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Preface

How did this book come about? In 1985, Brian Dennis published a review on solar flares
and presented a stunning figure that showed a perfect powerlaw distribution in the oc-
currence of solar flares that extended over almost 4 orders of magnitude, with a slope of
−1.8, for which no explanation could be found. Just two years later in 1987, Per Bak,
the father of self-organized criticality (SOC), published his landmark paper on the inter-
pretation of the ubiquitous powerlaw distributions, observed also in sandpile avalanches
and earthquakes (the so-called Gutenberg–Richter law), by relating the scale-free behav-
ior to the 1/ f -flicker noise. A few years later, Per Bak gave a colloquium at the NASA
Goddard Space Flight Center (GSFC), where he met Brian Dennis and heard about solar
flare statistics; but he admitted in his book How Nature Works that he did not really un-
derstand how solar flares work. Intuitively, there was the notion that the intricate details of
the underlying physical processes could not provide the answer to the fundamental under-
standing of the observed powerlaws. In 1991, the two students Ed Lu and Russ Hamilton
at Stanford University wrote the first paper where self-organized criticality was applied to
solar flare statistics, which was interpreted and modeled with a cellular automaton model.
This approach offered an explanation of the observed powerlaws in terms of statistics of
next-neighbor interactions of complex dissipative systems in a critical state. This universal
aspect fascinated me more and more and I gave a number of colloquia on self-organized
criticality applied to solar flares at the ETH Zurich, NASA GSFC, and the University of
Maryland in 1991–1993. Since powerlaw distributions were also observed for stellar flares,
pulsar glitches, lunar craters, and asteroid sizes, I speculated that these may all be dissipa-
tive systems with self-organized criticality. During one of the seminars at the University of
Maryland I remember that Lucy McFadden, an expert in solar system small bodies, com-
mented that this was the most fascinating model she had ever heard of and asked whether it
applied also to the powerlaw distributions of asteroids and Saturn rings. I did not know the
answer at this time but an answer is given in this book. A textbook that explains the funda-
mental aspects of self-organized criticality in terms of the statistics of nonlinear events has
never been written in astrophysics, which motivated me to undertake such an endeavor.
One of the major aims of this book is to convey a deeper understanding of the statistics of
nonlinear processes that is common to solar flares, sandpile avalanches, and earthquakes,
although the underlying physics is completely different.



XIV Preface

This textbook is intended to be an introduction to the relatively new subject of self-
organized criticality (SOC), suitable for students and post-docs, as well as for researchers
who want to know all the relevant literature references. The main applications are astro-
physical phenomena, although we include also a few other phenomena from geophysics
or social sciences that provided important basic models, later applied to astrophysical phe-
nomena. In Chapter 1 we give an introductory broad overview of SOC phenomena ob-
served in the entire universe, wherever publications with SOC interpretations were found
in the scientific literature. The theoretical modeling of SOC phenomena can be pursued in
3 different approaches: by numerical (mostly cellular automaton) simulations (Chapter 2),
by analytical modeling of statistical distributions (Chapter 3), or by physical modeling
(Chapter 9). The temporal aspects of SOC statistics includes random statistics (Chapter 4),
waiting-time statistics (Chapter 5), and event-detection methods (Chapter 6). Using these
basic prerequisites, we can then model and understand the occurrence frequency distribu-
tions of SOC events, which reveal the ubiquitous powerlaws that are the hallmark of SOC
(Chapter 7). The spatial aspects of SOC events entail the geometry of fractal structures
(Chapter 8). Finally, we arrive at a general physics-free definition of SOC phenomena
(Section 9.1). Individual physical processes for astrophysical SOC phenomena are sum-
marized in Table 9.1 and discussed case by case in the remainder of Chapter 9, qualita-
tively for astrophysical observations, and somewhat more quantitatively for solar physics
applications. Alternatives to SOC processes are discussed in Chapter 10, which may also
exhibit powerlaw distributions but can be discriminated from pure SOC processes using
the criteria of our physics-free SOC definition (Table 10.1).

Do we understand SOC completely now? Although we hope to have established a
deeper understanding of SOC phenomena in this book, there are still a lot of open ques-
tions that can only be answered by large statistics of observations and by more detailed
modeling. For instance, how does the statistics of next-neighbor interactions result in the
exponential growth characteristics of SOC avalanches? What determines the powerlaw
slopes? How much is the powerlaw slope determined by mathematical statistics, and how
much by physical scaling laws? The relatively new scientific discipline of self-organized
criticality is a very interdisciplinary field and we hope that this book stimulates a cross-
fertilization in the data analysis and development of methods among the disciplines of
astrophysics, geophysics, biophysics, and social sciences.

The author is most indebted to invaluable discussions with, comments from, and re-
viewing by colleagues and friends, who are listed in alphabetical order: Eric Buchlin, Anne
Cristina Cadavid, Sandra Chapman, Paul Charbonneau, Norma Crosby, Pablo Dmitruk,
Manuel Güdel, Henrik Jeldtoft Jensen, Debbie Leddon, Yuri Litvinenko, William Liu,
Nadege Meunier, Laura Morales, Jeff Scargle, Virginia Trimble, Astrid Veronig, Nicolas
Watkins, and Mike Wheatland. The author wishes to acknowledge the efficient and most
helpful support provided by Springer/Praxis, especially by the publishers Clive Horwood
(Praxis) and Ramon Khanna (Springer), who encouraged and supported the publication of
this book. Extensive usage of scientific literature was enabled by the NASA Astrophysics
Data System (ADS), operated by the Smithsonian Astrophysical Observatory (SAO), as
well as by numerous Wikipedia and Google searches. Special thanks go also to my family,
to my children Pascal Dominique and Alexander Julian, and particularly to my wife, Carol
J. Kersten, for their enthusiastic support of this project.

Palo Alto, California, July 2010 Markus J. Aschwanden



  



1. Self-Organized Criticality Phenomena

How can the universe start with a few types of elementary particles
at the big bang, and end up with life, history, economics, and literature?
The question is screaming out to be answered but it is seldom even asked.
Why did the big bang not form a simple gas of particles, or condense into one big
crystal ?

Per Bak (1996), How Nature Works

In this introductory chapter we want to get a flavor of physical processes that are gov-
erned by self-organized criticality, starting from small experiments in our laboratories,
proceeding to nature phenomena on our planet, all the way to the remotest astrophysical
realms of our universe. We will discover that most complex systems with many interacting

The remainder of the book will focus on numerical, analytical, and physical modeling of
self-organized criticality in astrophysical systems.

1.1 The Concept of Self-Organized Criticality

This book is all about nonlinear systems in nature. What do we mean by a “system”? A
system is a set of interacting (or interdependent) components or entities that are combined
into an integrated whole, such as a car (a mechanical system), a coupled pendulum (a

astrophysical system).
Our whole universe is governed by nonlinear systems or nonlinear dynamics. In prin-

put is causally related to the input of the system. The property of linearity is well-

f (x + y) = f (x) + f (y), and homogeneity, f (a× x) = a× f (x). A car, for instance, is a
linear mechanical system by design: the directional change of the wheels is proportional

physical system), tectonic plates (a geological system), a hurricane (a weather system),
the stock market (an economic system), or an accretion disk in a binary star system (an

defined in mathematics: a linear function (or equation) obeys the properties of additivity,

components display some nonlinear behavior that is governed by self-organized criticality.

ciple, a system can exhibit linear or nonlinear behavior, depending on how the out-



2 1. Self-Organized Criticality Phenomena

TIME

D
IS

S
IP

A
T

E
D

 E
N

E
R

G
Y LINEAR SYSTEM

TIME

D
IS

S
IP

A
T

E
D

 E
N

E
R

G
Y NONLINEAR SYSTEM

Fig. 1.1 The output or dissipated energy in a linear system grows linearly with time, for a constant input
rate (top left), while the output is highly unpredictable and not correlated with the input rate in a nonlinear
dissipative system (bottom left). A practical example of a linear system is a hydroelectric plant, where
the produced electric energy is proportional to the water input, as depicted by the water-storage dam at
Yaotsu, Gifu, Japan (top right). A classical example of a dissipative nonlinear system is a snow avalanche,
as shown in the large wet-snow avalanche at Deadman Canyon in the Sierra Nevada range (bottom right).

to the angle you turn on the steering wheel. Also a hydropower plant can be described as
a linear system, since the produced electric energy is proportional to the water input that
flows out of a dam into the pipeline of the power plant (Fig. 1.1, top). The electric output
of multiple power plants requires a proportional amount of water supply, so the properties
of additivity and homogeneity typical for linear systems is fulfilled. Of course, the linear
behavior occurs only in a limited parameter range.

Many systems, however, consist of a large number of entities that interact in a com-
plex way and exhibit nonlinear behavior, which are called nonlinear dissipative systems,
such as coupled pendulums, avalanches (Fig. 1.1, bottom), earthquakes, hurricanes, the
stock market, or star-forming molecular clouds. Coupled pendulums pull and kick each
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other with rapidly changing amplitudes and phases, so that the resulting motion becomes
chaotic (for a discussion of chaotic systems see Section 10.7). Tectonic plates have compli-
cated interactions with cracking, shearing, or sliding motions, so that earthquakes happen
at very irregular time intervals. A hurricane originates far out in the ocean as a result of ap-
parently insignificant fluctuations of thermal gradients, air pressure, and circular motions,
which evolve into powerful monsters that amass more and more angular momentum until
they cause a catastrophe at landfall. Edward Lorenz, a pioneer of chaos theory, coined the
term “butterfly effect” (inspired by a 1952 science fiction story by Ray Bradbury), which
refers to the idea that a butterfly’s wing flap might be sufficient to cause a change in the
atmosphere that ultimately could result in a tornado. The stock market can behave quite
regularly over many days, but sporadic glitches that lead to a Wall Street crash can happen
unpredictably. Molecular clouds in our galaxy condense as a result of angular momen-
tum and gravity (or triggered by a supernova shock), until a gravitational collapse sets in
and leads to star formation. So, there are many nonlinear dissipative systems in our uni-
verse, which exhibit inherent nonlinear behavior just as a result of complex interactions
that occasionally lead to instabilities with subsequent catastrophes. However, although we
humans pay most attention to the largest events, the catastrophes, the myriads of smaller
events share the same statistical properties, which can be described with the concept of
self-organized criticality.

What special condition is needed to enable self-organized criticality? Since there exists
no perpetuum mobile, a system that works without external energy input ad infinitum, we
obviously need a source of energy. This input of external energy often occurs randomly in
nature, causing local disturbances of a system, to which a linear system will respond with
a proportional change in output, while a nonlinear dissipative system will respond spo-
radically with a little or largely amplified output. A classical paradigm for self-organized
criticality is a sandpile. If we continuously drip sand grains onto the same place, a conical
sandpile will grow in a stable manner, with a steepening surface shape, until a critical slope
(with an angle of ≈ 34–37 degrees, depending on the consistency, granularity, and humid-
ity of the sand) is reached, after which the state of self-organized criticality sets in (Fig. 1.2,
right panels). The continuously trickled sand will produce large or small avalanches of ran-
dom sizes that have no relation to the input rate of sand (at least for low rates). This is the
critical state that is needed to observe SOC phenomena. As long as the critical slope is not
reached, the sand will be in a stable equilibrium, such as in the flat sand beach in north-
ern California shown in Fig. 1.2 (left). So, we need two things, a continuous energy input
source and a nonlinear dissipative system. The energy dissipation of sandpile avalanches
corresponds to the kinetic energy and change in gravitational potential. The nonlinearity
results from the highly complex interactions of colliding sand grains, which act on each
other by collisions and friction. In contrast, water flowing through a pipeline (Fig. 1.1 top),
has a much more linear characteristic, at least for laminar flows, because of the inherent
physical properties of homogeneity and viscosity in fluids. Nonlinearity occurs in almost
all systems with many components. The physics is only simple for one- or two-component
systems, say under the influence of one gravitational or electric force (classical two-body
descriptions), while the physical and mathematical treatment becomes immensely com-
plex for n-body problems (for n ≥ 3). In fluids, turbulence can already occur in a single
fluid, and many instabilities can occur in two-fluid systems.
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SUB-CRITICAL STATE :
NO AVALANCHES

CRITICAL STATE :
AVALANCHES

Fig. 1.2 A static equilibrium produces no avalanche events (bottom left panel), such as the flat sand beach
in northern California (top left panel), while randomly dripping sand onto a sandpile produces a state of
self-organized criticality where avalanches occur (bottom right panel), such as with the conveyer belt of
the Indian River Enterprises (top right panel).

The concept of self-organized criticality has been pioneered by Per Bak and was first
published in the seminal paper by Bak, Tang, and Wiesenfeld (1987), which has been cited
already over 2000 times. Their brief abstract succinctly summarizes the quintessence of
SOC: We show that certain extended dissipative dynamical systems naturally evolve into
a critical state, with no characteristic time or length scales. The temporal “fingerprint”
of the self-organized critical state is the presence of 1/f noise; its spatial signature is the
emergence of scale-invariant (fractal) structure. The authors demonstrate the principle of
SOC with a simple sandpile automaton model, which produces avalanches of arbitrary
sizes that can be statistically sampled and exhibit a size distribution close to a powerlaw
function. The powerlaw shape of size distributions became the hallmark and principal
diagnostic of SOC phenomena (for which we will give a mathematical explanation in
Chapter 3). However, as we will see later, powerlaw distributions are a necessary, but not a
sufficient condition for SOC processes (Chapter 10; Sornette (2004), chapter 14 therein).
Popular accounts of SOC phenomena can be found in the lucidly written book How nature
works by Bak (1996), and in the article “Self-Organized Criticality” by Bak and Chen
(1991) in Scientific American. Mathematical treatments of SOC phenomena can be found
in the textbooks of Hendrik Jeldtoft Jensen (1998) and Didier Sornette (2004).
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Before we proceed to practical examples of SOC phenomena, we should also clar-
ify the difference between the terms self-organization and self-organized criticality. Self-
organization refers to a broad range of pattern formation processes in both physical and
biological systems. Pattern formation occurs through interactions internal to the system,
without intervention of external directing influences (Camazine et al. 2001), such as zebra
stripes, the bee’s honeycomb structure, lichen growth, the hexagonal Bénard convection
cells in boiling liquids, the granulation of the solar photosphere, in dusty space plas-
mas, or spheromaks. So, although the principle of self-organization is also concerned
with complex interactions of neighboring components in a nonlinear system, it focuses
on the resulting spatial (fractal) patterns, while the principle of self-organized criticality
is concerned with the dynamical aspects. The dynamic behavior produces spatio-temporal
events, whose statistical distributions of energy, temporal, and spatial scales can be sam-
pled and quantitatively modeled.

1.2 SOC Laboratory Experiments

The principle of self-organized criticality was introduced by Bak, Tang, and Wiesenfeld
(1987) as a theoretical concept, but the authors illustrated it also with the following prac-
tical example in the introduction of Bak et al. (1988): To illustrate the basic idea of self-
organized criticality in a transport system, consider a simple “pile of sand.” Suppose we
start from scratch and build the pile by randomly adding sand, a grain at a time. The pile
will grow, and the slope will increase. Eventually, the slope will reach a critical value
(called the “angle of repose”); if more sand is added it will slide off. Alternatively, if we
start from a situation where the pile is too steep, the pile will collapse until it reaches the
critical state, such that it is barely stable with respect to further perturbations. At the end
of their article, they suggest: Finally, we invite the reader to perform the following home
experiment. To demonstrate self-organized criticality, one needs a shoebox and a cup or
two of sand – sugar or salt will do in a pinch. Wet the sand with a small amount of water,
mix, and gather the sand into the steepest possible pile in one corner of the box. The angle
of repose (i.e., the threshold slope) is larger for wet sand. So as the water evaporates, one
observes a sequence of slides – some very small, others quite large – occurring at random
places on the pile. (The evaporation process can be sped up by placing the box on a warm
surface, or under direct sunlight.)

Since experiments are always the toughest judge of new theories, several researchers
started to test the SOC theory with sandpiles in their laboratory. The first experiment was
performed by Jaeger et al. (1989) at the University of Chicago, who filled a cylindrical
drum with grains, and rotated the drum slowly, like a concrete blender. Rotating the drum
produces a one-sided sandpile with a critical slope inside the drum. The slow rotation
steepens the slope and indeed created avalanches of all sizes. However, the authors did not
find a powerlaw distribution of avalanche sizes. While the small-size and intermediate-size
avalanches produced a powerlaw distribution, large-scale avalanches occurred in periodic
time intervals when the slope became too steep. Bak (1996, p.68) blamed the failure to
demonstrate SOC behavior in this experiment on the inertial effects of the rotation-induced
periodic large-scale avalanches.
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Fig. 1.3 The Norwegian rice pile experiment: a close-up photograph of a pile of rice, confined between
two glass plates (top left); an electronically processed record of an avalanche, where loss and gains of
rice mass is indicated with gray and black color (top right); and frequency distribution of the probability
density P(E,L) of events as a function of the energy dissipation E, normalized by the size L of the system.
The powerlaw slope is α ≈ 2.04 (Frette et al. 1996).

A more accurate experiment closer to the suggestion of Bak et al. (1989) was carried
out by Held et al. (1990) at IBM. They built a sandpile on top of a circular plate of an
electronic precision scale. Sand grains were dropped slowly on top of the sandpile and
the size of the resulting avalanche, if any, was recorded by the weight scale after each
added sand grain. Again, the authors measured a powerlaw distribution for sufficiently
large avalanche sizes only, but not for small to intermediate avalanche sizes. Bak (1996,
p.68) comments that the experiment records only those avalanches that fall off the plate,
but ignores the avalanches that stop along the sandpile, because they do not introduce a
change on the weight scale, and thus the distribution is incomplete.

An experimental setup with a inclined Plexiglas box, similar to the rotating drum of
the Chicago group, was used by Bretz et al. (1992), but the avalanches of dry, noncohesive
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granular material were recorded with a video camera. Again, the authors found a powerlaw
distribution for small avalanches only, and Bak (1996, p.69) thought that the system they
used was too small and the experiment was interrupted.

The ultimate and most careful experiment was performed by Frette et al. (1996) at the
University of Oslo, who used rice piles instead of sand. Two-dimensional rice piles con-
fined between two glass plates were monitored with video cameras to record the motion
and size of individual rice grain avalanches, while additional rice grains were slowly added
at the top of the pile. The experiment was performed for different plate distances, different
system sizes (from a few cm to a few m), and for different rice types. The experimenters
found that the occurrence distribution of energy (measured by the gravitational potential of
the height difference between the beginning and end of an avalanche) dissipated in the rice
avalanches obeyed a powerlaw function over up to 1.5 orders of magnitude, as expected
for SOC behavior. However, the researchers found that the SOC behavior worked better
for one type of rice (for grains with a large aspect ratio) than for others (for less elon-
gated grains), and thus concluded that SOC is not universal, but depends on the detailed
mechanism of energy dissipation. Note that this experiment records a complete sample of
avalanches that stop on the pile or reach the end of the pile. A snapshot of the rice pile is
shown in Fig. 1.3 (top left), the recorded area of a rice avalanche is displayed in Fig. 1.3
(top right)), and the frequency distribution of avalanche energies E, normalized by the
system size L, is shown in Fig. 1.3 (bottom), which exhibits a powerlaw slope of α ≈ 2.04.

On a larger scale, if you combine a number of sandpiles, you end up with an entire
landscape. Somfai et al. (1994a,b) at the Eötvös University in Budapest (Hungary) built
their own mini-landscape in a laboratory and mimicked the landscape formation in nature
by subjecting it to artificial erosion. A ridge-like landscape made of silica and potsoil was
sprayed with water sprinklers, which produced mudslides of various sizes. They recorded
the distribution of spatial sizes of mudslides and found a powerlaw with an exponent of
α = 0.78± 0.05, which can be interpreted as evidence for SOC behavior. The resulting
landscape was found to exhibit a fractal dimension, similar to that found in Norwegian
fjords.

SOC behavior was also found in a number of laboratory experiments and in physical
sciences, such as in plasma physics and material physics. A selection of phenomena that
exhibit SOC behavior or to which SOC models have been applied is listed in Table 1.1
(adapted from Turcotte (1999)).

1.3 SOC in Human Activities

The unpredictability of outcomes in nonlinear dissipative systems is an inherent property
of randomness, which is also called a Poisson process (see Chapter 4). The randomness
occurring in our daily human life is one of the basic experiences that everybody accepts
as a natural fact. A few examples of such Poisson processes in human life are: the number
of cars that pass through a certain point on a road (sufficiently distant from traffic lights)
during a given period of time; the number of spelling mistakes one makes while typing a
single page; the number of phone calls at a call center per minute; the number of times
a web server is accessed per minute; the number of light bulbs that burn out in a certain
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Table 1.1 SOC behavior in material physics and laboratory plasma physics.

Phenomenon References

sandpiles Bak et al. (1989)
Jaeger et al. (1989)
Held et al (1990)
Bretz et al. (1992)

rice piles Frette et al. (1996)
silica and potsoil landscape Somfai et al. (1994a,b)
fracture of fibrous materials Bernardes and Moreira (1995)
microfracturing Petri et al. (1994)
friction Ciliberto and Laroche (1994)
random directed polymers Jogi and Sornette (1998)
ceramics (Andrade creeps) Cottrell (1996)
autocatalytic surface reactions Drossel and Schwabl (1995)
annealed disorders Caldarelli et al. (1996)
foam rheology Okuzono and Kawasaki (1995)

Kawasaki and Okuzono (1996)
dislocation networks Marchesoni and Patriarca (1994)
lattice models of oscillators Corral et al. (1995)

Mousseau (1996)
pinned flux lattices Pla and Nori (1991)
interface dynamics Sneppen and Jensen (1993)
magnetic domain patterns Babcock and Westervelt (1990)

Che and Suhl (1990)
DC glow discharge plasma Nurujjaman and Sekar-Iyenbgar (2007)
Barkhausen effect Cote and Meisel (1991)

O’Brien and Weissman (1994)
vortices in superconductors Field et al. (1995)

Zieve et al. (1996)
Olson et al. (1997)
Bassler and Paczuski (1998)
Prozorov and Giller (1999)

plasma confinement Carreras et al. (1996)
Medvedev et al. (1996)

transport in tokamak plasmas Kishimoto et al. (1996)
turbulence in tokamak plasmas Rhodes et al. (1999)

amount of time; the number of roadkill (animals killed) found per unit length of road; the
inventivity of inventors over their career; or the number of publications written by a scien-
tist. Going back in time, the randonmness was even noted in the number of soldiers killed
by horse-kicks each year in each corps in the Prussian cavalry, an example that was made
famous in the book The Law of Small Numbers by Ladislaus Josephovich Bortkiewicz
(1898).

Exploring the randomness in nature we will find Poisson processes everywhere: such
as in the number of stars in a given volume of space, in the number of pine trees per unit
area of mixed forest, in the number of viruses that can infect a cell in cell culture, in the
number of hematopoietic stem cells in a sample of unfractionated bone marrow cells, in
the distribution of visual receptor cells in the retina of the human eye, in the number of
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mutations in a given stretch of DNA after a certain amount of radiation, in the number of
unstable nuclei that decay within a given period of time in a piece of radioactive substance,
or in the number of particles that scatter off a target in a nuclear or high energy physics
experiment.

Since we can easily gather statistics on event sizes that occur in such random pro-
cesses, we can test whether the statistical distributions match the mathematical powerlaw
distributions that are expected in the state of self-organized criticality (Chapter 3). Such
occurrence distributions, where the number N of events is statistically sampled versus the
size S of the event, preferentially on a log-log scale, i.e., log(N) vs. log(S), so that the pow-
erlaw function appears as a straight line, have been sampled for city sizes, word counts in
English literature (Zipf’s law; Saichev et al. 2009), cotton prices, stock-market, lottery
wins, or traffic jams, as they are eloquently described in Bak’s book, How Nature Works.
We will look at some of these examples in more detail in the following.

Let us consider the sizes of settlements, villages, towns, and cities on a continent. There
are obviously a lot of small towns, while there are only a few large cities, such as New York
or Los Angeles. If we look at a geographical map of North America (Fig. 1.4, left panel),
there are millions of settlements and villages with small communities, which aggregated
apparently randomly at almost any livable place, near rivers (to have water support), near
roads (to have access to traffic), or near coasts (to take advantage of ocean transportation).
So, people gathered in small communities for some economic or survival benefit. In some
places, economic growth was more favorable than in others, which attracted more people
who left a poor countryside and moved to small towns where lifestyle was more promis-
ing. Improvement of lifestyle and economic growth caused more urban sprawl so that large
cities grew, up to the limit of the carrying capacity. Thus the size of a community is the
result of complex human interactions between many members, which can be considered as
a nonlinear dissipative system. So, we expect a powerlaw distribution of city sizes, if urban
growth is in the state of self-organized criticality. First statistics of city sizes was already

Fig. 1.4 Left: Satellite picture of North America at night, taken from the orbiting International Space
Station (courtesy of NASA). The sizes of the light dots scale with the sizes of cities. Right: Zipf
rank plot for 276 metropolitan areas in the United States, after results of the census in 2000. Source:
http://factfinder.census.gov (Zanette 2007).
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gathered by George Kingsley Zipf in 1920, when he produced a log-log histogram of the
number of inhabitants per city versus the rank number of cities (which is essentially the
order in a cumulative distribution), published in the book Human Behavior and the Princi-
ple of Least Effort (Zipf 1949). There were only a few cities larger than 8 million, 10 cities
larger than 1 million, and 100 larger than 200,000. So, he found a powerlaw distribution
with a slope of about log(N2/N1)/ log(S2/S1) ≈ log(100/10)/ log(2× 105/106) ≈ −1.4
for the cumulative occurrence distribution. A modern version of Zipf’s plot is shown in
Fig. 1.4 (right panel), based on a census in 2000 on 276 metropolitan areas in the United
States
indexcensus (Zanette 2007). An up-to-date tutorial review on multiplicative processes in
urban growth that lead to Zipf’s law of city sizes is given in the same paper by Zanette
(2007). Zipf’s law applies also to the distribution of family names, or the number of indi-
viduals that speak the same language, because they are subject to the same multiplicative
growth or inheritance process that is common to all biological systems.

Zipf (1949) also investigated the complexity of a language. In particular, he counted
how often each word is used in a text of English literature, such as in James Joyce’s
Ulysses or in a collection of American newspapers. The most frequently used words in En-
glish texts are, in order of frequency, “the”, “of”, “and”, “in”, “to”, “a”, “is”, “that”,
“it”, “as”, “this”, “by”, “for”, “be”, “not”, etc. If one plots the number of these words
versus their rank, similarly to the Zipf plots of city ranks, one finds invariably a powerlaw

web (e.g., http://www.hermetic.ch/index.php) allow the user to produce such a Zipf plot for
any arbitrary text. What is the reason for this powerlaw or SOC behavior? The use of every
word is the result of complex thinking processes in our brain that involve associations of
word concepts with perceived objects and logical connections that are expressed in verbal
sentences. Associations or connections have a multiplicative functionality, and thus the
word frequency or usage is proportional to the number of (meaningful) connections. Mul-
tiplicative behavior is an inherent characteristics of nonlinear systems, and thus enables
SOC behavior. So, building up a complex language with rules of semantics, we end up
with a word frequency that depends on the number of possible (i.e., meaningful) combi-
nations, which is somehow multiplicative, based on the generality and applicability of a
word. Some words that describe very rare applications, e.g., abacinate (to blind by putting
a hot copper basin near someone’s eyes), abcedarian (a person who teaches the alphabet),
abderian (given to incessant or idiotic laughter), etc., as you can find in a grandiloquent
dictionary (http://www.islandnet.com/˜egbird/dict/dict.htm), are obviously at the bottom of
a Zipf rank plot, because the people who have heard of these words and even use them is
the smaller the more specific the word content is. So, ultimately, the word usage is the re-
sult of an avalanche-like chain-reaction in communication, similar to the nonlinear-growth
interactions in sand avalanches. Other applications of Zipf’s Law to economics, especially
the births and deaths of firms, can be found in the textbook of Saichev, Malevergne, and
Sornette (2009).

SOC behavior was also found in economy (financial market, lottery wins, random draw-
ings), which is governed by random input and nonlinear system dynamics. Mandelbrot
(1963) collected data of monthly cotton prices over several years and plotted a log-log
histogram of the monthly cotton price fluctuations, finding a Lévy distribution with a pow-

distribution with a slope of ≈ −1. Computer programs that can be downloaded from the
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Fig. 1.5 Probability distribution function of “returns” (avalanche sizes) for the Dow Jones index daily
closures from 1939/2/2 to 2004/4/13, computed for different cutoff parameters (in the selection of time
intervals of high activity) using a wavelet method with three different settings (C = 1,2,3) (Bartolozzi et
al. 2005).

erlaw tail with a slope of ≈−1.0. More recently, fluctuations of the stock market have been
investigated in great detail, which often show marginal variations of the daily Dow-Jones
index, but occasionally can escalate into catastrophic events, such as the Wall Street crash
in October 1929, the October 1987 market crash, or the big world-wide economic crisis
in 2008 (at the time of writing). Stock market crashes, which can be triggered by spec-
ulation or political events, represent large avalanches in a SOC system (Scheinkman and
Woodford 1994; Mantegna and Stanley 1997). The multiplicative chain reaction inherent
to SOC systems has been modeled in terms of interacting producers and vendors by Bak
et al. (1993, 1997). The avalanche-like evolution of stock market crashes is believed to
be preceded by precursors with log-periodic fluctuations (Feigenbaum and Freund 1996;
Sornette et al. 1996; Sornette and Johansen 1997). Recent studies (Bartolozzi et al. 2005)
of the Nasdaq100, the (Standard and Poor’s) S&P ASX50, and the Dow Jones index re-
vealed powerlaws and SOC behavior for the logarithmic returns of these indices (avalanche
sizes, see Fig. 1.5), the high activity periods (avalanche durations), and the quiet “laminar”
times (waiting times). A recent progress report on financial physics reviews the application
of SOC to economics, the Cont-Bourchaud percolation model, multiple-strategy agent-
based models of financial markets, the minority game (i.e., the El Farol problem), and
log-periodic precursors to financial crashes (Feigenbaum 2003).

A traffic jam is another driven dynamic system with random input that exhibits SOC
behavior. Cars enter a highway at random times. If the traffic rate is low, such as on a



12 1. Self-Organized Criticality Phenomena

Sunday morning, the system is subcritical because there is plenty of space between subse-
quent cars so that they do not bother each other. During a rush hour, however, everybody is
slowed down by the cars in front, and the spacings between subsequent cars is irregular due
to different driving speeds, braking manoeuvres, car passings, delays in human reaction,
or interfering weather conditions, etc. The distribution of car spacings will exhibit SOC
behavior for a busy traffic situation with maximum throughput. If there is too high a traf-
fic rate, the traffic slows down to a bumper-to-bumper situation. In fact, SOC is the most
efficient state of traffic, because too low a rate is a waste in terms of under-utilized streets,
while too high a rate leads to a permanent jam (Bak 1996). Emergent traffic jams were sim-
ulated by Nagel and Paczuski (1995), who found a powerlaw distribution of N(t) ∝ t−3/2

for the lifetimes of jams and 1/ f -noise in the power spectrum. Further models for traffic
jams were studied by Nagel and Herrmann (1993), and Nagatani (1995a,b,c,d).

Other human activities, where a large number of individuals are involved and where
random factors govern, are wars. The size or intensity of wars was quantified with the
number of battle deaths and the statistical distribution of the number of wars versus the
number of casualties was found to be a powerlaw distribution (Richardson 1941, 1960;
Levy 1983; Roberts and Turcotte 1998; Turcotte 1999). But why are wars examples of
SOC behavior? Turcotte (1999) compared the spread of wars over contiguous areas with
people of identical political ideology and to metastable neighbor countries with the forest
fire model, where a fire spreads over a contiguous local group of trees, and subsequently
to neighboring tree groups, if they are located within a critical distance. The higher the
number of trees per area, the larger is the size of the forest fire, similarly to how a local
war can spread to a global conflict in case of high population density. However, while
some statistical features of human activities can be modeled with a SOC model, we have
to be aware that human interactions are far more complex (and arbitrary) than what can be
modeled with a lattice model (Chapter 2) with well-defined probabilities.

A selection of references studying SOC behavior in human activities is summarized in
Table 1.2.

1.4 SOC in Biophysics

Charles Darwin’s theory of evolution explains life on Earth as a chain reaction of muta-
tions, adaptation, survival of the fittest species, and elimination of the least-fit, resulting
into a natural selection of the surviving species. Mutations of cells happen relatively rarely,
for instance by absorption of ultraviolet light, with a higher probability for long-lived cells
(which is the reason for a higher likelihood of cancer development in aging people). Since
mutation happens rarely and in episodic steps, rather than with slowly-varying continuity,
evolutionary changes occur in episodic bursts, separated by calm periods (similar to the
stock market behavior). Evolutionary changes can include creation of new species as well
as extinction of old species (like gains and losses on the stock market). The suggestion
that evolution takes place in bursts separated by calm periods was made by Gould and El-
dredge (1977). Statistics on the extinction of species were clearly found to be episodic at
all times (Raup 1986; Sepkoski 1993, see Fig. 1.6), such as the famous Cretaceous-Tertiary
event (65 million years ago) when dinosaurs became extinct, which was speculated to be
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Table 1.2 SOC behavior in human activities.

Phenomenon References

urban growth, city sizes Zipf (1949)
Zanette (2007)

word frequency in language Zipf (1949)
cotton prices Mandelbrot (1963)
stock market Scheinkman and Woodford (1994)

Feigenbaum and Freund (1996)
Sornette et al. (1996)
Sornette and Johansen (1997)
Mantegna and Stanley (1997)
Feigenbaum (2003)
Bartolozzi et al. (2005)

traffic jam Bak (1996)
Nagel and Herrmann (1993)
Nagel and Paczuski (1995)
Nagatani (1995a,b,c,d)

war casualties Richardson (1941, 1960)
Levy (1983)
Roberts and Turcotte (1998)

social networks Newman et al. (2002)
internet traffic Willinger et al. (2002)
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a consequence of an asteroid impacting Earth. An even bigger extinction event happened
during the Cambrian era (500 million years ago), when up to 95% of all species on Earth
disappeared. Raup (1991) discusses the origins of extinctions in his book “Extinction: Bad
Genes or Bad Luck?” An extinction phase can involve a chain reaction of multiple species,
which may depend on each other. On the other hand, the extinction of one species can trig-
ger the growth of another competing species. Dinosaurs and mammals were believed to
co-exist for a long period of time, while the number of mammal species grew explosively
after the disappearance of dinosaurs, because their degree of fitness increased without the
competition of the giant dinosaurs. Episodic changes in the size of species can also be trig-
gered by meteorological changes. Warm-blooded mammals may die at higher rates during
ice-ages. Global warming periods increase the overall temperature, which can enhance the
probability for the spread of diseases, since chemical reactions generally occur at a rate
of a factor of two faster when the temperature rises by 10%, speeding up the spread of
pandemic diseases.

The episodic evolution and extinctions of species that leads to the biodiversity at a given
time has been characterized with a model called punctuated equilibria model (Gould and
Eldredge 1977, 1993). The dynamical concept consists of bursty episodes of high activity
(i.e., punctuated events, like selected points in a time series), and calm intervening time
intervals of low activity (i.e., waiting times; Chapter 5), where the dynamic system settles
into a near-equilibrium state. A simple model of biological evolution based on punctu-
ated equilibrium and criticality was developed by Bak and Sneppen (1993), which self-
organizes into a critical steady state with intermittent co-evolutionary avalanches of all
sizes. This concept involves “collaborative evolution”, which is much more efficient than
noncooperative scenarios with independent (and thus unlikely) mutation steps. The punc-
tuated or stepwise behavior of evolutionary changes was reproduced by numerical simu-
lations (Maslov et al. 1994). A unified class of systems far from equilibrium processes,
including the Bak–Sneppen evolution model, interface depinning models, and invasion
percolation models, was combined by Paczuski et al. (1996). A general discussion of crit-
icality and scaling terms in evolutionary ecology is given in Sole et al. (1999). A more
recent model on the time-dependent extinction rate and species abundance is the tangled-
nature model (Hall et al. 2002), which reproduces both a smooth evolution of microscopic
fluctuations as well as intermittency of macroscopic fluctuations (punctuated equilibria).
Some other applications of SOC models to biophysics are given in Table 1.3.

1.5 SOC in Geophysics

An excellent introduction into the subject of self-organized criticality in Earth systems can
be found in the textbook of Hergarten (2002), with extensive coverage on earthquakes,
landslides, and drainage networks. Another textbook related to this subject covers frac-
tals and chaos in geology and geophysics (Turcotte 1997). Besides seismology and earth-
quakes, SOC behavior is also found in a number of other geophysical systems, such as in
landslides, turbidites, geological layers, volcanic eruptions, forest fires, lightning, rainfall,
hydrology, snow avalanches, cloud formation, climate fluctuations, etc.; see Table 1.4 for
a representative selection.
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Table 1.3 SOC in biophysics.

Phenomenon References

evolution and extinctions Gould and Eldredge (1977)
Raup (1986)
Sepkoski (1993)

neuron firing in a brain Stassinopoulos and Bak (1995)
Hopfield (1994)
Rundle et al. (2002)

neural reverberations of spiking nerve cells Herz and Hopfield (1995)
da Silva et al. (1998)

learning and memory Chialvo and Bak (1999)
breathing in lung Barabasi et al. (1996)
heart rate Goldberger et al. (2002)
epileptic seizures Osorio et al. (2009a,b)
spread of diseases Johansen (1994)
measles epidemics Rhodes and Anderson (1996)

Rhodes et al. (1997)
flying formation of birds Nathan and Barbosa (2006)
termite nest architecture O’Toole et al. (1999)
phylogenetic (evolutionary) trees Vandewalle and Ausloos (1995)

Table 1.4 SOC in geophysics.

Phenomenon Selected references

earthquakes Gutenberg and Richter (1954)
Aki (1981)
Bak et al. (2002)

landslides Fuyii (1969)
Hovius et al. (1997, 2000)
Pelletier et al. (1997)
Malamud et al. (2001)

turbidite depositions Rothman et al. (1994)
volcanoclastic turbidite deposits Hiscott et al. (1992)
volcanic acoustic emission Diodati et al. (1991, 2000)
volcanic activities Grasso and Bachelery (1995)
rock texture in craters Wu and Zhang (1992)
plastic shear bands in rocks Poliakov and Herrmann (1994)
epizonal mineral deposits Henley and Berger (2000)
propagating brittle failure Katz (1986)
snow avalanches Birkeland and Landry (2002)
river networks Rinaldo et al. (1996)
drainage networks Hergarten (2002)
Nile river fluctuations Hurst (1951)
rainfall Andrade et al. (1998)
cloud formation Nagel and Raschke (1992)
climate fluctuations Grieger (1992)
aerosols in atmosphere Kopnin et al. (2004)
forest fires Kasischke and French (1995)

Malamud et al. (1998)
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Earthquakes represent local adjustments to the stressing forces in the upper earth crust
(in depths of less than 20 km), which is not static but experiences permanent deformation.
The lithosphere is subdivided into several tectonic plates, whose motion is driven by ther-
mal convection in the mantle giving rise to spreading centers ocean ridges and subduction
zones at ocean trenches. The tectonic plates behave elastically until the stresses exceed a
certain threshold and a displacement occurs as a consequence – like a stick-and-slip mo-
tion – reducing the stress. Earthquakes can also strike in the stable crust, far away from
earthquake zones at the edges of tectonic plates (Johnston and Kanter 1990) or hidden on
“blind” faults under folded terrain (Stein and Yeats 1989). Earthquakes are episodic and
intermittent events, separated by long time intervals of quiescence, sometimes preceded by
precursors, or followed by aftershocks. Once an earthquake occurs, seismic waves propa-
gate away from the epicenter and cause damage over an extended area. Statistics of earth-
quakes and measurements of their magnitude became a research focus during the 20th
century. The Gutenberg and Richter (1954) law was established already more than a half
century ago. It states that the cumulative distribution of earthquakes follows a powerlaw
distribution as a function of the magnitude m. A similar relation holds for the earthquake
rupture areas AE , i.e., Ncum(> AE) ∝ A−1

E , or N(AE) ∝ A−2
E for the differential occurrence

frequency distribution (Aki 1981). [Definitions of differential and cumulative frequency
distributions are provided in Section 7.1.] The world-wide statistics of earthquakes for the
period of 1977–1994 is given in Fig. 1.7, as a function of the Gutenberg–Richter magni-
tude m (top axis), as well as a function of the earthquake rupture area AE (bottom axis).

The relationship of earthquakes to self-organized criticality has been considered by
Bak and Tang (1989), Sornette and Sornette (1989), Ito and Matsuzaki (1990), Sornette

Fig. 1.7 World-wide cumulative (slope = −1) and differential frequency distribution (slope = −2) of
earthquakes per year as a function of the rupture area AE in units of square kilometers, based on the Har-
vard Centroid-Moment Tensor Data Base (1997) for the years 1997–1994. The conversion into equivalent
Gutenberg–Richter magnitudes m is indicated on the top axis (Turcotte 1999).
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et al. (1990), Olami et al. (1992), Bak and Chen (1995), and Huang et al. (1998). The
fractal dimension of the distribution of earthquake fault gouges was brought into context
with the powerlaw behavior of SOC (Sammis et al. 1987). The primary SOC models ap-
plied to earthquakes are the Burridge and Knopoff (1967) slider-block model (see reviews
by Carlson et al. 1994, Turcotte 1997, 1999, and references therein), while other SOC
models include crack propagation (Chen et al. 1991) and interface depinning (Paczuski
and Böttcher 1996; Fisher et al. 1997). The waiting times between earthquakes were also
found to obey a powerlaw distribution, within a validity range of tens of seconds to tens of
years (Bak et al. 2002).

Major natural hazards on Earth include earthquakes, snow avalanches, floods, storms,
volcanic eruptions, and landslides, which all exhibit SOC behavior (Hergarten 2002).
Landslides occur mostly in mountainous areas (Fig. 1.8), where the inclination angle ex-
ceeds a critical slope, similar to the sand and rice piles discussed in Section 1.2. A more
physical term for landslides is gravity-driven mass movements. Landslides can be trig-
gered by heavy rainfall or earthquakes. After the initial detachment of a certain amount of
soil, gravity will accelerate the unstable mass and increase the kinetic energy gradually.
The increasing speed will overcome more friction at the front and edges of the sandslide
and pull more material along, further increasing the mass and kinetic energy. Landslides
and avalanches, therefore, exhibit a multiplicative or exponential-like growth in the time
evolution of their area, volume, mass, and energy. Landslides were found to have multi-
fractal properties (Mandelbrot 1985; Feder 1988; Turcotte 1997). Cumulative frequency
distributions of landslides as a function of the area (or some other magnitude definition)

Fig. 1.8 A sketch of the mountain “Rossberg” in Arth/Goldau (Switzerland), where a catastrophic rock-
slide occurred on September 2, 1806 and destroyed the town of Goldau, causing the death of 457 people
(drawing by Fritz Morach).
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were found to exhibit a powerlaw distribution with slopes of β = 0.96 in Japan (Fuyii
1969), β = 1.16 in New Zealand (Hovius et al. 1997), β = 0.70 in Taiwan (Hovius et al.
2000), β ≈ 1.6–2.0 in Japan, California, and Bolivia (Pelletier et al. 1997), or β = 1.5 in
Italy (Malamud et al. 2001). This powerlaw slope range of β ≈ 0.7–2.0 for cumulative fre-
quency distributions corresponds to α = β +1 ≈ 1.7–3.0 for differential (noncumulative)
frequency distributions. Sandslides triggered by earthquakes revealed powerlaw slopes in
the range of α = 2.3–3.3 for datasets from California, Japan, and Bolivia (see review by
Turcotte 1999 and references therein). Frequency distributions of sandslide volumes with
powerlaw behavior have been measured over 12 orders of magnitude, on Himalayan roads
(Noever 1993). The frequency distributions and fractal properties of landslides seem not to
depend on the triggering event (earthquake or rainfall), nor on the steepness of the moun-
tain slope (except for very shallow angles). Theoretical models of sandslides include the
classical BTW sandpile model (Bak et al. 1989), the OFC spring-block model (Olami et
al. 1992), or physics-based models, e.g., based on partial differential equations that com-
bine the slope stability and mass movements (Hergarten and Neugebauer 1998).

Sediment depositions at the edge of the continental shelf, deposited some 100 million
years ago, occurred also as avalanche-like events, called slumps. The resulting sediment
layers are called turbidites and have a variety of sizes and thicknesses, which were found
to exhibit a powerlaw distribution in the geological layer thicknesses, e.g., as measured
in the Death Valley in California (Rothman et al. 1994). Similar powerlaw distributions
that indicate SOC behavior have been found in volcanoclastic turbidite deposits (Hiscott
et al. 1992), in acoustic emission from volcanic activity of Stromboli (Diodati et al. 1991,
2000), in rock textures and multi-ring structures in the Duolun crater (Wu and Zhang
1992), in plastic shear bands in rocks (Poliakov and Herrmann 1994), in epizonal mineral
deposits (Henley and Berger 2000), in the eruptions, volcano-induced earthquakes, dikes,
fissures, lava flows, and interflow periods of the Piton de la Fournaise volcano (Grasso and
Bachelery 1995), in dust grains (aerosols) in the Earth’s atmosphere (Kopnin et al. 2004),
or in snow avalanches (Birkeland and Landry 2002).

Water plays a fundamental role for life on earth. All parts of the water cycle, from evap-
oration over the oceans, to formation of clouds, to rainfall, to river formation, were also
found to exhibit SOC behavior. Water-related phenomena are studied in the sciences of
hydrology and rheology. The formation of small water streams that combine to bigger and
bigger rivers exhibit a well-known fractal pattern, also known as Horton’s law. Horton’s
law defines the order of river segments as the number of links to other segments that have
to be passed before the river reaches the ocean, which increase as a powerlaw in the order.
The most famous manifestation of this principle is the fractal coastline of Norway. River
networks and drainage networks have been studied systematically under the aspect of SOC
(e.g., Rinaldo et al. 1996; Hergarten 2002). The fluctuations of the water level of the Nile
river has been characterized with a Hurst exponent (Hurst 1951), which is related to SOC
behavior. SOC behavior was also studied in rainfall (Andrade et al. 1998), cloud formation
(Nagel and Raschke 1992), and climate fluctuations (Grieger 1992), which are now in hot
debate in the context of the global warming trend.

Forest fires are another phenomenon that exhibit classical SOC behavior. The trigger
may be a small accident, such as an out-of-control campfire, a discarded cigarette, or an
electric spark of a high-voltage power line, while the outcome can have catastrophic di-
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mensions, depending on the spreading efficiency that can be sped up by dry conditions or
wind. The noncumulative frequency distribution of the number of forest fires as a function
of burned area was found to have a powerlaw slope of α = 1.3 for 4284 fires on US Fish
and Wildlife Service land during 1986–1995 (National Interagency Fire Center), α = 1.3
for 120 fires in the western US during 1955–1960, calculated from tree ring data (Hey-
erdahl et al. 1994), α = 1.4 for 164 fires in Alaskan Boreal Forests during 1990–1991
(Kasischke and French 1995), or α = 1.5 for 298 fires in the Australian Capital Territory
during 1926–1991 (ACT Bush Fire Council 1996), as computed by Malamud et al. (1998).
Forest fires were one of the first phenomena that have been modeled with a SOC cellular
automaton model (Bak et al. 1990; Drossel and Schwabl 1992a,b; Henley 1993). More
comprehensive forest-fire models were developed that include also phase transitions, “im-
mune” trees, and applications of the renormalization group theory (see review by Turcotte
(1999)).

1.6 SOC in Magnetospheric Physics

Magnetospheric physics deals with the interaction of the Earth’s (or some other planet’s)
magnetic field with the ambient solar wind in the heliosphere, which triggers a host of
secondary phenomena, such as ionospheric electric currents, aurorae, magnetic storms,
substorms, magnetic reconnection, and turbulence. Some dynamic phenomena occur in
the plasma sheet and neutral sheet of the geotail, in the trailing part of the Earth’s mag-
netic field that stretches out past 200 Earth radii away from the Sun. A lot of magneto-
spheric events (storms) are triggered by solar flares, coronal mass ejections, and the solar
wind, which have a highly intermittent and turbulent dynamics, but mostly exhibit SOC
behavior. Magnetospheric substorms and auroral activity evolve in response to the solar
wind and exhibit distinctly different levels of activity and nonequilibrium phase transi-
tions (Bargatze et al. 1985; Sitnov et al. 2000). Therefore, the bursty nature of magne-
tospheric phenomena, such as localized current disruptions (Lui et al. 1988), bursty bulk
flow events (Angelopoulos et al. 1996, 1999), and the powerlaw magnetic field spectra in
the magnetotail (Hoshino et al. 1994), have been interpreted in terms of an open, dissipa-
tive nonlinear system near a forced or self-organized critical state (Chang 1992, 1999a,b;
Klimas et al. 2000; Chang et al. 2003; Chapman and Watkins 2001; Consolini and Chang
2001). Evidence for the powerlaw characteristics of the probability distribution of energy
release events was found in auroral images from Polar/UVI (Lui et al. 2000; Uritsky et
al. 2002, 2003, 2006), in ground-based optical auroral observations (Kozelov et al. 2004),
in the burst size of the auroral electron jet index (AE) (Takalo et al. 1993; Consolini 1997,
2002), or in magnetospheric substorm-related tail current disruptions (Consolini and Lui
1999). An example of an auroral image is shown in Fig. 1.9, and statistics of auroral blob
sizes are shown in Fig. 1.10, where a powerlaw distribution over two orders of magnitude
is observed for auroral blob areas during quiet time intervals, but not during substorms.

Physical models of the dynamics of the Earth’s magnetotail are described in terms of
stochastic behavior of a nonlinear dynamical system near forced and/or self-organized crit-
icality. Multi-scale intermittent turbulence of overlapping plasma resonances and current-
driven instabilities are believed to lead to the onset and evolution of substorms, which
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Fig. 1.9 Global image of the auroral oval observed by the Ultraviolet Imager (UVI) onboard the NASA
satellite “Polar” on April 4, 1997 at 0519 UT, projected onto an Earth map (credit: NASA, Polar/UVI
Team, George Parks).

Table 1.5 SOC in magnetospheric physics.

Phenomenon Selected references

magnetotail current disruptions Lui et al. (1988)
substorm current disruptions Consolini and Lui (1999)
bursty bulk flow events Angelopoulos et al. (1996, 1999)
magnetotail magnetic field Hoshino et al. (1994)
auroral UV images Lui et al. (2000)

Uritsky et al. (2002, 2003, 2006)
auroral optical images Kozelov et al. (2004)
auroral electron jet index (AE) Takalo et al. (1993)

Consolini (1997, 2002)
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Fig. 1.10 Occurrence rate frequency distributions of auroral blobs (see Fig. 1.9) as a function of the size
(top panels) or dissipated energy (bottom panels), during quiet time intervals (left panels) and active time
intervals (right panels) (Lui et al. 2000).
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explains the localized and sporadic nature of bursty magnetic reconnection and the fractal
spectra observed in the magnetotail region (Chang 1999a,b; Klimas et al. 2000, 2004).
Extending the original definition of SOC by Bak et al. (1987), Chang (1992) introduced
the term forced criticality, which differs from Bak’s SOC model in the sense that it is crit-
ical without self-organization, under the influence of external forcing. Coherent magnetic
structures approach each other and merge or scatter under the influence of external forcing,
turbulence, or self-organization, until a powerlaw-like spectrum of size scales occurs. It is
now argued that the magnetospheric system is driven to a critical or near-critical state as a
result of the continuous loading and subsequent unloading above a critical current (Chang
1992, 1999a,b; Consolini and de Michelis 2002; Horton and Doxas 1996). The new model
eliminates the older “dripping faucet” model of chaotic loading and unloading (Baker et al.
1990; Klimas et al. 1992). Various cellular automaton SOC models have been developed
to model the dynamics of the auroral electron jet (AE) index (Uritsky and Pudovkin 1998;
Chapman et al. 1998, 1999; Watkins et al. 1999), the magnetotail current sheet (Takalo et
al. 1999a,b; Milovanov et al. 2001), the central plasma sheet (Liu et al. 2006), and extended
with renormalization-group analysis (Tam et al. 2000). Some observational references for
magnetospheric SOC phenomena are given in Table 1.5.

1.7 SOC in Planetary Physics

A number of SOC phenomena studied in geophysics (earthquakes, volcanic eruptions,
landslides, meteorite impacts) are expected to occur also on other rock-like planets, moons,
or asteroids. Even water-related phenomena (river networks, fluvial systems, sedimenta-
tion) are expected on planets that carried water at some time (e.g., Mars). Planets with
atmospheres (Venus, Mars, Jupiter, Saturn, Uranus, Neptune, etc.) are expected to ex-
hibit SOC behavior in climate phenomena (e.g., dust storms, climate changes, transient
spots and eddies, latitudinal bands). Planets with magnetic fields (Mercury, Jupiter, Sat-
urn, Uranus, Neptune) are expected to show SOC behavior in magnetospheric phenomena
(aurorae, substorms). However, due to the remote location and limited spatial resolution
of Earth-bound observations we have very little data on planetary SOC phenomena.

Mars global dust storms do not occur every year, but preferably during late southern
spring, when Mars is near its perihelion closest to the Sun. This interannual variability of
Mars global dust storms was modeled in terms of a SOC system, where smaller storms
(“dust devils”) occur between the active years at a lower threshold (Pankine and Inger-
soll 2004). SOC models were also applied to the Martian fluvial system (Rosenshein
2003). Self-organized criticality produces avalanches that grow coherently by nearest-
neighbor interactions, generally forming size distributions that obey a powerlaw function.
In a wider sense, we can even consider accretion, collisions, and scattering of particles
as nonlinear dissipative processes possibly governed by SOC behavior. Such nonlinear
processes are expected in the formation of planetary systems, planetary rings, asteroids,
comets, meteorites, and circumplanetary dust. The distribution of particle sizes in Saturn’s
ring (Fig. 1.11) indeed follows a powerlaw distribution of N(L) ∝ L−3 in the range of
1mm < L < 20 m (Zebker et al. 1985; French and Nicholson 2000). The asteroid size dis-
tribution follows a broken powerlaw with N(L) ∝ L−2.3 for large asteroids (5–50 km) and
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Fig. 1.11 Saturns rings observed by Voyager 2 spacecraft (left panel, credit: JPL and NASA), and artistic
rendering of saturn ring particles in close-up (right panel).

N(L) ∝ L−4 for smaller asteroids (0.5–5 km) (Ivezic et al. 2001). The size distribution of
lunar craters was found to be approximately Ncum(> L) ∝ L−2 (Cross 1966).

1.8 SOC in Solar Physics

Solar flares are very energetic phenomena where a magnetic reconnection process liber-
ates large amounts of magnetic energy that is dissipated by heating of thermal plasma and
by acceleration of high-energy (nonthermal) particles. The high-energy particles propa-
gate along the coronal magnetic field lines and mostly slam into the dense plasma in the
chromosphere, while a small fraction escapes upward into interplanetary space. The ma-
jority of accelerated particles that precipitate into the chromosphere produce collisional
bremsstrahlung in hard X-ray and gamma ray wavelengths, while heated chromospheric
plasma “evaporates” up into the postflare loops (Fig 1.12). The hard X-ray emission, which
provides a good measure for the total released flare energy, has been recorded for a large
number of flares with the Solar Maximum Mission (SMM) spacecraft during 1980–1989.
When a frequency distribution of these many hard X-ray peak count rates was plotted, an
astonishingly straight powerlaw distribution with a slope of α ≈ 1.8 was found (Dennis
1985), extending over 4 orders of magnitude (Fig. 1.13). Statistics of other flare parameters
were calculated, yielding a powerlaw slope of α = 1.73±0.01 for background-subtracted
hard X-ray peak rates, α = 2.54± 0.05 for flare durations, and α = 1.53± 0.03 for non-
thermal electron energies above 25 keV (Crosby et al. 1993).

Powerlaw distributions of flare peak intensities were found in virtually all observed
wavelengths: in gamma rays, hard X-rays, soft X-rays, extreme ultraviolet, Hα , optical,
and radio wavelengths (see Table 1.6 for observational references). Although the values
of the powerlaw slope varies over a considerable range (α ≈ 1.1–2.8) in different wave-
lengths, most measurements fall in the range of α ≈ 1.5–1.9. With the advent of hard X-ray
detectors with higher sensitivity, the frequency distributions were considerably extended
at the lower end, to flares that were smaller up to 3 orders of magnitude, called microflares
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Fig. 1.12 Solar flares observed in EUV with the TRACE spacecraft in 171 Å: The flare of 2001 Apr 15
exhibits an erupting filament in the foreground and a rising postflare arcade behind near the limb (left
panel), while the 2000 Nov 9 flare displays the 3-D geometry of the double-ribbon postflare arcade (right
panel) (credit: NASA, TRACE).

Fig. 1.13 Occurrence frequency distribution of the peak count rate of over 6,000 hard X-ray flares with
photon energies above 25 keV, recorded with the Hard X-Ray Burst Spectrometer (HXRBS) onboard
NASA’s Solar Maximum Mission (SMM) during 1980–1985. The distribution follows a powerlaw with
a slope of α ≈ 1.8 over 4 orders of magnitude (Dennis 1985).

(e.g., Lin et al. 2001; Christe et al. 2008). A further extension down to 9 orders of magni-
tude smaller than the largest flares could be observed with high-resolution EUV imagers
(SOHO/EIT, TRACE), called nanoflares (e.g., Krucker and Benz 1998; Aschwanden and
Parnell 2002). Because the powerlaw slope of the frequency distributions was found to be
close to α = 2 for nanoflares, which is a critical limit where the energy integral diverges
at the low or high end, the crucial question came up whether nanoflares significantly con-



1.8 SOC in Solar Physics 25

tribute to coronal heating (Hudson 1991). A synthesized frequency distribution of flares,
microflares, and nanoflares is shown in Fig. 1.14, which exhibits an approximate powerlaw
distribution with an overall slope of α ≈ 1.8 for the flare peak fluxes. Flares with or with-
out coronal mass ejections (CME) were found to have different powerlaw slopes (Yashiro
et al. 2006). The exact value of the powerlaw slope depends on event selection, event defi-
nition, instrumental sensitivity or flux threshold, instrumental bias, observed wavelengths
and temperature regime, geometric models, and energy definitions (e.g., Lee et al. 1995;
Isliker and Benz 2001; Aschwanden and Charbonneau 2002; Aschwanden and Parnell
2002; McIntosh and Charbonneau 2001; McIntosh et al. 2002). Another question was how
robust the flare frequency distribution is in time. No significant variation of the powerlaw
slope was found during the 11-year solar cycle (Bai 1993), although the flare rate varies by
orders of magnitude. The flare frequency distributions were also investigated as a function
of the spatial size of the associated active regions and some dependencies of the powerlaw
slopes and cutoffs were found (Wheatland and Sturrock 1996; Kucera et al. 1997; Sammis
1999; Wheatland 2000c).

While most of the flare emission in hard X-rays, soft X-rays, and EUV is confined to
the lower corona, flare-associated phenomena in the upper corona or heliosphere include
coronal mass ejections (CMEs), radio bursts, shock waves, and solar energetic particle
(SEP) events. Powerlaw distributions of these secondary events in the flare process have
been observed for radio bursts and solar energetic particles (see Table 1.6). For CMEs there
are probably no suitable data available, because measured observables are the angular
width and propagation speed, while CME masses or energies require model-dependent
calculations that are not readily available.

An interpretation of the omnipresent powerlaw distributions of flare peak fluxes or
energies in terms of SOC models was first proposed by Lu and Hamilton (1991), from
which we quote the abstract: “The solar coronal magnetic field is proposed to be in a
self-organized critical state, thus explaining the observed powerlaw dependence of solar-
flare-occurrence rate on flare size which extends over more than five orders of magnitude
in peak flux. The physical picture that arises is that solar flares are avalanches of many
small reconnection events, analogous to avalanches of sand in the models published by
Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same
physical processes, where the size of a given flare is determined by the number of elemen-
tary reconnection events. The relation between small-scale processes and the statistics of
global-flare properties which follows from the self-organized magnetic-field configuration
provides a way to learn about the physics of the unobservable small-scale reconnection
processes. A simple lattice-reconnection model is presented which is consistent with the
observed flare statistics. The implications for coronal heating are discussed and some ob-
servational tests of this picture are given.” This seminal paper has been cited over 300
times at the time of writing, which documents what a far-reaching impact this interpreta-
tion had in the area of solar physics alone.

Modeling of SOC behavior in solar flares started first with classical Bak–Tang–Wiesen-
feld (BTW) and modified cellular automaton models (Lu and Hamilton 1991; Lu et al.
1993; Lu 1995a; Georgoulis et al. 1995, 2001; MacKinnon et al. 1996, 1997; Georgoulis
and Vlahos 1998; Macpherson and MacKinnon 1999; Charbonneau et al. 2001; Belanger
et al. 2007; Morales and Charbonneau 2008a,b, 2009). Alternatively, also a continuously
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Table 1.6 SOC in solar physics: Observations of solar flare phenomena with powerlaw-like event occur-
rence frequency distributions.

Phenomenon: Selected references:
flare gamma rays: Perez-Enriquez and Miroshnichenko (1999)
flare hard X-rays: Datlowe et al. (1974)

Dennis (1985)
Schwartz et al. (1992)
Crosby et al. (1993, 1998, 1999)
Lu et al. (1993)
Lee et al. (1993)
Bromund et al. (1995)
Aschwanden et al. (1995, 1998b)
Kucera et al. (1997)

microflare hard X-rays: Lin et al. (1984, 2001)
Biesecker et al. (1993, 1994)
Su et al. (2006)
Christe et al. (2008)

flare soft X-rays: Hudson et al. (1969)
Drake (1971)
Shimizu (1995)
Lee et al. (1995)
Feldman et al. (1997)
Veronig et al. (2002a,b)
Das et al. (2004)
Yashiro et al. (2006)

microflare soft X-rays: Shimojo and Shibata (1999)
nanoflare EUV emission: Krucker and Benz (1998)

Aschwanden et al. (2000a)
Aletti et al. (2000)
Benz and Krucker (2002)
Aschwanden and Parnell (2002)

flare ultraviolet emission: Nishizuka et al. (2009)
chromospheric events Hα: Georgoulis et al. (2002)
flare radio emission: Akabane (1956)

Kundu (1965)
Kakinuma et al. (1969)
Fitzenreiter et al. (1976)
Aschwanden et al. (1995, 1998b)
Mercier and Trottet (1997)
Das et al. (1997)
Meszarosova et al. (1999)
Melendez et al. (1999)
Nita et al. (2002, 2004)
Ning et al. (2007)

solar energetic particles events (SEP): VanHollebeke et al. (1975)
Cliver et al. (1991)
Gabriel and Feynman (1996)
Miroshnichenko et al. (2001)
Gerontidou et al. (2002)



1.8 SOC in Solar Physics 27

1024 1026 1028 1030 1032

Flare energy  E [erg]

10-10

10-5

100

105

F
la

re
 fr

eq
ue

nc
y 

[1
0-5

0
s-1

 c
m

-2
 e

rg
-1
]

=-1.79+0.14 , N=281=-1.79_
Aschwanden et al. (2000b): TRACE 195 A

A
K

=-2.53...-2.59 , N=11150
Krucker & Benz (1998): SOHO/EIT 171/195 A

P

=-2.42...-2.59 , N= 4497
Parnell & Jupp (2000): TRACE 171/195 A

S

=-1.74, N=291
Shimizu (1995): Yohkoh/SXT

C

=-1.54, N=2878
Crosby et al. (1993): SMM/HXRBS >25 keV

L

=-1.57, N= 167
Lin et al. (2001): CGRO > 8 keV

EUV

SXR

HXR > 8 keV

HXR > 25 keV

NANOFLARES MICROFLARES FLARES

Fig. 1.14 Composite flare frequency distribution in a normalized scale in units of 10−50 flares per time
unit (s−1), area unit (cm−2), and energy unit (erg−1). The energy is defined in terms of thermal energy
Eth = 3nekBTeV for extreme ultraviolet (EUV) and soft X-rays (SXR), and in terms of nonthermal energy
in >25 keV (Crosby et al. 1993) or >8 keV electrons (Lin et al. 2001). The slope of −1.8 is extended
over the entire energy domain of 1024–1032 erg. The offset between the two hard X-ray (HXR) datasets is
attributed to different lower energy cutoffs as well as different levels of flare activity during the observed
time intervals (adapted from Aschwanden et al. 2000b; Lin et al. 2001).
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driven Olami–Feder–Christensen (OFC) model has been applied to solar flares (Hamon et
al. 2002). However, although cellular automaton models can reproduce SOC behavior in
the form of powerlaw distributions, no particular physics is attached to cellular automaton
models, which seem to have some universal characteristics. On the next level, modelers at-
tempted to incorporate physics-based models, such as linking discretized MHD equations
to the next-neighbor interactions of cellular automaton models (Vassiliadis et al. 1998; Is-
liker et al. 2001; Galtier and Pouquet 1998) or MHD simulations (Galsgaard 1996). Along
the same line of thought, MHD turbulence and associated heating was linked to SOC mod-
els (Walsh et al. 1997; Dmitruk and Gomez 1997; Dmitruk et al. 1998; Boffetta et al. 1999;
Liu et al. 2002; Krasnoselskikh et al. 2002). Other physics-based SOC lattice models in-
clude particle acceleration in random DC electric fields (Anastasiadis et al. 1997), the
scaling of energy release with the magnetic field, i.e., E ∝ B2 (Vlahos 2002; Vlahos et
al. 2002; Vlahos and Georgoulis 2004), magnetic helicity dissipation (Chou 1999, 2001),
chromospheric evaporation (Mitra-Kraev and Benz 2001), annihilation of magnetic ele-
ments (Podlazov and Osokin 2002), or cascades of magnetic reconnections (Hughes et
al. 2003).

Most existing SOC models are based on lattice grids, where avalanches are created by
next-neighbor interactions triggered above a critical threshold, which can be formulated by
mathematical rules and rendered by numerical simulations. In contrast to these lattice-type
models, the probability distributions of SOC models can also be calculated by analytical
means, using parameterized distributions and differential equations to describe the dy-
namics of a physical process in a SOC avalanche event. Such analytical SOC models have
been developed in terms of logistic avalanches (Aschwanden et al. 1998b), master equa-
tions (Wheatland and Glukhov 1998; Litvinenko and Wheatland 2001; Wheatland 2009),
magnetic separator reconnection models (Litvinenko 1996, 1998a,b; Longcope and Noo-
nan 2000; Litvinenko and Wheatland 2001; Wheatland 2002; Craig and Wheatland 2002;
Wheatland and Craig 2003), or torsional Alfvén waves (Wheatland and Uchida 1999). We
will discuss physics-based SOC models of solar flares in more detail in Chapter 9.

1.9 SOC in Stellar Physics

Stellar coronae must be governed by similar physics as we observe in the solar corona, es-
pecially for stars with similar strong magnetic fields, and similar temperatures and rotation
rates. Flares are ubiquitous among coronal stars and have been observed from almost the
entire main sequence and giants (e.g., see review by Güdel (2004)). Very energetic flares
are frequently seen in ultraviolet, soft X-ray, and radio wavelengths from red dwarf stars
of the dMe class, such as from AD Leo, AT Mic, AU Mic, EV Lac, UV Cet, or YZ CMi.
Stellar observers started to gather statistics of flare events detected during an observational
run and found similar powerlaw distributions as for solar flares, and thus interpreted them
in terms of SOC behavior. Powerlaw distributions have been found for stellar flares with
the following (noncumulative) slopes: α = 2.25±0.1 for YZ CMi (Robinson et al. 1999),
α ≈ 1.6–2.4 for 12 type F to M stars (Audard et al. 2000), α ≈ 2.0–2.7 for FK Aqr, V1054
Oph, and AD Leo (Kashyap et al. 2002), or α ≈ 2.3±0.1 for AD Leo (Arzner and Güdel
2004).
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A synopsis of the dataset of 12 flare stars observed by Audard et al. (2000) is shown
in Fig. 1.15 and is compared with the statistics of some 19,000 solar flares observed with
RHESSI, all normalized to the same energy definition (in terms of total radiated energy).
We see that the largest stellar flares observed from each star have all a larger total energy
than the largest solar flares, in excess of up to 3 orders of magnitude. While solar flares
have been observed up to maximum energies of E <∼ 1032 ergs, stellar flares range up to
E <∼ 1035 ergs (e.g., for HD 2756, a class F2 V type star). This does not mean that stellar
flares of the size of solar flares do not exist, but their detection is mainly limited by the
instrumental sensitivity of the detectors. The distances to the stars indicated in Fig. 1.15
run from 2.4 pc (CN Leo) to 45 pc (HD 2726). Since 1 pc is about a 200,000 times larger
distance than 1 AU, this means that the flux of the largest solar flares would be a factor
of 11–14 orders of magnitude fainter at those stellar distances. For the most distant star
of this sample, a 1012 times larger sensitivity is therefore required to detected the weakest
flare on this star shown in Fig. 1.15, which is still a factor of 100 brighter than the largest
solar flare.

Another oddity of stellar flare frequency distributions is their systematically steeper
slope (α >∼ 2) than their solar counterparts (α <∼ 2). However, we have to be aware that
most of the samples of stellar flares are obtained during a very restricted observing time
interval in the order of hours, which typically includes only n ≈ 5–15 events per star (Au-
dard et al. 2000). The small-number statistics suggests that only the upper cutoff part of
a frequency distribution is sampled, which often shows an exponential drop-off, while the
powerlaw part is usually manifest when the distribution extends over a larger inertial range
(i.e., the powerlaw part of the distribution), say over at least two orders of magnitude (As-
chwanden 2007). The distribution of solar flares (from RHESSI) that extends over almost
5 orders of magnitude shown in Fig. 1.15 demonstrates this point: a powerlaw-like part is
seen in the lower 4 orders of magnitude in energy, while an exponential drop-off is appar-
ent at the high-energy end, probably limited by the maximum active region size (Kucera
et al. 1997). Thus, the systematic difference in observed powerlaw slopes may be mostly
an observational limitation, rather than a fundamental difference in the physics of flares on
the Sun and stars, and thus may not provide a valid argument for the dominance of coronal
heating by nanoflares (which requires a powerlaw slope of steeper than 2; Hudson (1991)).

Theoretical interpretations of stellar flare observations in terms of SOC behavior range
from superposition of stochastic flaring and heating events (Arzner and Güdel 2004), to
self-regulation of the coronal density driven by chromospheric evaporation and radiative
cooling (Uzdensky 2007), or self-driving embedded Sweet–Parker reconnection (Cassak
et al. 2008).

Cataclysmic variable stars (CV) are stars that exhibit irregular brightness variations,
with quiescent time intervals in between. Over 1,600 CV systems are known today. The
interpretation for these episodic bursts is thought to be a mass transfer between close bi-
nary stars (Fig. 1.16), consisting of a white dwarf primary star and a secondary star with
an orbital period in the range of P ≈ 1–10 hours. Gravitational disturbances of the primary
dwarf star on the secondary star (the donor star) can trigger infall of matter that is accreted
in the primary star, leading to an accretion disk around the dwarf star. Occasional instabil-
ities in the accretion disks lead to X-ray bursts whenever an avalanche of unstable massis
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Fig. 1.15 Cumulative occurrence frequency distributions N(> E) of stellar flares (vertically shifted for
each star, in order of stellar distance) are shown as a function of the flare energy E, observed from 12
different stars by Audard et al. (2000). For comparison we show also the statistics of total hard X-ray
emission of 18,888 solar flares observed with RHESSI, which covers an energy range of E ≈ 1027.0–1031.7

ergs, while stellar flares have an energy range of E ≈ 1030.7–1035.0 ergs. Note that most distributions show
a (cumulative) powerlaw part with a slope of α ≈ 0.8 (diagonal lines) at the low end and an exponential
high-energy drop-off. The distributions are incrementally shifted for clarity.
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Fig. 1.16 Artistic rendering of the cataclysmic variable star RS Ophiuchi, which exhibits a nova outburst
about every 20 years. This binary system contains a white dwarf and a red giant with mass transfer (credit:
PPARC, David A. Hardy).

hurled inward. Even larger instabilities can produce nova outbursts, whenever the density
and temperature raises above a critical threshold to ignite nuclear fusion reaction.

Optical emission from CVs or accretion disks exhibits short rapid random variability,
called “flickering”. The power spectral density S( f ) as a function of the frequency f was
found to have a powerlaw behavior, i.e., S( f ) ∝ f−1...−2 (Bruch 1992, 1995; Kato et al.
2002), and thus was interpreted in terms of SOC systems (Mineshige et al. 1994a; Dendy
et al. 1998; Wiita and Xiong 1998; Mineshige 1999). The waiting-time distribution of
rapid fluctuations in X-rays from Cygnus X-1 was found to be exponential (Negoro et al.
1995), implying a random process that can be modeled with a shot-noise model (Negoro et
al. 1995; Focke 1998). Massive CVs with accretion disks can form black holes, where the
gravitational field is so powerful that it even traps light and precludes escape. The evolution
of a black hole thus involves also accretion disks, for which SOC behavior is postulated,
similarly to other accretion disk systems (Sivron 1998; Mineshige and Negoro 1999; Xiong
et al. 2000). Modeling of the SOC behavior in terms of cellular automaton models was
conducted and could reproduce the power spectrum characteristics of the flicker noise of
cataclysmic variables (Yonehara et al. 1997; Takeuchi and Mineshige 1997; Pavlidou et al.
2001) or black holes (Takeuchi et al. 1995).

Pulsars are highly magnetized, rotating neutron stars, exhibiting short periods in the
range of 1.4 ms to 8.5 s. The most famous one is the Crab pulsar with a period of 33
ms. Although pulsars rotate with such a high precision that they are used as timekeepers,
there are some glitches observed occasionally, which are related to the superfluidity and
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superconductivity inside the star that allows the neutrons to flow without friction (Piz-
zochero et al. 1997). The probability of pulsar glitches as function of the glitch energy
was found to be a powerlaw, i.e., P(E) ∝ E−3.5 (Argyle and Gower 1972; Lundgren et
al. 1995), P(E) ∝ E−1.14 (Morley and Garcia-Pelayo 1993), P(E) ∝ E−2.8 (Cognard et
al. 1996), which has been related to a SOC system (Young and Kenny 1996). Modeling of
pulsar glitches has been conducted in terms of electric fields, for which a powerlaw-like
probability distribution of P(E) ∝ E−4.6...−9 was found (Cairns 2004; Cairns et al. 2004).
A cellular automaton model of pulsar glitches was constructed based on the superfluid
vortex unpinning paradigm (Warzawski and Melatos 2008; Melatos et al. 2008).

A related class is the soft gamma repeater (SGR), an object that shows a repetitive
emission of low-energy gamma-ray bursts. SGRs have been interpreted in terms of star-
quakes, which are the result of a fracture of the crust of a magnetically powered neutron
star or “magnetar” (Duncan and Thompson 1992; Thompson and Duncan 1996). The flu-
ence distribution of SGR bursts was found to have a powerlaw with slopes of α ≈ 1.4–1.7
(Gogus et al. 1999, 2000), and thus has been associated with SOC behavior like earth-
quakes, and hence, called starquakes. A compilation of references for SOC phenomena in
stellar physics is given in Table 1.7.

1.10 SOC in Galaxies and Cosmology

On galactic scales, X-ray variability has been observed in so-called active galactic nuclei
(AGN), which often are radio galaxies or blazars. Physical interpretations attributed to such
X-ray variability are X-ray jets, disk-corona models where X-ray emission originates from
comptonization of soft UV thermal photons, or black hole models. An X-ray light curve
analysis of a radio galaxy was found to be consistent with shot-noise statistics, which lends
to the same SOC interpretation as for the black hole candidate Cygnus X-1 (Leighly and
O’Brien 1997; Ciprini et al. 2003).

Cosmic structures at large scales, such as galactic spirals and galaxy clusters, display
complex and fractal geometries (although the universe turns over to being remarkably
homogeneous and isotropic at cosmological scales of the microwave background). Since
fractals are scale-free, as self-organized criticality leads to scale-free spatial and temporal
structures, SOC behavior could also play a role in the creation of large-scale structures in
the universe, not requiring any fine tuning to achieve a critical state. Although a full SOC
model has not been developed yet for structures in the early universe, self-organization and
fractal scaling (which is SOC without criticality) has already been applied to some large-
scale structures, such as to the formation of the interstellar medium (Tainaka et al. 1993),
the galactic spiral structure (Nozakura and Ikeuchi 1988), the stellar dynamics in ellipti-
cal galaxy formation (Kalapotharakos et al. 2004), or the initial mass function of starbursts
(Melnick and Selman 2000), or gravitational structure formation in general on many scales
(Da Rocha and Nottale 2003). In numerical N-body simulations of elliptical galaxy for-
mation it is found that the initial chaotic orbits become ordered as the short axis tube type
during their evolution, which is a self-organization process (Kalapotharakos et al. 2004),

What about SOC and cosmology? Although the following excerpt is not mainstream
cosmology, it contains intriguing thoughts about the possible application of SOC to cos-
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Table 1.7 SOC behavior in stellar physics: The references include observational and theoretical modeling
papers.

Phenomenon References

stellar flares Robinson et al. (1999)
Audard et al. (2000)
Kashyap et al. (2002)
Arzner and Güdel (2004)

cataclysmic variable (CV) stars Bruch (1992, 1995)
Yonehara et al. (1997)
Takeuchi and Mineshige (1997)
Kato et al. (2002)

accretion disks Dendy et al. (1998)
Wiita and Xiong (1998)
Mineshige (1999)
Xiong et al. (2000)
Pavlidou et al. (2001)

black holes Mineshige et al. (1994a)
Takeuchi et al. (1995)
Sivron (1998)
Mineshige and Negoro (1999)

pulsar glitches Argyle and Gower (1972)
Morley and Garcia-Pelayo (1993)
Cognard et al. (1996)
Lundgren et al. (1995)
Young and Kenny (1996)
Cairns (2004)
Cairns et al. (2004)
Warzawski and Melatos (2008)
Melatos et al. (2008)

soft gamma repeaters (SGR) Duncan and Thompson (1992)
Thompson and Duncan (1996)
Gogus et al. (1999, 2000)

mology. We quote from Moffat (1997): A major problem in modern cosmology is this:
How could the universe evolve during more than 10 Gyr and become so close to spa-
tial flatness and avoid the horizon problem? Why is the universe so homogeneous and
isotropic? How could such a critical state of the universe come about without a severe fine
tuning of parameters. The usual explanation for these questions is based on the idea of
inflation. However, inflation is a type of phenomenon that in statistical mechanics corre-
sponds to the existence of an attractor that requires fine tuning of the parameters. Moffat
(1997) then proposes that the universe evolves as a SOC system (in the sense of the Bak-
Tang-Wiesenfeld model) with the Hubble expansion undergoing “punctuated equilibria”
with energy being dissipated at all scales. Note that punctuated equilibria involve a num-
ber of episodic bursts, separated by time intervals of near steady-state, so the implication
is that there occurred many inflation phases in the past, not just one. A consequence is
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Table 1.8 SOC concepts in galaxies and cosmology.

Phenomenon References

active galactic nuclei, blazars Leighly and O’Brien (1997)
Ciprini et al. (2003)

interstellar medium formation Tainaka et al. (1993)
galactic spiral structure Nozakura and Ikeuchi (1988)
elliptical galaxy formation Kalapotharakos et al. (2004)
IMF of starbursts Melnick and Selman (2000)
gravitational structure formation Da Rocha and Nottale (2003)
cosmology, big bang, inflation Moffat (1997)
quantum gravity Ansari and Smolin (2008)

that the SOC model predicts a critical value for the density profile, Ω = 1, which is the
critical value between an open (Ωc ≤ 1) or closed universe, independent of the initial con-
ditions and without fine tuning of the parameters. The metric fluctuations display 1/f flicker
noise, correlations of fluctuations occur at all length scales, and the universe evolves at
the “edge of chaos”. There is only one possible stable choice (i.e., stable under local per-
turbations) for the present expanding universe whatever its initial conditions. According
to our assumptions the space-time geometry fluctuates randomly at some length scale. If
we assume that the metric fluctuations are very intense at the beginning of the universe,
and that they smear out the light cones locally, then for a given short duration of time Δt
after the big-bang there will be communication of information “instantaneously” through-
out the universe. This will resolve the “horizon” problem and explain the high degree of
isotropy and homogeneity of the present universe (Moffat 1997). A related SOC concept
has also been applied to quantum gravity (Ansari and Smolin 2008). A few references to
SOC concepts applied to galaxies and cosmology are given in Table 1.8.

1.11 Summary

Self-Organized Criticality (SOC) is a theoretical concept that describes the statistics of
nonlinear processes. It is a fundamental principle that is common to many nonlinear dis-
sipative systems in the universe. Due to its universality and ubiquity, SOC is a law of
nature, for which we derive the theoretical framework and specific physical models in this
book. The SOC concept was introduced by Bak, Tang, and Wiesenfeld in 1987 and has
been applied to laboratory experiments of sandpiles, to human activities such as popula-
tion growth, language, economy, traffic jams, or wars, to biophysics, geophysics (earth-
quakes, landslides, forest fires), magnetospheric physics, solar physics (flares), stellar
physics (flares, cataclysmic variables, accretion disks, black holes, pulsar glitches, gamma
ray bursts), and to galactic physics and cosmology. From an observational point of view,
the hallmark of SOC behavior is the powerlaw shape of occurrence frequency distributions
of spatial, temporal, and energy scales, implying scale-free nonlinear processes. Power-
laws are a necessary but not sufficient condition for SOC behavior, because intermittent
turbulence also produces powerlaws. While we surveyed the manifestation of SOC behav-
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ior from “microscopic” scales (sandpiles) across the universe out to cosmological scales in
this introductory chapter, as documented in the literature of some 1,000 research publica-
tions, we will provide a more detailed introduction into the theoretical concepts, modeling,
and interpretation of SOC behavior in the following chapters.

1.12 Problems

Problem 1.1: Count the words of an English text, either visually or with some computer

rank-ordered Zipf plot (similar to the graph in Fig. 1.4 right panel for city sizes). Do
you obtain the same order of words as it is found for the English language in general?
The first 15 words, in order of frequency, are: “the”, “of”, “and”, “in”, “to”, “a”,
“is”, “that”, “it”, “as”, “this”, “by”, “for”, “be”, “not”.

Problem 1.2: How are rank-ordered plots, cumulative frequency distributions, and non-
cumulative (differential) frequency distributions related to each other? Derive a math-
ematical proof that a powerlaw in a rank-ordered plot corresponds to a powerlaw of
a cumulative frequency distribution. What is the difference in the powerlaw slope be-
tween a cumulative and noncumulative frequency distribution? (Check your answers in
Section 7.1.)

Problem 1.3: Is there a concentration or preferred range of powerlaw slopes α of (non-
cumulative) occurrence frequency distributions? (Hint: Plot a histogram of the values
quoted in Chapter 1.)

program (e.g., http://www.hermetic.ch/index.php), and plot the frequency of words in a



  



2. Numerical SOC Models

Computers are useless. They can only give you answers.

Pablo Picasso

I do not fear computers. I fear the lack of them.

Isaac Asimov

Self-organized criticality (SOC) is the natural state into which a nonlinear dissipative sys-
tem evolves into, without fine tuning of the initial conditions. Generally, some external
forcing mechanism drives a system into criticality, where energy is dissipated sporadically
in avalanche-like events. Such nonlinear dissipative systems are also called complex sys-
tems, which are composed of many interconnected parts that interact in a nonlinear way.
Complex systems, such as the particles in a fluid that shows Brownian motion, have too
many components to be described in terms of an n-body system with an equally large
number of differential equations. So it is understandable that we first start with empirical
computer simulations, which we call numerical models, to study the SOC state. In this

that will be developed in Chapter 3, based on approximations of the average behavior
of some macroscopic physical parameters. The numerical models that have been used to
study SOC behavior are mostly cellular automaton models, which essentially consist of
an equi-spaced lattice grid and a set of mathematical rules to simulate a time-progressive
interaction between next neighbors in the lattice. Hence, they are also called lattice-type
simulations. There is no universal cellular automaton algorithm that works for every sys-
tem in nature, but there is a rather large variety, each one adapted to capture the nonlinear
dynamics of a particular phenomenon in nature. Thus we organize this chapter in the same
order as Chapter 1, starting from small systems in laboratories out to the largest astro-
physical systems in the universe. In addition to cellular automaton models, some other
alternative numerical models have been used to study SOC behavior, such as mechanical
systems (e.g., coupled pendulums or the block-slider model), n-body simulations (e.g.,
stellar dynamics), or percolation systems (e.g., solar active regions).

chapter we exclusively describe such numerical models, in contrast to analytical models
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This chapter describes examples of numerical SOC simulations used in astrophysics
(Sections 2.5–2.7), which essentially all were first inspired by non-astrophysical appli-
cations (Sections 2.1–2.4). Other generic reviews on numerical SOC models can also be
found in Bak and Chen (1991), Bak and Paczuski (1995), Bak (1996), Jensen (1998), and
Turcotte (1999).

2.1 SOC Simulations of Laboratory Experiments

As we have seen in Section 1.2, laboratory experiments with SOC behavior are difficult
to carry out (especially with real sand or rice piles), so it is much easier to simulate these
experiments with the computer. A few basic examples of computer models of laboratory
experiments are coupled pendulums (Section 2.1.1), sandpiles (Section 2.1.2-3), lattice
gases (Section 2.1.4), or coupled slider-block springs (Section 2.4.1), all representing ide-
alized dissipative n-body systems that have a nonlinear coupling between next neighbor
elements, from which the SOC behavior can be studied.

2.1.1 Coupled Pendulums

One of the prototypes of mechanical SOC models is a system of coupled oscillators, which
mimic a complex system with many degrees of freedom. A relatively simple computer
model was conceived by Tang et al. (1987), with a horizontal two-dimensional grid of
pendulums that can rotate in a vertical plane and are mutually connected with the next
neighbors with springs with force constant k (Fig. 2.1). The 2-D array of n pendulum balls
of mass m is driven by a time-periodic square-wave force F(t) and has the equation of
motion

mÿ = −γ ẏ j + k(y j+1 −2y j + y j−1)−asin(2πy j)+F, j = 1,2, ...,n , (2.1.1)

where y j is the position of the j-th pendulum ball, γ is the damping constant, and a is the
amplitude of the potential. Tang et al. (1987) conducted computer simulations of this dis-
sipative system and found novel patterns in the formation of metastable states. In further
computer experiments of the group by Tang, Wiesenfeld, and Bak, energy was pumped
into the system by random selection of pendulums that would perform a full initial rota-
tion, which occasionally triggered adjacent pendulums to execute a full rotation (Fig. 2.1),
similar to a domino effect. To make the system dissipative, a significant amount of friction
was built in (with the damping constant γ). A typical experiment would involve 50× 50
gridpoints (or n = 2,500 pendulums). Every random energy input triggered a different
chain reaction of rotating pendulums, whose magnitude or size was counted by the num-
ber of pendulums that executed a full rotation during one chain reaction (or avalanche)
event. Finally, the group of Tang, Wiesenfeld and Bak discovered that the size distribution
N(S) of avalanches as a function of the size S exhibited a powerlaw function in a log-log
plot,

N(S) ∝ S−α , (2.1.2)
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(i-2,j) (i-1,j) (i,j)

Fig. 2.1 System of coupled pendulums in a two-dimensional grid system as simulated by Tang et
al. (1987). Each gridpoint has a pendulum that is coupled to its next neighbors with a spring. At the time
shown, the pendulum at position (i, j) is excited and pulls the adjacent pendulums at positions (i− 1, j)
and (i−2, j) into the same direction through the coupling of the springs.

with a powerlaw slope of α ≈ 1.1 (see Fig. 11 in Bak 1996, p.47). At the upper end of the
powerlaw distribution there is a cutoff given by the maximum number n of the pendulums
contained in the system. This is one of the prototypes of nonlinear systems where the
state of self-organized criticality (SOC) was discovered. The term “self-organizing” refers
to the invariant endstate (with the same powerlaw slope) into which the system evolves,
without fine tuning of the initial (random) energy input.

2.1.2 The Bak-Tang-Wiesenfeld 1-D Sandpile Model

The most famous paradigm of SOC models, introduced by Per Bak, is the sandpile. Sand
grains are randomly dropped on a pile, which trigger avalanches of different sizes and du-
rations. The system is dissipative because of the friction, which provides also the required
instability threshold with many metastable states. The nonlinear dynamics comes in from
the complicated collisional interactions at various scattering angles, speeds, kinetic, and
gravitational energies of each sand grain involved in an avalanche. A complete analytical
description of the kinematics of an n-body system that is involved in a sandpile avalanche
would be prohibitively complex to solve, even when we include only the simplest me-
chanical forces occurring in collisions in a gravitational potential. The computer models
of sandpiles are much simpler designed, reducing a sandpile just to a regular lattice grid
with simple mathematical rules that mimic the interactions between neighbored pixels in a
simplified way. In the simplest case, we envision just a one-dimensional sandpile, like the
rice pile experiment between two parallel glass plates shown in Fig. 1.3. The 1-D sandpile
model is also described in Bak et al. (1988), Bak (1996), and Jensen (1998).

The 1-D computer sandpile model resembles a histogram that has a number of hi sand
grains in each bin i (Fig. 2.2). The slope is defined by the difference zi = hi − hi+1. The
dynamics of sandpile avalanches is simply described by two operators: (a) adding a grain to
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t=0 t=1 t=2 t=3

Fig. 2.2 Example of a 1-D Bak–Tang–Wiesenfeld sandpile. The dropped sand grain topples to the next
lower level if the local slope zi = hi+1 −hi = 2 is steeper than a critical value of zc = 2, i.e., when zi > zc.
After the third time step the sandpile is stable again.

the pile, and (b) relaxing the slope of the pile wherever the local gradient exceeds a critical
threshold for stability, i.e., zi > zc. In the simple example shown in Fig. 2.2 we have an
initial state of hi,hi+1, ...,hi+3 = [6,4,2,1]. If we define a stable slope with a critical limit
of zc = 2, we see that the sandpile is stable, because the slope nowhere exceeds the critical
limit. Now, we drop randomly a grain on the first bin, so that hi = 6 + 1 = 7, which is
unstable to the next bin, since zi = hi −hi+1 = 7−4 = 3 > zc. Consequently, the unstable
sand grain will topple into the next bin, i.e., hi = 7−1 = 6 and hi+1 = 4+1 = 5, restoring
the stable slope above, zi = hi+1 − hi = 6− 5 = 1. However, this is unstable towards the
next lower bin, since zi+1 = hi+1−hi+2 = 5−2 = 3 > zc. Consequently, the sand grain will
topple into the next bin, i.e., hi+2 = 5− 1 = 4 and hi+3 = 2 + 1 = 3, which is now stable
everywhere with hi,hi+1, ...,hi+3 = [6,4,3,1], and thus the avalanche stops. Thus, this little
avalanche took two topplings. The number of sandgrains is conserved if we combine the
previous sandpile plus the input. We note that the additional sandgrain falls on bin i and
finally landed on bin i + 2, while all the other bins stay the same. A system is said to be
“conservative” when the number of sand grains is invariant during a redistribution rule.
Even when sand grains are allowed to fall off the edge of a sandpile, the system can be
conservative in the time average, if it balances the time-averaged input.

The dynamical behavior of this 1-D sandpile is easy to predict (Jensen 1998): Sand
grains will pile up wherever the slope is less than critical, until the slope becomes critical
everywhere. This critical state is also called global attractor (in nonlinear system dynam-
ics) and is reached no matter where we start from initially. If we allow the system to exit
the toppling sandgrains from the bin with the lowest number, the number of sand grains
is conserved in the time average. Avalanches of different sizes are created by the random
irregularities of local slopes that are slightly less (or equal) to the critical value. Therefore,
the output of the system is highly fluctuating, even for a regular input rate, and thus the
energy of the system is conserved in the time average only. The most remarkable property
is the robustness of the endstate, which constitutes the concept of self-organized criticality.
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2.1.3 The Bak–Tang–Wiesenfeld 2-D Sandpile Model

Since the world is not one-dimensional, the next logical step was to study SOC behavior
in two dimensions, so our 2-D sandpile model is played now on a checker board, where
each field has a 2-D position (i, j) in a cartesian coordinate system. The next-neighbor
interactions are now extended to the 4 next neighbors at positions (i − 1, j), (i + 1, j),
(i, j−1), and (i, j +1). One of the simplest SOC games that was initially studied had the
simple setup of a critical threshold of zc = 4 and the rule of a redistribution to the next 4
neighbors, whenever the local threshold was exceeded. So, there are two rules: (1) input
of one grain at a random position, and (2) relaxation of four sand grains to the next 4
neighbors if a threshold of zc = 4 is exceeded:

z(i, j) = z(i, j)+1 initial input
z(i, j) = z(i, j)−4 if z(i, j) ≥ 4,
z(i±1, j±1) = z(i±1, j±1)+1

(2.1.3)

Such an algorithm is also called cellular automaton, because the dynamic evolution of
a system is described by mathematical rules that enable “automated” steps, executed by
interactions between the next neighbor cells in a (cellular) lattice grid.

