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Preface to the Fifth Edition

Four significant factors have led us to update this text. The first is the breathtaking
progress in technology, especially in receiver and digital techniques. The second is
the advance of radio astronomy to shorter wavelengths, and the increased availabil-
ity of astronomical satellites. The third is a need to reorganize some of the chapters
in order to separate the basic theory, that seldom changes, from practical aspects
that change often. Finally, it is our desire to enhance the text by including problem
sets for each chapter. In view of this ambitious plan, we have expanded the number
of authors.

In the reorganization of this edition, we have divided Chap. 4 of the 4th edition
into two Chaps. 4 and 5. The first remains Chap. 4, with a slightly different ti-
tle, Signal Processing and Receivers: Theory. This was expanded to include digital
processing and components including samplers and digitizers. In Chap. 5, Practi-
cal Receiver Systems. we have relegated the presentations of maser and parametric
amplifier front ends, which are no longer commonly used as microwave receivers
in radio astronomy, to a short section on “historical developments” and We have
retained and improved the presentations of current state-of-the-art devices, cooled
transistor and superconducting front ends. We have also included descriptions of
local oscillators and phase lock loops. Chapters 5 and 6 in the 4th edition has now
become Chap. 6, Fundamentals of Antenna Theory and Chap. 7, Practical Aspects
of Filled Aperture Antennas. Our goal is to have an exposition of the rather mathe-
matical theory, in Chap. 6 followed by a treatment of the practical aspects of anten-
nas. Chapter 7 in the 4th edition is now Chap. 8, titled Single Dish Observational
Methods. Chapter 9 deals with Interferometers and Aperture Synthesis. Aperture
synthesis has become the most important imaging technique in radio astronomy;
this provides the only general method available for obtaining images of extremely
high resolution and quality, so the discussion has been extended and improved with
material pertenant to interferometers such as the Atacama Large Millimeter Array
(ALMA) and the Square Kilometer Array (SKA). Chapters 10 to 14 of this edition
have been updated to include recent observational results. Chapter 15 of the 4th edi-
tion, Molecules in Interstellar Space, has been divided into two Chapters, Overview
of Molecular Basics and Chap. 16, Molecules in the Interstellar Medium. Chapters
15 and 16 have been updated to take new developments into account.



vi Preface to the Fifth Edition

The existing facilities are providing new results on a daily basis. The increased
number of ground based radio single dish telescopes, especially in the millime-
ter and sub-mm wavelength range, such as ASTE, APEX, and NANTEN2, and
the availability of astronomical satellites starting with IRAS, and then ISO, ODIN,
MSX, CHANDRA and SPITZER have increased the number of discoveries. Some-
what more specialized are the radio telescopes dedicated to the study of the 3K
microwave background: these include the satellite missions COBE and WMAP and
the balloon mission Boomerang, as well as numerous additional ground based fa-
cilities. Taken together, these have changed our concepts of astronomy. A sample of
these results have been included. This trend is expected to continue with the launch
of the Herschel Satellite Observatory and the start of scientific measurements with
the Stratospheric Observatory for Infrared Astronomy, SOFIA.

We believe that this text is of interest for communications engineers as well as
radio astronomers. We hope this new edition will serve a useful purpose as radio
astronomy enters the era of Herschel, SOFIA, ALMA, SKA, SKA precursors.

The Table of interstellar molecules was provided by T. Millar (Queen’s Univer-
sity Belfast) & E. Herbst (Ohio State University). Advice from G. H. Tan, H. Rudolf,
R. Laing (all ESO) and A. Veronig (Graz University), W. Alef (MPIfR, Bonn), A.
Clegg (NSF), D. Boboltz (USNO) and A. Fey (USNO) is greatfully acknowledged.
We thank E. Janssen, J. Howard and M. Martins (ESO) who provided new or up-
dated figures for this edition. As in previous editions, we have corrected a number
of errors in the text. Most of these were kindly provided by J. J. Condon (NRAO),
A. Guzmann (Chile) and Biwei Jiang (Peking).

Web sites are a new mode of communicating recent results. However we have
limited our references to these as much as possible since the addresses change of-
ten. A remark about nomenclature: in the index, we have (with some arbitrariness)
ordered single radio telescopes under antennas, arrays of antennas with coupled
outputs under interferometers and facilities such as Herschel and SOFIA under their
names.

Munich, Bonn and Bochum T. L. Wilson
September 2008 Kristen Rohlfs
S. Hiittemeister



Excerpts from the Prefaces of Previous Editions

This book describes the tools radio astronomers need to pursue their goals. These
tools consist of: (1) descriptions of the properties and use of radio telescopes and
various types of receivers needed to analyze cosmic radio signals, and (2) descrip-
tions of radiation mechanisms responsible for broadband and spectral line radiation.
This book developed from a one-year graduate course that was given repeatedly at
the Ruhr-Universitit at Bochum. We hope that this text will be useful for all who
use results obtained from radio astronomy. Our aim is to help them to understand
the origin of well known results particularly the underlying assumptions and this
book may occasionally save some scientists working in the field of radio astronomy
from long searches in the literature when questions concerning tools occur.

The students to whom this course was addressed have had a rather thorough back-
ground knowledge of physics. However, difficulties often arose when the instrumen-
tal tools were discussed. Clearly there is a difference between how such a subject
is treated in general physics books and the way it is presented in texts intended for
engineers. Our explanations are meant to use concepts familiar to astrophysicists
and physicists.

For each chapter, a list of references is given. Usually this list has two parts:
general references give a list of papers and books that cover the general aspects and
which often give a more thorough treatment of the subjects covered, and special
references document the sources for specific topics. However, these references do
not give a complete review of the relevant literature. The papers cited are those that
present the subject in a convenient way.

The basic concepts used in the first edition have remained unchanged. This book
gives an outline of the methods and tools of radio astronomy. Results are given to
illustrate aspects of the theories or to make the approach used plausible. The book
is intended to be of help in applying radio astronomy, but it is not a description of
the many results. This book is not intended to be a review of the entire field of radio
astronomy in the literature but describes only the basic and undisputed concepts and
results.

Another problem encountered when writing a textbook is that of consistent des-
ignations, symbols, and units. Since the astronomical community prefers their tra-
ditional mixed set of units, we use the Gaussian CGS system, augmented when

vii



viii Excerpts from the Prefaces of Previous Editions

necessary with other units. Where needed, we give the relations in their respective
units in the equations.

References to the current literature have been updated. We do not attempt to give
a complete review and we chose those references that are the most recent or cover
the subject most comprehensively.
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Chapter 1
Radio Astronomical Fundamentals

1.1 On the Role of Radio Astronomy in Astrophysics

Almost everything that we know about distant sources, that is, stars and the interstel-
lar medium, has been obtained from electromagnetic radiation. This includes spatial
distributions, kinematics and composition. Only a very small part of our knowledge
stems from material information carriers, such as meteorites that impact the earth,
cosmic ray particles or samples of material collected by manned or unmanned space
probes.

For many thousands of years, mankind was restricted to measurements of visible
light; only since the time of Herschel was this wavelength range slightly expanded
into the near Infrared; in 1930, it extended from the near ultraviolet to the near
infrared: 0.35um < A < 1 um. At other wavelengths, investigations were limited
either because the terrestrial atmosphere blocks radiation or because no detectors
for this radiation were available. In 1931 this situation changed dramatically when
Jansky showed that radiation at a wavelength of 14.6 m (=20.5 MHz) received with
a direction sensitive antenna array, must be emitted by an extraterrestrial source
which was not the sun. Jansky continued his observations over several years without
achieving much scientific impact. His observations were first taken up and improved
after 1937 by another radio engineer, Grote Reber, who carried out measurements at
a shorter wavelength, A = 1.87m (=160 MHz). These observations were published
in a professional astronomical journal. Later, after the end of World War II, im-
proved receivers allowed the new radio window to develop. Radio physics had made
great progress during the war years, mainly due to efforts directed towards the devel-
opment of sensitive and efficient radar equipment. After the war, some researchers
turned their attention towards the radio “noise” from extraterrestrial sources.

We will not follow this historical development any further, except to note that the
historical development has been toward higher sensitivity, shorter wavelength, and
higher angular resolution. The radio window reaches from A = 10-15m to short-
ward of A = 0.3 mm. Outside the near Infrared—optical window, this was the first
new spectral range that became available to astronomy. The new astronomical disci-
pline of radio astronomy has been instrumental in changing our view of astronomy.
The results required mechanisms for their explanation that differed considerably

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 1
DOI 10.1007/978-3-540-85122-6_1, (©) Springer-Verlag Berlin Heidelberg 2009



2 1 Radio Astronomical Fundamentals

from those used previously. While the objects studied in the optical wavelength
range usually radiate because they are hot and therefore thermal physics is the rule.
Most often, in radio astronomy the radiation has a nonthermal origin and different
physical mechanisms apply.

