MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886

April 4, 2008
Telephone: 781-981-5407
Fax: 781-981-0590
To: VSRT Group
From: Alan E.E. Rogers
Subject: Calculation of a geometry of antenna beam intersection with the mesosphere.
The calculation of the location of the region sensed by the ozone spectrometer involves several coordinate transformations (see Figure 1 for geometry) as follows:

1] Transform latitude and longitude of the antenna to rectangular coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ where
x is the direction of zero longitude
z is the direction of the Earth's pole
2] Calculate the distance from the antenna to the mesosphere say at the height of 100 km using the method given in memo \#33.

3] Derive the local coordinates
$E=d \sin (a z) \cos (e l)$
$\mathrm{N}=\mathrm{d} \cos (\mathrm{az}) \cos (\mathrm{el})$
$\mathrm{U}=\mathrm{d} \sin (\mathrm{el})$
Where $d=$ distance from 2]
az, el = azimuth and elevation of the antenna
4] Transform E,N,U to x, y, z and add to the x, y, z coordinates of the antenna
5] Transform x, y, z to latitude and longitude
For the setup at CHS
Antenna potions = 42 37.298, -71 22.54 (deg, min)
Antenna az $=172 \pm 2$ degrees

$$
\text { el }=8 \pm 1 \text { degrees }
$$

Intersection with mesosphere at 100 km at 37.813, - 70.525 (deg)
Also shown in Figure 1 is the "local" and "Earth" horizons at altitude. For an altitude of 100 km the "Earth" horizon is about 10 degrees below the local horizon.

Figure 1.