Let us illustrate an avalanche in such a 2-D lattice sandpile model with an example given
by Bak (1996; p.53), shown here in Fig. 2.3. Starting from an initially stable sandpile at
time t = 1, a sand grain is dropped at position z(3,3) = 4, which makes it unstable and
causes an avalanche. In the first toppling event between time t = 2 and t = 3, the unstable
pixel changes its state z(3,3) = 4 �→ 0, while the 4 unstable sand grains get redistributed
to the adjacent next neighbors at z(2,3) = 2 �→ 3, z(3,2) = 3 �→ 4, z(3,4) = 2 �→ 3, and
z(4,2) = 3 �→ 4. Hence, we have two unstable pixels z(4,3) = 4 and z(3,2) = 4 at time
t = 3 and the avalanche continues, until we reach a stable state at time t = 9 again. The
envelope of all unstable sites that ever had an instability with z(i, j) = 4 entails a total
of 8 pixel sites, which represents the area of the avalanche event. The time duration of
the avalanche lasted 7 time steps, during which a total of 9 topplings occurred. In this
example, a single sand grain is added at the beginning and further input is interrupted until
the resulting avalanche comes to a halt, which is also called a “stop-and-go” sandpile,
in contrast to a running sandpile, where the driver continues rregardless of simultaneous
avalanching. In the former case, separate timescales control driving and avalanching.

In their seminal papers, Bak, Tang, and Wiesenfeld (1987, 1988) simulated such a
cellular automaton algorithm for a 50× 50 2-D lattice grid, as well as for a 20× 20× 20
3-D lattice grid. The 3-D generalization involves 8 nearest neighbors, and hence the rules
are:

z(i, j,k) = z(i, j,k)+1 initial input
z(i, j,k) = z(i, j,k)−8 if z(i, j,k) ≥ 8,
z(i±1, j±1,k±1) = z(i±1, j±1,k±1)+1

(2.1.4)

The avalanche size S was measured by the area of the clusters in the chain reaction of un-
stable pixels triggered by each single perturbation, and the duration T of an avalanche was
measured by the number of toppling time steps that were needed until a stable configura-
tion was reached. Bak et al. (1987, 1988) plotted then the distribution N(S) of avalanche
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Fig. 2.3 Example of an avalanche in a 2-D Bak–Tang–Wiesenfeld sandpile. The initial state of the sandpile
at time t = 1 is stable, since none of the states z(i, j) exceeds the critical threshold zc = 4. At time t = 2,
a sand grain is dropped in the middle of the sandpile, which causes an avalanche of subsequent topplings.
At times t = 3 and t = 4, two topplings occur in the same time step. At time t = 9, the sandpile becomes
stable again and the total avalanche size is indicated with a white polygon, entailing 8 pixels (adapted from
Bak 1996, p.53).

sizes S and durations T on a log-log scale and discovered the famous powerlaw distribu-
tions that have since become the hallmark of SOC. The pioneering results are shown in
Fig. 2.4, where a powerlaw slope of αS = 1.0 was found for the avalanche sizes in the 2-D
lattice over a range of more than two decades, and αS = 1.37 in the 3-D lattice. For the
avalanche durations T , a powerlaw was fitted too,

N(T ) ∝ T−αT , (2.1.5)

yielding a slope of αT ≈ 0.43 for the 2-D lattice, and αT ≈ 0.92 for the 3-D lattice, re-
spectively. All powerlaw distributions show a rollover cutoff at the upper end, which is
a finite-size effect, indicating that the largest avalanche events are limited by the sys-
tem size. These initial simulations were performed for a system with open boundaries
[z(1,y) = z(n + 1,y) = z(x,1) = z(x,n− 1) = 0], for two initial conditions: (a) far from
equilibrium, and (b) far from a flat surface. Subsequent simulations were also performed
for closed boundaries, but the results were identical for systems with open or closed bound-
aries, after the process was run for a while.
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Fig. 2.4 Examples of a fragmented avalanche (top left) occurring in a 2-D (computer) sandpile (top right)
and occurrence frequency distribution of avalanche cluster sizes (left panels) and avalanche durations
(right panels) of the original BTW sandpile cellular automaton simulation. The simulations have been
performed for a 50×50 2-D lattice (middle panels) and for a 20×20×20 3-D lattice grid (bottom panels).
The powerlaw slopes are αS = 1.0 and αT = 0.42 for the 2-D grid (middle panels) and αS = 1.37 and
αT = 0.92 for the 3-D grid. Reprinted from Bak, Tang, and Wiesenfeld (1987, 1988) with permission;
Copyright by American Physical Society.

These initial results raise two interesting questions: (1) what is the physical interpre-
tation of the powerlaw slopes αS and αT , and (2) how do the powerlaw slopes depend
on the dimensionality (1-D, 2-D, 3-D) of the system? The value of the powerlaw index
of time scales near unity, i.e., αS ≈ 1, was brought in context of the 1/ f -noise (or white
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noise), which scales with P(ν)≈ ν−1. We will discuss the relationship between time scale
distributions N(T ) and power spectra P(ν) in Section 4.8.

There is a large number of studies on the original BTW cellular automaton model,
which either investigate the properties of the original BTW model or explore variants with
modified rules. Some frequently quoted studies deal with: critical exponents and scal-
ing relations (Tang and Bak 1988; Zhang 1989; Manna 1991a), two-state model of SOC
(Manna 1991b), mean-field theory (Alstrom 1988; Christensen and Olami 1993; Zapperi
et al. 1995; Vespignani and Zapperi 1997, 1998), preferred avalanche directions (Dhar and
Ramaswamy 1989), invasion percolation (Roux and Guyon 1989), the Abelian property,
i.e., the final state is invariant to the time order of the individual events (Dhar and Majum-
dar 1990; Majumdar and Dhar 1992; Dhar 1999), conservation laws and anisotropy (Grin-
stein et al. 1990), coexisting periodic attractors (Wiesenfeld et al. 1990), height correla-
tions in sandpiles (Majumdar and Dhar 1991), avalanche dynamics at domain wall bound-
aries (Carlson et al. 1990), non-conservation in SOC models (Christensen et al. 1992;
Socolar et al. 1993), renormalization group methods (Pietronero et al. 1994; Vespignani et
al. 1995), the cutoff of the avalanche size distribution (Lise and Jensen 1996), the Landau–
Ginzburg theory of SOC (Gil and Sornette 1996), emergent spatial structures (Tadic and
Dhar 1997), critical values of driving field and dissipation (Dickman et al. 1998), and the
universality of SOC models (Milshtein et al. 1998; Chessa et al. 1999). Reviews on BTW
cellular automaton modeling and numerical simulations are given in Bak (1996), Jensen
(1998), and Turcotte (1999).

2.1.4 The Lattice-Gas Model

The lattice-gas model is a particular cellular automaton model that has only a dual state
per lattice point, either zero or one. One might think of the distribution of table tennis balls
in a large egg carton (Fig. 2.5). If the tennis balls are shaken, they will fall back into the
next hole, but only one ball can then occupy a hole. The lattice-gas model can be defined
in multiple dimensions, but we consider a 2-D model in Fig. 2.5. Each cell contains either
one or no particle, with no double occupancy. Neighboring particles repel each other by a
unity force. At each timestep, the particles are redistributed according to a displacement
vector that adds up the normalized forces,

xi′, j′ �→ Integer[xi, j +Fx(i, j)/F ]
yi′, j′ �→ Integer[yi, j +Fy(i, j)/F ] (2.1.6)

where F =
√

F2
x +F2

y is the total force, and the function Integer[...] denotes the nearest

integer number (i, j), because the positions (xi,y j) are defined in a discretized 2-D carte-
sian (lattice) grid. The rule (2.1.6) can only be applied if the new position (xi′, j′ ,yi′, j′) is
empty. If two particles want to move to the same position, only the particle with the larger
force wins and is moved, while the other stays at the old place. If two particles with equal
force want to move to the same position, neither is moved. An example of a particle update
during one time step is shown in Fig. 2.5. There are setups with closed boundaries, open
boundaries, and periodic boundaries, which do not conserve the total number of particles
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Fig. 2.5 Examples of particle updates in the lattice gas model. The boundaries are represented here with
stationary particles (Jensen 1998).

inside the box. The fluctuations n(t) of the total number of particles inside the box is of
particular interest in the study of SOC.

Numerical simulations of the lattice-gas model are described in Jensen (1998) and have
been studied by Jensen (1990), Fogedby et al. (1991), Andersen et al. (1991), and Fiig and
Jensen (1993). The temporal fluctuations of the total number of particles n(t) were found
to follow a power spectrum S( f ) that is constant below a critical crossover frequency fc,
and a 1/f powerlaw above the crossover frequency,

S( f ) ∝
{

constant if f < fcr
1/ f γ if f > fcr

, (2.1.7)

where the powerlaw slope is γ ≈ 1 and the crossover frequency scales as fcr ≈ 1/L2 with
the area L2 of the lattice. Individual particles perform a random walk, as in a diffusion
process. The lifetime T , defined by the number of time steps between entering and leaving
of the box boundaries for an individual particle, was found to have a powerlaw distribution
of

N(T ) ≈ T−αT , (2.1.8)

with αT ≈ 3/2 for T < Tcr, where Tcr ∝ L2 scales with the area L2 of the box. The lattice-
gas system essentially exhibits SOC behavior, because it organizes itself scale-free with a
1/ f power spectrum, except for finite-size effects at the upper end of time scales.

The lattice-gas model was found to exhibit the same SOC behavior as the flux noise
experiment designed to study the onset of motion of vortices in a superconductor (Yeh
and Kao 1984). The scale-invariant SOC behavior in the spatial and temporal scales in the
motion of vortices in superconductors was demonstrated by Field et al. (1995).
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2.2 SOC Simulations of Human Activities

2.2.1 Conway’s Game of Life Model

Cellular automaton models, which are frequently used in numerical SOC models, have
originally been devised by the British mathematician John Horton Conway in 1970 (Gard-
ner 1970). One of the first applications was Conway’s Game of Life, which was inspired
by the problem of the mathematician John von Neumann, who tried to create a hypothet-
ical machine (or robot) that could replicate itself, at least in a mathematical world with
rectangular grids and mathematical rules.

We describe the original concept of Conway’s Game of Life because it is the most
basic prototype of a cellular automaton. We have an infinite two-dimensional orthogonal
grid of square cells at our disposal, where each cell has the dual state of live or dead (like
the binary memory plate of a computer). The game can be started by creating a particular
initial state (of live or dead assignments to each cell), which is the only interaction of the
player with the game, while the subsequent evolution is fully determined by mathematical
rules. So, the player can just watch the evolution without further interaction or feedback.
Each cell interacts with its 8 neighbors, sitting adjacent in horizontal, vertical, or diagonal
direction. At each time step (or generation), the following 4 mathematical rules are applied
(from Wikipedia):

1. Any live cell with fewer than 2 live neighbors dies (underpopulation).
2. Any live cell with more than 3 live neighbors dies (overcrowding).
3. Any live cell with 2 or 3 live neighbors lives on to the next generation.
4. Any dead cell with exactly 3 live neighbors becomes a live cell.

The game can evolve into myriads of unexpected interesting patterns (called “gliders”,
“blinkers”, “F-pentomino” “boat”, “pulsar”, “diehard”, “acorn”, and so forth; see examples
in Fig. 2.6), similar to a chess game, except that the game evolves automatically without
any players interaction. The original motivation of Conway’s Game of Life was the study
of initial configurations that lead to population growth, extinction, oscillatory, or stable
situations. Numerical simulations revealed that specific patterns emerged recurrently, as

Fig. 2.6 Examples of “glider” structures occurring in Conway’s Game of Life. Note the fractal structure
of these replicating structures (credit: Eppstein).
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well as an infinite variety and richness of self-organizing structures that were thought to
mimic aspects of the emergence of complexity in nature.

Bak, Chen, and Creutz (1989) wondered whether the Game of Life was in a critical
state with SOC behavior. They simulated a game until it came to a static situation (ending
up with static structures and simple oscillatory “blinkers”), and defined this way a time
duration T from the number of time steps it took to become static, and a size S from the
number of births and deaths occurring during one game, which represents an avalanche
event in the SOC terminology. The game was repeated by just changing one random cell,
like adding a sandgrain to a stable sandpile, and they sampled the next avalanche, continu-
ing the game ad infinitum. The statistical outcome was indeed a powerlaw distribution with
a slope of αS = 1.3 for the size distribution N(s/L), i.e., normalized by the system size L
(Bak 1996). A computer simulation of 40,000 games (avalanche events) on a 100×100
lattice grid exhibited powerlaw size distributions with slopes of αS = 1.4 for spatial scales
and αT = 1.6 for temporal scales (Bak, Chen, and Creutz 1989), but a rollover at the upper
cutoff was found that was interpreted as finite-size effect. This finding of finite-size effects
at the upper cutoff was later confirmed with 1024×1024 lattice grid simulations (Alstrom
and Leao 1994).

2.2.2 Traffic Jam Simulations

We alluded to the SOC behavior of traffic jams in Section 1.3. Although traffic seems
to be a highly complex system with many different vehicles and driver individuals, the
basic dynamics of traffic jams can be simulated and understood in a relatively simple way.
Nagel and Paczuski (1995) used the following model. The traffic system is reduced to
a single-lane freeway, represented by a one-dimensional array of length L. The spatial
position of the highway is discretized to xi, i = 1, ...,n, with xn = L. In each position xi
there are vmax + 2 states, either it is empty (with no car) or occupied (with a car) with an
(integer) velocity vi = 0, ...,vmax, where they choose vmax = 5 in their simulations. A basic
(cellular automaton) rule is that car movements occur “crash free”. To reinforce this rule,
the velocity of each car has to be adjusted to the distance of the car in the front, which
is defined by the number of pixels ngap between two car-occupied pixels. The detailed
mathematical rules for crash-free traffic in this system are:

1. A vehicle is stationary when it travels at maximum velocity vmax and has free headway,
ngap ≥ vmax, just maintaining its velocity, and is updated by x(ti+1) = x(ti)+ vmaxΔt.

2. If a vehicle is not stationary, it is jammed, in which case two possible rules apply:

(a) Acceleration of free vehicles: A vehicle with spacing ngap = v maintains its velocity,
while a vehicle with spacing ngap ≥ v + 1 accelerates to v(ti+1) = v(ti)+ 1 with a
probability of 1/2.

(b) Deceleration due to other cars: Each vehicle with an “unsafe” gap of ngap ≤ v1 has
to slow down to v(ti+1) = v(ti)−1 in subsequent time steps until it regains an ideally
safe distance of v = ngap. However, the slow-down manoeuvre is a bit randomized
with a probability of 1/2 to end up in a slightly too small interval v = ngap +1 (for
tail-gaters) or v = ngap −1 (for very cautious drivers).
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3. Movement: In each time step Δt, each vehicle moves to position x(ti+1) = x(ti)+ vΔt,
excluding backward motions (v ≥ 0).

The outcome of such a one-dimensional traffic simulation is shown in Fig. 2.7, where
the spatial position is the horizontal direction and time is progressing downward in vertical
direction. Free vehicles with constant speed move along diagonals from top left to bottom
right, while jams are visible as concentrations of slower velocities (steeper diagonals) that
propagate backward on the street, and eventually dissolve. In SOC parlance, every local
jam is called an “avalanche”, and the lifetime T of an avalanche is defined by the number of
time steps it takes until the number of jammed cars is zero. Furthermore, the spatial extent
w of a jam, the number of jammed vehicles n, and the overall space-time size s ≈ nT
(mass) of the jam can be measured. Fig. 2.8 shows the probability distribution P(T ) of
jam lifetimes, which in this numerical simulation yielded a perfect powerlaw distribution
with a powerlaw slope of αT = 1.50± 0.01 over six orders of magnitude, limited by the
maximum time span of the simulation at t = 106,

Fig. 2.7 Traffic jam simulations of a 1-D model (with space coordinate in horizontal direction and time
running down in vertical direction) showing laminar flows (undisturbed diagonal car traces) and conges-
tions (dark ridges). Reprinted from Nagel and Paczuski (1995) with permission; Copyright by American
Physical Society.
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Fig. 2.8 Lifetime distribution P(T ) of emergent traffic jams in the outflow region, averaged over more
than 65,000 jams. A powerlaw slope of αT = 1.50±0.01 is found (Nagel and Paczuski 1995).

P(T ) ∝ T−αT , αT = 1.50±0.01 . (2.2.1)

It is a quite surprising result that complex traffic behavior can be nailed down by a single
number αT in the framework of the SOC concept. Is this numerical value of αT = 3/2
a magic number with a deeper physical meaning? Nagel and Paczuski (1995) provide a
simple analytical model that explains this value in terms of one-dimensional random walk.
Since a random walk or diffusion process is a well-understood concept, we outline the
analytical connection between diffusion and SOC behavior here, because it gives us a
deeper physical insight for this particular SOC system.

The probability distribution P(n, t) for the number n of cars in the jam at time t can be
described by the following rate equation,

P(n, t +1) = (1− rin − rout)P(n, t)+ rinP(n−1, t)+ routP(n+1, t) , (2.2.2)

where the rates rin and rout represent empirical quantities that depend on the car densities
behind and in front of the jam. For large numbers n the rate equation (2.2.2) transforms
into the differential equation,

∂P
∂ t

= (rout − rin)
∂P
∂n

+
rout + rin

2
∂ 2P
∂n2 , (2.2.3)

For sake of simplicity we consider the equilibrium case when the rate of cars entering
the jam equals the cars leaving the jam, i.e., r = rin = rout , in which case we obtain the
one-dimensional diffusion equation,

∂P
∂ t

= r
∂ 2P
∂n2 . (2.2.4)
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If we plug in the observed probability of lifetimes, P(t) ∝ t−3/2, into the left side, i.e.,
∂P/∂ t ∝ t−5/2, and use the solution of a diffusion process for one-dimensional random
walk,

n ∝ t1/2 , (2.2.5)

we infer a probability P(n) for the number n of cars involved in a jam,

P(n) ∝ (t1/2)−3/2 = n−3 , (2.2.6)

which fulfills the diffusion equation (2.2.4), since ∂ 2P/∂n2 ∝ n−5 ∝ t−5/2. Thus, the evo-
lution of a traffic jam simulation behaves like a one-dimensional diffusion process and
explains the observed powerlaw distribution of P(T ) ∝ T−3/2 of jam lifetimes. Remark-
ably, the simple diffusion process explains not only the powerlaw behavior of this SOC
system, but also the value of the powerlaw slope for lifetimes. Note, that the same power-
law index of αT = 3/2 was also found for lattice gas models (Section 2.1.3), but is different
for sand avalanches in the BWT model (Section 2.1.2), where also the dimensionality of
the system plays a role.

Some first pioneering Monte-Carlo simulations of 1-D traffic jams that mimic the tran-
sition from laminar (uncongested) traffic flow to (congested) start–stop-waves with in-
creasing car density were performed by Nagel and Schreckenberg (1992) and Nagatani
(1995a,e,f). Deterministic 1-D traffic jam models with continuous positions and velocities
showed that SOC behavior is driven by the slowest car (Nagel and Herrmann 1993). Fur-
ther SOC studies on traffic jams involved temporary stopping of cars (Nagatani 1995d),
entering and exiting of cars on highway ramps (Nagatani 1995b), and 2-D cellular automa-
ton models (with many parallel highway lanes) to avoid jam driving (Nagatani 1995c). A
major conclusion of traffic jam simulations is that the critical state of SOC behavior occurs
at the maximum throughput rate. Thus, if we want to make our highways most efficient
and achieve the highest throughput rate, we have to expect traffic jams at the critical state
of SOC. So, we cannot have maximum throughput without traffic jams! The throughput
rate is controlled today by metering lights at the entering ramps of some highways, for
instance in California.

2.2.3 Financial Market Simulations

One of the first SOC concepts applied to the financial market is the BCSW model of
fluctuations in aggregate production (Bak, Chen, Scheinkman, and Woodford 1993). It is
a variation of the 2-D BTW sandpile model (Bak, Tang, and Wiesenfeld 1987) in which
sites on the lattice represent firms, while the interactions between next-neighbor lattice
points are sales and purchases of products. An avalanche starts with the input of a product
on the market, which triggers a chain reaction of sales and purchases. High prices produce
small avalanches, while low prices can create large avalanches. The SOC behavior explains
the large fluctuations in aggregate production.

A related concept is the multiple-strategy agent-based model. For instance, one such
model envisions a self-organized network of competing Boolean agents who compete on
the market based on actions and information obtained from a small group of other agents
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(Paczuski et al. 2000). The agents play a competitive game that rewards those in the minor-
ity. Computer simulations of this model show that the network evolves to a stationary but
intermittent state where random mutation of the worst strategy can change the behavior of
the entire network.

SOC modeling and simulations of the financial market is comprehensively summarized
in the review entitled “Financial physics” by Feigenbaum (2003), entailing the BCSW
sandpile model (Bak et al. 1993), the percolation model of Cont and Bouchard (2000),
multiple-strategy agent-based models (e.g., Paczuski et al. 2000), the minority game model
(Challet and Zhang 1997), and log-periodic precursors to financial crashes (Feigenbaum
and Freund 1996; Sornette and Johansen 1997). SOC simulations of the financial market
may be able to explain some universal scalings that have been observed for widely different
economies and different time epochs: (i) the fluctuation of price changes of any stock
market is characterized by a probability density function that is a simple power law with
an exponent α = 3 extending over 8 orders of magnitude (on the y-axis), and (ii) for a
wide range of economic organizations, the size of organizations is inversely correlated to
the fluctuations in size with an exponent of β ≈ 0.2 (Stanley et al. 2002).

2.3 SOC Simulations in Biophysics

2.3.1 The Punctuated Equilibrium (Bak–Sneppen Model)

Biological evolution is not a gradual process. Genetic mutations that lead to the origin
of new species, or natural disasters that lead to mass extinctions, happen very intermit-
tently, separated by long quiescent periods of near-equilibrium. This mixed state of near-
equilibrium and rare loss-of-equilibrium events is called the theory of punctuated equi-
librium. A numerical model with punctuated equilibrium and criticality applied to evo-
lution was developed by Bak and Sneppen (1993). It is a cellular automaton model with
a one-dimensional set of n sites, where each site represents a species and its fitness ρi
is characterized with a random number between zero and unity, i.e. 0 ≤ ρi ≤ 1. At each
time step, the site with the smallest value of ρi is replaced by a new random value from
the range 0 ≤ ρi ≤ 1, which corresponds to a random mutation of the least-fit species (or
dissipation of the least-fit organism in a food chain). After many steps, a quasi-stationary
state is established where all values end up in a restricted range of ρc ≤ ρi ≤ 1, where a
critical value of ρc = 0.6670 is found. This state corresponds to a near-equilibrium situa-
tion where each species has a minimal fitness of ρc, essentially capturing Charles Darwin’s
notion of the evolution theory where only the fittest species survive. Continuing the ran-
dom mutations, either the equilibrium is maintained if a new assigned state is larger than
the critical value, ρi ≥ ρc, or an avalanche is started when ρi < ρc. Thus, an avalanche
of evolutionary changes propagates to the adjacent sites, until a new equilibrium is ob-
tained with all fitness values ρi ≥ ρc. Counting the number of species that temporarily
have a fitness value of ρi < ρc defines the size of a (mutation) avalanche. Bak and Sneppen
(1993) found a powerlaw frequency distribution for the avalanche sizes with a slope of
α ≈ 1 for a 1-D model, and α ≈ 1.26 for a 2-D model. Tracking a single species i, there
are long time periods when the fitness parameter ρi(t) does not change, but once it or its
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next neighbor becomes the species with the lowest fitness, it is part of a chain-reaction of
mutations until the whole neighborhood is restored into quasi-equilibrium. Consequently,
a plot of the number of mutations as a function of time has the appearance of a sequence
of irregular step functions (i.e., a “Devil’s staircase”), which is the hallmark of punctuated
equilibrium theory (Bak and Paczuski 1995). A visualization of the “fractal evolution” of
the Bak–Sneppen model is shown in Fig. 2.9. The time intervals of quasi-equilibrium can
be considered as lifetimes of a species, while the “punctuations” or episodes of mutations
represent a transition, equivalent to an extinction and replacement of a species. Such a sim-
ulated evolution of extinctions could mimic the observed powerlaw distribution of some
19,000 species extinctions observed in fossil history by Raup (1986) and Sepkoski (1993),
see Fig. 1.6 and discussions in Bak and Paczuski (1995), Sneppen et al. (1995), and Bak
(1996).

This simple cellular automaton model for evolution could also be treated analytically in
terms of mean field theory. In a one-dimensional model, the dynamics can be described in
terms of a “repetitious random walker” and anomalous diffusion diffusion with exponent
0.4 (Flyvbjerg et al. 1993). The distribution of avalanche durations (or co-evolutionary
mutations) has a mean field exponent of αT = 3/2 (de Boer et al. 1994, 1995). A conjecture

Fig. 2.9 Sample of the Bak–Sneppen model evolution. The population status (or species number) is shown
on the x-axis and the history (or time) is on the y-axis from top to bottom. Each “floating iceberg” structure
(visualized with a shading along the z-axis) represents a population episode of evolution or extinction
(credit: Claudi Rocchini).
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that the same model applies to Reggeon field theory (Grassberger and de la Torre 1979) in
high-energy particle physics was made by Paczuski et al. (1994), and Ray and Jan (1994),
and the analytical derivation in terms of the “gap equation” and the “gamma equation”
is discussed in Bak and Paczuski (1995). Scaling laws of SOC powerlaw coefficients and
power spectra are studied in Maslov et al. (1994), Paczuski et al. (1996), Böttcher and
Paczuski (1996, 1997), and Sole and Manrubia (1996). Reviews of the Bak–Sneppen SOC
model applied to biological evolution can also be found in Turcotte (1999) and Sole et
al. (1999). The mean field theory applied to the Bak–Sneppen model is summarized in
Jensen (1998).

2.4 SOC Simulations in Geophysics

2.4.1 Slider-Block Spring Model

The slider-block spring model (Fig. 2.10) is a mechanical model that was especially de-
signed to mimic the forces between tectonic plates in the Earth’s crust, where each stick-
and-slip motion is manifested as an earthquake. Alternatively, one can also think of pulling
sandpaper across a carpet. This mechanical model consists of two plates and a set of mass
elements that all are elastically coupled between neighboring elements, similar to the cou-
pled pendulums described in Section 2.1. All elements experience the same driving force
from the upper driver plate, but the individual elements, which are elastically coupled to
both the next neighbors as well as to the driver plate, execute a stick-and-slip motion due
to the friction on the rough surface. A block moves when the pulling force exceeds the
static friction Fs. Once a block moves, it experiences a smaller amount of friction (i.e.,
dynamic friction, with Fd < Fs) than in rest. The elastic coupling can trigger a number
of neighbored blocks to slip in a chain reaction, which produces an avalanche, and thus
SOC behavior is expected in a similar way as for the coupled pendulums or sandpiles. This
type of slider-block spring model has been originally introduced by Burridge and Knopoff
(1967).

The mechanical force acting on a block in the slider-block spring model is composed
of the driver (leaf) spring constant kp and the connector spring constants kc (see Fig. 2.10),

Fi(t) = m
d2xi, j

dt2 + kp xi, j + kc(xi+1, j + xi−1, j + xi, j+1 + xi, j−1 −4xi, j) = Fd , (2.4.1)

where xi, j is the position of block (i, j), t is the time, and Fd is the dynamic frictional force
during motion. When the block is at rest, we have the inequality condition,

kpxi, j + kc(xi+1, j + xi−1, j + xi, j+1 + xi, j−1 −4xi, j) < Fs , (2.4.2)

where Fs is the static resisting force. The dynamical behavior of the system can be char-
acterized by the free parameters of the ratio of the static to dynamic friction (Fd) and the
stiffness of the system (qk = kc/kp). For soft systems, qk �→ 0, the blocks exhibit stick-and-
slip behavior independently, while stiff systems, qk �→ ∞ show more coherent motions as a
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Fig. 2.10 The slider-block model consists of an array of blocks, each with mass m, which are pulled across
a surface by a driver plate at a constant velocity v. Each block is coupled to the adjacent blocks with either
leaf or coil springs (with spring constant kc), and to the driver plate with leaf springs (with spring constant
kp) (Turcotte 1999). (Reprinted with permission of the American Physical Society)

whole. Stiff systems produce an over-abundance of coherent large-scale slips (with peaks
at the high end of the occurrence frequency distribution), while soft systems exhibit pow-
erlaws for small events, but a lack of large events (Huang et al. 1992). Typical powerlaw
distributions with a slope of α ≈ 1.0–1.3 are found for such systems (Turcotte 1999).

Early computer simulations with 2,000 slider blocks revealed a powerlaw distribution
for the occurrence frequency of events as a function of the number of blocks that slip (event
size), and thus evidence for SOC behavior was found (Otsuka 1972). Simulations of a 1-
D chain of 400 blocks using a velocity-weakening (nonlinear) friction law also exhibited
chaotic behavior and powerlaw distributions of slip avalanches, which are characteristic of
SOC behavior (Carlson and Langer 1989a,b). Using a cellular-automaton model of thresh-
old elements, instead of solving the differential equations (2.4.1–2.4.2), greatly simplified
the calculations (Nakanishi 1990, 1991; Brown et al. 1991). A large number of studies
on the slider-block spring model have been conducted and variants of it have been mod-
eled and simulated, such as the following frequently quoted studies: Smalley et al. (1985),
Sornette and Sornette (1989), Rundle and Klein (1989), Carlson (1991a,b), Carlson et al.
(1991), Feder and Feder (1991), the Olami–Feder–Christensen model (Olami et al. 1992),
Christensen and Olami (1992a,b), Shaw et al. (1992), Cowie et al. (1993), de Sousa Vieira
et al. (1993), Grassberger (1994), Shaw (1995), or Middleton and Tang (1995). The slider-
block spring model is the primary basis for associating earthquakes with SOC (Turcotte
1999), but alternative models also have been proposed, such as the crack propagation
model (Chen et al. 1991) and interface depinning (Paczuski and Böttcher 1996; Fisher et
al. 1997). Reviews on the slider-block spring model can be found in Carlson et al. (1994),
Bak (1996), Turcotte (1999), and Hergarten (2002).

2.4.2 The Forest-Fire Model

The forest-fire model is a cellular automaton model that exhibits SOC behavior and mimics
the spread of fire in a forest, but is also applied to the spread of biological diseases. We
describe the basic model in two dimensions, with a square grid with integer positions xi, j.
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At every time step a tree (seed) is dropped onto a random location, which corresponds to
the planting of a tree if the site is unoccupied. In addition, a match is dropped at a random
position every ns-th time step, so with a “sparking frequency” of fs = 1/ns. If the site of
the dropped match is empty, nothing happens, while a forest fire is started if is occupied
by a tree. The spread of the forest fire consumes the tree at the local site and propagates
to all adjacent (non-diagonal) neighbor sites, if occupied by a tree. So, the forest fire will
spread over a small or large area, depending on the tree density, and will stop once burning
finds no further next tree. In the long-term time average, there will be a stable tree density
at an intermediate value that is not too small (so that fires cannot spread) and not too high
(that would lead to a catastrophic total burn-down). The long-term average tree density
will be a critical state that is independent of the initial condition and does not require any
fine-tuning of how the initial forest configuration is built up. In several models, a necessary
condition for SOC behavior is the double limit of (1) a very low growth probability (	 1)
and (2) an ignition probability much lower than the growth probability. An example of a
numerical simulation of this forest-fire model is shown in Fig. 2.11, showing 4 cases from
a small fire (with 5 burned trees) to a large forest fire (with over 5,000 burned trees).

Fig. 2.11 Four examples of typical model forest fires are given for a 128× 128 grid with a sparking
frequency of fs = 1/2,000. The black regions mark the sizes of forest fires, while the grey regions indicate
the green (unburned) forest, and white regions correspond to sites without trees. The areas of the 4 forest
fires are (a) 5, (b) 51, (c) 505, and (d) 5,327 trees, spanning the entire grid (Turcotte 1999). (Reprinted
with permission of the American Physical Society)
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In numerical simulations of this forest-fire algorithm, the area A f of each forest fire
is measured and the frequency distributions exhibit powerlaws with slopes in the range
of α ≈ 1.0–1.2 (Turcotte 1999). This is somewhat lower than the observed distribution
with a powerlaw of α ≈ 1.3–1.4 (Section 1.5). The results of three runs are shown in
Fig. 2.12. For the smallest sparking frequency ( fs = 1/2,000), the tree density grows so
high in between two forest fires, that the next fire consumes almost the entire forest area
(or grid size), which shows up as a peak at the upper limit in Fig. 2.12. This deviation from
a straight powerlaw function at the upper end is called a finite grid size effect.

Initial numerical simulations of the forest-fire SOC model have been pioneered by
Bak et al. (1990), Drossel and Schwabl (1992a,b), Mossner et al. (1992), Henley (1993),
and Grassberger (1993). Further model simulations spanned from one to six dimensions
(Christensen et al. 1993), were compared with analytical solutions (Drossel et al. 1993),
interpreted as a turbulent cascade process (Paczuski and Bak 1993), applied a renormaliza-
tion group theory (Loreto et al. 1995), or derived scaling laws of critical exponents (Clar
et al. 1994). Reviews on the forest-fire model can be found in Mossner et al. (1992), Clar
et al. (1996, 1999), Jensen (1998), Hergarten (1998), and Turcotte (1999). Descriptions
of forest-fire models can be found in the textbooks of (Jensen 1998, p.65) and Hergarten
(1998).

Fig. 2.12 Frequency distributions of forest-fire areas A f for three different setups, with different sparking
frequencies of fs = 125, 500, 2,000. Each run contains ≈ 109 time steps run on a 128× 128 grid. The
powerlaw slopes are similar (in the range of α = 1.02–1.16, but the upper cutoff shows finite grid size
effects, approaching the upper limit of the grid AF ≤ 1282 for the smallest sparking frequency (Turcotte
1999). (Reprinted with permission of the American Physical Society)
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2.5 SOC Simulations in Magnetospheric Physics

2.5.1 SOC Model with Finite System Size

Some magnetospheric phenomena were found to exhibit powerlaw distributions, such as
the burst area of the auroral electro-jet index (AE) or substorm-related tail current disrup-
tions (see observational references in Section 1.6), which seem therefore to be scale-free
and consistent with SOC models. On the other side, some other parameters, such as the
intensity or time intervals between substorm events seem to have well-defined probability
distributions with characteristic scales (see Fig. 1.10). SOC models thus can not explain
both statistics, or an additional physical reason may modify the SOC behavior signifi-
cantly. This dilemma led Chapman et al. (1998) to a dual SOC model where constant
energy input (inflow) generates (1) scale-free internal energy discharges with a SOC-like
powerlaw behavior, whereas (2) system-wide discharges with a well-defined size distribu-
tion do not exhibit SOC. In analogy to the Bak–Tang–Wiesenfeld 2-D sandpile model, the
first group of events would include small avalanches confined to the surface of the sandpile
that do not reach the base, while the second group would include the largest avalanches
that propagate all the way down to the base of the sandpile, where they reach their maxi-
mum size, and then would roll over the edge, if the sandpile is mounted on a circular plate
(like the IBM experiment with a high-precision scale by Held et al. 1990, see Section 1.2).

Chapman et al. (1998) conducted numerical simulations of such a dual SOC model as
follows. A cellular automaton is represented by a 1-D grid of n equally-spaced cells, each
one with sand at height hj and local gradient z j = h j −h j−1, which is assumed to be stable
below a critical angle of repose z. The selection rule for the critical gradients on the n
nodes is a random number uniformly distributed in the range [0,1], parameterized by an
exponential function for the probability P(z) in the interval [z,z+dz],

P(z) = zy exp
(−z1+y

1+ y

)
, (2.5.1)

which has the cumulative probability distribution F(> z)

Fcum(> z) =
∫ ∞

z
P(z)dz = 1− exp

(
− z1+y

1+ y

)
, (2.5.2)

and the normalization ∫ ∞

z=0
P(z) dz = Pcum(> 0) = 1 . (2.5.3)

Sand is then added at cell 1 at a constant rate r 	 1, until the critical gradient is exceeded
at cell 1, triggering a redistribution to neighboring cells until the slope is “flattened” back
to the angle of repose (z j = 0). From time to time an avalanche reaches the end of the
1-D grid (at j = n), causing a system-wide discharge, in which case the entire sandpile is
emptied and returns to the angle of repose. For the statistics of dissipated energies E per
avalanche, a nonlinear scaling with a quadratic function is assumed,
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E =
n

∑
j=1

h2
j(tbefore)−

n

∑
j=1

h2
j(tafter) , (2.5.4)

similar to the model of Dendy and Helander (1997). The quadratic energy scaling can be
understood in terms of an area-like spreading for 2-D avalanches, which grows quadrat-
ically with the length scale hj , assuming a constant energy dissipation rate per unit area.
Fig. 2.13 (left panel) shows the evolution of dissipated energy as a function of time. In-
ternal avalanches reduce the energy by a partial amount, while system-wide avalanches
dump the entire energy of the system to zero, which corresponds to the energy state of the
sandpile at the angle of repose. The probability distribution P(E) of the energy dissipated
per avalanche exhibits two different components: (1) a powerlaw distribution for internal
events, and (2) a peaked distribution for system-wide avalanches (Fig. 2.13, right panel).

This particular set-up mimics the bimodal distribution of magnetospheric substorms
(Fig. 1.10) observed by Lui et al. (2000), leading to the interpretation in terms of a non-
linear dissipative system that is driven by a constant inflow, but exhibits scale-free SOC
behavior only for internal energy dissipation events, while it exhibits a particular scale for
system-wide energy dumps. Such a deviation from a straight powerlaw was also found in
system-wide forest-fire events in the simulations shown in (Fig. 2.12), where it was inter-
preted as a finite-size effect also. Numerical simulations of system-wide avalanches were
performed for various (low and high) input rates, in order to mimic the variable loading
rates of the magnetosphere, and it was found that the the powerlaw signature of large-scale
internal events persisted (Chapman et al. 1999, 2001). Alternatively, a bimodal SOC be-
havior was also found in a 1-D cellular automaton simulation of the central plasma sheet
with two different local instability criteria (Liu et al. 2006).

2.5.2 Cellular Automaton Model with Discretized MHD

SOC behavior in the magnetotail plasma has been inferred early on from the powerlaw dis-
tribution of lifetimes found in magnetospheric disturbances based on the auroral electron
jet (AE) index (Takalo et al. 1993; Consolini 1997), from near-Earth magnetotail current
disruptions (Lui et al. 1988), substorm current disruptions (Consolini and Lui 1999), or
bursty bulk flow events (Angelopoulos et al. 1996, 1999). An early attempt to simulate
the statistics of these observed features in terms of a cellular automaton SOC model was
carried out by Takalo et al. (1999a), as described in the following.

Maxwell’s equations in MHD applications generally assume the nonrelativistic limit of
plasma motion (v 	 c) and are expressed in terms of the current density j according to
Ampère’s law (in cgs units),

j =
1

4π
(∇×B) , (2.5.5)

yielding together with Ohm’s law (with electric conductivity σ ) the so-called induction
equation,

∂B

∂ t
= ∇× (v×B)+η∇2B , (2.5.6)
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Fig. 2.13 Left: Time evolution of a sandpile SOC system with quadratically growing energy and random
energy releases. Zero energy corresponds to the energy of the sandpile at the angle of repose. Internal
avalanches reduce the total energy to values > 0, while system-wide avalanches drop the energy to val-
ues = 0. Right: A log-log plot of the probability distributions of the energy dissipated for 50,000 internal
avalanches (O symbols) and for 10,000 system-wide avalanches (∗ symbols). Note that the former fre-
quency distribution has a powerlaw shape, while the latter forms a peaked distribution with a peak at
E ≈ 104.5 (Chapman et al. 1998). (Reprinted with the permission of the American Geophysical Union)
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which contains a convective and a magnetic diffusion term (with a magnetic diffusity η =
c2/4πσ ), and fulfill the divergence-free condition for the magnetic field,

∇ ·B = 0 . (2.5.7)

Using the vector identity,

∇× (∇×B) = ∇(∇ ·B)− (∇ ·∇)B , (2.5.8)

and Maxwell’s equations (Eqs. 2.5.5 and 2.5.7) we have the relation

4π (∇× j) = −∇2B . (2.5.9)

Making use of Stokes’ theorem for a vector field j,∫
S
(∇× j) ·n dS =

∮
C

j ·dl (2.5.10)

we have the relationship, ∫ ∇2B

4π
·n ·dS = −

∮
C

j ·dl . (2.5.11)

Applying this functions to a discretized 2-D cellular grid in the xy plane (with cell size
Δx = Δy and area Δx2) and magnetic field vectors in orthogonal z-direction, B = (0,0,Bz),
the current density j has non-zero components only in the xy plane,

j =
1

4π
(∇×B) =

(
dBz

dy
,−dBz

dx
,0

)
= ( jx, jy,0) , (2.5.12)

which can be computed from the the magnetic field B(x,y,z) at the midpoints x± 1
2 and

y± 1
2 between the cell boundaries (Fig. 2.14),

jx

(
x,y± 1

2

)
= +

1
4π

dBz

dy
= ± 1

4π
Bz(x,y±1)−Bz(x,y)

Δy
, (2.5.13)

jy

(
x± 1

2
,y

)
= − 1

4π
dBz

dx
= ± 1

4π
Bz(x,y)−Bz(x±1,y)

Δx
. (2.5.14)

Summing the currents ( jx, jy) along the four boundaries of a quadratic cell (Fig. 2.14)
leads according to Eq. (2.5.11) to the Laplacian L,

L Δx2 = ∇2B Δx2 = 4π
∮

C j ·dl

= [ jx(x,y+ 1
2 )− jy(x+ 1

2 ,y)− jx(x,y− 1
2 )+ jy(x− 1

2 ,y)]Δx
= [(Bz(x,y+1)+Bz(x+1,y)+Bz(x,y−1)+Bz(x−1,y)−4Bz(x,y)] .

(2.5.15)

The diffusive term in the induction equation (2.5.6) is then replaced by this Laplacian L,
and the conductive term is replaced by a general source term S(x,y, t), representing some
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Fig. 2.14 Cellular automaton model containing magnetic fluxtubes, each one characterized by a magnetic
field Bz(x± 1,y± 1) and by four segments of currents J(x,y± 1

2 ) and J(x± 1
2 ,y) at the cell boundaries

(Takalo et al. 1999a). (Reprinted with the permission of the American Geophysical Union)

external driving, such as loading of the magnetospheric plasma,

dB

dt
= S(x,y, t)+ηL . (2.5.16)

The critical threshold level that initiates an avalanche in a cellular automaton model is
controlled by the resistivity η of the plasma, which is realized here by a critical Laplacian
Lcr,

η(x,y) = ηθ(L−Lcr) , (2.5.17)

where θ(...) is the Heaviside step function. The Laplacian represents the net current around
the cell (x,y). The bigger the resistivity η , the more flux is distributed to neighboring cells
during an avalanche. When an avalanche occurs, the excess field,

ΔB = η(x,y)(L−Lcr) , (2.5.18)

is evenly redistributed over the next four neighboring cells, one fourth to each of them,
similar to the Bak–Tang–Wiesenfeld model (Section 2.1.3). The total energy contained in
the magnetic field of the model is then calculated as

E(t) =
1

8π

n

∑
x,y=1

B(x,y, t)2 , (2.5.19)

for the cellular grid (x = 1, ...,n,y = 1, ...,n). This 2-D cellular automaton model was run
with a grid of N2 = 502 cells. The system was continuously driven by a random input with
small emerging fields that appear as fluctuations in B(x,y). The evolution of the system in
SOC state exhibited frequency distributions of avalanche durations and sizes that are close
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Fig. 2.15 Frequency distributions and time series (inserts) of avalanche durations (top) and sizes (bot-
tom) of 100,000 avalanche events simulated with the cellular automaton model of Takalo et al. (1999a).
(Reprinted with the permission of the American Geophysical Union)

to powerlaws at lower values (with a slope of α ≈ 1), but with a knee at the upper end
(Fig. 2.15).

Takalo et al. (1999a) also explored sudden changes of the input, to mimic the southward
turning and subsequent northward turning of the interplanetary magnetic field (IMF), by
feeding the input of the model with occasional stronger pulses. These intermittent stronger
disturbances pushed the model out of the SOC state and triggered larger avalanches dur-
ing a while, but the system always returned to the SOC state, which demonstrates the
robustness of the SOC state. This simulation thus can mimic two different components of
magnetospheric substorms: (i) externally triggered substorms caused by perturbations in
the solar wind, and (ii) internal substorms caused by the intrinsic dynamics of the magne-
tosphere near SOC state.
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More elaborate numerical simulations of SOC systems with discretized MHD and
current-driven kinetic instabilities have been conducted by Klimas et al. (2004), which
we will discuss in a selection of physical SOC models (Chapter 9).

2.6 SOC Simulations in Solar Physics

There is a growing industry of SOC avalanche models in solar physics, which is best
summarized in the review of Charbonneau et al. (2001). Most SOC models of solar flares
are based on the basic idea that a flare is produced by an avalanche of small-scale magnetic
reconnection events that cascade in a highly stressed coronal magnetic field, ultimately
driven by random photospheric magneto-convection and the solar dynamo.

2.6.1 Isotropic Cellular Automaton Models

Solar flares exhibit a strikingly perfect powerlaw distribution of their peak count rates in
hard X-rays, extending over 3–4 orders of magnitude (Fig. 1.13; Dennis 1985). In analogy
to the BTW sandpile model, the coronal magnetic field is thought to play the same role
of a nonlinear dissipative system in SOC state, where the photospheric convective motion
plays the role of the random input of sand grains, the critical angle between misaligned
magnetic field lines that leads to magnetic reconnection plays the role of the critical angle
of repose in the sandpile, and solar flares play the role of avalanches in SOC state. This
interpretation in terms of sandpile SOC systems was first proposed by Lu and Hamilton
(1991).

A cellular automaton model was conceived by Lu and Hamilton (1991), where a 3-
D grid represents the solar corona, characterized by a magnetic field strength Bij in each
volume element, with a local magnetic field gradient ΔB defined by the difference between
the local magnetic field and the average of its six nearest neighbors (Bnn),

ΔB = Bi j − 1
6 ∑

nn
Bnn . (2.6.1)

The magnetic field structure is unstable to magnetic reconnection when the difference ex-
ceeds a critical field value, |ΔB|> Bc, similar to the magnetic discontinuity angle proposed
by Parker (1988). When a reconnection instability occurs, the redistribution rule is set up
in a way that the average magnetic field gradient (Eq. 2.6.1) vanishes, ΔB �→ 0,

Bi j �→ Bi j − 6
7

ΔB , Bnn �→ Bnn +
1
7

ΔB . (2.6.2)

The simulation starts with a uniform magnetic field and is driven by adding random vectors
δB at random positions of the field. Once a site gets unstable, the redistribution rule (2.6.2)
is applied, the magnetic field gradient is recalculated, and the redistribution rule is applied
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iteratively until it becomes stable. Each magnetic reconnection event releases a magnetic
energy of

Em = Δ∑
k

B2
k =

(
6
7

)
ΔB2 , (2.6.3)

where k sums over the unstable cell (i, j) and its next neighbors (n,n) = (i±1, j±1). A
new disturbance of the magnetic field is added after the old instability has relaxed.

Note that this redistribution rule is conservative, in the sense that the quantity B is
conserved after every redistribution step, because the same amount is transferred to the
next neighbors that is taken away from the central cell. This conservative property is also
genuine to the original sandpile model, where avalanches redistribute sand grains without
creating or destroying any. However, although the field quantity B is conserved, the en-
ergy B2 is not conserved after a redistribution step, because of the nonlinear (quadratic)
dependence. In fact, every redistribution of |ΔB| > Bc dissipates energy from the system.

Let us quantify the amount of released energy in every redistribution step more gener-
ally for a D-dimensional lattice (e.g., D = 2 or 3), with Bi j (or Bnn) being a scalar variable,
and requiring a critical threshold of |ΔB| > Bc for redistribution. If we denote the new val-
ues of the magnetic field with B′

i j and B′
nn, the average field difference to the next neighbors

is then (Eq. 2.6.1),

ΔB = Bi j − 1
2D

2D

∑
nn=1

Bnn , |ΔB| > Bc , (2.6.4)

and the redistribution rule (2.6.2) reads as

Bi j �→ B′
i j = Bi j − 2D

2D+1
ΔB , (2.6.5)

Bnn �→ B′
nn = Bnn +

1
2D+1

ΔB . (2.6.6)

This specific choice of redistribution rule leads to ΔB = 0 after the redistribution, in con-
trast to the redistribution rules used by Lu et al. (1993). Calculating now the total magnetic
energy before (Em) and after (E ′

m) the redistribution step,

Em = B2
i j +∑

nn
B2

nn , (2.6.7)

E ′
m = (B′

i j)
2 +∑

nn
(B′

nn)
2 , (2.6.8)

we find the following energy difference, inserting the magnetic field values from Eqs. (2.6.5)
and (2.6.6),

ΔE = E ′
m −Em

=
(
Bi j − 2D

2D+1 ΔB
)2 +∑nn

(
Bnn + 1

2D+1 ΔB
)2

−B2
i j −∑nn B2

nn

= −2Bi j
( 2D

2D+1

)
ΔB+

( 2D
2D+1 ΔB

)2

+2∑nn Bnn
( 1

2D+1

)
ΔB+∑nn

( 1
2D+1

)2 ΔB2

. (2.6.9)
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From Eq. (2.6.4) we can express

2D

∑
nn=1

Bnn = 2D(Bi j −ΔB) . (2.6.10)

and, together with ∑nn = 2D for summation over constants, inserting into Eq. (2.6.9), we
find the final result,

ΔEm = − 2D
2D+1

ΔB2 , (2.6.11)

which is the minimum energy quantum that can be released in a redistribution step. This
amounts to ΔEm ≈ (4/5)ΔB2 for D = 2, or ΔEm ≈ (6/7)ΔB2 for D = 3, respectively, as
used in Eq. (2.6.3) by Lu and Hamilton (1991).

A slightly different treatment is given in Charbonneau et al. (2001), where an amount
of Bc is redistributed, rather than ΔB,

Bi j �→ B′
i j = Bi j − 2D

2D+1
Bc , (2.6.12)

Bnn �→ B′
nn = Bnn +

1
2D+1

Bc . (2.6.13)

which leads to the following amount for the change of energy (Eq. 5 in Charbonneau et
al. 2001),

ΔEm = − 2D
2D+1

(
2
|ΔB|
Bc

−1
)

B2
c , (2.6.14)

but is identical with the result (Eq. 2.6.3 or 2.6.11) of Lu and Hamilton (1991) in the limit
of weak driving, i.e., ΔB >∼ Bc. In the weak driving limit, only small increments δB 	 Bi j
are added as input to maintain the SOC state. The treatment of Charbonneau et al. (2001)
is identical to that of Lu et al. (1993), while the original redistribution rule of Lu and
Hamilton (1991) turned out to numerically unstable, as demonstrated by Liu et al. (2002).

A new disturbance of the magnetic field is added after the old instability has relaxed.
Lu and Hamilton (1991) find approximate powerlaw distributions for the released energies,
i.e., N(E) ∝ E−1.4, the peak fluxes P, i.e., N(P) ∝ P−1.8, and the time durations T , similar
to those from the observed distributions of hard X-ray flares (Dennis 1985; Crosby et
al. 1993),

N(P) ∝ P−1.67±0.04

N(E) ∝ E−1.53±0.02

N(T ) ∝ T−2.17±0.05
, (2.6.15)

where the peak energy flux P and total energy E is calculated from the nonthermal spec-
trum of electrons above a lower cutoff of ≥ 25 keV. The numerically simulated distribu-
tions of this SOC model are shown in Fig. 2.16, extending over approximately two orders
of magnitude.

The same cellular automaton model for solar flares was repeated for different system
sizes, using 3-D grids with length sizes of L = 10, ...,50 (Lu et al. 1993). It was found
that the value of the powerlaw slope was invariant to the system size, but the upper cutoffs
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Fig. 2.16 Frequency distributions of event energy release N(E), peak flux N(P), and duration N(T ) for
avalanches in a 30×30×30 grid according to the SOC model of Lu and Hamilton (1991). The distributions
are offset by 1 and 2 orders of magnitude, and slopes of N(E) ∝ E−1.4 and N(P) ∝ P−1.8 are indicated
with straight lines (reproduced by permission of the AAS).

moved to larger sizes for larger grids, and thus clearly reflect a system-size effect. The
rollover at the upper cutoff was found to be close to an exponential function, so that the
total distribution can be fitted by

N(X) ∝ X−α exp(−X/Xc) , (2.6.16)

where X represents (E,P,T ) and Xc is the exponential cutoff value. The relationship be-
tween the three powerlaw slopes could be explained by a simple physical model of a
magnetic reconnection event,

ΔP =
ΔE
ΔT

= ΔL2〈B2
⊥/8π〉vA

ζ
, (2.6.17)

where vA is the Alfvén speed and ζ a constant. The relations between the powerlaw slopes
of E,P,T reflect correlations that can approximately be quantified by the physical relation-
ship given in Eq. (2.6.15). Scatterplots between these three parameters and the resulting
powerlaw distributions fitted to solar hard X-ray flare data from the ISEE-3 spacecraft are
shown in Fig. 2.17. We will discuss the functional relationship between powerlaw slopes
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Fig. 2.17 Scatterplots (left) and frequency distributions (right) of the three parameters E (energy), P (peak
flux), and D durations of solar flares observed in hard X-rays at energies > 25 keV from ISEE-3. The
theoretically predicted correlations (Eq. 2.6.15) are indicated with straight lines (left), and the exponential
cutoff function (Eq. 2.6.16) is applied (right) (Lu et al. 1993; reproduced by permission of the AAS).

of frequency distributions and correlations of physical parameters in more detail in Chap-
ter 7. At this point we note that the powerlaw slopes of frequency distributions can be
explained by physical relationships that describe the functional dependence between the
three parameters E,P, and T . So, it is clearly demonstrated that the powerlaw slope of a
specific SOC system is not an universal constant, but depends on the chosen parameters
and can be explained by physical laws.

2.6.2 Anisotropic Cellular Automaton Models

In the classic BTW sandpile model, next-neighbor interactions are isotropic, which means
that there is an equal probability for the propagation of avalanches or redistribution of



68 2. Numerical SOC Models

energies in every direction, in 2-D or 3-D lattice models (see Eqs. 2.1.3 and 2.1.4). This
isotropic dissipation of energy was also assumed for the magnetic field relaxation in the
cellular automaton models first applied to solar flares by Lu and Hamilton (1991) (see
Eq. 2.6.2). However, since the solar corona is permeated by magnetic fields, which in-
troduce a preeminent structuring into one-dimensional flux tubes, energy dissipation is
not expected to propagate isotropically. Energy release in solar flares is believed to take
place in the process of magnetic reconnection, which produces a central current sheet with
an X-point that demarcates an ion and electron diffusion region with anisotropic particle
transport and energy dissipation. This characteristic of anisotropic energy dissipation was
incorporated in 3-D cellular automaton models by defining 6 magnetic field gradients to
the next neighbor cells (Vlahos et al. 1995),

ΔB1
i, j,k = Bi, j,k −Bi+1, j,k

ΔB2
i, j,k = Bi, j,k −Bi−1, j,k

ΔB3
i, j,k = Bi, j,k −Bi, j−1,k

ΔB4
i, j,k = Bi, j,k −Bi, j+1,k

ΔB5
i, j,k = Bi, j,k −Bi, j,k−1

ΔB6
i, j,k = Bi, j,k −Bi, j,k+1

(2.6.18) .

instead of one single slope averaged over the 6 next neighbors (Eq. 2.6.1) as introduced by
Lu and Hamilton (1991). A redistribution or energy release is then applied when a critical
value Bcr is exceeded by any of the 6 slopes, say in direction [i, i+1],

Bi, j,k �→ Bi, j,k − 6
7

Bcr , Bi+1, j,k �→ Bi+1, j,k +
6
7

Bcr . (2.6.19)

If more than one direction exceeds the critical threshold Bcr, the redistribution of energy is
applied to all unstable directions a ≤ 6, weighted by the relative magnetic field gradient,

Bi±1, j±1,k±1 �→ Bi±1, j±1,k±1 +
6
7

Bcr
ΔBa

i, j,k

∑a ΔBa
i, j,k

. (2.6.20)

In contrast to the vector field B(x) used by Lu and Hamilton (1991), a scalar field B(x) is
used in Vlahos et al. (1995), which implies that no energy is placed in twisting magnetic
fields. Using this anisotropic cellular automaton model, Vlahos et al. (1995) find frequency
distributions that are quite different from isotropic cellular automaton models, as shown
in Fig. 2.18. The distributions show a plateau with a nearly constant occurrence rate at
low energies, and a steep powerlaw cutoff at high energies, with an approximate powerlaw
index of αE = 3.4±0.1 for energies E, αP ≈ 3.7±0.1 for peak luminosities P, and αD ≈
8.5± 1.5 for durations D. It is also found that the extension of the plateau is shorter the
lower the critical threshold Bcr is set in the numerical simulations. This dual behavior is
found to be robust, even when the energy input (i.e., loading by photospheric turbulence)
is driven at different rates (Georgoulis and Vlahos 1998).

In a hybrid model, the anisotropic and isotropic model were added together, yielding a
synthesized distribution (Fig. 2.19) with a steep powerlaw slope (α ≈ 3.5) at low energies
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Fig. 2.18 Frequency distribution of energies simulated in a 100×100×100 grid using a SOC model with
anisotropic energy dissipation. The distribution has a flat plateau at low energies and a steep powerlaw
slope of α ≈ 3.7 at high energies (Vlahos et al. 1995).

Fig. 2.19 Frequency distribution of the peak luminosity L in a hybrid model with anisotropic energy
dissipation for nanoflares and isotropic dissipation for large flares, simulated in a 150× 150× 150 grid.
The distribution exhibits a steep powerlaw slope of α ≈ 3.3 at low energies (nanoflares) and a flatter
powerlaw slope of α ≈ 1.7 at high energies for large flares (Georgoulis and Vlahos 1996).

for small flares, and flatter slopes (α ≈ 1.8) for larger flares (Vlahos et al. 1995; Geor-
goulis et al. 1995; Georgoulis and Vlahos 1996). This model was also applied to model
the bimodal distributions of flare data observed with the WATCH spacecraft (Georgoulis
et al. 2001).

This result was interpreted in terms of a unified two-component model of (i) normal
flares that release energy in an active region, and (ii) nanoflare events that heat the over-
all corona. Since the singular value α = 2 of the powerlaw slope in energy demarcates
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the limit where the integral of the frequency distribution diverges, either at the upper end
(for α < 2) or lower end (for α > 2), the numerical result of the steep slope of nanoflares
beyond the critical limit seems to imply that nanoflares could have an unlimited amount
of undetected energy available at the lowest energies that could account for coronal heat-
ing. However, although some observations suggested a steeper slope for nanoflares (see
Fig. 1.14), this result could also be explained by instrumental biases and remained contro-
versial. Sampling nanoflares with comprehensive temperature coverage yielded the same
powerlaw slope for nanoflares and large flares (Fig. 1.14), and thus did not support the
hybrid model of anisotropic energy dissipation in nanoflares and isotropic dissipation in
large flares. However, since anisotropic energy dissipation during magnetic reconnection
is more likely based on physical models, it probably applies to both nanoflares and large
flares.

2.6.3 Discretized MHD Cellular Automaton Models

The magnetohydrodynamic (MHD) evolution of the coronal or solar flare plasma can be
simulated with numerical simulations that solve the ideal or resistive MHD equations,
which are based on the basic Maxwell equations known in classical electrodynamics. Such
numerical MHD simulations are usually coded in a discretized 2-D or 3-D lattice grid, and
thus entail next-neighbor interactions in discretized grids as in the (physics-free) cellular
automaton algorithms. So, it is a natural desire to derive a physics-based discretization
of the MHD equations in order to understand SOC models in terms of physical models,
such as magnetic reconnection that drives solar flares. Some studies have been conducted
to derive physics-based cellular automaton models from the discretization of the MHD
equations (Vassiliadis et al. 1998; Isliker et al. 1998a, 2000, 2001).

The basic approach of Vassiliadis et al. (1998) has already been described in Sec-
tion 2.5.2 applied to magnetospheric substorms by Takalo et al. (1999a). Each cell of
a 2-D lattice is associated with the cross-section of flux tubes aligned with a magnetic
field B(x,y) = (0,0,Bz) in perpendicular direction (z) to the lattice plane (x,y). The
currents j(x,y,0) = ( jx, jy,0) along the four sides of each cell boundary are then com-
puted from the induction equation quantified in terms of discretized magnetic field gra-
dients (dB/dx,dB/dy) between the next-neighbor cells. The induction equation dB/dt =
η∇2B + S(x,y, t), consisting of magnetic diffusion (with magnetic diffusivity constant η)
and a convective term, which is represented here with a source term S(x,y, t) that randomly
disturbs the magnetic field (like the dropping sand grains on a sandpile), describe the non-
linear dynamics of the system. Magnetic diffusion with classical resistivity η is very slow,
and thus nonlinear resistivity η(j) is required (for anisotropic cellular automaton models)
or hyper-resistivity η(∇2j) (for isotropic ones) in order to enable a rapid dissipation and
relaxation mechanism (Vassiliadis et al. 1998). The discrete MHD equations satisfy the
necessary conditions for a SOC state in terms of local conservation of the magnetic flux
and rapid energy dissipation and relaxation by nonlinear resistivity.

Isliker et al. (1988) calculate a discretization of the MHD equation by applying the
discrete redistribution rules (Eqs. 2.6.1 and 2.6.2) of Lu and Hamilton (1991) to a 3-D
magnetic field and obtain partial differential equations that exhibit a mathematical dis-
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continuity at the cell boundaries that is not consistent with the smooth spatial function
expected for a magnetic diffusion process.

A new approach was attempted by Isliker et al. (2000), by choosing a vector potential A

as the independent variable to characterize the physical state of each lattice point, instead
of using the magnetic field B, which generally does not fulfill Maxwell’s equation of a
divergence-free field (∇ · B = 0) when disturbed randomly. The magnetic field is then
defined by

B = ∇×A , (2.6.21) .

which automatically fulfills the divergence-free condition,

∇ ·B = ∇ · (∇×A) = 0 . (2.6.22)

With this vector potential approach, the redistribution rules (Eqs. 2.6.1 and 2.6.2) of Lu
and Hamilton (1991) are then expressed as,

ΔAi j = Ai j − 1
6 ∑

nn
Ann . (2.6.23)

Ai j �→ Ai j − 6
7

ΔAi j , Ann �→ Ann +
1
7

ΔAi j . (2.6.24)

The changes in the magnetic field variables are then calculated with Eq. (2.6.20), and the
current changes with Ampère’s Law,

j =
1

4π
(∇×B) . (2.6.25)

Having the resulting magnetic field B defined this way in every cell (x,y,z) and the cur-
rent densities j at the cell boundaries (x± 1

2 ,y± 1
2 ,z± 1

2 ), the nonlinear system dynamics
controlled by the induction equation can then be calculated in the same was as in the ap-
proach of Vassiliadis et al. (1998), (see Section 2.5.2 for details). The only difference is
that the energy input to the SOC system occurs by random disturbances of the vector po-
tential A, rather than of the magnetic field B. Similar energy distributions are obtained
when the energy quantity in each cell is derived from a scalar field Bk(x) or from a vector
field B(x) = ∇×A (Isliker et al. 2000, 2001). An example of such a simulation is shown
in Fig. 2.20, which exhibits similar powerlaw-like frequency distributions as simulated by
Lu and Hamilton (1991) or Lu et al. (1993), see Fig. 2.16 and 2.17.

Note that the definition of the released energy based on the square of the magnitude of
the vector field as a measure of energy density, i.e. E ∝ ∑B2

j (Eq. 2.6.3) is physically sound
when the vector field is assumed to correspond to B, but not for A (Galsgaard 1996). A
modified redistribution rule that removes a constant amount of tension ΔAcrit , rather than
the full amount of the total field gradient ΔAi, j,k, was suggested by Galsgaard (1996),

Ai, j,k �→ Ai, j,k − 6
7

ΔAcrit
ΔAi, j,k

|ΔAi, j,k| , (2.6.26)

Ai±1, j±1,k±1 �→ Ai±1, j±,k±1 +
1
7

ΔAcrit
ΔAi, j,k

|ΔAi, j,k| . (2.6.27)



72 2. Numerical SOC Models

Fig. 2.20 Probability distributions of total energy (top) and peak flux (bottom) of a cellular automaton
model that produces current instabilities, mimicking energy releases in solar flares, simulated in terms of
discretized MHD equations. The disturbance of the nonlinear system and the threshold for instability is
quantified in terms of the vector potential A (solid) or current density j (dashed) (Isliker et al. 2001).

With some algebra (see Eqs. 2.6.4–2.6.11) it can be shown that the energy released during
one redistribution step is (Galsgaard 1996),

Em =
6
7

ΔA2
crit

(
2
|ΔAi, j,k|
ΔAcrit

−1
)

, (2.6.28)

or more generally for arbitrary dimensions D = 1,2,3, ... (Charbonneau et al. 2001),

Em =
2D

2D+1
ΔA2

crit

(
2
|ΔAi, j,k|
ΔAcrit

−1
)

. (2.6.29)
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Thus, the smallest “quantum” of energy that can be released by a lattice is (Charbonneau
et al. 2001),

Emin =
2D

2D+1
ΔA2

crit . (2.6.30)

Comparisons of numerical SOC simulations with full energy redistributions (Lu et al. 1993)
and partial energy redistributions (Eqs. 2.6.26–2.6.28) demonstrated that the functional
shape of frequency distributions of peak fluxes and energies sensitively depends on the
details of the redistribution rules. Galsgaard (1996) found two criteria to be necessary
to obtain powerlaw distributions for the energy release: (1) the field must be systemati-
cally driven, so that large-scale regions with coherent tension are obtained, and (2) only
a fraction of the field quantity triggering the instability must be removed from the local
redistribution procedure.

2.6.4 Divergence-Free Field Braiding Models

The solar corona is envisioned to be a system of one-dimensional flux tubes that are subject
to a variety of dynamical forces, such as buoyancy forces that make flux tubes emerge from
the photosphere and rise into the corona, twisting and braiding caused by photospheric
magneto-convection, as well as impulsive pressure forces during magnetic reconnection
processes and coronal mass ejections that kick adjacent field lines and cause damped os-
cillations. The previously considered 2-D or 3-D lattice cellular automaton models cap-
ture dynamic processes as time-variable fluctuations of some physical parameters in the
coordinate system of a rigid grid, but cannot follow the dynamic motion of an identical
magnetic field line or flux tube. A new approach of a cellular automaton model that con-
sists of a lattice grid of deformable magnetic field lines has been developed by Morales
and Charbonneau (2008a,b, 2009), similar to the coronal field braiding model postulated
by Parker (1988). The model, moreover, ensures that the magnetic field stays divergence-
free (∇ ·B = 0) during random disturbances, so we call it a “divergence-free field braiding
model”.

The basic lattice structure of the cellular automaton model of Morales and Charbonneau
(2008a) is shown in Fig. 2.21, consisting of initially parallel field lines that have their foot-
points rooted in a horizontal 1-D lattice grid (x), while their lengths extend over the vertical
axis (y), so that every field line position has a unique coordinate (x,y). This initial setup
is periodically disturbed by a random displacement of node (x,y) to position (x + Δx,y),
which is measured by a misalignment angle θ(x,y). If the misalignment angle exceeds a
critical angle θc, the intersecting field lines can reconnect into an alternative configuration
by a “cut-and-splice” operation, until a sub-critical misalignment angle is reached. The
redistribution rule involves a new connectivity for crossing field lines that has a lower mis-
alignment angle. The example shown in Fig. 2.21 shows a two-step redistribution scheme
where field lines 1 and 3 exchange their connectivity in two time steps and end up with
a sub-critical angle everywhere. Multiple reconnection steps are often required to reach a
new stable state. Such chains of reconnection steps represent the avalanches in sandpiles.
Note that the avalanches are highly anisotropic (similar to the models described in Section
2.6.2), in contrast to isotropic avalanches in the BTW sandpile model (Section 2.6.1).
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Fig. 2.21 Sequence of a two-step redistribution scheme in the divergence-free field braiding cellular au-
tomaton model of Morales and Charbonneau (2008a). Node j = 3 of field line i = 1 is displaced by two
units, causing misalignment angles θA and θB above a critical value (left frame A), triggering a new con-
nectivity between field line i = 1 and i = 3 (middle frame B), which is still not stable and triggers another
new connectivity between field line 1 and 3 (dashed; right frame C) (reproduced by permission of the
AAS).

This braiding model is designed to maintain divergence-freeness during each time step.
Initially, every node has a distance Δy to the next neighbor. Let us consider field lines
with an initial length of L = n×Δy. If a node is displaced by a transverse disturbance
of δx in an intermediate position, the new length of the deformed field line is L′ =
L− 2Δy + 2

√
Δy2 +δx2, and the misalignment angle is θ = δx/Δy. Each field line has

a cross-section of A = Δx2. In order to ensure mass conservation, the cross-section A′ at
the deformed location has to reduce (i.e., thinning) to compensate for the stretching of the
flux tube mass M,

M = ρAL = ρA′L′ , (2.6.31)

if we assume a constant density ρ in an incompressible fluid. At the same time, the mag-
netic flux Φ = AB has to be conserved

Φ = AB = A′B′ . (2.6.32)

These two conditions yield a scaling of the magnetic field B′ with the deformed length L′
of the field line,

B′ = B
(

L′

L

)
. (2.6.33)

The total magnetic energy of the magnetic field line is then

Em(t) =
1

8π

∫
V

B(t)2dV =
V0

8π
B2

0

n−1

∑
i=1

(
li(t)
l0

)2

(2.6.34)

where V0 and B0 are the initial volume and field strength of a field strand, and li(t) is the
length of strand i at time t. Every deformation of a flux tube corresponds to a lengthening
of li(t) and thus represents an energy input into the system. Once the threshold is exceeded,
an avalanche of reconnection occurs which shortens the loop segments, corresponding to
a decrease or dissipation of the energy according to Eq. (2.6.34). This procedure to vary
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the magnetic field strength of a flux strand, in response to stretching its length, conserves
the magnetic flux Φ = AB of a strand by design, and thus the model automatically satisfies
the flux conservation constraint or divergence-free condition ∇ ·B = 0.

Morales and Charbonneau (2008a) perform numerical simulations with this model and
find that the system transitions into a SOC state after an initial stressing phase, where
avalanches of all sizes occur and produce powerlaw-like frequency distributions with
slopes of αE ≈ 1.63–1.72 for energies, αP ≈ 1.73–1.84 for peak fluxes, and αT ≈ 1.79–
1.95 for durations, which are close to the observed values for solar flares (Eq. 2.6.15).
This model can be scaled to coronal loops with lengths of L0 = 100 Mm and diameters
of w = 1 Mm, which yields flare energies in the range of Em ≈ 1023–1029 erg, for an in-
stability threshold angle of θcr = 11◦, which is similar to the nanoflare model of Parker
(1988).

Statistics of avalanche peak areas A with the same model yields powerlaw distributions
also,

N(A) ∝ A−αA , (2.6.35)

with a powerlaw slope of αA ≈ 2.45 (Morales and Charbonneau 2008b), which indeed
also agree with flare areas observed in EUV (αA ≈ 2.3–2.7) and soft X-rays (αA ≈ 1.7–
2.1) (Aschwanden and Parnell 2002). In order to obtain more realistic geometries, the 2-D
lattice model was also wrapped onto a cylinder, stretched along the cylinder axis, bent
into a semi-circular loop structure, rotated into an arbitrary line-of-sight direction, and
projected into the plane of the sky, which mimics an observed image of a flare loop. These
transformations changed the frequency distributions of the observed flare areas A slightly,
with a powerlaw index of αA ≈ 2.37 (Morales and Charbonneau 2009). In addition, the
simulated images allow also to determine the fractal Hausdorff dimension D2,

A(L) ∝ LD2 , (2.6.36)

for which a value of D2 = 1.17–1.24 was found (Morales and Charbonneau 2009), which
is significantly smaller than the Euclidean limit D2 ≤ 2 of solid filling. These simulated
values are somewhat lower than observed at the times of peak flux in nanoflares (D2 ≈ 1.5–
1.9; Aschwanden and Parnell 2002) and in large flares (D2 ≈ 1.0–1.9; Aschwanden and
Aschwanden 2008a). However, we have to be aware that the fractal structure of observed
flare areas generally appears smoothed by insufficient instrumental resolution, temperature
discrimination, and background confusion, while numerical simulations produce sharper
and crisper images, and thus can measure lower values for the fractal dimension. The in-
clusion of the fractal dimension in volume modeling affects also energy models of flares,
and thus the powerlaw slope of energy frequency distributions (McIntosh and Charbon-
neau 2001; McIntosh et al. 2002; Mitra-Kraev and Benz 2001; Aschwanden and Parnell
2002). More details about the fractal dimension of SOC structures will be discussed in
Chapter 8.
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Fig. 2.22 Transformation of the flat 2-D lattice geometry of the divergence-free braiding model onto a
pseudo 3-D loop envelope and plane-of-sky for an arbitrary observer’s line-of-sight direction (top panel).
The fractal area of the projected avalanches are shown for two different directions, for the planes X +Y = 0
(left) and Y = 0 (right) (Morales and Charbonneau 2009b; reproduced by permission of the AAS).
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2.6.5 Branching Process Models

The previously discussed cellular automaton models all involve a redistribution rule to
the next neighbor cells of a lattice grid, which operates whenever a critical threshold is
exceeded. A similar concept is a branching process in probability theory, which expresses
next-neighbor interactions in terms of probabilities.

A simple 1-D cellular automaton model using a branching process applied to solar flares
is described in MacKinnon et al. (1996). A lattice site has three states: (1) quiescent, (2)
flaring, and (3) flared, so each cell can have three values, xi = 0,1,2. The system starts
with all sites in state xi = 0. At any time t = 0,1,2, ..., the i-th site may change from state
0 to state 1 with probability p0 (representing the driving of the system from outside) if
none of its neighboring sites were in state 1 in the previous time step, but with probability
p1(> p0) if either of the neighboring sites i−1 or i+1 were in state 1 in the previous time
step, similar to the forest-fire model (Section 2.4.2). Applying these rules iteratively over
many time steps leads (by combinational arguments) to the probability distribution P(n)
of an event of size n as,

P(n) = np(n−1)
1 (1− p1)2 . (2.6.37)

Averaging these probabilities produces then a size distribution

〈P(n)〉 =
∫ 1

0
P(n)d p1 =

2
(n+1)(n+2)

∝ n−2 , (2.6.38)

in the limit of n �→ ∞. Thus, if we associate the size n of an event with the energy E of
a flare and the probability 〈P(n)〉 with the occurrence frequency distribution N(E), this
branching process model predicts a size distribution of N(E) ∝ E−2. Numerical simula-
tions of a branching process with modified rules can produce flatter power law slopes, as
demonstrated in Macpherson and MacKinnon (1999).

In an attempt to generalize this 1-D branching process to higher dimensions, Litvinenko
(1998a) points out a result from a tree branching process, for which an asymptotic limit
was found (Otter 1949),

〈P(n)〉 ∝ n−3/2 exp
(
− n

n0

)
, (2.6.39)

which is close to the observed frequency distributions of flare energies.

2.7 SOC Simulations in Astrophysics

The most striking powerlaw distributions observed in astrophysics are the spectra of ultra-
high energy cosmic rays that extend over 11 orders of magnitude, or giant pulses from
black hole accretion disks, both being the possible result of SOC processes. In the follow-
ing we summarize a SOC cellular automaton model that has been applied to model the
giant pulses from accretion disk systems.



78 2. Numerical SOC Models

2.7.1 Cellular Automaton Model of Accretion Disk Fluctuations

The X-ray light curves of black-hole candidates, such as Cygnus X-1, were found to have
quiescent periods with Planckian power spectra (soft state), as well as active periods with
powerlaw-like spectra (hard state), i.e., f−p with p ≈ 1, which were brought into context
of 1/ f -fluctuations or flicker noise of SOC systems (Mineshige et al. 1994a). The rapid
variability of X-rays with 1/ f spectra were discovered not only in black-hole objects, for
binary sources, and active galactic nuclei, but also in neutron stars and cataclysmic stars.

Inspired by the BTW model (Bak et al. 1988), the following basic cellular automaton
model was set up by Mineshige et al. (1994a). The accretion disk is divided into an outer
portion where material smoothly drifts inward, and an inner portion where it suffers an
instability and tends to form blobs. Using a 2-D cylindrical coordinate system (r,ϕ) for
the the disk plane (Fig. 2.23), cells are labeled with a radial coordinate ri, i = 1, ...,ni and
an azimuthal coordinate ϕ j, j = 1, ...,n j , where r1 marks the outermost ring of the inner
zone. A particle with mass m is put into the outermost cell at r1. The mass density Mi, j is
defined as the number of mass particles in cell ri and ϕ j. When the mass Mi, j exceeds some
critical mass density Mcrit ∝ r, a part of the accumulated mass in cell (ri,ϕ j) falls into the 3
adjacent cells of the adjacent inner ring, as a consequence of an unknown instability (such
as magnetic reconnection or flares),

Mi, j �→ Mi, j −3m
Mi, j−1 �→ Mi, j−1 +m
Mi, j �→ Mi, j +m
Mi, j+1 �→ Mi, j+1 +m

, (2.7.1)

After this single redistribution step, further redistributions are executed if one of the newly
filled cells exceeds the critical mass Mcrit , until the whole system is stable again. The

Fig. 2.23 Schematic view of a cellular-automaton model applied to an accretion disk with a black hole in
the center. Mass flow from outside randomly triggers avalanches from the outermost ring to inner rings
(Yonehara et al. 1997; reproduced by permission of the AAS).
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motion of each redistributed k-th particle is tracked from its initial orbit ri to the final
orbit r j and the the total change in gravitational energy is summed together. The X-ray
luminosity LX resulting from such a mass transfer event is assumed to be approximately
proportional to the change in gravitational energy ΔEgrav,

LX ∝ ΔEgrav = GMBHm ∑
k

(
1
rk

j
− 1

rk
i

)
, (2.7.2)

where G is Newton’s gravitational constant and MBH is the mass of the central black hole.
This basic cellular automaton model applies to an accretion disk with rigid rotation. How-
ever, a more realistic model should include the effects of differential rotation, which in-
troduces an azimuthal shift j′ in the position of the transferred blob, since the orbital time
scale in a black-hole accretion disk is much smaller than the blob drift time to an inner
radius. Hence, the cellular automaton model should be modified to incorporate this az-
imuthal shift j′ by an amount that corresponds to the differential rotation rate (Mineshige
et al. 1994a),

Mi, j �→ Mi, j −3m
Mi, j+ j′−1 �→ Mi, j+ j′−1 +m
Mi, j+ j′ �→ Mi, j+ j′ +m
Mi, j+ j′+1 �→ Mi, j+ j′+1 +m

, (2.7.3)

Using this simple cellular automaton model, Mineshige et al. (1994a) are able to produce
a powerlaw distribution of energies N(E) ∝ E−1.35 and a powerlaw distribution of pulse
time scales N(T ) ∝ T−1.7, as well as a power spectrum of S( f ) ∝ f−1.8 of the simulated
time series, which are all close to the observed values of X-ray pulses from black-hole
candidates.

In a slightly modified model, Mineshige et al. (1994b) incorporate a viscous diffusion
process, which changes the power spectrum to S( f ) ∝ f−1.6, which is closer to the ob-
served power spectra of f−1.7 (Makishima 1988) or f−1.5 (Negoro 1992) at f >∼ 1 Hz. The
authors point out that they can obtain different power spectra ( f−1.3, ..., f−1.1) or time
scale distributions (from powerlaw-like to exponential) if they change the redistribution
rule slightly.

New observations (Negoro et al. 1995) indicated that the peak intensities of X-ray fluc-
tuations from Cygnus X-1 exhibited exponential distributions, rather than powerlaws as
expected for SOC, which triggered more modifications of the SOC model in terms of
enhancing the effects of gradual diffusion. This model contains additional mass transfer
(besides the avalanches specified with Eq. (2.7.3)),

Mi, j �→ Mi, j −m′
Mi+1, j �→ Mi+1, j +m′ , (2.7.4)

with m′ = m/100, m/10, m/5, which flattens the power spectrum and deforms the pow-
erlaw distribution of time scales into exponential distributions (Takeuchi et al. 1995). Fur-
ther modeling was performed by describing the X-ray fluctuations with fluid dynamics in
an advection-dominated disk with critical behavior, which also could reproduce the 1/ f
power spectrum (Takeuchi and Mineshige 1997). More extensions of the model included
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relativistic effects, which causes substantial differences if the disk is viewed from direc-
tions far from the accretion disk axis (Xiong et al. 2000).

Besides the X-ray fluctuations from X-ray binaries or black-hole accretion disks, which
is emitted in an optically thin medium, also the UV radiation from cataclysmic stars (such
as Canes Venatici [CV] types), which is emitted from an optically thick medium, was
modeled with the same SOC cellular automaton model, which was able to reproduce the
observed power spectra that are flat at lower frequencies and have a powerlaw slope of
p ≈ 1–2 at high frequencies (Yonehara et al. 1997).

More advanced SOC cellular automaton models of accretion disks address also the
physics of the magnetic field, which entails effects such as the Balbus–Hawley instability
(driving a disk dynamo), buoyancy of magnetic fields, magnetic flux emergence, disap-
pearance, and flaring, by including non-local transport of angular momentum in terms of
the kinematic viscosity of the magnetic loops in the disk corona (Pavlidou et al. 2001). A
snapshot of the magnetic loops in the modeled accretion disk are shown in Fig. 2.24.

Fig. 2.24 A snapshot of the magnetic loops in a modeled accretion disk surrounding a compact object,
shown in full view face-on (top) and as an enlarged segment (bottom), according to simulations with a
numerical SOC cellular automaton model by Pavlidou et al. (2001).
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2.8 Summary

The theoretical understanding of nonlinear dissipative systems in the state of self-organized
criticality started with numerical simulations of a cellular automaton model, which is
driven by slow external forcing. The essential framework of a cellular automaton model
is a mathematical algorithm that consists of (1) a critical threshold, (2) a next-neighbor
redistribution rule that is applied when a local threshold is exceeded, and (3) subsequent
iterations of the redistribution rules, until a new equilibrium is reached. Cellular automaton
models can simulate the dynamics and outcome of complex multi-element systems, which
is often not achievable by analytical theories, but are essentially physics-free models. A
great success of cellular automaton models is the reproduction of powerlaw-like distri-
butions for the peak fluxes, energies, and time scales of avalanche events, which emerge
as robust characteristics without fine-tuning of the initial conditions. The most influential
cellular automaton model in SOC processes is the Bak–Tang–Wiesenfeld (BTW) sandpile
model, as well as the slider-block and the forest-fire model in geophysics. After 1990,
these cellular automaton models have also been applied in astrophysics, such as in mag-
netospheric substorms, in solar flares, and in accretion disks, but the meaning of the en-
ergy quantity in the BTW sandpile model is often replaced by magnetic energies. Some
attempts at reverse engineering have been made to translate the mathematical redistribu-
tion rules in SOC sandpile models to physical, discretized differential equations in terms
of magneto-hydrodynamics (MHD), which also imply anisotropic transport processes and
additional constraints from Maxwell’s equations (such as divergence-free magnetic fields).
The reduction of physical models of nonlinear processes to discretized cellular automaton
algorithms is still in its infancy for astrophysical systems.

2.9 Problems

Problem 2.1: Derive the MHD induction equation (Eq. 2.5.6) from Maxwell’s equations
and the discretization of the MHD equations outlined in the Eqs. (2.5.5–2.5.19).

Problem 2.2: Derive the amount of released energy in a D-dimensional lattice vector field
A based on the redistribution rule given in Eqs. (2.6.1–2.6.3) and prove the result given
in Eqs. (2.6.4–2.6.14).

Problem 2.3: Generalize the divergence-free field braiding model from a 2-D flux tube
surface geometry to a 3-D (solidly filled) cylindric geometry. What are the equivalent
equations of (2.6.31–2.6.34)?
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Every theory should be as simple as possible, but not over-simplified.

Albert Einstein

There is something universal about SOC systems that does not depend on some particular
physical parameters, because they all exhibit powerlaw distributions, a necessary but not
sufficient condition. There is also something universal about a fractal dimension, because
it is manifested in many different physical systems. In the previous chapter we reviewed
cellular automaton models, which are based on mathematical redistribution rules and do
not require any specific physical model. In this chapter we develop an analytical theory of
SOC phenomena that is “physics-free”, and thus can be applied to sandpiles, earthquakes,
or solar flares equally. Essentially, our analytical approach provides an understanding of
SOC phenomena in terms of the universal statistics of nonlinear systems, which in the limit
of linear system behavior degenerates to the statistics of random processes. The powerlaw
distributions of SOC phenomena always represent the statistics of relatively rare events,
the high-end or fat tails of probabilistic distributions, which are discernible in a log-log
representation only. At the low-end, events are most frequent and can often be described
by standard probability theory, such as Poisson statistics or Gaussian normal distributions.
Monte-Carlo simulations can simulate such event statistics for any arbitrary physical pro-
cess, in form of discretized event parameters that can be sampled in binned histograms.
In the continuum limit, such distributions can sometimes be described by analytical func-
tions. In analogy, we develop an analytical SOC theory that describes the continuum limit
of numerical SOC simulations, as they have been reviewed in the previous chapter. The
power of analytical models is the prediction of exact distributions, which can significantly
deviate from exponential or powerlaw functions, often not evident from observations due
to the limited statistics of rare events. Analytical models thus can then be forward-fitted to
the statistical distributions of observed SOC events. The analytical theory will provide us
also a rigorous mathematical definition of SOC processes.
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3.1 The Exponential-Growth Model

Avalanches occurring in the state of self-organized criticality represent local instabilities
that grow explosively for some time interval. The released energy grows in a nonlinear way
above some energy threshold, which can be parameterized by some nonlinear function, for
instance by an exponential growth function. We define the time evolution of the energy
release rate W (t) of a nonlinear process that starts at a threshold energy of W0 by

W (t) = W0 exp
(

t
τG

)
, 0 ≤ t ≤ τ , (3.1.1)

where τG represents the exponential growth time. The process grows exponentially until it
saturates at time t = τ with a saturation energy WS,

WS = W (t = τ) = W0 exp
(

τ
τG

)
. (3.1.2)

We define a peak energy release rate P that represents the maximum energy release rate
WS, after subtraction of the threshold energy W0, that corresponds to the steady-state energy
level before the nonlinear growth phase,

P = WS −W0 = W0

[
exp

(
τ

τG

)
−1

]
. (3.1.3)

In the following, we will refer to the peak energy release rate P also briefly as “peak
energy”. For the saturation times τ , which we also call “rise times”, we assume a random
probability distribution, approximated by an exponential function N(τ) with e-folding time
constant tS,

N(τ)dτ =
N0

tS
exp

(
− τ

tS

)
dτ . (3.1.4)

This probability distribution is normalized to the total number of N0 events,∫ ∞

0
N(τ) dτ = N0 . (3.1.5)

In order to derive the probability distribution N(P) of peak energy release rates P, we
have to substitute the variable of the peak energy, P, into the function of the rise time τ(P),

N(P) dP = N(τ) dτ = N[τ(P)]
∣∣∣∣ dτ
dP

∣∣∣∣ dP . (3.1.6)

This requires the inversion of the evolution function P(τ) (Eq. 3.1.3),

τ(P) = τG ln
(

P
W0

+1
)

, (3.1.7)
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Fig. 3.1 Time evolution of energy release rate W (t) for 3 different ratios of growth times to saturation
times, τG/tS = (0.5,1.0,2.0) (left) and the corresponding powerlaw distributions of the peak energy release
rate P. Note that the event set with the shortest growth time (τG/tS = 0.5) reaches the highest energies and
thus produces the flattest powerlaw slope (α = 1+ τG/tS = 1.5).

and the calculation of its derivative dτ/dP, which is

dτ
dP

=
τG

W0

(
P

W0
+1

)−1

. (3.1.8)

Inserting the probability distribution of saturation times N(τ) (Eq. 3.1.4), the inverted
evolution function τ(P) (Eq. 3.1.7) and its time derivative (dτ/dP) from Eq. (3.1.8) into
the frequency distribution N(P) in Eq. (3.1.6) yields then,

N(P) dP =
N0(αP −1)

W0

(
P

W0
+1

)−αP

dP , (3.1.9)

which is an exact powerlaw distribution for large peak energies (P �W0) with a powerlaw
slope αP of

αP =
(

1+
τG

tS

)
. (3.1.10)

The powerlaw slope thus depends on the ratio of the growth time to the e-folding saturation
time, which is essentially the average number of growth times. Examples of time series
with avalanches of different growth times (τG/tS = 0.5,1.0,2.0) are shown in Fig. 3.1,
along with the corresponding powerlaw distributions of peak energies P. Note that the
fastest growing events produce the flattest powerlaw distribution of peak energies.

Once an instability has released a maximum amount WS of energy, say when an
avalanche reaches its largest velocity on a sandpile, the energy release gradually slows
down until the avalanche comes to rest. For sake of simplicity we assume a constant en-
ergy decay rate η after the peak of the energy release, lasting for a time interval D until it
drops to the threshold level W0,

η =
WS −W0

D
=

W0

τD
, (3.1.11)
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Fig. 3.2 Schematic of the time evolution of an avalanche event, consisting of (i) a rise time (τ) with
exponential growth of the energy release W (t) from a threshold level W0 to the saturation level WS, and (ii)
a decay time (D) with a constant decay rate η = dW/dt = W0/τD.

which produces a linear decay of the released energy (see Fig. 3.2),

W (t) = W0 +(WS −W0)
(

1− (t − t1)
D

)
t1 < t < t2 , (3.1.12)

where t2 is the end time of the process at t2 = t1 + D. The time interval D of the energy
decay thus depends on the peak energy release rate P as (with Eqs. 3.1.11 and 3.1.3),

D = τD

(
WS

W0
−1

)
= τD

(
P

W0

)
. (3.1.13)

We define now the time interval T of the total duration of the avalanche process as the sum
of the exponential rise phase τ (Eq. 3.1.7) and the linear decay phase D (Eq. 3.1.13), as
illustrated in Fig. 3.2,

T = τ +D = τG ln
(

P
W0

+1
)

+ τD
P

W0
. (3.1.14)

We see that this relationship predicts an approximate proportionality of T ∝ P for large
avalanches, since the second term, which is linear to P, becomes far greater than the first
term with a logarithmic dependence (∝ lnP).

For the calculation of the distribution N(τ) we express the total duration T in terms of
the rise time τ (with Eqs. 3.1.5, 3.1.13, and 3.1.14),

T (τ) = τ + τD

[
exp

(
τ

τG

)
−1

]
(3.1.15)

Since the exponential term exp(τ/τG) becomes much greater than the linear term for large
avalanches, we can neglect the first term,

T (τ) ≈ τD

[
exp

(
τ

τG

)
−1

]
(3.1.16)
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With this approximation we can invert T (τ),

τ(T ) = τG ln
[

T
τD

+1
]

, (3.1.17)

and calculate the derivative,
dτ
dT

=
τG

τD

[
T
τD

+1
]−1

, (3.1.18)

which allows us to calculate the frequency distribution N(T ) of total durations T by sub-
stituting Eqs. (3.1.17) and (3.1.18) into the distribution N(τ) Eqs. (3.1.4) of rise times,

N(T ) dT = N[τ(T )]
∣∣∣∣ dτ
dT

∣∣∣∣dT =
N0(αP −1)

τD

(
T
τD

+1
)−αP

, (3.1.19)

which is a powerlaw function for large durations T with the same slope as the peak energy
rate P (Eq. 3.1.9).

We define also the total released energy E by the time integral of the energy release
rate W (t) during the event duration T , but neglect the rise time τ (i.e., T ≈ D), using
Eq. (3.1.12) and subtract the threshold level W0 before the avalanche,

E =
∫ T

0
[W (t)−W0] dt ≈

∫ τ+D

τ
[W (t)−W0] dt =

1
2

PD . (3.1.20)

Inserting the relations D(P) (Eq. 3.1.13) we obtain the dependence of the total energy
E(P) on the peak energy P

E(P) =
τD

2W0
P2 . (3.1.21)

Defining a reference energy E0,

E0 =
W0τD

2
, (3.1.22)

we have the inverted function P(E) of E(P) from Eq. (3.1.21),

P(E) = W0

(
E
E0

)1/2

, (3.1.23)

and the derivative dP/dE,
dP
dE

=
W0

2E0

(
E
E0

)−1/2

, (3.1.24)

and we can then derive the frequency distribution N(E) of energies by inserting P(E)
(Eqs. 3.1.23) and dP/dE (3.1.24) in the distribution N(P) of peak energies (Eq. 3.1.9),

N(E) dE = N[P(E)]
∣∣∣∣ dP
dE

∣∣∣∣dE =
N0(αP −1)

2E0

[√
E
E0

+1
]−αP [

E
E0

]−1/2

(3.1.25)
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The resulting frequency distribution N(E) of energies is close to a powerlaw distribution
and converges to the slope αE = (αP +1)/2 for large energies,

N(E) dE ≈ N0(αP −1)
2E0

(
E
E0

)−(αP+1)/2

. (3.1.26)

We show the frequency distributions of the total energy E, peak energy P, rise time τ ,
and total duration T in Fig. 3.3, for three different ratios of the growth rate to the average
saturation time tS, i.e., τG/tS = 0.5, 1, and 2. We see that this model can accommodate a
range of powerlaw slopes in the upper energy range and predicts particular correlations
between the three parameters E, P and T (from Eqs. 3.1.14 and 3.1.21),

(E/E0) ≈ (P/W0)2

(T/τD) ≈ (P/W0)1

(E/E0) ≈ (T/τD)2
(3.1.27)
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Fig. 3.3 Occurrence frequency distribution of total energies E (top left), peak energies P (top right),
energy release times τ (bottom left), and total time durations T (bottom right) for the exponential-growth
model, for τG/tS=0.5, 1, and 2. Powerlaw fits are performed at the upper end of the distributions (dotted
thin lines), with the slopes αP indicated in each panel. The distributions contain N0 = 104 events. The
probability density functions can be obtained by dividing the y-axis by N0 = 104.
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while the powerlaw slopes are related to each other by

αP = 1+ τG/tS
αT = αP
αE = (αP +1)/2

(3.1.28)

We will compare these predictions with numerical SOC simulations and observed distri-
butions in the following.

