
VSRT Memo # 054

Script for simple MOSAIC data analysis using GNU Octave

Vincent L. Fish

Abstract

The free GNU Octave package can be used to reduce MOSAIC data in an ele-
gant way using matrices. Data reduction with Octave may represent an alterna-
tive analysis pathway with pedagogical value reinforcing linear algebra concepts
for students of an appropriate mathematical level. A sample, annotated Octave
script is provided.

1 About GNU Octave

GNU Octave is a free software package intended for numerical computations that is mostly
compatible with MATLAB, a commercially-available product of The Mathworks. Full de-
tails of Octave, including a manual and links to download the package, are available at
http://www.gnu.org/software/octave/ , and additional useful packages can be found at
http://octave.sourceforge.net/ . Binary packages are available for Windows, Linux, and
Mac OS X. The testing described in this memo was done on a Linux Debian-based system.

Like MATLAB, Octave is designed for fast performance on matrices. Octave supports
coding with multiple for loops, as are common in any other programming language. However,
faster performance and cleaner code can be obtained by using matrix representations of data.
The remainder of this memo demonstrates some of the matrix-based data analysis that can
be done with Octave.

2 Data format

The input file chsout.txt consists of lines of the form

year 2008 day 026 hour 00 min 00 num_rec 6 sun_el -25.1

tpwr 116.12705 rms 0.06847 ltm 20.1 spectrum

(not including the line wrap) followed by a series of 64 numbers corresponding to data in each
of the spectral channels. The downloaded file contained 45712 lines. The number of lines can
be obtained with the Unix command wc or inferred later in Octave. (It is not necessary to
know this number ahead of time.)

3 Script

Octave will read scripts in the current directory. Scripts should have an extension .m and
can be invoked by typing the filename (without .m). Thus, if your script is called mosaic.m,
simply type mosaic at the Octave prompt.

1

A sample script appears below, with annotations following. The four lines beginning with
[data,count] should appear on one line but have been wrapped for display here. Lines
beginning with # are interpreted by Octave as comments. It is not necessary to terminate
commands with a semicolon, but not doing so will cause Octave to echo the result of the
calculation.

MOSAIC - A script file to load and do basic analysis of MOSAIC data

Read in data into a 73 row x 45712 column matrix

fid=fopen(’chsout.txt’,’r’);

The following prints as four separate lines but should appear on one

[data,count] = fscanf(fid,"%*s %f %*s %f %*s %f %*s %f %*s %f %*s %f %*s %f %*s %f

%*s %f %*s %f

%f %f

%f %f %f %f %f %f %f %f %f %f %f %f %f",[73,Inf]);

fclose(fid);

Figure out how many lines of data we read in

n = count/73;

These are 1 row x 45712 column matrices

year = data(1,:);

day = data(2,:);

hour = data(3,:)

minute = data(4,:);

num_rec = data(5,:);

sun_el = data(6,:);

tpwr = data(7,:);

rms = data(8,:);

ltm = data(9,:);

This is a 64 row x 45712 column matrix

spectrum = data([10:73],:);

This is a 45712 row x 1 column matrix

unitcolumn = ones(n,1);

To sum a quantity, right multiply by unitcolumn, e.g.:

averaged_spectrum = spectrum*unitcolumn/n;

#plot(averaged_spectrum);

total_records = num_rec*unitcolumn;

2

Note that we’re conjugating num_rec

weighted_spectrum = spectrum*num_rec’/total_records;

#plot(weighted_spectrum);

Take only scans where the sun is below -30 deg elevation:

k has dimension 1 x 45712

k = sun_el < -30;

left_vector = ones(64,1);

mask = left_vector*k;

Note the . below -- doing element-by-element multiplication

NOT MATRIX MULTIPLICATION!

masked_spectrum = spectrum.*mask;

total_masked_records = k*num_rec’;

weighted_masked_spectrum = masked_spectrum*num_rec’/total_masked_records;

plot(weighted_masked_spectrum);

axis([1 64]);

xlabel(’Channel number’);

ylabel(’Uncalibrated units’);

legend(’off’);

4 Explanation of the script

The first three commands open the data file for reading, load the data into a matrix, and close
the file. The Octave fscanf command is similar to the C command but is less fussy about
number type and precision. In the format string, %*s tells Octave to read in and subsequently
ignore a string, and %f tells Octave to accept a number. The [73,Inf] asks Octave to construct
a matrix called data consisting of 73 rows (corresponding to the 73 numbers read in) and as
many columns as necessary. The variable count contains a count of the number of successful
numbers read in (73 × 45712).