More recently, technological advances have opened up of additional astronomi-
cal “windows”. Balloons, high-flying aircraft or satellites like IRAS, ISO and MSX
permitted observations in the mid and far infrared (FIR). Other satellites such as IUE
and CHANDRA permitted measurements in the ultraviolet and X-ray wavelength
range. Satellite systems allow measurements over the spectral range from y-rays to
wavelengths greater than 10* m. Each of these spectral windows requires its own
technology. The art of carrying out measurements differs for each. Astronomers
have tended to view these different windows as forming different astronomies: ra-
dio astronomy, X-ray astronomy, infrared astronomy and so on. Not only does wave-
length range and (to some extent) technology differ. The types of objects that emit at
these wavelengths can also differ: some objects are detected only in certain spectral
windows. For example, diffuse cool gas is detected only because it emits or absorbs
the (first order forbidden) hyperfine structure line at A = 21 cm; emission from this
gas cannot be detected by any other means. To a lesser extent, this is true for denser,
cool gas traced by allowed rotational transitions of carbon monoxide, CO. This ma-
terial is detected only by molecular or atomic lines and broadband dust radiation.
Although interpretations differ for each spectral window there is one single reality.
An astrophysicist investigating a specific object collects information with optical,
radio or other techniques. In this sense there is no such thing as a separate scientific
discipline of radio astronomy.

New experimental techniques provide additional paths to attack old problems.
More dramatically, when new kinds of objects are detected by these means, meth-
ods and results are often collected into a new discipline such as radio astronomy.
However, when the experimental methods have become mature and both the advan-
tages and limitations of the methods become clearer, it is appropriate to integrate
the specialized field into main stream astrophysics. Radio astronomy is now in such
a situation. The first, vigorous years when the pioneers worked alone or in small
groups are over. Today radio astronomers rarely build their telescopes and receivers
themselves. This has profound effects on the way research is done. In the pioneer
days, a project usually started with an instrument collecting data; in many cases
the results were unusual and exciting, so these required new explanations. Now a
researcher starts with the problem and then searches for the means to attack it.

Today radio astronomy is not just a collection of the results, but also a science
concerned with the instruments used to gather the data, including the instrumental
properties, advantages and limitations. These instruments are usually no longer built
by the astronomer. Rather, the astronomer’s task is to optimize their use for a partic-
ular study. For this, the user must have a clear idea how the measurements are to be
carried out. As to nomenclature, we refer to single radio telescopes as antennas and
arrays of antennas with coupled outputs as interferometers. Together, either of these
with receivers are the material tools used by radio astronomers. However there are
more than only material tools: in interpreting the measurements theoretical concepts
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must be applied to data. These concepts belong to a wide variety of physical fields,
from plasma physics to molecular physics. All these concepts are tools, and so we
have collected these in a “toolbox” that is consistent and useful.

1.2 The Radio Window

From the surface of the earth, the atmosphere is transparent to radio waves as long
as none of its constituents is able to absorb this radiation to a noticeable extent.
This earth-bound radio window extends roughly from a lower frequency limit of
v = |5MHz (A = 20 m) to a high frequency cut-off at v = 1.5 THz (4 =2 0.2 mm).
These limits are not sharp (Fig. 1.1) since there are variations both with altitude,
geographical position and with time.

The high-frequency cut-off occurs because the resonant absorption of the lowest
rotation bands of molecules in the troposphere fall into this frequency range. Two
molecules are mostly responsible for this: water vapor, HyO and O,. Water vapor
has bands at v = 22.2 GHz (A = 1.35 cm) and 183 GHz (1.63 mm), while O, has an
exceedingly strong band at 60 GHz (5 mm). Lines of O, consist of closely spaced
rotational levels of the ground electronic state, resulting in two interleaved series of
absorption lines near 60 GHz (5 mm) and a single line near 119 GHz (2.52 mm). The
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Fig. 1.1 The transmission of the earth’s atmosphere for electromagnetic radiation. The diagram
gives the height in the atmosphere at which the radiation is attenuated by a factor 1/2
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absorption of astronomical signals by other abundant molecules in the atmosphere,
N, and CO», occurs at frequencies above 300 GHz.

There is great interest to extend the upper frequency limits of the measurements
to as high a value as possible, since the astronomical sources produce more intense
spectral lines in this range. The rotational transitions of carbon monoxide, CO, play
an especially important role since this molecule is very widespread and its chem-
istry is thought to be well understood. The circumstance that water vapor is one
of the determining factors for this cut-off makes it possible to extend the accessi-
ble frequency range somewhat by carrying out measurements from locations with
a low total water vapor content. With respect to the absorption caused by oxygen
little can be done from earth’s surface. In some parts of the sub-mm wavelength
range, measurements must be carried out from satellites such as the Herschel Space
Observatory, the airborne facility SOFIA (Stratospheric Observatory for Infrared
Astronomy), or from high flying balloons. Interstellar spectral lines of water vapor
and oxygen are best observed from satellites orbiting above the earth’s atmosphere.
On earth, high-altitude observatories with a dry climate are the best one can do. We
will discuss the effects of the atmosphere in the chapter on observational methods.

At the lowest frequencies, the terrestrial atmosphere ceases to be transparent be-
cause of free electrons in the ionosphere. Transmission through the atmosphere is
not possible if the frequency of the radiation is below the plasma frequency v,. As
we will show later (Eq. 2.77) this frequency is given by:

Vo Ne

kHz cm3’

where N, is the electron density of the plasma in cm ™~ and Vp is given in kHz. Thus
the low-frequency limit of the radio window will be near 4.5 MHz at night when the
F> layer of the ionosphere has an average maximum density of N, 22 2.5 x 10’ cm ™3,
and near 11 MHz at daytime, because then N, = 1.5 X 10°cm—3. However the elec-
tron densities in the ionosphere depend on solar activity, and therefore this low-
frequency limit varies with “space weather”. Only when the observing frequency
is well above this limit do ionospheric properties have no noticeable effect. Radio
astronomy in the kHz frequency range must be performed from satellites above the
earth’s ionosphere.

Radio frequency interference (RFI) has an increasingly detrimental impact on as-
tronomical observations. Man-made sources of radio signals, including intentional
emitters (such as cell phones, wireless networks, garage door openers, and satellites)
and unintentional radiators (such as computers and automobiles), can swamp very
weak cosmic signals being studied. Some forms of RFI can be partially removed,
but the presence of RFI always compromises the utility of the data and/or the effi-
ciency of data acquisition. The International Telecommunication Union (ITU), an
agency of the United Nations, is responsible for the global management of the ra-
dio spectrum, including the protection of radio astronomy. Expert committees, such
as the European Science Foundation’s Committee on Radio Astronomy Frequen-
cies (CRAF) and the U.S. National Academy of Sciences’ Committee on Radio
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Frequencies (CORF), study spectrum issues and their impact on radio astronomy.
In most radio observatories and at the U.S. National Science Foundation, at least one
staff member is dedicated to the protection of radio astronomy observations. More
information on the management of interference to radio astronomy can be found in
the ITU Handbook on Radio Astronomy (http://www.itu.int/publ/R-HDB-22/en)

1.3 Some Basic Definitions

Electromagnetic radiation in the radio window is a wave phenomenon, but when
the scale of the system involved is much larger than the wavelength, we can con-
sider the radiation to travel in straight lines called rays. The infinitesimal power dP
intercepted by an infinitesimal surface do (Fig. 1.2) then is

dP =1, cos0dQdodv, (1.1)

where

dP = infinitesimal power, in watts,

do = infinitesimal area of surface, cm?,
dv = infinitesimal bandwidth, in Hz,

0 angle between the normal to do and the direction to d€2,
I, = brightness or specific intensity, in Wm™2 Hz ! sr—1.

Equation (1.1) should be considered to be the definition of the brightness I, .
Quite often the term intensity or specific intensity I, is used instead of the term
brightness. We will use all three designations interchangeably.

The total flux of a source is obtained by integrating (1.1) over the total solid angle
€ subtended by the source

Sy= [ I,(0,0)cos0dQ, (1.2)
(o

Fig. 1.2 A sketch to illustrate
the definition of brightness
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and this flux density is measured in units of W m~2 Hz~!. Since the flux density of
radio sources is usually very small, a special radio astronomical flux density unit,
the Jansky (abbreviated Jy) has been introduced

1Jy=10"Wm ?Hz ' =10 P ergs 'em ?Hz . (1.3)

Very few sources are as bright as 1Jy, but even such a source would produce a
signal of only 10~!> W with the 100 m telescope (effective aperture A £ 5 x 103m?,
Av =20MH?z).

