VSRT MEMO #042 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886

June 25, 2008

Telephone: 781-981-5407 *Fax*: 781-981-0590

To:VSRT GroupFrom:Alan E.E. RogersSubject:Least squares fitting of a curve to the ozone spectrum

If we assume that a theoretical spectrum of a fixed shape can adequately represent the data when adjusted in amplitude and offset the problem is mathematically similar to finding the slope and intercept of a straight line fit to data. The algebra is most compact suing the following matrix notation:

y is a column vector representing the spectrum

x is a column vector with 2 elements, the first representing the amplitude and the second the offset.

A is a "design" matrix

 ϵ is colun vector of errors

so that

 $y = Ax + \varepsilon$

The least squares solution is the result of minimizing

$$Q = \varepsilon^{T} \varepsilon = (y - Ax)^{T} (y - Ax) = y^{T} y - x^{T} A^{T} y - y^{T} Ax + x^{T} A^{T} Ax$$

setting the derivative of Q with respect to x to zero

$$A^T A x = A^T y$$

and we obtain the estimate, \hat{x} ,

$$\hat{x} = \left(A^T A\right)^{-1} A^T y$$

an error estimate is obtained from

$$\left\langle (\hat{x}-x)(\hat{x}-x)^T \right\rangle^{\frac{1}{2}} = \left(A^T A\right)^{-1} A^T \varepsilon \varepsilon^T A \left(A^T A\right)^{-1} = \left[\left(A^T A\right)^{-1} \right]^{\frac{1}{2}} \sigma$$

when the errors are uncorrelated and have a standard deviation of σ . The $\langle \rangle$ brackets denote a statistical average.

If the theoretic spectrum is z_i and the measured spectrum y_i the amplitude estimate is $(a_4a_0 - a_1a_3)/d$

where
$$a_4 = \sum_{i=0}^{N-1} z_i y_i$$

 $a_0 = N$
 $a_1 = \sum z_i$
 $a_3 = \sum y_i$
 $d = a_0 a_2 - a_1^2$

The error estimate in amplitude

 $d^{-1/2}\sigma$

Reference:

Bevington, P.R., Robinson, D.K., "Data reduction and error analysis the physical sciences," McGraw-Hill, 1992.