E∗y (t)dt

〈· · · 〉: averaging over measurement time tm
measured intensity independent of time
quasi-monochromatic: frequency-dependent material properties
(e.g. index of refraction) are constant within ∆λ

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 5: Polarimetry 1 20



Polychromatic Light or White Light

wavelength range comparable to wavelength ( δλλ ∼ 1)
incoherent sum of quasi-monochromatic beams that have large
variations in wavelength
cannot write electric field vector in a plane-wave form
must take into account frequency-dependent material
characteristics
intensity of polychromatic light is given by sum of intensities of
constituting quasi-monochromatic beams
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Stokes and Mueller Formalisms

Stokes Vector
formalism to describe polarization of quasi-monochromatic light
directly related to measurable intensities
Stokes vector fulfills these requirements

~I =


I
Q
U
V

 =


ExE∗x + EyE∗y
ExE∗x − EyE∗y
ExE∗y + EyE∗x

i
(
ExE∗y − EyE∗x

)
 =


E2

1 + E2
2

E2
1 − E2

2
2E1E2 cos δ
2E1E2 sin δ


Jones vector elements Ex ,y , real amplitudes E1,2, phase
difference δ = δ2 − δ1

I2 ≥ Q2 + U2 + V 2
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Stokes Vector Interpretation

~I =


I
Q
U
V

 =


intensity

linear 0◦ − linear 90◦

linear 45◦ − linear 135◦

circular left− right


degree of polarization

P =

√
Q2 + U2 + V 2

I

1 for fully polarized light, 0 for unpolarized light
summing of Stokes vectors = incoherent adding of
quasi-monochromatic light waves
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Linear Polarization

horizontal:


1
−1
0
0



vertical:


1
1
0
0



45◦:


1
0
1
0



Circular Polarization

left:


1
0
0
1



right:


1
0
0
−1
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Mueller Matrices
4× 4 real Mueller matrices describe (linear) transformation
between Stokes vectors when passing through or reflecting from
media

~I′ = M~I ,

M =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44


N optical elements, combined Mueller matrix is

M′ = MNMN−1 · · ·M2M1
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Vertical Linear Polarizer

Mpol (θ) =
1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



Horizontal Linear Polarizer

Mpol (θ) =
1
2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


Mueller Matrix for Ideal Linear Polarizer at Angle θ

Mpol (θ) =
1
2


1 cos 2θ sin 2θ 0

cos 2θ cos2 2θ sin 2θ cos 2θ 0
sin 2θ sin 2θ cos 2θ sin2 2θ 0

0 0 0 0
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Poincaré Sphere

Relation to Stokes Vector
fully polarized light:
I2 = Q2 + U2 + V 2

for I2 = 1: sphere in Q, U, V
coordinate system
point on Poincaré sphere
represents particular state
of polarization
graphical representation of
fully polarized light
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Poincaré Sphere Interpretation

polarizer is a point on the Poincaré sphere
transmitted intensity: cos2(l/2), l is arch length of great circle
between incoming polarization and polarizer on Poincaré sphere
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