The brightness of an extended source is a quantity similar to the surface bright-
ness in optical astronomy: it is independent of the distance to the source, as long as
the effects of diffraction and extinction can be neglected. Consider a bundle of rays
emitted by a source (Fig. 1.3), which contains the power dW. As long as the surface
element do covers the ray bundle completely, the power remains constant:

dP, =dp;. (1.4)
For each of these we have

dP] = IV| dG] dQl dv and
dp, = IdeGz d€,dv.

If the distance between do; and doy is R, then the solid angles are d€2, =do; / R2,
dQ; = doy/R? and thus

doy do
dPl :1\/1 d0'1 de and dP2 :1V2d0'2 Fd\/

Using (1.4) we thus obtain

I, =1, (1.5)

1
so that the brightness is independent of the distance. As we show next the total flux
Sy density shows the expected dependence of 1/r2. Consider a sphere with uniform
brightness I, with a radius R (Fig. 1.4). The total flux received by an observer at the
distance r then is, according to (1.2),

—
=)

+ R

|
t

Fig. 1.3 A sketch used to show that the brightness is independent of the distance along a ray
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Fig. 1.4 Total flux received at
a point P from an uniformly

bright sphere R
[ r % P
2n 6§
Sy = /IvcosedQ :Iv/ (/sin@cos@d@)d(p,
£ 0 NO
where
R
sinf, = —
,
defines the angle 6. that the radius of the sphere subtends at . We obtain
Sy = nl, sin® 6
or 5
TR
Sy=1I — =1AQ, (1.6)
I

where AQ is defined as the area subtended by an object at a distance r.

Another useful quantity related to the brightness is the radiation energy density
uy in units of erg cm . From dimensional analysis, u is intensity divided by speed.
Since radiation propagates with the velocity of light ¢, we have for the spectral
energy density per solid angle

uy (Q) = %I\,. (1.7)

If integrated over the whole sphere, 47 steradian, (1.7) results in the fotal spectral
energy density

y — /uv(Q)dQ :% / 1,dQ. (1.8)
(4m) (4m)

1.4 Radiative Transfer

Equation (1.5) shows that for radiation in free space the specific intensity 7, remains
independent of the distance along a ray. I, will change only if radiation is absorbed
or emitted, and this change of I, is described by the equation of transfer. The theory
to be outlined here is a macroscopic one: for a change in I, certain expressions are
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adopted which contain free parameters. Only experience will then show whether
these expressions are appropriate, or whether different ones should be preferred.

For a change in /,, along the line of sight, a loss term d/,_ and a gain term d/, 4
are introduced, and we adopt the form

d1v7 = _K-\/Ivds7
dIv+ =&y dS7

so that the change of intensity in a slab of material of the thickness ds will be
[y (s+ds) —I,(s)]dodQdv = [~ k1, + €,]dodQdv ds,

resulting in the equation of transfer

dly

— —d e | (1.9)
ds

From general experience, the linear absorption coefficient x, is independent of
the intensity 7, leading to the adoption of the above form for d/, _; similar arguments
hold for the emissivity &, .

There may be situations for which €, depends strongly on 7, such as an en-
vironment in which radiation is strongly scattered. However, there are many other
important situations where &, is independent of /,,.

There are several limiting cases for which the solution of the differential equation
(1.9) is especially simple.

1) Emission only: K, =0
S
dr,
Tme, L) =Llso)+ /ev(s)ds. (1.10)
50

2) Absorption only: £, =0

dr
di;: = —Kvly,
s
Io(s) = I (s0) exp —/Kv(s)ds . (111)

S0

3) Thermodynamic equilibrium (TE): If there is complete equilibrium of the radia-
tion with its surroundings, the brightness distribution is described by the Planck
function, which depends only on the thermodynamic temperature 7, of the sur-
roundings

dI
ch:O’ I, =B,(T) =¢&,/K, (1.12)
S
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_2hv? 1

4) Local thermodynamic equilibrium (LTE): Full thermodynamic equilibrium will
be realized only in very special circumstances such as in a black enclosure or,
say, in stellar interiors. Often Kirchhoff’s law is

Ey

- =B,(T) (1.14)

applicable independent of the material, as is the case with complete thermody-
namic equilibrium. In general however, I, will differ from B, (T).

If we define the optical depth dt, (Fig. 1.5) by
dty = —Kyds (1.15)

or
s

n@:/m@m7 (1.16)
0

then the equation of transfer (1.9) can be written as

1dr, di,
Ky ds  dty Y v(T) ( )

The solution of (1.17) is obtained by first multiplying (1.17) by exp(—1,) and
then integrating 7, by parts:

Ty (s) dr
/ e "Ydr=1Ie "

Ty (s) Ty (s) Ty (s)

+ / Iye 'dt = /(Iv—Bv)e*rdT
0

dr
0 0 0

e —.
_— -
I,(S+ds)
—_—
—_—

Fig. 1.5 A sketch showing the 0 S S,

quantities used in the equation a— H

of transfer Tv(0) Tv 0
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Ty (s)
(T (s))e ™ — 1, (7 (s0)) / JeTdt
0
or finally
Ty (s)
IV(s):Iv(o)e—fv(S>+/BV(T(T))e—’dr : (1.18)
0

Due to the definition (1.15), s and 7 increase in opposite directions as indicated
in Fig. 1.5.
If the medium is isothermal, that is, if

T(t)=T(s) =T = const.

the integral in (1.18) can be computed explicitly resulting in

Iy(s) = 1,(0)e ™) 4+ B, (T) (1 - e*fv@) . (1.19)

For a large optical depth, that is for 7,(0) — oo, (1.19) in LTE approaches the
limit

I, =By (T). (1.20)

The observed brightness I, for the optically thick case is equal to the Planck

black-body brightness distribution independent of the material. If the intensity is

to be compared with the result obtained in the absence of an intervening medium,
1,(0), we have

Aly(s) =1y(s) = 1v(0) = (By(T) = 1y(0))(1 —e™7) . (1.21)

1.5 Black Body Radiation and the Brightness Temperature

The spectral distribution of the radiation of a black body in thermodynamic equilib-
rium is given by the Planck law (cf. (1.13))

2hv3 1

By(T) = 2 ehv/kT _ |

It gives the power per unit frequency interval. Converting this to the wavelength
scale, we obtain B; (T). Because By (T)dv = —Bj(T)dA and dv = (—c/A?)dA
this is
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2hc? 1
2he” (1.22)

Integrating either (1.13) over v or (1.22) over A, the total brightness of a black
body is obtained

=3

B(T):%/Ldv.

c2 ) ehv/kT _q
Putting
hv
=— 1.23
x=— (123)
we get

2h (kT\* T 3
B(T)=2 (% X dx.
() cz(h)o/e"—ldx

The integral has the value /15 [an explicit demonstration of this is given in,
e.g., Reif (1965), Sect. A.11]. Thus

2tk

B(T) = oT* =
(I) =0T, 0=15a

=1.8047 x 10 Sergem 27 'K | . (1.24)

In some texts, such as Leighton’s Principles of Modern Physics, the value of ¢ is
given with an extra factor of 7 so that in CGS units, the value is ¢ = 5.67 x 1073,

Equation (1.24) is the Stefan-Boltzmann radiation law which was found experi-
mentally in 1879 by J. Stefan and derived theoretically in 1884 by L. Boltzmann be-
fore Planck’s radiation law was known. In the literature quite often a different value
for ¢ is given which is obtained, when the total radiation emitted into a solid angle
of 27t is computed from (1.24). Both (1.13) and (1.22) have maxima (Fig. 1.6) which
are found by solving dB, /dv =0 and dB; /d A = O respectively. Using (1.23), these
correspond to solving 3 (1 — e™) —x=0and 5 (1 — e*) —x = 0 with the solutions

xm = 2.82143937 and Xm =4.96511423.

Thus (1.13) attains its maximum at

Vmax T
_58. L 1.2
Gl = 38789 (K) , (1.25)

while from (1.22)
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Fig. 1.6 Planck spectra for black bodies of different temperatures

(’“ﬂ) (;) 028978 | . (1.26)

cm

Equations (1.25) and (1.26) are both known as Wien'’s displacement law. If x =
hv /KT is far from the maximum, (1.13) can be approximated by simpler expressions
(Fig. 1.7).

1) hv < kT: Rayleigh-Jeans Law. An expansion of the exponential

hv
WA g 27 1.27
e + T + ( )
results in
2 2
Bry(v,T) = C—\;kT . (1.28)

This is the classical limit of the Planck law since it does not contain Planck’s
constant. In the millimeter and submillimeter range, one frequently defines a
radiation temperature, J(T) as
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Inserting numerical values for k and &, we see that the Rayleigh-Jeans relation
holds for frequencies

Y T
— L2084 = ). 1.30
GHz < (K) (1.30)

It can thus be used for all thermal radio sources except perhaps for low tempera-
tures in the millimeter or sub-mm range.

