Lecture 5: Polarimetry 1

Outline

- Polarized Light from the Sun
- Fundamentals of Polarized Light
- Oescriptions of Polarized Light

Polarized Light in the Universe

Polarization indicates *anisotropy* \Rightarrow not all directions are equal

Typical anisotropies introduced by

- geometry (not everything is spherically symmetric)
- temperature gradients
- magnetic fields
- electrical fields

Solar Magnetic Field Maps from Longitudinal Zeeman Effect

Second Solar Spectrum from Scattering Polarization

Fundamentals of Polarized Light

Electromagnetic Waves in Matter

- *Maxwell's equations* ⇒ electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by *material equations*
- polarization of electromagnetic waves are integral part of optics

Maxwell's Equations in Matter	Symbols
$\nabla \cdot \vec{D} = 4\pi\rho$ $\nabla \times \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t} = \frac{4\pi}{c} \vec{j}$ $\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$ $\nabla \cdot \vec{B} = 0$	\vec{D} electric displacement ρ electric charge density \vec{H} magnetic field c speed of light in vacuum \vec{j} electric current density \vec{E} electric field \vec{B} magnetic induction t time

Linear Material Equations

$$\vec{D} = \epsilon \vec{E}$$
$$\vec{B} = \mu \vec{H}$$
$$\vec{j} = \sigma \vec{E}$$

Symbols

- € dielectric constant
- μ magnetic permeability
- σ electrical conductivity

Isotropic Media

- isotropic media: ϵ and μ are scalars
- for most materials: $\mu = 1$

Wave Equation in Matter

- static, homogeneous medium with no net charges: $\rho = 0$
- combine Maxwell, material equations ⇒ differential equations for damped (vector) wave

$$\nabla^{2}\vec{E} - \frac{\mu\epsilon}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} - \frac{4\pi\mu\sigma}{c^{2}}\frac{\partial\vec{E}}{\partial t} = 0$$
$$\nabla^{2}\vec{H} - \frac{\mu\epsilon}{c^{2}}\frac{\partial^{2}\vec{H}}{\partial t^{2}} - \frac{4\pi\mu\sigma}{c^{2}}\frac{\partial\vec{H}}{\partial t} = 0$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}
- interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for \vec{H} are crucial

Plane-Wave Solutions

Plane Vector Wave ansatz

$$ec{E} = ec{E}_0 e^{i \left(ec{k} \cdot ec{x} - \omega t
ight)}$$

 \vec{k} spatially and temporally constant wave vector

- \vec{k} normal to surfaces of constant phase
- k wave number
- \vec{x} spatial location
- ω angular frequency ($2\pi \times$ frequency)
- t time
- \vec{E}_0 (generally complex) vector independent of time and space
- could also use $\vec{E} = \vec{E}_0 e^{-i(\vec{k}\cdot\vec{x}-\omega t)}$
- damping if \vec{k} is complex
- real electric field vector given by real part of \vec{E}

Complex Index of Refraction

temporal derivatives ⇒ Helmholtz equation

$$abla^2 ec{E} + rac{\omega^2 \mu}{c^2} \left(\epsilon + i rac{4\pi\sigma}{\omega}
ight) ec{E} = 0$$

• dispersion relation between \vec{k} and ω

$$\vec{k} \cdot \vec{k} = \frac{\omega^2 \mu}{c^2} \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right)$$

complex index of refraction

$$\tilde{n}^2 = \mu \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right), \ \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2$$

 split into real (n: index of refraction) and imaginary parts (k: extinction coefficient)

$$\tilde{n} = n + ik$$

Transverse Waves

plane-wave solution must also fulfill Maxwell's equations

$$ec{E}_0\cdotec{k}=0,\ ec{H}_0\cdotec{k}=0,\ ec{H}_0=rac{ ilde{n}}{\mu}rac{ec{k}}{ec{k}ec{l}} imesec{E}_0$$

- isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves
- \vec{E}_0 , \vec{H}_0 , and \vec{k} orthogonal to each other, right-handed vector-triple
- conductive medium \Rightarrow complex \tilde{n} , \vec{E}_0 and \vec{H}_0 out of phase
- \vec{E}_0 and \vec{H}_0 have constant relationship \Rightarrow consider only \vec{E}