This simple analytical model in terms of an exponential growth phase with saturation
after a random time interval goes back to Willis and Yule (1922) who applied it to ge-
ographical distributions of plants and animals. Yule’s model was applied to cosmic rays
(Fermi 1949), to cosmic transients and solar flares (Rosner and Vaiana 1978; Aschwan-
den et al. 1998b), to the growth dynamics of the world-wide web (Huberman and Adamic
1999), as well as to the distribution of the sizes of incomes, cities, internet files, biological
taxa, and in gene family and protein family frequencies (Reed and Hughes 2002). For the
application to solar flares, Rosner and Vaiana (1978) interpreted the time interval between
two subsequent events in terms of an energy storage time. However, it was argued that
there is no observational evidence for a correlation between the energy storage time and
the magnitude of a solar flare peak (Lu 1995b; Crosby 1996; Wheatland 2000b; Georgoulis
et al. 2001). In contrast, the exponential rise time τ in our model here corresponds to the
energy release time during an instability (Aschwanden et al. 1998b).

3.2 The Powerlaw-Growth Model

The exponential-growth model we discussed in the previous section is most suitable for
multiplicative avalanche processes, where the increase per time step during the rise phase
is based on a multiplicative factor, such as it occurs in nuclear chain reactions, population
growth, or urban growth (e.g., see Zanette 2007). Alternatively, avalanche processes that
continuously expand in space may show an energy increase that scales with the area or
volume, i.e., with a powerlaw function of W (t) ∝ A(t) ∝ r(t)2 ∝ t2 or W (t) ∝ V (t) ∝
r(t)3 ∝ t3, or with any smaller power index for fractal structures. In the following analytical
model we derive the resulting frequency distributions for such avalanche processes with a
powerlaw-growth behavior (Fig. 3.4).

We assume that the avalanche process grows with a nonlinear power p, typically 1 ≤
p ≤ 3 in 1-D to 3-D geometrical space,

W (t) = W0

[
1+

(
t

τG

)p]
, (3.2.1)

where τG represents a time constant that corresponds to the first doubling of energy. Co-
herent growth occurs during a time τ and the process saturates at energy WS,

WS = W (t = τ) = W0

[
1+

(
τ
τG

)p]
. (3.2.2)
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Fig. 3.4 Time evolution of energy release rate W (t) according to the powerlaw-growth model for power
indices of p = 1 (thin solid curves), p = 2 (thick solid curves), and p = 3 (very thick solid curves),
for a ratio of growth time to saturation time τG/tS = 0.5. The linear growth model (p = 1) produces
an exponential frequency distribution of energies, while nonlinear power indices (p = 2,3) produce a
powerlaw-like distribution with an exponential high-energy cutoff, approaching a powerlaw with a slope
of αP �→ 1 for the asymptotic limit p �→ ∞. Powerlaw slopes of αP = 1 (dashed) and αP = 2 (dotted) are
indicated for comparison.

We define the peak energy release reate P that represents the maximum energy release
rate WS minus the threshold energy W0 in the same way as previously for the exponential-
growth model (Eq. 3.1.3),

P = WS −W0 = W0

(
τ

τG

)p

. (3.2.3)

In order to derive the probability distribution for the peak energies P we have to invert the
function P(τ) (Eq. 3.2.3),

τ(P) = τG

(
P

W0

)1/p

, (3.2.4)

and calculate its derivative,

dτ
dP

=
τG

pW0

(
P

W0

)1/p−1

. (3.2.5)

Again we assume that the time scales τ of coherent avalanche growth are governed by a
random process, approximated by an exponential function (Eq. 3.1.4). Substituting the re-
lations of the time scales on the peak energy (Eqs. 3.2.4 and 3.2.5) into the time frequency
distribution N(τ) of time scales (Eq. 3.1.4) we obtain the frequency distribution of peak
energies via Eq. (3.1.6),

N(P) dP =
N0(αP −1)

pW0
exp

[
−(αP −1)

(
P

W0

)1/p
](

P
W0

)1/p−1

. (3.2.6)
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For the energy dissipation process we assume a constant dissipation rate η = W0/τD as
in the previous model (Eq. 3.1.11), which yields a proportionality of the duration D to the
peak energy P as in the previous model (Eq. 3.1.13), and thus a frequency distribution with
the same functional dependence as N(P) (Eq. 3.2.6). For the calculation of the distribution
N(T ) we express the total duration T in terms of the peak energy P (with Eqs. 3.2.4 and
3.1.13),

T (P) = τ +D = τG

(
P

W0

)1/p

+ τD
P

W0
. (3.2.7)

Since the linear term in P becomes much greater than the term with P1/p for large
avalanches and positive power indices p, we can neglect the first term (i.e., the rise time)
and obtain with the definition of P(τ) Eq. (3.2.3)

T (P) ≈ D = τD
P

W0
. (3.2.8)

With this approximation we can invert T (P),

P(T ) = W0

[
T
τD

]
, (3.2.9)

and calculate the derivative,
dP
dT

=
W0

τD
, (3.2.10)

which allows us to calculate the frequency distribution N(T ) of total times T by substitut-
ing into the distribution N(P) Eq. (3.2.6) of peak energies,

N(T ) dT = N[P(T )]
∣∣∣∣ dP
dT

∣∣∣∣ =
N0(αP −1)

p τD
exp

[
−(αP −1)

(
T
τD

)1/p
](

T
τD

)1/p−1

(3.2.11)

We define the total released energy E by the time integral of the energy release rate
W (t) during the event duration T , but neglect the rise time τ (T ≈ D), using Eq. (3.1.12)
and subtract the threshold level W0 before the avalanche,

E =
∫ T

0
[W (t)−W0] dt ≈

∫ τ+D

τ
[W (t)−W0] dt =

1
2

PD (3.2.12)

Inserting the relations D(P) (Eq. 3.2.8) we obtain the dependence of the total energy E(P)
on the peak energy E,

E(P) =
τD

2W0
P2 . (3.2.13)

Defining a reference energy E0,
E0 =

W0τD

2
, (3.2.14)

we have the inverted function P(E) of E(P) from Eq. (3.2.13),

P(E) = W0

(
E
E0

)1/2

, (3.2.15)
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and the derivative dP/dE,
dP
dE

=
W0

2E0

(
E
E0

)−1/2

, (3.2.16)

we can then derive the frequency distribution N(E) of energies by inserting Eqs. (3.2.15)
and (3.2.16) in the distribution N(P) of peak energies (Eq. 3.2.6),

N(E) dE = N[P(E)]
∣∣∣∣ dP
dE

∣∣∣∣dE

=
N0(αP −1)

2pE0
exp

(
−(αP −1)

(
E
E0

)1/2p
)(

E
E0

)1/2p−1

(3.2.17)

We show the frequency distributions of the total energy E, peak energy P, rise time
τ , and total duration T in Fig. 3.5, for the area-like, quadratic (p = 2) powerlaw-growth
model, for different ratios of the growth time to saturation time, i.e., τG/tS = 0.5, 1, and 2.
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Fig. 3.5 Occurrence frequency distribution of total energies E (top left), peak energies P (top right), energy
release times τ (bottom left), and total time durations D (bottom right) for the powerlaw-growth model,
for τG/tS=0.5, 1, and 2. Powerlaw fits are performed at the upper end of the distribution (dotted thin lines),
with the slopes αP indicated in each panel.
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The corresponding plots are also shown for a volume-like, cubic (p = 3) powerlaw-growth
model in Fig. 3.6. The frequency distributions are powerlaw-like, but have a gradual steep-
ening at higher energies. This model predicts the following approximate correlations be-
tween the three parameters E, P and T , based on Eqs. (3.2.4) and (3.2.13),

E ∝ P2

T ∝ P1

E ∝ T 2
(3.2.18)

These correlations are identical with the exponential-growth model, because we approxi-
mated the total event duration T with the decay time (which has a linear decay and identical
scaling D ∝ P in both models), and neglected the rise time τ , which would have a slightly
different scaling in both models.
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Fig. 3.6 Similar representation as Fig. 3.5, but for a powerlaw-growth model with volumetric or cubic
growth (p = 3).
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3.3 The Logistic-Growth Model

Many energy dissipation processes can be understood in terms of nonlinear instabilities
that exhibit an initial exponential growth phase and saturate after a number of e-folding
growth times; this is essentially our definition of an avalanche. For exponentially grow-
ing instabilities, the rate of released energy dE/dt is proportional to the already released
energy E(t),

dE(t)
dt

= Γ E(t) , (3.3.1)

with Γ denoting a constant growth rate (or reciprocally defined as growth time, τG = 1/Γ ).
Such a behavior of exponential growth has been observed, e.g., in avalanches, nuclear
chain reactions, or population growth. The differential equation (3.3.1) has the exponential
function as the solution, i.e., E(t) ∝ exp(Γ t) (Fig. 3.7 left).

The exponential model suffers from an unrealistic description of the saturation phase,
because the energy release rate dE(t)/dt exhibits an unphysical discontinuity at saturation
time t = t1 (Fig. 3.7 left). A more realistic approach is to describe the saturation phase of
a nonlinear growth process with the so-called logistic equation, which has been widely
used in ecologic applications, but has universal validity for nonlinear systems with limited
free energy. The logistic equation is defined by a simple first-order differential equation
(discovered by Pierre François Verhulst in 1845; see textbooks on nonlinear dynamics,
e.g., May 1974; Beltrami 1987 (p.61-64); Jackson 1989 (p.75)),

dE(t)
dt

= Γ E(t) ·
[

1− E(t)
E∞

]
(3.3.2)

which just represents a generalization of the exponential growth curve (Eq. 3.3.1), by in-
cluding the growth limitation at the asymptotic saturation level E∞. The solution E(t) of
this differential equation is initially exponential (because the term [1−E(t)/E∞] is close
to unity for E(t) 	 E∞, and approaches asymptotically the value E∞ for large times (be-
cause dE(t)/dt �→ 0 for E(t) �→ E∞). The physical basis of the logistic term [1−E(t)/E∞]
is the constraint of an uppermost limit E∞ (also called “carrying capacity” in ecologic
applications), which slows down the exponential growth proportionally to the shrinking
free energy, i.e. dE/dt ≈ Γ [E∞ −E(t)] near the asymptotic value E(t) �→ E∞. The logistic
equation can directly be integrated (by variable separation dE/[E(1−E/E∞)] = Γ dt) and
has the solution

E(t) =
E∞

1+ exp(− t−t1
τG

)
, (3.3.3)

where τG = 1/Γ is the exponential growth time, and we call the integration constant t1 the
saturation time. This analytical solution E(t) is shown in Fig. 3.7 (top right).

We define a threshold energy E0 at time t = 0, where the instability sets in, in the same
way as for the exponential model (Eq. 3.1.1),

E0 = E(t = 0) =
E∞

[1+ exp( t1
τG

)]
. (3.3.4)
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Fig. 3.7 Time evolution of total released energy E(t) (top panels), the energy release rate W (t) = dE(t)/dt
(middle panels), and binary representation of avalanche growth rate (bottom panels), for both the expo-
nential (left panels) and the logistic growth model (right panels). An exponential curve (right top) and
a Gaussian curve (right middle) are drawn (with dotted lines) onto the logistic curves for comparison
(Aschwanden et al. 1998b).

The maximum energy E∞ is reached only in the asymptotic limit t �→ ∞, while the energy
level E1 at the time t1 corresponds to half of the asymptotic limit E∞,

E1 = E(t = t1) =
E∞

2
=

E0

2

[
1+ exp

(
t1
τG

)]
. (3.3.5)

The meaning of the saturation time t1 becomes clearer when we calculate the energy
release rate W (t) = dE/dt of the logistic equation, by taking the time derivative of
Eq. (3.3.5),

W (t) =
dE(t)

dt
=

E∞

τG

exp(− t−t1
τG

)

[1+ exp(− t−t1
τG

)]2
. (3.3.6)
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The temporal evolution of W (t) has a maximum at the saturation time t = t1, the time of
the maximum energy release rate,

W1 = W (t = t1) =
E∞

4τG
=

E1

2τG
, (3.3.7)

and is symmetric in time with respect to the maximum time t1. The energy release rate
W (t) closely resembles to a Gaussian curve, as shown in Fig. 3.7 (middle right).

We quantify also the duration of the energy release function W (t) by the full width at
half maximum (FWHM). From the definition of the FWHM duration d, i.e. W1/2 =W (t =
t1 −FWHM/2), we find a quadratic equation which has the solution

FWHM = τG ·2ln(3+
√

8) ≈ τG ·3.53 . (3.3.8)

This FWHM duration d depends only on the growth time τG, but does not depend on the
saturation time t1, the maximum energy release rate W1, or the saturation energy WS. The
FWHM in the exponential-growth model is FWHM = (ln2)τG ≈ 0.7τG, so about a factor
of 5 shorter.

After we have defined the time evolution of the energy release rate W (t) (Eq. 3.3.6) of
a nonlinear process with logistic growth, we want to explore the statistics of total energies
E, peak energy rates P, and total durations T as in the previous models (Sections 3.1 and
3.2). Again we assume that the probability distribution of saturation times τ , which is the
time interval from a threshold level W0 to the maximum release rate W1, i.e., τ = t1, is
governed by a random process, which we approximate with an exponential distribution as
in Eq. (3.1.4),

N(τ) dτ =
N0

tS
exp

(
− τ

tS

)
dτ , (3.3.9)

where tS is the e-folding time constant of the distribution of saturation times, or the mean
saturation time. With Eq. (3.3.4) we can express the dependence of the total energy E(τ)
as a function of the saturation time τ = t1,

E(τ) = E∞ −E0 = E0 exp
(

τ
τG

)
, (3.3.10)

which can easily be inverted to obtain τ(E) and the derivative dτ/dE, and hence the fre-
quency distribution of total energies N(E) by substituting τ(E) into the distribution N(τ)
of Eq. (3.3.9),

N(E) dE = N[τ(E)]
∣∣∣∣ dτ
dE

∣∣∣∣dE =
N0(αP −1)

E0

(
E
E0

)−αP

dE , (3.3.11)

which is a powerlaw distribution with slope αP = (1+τG/tS). The peak energy release rate
P = W1 is proportional to the total energy E in the logistic model (according to Eq. 3.3.7),

P(E) =
E

4τG
, (3.3.12)
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and thus the frequency distribution (N(P)) of peak energies is,

N(P) dP = N[E(P)]
∣∣∣∣ dP
dE

∣∣∣∣ dP =
N0(αP −1)

W0

(
P

W0

)−αP

dP , (3.3.13)

if we define the threshold peak rate as W0 = E0/4τG. The total duration of an avalanche
with a logistic time profile, which has equally long rise and decay times, is simply the
double rise time, T = 2τ , and thus the frequency distribution N(T ) is an exponential dis-
tribution like the distribution N(τ) of rise times (Eq. 3.3.9),

N(T ) dT =
N0

2tS
exp

(
−T

tS

)
dT , (3.3.14)

We show the frequency distributions of the total energy E, peak energy P, rise time τ ,
and total duration T in Fig. 3.8, for three different ratios of the growth rate to the average
saturation time tS, i.e., τG/tS = 0.5, 1, and 2. We see that this model predicts equal pow-
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Fig. 3.8 Occurrence frequency distribution of total energies E (top left), peak energies P (top right),
rise times τ (bottom left), and total time durations T (bottom right) for the logistic-growth model, for
τG/tS = 0.5, 1, and 2. Powerlaw fits are performed at the upper end of the distribution and the values are
indicated in each panel.
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erlaw distributions for the total energy E and peak energy rate P with a common slope of
αP = 1 + τG/tS, but exponential distributions for both the rise times τ and total durations
T , which is an intermediate behavior between the exponential-growth model (Section 3.1)
and the powerlaw-growth model (Section 3.2). The logistic-growth model has been ap-
plied to the energy release in solar flares (Aschwanden et al. 1998b) or to magnetic energy
storage in the solar corona (Wang et al. 2009).

3.4 Analytical Fit to Numerical SOC Simulations

Numerical SOC models require iterative applications of mathematical redistribution rules
that mimic complex behavior of next-neighbor interactions. There is an infinite variety of
mathematical redistribution rules that can be applied in cellular automaton models, and
their iterative simulation can lead to SOC behavior or to other unexpected nonlinear dy-
namics. A glimpse of the infinite variety of complex patterns that can result from simple
mathematical redistribution rules can be gleaned from the very illustrative book A New
Kind of Science by Stephen Wolfram (2002), the founder of Mathematica. Here we study
only a subgroup of mathematical redistribution rules that mimic the dynamics of a non-
linear system in a critical state, the so-called SOC state. The question here is whether the
dynamics resulting from iterative applications of mathematical redistribution rules can be
approximated by a simple analytical function of the time evolution convolved with the
statistics of random time scales. In the previous three sections we have demonstrated that
powerlaw distributions can be produced by nonlinear functions subject to random statis-
tics of time scales. In order to validate the usefulness of these analytical models we have to
compare the analytically formulated distributions of SOC parameters (energy, peak energy
rate, total duration) with the results of numerically generated distributions of SOC sys-
tems. Since we calculated our analytical distributions in explicit form, we can easily make
this comparison by simple forward-fitting of the analytical distributions to the numerically
generated ones. In a first step we compare only computer-generated SOC models, because
they represent the most direct parameters of SOC avalanche processes, regarding spatial,
temporal, and energy scales, while observed parameters in astrophysics require additional
modeling to quantify the energy content of an avalanche.

We consider the numerical SOC simulation of Lu and Hamilton (1991), shown in
Fig. 2.16, where the frequency distributions of energies, N(E) ∝ E−1.4, peak fluxes
N(P) ∝ P−1.8, and time durations, N(T ), were accumulated from a cellular automaton
model, with the energy release rate P defined by the redistribution rule Eq. (2.6.3). We fit
our analytical expressions of the exponential-growth model (Section 3.1) onto these 3 fre-
quency distributions, which are shown in Fig. 3.9. We vary the only free parameter and find
a best fit with τG/tS = 1.0, which produces a powerlaw slope of αP = 1+ τG/tS = 2.0 for
the peaks P and durations T at the upper end of the distribution, and αE = (αP +1)/2 = 1.5
for energy. This value of τG/tS = 1.0 provides frequency distributions that are fully con-
sistent with the numerical simulations, with an average powerlaw slope of αP ≈ 1.8 and
αE = (αP +1)/2 = 1.4 in the medium range of the distributions. Also the rollovers at the
lower end can be fitted, which particularly constrains the reference time scale T/ts = 1
of the durations. The other analytical models (i.e., the powerlaw-growth or logistic-
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Fig. 3.9 Frequency distributions of total energy E (top), peak energy P (middle), and total duration T
(bottom) of the numerical simulations of the SOC model of Lu and Hamilton (1991) (gray curves), fitted
with the exponential-growth model (Section 3.1). The best fit yields a parameter of τG/tS = 1.0. Powerlaw
functions are fitted at the upper end of the analytical distributions (dotted lines), with slopes of αE = 1.5
and αP = αT = 2.0.
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growth model) do not provide such excellent fits in all three distributions. Therefore, the
exponential-growth model seems to be the most suitable analytical model that is consistent
with numerical SOC simulations.

Our next comparison is with the SOC simulations shown in Fig. 6 of Charbonneau et
al. (2001), produced by a numerical SOC simulation of avalanches in a 107 iteration run
carried out on a ND = 323 lattice. Again we fit the exponential-growth model (Section 3.1)
and find a best fit with the same parameter that fitted the simulations of Lu and Hamilton
(1991), namely τG/tS = 1.0, which produces a powerlaw slope of αE = 1.5 for energies E
and αP = αt = 2.0 for peak energies P and time durations T (Fig. 3.10). The same model
fits also the correlations between these three parameters well, as predicted by this model,
E ∝ P2, P ∝ T 1, and E ∝ T 2. Thus, the exponential-growth model seems to be the most
suitable analytical model among the considered ones to reproduce the statistics of sandpile
avalanches in a SOC state.

How does the analytical model translate into a numerical SOC model, for instance in
the case of the 2-D lattice cellular automaton model of BTW, applied to solar flares by Lu
and Hamilton (1991). The analytical coherent-growth model (Section 3.1) has an initial
phase of exponential growth with a rise time τG, which has been modeled with a random
distribution. A numerical avalanche spreads to the next 4 nearest neighbors in a cellular
automaton model, and thus the maximum spreading corresponds to a circular area with
a speed of one cell per time step. Thus, the areas of coherent growth correspond to cir-
cular patches with random radius ri, as indicated in Fig. 3.11 (left frame). In the cellular
automaton model, those areas need to have large fluctuations of the lattice parameter Bk
(Fig. 3.11, right frame), which corresponds to the magnetic field in the solar case. If the
field fluctuations are large and close to the threshold, they are in the state of SOC critical-
ity, where a small disturbance or instability can quickly spread and amplify. In the most
unstable situation, every next neighbor becomes unstable after every redistribution step,
and thus the number of unstable nodes increases by a multiplicative factor, i.e., by a factor
of 4 in 2-D or a factor of 6 in 3-D. This corresponds to an average exponential growth time
of τG/tS = 1/ ln(2D), i.e., τG/tS = 0.72 in 2-D or τG/tS = 0.56 in 3-D. Thus, the number
of unstable cells grows near-exponentially during this phase, as does the released energy
E, since the released energy per time step is approximately proportional to the squared
field gradient |ΔB|2 (Eq. 2.6.11), which is modeled with an exponential function in our
exponential-growth model (Eq. 3.1.1). Once the boundary of the unstable area is reached,
the fluctuations become more random and decay gradually, which we modeled with a lin-
ear function in our model (Eq. 3.1.12). This gradual decay of fluctuations is essentially
a random process that decouples adjacent field fluctuations and makes them more inco-
herent with each redistribution process. Thus, our analytical model implies a differential
equation that is proportional to the number of nodes n during the coherent growth phase,
but is proportional to the time t during the incoherent decay phase,

dn(t)/dt ∝ n(t) (rise time)
dn(t)/dt ∝ −t (decay time) (3.4.1)

which has the analytical solutions of an exponential function during the rise time and a
linear function during the decay time (Fig. 3.2).
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Fig. 3.10 Occurrence frequency distributions of total energy E (top left), peak energy P (middle left), and
total duration T (bottom left) of the numerical simulations of the SOC model of Charbonneau et al. (2001)
(gray histograms), fitted with the exponential-growth model (Section 3.1). The best fit yields a parameter
of τG/tS = 1.0. Powerlaw functions are fitted at the upper end of the analytical distributions (dotted lines),
with slopes of αE = 1.5 and αP = αT = 2.0. The correlations between the three parameters E, P, and T are
shown in the right-hand panels (data points from Charbonneau et al. 2001), compared with the predicted
correlations according to Eqs. (3.1.28)
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Fig. 3.11 Analytical (left) and numerical schematic representation (right) of areas that are susceptible to
coherent growth, for a set of 10 avalanches. The circles with random sizes (with radius ri) in the left panel
indicate areas of possible coherent growth, which correspond to locations with large fluctuations Bk near
the threshold level in 2-D lattice cellular automaton models.

3.5 Inertial Range, Lower and Upper Cutoff

We discuss now the lower and upper bound of frequency distributions, which define the
so-called inertial range in between the two bounds, which often can be characterized with
a single powerlaw function in SOC statistics (Fig. 3.12).

In the exponential-growth model (Section 3.1) we find a flattening of the frequency
distributions N(E), N(P), and N(T ) at the low bound, at the threshold energy E <∼ E0
= W0τD/2 (Eq. 3.1.22), peak energy P <∼ W0, and T <∼ τD = W0/η (Eq. 3.1.11). The thresh-
old energy rate W0 essentially represents a watershed between incoherent (random) and
coherent energy fluctuations. A nonlinear instability can grow coherently only above this
critical energy level. This threshold energy release rate W0 constitutes also a lower bound
on the minimum time scale, which is given by τD = W0/η , where η represents the average
energy decay rate (Eq. 3.1.11). Taking the two limits together, we have also a limit of the
lowest total energy E0 =W0τD/2, which is just the product of the average energy W0/2 and
the minimum duration τD (Fig. 3.2). If small events near the lower bound can be sampled
we can indeed determine these threshold parameters W0, E0 and τD, such as τD in the SOC
simulations of Lu and Hamilton (1991); see fit in Fig. 3.9 (bottom panel).

In astrophysical observations, the lower bound of the sampled frequency distribution is
additionally affected by the detection threshold, which can appear as a sharp cutoff when
an observable is directly proportional to an avalanche parameter (such as the hard X-ray
count rate and peak energy release rate P), but can result in smooth rollovers for avalanche
parameters that have a dependence on multiple physical parameters (e.g., the total energy
E in a solar flare depends on the temperature and electron density with weakly correlated
thresholds).
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Fig. 3.12 Schematic frequency distribution with nomenclature definitions. The inertial range [E0,E1] is
the powerlaw part of the distribution between a lower and upper bound. The lower bound corresponds
to the threshold energy E0 in theoretical models. Real observations commonly show a rollover due to
undersampling below the detection limit. Short-term datasets (N1 events) have a lower upper cutoff E1
than long-term datasets (N2 events). System-wide avalanches show a hump at the upper bound (at E3).

What is the upper bound of a frequency distribution? Most frequency distributions are
monotonically dropping off towards higher values (of E, P, and T ), so we can define an
upper bound when the probability distribution drops to 1 event. All our analytical models
are based on the random distribution N(τ) of energy release saturation times τ (Eq. 3.1.4),
which is normalized to a total number of N0 detected events (Eq. 3.1.5). Thus, setting the
cumulative frequency distribution to one event,

∫ ∞

τmax

N(τ) dτ = N0 exp
(
−τmax

tS

)
= 1 (3.5.1)

we obtain the maximum time scale τmax,

τmax = tS lnN0 . (3.5.2)

Say for a dataset with N0 = 104 events we expect a maximum saturation time of
τmax/tS ≈ 9.

The maximum values of E, P, and T can simply be estimated by setting the respective
frequency distributions to a value of one event, which yields, e.g., for the exponential-
growth model (with Eqs. 3.1.9, 3.1.19, and 3.1.26),
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(
Emax

E0

)
≈

(
N0(αP −1)

2E0

)2/(αP+1)

, (3.5.3)

(
Pmax

W0

)
≈

(
N0(αP −1)

W0

)1/αP

, (3.5.4)

(
Tmax

tD

)
≈

(
N0(αP −1)

tD

)1/αP

. (3.5.5)

For a dataset with N0 = 104 events and a ratio τG/tS = 1.0 (corresponding to αP = 1 +
τG/tS = 2) and normalization W0 = 1, tD = 1, and E0 = W0tD/2 = 1/2 thus we expect
a maximum energy of Emax/E0 = 300, a maximum peak energy rate of Pmax/W0 = 100,
and a maximum total duration of Tmax/tD = 100. Note that these maximum event values
Xmax correspond to the minimum event occurrence frequency number N(Xmax) = 1 at the
bottom of the graphs in Fig. 3.3. Thus the inertial range is about two orders of magnitude
for a dataset of N0 = 104 events. For models with powerlaw slopes of αP ≈ 2, the inertial
range spans about half of the logarithmic range of the number of events.

The dependence of the inertial range Xmax/X0 on the number of events N0, for X =
E,P,T ,

Xmax

X0
≈ N1/αP

0 , (3.5.6)

has the implication that the inertial range grows with increasing time with a power of 1/αP
(Fig. 3.12). If events are sampled with a mean rate of dN0/dt = 1/〈Δt〉, the inertial range
grows as,

Xmax

X0
≈

(
t

〈Δt〉
)1/αP

, (3.5.7)

where < Δt > is the mean waiting time between two subsequent events. For example, for a
powerlaw index of αP = 2, the observing time has to be increased by a factor of 10αP = 102

to gain one more decade in inertial range. For example, the average rate of solar flares
during the solar maximum is about 15 events per day for hard X-ray flare events detected
with HXRBS/SMM (Crosby et al. 1993). This means that we need about one week to
obtain an inertial range of 1 decade for the frequency distribution of the peak count rate
P, or 3 months for an inertial range of 2 decades, or 25 years for an inertial range of 3
decades. The inertial range for energies E, however, would extend over 4 decades during
the same time range, because the powerlaw index is flatter (αE ≈ 1.5).

While we considered only the temporal cutoff at the upper bound of frequency distribu-
tions, there could also be a spatial boundary that prevents avalanches to propagate to their
maximum size. Such spatial boundaries could be the finite lattice size in computer simula-
tions, the edge or base of a sandpile, the vegetation borders in forest fires, the polar cusp in
magnetospheric substorms, active regions in solar flares, or the size of the accretion disk
in gamma-ray bursts. If system-wide avalanches encounter such spatial boundaries, the
frequency distributions can be strongly modified at the upper bounds (Fig. 3.12), e.g., see
the size of dissipation power in auroral blobs (Fig. 1.10), which could successfully be re-
produced with numerical SOC simulations (Fig. 2.13), as well as for the area distributions
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of forest fires (Fig. 2.12). Essentially, the spatial boundary stops avalanches from further
growing and produces an overabundance of event parameters at the particular spatial scale
that corresponds to the system size. Investigations of the effect of boundary conditions
have been studied by Galsgaard (1996), who finds that the frequency distributions sensi-
tively depend on the boundary conditions (for his chosen stability criterion).

3.6 Continuum Limit of Cellular Automaton Model

We try now to understand the analytical exponential-growth model in terms of the nu-
merical BTW sandpile SOC model, which is formulated as a mathematical redistribution
rule involving discretized changes among next neighbors. We attempt to map the analyt-
ical model onto the numerical SOC model in order to derive a continuum limit of the
discretized numerical redistribution rules.

The spatial pattern of a large avalanche produced by such a 2-D redistribution rule
(Eqs. 2.6.1–2.6.2 or 2.6.23–2.6.27) is shown in Fig. 3.13, as it would appear in the most un-
stable situation. Essentially, the spatial size of the spreading avalanche grows by one cell in
each direction every time step, because only next-neighbor interactions are allowed. This
means that the size of the avalanche grows linearly in time, and the area grows quadrati-
cally in a 2-D lattice grid, but the number of nearest-neighbor interactions grows exponen-
tially. The unaffected cells that have random fluctuations below the threshold are marked
with black in Fig. 3.13, while the unstable cells to which the redistribution rule is applied

t= 1

tS=1

t= 2

tS=2

t= 3

tS=3

t= 4

tS=4

t= 5

tS=5

Fig. 3.13 Spatial patterns of a propagating avalanche in subsequent time steps in a 2-D cellular automaton
model with a next-neighbor redistribution rule (top) and time profiles of energy release rate (bottom), for
saturation times of tS = 1,2, ...,5Δt. The black cells represent cells with random fluctuations below the
threshold, zk < zc, the gray cells contain possibly unstable cells with fluctuation zk ≥ zc that are subject to
a first redistribution, while the white cells have already been affected by a redistribution rule before. Most
avalanches die out after step t >∼ 2.
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for the first time are marked in gray, and the cells that were already redistributed earlier are
marked in white. The propagation pattern shown in Fig. 3.13 is a “worst-case scenario”
for a large avalanche with the most unstable cell configuration, but most avalanches die
out after a few time steps due to the stabilizing effect of the redistribution rule.

Let us consider now the mapping of our analytical model onto the numerical SOC
model. The smallest avalanche consists of one single cell that becomes redistributed. If
the environment is sufficiently unstable the avalanche proceeds and will affect a maximum
of 4 (or 6) nearest neighbors in a 2-D (or 3-D) lattice. If the avalanche grows further,
it will affect a maximum of 42 (or 62) cells, and so forth. This multiplicative behavior
is consistent with the exponential function in our analytical model. Even if the average
multiplication factor is smaller, say 1 < q ≤ 4, the number of cells affected by nearest-
neighbor interactions will grow exponentially with q(t) ∝ qt . In the numerical SOC model
we have discretized time steps, so we can express the time scale t, the growth time τG, and
the saturation time tS, with integer numbers nt , nG and nS,

t = ntΔt , τG = nGΔt , τS = nSΔt , (3.6.1)

leading to a discretized exponential-growth function of (Eq. 3.1.1), with discretized time
intervals t = ntΔt,

W (nt) = W0 exp
(

nt

nG

)
. (3.6.2)

The released energy during the redistribution of one discretized time step Δt is for ΔB >∼ Bc
according to Eq. (2.6.11),

|ΔEm| = 2D
2D+1

ΔB2 ≈ 2D
2D+1

B2
c . (3.6.3)

Thus, choosing the threshold energy W0 = B2
c and attributing the energy difference |ΔEm|

to [W (nt)−W0], we have after one redistribution time step nt = 1,

ΔE1 = W (nt = 1)−W0 = W0

(
exp

1
nG

−1
)

= W0
2D

2D+1
, (3.6.4)

which leads to a (discretized) growth time nG = τG/Δt of,

nG =
1

ln [ 2D
(2D+1) +1]

, (3.6.5)

amounting to nG ≈ 1.70 for D = 2, or nG = 1.62 for D = 3. Thus, the released energy
grows by an exponential factor of e ≈ 2.7 within less than two redistribution time steps.
Examples of saturation after nS = tS/Δt = 1,2, ...,5 time steps are shown in Fig. 3.13.

We can now calculate the resulting powerlaw slopes of the peak energies P and total
time duration T ,

αP = αT =
(

1+
τG

tS

)
=

(
1+

nG

nS

)
= 1+

1

nS ln
[

2D
(2D+1) +1

] , (3.6.6)
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Table 3.1 Powerlaw slopes αP, αT , and αE of the exponential-growth model predicted for the numerical
BTW simulations as as function of the mean discretized saturation time nS = tS/Δt = 1,2, ...,5 and dimen-
sion D = 2,3 of the lattice. The values in parentheses were obtained from numerical lattice simulations by
Charbonneau et al. (2001).

Saturation Dimension Peak energy Energy
time powerlaw slope powerlaw slope
nS = tS/Δt D αP = αT αE

1 2 2.70 1.85
2 2 1.85 (1.73,1.72) 1.42 (1.42)
3 2 1.57 1.28
4 2 1.42 1.21
5 2 1.34 1.17

1 3 2.61 1.81
2 3 1.81 (1.92,1.79) 1.40 (1.49)
3 3 1.54 1.27
4 3 1.40 1.20
5 3 1.32 1.16

and total released energies E with Eq. (3.1.28), i.e., αE = (αP + 1)/2, as a function of
the discretized saturation time ns = tS/Δt in the framework of our analytical exponential-
growth model. We tabulate the values obtained for nS = 1,2, ...,5 and D = 2,3 in Table
3.1. Comparing these theoretical values with the numerically obtained powerlaw slopes
in Charbonneau et al. (2001), indicated in parentheses in Table 3.1, we find that a mean
saturation time of nt = 2 is most consistent with the numerical SOC simulations. Since the
time scale tS represents the mean saturation time of the exponential distribution (defined
in Eq. (3.1.4)), this means that the avalanches typically saturate after two time steps.

Thus, the choice of nG = τG/Δt ≈ 1.7 and nS = tS/Δt ≈ 2.0 represents the most con-
sistent mapping of the continuous analytical functions in our exponential-growth model
to the discretized numerical avalanche simulations. It allows us to predict the statistically
averaged time profiles of the energy release rate of avalanches and the frequency distribu-
tions of their peak energy P, total energy E, and total duration T in agreement with the
numerical lattice simulations. There are only two parameters (nG,nS) that constrain the
transformation from the numerical to the analytical model, which we determined for the
simulations by Charbonneau et al. (2001). For other SOC simulations that use different
mathematical redistribution rules or a different level ΔB/Bc to drive the SOC state, we
expect slightly different transformation parameters.

The analytical model gives us also new insights into the concept of self-organized crit-
icality. We may ask what defines the criticality in the analytical model? A subcritical state
means a growth time that is much longer than the mean saturation time, in which case
almost no avalanches occur. This is also the case in the initial phase of numerical SOC
simulations, when the field fluctuations ΔB are small compared with the critical thresh-
old Bc. Thus, the buildup phase of a numerical SOC simulation corresponds to a gradual
decrease of the growth time τG from an initially infinite value down to a critical value
that is commensurable with the mean saturation time, τG ≈ tS, constrained by the amount
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of released energy per redistribution process among the next neighbors (Eq. 3.6.4). What
warrants the powerlaw of the energy distribution is the constancy of the growth time τG
in the critical SOC state, which can be understood in terms of two conditions: (1) a fixed
probability for next-neighbor interactions, and (2) a fixed energy quantum that is released
per redistribution step. The first condition of a fixed probability for next-neighbor interac-
tions is automatically guaranteed because there is a constant number of next neighbors per
definition (4 in 2-D or 6 in 3-D), which would not be the case in models with non-local
communication (e.g., MacKinnon and Macpherson 1997). The second condition of a fixed
energy quantum released per time step is warranted in the weak-driving limit, where the
triggering field fluctuation exceeds the threshold only by a small amount, e.g., ΔB >∼ Bc,
which is ultimately guaranteed by the constant threshold value Bc and the limit of weak
driving. What happens when the limit of weak driving is violated, i.e., |δB|/〈B〉	 1, is that
mid-size avalanches are favored and the scale-free powerlaw behavior disappears, accord-
ing to numerical SOC simulations in the strong-driving limit (Charbonneau et al. 2001).
In short, since our analytical exponential-growth model strictly predicts a powerlaw, it
implies also the weak-driving limit. The evolution of the growth time τG(t) during the
build-up phase reflects the approach towards the critical state, and the growth time τG be-
comes a fixed constant when reaching the SOC state. The critical value τG (expressed in
units of mean saturation times) can easily be derived from the powerlaw slope of numer-
ical SOC simulations, but can in principle also be calculated from the probability of field
fluctuations ΔB = Bi j −Bnn and the threshold value Bc.

Our approach of mapping an analytical model with an explicit function of the energy re-
lease W (t) onto numerical simulations of SOC avalanches provides a statistically averaged
continuum limit of the BTW cellular automaton redistribution rule. There are a number of
other approaches to derive a continuum limit from the BTW cellular automaton rules.

Lu (1995c) envisions avalanches in a continuum-driven dissipative system, which is
characterized by a coupled equation system of a one-dimensional diffusion process,

∂B(x, t)
∂ t

=
∂
∂x

[
D(x, t)

∂B
∂x

]
+S(x, t) , (3.6.7)

∂D(x, t)
∂ t

=
Q(|∂B/∂x])

τ
− D(x, t)

τ
, (3.6.8)

where B(x, t) is a scalar field, D(x, t) is a spatially and temporally varying diffusion term,
S(x, t) is a source term, Q(|∂B/∂x|) is a double-valued Heaviside function that has a low or
high state that depend on the time history and an instability threshold. Lu (1995c) demon-
strated that the complex dynamic behavior of this differential equation can be approxi-
mated by a much simpler cellular automaton simulation.

Isliker et al. (1998a) discretize the 3-D cellular automaton redistribution rule into a
differential equation that represents a diffusion process,

∂B(x, t)
∂ t

= η∇2B(x, t)+S(x, t) , (3.6.9)
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with a source term S(x, t) and a diffusion coefficient η = 1/7(Δh2/Δt). This differential
equation contains a continuous function B(x, t) that behaves the same way as the nearest
neighbors during one redistribution step, but a singularity occurs at the center location at
Δh �→ 0, which requires a modification of the cellular automaton rule.

Liu et al. (2002) and Charbonneau et al. (2001) transform the cellular automaton rule
of Lu and Hamilton (1991) into a finite difference equation,

∂B
∂ t

= − ∂ 2

∂x2 κ(Bxx2)
∂ 2B
∂x2 , (3.6.10)

where κ(Bxx2) is a diffusion coefficient that depends on the local curvature B2
xx. This is a

fourth-order nonlinear hyperdiffusion equation, which is interpreted as continuum limit of
the cellular automaton rule, compatible with MHD in the regime of strong magnetic field
and strong MHD turbulence (with high effective magnetic diffusity).

3.7 Summary

We developed several analytical SOC models that consist of: (1) an equation that de-
scribes (in explicit form) the nonlinear (explosive) energy release W (t) during the rise
time (t ≤ tS) of an instability, (2) an equation that characterizes the (linear) decay rate
after saturation, and (3) a probability distribution N(τ) of random time scales for the insta-
bility rise times tS. We quantify the explosive phase with three different parameterizations:
(i) exponential-growth, (ii) powerlaw-growth (of area or volume), and (iii) logistic growth
phases. For each of the scenarios we derive the frequency distributions of the peak energy
release rate P, the total released energy E, and the total time duration T . Each model pre-
dicts a specific analytical function for the occurrence frequency distributions, which range
from powerlaw-like functions to exponential-like functions. These analytical models pre-
dict also correlations between the avalanche parameters P, E, and T . We find that the
exponential-growth model fits the numerically simulated SOC avalanches most suitably
regarding their frequency distributions and parameter correlations. The analytical models
quantify also the inertial range with its lower and upper bound, which are a function of the
avalanching threshold and the total avalanche sampling time. Our analytical models can be
considered as a continuum limit of numerical cellular automaton simulations. Alternative
approaches derive a continuum limit by discretizing the cellular automaton redistribution
rules into differential equations with anomalous or hyper-diffusion. The class of analytical
SOC models we discuss in this chapter are “physics-free” in the sense that they can be
generally applied to any arbitrary avalanching SOC system, such as to solar flares as well
as to earthquakes.

3.8 Problems

Problem 3.1: Verify the derivation of the powerlaw energy distribution (Eqs. 3.1.7–3.1.9)
in the exponential-growth model (Eqs. 3.1.1–3.1.2).
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Problem 3.2: Derive the corresponding time evolution of the energy release decay phase
W (t) for observed correlations of P ∝ Dq between the peak energy release rate P and
decay phase duration D (see solution 3.1.12 for a linear decay rate q = 1).

Problem 3.3: How accurate are the approximations of the parameter correlations given in
Eq. (3.1.27)? For what parameters E, P, and T do you find the largest discrepancy?

Problem 3.4: Plot the accurate expression for the correlation between the total energy
E(τ) and rise time τ for the powerlaw-growth model (Eq. 3.2.12) and find another
suitable approximation function for the cases of p = 2,3.

Problem 3.5: Determine the size of the sample plotted in the frequency distribution N(P)
of the solar flare peak count rate shown in Fig. 1.13 from the inertial range relation
(Eq. 3.5.4).



4. Statistics of Random Processes

Although dice have been mostly used in gambling, and in recent times
as “randomizing” elements in games (e.g., role playing games),
the Victorian scientist Francis Galton described a way to use dice
to explicitly generate random numbers for scientific purposes, in 1890.

Wikipedia 2009, Hardware Random Number Generator

The phenomenon of self-organized criticality (SOC) can be identified from many observa-
tions in the universe, by sampling statistical distributions of physical parameters, such as
the distributions of time scales, spatial scales, or energies, for a set of events. SOC mani-
fests itself in the statistics of nonlinear processes. The powerlaw shape of the occurrence
frequency distribution of events is one of the telling indicators of SOC. By observing a sin-
gle event it would be impossible to establish whether the system is in a SOC state or not.
Statistics is therefore of paramount importance for modeling and interpretation of SOC
phenomena. Of course, statistics always implies random deviations from smooth distri-
butions, as they are often defined by analytical functions. Only for strictly deterministic
systems can one accurately predict the outcome of an event based on its initial conditions.
In reality, however, initial conditions are never known exactly and many random distur-
bances occur during the evolution of an event, which prevents us from making accurate
predictions. The most accurate statements we can make about almost any physical sys-
tem is of statistical nature. In our Chapter 3 on analytical models of SOC phenomena, the
statistics of random time scales was one of the primary assumptions in the derivation of
occurrence frequency distributions, which needs to be rigorously defined and quantified. In
this Chapter 4 we deal with the most common statistical probability distributions of ran-
dom processes, such as the binomial distribution, the Gaussian distribution, the Poisson
distribution, and the exponential distribution. Random processes produce various types of
noise, such as white noise, pink, flicker or 1/ f noise, Brownian or red noise, or black noise.
The time scales of SOC phenomena, such as the durations of SOC avalanches, are often
attributed to 1/ f noise, which we study in this chapter. The definition of power spectra of
these various types of noise enable us to construct a variety of analytical SOC models that
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are needed to understand and identify SOC and non-SOC phenomena according to their
intrinsic noise characteristics, from earthquakes to starquakes.

4.1 Binomial Distribution

We mostly deal with random processes when studying the behavior of SOC, so we have to
start with the statistical probability distributions. Basic introductions into probability dis-
tributions can be found in many textbooks, e.g., see Section 2 of Bevington and Robinson
(1969). The binomial distribution is generally used in experiments with a small number of
different final states, such as coin tosses, card games, casino games, particle physics ex-
periments, or quantum mechanics. In our focus on SOC, we might describe the probability
of next-neighbor interactions above a threshold with binomial statistics.

Starting from first principles, the most fundamental probability distribution is the bino-
mial distribution. It can be derived from the probabilities of tossing coins or rolling dice.
If we toss n coins and consider the probability that x coins end in a particular outcome
(either head or tail), the number of possibilities is the number of permutations Pm(n,x),
say for n = 4 and x = 1,2,3,4 we have,

Pm(n = 4,x = 1) = n = 4
Pm(n = 4,x = 2) = n(n−1) = 4×3 = 12
Pm(n = 4,x = 3) = n(n−1)(n−2) = 4×3×2 = 24
Pm(n = 4,x = 4) = n(n−1)(n−2)(n−3) = 4×3×2×1 = 24

, (4.1.1)

which can be expressed more generally in terms of factorials,

Pm(n,x) = n(n−1)(n−2) . . .(n− x+1) =
n!

(n− x)!
. (4.1.2)

However, the outcomes of different permutations for one state x has x! possible combi-
nations, so the number of different combinations C(n,x) has to be divided by this factor,
if we do not distinguish between identical cases. The resulting fractions are also called
binomial coefficients

(n
x

)
,

C(n,x) =
(

n
x

)
=

Pm(n,x)
x!

=
n!

x!(n− x)!
, (4.1.3)

which yields the following number of different possible combinations,

C(n = 4,x = 0) = 1 = 1
C(n = 4,x = 1) = n/1 = 4
C(n = 4,x = 2) = n(n−1)/2! = 6
C(n = 4,x = 3) = n(n−1)(n−2)/3! = 4
C(n = 4,x = 4) = n(n−1)(n−2)(n−3)/4! = 1

. (4.1.4)

The name “binomial coefficients” stems from the algebraic binomial equation,
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(a+b)n =
n

∑
x=0

(
n
x

)
axb(n−x) , (4.1.5)

which reads, e.g., for n = 4, as

(a+b)4 = 1 ·a4 +4 ·a3b+6 ·a2b2 +4 ·ab3 +1 ·b4 . (4.1.6)

Now, to obtain the probability for each state x we have to normalize to unity. If p is the
basic probability for each state, say p = 1/2 for tossing coins (head or tails), the probability
for n coins to be in a particular state x is px, and the probability for the other (n− x) coins
to be in the other state is (1− p)n−x, while the product of these two parts is the probability
PB(x;n, p) of the combination,

PB(x;n, p) =
(

n
x

)
px(1− p)n−x =

n!
x!(n− x)!

px(1− p)n−x , (4.1.7)

which is called the binomial distribution, expressed in terms of factorials. If the probability
is p = (1− p) = 1/2, the normalization factor becomes trivially px(1− p)n−x = pn, which
is just the reciprocal number of the total number of combinations 2n = 16 for n = 4.

As a practical example let us consider a 2-D lattice where every cell has 4 next neigh-
bors (Fig. 4.1) and the probability that a neighboring cell becomes unstable is p = 1/2.
There are n = 24 = 16 possible outcomes, but there are only 5 non-distinguishable classes
(labeled with the number of states x = 0, ...4), if one only cares about the total number of
unstable states. We show all 16 different possibilities in Fig. 4.1 and find the probabilities
PB(x = [0,1,2,3,4];n = 4, p = 1/2) = [1,4,6,4,1]/16. Thus, there is a six time higher
probability to have only 2 neighboring cells triggered than all 4 next neighbors together.
In Section 3.6 we calculated the growth time τG of an avalanche for maximum unstable
conditions, where the probability for a next-neighbor interaction is p = 1. However, if the
lattice is somewhat subcritical, so that the probability for one next-neighbor interaction
is p = 1/2 for instance, there is only a combined probability of p = 1/16 that all 4 next
neighbors are triggered together and the avalanche propagates with the maximum growth
factor. A related probabilistic SOC model was also conceived by MacKinnon et al. (1996)
and Macpherson and MacKinnon (1999), which we discussed in Section 2.6.5 on branch-
ing processes.

In Fig. 4.2 we show binomial distributions PB(x;n, p = 1/2) for n = 2 to n = 20, all
displayed on a normalized axis of states x/n. It can clearly be seen that the binomial
distribution turns into a Gaussian distribution for large number of states n �→ ∞. However,
factorials are not practicable to calculate for large values of n, say for a gas that has n ≈
1026 atoms per cubic centimeter, so it is more useful to approximate Eq. (4.1.7) with an
analytical function, which turns out to be the Gaussian function.
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Fig. 4.1 Binomial distributions of all possible combinations of next-neighbor interactions in a 2-D lat-
tice. There are n = 4 next neighbors and 5 possible states, x = 0,1, ...,4, and the probabilities P(x;n) =
1,4,6,4,1 are given in the histogram at the bottom of the figure. The number of all combinations amounts
to 16 cases, while the number of distinguishable combinations amounts to 5 different cases only.
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Fig. 4.2 Binomial distributions PB(x;n, p = 1/2) for n = 2,20, overlaid on the same normalized state x/n.
Note that the binomial distribution turns into a Gaussian function for n �→ ∞ (thick curve).
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4.2 Gaussian Distribution

A very accurate approximation to the binomial distribution is the Gaussian distribution
function, which represents the special case when the number of possible observations n
becomes infinitely large and the probability for each state is finitely large, so that np � 1.
In this case it is more convenient to parameterize the function in terms of the the mean μ
and standard deviation σ , rather than in terms of the states x and number n items of the
sample (i.e., coins). The Gaussian probability function PG is defined as,

PG(x; μ,σ) =
1

σ
√

2π
exp

[
−1

2

(
x−μ

σ

)2
]

. (4.2.1)

It can be shown that the mean of this Gaussian or normal distribution is μ = np and
the standard deviation fulfills σ 2 = np(1 − p), and the distribution is normalized to
∑∞

x=0 PG(x,μ) = 1. For instance, if we approximate the probability of next-neighbor in-
teractions in a 2-D lattice (Fig. 4.1) with a Gaussian, using n = 4 and p = 1/2, the mean
would be μ = np = 2 and the standard deviation σ =

√
np(1− p) = 1, which agrees with

the histogram of the binomial distribution shown in Fig. 4.1.
In astrophysical applications, random intensity fluctuations from a steady source are

expected to obey a Gaussian distribution function to first order. For instance, simple his-
tograms of soft X-ray intensity fluctuations from the solar corona observed with the Soft
X-ray Telescope (SXT) onboard the Yohkoh spacecraft were sampled by Katsukawa and
Tsuneta (2001). They used 25 different image sequences, each one consisting of about 20
images with a size of 128×128 pixels and a pixel size of 2.45′′. The data were processed to
remove spacecraft pointing jitter using onboard attitude sensors as well as cross-correlation
techniques, because the pointing jitter broadens the Gaussian noise distribution. In addi-
tion, little bursts in each time series from each pixel were removed, in order to have a
clean separation of true photon noise from small soft X-ray bursts. Since the soft X-ray
brightness level I0(x,y, t) varies across an image (x,y), they constructed histograms for
three separate levels, around I0 ≈ 101.5, 102.3, and 103.0. The standard deviation σp of the
photon noise for these three intensity levels is shown in Fig. 4.3 (top row), which is found
to fit the core part of the distributions as,

σp = (1.5±0.3)I0.51±0.03
0 , (4.2.2)

close to the theoretical expectation of σp ∝
√

I0. Although the core of the distributions
closely fit a Gaussian, the wing component apparently contains some other contributions,
such as transient brightenings or time-dependent gradual variations of the mean intensity
I0(t). Identifying the locations (x,y) in the images that contribute to the wing components,
Katsukawa and Tsuneta (2001) did a second pass through the original data cube and re-
moved those time intervals, which led to a clean Gaussian core component without wings
(Fig. 4.3, bottom row). Although these cleaned time series produced a perfect Gaussian
distribution that can be interpreted as pure random noise of emitted photons with Gaussian
width σp, a slight excess was noted relative to the theoretical expectation of the instrumen-
tal noise characteristics, which was attributed to unresolved nanoflares with a hypothetical
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Fig. 4.3 Top: Histogram of soft X-ray intensity fluctuations around the mean intensity I0 for three inten-
sity levels, measured from a series of images observed with SXT/Yohkoh. The units of the horizontal axis
are the standard deviations σp of the photon noise. The solid curves represent Gaussian fits to the core
parts, with the pure photon noise distribution indicated by dashed curves. Bottom: Histogram of soft X-ray
intensity fluctuations around the mean intensity I0 for three intensity levels after removing the wing com-
ponent originating from transients or time-dependent background variations. The solid curves represent
Gaussian fits to the core parts, the theoretical photon noise distribution is indicated with dashed curves,
and a 5-times wider Gaussian with dotted curves (Katsukawa and Tsuneta 2001; reproduced by permission
of the AAS).

Gaussian distribution width σn, which adds in quadrature to the photon noise width σp to
a slightly broadened observed width σobs,

σobs =
√

σ 2
p +σ2

n . (4.2.3)

Of course, because of the quadratic dependence of the Gaussian function on the width σ
(Eq. 4.2.1), the convolution of two Gaussians is a Gaussian distribution again, with the
Gaussian widths σi added in quadrature,
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PG(x; μ,σ1)×PG(x; μ,σ2)

= 1
σ1

√
2π exp

[
− 1

2

(
x−μ
σ1

)2
]
× 1

σ2
√

2π exp
[
− 1

2

(
x−μ
σ2

)2
]

= 1√
2π(σ 2

1 +σ2
2 )

exp
[
− 1

2
(x−μ)2

(σ2
1 +σ2

2 )

] . (4.2.4)

In the case of the soft X-ray fluctuations observed by Katsukawa and Tsuneta (2001),
the excess of the Gaussian component was very small (σn/σp ≈ 0.05± 0.02), and thus
the interpretation in terms of nanoflares versus unknown instrumental effects remained
debatable. However, the study demonstrates that the observed random photon noise from
the solar soft X-ray corona fulfills a Gaussian distribution with high precision, allowing us
to determine additional non-noise components down to a relative brightness level of a few
percent. Soft X-ray emission from stellar sources have of course much poorer statistics
due to the large distances, which requires observations with significantly longer sampling
time intervals to discriminate between photon noise and extraneous transient brightenings.

4.3 Poisson Distribution

In astrophysical observations, count statistics is often limited, either due to the large (stel-
lar) distances or due to the paucity of photons at high energies. It is therefore common
that we deal with count rates of less than one photon per second in observations of solar
gamma-ray flares or soft X-rays from black hole accretion disks. Such low count rates do
not fulfill the condition np � 1 required for the Gaussian approximation (Eq. 4.2.1), and
thus another approximation to the binomial distribution has to be found in this low count-
rate limit. Such an approximation was first derived by Siméon Denis Poisson (1781–1840),
published in his work Research on the Probability of Judgements in Criminal and Civil
Matters. A concise derivation can be found, e.g., in Bevington and Robinson (1969).

The Poisson distribution is an approximation to the binomial distribution (Eq. 4.1.7) in
the limit of a small number of observed outcomes x (with a mean of μ) with respect to
the number n of items because of very small probabilities, p 	 1, and thus μ = np 	 n.
For instance, the probability of a photon from a faint stellar source to hit the aperture of a
telescope on Earth can be extremely small, i.e., p 	 1, and thus also the mean detection
rate μ = np 	 n is very small compared with the number n of emitted photons at the
source. Although the binomial statistics correctly describes the probability PB(x;n, p) of
detected events, i.e., x photons per second, the enormous large (and unknown) number n (of
emitted photons) makes it impossible to calculate the n factorials in Eq. (4.1.7). However,
we can detect an average counting rate μ , and thus it is more convenient to express the
Poisson approximation as a function of the count rate x and the mean μ , i.e., PP(x; μ),
rather than as a function of the unknown numbers n and p. Going back to the original
expression of the binomial distribution (Eq. 4.1.7), the factorial n!/(n− x)! has x factors
that are all close to n for x 	 n, so we can approximate it with the product nx,

n!
(n− x)!

= n(n−1)(n−2)...(n− x−1) ≈ nx . (4.3.1)
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The approximated second term (nx) together with the third term px in Eq. (4.1.7) becomes
then (np)x = μx. The fourth term, (1− p)n−x can be split into two factors, where one term
is close to unity, i.e., (1− p)−x ≈ 1 for p 	 1, and the remaining term (1− p)n can be
rearranged by substituting n = μ/p to show that it converges towards e−μ ,

lim
p�→0

(1− p)n = lim
p�→0

[
(1− p)1/p

]μ
=

1
e

μ
= e−μ . (4.3.2)

Combining these approximations in the binomial distribution we arrive at the Poisson
distribution,

PP(x; μ) = lim
p�→0

PB(x;n, p) =
μx

x!
e−μ , (4.3.3)

where μ = np is the mean value and σ =
√μ is the standard deviation of the probability

distribution. The Poisson distribution is normalized so that ∑∞
x=0 PP(x; μ) = 1. In Fig. 4.4

we show 10 Poisson distributions for means of μ = 1,2, ...,10 within the range of x =
0, ...,20. Note that the Poisson distribution is a discrete distribution at integer values of
x. The Poisson distribution is strongly asymmetric for small means μ , but becomes more
symmetric for larger μ and asymptotically approaches the Gaussian distribution.

The numerical calculation of the Poisson distribution can be simplified by the following
recursive relationship (avoiding the factorials in the denominator),

PP(0; μ) = e−μ ,

PP(x; μ) =
μ
x

PP(x−1; μ) . (4.3.4)
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Fig. 4.4 Ten Poisson probability distributions PP(x; μ) for μ = 1,2, ...,10. Note that the distributions are
only defined at discrete integer values x = 0,1,2, ..., while the smooth curves serve only to indicate the
connections for each curve.
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The Poisson probability distribution is one of the most common statistics applied to
random processes. Regarding SOC phenomena, the waiting time between two subsequent
avalanche events is generally assumed to be a random process, which can be tested by
fitting the distribution of waiting times with a Poisson distribution (Eq. 4.3.3). We will
deal with the statistics of waiting-time distributions in Chapter 5 and with the statistics of
observed time scales in Chapter 7.

4.4 Exponential Distribution

In the limit of rare events (x 	 n) and small probabilities (p 	 1), the discrete Poisson dis-
tribution PP(x; μ) (Eq. 4.3.3) can simply be approximated by an exponential distribution.
For the rarest events, say in the range of 0 ≤ x ≤ 1, the factorial (x! = 0! = 1! = 1) is unity
in the expression for the Poisson distribution (Eq. 4.3.3), and the exponential exp−μ ≈ 1 is
also near unity when the mean value μ = np 	 1 is much smaller than unity. In this case
the Poisson probability is only proportional to the function μx, which can be written as,

Pe(x; μ) ≈ μx = (expln μ)x = exp−x ln(1/μ) , (4.4.1)

which is a pure exponential function, i.e., Pe(x) ≈ exp−ax, with a = ln(1/μ). We show the
comparison of a (discrete) Poisson distribution (Eq. 4.3.3) with a (continuous) exponential
distribution (Eq. 4.4.1) in Fig. 4.5 for x = 0, ...,5 and for means μ = np = 10−1,10−2,10−3.
The approximation is almost exact in the range of x = [0,1], but overestimates the Poisson
distribution progressively for larger numbers of x by factors ≈ x!, i.e., by a factor 2! = 2
for x = 2. Thus, the exponential approximation to the Poisson statistics should only be
applied for x <∼ 1.

The exponential distribution is a continuous probability function, while the Poisson
distribution is discretized by integer values of x. Since the approximation should only be
used for μ 	 x, the coefficient a = ln(1/μ) in the exponent (Eq. 4.4.1) is according to the
Taylor expansion of the natural logarithm,

ln(1/μ) ≈
(

1
μ
−1

)
+ ... ≈ 1

μ
for μ 	 1 , (4.4.2)

and we can express the exponential distribution simply by,

Pe(x; μ) ≈ 1
μ

exp
(
− x

μ

)
, (4.4.3)

where the factor 1/μ results from the normalization to
∫ ∞

0 Pe(x; μ) dx = 1.
For instance, let us consider a random process for the growth phase of a nonlinear

instability as we introduced it in our first analytical SOC model (Section 3.1). Since the
coherent growth phase of a nonlinear instability is subject to many random factors, the rise
times were assumed to be produced by a random process and were characterized by an
exponential distribution. The nonlinear instability grows coherently during this rise time
until it becomes quenched by some saturation mechanism, after a duration that we call



120 4. Statistics of Random Processes

0 1 2 3 4 5
Number of counts x

10-6

10-5

10-4

10-3

10-2

10-1

100

N
um

be
r 

of
 o

cc
ur

re
nc

es
  P

(x
; 

) =0.100

=0.010

=0.001

exponential

Poisson

Fig. 4.5 Comparison of a discrete Poisson distribution (thick curves with diamonds; Eq. 4.3.3) with a
(continuous) exponential approximation (solid line; Eq. 4.4.1) for means of μ = 10−1,10−2,10−3 in the
range of x = 0, ...,5. Note that the deviations are only significant for x >∼ 1.

the saturation time tS. If we sample many such events of the same nonlinear process with
different random conditions, the distribution N(tS) of saturation times tS is expected to
follow approximately an exponential distribution function, with an e-folding time constant
tSe,

N(tS) dtS =
N0

tSe
exp

(
− tS

tSe

)
dtS , (4.4.4)

where N0 is the total number of events. This distribution is normalized so that the integral
over the entire distribution in the range [0,∞] yields the total number of events N0,

∫ ∞

0
N(tS) dtS = N0 . (4.4.5)

If we normalize to unity, i.e., N0 = 1, the event distribution N(tS) turns into a differential
probability distribution dP(tS) (Fig. 4.6, solid curve),

dP(tS) dtS =
1

tSe
exp

(
− tS

tSe

)
dtS . (4.4.6)

The integral in the range [0, ts] yields the total probability P(tS) that an event occurs at time
t = tS (Fig. 4.6, dashed curve),

P(tS) =
∫ tS

0
dP(t ′s)dt ′S = (1− e−tS/tSe) , (4.4.7)
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Fig. 4.6 The differential probability function dP(tS) (solid line) and the total probability function P(tS)
(dashed line) that an event occurs after time tS is shown for a random process.

which has a minimum probability of P(t = 0) = 0 at t = 0 and a maximum probability of
P(t = ∞) = 1 at the asymptotic limit tS �→ ∞. The probability after an e-folding time scale
is P(tS = tSe) = (1− e−1) ≈ 0.63.

The mean saturation time 〈tS〉 in an exponential distribution is actually exactly the e-
folding saturation time tSe,

〈tS〉 =
∫ ∞

0
tS dP(tS) dtS = tSe , (4.4.8)

as it can be shown by using the integral
∫

xeax dx = (eax/a2)(ax−1) with x = tS/tSe. So,
the e-folding time scale tSe is also a good characterization of the typical saturation time for
random processes.

A mathematically generalized family of probability distribution functions was proposed
by Karl Pearson (1895), which consists of a classification of distributions according to their
first four moments. This unified formulation of distribution functions contains 12 different
types, containing the Gaussian, exponential, β -, or γ-distribution function as special cases.
Pearson’s system was originally devised for modeling the observed skewed distributions in
biometrics, but recent applications to model astrophysical SOC phenomena such as solar
nanoflares have also been tackled (Podladchikova 2002).

Astrophysical observations of time scale distributions will be discussed in Chapter 7,
where we find numerous examples of solar flare related time scale distributions observed
in gamma rays, hard X-rays, or radio wavelengths to be consistent with the exponential
distribution of a random process.
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4.5 Count Rate Statistics

The statistics of events is usually defined by unique time points, say by n event times ti, i =
1, ...,n. For waiting-time distributions, the event times ti have to be sorted in time and we
can then sample the time intervals Δti = (ti+1−ti), for i = 1, ...,n−1. Mathematically, such
discrete events localized at unique time points are called point processes. A point process
is a random element whose values are “point patterns” on a mathematical set. A physical
example is the series of arrival times of photons (or particles) from an astrophysical source
that are so rare that each single photon (or particle) can be counted individually.

Random events occurring at low rates can be counted individually, which yields a dis-
crete time series ti, i = 1, ...,n. If a random process produces a high rate of events, or if the
temporal resolution of a detector is insufficient to separate individual events, we may be
able to count the number of events in time intervals of length Δt and can produce a time
series f (ti) that contains the counts fi in each time bin [ti, ti + Δt]. For instance, for most
astrophysical sources we detect a count rate, which quantifies the number of counts per
time interval Δt, so we observe a time series fi = f (ti) that can be represented as a binned
time profile of a continuous function f (t).

Transitioning from a discrete point process of event times to a continuous time se-
ries changes also our analysis technique of the temporal behavior. We can analyze discrete
point processes by means of waiting-time statistics (Chapter 5), while (equidistant) contin-
uous time series can conveniently be studied by means of auto-correlation, Fourier trans-
forms, power spectra, or wavelet analysis. The fundamental aspect of random or Poisson
processes, however, is manifested in both point processes and continuous time series in a
very similar way.

Let us demonstrate the random behavior by constructing time series of random events
that are sampled with low and high rates. In Fig. 4.7 we show time series of random events
with mean rates from 〈C(t)〉 = 10−1 to 103 per time interval Δt. Stationary random pro-
cesses with very low probabilities exhibit a Poisson distribution of count rates (Eq. 4.4.3),
which can be approximated with an exponential function (Eq. 4.3.3), while random pro-
cesses with high probabilities can be characterized by a Gaussian distribution (Eq. 4.2.1)
of count rates. The Gaussian distributions with a mean of C have a standard deviation of
σC =

√
C. However, despite the different analytical distribution functions, all examples of

low and high count rate time profiles shown in Fig. 4.7 are consistent with the statistics of
random noise. The diagnostics of random processes play a fundamental role in the statisti-
cal discrimination of SOC phenomena, which exhibit powerlaw-like distributions (e.g., of
count rates C), rather than binomial, Gaussian, Poisson, or exponential distributions.

4.6 White Noise

We have generated time profiles of random processes in Fig. 4.7. Time series f (t) are
often analyzed with the Fourier transform P(ν), which decomposes a time profile into a
sum of harmonic functions, i.e., exp(−i2πνt/n) = cos(2πνt/n)+ isin(2πνt/n), where
the amplitude for each frequency ν is specified with a power spectrum P(ν) in frequency
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Fig. 4.7 Time series of random processes with average count rates of C = 10−1 (top) to 103 counts per
time interval (bottom). The binned time series is shown on the left side, and the histogram of counts per
time bin on the right side. Note that the distributions of count rates with low rates can be approximated
with an exponential function [for C = 0.1 (top) and C = 1 (second row)], while the distributions with high
count rates can be approximated with a Gaussian function, which have a mean and standard deviation of
C = 10, σC ≈ 3 (third row), C = 102, σC = 10 (fourth row), and C = 103, σC ≈ 30 (bottom row).
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space, i.e. (in complex form),

P(ν) =
1
n

n−1

∑
t=0

f (t) exp
(
− i2πνt

n

)
. (4.6.1)

The power spectral density is usually expressed with a real number, by calculating the
absolute value of the complex power spectrum, i.e., |P(ν)|, which discards the phase infor-
mation that is contained in the complex number of the power spectrum P(ν). The Fourier
transform is particularly useful to extract periodic pulses with a particular period in a
time series, even in the presence of heavy noise. If there are multiple periodic fluctuations
present in a time series, the power spectrum will reveal each one with a peak in the power
spectrum at the particular period or frequency.

However, what does the power spectrum of a random process look like? In Fig. 4.8
we show a time series f (t) of a random process. Calculating the power spectral density
P(ν) with the Fast Fourier Transform, we find a completely flat power spectrum from the
minimum frequency νmin = 1/(nΔt) to the maximum frequency νmax = 1/(2Δt) (i.e., the
half sampling frequency which is also called Nyquist frequency or cutoff frequency). Since
this constant power at all frequencies is similar to white light, consisting of all colors in the
visible wavelength range, such a flat power spectrum is also called white noise spectrum.

Another characterization of time profiles is the auto-correlation function, which is use-
ful to evaluate the distribution of time scales of pulses that occur in a time series. The

0 200 400 600 800 1000
Time t[s]

0

5

10

15

20

S
ig

na
l C

(t
)

0.0 0.2 0.4 0.6 0.8 1.0
Frequency f[Hz]

0.0
0.2

0.4

0.6

0.8

1.0

P
ow

er
 P

(f
)

White noise spectrum

-40 -20 0 20 40
Time delay t[s]

-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

A
ut

oc
or

re
la

tio
n 

co
ef

fic
ie

nt
  C

C
(

t)

Fig. 4.8 Random time series with n = 1 000 time points and time interval dt = 1.0 s, with a mean count
rate of C = 10 cts s−1 and a standard deviation of σC ≈ 3 cts s−1 (top frame). The Fourier power spectrum
is flat, called a white noise spectrum (bottom left). The auto-correlation function is zero everywhere except
for a delta-function peak CC(Δt = 0) = 1 at Δt = 0 (bottom right).



4.6 White Noise 125

auto-correlation function fAC(Δt) is simply defined by the normalized product of a time
series with the time-shifted or delayed time series as a function of the delay Δt, i.e.,

fAC(Δt) = ∑[ f (t +Δt)− f0)][ f (t)− f0]
∑[ f (t)− f0]2

, (4.6.2)

where f0 = 〈 f (t)〉 is the average value of the time series. If pulses with duration τp = npΔt
exist in a time series, the auto-correlation coefficient will be high for delays Δt ≤ τp, while
it will be low for larger delays, since the product f (t + Δt) f (t) will largely cancel out
for random correlations. Therefore, if f (t) is a random time series, the auto-correlation
function fAC(Δt) has only a delta-function peak at zero delay, fAC(Δt = 0) = 1, while it is
near zero everywhere else (Fig. 4.8, bottom right frame).

We show a few examples of observed time series f (t) and their auto-correlation
function fAC(Δt) in Fig. 4.9, observed with a solar radio spectrometer (Aschwanden et

Fig. 4.9 Six time series (left-hand panels) of solar radio burst emission recorded at decimetric radio fre-
quencies in the range of 250–830 MHz with the radio spectrometer of ETH Zurich, Switzerland. The
auto-correlation functions of these time profiles is shown in the right-hand panels, with significant time
periods P identified from FFT power spectra indicated. Note that the upper five examples show significant
periodicities, while the sixt example (bottom panels) reveals truly stochastic pulses with a δ -function in
the auto-correlation function at a time lag of Δt = 0 (Aschwanden et al. 1994).
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al. 1994). The six examples shown in Fig. 4.9 contain different types of decimetric radio
bursts, all occurring during solar flares. The first case shows a very periodic time profile
in the frequency range of 320–360 MHz, called a metric oscillation burst, which produces
also a smoothed oscillatory pattern with a period of P = 1.15 s in the auto-correlation
function. The next three cases are metric type III radio bursts, which seem to have quite
erratically fluctuating time profiles, but the auto-correlation function reveals some period-
icity with periods in the range of P ≈ 1–5 s. The fifth case appears to be more periodic and
is called decimetric pulsation event, which reveals a periodicity of P = 1.8 s in the auto-
correlation function. The last type consists of thousands of unresolved decimetric millisec-
ond spikes, which are randomly distributed in time and frequency, and indeed produce an
auto-correlation function that has only a δ -function peak at Δt = 0, perfectly consistent
with a white noise spectrum as shown in Fig. 4.8. These examples demonstrate that the
time scales and periodicity or randomness of time structures can be diagnosed with the
auto-correlation function fAC(Δt), even when it is not evident from the time series f (t).
The discrimination of random pulses (with finite duration) from the (white) noise floor is
an important capability in the statistics of SOC phenomena.

4.7 1/f Power Spectra Nomenclature

Besides the white noise spectrum there exists a more general class of noise spectra that
all have in common that the power spectral density P(ν) is proportional to a negative
powerlaw of the frequency ν ,

P(ν) ∝ ν−p , (4.7.1)

with the power index p most frequently found in the range of 0 < p < 2. Since most noise
spectra found in nature and technology have a value near p≈ 1, this class of noise spectrum
is also called 1/ f noise, where f means the frequency, and 1/ f corresponds to ν−1 in our
notation. 1/ f -noise spectra occur most commonly in nature and technology, because they
contain a balance of short and long fluctuations from different processes, such as occur in
semiconductors, diodes, transistors, or films, but also in the Earth rotation, highway traffic,
or nerve membranes (e.g., see Schuster 1988, p.92; Press 1978).

The nomenclature of noise spectra borrows from the analogy to color spectra. White
light is defined as the sum of all visible wavelengths from ultraviolet (λ ≈ 2,000 Å) to
infrared (λ ≈ 8,000 Å), and thus a flat noise spectrum is called white noise spectrum
(Section 4.6). A color spectrum that has more red color has an overabundance of long
wavelengths λ , or low frequencies (ν = c/λ ), and therefore falls off with higher frequen-
cies, e.g., as a powerlaw spectrum P(ν) ∝ ν−p with a positive power index p. A noise
spectrum that falls off with the second power, P(ν) ∝ ν−2, has therefore been named red
noise, more commonly known as Brownian noise, since it occurs in Brownian molecular
motion. Noise spectra that are intermediate between the white (p = 0) and the red noise
spectrum (p = 2), say with p ≈ 1, have therefore been named as pink noise spectrum, to
indicate the mixture of white and red colors. The Brownian noise is also called briefly
Brown noise, but it does not refer to the color, but rather to Robert Brown, the discoverer
of the Brownian motion. Since this type of 1/ f noise is very common in electric signals, it
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is also called flicker noise. The powerlaw range goes even steeper in some phenomena up
to p ≈ 3, in which case it is called black noise spectrum, in analogy to extending the color
spectrum to the invisible beyond red. Black-noise phenomena govern natural and unnatu-
ral catastrophes like floods, droughts, bear markets, or power outages (e.g., see Schroeder
1991, Section 5 therein). In Table 4.1 we summarize this nomenclature of noise spectra.

Table 4.1 Nomenclature of noise spectra.

Power spectrum Power index Spectrum nomenclature

P(ν) ∝ ν0 p = 0 white noise
P(ν) ∝ ν−1 p = 1 pink noise, flicker noise, 1/ f noise
P(ν) ∝ ν−2 p = 2 red noise, Brown(ian) noise
P(ν) ∝ ν−3 p = 3 black noise

Let us visualize an example of each of these spectra in Fig. 4.10: a white noise spectrum
(p = 0), a pink noise spectrum (p = 1), a red noise spectrum (p = 2), and a black noise
spectrum (p = 3). We multiply a white noise spectrum simply by the appropriate power-
law function P(ν) ∝ ν−p and construct the corresponding time series f (t) by the inverse
Fourier transform (with the forward Fourier transform defined in Eq. 4.6.1),

f (t) =
1
n

n−1

∑
t=0

P(ν)exp
(

+
i2πνt

n

)
. (4.7.2)

The white noise spectrum shown in the top panel of Fig. 4.10 is identical to that shown
in Fig. 4.8, and is multiplied with a powerlaw function ν−p with p = 1,2,3 in the other
examples shown in Fig. 4.10. The resulting time profiles show a mixture of short and
longer pulses for the case of the pink noise spectrum (second row in Fig. 4.10), but are
completely dominated by long-duration pulses for the cases of the red noise spectrum
(third row in Fig. 4.10) and the black noise spectrum (bottom row in Fig. 4.10), since the
high-frequency noise is strongly suppressed for p >∼ 2. A natural way to produce 1/ f noise
spectra is to apply a high-pass filter to a white-noise signal.

In astrophysical time series, random processes with 1/ f noise have been studied ex-
tensively, in order to discriminate between photon noise and significant signals from solar
flares, flare stars, cataclysmic variables, neutron stars, pulsars, and black hole candidates.
Data analysis techniques range from filtering out noise in time series analyzed with the Fast
Fourier Transform (Brault and White 1971; Scargle 1989), modeling random processes in
the time domain (Scargle 1981), spectral analysis of unevenly spaced data (Scargle 1982),
auto-correlation and cross-correlation methods (Scargle 1989), modeling chaotic and ran-
dom processes with linear filters (Scargle 1990), to Bayesian blocks in photon counting
data (Scargle 1998). A correlation dimension and wavelet analysis of time series of solar
radio bursts observed in microwaves revealed that the intensity profiles I(t) could be de-
composed into a sum of white noise (or thermal) component IT (t) and a flicker-type (or
nonthermal) random component for pulses INT (t),

I(t) = IT (t)+ INT (t) , (4.7.3)
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Fig. 4.10 Noise power spectra (left panels) and corresponding time series (right panels) for power spectral
indices p = 0 (top row: white noise spectrum), p = 1 (second row: pink noise spectrum), p = 2 (third row:
red noise spectrum), and p = 3 (bottom row: black noise spectrum). The white noise spectrum is identical
to Fig. 4.10 and is multiplied with ν−p in the other cases. The time series are reconstructed with the inverse
Fast Fourier Transform.

where the flicker-type process has a power spectrum P(ν) ∝ ν−p with p ≈ 0.8, ...,1.8
(Ryabov et al. 1997). Soft X-ray observations of stellar black-hole candidates were
found to exhibit 1/ f power spectra, such as the stellar black-hole candidate Cygnus
X-1 in the hard state (Tanaka 1989; Makishima 1988), the black-hole candidate GX
339-4 in its very high state (Miyamoto et al. 1991), the low-luminosity type I Seyfert
galaxy NGC4051 (Lawrence et al. 1987), the active galactic nuclei (AGN) Seyfert galaxy
NGC5506 (McHardy and Czerny 1987), or the X-ray binary pulsar GX 301-1 (Tashiro et
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al. 1991). Soft X-ray emission from black-hole candidates or accretion disk sources al-
ways exhibit two distinctly different spectral states (Tanaka 1989; Mineshige 1994a): in
the soft (or high) state the emergent spectra are approximately thermal (Planck spectrum),
whereas in the hard (or low) state, the spectra are powerlaw-like (1/ f spectra type). Thus,
the power spectra P(ν) of astrophysical light curves can often be decomposed into these
two spectral types of thermal (Planck) and nonthermal (powerlaw) emission,

P(ν) = PT

(
2hν3

c2

)
1

exp(hν/kBT )−1
+PNT

(
ν
ν0

)−p

. (4.7.4)

corresponding to the thermal or white-noise component IT (t) and the flicker-type (or non-
thermal) random component manifested in superimposed pulses INT (t) that are detectable
in the intensity time profiles I(t) (Eq. 4.7.3). These flicker-type pulses INT (t) will be iden-
tified with individual SOC avalanches in the following.

4.8 Shot Noise or Flicker Noise

Historically, the term shot noise (or flicker noise) was used to characterize the discreteness
of particle transport, such as the DC current of charged particles (electrons and/or holes) in
a conductor, first discovered by Walter Schottky in 1918. In essence, electrons in a conduc-
tor do not flow uniformly like water in a laminar state, but rather move intermittently with
an average rate (driven by the applied voltage) and exhibit random fluctuations around this
average rate, which is called “shot noise”. A typical system is a pn junction diode, where
each carrier randomly passes across the depletion region of the junction. Since the elec-
trons pass randomly and independently, their number can be described by Poisson statistics
(Section 4.3).

4.8.1 Derivation of Schottky’s Theorem

The shot noise concept is a physical model that produces 1/ f type power spectra and
powerlaw distributions of time scales, and thus is highly relevant for SOC models. We
start with the original derivation of the shot noise statistics shown by Van der Ziel (1950).
The current I is defined by the number n of electrons passing through a point during a time
interval T ,

I =
ne
T

, (4.8.1)

and the time-averaged current 〈I〉 relates to the time-averaged number 〈n〉 as

〈I〉 =
〈n〉e

T
. (4.8.2)

If we assume that electron transport is a random Poisson process, we have a variance of
σ2 = 〈n〉 (or a standard deviation of σ =

√〈n〉),
σ 2 = 〈n−〈n〉〉2 = 〈n2〉−〈n〉2 = 〈n〉 , (4.8.3)
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which yields a relationship between the mean quadratic fluctuations 〈n2〉 and the mean
number 〈n〉. To describe the shot noise we are interested in the mean current fluctuations,

〈ΔI2〉 = 〈I2〉−〈I〉2 =
〈(ne

T

)2
〉
−

( 〈n〉e
T

)2

. (4.8.4)

Inserting the quadratic fluctuations 〈n2〉 (Eq. 4.8.3) and the mean current (Eq. 4.8.2) into
Eq. (4.8.4) we find,

〈ΔI2〉 =
〈n2〉e2

T 2 − 〈n〉2e2

T 2 =
〈n〉e2

T 2 = 〈I〉 e
T

, (4.8.5)

which means that the root-mean-square (rms) fluctuations irms of the current (i.e., shot
noise) is proportional to the square root of the mean current 〈I〉,

irms =
√
〈ΔI2〉 =

√
e〈I〉
T

. (4.8.6)

In order to derive the power spectrum S(ν) of shot noise, we have to relate the time scale
T to the frequency ν . We can define the current in an RCL-circuit as a superposition of
current spikes (parameterized with δ -functions) resulting from individual electrons that
arrive at random times t j,

I(t) = ∑
j

qδ (t − t j) . (4.8.7)

This time profile I(t) contains random fluctuations of very short pulses (δ -functions). The
duration T of a current pulse can be defined by the auto-correlation function RI(t),

RI(t ′) = lim
T �→∞

1
T

∫ +T/2

−T/2
I(t)I(t + t ′) dt . (4.8.8)

The Wiener–Khinchin theorem (also called Wiener–Khintchine, Wiener–Khinchin–Ein-
stein, or Khinchin–Kolmogorov theorem) states that the power spectral density P(ν) of
a stationary random process is the Fourier transform of the corresponding auto-correlation
function R(t),

PI(ν) = 2
∫ ∞

−∞
RI(t ′)e−i2πνt′ dt ′ , (4.8.9)

where PI(ν) is the one-sided power spectral density (leading to a factor 2 in front of the
integral).

Applying now the auto-correlation function RI(t) (Eq. 4.8.8) to the current pulses with
δ -function shapes (Eq. 4.8.7) we have,

RI(t ′) = lim
T �→∞

q2

T ∑
k

∑
k′

∫ T/2

−T/2
δ (t − tk)δ (t − tk′ + t ′) dt

= lim
T �→∞

q2

T ∑
k

∑
k′

δ (t − tk′ + t ′) . (4.8.10)
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The summation over tk = tk′ contributes δ (t ′) for N values of tk in the range of −T/2 <
tk < T/2, while the contributions of tk �= tk′ will vanish for randomly distributed values,
which yields with N/T = 〈I〉/q,

RI(t ′) = q〈I〉δ (t′) . (4.8.11)

An example of an auto-correlation function of δ -function random pulses is shown in
Fig. 4.8. The Fourier transform of this auto-correlation function RI(t ′) yields then the
power spectrum PI(ν) according to the Wiener-Khinchin theorem (Eq. 4.8.9),

PI(ν) = 2q〈I〉 , (4.8.12)

which is the Schottky theorem, stating that the shot noise spectrum is a constant and ex-
tends uniformly over all frequencies, also called white noise spectrum. Note that this result
applies to very short pulses characterized with δ -functions, as shown in Section 4.6. If we
set q = e and relate the time interval T to the Nyquist sampling frequency, i.e., Δν = 1/2T ,
we see (with Eq. 4.8.6) that the power spectral density corresponds to the rms current fluc-
tuations i2rms per unity bandwidth Δν ,

PI(ν) = 2e〈I〉 = 2i2rmsT =
i2rms

Δν
. (4.8.13)

4.8.2 Shot Noise Spectrum for Rectangular Pulses

Let us now consider current pulses with a significant duration T , for instance a square cur-
rent pulse f (t) with duration T , as shown in Fig. 4.11 (top). The auto-correlation function
R(t) of this rectangular pulse shape f (t) can be computed with Eq. (4.8.8) and yields a
single triangle (Fig. 4.11 bottom left),

RI(t ′) = lim
T �→∞

1
T

∫ +T/2

−T/2
I(t)I(t + t ′) dt = q〈I〉

{
1−|t ′|/T for |t ′| ≤ T
0 for |t′| > T (4.8.14)

and the Fourier transform of a single triangle yields with the Wiener–Khinchin theorem
(Eq. 4.8.8) the power spectrum PI(ν),

PI(ν) = 2q〈I〉
[

sin(πνT )
πνT

]2

, (4.8.15)

where T is the averaged pulse duration. The resulting power spectrum is a white spectrum
at ν = 0, with the value PI(ν = 0) = 2q〈I〉 (Eq. 4.8.13) of Schottky’s theorem, but it falls
off with a Gaussian-like function and has a cutoff at ν = 1/T (Fig. 4.11, right panel).
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Fig. 4.11 Rectangular pulse shape f (t) with duration T (top left), auto-correlation function R(t) = f (t)∗
f (t ′) (bottom left), and corresponding Fourier power spectrum P(ν) (bottom right).

4.8.3 Shot Noise Spectrum for Exponential-Decay Pulses

Assuming that the generated pulses are subject to a linear relaxation process, a time profile
with an exponentially decaying function can be assumed,

f (t) =
1
T

exp
(
− t

T

)
. (4.8.16)

Calculating the correlation function R(t) (Eq. 4.8.8) and the Fourier transform of it
(Eq. 4.8.9), the following power spectrum P(ν) is obtained,

P(ν) = P0
1

1+(2πνT )2 , (4.8.17)

which is essentially constant at ν <∼ 1/T and a powerlaw spectrum P(ν) ∝ ν−2 above the
frequency ν >∼ 1/T .

An example of a power spectrum P(ν) ∝ ν−2 is shown in Fig. 4.10 (third row), called
“red noise”. Pulses with some finite time scale T appear in this time profile, which strongly
dominate the white noise background fluctuations. Such pulses are also said to have a
high signal-to-noise ratio. Note that the meaning of the terms shot noise or flicker noise
applies now to significant pulses with a finite duration, which stand out of the white-noise
background, which consists of random fluctuations with unresolved (δ -functions) time
scales, as originally defined in Schottky’s theorem. In other words, the powerlaw slope of
the power spectrum tells us whether we deal with random fluctuations of unresolved time
scales (i.e., δ - functions in time and white noise spectra with a powerlaw slope of p ≈ 0)
or with random pulses with resolved time scales (i.e., 1/ f or flicker noise with powerlaw
slopes of p >∼ 1).
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4.8.4 Shot Noise Spectrum and Distribution of Pulse Durations

In the previous derivation we assumed a single duration T for a pulse. Anticipating an
application of shot noise pulses to SOC simulations or observations, we have to deal with
a distribution N(T ) of pulse durations T . The derivation of a power spectrum P(ν) from the
frequency duration N(T ) of pulses or avalanches has been mentioned in the original article
of Bak, Tang, and Wiesenfeld (1987), entitled “Self-Organized Criticality: An Explanation
of 1/f Noise”, and has been outlined in Bak et al. (1988), or Mineshige et al. (1994a).
Essentially, the power spectra PT (ν) that are characteristic for a particular pulse duration
T are added up linearly for all time scales T , normalized by their number per unit time
interval, which is given by the occurrence frequency distribution N(T ),

P(ν) = ∑
T

N(T )PT (ν) . (4.8.18)

For the case of avalanches with exponential decay with duration T we have according to
Eq. (4.8.17),

PT (ν) ∝ E
1

1+(2πνT )2 , (4.8.19)

where E represents the total energy of the avalanche. If we observe a powerlaw-like fre-
quency distribution of energies E,

N(E) ∝ E−αE , (4.8.20)

and assume a statistical correlation between the total energy E and total duration T of
an avalanche event, say a powerlaw relation with coefficient 1 + γ (where γ needs to be
determined from numerical simulations, analytical models, or observations),

E(T ) ∝ T 1+γ , (4.8.21)

we can calculate the derivative |dE/dT | = T γ and express the frequency distribution
N(T ) of time scales by substituting E(T ) (Eq. 4.8.21) into the energy distribution N(E)
(Eq. 4.8.20),

N(T ) = N(E[T ])
∣∣∣∣dE
dT

∣∣∣∣≈ T−αE(1+γ)+γ . (4.8.22)

We can insert now the expressions for E(T ) (Eq. 4.8.21) and N(T ) (Eq. 4.8.22) into the
partial power spectrum PT (ν) (Eq. 4.8.19) and the total power spectrum P(ν) (Eq. 4.8.18),

P(ν) ∝ ∑
T

T−αE (1+γ)+γT 1+γ

1+(2πνT )2 . (4.8.23)

Each partial power spectrum for a time scale T has a cutoff above T >∼ 1/ν due to the
quadratic term (2πνT )2 in the denominator. Thus, we can integrate each power spectrum
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from T1 = 0 to T2 = 1/ν and replace the summation in Eq. (4.8.23) by an integral over all
time ranges [T1,T2],

P(ν) ∝ ∑
T

∫ ∞

0

T 1+2γ−αE (1+γ)

1+(2πT ν)2 ≈
∫ 1/ν

0
T 1+2γ−αE(1+γ) dT , (4.8.24)

which can straightforwardly be integrated,

P(ν) ∝
∫ 1/ν

0
T 1+2γ−αE(1+γ) dT =

[
T 2+2γ−αE (1+γ)

∣∣∣1/ν

0
=

(
1
ν

)(2−αE )(1+γ)

. (4.8.25)

which is a powerlaw spectrum,
P(ν) ∝ ν−p . (4.8.26)

where the powerlaw index p of the power spectrum is related to the powerlaw coefficient
αE of the energy frequency distribution by

p = (2−αE)(1+ γ) . (4.8.27)

We illustrate the superposition of individual power spectra PTi(ν) for a series of time
scales Ti = 1/νi of frequencies νi = 101+0.1∗i with i = 1,30 in the frequency range of
ν = 1–1000 in Fig. 4.12. Each individual power spectrum has a flat part at ν < νi and falls
off with the second power according to Eq. (4.8.19) above this cutoff frequency ν ≥ νi.
The summation of these power spectra with a relative weighting of N(T ) ∝ N(E) ∝ EαE

with αE = 1.1 and γ = 0 yields a total power spectrum P(ν) with an approximate powerlaw
P(ν) ∝ ν0.9, in agreement wtih the derived relationship p = (2−αE)(1+γ) = (2−1.1) =
0.9 (Eq. 4.8.27).

In the numerical simulations of Bak et al. (1988) a power spectrum of P(ν) ∝ ν−1.57

was found in a 2-D lattice, and of P(ν) ∝ ν−1.08 in a 3-D lattice, respectively, which is
close to the value of P(ν) ∝ ν−1 expected for 1/ f flicker noise.

In astrophysical observations, the term shot noise has been used to characterize the
statistics of random bursts (shots) that appear superimposed on the background radiation.
In the nomenclature of our previous section, these “shots” correspond to the nonthermal
component of random pulses appearing superimposed on the thermal background compo-
nent, such as an elementary flare spikes or small flares in soft X-rays (e.g., Frontera and
Fuligni 1979; Ueno et al. 1997), or pulses in X-ray time profiles from accretion or black-
hole candidates (in high state) (e.g., Sutherland et al. 1978; Negoro et al. 1995; Vaughan
and Nowak 1997; Takeuchi and Mineshige 1997; Negoro et al. 2001; Uttley and McHardy
2001; Li and Muraki 2002; Focke et al. 2005).
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Fig. 4.12 Superposition of power spectra PT (ν) of time profiles containing exponentially-decaying pulses
with time scales T (thin curves). The sum of the individual power spectra is indicated with a thick curve
and fitted with a powerlaw, which has a slope of P(ν) ∝ ν−0.9. The distribution of individual time scales
is Ti = 1/νi of frequencies νi = 101+0.1∗i with i = 1,30 in the frequency range of ν = 1− 1,000. The
powerlaw distribution of energies is N(E) ∝ E1.1, which constrains the relative weighting of the time
scales T (E) in the summation.