2) hv > kT: Wien’s Law. In this case ¢* > 1, so that

2hv3
Bw(v,T):c—;/e_h"/kT . (131)

While this limit is quite useful for stellar measurements in the visual and ultravi-
olet range, it plays no role in radio astronomy.

One of the important features of the Rayleigh-Jeans law is the implication that
the brightness and the thermodynamic temperature of the black body that emits this
radiation are strictly proportional (1.28). This feature is so useful that it has become
the custom in radio astronomy to measure the brightness of an extended source by its
brightness temperature T,. This is the temperature which would result in the given
brightness if inserted into the Rayleigh-Jeans law

| A2
Ty=o—1y=2—1I,. 1.32
P o2 T 2k (1.32)
Combining (1.6) with (1.32), we have
2kv?
Sy =" THAQ | . (1.33)
c
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For a Gaussian source, this relation is

e ] W] 0

y arc minutes cm

That is, with a measurement of the flux density S, in Janskys, and the source
size, the brightness temperature, Ty, of the source can be determined.

If emitted by a black body and Av < kT then T, gives the thermodynamic tem-
perature of the source, a value that is independent of v. If other processes are re-
sponsible for the emission of the radiation, 7;, will depend on the frequency; it is,
however, still a useful quantity and is commonly used in practical work.

This is the case even if the frequency is so high that condition (1.30) is not valid.
Then (1.34) can still be applied, but it should be understood that 7;, is different from
the thermodynamic temperature of a black body. However, it is rather simple to
obtain the appropriate correction factors.

It is also convenient to introduce the concept of brightness temperature into the
radiative transfer equation (1.21). Formally one can obtain

2

— _ _ ()
J(T) = 5o (BAT) ~ 1,(0)) (1 — &™)

Usually calibration procedures (see Sect. 8.2) allow one to express J(T) as T.
This measured quantity is referred to as T, the radiation temperature, or the bright-
ness temperature, Tp,. In the centimeter wavelength range, one can apply (1.32) to
(1.17) and one obtains

dT;(s)
dt,

=T(s)—T(s) | , (1.35)

where T'(s) is the thermodynamic temperature of the medium at the position s. The
general solution is

Ty (s)
To(s) = Ty (0)e™0) + / T(s)e ®dr | . (1.36)
0

If the medium is isothermal, this becomes

Ty(s) = Tp(0)e ™) 4T (1 —e ™)) | | (1.37)

For the sake of simplicity, let us assume that 7,(0) = 0. Then two limiting cases
that are often applicable are:

1) for optically thin 7 < 1,
T, =1,T, (1.38)

and
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2) for optically thick 7> 1,
h=T. (1.39)

These relations are correct only if both the geometry of the source and the radiat-
ing medium are not important. One usually expresses this as “the sources are much
larger than the telescope beam”.

1.6 The Nyquist Theorem and the Noise Temperature

Finally, we relate electrical power and temperature. Suppose a resistor R is con-
nected across the input terminals of a linear amplifier. The thermal motion of the
electrons in the resistor will produce a current i(¢) which forms a random input to the
amplifier. Though the mean value of this current will be zero, its rms value will not
be so. Since <i2> = 0 represents a power, the resistor provides a power input to the
amplifier. In thermal equilibrium, this power is determined by the physical temper-
ature. This is Johnson noise. This situation was investigated in 1929 by H. Nyquist,
who showed that this is a problem similar to that of the random walk of a particle in
Brownian motion including a friction term. A detailed discussion goes beyond the
scope of this book, it can be found in many treatments of stochastic processes [see
the appropriate chapters in Reif (1965) or Papoulis and Pillai (2002)].

The average power per unit bandwidth produced by the resistor R in the circuit
shown in Fig. 1.8 is
B L
2R 4RV
where v(t) is the voltage that is produced by i across R, and (---) indicates a time
average. The first factor 1/2 arises from the need to transfer maximum power to the
element on the right. This condition is met by setting Ry = R; then i = v/2R. The
second factor 1/2 arises from the time average of v>. An analysis of the random
walk process now shows that

P, = (iv) = (1.40)

(V&) =4RKT . (1.41)

Inserting this into (1.40) we obtain

P, =kT. (1.42)

Fig. 1.8 A sketch of a circuit

containing a resistor R, to

illustrate the origin of Johnson R R
noise. The resistor R, on the
left, at a temperature T,
provides a power k7T to a
matched load Ry, on the right Y
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Expression (1.42) can also be obtained by a reformulation of (1.13) for one di-
mension and the Rayleigh-Jeans limit. Then, the available noise power of a resistor
is proportional to its temperature, the noise temperature Ty, and independent of
the value of R. Throughout the whole radio range, from the longest waves to the
far infrared region the noise spectrum is white, that is, its power is independent of
frequency. For receivers, since the impedance of a noise source must be matched
to that of the amplifier, such a noise source can only be matched over some finite
bandwidth.

Not all circuit elements can be characterized by thermal noise. For example a
microwave oscillator can deliver the equivalent of more than 10'° K, although the
physical temperature is only 300 K. Clearly this is a very nonthermal process, and
in this case temperature is not a useful concept.

Problems

1. If the average electron density in the interstellar medium (ISM) is 0.03 cm 3, what
is the lowest frequency of electromagnetic radiation which one can receive due to
the effect of this plasma? Compare this to the ionospheric plasma cutoff frequency

if the electron density, Ne, in the ionosphere is ~10% cm3.

2. (a) A researcher measures radio emission at a frequency of 250 kHz and finds that
the emission is present over the whole sky with a brightness temperature of 250 K.
Could the origin of this radiation be the earth’s ionosphere?

(b) Assume that the source fills the entire visible sky, taken to be a half hemisphere.
What is the power received by an antenna with A = 1 m? collecting area in a B =
1 kHz bandwidth?

3. There is a proposal to orbit a downward-pointing radar in a satellite, Cloudsat,
moving in a polar orbit. The satellite will orbit at an altitude of 500 km. The operat-
ing frequency is 94 GHz. Assume that the power is radiated over a hemisphere. The
peak power will be 1500 W, uniformly distributed over a bandwidth of 1 GHz. If
no power is absorbed in the earth’s atmosphere, what is the peak flux density of this
satellite when it is directly overhead? This radar is transmitting 3% of the time (duty
cycle). What is the average power radiated and the corresponding flux density?

4. A unit commonly used in astronomy is flux density, Sy, the Jansky (Jy). One Jy is
10726 Wm~2Hz~!. Calculate the flux density, in Jy, of a microwave oven with an
output of 1 kW at a distance of 10 m if the power is radiated over all angles and is
uniformly emitted over a bandwidth of 1 MHz.

5. (a) What is the flux density, Sy, of a source which radiates a power of 1kW in
the microwave frequency band uniformly from 2.6 GHz to 2.9 GHz, when placed
at the distance of the Moon (3.84 x 10° km)? Repeat for an identical source if the
radiation is in the optical frequency band, from 3 x 10'* to 8 x 10'4 Hz.
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(b) If we assume that the number of photons is uniform over the band, what is the
average energy, £ = hv, of a photon? Use this average photon energy and the power
to determine N, the number of photons. How many photons pass through a 1 m?
area in one second in the optical and radio frequency bands?

6. In the near future there may be an anti-collision radar installed on automobiles. It
will operate at ~70 GHz. If the bandwidth is 10 MHz, and at a distance of 3 m, the
power per area is 1072 Wm™2. Assume the power level is uniform over the entire
bandwidth of 10 MHz. What is the flux density of this radar at 1 km distance? A
typical large radio telescope can measure to the mJy (=1072° Wm~2Hz™!) level.
At what distance will such radars disturb such radio astronomy measurements?

7. If the intensity of the Sun peaks in the optical range, at a frequency of about
3.4 x 10'* Hz, what is the temperature of the Sun? Use the Wien displacement law
(1.25). If all of the power is emitted only between 3 and 4x10'# Hz, how many
photons per cm? arrive at the earth when the Sun is directly overhead? What is the
power received on earth per cm?? A value for the solar power is 135 mW per cm?.

How does this compare to your calculation?

8. (a) At what frequency does the intensity of a 2.73 K black body reach a maxi-
mum? At what wavelength?

(b) Could the difference between the maximum wavelength and frequency be caused
by the different weightings of the Planck relation? Determine B, at the maximum
frequency.

(c) What is the (integrated) energy density u = (1/c) [1dQ = (4n/c)I?

(d) Reformulate the derivation of the Stefan—Boltzmann relation to obtain the num-
ber density of photons. Make use of the relation

o x2
dx =2.404
0o e*—1

to determine how many photons are present in a volume of 1 cm ™.

(e) What is the error in applying the Rayleigh—Jeans approximation, instead of the
Planck relation to calculate the intensity of the 2.73 K black body radiation at 4.8
GHz, 115 GHz and 180 GHz?