Energy Propagation in Isotropic Media

Poynting vector

$$ec{S} = rac{m{c}}{m{4}\pi} \left(ec{m{E}} imes ec{m{H}}
ight)$$

- $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time
- direction of \vec{S} is direction of energy flow
- time-averaged Poynting vector given by

$$\left< ec{S} \right> = rac{c}{8\pi} {
m Re} \left(ec{E}_0 imes ec{H}_0^*
ight)$$

Re real part of complex expression

- * complex conjugate
- $\langle . \rangle$ time average

• energy flow parallel to wave vector (in isotropic media)

$$\left\langle ec{S}
ight
angle = rac{c}{8\pi} rac{| ilde{n}|}{\mu} \left| E_0
ight|^2 rac{ec{k}}{|ec{k}|}$$

Polarization

- Plane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$
- spatially, temporally constant vector \vec{E}_0 lays in plane perpendicular to propagation direction \vec{k}
- represent \vec{E}_0 in 2-D basis, unit vectors \vec{e}_1 and \vec{e}_2 , both perpendicular to \vec{k}

$$\vec{E}_0 = E_1 \vec{e}_1 + E_2 \vec{e}_2.$$

 E_1, E_2 : arbitrary complex scalars

- damped plane-wave solution with given ω , \vec{k} has 4 degrees of freedom (two complex scalars)
- additional property is called *polarization*
- many ways to represent these four quantities
- if E_1 and E_2 have identical phases, \vec{E} oscillates in fixed plane

Polarization Ellipse

Polarization

 $ec{E}\left(t
ight)=ec{E}_{0}m{e}^{i\left(ec{k}\cdotec{x}-\omega t
ight)}$

$$\vec{E}_0 = E_1 e^{i\delta_1} \vec{e}_x + E_2 e^{i\delta_2} \vec{e}_y$$

- wave vector in *z*-direction
- \vec{e}_x , \vec{e}_y : unit vectors in x, y
- *E*₁, *E*₂: (real) amplitudes
- $\delta_{1,2}$: (real) phases

Polarization Description

- 2 complex scalars not the most useful description
- at given \vec{x} , time evolution of \vec{E} described by *polarization ellipse*
- ellipse described by axes a, b, orientation ψ

Jones Formalism

Jones Vectors

$$ec{E}_0 = E_x ec{e}_x + E_y ec{e}_y$$

- beam in z-direction
- \vec{e}_x , \vec{e}_y unit vectors in x, y-direction
- complex scalars $E_{x,y}$
- Jones vector

$$\vec{e} = \left(\begin{array}{c} E_x \\ E_y \end{array}
ight)$$

- phase difference between *E_x*, *E_y* multiple of π, electric field vector oscillates in a fixed plane ⇒ *linear polarization*
- phase difference $\pm \frac{\pi}{2} \Rightarrow circular polarization$

Summing and Measuring Jones Vectors

$$ec{ar{f E}}_0 = E_X ec{m e}_X + E_Y ec{m e}_Y$$
 $ec{m e} = \left(egin{array}{c} E_X \ E_Y \end{array}
ight)$

- Maxwell's equations linear ⇒ sum of two solutions again a solution
- Jones vector of sum of two waves = sum of Jones vectors of individual waves if wave vectors k the same
- addition of Jones vectors: coherent superposition of waves
- elements of Jones vectors are not observed directly
- observables always depend on products of elements of Jones vectors, i.e. intensity

$$I = \vec{e} \cdot \vec{e}^* = e_x e_x^* + e_y e_y^*$$

Jones matrices

 influence of medium on polarization described by 2 × 2 complex Jones matrix J

$$ec{e}' = \mathsf{J}ec{e} = \begin{pmatrix} J_{11} & J_{12} \ J_{21} & J_{22} \end{pmatrix} ec{e}$$

- assumes that medium not affected by polarization state
- different media 1 to N in order of wave direction ⇒ combined influence described by

$$J = J_N J_{N-1} \cdots J_2 J_1$$

- order of matrices in product is crucial
- Jones calculus describes coherent superposition of polarized light

Linear PolarizationCircular Polarization• horizontal:
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
• left: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$ • vertical: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ • right: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$ • 45°: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Notes on Jones Formalism