4.9 Log-Normal Distribution

In the shot noise model (Section 4.8), a time profile is produced by a sum of independently
occurring shots, i.e., an astrophysical light curve is composed of a superposition of many
independent flares, and thus both the time profiles and the power spectra are additive re-
garding the time scales of individual events (shots). This leads to binomial, Poissonian,
or Gaussian distribution of time scales. However, sometimes processes are found in na-
ture that have the logarithm ln(X) of the random variable X normally distributed, which
is referred to as log-normal distribution or Galton distribution. The log-normal distribu-
tion can be thought as the analog of the normal or Gaussian distribution for multiplicative
processes, rather than for additive processes. For instance, SOC avalanches are subject to
exponential growth (Section 3.1 and 3.3), so if the time scales of saturation τ are nor-
mally distributed, we expect that the resulting energies WS = exp(τ/tG) (Eq. 3.1.2) are
log-normally distributed. The exponentiation represents a particular multiplication factor
of e2 = 2.718 for a growth time tG, but can more generally be described as a product
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function,
X = Π N

i=1xi . (4.9.1)

Thus, the definition of a log-normal distribution is essentially the same as the Gaussian dis-
tribution function (Eq. 4.2.1), except with the variable X replaced by its logarithm log(X).
One general univariate form of the log-normal distribution is the 3-parameter definition
(e.g., Uttley et al. 2005),

f (x;τ,μ,σ) =
1

σ
√

2π(x− τ)
exp

(
− [log(x− τ)−μ]2

2σ2

)
, (4.9.2)

where τ is a threshold parameter representing a lower limit on x, while μ and σ are the
means and standard deviation of the log-normal distribution.

Historically, the log-normal distribution was found to apply to phenomena in economy,
population statistics, clouds, sand grains (for a review see, e.g., Crow and Shimizu (1988)).
Since our basic SOC model (Section 3.1) envisions a multiplicative process we expect
that it also applies to most SOC phenomena described in this book. In the astrophysical
context, log-normal statistics has been found to apply to solar wind plasma fluctuations
(Burlaga and Lazarus 2000), gamma-ray bursts and X-ray binary variability data (Negoro
and Mineshige 2002; Quilligan et al. 2002), the extremely variable narrow-line Seyfert 1
Galaxy IRAS 13224-3809 (Gaskell 2004), or Cygnus X-1 (Uttley et al. 2005). We show
an example of such a measurement of Cygnus X-1 (Uttley et al. 2005) in Fig. 4.13.

Fig. 4.13 Flux distribution of Cygnus X-1 in December 1996, expressed as a probability density function
(gray data points), fitted with a log-normal distribution as defined in Eq. 4.9.2 (Uttley et al. 2005). (Uttley
et al. 2005; reprinted with permission of the author)
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4.10 Summary

Self-organized criticality (SOC) is a phenomenon that manifests itself in the statistics of
nonlinear processes. Basic physical parameters that are used in the statistics of nonlin-
ear processes are time scales, spatial scales, and energies. In this chapter we introduced
some basic concepts of the statistics of time scales in random processes that are useful to
model and understand SOC behavior. The most basic mathematical distributions of ran-
dom processes are the binomial (Section 4.1), the Gaussian (Section 4.2), and the Poisson
distribution (Section 4.3). The Poisson distribution in the limit of rare events is often ap-
proximated with an exponential distribution (Section 4.4), which can be used to describe
the distribution of time scales in SOC processes, e.g., event durations, or waiting times be-
tween subsequent events. The variability of an astrophysical source is often studied from
the count rate statistics of binned time series (Section 4.5) or from Fourier power spectral
density distributions. Power spectra are classified into white-noise (Section 4.6), 1/ f noise,
flicker noise, pink noise, red (Brownian) noise, and black noise spectra, depending on their
mean spectral powerlaw slope (Section 4.7). The variability of random pulses is most com-
monly described with the shot noise or flicker noise model (Section 4.8), which produces
powerlaw-type spectra. We derived the power spectra of random current fluctuations that
leads to a white-noise spectrum (Schottky theorem), as well as power spectra of rectangular
and exponential-decay pulses, and derived their relation to time scale distributions as they
are measured for SOC avalanches (Section 4.8.4). While incoherent random processes are
additive and produce Gaussian or normal distributions, random processes with coherent
growth are multiplicative and produce log-normal distributions (Section 4.9). This chap-
ter is an introduction into the statistics of random processes, covering the most relevant
tools that are used to diagnose SOC phenomena in time series, power spectra, time scale
distributions, and waiting-time distributions, which follow in Chapters 5 and 7.

4.11 Problems

Problem 4.1: Show the relationship between the “Pascal triangle” of binomial coefficients
(Eqs. 4.1.5 and 4.1.6) and the combinatorial derivation of the binomial coefficients
(Eq. 4.1.3). Calculate the binomial coefficients with both methods for n = 1,2, ...,10.

Problem 4.2: Generate time profiles with mean count rates of C = 10−1, 1, 10, 102, 103

counts per time interval using a random number generator, similar to those shown in
Fig. 4.7 (left). Calculate histograms of the count rates (similar to Fig. 4.7 right) and
fit them with Poisson distributions (Eq. 4.3.3). In what cases do you notice deviations
from the exponential and Gaussian approximations (as fitted in Fig. 4.7 right) ?

Problem 4.3: Produce a random time series using a random number generator (as shown
in Fig. 4.10 top right), verify that it has a white-noise spectrum using a FFT transform
(Fig. 4.10 top left), and then multiply the white-noise spectrum with ν−1,ν−2,ν−3,
(Fig. 4.10 left) to produce the corresponding time series (Fig. 4.10 right) and apply the
auto-correlation function (Eq. 4.6.2) to determine the dominant pulse time scale T in
each case.
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Problem 4.4: Calculate the Fourier transform P(ν) of the triangular auto-correlation func-
tion (Eq. 4.8.14) and verify the power spectrum given in Eq. (4.8.15).

Problem 4.5: Calculate the auto-correlation function of the pulse shape of an exponen-
tially-decaying time profile (Eq. 4.8.16), calculate the Fourier transform P(ν) and ver-
ify the power spectrum given in Eq. 4.8.17).

Problem 4.6: Verify the derivation of the shot-noise power spectrum for exponentially-
decaying pulses from Eq. (4.8.18) through Eq. (4.8.27).

Problem 4.7: Determine the powerlaw coefficient γ in the correlation E ∝ T 1+γ (Eq. 4.8.21)
from the numerical simulations given in Bak et al. (1988) and compare with the discus-
sion of this result in Mineshige et al. (1994a).
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Somewhere, something incredible is waiting to be known.

Carl Sagan

The universe is full of magical things, patiently waiting for our wits to grow sharper.

Eden Phillpotts

Why are waiting times interesting? While waiting times in our everyday life are usually
associated with boredom, the statistics of waiting times contains scientifically interesting
information about (1) the mean rates of event occurrence and (2) the randomness and un-
correlatedness of events, in contrast to events that are causally related in a system with lo-
cal correlations or long-range interactions. Especially in astrophysical observations, event
statistics of stellar flares or gamma-ray bursts from black-hole candidates are gathered
without any spatial information, and thus we cannot decide whether individual events
originate from the same source, or from spatially independent sources, which can only
be discriminated by means of waiting-time statistics. Similar issues arise for solar flares
and magnetospheric substorms, where spatial localization has often limited accuracy and
mutual interactions are hidden by the invisible magnetic field. The classical SOC model of
sandpile avalanches predicts no correlation between the input (of dripping sand grains) and
the output (of sand avalanches) in the state of self-organized criticality, which implies that
the statistics of waiting times (between subsequent avalanches) should be strictly random
and consistent with Poisson statistics (e.g., for numerical simulations of cellular automa-
tons see, e.g., waiting-time distribution in Fig. 6 of Charbonneau et al. 2001). There are
physical processes that produce similar powerlaw distributions as SOC processes do, such
as intermittent turbulence, but the two processes can be discriminated from their differ-
ent waiting-time distributions, because SOC processes are uncorrelated, while turbulence
entails spatial correlations. Waiting times are also called elapsed times, inter-occurrence
times, or laminar times, in analogy to hydrodynamic flows in a laminar or turbulent state.
Earthquakes were found to have a different waiting-time statistics than those of after-
shocks, because earthquakes from different regions and continents are uncorrelated, while



140 5. Waiting-Time Distributions

aftershocks occur in shorter time intervals due to some local correlation. Earthquake in-
surance agents might event make money by using the knowledge of waiting-time statistics
wisely. Waiting times in the stock market were found to exhibit powerlaws (e.g., Bartolozzi
et al. 2005), in contrast to the exponential Poisson process found in sandpile SOC systems
with a stationary input rate, so the stock market may be a SOC system with a nonstation-
ary driver. In this chapter we deal with the systematic data analysis of waiting times in
astrophysical time series.

5.1 Waiting Times

A Poisson process is a point process, i.e., a sequence of events at points on an axis, taken
here to be the time axis, which occur randomly and independently of one another (e.g.,
Cox and Isham 1980). The randomness can be tested by examining whether an observed
sample of time scales or time intervals is consistent with a Poisson process, which has an
exponential distribution for stationary processes. The sample may consist of time scales or
time intervals observed in statistically independent events, sampled at different locations
and/or different times. A particular case is the sampling of time intervals between subse-
quent events in a time series, which is called the waiting time Δ t. In this case we talk about
a waiting-time distribution P(Δ t), which is expected to exhibit an exponential function for
a stationary random process,

P(Δ t) = λ e−λΔ t , (5.1.1)

where λ represents the mean event occurrence rate. This probability distribution is for-
mally identical to an exponential distribution of time scales (Eq. 4.4.4), if the time scale is
replaced by the waiting time (tS �→ Δ t) and the mean (or e-folding) time scale is expressed
with the mean occurrence rate 1/tSe �→ λ . Such an event occurrence rate is a Poisson pro-
cess if subsequent events are statistically independent and not affected by some physical
coupling. Especially if subsequent events occur at different locations without communica-
tion in between, they are expected to be statistically independent.

For instance, subsequent earthquake events on different continents are expected to oc-
cur in statistically independent time intervals, while time intervals between aftershock
events in the same region may be clustered and not independent of each other. For another
example, solar flares from different active regions on the solar surface are believed to be
statistically independent, while subsequent flares that are triggered by the same magnetic
connection event are not statistically independent and are called sympathetic flares.

It is important to understand that the duration of an event is generally different from
the waiting time between two subsequent events, and thus the statistical distribution of
event durations and waiting time intervals are not identical. However, both time scales
may follow an exponential distribution if they are controlled by random processes, but
they may be uncorrelated and have different time ranges, the range of event durations
generally being shorter than the range of waiting-time intervals (since an event duration
cannot be longer than the time interval to the next event without overlapping). The concept
of event durations τ and waiting-time intervals Δ t is visualized in Fig. 5.1, both assumed
to be subject of random processes. Of course, if event durations are not much smaller
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Time axis

t1 t2 t3

Waiting time ti

Event
duration i

t4 t5

Fig. 5.1 The definition of time durations τi of events and waiting times Δ ti in a time series of events ti. The
statistics of event durations is generally independent of the statistics of waiting times, unless subsequent
events are triggered by a process with some physical coupling.

than the typical time interval between subsequent events, they could overlap with the next
event, which constitutes a tricky measurement problem.

The distribution of waiting times measured in a global system loses the timing informa-
tion from individual local regions and can be entirely different from the waiting-time dis-
tributions of individual local regions. This is illustrated in the example shown in Fig. 5.2,
where we combine the times of three periodic processes (with periods of 5, 6, and 7 time
units) and sample the waiting times of the combined time series, which shows a continu-
ous distribution of intervals Δ t = 0,1, ...,5. The waiting-time distribution of the combined
time series is close to a random process, while the underlying individual time series are
strictly periodic and not random at all. So, we can never conclude from the waiting times
of a global system whether the waiting times in a local region is a random process or not.
However, the opposite is true and can be mathematically proven, i.e., that the combination
of time series with random time intervals produces a combined time series that has also
random time intervals. This property is also called the superposition theorem of Palm and
Khinchin (e.g., Cox and Isham 1980; Craig and Wheatland 2002) and is analogous to the

Time t

T(P=5)

T(P=6)

T(P=7)

T(All)

N(dt)

N(dt)

N(dt)

N(dt)

Time interval dt

Fig. 5.2 Three time series with pulses at regular intervals with periods of P = 5,6,7 and the superposition
of these three time series. The statistics of time intervals shows single periods for each of the three indi-
vidual time series (histograms on right-hand side), but a continuous distribution of almost random time
intervals for the combined time series.
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central limit theorem (Rice 1995). Another example that waiting times in local regions
can be completely different from those of the global system was confirmed in earthquake
statistics, where aftershocks (occurring in the same local region) exhibit an excess of short
waiting times (Omori’s law; Omori 1895), compared with the overall statistics of (spa-
tially) independent earthquakes.

5.2 Nonstationary Waiting-Time Statistics

Waiting-time distributions resulting from a random process exhibit an exponential distri-
bution only when the average event rate is time-independent, which is called a stationary
Poisson process. If the average rate varies with time, the waiting-time distribution reflects
a superposition of multiple exponential distributions with different e-folding time scales,
and may even resemble powerlaw-like distributions. A classical example is the solar flare
rate, which varies by orders of magnitude during an 11-year solar cycle, and thus is a non-
stationary process. The statistics of such inhomogeneous or nonstationary Poisson pro-
cesses can be characterized with Bayesian statistics (e.g., Jaynes 2003; Sivia and Skilling
2006), where a time-dependent Poisson process is decomposed into piecewise constant
Poisson processes. In the following derivation we follow the framework and notation used
in Wheatland et al. (1998) and Wheatland and Litvinenko (2002).

In a nonstationary Poisson process, the time-varying occurrence rate can be defined
with a time-dependent function λ (t) and the probability function of waiting times becomes
itself a function of time (e.g., Cox and Isham 1980; Wheatland et al. 1998),

P(t,Δ t) = λ (t +Δ t)exp
[
−

∫ t+Δ t

t
λ (t ′) dt ′

]
. (5.2.1)

An approximation of this general expression is a subdivision into discrete time intervals
where the occurrence rate is constant within the fluctuations expected from Poisson statis-
tics, so it consists of piecewise stationary processes with occurrence rates λ1,λ2, ...,λn,

P(Δ t) =

⎧⎪⎪⎨
⎪⎪⎩

λ1e−λ1Δ t for t1 ≤ t ≤ t2
λ2e−λ2Δ t for t2 ≤ t ≤ t3
............... .......

λne−λnΔ t for tn ≤ t ≤ tn+1

(5.2.2)

where the occurrence rate λi is stationary during a time interval [ti, ti+1], but has different
values in subsequent time intervals. The time intervals [ti, ti+1] where the occurrence rate
is stationary are called Bayesian blocks, a special application of Bayesian statistics (e.g.,
see Scargle (1998) for astrophysical applications).

If observations of a nonstationary Poisson process are made for the time interval [0,T ],
then the distribution of waiting times for that time interval will be weighted by the number
of events λ (t)dt in each time interval (t, t +dt),

P(Δ t) =
1
N

∫ T

0
λ (t) P(t,Δ t) dt , (5.2.3)
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where the rate is zero after the time interval t > T , i.e., λ (t > T ) = 0, and N =
∫ T

0 λ (t) dt.
If the rate is slowly varying, so that it can be subdivided into piecewise stationary Poisson
processes (into Bayesian blocks), then the distribution of waiting times will be

P(Δ t) ≈ ∑
i

q(λi)λi e−λiΔ t , (5.2.4)

where

q(λi) =
λiti

∑ j λ jt j
, (5.2.5)

is the fraction of events associated with a given rate λi and ti is the piecewise time interval
or Bayesian block over which the constant rate λi is observed. If we make the transition
from the summation over discrete time intervals ti (Eqs. 5.2.4 and 5.2.5) to a continuous
integral function over the time interval [0 < t < T ], we obtain,

P(Δ t) =
∫ T

0 λ (t)2 e−λ (t)Δ t dt∫ T
0 λ (t) dt

. (5.2.6)

When the occurrence rate λ (t) is not a simple function, the integral Eq. (5.2.6) becomes
untractable, in which case it is more suitable to substitute the integration variable t with the
variable λ . Defining f (λ ) = (1/T )dt(λ )/dλ as the fraction of time that the flaring rate is
in the range (λ ,λ +dλ ), or f (λ )dλ = dt/T , we can express Eq. (5.2.6) as an integral of
the variable λ ,

P(Δ t) =
∫ ∞

0 f (λ )λ 2e−λΔ tdλ∫ ∞
0 λ f (λ ) dλ

, (5.2.7)

where the denominator λ0 =
∫ ∞

0 λ f (λ ) dλ is the mean rate of flaring.
Let us consider some examples. In Fig. 5.3 we show five cases: (1) a stationary Pois-

son process with a constant rate λ0; (2) a two-step process with two different occurrence
rates λ1 and λ2; (3) a nonstationary Poisson process with a linearly increasing occurrence
rate λ (t) = λ0t/T , varying like a triangular function for each cycle, (4) a piecewise con-
stant Poisson process with an exponentially varying rate distribution, and (5) a piecewise
constant Poisson process with an exponentially varying rate distribution steepened by a
reciprocal factor. For each case we show the time-dependent occurrence rate λ (t) and the
resulting probability distribution P(Δ t) of events. We see that a stationary Poisson process
produces an exponential waiting-time distribution, while nonstationary Poisson processes
with a discrete number of occurrence rates λi produce a superposition of exponential dis-
tributions, and continuous occurrence rate functions λ (t) generate powerlaw-like waiting-
time distributions at the upper end.

We can calculate the analytical functions for the waiting-time distributions for these
five cases. The first case is simply an exponential function as given in Eq. (5.1.1) because
of the constant rate λ (t) = λ0,

P(Δ t) = λ0 e−λ0Δ t . (5.2.8)
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Fig. 5.3 One case of a stationary Poisson process (top) and four cases of nonstationary Poisson processes
with two-step, linear-increasing, exponentially varying, and δ -function like variations of the occurrence
rate λ (t). The time-dependent occurrence rates λ (t) are shown on the left side, while the waiting-time
distributions are shown in the right-hand panels, in the form of histograms sampled from Monte-Carlo
simulations, as well as in the form of the analytical solutions (given in Eqs. 5.2.8–5.2.18). Powerlaw fits
N(Δ t) ∝ Δ t−p are indicated with a dotted line and labeled with the slope p (Aschwanden and McTiernan
2010).
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The second case follows from Eq. (5.2.4) and yields

P(Δ t) =
1
10

λ1 e−λ1Δ t +
9

10
λ2 e−λ2Δ t . (5.2.9)

The third case can be integrated with Eq. (5.2.6). The time-dependent flare rate grows
linearly with time to a maximum rate of λm = 2λ0 over a time interval T , with a mean rate
of λ0,

λ (t) = λm
t
T

= 2λ0
t
T

(5.2.10)

Defining the constant a = −λ0Δ t/T the integral of Eq. (5.2.6) reads as P(Δ t) = (−a/Δ t)∫ T
0 t2eat dt/

∫ T
0 t dt. The integral

∫
x2 eax dx = eax(x2/a− 2x/a2 + 2/a3) can be gleaned

from an integral table. The analytical function of the waiting-time distribution for a linearly
increasing occurrence rate is then

P(Δ t) = 2λ0

[
2

(λ0Δ t)3 − e−λ0Δ t
(

1
(λ0Δ t)

+
2

(λ0Δ t)2 +
2

(λ0Δ t)3

)]
, (5.2.11)

which is a flat distribution for small waiting times and approaches a powerlaw function
with a slope of p = 3 at large waiting times, i.e., P(Δ t) ∝ Δ t−3 (Fig. 5.3, third case). The
distribution is the same for a single linear ramp or for a cyclic triangular variation, because
the total time spent at each rate [λ ,λ +dλ ] is the same.

The fourth case, which mimics the solar cycle, has an exponentially growing (or decay-
ing) occurrence rate, i.e.,

f (λ ) =
(

1
λ0

)
exp

(
− λ

λ0

)
, (5.2.12)

defined in the range of [0 < λ < ∞], and has a mean of λ0. The waiting-time distribution
can therefore be written with Eq. (5.2.7) as

P(Δ t) =
∫ ∞

0

(
λ
λ0

)2

exp
(
− λ

λ0
[1+λ0Δ t]

)
dλ , (5.2.13)

which corresponds to the integral
∫ ∞

0 x2 eax dx = −2/a3 using a = −(1 + λ0Δ t)/λ0 and
thus has the solution P(Δ t) = −2/(a3λ 2

0 ), i.e.,

P(Δ t) =
2λ0

(1+λ0Δ t)3 . (5.2.14)

For very large waiting times (Δ t � 1/λ0) the distribution Eq. (5.2.14) approaches the
powerlaw limit P(Δt) ≈ (2/λ 2

0 )(Δ t)−3 (see Fig. 5.3 fourth panel). The asymptotic behav-
ior for large waiting times (Δ t �→ ∞) can also be evaluated from a Taylor expansion at
λ = 0, which leads (by integrating Eq. 5.2.7 term by term) to

P(Δ t) =
2 f (0)

λ0
(Δ t)−3 +

6 f ′(0)
λ0

(Δ t)−4 + ... , (5.2.15)



146 5. Waiting-Time Distributions

and analytically demonstrates the convergence to a powerlaw P(Δ t) ∝ (Δ t)−3 with a slope
of −3 for large waiting times Δ t � 1/λ0. This fourth case defined by Eqs. (5.2.12–5.2.14)
corresponds to the model of Wheatland (2000), which yields a somewhat too steep pow-
erlaw slope when compared with observations (Fig. 5.12).

The fifth case has an exponentially growing occurrence rate, multiplied with a recipro-
cal factor, i.e.,

f (λ ) = λ−1 exp
(
− λ

λ0

)
, (5.2.16)

and fulfills the normalization
∫ ∞

0 λ f (λ ) dλ = λ0. The waiting-time distribution can then
be written with Eq. (5.2.7) as

P(Δ t) =
∫ ∞

0

(
λ
λ0

)
exp

(
− λ

λ0
[1+λ0Δ t]

)
dλ , (5.2.17)

which, with defining a = −(1 + λ0Δ t)/λ0, corresponds to the integral
∫

xeax dx =
(eax/a2)(ax−1) and becomes

∫ ∞
0 xeax dx = 1/a2 when integrated over [0 < x < ∞], yield-

ing the solution P(Δ t) = 1/(a2λ 2
0 ), i.e.,

P(Δ t) =
λ0

(1+λ0Δ t)2 . (5.2.18)

For very large waiting times (Δ t � 1/λ0), the equation Eq. (5.2.8) approaches the power-
law limit P(Δ t)≈ λ−1

0 (Δ t)−2 (see Fig. 5.3, bottom panel), which seems to fit the observa-
tions (Fig. 5.12) better than the fourth case used in Wheatland (2000).

Thus we learn from the last four examples that most continuously changing occurrence
rates produce powerlaw-like waiting-time distributions ∝(Δ t)−p with slopes of p <∼ 2, ...,3
at large waiting times, despite the intrinsic exponential distribution that is characteristic to
stationary Poisson processes. If the variability of the flare rate is gradual (third and fourth
case in Fig. 5.3), the powerlaw slope of the waiting-time distribution is close to p <∼ 3.
However, if the variability of the flare rate shows spikes like δ -functions (Fig. 5.3, bot-
tom), which is highly intermittent with short clusters of flares, the distribution of waiting
times has a slope closer to p ≈ 2. This phenomenon is also called clusterization and has
analogs in earthquake statistics, where aftershocks appear in clusters after a main shock
(Omori’s law; Omori 1895). Thus the powerlaw slope of waiting times contains essential
information whether the flare rate is constant, varies gradually, or in form of intermittent
clusters.

5.3 Measurement of Waiting Times

Statistics of events and waiting times in astrophysical time series are not trivial, because
often multiple physical processes are present that contribute to the observed emission
of pulses and backgrounds, which cause confusion, deconvolution, event separation, and
background-subtraction problems. Especially small-amplitude fluctuations are ambiguous
because they could constitute small nonthermal events or fluctuations of the thermal back-
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ground. Ideally, we want to sample statistics of SOC avalanche events from one single
common physical mechanism and separate out other secondary physical mechanisms that
are manifested as a convolution of the primary signal. For instance, the thermalization
process after an impulsive plasma heating event can obscure subsequent small impulsive
heating events in the cooling phase of a large heating event. The definition of an event
includes at least the time ti of the start or peak of the event. The definition of the waiting
time (or quiescent time) is the time interval between subsequent events, i.e., Δ ti = ti − ti−1,
which entirely depends on the definition of the event times ti.

In the following we discuss some biases of waiting-time statistics that result from par-
ticular event definitions. Three different definitions of event times are tested in Buchlin et
al. (2005): (i) the peak method, (ii) the threshold method, and (iii) the wavelet method.
Examples of the three methods are illustrated in Fig. 5.4 for an artificial time series. The
peak method (Fig. 5.4 left) requires a relatively noise-free smoothed time profile, so that
noise fluctuations do not contaminate the statistics with multiple peaks per time structure,
leading to an excess of short waiting times. The threshold method (Fig. 5.4 middle) re-
quires that the time profiles return to a sub-threshold background level for each event,
otherwise events in the decaying tail of a pulse time profile are ignored. The wavelet
method (Fig. 5.4 right) has the ability to detect simultaneous pulses with different time
scales, which would be impossible with the peak or threshold method. In the presence
of a 1/ f noise spectrum, the Mexican hat mother wavelet, which is well adapted to the
second derivative of a Gaussian profile, appears to be most suitable to find enhanced struc-
tures (Sanz et al. 2001). Besides the detection of time structures, also the definition of
the event time ti within the duration of the pulse structure (e.g., start time, peak time,

Fig. 5.4 Three definitions of event characteristics (peak energy P, total energy E, event time ti (labeled
as ta for the start or te for the peak), and event duration T : with the peak method (left), the threshold
method (middle), and the wavelet method (right), with (top) and without (bottom) background subtraction
(Buchlin et al. 2005).
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midtime) affects the waiting-time statistics to some degree. The peak times are generally
more delayed with respect to the start time in large events, due to the longer rise times,
but this effect is probably of secondary importance. In the study of Buchlin et al. (2005),
three different numerical simulations are performed based on a shell-model of MHD tur-
bulence (Giuliani and Carbone 1998), and the resulting waiting-time distributions based
on the three different event definition criteria are shown, which we reproduce in Fig. 5.5.
Interestingly, the three methods reveal quite different waiting-time distributions in each
case. The threshold-based method seems to produce powerlaw-like distributions, while the
peak-based and wavelet-based methods produce exponential-like distributions, at least in
the regime of large waiting times. This result imposes some ambiguity in the interpretation
of waiting-time distributions, at least for turbulence-type time series.

Fig. 5.5 Waiting-time distributions for events determined by peaks (dotted histograms), thresholds (plain
histograms), and a wavelet method (dashed histograms), for three different time series (a, b, c) based on
numerical simulations of MHD turbulence (Buchlin et al. 2005).

The effect of event definition on the distribution of waiting times has also been nu-
merically simulated with the continuously driven Olami–Feder–Christensen (OFC) model
(Olami et al. 1992) by Hamon et al. (2002). Three different definitions of waiting times
have been explored: (i) peak-to-peak, (ii) a finite flux threshold, and (iii) no flux threshold
(Fig. 5.6 top left). The case (iii) with no flux threshold should be the most complete sample
that includes the weakest avalanche events and this was found to have a stretched expo-
nential shape (Fig. 5.6 bottom left), similar to the (strictly) exponential shape expected
in the original BTW model (e.g., Charbonneau et al. 2001; Wheatland 2009). However,
when the threshold is enhanced, small avalanches become filtered out and an excess of
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Fig. 5.6 Waiting-time distributions for events defined by (a) peak-to-peak (top right), (b) finite threshold
(bottom right), and (c) no threshold (bottom left), numerically simulated for the Olami–Feder–Christensen
model. In each case there are two simulations with weak and strong driving (Hamon et al. 2002).

longer waiting times occur, which produces a powerlaw-like fat tail in the waiting-time
distribution (Fig. 5.6 right frames).

The ambiguity between powerlaw-like or exponential-like tails was also noticed when
the Poissonian nature of solar flare statistics was tested (Wheatland et al. 1998; Lepreti et
al. 2001; Wheatland and Litvinenko 2002), where the outcome depends on the definition
of events and waiting times.

5.4 Waiting-Time Statistics in Geophysics

We will see that earthquakes cannot be represented by a simple Poisson random process of
independent and uncorrelated events, at least not the aftershocks, which causes some com-
plications for the waiting-time distribution. We introduced the powerlaw-like frequency
distribution of earthquakes in Fig. 1.7 and Section 1.5, which can be described by (i) the
Gutenberg–Richter law, i.e., N(E) ∝ E−5/3 . . . E−2 (with E the size or magnitude and
N(E) the size distribution). There are other scaling laws known for earthquakes, such as:
(ii) Omori’s law (Omori 1895) for short-range temporal correlations between earthquakes,



150 5. Waiting-Time Distributions

which is the scaling N(Δ t) ∝ (Δ t)−1 of the frequency N(Δ t) of aftershocks as a function of
time Δ t since the main shock; (iii) the productivity law N(E) ∝ E2/3, giving the number of
earthquakes triggered by an event of energy E; (iv) the powerlaw distribution N(L) ∝ L−2

of fault lengths; (v) the fractal and multi-fractal structure of fault network and (vi) of earth-
quake epicenters (Saichev and Sornette 2006). There have been several attempts to unify
these relationships into a single scaling law, which all play a role in the formulation of a
waiting-time distribution.

Unified scaling laws for the distribution of waiting times of earthquakes were derived,
e.g., by Bak et al. (2002), or Saichev and Sornette (2006). Bak et al. (2002) used a to-
tal of 335,076 earthquakes that occurred in California during 1984–2000 and defined a
waiting time Δ t as the time interval between the beginning of two successive earthquakes.
They measured the probability distribution PS,L of waiting times Δ t between earthquakes
occurring within a range L whose magnitude was greater than m = log(S). Waiting times
measured between all earthquakes have been found to have different distributions than
those measured between local earthquakes only (e.g., Bak 1996, p.173; Ito 1995). In the
study of Bak et al. (2002), the magnitudes m were found to follow the Gutenberg–Richter
law N(M > m) ∝ m−b with b = 0.95. Such probability distributions PS,L(Δ t) of waiting
times Δ t are shown in Fig. 5.7 (left) for different cutoffs m =10 log(S) and sizes L. The
waiting-time distributions of the different data sets coincide for small events, but diverge
for large events. The mean powerlaw slope in the middle part fits N(Δ t) ∝ Δ t−1, while
the fall-off at large waiting times approaches N(Δ t) ∝ (Δ t)−2, which is not as steep as we
expect for a nonstationary Poisson process, i.e., N(Δ t) ∝ (Δ t)−3 (see Fig. 5.3).

A unified scaling law was achieved by modifying the waiting time Δ t with a function
of S and L in Bak et al. (2002). Choosing the x-axis as x = Δ tS−bLdf and the y-axis as
y = Δ t pS−bLd f , the data could be collapsed to a single well-defined function y = f (x),

(Δ t)pS−bLd f = f (Δ tS−bLd f ) , (5.4.1)

with the best-fit parameters p = 1 (which is Omori’s law for aftershocks; Omori 1895),
b ≈ 1 (which is the value of the Gutenberg–Richter law), and d f ≈ 1.2 (which describes
the 2-D fractal dimension of the location of epicenters projected onto the Earth’s surface).
The collapsed waiting-time distributions are shown in Fig. 5.7 (right), which shows two
regimes separated by a kink. The interpretation of this dual behavior is that two successive
earthquakes will be either correlated (for small values x to the left of the kink), or uncor-
related (for large values of x to the right to the kink). The parameter x is a combination
of magnitude S, size L, and waiting time Δ t, but equally applies to main shocks and after-
shocks, constituting a unified scaling law for waiting times from tens of seconds to tens of
years.

The same scaling (Eq. 5.4.1) was also fitted to other earthquake datasets and a third
regime was found with a different powerlaw slope for very small values of x that did not
follow the “universal” scaling law of Eq. (5.4.1) (Davidsen and Goltz 2004). Also Carbone
et al. (2005) investigated different data sets from 4 different regions in Italy and found that
the “universal” scaling law claimed by Bak et al. (2002) did not hold for all data sets and
suggested a generalized function for Omori’s law (Omori 1895), implying that the general
earthquake process is non-Poissonian.
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Fig. 5.7 Left: Waiting-time distributions PS,L(Δ t) of earthquakes occurring in California during 1984–
2000 for different data subsets with magnitude m =10 log(S) = 2,3,4 within an area of length L =
0.25◦,0.5◦,1◦,2◦,4◦ in a longitude–latitude grid covering California. (Note that the waiting time Δ t
is rendered with the symbol T in the original figure.) Right: The same data are plotted as parameter
y = (Δ t)pPS,L(Δ t) as a function of the variable x = Δ tS−bLd f , with the coefficients p = 1, b = 1, and
d f = 1.2. The function is constant for x < 1, corresponding to the correlated Omori law regime, while it is
decaying for large earthquakes at x > 1, associated with the uncorrelated regime of earthquakes. Note that
the datapoints are collapsed to a single function y(x) for this “universal scaling law”. Reprinted from Bak
et al. (2002) with permission; Copyright by American Physical Society.

Along the same lines, Saichev and Sornette (2006) derived a “universal” distribution of
waiting times (called inter-earthquake times therein) by generating a statistical probability
function under the assumption of statistical stationarity, i.e., (i) the branching ratio (or
average number of earthquakes/aftershocks per earthquake) be less than unity, and (ii) the
average rate of the Poissonian distribution of spontaneous events be non-zero. This model
is also based on the strategy that the impact of aftershocks can be neglected for events that
occur outside some space-time window, while events in a given space domain are only
considered if they were triggered by a source from the same space domain. The unified
scaling does not distinguish between foreshocks, main shocks, and aftershocks, similar to
the model of Bak et al. (2002).

Alternative modeling of waiting-time distributions for earthquakes include, for in-
stance, avalanches triggered by externally-imposed (non-SOC) coherent noise (Newman
and Sneppen 1996), or Lévy flights with anomalous diffusion in the subdiffusive regime
(Sotolongo-Costa et al. 2000).

5.5 Waiting-Time Statistics in Magnetospheric Physics

Waiting times have been studied in magnetospheric physics for auroral emission, geo-
magnetic activity, magnetospheric substorms, and solar wind, to answer questions whether
Poisson random processes, SOC processes, intermittent turbulence, finite system-size ef-
fects, or clusterization effects are the key players.
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Regarding auroral emission, we discussed the SOC model of Chapman et al. (1998) in
Section 2.5.1, which essentially represents a modified BTW sandpile model with the ad-
ditional effect of a finite system size. The finite system size effect, which was observed
for auroral blobs (Fig. 1.10), produces an excess of large events with a characteristic
length scale L0 corresponding to the maximum size of the system (Fig. 2.13), but also
produces a waiting-time distribution with a well-defined mean (see Fig. 3 in Chapman
et al. 1998), probably corresponding to the average propagation time of the phenomenon
through the system. In addition, simulations with strong driving (i.e., with a higher load-
ing rate) showed destruction of smaller events and hence a higher probability for larger
events (Chapman et al. 2001), which produces a cutoff in the waiting-time distribution at
the lower end as well. Thus, Chapman et al. (1998, 2001) conclude that the waiting-time
distribution does not reflect SOC behavior, but is controlled by the rate of energy inflow
and the scale size of the system.

A waiting-time distribution of the auroral electron jet (AE) index, a standard indicator
of geomagnetic activity, sampled by 12 stations in the polar region of the Earth’s north-
ern hemisphere, was analyzed for the months of June 1988 and February 1981 by Lepreti
et al. (2004), with a sampling time of 1 min (Fig. 5.8 top). The waiting-time distribution
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Fig. 5.8 Top: The AE index measured during the month June 1988. Bottom: The waiting-time distribution
between successive AE index bursts for June 1988 and February 1981. The solid line represents a powerlaw
fit with an exponent of p = 1.3 (Lepreti et al. 2004). (Reprinted with permission of Elsevier)
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exhibits an approximate powerlaw with a slope of p = 1.31± 0.07 for June 1988, and
p = 1.27±0.08 for February 1981. The powerlaw shape of waiting times over 3 orders of
magnitude is clearly not consistent with an exponential Poisson distribution (Eq. 4.4.3), as
expected for randomly generated avalanches in the BTW SOC model. Lepreti et al. (2004)
conclude that the deviation from the local Poisson hypothesis (where subsequent bursts
are independent) implies a tendency of clusterization into larger bursts. Numerical simu-
lations of energy dissipation in a turbulent MHD shell model is able to reproduce a pow-
erlaw distribution of waiting times (although with different powerlaw slopes), and thus
an interpretation of energy dissipation in auroral electron jet events by turbulence is more
consistent with the data (Boffetta et al. 1999; Lepreti et al. 2004). Interestingly, although a
nonstationary Poissonian process can also produce a powerlaw-like waiting-time distribu-
tions (Fig. 5.3), the expected powerlaw index of p ≈ 3.0 does not match what is observed
in AE events (p ≈ 1.3).

Substorms in the Earth’s magnetotail evolve through three phases: (i) a growth phase
with gradual accumulation of energy from the solar wind, (ii) an expansion phase where
the magnetotail passes an instability threshold (substorm onset), and (iii) a recovery phase
with energy dissipation through the magnetosphere (Fig. 9.10). The waiting-time distri-
bution has been measured by Borovsky et al. (1993) for a one-year period starting on
October 1982. From 1,290 substorm events they found a waiting-time distribution with
a peak around ≈3 hrs, a mean of μ = 5.1 hrs, and a standard deviation of σ = 4.7 hrs.
Thus, the distribution is not a scale-free powerlaw distribution as expected for SOC phe-
nomena, but rather a peaked quasi-periodic distribution. Freeman and Morley (2004) were
able to fit this distribution with the following simple 3-rule model: (i) The substorm is
driven by power from the solar wind; (ii) a critical energy threshold exists for the magne-
totail to become unstable (e.g., magnetic reconnection is inhibited until the current sheet
is stretched sufficiently thin for electron inertial or gyrokinetic effects to become impor-
tant in the generalized Ohm’s law); and (iii) once the magnetotail is sufficiently stressed
energy is released and the magnetotail moves into a lower energy state below the thresh-
old. With this simple model Freeman and Morley (2004) could reproduce the observed
waiting-time distribution, which implies that the variability of substorm waiting times is
essentially attributable to the variability of the solar wind power input. Since the driver
is an external force (i.e., the solar wind), this model corresponds to the concept of forced
criticality (Chang 1992) rather than that of self-organized criticality by Bak et al. (1987).

Waiting-time distributions were also measured from fluctuations of ionospheric plasma
velocities, using data from the SuperDARN radar network, where powerlaw distributions
with slopes of p ≈ 1.8–2.5 were found (Bristow 2008).

5.6 Waiting-Time Statistics in Solar Physics

The majority of solar flares is believed to be triggered independently, and thus should
have a waiting-time distribution consistent with a Poissonian random process, but there
is a subset of so-called sympathetic flares which have a causal connection and thus are
not independent (e.g., Simnett 1974; Gergely and Erickson 1975; Fritzova-Svestkova et
al. 1976; Pearce and Harrison 1990; Bumba and Klvana 1993; Biesecker and Thompson
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2000; Moon et al. 2002), similar to aftershocks of large earthquakes. In addition, the mean
flare rate varies by a substantial factor during the solar cycle, which constitutes a nonsta-
tionary Poisson process, for which we expect a powerlaw-like waiting-time distribution
with a slope of p ≈ 3 (Fig. 5.3). Further deviations from Poissonian waiting-time distribu-
tions may arise depending on the definition and detection threshold of flare events (Section
5.3). There are a number of solar flare studies that deal with these conclusions or probe
alternative interpretations, which we describe in the following.

5.6.1 Solar Flare Hard X-Rays

One of the first waiting-time distributions of solar flares was published by Pearce et
al. (1993), using 8,319 hard X-ray flare events detected with HXRBS/SMM, finding a
powerlaw distribution N(Δ t) ∝ Δ t−0.75±0.1 in the range of Δ t = 1–100 min, which could
not be explained (Fig. 5.11, top left panel). A similar dataset observed with the more sen-
sitive BATSE/CGRO was analyzed by Biesecker (1994), which showed no simple Poisso-
nian distribution either, in the time interval range of Δ t = 2–400 min, and an upper limit
of <∼ 25% was inferred for sympathetic flaring. For a dataset of 182 hard X-ray flares de-
tected by WATCH/Granat (Fig. 5.11, left middle panel), a waiting-time distribution with a
powerlaw slope of p = 0.78± 0.13 was found in the range of Δ t = 10–300 min, with an
exponential rollover at the upper end (Crosby 1996), which is similar to the HXRBS/SMM
result. A dataset of 6,919 hard X-ray bursts at energies ≥ 30 keV detected by ICE/ISEE-3
(Fig. 5.11, bottom left) was sampled by Wheatland et al. (1998), showing a double-hump
distribution of waiting times (similar to the second case in Fig. 5.3), which can be inter-
preted as an overabundance of short waiting times (Δ t ≈ 10 s to 10 min) compared with
a nonstationary Poisson process fitted to the longer time intervals of Δ t ≈ 10–1,000 min
(Wheatland et al. 1998; Wheatland and Eddey 1998). Modeling of the waiting-time dis-
tribution in terms of a nonstationary Poisson process with Bayesian blocks (Section 5.2)
was attempted, but no suitable fit was found. The overabundance of short waiting times
was interpreted as clustering of multiple hard X-ray bursts per flare event (Wheatland et
al. 1998).

In Fig. 5.9 we show waiting-time statistics of 11,594 hard X-ray flare events observed
with the Ramaty High Energy Spectroscopic Solar Imager (RHESSI) during 2002–2008.
The daily flare rate shows a high degree of fluctuations, even during the solar minimum
phase. The frequency distribution of waiting times can be fitted with a powerlaw function,
i.e., N(Δ t) ∝ Δ t−2.0 in the time interval range of Δ t ≈ 2–1,000 hrs (Fig. 5.9 bottom right),
so the longer waiting times Δ t >∼ 2 hrs are consistent with a nonstationary Poisson random
process in a SOC system.

At shorter time intervals there is an excess of events at waiting times near the orbital pe-
riod of Δ t <∼ torbit ≈ 1.6 hrs (Fig. 5.9, bottom left), which is caused by instrumental effects.
A first reason is that events that start at spacecraft night cannot be detected until the space-
craft comes out of the night part of the orbit, which causes a clustering that systematically
increases from one half to one full orbital period. A second reason is that large events that
extend over more than one full orbital period are double-counted in each subsequent or-
bit. Additional data gaps result from irregular switch on/off periods during some parts of
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Fig. 5.9 Top: Flare rate per day observed with RHESSI during 2002–2008, containing a total of ≈ 12,000
flare events. Quiescent time intervals with Δ t > 5 hrs are marked in the form of a “bar code” at the top of
the panel. Bottom left: The frequency distribution of waiting times N(Δ t) is shown for short time intervals
Δ t ≤ 10 hrs, which shows peaks at subharmonics of the orbital period of ≈ 1.6 hrs. Bottom right: The
longer waiting-time intervals Δ t ≈ 2–24 hrs can be fitted with a powerlaw function with a slope of p = 2.0
(Aschwanden and McTiernan 2010).

the orbit, such as when the spacecraft passes through the South Atlantic Anomaly (SAA).
Such instrumental biases have been modeled with Monte-Carlo simulations in previous
waiting-time studies (e.g., Biesecker 1994).

The effect of flux thresholds in the event definition on the distribution of waiting
times of this particular dataset was investigated by Aschwanden and McTiernan (2010),
an issue that has been raised in previous studies (e.g., Buchlin et al. 2005; Hamon et
al. 2002). Hamon et al. (2002) finds for the Olami–Feder–Christensen model (Olami et
al. 1992), which is a cellular automaton model for systems with self-organized critical-
ity, that event definitions without any threshold lead to stretched exponential waiting-
time distributions, while threshold-selected events produce an excess of longer waiting



156 5. Waiting-Time Distributions

RHESSI 2002-2008

0.001 0.010 0.100 1.000 10.000 100.0001000.000
Waiting time t [hrs]

10-2

10-1

100

101

102

103

104

105

N
um

be
r 

of
 fl

ar
es

 
t [

hr
s]

n = 11594

P >    0 cts/s

t0 =    0.7 hr

FITTED

O
rb

it
0.001 0.010 0.100 1.000 10.000 100.000 1000.000

Waiting time t [hrs]

10-2
10-1

100

101

102

103

104
105

N
um

be
r 

of
 fl

ar
es

 
t [

hr
s] n =  9596

P >   10 cts/s
t0 =    0.9 hr

PREDICTED

O
rb

it

0.001 0.010 0.100 1.000 10.000 100.000 1000.000
Waiting time t [hrs]

10-2
10-1

100

101

102

103

104
105

N
um

be
r 

of
 fl

ar
es

 
t [

hr
s] n =  2038

P >  100 cts/s
t0 =    4.0 hrPREDICTED

O
rb

it
0.001 0.010 0.100 1.000 10.000 100.000 1000.000

Waiting time t [hrs]

10-2
10-1

100

101

102

103

104
105

N
um

be
r 

of
 fl

ar
es

 
t [

hr
s] n =   781

P >  300 cts/s
t0 =   10.5 hr

PREDICTED

O
rb

it

0.001 0.010 0.100 1.000 10.000 100.000 1000.000
Waiting time t [hrs]

10-2
10-1

100

101

102

103

104
105

N
um

be
r 

of
 fl

ar
es

 
t [

hr
s] n =   271

P > 1000 cts/s
t0 =   30.4 hr

PREDICTED

O
rb

it

0.001 0.010 0.100 1.000 10.000 100.000 1000.000
Waiting time t [hrs]

10-2
10-1

100

101

102

103

104
105

N
um

be
r 

of
 fl

ar
es

 
t [

hr
s] n =   108

P > 3000 cts/s
t0 =   76.3 hr

PREDICTED

O
rb

it

0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.0

0.2

0.4

0.6

0.8

1.0

F
lu

x 
F

(t
)

t3

t2

t1

Fig. 5.10 Top left: Waiting-time distribution of solar flares function, representing a stationary Poisson
process (thick solid curve), while the nonstationary Poisson process that has a function with a powerlaw
tail of p = 2 is indicated with a thick curve. Right: Waiting-time distributions for five different subsets
of the data selected by thresholds of P ≥ 10,100,300,1,000,3,000 cts s−1. The same model functions
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Bottom left: Schematic showing the relationship between the increase of waiting times (Δ t1,Δ t2,Δ t3) as
a function of progressively increasing thresholds (P1,P2,P3) (adapted from Aschwanden and McTiernan
2010).
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times (Fig. 5.6). Investigating this problem for RHESSI data, various flux thresholds, e.g.,
P = 10,100,300,1,000,3,000 cts s−1, have been applied to the complete RHESSI flare
catalog, and the waiting times have been resampled for events above these flux thresholds.
The corresponding six waiting-time distributions are shown in Fig. 5.10. The waiting-time
distributions clearly show an increasing excess of longer waiting times with progressively
higher thresholds, which is expected due to the filtering out of shorter time intervals be-
tween flares with weaker fluxes below the threshold (Fig. 5.10, bottom left). Based on
the reduction in the number n of events as a function of the flux threshold, we can make
a prediction for how the mean waiting-time scales with increasing threshold, which is a
reciprocal relationship, since the total duration T of all waiting times is constant,

T =
n

∑
i

Δ ti = n〈Δ t〉 = nT 〈Δ tT 〉 . (5.6.1)

Thus, from the number of events nT detected above a selected threshold we can predict the
mean waiting time,

〈Δ tT 〉 =
n

nT
〈Δ t〉 . (5.6.2)

Using the full set of data with n = 11,594 events and a mean waiting time of 〈Δ t〉 = 0.71
hrs (Fig. 5.10, top left), we can predict the distributions and average waiting times for
the thresholded subsets, based on their detected numbers nT using Eq. (5.6.2): 〈Δ tT 〉 =
0.9,4.0,10.5,30.4,76.3 hrs. We fit our theoretical model of the waiting-time distribution
(Eq. 5.2.18) of a nonstationary Poisson process and predict the distributions for the thresh-
old datasets, using the scaling of the predicted average waiting times 〉Δ tT 〈. The predicted
distributions (thick curves in Fig. 5.10) match the observed distributions of thresholded
waiting times (histograms with error bars in Fig. 5.10) quite accurately, which demon-
strates how the waiting-time distribution changes in a predictable way when flux thresh-
olds are used in the event selection.

A compilation of waiting-time distributions observed for solar flares in hard X-rays is
shown in Fig. 5.11, including datasets from ISEE-3/ICE, HXRBS/SMM, WATCH/Granat,
BATSE/CGRO, and RHESSI. It demonstrates why earlier studies within a limited range
of waiting times (<∼1.8 decades) were characterized by a single powerlaw with a slope
of p ≈ 0.8 (Pearce et al. 1993; Crosby 1996), while datasets covering a larger range of
waiting times over 4–6 orders of magnitude (ISEE-3, HXRBS, BATSE, RHESSI) can all
be fitted by the same waiting-time distribution with a powerlaw function with slope p ≈ 2
at the upper end (Eq. 5.2.18), as derived from a nonstationary Poisson process in the limit
of highly intermittent flaring (Aschwanden and McTiernan 2010). This result of a highly
intermittent flare rate suggests that the Sun has dual states of flare-active and quiescent pe-
riods, similar to accretion disks around black holes (with hard and soft states, see Section
4.7; Mineshige et al. 1994a), or earthquakes with different levels of activity between main
shocks and during aftershocks (Omori’s law; Omori 1895). For solar flare hard X-rays,
we find an average breaking point at Δ t0 = 0.80±0.14 hrs (averaged from HXRBS/SMM,
BATSE/CGRO, and RHESSI), above which the waiting-time distribution can be character-
ized with a powerlaw function. The flare-active state appears very intermittent throughout
the entire solar cycle (see time profile in Fig. 5.9), since the daily and hourly fluctuations
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Fig. 5.11 Waiting-time distributions of six different datasets: HXRBS/SMM (top left and right),
WATCH/Granat (middle left), ISEE-3/ICE (bottom left), BATSE/CGRO (middle right), and RHESSI (bot-
tom right). The distribution of the observed waiting times are shown with histograms, fits of nonstationary
Poisson processes with dashed curves (with a powerlaw tail with slope of p = 2), and the best fit in the
fitted range with thick solid curves. Powerlaw fits in the range of Δ t ≈ 0.1–2.0 hrs as fitted in the original
publications (Pearce et al. 1993; Crosby 1996) are also shown (straight line and slope p). The excess of
events with waiting times near the orbital period (torbit ≈ 1.6 hrs) is an artificial effect and is not included
in the model fits (Aschwanden and McTiernan 2010).
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are at any time much stronger than the long-term trends of the solar cycle. For the dataset
of ISEE-3/ICE, an overabundance of short waiting times with a mean of Δ t = 0.03 hrs
(2 min) was found, which seems to be associated with the detection of clusters of multiple
hard X-ray bursts per flare (Wheatland et al. 1998).

Thus, the main observational result of these hard X-ray studies is that the waiting-time
distribution of solar flares is consistent with a powerlaw function for waiting times Δ t >∼ 1
hr, consistent with a nonstationary Poissonian random process. The fact that the driver
process for solar flares is nonstationary does not contradict with models of self-organized
criticality (Bak et al. 1987, 1988; Lu and Hamilton 1991; Charbonneau et al. 2001), ex-
cept that the input rate is highly variable. Alternative interpretations, such as intermittent
turbulence (Boffetta et al. 1999; Lepreti et al. 2001), are discussed in Chapter 10.

5.6.2 Solar Flare Soft X-Rays

Further statistics of flare waiting times was gathered in soft X-rays, using the GOES
database during 1975–1999 in the 1-8 Å wavelength range, yielding a waiting-time distri-
bution that has an average powerlaw slope of p = 2.4±0.1 (Boffetta et al. 1999; Lepreti et
al. 2001) or p = 2.16±0.05 (Wheatland 2000a) in the time interval range of Δ t ≈ 6–70 hrs
(Fig. 5.12 top), with a flat rollover at shorter time intervals of Δ t ≈ 0.1–6 hrs, where the
previous hard X-ray waiting-time distributions were measured. However, although these
three studies present the same observational result, they offer three completely different in-
terpretations. Boffetta et al. (1999) argue that the lack of a simple Poissonian distribution
rules out SOC behavior and is more consistent with the powerlaw distribution obtained
with a shell model of MHD turbulence, while Lepreti et al. (2001) fit a Lévy function
(over a range of 1.5 orders of magnitude) and suggest that the underlying flare process
is statistically self-similar but has some “memory”, while Wheatland (2000a) is able to
model the data with a nonstationary Poisson process, which is consistent with SOC be-
havior in a system with a variable driver (i.e., the solar activity cycle and its fluctuations).
Wheatland (2000a) decomposed the 20-year time series into Bayesian blocks (Fig. 5.12,
middle), and found an exponentially decreasing distribution for the fraction of time f (λ )
of a given flaring rate λ (which is a constant per Bayesian block, see also Section 5.2),

f (λ ) =
1
λ0

exp
(
− λ

λ0

)
, (5.6.3)

with λ0 ≈ 0.15 hr−1 (Fig. 5.12 bottom). The fit of this nonstationary (or piecewise-
constant) Poisson process to the waiting-time distribution is shown in Fig. 5.12 (top),
which is able to reproduce the observed waiting-time distribution over a large range (of
4 orders of magnitude). The time-varying flare rate applies also to individual active re-
gions (Wheatland 2001). More detailed investigations revealed that the flare rate f (λ )
varies also during the solar minimum and maximum, which introduces a time variability
into the powerlaw index p of waiting times,

N(Δ t) ∝ t p ∝ t−(3+δ ) , (5.6.4)
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Fig. 5.12 Top: Waiting-time distribution for GOES 1-8 Å flares observed during 1975–1999 (histogram)
and fit of nonstationary Poisson process with exponentially decreasing flare rate distribution (dashed
curve). Middle: Bayesian blocks decomposition of the rate of occurrence of GOES flares. Bottom: Distri-
bution of flaring rates, based on the Bayesian rate estimates (Wheatland 2000a; reproduced by permission
of the AAS).
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varying from δ = −0.1 ± 0.5 (p = 2.95 ± 0.5) during the solar maximum to δ = −1.7 ±
0.2 (p = 1.3 ± 0.2) during the solar minimum, or an overall average of δ = −0.9 ± 0.1
(p = 2.2 ± 0.1) during the entire solar cycle (Wheatland and Litvinenko 2002). The vari-
ability of the mean flare rate λ was correlated with the sunspot number, which represents
the input of subphotospheric magnetic energy into the corona, and a cross-correlation co-
efficient of CCC ≈ 0.8 was found for a time lag of ≈ 9 months, which seems to reflect
the hysteresis of the coronal response (Wheatland and Litvinenko 2001). The Bayesian
method of flare rate estimation in nonstationary Poisson processes can then be used for
probabilistic forecast of solar flares (Wheatland 2004) or tests of sympathetic flaring. Sym-
pathetic flaring was investigated in Wheatland (2006) and Wheatland and Craig (2006).

A follow-up study to Wheatland (2000a) confirmed the consistency of a nonstationary
Poisson process with the data and found, in addition, stationary Poisson processes for flares
in individual active regions (Moon et al. 2001). Alternatively, a subset of the data (2 years
during the solar maximum) of the same waiting-time distribution was also modeled with
the statistical method of diffusion entropy, which rests on the evaluation of the entropy of
the diffusion process generated by the time series, which also could suitably fit the data
and found a more accurate value for the powerlaw slope, i.e., p = 2.14±0.01 (Grigolini et
al. 2002). At this point it is not clear whether the result of a nonstationary Poisson process
can simply be interpreted as a threshold effect as for hard X-ray flares (Fig. 5.10), for
which a theoretical value of p = 3 is expected (Fig. 5.3). Future studies are needed that
investigate systematic differences and biases of soft X-ray and hard X-ray flare catalogs,
which needs to be checked event by event.

Further theoretical modeling of waiting times of solar flares includes 1-D MHD models
(Galtier 2001), the master (probability balance) equation (Wheatland and Glukhov 1998;
Wheatland 2008, 2009), cellular automaton simulations with a variable driver with random
walk (Norman et al. 2001) or deterministically-driven (energy-loading) driver (Charbon-
neau et al. 2007), or threshold-dependent statistics of inter-occurrence times (Baiesi et
al. 2006; Paczuski et al. 2005). If the inter-occurrence (or waiting) time is rescaled by the
rate of the events (i.e., by the flaring rate λ (t)), a universal distribution is found for the
waiting times that is independent of the threshold (Baiesi et al. 2006).

Does the waiting time give us some information about the energy build-up in solar
flares? Early studies suspected that the waiting time is the longer the more energy is built
up, which predicts a correlation between the waiting time and the energy of the flare
(Rosner and Vaiana 1978). However, several observational studies have clearly shown
that no such correlation exists (e.g., Lu 1995b; Crosby 1996; Wheatland 2000b; Geor-
goulis et al. 2001), not even between subsequent flares of the same active region (Crosby
1996; Wheatland 2000b). This null-result is not surprising in the concept of SOC models.
The original SOC model of BTW assumes that avalanches occur randomly in time and
space without any correlation, and thus a waiting-time interval between two subsequent
avalanches refers to two different independent locations (except for sympathetic flares),
and thus bears no information on the amount of energy that is released in each spatially
separated avalanche. During a SOC avalanche, also there is only a small amount of the
available free energy depleted, which makes the amount of depleted energy even less cor-
related with the waiting time.
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5.6.3 Coronal Mass Ejections

Coronal mass ejections (CMEs) are launched as a consequence of a magnetic instability in
the solar corona, in most cases accompanied by a solar flare, which most likely is driven
by a magnetic reconnection process. The two phenomena are therefore strongly connected
and a similar statistics of waiting times is expected for both. Wheatland (2003) examined
4,645 CME events observed with SOHO/LASCO during 1996–2001, as well as soft X-ray
flares observed by GOES during the same period. He found similar waiting-time distri-
butions for both phenomena, as shown in Fig. 5.13. The waiting-time distribution is flat
for short waiting times and turns into a powerlaw-like distribution for long waiting times,

Fig. 5.13 Left: Waiting-time distributions of CMEs observed with SOHO/LASCO and flares observed
with GOES, for the whole time- interval 1996–2001 (top), and the two epochs near solar minimum 1996-
1998 (middle) and near solar maximum 1999–2001 (bottom), with fitted powerlaw tail. Right: The same
three distributions fitted with a nonstationary Poisson process model with a time-varying flare rate (Wheat-
land 2003).



5.6 Waiting-Time Statistics in Solar Physics 163

with slopes of p = 2.36± 0.11 (all LASCO CMEs), p = 1.86± 0.14 (during 1996–1998
near solar minimum), and p = 2.98±0.20 (during 1999–2001 near solar maximum), com-
pared with p = 2.26± 0.11 (all GOES flares), p = 1.75± 0.08 (during 1996–1998), and
p = 3.04± 0.19 (during 1999–2001) (Fig. 5.13, left). Wheatland (2003) subdivided the
time series into Bayesian blocks with constant rates and was able to fit the distributions
with a nonstationary Poisson process for both flares and CMEs (Fig. 5.13, right panel).
Thus, the fits are consistent with theoretical models of nonstationary Poisson processes,
for which a powerlaw tail results with a maximum slope of p <∼ 3 (Fig. 5.3). It is also sat-
isfactory to see an identical variation of the powerlaw slope for CMEs and flares during
the solar cycle, which implies a synchronous variation of the flaring rate λ (t), because
this supports the notion that CMEs and flares are driven by the same magnetic instability,
which was also concluded by Yeh et al. (2005) with similar data. The same data were also
analyzed by Moon et al. (2003) and fitted with the same model of a nonstationary Poisson
process developed by Wheatland (2000a), without finding an excess of short waiting times
that could possibly indicate sympathetic CMEs.

5.6.4 Solar Radio Bursts

The waiting times of solar radio bursts observed at 0.2–10 MHz with STEREO/ WAVES
have been investigated during a type III storm that lasted from 2006 Nov 11 to 17 (East-
wood et al. 2010). Such type III storms are associated with an individual active region in
the solar corona, often associated with a radio type I storm, but they are observed further
out in the heliosphere at a distance of a few solar radii. The waiting-time distribution of
this observation of some 800 radio bursts is shown in Fig. 5.14 (right frame). The distri-
bution was modeled with a time-dependent Poisson process (Eq. 5.2.6) and a satisfactory
fit was found. During the main phase of Nov 12–17, the average burst rate is almost con-
stant and probably could be modeled with a stationary Poisson process. The Poissonian
nature of these radio bursts implies that subsequent events, believed to be generated by a
nonlinear conversion of Langmuir waves excited at the local plasma frequency by nonther-
mal electron beams, are stochastically produced and do not interact with each other, like
subsequent avalanches in the sandpile SOC model.

5.6.5 Solar Wind

The solar wind is believed to be subjected to MHD turbulence, which produces intermittent
cascading of spatial structures from larger to smaller scales (e.g., Veltri 1999; Podesta et
al. 2006a,b, 2007). The phenomenology of nonlinear cascades in the solar wind can be
characterized by Kraichnan or Kolmogorov power spectra (Horbury and Balogh 1997).
The identification of the most intermittent structures includes shock waves, small random
currents, current cores, and one-dimensional current sheets.

The waiting-time distribution (or probability density function) of energy density fluc-
tuations (∝ B2) in the solar wind was found to have powerlaw tail during solar maximum
(Freeman et al. 2000a), similar to the Lévy flight model (Hnat et al. 2007), which was also
applied to waiting-time distributions of solar energetic particle (SEP) events (Gabriel and
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Fig. 5.14 Top left: Time series of radio bursts at 3.025 MHz. Middle left: Cumulative number of radio
bursts. Bottom left: Bayesian blocks decomposition. Top right: Cumulative waiting-time distribution of
radio bursts at 3.025 MHz, fitted with a piecewise constant Poisson process. Bottom right: Ratio of data to
model distribution. (Eastwood et al. 2010; reproduced by permission of the AAS).

Patrick 2003). Freeman et al. (2000a) measure the waiting-time distribution from WIND
spacecraft data in the range of Δ t ≈ 0.5× 102–105 s (≈ 0.1–30 hrs) and find an approx-
imate fit with a powerlaw function with a slope of p = 1.67 (Fig. 5.15). Comparisons of
solar wind data from the Advanced Composition Explorer (ACE) and MHD turbulence
simulations exhibited a good agreement in the waiting-time statistics of magnetic field in-
crements, which was interpreted as evidence of the solar wind magnetic structures emerg-
ing from MHD turbulence (Greco et al. 2009a). However, the distribution of waiting times
was found to be closer to a powerlaw for spatial separation scales smaller than the cor-
relation scale, while they are closer to an exponential distribution for events separated
by more than a correlation scale, which raises the question whether the phenomenon of
clusterization occurs (Greco et al. 2009b).

We can ask the question whether the prevailing observation of a powerlaw distribution
of inter-burst intervals (waiting times) in the solar wind is sufficient proof for the opera-
tion of MHD turbulence. While it is certainly consistent with some theoretical simulations,
SOC behavior cannot be ruled out because a nonstationary Poisson process produces also
powerlaw-like waiting-time distributions. However, the expected powerlaw slope is typ-
ically around p <∼ 3 for this model (Fig. 5.3), which is somewhat steeper than the index
observed in the solar wind (p ≈ 1.7).
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Fig. 5.15 Waiting-time distribution of inter-burst intervals between solar wind fluctuations (∝ B2) mea-
sured from WIND spacecraft data. The powerlaw fit (dashed line) has a slope of p = 1.67. Reprinted from
Freeman et al. (2000a) with permission; Copyright by American Physical Society.

5.7 Waiting-Time Statistics in Astrophysics

5.7.1 Flare Stars

Stars with high magnetic activity reveal in soft X-rays and EUV a high level of flux
variability on similar timescales as flares from the Sun (Butler et al. 1986; Ambruster
et al. 1987; Collura et al. 1988; Kashyap and Drake 1999; Audard et al. 1999, 2000; Osten
and Brown 1999). Large fluctuations have been identified as flare-like phenomena similar
to the Sun, based on spectral soft X-ray temperature measurements and simultaneous non-
thermal emission detected in radio wavelengths, and thus are believed to be the analogs
to large solar flares. The quiescent emission was initially interpreted as quasi-stationary
thermal emission of hot plasma from the stellar corona, but later it was interpreted as a
superposition of small fluctuations that correspond to solar microflares and nanoflares,
which potentially could play a role in the coronal heating (Audard et al. 2003; Güdel et
al. 2002; Güdel 2004; Arzner and Güdel 2004). An example of such quiescent emission
from the flare star AD Leo is shown in Fig. 5.16, recorded over 5 weeks. The question
arises whether these small fluctuations represent SOC phenomena, such as solar flares.

The time profile of the AD Leo observation shown in Fig. 5.16 shows a very low flux
of less than one photon count per second in the average, and thus is integrated over time
bins as long as one spacecraft orbit (1.57 hrs). The original data input thus consists of
time-tagged single photons, each one recorded at a different time ti. In order to extract
the maximum amount of information from such low count rates we have to analyze the
statistics of photon waiting times, the time intervals Δ ti = ti−ti−1 between two subsequent
photon arrivals, rather than the time intervals between two subsequent flares in the case
of solar data. An example of such an analysis is presented in Arzner and Güdel (2004),
which we briefly summarize here. One method consists of the assumption of a generic
time profile for each flare or subflare, such as a sharp rise with an exponential decay,
corresponding to the cooling time of the flare. Such a generic time profile is shown in
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Fig. 5.16 EUVE/DS light curve from flare star AD Leo obtained between 1999 April 2 and May 16,
integrated over one spacecraft orbit (5,663 s). The light curve of a model flare with an exponential decay
time of 3,000 s is shown in the insert (Arzner and Güdel 2004; reproduced by permission of the AAS).

the insert in Fig. 5.16. A second model parameter is the distribution of peak fluxes, for
which a powerlaw distribution (extending to lower energies) can be assumed for SOC
models (Fig. 5.17, top right). A numerical simulation can then mimic a time profile by
superposing the generic time profiles (Fig. 5.17, top left), randomly distributed in time,
with amplitudes drawn from the peak flux distribution. The same Monte-Carlo simulation
will then also provide the distribution of photon waiting times (Fig. 5.17, bottom right) and
the histogram of binned counts (Fig. 5.17, bottom left). Special provisions have to be made
for treatment of the flare-unrelated background subtraction. If the theoretical and observed
histograms of binned counts agree, we can conclude that the time profile is consistent
with a Poissonian random distribution of stellar flares and microflares. With this method,
a powerlaw slope of α = 2.3± 0.1 could be constrained for the distribution of flare peak
fluxes for the time profile observed from AD Leo (Arzner and Güdel 2004). A powerlaw
index greater than two implies that the integral of the peak flux distribution N(P) diverges
for the smallest events (Section 7.1.5), which thus could dominate the heating of the stellar
atmosphere. In addition, the match of the model with the data implies also that flaring on
this star is consistent with a stationary Poisson process. It would be interesting to perform
the same exercise for 5 weeks’ worth of solar data in the same wavelength range, for which
we found a nonstationary Poisson process (Aschwanden and McTiernan 2010). Flare stars
such as AD Leo have clearly a higher flare rate than the Sun at the same flux threshold
level (Audard et al. 2000).
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Fig. 5.17 Simulation of an intensity time profile (top left), a powerlaw distribution of amplitudes (top
right), histograms of binned counts (bottom left), and photon waiting times (bottom right) in the context
of data analysis of flaring events for the flare star AD Leo. The model flare used in this simulation has an
exponential decay time of 3,000 s, as shown in the insert of Fig. 5.16 (Arzner and Güdel 2004; reproduced
by permission of the AAS).

5.7.2 Black Hole Accretion Disks

Cygnus X-1 is the longest-known black-holes candidate, exhibiting a highly variable flick-
ering in X-rays on time scales of some 10 ms, which corresponds to a light travel time of
≈ 3,000 km, rendering it a very compact object. We discussed 1/ f power spectra of flicker
noise in Section 4.7 and the shot-noise model in Section 4.8. In the shot-noise model pro-
posed by Terrell (1972), the time profile is assumed to consist of identical pulses (or shots),
occurring randomly in time, so that the waiting-time distribution is expected to follow a
Poisson distribution. The randomness of the pulses was investigated with power spectra
(Terrell 1972) as well as with waiting-time distributions (Negoro et al. 1995). Similar tests
with the timing of gamma-ray bursts showed evidence for chain reactions in a near-critical
regime (Stern and Svensson 1996).

An observed waiting-time distribution obtained from Ginga observations of Cygnus
X-1 in its low (hard) state over 4.5 hrs in the energy range of 1.2–58.4 keV (Negoro et
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Fig. 5.18 Left: Observational waiting-time distribution for shots with peak intensities of P ≥ 1.5〈P〉, mea-
sured from the stellar black-hole candidate Cygnus X-1 with the Ginga spacecraft. The reference Poisson
distribution and 90% confidence regions are indicated by the solid and dotted lines. The insert shows
the ratio of the observed to the reference distributions. Right: Waiting-time distribution simulated with a
theoretical SOC model. The photon fluctuations are not included in the error bars (Negoro et al. 1995;
reproduced by permission of the AAS).

al. 1995) is shown in Fig. 5.18 (left). Shot events were selected with a flux threshold of P≥
1.5〈P〉, where 〈P〉 is the local mean number of counts. The distribution shown in Fig. 5.18
(left) contains 9,016 events. The distribution is approximately consistent with a Poisson
random distribution, indicated with a solid line in Fig. 5.18 (top left), including the 90%
confidence regions (dashed lines), but a detailed inspection reveals significant deviations at
waiting times of Δ t <∼ 5 s (see insert in Fig. 5.18, left). This small, but significant deviation
was also confirmed using different thresholds of P ≥ 2.0〈P〉 and P ≥ 2.35〈P〉. Thus the
data show an underabundance of short waiting times by comparison with the constant-rate
Poisson model.

A theoretical model in terms of a cellular automaton applied to accretion disks around
black holes was developed by Mineshige et al. (1994a), which we described in Section
2.7.1. The inner portion of a black hole accretion disk is assumed to be composed of nu-
merous small reservoirs. If a critical mass density is reached in a reservoir, an unknown
instability occurs and the accumulated material drifts inward as an avalanche, emitting
X-rays by bremsstrahlung during this process. Once a major avalanche occurs, the local
mass reservoir becomes depleted and some time is required to replenish the hole. Negoro
et al. (1995) performed Monte-Carlo simulations based on this SOC model, constrained
by the observed exponential pulse flux distribution N(P). The resulting simulated waiting-
time distribution is shown in Fig. 5.18 (right panel), which indeed reproduces an under-
abundance of shorter waiting times, or an overabundance of longer waiting times, with re-
spect to a Poissonian distribution, similar to that observed in the data (Fig. 5.18, left panel).
So, the observed suppression of the shot appearance after each big event suggests the ex-
istence of reservoirs in black hole accretion disks. The irregular timing and peak fluxes
of individual shots suggest many different reservoirs with different capacities. Comparing
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with an ideal SOC model where the peak flux distribution is a powerlaw, in contrast to the
observed exponential distribution from Cygnus X-1, one might think that some additional
processes might be in play, such as gradual diffusion of mass, even when the critical condi-
tion is not satisfied (Mineshige et al. 1994b). The underlying critical condition of the SOC
state is envisioned to be of magnetic origin, such as a magnetic reconnection process.

5.8 Summary

The basic definition of a random process is the Poissonian distribution of waiting times
between subsequent events, which can be approximated by an exponential probability dis-
tribution (Section 5.1). The distribution of waiting times is an exponential function for
stationary Poisson processes only, where the mean event rate is time-independent, while
the generalized concept of Bayesian statistics is needed (with piecewise constant event
rates during individual Bayesian blocks) for nonstationary Poisson processes (Section 5.2).
We showed mathematically that several nonstationary Poisson processes with a gradually
varying event rate lead to a powerlaw-like distribution of waiting times with a slope of
p = 3 in the tail, while highly intermittent flare rates produce a powerlaw slope as flat
as p = 2 (Section 5.2). Thus, waiting-time distributions can exhibit both exponential as
well as powerlaw-like distribution functions, depending on whether they have a station-
ary or a (time-varying) nonstationary mean event rate. The measurement of waiting-time
distributions is very sensitive to the event definition and the flux thresholds used in the
event detection (Section 5.3). For one dataset we demonstrated that event statistics without
thresholding is consistent with a stationary Poisson process, while significant flux thresh-
olds lead to a predictable increase of the mean waiting time and to powerlaw-like tails
in the waiting time distribution (Figure 5.10). Generally, the observed waiting-time distri-
butions rarely show a simple exponential function as expected for an ideal SOC system
driven at a constant mean rate. Waiting-time distributions observed in earthquakes exhibit
different distributions for main shocks and aftershocks (Section 5.4). In magnetospheric
physics (Section 5.5), waiting-time distributions of auroral emission exhibit finite-size ef-
fects, auroral electron jet (AE) indices exhibit flat powerlaws, and substorms in the Earth’s
magnetotail exhibit forced criticality by the external solar wind rather than classical SOC
behavior. Waiting-time distributions in solar physics (Section 5.6) are consistent with a
nonstationary Poisson process for flare events observed in hard X-rays (which show flare-
active and quiescent states similar to black holes), for flare events in soft X-rays, for coro-
nal mass ejections, and for radio bursts. Flat powerlaw waiting-time distributions are ob-
served for the solar wind. In astrophysics (Section 5.7), waiting times of photon counts are
modeled for flare stars (such as AD Leo), and waiting-time distributions of pulses from
accretion disks around black holes (such as Cygnus X-1) are found to reveal deviations
from a simple stationary Poisson process. In summary, the complexity of the observed
waiting-time distributions is not necessarily inconsistent with SOC models, but requires
modifications of ideal SOC models in terms of system size effects, clusterization, and
time-varying drivers.
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5.9 Problems

Problem 5.1: Calculate the theoretical waiting-time distribution for a Poisson process
that has another time-varying rate than that shown in Fig. 5.3, for instance a sinusoidal
variation, using either Eq. (5.2.6) or Eq. (5.2.7). Verify the analytical solution with
numerical Monte-Carlo simulations as shown in Fig. 5.3 (right panels).

Problem 5.2: Can you find a time-varying rate λ (t) that produces waiting-time distribu-
tions with a powerlaw tail that has a different value than p = 3 (Eq. 5.2.12), such as
p = 2 or p = 1? Could such a model explain the observations of the AE index (Fig. 5.8)
or solar wind (Fig. 5.15)?

Problem 5.3: Simulate a time series with a random distribution of pulses with a constant
width and a powerlaw distribution of peak fluxes. Sample the waiting times of this time
profile for thresholds from 10% to 50% of the peak flux. How does the functional form
of the waiting-time distribution change for the various thresholds? Can you predict the
thresholded waiting-time distributions analytically with a relationship like Eq. (5.6.2)?

Problem 5.4: Simulate a solar flare catalog for a hypothetical spacecraft that has a 90-
minute orbit, assuming a stationary flare rate of 〈Δ t〉 = 1 hr. How do the orbital gaps
of the spacecraft night affect the waiting-time distribution, compared with a spacecraft
that sees the Sun uninterruptedly?

Problem 5.5: Verify the distribution of binned counts and photon waiting times shown for
a flare star in Fig. 5.17 with a Monte-Carlo simulation, assuming the same powerlaw
distribution of flare amplitudes. What is the mean flaring rate for this case?
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The only reason for time is so that everything doesn’t happen at once.

Albert Einstein

Everything happens to everybody sooner or later if there is time enough.

George Bernard Shaw

The phenomenon of self-organized criticality (SOC) can only be identified and validated
by event statistics, which requires measurements of relevant observables, such as time
scales and size scales of avalanches. The most defining predictions of the ideal SOC model
are the scale-free powerlaw distributions of time and size scales, as well as the Poissonian
randomness of waiting times. In this Chapter we focus on the methods of measuring time
and size scale distributions, mostly based on events detected in astrophysical observations.
Apart from particle in-situ measurements in the heliosphere, astrophysical observations
generally provide light curves in some wavelength as input for event statistics. In a time
series, an event can then be defined by a start time, a peak time, and an end time, which
yields a convenient definition for the duration, peak flux, and integrated flux of an event,
to be used for statistics of SOC avalanches in terms of durations, peak energies, and to-
tal energies. However, the devil is always in the detail. There is no sure-fire method of
measuring a unique duration and a peak flux of an event from a light curve. There are nu-
merous diabolical effects such as the separation of events from a fluctuating background,
flux threshold biases, confusion from near-simultaneous events, the ambiguity of an event
definition in multiple-peak light curves, instrumental irregularities and data gaps, to name
just a few. The resulting distributions of measured values are often not robust, unless ev-
ery event can be uniquely defined, but rather subject to the event definitions and detection
algorithms. Thus, the methods used to detect events and to measure their parameters have
a profound impact on the results whether we find powerlaw distributions or different func-
tional forms, being our arbiters of SOC phenomena. The best way to investigate various
measurement biases is always to conduct a numerical simulation of data and to test a de-
tection algorithm with such well-defined data. The output of the resulting event statistics,



172 6. Event Detection Methods

in the form of parameter distributions and correlations, can then be cross-compared with
those of the input parameters and measurement biases can be quantified. In this Chapter
we will start with the simulation of a time series that contains SOC events according to our
standard model described in Section 3.1 and will scrutinize the performance and biases of
various detection methods that have been previously used for SOC event statistics.

6.1 Test Data for Event Detection

In order to test various structure detection algorithms it is useful to simulate first a realistic
model of a time series f (t). Since we are mostly interested in SOC phenomena, we use
our standard analytical model described in Section 3.1, which consists of avalanche events
that have an exponential growth during the rise time and a linear decay after the peak. The
canonical time profile of such a pulse is shown in Fig. 3.2. The pulses have random waiting
times and random rise times.

We simulate a time series containing n = 1,000 pulses with an average waiting time of
Δt0 = 5 and a time resolution of dt = 0.1, so the time series contains nΔt0/dt = 50,000
data points. The start times ti are randomly distributed in the time interval 0 < ti < tmax =
nΔt0 = 5,000, produced by a numerical random generator. We verify that the distribu-
tion of waiting times Δti follows the prescribed random (exponential) distribution N(Δt)
(Eq. 5.1.1), which is shown in Fig. 6.1 (bottom row, left). The rise times have a mean of
〈τ〉 = tS = 1 and are numerically generated with the function (Eq. 7.1.30),

τi = −tS log(1−ρi) , ρi = [0,1] , (6.1.1)

where ρi is a uniformly distributed random number in the interval [0,1], which is drawn
from a numerical random generator. We verify that the distribution of rise times τi fol-
low the prescribed random (exponential) distribution N(τ) (Eq. 3.1.4), which is shown in
Fig. 6.1 (third row, left).

Next we simulate the peak energies Pi according to Eq. (3.1.3),

Pi = W0

[
exp

(
τi

τG

)
−1

]
, (6.1.2)

using the constants W0 = 1 and τG = 1. The resulting distribution of peak energies Pi has a
powerlaw slope of αP = 1.89 (Fig. 6.1, third row right). The theoretical distribution of peak
energies Pi is expected to be a powerlaw distribution with a slope of αP = (1+τG/tS) = 2.0
(Eq. 3.1.28). This is compatible with the simulation, since we found that different random
number representations typically change the powerlaw slope of the distributions in the
order of about ±10%.

Next we can simulate the decay times Di of the pulses, which depend linearly on the
peak energy Pi (Eq. 3.1.13),

Di = tD

(
Pi

W0

)
, (6.1.3)
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Fig. 6.1 Simulation of a time series (top panel) consisting of pulses with an exponential rise and a linear
decay as defined in our analytical exponential-growth SOC model (Section 3.1), with the number of events
n = 1,000, average waiting time Δt0 = 5, time resolution dt = 0.1, growth time τG = 1, average saturation
time tS = 1, and decay time τD = 1. The different panels show the first pulses enlarged (second row left),
the distributions or rise times and waiting times (left column), correlations between E, T , and P (middle
column), and the frequency distributions N(T ), N(P), and N(E) with fitted powerlaws (right column).
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using the constant tD = 1. Adding the rise time τi and the decay time Di together, we obtain
the total pulse duration Ti (Eq. 3.1.14),

Ti = τi +Di . (6.1.4)

The resulting distribution of total durations Ti has a powerlaw slope of αT = 1.99 (Fig. 6.1,
second row right). This value is compatible with the theoretical expectation αT = αP =
(1+ τG/tS) = 2.0 (Eq. 3.1.28).

Now we can calculate the total energy Ei (with the background level W0 subtracted),
according to Eq. (3.1.20),

Ei = PitG −W0τi +
1
2

PiDi . (6.1.5)

The resulting distribution of total energies Ei has a powerlaw slope of αP = 1.41 (Fig. 6.1,
bottom row right). Theoretically, we expect the relation αE = (αP + 1)/2 = (2 + 1)/2 =
1.50, which indeed is compatible. For our particular random representation shown in
Fig. 6.1 we actually expect αE = (αP +1)/2 = (1.89+1)/2 = 1.44, which is even closer
to the measured value.

We can also plot the correlations between E and P and find a powerlaw fit of E ∝ P1.98

(Fig. 6.1, third row middle), which agrees with the theoretical limit of E ∝ P2 for large
values (Eq. 3.1.28). Plotting the correlation between T and P we obtain T ∝ P0.99 (Fig. 6.1,
bottom row middle), which agrees with the theoretical limit of T ∝ P1 for large values
(Eq. 3.1.28).

Fig. 6.1 shows such a simulated flux time profile f (t), with the full time series shown
(Fig. 6.1, top), as well as an enlargement of the first pulses (Fig. 6.1, second row left).
Thus we have a simulation of frequency distributions with well-defined values which can
be cross-compared with those obtained from different pulse detection algorithms, as we
will carry out in the following sections.

When we refer to the peak energy P and total energy E we follow the nomenclature of
the SOC terminology, but actually mean the peak flux P and total (time-integrated) flux
or fluence E when we detect events from the photon flux of an astrophysical time series.
Strictly speaking, the energy rate is then defined in terms of the radiated energy dE/dt =
(nph/dt)hν , where (nph/dt) is the number of photons per seconds. We will discuss other
definitions of energies for SOC avalanches in Chapter 9 on physical SOC models.

6.2 Threshold-Based Event Detection

The probably most common and conceptually simplest method of defining events and mea-
suring their duration in astrophysical time series is based on flux thresholds. The essential
assumption is that background fluctuations have fluxes below the threshold, while events
of interest exceed the flux threshold. This method of event detection is straightforward and
pretty safe for large events and high thresholds, but systematically degrades when we de-
tect weaker events, as desirable for SOC studies spanning over a large logarithmic range of
time or size scales. In order to obtain some insight how methods of threshold-based event



6.2 Threshold-Based Event Detection 175

detection affect the statistical distribution of SOC parameters, we apply this method to the
test data shown in Fig. 6.1.

We detect an event simply by identifying the start and end times when the flux profile
f (t) crosses the threshold Fth at those times according to,

f (t) < Fth for t < tstart
f (t) ≥ Fth for tstart < t < tend
f (t) < Fth for t > tend

(6.2.1)

The total time duration T is then defined by the time difference, the peak energy P by the
maximum flux during this time interval, and the total energy E by the integral of the flux
above the threshold,

Ti = tend − tstart
Pi = max[ f (tstart), ..., f (tend)]−W0

Ei = ∑iend
i=istart

[ f (ti)−W0]dt
(6.2.2)

The frequency distributions and parameter correlations obtained with this detection method
is shown in Fig. 6.2, which can be compared with the input parameters of the simulated
time series shown in Fig. 6.1. The biggest difference is that we detect only 172 pulses out
of the 1,000 simulated pulses, where we lose progressively more pulses towards weaker
fluxes, because they either are below the threshold, or occur near-simultaneously during
larger pulses. This progressive insensitivity towards weaker events leads to a peak flux-
dependent under-abundance of shorter pulse durations, and thus to an underestimate of the
powerlaw slope, i.e., αT = 1.48 for a threshold of Fth = 1.5W0 ( Fig. 6.2, second row right),
compared with αT = 1.99 of the input data. Similarly, also the powerlaw slope of the peak
energy distribution is underestimated, i.e., αP = 1.50 (Fig. 6.2, third row right), compared
with α = 1.89 of the input data. Also the powerlaw slope of the total energy distribution
is underestimated, i.e., αP = 1.28 (Fig. 6.2, bottom row right), compared with α = 1.41 of
the input data. The correlations between the parameters are less severely affected, because
the threshold effects cancel out to some degree, so we find E ∝ P1.88 (instead of ∝ P2) and
T ∝ P0.93 (instead of ∝ P1) (Fig. 6.2, left).

This example clearly demonstrates that a flux threshold leads to a significant underes-
timate of the powerlaw slopes, even for noise-free data (Fig. 6.2). The bias mostly occurs
for pulse durations that are shorter than the average waiting time. Only for time series con-
taining well-separated events this bias vanishes in the limit of infinitely small thresholds.

Light curves from astrophysical objects often have a low signal-to-noise ratio, in which
case the rate of arriving photons at our detector exhibits fluctuations of comparable magni-
tude as the weakest SOC events we try to detect. The observed photon flux Fobs(t) follows
Poisson statistics,

fobs(ti) ≈ f (ti)+ρ(ti)
√

f (ti) , (6.2.3)

where ρ(ti) is a random number with a mean of μ = 〈ρ(ti)〉 = 0 and a standard deviation
of σ = 1 in the Gaussian approximation (Section 4.1). The addition of this photon noise to
the simulated time profile shows clearly a noisier background, while the signal-to-noise ra-
tio is better at the peak of large pulses (Fig. 6.3, top). If we detect temporal structures with
a threshold of Fth = 4.0W0, we detect a total of N = 1,015 structures (Fig. 6.3), compared
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Fig. 6.2 The same time series as shown in Fig. 6.1 (top panel), with frequency distributions of event pa-
rameters (right) and correlations between event parameters (left), for events detected above a flux threshold
of Fth ≥ 1.5W0. The histograms of detected structures are shown in gray, while the histograms of the input
data (Fig. 6.1) are shown in white.
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Fig. 6.3 The same time series as shown in Fig. 6.1 but with added Poissonian photon noise (top panel).
The frequency distributions of event parameters (right) and correlations between the event parameters are
shown (left) for events detected above a flux threshold of Fth ≥ 4.0W0.
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with N = 172 in the noise-free data (Fig. 6.2), out of the simulated N = 1,000 pulses. The
threshold of Fth = 4.0W0 corresponds to a 3-sigma significance level (for a Gaussian dis-
tribution), which has a confidence level of 99.73%, so we expect about 0.27% fluctuations
beyond the threshold level (i.e., positive and negative), or half of it (0.135%) above the
positive threshold, which amounts to excess fluctuations in 68 time bins for our time series
of n = 50,000 data points, which explains the observed excess of 15 events. If we compare
the observed frequency distribution of time scales between the input parameters (Fig. 6.1)
and the noisy data (Fig. 6.3), we can see that we detect an over abundance of events with
small peak energies, leading to a much steeper slope for peak fluxes (αP = 2.97 instead
of αP = 1.89), a slightly steeper slope for energies (αE = 1.67 instead of αE = 1.41), and
a flatter slope for durations (αT = 1.57 instead of αT = 1.99). Consequently, event detec-
tion with noisy data lead to substantially modified frequency distributions, hence, we have
to apply suitable procedures to suppress the photon noise. This is more of a problem for
photon-starved astrophysical time series, but much less so for the generally photon-rich
solar data.

An efficient and robust technique to get rid of photon noise is the smoothing of a time
series with a boxcar function, which is defined as the replacement of the flux value f sm

i =
f sm(ti) at each time point with the average within a “boxcar” centered around the time
point ti,

f sm
i = f sm(ti) =

i+nsm/2

∑
j=i−nsm/2

f (t j) . (6.2.4)

We demonstrate this technique by applying a boxcar smoothing with a length of nsm =
2tS/dt = 20 datapoints to the noisy time series of Fig. 6.3, which is shown in Fig. 6.4. We
notice that the data noise is mostly gone; an individual pulse shape is again recognizable
with a well-defined rise and decay time (Fig. 6.4, second row left), and the resulting fre-
quency distributions have similar powerlaw slope as the noise-free data (Fig. 6.2), i.e., for
durations αT = 1.42 versus αT = 1.48, for peak energies αP = 1.43 versus αT = 1.50, for
energies αE = 1.23 versus αT = 1.28. What is even more important, we detect a similar
number (N = 211) of structures in the smoothed data for a threshold of Fth = 1.5 as in the
noise-free data with the same threshold (N = 172), so we get rid of most false structures
produced by the photon noise.

The consequences of time-overlapping pulses, photon noise, thresholding, and pho-
ton noise on the measurement of time scale distributions, as we exemplified here, apply
specifically to pulses that have a powerlaw distribution in their amplitude and duration,
as expected for the classical SOC model. Statistics of pulses with other amplitude and
duration distributions may exhibit a different behavior. The analysis of astrophysical time
series consisting of pulses with random (exponential) distributions in amplitude and dura-
tions has been studied in Scargle (1981), with a model called the moving average model
therein, in contrast to the autoregressive model (Scargle 1981), where pulses are clus-
tered in time and have a memory over their recent past. The effects of the event definition
and threshold (see Fig. 5.4, middle column) on the measured time scale distribution was
also quantitatively studied in a particular time series constructed from an MHD turbulence
model (Buchlin et al. 2005), and the main drawbacks were found to be similar as demon-
strated here: (i) the loss of small events that produces a cutoff for short time scales, (ii)
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Fig. 6.4 The same simulation of a time series (top panel), correlations (left), and frequency distributions
(right) as shown in Fig. 6.3, but a smoothing with a boxcar length of nsm = 2tS/dt = 20 datapoints has
been applied.
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the inability to separate closely-spaced events, and (iii) the adjustment of thresholds in
nonstationary time series (with varying mean rates), which requires Bayesian statistics.
Multi-level detection of pulses using the flux levels in the preceding and following time
intervals has been applied in the automated detection of gamma ray bursts (Quilligan et al.
2002).

6.3 Highpass-Filtered Event Detection

In order to overcome the non-detection of weaker pulses that occur simultaneously during
longer pulses, a fundamental difficulty with threshold-based detection methods (Section
6.2), it is sometimes useful to use a highpass filter, which filters out the slowly-varying time
components, so that small pulses on top of a longer pulses can be detected. We demonstrate
this method in Fig. 6.5, where we use the same smoothed time series as shown in Fig. 6.4,
but subtract a moving-average time profile that is smoothed with a 20 times longer boxcar,
nsm2 = nsm1 × 20. The method of subtracting a smoothed time profile from the original
data is also called unsharp masking, and is defined as,

f HP
i = f HP(t = ti) = fi −

i+nsm2/2

∑
j=i−nsm2/2

f (t j) . (6.3.1)

Since we already smoothed the original data with a smoothing boxcar nsm1, which repre-
sents a lowpass filter, we have actually a bipass filter,

f BF
i = f BF(t = ti) =

i+nsm1/2

∑
j=i−nsm1/2

f (t j)−
i+nsm2/2

∑
j=i−nsm2/2

f (t j) , (6.3.2)

where the lowpass filter constant has to be longer than the highpass filter constant, i.e.,
nsm2 > nsm1. A bipass filter is essentially sensitive to time structures in the time range of
approximately nsm1 × dt < T < nsm2 × dt. In our example shown in Fig. 6.5 we expect
a lower cutoff of T1 = nsm1 ∗ dt/2 = 1.1 and an upper cutoff of T2 = nsm2 ∗ dt/2 = 20.
As we can see from the number of detected time structures, the highpass filter method
yields a more complete sample, i.e., N = 939 for a threshold of Fth = 0.01 W0, compared
with N = 172 in the noise-free data (Fig. 6.2). The resulting frequency distributions of
the bipass-filtered structures are remarkably robust in retrieving the powerlaw slopes of
fluxes (αP = 1.74 versus αP = 1.89) and total energies (αE = 1.27 versus αP = 1.41),
and durations (αT = 1.87 versus αP = 1.99), but impose an upper cutoff at the filter time
scale (T <∼ nsm2 dt = 40) (dashed line in Fig. 6.5, second row right). Thus, except for the
filter cutoff of time scales, this method yields robust powerlaw slopes and has a detection
efficiency of ≈ 94% for the example analyzed here. However, the parameter correlations
are significantly distorted, i.e., E ∝ P1.44 (instead of P2), and T ∝ P0.84 (instead of P1)
(Fig. 6.5, left). Apparently, the distortion of the parameter correlations cancel out to a
large extent in the frequency distributions.
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Fig. 6.5 The same simulation of a time series (top panel), correlations (left), and frequency distribu-
tions as shown in Fig. 6.3, except for application of a lowpass filter (smoothing) with a boxcar of
nsm1 = 2tS/dt = 20 datapoints and a highpass filter with a boxcar introduces a cutoff at T <∼ 40 in the
time duration histogram (marked with a dashed line in second row right).
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Taking advantage of these properties, we could conceive an improved method by com-
bining multiple bipass filters with adjacent but not overlapping time scale ranges, in order
to obtain a complete sampling in each filter. Extending this method into the continuum
limit we arrive at the so-called multi-scale methods, which include the wavelet method
(Section 6.7) or principal component analysis (Section 6.8).