The matrix data looks like

3

2008 2008 2008 2008 . . .

26 26 26 26 . . .

0 0 0 0 . . .

0 10 20 30 . . .

6 7 6 7 . . .

−25.1 −27.1 −29.1 −31.1 . . .

116.12705 116.13938 116.13049 116.12940 . . .

0.06847 0.07741 0.07153 0.06976 . . .

20.1 20.3 20.4 20.6 . . .

−0.06246 −0.00345 −0.02799 −0.09357 . . .

0.02521 −0.00580 0.04384 0.10648 . . .

0.00073 −0.02041 −0.02089 0.05103 . . .

.

,

where each column consists of one data point (45712 in total) and each row consists of a series
of 73 numbers corresponding to year, day, hour, etc., ending in 64 numbers representing the
spectrum. The next lines in the script split out the first nine rows into row vectors of their
own and rows 10 through 73 as a 64 × 45712 matrix (called spectrum) of the spectrometer
data alone.

We can produce a summed spectrum by adding up the points of each row. The simplest
way to do this is to right-multiply the matrix spectrum by a 45712 row × 1 column vector
consisting entirely of ones. The script demonstrates how to set up a unit column vector and
do matrix multiplication. The same line also divides every element in the product matrix
spectrum*unitcolumn by the scalar n.

However, a fairer way to average the data is to weight the data points by the number of
records that have been pre-averaged to produce the 10-minute data record. In other words,
we want to find

d̄i =

n
∑

j=1

di,j wj

n
∑

j=1

wj

,

where j ranges from 1 to the number of data points n, di,j is the jth data point in spectral
channel i, and wj is the number of records associated with the data point. As before, the sum in
the denominator can be computed by right multiplication of the 1×45712 matrix num rec with
the 45712×1 matrix unitcolumn. The sum in the numerator can be obtained by multiplication
of the data points by the number of records and then summing them. However, spectrum is
a 64× 45712 matrix and num rec is a 1× 45712 matrix, so they cannot be multiplied directly.
Instead we must take the transpose of num rec and form a 45712 × 1 matrix. To transpose a
matrix in Octave, add ’ after the name.

Finally, we can select subsets of the data by producing a mask vector (or matrix) with ones
representing the data we wish to keep and zeroes representing the data we wish to discard. For
instance, to select only data for which the elevation of the Sun is less than −30◦, the command

4

is k = sun el < -30. Since sun el is
[

−25.1 −27.1 −29.1 −31.1 −33.1 −35.0 −37.4 . . .
]

,

the vector k will have the following entries:
[

0 0 0 1 1 1 1 . . .
]

.

Left multiplication by a 64× 1 unit vector will produce a 64× 45712 matrix (mask) consisting
of 64 copies of the 1 × 45712 row vector k:

0 0 0 1 1 1 1 . . .

0 0 0 1 1 1 1 . . .

0 0 0 1 1 1 1 . . .

0 0 0 1 1 1 1 . . .

. .

.

We can now produce a new matrix corresponding to spectrum where data from Sun elevations
greater than −30◦ are replaced with zeroes by doing element-by-element multiplication of the
64 × 45712 matrix spectrum with the 64 × 45712 matrix mask. Careful, this is not matrix
multiplication! The element-by-element multiplication operator in Octave is .* (note the
period before the asterisk). To do a proper weighted average of the data, we must also zero
out the weights from times when the Sun is above −30◦ elevation. (While di,j wj will be zero
for these data points, wj will not, so the denominator in the equation for d̄i will be incorrect
if the high-elevation wj terms are not set to zero.) The spectrum thus obtained is plotted in
Figure 1. Multiple such masks can be constructed based on arbitrary filtering criteria, and the
data can easily be filtered by doing element-by-element multiplication on all such matrices.

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10 20 30 40 50 60

U
nc

al
ib

ra
te

d
un

its

Channel number

Figure 1: Spectrum of MOSAIC data for Sun elevations less than −30◦.

5