9. From Eq. (1.42), the power radiated in one dimension is P = kT Av. If a mi-
crowave oscillator delivers 1 mW of power uniformly over a bandwidth of 1 Hz,
what is the equivalent temperature 7'? Since the physical temperature of such an
oscillator is ~300 K, this is an example of a non-thermal process.

10. A cable has an optical depth, 7, of 0.1 and a temperature of T=300K. A signal
of peak temperature Ty, (0)=1 K is connected to the input of this cable. Use Eq. (1.37)
to analyze this situation. What is Ty (s), the temperature of the output of the cable?
Repeat the problem for T=100K. What is the signal-to-noise ratio for these two
cases, using signal = 1 K, and noise from the cable contribution.?
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11. A signal passes through two cables with the same optical depth, 7. These have
temperatures 77 and 7>, with 77 < 7T>. Which cable should be connected first to
obtain the lowest output power from this arrangement?

12. Show that (1.34) can be obtained from (1.33).

13. If Jupiter has Tg = 150K, with 6 = 40", what is S, at 1.4 GHz? At 115 GHz?
Repeat for the HII region Orion A, with 8 = 2.5/, with Tz =330K at 4.8 GHz, and
Tg =24 K at 23 GHz.



Chapter 2

Electromagnetic Wave Propagation
Fundamentals

2.1 Maxwell’s Equations

Maxwell’s theory of electrodynamics describes electromagnetic fields in terms of
the space and time variations of electromagnetic field components. In most treatises
on electrodynamics, this theory is derived by induction starting with static situations.

Here we give only those features of the theory that are needed to understand
the formation, emission and propagation of electromagnetic waves. These will be
given in a uniform set of quantities, in the CGS system. These are the electric field
intensity E, the electric displacement D, the magnetic field intensity H, the mag-
netic induction B, and the electric current density J. The electric charge density is
designated by o.

The relations of the five vector fields and one scalar field which are required to
(properly) describe the electromagnetic phenomena are given by Maxwell’s equa-
tions. These are conveniently divided into several groups. Some of the field compo-
nents are related by the properties of the medium in which they exist. These are the
so-called material equations

J=0E 2.1

D =¢E

B 2.2)
(2.3)

0,€ and U are scalar functions that are almost constant in most materials. For the
Gaussian CGS system the values of € and p are unity (=1) in vacuum, while (2.1) is
the differential form of Ohm’s law, where o is the specific conductivity.

Maxwell’s equations proper can now be further divided into two groups: The first
group involves only the spatial structure of the fields

V-D = 4rp (2.4)
V-B=0

’ 2.5)

while the second group includes time derivatives

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 19
DOI 10.1007/978-3-540-85122-6_2, (©) Springer-Verlag Berlin Heidelberg 2009
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VxE:—lB (2.6)
c

4r 1.
V><H:7]+;D . 2.7

Taking the divergence of (2.7) the left side of the resulting equation is found to
be equal to zero (see Appendix A). If we use (2.4), we obtain

; e

that is, charge density and current obey a continuity equation.

2.2 Energy Conservation and the Poynting Vector

By considering the forces that a static electric or magnetic field imposes on a test
charge it can be shown that the energy density of an electromagnetic field is given
by

1
o (eE>+uH?*)| . (2.9)

1
— _— (E-D+B-H) =
u 877:( + )

If both € and u are time-independent, the time derivative of u is given by

1 : : 1 . .
i=—(eE-E+uH-H)=—(E-D+H-B). 2.1
i=_—(eE-E+pH-H)=—(E-D+H-B) (2.10)

Substituting both D and B from Maxwell’s equations (2.6) and (2.7), this be-
comes

.—i . —_ . _ .
i=—(E-(VxH)—H-(VXE))—E-J

.—_i . _— .

= EV (ExH)—E-J (2.11)

if the vector identity (A 9) given in Appendix A is applied. By introducing the
Poynting vector S (Poynting 1884)

c

S:4n

ExH| |, 2.12)

(2.11) can be written as an equation of continuity for S:

du
E+V'577E'J . (2.13)
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Fig. 2.1 A sketch to illus-
trate energy conservation. We
show the Poynting vector for
a circular straight wire carry-
ing a steady current density
produced by the electric field

The time variation of the energy density u thus consists of two parts: a spatial
change of the Poynting vector or energy flux S and a conversion of electromagnetic
energy into thermal energy (Joule’s energy theorem).

The significance of (2.13) becomes clearer if we consider a simple example. Let
a straight wire of circular cross section carry a steady current / (Fig.2.1). If all con-
ditions are constant, the total electromagnetic energy density, #, must be constant, so
that iz = 0. However if a constant current / is flowing in the wire there is a constant
transformation of electric energy into thermal energy. Per unit length / of the wire,
this thermal energy is formed at a rate

S (2.14)

where r is the specific resistance of the wire. Obviously

1
r=——
onR?
so that
aw P
dl  onR?’
But /
|J| = W )
and according to (2.1)
1
E=—],
so that the thermal loss rate is
W B 2.15)
a ‘
But according to Ampere’s law (see e.g. Jackson Equation (5.6))
21
H|=—
cR

with a direction perpendicular to /. Then
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E|I
S = B = 3
4 2R

where S is oriented such that E, H and S form a right-handed system. Therefore
|[E|I =2nR|S|. (2.16)

Thus the total flux of § at the surface of the wire and, from the direction of J
and H, we see that S flows into it (Fig.2.1). But according to (2.15) this is just the
conversion rate of electrical energy into thermal energy. Therefore the Poynting flux
just compensates for this loss, as it must in a steady state.

2.3 Complex Field Vectors

In situations where electromagnetic wave phenomena are considered, the field vec-
tors usually show a harmonic time dependence described by sine or cosine functions.
But since these functions are related to the exponential function by the Euler relation

cosx—+ isinx = e,

the inconvenience of having to apply the rather complicated trigonometric addition
theorem can be avoided, if complex field vectors are introduced by

E=(E|+iEy) e 1", E,, E, real vector fields, (2.17)

and
H=(H,+iH,)e ' Hj, H, real vector fields. (2.18)

In any application the electric or magnetic field considered is then identified with
the real part of E and H or the imaginary part, whichever is more convenient. All
mathematical operations can then be performed on E or H directly, as long as they
are restricted to linear operations. Only if nonlinear operations are involved must
one return to real quantities. Even here convenient simplifications exist. Such is the
case for the Poynting vector. For S obviously the expression

S= éRe{E} x Re{H} (2.19)
should be used. But since
Re{E} = E; cos @t + E sin ot
and

Re{H} = H| cos ot + H sin ¢,
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this is
Re{E} x Re{H} = (E| x H;) cos’ ot + (E; x H,) sin* ot
+(Ey xHy+Ey x Hy) cos of sin ot .

If we now do not consider the instantaneous value of S, but the mean value over
a full oscillation, and if such mean values are designated by (), then since

) 2 1
(sin” wt) = (cos” wt) = 5
and
(sinwrcoswr) =0,
one obtains
(Re{E} xRe{H}) = 1 (E\ x H| + E; x H3). (2.20)

On the other hand
ExH' = (E|+iE)) e ' x (H, — iH;) &'
= (E] + iEz) X (H] — in)

so that
RC{EXH*} =E  xH,+E, xH,,

where H* denotes the complex conjugate of H. Inserting this in (2.20) the average
value of S is

(S) = ﬁRe{E «HY| . 2.21)

From (2.17) and (2.18), this formula applies only to complex electromagnetic
fields that have harmonic time variations.

2.4 The Wave Equation

Maxwell’s equations (2.4-2.7) give the connection between the spatial and the time
variation of the electromagnetic field. However, the situation is complicated by the
fact that the equations relate different fields: e.g. curl E is related to B (2.6), and the
other equations show a similar behavior.

A better insight into the behavior of the fields can be obtained if the equations
are reformulated so that only a single vector field appears in each equation. This is
achieved by the use of the wave equations. To simplify the derivation, the conduc-
tivity o, the permittivity € and the permeability u will be assumed to be constants
both in time and in space. Taking the curl of (2.7)
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Vx(VxH) = —V J—I—liVxD

¢ dt
4717 1d

: <4no+sa)VxE
c 0

where the order of V and time derivation have been interchanged, and J and D have
been replaced by o E and € E respectively by application of (2.1) and (2.2). Using
(2.6) and (2.3), this can be further modified to

Vx(VxH)=— 5(4%64—85) 5IH——5—2(4nGH+£H). (2.22)

By a similar procedure from (2.6)

19 )
Vx(VxE):—EE(VxB):—%E(VxH).