6.4 Peak-Based Event Detection

A method of pulse detection that is independent of flux thresholds is the detection of pulse
peaks, which of course strongly depends on the pulse shape. In the case of noise-free
data (Fig. 6.1), the detection efficiency could approach 100%, because every pulse has a
single peak that can be separated temporally, except for near-simultaneous pulses within
<∼ 2dt, where dt is the time resolution of the data. In noisy data, however (Fig. 6.3), every
pulse has multiple peaks, which even persist in smoothed (Fig. 6.4) and bipass-filtered data
(Fig. 6.5). Effects of the event definition by peak times (Fig. 5.4, left) on the frequency
distribution of pulse durations are studied in Buchlin et al. (2005) for a particular dataset
of MHD turbulence. The problem is mostly to discriminate between peaks of significant
pulses and noise peaks. As the enlarged pulse in Figs. 6.3 to 6.5 show, a single pulse
can have a multitude of noise peaks. Generally, a decomposition of a multi-peak structure
with n local peaks into a denoised structure is ambiguous, because there are n(n− 1)/2
possible combinations to form subgroups, which can have a significant combined flux
about the local background. Thus, a denoising method has first to be applied to the time
series, such as smoothing (Fig. 6.4) or a Fourier lowpass filter (Fig. 6.6), before unique
peaks can be attributed to individual pulse structures. A peak-based event detection is the
less problematic the better the signal-to-noise ratio of the data is.

Once the peaks of significant structures have been identified with a unique peak time,
we still have to find the start and end times in order to obtain the total duration. The start
time can usually be found by tracking the next significant local minimum (valley) before
the peak time. The end time can be estimated the same way by the next local minimum
after the peak time, but since our pulses naturally have a longer decay time than rise time,
there may be multiple peaks that occur during the decay time. In order to bypass those
secondary structures, one would have to require the following minimum to be as low in
flux as the flux minimum at the start time.

6.5 Fourier-Filtered Event Detection

A common method of denoising a time series is the application of a Fourier lowpass filter,
which we demonstrate in Fig. 6.6. Strictly speaking, this is a special method of the more
general category of threshold-based event detection methods (Section 6.2). We use a Fast
Fourier Transform (FFT) to produce a power spectrum, apply a cutoff to frequencies,
ν < νcuto f f = 1/t f ilter, or time scales of T >∼ t f ilter, and apply the inverse Fourier transform
to return a smoothed time profile, so it is a three-step process,
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Fig. 6.6 The same simulation of a time series (top panel), correlations (left), and frequency distributions
(right) as shown in Fig. 6.1, except for application of a Fourier lowpass filter with a filter passband for
time scales t ≤ t f ilter = 3 and threshold Fth = 4.
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f (t) �→ P(ν) = FFT [ f (t)] ,
P(ν) �→ P(ν ≥ νcuto f f ) ,
P(ν ≥ νcuto f f ) �→ flowpass(t) = FFT−1[P(ν ≥ νcuto f f )] .

(6.5.1)

Once we obtain the Fourier lowpass-filtered time profile, either a threshold-based (Section
6.2) or a peak-based (Section 6.4) method can be applied to produce statistics of peak
fluxes and time durations.

In Fig. 6.6 we demonstrate a peak-based detection method applied to a denoised time
profile using a Fourier filter with a cutoff of t f ilter = 3. In addition we require a thresh-
old of Fth = 4. The detection of a structure requires a local peak above this threshold.
The start time is found at the next local minimum before the peak, while the end time is
found at the next local minimum after the maximum that has a lower flux than at the start
time. With this detection scheme we detect 752 (75%) structures in the example shown in
Fig. 6.6. As the enlarged time profile in Fig. 6.6 shows, there are two local peaks during the
fist time segment of t = [0,15], which can be compared with the input of four structures
that appear clustered (Fig. 6.1). Thus, the Fourier filter has some capability to discrimi-
nate near-simultaneous structures, but the number of discriminated structures depends on
the filter cutoff. The resulting frequency distributions are relatively robust for this cutoff
filter and flux threshold, i.e., for the duration αT = 1.94 versus αT = 1.99, for the peak
energy αP = 2.01 versus αP = 1.89, and the total energy αE = 1.67 versus αT = 1.41
(Fig. 6.6). Thus the application of a Fourier lowpass filter is a quite robust technique in
retrieving the correct slope of the frequency distributions, has a high detection efficiency
(≈ 75%), but has the disadvantage of missing time structures longer than the time scale
cutoff (T >∼ t f ilter). The results, of course, depend very much on the Fourier filter cutoff
ν f ilter and flux threshold Fth.

6.6 Time Scale Statistics from Power Spectra

A Fourier spectrum of a time series is primarily used to detect hidden periodicities, one
famous example in astrophysics being the periodic signals from pulsars. Alternatively, a
power spectrum can also serve to characterize the occurrence of time structures, such as
the 1/ f noise spectrum, which corresponds to a Poissonian (random) distribution of time
scales (Section 4.6). In Section 4.8.2 we derived the specific function of power spectra
P(ν) for randomly distributed pulses with a fixed or mean duration 〈T 〉 according to the
shot noise model, as well as for a powerlaw distribution N(T ) of pulse durations (Section
4.8.4). Therefore, we can invert the distribution of time scales N(T ) analytically from the
power spectra P(ν) of a time series for those special cases.

We demonstrate the inversion of the time scale distribution N(T ) from the power spec-
trum P(ν) with the example simulated in Fig. 6.3. In Fig. 6.7 we show the Fourier spectrum
of the noisy time series f (t) simulated in Fig. 6.3, computed with a standard FFT. We fit a
powerlaw spectrum and obtain a slope of p = 1.03 for the spectrum P(ν) ∝ ν−p. The time
series was simulated with a growth time τG = 1 and a mean saturation time tS = 1, which
yields a peak energy distribution with a powerlaw slope of αP = (1+τG/tS) = 2. The dis-
tribution of total durations has a powerlaw slope of αT = αP = 2, while the distribution
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Fig. 6.7 Fourier power spectrum F(ν) of time series f (t) shown in Fig. 6.3 (top panel). The spectrum is
fitted with a powerlaw function, P(ν) ∝ ν−p with a slope of p ≈ 1.03.

of energies is αE = (αP + 1)/2 = 1.5 (Eq. 3.1.28). From the relation Eq. (4.8.23), i.e.,
−αE(1 + γ) + γ = −αT we can constrain the correlation coefficient γ between energies
and time durations, E ∝ T (1+γ),

γ =
αT −αE

αE −1
, (6.6.1)

which yields γ = (2−1.5)/(1.5−1) = 1. The corresponding powerlaw index of the power
spectrum, P(ν) ∝ ν−p, is then p = (2−αE)(1+ γ) = (2−1.5)(1+1) = 1.0 according to
Eq. (4.8.27), which agrees with our measurement of p ≈ 1.03 obtained in Fig. 6.7. The
inversion of the time scale distribution requires the knowledge of both the power spectrum
with slope p and the correlation coefficient γ , as we can infer from Eqs. (4.8.22) and
(4.8.27),

αT = αE(1+ γ)− γ = 2(1+ γ)− p− γ (6.6.2)

so the correlation E ∝ T (1+γ) between the total energies E and total durations T has to be
measured too, at least for the larger pulses.

A power spectrum from a solar light curve observed with the GOES 6 satellite over a
total of 32 months during the years 1991–1994 was measured by Ueno et al. (1997), who
finds three different spectral components, which can be characterized with the following
powerlaw slopes (Fig. 6.8): p = 1.50 ± 0.02 in the frequency range of ν ≥ 10−3.8 Hz
(<∼1.8 hrs), p = 0.95 ± 0.03 in the frequency range of 10−4.7 < 10−3.8 Hz (1.8–14 hrs),
and p = 0.45 ± 0.08 in the frequency range of ν ≤ 10−4.7 Hz (>∼14 hrs). If we translate
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Fig. 6.8 Power spectrum from a solar soft X-ray time profile observed by GOES during 1991-1994, show-
ing three segments with different powerlaw slopes of p ≈ 0.45,0.95, and 1.50 (separated by arrows). The
insert shows a power spectrum from Cygnus X-1 obtained by Negoro (1992) which has a similar spectrum
(Ueno et al. 1997; reproduced by permission of the AAS).

these powerlaw slopes of the power spectrum p into the powerlaw slopes αT of a time scale
distribution, using γ = 1 as above, we would obtain values of αT = 1.55,2.05, and 2.55 in
order of increasing time scales, which appears to be similar to those found from numerical
SOC simulations of cellular automatons by Lu and Hamilton (1991), where a mean slope
of p = 2.17 was found, being somewhat flatter at smaller time scales and somewhat steeper
at longer time scales (Eq. 2.6.15). Interestingly, this three-part power spectrum for the Sun
resembles also a similar power spectrum observed from the black hole candidate Cygnus
X-1 (Negoro et al. 1992; Ueno et al. 1997); see insert in Fig. 6.8.

Other applications of Fourier power spectra analysis to astrophysical time series address
the restoration and enhancement of astronomical data (Brault and White 1971), unevenly
spaced data (Scargle 1982, 1989), and uncertainties in the Fourier power spectrum due to
noise (Hoyng 1976).
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6.7 Wavelet-Based Time Scale Statistics

When analyzing non-periodic time structures, to be expected for randomly occurring SOC
events, a Fourier decomposition of a time profile is not a natural tool, since the har-
monic modes used in the expansions are themselves periodic, while the time profile is
non-periodic. A better approach is to use other spectral methods, such as the Windowed
Fourier Transform, a wavelet-based method, or a multi-resolution method. A windowed
Fourier transform chops up a time series f (t) into a sequence of windows and yields a
Fourier spectrum P(ν , ti) for every window ti as a function of time. The wavelet trans-
form can be considered as a generalization of the windowed Fourier transform, which also
yields a gliding power spectrum as a function of time, but uses a better adapted functional
decomposition of pulses in a time series, using a so-called mother wavelet function, rather
than the harmonic sinusoidal functions used in the windowed Fourier transform. There is
extensive literature on wavelet methods in general (e.g., Mallat 1989; Daubechies 1992;
Meyer and Ryan 1993; Kaiser 1994, Chan 1995), which we do not review here.

Wavelet methods in the analysis of astrophysical time series have been introduced by
Scargle (1993), and applied, e.g., to study geomagnetic time series (Kovacs et al. 2001;
Vieira et al. 2003), solar helioseismology (Fröhlich et al. 1997), solar diameter variations
(Vigoroux and Delache 1993), solar cycle variability (Watari 1995, 1996a; Polygiannakis
et al. 2003), solar irradiance (Willson and Mordvinov 1999), solar chromospheric oscil-
lations (Bocchialini and Baudin 1995), sunspot oscillations (Jess et al. 2007), solar hard
X-ray flares (Aschwanden et al. 1998a; McAteer et al. 2007), solar radio bursts (Schwarz et
al. 1998), stellar chromospheric oscillations (Frick et al. 1997), quasi-periodic oscillations
in accretion disks (Scargle et al. 1993), or gamma-ray bursts (Young et al. 1995), just to
name a few that deal with wavelet-based analysis of time series. In addition, wavelet-based
analysis has also been applied in the spatial domain, especially in solar imaging data.

For statistics of SOC parameters, in particular for durations T of pulses, we are inter-
ested whether the output of standard wavelet algorithms, the time-dependent Fourier power
spectral density P(ν , ti), consisting of scalegrams S(T ) for each time interval [ti, ti+1],

S(T ) = 〈|P(ν [T ], t)|2〉 , for ti < t < ti+1 (6.7.1)

where ν [T ] = 1/t, can be transformed into a distribution N(T ) of time scales T . Such
a transformation has been developed in Aschwanden et al. (1998a). The procedure is
sketched in Fig. 6.9 and examples are simulated in Fig. 6.10. Essentially, a scalegram
S(T ) can be considered as a convolution of a distribution function N(T ) of time scales T
with a kernel function p(T ). The distribution N(T ) of time scales can then be obtained
from the inversion of a scalegram S(T ) using the kernel function p(T ) that corresponds
to a particular mother wavelet function. The schematic in Fig. 6.9 shows a rectangular
distribution N(T ) of time scales and how the convolution of a (double-powerlaw) kernel
function p(T ) produces the scalegram S(T ). The numerical simulations in Fig. 6.10 show
artificial time profiles f (t), the wavelet scalegrams S(T ), and the inverted time scale distri-
butions N(T ) (histograms in Fig. 6.10, right), compared with the theoretical distributions
N(T ) (delta-functions and Gaussians) that have been used as input in the generation of the
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Fig. 6.9 Top: Triangle mother wavelet function w(t) (thick line) and smoothing function q(t) (dotted).
Bottom: Schematic illustration of the convolution of a standard distribution function N(T ) (bottom) of
time scales with kernel functions p(Ti) that sum up to a scalegram S(T ) (Aschwanden et al. 1998a).

time profiles f (t). These examples demonstrate that the wavelet-based inversion method
can retrieve the original time scales.

A practical example of a wavelet scalegram of an observed time profile observed in a so-
lar flare is shown in Fig. 6.11, along with the inverted time scale distributions N(T ) in four
different time intervals. This method has been applied to the time profiles of 46 solar flare
events and exponential distributions of time scales were found, in contrast to powerlaw-
like distributions expected for SOC models. In the study of McAteer et al. (2007), the
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Fig. 6.10 Eight numerical simulations (A–H) of time profiles f (t) (left panels), the computed wavelet
scalegrams S(T ) (middle panels), and inverted time scale distribution functions N(T ) (right panels). The
time profiles contain also the noise templates (left panels). The scalegrams (diamonds in middle panels)
contain also the noise scalegrams (thin solid line) with the 3σ -limit (dashed line). The slope βmax is
measured at the steepest part of the scalegrams. The inverted time scale distribution functions (histograms
in right panels) are compared with the theoretical distribution functions (thick curve) used in the simulation
of f (t), with mean time scales Tsim, and are compared with the inverted peak times Tpeak (weighted over
hatched part of histogram) (Aschwanden et al. 1998a).
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Fig. 6.11 Time profile (top), scalogram P(T, t) (middle panel with grayscale), time-averaged scalegrams
S(T ) (third row), and inverted time scale distribution functions N(T ) (fourth row) for the Masuda flare,
92-Jan-13, 17:27:42 UT, observed with BATSE/CGRO (Aschwanden et al. 1998a).
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wavelet-based analysis of a solar flare revealed a Hölder exponent that indicates a high
degree of memory between subsequent hard X-ray peaks, which is also in contrast to the
supposed independent events in a SOC process. Wavelet-based statistics of time scales
has not been exploited to the full extent yet, but appears to be a very promising method
for obtaining statistics of temporal structures from convolved time series, which contain
near-simultaneous events with differing time scales.

6.8 Principal Component Analysis

While a Fourier analysis decomposes a time series into harmonic sinusoidal components,
and a wavelet analysis decomposes into stretched and shifted mother wavelet functions
(e.g., a Mexican hat function), there is an even better adjusted decomposition method that
attempts to find a minimum number of best-fit components, which is called Principal Com-
ponent Analysis (PCA), Independent Component Analysis (ICA), Proper Orthogonal De-
composition (POD), Complex Empirical Orthogonal Function (CEOF) analysis, Hotelling
transform, or Karhunen–Loève transform (KLT). The mathematical procedure transforms
a number of possibly correlated variables into a smaller number of uncorrelated (indepen-
dent, or orthogonal) variables, called principal components, and involves the calculation of
eigenvalues of a data covariance matrix, or a singular value decomposition of a data matrix.
The PCA method can be used for automated detection of spatial or temporal features.

In astrophysical time series (or image time series), the PCA method (or a PCA-like ex-
tension) has been applied, e.g., to solar EUV data to detect propagating waves (Terradas et
al. 2004), to solar cycle synoptic data to characterize the “butterfly diagram” over ≈25–50
years (Lawrence et al. 2005; Vecchio et al. 2005a), to solar magnetogram data to identify
low-frequency oscillations in photospheric motion (Vecchio et al. 2005b), to interplanetary
magnetic field polarity data (Cadavid et al. 2008), or to ≈17,000 light curves of variable
stars such as RR Lyrae’s, Cepheids, and Mira variables (Deb and Singh 2009).

An example of a PCA analysis is shown in Fig. 6.12 for a time series of solar EUV
data (Terradas et al. 2004). A decomposition into oscillatory components with indepen-
dent periods is attempted, called empirical mode decomposition (EMD), which obtains
from the analyzed signal six different components with different periods and amplitudes.
The sum of the six decomposed components represent the original data within the data
noise. The EMD method produces a decomposition into frequency band-limited compo-
nents by using information from the signal itself instead of prescribing basis functions with
fixed frequency, such as in Fourier or wavelet methods. The decomposition is not unique,
but attempts to represent a time series with a minimum number of time scale ranges. An-
other example is shown in Fig. 6.13 for a time series from a variable star (Deb and Singh
2009). The full quasi-periodic time series was decomposed with both Fourier and PCA de-
composition techniques. Fig. 6.13 shows the reconstruction of a fundamental mode (FU)
Cepheid light curve using the first 1, 3, 7, and 10 principal components. It was found that
10 principal components contain nearly 90% of the variance in the data.

These examples demonstrate how an arbitrary time profile can be decomposed into a
relatively small number of noise-free time time profiles fT (t), each one having a char-
acteristic time scale T within a prescribed bandwidth Δt. From these time profiles fT (t),
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Fig. 6.12 A time series of EUV flux observed in a loop in the solar corona (top), decomposed into six
principal components with increasing time scales, according to an empirical mode decomposition (EMD)
method. Each component is not strictly periodic (as a Fourier mode), but has its own characteristic time
scale within a small tolerance range, T ±ΔT (Terradas et al. 2004; reproduced by permission of the AAS).
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Fig. 6.13 Reconstruction of four FU Cepheid light curves using the first 1, 3, 7, and 10 principal compo-
nents (Deb and Singh 2009).

the peak amplitudes PT , and total time-integrated fluxes ET of pulse structures with a
time scale T can be sampled, using either a threshold-based or peak-based event detection
method. This would allow us, after proper normalization, to obtain the frequency distri-
butions of time scales N(T ), peak energies N(P), and total energies N(E). Therefore, the
PCA method appears to be a useful and efficient method for SOC statistics, probably better
adapting to unknown pulse shapes than Fourier-based and wavelet-based methods.

6.9 Image-Based Event Detection

In the previous sections we discussed SOC event statistics obtained from one-dimensional
(1-D) time series data f (t), as we usually obtain from astrophysical observations, but
statistics of SOC events has also been inferred from time sequences of images f (x,y; t),
such as from magnetospheric or solar imaging data. Although the automated processing
of three-dimensional (3-D) data f (x,y; t) is more complex, the chief advantage for SOC
statistics is the spatial separation of near-simultaneous events, which can conveniently be
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discriminated in the space domain, while they coincide in the time domain. This is particu-
larly important for SOC statistics because spatial correlations can introduce time clustering
and deviation from Poissonian random statistics (e.g., aftershocks of earthquakes, or sym-
pathetic solar flares), in contrast to spatially independent events that are expected to obey a
true random behavior of waiting times. Event or feature detection in imaging data became
a growing industry and for general introductions into digital image processing we refer
to the textbooks of Gonzales and Woods (2008), Jain (1989), Castleman (1996), Jähne
(2005), Woods (2006) and Mallat (2008), and more specifically for astrophysical data see
Starck et al. (1998) and Starck and Murtagh (2002), or for image processing techniques
and feature recognition in solar physics see Aschwanden (2009). Here we will discuss only
a few examples that are most relevant for SOC statistics.

A threshold-based detection method of temporal features essentially involves a crite-
rion f (x,y; t) ≥ Fth in 3-D space, but additionally requires the automated detection of
spatially coherent and contiguous features. A common procedure is to perform an image
segmentation in an image f (x,y; t = ti) that detects spatially coherent shapes above a pre-
scribed threshold, with subsequent identification of co-spatial structures in the preceding
or following images f (x,y; t = ti−1, tn+1) that have at least one pixel above the prescribed
threshold in common. An example is given in Fig. 6.14, which shows a result of detected
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Fig. 6.14 This synthesized TRACE 195 Å image is summed from 22 images recorded during 1999-Feb-17
02:16:06–02:59:45 UT. The circle encompasses the analyzed field-of-view with a diameter of ≈ 8 arcmin.
The numbered ellipses mark 281 flare-like events that fulfill the flare definition criterion, out of a total of
901 EUV brightening events. The geometric size and orientation of the ellipses is on scale, encompassing
the simultaneously-varying pixels of a flare event (Aschwanden et al. 2000b).
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solar nanoflares in a solar EUV data cube (Aschwanden et al. 2000a,b). Since SOC phe-
nomena are dynamic events, the threshold criterion for an event detection is in this case
not simply a flux threshold, but rather a variability threshold Δ fth, which can be defined in
terms of a flux change that exceeds the level of random fluctuations,

f (x,y; ti+1)− f (x,y; ti) ≥ Δ fth = 3σ f , (6.9.1)

where σ f is the standard deviation of the photon Poisson noise in a time bin correspond-
ing to the exposure time of the image. Examples of such variability maps are shown in
Fig. 6.15, where it can be seen that those pixels with high fluxes (indicated with flux
contours in Fig. 6.15) are not necessarily identical with those of significant flux variabil-
ities from one to the next time frame. To ensure a proper tracking of a coherent event
in time, only pixels that exhibit a co-spatial variability in the previous and/or subsequent
time frame are considered as part of the same coherent event, or SOC avalanche (marked
with diamonds in Fig. 6.15), while other pixels with significant variability occurring in
one single time frame only are considered as event-unrelated (instrumental or unresolved)
brightness fluctuations. The time evolution of such automatically traced features observed
in two different wavelengths (Fig. 6.16) exhibits the typical fast rise and exponential decay
of a solar flare event. The multi-wavelength coverage of these events moreover ensures the
self-consistent physical evolution of an elementary solar flare process, which consists of a
rapid impulsive heating phase with subsequent plasma cooling by thermal conduction and
radiative cooling. It exhibits the typical exponential decay, which appears delayed in the
wavelength with the cooler temperature. Proper definition of events are extremely impor-
tant in image-based feature detection methods, because multi-dimensional data are more
prone to erroneous event detections of unrelated other variabilities contained in the data
than 1-D time series.

The numerical event detection code used for the examples shown in Fig. 6.14–6.16 was
especially designed to detect solar microflares and nanoflares, which represent the faintest
counterparts of solar flares, and thus are important to extend the dynamic range of fre-
quency distributions of flare energies over nine orders of magnitude. Similar codes were
also developed by Krucker and Benz (1998) and Parnell and Jupp (2000), which spurred
controversial results on the powerlaw slopes in the nanoflare regime. A number of issues
were considered that contribute to the initially discrepant results of powerlaw slopes, such
as event definition, selection, and discrimination, sample completeness, observing cadence
and exposure times, pattern recognition algorithms, threshold criteria, instrumental noise,
wavelength coverage, fractal geometry, but also physical modeling issues of energy, tem-
perature, electron density, line-of-sight integration, and fractal volume (e.g., Aschwanden
and Parnell 2002; Benz and Krucker 2002). The issue of the correct powerlaw slope of
the frequency distribution of nanoflare energies was further aggravated by the fact that
the initially discrepant results scattered on both sides of the critical value (with a slope of
αE = 2) that decides whether the energy of nanoflares is more important for coronal heat-
ing (if αE > 2). We will come back to this issue when we discuss physical energy models
of SOC events in Section 9.3.

A similar task is the automated detection of solar bright points, which are small, bipo-
lar magnetic fields in the photosphere and can be detected best in EUV. These events
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Fig. 6.15 The spatial clustering of the pattern recognition code is illustrated for the 12 largest events on 99-
Feb-17, 02:15–03:00 UT. The contours outline local EUV intensity maps around the detected structures.
The crosses mark the positions of macropixels with significant variability (Nσ > 3). The spatio-temporal
pattern algorithm starts at the pixel with the largest variability, which is located at the center of each
field of view, and clusters nearest neighbors if they fulfill the time coincidence criterion (tpeak ± 1Δt).
These macropixels that fulfill the time coincidence criterion define an event, marked with diamonds, and
encircled with an ellipse. Each macropixel that is part of an event, is excluded in subsequent events. Note
that events 0,1,3,11 belong to the same active region, where the four near-cospatial zones have peaks at
different times and thus make up four different events (Aschwanden et al. 2000a).
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Fig. 6.16 Time profiles of the 171 Å (thin line) and 195 Å (thick line) flux of 20 EUV microflares. Both
fluxes are normalized to unity, with the absolute fluxes indicated in each panel. The error bars include all
instrumental and photon noise components. Note that the 171 Å flux is highly correlated with the 195 Å
flux, but generally delayed, as expected for a plasma cooling process (Aschwanden et al. 2000b).
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have been detected with a highpass-filter method with proper noise threshold estimates
from a long-time data series over 9 years to the extent of an unheard number of 1.3×108

events (McIntosh and Gurman 2005). Such large statistics is extremely useful for SOC
statistics, regarding the accurate functional form of the frequency distributions and their
time-dependent changes.

Automated detection of coronal mass ejection (CME) events in coronagraph images
represent a specially challenging task because of their highly transient nature and com-
plex and inhomogeneous spatial morphology. A CME rapidly expands in 3-D space, the
observed brightness becomes quickly diluted, and the morphology evolves from an ini-
tial fan pattern to a turbulent spherical shape, possibly containing multiple shock fronts
with accelerating and decelerating speeds. Thus, typical SOC parameters like a peak flux
P, total flux E, and duration T are difficult to define for such dramatically changing
morphological structures. Even waiting times Δt of CMEs (Fig. 5.13) are problematic
to measure, because multiple CMEs interfere with each other in an observed field-of-
view. Frequency distributions of CMEs have only been sampled for their (angular) sizes,
which were found to exhibit invariant powerlaw slopes during a solar cycle (Robbrecht
et al. 2009). Thus, typical CME observables entail an angular width, an apparent latitude,
and apparent velocities, which are not straightforward to translate into SOC parameters.
These parameters would correspond to a geometric aspect ratio, location, and velocity of
sandpile avalanches. Nevertheless, automated detection algorithms for CME events have
been developed by using a threshold-segmentation technique of radial off-limb images
(Olmedo et al. 2008), a wavelet-based multi-scale edge detection technique (Young and
Gallagher 2008), or a Hough transform with a morphological opening operator (Robbrecht
and Berghmans 2004). An example of a CME detection by Young and Gallagher (2008) is
shown in Fig. 6.17. The optical brightness of CMEs is usually so weak that they can only
be detected in running time-difference or in polarized brightness images. CME-related
phenomena are so-called EIT waves, which according to one model propagate concentri-
cally to the CME over the solar surface and can be traced by means of flux threshold-based
detection of spherically propagating ring patterns (Podladchikova and Berghmans 2005).

Future automated detection algorithms of spatio-temporal patterns are expected to in-
volve more artificial-intelligence algorithms or neural-network-learning techniques, which
can adjust to the unknown or unquantified morphological shapes progressively with the in-
creasing number of detected events.

6.10 Summary

Feature and event detection methods represent the input for SOC statistics and thus it
is extremely important to simulate and understand their statistical biases on the result-
ing frequency distributions of SOC events. We simulated a time series that is particularly
designed for typical SOC events, characterized by powerlaw distributions of amplitudes
and durations, as well as by Poisson statistics of waiting times (Section 6.1). Armed with
such test data, we simulate the detection biases for threshold-based event detection (Sec-
tion 6.2), for both noise-free data and data affected by heavy photon noise. We test how
smoothing of a time series, which is one option to suppress the data noise, affects the
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Fig. 6.17 Illustration of a CME edge detection in subsequent images. (a) The original LASCO C2 images,
(b) running difference images of the LASCO C2 images, and (c) application of the multiscale edge de-
tection algorithm to the sequence of the original images. The edges are the black lines displayed over the
running difference images. The CME erupted on 18 April 2000, the times for the frames are (from left to
right) 16:06 UT, 16:30 UT, 16:54 UT, and 17:06 UT (Young and Gallagher 2008).

resulting frequency distribution. To overcome the main disadvantage of threshold-based
event detection, namely the loss of weak events in the presence of large events, we test a
highpass-filtered and bipass-filtered detection method (Section 6.3). Other alternatives are
peak-based detection methods (Section 6.4) and Fourier-filtered time series (Section 6.5).
We demonstrate that Fourier power spectra P(ν) (Section 6.6) or wavelet-based methods
(Section 6.7) can be used to retrieve the frequency distribution of time scales N(T ). A re-
lated method is the principal component analysis (Section 6.8), which has not been much
used for SOC statistics yet. Finally, given the availability of imaging data in magneto-
spheric and solar physics, image-based spatio-temporal detection methods are appropriate
for SOC statistics, which have the chief advantage of spatial discrimination of cotempo-
raneous events. We illustrate such spatio-temporal feature recognition techniques for the
detection of solar nanoflares and coronal mass ejections. The simulation and testing of any
automated event detection technique cannot be taken seriously enough, because system-
atic errors and biases occur most dramatically for the weakest events, which populate the
largest fraction of the logarithmic scale range covered in SOC statistics.
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6.11 Problems

Problem 6.1: Simulate the time series described in Section 6.1 for longer mean waiting
time (e.g., Δt0 = 10,50,100) and find the scaling how the number of time-overlapping
events reduces with increasing waiting time.

Problem 6.2: Using the test time series simulated in Problem 6.1, develop a simple peak-
based event detection algorithm and test whether you can retrieve the frequency distri-
bution of the input parameters for longer waiting times.

Problem 6.3: With a threshold-based event detection algorithm determine how the number
of detected events scales with the threshold.

Problem 6.4: Calculate the powerlaw slopes of the frequency distribution of times for the
three spectral segments shown in the power spectrum of Cygnus X-1 (Fig. 6.8), using
Eq. (6.6.2) and assuming correlations of E ∝ T and E ∝ T 2.

Problem 6.5: Discuss the pro’s and con’s of Fourier-based, Windowed Fourier transform,
wavelet-based, and principal component analysis for periodic, quasi-periodic, and non-
periodic time series.

Problem 6.6: Discuss and simulate two different strategies for an image-based event de-
tection method: (1) Detect temporal structures in nx × ny time series f (t) for every
image pixel first and then identify co-spatial patterns; or (2) detect spatial structures in
each image plane f (x,y) first and then track co-spatial structures in time.



7. Occurrence Frequency Distributions

Probability is expectation founded upon partial knowledge. A perfect acquaintance
with all the circumstances affecting the occurrence of an event would change expec-
tation into certainty, and leave neither room nor demand for a theory of probabili-
ties.

George Boole (1815–1864)

Nevertheless, as is a frequency occurrence in science, a general hypothesis was con-
structed from a specific instances of a phenomenon.

Sidney Altman (born 1939)

It is customary in the statistics of nonlinear processes to histogram the logarithmic number
of events versus a logarithmic size scale, which is called a log N − log S diagram, size
distribution, occurrence frequency distribution, or simply frequency distribution. In such
log-log representations, the difference between (i) a Poissonian random process, which
can be characterized by an exponential distribution function that drops off sharply above
an e-folding size scale, and (ii) nonlinear processes governed by self-organized criticality,
which ideally produce a scale-free powerlaw distribution function, appears most striking.
Frequency distributions thus have become the arbiters of SOC versus non-SOC processes,
starting from the famous magnitude diagram of earthquakes discovered by Beno Guten-
berg and Charles Francis Richter in 1954 (i.e., the Gutenberg–Richer law). Frequency
distributions of SOC phenomena obtained from astrophysical data were first identified in
solar flare data by Ed Lu and Russell Hamilton (1991), based on log-log histograms pub-
lished earlier without an interpretation in terms of SOC (e.g., Dennis 1985). Frequency dis-
tributions can be plotted for any conceivable parameter, preferably a (model-independent)
observable, which does not require an arbitrary choice of a physical model. For earth-
quake statistics, the most commonly used parameter is the magnitude, measured by well-
calibrated seismometers. In astrophysical data, where the observable is typically a time
series of flux intensity in some given wavelength range, obvious parameters used for fre-
quency distributions are the peak flux P, the total (time-integrated) flux or fluence E, and
the total duration T of an event. While such observables can be unambiguously measured
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from well-calibrated detectors, the ultimate desire is to obtain frequency distributions of
physical parameters, such as the thermal energy Eth, the nonthermal energy Enth, the mag-
netic energy EB, the kinetic energy Ekin, or the potential energy Epot , which of course are
all model-dependent, to be discussed in Chapter 9. In the following section we review the
occurrence frequency distributions of (preferably) observables measured from astrophysi-
cal events that are (hypothetically) associated with SOC processes and we will compare the
observations with analytical SOC models (Chapter 3) in order to evaluate their consistency
with SOC theory.

7.1 Basics of Frequency Distribution Functions

The data input for an occurrence frequency distribution is usually a list or a catalog of
events, characterized by some size parameter xi for i = 1, ...,n events, regardless whether
the list was generated by visual inspection or by an automated computer algorithm (Chap-
ter 6). How do we construct a log-log histogram from an event catalog? There are essen-
tially two ways, either a logarithmically binned histogram if large statistics is available, or
a rank-order plot if the size of the statistical sample is rather small.

7.1.1 Differential Frequency Distributions

If we have large statistics (at least n >∼ 102, ...,103), we can first establish a logarithmic
binning axis bound between the minimum and maximum value, xmin ≤ xi ≤ xmax, with n j
bins,

xbin
j = xmin

(
xmax

xmin

)( j−1)/(n j−1)

, j = 1, ...,n j (7.1.1)

which is equidistant on a logarithmic scale, but has variable intervals on a linear scale,

Δxbin
j = xbin

j+1 − xbin
j = xbin

j

[(
xmax

xmin

)1/(n j−1)

−1

]
. (7.1.2)

In a next step we can count the number of events Nbin
j that fall in each bin with interval

xbin
j ≤ xi ≤ xbin

j+1. We have to be aware that this number Nbin
j depends on the particular

bin size Δxbin
j we have chosen. In order to obtain the functional form of the frequency

distribution, which should be independent of the binning, we have to divide the number of
events by the bin size,

Nj = N(x j) =
Nbin

j

Δxbin
j

, (7.1.3)

and can plot the frequency distribution with Nj on the y-axis versus the size x j on the x-
axis. This representation normalizes the distribution to the total number of events n, which
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we should obtain by integration over the x-axis, or summing over all (non-equidistant) bins
on the x-axis,

∫ ∞

0
N(x) dx =

n j

∑
j=0

Nj dx j =
n j

∑
j=0

N(x j)Δxbin
j =

n j

∑
j=0

Nbin
j = n . (7.1.4)

Instead of expressing the number of occurrences by the actually observed numbers Nj, it is
also customary to use a probability distribution function P(x), which is simply the number
of events in each bin normalized by the total number of events n,

P(x) =
N(x)

n
(7.1.5)

which has the total integral normalized to unity,
∫ xmax

xmin

P(x) dx =
∫ xmax

xmin

N(x)
n

dx = 1 . (7.1.6)

Both representations, N(x) or P(x), are called a differential frequency distribution, because
they express the number of events in a “differential” bin dx.

7.1.2 Cumulative Frequency Distributions

An integrated differential frequency distribution N(x)dx is called a cumulative frequency
distribution Ncum(> x), which expresses in each bin the sum of all events that are larger
than the size parameter of the bin x,

Ncum(>x) =
∫ xmax

x
N(x)dx , (7.1.7)

which we denote by Ncum(>x), in contrast to the differential distribution N(x). The cumu-
lative frequency distribution contains more statistics in the rarer bins at larger sizes, and
thus appears smoother at the upper end than differential distribution functions. However,
the values in each bin are statistically not independent, but always contain information
from all other bins on the right-hand side. The particular functional shape at the upper
cutoff can dominate the entire distribution function.

If the differential frequency distribution is a powerlaw function with slope α , the cu-
mulative frequency distribution is expected to have a flatter powerlaw slope by one,

N(x) ∝ x−α

Ncum(>x) ∝ x−β <∼ x−(α−1) . (7.1.8)

For instance, both the differential and cumulative frequency distributions for earthquakes
are shown in the same plot (Fig. 1.7), with slopes of α = 2 and β = 1. However, the
powerlaw relationship β = α −1 is only true when the differential frequency distribution
extends to infinite, which is never the case. In reality, there is always a largest event at xmax,
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Fig. 7.1 A differential frequency distribution function N(x) is shown with a powerlaw slope of α = 1.5
and cutoff at xmax = 100 (top). The corresponding cumulative frequency distribution function Ncum(>x) is
fitted in the lower half (logarithmic) range x = [1, ...,10], which gives a powerlaw slope of β = 0.61, which
is steeper than expected for an ideal powerlaw distribution without upper cutoff xmax, i.e., β = α −1 = 0.5.

which causes a sharp cutoff in the differential frequency distribution N(x), but a gradual
steepening in the cumulative frequency distribution, because of the missing contributions
from x > xmax. This detail is quite important, because it leads to a significant over-estimate
of the powerlaw slope when the rule α = β + 1 is applied. We demonstrate this in the
following. We define a powerlaw distribution function with a sharp cutoff at xmax,

N(x) = (α −1)x−α , x ≤ xmax . (7.1.9)

The cumulative frequency distribution function can then be calculated by integrating over
the range from x to xmax,

Ncum(>x) = n
∫ xmax

x N(x′) dx′∫ xmax
xmin

N(x′) dx′
= n

∫ xmax
x x′−α dx′∫ xmax
xmin

x′−α dx′
= n

(x1−α − x1−α
max )

(x1−α
min − x1−α

max )
. (7.1.10)
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We see that the second term in the integral, x1−α
max steepens the slope and lets the cumulative

distribution drop to zero when x approaches xmax. We plot the two distribution functions
in Fig. 7.1 for α = 1.5. The powerlaw slope of the cumulative distribution function is
expected to be β = α −1 = 1.5−1 = 0.5 at the lower end x 	 xmax, but becomes system-
atically steeper near the upper cutoff. If we were to fit a powerlaw over the powerlaw-like
range of x, say in the range xmin ≤ x ≤ xmax/10, we would measure a slope of β = 0.61
(Fig. 7.1). This steepening effect on the slope due to the presence of an upper cutoff does
not occur in the differential distribution, so it is important to take this effect into consider-
ation when dealing with cumulative frequency distribution functions, e.g., see Fig. 1.7 for
earthquakes or Fig. 1.15 for stellar flares.

How can this upper cutoff effect be taken properly into account? The best way is
to fit the exact analytical function of the cumulative frequency distribution function,
which is Ncum(>x) ∝ (x1−α −x1−α

max ) (Eq. 7.1.10), rather than the powerlaw approximation
Ncum(>x) ∝ x1−α . Alternatively, if the original data are not available, but only a powerlaw
fit to the cumulative distribution is known (e.g., from literature),

Ncum(>x) = n
(

x
xmin

)−β
, (7.1.11)

we can calculate the relationship between the cumulative powerlaw slope β and the differ-
ential powerlaw slope α . A practical way is to assume that the cumulative powerlaw slope
β gives a good fit of the parameter x in the lower half (logarithmic) range [xmin,xmax] (see
Fig. 7.1), which we define with the fractions [q1,q2] with q1 = xmin/xmax and q2 = q1/2

1 .
For instance, for xmin = 1 and xmax = 100 (Fig. 7.1), the lower logarithmic half has the
fractions q1 = 0.01 and q2 = 0.1. From the cumulative powerlaw fit we have the following
occurrence ratio between these two points (using q1 = q2

2),

Ncum(>x2)
Ncum(>x1)

=
(

x2

x1

)−β
=

(
q2

q1

)−β
= qβ

2 . (7.1.12)

On the other side, from Eq. (7.1.10) we have, using q1 = q2
2 and applying (x2 − 1) =

(x−1)(x+1) for x = q1−α
2 ,

Ncum(>x2)
Ncum(>x1)

=

(
q1−α

2 −1
q1−α

1 −1

)
=

(
q1−α

2 −1

q2(1−α)
2 −1

)
=

1

q(1−α)
2 +1

. (7.1.13)

Setting these two expressions (Eqs. 7.1.12 and 7.1.13) equal, we obtain the following
relationship for α as a function of β ,

α = 1− log[q−β
2 −1]

log(q2)
. (7.1.14)
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or vice versa, the relationship for β as a function of α ,

β = − log [q(1−α)
2 +1]

log(q2)
. (7.1.15)

We see that both expressions yield the approximation α ≈ 1+β , if q−β
2 � 1 or q1−α

2 � 1,
which comes down to the condition of large logarithmic ranges, i.e. xmax � xmin. For the
case shown in Fig. 7.1 with q2 = 0.1 and α = 1.5, we obtain β = log(1+0.1−0.5) = 0.62,
which is significantly different from the approximation β ≈ α − 1 = 0.5. The difference
is even larger for smaller logarithmic ranges, say for one decade (xmin/xmax = 0.1), as it is
the case for small samples, such as statistics of stellar flares (Fig. 1.15).

7.1.3 Rank-Order Plots

If the statistical sample is rather small, in the sense that no reasonable binning of a his-
togram can be done, either because we do not have multiple events per bin or because
the number of bins is too small to represent a distribution function, we can create a rank-
order plot. A rank-order plot is essentially an optimum adjustment to minimum statistics
that gives every single event a single bin. From an event list of a parameter xi, i = 1, ...,n,
which is generally not sorted, we have first to generate a rank-ordered list by ordering the
events according to increasing size,

x1 ≤ x2 ≤ ... ≤ x j ≤ ... ≤ xn , j = 1, ...,n . (7.1.16)

The bins are generally not equidistant, neither on a linear nor logarithmic scale, defined by
the difference between subsequent values of the ordered x j,

Δxbin
j = xbin

j+1 − xbin
j . (7.1.17)

In a rank-ordered sequence of n events, the probability for the largest value is 1/n, for
events that are larger than the second-largest event it is 2/n, and so forth, while events
larger than the smallest event occur in this event list with a probability of unity. Thus, the
cumulative frequency distribution is simply the reversed rank order,

Ncum(>x j) = (n+1− j) , j = 1, ...,n , (7.1.18)

and the distribution varies from Ncum(>x1) = n for j = 1 to Ncum(>xn) = 1 for j = n. We
can plot a cumulative frequency distribution with Ncum(>x j) on the y-axis versus the size
x j on the x-axis. The distribution is normalized to the number of events n,

∫ xn

x1

N(x) dx = Ncum(>x1) = n . (7.1.19)

The differential frequency distribution function N(x) could in principle be computed from
the derivative of the cumulative distribution, but there is usually considerable noise be-
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tween subsequent events in a rank order, so that smoothing is recommended before differ-
entiation.

We show two examples of rank-ordered plots in Fig. 7.2. The first example is based
on a differential frequency distribution of time scales that correspond to an exponential
function with time scale τ = 1,

N(t) =
1
τ

exp
(
− t

τ

)
, (7.1.20)

Using a random generator we are producing n = 100 values of time scales ti, i = 1, ...,n
that correspond to this differential distribution according to the method described in the
following Section 7.1.4, which we plot in a rank-ordered diagram as shown in Fig. 7.2
(left; diamonds). In order to prove that this rank-order plot corresponds to the cumulative
distribution, we calculate the distribution analytically by integrating Eq. (7.1.20),

Ncum(> t) =
∫ ∞

t
N(t ′) dt ′ =

∫ ∞

t

1
τ

exp
(
− t ′

τ

)
dt′ = exp

(
− t

τ

)
. (7.1.21)

which agrees (Fig. 7.2 left, thick solid curve) with the rank-ordered values.
The second example is based on a differential frequency distribution of energies that

have a powerlaw function with slope of α = 1.5,

N(E) = (α −1)E−α . (7.1.22)
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Fig. 7.2 Numerically generated rank-order plots (diamonds) and theoretical cumulative frequency distri-
bution functions (thick solid curves) for an exponential function with τ = 1 (left) and a powerlaw function
with α = 1.5 (right).
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Again, using a random generator we are producing n = 100 values of energy Ei, i = 1, ...,n
that correspond to this differential distribution according to the method described in the
following Section 7.1.4, which we plot in a rank-order diagram as shown in Fig. 7.2 (right;
diamonds). In order to prove that this rank-order plot corresponds to the cumulative distri-
bution, we calculate the distribution analytically by integrating Eq. (7.1.22),

Ncum(>E) =
∫ Emax

E
(α −1)ε−α dε = E(1−α) −E1−α

max . (7.1.23)

which agrees (Fig. 7.2 right, thick solid curve) with the rank-ordered values.
An observational example of cumulative frequency distributions based on a rank-order

plot is shown in Fig. 1.15 for stellar flares, where the statistics literally does not include
more than about a dozen events per star (Audard et al. 2000).

Sometimes it is also convenient to plot the size versus the rank, such as the ranking of
cities by population size shown in Fig. 1.4. This is essentially the rank-order plot defined
in Eq. (7.1.18), but with exchanged x- and y-axis. The rank order on the x-axis is the
independent variable Nj, while the y-axis is the dependent variable x j = x(Nj). Since the
axes are exchanged, a powerlaw function would have approximately the reciprocal value
for the slope,

N(x) ∝ x−α

x(N) ≈ N−1/α (7.1.24)

This type of rank-order plot with size versus rank was originally used by Zipf (1949) for
statistics of word usage (Section 1.3), and thus is also called Zipf plot.

7.1.4 Numerical Generation of Frequency Distributions

For numerical simulations of frequency distributions, for instance Monte-Carlo simula-
tions of SOC models, we need to create randomly distributed values xi that have a par-
ticular prescribed function of their frequency distribution, such as an exponential function
for waiting times, or a powerlaw function for energies. Let us prescribe the form of the
frequency distribution with a probability function p(x) in the interval [x,x+dx], which has
the normalization, ∫ ∞

0
p(x) dx = 1 . (7.1.25)

The total probability ρ(x) to have a value in the range of [0,x] is then the integral,

ρ(x) =
∫ x

0
p(x′) dx′ . (7.1.26)

If the analytical function ρ(x) can be inverted, say with the analytical inverse function
ρ−1, so that

x = ρ−1(ρ) = ρ−1(ρ[x]) , (7.1.27)

we have a transformation that allows us to generate values xi from a distribution of prob-
ability values ρi. There are many numerical random generator algorithms available that
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produce a random number ρi in a unity range of [0,1], which can then be used to generate
values xi with the mapping transform xi = ρ−1(ρi). The frequency distribution of these
values xi will then fulfill the prescribed function p(x).

As an example we demonstrate the numerical generation of a sample of time scales t
that has a frequency distribution function following an exponential function,

p(t) =
1
τ

exp
(
− t

τ

)
, (7.1.28)

which fulfills the normalization
∫ 1

0 p(t) dt = 1. The total probability ρ(t) to have a value
in the range [0, t] is then the integral function of p(t),

ρ(t) =
∫ t

0
p(t ′) dt ′ =

∫ t

0

1
τ

exp
(
− t ′

τ

)
dt ′ =

[
1− exp

(
− t

τ

)]
. (7.1.29)

The inverse function t(ρ) of ρ(t) is

t(ρ) = −τ ln(1−ρ) . (7.1.30)

In Fig. 7.3 (left) we use a random generator that produces 10,000 values ρi, uniformly
distributed in the range of [0,1], and use the transform Eq. (7.1.30) to generate values
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Fig. 7.3 Left: An exponential frequency distribution is numerically generated, based on n = 10,000 uni-
formly distributed values ρi in the range [0, ...,1] and times ti = −τ ln(1− ρi) (Eq. 7.1.30) (histogram),
leading to the occurrence probability function p(t) as defined in Eq. (7.1.28) (thick curve). Right: A pow-
erlaw frequency distribution is numerically generated, based on n = 10,000 values ρi uniformly distributed
in the range [0, ...,1], with energies Ei = (1+ρi)1/(1−α) with α = 1.5 (Eq. 7.1.33) (histogram), leading to
the occurrence probability function p(E) as defined in Eq. (7.1.31) (thick curve).
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ti = −τ ln(1−ρi) with τ = 1 and sample the frequency distribution of the 10,000 values
ti, which follows the prescribed exponential function p(t) defined in Eq. (7.1.28).

As a second example we prescribe a powerlaw function p(E) for the frequency distri-
bution,

p(E) = (α −1)E−α , (7.1.31)

which fulfills the normalization
∫ ∞

1 p(E) dE = 1. The total probability ρ(E) in the range
[0,E] is then the integral function of p(E) (Eq. 7.1.31),

ρ(E) =
∫ E

0
p(ε) dε =

∫ E

0
(α −1)ε−α dε =

[
1−E(1−α)

]
. (7.1.32)

The inverse function E(ρ) of ρ(E) (Eq. 7.1.32) is

E(ρ) = [1−ρ]1/(1−α) . (7.1.33)

In Fig. 7.3 (right) we use a random generator that produces 10,000 values ρi uniformly
distributed in the range of [0,1], choose a powerlaw index of α = 1.5, and use the transform
Eq. (7.1.33) to generate values Ei = [1− ρi]−2 and sample the frequency distribution of
the 10,000 values Ei, which follows the prescribed powerlaw function p(E) = 0.5E−1.5 as
defined in Eq. (7.1.31).

7.1.5 Integrals of Powerlaw Distributions

For normalization purposes or when the total number n of events needs to be evaluated
from a powerlaw distribution N(x) = (α −1)x−α , we have to integrate over the valid range
bound by xmin < x < xmax,

n =
∫ xmax

xmin

N(x) dx =
∫ xmax

xmin

(α −1)x−α dx = x1−α
min − x1−α

max , (7.1.34)

which is defined for α �= 1. Generally both boundaries contribute significantly to the total
number, unless the powerlaw distribution extends over a very large range, say more than
three orders of magnitude. For such large ranges, the following approximations can be
used,

n =
{≈ x1−α

min for (xmax � xmin) and (α > 1)
≈ x1−α

max for (xmax � xmin) and (α < 1)
. (7.1.35)

The total integral (or first moment) of a powerlaw distribution function, for instance
the total energy of an occurrence frequency distribution of energies, can be obtained by
convolving the variable x with the powerlaw distribution N(x) = (α −1)x−α over the valid
range xmin ≤ x ≤ xmax,

xtot =
∫ xmax

xmin

x N(x) dx =
∫ xmax

xmin

(α −1)x1−α dx =
(

α −1
2−α

)[
x2−α

max − x2−α
min

]
, (7.1.36)
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which is only defined for α �= 2. Again, generally both boundaries contribute significantly
to the total number, unless the powerlaw distribution extends over a very large range, in
which case the following approximations can be used,

xtot ≈
(

α −1
2−α

){
x2−α

min for (xmax � xmin) and (α > 2)

x2−α
max for (xmax � xmin) and (α < 2)

. (7.1.37)

The critical value is α = 2, which decides whether the integral diverges at the lower bound
(if α > 2) or upper bound (if α < 2). A far-reaching application of this integral is the
total energy contained in the distribution of solar or stellar flares, which is also responsible
for heating of the solar or stellar corona, and could be dominated by nanoflares if α > 2
applies over a large energy range, as pointed out by Hudson (1991).

7.1.6 Powerlaw Scaling Laws and Correlations

We consider the case where two parameters x and y are correlated with each other by a
powerlaw function with the power coefficient β ,

y ∝ xβ , (7.1.38)

where x and y could be the peak energy P, the total energy E, duration T , or any other
SOC parameter. Since every SOC parameter has a powerlaw-like distribution function in
our SOC standard model (Section 3.1),

N(x) ∝ x−αx

N(y) ∝ y−αy , (7.1.39)

it is useful to calculate the relationship between the power indices αx, αy, and β . The
general way to substitute a variable y(x) in a frequency distribution N(x) is,

N(y) dy = N[x(y)]
∣∣∣∣dx(y)

dy

∣∣∣∣dy , (7.1.40)

which yields, for the function y(x) ∝ xβ defined in Eq. (7.1.38), using the inverse function
x(y) ∝ y1/β and derivative dx/dy ∝ y(1/β−1),

N(y) dy = y−αx/β+1/β−1 dy = y−αy dy , (7.1.41)

leading to the following relationship between the power indices,

β =
(αx −1)
(αy −1)

. (7.1.42)

This is a useful relationship to compute (or verify) the power index β of two correlated
parameters from their frequency distributions. For instance in Fig. 6.1, we have for x = P
and y = E the frequency distributions with a powerlaw slope of αx ≈ 2.0 and αy ≈ 1.5,
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which predicts β = (αx − 1)/(αy − 1) = (2.0− 1)/(1.5− 1) = 1/0.5 = 2, which indeed
corresponds to the power index β ≈ 2.0 in the scatterplot of E ∝ P2 (Fig. 6.1, third row
middle).

7.1.7 Accuracy of Powerlaw Fits

There are a number of effects that determine the accuracy of derived powerlaw indices
in frequency distributions, N(x) ∝ x−α , and underlying correlations, y(x) ∝ xβ , such as
formal errors of linear regression fits, the choice of dependent and independent variables,
the statistical uncertainty of the number of events, a small logarithmic range, statistical
weighting, histogram binning, cutoffs, truncations, deviations from powerlaws, sensitiv-
ity limits, etc. In addition, the sampling of events is also affected by data pre-processing,
such as dead-time corrections, spike removals, or background subtractions. When error
bars are given in literature, they usually refer to formal errors of a least-squares fit, but
do not include systematic errors that result from numerous biases of the data set or model
assumptions. The best way to obtain a realistic error is often to use a Monte-Carlo sim-
ulation of the data and measurement procedure based on a realistic model of the data. In
order to give a typical assessment of various errors in our study of occurrence frequency
distributions and parameter correlations we conduct some Monte-Carlo simulations of our
standard SOC model (Section 3.1).

Following the numerical simulation procedure outlined in Section 7.1.4 we generate
two sets of n = 100 variables, one for peak energies Pi, i = 1, ...,n and one for total energies
Ei, i = 1, ...,n, which both have powerlaw distribution functions, with powerlaw slopes of
αP = 2 and αE = 1.5,

N(P) = (αP −1)P−αP

N(E) = (αE −1)P−αE
. (7.1.43)

They can be generated using two sets of random numbers ρi and ρ j uniformly distributed
in the range [0, ...,1], produced with a numerical random generator and the transform
(Eq. 7.1.33),

Pi = [1−ρi]1/(1−αP)

E j = [1−ρ j]1/(1−αE ) (7.1.44)

In order to ensure a parameter correlation we sort each set in increasing number, but add
some random noise in both parameters. We mimic also an instrumental sensitivity limit by
applying a flux threshold of P ≥ 0.5, which causes a truncation error in P.

We plot the two sets of variables in form of a scatterplot E j versus Pi in Fig. 7.4 (top
left), which show a linear regression fit of E ∝ P1.78 instead of the theoretically expected
relationship E ∝ P2. A linear regression fit with inverted axis yields P ∝ E0.52, which
corresponds to E ∝ P(1/0.52) = P1.93, so part of the difference results from the choice of
the independent variable. There are other linear regression fits that treat both variables
equally, such as the bisector method or the minimization of the orthogonal distance to
the linear regression fit, which eliminate this bias. However, there is still an additional bias
introduced by the flux threshold, which affects a truncation of data for P but not for E. This
could be corrected by using a truncation limit that is orthogonal to the linear regression fit.
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Fig. 7.4 Three Monte-Carlo simulations of peak energies P (middle column) and total energies E (right
column) from random samples of prescribed powerlaw distributions N(P) ∝ P2.0 and N(E) ∝ E1.5, for
sample sizes of n = 100 (top row), n = 103 (middle row), and n = 104 (bottom row). Note the truncation
bias for a threshold at P ≥ 0.5, which causes a lower rollover in the frequency distributions. The parameter
correlations E ∝ Pβ were fitted with a linear regression fit (left column) and the powerlaw slopes were
fitted in the decreasing part on the right-hand side of the maximum of the distributions.

We bin the range of P and E each with 10 bins and determine the powerlaw slope with
a linear regression for the bins right to the peak of the frequency distributions, in order to
eliminate the rollover due to the sensitivity loss at low values, and find slopes of αP = 2.04
and αE = 1.94 (Fig. 7.4, top row), while we expect theoretically αP = 2.0 and αE = 1.5.
Part of the discrepancy results from the small number statistics and the choice of bins in
the linear regression fit, while part of the difference is caused by the generation of random
numbers.

We repeat the same simulation for two larger sets of n = 103 (Fig. 7.4, middle row) and
n = 104 events (Fig. 7.4, bottom row). We see that the correlation converges to a value
of β = 1.94, which is still slightly different from the theoretical value of β = 2.0, either
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because of the truncation bias of the flux threshold or the random number generation. The
powerlaw slopes of the distribution of peak energies P converges to αP = 2.13, and the
slope of total energies E to αE = 1.58. The latter result is closer to the theoretical value
of αE = 1.5, so increased statistics helps. The remaining difference in the powerlaw slope
in the order of ≈ 5% is caused by a combination of the truncation bias, the choice of
fitted bins, and the random number generation. A bin-free powerlaw fitting procedure is
described in Parnell and Jupp (2000), which may be preferable in some cases. A different
option is also weighting of the bins by the number of events per bin. However, a best-
fit in a log-log plot is generally achieved when equidistant bins on a logarithmic scale
have equal weights, which is different from the weighting by number of events per bin.
Whatever fitting strategy is considered best, we have always to keep in mind that the data
often do not exactly correspond to a theoretical model, in which case a fitting parameter is
in principle ill-defined. For instance, if the data obey an exponential distribution, a fit with
a powerlaw model will yield a variable slope that starts from very flat at the lower end to
very steep at the upper end of the distribution, so the powerlaw slope is ill-defined.

Let us also test the consistency between the linear regression fit of the correlation and
the powerlaw fits of the frequency distributions. From the statistically largest sample we
measure αP = 2.13 and αE = 1.58 (Fig. 7.4, bottom row), which provides a prediction of
β = (αP−1)/(αE −1) = (2.13−1)/(1.58−1) = 1.948 that indeed agrees with the linear
regression fit of the correlation plot, β = 1.94, with high accuracy ( <∼ 0.4%), confirming
the robustness of the fitting procedures used in this case. The discrepancy to the theoretical
values of β = 2 seems to be caused by the particular random number representation used
in the Monte-Carlo simulation for this case.

7.2 Frequency Distributions in Magnetospheric Physics

Let us now turn to observed occurrence frequency distributions of SOC events, starting
from the magnetosphere. Some examples of frequency distributions of area sizes and dis-
sipated power of magnetospheric substorm events are shown in Fig. 1.10, and lifetime dis-
tributions of substorm-related events are shown in Fig. 7.5, which are listed in Table 7.1.

Table 7.1 Frequency distributions measured in magnetospheric physics. References: 1, Lui et al. (2000);
2, Angelopoulos et al. (1999); 3, Takalo (1993); 4, Takalo et al. (1999a); 5, Freeman et al. (2000b); 6, Chap-
man and Watkins (2001), 7, Crosby et al. (2005).

Phenomenon Parameter Powerlaw Reference
slope α

Substorms (active) area size 1.21±0.08 1
power 1.05±0.08 1

Substorms (quiet) area size 1.16±0.03 1
power 1.00±0.02 1

Substorms flow burst durations 1.59±0.07 2
AE index lifetimes 1.24 3,4
AU index burst lifetimes 1.3 5,6
Outer radiation belt electron counts 1.5–2.1 7
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Frequency distributions of substorms have been obtained by measuring the projected
area (in units of square kilometers) of auroral blobs with the POLAR spacecraft (Fig. 1.9),
as well as by measuring the dissipated power (in units of watts) with the Ultraviolet Im-
ager UVI (Lui et al. 2000). As a first-order approximation we can consider both the area
or the dissipated power as a measure of the total energy E of substorm events. The fre-
quency distributions (Fig. 1.10) show powerlaw distributions during quiet time intervals
with slopes of αE ≈ 1.00–1.16, and a similar slope of αE ≈ 1.05–1.21 during substorm
active time intervals, although there is in addition a Gaussian hump at the upper end of
the distribution, which has been interpreted as a finite-size effect (Chapman et al. 1998),
as simulated with a numerical model (Fig. 2.13; Section 2.5.1). Count rates of electrons
accumulated by microsatellites during each crossing of the Earth’s outer radiation belt re-
vealed also powerlaw distributions, with slopes of αE ≈ 1.5–2.1 (Crosby et al. 2005). It
would be interesting to compare the same dataset N(E) with the frequency distributions
N(P) of peak energies and N(T ) of burst durations, in order to test SOC models. However,
we find related frequency distributions of burst durations measured from the AE index
(Fig. 7.5 top; Takalo 1993) and AU index (Fig. 7.5 bottom; Freeman et al. 2000b), as well
as from the durations of bursty bulk flow bursts in the magnetotail plasma sheet (Fig. 7.5
middle; Angelopoulos et al. 1999), which all exhibit powerlaw-like distributions in the
range of αT ≈ 1.2–1.6 (Table 7.1).

If we interpret these magnetospheric substorms as SOC events and apply our standard
model of SOC avalanches with exponential growth and linear decay (Section 3.1), we
expect the following relations for powerlaw slopes as summarized in Eq. (3.1.28),

αP = 1+ τG/tS
αT = αP
αE = (αP +1)/2

. (7.2.1)

The fact that powerlaw slopes of αT ≈ 1.24–1.6 are measured in substorms, would in-
dicate that the ratio of the exponential growth rate τG to the mean saturation time tS has
a relatively low value of (τG/tS) = αP − 1 = αT − 1 = 0.2–0.6, which implies that the
responsible instability saturates after (tS/τG) = 1.6–5.0 growth times. This implies rel-
atively large amplification factors of exp(tS/τG) ≈ 5–150, which could be verified from
the exponential growth during the rise time of substorm events. Such high amplification
factors require coherent growth without a competing damping mechanism or collisional in-
teractions, a characteristic that could constrain possible physical mechanisms responsible
for geomagnetic substorms. Another prediction from our standard model is the powerlaw
slope of the frequency distribution of energies, which based on αT ≈ 1.2–1.6 would fall
according to Eq. (7.2.1) in the range of αE = (αP +1)/2 = (αT +1)/2 ≈ 1.1–1.3, which
indeed is close to the values that Lui et al. (2000) observed during active time intervals of
substorms, i.e., αE ≈ 1.21 ± 0.08 for the areas of substorms, and αE ≈ 1.05 ± 0.08 for
the dissipated power, respectively.

In summary, we can conclude that the observed frequency distribution of magneto-
spheric substorms exhibit powerlaw-like functions for energy E and time duration T
parameters, which are consistent with the statistics of an exponentially growing insta-
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Fig. 7.5 Top (a): Lifetime distribution of magnetospheric disturbances as measured from the AE index of
the years 1978–1985 (Takalo 1993; 1999a); Middle (b): Probability density distribution N(T ) of continu-
ous flow magnitude durations T measured with the GEOTAIL satellite when it encountered the magnetotail
plasma sheet during the period of Jan 1996–Oct 1998 (Angelopoulos et al. 1999); Bottom (c): Probability
density function N(T ) of lifetimes of bursty bulk flow events in substorms measured of AU (Jan 1978–Jun
1988) and ε calculated from WIND SWE and MFI data for 1984–1987 (Freeman et al. 2000b; Chapman
and Watkins 2001).
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bility that has saturation times in the order of tS/τG ≈ 1.6–5.0, amplification factors of
exp(tS/τG) ≈ 5–150, leading to powerlaw slopes of αT = αP ≈ 1.2–1.6 for durations, and
αE = 1.1–1.3 for energies of substorm events.

7.3 Frequency Distributions in Solar Physics

Solar flares are probably the best-studied datasets regarding SOC statistics in astrophysics.
Solar flares are catastrophic events in the solar corona, most likely caused by a magnetic
instability that triggers a magnetic reconnection process, producing emission in almost all
wavelengths, such as in gamma rays, hard X-rays, soft X-rays, extreme ultraviolet (EUV),
Hα emission, radio wavelengths, and sometimes even in white light. Since the emission
mechanisms are all different in each wavelength, such as nonthermal bremsstrahlung (in
hard X-rays), thermal bremsstrahlung (in soft X-rays and EUV), gyrosynchrotron emis-
sion (in microwaves), plasma emission (in metric and decimetric waves), etc., we expect
that the calculation of energies contained in each event strongly depends on the emission
mechanism, and thus on the wavelength. It is therefore advisable to investigate the statis-
tics of SOC events in each wavelength domain separately. The most unambiguous SOC
parameters to report are the peak flux P, the total flux or fluence E, defined as the time-
integrated flux over the entire event, and the total time duration T of the event. Conversions
of fluxes and fluences into energy release rates and total energies require physical models,
which will be discussed in Chapter 9.

7.3.1 Solar Flare Hard X-rays

Hard X-ray emission in solar flares mostly results from thick-target bremsstrahlung of non-
thermal particles accelerated in the corona that precipitate into the dense chromosphere.
Thus, the hard X-ray flux is the most direct measure of the energy release rate, and thus is
expected to characterize the energy of SOC events in a most uncontaminated way, while
emission in other wavelengths exhibit a more convolved evolution of secondary emission
processes.

One of the earliest reports of a frequency distribution of solar hard X-ray flare fluxes
was made by Datlowe et al. (1974), who published the cumulative frequency distribution of
123 flare events detected in the 20–30 keV energy range above a threshold of >∼0.1 photons
(cm−2 s−1 keV−1) with the OSO-7 spacecraft during 10 Oct 1971–6 June 1972, finding a
powerlaw slope of βP ≈ 0.8. For compatibility we list only powerlaw slopes of differential
frequency distributions in Table 7.2, and use the conversion α = β + 1 if needed (but see
bias described in Section 7.1.2). We list also the logarithmic ranges of the x-axis over
which the powerlaw fit was obtained, e.g., 10 log(Pmax/Pmin) = 10 log(30/0.3) ≈ 2 in the
case of Datlowe et al. (1974), which is a good indicator of the accuracy of the powerlaw
slope fit.

A sample of 25 microflares of smaller size were detected at 20 keV with a balloon-
borne instrumentation of University of California Berkeley (UCB) during 141 minutes of
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Table 7.2 Frequency distributions measured from solar flares in hard X-rays and gamma-rays. References:
1, Datlowe et al. (1974); 2, Lin et al. (1984); 3, Dennis (1985); 4, Schwartz et al. (1992); 5, Crosby et al.
(1993); 6, Biesecker et al. (1993); 7, Biesecker et al. (1994); 8, Crosby (1996); 9, Lu et al. (1993); 10, Lee
et al. (1993); 11, Bromund et al. (1995); 12, Perez-Enriquez and Miroshnichenko (1999); 13, Georgoulis et
al. (2001); 14, Su et al. (2006); 15, Christe et al. (2008); 16, Lin et al. (2001); 17, Tranquille et al. (2009).

Powerlaw Powerlaw Powerlaw log Instrument Reference
slope of slope of slope of range
peak flux total fluence durations
αP αE αT

1.8 2 OSO-7 1
2.0 1 UCB 2
1.8 4 HXRBS 3
1.73±0.01 3.5 HXRBS 4
1.73±0.01 1.53±0.02 2.17±0.05 3.5 HXRBS 5
1.61±0.03 3.5 BATSE 4
1.75±0.02 4 BATSE 6
1.68±0.02 3.5 BATSE 7
1.59±0.02 2.28±0.08 3 WATCH 8
1.86 1.51 1.88 3 ISEE-3 9
1.75 1.62 2.73 2.5 ISEE-3 10
1.86±0.01 1.74±0.04 2.40±0.04 3.5 ISEE-3 11
1.80±0.01 1.39±0.01 1 PHEBUS 12
1.59±0.05 1.39±0.02 1.09-1.15 2 WATCH 13
1.80±0.02 3.6 [0.9] 3.5 RHESSI 14
1.58±0.02 1.7±0.1 2.2±0.2 2 RHESSI 15
1.6 3 RHESSI 16
1.61±0.04 2 ULYSSES 17

observations on 1980 June 27, yielding a powerlaw distribution with a slope of β ≈ 1 (Lin
et al. 1984).

A much larger amount of statistics was obtained with the Hard X-Ray Burst Spectrom-
eter (HXRBS) onboard the Solar Maximum Mission (SMM) spacecraft, which recorded
6,775 flare events during the 1980–1985 period, exhibiting a powerlaw distribution of
peak count rates with a slope of αP = 1.8 over four orders of magnitude (Dennis 1985),
see Fig. 1.13.

A next mission with hard X-ray detector capabilities was the Compton Gamma Ray
Observatory (CGRO). Although it was designed to detect gamma-ray flashes from astro-
physical objects, it detected also solar flares systematically during the period of 1991–
2000. Using the Burst And Source Transient Experiment (BATSE), statistics of flares with
energies >25 keV was sampled and more detailed powerlaw distributions of peak fluxes
were reported with values of αP = 1.61 ± 0.03 (Schwartz et al. 1992), αP = 1.75 ± 0.02
(Biesecker et al. 1993). and αP = 1.68 ± 0.02 (Biesecker et al. 1994) for BATSE.
Biesecker et al. (1994) noticed slight differences of the powerlaw slope during low ac-
tivity (αP = 1.71 ± 0.04) and high activity periods (αP = 1.68 ± 0.02), which appear not
to be significant.

A systematic study of flares observed with HXRBS over the entire mission duration of
1980–1989 was conducted by Crosby et al. (1993), measuring peak count rates Pcts (cts
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Fig. 7.6 Top: Monthly averages of solar flare rates observed during the last three solar cycles in hard X-
rays with HXRBS/SMM (1980–1989), BATSE/CGRO (1991–2000), and RHESSI (2002–2010), corrected
for the duty cycles of the instruments. Bottom: Monthly averages of the solar flare rate observed in soft
X-rays with GOES, including events above the C3-class level.

s−1), converted into photon fluxes Pph (photons cm−2 s−1 keV−1) at energies >25 keV,
peak HXR spectrum-integrated fluxes PX (photons cm−2 s−1), peak electron fluxes Pe
(ergs s−1), flare durations T , and time-integrated total energies in electrons Ee (ergs), for
four different time intervals of the solar cycle. The variability of the solar flare rate during
the last three solar cycles can be seen in form of monthly averages in Fig. 7.6. In Table 7.2
we list the values for the time range of 1980–1982, which covers the solar maximum and
has the largest statistics. The values of the powerlaw slopes change only by <∼2% during
the solar minimum. The multi-parameter statistics of P, E, and T allowed also to derive
the following parameter correlations (see Section 7.1.6),

T ∝ P0.43[0.41]
ph

PX ∝ P0.95[1.06]
ph

Pe ∝ P1.02[0.93]
ph

Ee ∝ P1.21[1.25]
ph

, (7.3.1)

where the powerlaw index is derived by linear regression between the parameters, as well
as from the slopes of each frequency distribution with Eq. (7.1.42) (indicated in brackets
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[...]). The peak parameters seem to be all close to proportional to each other, i.e., PX ∝
Pe ∝ Pph, so it does not matter much which one is used to characterize the peak energies
of SOC avalanches. It is interesting to compare these correlation coefficients with our
standard SOC model (Section 3.1), which predicts αP = αT and αE = (αP +1)/2, and the
correlations T ∝ P1 and E ∝ P2. We have to investigate observations in other wavelengths
and explore whether different definitions of event durations and energies can explain the
discrepancy of observed correlations (Eq. 7.3.1) to the theoretical model.

From the Wide Angle Telescope for Cosmic Hard X-Rays (WATCH) onboard the Rus-
sian satellite Granat, a sample of 1,546 flare events was observed at energies of 10–30 keV
or 14–40 keV during 1990–1992, yielding similar powerlaw slopes for peak count rates,
αP = 1.59 ± 0.02, and flare durations αT = 2.28 ± 0.08 as reported before (Crosby 1996;
Crosby et al. 1998). However, it was noted that the frequency distribution of flare dura-
tions exhibits a gradual rollover for short flare durations, approaching a slope of αT ≈ 1,
so it cannot be fitted with a single powerlaw distribution over the entire range of flare dura-
tions. From the PHEBUS instrument on Granat, which is sensitive to gamma-ray energies,
Perez-Enriquez and Miroshnichenko (1999) analyzed 110 high-energy solar flares ob-
served in the energy range of 100 keV–100 MeV and found the following powerlaw slopes:
αP = 1.80 ± 0.01 for (bremsstrahlung) hard X-ray fluxes at >100 keV, αP = 1.38 ± 0.01
for photon energies at 0.075–124 MeV, αP = 1.39 ± 0.01 for bremsstrahlung at 300–
850 keV, αE = 1.50 ± 0.03 for the 511 keV electron-positron annihilation line fluence,
αE = 1.39 ± 0.02 for the 2.223 MeV neutron capture line fluence, and αE = 1.31 ± 0.01
for the 1–10 MeV gamma-ray line fluence. We have to be aware that this selection of high-
energy (gamma-ray) flares is not representative for all hard X-ray flares, and thus has a
biased distribution towards the largest events, which explains that most frequency distribu-
tions in gamma rays have a flatter slope than in hard X-rays. The flatter slope corresponds
according to our standard model (αP = 1 + tS/τG) also to events with higher exponen-
tial growth factors exp(τ/tS), which is certainly expected for gamma ray-producing flare
events.

Using data from a >25 keV hard X-ray detector onboard the ISEE-3/ICE spacecraft
during 24 Aug 1978 and 11 Jul 1986, Lu et al. (1993) determined the frequency distribu-
tions of the peak luminosity P (erg s−1), the energy E (erg), and flare duration T (s) and
found that the measured distributions could be best fitted with a cellular automaton model
that produced powerlaw slopes of αP = 1.86, αE = 1.51, and αT = 1.88. The fits of the
distributions included an exponential rollover at the upper end, which explains that they
inferred a less steep slope for durations than previously reported. Interestingly, these val-
ues agree much more closely with our standard model, which predicts for αP = 1.86 the
slopes αT = αP = 1.86 and αE = (αP +1)/2 = 1.43. This tells us that the rollovers at the
lower and upper end of the distributions have to be included in the model fits in order to
obtain proper powerlaw slopes. Lee et al. (1993) analyzed the same data and determined
the correlations and frequency distribution powerlaw slopes with special care of trunca-
tion biases and obtained similar values for ISEE-3 (αP = 1.75, αE = 1.62, αT = 2.73)
as Crosby et al. (1993) for HXRBS. A third study was done with the same data (Bro-
mund et al. 1995), where the energy spectrum was also calculated to determine differ-
ent energy parameters, similar to the study of Crosby et al. (1993), finding the following
powerlaw slopes: αP = 1.86, ...,2.00 for the peak photon flux Pph (photons cm−2 s−1),
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αP = 1.92, ...,2.07 for the peak electron power Pe (erg s−1), αE = 1.67, ...,1.74 for the
total electron energy Ee (erg), and αT = 2.40, ...,2.94 for the total duration T (s), where
the range of powerlaw slopes results from the choice of the fitting range. The flare dura-
tion T was defined at a level of 1/e times the peak count rate. The following parameter
correlations were found,

P ∝ T 0.75[1.52]

E ∝ T 1.60[2.08]

E ∝ P1.35[1.36]
, (7.3.2)

where the powerlaw index is derived by orthogonal linear regression fits, as well as from
the slopes of the frequency distributions Eq. (7.1.42) (indicated in brackets [...]). Inter-
estingly, the first two correlations are consistent with our standard model, which predicts
P ∝ T 1 and E ∝ T 2, within the uncertainty of the two methods.

From the latest solar mission with hard X-ray capabilities, the Ramaty High-Energy
Solar Spectroscopic Imager (RHESSI) spacecraft, frequency distributions were determined
in the 12–25 keV energy band from 2002–2005 (Su et al. 2006), finding powerlaw slopes
of αP = 1.80 ± 0.02 for the peak fluxes, and a broken powerlaw αT = 0.9–3.6 for the
flare duration, similar to previous findings (e.g., Crosby et al. 1998). Christe et al. (2008)
conducted a search of microflares and identified a total of ≈25,000 events observed with
RHESSI during 2002–2007 and investigated the frequency distributions at lower energies,
finding powerlaw slopes of αP = 1.50± 0.03 for 3–6 keV peak count rates Pph (cts s−1),
αP = 1.51± 0.03 for 6–12 keV peak count rates, and αP = 1.58± 0.02 for 12–25 keV
peak count rates. Converting the peak count rates P into total energy fluxes by integrating
their energy spectra, Christe et al. (2008) find an energy distribution with a powerlaw
slope of αE = 1.7 ± 0.1, with an average energy deposition rate of <∼1026 erg s−1. It is
interesting that this microflare statistics is fairly consistent with overall flare statistics, even
if it represents only a subset in the lowest energy range.

Flare statistics was also gathered from the Solar X-ray/Cosmic Gamma-Ray Burst Ex-
periment (GRB) onboard the Ulysses spacecraft (Tranquille et al. 2009), finding similar
results for >25 keV events, i.e., a powerlaw slope of αP = 1.61 ± 0.04 for the peak count
rate, which steepens to αP = 1.75 ± 0.08 if the largest events with pulse pile-up are ex-
cluded.

A specialized study investigated also how the frequency distribution of hard X-ray peak
fluxes depends on the associated size of the active region and found evidence for an upper
cutoff due to a finite size limit (Kucera et al. 1997). Besides flare events per se, one can also
consider substructures in flares and conduct SOC statistics. If the substructures are self-
similar to the overall structure, one would expect similar powerlaw slopes of the frequency
distributions, which was indeed found to be the case for hard X-ray subpulses (Aschwan-
den et al. 1995), although subpulses from a single flare can have exponential distributions,
while their superposition from many flares converges towards powerlaw distributions (As-
chwanden et al. 1998b). These subpulses have typical time scales of Tsub = 0.5–1.5 s (As-
chwanden et al. 1995) and Tsub = 1.9 ± 0.5 s (Qiu and Wang 2006).

A summary plot of frequency distributions of the peak count rate P is shown for the
three instruments HXRBS/SMM, BATSE/CGRO, and RHESSI in Fig. 7.7, yielding an
average powerlaw slope of αP = 1.75 ± 0.05. The corresponding frequency distributions
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Fig. 7.7 Occurrence frequency distributions of hard X-ray peak count rates P(cts/s) observed with
HXRBS/SMM (1980–1989), BATSE (1991–1993), and RHESSI (2002–2007), with powerlaw fits. Note
that BATSE/CGRO has larger detector areas, and thus records higher count rates. RHESSI flares were
detected at energies of ≥12 keV, while HXRBS and BATSE flares were detected at energies of ≥25 keV.
The average slope value is αP = 1.75 ± 0.05.

of total counts or fluences are shown in Fig. 7.8, which have an average powerlaw slope of
αE = 1.61 ± 0.04. The distributions of flare durations are shown in Fig. 7.9, which exhibit
an average of αT = 2.08 ± 0.10, with a tendency toward a rollover at the low end. Thus,
our best values are,

N(P) ∝ P−αP αP = 1.75 ± 0.05
N(E) ∝ E−αE αE = 1.61 ± 0.04
N(T ) ∝ T−αT αT = 2.08 ± 0.10

(7.3.3)

It is interesting to note that these best observational values closely correspond to the nu-
merically simulated values in the cellular automaton model of Lu and Hamilton (1991),
see Eq. (2.6.15), i.e., N(P) ∝ P−1.67±0.04, N(E) ∝ E−1.53±0.02, and N(T ) ∝ T−2.17±0.05.
Using the averaged values of Eq. (7.3.3), we expect the following correlations between
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Fig. 7.8 Occurrence frequency distributions of hard X-ray total counts or fluence E(cts) observed with
HXRBS/SMM (1980–1989), BATSE (1991–1993), and RHESSI (2002–2007), with powerlaw fits. The
average slope value is αE = 1.61 ± 0.04.

these three parameters (using Eq. 7.1.42),

E ∝ Pβ β = (αP −1)/(αE −1) = (1.75−1)/(1.61−1) = 1.23 ± 0.09
T ∝ Pβ β = (αP −1)/(αT −1) = (1.75−1)/(2.08−1) = 0.70 ± 0.07
E ∝ T β β = (αT −1)/(αE −1) = (2.08−1)/(1.61−1) = 1.77 ± 0.16

(7.3.4)

In Fig. 7.10 we show the actual correlation plots between the parameters and determine lin-
ear regression fits, which give a comparable result, with E ∝ P1.26±0.04 and T ∝ P0.44±0.04.
The latter correlation, of course, cannot be determined accurately from linear regression
fits due to the large scatter in flare duration values. Thus, we have obtained representative
values of the powerlaw slopes α and correlation coefficients β for solar flare hard X-ray
parameters, averaged from three major missions over the last 30 years and three solar
cycles, which can serve as reference for other wavelengths.
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Fig. 7.9 Occurrence frequency distributions of hard X-ray flare durations T (s) observed with
HXRBS/SMM (1980-1989), BATSE (1991-1993), and RHESSI (2002-2007), with powerlaw fits. The
flare durations for RHESSI were estimated from the time difference between the start and peak time, be-
cause RHESSI flare durations were determined at a lower energy of 12 keV (compared with 25 keV for
HXRBS and BATSE), where thermal emission can dominate in large flares, causing a flatter powerlaw
slope (αT ≈ 1.4). The average slope value is αT = 2.08±0.10.

7.3.2 Solar Flare Soft X-rays

Soft X-ray emission in solar flares mostly originates from free-free bremsstrahlung emis-
sion of heated flare plasma, which typically reaches temperatures of T ≈ 10–35 MK. A
pragmatic relationship between soft and hard X-ray emission of flare plasmas is charac-
terized with the so-called Neupert effect (e.g., Dennis and Zarro 1993), which essentially
states that the time profile of hard X-ray emission corresponds to the heating rate pro-
duced by nonthermal particles bombarding the chromosphere, while soft X-ray emission
represents the chromospheric response of flare plasma heating. This model is called the
chromospheric evaporation scenario. The thermal energy of the heated plasma and thus
the time profile of emitted soft X-ray emission consequently approximately follows the
time integral of the hard X-rays, until cooling by thermal conduction and radiative loss
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Fig. 7.10 Scatterplots between for the total counts E(P) (left panels) or flare duration T (P) (right panels)
versus the peak count rate P for solar flares with HXRBS/SMM (1980–1989) (top), BATSE/CGRO (1991–
1993) (middle), and RHESSI (2002–2007) (bottom). Linear regression fits are applied to all datapoints
above a threshold of five times the minimum value in each parameter. All data are subject to a flux threshold
Pmin, which causes a truncation at P ≤ Pmin, but does not affect linear regression fits of the form y(x).
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overcomes the heating rate in the late flare phase. From this scenario we expect the rela-
tionship,

FSXR(t) ≈
∫ t

0
FHXR(t ′) dt ′ . (7.3.5)

If we define a SOC event by the energy release as observed in hard X-rays, characterized
with a flare start time ts, end time te, total duration T = (te − ts), peak energy flux PHXR =
F(t = tp), and total flux or fluence E =

∫ te
ts FHXR(t) dt, then the peak time tHXR

p of the
hard X-rays corresponds to the inflection point with the steepest rise in the soft X-ray time
profile, while the end time tHXR

e corresponds to the peak time in soft X-rays. In order to
obtain a consistent flare duration T in the two wavelengths, we have therefore to define,

T = (tHXR
e − tHXR

s ) = (tSXR
p − tHXR

s ) , (7.3.6)

and to calculate the time derivative of the soft X-ray light curve FSXR(t) according to the
Neupert effect (Eq. 7.3.5),

F proxi(t) =
dFSXR(t)

dt
, (7.3.7)

to obtain a proxy F proxi(t) for the hard X-ray-like flare light curve where we can measure
the peak energies P and total energies E. If we do not correct for this Neupert effect, we
expect some significantly different frequency distributions and correlation parameters for
flare event statistics in soft X-rays and hard X-rays.

First frequency distributions of flare peak fluxes in soft X-rays were reported from
OSO-3 observations in the energy range of 7.7–12.5 keV (Hudson et al. 1969), where a
cumulative distribution with a powerlaw tail with a slope of β ≈ 0.8 was found which cor-
responds to a slope of α ≈ β +1 = 1.8 for the differential frequency distribution. Further
data in the 2–12 Å range (1–6 keV) with Explorer 33 and Explorer 35 satellites yielded
solar flare statistics for ≈3,000 events during July 1966 and September 1968, from which
powerlaw distributions of the peak flux (αP = 1.75) and the fluence (αE = 1.44) were
reported (Drake 1971).

The Yohkoh mission (1991–2002) provided imaging observations of solar flares with
the Soft X-ray Telescope (SXT) at temperatures of T > 1.5 MK (>0.13 keV). Shimizu
(1995) analyzed small active region transient brightenings (small flares) during August
1992 and inferred from a sample of some 5,000 events in a single active region frequency
distributions of soft X-ray peak fluxes with powerlaw slopes in the range of αP = 1.64–
1.89, depending on the spatial area used in the sampling. The thermal energy of these
events were estimated in the range of E ≈ 1027–1029, and the powerlaw slope for ener-
gies was calculated to αE ≈ 1.5–1.6 (Shimizu 1995). A similar study was performed by
Shimojo and Shibata (1999), who analyzed 92 microflares during the lifetime of a single
bright point (i.e., a miniature active region) and found a power law slope of αP = 1.7 ± 0.4
for the soft X-ray peak flux.

The difference between frequency distributions sampled in hard X-rays and soft X-
rays was modeled by Lee et al. (1995). For this purpose, flare statistics in hard X-rays
(HXRBS, ISEE-3) and in soft X-rays (SMM/BCS, GOES) were reanalyzed (Fig. 7.11),
but similar powerlaw slopes were found for the two wavelength ranges, which could only
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Fig. 7.11 Frequency distributions of peak fluxes (peak) and total fluxes (total) for soft X-ray (SMM/BCS,
GOES) and hard X-ray (ISEE-3, HXRBS) flare events. The occurrence rates are arbitrarily scaled. Note
the similar slopes in the two wavelength ranges (Lee et al. 1995; reproduced by permission of the AAS).

be reconciled with the expected difference for the chromospheric evaporation scenario if
one assumes a special scaling law between temperature and density, i.e., n ∝ T−4/5 (Lee
et al. 1995).

Using soft X-ray light curves from the Geostationary Operational Environmental Satel-
lites (GOES), which observe the Sun uninterrupted thanks to multiple spacecraft, complete
flare statistics can be gathered. Feldman et al. (1997) sampled during 1993–1995 some
1,000 flare events in the 1–8 Å (0.08–0.67 keV) range and inferred a soft X-ray peak flux
distribution with a powerlaw slope of αP = 1.88 ± 0.21. A more comprehensive study
of 50,000 soft X-ray flares observed with GOES during 1976–2000 was performed by
Veronig et al. (2002a,b). The obtained frequency distributions exhibit significantly steeper
slopes than previously found, i.e., αP = 2.11 ± 0.13 for the peak flux, αE = 2.03 ± 0.09 for
the fluence, and αT = 2.93 ± 0.12 for durations. This discrepancy with previous statistics
(Table 7.3) most likely arises from two facts: (1) no pre-event background flux was sub-
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Table 7.3 Frequency distributions measured from solar flares in soft X-rays. References: 1, Hudson et al.
(1969); 2, Drake et al. (1971); 3, Shimizu (1995); 4, Lee et al. (1995); 5, Feldman et al. (1997); 6, Shimojo
and Shibata (1999); 7, Veronig et al. (2002d); 8, Veronig et al. (2002a); 9, Yashiro et al. (2006).

Powerlaw Powerlaw Powerlaw log Instrument Reference
slope of slope of slope of range
peak flux total fluence durations
αP αE αT

1.8 1 OSO-3 1
1.75 1.44 2 Explorer 2
1.64–1.89 1.5–1.6 2 Yohkoh 3
1.79 2 SMM/BCS 4
1.86 2 GOES 4
1.88±0.21 3 GOES 5
1.7±0.4 2 Yohkoh 6
1.98 1.88 3 GOES 7,8

2.11 ± 0.13∗ 2.03 ± 0.09∗ 2.93 ± 0.12∗ 3 GOES 8
2.16 ± 0.03∗ 2.01 ± 0.03∗ 2.87 ± 0.09∗ 3 GOES 9

∗ No background subtracted.

tracted, which substantially overestimates the peak flux and fluence of small events, and
thus causes a steeper powerlaw slope, and (2) the Neupert effect could explain some dis-
crepancy with respect to hard X-rays, but there seems to be a small difference (Fig. 7.11)
according to the comparison of Lee et al. (1995). The Neupert effect has been investi-
gated by correlating the soft X-ray peak flux with the hard X-ray fluence (Eq. 7.3.5) and
a strong correlation was found, but it is not strictly proportional as predicted by the chro-
mospheric evaporation model (Veronig et al. 2002c). Similar values (αP = 2.16 ± 0.03,
αE = 2.01 ± 0.03, and αT = 2.87 ± 0.09 were inferred by Yashiro et al. (2006), but these
distributions suffer from the same lack of background subtraction as the study of Veronig
et al. (2002a,b), which causes a bias in overestimating the flux of weak events and thus
steepens the powerlaw slopes. Moreover, the study of Yashiro et al. (2006) demonstrated
that a subset of flare events with simultaneous CME events exhibited flatter powerlaw dis-
tributions, which is to be expected for any subset that contains preferentially larger events.

In summary, for flare events observed in soft X-rays, we can group the results into two
categories: (1) event statistics with pre-flare background subtraction, and (2) without pre-
flare background subtraction. From the compilation shown in Table 7.3 it is clear that each
group produces quite consistent results among themselves, but they differ significantly
due to the well-understood bias caused by neglecting background subtraction, especially
in GOES data, where every light curve contains also the total soft X-ray emission from all
other active regions on the solar surface besides a particular flare event (e.g., Bornmann
1990). Thus, ignoring the second group (Veronig et al. 2002a,b; Yashiro et al. 2006) in
Table 7.3, we obtain the following averages from the first group,

N(PSXR) ∝ P−αP αP = 1.79±0.06
N(ESXR) ∝ E−αE αE = 1.50±0.05 , (7.3.8)
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which is not much different from the values obtained in hard X-rays (Eq. 7.3.3), i.e.,
N(PHXR) ∝ P−1.75±0.05 and N(EHXR) ∝ E−1.61±0.04. Although we expect some difference
due to the Neupert effect (Eq. 7.3.5) in the relationship between soft and hard X-rays,
the dissimilarity in the frequency distributions of SOC parameters is apparently not large,
either because the time profiles are close to self-similar, or because the soft X-ray light
curves are not purely thermal emission, but contain also significant nonthermal emission
as observed at higher energies in hard X-rays. Insight into these problems could be ob-
tained by comparing SOC statistics obtained from GOES light curves directly versus event
detection from the time derivative of the GOES light curve (Eq. 7.3.7).

7.3.3 Solar Flare Extreme Ultraviolet Emission

The evolution of a solar flare in different wavelengths can be best understood by their
temperature dependence. In a large flare, plasma becomes heated to T ≈ 20–35 MK,
which produces bright emission in soft X-rays. Once the plasma cools down in the post-
flare phase, soft X-ray emission fades and extreme ultraviolet (EUV) emission becomes
brighter, which is produced by free-free and bound-bound emission at temperatures of
T ≈ 1–2 MK. The systematic delay in the peak of the emission in different wavelengths
can best be seen in multi-wavelength observations of a large flare, such as during the
Bastille-Day (14 July 2000) flare shown in Fig. 7.12, where the timing of the peak emis-
sion in each wavelength is exactly ordered according to the temperature peak sensitivity
of the different instruments. It peaks first in the Yohkoh/HXT 14–23 keV channel, which is
sensitive to the highest temperature that occurred in the flare (T ≈ 35 MK), then in the soft
X-ray channels (GOES, Yohkoh/SXT), and finally in the EUV channels (TRACE 195, 171
Å), which are sensitive in the temperature range of T ≈ 1–2 MK. Therefore, SOC statistics
of flare events can in principle be performed in all these wavelengths, but the frequency
distributions of peak flux (P), fluence (E), and durations (T ) are not necessarily identical,
unless the time profiles in the different wavelengths are self-similar. The comparison of the
light curves from 7 different wavelength ranges shown in Fig. 7.12 suggests that the dura-
tions become systematically longer in wavelengths corresponding to cooler temperatures,
which implies a temperature-dependent scaling between peak flux and duration, P ∝ T β .
Large flares with total energies of E ≈ 1027–1032 erg are visible in hard X-rays and soft
X-rays (Fig. 1.14), but tiny flares with energies of E ≈ 1024–1026, dubbed nanoflares, can
only be detected in EUV, because they seem not to exceed temperatures of T <∼ 2 MK, and
thus lack soft or hard X-ray emission. Frequency distributions reported in solar EUV have
mostly concentrated on these nanoflares, but EUV statistics on larger flares are strangely
lacking completely.

A first systematic study on EUV nanoflares was carried out by Krucker and Benz
(1998), using images from the Extreme-ultraviolet Imaging Telescope (EIT) onboard the
SOlar and Heliospheric Observatory (SOHO). The detection of events in the EUV images
was performed with a code similar to the one described in Section 6.9, using the 171 and
195 Å filters (T ≈ 1.1–1.9 MK), and the energy was calculated based on a special phys-
ical model of the flare volume, assumed to be proportional to the area, i.e., V ∝ A. This
was the first study that reported significantly steeper powerlaw slopes (αP ≈ 2.3–2.6) than
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Fig. 7.12 Top: Light curves from Yohkoh/HXT (hard X-rays), Yohkoh/SXT and GOES (soft X-rays), and
TRACE (EUV) of the 14 July 2000 Bastille-Day flare. Note that the different light curves are not self-
similar. Bottom: Enlarged view of the emissions during their peak fluxes. Note a systematic delay that
occurs in order of the decreasing temperature sensitivity of the instruments, due to the cooling of the flare
plasma (Aschwanden and Alexander 2001).
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Table 7.4 Frequency distributions measured in small-scale events in EUV, UV, and Hα . References:
1, Krucker and Benz (1998); 2, Aletti et al. (2000); 3, Parnell and Jupp (2000); 4, Aschwanden et al.
(2000a,b); 5, Benz and Krucker (2002); 6, Aschwanden and Parnell (2002); 7, Georgoulis et al. (2002); 8,
Greenhough et al. (2003); 9, McIntosh and Gurman (2005); 10, Nishizuka et al. (2009).