- Jones formalism operates on amplitudes, not intensities
- coherent superposition important for coherent light (lasers, interference effects)
- Jones formalism describes 100% polarized light

rization

Quasi-Monochromatic Light

- monochromatic light: purely theoretical concept
- monochromatic light wave always fully polarized
- real life: light includes range of wavelengths ⇒ quasi-monochromatic light
- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta\lambda$ around central wavelength λ_0

$$\frac{\delta\lambda}{\lambda}\ll$$
 1

 measurement of quasi-monochromatic light: integral over measurement time t_m

- amplitude, phase (slow) functions of time for given spatial location
- slow: variations occur on time scales much longer than the mean period of the wave

Polarization of Quasi-Monochromatic Light

 electric field vector for quasi-monochromatic plane wave is sum of electric field vectors of all monochromatic beams

$$\vec{E}(t) = \vec{E}_0(t) e^{i\left(\vec{k}\cdot\vec{x}-\omega t\right)}$$

- can write this way because $\delta\lambda \ll \lambda_0$
- measured intensity of quasi-monochromatic beam

$$\left\langle ec{E}_xec{E}_x^*
ight
angle + \left\langle ec{E}_yec{E}_y^*
ight
angle = \lim_{t_m \to \infty} rac{1}{t_m}\int_{-t_m/2}^{t_m/2}ec{E}_x(t)ec{E}_x^*(t) + ec{E}_y(t)ec{E}_y^*(t)dt$$

 $\langle \cdots \rangle$: averaging over measurement time t_m

- measured intensity independent of time
- quasi-monochromatic: frequency-dependent material properties (e.g. index of refraction) are constant within Δλ

Polychromatic Light or White Light

- wavelength range comparable to wavelength $(\frac{\delta\lambda}{\lambda} \sim 1)$
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
- must take into account frequency-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Stokes and Mueller Formalisms

Stokes Vector

- formalism to describe polarization of quasi-monochromatic light
- directly related to measurable intensities
- Stokes vector fulfills these requirements

$$\vec{I} = \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} E_x E_x^* + E_y E_y^* \\ E_x E_x^* - E_y E_y^* \\ E_x E_y^* + E_y E_x^* \\ i (E_x E_y^* - E_y E_x^*) \end{pmatrix} = \begin{pmatrix} E_1^2 + E_2^2 \\ E_1^2 - E_2^2 \\ 2E_1 E_2 \cos \delta \\ 2E_1 E_2 \sin \delta \end{pmatrix}$$

Jones vector elements $E_{x,y}$, real amplitudes $E_{1,2}$, phase difference $\delta = \delta_2 - \delta_1$

$$I^2 \ge Q^2 + U^2 + V^2$$

Stokes Vector Interpretation

$$\vec{l} = \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} \text{intensity} \\ \text{linear } 0^{\circ} - \text{linear } 90^{\circ} \\ \text{linear } 45^{\circ} - \text{linear } 135^{\circ} \\ \text{circular left} - \text{right} \end{pmatrix}$$

degree of polarization

$$P = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}$$

1 for fully polarized light, 0 for unpolarized light

 summing of Stokes vectors = incoherent adding of quasi-monochromatic light waves

Mueller Matrices

• 4×4 real Mueller matrices describe (linear) transformation between Stokes vectors when passing through or reflecting from media

$$\vec{l}' = M\vec{l}$$
,

$$\mathsf{M} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{pmatrix}$$

• N optical elements, combined Mueller matrix is

$$\mathsf{M}'=\mathsf{M}_N\mathsf{M}_{N-1}\cdots\mathsf{M}_2\mathsf{M}_1$$

Vertical Linear Polarizer

Mueller Matrix for Ideal Linear Polarizer at Angle $\boldsymbol{\theta}$

$$\mathsf{M}_{\mathrm{pol}}\left(\theta\right) = \frac{1}{2} \begin{pmatrix} 1 & \cos 2\theta & \sin 2\theta & 0\\ \cos 2\theta & \cos^{2} 2\theta & \sin 2\theta \cos 2\theta & 0\\ \sin 2\theta & \sin 2\theta \cos 2\theta & \sin^{2} 2\theta & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Poincaré Sphere

Relation to Stokes Vector

- fully polarized light: $I^2 = Q^2 + U^2 + V^2$
- for *I*² = 1: sphere in *Q*, *U*, *V* coordinate system
- point on Poincaré sphere represents particular state of polarization
- graphical representation of fully polarized light

Poincaré Sphere Interpretation

- polarizer is a point on the Poincaré sphere
- transmitted intensity: cos²(1/2), 1 is arch length of great circle between incoming polarization and polarizer on Poincaré sphere