Using (2.7) this becomes

) 1, P)
Vx(VXE) = —‘CL(%<CJ+D)= “a( oE + E)

[

75—2(47IO'E+ ek). (2.23)

The left-hand side of (2.22) and (2.23) can be reduced to a more easily recognis-
able form by using the vector identity [see Appendix (A.13)]

Vx (VxP)=V(V-P)-V?P;
applying this relation to (2.5)
Vx(VxH)=V(V-H)—V’H=—-V’H
and, if it can be assumed that there are no free charges in the medium, that is, if
V.-D=0,

similarly
Vx(VxE)=V(V-E)-V’E=-V’E.

we obtain, finally

oyy  EW . ATmOU
V°H = C—QH+ >—H (2.24)
eU ... 4mnou .
vE=Lp g | (2.25)
C C
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Both E and H obey the same inhomogeneous wave equation, a linear second
order partial differential equation. Since these equations are derived from Maxwell’s
equations, every solution of these will also be a solution of the wave equation. The
reverse conclusion is not true under all conditions. For example, in (2.24) and (2.25)
the E and the H fields are decoupled, and therefore any arbitrary solution for E can
be coupled to any solution for H provided that they obey the initial conditions. In
Maxwell’s equations this is not true; here E and H are interdependent. For simple
cases it is rather easy to specify which H solution belongs to a given E solution of
Maxwell’s equations; for more complicated situations other methods must be used.
Some of these will be outlined in Chap. 6; here a direct solution of the wave equation
should suffice to show the principle.

2.5 Plane Waves in Nonconducting Media

Consider a homogeneous, nonconducting medium (o = 0) that is free of currents
and charges. In rectangular coordinates each vector component u of E and H obeys
the homogeneous wave equation

1
Viu——i=0| | (2.26)
%
where
- (2.27)
JVEU '
is a constant with the dimension of velocity. For the vacuum this becomes
v=c. (2.28)

When Kohlrausch and Weber in 1856 obtained this result experimentally, it be-
came one of the basic facts used by Maxwell when he developed his electromagnetic
theory predicting the existence of electromagnetic waves. Eventually this prediction
was confirmed experimentally by Hertz (1888).

Equation (2.26) is a homogeneous linear partial differential equation of second
order. The complete family of solutions forms a wide and sometimes rather compli-
cated group. No attempt will be made here to discuss general solutions, rather we
will restrict our presentation to the properties of the harmonic waves.

u = ugp e o) (2.29)

is a solution of (2.26) if the wave number k obeys the relation

=" (2.30)
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This can be confirmed by the substitution of (2.29) into (2.26). If we set
¢ =ketor, (2.31)

where ¢ is the phase of the wave, we see that points of constant phase move with
the phase velocity

py=2__< | (2.32)

kK J/en

This gives a physical meaning to the constant v appearing in (2.26). Introducing
the index of refraction n as the ratio of ¢ to v this becomes

C C
=-= =—k| . 2.33
n=_ Veu . (2.33)

For plane electromagnetic waves, each component of E and H will have solutions
(2.29) but with an amplitude, u, that generally is complex. The use of (2.29) permits
us to introduce some important simplifications. For a traveling plane wave

A(x,t) = Age'** @) Ag k o= const., (2.34)
A=—ioA, (2.35)
A=—-0%A, (2.36)

V-A=ik-A, (2.37)
VA = KA. (2.38)

The E and H fields of an electromagnetic wave are not only solutions of the
wave equation (2.26), but these also must obey Maxwell’s equations. Because of
the decoupling of the two fields in the wave equation, this produces some additional
constraints.

In order to investigate the properties of plane waves as simply as possible, we
arrange the rectangular coordinate system such that the wave propagates in the pos-
itive z direction. A wave is considered to be plane if the surfaces of constant phase
form planes z = const. Thus all components of the E and the H field will be inde-
pendent of x and y for fixed z; that is,

aEX_ aE),_ 8EZ_

o T T

OB, _, OB _,  OE_, 239
dy dy dy

and a similar set of equations for H. But according to Maxwell’s equations (2.4)
and (2.5) with o = 0 and € = const.

OE, JE, OJE _. . OH, JH, OH.

8x+87y dz 8x+8y+az =0
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Because of (2.39) this results in

O, oH,
5 = 0 and 5 = 0| . (2.40)

From the remaining Maxwell’s equations (2.6) and (2.7) we similarly obtain

M ol . (2.41)

JE;
Er =0 and 5

Therefore both the longitudinal components E, and H,; must be constant both in
space and time. Since such a constant field is of no significance here, we require that

E.=0,H,=0 (2.42)

that is, the plane electromagnetic wave in a nonconducting medium is transverse
(Fig.2.2). The remaining components have the form of traveling harmonic waves
[as given by (2.29)]. The only components of (2.6) and (2.7) which differ from zero
are

0L, _ _uoH, OH, _ €9k,
dz ¢ ot’ dz ¢ dt’
and (2.43)
9B, _ woH, oMy, _  £0E
dz ¢ ot’ dz ¢ dt’

Applying the relations (2.35) and (2.37) for plane harmonic waves, we find

JE, . u . iou
5 = KEe=— Hy ==y
. (2.44)
JoE ) )
= ikEy — EHX — —JHX,
dz ¢
AZ
//
- ===
E 7
————— — - ///
Fig. 2.2 A sketch of the field -7

vectors in a plane electromag- T y
netic wave propagating in the /
z-direction X
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resulting in
ck ck
—EE,+—EE, =0,
ol ol

: (2.45)

E and H are thus always perpendicular; together with the wave vector k, these
form an orthogonal system. For the ratio of their absolute values, (2.44) and (2.30)
result in

E'H:EXHX—FE),H), = —

E| _ [u
=1/ 2.46

The unit of this intrinsic impedance of the medium in which the wave propagates
is the Ohm (2). In a vacuum it has the value

Zo =376.73Q. (2.47)

Finally, the energy flux of the Poynting vector of this wave is of interest. As given
by (2.12) we find
C S 2

=—,/—FE 2.48
a\uE (2.48)

S|

and S points in the direction of the propagation vector k. The (time averaged) energy
density, u, of the wave given by (2.9) is then'

1
u= o (eE-E'+pH H'). (2.49)

The argument used in this is quite similar to that used in deriving (2.21). In using
(2.46) we find that (2.49) becomes

u= 2B (2.50)
4r

The time averaged Poynting vector is often used as a measure of the intensity of
the wave; its direction represents the direction of the wave propagation.

2.6 Wave Packets and the Group Velocity

A monochromatic plane wave
u(x,r) = A el =@ (2.51)

propagates with the phase velocity

! This energy density should not be confused with the Cartesian component « of E or H in (2.26)
and following.
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v=—- (2.52)

If this velocity is the same for a whole range of frequencies, then a wave packet

formed by the superposition of these waves will propagate with the same velocity.

In general, however, the propagation velocity, v, will depend on the wave number k.

Then such wave packets have some new and interesting properties. A wave with an
arbitrary shape can be formed by superposing simple harmonic waves

u(x,t) = \/% / A(k) et g (2.53)

where A(k) is the amplitude of the wave with the wave number k. The angular
frequency of these waves will be different for different k; this distribution is

o = o(k) (2.54)

and it will be referred to as the dispersion equation of the waves. If A(k) is a fairly
sharply peaked function around some kg, only waves with wave numbers not too
different from ko will contribute to (2.53), and quite often a linear approximation
for (2.54)

dw
k)= —
o(k) = oy + ik

will be sufficient. The symbol after the derivative indicates that it will be evaluated
at k = 0. Substituting this into (2.53) we can extract all factors that do not depend

on k from the integral, obtaining
r d
ko —a)0> r} /A(k)exp {ik (x— o t)} dk.
0 Y dk 0

(2.56)

(k— ko) (2.55)
0

1 . do
M(x7t):EeXp 1 E

According to (2.53), at the time 7 = O the wave packet has the shape

=

/A(k) e dk.

—oo

u(x,0) = VT

Therefore the integral in (2.56) is u(x’,0), where X' = x — %—‘,’3 ‘ot' The entire ex-

pression is
dw . dw
u(x,t) =u <x— a 0t,0> exXp |:1 (k() E

The exponential in (2.57) has a purely imaginary argument and therefore is only a
phase factor. Therefore, the wave packet travels undistorted in shape except for an
overall phase factor with the group velocity

- cuo) t:| . (2.57)
0
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_do

=5 (2.58)

Vg

This is strictly true if the angular frequency is a linear function of k. If w(k) is
more general, the group velocity depends on wave number, and the form of the wave
packet (made up of waves with a finite range of wave numbers) will be distorted in
time. That is, the pulse will disperse.

Whether phase velocity (2.52) or group velocity (2.58), is larger depends on the
properties of the medium in which the wave propagates. Writing (2.52) as

w=kv,
one finds d d
0] v
- —y. = k— . 2.59
TR (259)
Recalling the definition of the index of refraction (2.33)
c
n=-
v
and that the wavelength is given by
2
A= 7” (2.60)

we see that normal dispersion dn/dA < 0 in the medium corresponds to dv/dk < 0.
In a medium with normal dispersion therefore vy < v. Only for anomalous dispersion
will we have vg > v.