Powerlaw Powerlaw Powerlaw log Waveband Reference
slope of slope of slope of range
peak flux total fluence durations

or energy
αP αE αT λ (Å)

2.3−2.6 1.3 171, 195 1
1.19 ± 1.13 2 195 2

2.0−2.6 1.5 171, 195 3
1.68−2.35 1.79 ± 0.08 1.5 171, 195 4

2.31−2.59 1.3 171, 195 5
2.04−2.52 1.5 171, 195 5

1.71 ± 0.10 2.06 ± 0.10 2 171 6
1.75 ± 0.07 1.70 ± 0.17 2 195 6
1.52 ± 0.10 1.41 ± 0.09 1.5 AlMg 6

1.54 ± 0.03 4 171+195+AlMg 6
2.12 ± 0.05 1 6563 7
1.5−3.0 1.5 1–500 8

1.4−2.0 1 171,195,284 9
1.5 2.3 1.5 1550 10

previously reported in soft and hard X-rays. In Table 7.4 we list the powerlaw slopes αE
of energies (which are model-dependent), when the fluence was not reported. A similar
study was done independently with another, but similar, event detection code, and power-
law slopes in the range of αP = 2.4–2.6 were reported for the same volume model V ∝ A,
but a different range of αP = 2.0–2.1 for a modified volume model, i.e., V ∝ A3/2 (Parnell
and Jupp 2000). The same data from these first two studies were reanalyzed with both vol-
ume models and powerlaw slopes of αe = 2.52–2.59 were inferred for the model V ∝ A,
and αe = 2.04–2.31 for the model V ∝ A3/2 (Benz and Krucker 2002), so we learned that
the choice of the flare volume model changes the powerlaw slope of energies by about
Δα ≈ 0.4.

A third study was conducted with the automated event detection code described in Sec-
tion 6.9, which was designed to discriminate flare events (defined by impulsively heated
and cooling loops) from non-flare events. For the frequency distributions of peak fluxes, a
broken powerlaw was found at 171 Å with a slope varying from αP = 1.68 to αP = 2.35,
but a single powerlaw at 195 Å with a slope of αP = 1.85 (Aschwanden et al. 2000a,b).
Thermal flare energies were also determined using a cylindrical loop geometry for the flare
volume, leading to a powerlaw slope of αE = 1.79 ± 0.08 in the energy range of E = 1024–
1026.5 erg (Fig. 1.14). This study also demonstrated that the selection of flare events can
change the powerlaw slope by Δα ≈ 0.3. The next, more detailed, study was conducted
using the combined EUV (TRACE) and soft X-ray data (Yohkoh), which allowed syn-
thesize of a more complete temperature range, yielding more reliable total flare energies
than previous studies in a single waveband (Aschwanden and Parnell 2002). The peak flux
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Fig. 7.13 Synthesized frequency distributions from all three wavebands (TRACE 171 Å, 195 Å, and
Yohkoh/SXT AlMg) (gray histograms), along with the separate distributions from each waveband (in
grayscales). Each of the distributions is fitted with a powerlaw, with the slope values and formal fit errors
given in each panel. The four panels belong to the four parameters of the length l, area A, total emission
measure M (which is proportional to the peak flux P), and the thermal energy E (Aschwanden and Parnell
2002).

distributions were found to have powerlaw slopes of αP = 1.71 ± 0.10 (TRACE, 171 Å),
αP = 1.75 ± 0.07 (TRACE 195 Å), and αP = 1.52 ± 0.10 (Yohkoh/SXT, AlMg, T >∼ 2.4
MK). Thermal flare energies were computed by taking the synthesized full temperature
range as well as the fractal volume geometry (Chapter 8) of the flares into account, which
yielded powerlaw slopes as steep as αE = 2.06 ± 0.10 for the filter with the lowest tem-
perature (T ≈ 1.0 MK; TRACE 171 Å), or as low as αE = 1.41 ± 0.09 for the filter with
the highest temperature (T >∼ 2.4 MK; Yohkoh/SXT), while the synthesized distribution
yields a powerlaw slope of αE = 1.54 ± 0.03. Thus, this study demonstrated that there is
also a temperature bias that steepens the powerlaw slope up to Δα ≈ 0.9, if the statistics is
limited to a single narrowband filter of the lowest EUV temperature band. In Fig. 7.13 we
show the frequency distributions of various parameters (length, area, total emission mea-
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sure, and thermal energy) of the same event set measured in three different wavebands.
Note the systematic flattening of the powerlaw slopes when including data with higher
temperatures.

Further studies on frequency distributions were performed on EUV brightenings in the
quiet Sun (αP = 1.19 ± 0.09; Aletti et al. 2000), on full-disk EUV/XUV solar irradiance
(αP = 1.5–3.0; Greenhough et al. 2003), or on EUV bright points over 9 years (αT = 1.4–
2.0; McIntosh and Gurman 2005). Frequency distributions in flares were also evaluated for
substructures that occur during a flare, such as UV brightenings of flare kernels observed
in the C IV line (αP = 1.5, αT = 2.3; Nishizuka et al. 2009). Besides the EUV waveband,
frequency distributions of small-scale variability events were also analyzed in the Hα line,
which originates in the photosphere and chromosphere, such as in short-lived and small-
scale events called Ellerman bombs (αP = 2.12; Georgoulis et al. 2002).

In summary we can say that the frequency distribution of nanoflares observed in EUV
exhibit approximately the same powerlaw distributions of peak fluxes P and total ener-
gies E as observed in hard X-rays and soft X-rays, if the event definition is restricted to
flare-like phenomena and if sufficiently broad temperature coverage is ensured to capture
emission at the peak temperature of each event. However, several biases in the measure-
ment of powerlaw slopes have been identified that are more severe in the cooler EUV
waveband than in hotter soft X-ray wavebands, resulting from the event selection, narrow-
band temperature filters, and the geometric model of the flare volume, which enters the
calculation of the thermal energy.

7.3.4 Solar Radio Emission

Solar radio bursts can be detected from ground-based instruments, and have thus been ob-
served since their discovery by Hey and Southworth in 1942. Most solar radio bursts occur
during solar flares, but they display a rich morphological variety that point to a number of
different emission mechanisms, such as gyrosynchrotron emission of relativistic particles,
electron beam-driven instabilities, loss-cone instabilities, or free-free (bremsstrahlung)
emission. Radio emission at decimetric and microwave frequencies originate at the flare
site and thus may show a detailed temporal co-evolution with the hard X-ray emission,
while radio emission at metric and decametric wavelengths originate in the upper corona
and heliosphere (Fig. 7.14), where they originate from local plasma instabilities or CME-
driven shocks detached from the flare energy release process in the lower corona. This
splits the statistics of solar radio bursts into two different realms, depending on the con-
nectivity with the flare site, and consequently we expect possibly different frequency dis-
tributions for the two types. Solar radio bursts also span a large range of frequencies, from
millimeter (≈ 300 GHz) to hectometer (≈ 3 MHz) wavelengths, and thus we might expect
quite different frequency distributions depending on the wavelength or emission mecha-
nism. A compilation of reported frequency distributions of solar radio bursts is given in
Table 7.5.

The earliest frequency distributions of solar radio bursts were reported by Akabane
(1956), who recorded solar radio bursts during 1951–1956 at 3 GHz and found powerlaw
distributions with slopes of αP ≈ 1.8. Further observations were reported in microwaves
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Table 7.5 Frequency distributions measured from solar radio bursts, classified as type I storms, type III-
like bursts, decimetric pulsation types (DCIM-P), decimetric millisecond spikes (DCIM-S), microwave
bursts (MW), and microwave spikes (MW-S). References: 1, Akabane (1956); 2, Kundu (1965); 3, Kak-
inuma et al. (1969); 4, Fitzenreiter et al. (1976); 5, Aschwanden et al. (1995); 6, Aschwanden et al. (1998b);
7, Mercier and Trottet (1997); 8, Das et al. (1997); 9, Nita et al. (2002); 10, Ning et al. (2007).

Powerlaw Powerlaw Powerlaw log Waveband Reference
slope of slope of slope of range frequency and type
peak flux total flux or durations

total energy
αP αE αT f

1.8 2 3 GHz 1, MW
1.5 2 3, 10 GHz 2, MW
1.8 2 1, 2, 3.75, 9.4 GHz 3, MW
1.9–2.5 2 3.75, 9.4 GHz 3, MW
1.26–1.69 3 110 kHz–4.9 MHz 4, type III
1.28 2 100 MHz–3 GHz 5, type III
1.45 ± 0.31 3 100 MHz–3 GHz 6, type III
1.33 ± 0.11 3 100 MHz–3 GHz 6, DCIM-P
1.22–1.65 2.5 0.245–17 GHz 8, III, MW
1.71–1.91 4 0.100–2 GHz 9, III, MW

2.99 ± 0.63 3 100 MHz–3 GHz 6, DCIM-S
2.9–3.6 1.5 164, 237 MHz 7, type I
7.4 ± 0.4 5.4 ± 0.9 0.5 4.5–7.5 GHz 10, MW-S

(most likely to be produced by gyrosynchrotron emission) at 3 and 10 GHz during 1958–
1959 with values of αP = 1.5 (Kundu 1965), at 1.2, 3.75, and 9.4 GHz during 1957–
1962, with values of α = 1.8 (Kakinuma et al. 1969), and at 3.75, and 9.4 GHz during
1957–1962, with values of α = 1.9–2.5 (Kakinuma et al. 1969). Fitzenreiter et al. (1976)
observed interplanetary type III bursts (produced by an electron beam instability) with
the IMP-6 satellite during May–July 1971 at frequencies from 110 kHz to 4.9 MHz and
found powerlaw distributions of their fluxes with slopes in the range of αP = 1.26–1.69.
Interestingly, the value of the powerlaw slope systematically increases toward higher fre-
quencies, which tells us something about the ratio of growth time τG to the saturation
time tS of the radio emission-producing instability, according to our model of exponen-
tially growing instabilities, i.e. αP = (1+τG/tS) (Eq. 3.1.28). Statistics of flare-associated
metric type III bursts yielded powerlaw slopes of αP = 1.28 (Aschwanden et al. 1995).
Statistics on different types of flare-associated decimetric radio bursts included decimetric
type III types (produced by electron beams) with αP = 1.45 ± 0.31, decimetric pulsa-
tion types (produced by an oscillating instability) with αP = 1.33 ± 0.11, and decimetric
millisecond spikes (conceivably produced by an electron-cyclotron maser instability) with
αP = 2.99 ± 0.63 (Aschwanden et al. 1998b). There are always multiple radio bursts per
flare, but when the distribution of peak fluxes or durations is investigated among the bursts
occurring during a single flare, both powerlaw-like and exponential-like distributions are
found. The relatively more restricted parameter space for a single flare could explain the
exponential frequency distributions, which are not scale-free but define a dominant tem-
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Fig. 7.14 Schematic overview of solar flare-related radio bursts: plasma emission excited by an electron
beam instability produces radio bursts along open field lines escaping the acceleration region in upward
direction (type III bursts), along upward escaping closed field lines (type U and N bursts), or in downward
direction (reverse-slope drift [RS] bursts). Various decimetric (DCIM) radio bursts are produced by a
losscone-type instability, sometimes with oscillatory patterns. Microwave emission (MW) produced by
incoherent gyrosynchrotron emission mostly originates in flare loops where particles are injected from the
acceleration region and subsequently become trapped (Aschwanden 2004).

poral or spatial scale. Mercier and Trottet (1997) sampled radio bursts from type I noise
storms, which are produced above solar active regions without flares, probably associated
with gentle continuous electron acceleration and found powerlaw distributions with slopes
of αP = 2.9–3.6. Das et al. (1997) sampled radio bursts at frequencies from 245 MHz
to 17 GHz and found some deviations from a strict powerlaw, which mostly affects the
rollover at the low end of the distribution. A statistical analysis of decimetric millisecond
spikes observed during single flares between 237 and 610 MHz exhibited both powerlaw-
like and exponential-like flux distribution functions (Meszarosova et al. 1999, 2000). Is-
liker and Benz (2001) investigated how insufficient spatial and temporal resolution of these
fast millisecond spikes affects the peak flux distribution function and found a tendency to-
ward exponential behavior at large flux values. The most comprehensive statistics of solar
radio bursts recorded over 40 years (1960–1999) compiled in NOAA catalogs was un-
dertaken by Nita et al. (2002), finding powerlaw distributions with slopes in the range of
α = 1.71–1.91, using two different peak detection methods and sampling radio bursts in
8 frequency bands from 100 MHz to >2 GHz. Two examples of cumulative frequency
distributions are shown in Fig. 7.15, measured at 2 GHz, which have a powerlaw slope (of
the differential frequency distribution) of α = 1.82 ± 0.01 during the solar maximum and
α = 1.81 ± 0.02 during the solar minimum, so there is no significant variation during the
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Fig. 7.15 Cumulative frequency distributions of radio bursts measured at 2 GHz during the solar maximum
(left) and solar minimum (right) (Nita et al. 2002; reproduced by permission of the AAS).

solar cycle. Ning et al. (2007) reported very steep powerlaw slopes of α = 7.4 ± 0.4 for
microwave bursts during a single event.

Inspecting Table 7.5 we see a clear pattern of two groups. The first group includes
statistics of radio bursts occurring in many flare events, such as type III bursts and mi-
crowave bursts, which show similar powerlaw-like distributions as hard X-ray and soft
X-ray flares, in the range of αP ≈ 1.3–1.9. The second group includes statistics of radio
burst fine structure during single flare events, such as decimetric millisecond spikes, type
I sub-bursts, or microwave sub-bursts, which all exhibit very steep powerlaw distributions
α >∼ 3 or exponential distribution functions. The dissimilarity of statistical distributions of
sub-bursts sampled during single flare events and the overall statistics sampled from many
flares is clearly evident when they are juxtaposed in the same diagram (e..g, see examples
in Aschwanden et al. 1998b). We conclude that physical parameters are more restricted
during a single flare, and thus reveal a dominant temporal or spatial scale in the statistics
of finestructure or sub-bursts, while a large statistical ensemble of many flares involves a
much larger parameter range and produces the scale-free powerlaw distributions that are
typical for flare statistics observed in other wavelength domains.
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7.3.5 Solar Energetic Particle (SEP) Events

The highest particle energies detected in our heliosphere, mostly by in-situ detectors on
spacecraft or by ground-based neutron monitors, can reach energies up to >∼100 MeV
for electrons and >∼1 GeV for protons. While such high-energy particles were associated
with cosmic rays earlier on, the current understanding is that they are accelerated either
by shocks in coronal mass ejections, at typical distances of R ≈ 1–5 solar radii, or in
magnetic reconnection regions of solar flares in the lower corona. There is evidence for
both scenarios, based on the timing inferred from the velocity dispersion of the detected
particles: about half of the events have the time of their origin coincident with the flare
peak times, while the other half originate with some significant delay, as expected for a
CME-associated acceleration source. Nevertheless, whatever the origin of SEP events is,
they represent very energetic phenomena and thus are expected to exhibit much flatter
frequency distributions, like a subset of the largest and most energetic flare events.

An early frequency distribution of the intensity of 20–80 MeV protons (in units of
protons cm−2 s−1 MeV−1) was reported by Van Hollebeke et al. (1975), based on mea-
surements of 185 SEP events during 1967–1972 with the Interplanetary Monitoring
Platform (IMP) 4 and 5 spacecraft, who find a powerlaw distribution with a slope of
αP = 1.10 ± 0.05. Cliver et al. (1991) reported a powerlaw slope of αP = 1.13 ± 0.04
for 24–43 MeV proton fluxes and αP = 1.30 ± 0.07 for 3.6–18 MeV electron fluxes,
based on 92 SEP events detected with the IMP-8 spacecraft during 1977-1983. Gabriel
and Feynman (1996) collected data from the IMP 1, 2, 3, 5, 6, 7, 8, and the Orbiting Geo-
physical Observatory (OGO) 1 spacecraft observed during 1956–1990 and sampled fre-
quency distributions of time-integrated particle fluxes (fluences), finding powerlaw slopes
of αE = 1.32 ± 0.05 for >10 MeV protons, αE = 1.27 ± 0.06 for >30 MeV protons,
and αE = 1.32 ± 0.07 for >60 MeV protons, with little variation during the three solar
cycles. A comprehensive compilation of the size distribution of >10 MeV solar proton
events is provided by Miroshnichenko et al. (2001) for different datasets, based on the
IMP spacecraft (αP = 2.12±0.03), the NOAA list (αP = 1.47 ± 0.06), or SPE catalogues
(αP = 1.00–1.43). The large range of powerlaw slopes in the latter dataset results from
different threshold intensities, time ranges, or subsets with sudden storm commencement
(SSC) associated events. The flattest slope αP = 1.00 ± 0.03 was found for the lowest
threshold, which corresponds to the most complete dataset, while the steepest powerlaw
slope αP = 2.12 ± 0.03 was found for the highest threshold and smallest data subset,
and thus may be affected by the upper cutoff of the distribution. Looking at the temporal
occurrence of SEP events, they are not well-correlated with the solar cycle, and thus unpre-
dictable on time scales longer than the lifetime of an active region that has the necessary
complex magnetic pattern (Xapsos et al. 2006; Hudson 2007).

In summary, the compilation in Table 7.6 shows that the frequency distributions of both the
peak fluxes and fluences of SEP events are significantly flatter (αP ≈ αE ≈ 1.1–1.3) than
for a comprehensive set of solar flares (αP = 1.75 ± 0.05 and αE = 1.61 ± 0.04). Since
virtually all SEP events are also accompanied by a flare (unless the flare was occulted at
the solar limb), the dataset of SEP events is essentially the most energetic subset of a flare
distribution, regardless whether the acceleration of the high-energy particles occurred at
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Table 7.6 Frequency distributions of solar energetic particle (SEP) events. References: 1, Van Hollebeke
et al. (1975); 2, Belovsky and Ochelkov (1979); 3, Cliver et al. (1991); 4, Gabriel and Feynman (1996);
5, Smart and Shea (1997); 6, Mendoza et al. (1997); 7, Miroshnichenko et al. (2001); 8, Gerontidou et al.
(2002).

Powerlaw Powerlaw Powerlaw log Energy Reference
slope of slope of slope of range range and type
peak flux total flux or durations

total energy
αP αE αT f

1.10 ± 0.05 3 20–80 MeV protons 1
1.40 ± 0.15 >10 MeV protons 2
1.13 ± 0.04 4 24–43 MeV protons 3
1.30 ± 0.07 4 3.6–18 MeV electrons 3

1.32 ± 0.05 4 >10 MeV protons 4
1.27 ± 0.06 4 >30 MeV protons 4
1.32 ± 0.07 4 >60 MeV protons 4

1.47–2.42 >10 MeV protons 5
1.27–1.38 >10 MeV protons 6
1.00–2.12 >10 MeV protons 7
1.35 3.5 >10 MeV protons 8

the flare site in the lower corona or in associated CMEs further out in the heliosphere.
The selection criterion for SEP events, e.g., the threshold for detecting > 10 MeV protons,
includes all largest events of a peak flux distribution, but includes gradually less of the flare
events with lower fluxes, which explains that their frequency distribution is flatter than for
a complete set of flare events. Applying our exponential-growth model (Section 3.1), a
powerlaw slope of αP = (1+τG/tS)≈ 1.1–1.3 corresponds to a mean ratio of tS/τG = 3–10
growth times, or mean amplification factors of exp(tS/τG) ≈ 30–20,000, which is hugely
larger than the mean for average flares (exp(tS/τG) = exp [1./(αE −1)] ≈ 5. If we relate
this mean amplification factor to the energy gain of the acceleration process, we expect
that SEP events (with a powerlaw slope of αE ≈ 1.1) produce a factor of 20,000/5 = 4,000
higher energies, which explains the detection of > 10 MeV protons and >4 MeV electrons
in SEP events.

7.4 Frequency Distributions in Astrophysics

While the Sun represents our local SOC laboratory that provides us abundant statistics and
spatial information on each SOC event, observations of astrophysical sources offer only
a few glimpses with sparse event statistics (due to the limited observing time allocation
with expensive large telescopes) and no spatial information at all. This crucial limitation
severely limits the characterization of frequency distributions, which requires ample statis-
tics, but on the other hand, we can study exciting new phenomena that do not exist in our
local solar system. The most-studied extra-solar SOC phenomena are stellar flares and
accretion-disk or black-hole objects.
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7.4.1 Stellar Flares

Here we review a few observations with published occurrence frequency distributions of
stellar flares, mostly in UV wavelengths, which probe the transition regions at the base of
stellar coronae. Robinson et al. (1999) observed the YZ Canis Minoris (YZ CMi) flare star
(spectral type dM4.5e) on 1993 Nov 10 with the High-Speed Photometer (HSP) on the
Hubble Space Telescope (HST) for 2.5 hrs and identified 54 flare events, finding a cumula-
tive frequency distribution of the (time-integrated) flux with a slope of βE ≈ 1.25 ± 0.10,
approximately corresponding to a slope of αE ≈ 2.01 ± 0.13 for the differential frequency
distribution, using Eq. (7.1.14) which includes the steepening effect of the cumulative fre-
quency distribution near the upper cutoff, based on the logarithmic range Emax/Emin ≈ 10
(see Fig. 3 in Robinson et al. 1999). The cumulative frequency distribution exhibits two
bumps, so it is not well-characterized by a powerlaw function, which is often the case for
small samples.

Audard et al. (2000) sample the flare activity of 12 (late-type) cool stars (spectral type
F to M) from Extreme Ultraviolet Explorer (EUVE) Deep Survey observations. The cu-
mulative frequency distributions of their total radiative energies E (which is assumed to be
proportional to the total number of photon counts observed in the energy range of 0.01–10
keV) of these 12 stars is shown in Fig. 7.16. The cumulative frequency distributions are
shown in form of rank-order plots, since there are only about 5–15 datapoints (flare events)
measured for each star. Fitting a powerlaw distribution in the log-log plane they find the
cumulative powerlaw indices β and estimate the powerlaw indices of the differential fre-
quency distribution with the approximate relation α = β + 1, listed in the first column of
Table 7.7 (which corresponds to the value αb in the fourth column of their Table 2). We
estimate the corresponding powerlaw slopes α of the differential frequency distributions
with the relationship α(β ) given in Eq. (7.1.14), based on a powerlaw fit in the lower half
of the cumulative distribution (marked with a thick line in Fig. 7.16) and the logarithmic
range ΔElog = log(Emax/Emin), with q2 = 10(−ΔElog/2), listed as values αP

E in Table 7.7.
We also fit the exact cumulative distribution function Ncum(>x) as defined in Eq. (7.1.10),
which includes the steepening at the upper end (marked with thin curves in Fig. 7.16),
listed as values αC

E in Table 7.7. We see that discrepancies between the three methods
mostly arise where the logarithmic range of the sampled energies is small (listed in paren-
thesis in the column ΔElog in Table 7.7), say <∼0.7 decades (a factor of 5), excluding the
rightmost energy bin containing the largest event. Powerlaw fits over such small ranges are
not reliable because they could fit the gradual exponential-like cutoff without constraining
the powerlaw part at lower energies. Thus, if we focus on the more reliable events with
energy ranges of ΔElog ≥ 0.8 (excluding the uppermost bin), we find 7 cases (out of the 12
stars analyzed by Audard et al. 2000) which have the following mean powerlaw slopes for
each of the three methods: β +1 = 2.01±0.15, αP

E = 1.65 ± 0.18, and αC
E = 1.75±0.26.

Thus, we find a significantly flatter slope of αE ≈ 1.7 ± 0.2 based on the two methods (αP
E

and αC
E ) that include the upper cutoff effect in the cumulative frequency distribution than

the method α = β + 1 that neglects this effect, used in Audard et al. (2000). A summary
of various biases in the derivation of frequency distributions from stellar data is given in
Güdel et al. (2003).



240 7. Occurrence Frequency Distributions

Table 7.7 Frequency distributions observed in stellar flares. The powerlaw slope α of the differential
frequency distribution of energies is calculated with three methods: β + 1 is from a powerlaw fit to the
cumulative distribution (reported by authors); αP

E is from a powerlaw fit to the lower half of the bins
with correction Eq. (7.1.14), and αC

E by fitting the cumulative distribution (Eq. 7.1.10). The logarithmic
ranges ΔElog = log(Emax/Emin) are given, where the numbers in parentheses give the range excluding
the uppermost bin in the cumulative distribution that contains the largest flare. The values flagged with
an asterisk were obtained from fitting photon arrival time distributions using Monte-Carlo simulations.
References: 1, Robinson et al. (1999); 2, Audard et al. (2000); 3, Kashyap et al. (2002); 4, Güdel et
al. (2003); 5, Arzner and Güdel (2004); 6, Arzner et al. (2007); 7, Stelzer et al. (2007).

Powerlaw Logarithmic Object Instrument Reference
slope of range
total flux
β +1 αP

E αC
E ΔElog

2.25 ± 0.10 2.01 1.0 YZ Cmi HSP/HST 1
1.89 2.40 2.15 1.6 (0.6) HD 2726 EUVE 2
1.98 1.79 1.95 1.3 (0.8) 47 Cas EUVE 2
2.27 1.71 1.93 1.0 (0.9) EK Dra EUVE 2
1.90 1.67 2.14 0.8 (0.4) κ Cet 1994 EUVE 2
2.21 2.22 2.18 1.0 (0.6) κ Cet 1995 EUVE 2
1.97 1.64 1.83 1.4 (1.1) AB Dor EUVE 2
2.50 2.00 2.68 0.5 (0.4) ε Eri EUVE 2
1.96 1.65 1.69 1.3 (1.1) GJ 411 EUVE 2
1.85 1.72 1.81 1.5 (1.2) AD Leo EUVE 2
1.90 1.75 1.84 1.3 (1.0) EV Lac EUVE 2
1.91 2.20 1.79 1.6 (0.7) CN Leo 1994 EUVE 2
2.14 1.26 1.19 1.0 (0.8) CN Leo 1995 EUVE 2
2.60 ± 0.34∗ FK Aqr EUVE 3
2.74 ± 0.35∗ V1054 Oph EUVE 3
2.03–2.32∗ AD Leo EUVE 3
2.0–2.5∗ AD Leo EUVE 4
2.3 ± 0.1∗ AD Leo EUVE 5
1.9–2.5∗ HD 31305 XMM 6
2.4 ± 0.5 TMC XMM 7

Kashyap et al. (2002) analyzed also observations from the EUVI Deep Survey and
inferred the frequency distribution N(E) ∝ E−α in an indirect way by Monte–Carlo sim-
ulations of photon arrival times, where the numerical model has three free parameters: α
the powerlaw index of the energy distribution, rF the average count rate due to flares, and
rC the average background count rate. So, the value α is found from the best fit of the
modeled to the observed distribution of photon arrival times. The obtained values in the
range of α ≈ 2.2–2.7 are significantly steeper than previously inferred values from similar
stars. A similar value was obtained for AD Leo using the same method (Güdel et al. 2003;
Arzner and Güdel 2004). Arzner et al. (2007) applied the same Monte-Carlo simulation
technique to a sample of 22 stars observed with the XMM-Newton Extended Survey of
the Taurus Molecular Cloud (XEST), but could constrain the powerlaw slope of the flare
energy distribution with an acceptable fit (αE = 2.02.5

1.9) only for one case (HD 31305). It
would be interesting to test the validity of this novel simulation method (that infers pow-
erlaw slopes from fitting photon arrival time distributions) by comparing with powerlaw
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Fig. 7.16 Cumulative frequency distributions of flare energies (total counts) observed for 12 cool (type
F to M) stars with EUVE (Audard et al. 2000). The flare events are marked with diamonds, fitted with a
powerlaw fit in the lower half (P; thick line), and fitted with a cumulative frequency distribution (C; curved
function).



242 7. Occurrence Frequency Distributions

slopes obtained from cumulative frequency distributions using the same data sets. System-
atic biases of this method are not known yet, but it is conceivable that some assumptions
(e.g., self-similar flare time profile) could influence the inferred powerlaw slopes (Arzner
et al. 2007).

The inference of powerlaw slopes of frequency distributions from stellar flares cannot
be obtained in the same way as for solar flares, where abundant statistics is available and a
powerlaw slope can directly be fitted to the differential frequency distribution. Instead, the
very small samples of flaring events per star require either the inversion of a rank-order
plot (or cumulative frequency distribution) or a Monte Carlo simulation technique that fits
a distribution of observed photon arrival times. Both methods have their own bias that need
to be determined. For cumulative frequency distributions, the effect of the upper cutoff
needs to be taken into account in small samples, which changes the powerlaw slope in the
order of Δα ≈ 0.3. If this effect is taken into account, we infer values of αE ≈ 1.7±0.2,
which is similar to solar flares αE ≈ 1.61± 0.04 (Fig. 7.8), although the energies of the
detected stellar flares are up to two orders of magnitude higher than the largest solar flares
(Fig. 1.15).

7.4.2 Pulsar Glitches

Pulsars exhibit glitches in pulse amplitudes and frequency shifts that correspond to large
positive spin-ups of the neutron star, probably caused by sporadic unpinning of vortices
that transfer momentum to the crust. Conservation of the momentum produces then an
increase of the angular rotation rate, like a twirling ice skater who draws the hands closer.
The pulse height distribution of the Crab pulsar (NGC 0532 or PSR B0531+21) observed
at 146 MHz was found to have a powerlaw slope of αP ≈ β + 1 = 3.5 over a range of
2.25 to 300 times the average pulse size (Argyle and Gower 1972). Similar values were
measured by Lundgren et al. (1995), with αP ≈ 3.06–3.36 (Fig. 7.17). While the Crab
pulsar is the youngest known pulsar (born in the year 1054), PSR B1937+21 is an older
pulsar with a 20 times faster period (1.56 ms) than the Crab pulsar (33 ms). Cognard et
al. (1996) measured a powerlaw distribution with a slope of αP ≈ β +1 = 2.8±0.1 from
its occasional giant pulses. A theoretical model of the inertial momentum change in pulsar
macro-glitches predicts a frequency distribution of N(E) ∝ E−1.14 (Morley and Garcia-
Pelayo 1993), which is much flatter than previously observed. However, statistics on nine
pulsars found powerlaw slopes in a range of αE = −0.13, ...,2.4 (see Table 7.8) for the
size distribution of pulse glitches (Melatos et al. 2008), but no correlation between the
powerlaw slope and the spin-down age was found.

Interestingly, while most pulsars have a Gaussian or exponential pulse-amplitude dis-
tribution, only few pulsars, including the Crab pulsar, exhibit a powerlaw (Lundgren et
al. 1995), which could be interpreted in terms of a SOC phenomenon (Young and Kenny
1996). Assuming a SOC model would also imply a powerlaw distribution for the pulse du-
ration. Turbulence in neutral non-ionized fluids were considered as a possible mechanism
that exhibit spatial and temporal scale invariance (Young and Kenny 1996). Alternative
models in terms of modulational instabilities with stochastic growth and wave collapse
were also proposed, which produce log-normal energy distributions with a steep power-
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Fig. 7.17 Frequency distribution of giant-pulse flux densities measured from the Crab pulsar, observed
during 15–27 May 1991 with the Green Bank 43-m telescope at 1,330, 800, and 812.5 MHz. The tail
can be represented by a powerlaw distribution NF ∝ F−α with α = 3.46± 0.04 for fluxes F > 200 Jy
(Lundgren et al. 1995; reproduced by permission of the AAS).

Table 7.8 Frequency distributions observed from pulsar (giant-pulse) glitches (PSR), soft gamma-ray
repeaters (SGR), black-hole object Cygnus X-1, and blazar GC 0109+224. Uncertainties in terms of one
standard deviation are quoted in parentheses [...] for some cases. References: 1, Argyle and Gower (1972);
2, Lundgren et al. (1995); 3, Cognard et al. (1996); 4, Melatos et al. (2008); 5, Gogus et al. (1999);
6, Gogus et al. (2000); 7, Chang et al. (1996); 8, Mineshige and Negoro (1999); 9, Ciprini et al. (2003).

Powerlaw slope Powerlaw slope Waveband Object Ref.
flux αP fluence αE

3.5 146 MHz Crab pulsar 1
3.06-3.36 813–1330 MHz Crab pulsar 2
2.8 ± 0.1 430 MHz PSR B1937+21 3
2.4 [1.5,5.2] PSR 0358+5413 4
1.2 [1.1,1.4] PSR 0534+2200 4
0.42 [0.39,0.43] PSR 0537-6910 4
1.8 [1.2,2.7] PSR 0631+1036 4
−0.13 [−0.20,+0.18] PSR 0835-4510 4
1.4 [1.2,+2.1] PSR 1341-6220 4
1.1 [0.98,1.3] PSR 1740-3015 4
0.57 [0.092,1.1] PSR 1801-2304 4
0.36 [-0.30,1.0] PSR 1825-0935 4

1.66 >25 keV SGR 1900+14 5
1.43, 1.76, 1.67 20.8 keV SGR 1806-20 6,7

7.1 1.2–58.4 keV Cygnus X-1 8
1.55 optical GC 0109+224 9
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law tail αE ≈ 4–7 at high energies, which could correspond to the “giant pulses” (Cairns
2004; Cairns et al. 2004).

Finally, a detailed cellular automaton SOC model was proposed for pulsar glitches,
which could reproduce powerlaw slopes of αE ≈ 2.0–4.3 for pulse sizes and αT = 2.2–5.5
for pulse durations (Warzawski and Melatos 2008). The underlying theoretical model of
pulsar glitches is summarized by Warzawski and Melatos (2008) as follows: The neutron
superfluid in the stellar interior is threaded by many (≈1016) vortices, approximately one
per cent of which are pinned to the stellar crust at grain boundaries and/or nuclear lat-
tice sites. As the pulsar crust spins down electromagnetically, a lag builds up between the
velocity of the pinned vortex lines (corotating with the crust) and the superfluid. When
the transverse Magnus force (directly proportional to the lag) surpasses a threshold value
(equal to the strength of the pinning force), a catastrophic unpinning of vortices occurs,
transferring angular momentum to the crust. In order for this mechanism to generate
glitches on the scale observed, it requires up to 1012 vortices to unpin simultaneously,
exhibiting a high level of collective, non-local behaviour.

7.4.3 Soft Gamma-Ray Repeaters

Observations with the Compton Gamma Ray Observatory (CGRO) revealed a rare class of
objects that show repetitive emission of low-energy gamma rays (>25 keV), termed soft
gamma-ray repeaters (SGR). In 1999, only four such SGR sources were known (three in
our galaxy and one in the Magellanic Cloud), but at least three of them were identified to be
associated with slowly rotating, extremely magnetized neutron stars, located in supernova
remnants (Kouveliotou et al. 1998, 1999). They emit gamma-ray bursts with relatively
soft spectra (like optically-thin bremsstrahlung at kBT ≈ 20–40 keV) and short duration of
≈0.1 s. Thompson and Duncan (1996) suggested that these gamma-ray bursts occur from
neutron star crust fractures driven by the stress of an evolving, ultrastrong magnetic field
(B >∼ 1014 G).

Gogus et al. (1999) analyzed a database of 187 gamma-ray bursts (at energies of ≥25
keV) from SGR 1900+14 during the 1998–1999 active phase and found that the fluence
or energy distribution of the bursts follows a powerlaw distribution over 4 orders of mag-
nitude (Fig. 7.18, left). Also a correlation between the energy and duration was found,
E ∝ T 1.13, similar to solar flares (Eq. 7.3.2). Gogus et al. (2000) analyzed 290 events
of SGR 1806-20 using data from the Rossi X-Ray Timing Explorer (RXTE), 111 events
detected with CGRO/BATSE, and 134 events detected with the International Cometary
Cometary Explorer (ICE), and found powerlaw slopes of αE = 1.43, 1.76, and 1.67 for
the fluences, respectively (Fig. 7.18, right). The results were interpreted in support of the
neutron star crustquake model of Thompson and Duncan (1996), in analogy to the SOC
interpretation of earthquakes.

Soft gamma-ray repeaters with pulses originating from the same object are the ex-
ception rather than the rule, while most gamma-ray bursts detected with CGRO are non-
repetitive, and thus come sporadically from different objects. Statistics of the temporal
properties of those gamma-ray bursts has been gathered for several hundreds of events
(e.g., Norris 1995; Norris et al. 1996; Quilligan et al. 2002), but it is not clear whether any
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Fig. 7.18 Differential frequency distributions of the fluences of soft gamma-ray repeater sources: SGR
1900+14 (left), and SGR 1806-20 (right), observed with CGRO, RXTE, and ICE (Gogus et al. 1999,
2000; reproduced by permission of the AAS).

SOC characteristic could be retrieved from an observational sample that contains only one
event per SOC system, where each SOC system has vastly different (unknown) distances
to the observer.

7.4.4 Black Hole Objects

We discussed observations of black-hole candidates such as Cygnus X-1 in Section 1.9,
numerical cellular automaton models of the surrounding accretion disks in Section 2.7.1,
a shot-noise model of their power spectra in Section 4.8.4, and their waiting-time distri-
butions in Section 5.7.2. In Fig. 7.19 (right) we show an observed occurrence frequency
distribution of the peak intensity of the shots from a light curve of Cygnus X-1 (Negoro
et al. 1995; Mineshige and Negoro 1999), along with a theoretical distribution (Fig. 7.19,
left), simulated according to the cellular automaton model of Mineshige et al. (1994a,b).
The observed peak-intensity distribution has a steep slope of approximately αP ≈ 7.1. The
cellular automaton model can accommodate a range of powerlaw slopes, depending on
what fraction of mass m′ (Eq. 2.7.4) is transferred by gradual diffusion in addition to the
avalanche-like shots, e.g., simulations with m′ = m/100,m/10, or m/5 produce powerlaw
slopes of αP ≈ 5.6,7.7, and 11.5 (Mineshige and Negoro 1999; Takeuchi et al. 1995). Ini-
tial simulations without gradual diffusion produced energy distributions with powerlaws
of N(E) ∝ E−2.8 and time scale distributions of N(T ) ∝ T−1.4 (Mineshige et al. 1994b).
Whatever the detailed scaling of the mass transfer in the accretion disk is, the fact of a
powerlaw distribution of peak fluxes in the light curve is thought to support a SOC inter-
pretation in terms of an avalanching system in a self-organized critical state.
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Fig. 7.19 Left: Numerically simulated frequency distribution of a cellular automaton model of mass
avalanches in an accretion disk (Mineshige and Negoro 1999). Right: Observed frequency distribution
of the peak intensities of pulses in the light curve of the black-hole object Cygnus X-1, exhibiting a pow-
erlaw slope of αP ≈ 7.1 (Negoro et al. 1995; Mineshige and Negoro 1999).

7.4.5 Blazars

Blazars (blazing quasi-stellar objects) are very compact quasars (quasi-stellar objects) as-
sociated with super-massive black holes in the center of active, giant elliptical galaxies.
They represent a sub-group of active galactic nuclei (AGNs) which emit a relativistic jet
in the direction of the Earth. Because of this particular geometry, where the jets are co-
aligned with the line-of-sight to the observer, rapid variability and apparent super-luminous
features are the paramount characteristics of these objects.

The optical variability of blazar GC 0109+224 was monitored from 1994 and the light
curve was found to exhibit an intermediate behavior between flickering and shot noise,
with a power spectrum of P(ν) ∝ ν−p with 1.57 < p < 2.05 (Ciprini et al. 2003). A com-
bination of two modes between flickering (pink noise with p > 0.8) and pure shot noise
(Brownian random walk or brown noise with p ≥ 2) seems to be common in blazars (Huf-
nagel and Bregman 1992). Ciprini et al. (2003) constructed an occurrence frequency dis-
tribution of the peak fluxes of flare events and found a powerlaw distribution N(P) ∝ P−α

with a slope of α ≈ 1.55, within a range of about one order of magnitude, and excluding
the largest flares (Fig. 7.20). The powerlaw distribution of peak fluxes, along with the 1/ f
flicker noise spectrum of the light curve, was considered as an indication that blazars also
represent a SOC phenomenon (Ciprini et al. 2003).



7.5 Summary 247

Fig. 7.20 Left: Frequency distribution of peak fluxes of flaring events in blazar GC 0109+224, including
fluxes above of a 3σ -threshold, fitted with a powerlaw N(P) ∝ P−1.55. Right: A cartoon that illustrates the
analogy of toppling avalanches in SOC sandpiles with jets emerging out of a blazar (Ciprini et al. 2003).

7.5 Summary

We have reviewed most of the occurrence frequency distributions observed in astrophys-
ical event sets: magnetospheric substorms, solar and stellar flares, solar energetic particle
events, solar radio bursts, pulsar glitches, soft gamma-ray repeaters, black hole objects, and
blazars. Many frequency distributions of peak fluxes or fluences are found to be close to
powerlaw distributions, with slopes varying in a considerable range of α ≈ 1, ...,10, with
a preference around α ≈ 1.5–2.0 for most phenomena. Statistics of the same phenomenon
type exhibit their own characteristic value, such as (in increasing order): αE ≈ 1.1–1.3 for
magnetospheric substorm events, αP ≈ 1.1–1.5 for solar energetic particle events (SEP),
αE ≈ 1.4–1.8 for soft gamma-ray repeaters, αP <∼ 1.5 for blazars, αP ≈ 1.5–1.8 for so-
lar radio bursts, αE ≈ 1.6–1.8 for solar (and probably stellar) flares, αE ≈ 3 for pulsar
glitches, or αP ≈ 7 for black-hole objects. We identified a number of measurement biases
that entered the published values, such as: (1) the “instrumental waveband bias” and “in-
complete temperature coverage bias”, which can lead to an overestimate of the powerlaw
slope (e.g., for solar nanoflares detected with narrowband EUV filters); (2) the ”big-event
selection bias”, which can lead to an underestimate of the powerlaw slope for event subsets
that select larger events with a higher probability (e.g., SEP or CME events are not repre-
sentative subsets of solar flares); or (3) the “upper-cutoff bias of cumulative frequency dis-
tributions”, which leads to an overestimate of the powerlaw slope for small samples (e.g.,
stellar flares). All these biases in the measurement of powerlaw slopes and derivation of
power indices in parameter correlations can be systematically studied with Monte-Carlo
simulations (Section 7.1.4) and forward-fitted to the observed data. A self-consistent de-
termination of the powerlaw slopes of peak fluxes (αP), fluences (αE ), and durations (αT )
can quantify the correlations between the observables (P,E,T ) that are most important for
infering the scaling laws of underlying physical processes (see Chapter 9).
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7.6 Problems

Problem 7.1: Simulate a distribution of random values that obey an exponential fre-
quency distribution and verify that the histogrammed differential frequency distribution
matches the analytical exponential function (follow Eqs. 7.1.28–7.1.30 and Fig. 7.3,
left).

Problem 7.2: Simulate a distribution of random values that obey a powerlaw frequency
distribution and verify that the histogrammed differential frequency distribution matches
the analytical powerlaw function (follow Eqs. 7.1.31–7.1.33 and Fig. 7.3, right).

Problem 7.3: Use the numerically generated values of Problem 7.2 to construct the cumu-
lative frequency distribution function and a rank-order plot (Fig. 7.2). What powerlaw
slope do you infer from the cumulative frequency distribution or rank-order plot and
how do you explain the difference to the original powerlaw slope of the numerically
generated values?

Problem 7.4: Simulate the third case (n = 104 events) shown in Fig. 7.4 with different
sets of random numbers and quantify the average accuracy or reproducibility or the
powerlaw slopes and power indices of the parameter correlations.

Problem 7.5: What are necessary and sufficient conditions that the frequency distributions
of solar flare energies observed in soft X-ray and hard X-ray wavelengths be identical?

Problem 7.6: Simulate a small sample of 15 random events that obey a powerlaw distri-
bution function with a slope of αE = 1.5 to mimic a dataset of stellar flares (Fig. 7.16)
and determine the powerlaw slope with three different methods: (1) with an overall
powerlaw fit, (2) with a half powerlaw fit and the correction given in Eq. (7.1.14), and
(3) with fitting the cumulative distribution function given in Eq. (7.1.10). How much
different are the values determined with the three methods? Do you find a systematic
bias when repeating the same experiment with different random number sets?
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Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth, nor lightenings travel in a straight line.

Benoit Mandelbrot

What really interests me is whether God had any choice in the creation of the world.

Albert Einstein

Fractals in nature originate from self-organized critical dynamical processes.

Per Bak and Kan Chen (1989)

Since Euclid (300 BC) we have been used to perceiving nature with the concept of a three-
dimensional (3-D) geometry. We measure linear structures in one dimension, area-like
structures in two dimensions, and volume-like structures in three dimensions. However,
when we measure an object in terms of these three dimensions, we are aware that the
geometric model describes a solid body, while a natural object may be inhomogeneous,
porous, or even mostly empty, if we think on atomic scales. The counterpart to Euclidean
geometry, the set theory with discrete elements, has been introduced by mathematicians

cept of discrete, irregular, inhomogeneous structures has then been discovered in the real
world by Benoit Mandelbrot, who coined the definition of a fractal dimension, which
represents a generalization (in terms of rational or irrational numbers) to the Euclidean
dimension (which is restricted to integer values of 1, 2, 3, or n). A fractal dimension is a
scale-free quantity that describes the fractional filling of a structure over some scale range,
but usually does not extend to infinite microscopic or macroscopic scales. Popular exam-
ples are the coastline of Norway, ferns, trees, mountain landscapes, snowflakes, or clouds.
The reason why we dedicate a chapter to fractal geometry here is, of course, because self-
organized criticality also is governed by scale-free powerlaw distributions of observable
parameters. Therefore, fractal geometry is nothing else than the spatial counterpart of self-
organized criticality processes observed in the temporal and energy domain. In a paper

like Georg Cantor, Karl Weierstrass, and Augustin-Louis Cauchy. The mathematical con-
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entitled “The physics of fractals”, Bak and Chen (1989) succinctly summarized Fractals
in nature originate from self-organized critical dynamical processes.

General introductions to fractal geometry can be found in textbooks like Fractals (Man-
delbrot 1977), The Fractal Geometry of Nature (Mandelbrot 1983), The Beauty of Fractals
(Peitgen and Richter 1986), Fractals Everywhere (Barnsley 1988), The Science of Frac-
tal Images (Peitgen and Saupe 1988), Fractals, Chaos, Power Laws (Schroeder 1991),
Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder
(Sornette 2004), Discovery of Cosmic Fractals (Baryshev and Teerikorpi 2002), or Frac-
tals and Chaos in Geology and Geophysics (Turcotte 1997). Related articles can also be
found in The Physics of Fractals (Bak and Chen 1989) and in popular articles like The
Language of Fractals (Juergens et al. 1990) or Chaos and Fractals in Human Physiology
(Goldberger et al. 1990). In the following we focus mostly on measurements of fractal di-
mensions or related spatial parameter distributions from astrophysical observations, which
we relate to other SOC parameter distributions. Fractal structures were found in mag-
netospheric phenomena, solar flares, planetary systems, stardust, galactic structures, and
cosmology.

8.1 1-D Fractals

In the next three sections we divide the discussion of fractal dimensions by their approx-
imate spatial dimension, but this should not be taken too literally, because it is an in-
trinsic property of fractal structures that they deviate from a strict Euclidean dimension.
One-dimensional structures are lines, segments of lines, contours, which can be straight,
curved, intermittent, discrete, folded, intertwined, or deformed by any conceivable trans-
form. If there is a repetitive pattern on different scales, such structures can be self-similar
and fractal. Fractal structures are most naturally generated by a replication process that
works in a self-similar way at different scales. For instance the growth of crystals occurs
in subsequent layers that replicates the original molecular grid structure. Therefore, also
the mathematical definition of fractal geometries usually makes use of a simple transfor-
mation rule that is repeated on successive size scales.

8.1.1 The Cantor Set and Koch Curve

A Cantor set, also called “Cantor dust”, is a subdivision of a set into smaller pieces with a
fixed fraction in each subsequent step. With progressive iterations, the number of elements
increases to infinity, but their total length approaches zero. For instance, in the Cantor set
shown in Fig. 8.1, a bar is subdivided into two bars by erasing the middle third, so the
number of elements increases as N = 2i with every iteration i, while the length decreases
as ε = (1/3)i. In mathematical language, the set is uncountable but has a measure of zero.
The Hausdorff dimension D of a one-dimensional fractal structure is defined as a powerlaw
relation between the number N of elements and the length scale ε of an element,

N(ε) ∝ ε−D for ε �→ 0 , (8.1.1)
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Fig. 8.1 Construction of the “middle-third-erasing” Cantor set: The replication rule is to eliminate the
middle third of every bar in subsequent subdivisions. The total length converges to zero, while the fractal
dimension is D = log(2)/ log(3) = 0.630930....

and quantifies how the number N of elements depends on the size scale ε . Thus, we can
obtain the Hausdorff dimension D from N = 2i, ε = (1/3)i = 3−i, and Eq. (8.1.1),

D = − logN
logε

=
log2
log3

≈ 0.630930.... , (8.1.2)

for this Cantor set. The fact that the fractal dimension D is smaller than the Euclidean
value of D = 1 means that the 1-D structure has less than solid filling, and if the fractal
process is continued to infinitely microscopic scales, it even approaches a total length of
zero. Perhaps our whole universe has this fractal property if we probe matter down to
microscopic scales, or even down to atomic and sub-atomic scales.

A classical example of a fractal one-dimensional structure is the Koch curve (Fig. 8.2).
The initiator function is a straight line. A generator function is constructed by replacing
the middle third by an equilateral triangle, so that the length of the fractal generator func-
tion is 4 units, while the size of the initiator function is 3 units. In subsequent iterations,
each straight segment is replaced by another generator function (Fig. 8.2). The number
of segments thus increases a factor of 4 with each iteration (N = 4i), while the length of
each segment becomes a factor 3 smaller each time (ε = (1/3)i = 3−i), which yields the
Hausdorff dimension

D = − logN
logε

=
log4
log3

≈ 1.26186.... , (8.1.3)

Note that the fractal dimension is now larger than the Euclidean dimension D = 1 of a
straight or smooth line, which indicates that the line is increasingly folded in a meander-
ing pattern with smaller scales. Famous examples of this fractal structure is the coastline
of Norway or Great Britain, which both became eroded by many fjords, valleys, rivers,
streams, and creeks, so that the ragged coastal length increases the finer the spatial resolu-
tion of the topographical map is.

8.1.2 Irregularity of Time Series

Every type of one-dimensional data can be investigated in terms of fractal analysis. For
instance, a string of binary data (e.g., 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0) or
a Morse code (e.g., ...—...–.-....–.—-.-.–..) resemble pretty much the Cantor set shown in
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Fig. 8.2 Construction of the “Koch curve”: The generator function consists of three segments, with an
equilateral triangle in the middle third, forming four straight segments of equal length. Six successive
iterations are shown, where each straight segment is replaced by the fractal generator function.

Fig. 8.1, and thus a Hausdorff dimension (Eq. 8.1.1) can be determined, regardless whether
the pattern is regular or irregular. However, a structure is only fractal, when the value of
the Hausdorff dimension is found to be invariant at different scales, which means that the
ratio of log(N) to log(ε) is constant, and thus implies a powerlaw behavior.

While the Cantor set (Fig. 8.1) represents a binary structure, 1-D data are generally
multi-valued, such as a time series fi = f (ti) with values in a range of fmin ≤ fi ≤ fmax.
A technique to measure the fractal dimension of a set of points [ti, fi = f (ti)] forming a
graph or time profile of a function f has been developed by Higuchi (1988). The tech-
nique is normalized in such a way that a fractal dimension of D = 1 corresponds to a



8.1 1-D Fractals 253

completely regular time profile (such as a constant or slowly-varying smooth time profile),
but approaches the value of D = 2 for a completely irregular time series. Thus, the fractal
dimension is a measure of the irregularity or complexity of a time profile. Let us consider
a time series of values fi = f (i) as a function of the time step i = 1, ...,N,

f (1), f (2), f (3), ..., f (N) . (8.1.4)

Then we generate subsets of time series with different time steps k = 1,2,3, ..., starting at
all possible phases m = 1,2,3, ...,k,

f (m), f (m+ k), f (m+2k), f (m+3k), ..., f (m+[(N −m)/k]k) . (8.1.5)

For each time step k and phase m we can now define a length Lm(k),

Lm(k) =
1
k

[(|(N−m)/k|
∑
i=1

| f (m+ ik)− f (m+(i−1)k)|
)

N −1
[(N −m)/k]k

]
(8.1.5)

Since we are interested in a time scale spectrum, but not in the phases m, we average the
length Lm(k) over all phases m and obtain a mean value 〈Lm(k)〉 for every time step k. If
the length 〈Lm(k)〉 shows a powerlaw dependence on the time step k, the time series has a
fractal dimension D,

〈Lm(k)〉 ∝ k−D . (8.1.6)

Higuchi (1988) applied this algorithm to a time series of a fractional Brownian function,
which has the property of self-similarity on all scales, and determined with this method
the precise value of its fractal dimension D = 2.

8.1.3 Variability of Solar Radio Emission

The fractal analysis of Higuchi (1988) has been applied to time series of solar radio emis-
sion by Watari (1996a). The analyzed data consist of nine time series of daily solar radio
fluxes at different frequencies from ν = 245 MHz to ν = 15.4 GHz, observed during the
years 1976–1990, published in the Solar-Geophysical Data catalog, as well as the time
series of the sunspot number. Thus the time resolution of the data is 1 day and the length is
15 years (i.e., 5,479 days or datapoints for each set). The time series are shown in Fig. 8.3,
which all represent measures of the solar cycle variability observed at different wave-
lengths, different physical conditions, and different physical emission mechanisms. The
measurement of the fractal dimension (Eq. 8.1.6) requires a time scale spectrum 〈Lm(k)〉,
which are shown in Fig. (8.4), calculated in a range from k = 1 day to k = 40 days. Since a
half solar rotation represents the longest possible time interval during which a solar radio
source can be observed contiguously, the time series is expected to change its behavior at
k <∼ 13 days. The time scale spectra 〈Lm(k)〉 shown in Fig. 8.4 clearly show a powerlaw
behavior at all frequencies in the range of k ≈ 1–10 days, while a drop-off is visible in the
range of k ≈ 10–40 days, as expected from the solar rotation effect.
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Fig. 8.3 Time profiles of the daily sunspot number (top left) and daily solar radio fluxes at frequencies of
245, 410, 610, 1,415, 2,695, 2,800, 4,995, 8,800, and 15,400 MHz (Watari 1996a).
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Fig. 8.4 Time scale spectrum 〈Lm(k)〉 of the 10 time series shown in Fig. 8.3 (Watari 1996a).
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Fig. 8.5 Variation of the fractal dimension D(ν) as a function of the radio frequency ν from the year 1978,
at the beginning of the solar cycle 21 (Watari 1996a).

An interesting result that came out of this study, besides the fractality of solar radio
emission, is the dependence of the fractal dimension D(ν) on the radio frequency ν , which
is shown in Fig. 8.5. There is a variation from a lowest fractal dimension of D ≈ 1.2 at fre-
quencies of ν ≈ 2–5 GHz, to the highest fractal dimension with values of D ≈ 1.8 at
frequencies of 400 MHz, as well as near 15 GHz. This difference in the fractal dimension
is likely to be a consequence of different radiation mechanisms. At decimetric frequencies
(ν ≈ 0.3− 3.0 GHz), solar radio emission is dominated by so-called decimetric type III
bursts, which are caused by a beam-driven bump-in-tail instability producing plamsa emis-
sion. Such type III-like bursts occur very sporadically and irregularly due to the nonlinear
nature of plasma instabilities, and thus can explain the high value of the fractal dimension
measured in the ν ≈ 0.3–1.0 GHz range. At higher frequencies, gyroresonance emission in
strong magnetic fields, such as above sunspots, is the most dominant radio emission (e.g.,
Dulk 1985). Since the strong magnetic field above sunspots has a slowly-varying time evo-
lution, this could explain the lower fractal dimension of D ≈ 1.2–1.3 at radio frequencies
of ν ≈ 1–5 GHz. This is also corroborated by the fact that Watari (1996a) found a similar
low fractal dimension of D ≈ 1.2 for the variability of the sunspot number. The third fre-
quency domain at ν >∼ 10 GHz, is too high to contain significant gyroresonance emission,
and thus could be dominated by free-free bremsstrahlung from flare events, which occur
very sporadically (see monthly averages in hard X-rays in Fig. 7.6), which could explain
the upturn to a higher fractal dimension (Fig. 8.5) observed by Watari (1996a). In con-
clusion, the fractal dimension of the time series seems to provide a sensible diagnostic of
physical emission mechanisms with different time variability characteristics.

8.2 2-D Fractals

By 2-D fractals we mean structures that can be measured from 2-D data, such as a flat or
slightly curved image, as they are produced in abundance from CCD readouts of astro-
nomical telescopes. If an image is strictly flat, any extracted structure can have a fractal
dimension in the range of D = 0, ...,2. Essentially, solid blobs appearing in an image have



8.2 2-D Fractals 257

an Euclidean dimension of D = 2, curvilinear structures a dimension near D = 1, and
dots a dimension near D = 0. A nice selection of fractal structures sorted by their dimen-

by Hausdorff dimension).

8.2.1 Hausdorff Dimension and Box-Counting Method

For Euclidean structures, the area A of a square is a quadratic function of the length scale
or size L, i.e., A = LD with Euclidean dimension D = 2. If we cover the area A of linear
size L with n squares, we have n = LD and can define an Euclidean dimension D by

D =
logn(L)

logL
, (8.2.1)

which is also valid for other Euclidean dimensions D = 1 or D = 3. The same definition
is extended to fractal structures, called the Hausdorff dimension, where D generally is a
non-integer number,

D = lim
ε �→0

logn(ε)
log(1/ε)

, (8.2.2)

where n(ε) is the number of self-similar structures of linear size ε = 1/L that are needed
to cover the whole structure. In Fig. 8.6 we show the iterative generation of the Sierpinski
triangle, which is constructed by subdividing an equilateral triangle into four smaller tri-
angles of half the size in each iteration step. Thus the fractal dimension of the Sierpinski

Fig. 8.6 Construction of the Sierpinski triangle in six iterative steps. Each triangle is subdivided into four
triangles of half the size, with the middle one taken out. The Hausdorff dimension of the Sierpinski triangle
is D = log(3)/ log(2) ≈ 1.585.

sion can be viewed on the wikipedia website (http://en.wikipedia.org/wiki/List of fractals
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triangle can directly be calculated with Eq. (8.2.2),

D = lim
ε �→0

logn(ε)
log(1/ε)

= lim
i�→∞

log(3i)
log(2i)

=
log3
log2

≈ 1.58496... , (8.2.3)

The definition of the Hausdorff dimension (Eq. 8.2.2) leads directly to a practical mea-
surement method. If we grid a 2-D image with a cartesian grid of size L×L, where each
macropixel has a size ε , the number of pixels n(ε) that cover a fractal structure can be
directly counted and set into relation with the linear extension of the structure L = 1/ε .
If we define the number of pixels that cover a fractal structure as the area A = n(ε), the
fractal or Hausdorff dimension D can be obtained by

D =
logn(ε)
log(1/ε)

=
logA
logL

. (8.2.4)

Of course, a structure is only fractal when the same value D holds for a range of spa-
tial resolutions ε = 1/L, so the box-counting has to be repeated for a range of spatial
resolutions ε . For pixelized astronomical images with a size of Nx ×Nx, such as digital
images from a CCD readout, it is often convenient to rebin the image by factors of 2i,
i.e., ε = 1,2,4,8,16, ...,Nx, which mimics the asymptotic limit ε �→ 0 in the definition of
Eq. (8.2.3).

Sometimes, the fractal dimension D is also evaluated from the perimeter P or an area
A, which is related as,

P ∝ AD/2 . (8.2.5)

Note that the perimeter would scale as P ∝ A1/2 for linear features (D = 1), while it scales
as P ∝ A for area-filling, meandering curves (D = 2).

The reader should be cautioned that the fractal dimension measured from a given obser-
vation depends very much on the definition of the measurement method. Thus, different
computation methods may give differing values. The value of the Hausdorff dimension
D (defined with Eq. 8.2.4) does not necessarily need to be identical with the fractal di-
mension D measured with the perimeter method (defined with Eq. 8.2.5), even when they
are measured from an identical data set. Different methods used are specified in Table 8.1
(second column).

We show an example of the determination of the Hausdorff dimension for a solar
EUV image recorded during the 1998 July 14 flare in Fig. 8.7 (called the Bastille-Day
event because it occurred during the French national holiday). The image is rebinned
into macropixels of size ε = 1,2,4,8,16,32,64 and the fractal dimension is determined
by counting the macropixels with a brightness above some flux threshold, which yields
the values of D(ε = 1) = 1.607, D(ε = 2) = 1.563, ...., D(ε = 64) = 1.503. The mean
and standard deviation of the dimension determined with different macropixel sizes is
D = 1.55 ± 0.03, so it is approximately constant and thus the structure can be called frac-
tal. A more accurate method would be to obtain D from the graph log(n) vs. log(1/ε)
(Eq. 8.2.4).
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Fig. 8.7 Measurement of the fractal area of the Bastille-Day flare, observed by TRACE 171 Å on 2000-Jul-
14, 10:59:32 UT. The Hausdorff dimension is evaluated with a box-counting algorithm for pixels above
a threshold of 20% of the peak flux value, with a mean of D2 = 1.55 ± 0.03 for the 7 different spatial
scales shown here. Note that the Hausdorff dimension is nearly invariant when rebinned with different
scales (macropixel sizes of Δx = ε = 1, 2, 4, 8, 16, 32, 64, indicated with a mesh grid). The original
image with full resolution image (Nx ×Ny = 640× 256 pixels) is shown on a logarithmic greyscale in
the top left frame, with a pixel size of Δx = 0.5′′. The fractal dimension D = log(A)/ log(L) is simply
evaluated from the number of rebinned macropixels A(L) above the flux threshold and the rebinned image
size L =

√
Nx ×Ny/Δx (Aschwanden and Aschwanden 2008a).

8.2.2 Solar Photosphere and Chromosphere

The solar surface exhibits various features related to the magneto-convection (granulation,
meso-granulation, super-granulation, network) or to areas of concentrated magnetic flux
(sunspot umbrae, penumbrae, active regions, pores), which all have irregular geometries
that have been subjected to fractal analysis (Table 8.1).
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Table 8.1 Area fractal dimension D2 of scaling between length scale L and fractal area A(L) ∝ LD2 of
various solar phenomena observed in white light, magnetograms, H-α , EUV, and soft X-rays. References:
1, Roudier and Muller (1987); 2, Hirzberger et al. (1997); 3, Bovelet and Wiehr (2001); 4, Paniveni et al.
(2005); 5, Janssen et al. (2003); 6, Lawrence (1991); 7, Lawrence and Schrijver (1993); 8, Balke et al.
(1993); 9, Meunier (1999); 10, Meunier (2004); 11, Lawrence et al. (1993); 12, Cadavid et al. (1994); 13,
Lawrence et al. (1996); 14, McAteer et al. (2005); 15, Gallagher et al. (1998); 16, Georgoulis et al. (2002);
17, Aschwanden and Parnell (2002); 18, Aschwanden and Aschwanden (2008a,b).

Wavelengths regime and phenomenon Method Area fractal
(reference in superscript) dimension D

Photosphere
White-light of granules1 perimeter area 1.25,2.15
White-light of granules2 perimeter area 1.3,2.1
White-light of granular cells2 perimeter area 1.16
White-light of granules3 perimeter area 1.09
Magnetogram super-granulation4 perimeter area 1.25
Magnetograms of small scales5 perimeter area 1.41 ± 0.05
Magnetograms of active regions6,7 linear size area 1.56 ± 0.08
Magnetograms of plages8 linear size area 1.54 ± 0.05
Magnetograms of active regions9 linear size area 1.78–1.94

perimeter area 1.48–1.68
Magnetograms of active regions10 perimeter area

− Total 1.71–1.89
− Cycle minimum 1.09–1.53
− Cycle rise 1.64–1.97
− Cycle maximum 1.73–1.80

Magnetograms quiet Sun, active regions11 box-counting multifractal
Magnetograms of active regions12,13 box-counting multifractal
Magnetograms of active regions14 box-counting 1.25–1.45
Chromosphere
EUV of quiet Sun network15 box-counting 1.30–1.70
H-α of Ellerman bombs16 box-counting 1.4
Corona, Flares
EUV 171 Å of nanoflares17 box-counting 1.49 ± 0.06
EUV 195 Å of nanoflares17 box-counting 1.54 ± 0.05
Yohkoh SXT of nanoflares17 box-counting 1.65
EUV 171 Å of Bastille-Day flare18 box-counting 1.57–1.93

The solar granulation has a typical spatial scale of L = 1,000 km, or a perimeter of
P = πL ≈ 3,000 km. Roudier and Muller (1987) measured the areas A and perimeters P of
315 granules and found a powerlaw relation P ∝ AD/2 (Eq. 8.2.5), with D = 1.25 for small
granules (with perimeters of P ≈ 500–4,500 km) and D = 2.15 for large granules (with
P = 4,500–15,000 km). The smaller granules were interpreted in terms of turbulent origin,
because the predicted fractal dimension of an isobaric atmosphere with isotropic and ho-
mogeneous turbulence is D = 4/3 ≈ 1.33 (Mandelbrot 1977). Similar values were found
by Hirzberger et al. (1997). Bovelet and Wiehr (2001) tested different pattern recognition
algorithms (Fourier-based recognition technique FBR and multiple-level tracking MLT)
and found that the value of the fractal dimension strongly depends on the measurement
method. The MLT method yielded a fractal dimension of D ≈ 1.1, independent of the spa-
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Fig. 8.8 Left: A speckle-reconstructed broadband image (top) and magnetogram (bottom) obtained with
the Göttingen Fabry-Perot spectrometer at the Vacuum Tower Telescope on Tenerife. Tickmarks are given
in arcseconds. Right: Snapshot of a numerical simulation of magneto-convection with the MURAM code,
tuned to an average vertical field of 50 G. The upper panel shows the frequency-integrated intensity, while
the lower panel shows the vertical magnetic field component Bz at a height with opacity τ5000 = 1. The
pixel size is 21 km, and the full image has a size of 6,000 km. Both the data and the numerical simulations
were found to have a very similar fractal dimension of D ≈ 1.4 (Janssen et al. 2003).

tial resolution, the heliocentric angle, and the definition in terms of temperature or velocity.
Meunier (1999) evaluated the fractal dimension with the perimeter–area method and found
D = 1.48 for supergranular structures to D = 1.68 for the largest structures, while the lin-
ear size-area method yielded D = 1.78 and D = 1.94, respectively. In addition, a solar
cycle dependence was found by Meunier (2004), with the fractal dimension varying from
D = 1.09 ± 0.11 (minimum) to D = 1.73 ± 0.01 for weak-field regions (Bm < 900 G), and
D = 1.53 ± 0.06 (minimum) to D = 1.80 ± 0.01 for strong-field regions (Bm > 900 G),
respectively. A fractal dimension of D = 1.41 ± 0.05 was found by Janssen et al. (2003),
but the value varies as a function of the center-to-limb angle and is different for a speckle-
reconstructed image that eliminates seeing and noise. An example of data and numerical
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simulations with a time-dependent magneto-convection code is shown in Fig. 8.8, which
both were found to have a very similar fractal dimension.

A completely different approach to measuring the fractal dimension D was pursued in
terms of a 2-D diffusion process, finding a fractal diffusion with dimensions in the range
of D ≈ 1.3–1.8 (Lawrence 1991) or D = 1.56 ± 0.08 (Lawrence and Schrijver 1993) by
measuring the dependence of the mean square displacement of magnetic elements as a
function of time. Similar results were found by Balke et al. (1993), The results exclude
Euclidean 2-D diffusion but are consistent with percolation theory for diffusion of clus-
ters at a density below the percolation threshold (Lawrence and Schrijver 1993; Balke et
al. 1993).

Fractal dimensions were also evaluated with a box-counting method, finding a range of
D≈ 1.30–1.70 for chromospheric network structures in a temperature range of T = 104.5 –
106 K (Gallagher et al. 1998), a value of D≈ 1.4 for so-called Ellerman bombs (Georgoulis
et al. 2002), which are short-lived brightenings seen in the wings of the Hα line from the
low chromosphere, or a range of D ≈ 1.25–1.45 from a large survey of 9,342 active region
magnetograms (McAteer et al. 2005),

The physical understanding of solar (or stellar) granulation has been advanced by nu-
merical convection models and N-body dynamic simulations, which predict the evolution
of small-scale (granules) into large-scale features (meso or supergranulation), which is
organized by surface flows which sweep up small-scale structures and form clusters of re-
current and stable granular features (Hathaway et al. 2000; Berrilli et al. 2005; Rieutord et
al. 2008, 2010). The fractal structure of the solar granulation is obviously a self-organizing
pattern that is created by a combination of subphotospheric magneto-convection and sur-
face flows, which is a turbulence-type phenomenon, but is not in a critical state. The fractal
structure of magnetic features, however, such as sunspots, active regions, magnetic pores),
originate from magnetic flux emergence by buoyancy from the solar interior, which occur
at independent places and times, and thus could possibly be attributed to a SOC system.
The finding of a fractal dimension in magnetic features thus represents a necessary condi-
tion for scale-free (spatial) parameters that is typical for SOC, but not a sufficient condi-
tion. If the distributions of lifetimes, peak energies, and total energies of magnetic features
also reveal powerlaw distributions, we can consider the driving system, i.e., the solar dy-
namo at the bottom of the tachocline (in a depth of ≈0.3 solar radii below the surface), to
operate in a self-organized critical state. Instead of trickling sand grains on top of a SOC
sandpile, the solar dynamo generates buoyant magnetic fluxtubes down in the tachocline,
which cluster into small or large magnetic filament bundles when bubbling up to the solar
surface in an avalanche-like fashion. The question is whether it is a SOC phenomenon or
percolation. We will discuss percolation theory in Section 10.6.

8.2.3 Solar Flares

We have already extensively established that solar flares fulfill all criteria of a SOC system,
regarding powerlaw distributions of total energies, peak energies, durations (Section 7.3),
and waiting-time distributions in terms of a nonstationary Poisson process (Section 5.6).
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Fig. 8.9 Fractal geometric concept of nanoflares and flares: The cartesian grids (top row) indicate three
different spatial resolutions. Flare structures consist of single flux tubes or arcades of multiple flux tubes
(middle row) that form fractal contours. The flare area can roughly be estimated from the rectangular
area A = l ×w (gray areas in bottom row), regardless of the curvature and composition of the shape.
The equivalent width w = A/l provides also a good estimate of the line-of-sight depth according to the
geometric single or multi-fluxtube models (middle row) and can be used to estimate the scaling of the
volume, i.e., V = l ×w2 (Aschwanden and Parnell 2002).

Consequently we expect also scale-free (powerlaw) distributions of spatial scales (lengths,
areas, volumes) with fractal properties.

A fractal geometric concept of a solar flare is shown in Fig. 8.9, which consists of
arcades of semi-circular flux tubes that generally are expected to have fractal (i.e., less
than solid area-filling) contours above some flux level. For small flares (e.g., nanoflares
observed in EUV), the fractal structure may not be resolved even in high-resolution (<∼1′′)
images, but a crude characterization of their projected area A would at least show some
asymmetry in their shape, which can be measured from the length l and width w of their
elliptical shape (Fig. 8.9, bottom panels). Scaling the width w to the length l with a power-
law index b, and characterizing the occurrence frequency distribution N(l) of lengths with
a powerlaw index a, we expect the following scaling relations and frequency distributions
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for fractal flare areas,
w(l) ∝ lb

l(w) ∝ w1/b

A(l) ∝ lw = l1+b = lD

N(l) dl ∝ l−a dl
N(w) dw ∝ w−[1+(a−1)/b] dw
N(A) dA ∝ A−(a+b)/(1+b) dA

. (8.2.6)

The corresponding Hausdorff dimension D = log(A)/ log(l) is

D = (1+b) < 2 , (8.2.7)

Data analysis of ≈1000 nanoflares observed in EUV (TRACE and soft X-rays (Yohkoh)
yielded values of a = 2.5 ± 0.2 and b = 0.5 ± 0.2, which corresponds to a Hausdorff
dimension of D = 1.5 ± 0.2 and an area distribution of N(A) ∝ A−2.0 (Aschwanden and
Parnell 2002).

The geometric flare concept shown in Fig. 8.9 visualizes small flares that consist of only
one single or a few loops (Fig. 8.9, left and middle), which is typical for EUV nanoflares,
but also large flares, which consist of hundreds of loops, geometrically arranged in near-
concentric arcades (Fig. 8.9, right). The fractal structure of such large flares has been inves-
tigated in detail for the Bastille-Day flare of 2000 July 14 (Aschwanden and Aschwanden
2008a). The story is not simple. Measuring the fractal dimension as a function of time, but
normalizing it to the same flare area Amax defined around the peak time of the flare, the
fractal area varies in the range of A(t)/Amax = 0.08–0.67, corresponding to a Hausdorff
dimension of D(t) = 1.57–1.93. The time evolution is shown in Fig. 8.10, which exhibits
some correlation of the fractal dimension with the EUV flux, which essentially tells us that
more and more fractal structures (flare loops) brighten up before the flare peak. Typically,
a flare starts when a first loop brightens up, which is a nearly linear feature and thus has
a dimension of D >∼ 1, while more and more loops come into play as the flare progresses,
until the flare area is almost solidly filled with D <∼ 2. Moreover, the determination of the
fractal dimension depends also on the flux threshold. Data as well as simulations show a
variation of the fractal dimension of D ≈ 1.4–1.9 depending on the chosen flux threshold,
say in the range of Fth = 10–50 DN s−1 as shown in Fig. 8.11. Generally, the value of
the fractal dimension drops with higher thresholds. In the same study, a total of 20 large
(GOES X-class and M-class) flares were investigated from TRACE observations, which all
have very complex fractal finestructure, as shown in Fig. 8.12, and the fractal dimensions
cover a substantial range during the flare evolution. A summary of the fractal areas ranges
A(L) versus the length scale L is shown in Fig. 8.13, which has a mean fractal dimension
of D = 1.89 ± 0.05 during the flare peak, but covers a range of lower values of D >∼ 1.0–1.5
at the beginning of the flare. Thus, a complete SOC theory should also include the time
evolution of the fractal geometry. Our simplest SOC work model (Section 3.1) quantifies
a SOC avalanche in terms of an exponential growth phase and a linear decay phase, which
implies a multiplicative pattern in energy release and spatial structures. In order to predict
the temporal evolution of the 2-D fractal dimension, the 3-D evolution of spatial structures
has to be mapped into a 2-D plane (see Section 8.3).
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Fig. 8.10 The time evolution of the normalized EUV 171 Å flare flux F(t) (diamonds) and soft X-ray flux
from GOES (smooth curve) are shown for the Bastille-Day flare (top panel), along with the fractal area
A(t)/A f and fractal dimension D2(t) (second panel). The TRACE 171 Å images at start (t1), middle (t35),
and end time (t68) are shown in the three lower panels on a logarithmic flux scale (three lower left panels)
and high-pass filtered (three lower right panels). The instantaneous flare areas A(t) are marked with thick
black contours, while the time-integrated flare area A f is marked with thin contours (Aschwanden and
Aschwanden 2008a).
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Fig. 8.11 The fractal area A(F > Fth) is shown for the same data image (left panels) and model image
(right panels) as given in Fig. 8.10 for different flux thresholds Fth = 10,20, ...,50 DN s−1. The flare area
is contoured at a flux threshold of Fth = 5 DN s−1. Note the similar dependence of the fractal dimension
D2 (indicated at bottom left corner of each panel) on the flux threshold for data and model (Aschwanden
and Aschwanden 2008a).
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Fig. 8.12 Highpass-filtered images of nine X-class flares are shown, which enhance the fractal finestruc-
ture of flare loops (Aschwanden and Aschwanden 2008a).

8.3 3-D Fractals

The theoretical extension of 2-D to 3-D fractal dimension is straightforward. In the def-
inition of the Hausdorff dimension we have to replace the area A by the volume V , and
the number n(ε) of elements that cover a fractal structure are 3-D voxels, rather than 2-D
pixels,

DV = lim
ε �→0

logn(ε)
log(1/ε)

=
logV
logL

. (8.3.1)

The practical measurement of a 3-D fractal dimension DV , however, is not straightforward,
but can be inferred with help of tomographic 2-D projections and computer simulations.
Especially in astrophysical applications, only 2-D data are available in general, and thus
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Fig. 8.13 Fractal areas A(t) of flares as a function of the spatial length scale L =
√

A f . For each flare
there is an evolution of the fractal area A(t) as a function of time (vertical range). The cross symbols mark
the maximum of the fractal dimension reached during the entire flare duration. The fractal dimensions
of D2 = 1.0,1.5,2.0 are indicated with dotted lines, and the average maximum fractal dimension D2 is
indicated with a thick solid line, having a mean of D2 = 1.89 ± 0.05 (Aschwanden and Aschwanden
2008a).

the inference of a 3-D fractal dimension requires a spatial model, stereoscopic observa-
tions, or tomographic reconstructions. The scale invariance in terms of 3-D fractal geom-
etry, however, has been probed from microscopic structures such as snow crystals (e.g.,
Westbrook et al. 2004), all the way to clustering of galaxies, cosmic voids, and dark matter
(e.g., Gaite 2007).

8.3.1 Cellular Automaton Simulations

Cellular automaton simulations of SOC models have generally been performed in both 2-
D and 3-D geometries (e.g., Bak et al. 1987, 1988; Lu and Hamilton 1991; Charbonneau et
al. 2001). Special attention to the relationship between the 2-D and 3-D fractal dimension
has been paid in the studies of Charbonneau et al. (2001), McIntosh and Charbonneau
(2001), and McIntosh et al. (2002). An example of a 3-D avalanche with 2-D projections
in a cellular automaton run is shown in Fig. 8.14. For their largest simulated datacubes



8.3 3-D Fractals 269

Fig. 8.14 The 3-D structure of a time-integrated avalanche in a 323 lattice. The 2-D projections of the
avalanche are shown separately in the right-hand panels, with the gray-scale indicating the number of
avalanching nodes, which corresponds to the column depth along the line-of-sight in astronomical obser-
vations (McIntosh and Charbonneau 2001; reproduced by permission of the AAS).

(N3 = 643), they obtained a relationship,

V (A) ∝ A1.41±0.04 , (8.3.2)

while the Euclidean scaling would be V ∝ A3/2, so the relationships are not identical for
fractal and solid bodies.

There are different ways to define the linear size L of a fractal structure. One method is
to define a radius of gyration R,

R2 =
1
M

M

∑
i=1

|ri −R0|2 , (8.3.3)

where the sum runs over the M nodes that are part of the avalanche cluster, and R0 =
(1/M)∑ri is the cluster’s center of mass. Physically, R is the radius of the thin spherical
shell (circular ring in 2-D) that has the same “mass” and moment of inertia as the original
cluster (Stauffer and Aharony 1994; Charbonneau et al. 2001). Using this definition for
the length scale (L = R), Charbonneau et al. (2001) find the following scaling for their



270 8. Fractal Geometry

simulation with the largest 3-D cube (N3 = 1283),

A(L) ∝ L1.78±0.02 , (8.3.4)

while the Euclidean scaling would be A ∝ L2. Combining these two fractal scaling laws
(Eqs. 8.3.2 and 8.3.4) we infer the relationship between the fractal volume V and the length
scale L,

V (L) ∝ L2.51±0.06 , (8.3.5)

which also differs from the Euclidean scaling V ∝ L3. Of course, these scaling laws apply
to the particular setup of cellular automaton models we described in Chapter 2, but slightly
different values are expected for different avalanche models or length scale definitions. We
have also to be aware that these simulated fractal structures (as shown in Fig. 8.14) rep-
resent time-integrated structures, while the fractal dimensions of instantaneous snapshots
are generally smaller.

8.3.2 Solar Flares

Since geometric 3-D models of solar flares are unavoidable in calculating electron densi-
ties and thermal energies from the observed volume-integrated emission measures in soft
X-rays and EUV, which are necessary parameters to infer occurrence frequency distribu-
tions of flare energies for SOC models, the 3-D fractal dimension DV is a fundamental
parameter. Alternatively, one can specify a volume-filling factor qV , which is the ratio of
the fractal V to the Euclidean volume V0,

qV =
V
V0

=
LDV

L3 = LDV−3 , (8.3.6)

while the area-filling factor qA can be defined analogously in terms of the area fractal
dimension DA,

qA =
A
A0

=
LDA

L2 = LDA−2 . (8.3.7)

Based on the geometric concept of flares introduced in Fig. 8.9, we can construct a
volumetric model in terms of an arcade that contains a variable number of concentric half
loops that fill the half-cylindric volume to some extent, parameterized by the arcade length
la, arcade width wa, and average loop width wloop. While the 3-D volume is invariant to
rotation, the projected area will depend on the aspect angle, longitude, or center-to-limb
distance, as shown in Fig. 8.15. If we allow for fractal filling with nloop loop structures,
which has the limit of nmax

loop ≈ lawa/2w2
loop for the arcade model shown in Fig. 8.15, one

can derive the following geometric filling factors (Aschwanden and Aschwanden 2008b),

qV =
nloop

nmax
loop

= nloop

(
2w2

loop

lawa

)
. (8.3.8)
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Fig. 8.15 The geometry of a semi-cylindrical flare arcade model is shown, quantified by the arcade length
la in the east–west direction, the arcade width wa in the north–south direction, and the line-of-sight angle
α to the solar vertical (or relative longitude difference to solar disk center). The three cases correspond
to α = 0◦,45◦,90◦ with an aspect ratio of wa/la = 1. The total (Euclidean) flare area is outlined in thick
linestyle, while the loop quantization is indicated with thin lines (Aschwanden and Aschwanden 2008b).

qA =
A(nloop)

A0
=

[
1− exp

(
−nloop

A1

A0

)]
, (8.3.9)

where A1 is the Euclidean area that depends on the aspect angle α ,

A1(α) ≈ wloop
wa

2

[
1+

(π
2
−1

)
sin3/2(α)

]
. (8.3.10)

Using the definitions of Eqs. (8.3.6) and (8.3.7), the area and volume fractal dimensions
can then be calculated from the area- and volume-filling factors,

DV = 3+
lnqV

lnL
. (8.3.11a)

DA = 2+
lnqA

lnL
. (8.3.11b)

where the length scale L can be defined from the Euclidean volume V0,

V0 =
π
2

(wA

2

)2
la , (8.3.12)

L = V 1/3
0 . (8.3.13)
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Fig. 8.16 The area-filling factor qA(t) (bottom panel) and the inferred volume-filling factor qV (t) (top
panel) are shown for 20 flares, as a function of the time relative to the peak in the maximum fractal area.
Flares which have an increase of more than 0.5 in the fractal area during the rise time are outlined with
thick linestyle. Note that maximum area-filling factors do not exceed 0.8, while maximum volume-filling
factors do not exceed 0.15 (Aschwanden and Aschwanden 2008b).

We have already shown how the observed area fractal dimension varies as a function of
time during a flare (Fig. 8.10), and consequently also the area- and volume-filling factors
do. In Fig. 8.16 the results of the time evolution of flare-filling factors qA and qV are
shown for 20 large flares, varying typically in the range of qV ≈ 0.001–0.03 at flare start,
qV ≈ 0.03–0.08 at flare peak, and qV ≈ 0.01–0.06 at flare end. These filling factors are
very important, because they constrain the true mean electron density ne. If an average
electron density 〈ne〉 =

√
EM/V0 is estimated for a unity filling factor (solid filling of the

flare volume), the correct mean electron density in the fractal flare volume scales as.
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ne =
√

EM/V = 〈ne〉
√

V0/V = 〈ne〉
√

1/qV . (8.3.14)

This correction is important in deriving correct thermal energies of flares,

Eth =
∫

3ne(T )kBTV (T ) dT ≈ 3nekBTeV =
3kBEMTe

ne
, (8.3.15)

where EM is the total emission measure, Te the electron temperature, and ne the electron
density at the peak time of the flare.

8.4 Multifractal Analysis

The geometric concepts we described so far are all monofractal, which contain self-similar
and scale-invariant structures that can be characterized by a single fractal dimension, such
as the Hausdorff dimension D. However, there is no structure in the universe that exhibits
the same fractal dimension at all scales from the microscopic to the macroscopic limit.
Geometric structures are generated by different physical processes that operate within a
preferred scale range each, and thus the resulting structures have a different degree of
inhomogeneity or fractality at different scales. The concept of multifractals attempts to
characterize the degree of geometric complexity with multiple scaling exponents or fractal
dimensions, which in the continuum limit results into a spectrum of fractal dimensions.
While the fractal dimension D is defined by n(ε) ≈ ε−D for monofractals in the frame-
work of the box-counting method (Eq. 8.2.2), there is a spectrum f (α) of exponents for
multifractals, also called singularity spectrum,

n(ε) ∝ ε− f (α) , (8.4.1)

where α is the relative strength or significance. Examples of the singularity spectrum f (α)
are shown in Fig. 8.17 for a monofractal (Sierpinski carpet with Hausdorff dimension
D = log(8)/log(3) ≈ 1.89279), for a theoretical multifractal image (Cadavid et al. 1994),
and for observational data from solar magnetogram data (Hewett et al. 2008; Conlon et
al. 2008). The latter example shows a typical singularity spectrum, which has a peak of
f (α)max and a minimum of f (α)min, which is also characterized by the terms contribution
diversity Cdiv = αmax −αmin and dimensional diversity Ddiv = f (α)max − f (α)min, both
being measures of the geometric complexity and richness of a fractal structure. Related
measures of complexity are also multiscaling of Kadanoff and Lipshitz–Hölder exponents
(e.g., see Georgoulis et al. (1995) and references therein).

The magnetic field seen at the solar surface reveals a richness of morphological struc-
tures that are termed sunspots, plages, network, intranetwork, magnetic knots and pores,
etc. A quiet-Sun photospheric magnetogram was first analyzed in terms of multifractal
analysis by Lawrence et al. (1993), who modeled the singularity spectrum with a Gaussian
random process. More detailed modeling was done by Cadavid et al. (1994) by adding
Gaussian white noise to theoretical self-similar and multifractal structures, finding that the
degree of multifractality is enhanced for more intermittent distributions and strong correla-
tions between cells. The influence of finite spatial resolution on the determination of multi-
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Fig. 8.17 A monofractal image of the Sierpinski carpet (left), a theoretical multifractal image (middle),
and an observed multifractal solar magnetogram of active region NOAA 10030 (right), along with the
singularity spectra f (α) (bottom panels) determined for these structures (Conlon et al. 2008).

fractal scaling was investigated by Lawrence et al. (1996) who found that the box-counting
method is unreliable if it does not fill the embedding Euclidean dimension (D < 2). The
multifractal singularity spectrum was also applied in time sequences of photospheric mag-
netograms to study the evolution of active regions (Conlon et al. 2008), see a snapshot in
Fig. 8.17. It was found that active regions that evolved into large-scale coherent structures
show a decrease of dimensional diversity Ddiv, and a relationship was found between the
flaring rate in an active region and the multifractal properties (Conlon et al. 2008). The
multifractal complexity was also found to vary as a function of the solar cycle, or between
the northern and southern hemisphere (Sen 2007).

Multifractal analysis appears to be a sensitive tool for characterizing complexity and
changes in complexity of spatial morphological structures, either as a function of space, or
as a function of time, similar to the Bayesian statistics of nonstationary Poisson processes
used in the time domain (Section 5.2).

Another multi-scale method that is related to multifractal analysis is the structure func-
tion, which has been developed to describe the statistical behavior of fully developed turbu-
lence (Kolmogorov 1941). Structure functions express the degree of correlation at different
length scales, equivalent to the correlation function of velocity fluctuations as a function
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of the spatial distance, which has a similar scaling behavior as the singularity spectrum
of a multifractal structure. The scaling behavior of structure functions has been studied in
magnetograms of the solar photosphere (Abramenko et al. 2002, 2003; Abramenko 2005),
revealing significant changes of the structure function before and during solar flares, simi-
lar to the evolutionary changes of the multifractal singularity spectrum measured for active
regions (Conlon et al. 2008).

8.5 Spatial Power Spectrum Analysis

A more traditional multi-scale method is the spatial 2-D Fourier power spectrum of a 2-D
spatial image, which quantifies the correlated intensity as a function of spatial scales. If
we take an image with a size of N ×N pixels and denote the image coordinates with the
indices (n,m), the intensity of a particular pixel is In,m. 2-D power spectra Ik (with complex
Fourier coefficients) can then be calculated (e.g., Gomez et al. 1993a),

Ik =
N

∑
n=1

N

∑
m=1

In,m exp
[

2πi
N

(nn′ +mm′)
]

, (8.5.1)

where the Fourier component or wave vector (k = 2π/λ ) in the (kx,ky) plane is,

k =
2π

NΔx
(n′,m′) , n′,m′ = 0,1, ...,(N −1) , (8.5.2)

and Δx is the linear pixel size. The 2-D power spectrum P(kx,ky) is then defined as

P(kx,ky) =
(

Δx
2π

)2

|Ik|2 . (8.5.3)

An example of such a 2-D Fourier power spectrum of a solar image recorded in soft
X-ray wavelengths is shown in Fig. 8.18. The presence of a broad-band spectrum (in con-
trast to a δ -function peak for non-fractal large-scale spatial structures) indicates spatial
structures over a large scale range, down to the image resolution Δx. From the 2-D power
spectra, 1-D omnidirectional power spectra can be computed, which average the spectra in
all radial directions. Such omnidirectional Fourier spectra have been found to scale with
P(k) ∝ k−3 for some solar active regions (Martens and Gomez 1992; Gomez et al. 1993a),
which was explained in terms of a turbulent Kolmogorov spectrum P(k) ∝ k−5/3, combined
with the spectral modifications resulting from the velocity distribution of photospheric
granulation and the emission mechanism observed in soft X-rays (Gomez et al. 1993b).

Power spectra analysis in other regions of the solar surface and in other wavelengths
were performed in a number of studies. The power spectra are very wavelength-dependent.
In the quiet Sun, power spectra of P(k) ∝ k−2.7 were measured in soft X-rays (Benz et
al. 1997), and P(k) ∝ k−2.5 in EUV Fe XII (Berghmans et al. 1998). Power spectra de-
rived from photospheric magnetograms, after correction for the seeing (modulation trans-
fer function), yielded P(k) ∝ k−1 for the photospheric network, P(k) ∝ k−3.5 for the non-
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Fig. 8.18 2-D Fourier power spectrum of a soft X-ray image of a solar active region recorded with the
Normal Incidence X-ray Telescope (NIXT) telescope during a rocket flight in 1989, with a spatial resolution
of 0.75′′. The 2-D power spectrum is nearly isotropic (Gomez et al. 1993a; reproduced by permission of
the AAS).

network (Lee et al. 1997), P(k) ∝ k−1.7 for active regions, and P(k) ∝ k−1.3 for quiet-Sun
regions (Abramenko et al. 2001). Observations in extreme ultraviolet, which probe the
lower corona rather than the photosphere, yield power spectra of P(k) ∝ k−2.0 for bright
points, P(k) ∝ k−2.1 for loops, P(k) ∝ k−1.9 for the background corona, P(k) ∝ k−1.6 for
dark lanes (network), while power spectra in the transition region (in the He II line) yield
values of P(k) ∝ k−1.5 for the same structures (Berghmans et al. 1998). Similar power
spectra were measured for full-Sun images in EUV, P(k) ∝ k−1.57 in the S VI (933 Å) and
P(k) ∝ k−1.74 in the S VI (944 Å) (Buchlin et al. 2006). Power spectra measured with a
highest resolution of 0.1′′ (70 km on the solar surface) in the G-band were found to be
as steep as P(k) ∝ k−4.0 in sunspot penumbrae, and P(k) ∝ k−3.6 in active granulation
(Rouppe Van der Voort et al. 2004).

The variety of power spectra measured in solar data reflects a number of effects that
affect the precise value of the slope: (1) the physical mechanism (e.g., MHD turbulence
in subphotospheric granulation cells), (2) the wavelength of the observer (optical, EUV,
soft X-rays), which mostly indicates different altitude levels (photosphere, chromosphere,
transition region, corona), and (3) instrumental effects (seeing and spatial resolution). The
powerlaw index p of a spatial power spectrum P(k) ∝ k−p can be transformed into a distri-
bution of spatial length scales N(L) with k = 2π/L, with a similar formalism as we derived
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in Section 4.8.4 in the time domain. However, there are also other methods to measure the
distribution N(L) of length scales directly, as we describe in the next Section 8.6.

8.6 Statistics of Spatial Scales

The common denominator of fractal structures with SOC theory is the property of scale-
free parameter ranges, which can be described with powerlaw relations between various
geometric parameters (e.g., length, area, volume). The fractal property implies two im-
portant consequences for SOC theory: (1) it describes the geometry of the instantaneous
internal microstructure of a SOC event, but also (2) describes the relationships of geomet-
ric size parameters between different SOC events. The two relationships may even influ-
ence each other during a SOC event. For instance, a landscape has a fractal structure as a
static property, but leaves an imprint of its static fractality also on dynamic events, such
as landslides, flooding, or show avalanches, which follow the channeling and ducting of
the fractal terrain. Fractal landscapes (valleys, craters) may even be the witnesses of SOC-
like processes (erosion, mountain slides, volcanic eruptions). Solar flares are magnetic
reconnection events that occur in the environment of a fractal magnetic field, and thus the
resulting energy of a magnetic instability released in a flare, which heats up chromospheric
plasma and redistributes it throughout coronal fluxtubes, reflects a similar fractality as the
previous static magnetic field. So, we can interpret the fractal geometry of static structures
as ducts or remnants of dynamical SOC events, which exhibit the multiplicative imprints
of exponentially-growing catastrophes. It is like the domino effect, where an avalanche
chain reaction takes place in a pre-arranged fractal geometry.

In the following we focus on the second consequence of fractal geometries, namely
the statistics of spatial size scales between different events. If the main SOC parameters
we used so far (i.e., the peak energy P, the total (time-integrated) energy E, and the du-
ration T ) possess powerlaw frequency distributions, and if there is a simple powerlaw
scaling law of the SOC parameters (P,E,T ) with length scales L, we expect also occur-
rence frequency distributions N(L) of length scales to exhibit a powerlaw-like functional
form (Section 7.1.6). Hence, we study the length scale frequency distributions N(L) for
different astrophysical SOC processes in the following.

8.6.1 Solar Photosphere and Chromosphere

As we alluded to in previous sections on the (multi)fractal structure of magnetic structures
seen on the solar surface and in the solar atmosphere, there is the notion that the internal
solar dynamo is the driver and generator of magnetic features (sunspots, active regions,
filaments, flares, coronal mass ejections), and thus could represent a dissipative nonlinear
system in the state of self-organized criticality (in contrast to turbulence or percolation
theories). The static magnetic features seen on the solar surface represent then the remnants
of buoyant magnetic fluxtubes generated by the SOC state of the tachocline on one hand,
while dynamic magnetic reconnection processes in the solar corona represent a secondary
SOC process generated by the SOC state of the solar atmosphere on the other hand.
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Early statistics (before SOC) on the distribution of the most prominent magnetic fea-
tures on the solar atmosphere, namely active regions, was obtained by measuring the areas
of over 1,000 active regions during 1967–1981 in daily magnetograms from the Mount
Wilson Observatory, detected above a threshold of 10 G. The resulting area size distribu-
tion with sizes of A = 3–1,350 square degrees (1 square deg = 48.5× 10−6 of the solar
hemisphere), were found to fit an exponential distribution of N(A) ∝ exp(−A/175) (Tang
et al. 1984). A more extended study was conducted by Harvey and Zwaan (1993), which
differed from the study of Tang et al. (1984) in several ways: (1) only bipolar regions that
reach their peak size on the visible hemisphere were included, (2) regions are included
only once, (3) each region was measured during the peak, and (4) corrections for visibility
and data gaps were made. The resulting size distribution was characterized by a sum of ex-
ponential and logarithmic terms and was much different from the one obtained by Tang et
al. (1984), but agreed in the invariance of the functional shape during the solar cycle. The
size distribution of sunspots sampled over more than 100 years (from Greenwich Obser-
vatory 1874–1976) was found to follow a log-normal distribution (Baumann and Solanki
2005), which is powerlaw-like at the upper end, but exhibits a gradual flattening towards
smaller sizes. Statistics on areas of magnetic features depend very much on the selection
(active regions, sunspots, emerging bipoles), the time evolution (growth, peak, or decay
phase), and the counting method (daily records, multiple countings per solar rotation).
Moreover, since the total available magnetic energy per feature depends on both the area
and the field strength, statistics on areas alone may not be most useful.

An area-related quantity is the magnetic flux Φ =
∫

B dA ≈ BA, which includes the
magnetic field strength B and is largely independent on the instrumental resolution, be-
cause it represents a spatial integral. However, the relationship between the magnetic flux
Φ ≈ BA and the area A is not simple and seems to vary in an active region on time scales of
days (Chumak and Zhang 2003). Statistics on the distribution of magnetic field strengths
in the range of B = 0–1,800 G has been quantified in Dominquez Cerdena et al. (2006),
which depends very much on the instrumental resolution and whether the Zeeman sig-
nal tends to cancel opposite polarization. A powerlaw-like distribution of magnetic fluxes
was found for intranetwork (with a slope of α ≈ 1.68) and network flux (with a slope of
α ≈ 1.27) in the a range of Φ ≈ 1016–1018 Mx (Wang et al. 1995; Meunier 2003). A series
of studies was conducted (Hagenaar et al. 1997, 2003; Hagenaar 2001; Hagenaar and Shine
2005) on the statistical distribution of cell sizes in the chromospheric network, ephemeral
magnetic regions, and moving magnetic features around sunspots, and synthesized the dif-
ferent statistics into a single composite powerlaw-like distribution function that contains
the magnetic fluxes of emerging bipoles at the lower end and entire active regions at the
upper end, spanning a range of about four orders of magnitude (Φ ≈ 5×1018 −5×1022

Mx), shown in Fig. 8.19 (left). Parnell et al. (2009) used a “clumping algorithm” and ex-
tended this way the range of magnetic fluxes over about seven decades and found that the
synthesized distribution of all magnetic features in the range of Φ = 1016 − 1023 Mx fit
a powerlaw distribution with a slope of α ≈ 1.85 ± 0.14 (Fig. 8.19, right). The statistical
distributions of magnetic fluxes in active regions has been modeled in terms of percolation
models (Wentzel and Seiden 1992; Seiden and Wentzel 1996; Fragos et al. 2004). We will
discuss physical SOC models that involve the observed size distributions of magnetic areas
and magnetic fluxes in Chapter 9.
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Fig. 8.19 Left: Composite distribution function of magnetic bipoles emerging on the Sun per day, per
flux interval of 1018 Mx, and active regions (Hagenaar et al. 2003). Right: Synthesized histograms of
magnetic features observed with SOT/Hinode and MDI/SOHO, identified with an automated clumping-
feature algorithm. The combined powerlaw slope is α = 1.85 ± 0.14 (Parnell et al. 2009), (reproduced by
permission of the AAS).

8.6.2 Solar Flares

There are only few studies that offer statistics on spatial scales of solar flares (Table 8.2).
Area statistics of very small solar flares in the energy range of E ≈ 1024–3× 1025 erg,
called EUV transient brightenings, was sampled by Berghmans et al. (1998), finding an
approximate powerlaw distribution with a slope of αA = 2.7 at a transition region wave-
length (304 Å) and αA = 2.0 in a coronal wavelength (195 Å), measured with SOHO/EIT
at spatial scales of L ≈ 3–20 Mm. A similar SOHO/EIT study was conducted by Aletti
et al. (2000), who measured the size of an EUV brightening from the number of pixels
that have an intensity above a threshold of 2σ or 3σ , and obtained a (fractal area) size

Table 8.2 Frequency distributions of area sizes observed in solar flares. References: 1, Berghmans et
al. (1998); 2, Aletti et al. (2000); 3, Aschwanden and Parnell (2002).

Events type Wavelength Range Powerlaw slope
of lengths of areas αA

L N(A) ∝ A−αA

EUV brightenings1 304 Å (He II) 3–20 Mm 2.7
EUV brightenings1 195 Å (Fe XII) 3–20 Mm 2.0
EUV brightenings (2σ)2 195 Å (Fe XII) 2–60 Mm 1.26 ± 0.04
EUV brightenings (3σ)2 195 Å (Fe XII) 2–20 Mm 1.36 ± 0.05
EUV nanoflares3 171, 195 Å 2–20 Mm 2.56 ± 0.23
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distribution with powerlaw slopes of αA = 1.26–1.36 in the range of A = 1–1,000 pix-
els (corresponding to a length scale of L ≈ 2–60 Mm). In a systematic study of EUV
nanoflares detected with TRACE 171 and 195 Å, the (fractal) flare areas were measured
with an elliptical area with length l and width w, yielding an area of A = lw (Eq. 8.2.6).
From a set of 281 automatically detected nanoflare events, size distributions of N(l) ∝ l−αl

with αl = 2.10 ± 0.11 and N(w) ∝ w−αw with αw = 4.43 ± 0.22 and N(A) ∝ A−αA with
αA = 2.56 ± 0.23 were found (Aschwanden and Parnell 2002), for a size range of L ≈ 2–
20 Mm.

Thus, there is very scarce statistics on distribution of spatial scales. A full-scale SOC
model should also include geometric scaling laws, but little effort has been put into this
aspect. What are our theoretical expectations for a geometric SOC model? One potential
model is Euclidean fragmentation, which we envision simply by breaking down a solid
structure into smaller space fragments. For instance, if we break a square-like chocolate
into 16 equal pieces, each little square has a quarter length of the original size, so we
have N(L = 1) = 1 and N(L = 1/4) = 16, and thus N(L) ∝ L−2. For solid structures, the
expected scaling would then just be the reciprocal relationship of Euclidean scaling, e.g.,
N(L) ∝ L−1 for breaking a linear structure into smaller pieces, N(L) ∝ L−2 = A−1 for
subdividing an area-like 2-D structure, and N(V ) ∝ L−3 = V−1 for fragmenting a volume
structure. For fractal geometries, we might expect a reciprocal scaling of the fractal dimen-
sion, but the definition of a length scale for fractal structures is more tricky. A comparison
with the distributions measured in Table 8.2 shows at least some values are close to the
expected scaling of N(A) ∝ A−1, but clearly more statistics is needed to narrow down more
reliable values of the powerlaw slope based on a wider range of spatial scales.

There are some other area-related flare studies. The study of Sammis et al. (2000) inves-
tigated the flare peak fluxes as a function of the area of active regions and a trend was
found that large active regions produce larger flares, but this general trend was found to
be less significant than the dependence on the magnetic classification (α,β ,γ,δ classes
of magnetic complexity of sunspots). In addition some studies explored whether the fre-
quency distribution of peak fluxes in flares depends on the sizes of active regions and some
systematic differences were found (e.g., Kucera et al. 1997; Sammis 1999) as expected for
biased subsets, while the scale invariance was corroborated when compared among differ-
ent active regions (Wheatland 2000c), which is expected for SOC models.

8.6.3 Lunar Craters

Craters can generally be produced either by volcanic eruptions or by meteoroid impacts,
both representing violent catastrophic events that may exhibit SOC behavior. Many craters
seen on the Moon or Earth appear to be the result of meteoroid impacts. Both the Moon
and the Earth were subjected to intense bombardment between 4.6 and 4.0 billion years
ago, which was the final stage of the sweep-up of debris left over from the formation of the
solar system. The impact rate during that time was a thousand times higher than today’s
rate. Lunar craters, therefore, represent remnants or witnesses of catastrophic events that
left a measurable imprint from which we can measure the size and perhaps even calculate
the energy.
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Fig. 8.20 Left: The lunar crater Daedalus, about 93 km in diameter, was photographed by the crew of
Apollo 11 as they orbited the Moon in 1969 (NASA photo AS11-44-6611). Right Cumulative frequency
distribution of crater diameters measured from Ranger 8 in the lunar Mare Tranquillitatis (Cross 1966).

The size distribution of lunar craters was measured from pictures of the lunar orbiters
Ranger 7, 8, 9 by Cross (1966), who measured the diameters L from a total of 1,600
craters, ranging from 0.65 to 69,000 m, and found an approximate powerlaw function for
the cumulative frequency distribution,

Ncum(>L) ∝ L−2 (8.6.1)

which corresponds to a differential frequency distribution of N(L) ∝ L−3 according to
(Eq. 7.1.8). Cross (1966) conducted statistics of lunar craters for each Mare separately. One
example of a cumulative frequency distribution of craters from the Mare Tranquillitatis
using Ranger 8 measurements is shown in Fig. 8.20 (right). A similar powerlaw index of
2.75 was also found for the size distribution of meteorites and space debris from man-made
rockets and satellites (Fig. 3.11 in Sornette 2004).



282 8. Fractal Geometry

Interpreting this result, we may think again of the concept of Euclidean fragmentation,
for which we expect N(L) ∝ L−3. The more or less solid mass that was forming the solar
system probably has been fragmented by collisions and tidal forces into smaller pieces.
Conservation of mass and volume yields then the scaling law, N(L) ∝ L−3, since

V = N(L0)L3
0 = N(L)L3 = const , (8.6.2)

where L0 is the original average size and L is the smaller average size of fragments at
a later time of the fragmentation process. The fragmentation process leads naturally to a
self-similar fractal geometry, since fragments from frequent collisions tend to grind spher-
ical objects, and combined with the spherically propagating shock waves during an impact
event, leads also to a self-similar distribution of circular craters. Do impact craters qual-
ify for a SOC system? Both the Euclidean fragmentation process (driven by two-body
collisions) as well as the impact of a fragment on the lunar surface are both highly non-
linear dissipation processes, occur with a random waiting-time distribution, and exhibit
scale-free powerlaw distributions of energies and sizes, and thus possess all typical char-
acteristics of a SOC process. However, we cannot measure the time history of the event
to obtain the peak energy, total energy, and duration, but are left with the imprints of the
spatial sizes only.

8.6.4 Asteroid Belt

The asteroid belt between the planets Mars and Jupiter contains a large number of irregu-
lar bodies or minor planets with sizes from about 1,000 km (Ceres 1,020 km; Pallas 538
km; Vesta 549 km; Juno 248 km) down to the size of dust particles. While most plan-
etesimals from the primordial solar nebula formed bigger planets under the influence of
self-gravitation, the gravitational perturbations from the giant planets Jupiter and Saturn
prevented a stable conglomeration of planetesimals in the zone between Mars and Jupiter,
and thus we still live with a fragmented soup of primordial planetesimals, called the as-
teroid belt (Fig. 8.21, left). The asteroid belt has evolved into the present configuration
by dynamical depletion due to the gravitational disturbance from the giant planets (which
pull planetesimals into highly eccentric orbits) and collisions (which fragment the plan-
etesimals further).

The asteroid size distribution has been studied in the Palomar Leiden Survey (Van
Houten et al. 1970) and Spacewatch Surveys (Jedicke and Metcalfe 1998), where a power
law of Ncum(>L) ∝ L−1.8 was found for the cumulative size distribution of larger asteroids
(L > 5 km), which corresponds to a differential powerlaw slope of αL ≈ 2.8. In a Sloan
Digital Sky Survey collaboration (Fig. 8.21, right), a broken powerlaw was found with
N(L) ∝ L−2.3 for large asteroids (5–50 km) and N(L) ∝ L−4 for smaller asteroids (0.5–
5 km) (Ivezic et al. 2001). In the Subaru Main-Belt Asteroid Survey, a cumulative size
distribution Ncum(>L) ∝ L−1.29±0.02 was found for small asteroids with L ≈ 0.6–1.0 km
(Yoshida et al. 2003; Yoshida and Nakamura 2007), which corresponds to a differential
powerlaw slope of αL ≈ 2.3.

Interpreting these results, which specify powerlaw slopes of the differential size dis-
tribution in the range of αL ≈ 2.3–4.0, the average is close to the value αL ≈ 3 expected
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Fig. 8.21 Left top: A picture of the near-Earth asteroid Eros with a size of 30 km, pictured by a space
probe. Left bottom: The main asteroid belt located between the Jupiter and Mars orbit. The subgroup
of Trojan asteroids are leading and trailing along the Jupiter orbit. (Courtesy of NASA/Johns Hopkins
University Applied Physics Laboratory). Right: Differential size distribution of asteroids observed in the
Sloan Digital Sky Survey collaboration (Ivezic et al. 2001). (Reprinted with permission of Elsevier)

for Euclidean fragmentation, which predicts N(L) ≈ L−3, similar to the statistics of lu-
nar craters (Section 8.6.3). However, the observational manifestation is quite different for
these two phenomena, one observed before impact and the other after impact on a specific
target. The fact that the size distribution exhibits a broken powerlaw could indicate that two
different physical processes dominate in the two regimes, for instance dominant collisions
with less gravitational orbit perturbation for the large asteroids (L >∼ 5 km), but stronger or-
bit perturbation and pre-dominant dynamic depletion for smaller asteroids. Nevertheless, a
similar argument for asteroid formation as a SOC process can be made as for the creation
of lunar craters.

8.6.5 Saturn Ring

Jupiter and Saturn are the two largest planets in our solar system, and thus it is no surprise
that they also have numerous moons, rings, and ringlets thanks to their strong gravitational
field. While the rings are located close to the planet (7,000 km to 80,000 km above Saturn’s
equator), the orbits of the moons are outside the rings. Mechanical resonances (i.e., in
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Fig. 8.22 Photo of Saturn’s B-ring with Huygens gap, Cassini division, and spoke structures, recorded by
the Cassini spacecraft (credit: NASA, JPL, Space Science Institute).

orbits that have a period with a harmonic ratio to the outer moons’ periods) destabilize
inner rings, leading to gaps (e.g., Encke gap, Cassini division), or stabilize the zones in
between (Figs. 1.11 and 8.22). The Saturn ring consists of particles ranging from 1 cm to
10 m, with a total mass of 3× 1019 kg, just about a little less than the moon Mimas. The
origin of the ring was hypothesized to come either from nebular material left over from the
formation of Saturn itself or from the tidal disruption of a former moon.

The distribution of particle sizes in Saturn’s ring was determined with radio occultation
observations using data from the Voyager 1 spacecraft and a scattering model, which ex-
hibited a powerlaw distribution of N(r) ∝ r−3 in the range of 1 mm < r < 20 m (Zebker
et al. 1985; French and Nicholson 2000). This result, again, is consistent with Euclidean
fragmentation, similar to the distribution of sizes of asteroids (Section 8.6.4) and lunar
craters (Section 8.6.3). Can we consider the evolution of the Saturn ring as a SOC pro-
cess? Events are caused by collisional encounters, which probably occur at random time
intervals (though very rare on human time scales) and the energy release during a col-
lisional impact is likely to be a nonlinear dissipative (fragmentation) process, leading to
powerlaw distributions of energies with some scaling to the powerlaw size distribution
of the projectile and target. The critical threshold is some minimal velocity difference Δv
(between the projectile and target body) for inelastic impacts with subsequent fracturing,
while small Δv merely cause elastic reflections without catastrophic disintegration. Hence
the same argument for a SOC process can be made as for asteroids and lunar craters.
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8.7 Summary

SOC processes produce scale-free powerlaw-like size distributions of their dynamical pa-
rameters (peak energy, total energy, duration), which also extends to their geometric pa-
rameters (length, area, volume). The powerlaw-like size distributions of geometric param-
eters then consequently imply also powerlaw-like scaling laws between geometric param-
eters, such as A(L) ∝ LDA and V (L) ∝ LDV . These geometric scaling laws can be either Eu-
clidean (DA = 2 and DV = 3) or fractal (DA < 2 and DV < 3). Cellular automaton models of
SOC processes can reproduce fractal geometries in the spatial propagation of avalanches,
and thus fractal scaling laws are expected for most SOC processes. We discussed 1-D frac-
tals (Section 8.1), which can be applied to 1-D time series of astrophysical observations
(e.g., variability of solar radio emission). Measuring 2-D fractals (Section 8.2) can be done
most conveniently in astrophysical images inside our solar system (e.g., magnetospheric
substorms, solar photosphere, or solar flares). The derivation of 3-D fractal dimensions
(Section 8.3) is more tricky, because it requires either geometric models or lattice-based
computer simulations. The measurement of fractal characteristics can be done either by
box-counting algorithms (Section 8.2), multifractal analysis (Section 8.4), spatial power
spectrum analysis (Section 8.5), or by statistics of spatial scales (Section 8.5). With the
latter method we explored magnetic structures in the solar photosphere as well as during
flares and found them all to be fractal. In contrast, the size distribution of lunar craters,
asteroids, and Saturn ring particles all exhibit a Euclidean scaling law of N(L) ∝ L−3, as
expected for a fragmentation process. In summary, fractal or Euclidean scaling laws of
geometric parameters and their powerlaw-like size distributions are necessary conditions
for SOC processes, but not sufficient to prove a SOC process, because non-SOC processes
(such as intermittent turbulence) can also produce powerlaw-like distributions of spatial
scales.

8.8 Problems

Problem 8.1: What is the 1-D (“Sierpinski dust”) and 3-D analog (“Sierpinski tetahedron)
of the 2-D Sierpinski triangle shown in Fig. 8.6. Calculate their fractal dimensions.

Problem 8.2: Construct a time series (say N = 10,000 points) with a random generator
and measure its fractal dimension with the method of Higuchi (Section 8.1.2). Smooth
the time series with a box-car of nsm = 10 and 100 and determine its fractal dimension.
How much smoothing is needed to obtain a near-Euclidean dimension of D ≈ 1 within
1%?

Problem 8.3: Download digital astronomical images of a spiral galaxy, a globular cluster,
and a star field. Measure their fractal dimensions for various thresholds (say 10%, 20%
and 50% of the maximum intensity). In which cases do you obtain a near-Euclidean
dimension of D = 1 as expected for dot-like stars. Which case shows the highest fractal
dimension and what spatial structure is it associated with?

Problem 8.4: Verify the analytical expressions of the area- qA and volume-filling factors
qV given Eqs. 8.3.8–8.3.10 for an aspect angle of α = 0◦ by means of a Monte-Carlo
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simulation for nloop = 10,100, and 1,000 loop elements in a half-cylinder configuration
as shown in Fig. 8.15.

Problem 8.5: Design a simple Monte-Carlo simulation for the fragmentation of planetes-
imals, assuming that collisions occur in random time intervals and between random
fragments, where each collision splits a planetesimal into two half volumes. Sample
the size distribution N(L) after 103, 104 and 105 events and fit a powerlaw distribution
N(L) ∝ L−αL . Do you find a Euclidean dimension of αL = 3? Think of improvements
that would make the model more realistic.
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In physics, you don’t have to go around making trouble for yourself, – nature does it
for you.

Frank Wilczek

All science is either physics or stamp collecting.

Ernest Rutherford

Why is the concept of self-organized criticality (SOC), such an interdisciplinary subject,
being applied in geophysics, astrophysics, or financial physics with equal fervor? On the
most general level, the common denominator of all SOC processes in different science
disciplines is the statistics of nonlinear processes, which exhibit omnipresent powerlaw
distributions. Nonlinear processes are characterized by a nonlinear growth phase, during
which coherent growth is enabled, which has multiplicative characteristics, in contrast to
linear processes with incoherent and additive characteristics. Thus, incoherent random pro-
cesses exhibit binomial, Gaussian, Poissonian, or exponential distribution functions, while
coherent processes exhibit powerlaw-like distributions. This is the fundamental trait that
earthquakes, solar flares, or stock market crashes have in common, although the underly-
ing physics could not be more different. Therefore, it is important to understand that the
powerlaw feature does not require any particular physical model: it can all be explained
by mathematical theory in terms of statistical probabilities, as we discussed in Chapters 3
and 4. SOC behavior can thus also be simulated by mathematical rules, as we illustrated
in terms of cellular automaton models in Chapter 2. Consequently, our treatment of SOC
systems has been entirely physics-free so far, not requiring any particular physical model
to understand the observed statistical distributions and correlations. However, there are
some free parameters we used in our analytical SOC models (Chapter 3) that can only be
explained in terms of a physical model for a particular phenomenon, such as the value αi of
the powerlaw slope for each parameter distribution i, or the powerlaw indices βi j between
various correlated parameters i and j. At this point, SOC models become specific because
the physics of solar flares is different from the physics of tectonic plates. In the following
we will focus on specific physical models of astrophysical SOC processes.
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9.1 A General (Physics-Free) Definition of SOC

Before we indulge in the manifold physical models of SOC phenomena, let us first sum-
marize a physics-free definition of SOC phenomena, based on the general treatment we
elaborated in the previous Chapters 1–8, in particular the exponential-growth model de-
scribed in Section 3.1. This definition should enable us to identify SOC systems from
observations and to discriminate SOC processes from other non-SOC processes, of which
we will give a relevant selection in Chapter 10.

On the most general level, there are three necessary and (perhaps) sufficient criteria that
define a SOC system, which we postulate here as a preliminary working definition:

1. Statistical Independence: The events that occur in a SOC system are statistically inde-
pendent and not causally connected in space or time. The statistical independence can
be verified from the waiting-time distribution in the time domain, and by spatial local-
ization in the space domain (if imaging or in-situ observations are available). Waiting-
time distributions should be consistent with a stationary or nonstationary Poisson pro-
cess, in order to guarantee statistical independence by means of probabilities.

2. Nonlinear Coherent Growth: The time evolution of a SOC event has an initial non-
linear growth phase after exceeding a critical threshold. The nonlinear growth of dis-
sipated energy, or an observed signal that is approximately proportional to the energy
dissipation rate, exhibits an exponential-like or multiplicative time profile for coherent
processes. (Incoherent random processes, in contrast, show a linear evolution and have
additive characteristics.)

3. Random Duration of Rise Times: If a system is in a state of self-organized criticality,
the rise time or duration of the coherent growth phase of a SOC event (avalanche) is un-
predictable and thus exhibits a random time scale. The randomness of rise times can be
verified from their statistical distributions being consistent with binomial, Poissonian,
or exponential functions.

This is mostly a mathematical definition of a SOC system. The prototype of a SOC pro-
cess is the BTW sandpile, and we can qualitatively verify that sandpile avalanches fulfill
these three criteria: (1) subsequent sand avalanches occur at random, occasionally trig-
gered by an infalling sand grain; (2) sand avalanches grow in a multiplicative manner once
they get rolling; and (3) the growth phase (or rise time) of an avalanche lasts a random
time interval, depending on the random path along which the avalanche propagates and
encounters locations with slopes that are slightly steeper than the overall average critical
value of a sandpile in SOC state. The numerical prototype of a SOC process is the cellular
automaton (Section 2.1.3), which can easily be tested to see whether the numerically gen-
erated distributions of waiting times, growth rates, and rise times fulfill the three criteria
of our mathematical SOC definition.

Verifying a SOC system with our three mathematical or physics-free criteria can most
directly be accomplished by testing the following three relationships (for the simplest case
of a stationary Poisson process):
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N(Δt) ∝ exp(−Δt) random waiting times
log(P) ∝ τrise exponential growth
N(τrise) ∝ exp(−τrise) random rise times

. (9.1.1)

With the analytical derivation of our standard model we have demonstrated that the criteria
(2) and (3) lead to a powerlaw distribution N(P) ∝ P−αP of peak energies, as well as to ap-
proximate powerlaw distributions of total energies and durations, N(E) and N(T ), which
is generally used as a test of SOC systems. Criterion (1) on the waiting-time distributions
was often used to verify or disprove a SOC system, but it is not a sufficient condition
to evaluate SOC, since waiting-time distributions can exhibit exponential (for stationary
Poisson processes) or powerlaw-like distribution functions (for nonstationary Poisson pro-
cesses). In the following review of physical SOC models we will discuss their compliance
with our mathematical definition of SOC processes, and we will discuss also whether the
criteria are sufficient to exclude non-SOC processes (in Chapter 10).

9.2 Astrophysics

The identification of physical mechanisms in nonlinear dissipative systems that exhibit
SOC behavior is quite a new field that leaves a lot of room for new ideas and modeling
in terms of existing theories. In fact, the literature on physical models of astrophysical
SOC processes is very sparse, except for some applications in solar and magnetospheric
physics. In Table 9.1 we give a tentative list of possible physical interpretations of SOC
phenomena, which should be taken with a grain of salt and as a possible starting point
for future modeling, rather than as a list of established results. We will briefly discuss the
examples given in Table 9.1 in the following.

9.2.1 Galaxy Formation

Galaxies are observed at all sizes and there is a hierarchy of structures from dwarf galaxies
(e.g., the Magellanic Cloud), single galaxies, groups, clusters, and superclusters of galax-
ies (Fig. 9.1). The standard bigbang model together with the inflationary model describes
the cosmological evolution of the universe over the last 13.75± 0.17 billion years. The
formation of galaxies has been modeled in terms of two opposite scenarios, i.e., the top-
down scenario that starts with a monolithic collapse of a large cloud (Eggen, Lynden-Bell,
and Sandage 1962), versus the bottom-up scenario where smaller objects merge and form
larger structures that ultimately turn into galaxies (Searle and Zinn 1978), which is more
widely accepted now. In most models on galaxy formation, thin, rotating galactic disks
result as a consequence of clustering of dark matter halos, gravitational forces, and conser-
vation of angular momentum. The fractal-like patterns of the universe from galactic down
to solar system scales is thought to be a consequence of the gravitational self-organization
of matter (Da Rocha and Nottale 2003). Whether the whole universe is in a state of self-
organized criticality has not been clearly addressed in literature (see Section 1.10 and the
textbook by Baryshev and Teerikorpi 2002), but it is conceivable that the driving forces of
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Table 9.1 Examples of physical processes with SOC behavior.

SOC phenomenon Source of free energy Instability or
or physical mechanism trigger of SOC event

Galaxy formation gravity, rotation density fluctuations
Star formation gravity, rotation gravitational collapse
Blazars gravity, magnetic field relativistic jets
Soft gamma ray repeaters magnetic field star crust fractures
Pulsar glitches rotation Magnus force
Blackhole objects gravity, rotation accretion disk instability
Cosmic rays magnetic field, shocks particle acceleration
Solar/stellar dynamo magnetofriction in tachocline magnetic buoyancy
Solar/stellar flares magnetic stressing magnetic reconnection
Nuclear burning atomic energy chain reaction
Saturn rings kinetic energy collisions
Asteroid belt kinetic energy collisions
Lunar craters lunar gravity meteoroid impact
Magnetospheric substorms electric currents, solar wind magnetic reconnection
Earthquakes continental drift tectonic slipping
Snow avalanches gravity temperature increase
Sandpile avalanches gravity super-critical slope
Forest fire heat capacity of wood lightning, campfire
Lightning electrostatic potential discharge
Traffic collisions kinetic energy of cars driver distraction, ice
Stockmarket crash economic capital, profit political event, speculation
Lottery win optimistic buyers random drawing system

gravitation in an expanding universe lead to sporadic density fluctuations that initiate a lo-
cally nonlinear growth phase of self-gravitating matter like an avalanche in a sandpile SOC
model. The spatial and temporal independence of SOC events throughout the universe is
somewhat guaranteed by the cosmological flatness and horizon problem.

9.2.2 Star Formation

Star formation is initiated by the local collapse of a molecular cloud under self-gravity.
In the triggered star formation scenario, a gravitational collapse of a molecular cloud is
initiated by a collision between two clouds, by a nearby supernova explosion that ejects
shocked matter, or even by galactic collisions that cause compression and tidal forces. If
there is sufficient mass available (the Jeans mass criterion), which depends on the ini-
tial size of the unstable galactic fragment, the collapsing cloud will build up a dense core
that forms into a star with nuclear burning, otherwise it ends up as a brown dwarf. Con-
sidering star formation as a SOC process, it is conceivable that it fulfills the three SOC
criteria of (1) statistical independence (if there are many independent sites of star-forming
molecular clouds throughout the galaxies), (2) nonlinear coherent growth (gravitational
collapse), and (3) randomness of formation time (if there is a large variation of accretion
rates). However, some molecular clouds may be triggered externally by shock waves from
nearby supernovae, which would correspond to “sympathetic flaring” and would violate
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Fig. 9.1 The 2dF galaxy redshift survey (2dFGRS), conducted at the Anglo-Australian Observatory, shows
a map of the galaxy distribution out to redshifts of z = 0.23 or approximately 2 billion lightyears, which
includes approximately 250,000 galaxies. Note the fractal large-scale structure of the universe that makes
up the galaxy density (Colless et al. 2001).

the first SOC criterium. Observational tests of the SOC criteria are obviously required.
One pioneering study explored the scaling relations of molecular clouds and their frac-
tal structure with observations of the starburst cluster in 30 Doradus (Fig. 9.2) under the
aspect of self-organized criticality (Melnick and Selman 2000).

9.2.3 Blazars

We discussed blazars (blazing quasi-stellar objects) briefly in Section 7.4.5, since pulses
from such an object (blazar GC 0109+224) exhibit a powerlaw distribution N(P) ∝ P−1.55

in the intensity of the optical pulses (Ciprini et al. 2003). Blazars are a group of active
galactic nuclei (AGNs) that have the special geometry of their relativistic jet pointing to-
wards the observer on Earth. These relativistic jets are thought to be produced by matter
that spirals toward the central black hole of the host galaxy, where the accumulated matter
forms a hot accretion disk with a relatively compact size of≈ 10−3 parsecs (Fig. 9.3). In the
center of the torus-like accretion disk, strong magnetic fields are believed to produce axial
relativistic jets that eject plasma away from the AGNs over distances of ≈104–105 parsecs.
The relativistic jet produces synchrotron radiation in radio and X-rays, as well as inverse
Compton emission in X-rays and gamma rays, while the thermal emission produces also
ultraviolet and strong optical emission lines.
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Fig. 9.2 The central star cluster R136 (30 Doradus) in the extragalactic giant HII region in the Large
Magellanic Cloud (LMC), photographed with the Hubble Space Telescope (HST) NICMOS camera. This
starburst cluster was analyzed in terms of SOC statistics by Melnick and Selman (2000).

Fig. 9.3 Schematic diagram of a blazar, containing an active supermassive black hole in its core, sur-
rounded by an accretion disk that accumulates infalling matter. The magnetic field wraps around the rota-
tion axis and forms a relativistic extragalactic jet along the rotation axis. (Credit: NASA).
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Can blazars be considered to be SOC systems? The observed high variability of pulses
from blazars is mostly explained by the relativistic beaming, which has a strong depen-
dence on the small angle between the forward direction of the relativistic jet and the line-
of-sight to the Earth’s observer. Synchrotron emission has a strong angular dependence of
its emissivity. Thus, if a relativistic electron beam, which has maximum emissivity in for-
ward direction, spirals around the rotation axis of the accretion disk, the small directional
changes of the steep spiral cause large fluctuations in synchrotron emissivity for an ob-
server at a fixed angle. If the mass infall into an AGN occurs stochastically, the first SOC
criterion is fulfilled. One particular mass inflow could produce multiple pulses, depending
on the complexity of its spiral-like trajectory, which may cause quasi-periodic brightness
fluctuations (at each helical turn) or more randomized fluctuations if the trajectory is more
complex than a symmetric spiral. The second SOC criterion of nonlinear growth could be
attributed to the nonlinear change of emissivity as a function of the angular change during
the spiraling orbit. The third SOC criterion of randomness of pulse rise times can easily be
satisfied by the irregularity of the relativistic jets that are caused by the random mass and
angular distributions of infalling blobs. Hence, pulses from blazars can fulfill all three SOC
criteria. The analogy to a sandpile SOC model is even more striking when we think of the
randomized input of dropped sand that causes sand avalanches of all sizes, similar to the
infalling matter in a blazar (Fig. 7.20). Gravity provides the free energy in both systems,
and the gravitational acceleration has a multiplicative effect on the growth of avalanches
when they propagate and accumulate (or accrete) more ambient mass. Ciprini et al. (2003)
also analyzed the variability of the blazar light curve by calculating the structure function
for unevenly sampled data (i.e., the squared flux differences) and found an approximate
1/ f flicker noise spectrum, which essentially corroborates the third SOC criterion of ran-
dom pulse rise times.

9.2.4 Neutron Star Physics

The physics of neutron star crusts involves nuclear physics, condensed matter physics,
superfluid hydrodynamics, and general relativity, which is reviewed, e.g., in Chamel and
Haensel (2008). There are accreting neutron stars in low-mass binaries (Fig. 1.16), where
a binary star is sufficiently tight for the companion to fill its Roche lobe, and mass is trans-
ferred through the inner Langrangian point via an accretion disk towards the neutron star
surface. Accretion onto a neutron star releases ≈200 MeV per accreted nucleon, and thus
energy is radiated in X-rays. The accreted material is hydrogen-rich, which fuels hydrogen
burning into helium in the outer envelope of the neutron star. The helium burning is unsta-
ble for some range of accretion rates, which can ignite triggers of thermonuclear flashes,
producing X-ray bursts with energies of ≈ 1039–1040 erg, which represent one class of so-
called soft X-ray transients. Other soft X-ray transients are produced by unstable accretion
rates in accretion disks. Some soft X-ray bursts are quasiperiodic with typical recurrence
times of hours to days. These soft X-ray transients are a possible SOC phenomenon, be-
cause they supposedly fulfill the three SOC criteria of (1) statistical independence (of their
recurrence), (2) nonlinear coherent growth (of thermonuclear flashes), and (3) random rise
times (of unstable accretion rate fluctuations).
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Pulsars are fast-rotating neutron stars (e.g., Crab or Vela pulsar) that emit extremely pe-
riodic signals like a clock, but occasional sporadic glitches revealed irregularities in their
rotational frequencies. There are two types of irregularities: (1) timing noise that might
result from irregular transfers of angular momentum between the neutron star crust and
the liquid (superfluid) interior of the neutron star, and (2) sudden glitches of the rotational
frequency (with typical amplitudes of ΔΩ/Ω ≈ 10−9–10−6), which is now mostly inter-
preted in terms of neutron starquakes. The starquake model assumes that neutron stars are
not perfectly spherical, but slightly deformed because of centrifugal forces. Because the
neutron star crust is solid rather than fluid, the star stays oblate and cannot adjust to a more
spherical shape, which builds up stresses in the crust while the star spins down. When the
stress reaches a critical threshold, the neutron star crust cracks and the neutron star adjusts
its shape to reduce its deformation (Fig. 9.4). Thus, pulsar glitches are very likely a SOC
system, as indicated by the powerlaw distribution of their giant-pulse fluxes (Fig. 7.17), as
described in Section 7.4.2. Pulsar glitches most likely fulfill our three SOC criteria of (1)
statistical independence (of thresholded stress releases in the neutron star crust), (2) the
nonlinear coherent growth (during the rise time of giant pulses), and (3) randomness of
rise times (of the giant-pulse time profiles).

Soft Gamma Repeaters are believed to be strongly magnetized neutron stars (also called
magnetars) possessing the strongest magnetic fields (B ≈ 1014–1015 G) known in the uni-
verse. Similar to the interpretation of pulsar glitches, soft gamma repeaters are believed
to be produced by crust quakes induced by magnetic stresses in the central neutron star

Fig. 9.4 The neutron starquake model involves a spinning neutron star with the strongest known magnetic
fields in the universe (magnetars), which occasionally release energy by catastrophic unpinning of vortices,
manifested in pulsar glitches and soft gamma-ray repeaters. The artists rendering depicts the neutron star
SGR J1550-5418, which has a rotation period of 2.07 s and holds the record for the fastest-spinning
magnetar (Credit: NASA, GSFC, Swift, Fermi).
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(Fig. 9.4). Neutron star quakes are giant catastrophic events like earthquakes and are likely
to be accompanied by global seismic vibrations or oscillations. One likely oscillation mode
is the torsional shear mode, which could be responsible for the detected oscillations in the
frequency range of ν ≈ 10–1000 Hz. An alternative model for supergiant flares of soft
gamma-ray repeaters is energy release during a starquake of a solid quark star, which can
free up energies up to 1048 erg (Xu et al. 2006). As argued above, the starquakes respon-
sible for the observed giant pulses of soft gamma repeaters, magnetars, and pulsars are all
suitable candidates for nonlinear dissipative systems in a SOC state.

9.2.5 Blackhole Objects and Accretion Disks

Accretion disks represent circumstellar mass accumulations in the shape of disks or halos
that form in a natural way as a consequence of the rotation-induced angular momentum and
the attractive gravitational force of massive objects, such as a young star or protostar in a
molecular cloud, a white dwarf, a neutron star, or a black hole. Accretion may start initially
at large radii, while the gravitational force causes the loose material to spiral inward, and
conservation of the angular momentum will increase the rotation speed the closer the mass
approaches the central object. The gravitational force compresses also the material and
causes electromagnetic emission in the infrared for accretion disks of young stars and
protostars. For more massive accretion disks around neutron stars and black holes, charged
particles produce free-free bremsstrahlung in X-rays, as well as gyrosynchrotron emission
in radio and X-rays, if there exists a sufficiently strong magnetic field.

The details of accretion disk physics are complicated. To first order, conservation of
angular momentum in a gravitational field is expected to lead to elliptical orbits (Keple-
rian disk), and thus mass infalling towards the center of an accretion disk requires loss
of angular momentum or momentum transport outwards. In addition, a hydrodynamic so-
lution with laminar flows is not possible due to the Rayleigh–Taylor instability, which
causes an interchange instability at the interface between two fluid layers of different den-
sities. Consequently, turbulence-enhanced viscosity was invoked to explain the angular-
momentum transport (Shakura and Sunyaev 1973). Balbus and Hawley (1991) established
that a weakly magnetized accretion disk around a compact central object would be highly
unstable and provided this way a mechanism for angular momentum transport.

A number of studies modeled accretion disks in terms of a SOC cellular automaton
model (e.g., Mineshige et al. 1994a,b; Takeuchi et al. 1995; Takeuchi and Mineshige 1996;
Xiong et al. 2000; Pavlidou et al. 2001), as we described in Section 2.7. In the original
model of Mineshige et al. (1994a), a SOC avalanche is simply thought to occur as a multi-
plicative chain reaction of adjacent cells with mass concentrations that start to “coagulate”
(like the formation of blood clots) as a consequence of some unknown instability (which
could be the Balbus–Hawley instability according to our current thinking). Such a mech-
anism can easily fulfill our three SOC criteria of (1) statistical independence (for sponta-
neous occurrence of the instability), (2) nonlinear coherent growth (to next neighbor cells
of mass concentrations), and (3) random durations of rise times (since the accretion disk is
highly inhomogeneous). The earlier (Mineshige et al. 1994a) and later model (Mineshige
et al. 1994b) differ in the assumption of gradual diffusion on top of the avalanching “mass
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clumping”, which yields different powerlaw distributions of time scales that satisfy the
third SOC criterion.

While the original accretion disk models of Mineshige et al. (1994a,b) are purely me-
chanical, a more recent cellular automaton model includes the magnetic field in the accre-
tion disk (Pavlidou et al. 2001). Magnetic loop structures (similar to the solar corona) are
thought to exist in accretion disks, which are subject to magnetic reconnection forced by
magnetic stressing, and this way can lead to avalanching mass infall (an analog of solar
coronal mass ejections, though in the opposite direction). The process of magnetic recon-
nection is further enhanced by the Balbus–Hawley instability and magnetic buoyancy of
magnetic fields inside accretion disks. It has been suggested that a sufficiently radially
extended distribution of magnetic loops in accretion disks could provide the anomalous
viscosity needed to enable the outward transport of angular momentum for mass infall to
the central object (Kuijpers 1995). A specific cellular automaton model with this physical
scenario was constructed in Pavlidou et al. (2001), formulated in terms of three free pa-
rameters (probabilities of spontaneous, stimulated generation, and diffusive disappearence
of magnetic flux) to infer the probabilistic power spectra of energy release times, which
seems to fulfill our three requirements of a SOC system. Numerical simulations of this
cellular automaton process were also performed (Fig. 2.24), which corroborate the SOC
model further.

9.2.6 Cosmic Rays

Cosmic rays are high-energy particles (protons, helium nuclei, or electrons) that origi-
nate from within as well as from outside of our galaxy, usually detected when they hit
the Earth’s atmosphere and produce a shower of particles. The energy spectrum shown
in Fig. 9.5 covers an amazing large energy range of E ≈ 109–1021 eV. In comparison,
the highest energy particles accelerated in our solar system, during solar flares and coro-
nal mass ejections, called solar energetic particle events (SEP), reach maximum ener-
gies of ≈1 GeV, which is at the low end of the cosmic-ray spectrum. Interestingly, the
cosmic ray energy spectrum can almost perfectly be fit by a powerlaw with a slope of
α ≈ 2.7, although a more detailed examination reveals a double powerlaw with a “knee”
at E ≈ 1016 eV. The interpretation is that those particles with smaller energies originate
from various sources within our galaxy, from supernova remnants, pulsars, pulsar-wind
nebulae, and gamma-ray burst sources. The particles with higher energies have a uniform
distribution over the sky and are speculated to come from outside of our galaxy, possibly
from active galactic nuclei (AGN) jets, but an accurate localization is elusive.

For the acceleration of cosmic rays, diffusive (Fermi) shock acceleration, collisionless
shock acceleration in relativistic perpendicular shocks (also called “shock surfing accelera-
tion”), and stochastic cyclotron-resonance acceleration mechanisms are considered. What-
ever the detailed acceleration mechanism is, the powerlaw spectrum of energies could be
interpreted as a manifestation of a SOC system. If the time evolution of the energy gained
during the acceleration process has a nonlinear growth profile (our second SOC criterion)
and the acceleration time lasts for a random time interval (our third SOC criterion), the
resulting energy spectrum will be a powerlaw. Different cosmic ray particles are likely to
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be accelerated independently (our first SOC criterion). Using this scenario, the system that
is responsible for the acceleration of cosmic rays, e.g., supernova shocks, magnetic fields
in pulsars or active galactic nuclei, are in a state of self-organized criticality in the sense
that particles get randomly accelerated and leave the system with unpredictable energies,
regardless what their initial condition (i.e., the thermal distribution) was. Of course, the to-
tal energy spectrum of all observed cosmic ray events as shown in Fig. 9.5 is a convolution
of accelerated spectra from different locations and the superposition from many cosmic
sources, multiple shock crossings, and thus may not be representative of the energy spec-
trum from a single accelerator. It is like adding up many SOC systems with different scales
and maximum energy cutoffs. The “knee” in the spectrum clearly indicates different max-
imum energies obtained within and outside of our galaxy. The powerlaw slope of α ≈ 1.7
for energies below the “knee” can be explained by a scaling law between the volume and

Fig. 9.5 Cosmic ray spectrum in the energy range of E = 109–1021 eV, covering over 12 orders of mag-
nitude. There is a “knee” in the spectrum around E ≈ 1016 eV, which separates cosmic rays originating
within our galaxy (at lower energies) and those from outside the galaxy (at higher energies) (Credit: Simon
Swordy, University of Chicago).
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magnetic field energy density (e.g., Golitsyn 1997). So, there are considerable degrees of
freedom to model the universal cosmic ray spectrum in terms of multi-SOC systems.

9.3 Solar and Stellar Physics

Physical models for solar flares have often also been applied to stellar flares, which have
all spatial information concealed by distance, but reveal similar statistical distributions of
temporal parameters during flare events and have similar physical conditions in their (solar
and stellar) coronae.

9.3.1 Maxwell’s Electrodynamics

Per Bak’s paradigm of a SOC model, the famous BTW sandpile model, is a purely me-
chanical model that can in principle be modeled in terms of gravitational and kinematic
forces. For solar or stellar flares, in contrast, we have overwhelming evidence that elec-
tromagnetic forces are in play, and thus physical modeling of these astrophysical SOC
phenomena can only be accomplished in terms of Maxwell’s electrodynamic equations,
which more generally, turn into the framework of magnetohydrodynamic (MHD) equa-
tions in the case of highly ionized plasmas. This approach of electrodynamic modeling
for SOC phenomena was first postulated in Lu (1995a) and is reviewed in Charbonneau et
al. (2001).

The starting point of SOC modeling in terms of MHD was initiated with cellular au-
tomaton models, where a discretization of the MHD equations was attempted (Section
2.6.3). Each cell (i, j) or node in a 2-D or 3-D lattice grid (i, j,k) was characterized by
the quantity of a magnetic field strength Bi j (or Bi jk), rather than by a mechanical mass
element mi jk in the generic BTW sandpile model. Some models assigned the perpendicu-
lar magnetic field component Bk to each cell (Vassiliadis et al. 1998; Isliker et al. 1998a;
Takalo et al. 1999a), which generally does not fulfill Maxwell’s divergence-free condition,

∇ ·B = 0 , (9.3.1)

when the standard cellular automaton redistribution rule (Eq. 2.6.1) is applied, while oth-
ers assigned the vector potential quantity A (Isliker et al. 2000; 2001), which defines the
magnetic field B by

B = ∇×A , (9.3.2)

which trivially fulfills Maxwell’s equation, i.e., ∇ ·B = ∇ · (∇×A) = 0.
In order to calculate an energy for a SOC event, the magnetic energy density integrated

over the volume (i.e., the number of unstable cells in a discretized grid) was generally
used,

EB =
∫

V

B2

8π
dV , (9.3.3)

which can also be computed in terms of the vector potential A from each cell (Galsgaard
1996). However, since the magnetic configuration in a potential field is stable, has no
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currents, and does not produce instabilities resulting into flares or other SOC events, it
is more meaningful to calculate the difference of the nonpotential magnetic energy ENP
(e.g., calculated by a linear or nonlinear force-free field extrapolation) and the potential
magnetic energy EP,

ΔEB =
∫

V

B2
NP

8π
dV −

∫
V

E2
P

8π
dV , (9.3.4)

as it was applied to study the evolution of a solar active region (e.g., Vlahos and Georgoulis
2004), or individual coronal loops (Morales and Charbonneau 2008a). The threshold for an
instability or SOC event can then be formulated in terms of a minimum current j according
to Ampère’s law,

j =
c

4π
(∇×B) , (9.3.5)

which is a physically meaningful threshold for many plasma instabilities and magnetic
reconnection processes.

9.3.2 The Solar Dynamo

The discretization of Maxwell’s equation is a first step towards a physical SOC model
that involves magnetic instabilities and electric currents, but there are many conceivable
physical scenarios. A cellular automaton model captures only the most essential elements
of the evolution of a nonlinear dissipative system without solving the exact solutions of the
underlying MHD equations. The essential elements of a nonlinear dissipative system in a
SOC state are: (1) a driver or source of free energy, (2) a critical threshold for an instability,
(3) the nonlinear growth phase, and (4) saturation of the instability after a random time
interval. Thus we can build a variety of SOC models for almost every kind of free energy
reservoir and possible instabilities.

The source of free energy in magnetically-driven convective stars is the internal mag-
netic dynamo, which generates magnetic structures probably at the bottom of the convec-
tion zone (in the so-called tachocline), which then rise due to their magnetic buoyancy to
the solar (or stellar) surface, appearing as sunspots or starspots. The magneto-convection
below the surface as well as the differential rotation constantly deform the topology of
magnetic features, which leads to twisting, stressing, and braiding of magnetic field lines
in solar (and stellar) coronae, ultimately leading to magnetic instabilities that relax and re-
solve by the process of magnetic reconnection events, which are thought to be a paradigm
of SOC events. We visualize this generic physical scenario in Fig. 9.6, which can be bro-
ken down into two SOC processes and one non-SOC process: (1) generation of magnetic
flux tubes by the solar dynamo in the solar interior and subsequent emergence to the solar
surface, possibly being a SOC process, (2) magneto-convection below the solar surface
that produces self-organizing fractal structures (granulation) but is driven by turbulence
(which is a non-SOC process), and (3) magnetic reconnection events manifested as flares
and CMEs, which is a widely-accepted SOC process.

The solar dynamo is the ultimate source of free energy and driver of most observable
phenomena in the magnetized atmosphere. So, it is worthwhile to consider whether the
solar dynamo itself is a SOC system. An analogy would be the hot interior of our planet
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Fig. 9.6 Top: Schematic representation of an emerging field configuration generated by the solar dynamo
at the bottom of the tachocline, with subsequent emergence at the solar surface due to magnetic buoyancy,
creating a twisted coronal magnetic field. Bottom: A nonlinear force-free field (NLFFF) calculation of
an active region prior to an X3.4 (GOES-class) flare. The two magnetic polarities (black and white) are
connected by a twisted flux rope with strong electrical currents (gray). The vector magnetograph data (gray
scale) were observed with Hinode (Schrijver 2009). (Reprinted with permission of Elsevier)
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Earth, which occasionally produces volcanic eruptions at the Earth’s surface, which are be-
lieved to be SOC events (Table 1.4). Although there are different physical scenarios of the
solar dynamo, ranging from shallow sub-surface turbulent convection down to magnetic
instabilities in the tachocline, they all would produce buoyant magnetic structures that
emerge at the solar surface as bipoles, sunspots, and active region complexes, which man-
ifest fractal geometries and powerlaw-like size and magnetic flux distributions (Fig. 8.19).
The emergence of magnetic dipoles in bright points as well as the formation of active re-
gions is distributed all over the solar surface (though concentrated in low latitudes), and
thus seem to fulfill our first SOC criterion of statistical independence. Individual magnetic
structures within a single active region, however, are temporally and spatially connected
and should not be treated as independent SOC events. The second SOC criterion of non-
linear coherent growth could easily be tested by plotting the size or magnetic flux of many
emerging active regions as a function of time, but we are not aware of a large statisti-
cal study focused on this SOC aspect. Also the third criterion of random duration of the
growth phase can be tested straightforwardly. If the solar dynamo represents a SOC sys-
tem, powerlaw-like distributions of the peak energy, total energy, and lifetime of active
regions, bright points, transient ephemeral regions, or emerging bipoles are predicted, as
well as random distributions of waiting times between subsequent phenomena, although
modulated as a nonstationary Poisson process with a quasi-periodic solar cycle period of
≈11 years.

9.3.3 Magnetic Field Braiding

A key mechanism of magnetic instabilities that trigger magnetic reconnection events in the
solar (or stellar) corona is the braiding of magnetic field lines by subphotospheric magneto-
convection, which may lead to coronal heating and flare events. Photospheric granular and
supergranular flows advect the footpoints of coronal magnetic field lines towards the net-
work, which can be considered as a flow field with a random walk characteristic (Fig. 9.7).
This process twists coronal field lines by random angles, which can be modeled by heli-
cal twisting of cylindrical fluxtubes. The rate of build-up of nonpotential energy (dW/dt)
integrated over the volume V = πr2l of a cylindrical fluxtube is

∫ dW
dt

dV =
ΦB0〈v2〉τc

4πl
, (9.3.6)

where Φ = πr2B0 is the magnetic flux, B0 is the photospheric magnetic field strength, l
the length of the fluxtube, r its radius, 〈v〉 the mean photospheric random velocity, and τc
the correlation time scale of random motion. Sturrock and Uchida (1981) estimate that a
correlation time of τc ≈ 10–80 min is needed, whose lower limit is comparable with the
lifetimes of granules, to obtain a coronal heating rate of dW/dt ≈ 105 (erg cm−2 s−1),
assuming small knots of unresolved photospheric fields with Bph ≈ 1200 G.

The idea of topological dissipation between twisted magnetic field lines that become
wrapped around each other (Fig. 9.7) has already been considered by Parker (1972). Sim-
ilarly to Sturrock & Uchida (1981), Parker (1983) estimated the build-up of the magnetic
stress energy B0Bt/4π of a field line with longitudinal field B0 and transverse component
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Fig. 9.7 Topology of magnetic fluxtubes that are twisted by random walk footpoint motion, leading to a
state where fluxtubes are wound among their neighbors (Parker 1983; reproduced by permission of the
AAS).

Bt = B0vt/l,
dW
dt

=
B0Bt

4π
v =

B2
0v2t
4πl

, (9.3.7)

and estimated an energy build-up rate of dW/dt = 107 (erg cm−2 s−1), based on B0 =
100 G, v = 0.4 km s−1, l = 1010 cm, and assuming that dissipation is sufficiently slow
that magnetic reconnection does not begin to destroy Bt until it has accumulated random
motion stress for 1 day. The manifestation of such sporadic dissipation events of tangential
discontinuities in the coronal magnetic field in the form of tiny magnetic reconnection
events is then thought to be detectable as nanoflares in the soft X-ray corona, whenever
the twist angle

tanθ(t) ≈ vt
l

(9.3.8)

exceeds some critical angle. Parker (1988) estimates, for a critical angle given by a mod-
erate twist of Bt = Bz/4, corresponding to θ = 14◦, for fluxtubes with length L that are
braiding within a characteristic horizontal scale of ΔL, that the typical energy of such a
nanoflare would be

W =
l2ΔL B2

t

8π
≈ 6×1024 (erg) , (9.3.9)

based on l = vτ = 250 km, v = 0.5 (km s−1), τ = 500 s, ΔL = 1,000 km, and Bt = 25 G.
Thus, the amount of released energy per dissipation event is about nine orders of magnitude
smaller than in the largest flares, which defines the term nanoflare.

There are several variants of random stressing models. A spatial random walk of foot-
points produces random twisting of individual fluxtubes and leads to a stochastic build-up
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of nonpotential energy that grows linearly with time, with episodic random dissipation
events (Sturrock & Uchida 1981; Berger 1991). The random walk step size is short com-
pared with the correlation length of the flow pattern in this scenario, so that field lines do
not wrap around each other. The resulting frequency distribution of processes with linear
energy build-up and random energy releases is an exponential function, which is not con-
sistent with the observed powerlaw distributions of nanoflares. On the other hand, when
the random walk step size is large compared with the correlation length, the field lines
become braided and the energy builds up quadratically with time, yielding a frequency
distribution that is close to a powerlaw. In this scenario, energy release does not occur ran-
domly, but is triggered by a critical threshold value (e.g., by a critical twist angle; Parker
1988; Berger 1993), or by a critical number of (end-to-end) twists before a kink instability
sets in (Galsgaard and Nordlund 1997).

The first analytical SOC avalanche model of twisted and braided magnetic field lines,
thought to mimic solar nanoflares and coronal heating of active regions, was conceived
by Zirker and Cleveland (1993a), following the generic magnetic field braiding model of
Parker (1988), which could reproduce the observed powerlaw distribution of flare ener-
gies over some energy range. However, the results depend on details such as whether the
nonpotential magnetic energy is calculated from (rotationally) twisted or braided (random-
walk) structures (Zirker and Cleveland 1993a,b), or whether the threshold criterion for a
SOC avalanche is defined in terms of a critical angle, a critical (nop-potential) energy, or
a critical current (Podladchikova et al. 1999; Krasnoselskikh et al. 2002). Also the con-
servation of relative helicity plays a role, which appears to be a necessary condition in
some SOC models to produce powerlaw distributions of event sizes (Chou 1999, 2001).
Numerical SOC simulations based on the magnetic braiding model aimed to explain the
quiet Sun coronal heating (Podladchikova et al. 1999; Krasnoselskikh et al. 2002), energy
releases in emerging and evolving active regions (Vlahos 2002; Vlahos et al. 2002; Vlahos
and Georgoulis 2004), temperature fluctuations of coronal loops caused by unresolved ran-
dom heating events (Walsh et al. 1997), or the coherence length of braided coronal loops
(Berger and Asgari-Targhi 2009).

An important detail in coronal heating models is the spatial distribution of heating
events. The original nanoflare scenario of Parker (1988) assumes a homogeneous plasma
along braided or twisted fluxtubes (Fig. 9.7), which predicts a uniform distribution of
nanoflares along the loops, which is a tacit assumption in most numerical nanoflare
models. Observational data (e.g., Aschwanden et al. 2007) and numerical MHD simula-
tions (e.g., Gudiksen and Nordlund 2005a,b), however, yield strong evidence for a higher
nanoflaring rate in the non-force-free and more tangled transition region than in the force-
free upper corona. The classical Parker (1988) model thus should be modified to imple-
ment the higher degree of magnetic field misalignments in the transition region, in order
to provide a realistic framework for numerical SOC models and simulations. Realistic
assumptions of the spatial distribution of SOC events affect the resulting occurrence fre-
quency distributions of length scales and volumes, and thus also the volume-dependent
flare energies.
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9.3.4 Magnetic Reconnection in Solar/Stellar Flares

There is overwhelming evidence that solar (and by inference stellar) flares are triggered
by a magnetic reconnection process, during which magnetic energy is released and sub-
sequently heats up the flare plasma and accelerates particles to relativistic (nonthermal)
energies. Thus the energy of a flare, which we consider as a SOC event, can be estimated
from the magnetic, thermal, or nonthermal energy. Lu et al. (1993) specified a generic
physical model of an elementary magnetic reconnection process that quantifies the three
observables (E, P, T) of a SOC event in physical quantities.

The total magnetic energy EB released during an elementary reconnection process in an
elementary volume L3 with an average magnetic energy density B2/8π is

EB = L3
(

B2

8π

)
. (9.3.10)

The magnetic reconnection process starts when a stressed field becomes unstable and ends
after it relaxes into a lower energy with a new stable magnetic configuration. Relaxation
happens at the Alfvén speed vA = B/(4πρ)1/2, where ρ is the mass density. Thus, the time
scale T of a reconnection process is given by,

T =
L
vA

ξ , (9.3.11)

where ξ is a constant factor that depends on the geometry of the current sheet in the
reconnection region, estimated to be of order ξ ≈ 101–102 for solar flare conditions (Parker
1979). Combining Eqs. (9.3.10) and (9.3.11), we thus have for the peak energy release
rate P,

P =
EB

T
= L2 B2

8π
vA

ξ
. (9.3.12)

The average magnetic field strength B is likely to decrease with a slightly negative power
with size L, because larger flares extend to higher altitudes and the coronal field strength
falls off with height. If we assume an (empirical) scaling of,

B(L) ∝ L−1/4 , (9.3.13)

neglecting other dependencies (i.e., square root of mass density ρ1/2 and geometry factor
ξ constant), we find (using Eqs. 9.3.10–9.3.13) the following scaling laws as a function of
size L,

E(L) ∝ L3B(L)2 ∝ L2.5

T (L) ∝ L1B(L)−1 ∝ L1.25

P(L) ∝ L2B(L)3 ∝ L1.25
(9.3.14)

which exactly reproduces the correlations predicted by our simple analytical exponential-
growth model (Eq. 3.1.27) described in Section 3.1,
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E ∝ P2

E ∝ T 2

T ∝ P
(9.3.15)

and is close to the values of the correlations found by Lu et al. (1993) from cellular au-
tomaton simulations (E ∝ P1.82, E ∝ T 1.77, and P ∝ T 0.90). Thus, this simple magnetic
reconnection scenario can approximately reproduce the observed parameter correlations
between the observables (E,P,T ), and provides us in addition a scaling law of the average
magnetic field strength with the size of the system, i.e., B ∝ L−1/4.

A slightly different approach was pursued by involving separators in the reconnec-
tion geometry (Wheatland 2002; Craig and Wheatland 2002; Wheatland and Craig 2003).
The scaling of the flare energy is assumed to scale with the area of a current sheet,
E ∝ L2 (rather than with the volume L3 in Eq. (9.3.10)), and a duration T ∝ L corre-
sponding to the Alfvénic transit time, which also yields the same correlations as derived
in Eq. (9.3.15). Moreover, a probability distribution N(L) ∝ L−2 of separator lengths (or
probability N(L) ∝ L−1 in one dimension) was assumed, which corresponds to solid (Eu-
clidean) filling, and yields a frequency distribution of flare energies,

N(E) dE = N[L(E)]
∣∣∣∣ dL
dE

∣∣∣∣ dE = L−2(E)E−1/2 dE = E−3/2 dE (9.3.16)

that is consistent with observations (Table 7.2). Implicitly, this model assumes no depen-
dence of the average magnetic field on the flare energy. If we include the empirical scaling
given in Eq. (9.1.13), B ∝ L−1/4, the predicted flare frequency distribution would be (using
Eq. 9.3.14),

N(E) dE = N[L(E)]
∣∣∣∣ dL
dE

∣∣∣∣ dE = E−4/5E−3/5 dE = E−8/5 dE = E−1.6 dE , (9.3.17)

which is also consistent with observations, e.g., N(E) ∝ E−1.61±0.04 for total counts (flu-
ences) in hard X-rays (Fig. 7.8). Similar combinations of possible scaling laws are dis-
cussed in Litvinenko (1998b).

There exists a number of more sophisticated magnetic reconnection models that quan-
tify the frequency distribution of flare energies. Litvinenko (1996) uses a time-dependent
continuity equation that takes the dynamical evolution and mutual interaction of multiple
reconnecting current sheets by coalescence into account and derives a frequency distribu-
tion N(E) ∝ E−α of flare energies E with a powerlaw slope in the range of 3/2 < α < 7/4.
Longcope and Noonan (2000) use a scenario of a coronal magnetic field that is stressed
by photospheric shear, where currents flow along the photospheric network and magnetic
separators. Continuous driving triggers occasional (“stick–slip”) reconnection along sepa-
rators and avalanche-like releases of magnetic energy, producing similar powerlaw distri-
butions as observed.
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9.3.5 Thermal Energy of Flare Plasma

The peak energy release rate P or total energy E are key parameters in the evaluation of
SOC systems. For solar and stellar flares, photon count rates of fluxes are often used as a
proxy for the energy release rate P, and total (time-integrated) counts or fluences for the
total energy E. The observables (flux, fluence) are generally approximately proportional to
the physical quantities (peak energy release rate and total energy), but the exact relation-
ship requires physical models and is wavelength-dependent. There are essentially three
different energy quantities that are modeled in the context of solar (and stellar) flares: (1)
the magnetic energy EB, (2) the thermal energy ET , and (3) the nonthermal energy NNT . We
dealt with the magnetic energy in the last two sections (9.3.3 and 9.3.4), and consider now
the thermal energy in the following, defining the relationships between the observables
(peak count rate) and physical parameters (emission measure, density, and temperature) in
particular (following Aschwanden et al. 2008c).

A solar or stellar coronal flare is usually detected from light curves in extreme ultra-
violet (EUV) or soft X-ray wavelengths, from which a (background-subtracted) peak count
rate cp [cts s−1] at the flare peak time t = tp can be measured. The count rate c(t) for
optically-thin emission (as it is the case in EUV and soft X-rays) is generally defined
by the temperature integral of the total (volume-integrated) differential emission measure
distribution dEM(T )/dT [cm−3] and the instrumental response function R(T ) (in units of
[cts s−1 cm3]),

4πd2 c(t) =
∫ dEM(T )

dT
R(T ) dT , (9.3.18)

where the factor (4πd2) comes from the total emission over the full celestial sphere at
a stellar distance d (in parsecs). The differential emission measure distribution (DEM)
of flares shows usually a single peak at the flare peak temperature Tp, so that the emis-
sion measure peak at the flare peak time, EMp = dEM(t = tp,T )/dT ≈ dEM(t = tp,T =
Tp), can be approximated with a single temperature (which corresponds to an emission
measure-weighted average value),

4πd2 cp = 4πd2 c(t = tp) ≈ EMp R(Tp) . (9.3.19)

The total (volume-integrated) emission measure EMp at the flare peak is defined as the
squared electron density n integrated over the source volume V ,

EMp =
∫

n2 dV ≈ n2
pV , (9.3.20)

where the right-hand approximation implies that n2
p = n2(t = tp,T = Tp) is the squared

electron density at the flare peak time averaged over the volume V of the flare plasma, as-
suming a unity filling factor. Integrating the count rate c(t) over the flare duration τ f yields
the total counts C, which in the case of a single-peaked DEM can also be approximated
(with Eq. 9.3.19) as

4πd2 C = 4πd2
∫

c(t) dt ≈ 4πd2 cp τ f = EMp R(Tp) τ f . (9.3.21)
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The radiative loss rate for optically thin plasmas is a function of the squared density
and the radiative loss function Λ(T ),

dER

dV dt
= neniΛ(T ) ≈ n2

eΛ(T ) , (9.3.22)

(in the coronal approximation of fully ionized plasma, i.e., ne ≈ ni) where the radiative
loss function has a typically value of Λ(T ) ≈ 10−23...−22 [erg cm3 s−1] in the temperature
range of T ≈ 106...8 K. From this we can define a peak luminosity LX in soft X-rays by
integrating over the volume and temperature range,

LX = V
∫

n2(t = tp,T )Λ(T ) dT ≈ EMp Λ(Tp) . (9.3.23)

The total radiated energy EX integrated over the flare duration is then

EX =
∫ ∫ ∫

n2(t,T )Λ(T ) dV dT dt ≈ EMp Λ(Tp) τ f . (9.3.24)

This yields a convenient conversion from observed total counts 4πd2 C (Eq. 9.3.21) into
total radiated energy EX (Eq. 9.3.24),

EX =
Λ(Tp)
R(Tp)

4πd2 C = f (Tp) 4πd2 C , (9.3.25)

which involves a temperature-dependent conversion factor f (Tp) = Λ(Tp)/R(Tp).
For comparison we calculate also the total thermal energy ET of the flare volume at the

flare peak time t = tp,

ET =
∫

3n(t = tp,T )kBT (t = tp)V (t = tp) dT ≈ 3npkBTpV =
3kBEMpTp

np
(9.3.26)

where np = n(t = tp,T = Tp) represents the electron density at the flare peak time t = tp
and DEM peak temperature T = Tp. The relation between the total thermal energy ET and
the total radiated energy EX is then

ET ≈ EX
3kBTp

np(Tp) Λ(Tp) τ f (Tp)
, (9.3.27)

where the peak electron density np(Tp) and the flare duration τ f (Tp) may have a statis-
tical dependence on the flare peak temperature Tp, and this way define the temperature
dependence in the correlation between the thermal energy ET and the total radiated energy
EX .

The occurrence frequency distributions of solar (or stellar) flares can be carried out sim-
ply with observables (peak counts cp, total counts C, and durations τ f ), or with physically
derived quantities (peak luminosity LX , total radiated energy EX , and duration τ f [Tp]), us-
ing the relations Eqs. (9.3.18–27). To obtain distributions of thermal energies, the flare
volume V has to be estimated, which can be fractal with a filling factor (Section 8.3.2)
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and can only be measured for solar flares, while stellar flares remain unresolved point
sources for current instruments. With the observed peak counts cp, the emission measure
EMp can be determined (Eq. 9.3.19) and the peak density np ≈

√
(EMp/V ) (Eq. 9.3.20).

In addition, a peak temperature measurement Tp is needed in order to obtain the thermal
energy ET ≈ 3npkBTpV (Eq. 9.3.26). Some care needs to be exercised in evaluating the
peak temperature Tp from narrowband filters, in order to avoid instrumental biases of the
temperature coverage. The two main critical issues of temperature bias and fractal volumes
in the evaluation of flare energies are discussed in Aschwanden and Parnell (2002). Flare
detection in EUV generally underestimates the flare temperature (TEUV < Tp), which leads
to steeper powerlaw slopes in the occurrence frequency distribution of flare energies (e.g.,
Parnell and Jupp 2000; Benz and Krucker 2002; see also Section 7.3.3).

As we have seen in the derivation of relationships between observed fluxes and ther-
mal energies, physical variables such as electron densities and temperatures are involved,
which require a physical model. While we included only the process of radiative loss in
the derivation above (Eq. 9.3.22), the processes of heating and conductive losses may also
be included in hydrodynamic models. The assumption of energy balance in 1-D hydrody-
namic coronal loops or flare loops leads to scaling laws between the physical parameters of
the electron temperature Tp, the electron density np, and the length scale L. Solar and stel-
lar flares can be modeled in terms of a superposition of multiple 1-D hydrodynamic loops
(e.g., Aschwanden et al. 2008c). Additional inclusion of the magnetic field yields “univer-
sal scaling laws” for solar and stellar flares (Shibata and Yokoyama 1999, 2002; Cassak
et al. 2008). Such scaling laws provide the physical foundation for observed correlations
between SOC parameters.

9.3.6 Nonthermal Energy of Flares

A generic energy spectrum of a large flare is shown in Fig. 9.8, which exhibits dominantly
thermal emission in soft X-rays (≈1–10 keV), nonthermal bremsstrahlung emission in
hard X-rays (≈10 keV–1 MeV), nuclear de-excitation lines in gamma rays (≈1–10 MeV),
relativistic electron bremsstrahlung at ≈10–100 MeV, and pion radiation at >∼100 MeV.
Theoretically we would expect that the total thermal energy is approximately equal to the
nonthermal energy in hard X-ray producing electrons, because the thermal flare plasma is
heated in the chromosphere by the precipitating nonthermal electrons and ions, according
to the chromospheric evaporation scenario (also called “thick-target model”). It is therefore
customary to estimate the nonthermal flare energy ENT from hard X-ray observations, as
alternative to the thermal flare energy ET obtained from soft X-ray and EUV observations.
A comparison of frequency distributions of nonthermal flare energies and active region
sizes shows also a good correspondence (Wheatland and Sturrock 1996). In the following
we outline the relationship between hard X-ray counts C and nonthermal flare energy E,
which can be used to derive occurrence frequency distributions N(E) of flare energies from
the observed distributions N(C) of hard X-ray counts.

The standard derivation of the thick-target model (e.g., see Chapter 13 in Aschwanden
(2004)) approximates the observed hard X-ray spectrum I(εx) as a powerlaw function of
the photon energy εx) (Brown 1971),
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Fig. 9.8 Composite photon spectrum of a large flare, extending from soft X-rays (1−10 keV), hard X-rays
(10 keV−1 MeV), to gamma rays (1 MeV−100 GeV). The energy spectrum is dominated by different
processes: by thermal electrons (in soft X-rays), bremsstrahlung from nonthermal electrons (in hard X-
rays), nuclear de-excitation lines (in ≈ 0.5–8 MeV gamma rays), by bremsstrahlung from high-energetic
electrons (in ≈10–100 MeV gamma rays), and by pion decay (in >∼100 MeV gamma-rays). Note also the
prominent electron-positron annihilation line (at 511 keV) and the neutron capture line (at 2.2 MeV).

I(εx) = I1
(γ −1)

ε1

(
εx

ε1

)−γ
(photons cm−2 s−1 keV−1) , (9.3.28)

where ε1 is a reference energy, above which the integrated photon flux is I1 (photons cm−2

s−1 keV−1), and γ is the powerlaw slope. The parameters ε1 and γ of the hard X-ray
spectrum are time-dependent. The total number of photons above a lower cutoff energy ε1
is the integral of Eq. (9.3.28),

I(εx ≥ ε1) =
∫ ∞

ε1

I(εx) dεx = I1 (photons cm−2 s−1) . (9.3.29)

Brown (1971) solved the inversion of the photon spectrum for the Bethe–Heitler brems-
strahlung cross-section and found the following instantaneous nonthermal electron spec-
trum ne(ε) present in the X-ray-emitting region,

ne(ε) = 3.61×1041γ(γ −1)3 B
(

γ − 1
2
,

3
2

)
I1
√

ε
n0ε1

(
ε
ε1

)−γ

(electrons keV−1) , (9.3.30)
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with the associated electron injection spectrum fe(ε),

fe(ε) = 2.68×1033γ2(γ −1)3 B
(

γ − 1
2
,

3
2

)
I1

ε2
1

(
ε
ε1

)−(γ+1)

(electrons keV−1 s−1) , (9.3.31)

with n0 (cm−3) the mean electron or proton density in the emitting volume, ε1 [keV] the
lower cutoff energy in the spectrum, I1 (photons cm−2 s−1 keV−1) the total X-ray photon
flux at energies ε >∼ ε1, and B(p,q) is the Beta function,

B(p,q) =
∫ 1

0
up−1(1−u)q−1 du , (9.3.32)

which is calculated in Hudson et al. (1978) for a relevant range of spectral slopes γ and is
combined in the auxiliary function b(γ),

b(γ) = γ2(γ −1)2 B
(

γ − 1
2
,

3
2

)
≈ 0.27 γ3 . (9.3.33)

So the powerlaw slope of the electron injection spectrum (δ = γ + 1) is steeper than that
(γ) of the photon spectrum in the thick-target model. With this notation we can write the
electron injection spectrum as

fe(ε) = 2.68×1033 (γ −1)b(γ)
I1

ε2
1

(
ε
ε1

)−(γ+1)

(electrons keV−1 s−1) . (9.3.34)

The total number of electrons above a cutoff energy εc is then

F(ε ≥ εc) =
∫ ∞

εc
fe(ε) dε = 2.68×1033 b(γ)

(γ −1)
γ

I1

ε1

(
εc

ε1

)−γ
(electrons s−1) .

(9.3.35)
The power in nonthermal electrons above some cutoff energy εc is

P(ε ≥ εc) =
∫ ∞

εc

fe(ε) ε dε = 2.68×1033 b(γ)I1

(
εc

ε1

)−(γ−1)

(keV s−1) . (9.3.36)

or a factor of (keV/erg) = 1.6×10−9, smaller in cgs units,

P(ε ≥ εc) =
∫ ∞

εc
fe(ε) ε dε = 4.3×1024 b(γ)I1

(
εc

ε1

)−(γ−1)

(erg s−1) . (9.3.37)

Solar flares have typical photon count rates in the range of I1 = 101–105 (photons s−1

cm−2) at energies of ε ≥ 20 keV and slopes of γ ≈ 3. Thus, for εc = ε1 = 20 keV, and
using b(γ) ≈ 0.27γ3 ≈ 7 (Eq. 9.3.33), we estimate using Eq. (9.3.37) a nonthermal power
of P(ε ≥ 20 keV) ≈ 3×1025 −3×1030 erg s−1. Integrating this power over typical flare
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durations of τ f lare ≈ 102 s yields a range of W = P(ε ≥ 20 keV) ×τ f lare ≈ 3×1027 −3×
1032 [erg] for flare energies. A frequency distribution of total nonthermal flare energies in
electrons (>25 keV) which covers this range has been determined in Crosby et al. (1993),
see Fig. 1.14.

Applying this thick-target model to hard X-ray data observed with HXRBS/SMM, us-
ing a lower energy cutoff of 25 keV, the following correlations were found between the
observed peak count rate P, the peak hard X-ray flux I at 25 keV, the spectrally-integrated
hard X-ray flux I above 25 keV, the peak energy flux F in electrons, and the total energy
E in electrons,

I(25 keV) ≈ P1.01

I(>25 keV) ≈ P1.07

F(>25 keV) ≈ P0.94

E(25 keV) ≈ P1.25

F ×D(>25 keV) ≈ E1.18

(9.3.38)

Thus, the simply observed peak count rate P is a good proxy for the nonthermal flare
energy E or the time-integrated total flare energy F ×D. The powerlaw slope of the oc-
currence frequency distribution for any of these parameters can then easily be calculated
from the slope αP of the count rate distribution N(P) ∝ P−αP and the correlation coef-
ficients β given in Eq. (9.3.38) using the relation Eq. (7.1.42). For instance, the average
powerlaw slope of peak counts in hard X-rays is αP = 1.75 (Fig. 7.7). Using the correla-
tion E(>25 keV) ∝ Pβ with β = 1.25, we estimate αE = 1 +(αP − 1)/β = 1.60 for the
powerlaw slope of the energy distribution, which indeed agrees well with αE = 1.61 of the
frequency distribution of total counts (Fig. 7.5).

9.3.7 Particle Acceleration

A typical energy spectrum of a solar flare (Fig. 9.8) can be characterized by an exponen-
tial-like thermal spectrum at low energies (E <∼ 10 keV) and by a powerlaw-like nonther-
mal spectrum at high energies (E >∼ 10 keV), sometimes extending up to <∼100 MeV in
large flares. These two spectral components strikingly display the dual nature of inco-
herent and coherent random processes. The thermal spectrum is produced by collisional
interactions, which operate as an incoherent random process that has additive characteris-
tic and an exponential-like random distribution. The nonthermal spectrum, in contrast, is
produced by nonthermal particles that were accelerated coherently in an essentially colli-
sionless plasma, either by electric fields, stochastic wave–particle interactions, or shocks.
The coherent energy gain has a nonlinear dependence as a function of time. If (1) individ-
ual charged particles are accelerated independently, (2) the nonlinear energy gain is close
to an exponential function, and (3) the acceleration time is a random time interval, all three
criteria of a SOC process (Section 9.1) are fulfilled, the resulting energy spectrum is con-
sequently a powerlaw, and we can consider the particle acceleration region of a flare as
an individual SOC system. The independence of individual acceleration trajectories is cer-
tainly fulfilled for stochastic wave–particle interactions, diffusive (second-order) Fermi,
or diffusive shock acceleration processes. Note that flare statistics from the whole Sun,
where the entire solar corona is considered to be a SOC system, is then a “SOC system of
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SOC systems”. In other words, if the solar corona is the analog of a sandpile and flares are
individual sand avalanches, we can also consider every sand avalanche as a SOC system
itself, where each sand grain gains different amounts of energy according to a powerlaw
distribution. If we proceed in the hierachy of SOC systems further, from stars to galaxies
and the entire universe, we end up at the cosmic-ray spectrum shown in Fig. 9.5, which
still has a powerlaw-like functional shape.

Let us consider the physical basis of how a particle acceleration region in a coronal
plasma can fulfill the assumed SOC characteristics. A simple model is electric DC-field
acceleration, where a particle (say an electron with electric charge e) gains energy propor-
tional to the electric field strength ‖ (in the mildly relativistic regime),

me
dv‖
dt

= e ‖ , (9.3.39)

which leads to a quadratic dependence of energy gain as a function of time,

E(t) =
1
2

mev2(t) =
e2 2

‖
2me

t2 . (9.3.40)

The quadratic dependence is not exactly exponential (only to the second order), but suf-
ficiently close for a small number of growth times. If the particles are accelerated for a
random time interval,

N(t)dt ∝ exp(−t/tA) dt (9.3.41)

with tA the e-folding value of random acceleration times, the resulting energy spectrum is

N(E)dE = N(t[E])
∣∣∣∣ dt
dE

∣∣∣∣dE = N0 exp
(
−
√

E
E0

)
E−1/2 dE , (9.3.42)

with the reference energy E0,

E0 =
e2 2

‖
2me

t2
A . (9.3.43)

This energy spectrum (Eq. 9.3.42) has a powerlaw-like function in the low energy part and
falls off exponentially at higher energies, which could be consistent with some observa-
tions, but it would not explain flares with a powerlaw spectrum over a large energy range,
as shown in Fig. 9.8. Of course, the electron injection spectrum has also to be convolved
with a (e.g., Bethe–Heitler) bremsstrahlung cross-section (see Section 9.3.6), in order to
predict the observed hard X-ray spectrum shown in Fig. 9.8. However, we used two es-
sential assumptions that can be modeled in different ways. First, we assumed a uniform
constant DC electric field, which may not exist in coronal conditions, while dynamical and
spatially inhomogeneous fields are more likely and would produce a different acceleration
time profile than the quadratic one assumed in Eq. (9.3.40). Secondly, we assumed that
particles are accelerated during a random time interval. This could be the case in a thin
current sheet, where particles are randomly scattered out of the acceleration region due to
their chaotic orbits and different initial pitch angles. In general, the detailed distribution of
acceleration times depends on the initial pitch angle distribution as well as on the particu-
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lar 3-D geometry of the current sheet. Similar modeling could be discussed for alternative
acceleration processes, such as stochastic gyroresonant wave-particle interactions or dif-
fusive shock acceleration. However, whatever the details of the physical models are, every
coherent acceleration mechanism that leads to a systematic energy gain of a particle above
the thermal energy level, will produce a powerlaw-like energy spectrum if the acceleration
times are random. Thus, many particle acceleration mechanisms in astrophysical plasmas
can be considered as a SOC process and be modeled as such.

Let us mention a few relevant studies on particle acceleration in solar flare conditions.
Electric DC field acceleration of field-aligned currents in (time-varying) shear flow (vor-
tices) in flare loops leading to a powerlaw-like energy spectrum of the form of Eq. (9.3.42)
has been considered by Tsuneta (1995). A number of leading particle acceleration mod-
els have been reviewed in Miller et al. (1997), including sub-Dreicer and super-Dreicer
electric DC field acceleration, stochastic MHD turbulence, and shock acceleration. These
models all produce a powerlaw-like energy spectrum at mildly relativistic energies, but
exhibit an exponential-like fall-off at highly relativistic energies. A series of particle ac-
celeration simulations have been conducted in the spirit of the SOC concept: with random
shocks (Anastasiadis and Vlahos 1991, 1993, 1994), with random DC electric fields (Anas-
tasiadis et al. 1997), with random magnetic fields (Dauphin 2007), 3-D MHD turbulence
(Dmitruk et al. 2003), or in terms of a cellular automaton model (Anastasiadis et al. 2004),
which all contain the elements of independent acceleration time histories for each parti-
cle, random acceleration times, and produce powerlaw-like energy spectra, thus essentially
fulfilling the basic requirements for a SOC system. The ratio of the acceleration time to
the e-folding growth time (of energy gain) predicts the flattest powerlaw slope for subsets
with high energy gain (Eq. 3.1.10), which has been applied to the threshold effect of pro-
ton acceleration in solar flares (Miroshnichenko 1995). A SOC state of first-order Fermi
acceleration was also considered in astrophysical shocks (Malkov et al 2000).

9.3.8 Coherent Radio Emission

Solar radio emission can be subdivided into the two categories of incoherent emission
(e.g., free-free bremsstrahlung, gyroresonance, or gyrosynchrotron) and coherent emission
(e.g., plasma emission or electron-cyclotron maser emission). For an overview see, e.g.,
Benz 1993, or chapter 15 in Aschwanden 2004). The category of coherent emission has
exactly the exponential-growth characteristics we expect for SOC events. Some plasma in-
stabilities, such as the bump-in-tail instability of electron beams, or a loss-cone instability
driven by an anisotropic particle distribution, exhibit an exponential growth of electro-
static or electromagnetic waves, which saturate at some point once the unstable particle
distribution flattens out to a stable plateau. The beam-driven instability produces plasma
emission at the density-dependent plasma frequency of νpe = 9,000

√
ne. Plasma emis-

sion is a multi-stage process, which includes, e.g., (1) formation of an (unstable) particle
beam distribution by velocity dispersion, (2) generation of Langmuir turbulence, and (3)
its nonlinear evolution and conversion into escaping (electromagnetic) radiation (plasma
emission). This basic process is responsible for a variety of solar radio burst types, which
have a different morphology in an observed dynamic spectrum depending on the mag-
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netic configuration and local density structure in which they are generated. Solar radio
bursts with plasma emission include (Fig. 7.14) type I storms (Langmuir turbulence), type
II bursts (beams from shocks), type III bursts (upward propagating beams), reverse-slope
bursts (downward propagating beams), type J and U bursts (beams along closed loops),
type IV continuum (trapped electrons), and type V bursts (slow electron beams). Another
category of coherent radio emission is produced by loss-cone particle distributions, which
have an enhancement of particles at large pitch angles and thus provide free energy for
gyroresonant waves by quasi-linear diffusion to a lower energy state at lower pitch angles.
A prominent representative of the latter category is the electron-cyclotron maser emis-
sion, which is believed to operate in solar flare loops, auroral kilometric radiation (AKR),
Jupiter’s decametric emission, and in stellar flares (e.g., Dulk 1985).

In essence, we can consider every plasma environment as a SOC system, if it is capable
of producing coherent radio emission. Since most of the plasma instabilities occur very
fast (on sub-second time scales) and since most astrophysical plasmas are quite extended,
individual radio bursts are most likely to be generated independently in the time and space
domain, and thus fulfill our first SOC criterion of statistical independence (Section 9.1).
The second SOC criterion of an exponential-like growth phase is fairly characteristic for
coherent wave-particle interactions. The third criterion of a random rise time is also easily
to satisfy, because the criticality is often given by a gradient in the particle distribution
(∂ f /∂v‖ for beam instabilities, or ∂ f /∂v⊥ for loss-cone instabilities), which are subject
to large fluctuations in various temporal and spatial domains. Thus, coherent radio bursts
are likely to originate in a SOC system and thus are expected to exhibit powerlaw-like fre-
quency distributions of their peak fluxes or fluences, as it was indeed found for numerous
datasets (Table 7.5 and Section 7.3.4).

While statistics of solar radio bursts gathered from many flare events dominantly exhibit
powerlaw distributions of their peak fluxes, this is not necessarily the case for statistics
of radio bursts during a single flare episode (e.g., Aschwanden et al. 1998b; Isliker et
al. 1998b). An interpretation of solar radio bursts in terms of SOC models is also discussed
in Vilmer and Trottet (1997) and Bastian and Vlahos (1997). Some detailed theoretical
models of type III bursts involve the stochastic growth evolution of Langmuir waves (e.g.,
Robinson 1993), rather than the exponential growth evolution predicted by quasi-linear
diffusion theory, which leads to “clumpy” Langmuir emission (e.g., Cairns and Robinson
1999) and might introduce some modification of the powerlaw-like frequency distributions
of peak fluxes.

9.3.9 Master Equation

Our basic analytical model of a SOC system is the exponential-growth model (Section
3.1), which is characterized by a growth time τG of an instability, an e-folding saturation
time τ , and a linear decay time tD. Assuming a random distribution of saturation times,
N(tS) ∝ exp(−τ/tS), this model predicts a powerlaw distribution function N(E) ∝ E−α

for the released energy E of SOC events. An alternative approach to derive the occurrence
frequency distribution of energies is a balance equation between the energy build up rate
dE/dt and the energy release rate E/Δt, which occurs in time intervals we called waiting
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times Δt. Such a steady-state transport equation was proposed by Litvinenko (1994),

d
dE

(
dE
dt

N(E)
)

+
N(E)

Δt
= 0 , (9.3.44)

where dE/dt is the mean rate of energy increase available for a flare, N(E) is the flare
probability function, and Δt is the mean waiting time between flares. Inserting some scal-
ing laws that apply to reconnecting current sheets, Litvinenko (1994) derived a frequency
distribution of N(E) ∝ E−7/4, which is close to the observed ones in solar flares.

Wheatland and Glukhov (1998) expanded this steady-state transport equation (Eq.
9.3.44) into a more general probability equation that is also called master equation,

d
dE

(
dE
dt

N(E)
)

+N(E)
∫ E

0
α(E,E ′) dE ′ −

∫ ∞

E
N(E ′)α(E,E ′) dE ′ = 0 (9.3.45)

which describes the rate of change in the probability distribution N(E) with three terms,
including the energy build-up (first term), the number of active regions that fall out of the
energy interval (E,E +ΔE) due to flaring (second term), and those active regions that fall
from a higher energy state into the interval (E,E + ΔE) due to flaring (third term). The
transition rate from energy state E to E ′ is denoted by the coefficient α(E,E ′). In a steady
state situation, the sum of the three terms should balance out to zero. The master equation
(Eq. 9.3.45) cannot easily be solved to obtain a general solution, but for some special as-
sumptions Wheatland and Glukhov (1998) could arrive at a powerlaw shape for the energy
distribution N(E). With the master equation approach, a differential equation could also be
derived that describes how the free energy in the corona changes as a function of the driv-
ing and flaring rate (Litvinenko and Wheatland 2001; Wheatland and Litvinenko 2001).
Monte-Carlo simulations of this model demonstrated that the behavior of waiting-time
distributions can significantly deviate from simple Poisson statistics (Wheatland 2009).

9.4 Magnetospheric Physics

9.4.1 Coronal Mass Ejections and Magnetospheric Storms

Major disturbances in the Earth’s magnetosphere are caused by space weather events trig-
gered by geoeffective solar flares and coronal mass ejections (CMEs), which are called
magnetic storms. A CME produces a shock wave in the heliospheric solar wind that can
strike the Earth’s magnetosphere typically 1–1.5 days later.

The phenomenon of a CME occurs with a frequency of few events per day, carrying a
mass in the range of mCME ≈ 1014–1016 g, which corresponds to an average mass loss rate
of mCME/(Δt · 4πR2�) ≈ 2× 10−14–2× 10−12 (g cm−2 s−1), which is <∼1% of the solar
wind mass loss in coronal holes, or <∼10% of the solar wind mass in active regions. The
transverse size of CMEs can cover from a fraction up to more than a solar radius, and the
ejection speed is in the range of vCME ≈ 102–2×103 (km s−1). Ambiguities from line-of-
sight projection effects make it difficult to infer the geometric shape of CMEs. Possible
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interpretations include fluxropes, semi-shells, or bubbles. There is a general consensus that
a CME is associated with a release of magnetic energy in the solar corona, but its relation
to the flare phenomenon is controversial. Even big flares (at least GOES M-class) have
no associated CMEs in 40% of the cases. A long-standing debate focused on the question
of whether a CME is a by-product of the flare process or vice versa. This question has
been settled in the view that both CMEs and flares are quite distinctly different plasma
processes, but related to each other by a common magnetic instability that is controlled
on a larger global scale. A CME is a dynamically evolving plasma structure, propagating
outward from the Sun into interplanetary space, carrying a frozen-in magnetic flux and
expanding in size. If a CME structure travels from a sub-solar point radially towards the
Earth, it is called a halo-CME, an Earth-directed, or geo-effective event. CME-accelerated
energetic particles reach the Earth most likely when a CME is launched in the western solar
hemisphere, since they propagate along the curved Parker spiral interplanetary magnetic
field. The solar wind pressure varies according to solar activity and the occurrence of CME
shock waves, which induce currents in the ionosphere, cause geomagnetic storms in the
Earth’s magnetosphere, and can disrupt global communication and navigation networks,
or can cause failures of satellites and commercial power systems.

We already discussed some SOC aspects of CMEs in earlier sections, i.e., the waiting-
time distribution of CMEs in Section 5.6.3, and the frequency occurrence distributions
of CME-associated solar energetic particle (SEP) events in Section 7.3.5. Since CMEs
and solar flares are intimately connected, both CMEs and flares are primary SOC phenom-
ena with similar frequency distributions and waiting-time distributions, while geomagnetic
storms are secondary SOC phenomena, representing a subset of the large solar flare and
CME events that are geo-effective. This subset essentially includes events that originate on
the western side of the solar disk and are magnetically connected with the Earth. However,
the SOC statistics of geo-effective CMEs is expected to be similar to that of all CMEs.
In analogy, earthquake statistics on a particular continent are expected to be similar to the
global statistics from the entire planet.