Energy and information are usually propagated with the group velocity. The sit-
uation is, however, fairly complicated if propagation in dispersive media is consid-
ered. These problems have been investigated by Sommerfeld (1914) and Brillouin
(1914). Details can be found in Sommerfeld (1959).

2.7 Plane Waves in Conducting Media

In Sect. 2.5 the propagation properties of plane harmonic waves in a nonconducting
(0 = 0) medium have been investigated. Now this assumption will be dropped so
that o # 0, but we still restrict the investigation to strictly harmonic waves propa-
gating in the direction of increasing x

E(x,1) = Ege' =@ (2.61)

Both Ej and k are complex constants. Making use of (2.35) to (2.38), the wave
equations (2.24) and (2.25) become
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(e
C

) a0

31

(2.62)

If these equations are to be valid for arbitrary E or H [of the form (2.61)] the
square bracket must be zero, so that the dispersion equation becomes

The wave number k thus is indeed a complex number. Writing

we find

2= “82‘”2 (1+i4”6)
C we

k=a+1b,
o |1 470>
= EU— | = 1 — 1
. cAl2 +<£a)> *
o |1 4ro\?
b= eu— | = 1 — -
”c 2 +<sco>

and the field therefore can be written

E(x,t) = Ege b ell@—0n)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

Thus the real part of the conductivity gives rise to an exponential damping of
the wave. If (2.67) is written using the index of refraction n and the absorption

coefficient K,

we obtain

E(x,t) = Egexp (—%nk’x) exp [iw (gx—t)}

1 4o \?
nK = /€U 3 1+(M) -1

, (2.68)

(2.69)

(2.70)
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2.8 The Dispersion Measure of a Tenuous Plasma

The simplest model for a dissipative medium is that of a tenuous plasma where free
electrons and ions are uniformly distributed so that the total space charge density
is zero. This model was first given by Drude (1900) to explain the propagation of
ultraviolet light in a transparent medium, but this model was later applied to the
propagation of transverse electromagnetic radio waves in a tenuous plasma.

The free electrons are accelerated by the electric field intensity; their equation of
motion is

mev = mef = —eEge 1! (2.71)
with the solution ‘ B
Y= - Ege 'Y =—i E. (2.72)
ime @ Me @

Equation (2.72) describes the motion of the electrons. Moving electrons, how-
ever, carry a current, whose density is

Né?

J==Yevy=—Nev=i E=0cE. (2.73)
o

Me ©

This expression explains why the ions can be neglected in this investigation. Due
to their large mass (m; ~ 2 x 103m,), the induced ion velocity (2.72) is smaller
than that of the electrons by the same factor, and since the charge of the ions is the
same as that of the electrons, the ion current (2.73) will be smaller than the electron
current by the same factor.

According to (2.73) the conductivity of the plasma is purely imaginary:

Ne?

o=1 .
Me @

(2.74)

Inserting this into (2.63) we obtain, for a thin medium with e ~ 1 and u ~ 1

2 2
w ,
K= = (1 - w‘;) , (2.75)
where
47Ne?
o = ’fn ¢ (2.76)
(5]

is the square of the plasma frequency. It gives a measure of the mobility of the
electron gas. Inserting numerical values we obtain

Vo N
—— =897/ —— 2.77
kHz cm3 @.77)
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if we convert (2.76) to frequencies by v = w/2x. For @ > @y, k is real, and we
obtain from (2.52)

= (2.78)

%

2

for the phase velocity v and so v > ¢ for @ > w,. For the group velocity it follows

from (2.58)
dw 1
T 0 T dk/de’

so that

2
vg=ci[1— w—‘; (2.79)

and vy < ¢ for @ > @p. Both v and v, thus depend on the frequency ®. For w = @y,
vg = 0; thus for waves with a frequency lower than @, no wave propagation in the
plasma is possible. The frequency dependence of v and v, are in the opposite sense;
taking (2.78) and (2.79) together the relation

Vg = c? (2.80)

is obtained.
For some applications the index of refraction is a useful quantity. According to

(2.33) and (2.75) it is
wz
n=1/1- w—g . (2.81)

Electromagnetic pulses propagate with the group velocity. This varies with fre-
quency so that there is a dispersion in the pulse propagation in a plasma. This fact
took on a fundamental importance when the radio pulsars were detected in 1967.
The arrival time of pulsar pulses depends on the frequency: The lower the observing
frequency, the later the pulse arrives. This behavior can easily be explained in terms
of wave propagation in a tenuous plasma, as the following discussion shows.

The plasma frequency of the interstellar medium (ISM) is much lower than the
observing frequency. In the ISM, N is typically 1073~10"" cm™3, so v, is in the
range 2.85-0.285 kHz; however, the observing frequency must be v > 10 MHz in
order to propagate through the ionosphere of the earth. For vy, we can use a series

expansion of (2.79)
11 1V,
—=- (1 + p) (2.82)

2
vg ¢ 2v

with high precision. A pulse emitted by a pulsar at the distance L therefore will be
received after a delay
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a1 1 /Vp\2 17 21
_ iV 14— P dl:—/ 1 ¢ —N(I dl
™ O/g co/( +2(v)> c <+2nmev2 ()> ’

0

L

L &2 1
D= — — [ N(l)dl. 2.83
b c+277:cmev2/ ?) (2.83)
0

The difference between the pulse arrival times measured at two frequencies v;
and v, therefore is given by

L

&2 1 17 7
ATp = — = ) 2.84
™ 27[CI’I’!e|: 2 2:|‘0/N(l) < ( 8)

The quantity i N(I)d! is the column-density of the electrons in the intervening
space between pulsar and observer. Since distances in astronomy are measured in
parsecs (1pc = 3.085677 x 10'® cm), it has become customary to measure N(I) in
cm™3 but d/ in pc. The integral then is called the dispersion measure (Fig.2.3)

r( N l
DM:O/<Cm_3) d(pc) (2.85)
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Fig. 2.3 Dispersion measure, DM, for pulsars at different galactic latitudes [adapted from B. Klein
(MPIfR) unpublished]
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and therefore we find

A 3yyq0-9 [ PM S (2.86)
us cm—2 ( Vi )2 ( 12 )2
MHz MHz
or
ATD:4.148><109[ Df\f H vl - Vl 21 .8
MS cm-=pe (MIIIZ) (MEIZ)

Since both the time delay A1p and the observing frequencies v; and v, can be
measured with high precision, a very accurate value of DM for a given pulsar can
be determined from

-1
DM A 1 1
3:2.410><104<TD>[ T 2] : (2.88)
em-pe s (Mlilz) (MHZ)

Provided the distance L to the pulsar is known, this gives a good estimate of the
average electron density between observer and pulsar. However since L is usually
known only very approximately, only approximate values for N can be obtained in
this way. Quite often the opposite procedure is used: From reasonable guesses for
N, a measured DM provides information on the unknown distance L to the pulsar.

Dispersion in the ISM, combined with a finite pulse width, sets a limit to the fine
structure on can resolve in a pulse. The frequency dependence of the pulse arrival
time is Tp from (2.83). This gives a condition for the bandwidth b needed to resolve
a time feature T

1 3
—1.205x 104 v } T (2.89)

b
MHz DM [ MHz
cm3pc

S .

Since the pulses will have a finite width in both time and frequency, a differential
form of (2.89) will give a limit to the maximum bandwidth that can be used at a
given frequency and DM if a time resolution 7 is wanted. This will be re discussed
in the context of pulsar back ends.

Problems

1. There is a proposal to transmit messages to mobile telephones in large U.S. cities
from a transmitter hanging below a balloon at an altitude of 40 km. Suppose the
city in question has a diameter of 40 km. What is the solid angle to be illuminated?
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Suppose mobile telephones require an electric field strength, E, of 200 iV per meter.
If one uses S = E2 /R with R = 50,Q, what is the E field at the transmitter? How
much power must be transmitted? At what distance from the transmitter would the
microwave radiation reach the danger level, 10 mW cm™2?

2. Radiation from an astronomical source at a distance of 1.88kpc, (= 7.1 x
10?! cm) has a flux density of 103 Jy over a frequency band of 600Hz. If it is
isotropic, what is the power radiated? Suppose the source size is 1 milli arc sec-
ond (see (1.34)). What is the value of 7,? Compare to the surface temperature of an
O star ~40,000 K.

3. A plane electromagnetic wave perpendicularly approaches a surface with con-
ductivity 6. The wave penetrates to a depth of 8. Apply (2.25), taking ¢ >> €/4n,
so V2E = (4mou/c?) E. The solution to this equation is an exponentially decaying
wave. Use this to estimate the 1/e penetration depth, 6.