9.4.2 Heliospheric Field and Magnetospheric Substorms

The heliospheric 3-D magnetic field is defined by the flow of the solar wind. The field
in the regions between the planets near the ecliptic plane is more specifically called the
interplanetary magnetic field. The basic geometry of the interplanetary magnetic field has
the form of an Archimedean spiral, as inferred by Parker (1963) from the four assump-
tions: (1) the solar wind moves radially away from the Sun at a constant speed; (2) the Sun
rotates with a constant period (i.e., with a synodic period of 27.27 days at the prime merid-
ian defined by Carrington); (3) the solar wind is azimuthally symmetric with respect to the
solar rotation axis; and (4) the interplanetary magnetic field is frozen-in the solar wind and
anchored at the Sun. The solar wind stretches the global, otherwise radial field into spiral
field lines with an azimuthal field component. The resulting Archimedean spirals leave
the Sun near-vertically to the surface and cross the Earth orbit at an angle of ≈45◦. Mea-
surements of the magnetic field direction at Earth orbit reveal a two-sector pattern during
the period of declining solar activity and a four-sector pattern during the solar minimum,
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Fig. 9.9 The interplanetary magnetic field has a spiral-like radial field and the boundary layer between
the two opposite magnetic polarities in the northern and southern hemispheres is warped like a “ballerina
skirt”. This concept was originally suggested by Hannes Alfvén in 1977.

with oppositely directed magnetic field vectors in each sector. From this ecliptic cut, a
warped heliospheric current sheet can be inferred that has the shape of a “ballerina skirt”
(Fig. 9.9). The solar axis is tilted by 7.5◦ to the ecliptic plane, and the principal dipole
magnetic moment of the global field can be tilted by as much as ≈ 20◦–25◦ at activity
minimum, and thus the warped sector zone extends by at least the same angle in northerly
and southerly direction of the ecliptic plane. The strength of the interplanetary magnetic
field, of course, depends on the solar cycle, varying between B≈ 6 nT and 9 nT (≈10−5 G)
at a distance of 1 AU. The interplanetary magnetic field can be heavily disturbed by CME-
related shocks and propagating CMEs. The magnetic field is near-radial near the Sun and
falls off with B(R)≈ Br(R) ∝ R−2 there, while it becomes more azimuthal at a few AU and
falls off with B(R) ≈ Bϕ(R) ∝ R−1 at larger heliocentric distances according to the model
of Parker.

Besides the major disturbances caused by CMEs, the Earth’s magnetosphere is also
affected by smaller disturbances of the solar wind and the interplanetary magnetic field,
that wrap around the Earth’s magnetopause. As can be easily imagined from the mag-
netic configuration shown in Fig. 9.9, the occurrence of a new active region on the Sun,
which is the “footprint” of the interplanetary magnetic field on the solar surface, can eas-
ily flip the warped heliospheric current sheet (ballerina skirt) at the location of the Earth.
Brief magnetospheric disturbances occur when the interplanetary magnetic field (IMF)
flips southward, which triggers magnetic reconnection at the dayside magnetopause and
transfers energy from the solar wind to the magnetosphere. Part of the transferred energy
is stored in the magnetotail, where also magnetic reconnection and field relaxation events
can occur, which are termed magnetospheric substorms. A magnetospheric substorm has
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Fig. 9.10 The three phases of a geomagnetic substorm are shown: the growth phase (top), the expansion
phase (middle), and the recovery phase (bottom) (Baumjohann and Treuman 1996). The accompanying
three auroral images were obtained with the IMAGE WIC instrument (credit: NASA).

three phases (Fig. 9.10): (1) the growth phase (when energy from the solar wind is trans-
ferred to the dayside magnetosphere), (2) the substorm expansion phase (when the energy
stored in the magnetotail is released, the inner magnetosphere relaxes from the stretched
tail, and the tail snaps into a more dipolar configuration and energizes particles in the
plasma sheet), and (3) the recovery phase (during which the magnetosphere returns to its
quiet state). The whole process causes changes in the auroral morphology (Fig. 1.9) and
induces currents in the polar ionosphere. Part of the transferred energy is dissipated by
particle precipitation into the ionosphere, which produces auroral displays and magnetic
disturbances. The frequency of substorms is about 6 per day on average, but larger during
geomagnetic storms.

One indicator of geomagnetic activity is the so-called Auroral Electrojet Index (AE),
which provides a global, quantitative measure of the enhanced ionospheric currents that
flow below and within the auroral oval. Ideally, the AE index measures deviations from
quiet day values of the horizontal magnetic field around the auroral oval. The AE index
was found to be correlated with substorm morphologies, the behavior of communication
satellites, radio propagation, radio scintillation, and the coupling between the interplane-
tary magnetic field (IMF) and the Earth’s magnetosphere. Low-frequency stochastic fluc-
tuations of the geomagnetic AE-index with a 1/ f spectrum have been interpreted in terms
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of a SOC system (Consolini 1997; Chapman et al. 1998; Uritsky and Pudovkin 1998), as
well as the lifetime distributions of magnetospheric disturbances as measured from the AE
index (Takalo 1993; Takalo et al. 1999a). The SOC events are believed to be triggered by
sudden changes of the energy input, such as the southward turning and subsequent north-
ward turning of the IMF, or pressure pulses from the solar wind (Takalo et al. 1999a).
It is suggested that spatially localized current instabilities, current disruptions by kinetic
instabilities (Lui 1996), or the merging of coherent structures around Alfvénic resonances
(Chang 1999a,b) lead to the initiation of magnetospheric substorms.

Numerical simulations with 2-D resistive MHD models that involve anomalous resis-
tivity of a current-driven kinetic instability have been performed by Klimas et al. (2004),
which revealed some novel results which we quote here: Under steady loading of plasma
containing a reversed magnetic field topology, an irregular loading-unloading cycle is es-
tablished in which unloading is due primarily to annihilation at the field reversal. Follow-
ing a loading interval during which the current-sheet supporting the field reversal thins
and intensifies, an unloading event originates at a localized reconnection site that then
becomes the source of waves of unstable current sheets. These current sheets propagate
away from the reconnection site, each leaving a trail of anomalous resistivity behind. An
expanding cascade of field line merging results. Some statistical properties of this cascade
are examined. It is shown that the diffusive contribution to the Poynting flux in these cas-
cades occurs in bursts, whose duration, integrated size, and total energy content exhibit
scale-free power law probability distributions over large ranges of scales. Although not
conclusive, these distributions do provide strong evidence that the model has evolved into
SOC (Klimas et al. 2004).

There are also simple analytical models for magnetospheric substorms. We described
one minimal substorm model in Section 5.5, which could explain the waiting-time distri-
butions expected for a SOC system (Freeman and Morley 2004). However, there are also
alternative interpretations to the SOC model, which we discuss in Chapter 10.

9.5 Summary

On the most general level, what SOC phenomena have in common are the powerlaw-like
occurrence frequency distributions that express the scale-free nature of dissipative nonlin-
ear processes without preferred temporal or spatial scales. However, the powerlaw behav-
ior is a mathematical or numerical property only, and thus can be described in terms of
entirely physics-free statistics. At the beginning of this chapter we established a physics-
free definition of SOC phenomena, which is aimed to provide necessary and (perhaps)
sufficient criteria to define and identify a SOC system. The three SOC criteria include: (1)
statistical independence of SOC events (in the temporal and spatial domain), (2) a nonlin-
ear coherent growth phase (above some threshold level), and (3) the randomness of rise
times of the nonlinear growth phase. The latter criterion implicitly is a consequence of
the criticality of the system. In the remainder of this Chapter we discussed the physics of
SOC processes in astrophysical, solar/stellar, and magnetospheric applications. The phys-
ical mechanisms, although all involving a nonlinear instability (Table 9.1), are completely
different for each SOC phenomenon, involving mechanical, electromagnetic, or other in-
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stabilities. While we discussed only the basic physical nature of individual SOC processes,
such as galaxy formation, star formation, neutron star physics, accretion disk physics, cos-
mic ray physics, solar and stellar dynamos, magnetic reconnection, particle acceleration,
solar radio emission mechanisms, kinetic and current instabilities, evidence for SOC phe-
nomena requires quantitative modeling of these physical mechanisms that ultimately leads
to detailed predictions of statistical parameter correlations and the analytical form of the
resulting parameter distributions. This more advanced step in our understanding of SOC
phenomena has not yet been reached for most astrophysical applications, except for mod-
eling of magnetospheric and solar data to some extent, featuring SOC manifestations from
our closest astrophysical neighbors.

9.6 Problems

Problem 9.1: Find examples of incoherent and coherent physical processes. Identify the
linear and nonlinear nature of the physical parameters involved in these processes. How
is the additive and multiplicative nature of these processes manifested?

Problem 9.2: Find SOC phenomena described in this book where all three SOC criteria
given in Section 9.1 can be verified. Which parameters need to be measured for a full
verification?

Problem 9.3: Is the powerlaw shape of occurrence frequency distributions a sufficient cri-
terion to identify SOC processes? How can a powerlaw distribution function be mod-
eled with incoherent (non-SOC) processes.

Problem 9.4: Identify which of the three basic parameter distributions (peak energy, total
energy, duration) has been measured for each SOC phenomenon listed in Table 9.1,
using the information from Chapter 7. For which phenomena can the three SOC criteria
given in Section 9.1 be verified?

Problem 9.5: Predict the correlations between the parameters of (1) peak counts C and
peak energy P, (2) peak energy P and total energy E, and (3) total energy E and total
duration T for a solar/stellar flare with a temperature of T ≈ 10 MK, based on the model
described in Section 9.3.5.

Problem 9.6: Derive a frequency distribution of flare energies E based on dimensional
arguments, using scaling relations between length scales L, mass M, and time scales M.
Hint: Derive first the relationship for energies, E ∝ ML2T−2. Compare your result with
the distribution N(E) ∝ E−3/2 obtained in Litvinenko and Wheatland (2001).
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A new scientific truth does not triumph by convincing its opponents and making them
see the light, but rather because its opponents eventually die, and a new generation
grows up that is familiar with it.

Max Planck, (Scientific Autobiography, 1949).

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859–1930), Sherlock Holmes.

Is it SOC or not? asked Hendrik Jeldtoft Jensen in the final chapter of his book Self-
Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems.
Let us quote the beginning of that chapter that is still unanswered: Ever since the term
“self-organized criticality” was introduced by Bak, Tang, and Wiesenfeld (BTW) in their
1987 paper for Physical Review Letters, the concept has been surrounded by a hectic air of
controversy. There are a number of reasons for this. One reason is the bold and optimistic
claims that were made. The attitude was that here finally is a line of thinking that will allow
us to bring the statistical physics of Boltzmann and Gibbs in touch with the exciting real
world of nonequilibrium physics, and that SOC is powerful enough to explain everything
from mountain formation to stock-market variation. Super-general theories always meet
a certain amount of skepticism from expert scientists working in the specific fields. It is
difficult to draw a precise line between the general and the specific. It might not appear
likely to the geologist that the many specific details or earthquakes can be understood in
terms of a simple numerical cellular automaton. The biologist working on the immensely
complicated interconnected web of evolving species might not find it anything but a bad
joke to represent evolution in terms of a string of random numbers with nearest neighbor
interaction only. So what then is SOC good for? Let us consider some important questions.
(1) Can we identify SOC as well-defined distinct phenomenon different from any other cat-
egory or behavior? (2) Can we identify a certain construction that can be called a theory
of self-organized critical systems? (3) Has SOC taught us anything about the world that we
did not know prior to BTW’s seminal 1987 paper? (4) Is there any predictive power in SOC
– that is, can we state the necessary and sufficient conditions a system must fulfill in order
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to exhibit SOC? And, if we are able to establish that a system belongs to the category of
SOC systems, does then actually help us to understand the behavior of the system? Jensen
answered these questions, 12 years ago, with a cautious affirmation. In the meantime, we
have collected a vast amount of more data, especially from astrophysical observations,
which can be interpreted in terms of SOC systems, but at the same time, critical papers
have been published that challenged the SOC interpretation for a number of phenomena
with powerlaw-like frequency distributions and proposed alternative interpretations, such
as intermittent turbulence or forced self-organized criticality. In this final book chapter we
deal with SOC-like processes that exhibit SOC-consistent properties (such as powerlaw
distributions), but violate other necessary SOC criteria, as we defined in Section 9.1. This
way we hope to establish a clear dividing line between SOC and non-SOC processes, at
least within the framework of our SOC definition derived here.

10.1 Hierarchical SOC Systems

In our universe, all astrophysical objects are coupled somehow in a hierarchical order.
The big bang is supposedly responsible for the common origin of the universe, in which
galactic structures formed (Fig. 9.1), galactic arms nurture molecular clouds and trigger
star formation (Fig. 9.2), a solar or stellar system forms planets and small bodies, and so
on. On an astronomical scale it is not a priori clear how to place a BTW sandpile model
into the whole system. We identified a number of likely SOC processes, but some of them
are clearly coupled. We might therefore generalize the simple BTW sandpile paradigm
into a hierarchy of SOC systems, as visualized in Fig. 10.1.

Let us place some SOC systems, whose physics we discussed in Chapter 9, into this
generalized picture of hierarchical SOC systems. Cosmic rays (Section 9.2.6), for instance,
seem to be accelerated outside of the galaxy, as well as inside of our galaxy. Thus, some
cosmic rays are initially accelerated in extragalactic systems and enter our own galaxy
already with a powerlaw spectrum. When they enter our galaxy they might be further
accelerated during reflections at magnetic clouds in our galaxy by the first-order Fermi
acceleration process, which is a secondary sandpile process and could explain the broken
(double) powerlaw spectrum (Fig. 9.5). In Section 9.3.2 we discussed the solar dynamo,
which produces buoyant magnetic flux tubes that rise from the tachocline and emerge at
the solar surface, which is a primary SOC process. The solar surface acts as a filter and
randomizes the emergent magnetic flux tubes by magneto-convection. As a secondary pro-
cess, the photospheric magneto-convection stresses and twists the coronal magnetic field,
which eventually leads to magnetic reconnection and produces flares and coronal mass
ejections, which represent secondary SOC processes. A subset of the launched coronal
mass ejections are geo-effective and hit the Earth, where they induce ring currents in the
ionosphere, which causes particle precipitation in auroral zones and display auroral ovals,
causes magnetospheric substorms, which are possibly SOC processes of a third stage.
Some events have a direct coupling, such as solar energetic particles (SEP), which can hit
the Earth and trigger ground-level enhancements (GLEs) and neutron showers, possibly
another SOC process.
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 Sandpile A

 Sandpile B Sandpile C

 Sandpile D

 Sandpile E

 Sandpile F

 Hourglass

Fig. 10.1 Schematic concept of hierarchical SOC systems, illustrated with the analog of multiple sandpiles
that feed each other from top to bottom. The top sandpiles A and B have a constant input rate of dripping
sand grains, while the secondary sandpiles C, D, and E at the bottom of the system receive avalanche-like
inputs. The avalanche-like output of sandpile E drips into an hourglass, so that the input rate is constant
for sandpile F.

The concept of a hierarchical sandpile model is a novel aspect that has not been dis-
cussed in literature yet, but there is mounting pressure from astrophysical observations to
conceive such a model. A first question is whether a hierarchical sandpile model is consis-
tent with the standard SOC scenario. The classical BTW sandpile model assumes a con-
stant time-averaged input of dropping sand grains, while the output of sporadic avalanches
display a highly nonlinear response. If we couple multiple sandpiles, all secondary sand-
piles experience a bursty input from the avalanche output of the primary sandpiles, which
seems to violate the assumption of a constant time-averaged input rate. In order to avoid
this inconsistency, some filters are required that smooth out the bursty output from pri-
mary sandpiles before they feed secondary sandpiles, otherwise the input and output of
secondary sandpiles could be highly correlated and contradict the nonlinearity of the stan-
dard BTW sandpile model. In Fig. 10.1 we visualize such a randomization filter with the
analog of an hourglass, which releases a steady stream of sand grains regardless how in-
termittent the input is. In some sense, the hourglass is the opposite to a sandpile, because it
converts a highly nonlinear input into a constant output, while sandpiles in a critical state
convert a linear input into a highly nonlinear output. Nature indeed seems to provide such
filters that randomize bursty and avalanche-like outputs of nonlinear dissipative systems,
such as the solar or stellar convection zone that decouples emergent buoyant flux tubes
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from flare loops, or the Earth’s bowshock that smoothes out solar wind disturbances be-
fore they produce magnetospheric substorms. So, is a hierarchical SOC system consistent
with a standard (single) SOC system? The answer is that it is only consistent with our def-
inition of a SOC system (Section 9.1) if there is a randomization filter (i.e., an hourglass in
the analogy of sandpiles) in between subsequent SOC systems, otherwise it would produce
“sympathetic flaring” and violate the first SOC criterion of statistical independence. It is
beyond the scope of this book to develop a complete generalization of hierarchical SOC
models, but this concept may help to model the obvious coupling of some multiple SOC
systems.

10.2 Self-Organization without Criticality

There may be some confusion between the terms self-organization (SO) and self-organized
criticality (SOC). Let us make a simple analogy. If the wind blows over a sand desert, it
might create a wavy pattern of ripples on sand dunes that have a highly regular geometry
(Fig. 10.2, top left), which is an example of a self-organization process. However, this
geometric pattern is quasi-static and has no criticality, like a sand beach (Fig. 1.2, left), in
contrast to a sandpile that has been raised up to a critical slope, so that sporadic avalanches
occur along the critical slope, which is a dynamic process.

There are many self-organization processes in physics, such as structural first-order
phase transitions and spontaneous symmetry braking, second-order phase transitions at
which the system exhibits scale-invariant structures (critical opalescence of fluids at a
critical point), structure formation in thermodynamic systems away from equilibrium
(Bénard cells), or self-organization of electromagnetic waves or solitons into vortices in a
magnetized electron–positron plasma (e.g., Kaladze and Shukla 1987). Self-organization
in chemistry includes molecular self-assembly, reaction–diffusion systems (Belousov–
Zhabotinsky reaction with spiral-like patterns) and oscillating chemical reactions, auto-
catalytic networks, or liquid crystals. Self-organization in biology include spontaneous
folding of proteins and biomacromolecules, geometric patterns on the skin of animals (ze-
bra, giraffe, tiger, various tropical fishes), formation flight of birds, etc. For an extensive
description see the textbook Self-Organization in Biological Systems by Scott Camazine
(Camazine et al. 2001).

In astrophysics, what comes to mind is the granulation pattern on the solar (and sup-
posedly stellar) surfaces, which is created by magneto-convection, similar to the hexagonal
cell pattern of Bénard cells that occur in the boiling water of a frying pan. Also some geo-
metric patterns in galaxy formation (Kalapotharakos et al. 2004), star formation, and plan-
etary systems might be a result of self-organization (for instance the spiral structure of our
galaxy: Fig. 10.2, bottom left). Other self-organizing structures result when the governing
process is self-similar expansion, diffusion-limited aggregation, or percolation. Saturn’s
rings, the asteroid belt, or lunar craters, in contrast, can be considered to be SOC pro-
cesses, because the result is a statistical distribution of rare catastrophic SOC events (via
collisional next-neighbor interactions). Planetary orbits follow Bode’s law, which is prob-
ably also the end-product of a self-organization process, as well as the oligarchic growth
of protoplanets. Self-organization occurs in systems with fully developed turbulence, such



10.2 Self-Organization without Criticality 325

Fig. 10.2 Examples of self-organizing patterns: Top left: Sand dunes in Namibia (credit: Jef Maion);
Top right: Jupiter atmosphere with white bands or ammonia ice clouds (credit: Jeff Root); Bottom left:
Top-view of our Milky way galaxy according to an artist’s rendering (Credit: NASA); Bottom right: The
cracked ice plains of Jupiter’s moon Europa (Credit: Galileo Project, JPL, NASA).

as in Jupiter’s atmosphere (Fig. 10.2, top right), giving rise to cyclone-like whirls and ed-
dies in equatorial bands, featuring the so-called Jupiter red spot as the most prominent
landmark. This red spot has been modeled in terms of Rossby autosolitons, which is an
undamped solitary vortex that is self-organized in axisymmetric zonal counterflows in a
rotating parabolic “shallow-water” layer and is sustained by flows (Antipov et al. 1985).
Even the evolution of our planet Earth went through stages of great environmental disequi-
librium forming self-organized structures from bubbles at the sea–air interface to tectonic
plates, a process that apparently was necessary for conditions of life, and did not happen
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on Mars, for instance (Chang, 1988). An extensive discussion of self-organized patterns in
astrophysics can be found in the textbook The Discovery of Cosmic Fractals by Baryshev
and Teerikorpi (2002).

How can we distinguish SO from SOC processes? Most SO patterns are quasi-stationary,
while SOC always involves dynamic (catastrophic) processes. If dynamic processes are in-
volved in the formation of SO patterns, they usually involve system-wide processes, such
as diffusion, turbulence, convection, magneto-convection, which essentially operate with
long-range interactions (via pressure, streams, flows), while SOC processes occur spon-
taneously with an explosive evolution and multiplicative growth via next-neighbor inter-
actions. The restriction to next-neighbor interactions in SOC processes essentially guar-
antees the statistical independence of individual events, while SO patterns exhibit a close
coupling over a large range. For instance, a Bénard cell convection pattern can be quasi-
stationary, but if one cell disappears, the surrounding pressure will cause an adjustment of
all adjacent cells and over an arbitrary distance, until pressure is balanced again. In other
words, one sandpile avalanche does not know what another avalanche does, but convection
cells adjust to each other until a new equilibrium is reached. So, since SO patterns can ex-
hibit scale-free powerlaw distributions of spatial scales, such as the Kolmogorov spectrum
in turbulent MHD cascades, we do not use the powerlaw feature as a distinction criterion
between SO and SOC processes, but rather the three SOC criteria defined in Section 9.1,
which should disqualify most SO processes to be considered as SOC systems.

10.3 Brownian Motion and Diffusion

There are some common properties between SOC avalanches and Brownian motion: both
have power spectra P(ν) ∝ ν−p with a powerlaw function, have similar fractal dimensions,
and involve nearest-neighbor interactions. So, let us test whether Brownian motion could
be a SOC process.

Brownian motion describes the random motion of atoms or molecules in a gas, which is
governed by frequent collisions with nearest neighbors, termed after the Scottish botanist
Robert Brown. Although we cannot resolve atomic scales, the Brownian motion can
vividly be demonstrated by watching the vibrations of a dust particle suspended in a
fluid under the microscope. This already tells us something about the scale-free proper-
ties and self-similarity of Brownian motion on different spatial scales. The physical model
of Brownian motion includes some simplifications of the real process and is defined by the
following three assumptions: (1) additional degrees of freedom like rotation are neglected;
(2) the time span between subsequent collisions is constant; and (3) the velocities before
and after a collision are assumed to be statistically independent. The latter assumption
implies a Gaussian distribution of velocities, because the kinetic energies of the particles
follow a Boltzmann distribution in thermodynamic equilibrium, which is equivalent to a
Gaussian distribution of velocities. The motion of a Brownian particle is thus described
by,

x(tn) =
n

∑
i=1

vi δ t , (10.3.1)
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where the time tn = nδ t is discretized with a constant time step δ t and vi is drawn from
a Gaussian random distribution (Eq. 4.2.1). An example of such a 1-D random walk is
shown in Fig. 10.3 (left), as well as a 2-D diffusion process in Fig. 10.3 (right) by sim-
ulating a similar (independent) random motion y(tn) in a second space coordinate, for
n = 10,000 time steps with δ t = 1. Thus, x(t) is a linear combination of independent,
Gaussian-distributed random values, which implies statistically also a Gaussian distribu-
tion for the superposition of Gaussians, with a mean and standard deviation of,

〈x(t)〉 =
n

∑
i
〈vi〉δ t = 0 , (10.3.2)

σ(t)2 =
〈
[x(t)−〈x(t)〉]2

〉
=

n

∑
i=1

n

∑
j=1

〈viv j〉δ t2 = nσ2
n δ t2 = σ2

v δ t2 t. (10.3.3)

Thus, the standard deviation increases with the square root of time,

σ(t) ∝
√

t (10.3.4)

In Fig. 10.3 we marked this expected time dependence of the standard deviation (Fig. 10.3,
left).

This model of the Brownian motion is also applied to a number of diffusive transport
phenomena, such a heat transport, diffusion of gases, meridional flows of magnetic fea-
tures on solar and stellar surfaces, etc. If we define a general 1-D diffusion equation,

∂ f (x, t)
∂ t

= κ
∂ 2 f (x, t)

∂x2 , (10.3.5)
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Fig. 10.3 Examples of Brownian motion in 1-D (left) and 2-D space (right). The theoretical expectation
y(t) = t1/2 is indicated with a dotted line (left). The random motion y(t) in one space coordinate y is
identical in both cases.
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for a density function f (x, t) with a diffusivity coefficient κ , and insert an initially Gaussian
random function f (x, t), with the time dependence of a Brownian random walk, σ(t)2 = ct
(Eq. 10.3.4),

f (x, t) =
1√

2πσ(t)
exp

(
− x2

2σ(t)2

)
=

1√
4πct

exp
(
− x2

4ct

)
, (10.3.6)

into the diffusion equation (10.3.5), we see immediately that the function satisfies the dif-
fusion equation and yields the solution κ = c/2. Thus the diffusion equation is equivalent
to the Brownian motion.

The self-similarity of Brownian motion can be defined by the fractal dimension. If we
use the definition of the Hausdorff dimension D in 2-D space (Section 8.2.1), with n(L)
the number of area elements that are covered in a square area with length L, we have for
Brownian random walk a dimension of,

D =
logn(L)

logL
=

logL2

logL
= 2 . (10.3.7)

This result appears to be strange on the first glance, because it is the same fractal dimension
as Euclidean filling, but when we look at the area covered by a random walk (as shown
in Fig. 10.3, right), the covered area seems to be very fractal, and thus we would estimate
a smaller dimension of D < 2. However, the truth is that many locations are revisited
many times during a random walk, so that the number of encountered locations is as much
as the solid Euclidean area. In other words, if we think of the infamous drunkard who
searches for his penny on the ground with a random walk, it would take him about the same
time to search systematically square by square, so both search strategies are statistically
equivalent.

Another important property of Brownian random walk is the power spectrum. It can be
shown with the Fourier transform (e.g., Hergarten 2002) that the resulting power spectrum
has a slope of 2,

P(ν) ∝ ν−2 , (10.3.8)

which is also called Brownian noise (Section 4.7).
So, since Brownian motion is fractal, has a 1/ f -type power spectrum (in the sense

of the generalized nomenclature described in Section 4.7), and propagates via next-
neighbor (collisional) interactions, does it qualify to be a SOC process? Let us imagine
sand avalanches where each sand grain follows a Brownian random walk and test our
three SOC criteria given in Section 9.1. The first SOC criterion of temporal and spa-
tial independence between different avalanches could be fulfilled in a scenario where
the avalanches are triggered independently. Also multiple diffusion processes can be
started independently, such as acid rain drops that fall on a water surface. The second
SOC criterion of nonlinear coherent growth is clearly violated, since a nonlinear evo-
lution of the energy dissipation rate, P(t) ∝ t p, requires a positive power index larger
than unity (p > 1), while the average diffusion velocity actually decreases according to
〈vdiff 〉 = 〈x2〉1/2/t ∝ t1/2/t ∝ t−1/2 for Brownian motion, which also implies a decreasing
kinetic energy with time, Ekin ∝ 〈vdiff 〉2 ∝ t−1/4. Also the third SOC criterion of a random
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rise time cannot be fulfilled, especially since diffusion processes go on forever, though
with asymptotically slower speed. Thus, Brownian motion clearly does not qualify as a
SOC process, despite the scale-free similarities.

While we discussed the basic classical diffusion here, more complex concepts have
been considered (Section 3.6), such as a coupled equation system including a 1-D dif-
fusion process that can mimic a cellular automaton simulation (Eqs. 3.6.7; Lu 1995c), a
diffusion equation that can mimic a 3-D cellular automaton redistribution rule (Isliker et
al. 1998a), or (anomalous) hyper-diffusion equations that can mimic the continuum limit
of cellular automaton simulations (Liu et al. 2002; Charbonneau et al. 2001). In principle,
it is conceivable that the combination of a nonlinear-growth process with a diffusion pro-
cess can produce SOC-like avalanches, but diffusion alone seems not to qualify as a SOC
process. Other anomalous diffusion processes include quasi-linear diffusion in tokamak
plasma confinement (Dendy and Helander 1997), or an anomalous diffusion process called
Lévy flight, that has been applied to earthquake statistics (Sotolongo-Costa et al. 2000), or
the Hurst effect, which was applied to the fluctuations of the AE-index of magnetospheric
substorms (Uritsky and Pudovkin 1998), to the fluctuations of solar activity (Lepreti et
al. 2000), or to the bursty time profile of solar flare hard X-rays (McAteer et al. 2007).
Hurst exponents above the value of H = 1/2 expected for Brownian random motion, re-
veal some hidden memory or persistence that controls the observed fluctuations, leading
also to steeper power spectra (such as black noise, with P(ν) ∝ ν−3, see discussion in
Section 7.4).

10.4 MHD Turbulence

10.4.1 Solar Corona

Convection and turbulence are important in fluids with high Reynolds numbers. Since the
magnetic Reynolds number Rm = l0v0/ηm is high in the coronal plasma (Rm ≈ 108–1012),
turbulence may also develop in coronal loops (although there is the question whether tur-
bulence could be suppressed in coronal loops due to the photospheric line-tying). Theoret-
ical models and numerical simulations that study MHD turbulence include the kinematic
viscosity or shear viscosity νvisc in the MHD momentum equation, and the magnetic diffu-
sivity ηm = c2/4πσ in the MHD induction equation,

ρ
Dv

Dt
= −∇p−ρg+(j×B)+νviscρ

[
∇2v+

1
3

∇(∇ ·v)
]

, (10.4.1)

∂B

∂ t
= ∇× (v×B)+ηm∇2B . (10.4.2)

Similar to the models of stress-induced current cascades, random footpoint motion is as-
sumed to pump energy into a system at large scales (into eddies the size of a granulation
cell, ≈1000 km), which cascade due to turbulent motion into smaller and smaller scales,
where the energy can be more efficiently dissipated by friction, which is quantified by
the kinematic or shear viscosity coefficient νvisc. Friction and shear are dynamical ef-
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fects resulting from the nonlinear terms (v1,iv1, j), (v1,iB1, j), (B1,iv1, j), and (B1,iB1, j) in
Eqs. (10.4.1–10.4.2) and are only weakly sensitive to the detailed dynamics of the bound-
ary conditions. Analytical (3-D) models of MHD turbulence have been developed by Hey-
vaerts and Priest (1992), Inverarity et al. (1995), Inverarity and Priest (1995), and Milano et
al. (1997), where the nonlinear viscosity terms are specified as diffusion coefficients. These
turbulent diffusion coefficients are free parameters, which are constrained self-consistently
by (1) assuming that the random footpoint motion has a turbulence power spectrum (e.g.,
a Kolmogorov spectrum P(k) ∝ k5/3); and (2) by matching the observed macroscopic pa-
rameters (i.e., velocity of footpoint motion, density, and magnetic field). Heyvaerts and
Priest (1992) predict turbulent velocities of vturb ≈ 20–30 km s−1, which are consistent
with the excess broadening of lines observed with SOHO/SUMER, which shows a peak of
ξ = 30 km s−1 at a transition region temperature of T ≈ 3×105 K (e.g., Chae et al. 1998).

Analytical models of turbulent heating are applied to sheared arcades (Inverarity et
al. 1995) and twisted fluxtubes (Inverarity & Priest 1995). Turbulent heating has been nu-
merically simulated in a number of studies, which exhibit a high degree of spatial and
temporal intermittency (Einaudi et al. 1996a,b; Galsgaard and Nordlund 1996; Dmitruk
and Gomez 1997). An example of such a simulation is shown in Fig. 10.4, where it can be
seen how larger eddies fragment into smaller ones, forming current sheets and triggering
magnetic reconnection during this process. Heating occurs by Ohmic dissipation in the
thinnest current sheets. Milano et al. (1999) emphasize that the locations of heating events
coincide with quasi-separatrix layers. The formation of such current sheets has also been
analytically studied in the context of turbulent heating by Aly and Amari (1997). Numer-
ical simulations reveal intermittent heating events with energies of EH = 5×1024 to 1026

erg and a frequency distribution with a powerlaw slope of α ≈ 1.5, similar to observed
nanoflare distributions in EUV (Dmitruk and Gomez 1997, 1999; Dmitruk et al. 1998).
Continuous slow fluctuating footpoint driving leads to a steady state with a random super-
position of current sheets (Longcope and Sudan 1994).

On the observational side, the distribution of spatial structures, Fourier spectra, and
structure functions of solar UV emission was associated with intermittent MHD turbu-
lence (Buchlin et al. 2006). The time variability of solar magnetic activity has been asso-
ciated with a turbulent cascading process based on its multi-fractal properties (Lawrence
et al. 1995), or based on its power spectra, structure functions, or correlation lengths (e.g.,
Abramenko et al. 2001, 2002, 2003). Radio emission in the form of decimetric narrow-
band spikes was also interpreted as a manifestation of coronal MHD turbulence because
of its power spectrum P(ν)≈ ν−1.6 being close to a Kolmogorov-type spectrum (Karlicky
et al. 1996).

Does MHD turbulence in the solar corona qualify as a SOC process? Among the com-
mon properties are, based on numerical MHD simulations: the frequency distributions
of dissipated energies with a powerlaw slope of αE ≈ 1.5 (Dmitruk and Gomez 1997;
Dmitruk et al. 1998), powerlaw distributions for total dissipated energy, peak energy, and
duration of events (Galtier and Pouquet 1998; Galtier 1999, 2001; Georgoulis et al. 1995;
Einaudi and Velli 1999; Buchlin et al. 2005), or powerlaw distributions for waiting times
(Galtier 2001). Despite of all these similarities, not all of our three SOC criteria (Sec-
tion 9.1) are fulfilled: (1) MHD turbulence cascading exhibits a correlation length between
larger and smaller spatial scales, and thus violates our first SOC criterion of statistical
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Fig. 10.4 Example of a numeric 2-D simulation of MHD turbulence with a Reynolds number of Rm =
2000, showing the magnetic field lines (contours) and electric current density (greyscale). Reconnec-
tion zones have formed between a number of adjacent islands that are coalescing, triggering localized
nonsteady reconnection events throughout the simulation box (Matthaeus 2000). Reprinted from Zhou et
al. (2004) with permission; Copyright by American Physical Society.

independence between individual energy dissipation events; (2) MHD turbulence can pro-
duce intermittent heating events that have a nonlinear growth characteristics, and thus may
fulfill our second SOC criterion, which explains that both processes produce powerlaw
distributions of dissipated energies; (3) the rise time of intermittent heating or energy dis-
sipation events could possibly fulfill the randomness of our third SOC criterion. So, it is
mostly the property of spatial and temporal correlation lengths that distinguishes energy
dissipation events driven by MHD turbulence in the solar corona from SOC processes, such
as energy dissipation events produced by stressing and braiding of magnetic fields lead-
ing to sporadic magnetic reconnection events. A consequence of the spatial and temporal
correlation between subsequent energy dissipation events is manifested in the distribution
of waiting times, which is expected to be a random distribution for a SOC process (i.e.,
exponential-like for a stationary Poisson process), while it is a powerlaw distribution for
MHD turbulence. Therefore, this distinctive statistical feature was used to associate solar
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flares with the process of MHD turbulence rather than with a SOC process (e.g., Boffetta
et al. 1999). However, this argument is only valid under the assumption of a stationary
Poisson process, while in reality it is clear that solar flares are governed by a nonstation-
ary Poisson process, and thus naturally produce a powerlaw distribution with slopes of
p ≈ 2–3 (e.g., Wheatland 2000a; Aschwanden and McTiernan 2010). Since the distinction
between SOC processes and intermittent turbulence (IT) processes is somewhat uncertain
and data are consistent with both, even a coexistence of the two processes was proposed,
in the sense that both SOC and IT may be manifestations of a single complex dynamical
process entangling avalanches of magnetic energy dissipation with turbulent particle flows
(Uritsky et al. 2007; Watkins et al. 2009).

10.4.2 Solar Wind

MHD turbulence is thought to be ubiquitous in the Sun and heliosphere, and so in the solar
wind, which is considered to be a turbulent magnetofluid (e.g., see review by Petrosyan et
al. (2010)). Evidence for turbulence in the solar wind comes from in-situ measurements
(from the Mariner, Pioneer, Helios, ISEE-3, IMP, Voyager, ACE, and Ulysses missions) of
fluctuations in plasma velocity, magnetic field, and plasma density, which ripple the aver-
age large-scale solar wind that falls off relatively smoothly with radial distance from the
Sun. Spatial scales of solar wind turbulence can be measured from an astronomical unit (1
AU) down to the thermal proton gyroradius (about 50 km), and recently with CLUSTER
even down to the electron radius (Fig. 10.5). Measurements near Earth orbit (1 AU) seems
to indicate that the solar wind exhibits fully developed MHD turbulence, a Kolmogorov
power spectrum, and the presence of MHD waves. However, the input spectrum from the
solar corona seems not to be of the Kolmogorov type with the fluctuating power propor-
tional to f−5/3 as usually found in interplanetary space, but rather of the f−1 type power
spectrum (Matthaeus and Goldstein 1986), which can be modeled in terms of a steady-state
of cascading Alfvénic waves (Vainio et al. 2003) and simulated with 3-D hydrodynamic
and MHD (Dmitruk and Matthaeus 2007). The scenario of the MHD turbulent cascade is
thought to begin with an MHD energy reservoir at the largest scales with a spectrum of
f−1 fed by the lower solar corona, while turbulent interactions produce a cascade of energy
through vortices and eddies to progressively smaller sizes (with spectrum f−5/3), while en-
ergy dissipation becomes only significant at sufficiently small scales, where heating sets
in. Alfvénic waves that escape the Sun have a dissipation length of a few solar radii, and
the temperature of the solar wind indeed increases over the first few solar radii, especially
for protons. Wave–particle interactions in the turbulent solar wind include also resonant
absorption and cyclotron resonance, which leads to anisotropic particle distributions and
temperature anisotropies.

Self-organization in the solar wind is thought to produce clustering of low-frequency
waves in the solar wind, leading to a Hausdorff fractal dimension of D ≈ 4/3 and a power
spectrum of f −5/3 (Milovanov and Zelenyi 1999). Self-organization and intermittency of
magnetic turbulence in the solar wind is manifested in the high degree of correlation be-
tween magnetic field and velocity field fluctuations, especially at times of very low levels
of fluctuations in mass density and magnetic field intensity (Veltri et al. 1999; Carbone
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Fig. 10.5 A spectrum of the solar wind is shown, based on CLUSTER observations from large scales
(≈105 km) down to small scales (≈3 km) is shown, with the proton and electron gyroradius scale indi-
cated. The solar wind spectrum is interpreted in terms of a turbulent MHD cascade, with the theoretically
predicted slopes of f−5/3 and f−7/3 from gyro-kinetic theory. The plot proves that the energy continues
cascading below the proton scale down to the electron scale, where it is converted to heat (via electron Lan-
dau damping resonance) causing the steepening of the Bz spectrum to f−4 (Howes et al. 2008; Sahraoui et
al. 2009; credit: ESA, CLUSTER).

et al. 2004). Powerlaw distributions have been found for the probability density function
of burst energies and durations, as well as for the inter-burst waiting times, which could
all be consistent with a SOC process governed by a nonstationary Poisson process (Free-
man et al. 2000a). The distribution of waiting times could also be consistent with the
Lévy flight (anomalous diffusion) model (Hnat et al. 2007). Numerical simulations with
reduced MHD codes indeed produce similar powerlaw-like distributions of burst sizes (in
mean-square current density), as well as powerlaw-like distributions of burst durations
and waiting times, which is consistent with SOC models and nonstationary Poisson pro-
cesses (Watkins et al. 2001a). However, the distributions of the kinetic energy density in
the inertial range of solar wind turbulence was found to be self-similar only approximately
(Podesta et al. 2006b, 2007; Podesta 2007). In addition, the presence of a background
magnetic field not only introduces a symmetry breaking in interplanetary space but also
organizes fluctuations in their large scale orientation (Bruno et al. 2007). The intermittent
turbulence of the solar wind was also analyzed with a multi-fractal Cantor set, which pro-
vided evidence for a two-scale cascading process (Macek and Szczepaniak 2008; Macek
and Wawrzaszek 2009). On the other side, a single generalized scaling function was found
to characterize turbulent fluctuations consistently, independent of plasma conditions, even
at very low levels of solar activity (Chapman and Nicol 2009). Recent analysis of the so-
lar wind has shown a quasi-universal spectrum following the Kolmogorov law ∝ k−5/3 at
MHD scales, a ∝ k−2.8 powerlaw at ion scales (Fig. 10.5), and an exponential law at the
electron gyroradius, which for the first time demonstrates that the electron Larmor radius
plays the role of a dissipation scale in space plasma turbulence (Alexandrova et al. 2009),
although there is still some controversy about the dissipation scale in space plasma tur-
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bulence (see comment paper by Matthaeus et al. (2008)). Statistical analysis of waiting
times of solar wind discontinuities and modeling with Hall-MHD simulations revealed a
clusterization of discontinuities that is not Poissonian randomly distributed, giving fur-
ther evidence for intermittent, anisotropic, and fully developed MHD turbulence (Greco et
al. 2009a,b).

The bottom line of all these studies is that fluctuations in the solar wind share many
common properties with (nonstationary) SOC processes as well as with intermittent MHD
turbulence models, so that it is rather difficult to discriminate between these two processes.
The only option that can be eliminated is a stationary SOC process, because waiting times
of solar wind fluctuations are powerlaw-like rather than exponential. Consulting our basic
three SOC criteria (Section 9.1), only the first SOC criterion of temporal and spatial inde-
pendence is violated to some degree, because solar wind fluctuations reveal some correla-
tion length and clusterization effects, which seems to be the only discrimination criterion
from an ideal SOC process.

10.4.3 Magnetospheric Substorms

We discussed physical scenarios of magnetospheric substorms (Section 9.4.2) and de-
scribed the statistical distribution of auroral blobs and AE bursts (Section 1.6), substorm
durations (Section 7.2), waiting-time distributions (Section 5.5), and cellular automaton
models (Section 2.5), that all support the interpretation in terms of a SOC process. How-
ever, an alternative model is intermittent turbulence (IT) (e.g., Angelopoulos et al. 1999).
The most compelling evidence for turbulence processes operating in the plasma sheet in
the geotail is the observation that the flow variability amplitude is many times larger than
the average, and that the flow directions are at random, which challenges the laminar flow
hypothesis (Angelopoulos et al. 1999; Kovacs et al. 2001). A schematic of the bursty flows
in the geotail is shown in Fig. 10.6. Angelopoulos et al. (1999) conclude: According to ob-
servations, the magnetotail is in a bi-modal state: nearly stagnant, except when driven
turbulent by transport-efficient fast flows. The distributions of flows are in agreement with
sporadic (intermittent) variability in the magnetotail. The variability may resemble hydro-
dynamic turbulence around a jet. The presence of turbulence alters the conductivity and
the mass/momentum diffusion properties across the plasma sheet and may permit cross-
scale coupling of localized jets into a global perturbation. Bursty-flow-driven turbulence
is a physical process that may have an important role to play in the establishment of a
state of self-organized criticality.

It appears that it is currently not possible to discriminate between the proposed mod-
els for magnetospheric substorms, such as SOC versus IT, and that new tests are required
(e.g., Watkins et al. 2001b; Watkins 2002; Chapman and Watkins 2001; Antonova 2004).
The power spectrum of AE bursts is in the range of f−2 to f−1.8 (Consolini et al. 1996)
could potentially be consistent with a modified Kolmogorov spectrum and thus support a
turbulent origin. The observed frequency distribution of substorm durations has a power-
law shape, which could be consistent with both, a SOC model with nonstationary driver
(Uritsky et al. 2007; Watkins et al. 2009), or with intermittent turbulence (Boffetta et
al. 1999; Lepreti et al. 2004), but more realistic turbulence models are needed to enable
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Fig. 10.6 Schematic representation of magnetospheric circulation at the equatorial plane, showing local-
ized bursty flows that drive vortical (turbulent) flows. Magnetospheric substorms originate in the bursty
reconnection region in the geotail (Angelopoulos et al. 1999; Kennel 1995).

more discriminative tests. Waiting times between substorms were found not to be Poisso-
nian distributed, as expected in SOC models: calm periods prior to recurring high-speed-
driven storms were found to be substantially greater than random occurrence probability
(Borovsky and Steinberg 2006). New observations, such as the discovery of a distinct class
of short-scale drift-kinetic Alfvén (DKA) vortex motions in the Earth’s magnetospheric
cusp region made by CLUSTER my shed new light on turbulent plasma and energy trans-
port through the magnetospheric boundary layers (Sundkvist et al. 2005).

10.4.4 Interstellar Medium

The interstellar medium (ISM) is believed to be turbulent, from scales ranging from from
1 AU to kiloparsecs, with an embedded galactic magnetic field that controls star forma-
tion and acceleration and propagation of cosmic rays. Observational measurements of
the turbulent state comes mostly from radio-interferometry, which quantifies scattering
of radio waves (of point-like sources, such as quasars) and scintillations (in the time do-
main). A compilation of such radio measurements, combined with the latest measurements
of Doppler velocity fluctuations using the Wisconsin Hα Mapper (WHAM) telescope is
shown in Fig. 10.7, which displays a power spectrum over a grand scale of 12 orders of
magnitude, following a powerlaw slope of approximately P(L) ∝ L−5/3, as expected for
a Kolmogorov turbulence spectrum (Chepurnov and Lazarian 2010). This is probably the
largest spatial range (from 106 to 1017 m) over which the spectrum of a Kolmogorov cas-
cade was ever measured. It represents evidence that energy in injected at the largest scales
of ≈100 pc in the galaxy and cascades all the way down to the size of solar systems. The
leading ideas about the energy injection at these large scales are via supernova explosions
and via the magneto-rotational instability.
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Fig. 10.7 A composite turbulence power spectrum of the electron density in the interstellar medium in-
cluding the most recent data from the Wisconsin Hα Mapper (WHAM) (Chepurnov and Lazarian 2010;
extending the previous figure of Armstrong et al. (1995), (reproduced by permission of the AAS).

In the context of our focus on SOC systems, density fluctuations in the interstellar
medium reveal a perfect powerlaw distribution of their power spectrum, but obviously are
not produced by a SOC process. Thus, the powerlaw shape of a power spectrum is clearly
not a sufficient criterion to establish the presence of a SOC process, it can equally be
created by turbulence. A turbulence cascade, however, violates our first SOC criterion of
spatial and temporal independence (Section 9.1), because spatial structures in a turbulent
cascade have some correlation length.
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10.5 Forced Criticality Models

In the original BTW model, the critical state arises from self-organization within the sys-
tem itself, for instance by the critical slope of the sandpile. When a little disturbance occurs
(e.g., in form of a dripping sand grain), an avalanche is formed along those paths that have
a slightly steeper slope than the average critical slope. Once the avalanche proceeds, it
leaves a coarse surface behind that has the same average critical value, but with slight lo-
cal deviations that will play a role for the next avalanche. So, the slope of the sandpile is
self-organizing in the sense that it always stays near the critical value. Even big avalanches
will neither make the slope sub-critically flat, nor leave a super-critical steep slope behind,
which is the essence of self-organized criticality. In the terminology of nonlinear dynam-
ics, a system that returns to the same state is also said to have an “attractor”.

An alternative concept that shares all the avalanche phenomenology (of powerlaw dis-
tributions), but is not necessarily self-organized, was introduced by Chang (1992, 1998a,b,
1999a,b), called forced criticality (FC) or FSOC in combination with self-organized crit-
icality. The key aspect of this FSOC model is that some external dynamics exerts forces
on a system to produce powerlaw-like distributions of avalanches without internal self-
organization.

10.5.1 Magnetospheric Physics

The FSOC concept was mostly motivated by the physics of magnetospheric substorms,
which seems to require a continuous loading process in order to drive it into a critical or
near-critical state (Horton and Doxas 1996). Chang et al. (2003) envision the magneto-
sphere to be filled with coherent magnetic structures that approach each other, merge, or
scatter. If they merge, current sheets are formed and instabilities and turbulence initiate
magnetic reconnection. The merging produces larger and larger structures, until a distri-
bution of various sizes is generated, with a powerlaw probability distribution of the scale
sizes of fluctuations, as well as powerlaw frequency (ω) and mode number (k) spectra
of the correlations of the associated fluctuations. The merging of structures introduces
correlations over a large spatial and temporal range, in contrast to the generation of in-
dependent structures in a SOC system. Ultimately, these multi-scale coherent magnetic
structures may be responsible for current instabilities that lead to the onset of magneto-
spheric substorms. Data analysis of observations in the intermittent turbulence region of
the magnetotail and from the auroral electron jet index (AE) seem to support the predic-
tions of the FSOC concept (Consolini 1997; Lui 1998; Angelopoulos et al. 1999; Lui et
al. 2000; Uritsky et al. 2002; Consolini and De Michelis 2001, 2002).

The concept of forced criticality represents an intermediate concept between a classical
SOC model (which has a steady input), a hierarchical SOC system (which has partially
intermittent bursty input), and intermittent turbulence (which has a correlation length of
spatial scales). In the FSOC model, structures are formed by merging, the opposite to the
fragmentation in turbulent cascade models. Both merging and fragmenting have naturally
some correlation length, which is opposite to the statistical independence of SOC models.
So, we applied both SOC and FSOC models to magnetospheric substorms. SOC models
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with finite size effects (Section 2.5.1) can explain the bimodal frequency distribution of
energies (Chapman et al. 1998). Cellular automaton models with discretized MHD (Sec-
tion 2.5.2) can relate the random electric current avalanches to the powerlaw distributions
of magnetic energies in substorms (Takalo et al. 1999a). The powerlaw-like waiting-time
distributions of magnetospheric substorms could be explained with a SOC model that is
driven by solar wind fluctuations (Freeman and Morley 2004; Sections 5.5 and 9.2.4).
The powerlaw distributions of substorm durations could also be explained by SOC models
(Section 7.2). And finally we discussed a scenario of magnetospheric substorms based on
intermittent turbulence (Section 10.4.3), which is a non-SOC model. In summary, a num-
ber of physical models have been developed to describe various aspects of the complex-
ity of magnetospheric phenomena, which introduce some ambiguity in the interpretation.
Some models could possibly be combined in the framework of a hierarchical SOC model
system that includes all coupled processes between the solar wind, the magnetosphere, the
ionosphere, and the geotail.

10.6 Percolation Models

Percolation processes describe the movement and filtering of fluids through porous mate-
rials, which applies in physics, chemistry, material sciences, and geography. Mathematical
theories have been developed to model the percolation phenomenon, based on combinato-
rial and statistical concepts of connectedness that exhibit universality in form of powerlaw
distributions, similar to branching theory (Section 2.6.5). A prominent example is coffee
percolation, which contains a solvent (water), a permeable substance (coffee grounds),
and soluble constituents (aromatic chemicals). Percolation theory has also been applied to
galactic spiral structures produced by randomly-propagating star formation (Seiden and
Gerola 1982; Schulman and Seiden 1986), current systems in the magnetotail (Milovanov
et al. 2001), the spread of medical diseases, the undergound seeping of rainfall, or the
spread of forest fires. Percolation theory can be summarized in the following question: if a
liquid is poured on top of some porous material, will it be able to make its way from hole
to hole and reach the bottom? Statistically, the answer depends on the connectedness of
next neighbors in a 3-D lattice grid. The connections between two next neighbors can be
open and let the liquid pass with probability p, or they can be closed and the probability to
pass is (1− p). Completion of a pass from the top to the bottom can then be expressed as
statistical probability of all combinations along each possible path. There is a critical value
pc for the probability that decides between the two outcomes. For systems with subcritical
values p < pc, percolation will die out exponentially. For two dimensions, the critical value
is pc = 1/2. From these basic properties we see that percolation is very much dependent
on the initial conditions (i.e., whether the percolation probability is below or above the
critical value of the system), which is fundamentally different from SOC processes, where
the occurrence of avalanches is absolutely insensitive to the initial conditions.
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Fig. 10.8 Left: A 2-D simulation of a percolation process (credit CCL Northwestern University). Right:
Three simulations of active region distributions on a full-Sun synoptic map with a 30◦ latitude strip, vary-
ing the hopping probability from Pst = 0.1810 (top), Pst = 0.1818 (middle), to Pst = 0.1822 (bottom),
mimicking changes from the minimum to the maximum of the solar cycle (Wentzel and Seiden 1992;
reproduced by permission of the AAS).

10.6.1 Solar Active Regions

We have already discussed the solar dynamo, which is a fundamentally important process
for all solar activity phenomena, possibly being a candidate for a SOC process (Section
9.3.2). An interesting alternative model for the generation of active regions in terms of
percolation theory was proposed by Wentzel and Seiden (1992), and the interpretation
of the solar dynamo as a percolation concept is also discussed in Schatten (2007). The
birth of active regions is thought to start deep in the solar interior, in the thin tachocline
layer that separates the outer convection zone at ≈0.7 R� from the radiative zone, where
magnetic fields of order B ≈ 105 G are generated which produce magnetic flux tubes that
emerge through the convection zone by buoyancy. The statistical distribution of emerg-
ing fluxtubes has been modeled as a percolation phenomenon (Wentzel and Seiden 1992;
Seiden and Wentzel 1996). The percolation process can be parameterized with two free
parameters: (1) the probability Pst that the release and rise of one flux tube stimulates the
subsequent release and rise of a neighboring flux tube, and (2) the lifetime of magnetic flux
once it has arrived at the solar surface. This model can explain (1) the longevity of active
regions on the solar surface and the persistence of magnetic flux emergence at the same
location, (2) the occurrence of persistent empty regions like coronal holes, (3) the substan-
tial solar cycle variation as a phase-transition process near the critical threshold value, and
(4) the observed exponential size distribution of active regions. However, recent studies
have also shown powerlaw distributions of area-related parameters, such as for magnetic
fluxes that represent the product of the area and magnetic field strength (Fig. 8.19; Par-
nell et al. 2009), or of active region energies (Wheatland and Sturrock 1996; Vlahos et
al. 2002a,b; Vlahos and Georgoulis 2004). In a study of one particular active region it was
found that the fractal dimension was close to the prediction D = 1.56 from percolation
theory for clusters of tracers placed randomly on a lattice with a tracer density below a
critical threshold (Balke et al. 1993).
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Is the emergence of active regions a SOC or a percolation phenomenon? The answer
depends very much on the physical model. Wentzel and Seiden (1992) assumed a simple
two-parameter percolation model as stated above, while Vlahos et al. (2002a,b) add a new
element by keeping track of the energy release through flux cancellation (reconnection) if
flux tubes of opposite polarities collide. The magnetic polarity is certainly a basic phys-
ical property of emerging fluxtubes that determines the bipolar nature of active regions,
which is not part of standard percolation theories with neutral fluids. Another open ques-
tion is whether there is really a phase-transition process between the solar minimum and
maximum, or is it just a gradual nonstationary Poisson process, as envisioned for solar
SOC processes. It would be interesting to test whether percolation models fulfill our three
basic SOC criteria (Section 9.1). While different active regions might meet the statistical
independence criterion, subsequent emerging dipoles within an active region may not be
created independently. Given the inaccessibility of the solar interior, physical models are
required to decide whether the solar dynamo can be modeled as a SOC, percolation, or
branching process.

10.7 Nonlinear Chaotic Systems

Self-organized criticality is a special state of nonlinear dissipative systems. Furthermore,
SOC avalanches occur randomly and unpredictably, and thus share some common proper-
ties with chaotic systems, which seem to be governed by disorder and irregularity. How-
ever, nonlinear chaotic systems in modern usage are described by coupled differential
equations that have a deterministic, and hence a (theoretically) predictable time evolution.
Chaos theory is typically concerned with nonlinear equation systems of a few degrees
of freedom, while SOC systems contain an infinite number of degrees of freedom (or
metastable states). Some nonlinear systems which display deterministic chaos are (e.g.,
Schuster 1988): a forced pendulum, fluids near the onset of turbulence, lasers, nonlin-
ear optical devices, Josephson junctions, chemical reactions, classical many-body systems
(e.g., asteroid orbits), particle accelerators (e.g., in the plasma sheet boundary layer in the
geotail), plasmas with wave–particle interactions, atomic spin flips (Ising models), har-
monic oscillator in a fluid (Langevin equations), biological models of population dynam-
ics (e.g., the Lotka–Volterra equation), medical heart pacemakers, or the meteorological
butterfly effect (described by the Lorenz equation system; Lorenz 1963). Although the
time evolution prescribed by a nonlinear differential equation system for a given initial
condition is in principle deterministic and predictable, it is practically impossible to pre-
dict the long-time behavior of such a system because no explicit analytical solution exists
and computer solutions are subject to numerical accuracy that diverge exponentially with
time. Chaotic systems arise even without noise (such as the Lorenz equations), but the
influence of external noise acting on chaotic systems, as it relevant for astrophysical data,
smooths its fractal properties (e.g., Geisel 1985). The complexity of a nonlinear chaotic
system is often characterized with the dimension of strange attractors (e.g., Grassberger
1985; Guckenheimer 1985), which approximately corresponds to the number of differ-
ential equations that are needed to describe the system dynamics. A low-dimensional at-
tractor can be described with two equations (e.g., the Lotka–Volterra equation), or with
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three equations (e.g., the Lorenz equations). In the other extreme, Brownian motion could
in principle be described by some 1026 coupled differential equations for every atom, but
such high-dimensional systems are more practically characterized by concepts of random
noise. Among the mechanical cellular automatons we described the model of coupled pen-
dulums (Section 2.1.1) or the slider-block spring model (Section 2.4.1), which both can
be described by n coupled differential equations and thus represent nonlinear chaotic sys-
tems. Computer simulations with n ≈ 102–103 elements indeed revealed chaotic behavior
(e.g., Turcotte 1999; Huang and Turcotte 1990), and at the same time displayed avalanche
behavior typical for cellular automata. So, it is also said that SOC is a property of classical
dynamical systems which have a critical point as an attractor. Their macroscopic dynam-
ics exhibits spatial and temporal scale-invariance (powerlaw distributions) of the critical
point of a phase transition, but are insensitive to the initial conditions. Despite of these
similarities of nonlinear chaotic systems with SOC systems, a fundamental difference is
the statistical independence of individual SOC events in the temporal and spatial domain
(first SOC criterion, Section 9.1), while subsequent fluctuations in a nonlinear chaotic sys-
tem are subject to a deterministic time evolution that is prescribed by a system of coupled
differential equations, and thus are not statistically independent.

10.7.1 Astrophysics

Let us mention a few astrophysical observations that have been interpreted in terms of
nonlinear chaotic systems, while some of them have also been modeled with SOC sys-
tems. The irregular X-ray variability of the neutron star Her X-1 has been subjected to a
time series analysis with the method of Procaccia (1985) and a low-dimensional attractor
(D ≈ 2.3), while some higher-dimensional chaos was found for the accretion disk (Voges
et al. 1987). However, this result was disputed by Norris and Matilsky (1989), who con-
cluded that the insufficient signal-to-noise ratio does not allow us to distinguish it from
an ordinary attractor contaminated with noise. The light curves of three long-period cata-
clysmic variable stars have been analyzed with the technique of Grassberger and Procaccia
(1983a,b) in the search for an attractor dimension, but the light curves could be modeled
with a periodic and a superimposed random component (Cannizzo et al. 1990). A low-
dimensional attractor with a dimension of ≈1.5 was found in the Vela pulsar with a corre-
lation sum technique (Harding et al. 1990). The quasi-periodic oscillations (QPO) of the
low-mass X-ray binary star (LMXB) Scorpius X-1 was quantified with power spectrum
analysis and with a wavelet technique, which were found to be consistent with a drip-
ping handrail accretion model, a simple dynamical system that exhibits transient chaos
(Scargle et al. 1993; Young and Scargle 1996). A time series from the R Scuti star, a RV
Tau type star, was found to exhibit deterministic chaos (with an embedding dimension of
4), because it was not multi-periodic and could not be generated by a linear stochastic
process (Buchler et al. 1996). The quasi-periodic light curve is shown in Fig. 9.10 (top),
along with a synthetic light curve generated with a corresponding low-dimensional attrac-
tor (Fig. 9.10, middle and bottom).

The orbits of moons that are part of 3-body or N-body problems can show significant
deviations from strict periods due to the aperiodic disturbances of other moons and planets.
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Fig. 10.9 The smoothed light curve observed from the RV Tau-type star R Scuti (top) and synthetically
generated light curves with a model of a low-dimensional strange attractor (middle and bottom) (Buchler
et al. 1996; reproduced by permission of the AAS).

The Saturnian satellite Hyperion, for instance, is believed to exhibit chaotic behavior, and
thus has an unstable orbit (Boyd et al. 1994).

10.7.2 Solar Physics

In solar physics, time series analysis in terms of nonlinear chaotic systems and searches
for strange attractors started at about the same time as in astrophysics, when chaos theory
became popular after the publication of suitable nonlinear time series analysis methods
(e.g., Grassberger and Procaccia 1983a). The first applications were carried out in time
series of radio bursts, which were recorded with high time resolution and at times exhib-
ited quasi-periodic signals. Low-dimensional attractors were identified in radio burst time
series based on embedding dimensions, maximum Lyapunov exponents, and Kolmogorov
entropy (Kurths and Herzel 1986, 1987; Kurths 1987; Kurths et al. 1990, 1991), a tran-
sition from regular to chaotic structures as part ot the Ruelle–Takens–Newhouse route to
chaos was identified (Kurths and Karlicky 1989), novel nonlinear methods such as sym-
bolic dynamics, correlation dimensions, and wavelet analysis were explored (Schwarz et
al. 1993; Kurths and Schwarz 1994, 1995; Kurths et al. 1995), dimensional analysis was
conducted with tests of stationarity and discrimination between deterministic and stochas-
tic time signals (Isliker 1992a,b; Isliker and Kurths 1993; Isliker and Benz 1994a,b; Isliker
1994, 1996; Yurovsky and Magun 1996, 1998; Yurovsky 1997; Ryabov et al. 1997), and
fractal dimensions, recurrence plots, and frequency distributions of solar radio bursts were
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derived (Higuchi 1988; Watari 1996a; Meszarosova et al. 1999, 2000; Veronig et al. 2000;
Karlicky et al. 2000). However, all these radio data were obtained with spectrometers with-
out any imaging information, and thus no spatial identification of the driving nonlinear
system with chaotic behavior could be furnished.

Further studies on nonlinear systems with chaotic behavior in solar data were concerned
with the chaotic dynamics in the solar wind (Polygiannakis and Moussas 1994), with a
low-dimensional chaotic attractor in short-term solar ultraviolet time series (Chatterjee
1999), with modeling of the onset of Alfvén turbulence and transition to chaos in the solar
corona (Chian et al. 2002), and with the Lyapunov exponents in hydrodynamic convection
of the solar dynamo (Kurths and Brandenburg 1991).

Of course, the most obvious nonlinear dissipative system with chaotic behavior is the
solar 11-year cycle (or magnetic 22-year Hale cycle), which shows quasi-periodic time
behavior near a limit cycle (Fig. 10.10). A few relevant studies are concerned with the
low-dimensional chaos of the solar cycle (Kremliovsky 1994), the chaotic behavior of the
north–south asymmetry of sunspots (Watari 1996b), the nonlinear analysis of solar cycles
(Serre and Nesme-Ribes 2000), the prediction of solar cycle 23 using nonlinear meth-
ods (Verdes et al. 2000), the multiperiodicity, chaos, and intermittency of the solar cycle
(Charbonneau 2001; Spiegel 2009), the evidence for low-dimensional chaos in sunspot
cycles (Letellier et al. 2006), or the interpretation in terms of high-dimensional convective
turbulence and intermittency fluctuations (Mininni et al. 2002, Charbonneau et al. 2004).

What is the relationship of nonlinear chaotic systems to systems with self-organized
criticality? The solar dynamo seems to be a quasi-periodic system with chaotic behavior
that modulates the solar activity, which includes emergence of buoyant magnetic fluxtubes,

Fig. 10.10 The variation of the sunspot number from 1800 to 2000, showing the 11-year solar cycle of
sunspot maxima. The solar cycle is believed to be a limit cycle of a nonlinear system with chaotic behavior
(credit: NGDC).
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flaring, and coronal mass ejections, which all are SOC phenomena. Thus, we can have a
nonlinear chaotic system as a driver of SOC systems, which governs the nonstationary
input rate on time scales that are generally much longer than the time scale of nonlinear
SOC avalanches. Thus the time-dependent fluctuations of chaotic drivers do not determine
the time scale distributions of secondary SOC processes, but they modulate the slowly-
varying or intermittent energy input rate only. Therefore, the temporal behavior of the
chaotic driver is decoupled from the temporal behavior (e.g., waiting-time distributions,
occurrence frequency distributions of durations) of the SOC system. Low-dimensional
attractors were identified with long limit cycles (i.e., 11 years for the solar dynamo), as
well as with very fast limit cycles (on time scales of seconds during flaring radio emission).
Can radio bursts driven by such fast chaotic cycles be consistent with SOC events? The
answer is no, because radio bursts that are triggered by such a fast chaotic attractor would
exhibit the same spatial and temporal correlation that is inherent to the low-dimensional
attractor, and thus would violate the statistical independence of individual SOC avalanches
we postulated for SOC systems (Section 9.1). In summary, nonlinear chaotic systems are
not SOC systems, but can play a role as drivers of the energy input rate of SOC systems.

10.8 Summary

There exist many kinds of nonlinear dissipative systems that do not necessarily exhibit
self-organized criticality. In this chapter we discussed a number of nonlinear systems that
own SOC-like features, such as powerlaws for the distribution of some parameters, but do
not qualify as SOC systems. The results of our discussion are summarized in Table 10.1,
which includes, besides stationary, nonstationary, and hierarchical SOC processes, alterna-
tive nonlinear systems such as self-organization (without criticality), Brownian motion or
diffusion, MHD turbulence, (externally) forced criticality, percolation, or chaotic systems.
For the identification of a SOC system, powerlaw distributions in the size (or energy) of
events are obviously not a sufficient criterion, since other non-SOC processes produce also
powerlaws (e.g., the fractal geometry of patterns that result from self-organization, turbu-
lence, or externally forced criticality). Also the waiting-time distribution is not a sufficient
discriminator, because SOC processes can have exponential waiting-time distributions (for
stationary Poisson processes) as well as powerlaw distributions (for nonstationary Poisson
processes). Therefore we derived a definition of a SOC system based on three (necessary
and sufficient) criteria (Section 9.1), which includes (1) the statistical independence of
events (spatially and temporally), (2) the nonlinear (exponential-like) growth phase during
the rise time of an event, and (3) the randomness of rise times, which implies a critical state
of a system above some threshold level. Using these three criteria that mostly character-
ize the dynamic aspects of SOC events, we can discriminate self-organization, Brownian
motion, MHD turbulence, forced criticality, percolation, or chaotic systems from SOC
systems, as indicated in Table 10.1. Nonlinear systems wth chaotic behavior can often be
described in terms of a coupled nonlinear equation system with a strange attractor and
a quasi-periodic limit cycle. The nonlinear pulses of such chaotic systems do not fulfill
the independence criterion of SOC events, but a chaotic system can modulate the energy
input of a SOC system. In conclusion, characterization of nonlinear processes given in
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Table 10.1 reflects only the typical behavior within the scope of astrophysical applications
we discussed in this text here, and thus is rather tentative, while further corroboration
with detailed parametric tests of observational data, numerical simulations, and theoretical
modeling is envisioned in future endeavors.

Table 10.1 Discrimination criteria for SOC and non-SOC systems.

Process Criterion 1: Criterion 2: Criterion 3: Occurrence Waiting
Statistical Nonlinear Random frequency time
independence growth rise times distribution distribution
of events phase of energy

Stationary SOC Yes Yes Yes Powerlaw Exponential
Nonstationary SOC Yes Yes Yes Powerlaw Powerlaw
Hierarchical SOC

−Coupled No Yes Yes Powerlaw Powerlaw
−Filtered Yes Yes Yes Powerlaw Powerlaw

Self-Organization No No No Powerlaw ...
Brownian Motion No No No ... ...
MHD Turbulence No No No Powerlaw Powerlaw
Forced Criticality No Yes Yes Powerlaw ...
Percolation No No No Exponential ...
Chaotic Systems No Yes No Exponential Quasi-periodic

10.9 Problems

Problem 11.1: Discuss the physical origin of randomization filters in the input process of
hierarchical SOC systems (i.e., the hourglass effect) for all SOC phenomena listed in
Table 9.1.

Problem 11.2: Find more examples of self-organizing patterns (Section 10.2) in astro-
physics, plasma physics, chemistry, and biophysics using a search engine on a web-
browser.

Problem 11.3: Simulate Brownian motion with a random generator (as shown in Fig. 10.3
in 1-D or 2-D space) and sample a size distribution of avalanches that consist of a
random number of particles undergoing Brownian diffusion. Do you obtain a powerlaw
distribution?

Problem 11.4: Turbulence exhibits a powerlaw spectrum with a powerlaw function of
P(k) ∝ k−5/3, with k being the wavenumber. How does this scaling law translate into
a power spectrum P(ν) of a time series and into a distribution of time scales N(T )
(Hint: Use the relationship between a shot noise spectrum and the distribution of pulse
durations described in Section 4.8.4.)

Problem 11.5: Use the Lotka–Volterra equation to describe a nonlinear system with quasi-
periodic behavior. Can you simulate with this equation system similar time profiles as
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observed for the R Scuti star (Fig. 10.9) or the solar cycle (Fig. 10.10). Give a physical
interpretation of the variables in the Lotka–Volterra equation system that would explain
the (quasi-periodic) time scale of the limit cycle?
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Appendix A: Physical Constants

Physical quantity Symbol Value cgs units

Speed of light in vacuum c = 2.9979×1010 cm s−1

Elementary charge e = 4.8023×10−10 statcoulomb
Electron mass me = 9.1094×10−28 g
Proton mass mp = 1.6726×10−24 g
Proton/electron mass ratio mp/me = 1.8361×103

Gravitational constant G = 6.6720×10−8 dyne cm2 g−2

Boltzmann constant kB = 1.3807×10−16 erg K−1

Planck constant h = 6.6261×10−27 erg s
Rydberg constant RH = me4/4π h̄3c = 1.0974×105 cm−1

Bohr radius a0 = h̄2/mee2 = 5.2918×10−9 cm
Electron radius re = e2/mec2 = 2.8179×10−13 cm
Stefan−Boltzmann constant σ = 2π5k4

B/(15c2h3) = 5.6774×10−5 erg cm−2 s−1 K−4

1 electronvolt εeV = 1.6022×10−12 erg
TeV = 1.1604×104 K
λeV = 1.2398×10−4 cm
νeV = 2.4180×1014 Hz

1 ångstrøm (Å) = 10−8 cm
1 jansky (Jy) = 10−23 erg s−1 cm−2 Hz−1

1 solar flux unit (SFU) = 10−19 erg s−1 cm−2 Hz−1

1 astronomical unit (AU) = 1.50×1013 cm

Solar radius R� = 6.96×1010 cm
Solar mass M� = 1.99×1033 g
Solar gravitation g� = GM�/R2� = 2.74×104 cm s−2

Solar escape speed v∞ = 6.18×107 cm s−1

Solar age t� = 4.60×109 years
Solar radiant power L� = 3.90×1033 erg s−1

Solar radiant flux density F� = 6.41×1010 erg cm−2 s−1

Solar constant (flux at 1 AU) f� = 1.39×106 erg cm−2

Solar solid angle (at 1 AU) Ω� = πR2�/AU2 = 6.76×10−5 ster
Photospheric temperature Tphot = 5,762 K
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Appendix B: Plasma Parameters

Physical quantity Definition Numerical formula (cgs units)

Thermal pressure pth = 2nekBTe = 2.76×10−16 ne T (dyne cm−2)
Magnetic pressure pm = B2/(8π) = 3.98×10−2 B2 (dyne cm−2)
Plasma-β parameter β = (pth/pm) = 6.94×10−15 neTeB−2

Thermal scale height λT = 2kBTe/(μCmpg�) = 4.73×103 Te (cm)
Electron thermal velocity vTe = (kBTe/me)1/2 = 3.89×105 T 1/2

e (cm s−1)
Ion thermal velocity vTi = (kBTi/μmp)1/2 = 9.09×103 (Ti/μ)1/2 (cm s−1)
Ion mass density ρ = nimi = niμmp = 1.67×10−24 μ ni (g cm−3)
Sound speed cS = (γ pth/ρ)1/2 = 1.66×104 (T/μ)1/2 (cm s−1)
Alfvén speed vA = B/(4πμmpni)1/2 = 2.18×1011 B (μni)−1/2 (cm s−1)
Electron plasma frequency fpe = (nee2/πme)1/2 = 8.98×103 n1/2

e (Hz)
Ion plasma frequency fpi = (niZ2e2/πμmp)1/2 = 2.09×102 Z(ni/μ)1/2 (Hz)
Electron gyrofrequency fge = eB/(2πmec) = 2.80×106 B (Hz)
Ion gyrofrequency fgi = ZeB/(2πμmpc) = 1.52×103 ZB/μ (Hz)
Electron collision frequency fce = 3.64×100ne lnΛT−3/2

e (Hz)
Ion collision frequency fci = 5.98×10−2 ni lnΛZ2T−3/2

i (Hz)
Electron collision time τce = 1/ fce = 2.75×10−1 T 3/2

e /(ne lnΛ) (s)
Ion collision time τci = 1/ fci = 1.67×101 T 3/2

i /(ni lnΛZ2) (s)
Electron gyroradius Re = vTe/(2π fge) = 2.21×10−2 T 1/2

e B−1 (cm)
Ion gyroradius Ri = vTi/(2π fgi) = 9.49×10−1 T 1/2

i μ1/2Z−1B−1 (cm)
Debye length λD = (kBTe/4πnee2)1/2 = 6.90×100 T 1/2n−1/2

e (cm)
Dreicer field ED = Ze lnΛ/λ 2

D = 1.01×10−11Z lnΛneT−1
e (statvolt cm−1)

Electrical conductivity σ = nee2τce/me = 6.96×107 ln(Λ)−1Z−1T 3/2
e (Hz)

Magnetic diffusivity η = c2/(4πσ) = 1.03×1012 ln(Λ)Z T−3/2
e (cm2 s−1)

Magnetic Reynolds number Rm = lv/η = 9.73×10−13 lv T 3/2 lnΛ−1

Thermal Spitzer conductivity κ = 9.2×10−7 (erg s−1 cm−1 K−7/2)
coeff.

Thermal conductivity κ‖ = κT 5/2 = 9.2×10−7 T 5/2 (erg s−1 cm−1 K−1)
Radiative loss rate Λ0(T ≈ 1 MK) = 1.2×10−22 (erg s−1 cm3)
Coronal viscosity νvisc = 4.0×1013 (cm2 s−1)

− cgs units: length l (cm), mass m (g), time t (s), Temperature T (K), magnetic field B (G), densities ni,ne
(cm−3).
− Adiabatic index: γ = cp/cv = (N +2)/N = 5/3 = 1.67.
− Ion/proton mass ratio μ = mi/mp: μ(H) = 1, μ(He) = 4, μ(Fe) = 56.
− Mean molecular weight in corona (H:He = 10 : 1): μC = (10∗1+1∗4)/11 = 1.27
− Coronal approximation (full ionization): ni = ne.
− Coulomb logarithm: lnΛ = 23− ln(n1/2

e T−3/2
e ) ≈ 20 for Te <∼ 10 eV.

− Charge state: proton �→ Z = 1, Fe IX �→ Z = 8.
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Physical Units Symbols

A ampère, unit for electric current (SI)
Å ångstrøm = 10−8 cm
AU astronomical unit
C coulomb, unit for electric charge (SI)
cm centimeter, unit for length (cgs)
dyne unit for force (cgs)
erg unit for energy (cgs)
eV electronvolt; keV, MeV, GeV
g gram, unit for mass (cgs); kg (SI)
G gauss, unit for magnetic field (cgs); kG
J joule, unit for energy (SI)
Hz hertz = s−1, unit for frequency (SI); kHz, MHz, GHz
K kelvin, unit for temperature (cgs, SI); MK
m meter, unit for length (SI); μm, mm, cm, dm, km, Mm
N newton, unit for force (SI)
rad radian, unit angle π
s second, unit for time (cgs, SI)
ster steradian, unit for solid angle (ster=rad2)
T tesla, unit for magnetic field (SI)
V volt, unit for electric potential (SI)
W watt, unit for power (SI); kW, MW

Latin Symbols

A magnetic vector potential function
A area (cm2)
a amplitude (cm)
B magnetic field vector, magnetic induction
B magnetic field strength (G)
B(p,q) beta function
C count rate (s−1)
C contour curve of surface integral
D fractal dimension
D decay time (s)
D(x, t) diffusion constant (cm2 s−1)
D total derivative ∂/∂ t + v ∂/∂x
d distance (cm)
E total energy (erg)
Ekin kinetic energy (nonrelativistic Ekin = 1

2 mv2)
Em magnetic energy (Em = B2/8π)
Eth thermal energy (Eth = kBTe)
EX total radiated energy in X-rays (erg)
EM emission measure EM = n2z (cm−5)

electric field strength (statvolt cm−1)
e elementary electric charge
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e energy (erg)
F photon flux (erg s−1 cm−2 keV−1)
F force (dyne)
Fd dynamic friction force (dyne)
Fs static friction force (dyne)
f frequency (Hz)
f (x) function
G gravitational constant
g gravitational acceleration (cm s−2)
h height (cm)
h Planck constant
I current (statampere)
I intensity of radiation (erg s−1 cm−2 Hz−1 ster−1)
j current density vector
kB Boltzmann constant
L, l length (cm)
LX luminosity in X-rays
L Laplacian
M,m mass (g)
m magnitude
me electron mass
N(x) differential frequency distribution of parameter x
Ncum(>x) cumulative frequency distribution of parameter x
n number
ne electron number density (cm−3)
P peak energy dissipation rate (erg s−1)
P time period (s)
P perimeter (cm)
P(x) probability distribution function of parameter x
P(ν) power spectrum versus frequency ν
p powerlaw index of power spectrum P(ν) ∝ ν−p

p powerlaw index of waiting time distribution N(p) ∝ (Δt)−p

p pressure (dyne cm−2)
q ratio
q electric charge
R,r radius or range (cm)
Rm magnetic Reynolds number
R� solar radius
R(T ) instrumental temperature response function
r rate (s−1)
S surface (specifying a surface integral)
S source function
S size
s path distance along curve (cm)
T time duration (s)
T temperature (K)
Te electron temperature (K)
t time (s)
ts saturation time (s)
V volume (cm3)
v, v velocity (cm s−1)
vA Alfvén speed
W energy release rate (erg s−1)
WS saturation energy rate (erg s−1)
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w width (cm)
x spatial coordinate or position
y spatial coordinate or position
z spatial coordinate (along line-of-sight)
z height difference

Greek Symbols

α powerlaw index of differential frequency distribution
αA powerlaw index of area A
αP powerlaw index of peak energy rate P
αE powerlaw index of total energy E
αS powerlaw index of size S
αT powerlaw index of time duration T
α angle (deg)
α correlation coefficient
β powerlaw index of cumulative frequency distribution
β correlation coefficient
Γ growth rate (1/τG)
γ powerlaw index of power spectrum
γ powerlaw index of photon spectrum
γ correlation coefficient
γ damping constant
∇ nabla operator
Δ Laplace operator
Δ difference
Δt waiting time between events (Δt = ti+1 − ti)
δ powerlaw index of electron spectrum
ε infinitesimal length scale
ε photon energy ε = hν (keV)
εx hard X-ray photon energy ε = hνx
η magnetic diffusivity
η energy decay rate (erg s−1)
Θ(x) Heavyside step function
θ ,ϑ angle
κ diffusion constant
Λ(T ) radiative loss function
λ wavelength (cm)
λ event occurrence rate (1/Δt)
μ mean (of Gaussian distribution)
ν frequency (s−1 = Hz)
νvisc coronal viscosity
ρ mass density, ρ = n m
ρ random number
σ standard deviation (of Gaussian distribution)
σ electrical conductivity
τ time scale (s)
τG growth time
τd decay time
τrise rise time
Φ magnetic flux (Mx = G cm2)
ϕ azimuthal angle



  



Acronyms

1-D, 2-D, 3-D one-, two-, three-dimensional
ACE Advanced Composition Explorer
AE Auroral Electron jet index
AGN Active Galactic Nuclei
BATSE Burst And Transient Source Experiment (on CGRO)
BCS Bragg Crystal Spectrometer (on Yohkoh)
BCSW Bak–Chen–Scheinkman-Woodford (1993) model
BTW Bak–Tang–Wiesenfeld (1987) model
Cassini Cassini orbiter, part of the Cassini–Huygens space probe
CCD Charge Coupled Device (camera)
CME Coronal Mass Ejection
DC Direct Current
CCC Cross-Correlation Coefficient
CEOF Complex Empirical Orthogonal Function analysis (method)
CGRO Compton Gamma Ray Observatory (spacecraft)
Cluster Cluster (ESA space mission)
CV Cataclysmic Variable stars (Canes Venatici type stars)
DCIM DeCIMetric bursts
DEM Differential Emission Measure (distribution)
DKA Drift-Kinetic Alfvén vortex motions
DNA DeoxyriboNuclei Acid
EIT Extreme-ultraviolet Imaging Telescope (on SoHO)
ETH Eidgenössische Technische Hochschule (Zurich, Switzerland)
EUV Extreme UltraViolet
EUVE Extreme UltraViolet Explorer (spacecraft)
EUVI Extreme-UltraViolet Imager (on SECCHI/STEREO)
FBR Fourier-Based Recognition (method)
Fermi Fermi Gamma-ray Space Telescope (spacecraft)
FFT Fast Fourier Transform
FWHM Full Width Half Maximum
FSOC Forced and/or Self-Organized Criticality model
FUV Far UltraViolet imager (on IMAGE spacecraft)
GEOTAIL magnetospheric satellite
GOES Geostationary Orbiting Earth Satellite (spacecraft)
GRANAT International Astrophysical Observatory (Russian spacecraft)
GRB Gamma-Ray Burst spectrometer (on ULYSSES spacecraft)
GSFC Goddard Space Flight Center (NASA)
Hα hydrogen line (6562.8 Å)
HSP High-Speed Photometer (on HST spacecraft)
HST Hubble Space Telescope (spacecraft)
HXRBS Hard X-Ray Burst Spectrometer (on SMM)
HXR Hard X-Rays
HXT Hard X-ray Telescope (on Yohkoh)
IBM International Business Machines Corporation
ICA Independent Component Analysis (method)
ICE International Cometary Explorer (ISEE-3 spacecraft)
IMAGE Imager for Magnetopause-to-Aurora Global Exploration (spacecraft)
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IMF Interplanetary Magnetic Field
IMP Interplanetary Monitoring Platform (spacecraft)
ISEE-3 International Sun/Earth Explorer 3 (ICE spacecraft)
IT Intermittent Turbulence
JPL Jet Propulsion Laboratory (Pasadena, USA)
KLT Karhunen–Loéve Transform (method)
LASCO Large Angle Spectrometric COronagraph (on SOHO)
LMXB Low-Mass X-ray Binary star
LMC Large Magellanic Cloud (a galaxy)
MDI Michelson Doppler Imager (on SoHO)
MHD Magneto-HydroDynamics
MLT Multiple Level Tracking (method)
MW MicroWaves
MW-S MicroWave Spike bursts
NASA National Aeronautics and Space Administration
NGC New General Catalogue (of nebulae and star clusters)
NGDC National Geophysical Data Center (USA)
NICMOS Near Infrared Camera and Multi-Object Spectrometer (on HST)
NIXT Normal Incidence X-Ray Telescope (rocket instrument)
NOAA National Oceanic and Atmospheric Administration (USA)
OFC Olami–Feder–Christensen (1992) model
OSO-7 Orbiting Solar Observatory 7 (satellite)
PCA Principal Component Analysis (method)
PHEBUS Payload for High Energy BUrst Spectroscopy (on GRANAT)
POD Proper Orthogonal Decomposition (method)
POLAR Polar satellite
PSR PulSaR
QPO Quasi-Periodic Oscillations (in stellar data)
Ranger-8 lunar spacecraft
RCL Resistor (R), Capacitor (C), inductor (L) circuit
RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager (spacecraft)
RXTE Rossi X-Ray Timing Explorer (spacecraft)
SDSS Sloan Digital Sky Survey (ground-based telescope)
SECCHI Sun Earth Connection Coronal and Heliospheric Investigation (on STEREO)
SEP Solar Energetic Particle events
SGR Soft Gamma Repeaters
SMM Solar Maximum Mission (spacecraft)
SO Self-Organization
SOC Self-Organized Criticality
SOHO SOlar and Heliospheric Observatory (spacecraft)
SSC Sudden Storm Commencement (magnetospheric events)
SSW Solar SoftWare (software package in IDL)
STEREO Solar TErrestrial RElations Observatory (spacecraft)
SuperDARN Super Dual Auroral Radar Network
SWAVES STEREO/WAVES instrument (on STEREO spacecraft)
Swift spacecraft to observe gamma-ray bursts (NASA)
SXR Soft X-Rays
SXT Soft X-ray Telescope (on Yohkoh)
TRACE Transition Region And Coronal Explorer (spacecraft)
UCB University of California, Berkeley
Ulysses interplanetary spacecraft
UV ultraviolet
UVI UltraViolet Imager (onboard POLAR spacecraft)
Voyager Voyager 1 and 2 (interplanetary spacecraft)
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WATCH Wide Angle Telescope for Cosmic Hard X-Rays (on GRANAT)
WHAM Wisconsin Hα Mapper (ground-based telescope)
WIC Wideband Imaging Camera (a FUV instrument on IMAGE)
WIND interplanetary spacecraft
WTD Waiting Time Distribution
XEST XMM Extended Survey of the Taurus Molecular Cloud
XMM X-ray Multi-Mirror Misson (spacecraft), also called Newton
XUV eXtreme UltraViolet
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Morach.
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California, Berkeley, and Ching Meng, JHU/APL).

the NASA spacecraft “Voyager 2” (JPL).
Fig. 1.11b: http://www.outer-space-art-gallery.com/images/bergeronsaturn.jpg, space art rendering of Sat-
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flare arcade observed by the NASA spacecraft TRACE (LMSAL).
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dwarf star RS Oph, Astronomy picture of the day 2006 July 26 (David A. Hardy, PPARC, and
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by Claudio Rocchini.
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mission, posted by Randy L. Korotev at website of Dept. of Earth and Planetary Sciences, Washington
University St. Louis.

Fig. 8.21a: http://www.astrobio.net/albums/xsolar/aci.sized.jpg, Asteroid Eros and asteroid belt, posted by
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Physics Laboratory (JHU/APL).

Fig. 8.22:

Saturn B ring, photographed by NASA’s spacecraft Cassini, NASA, JPL, Space Science Institute.

posted at website of The Australian National University (ANU), figure created by Matthew Colless.

the NICMOS instrument on NASA’s Hubble Space Telescope (HST), figure credit Morten Andersen,
posted at website of Astrophysical Institute Potsdam.

rendering of blazar, NASA website.

ing of magnetar, NASA/GSFC website of SWIFT mission.
Fig. 9.5: http://astroparticle.uchicago.edu/archives.htm, University of Chicago, credit Simon Swordy.

Fig. 1.1a: http://members.virtualtourist.com/m/5f4b4/, Water-storage dam at Yaotsu, Gifu, Japan.
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Fig. 1.11a: http://www.lightandmatter.com/html books/1np/ch10/figs/saturn.jpg, Saturn rings observed by

010415 221512.gif, solar post-Fig. 1.12a: http://trace.lmsal.com/POD/looposcillations/paperI/images/T171

Fig. 1.12b: http://trace.lmsal.com/POD/images/arcade 9 nov 2000.gif, solar postflare arcade observed by

Fig. 1.16: http://antwrp.gsfc.nasa.gov/apod/image/0607/rsoph pparc big.jpg, Artistic rendering of white

Fig. 2.6: http://www.ics.uci.edu/˜ eppstein/ca/, John Conway’s “Game of Life” cellular automatons (D.

Fig. 2.9: http://en.wikipedia.org/wiki/Bak–Sneppen model, Bak-Sneppen model, Wikipedia, figure created

http://en.wikipedia.org/wiki/Rings of-Saturn, http://photojournal.jpl .nasa.gov/catalog/PIA08955,

Fig. 9.1: http://www.mso.anu.edu.au/2dFGRS/Public/Pics/2dFzcone big.gif, 2dF galaxy redshift survey,

Fig. 9.2: http://www.aip.de/image archive/images/mandersen.jpg, R136 in 30 Doradus, photographed by

Fig. 9.3: http://i.space.com/images/h jet schematic 02.jpg, http://www.tutorgig .com/ed/Black hole, Artistic

HI.jpg, Artistic render-Fig. 9.4: http://www.nasa.gov/images/content/311187main fermiswift magnetar2
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Fig. 9.10: http://pluto.space.swri.edu/image/glossary/substorm.jpg, Substorm cartoon from W. Baumjo-
hann and R.A. Treuman, Basic Space Plasma Physics, 1996. The three auroral images were obtained
with the WIC instrument onboard NASA’s IMAGE mission, posted at webpage of Southwest Research
Institute.

Maion.
Fig. 10.2b: http://www.freemars.org/jeff/planets/Jupiter.jpg, Jupiter photographed by NASA’s Voyager 2

mission, posted by Jeff Root at website of the Minnesota Space Frontier Society.
Fig. 10.2c: http://cdn.physorg.com/newman/gfx/news/hires/milkywaygala.jpg, Artist’s rendering of Milky

way galaxy, posted on website on Science News, Technology, Physics, Nanotechnology, Space Sci-
ence, Earth Science, Medicine of Physorg.com.

Fig. 10.2d: http://www.sciencedaily.com/images/2007/02/070210172729.jpg, Jupiter’s moon Europa,
photographed by NASA and JPL Galileo mission, posted at website Science Daily: News and Ar-
ticles in Science, Health, Environment and Technology.

Fig. 10.5: http://sci.esa.int/science-e-media/img/c1/solarwind-spectrum410.gif, Solar wind spectra of tur-
bulence cascade, measured with ESA’s Cluster mission, modeled with gyro-kinetic theory (Howes et
al. 2008), posted at ESA/CLUSTER website.

Fig. 10.8a: http://ccl.northwestern.edu/netlogo/models/Percolation, Percolation code from NetLogo Mod-
els Library: Sample Models/Earth Science, posted at website of Center for Connected Learning (CCL)
and Computer-Based Modeling at Northwestern University.

Fig 10.10: http://astronomy.swin.edu.au/cosmos/S/Sunspot+Cycle, Solar cycle sunspot number, credit Na-
tional Geophysical Data Center (NGDC), posted at website of Swinburne University of Technology,
Australia.

Fig. 10.2a: www.maion.com/photography/ photos/nami1673.jpg, Sand dunes in Namibia, website of Jef
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Arzner, K. and Güdel, M. 2004, Are coronae of magnetically active stars heated by flares? III. Analytical

distribution of superposed flares, Astrophys. J. 602, 363-376.
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Güdel, M., Audard, M., Skinner, S.L., and Horvath, M.I. 2002, X-ray evidence for flare density variations
and continual chromospheric evaporation in Proxima Centauri, Astrophys. J. 580, L73-L76.
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Kakinuma, T., Yamashita, T., and Enome, S. 1969, A statistical study of solar radio bursts a microwave

frequencies, Proc. Res. Inst. Atmos. Nagoya Univ. Japan, Vol. 16, 127-141.
Kaladze, T.D. and Shukla, P.K. 1987, Self-organization of electromagnetic waves into vortices in a mag-

netized electron-positron plasma, Astrophys. Space Sci. 137, p.293-296.
Kalapotharakos, C., Voglis, N., and Contopoulos, G. 2004, Chaos and secular evolution of triaxial N-body

galactic models due to an imposed central mass, Astron. Astrophys. 428, 905-923.
Karlicky, M., Sobotka, M., and Jiricka, K. 1996, Narrowband dm-spikes in the 2 GHz frequency range and

MHD cascading waves in reconnection outflows, Solar Phys. 168, 375-383.
Karlicky ,M., Jiricka, K., and Sobotka, M. 2000, Power-law spectra of 1-2 GHz narrowband dm-spikes,

Solar Phys. 195, 165-174.
Kashyap, V.L. and Drake, J.J. 1999, On X-ray variability in active binary stars, Astrophys. J. 524, 988-999.



374 References
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A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus molecular cloud,
Astron. Astrophys. 468, 463-475.

Stern, B.E. and Svennson, R. 1996, Evidence for “chain reaction” in the time profiles of gamma-ray bursts,
Astrophys. J. 469, L109-L113.

Sturrock, P.A. and Uchida, Y. 1981, Coronal heating by stochastic magnetic pumping, Astrophys. J. 246,
331-336.

Su, Y., Gan, W.Q., and Li, Y.P. 2006, A statistical study of RHESSI flares, Solar Phys. 238, 61-72.
Sundkvist, D., Krasnoselskikh, V., Shukla, P.K., Vaivads, A., Andre, M., Buchert, S., Reme, H. 2005, In

situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence, Nature
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