4. Estimate the value of 6 = ¢/ /4wo @ for copper, which has (in CGS units)
0c=10"s"1, and u ~ 1, for v = 10'"Hz.

5. Suppose that vppase = m What is vgroup? Evaluate both of these quanti-
ties for Ag = %lc.

6. There is a 1D wave packet. At time =0, the amplitudes are distributed as
a(k) = ap exp(—k?/(Ak)?), where ap and Ak are constant. From the use of Fourier
transform relations in Appendix B, determine the product of the width of the wave
packet, Ak, and the width in time, Az.

7. Repeat problem 7 with a(k) = ag exp(—(k — ko)?/(Ak)?).
8. Repeat problem 7 for a(k) = ag for k; < k < ky, otherwise a(k) = 0.

9. Assume that pulsars emit narrow periodic pulses at all frequencies simultane-
ously. Use (2.83) to show that a narrow pulse (width of order ~ 1079 s) will traverse
the radio spectrum at a rate, in MHzs ™!, of v = 1.2 x 10~ (DM)~! v [MHzJ>.

10. (a) Show that using a receiver bandwidth B will lead to the smearing of a very
narrow pulse, which passes through the ISM with dispersion measure DM, to a
width At = 8.3 x 10°DM [v [(MHz)] 3 Bs.

(b) Show that the ionosphere (electron density 10° cm ™3, height 20km) has little
influence on the pulse shape at 100 MHz.

11. (a) Show that the smearing A¢, in milli seconds, of a short pulse is (202/ vy )?
DM ms per MHz of receiver bandwidth.

(b) If a pulsar is at a distance of 5 kpc, and the average electron density is 0.05 cm 3,
find the smearing at 400 MHz. Repeat for 800 MHz.

12. Suppose you would like to detect a pulsar located at the center of our Galaxy.
The pulsar may be behind a cloud of ionized gas of size 10 pc, and electron density
10° cm™3. Calculate the dispersion measure, DM. What is the bandwidth limit if the
observing frequency is 1 GHz, and the pulsar frequency is 30 Hz?



Problems 37

13. A typical value for DM is 30 cm ™~ pc, which is equivalent to an electron column
density of 102 cm™2. For a frequency of 400 MHz, use (2.87) to predict how much
a pulse will be delayed relative to a pulse at an infinitely high frequency. Repeat for
a frequency of 1000 MHz.

14. To resolve a pulse feature with a width of 0.1 us at a received frequency of
1000 MHz and DM = 30 cm ™3 pc, what is the maximum receiver bandwidth?



Chapter 3
Wave Polarization

3.1 Vector Waves

In the preceding Chapter we have shown that plane electromagnetic waves in a
dielectric medium are transverse and that the x and the y component of both E and
H for a wave propagating in the z direction obey the same wave equation. For the
sake of simplicity, we have investigated the propagation of only one component
of these fields. In this Chapter, we present the theory of polarization. This can be
caused by a number of mechanisms that will be presented in Chaps. 10 and 11.
In the references for this Chapter are a few papers that present the analysis and
interpretation of polarization data.

In general both the x and the y component have to be specified but, in a strictly
monochromatic wave, they are not independent, since both share the same harmonic
dependence, although with a different phase:

E, = E)cos(kz— wt+ 1),
E, = Excos(kz— ot + &),
E. =0. (3.1

Here k = 27/, where A is the wavelength in cm, and @ = 27V, where Vv is
frequency in Hz. Regarding (Ex, Ey, z) as the coordinates of a point in a rectangular
coordinate system we find that (3.1) describes a helical path on the surface of a
cylinder. The cross section of this cylinder can be determined by eliminating the
phase of this wave, abbreviated by

T=kz— wt. (3.2)
Rewriting the first two equations of (3.1) as
% = cosTcos &) —sinTsindy ,
% = cosTcos & —sinTsind, -3)

gives

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 39
DOI 10.1007/978-3-540-85122-6_3, (©) Springer-Verlag Berlin Heidelberg 2009
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E E

E—Tsinﬁz— E—;sin& = cosTsin(d — 1),
E, E, o

E—lcos52 - E—;cos& =sintsin(& — §y).

Squaring and adding we obtain

2 2 3.4
(Ex> Jr(Ey> —2Eﬂcos5zsin25 G

El E2 El E2
0=06-6| . (3-5)

This is the equation of an ellipse, since the discriminant is not negative

1 cos o
E? E\E» 1—cos?s in2$

! — 22T %>o. (3.6)
coséd 1 E{E; E{E;
E\E;  E3

The wave is said to be elliptically polarized, and this applies to both the electric
and the magnetic field of the wave; sind determines the sense in which the electric
vector rotates.

The ellipse (3.4) usually is arbitrarily oriented with respect to the coordinate sys-
tem. Its geometric properties are seen best by selecting a coordinate system oriented
along the major and minor axes (Fig. 3.1). In this system the ellipse equation is

Eg = Egcos(T+0),

Er = Ep sin(t+9), S

and the relation between the coordinate systems (x,y) and (§,n) is given by the
linear transformation

Ee = Eccosy+Eysiny,

. (3.8)
En = —Eysiny +Eycosy.
1 y
n
|- |
Ey
¢ X
Fig. 3.1 The polarization _k a b
ellipse for the electric vector,
E, of an elliptically polarized
T E
wave
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The intrinsic parameters of the polarization ellipse E, and E}, as well as the angle
v by which the major axis is tilted with respect to the x axis, can then be determined
by requiring that (3.4) transformed by (3.8) should lead to (3.7). Substituting (3.3)
and (3.7) into (3.8) while simultaneously expanding the cos(t + &) term leads to

E,(cosTcosd —sintsind) = E| (cos Tcos ) —sinTsind; ) cos
+E>(costcosd —sintTsindy)siny  (3.9)

and

Ejp (sinTcos 8 +cosTsind) = —FE; (cosTcos 6 —sinTsindy ) siny
+E>(cosTcosd —sinTsindy)cos .
(3.10)

These equations are valid for all 7, i.e. also for t=0and 7 = %, resulting in

E,cos8 = E|cosd;cos Y+ Ercos & siny, (3.11)
—E,sind = —E;sind; cos ¥ — Esin & siny, (3.12)
Epcosd = E;sind;siny — Epsin & cos v, (3.13)
Epsind = —FE cos 8 siny + E;cos 6, cos Y. (3.14)

Squaring these equations and adding we obtain

So=E24+E;=E}+E; | . (3.15)

Recalling (2.50), we find that this can be interpreted that the total Poynting flux of
the polarized wave is equal to the sum of the fluxes of two orthogonal, but otherwise
arbitrary directions.

Multiplying (3.11) by (3.13) and (3.12) by (3.14) and subtracting the results, we
obtain

EaEb =E1 Egsin5, (3.16)

while division and addition of the same pairs of equations result in

— (E} —E3)sinycosy = E;Eycos 8(sin® y — cos® ) ,
(Ef — E3)sin2y = 2E E;c0s 8 cos2y . (3.17)

If we now define a by

E
2 ane | (3.18)
E

(3.17) can be rewritten as

2E\E, 2tan o
c0sd = —————cos o
E}—E2 1 —tan? o

tan2y =
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or

tan2y = —tan20ccos§ | . (3.19)

Dividing (3.16) by (3.15) results in
2E.E,  2E\E;

= sind .
E2+E] EI+E
Defining
E,
E—b =tany , (3.20)
(3.19) is equivalent to
sin2y =sin2asind | . (3.21)

Equations (3.15, 3.18, 3.19, 3.20 and 3.21) now permit the computation of all in-
trinsic polarization properties of the elliptically polarized wave from the intensities
specified in an arbitrary coordinate system. Values for Eq,E, and 6 (3.15) give Sy,
the total intensity, while (3.19) combined with (3.18) allows the determination of the
angle y, while the angle y is determined from (3.21). E, and E}, can be computed
from (3.20) and (3.15).

The phase difference 6 is important in several respects. Its sign determines the
sense in which the wave vector is rotating. If sind > 0 or equivalently tany > 0,
the polarization is called right-handed; conversely sin§ < 0 or tan )y < 0 describes
left-handed elliptical polarization. For right-handed polarization, the rotation of the
E vector and the direction of propagation form a right-handed screw. This conven-
tion is the one generally adopted in microwave physics and modern physical optics.
According to this definition, right-handed helical beam antennas radiate or receive
right-circular polarization, a result which is easy to remember. Traditional optics
used a different definition resulting in just the opposite sense of rotation based on
the apparent behavior of E when “viewed” face-on by the observer. Here we will
follow the modern definition, but care should be taken when comparing some of our
results with those in older texts.

If the phase difference is

§=8—-8&=mr, m=0,+1,42... (3.22)

the polarization ellipse degenerates into a straight line and E is linearly polarized.
As we have seen, an elliptically polarized wave can be regarded as the superposition
of two orthogonal linearly polarized waves.

Another important special case is that of a circularly polarized wave. For this

E,=E=E (3.23)
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and

5=§(1+m), m=0,1,42+3,.--, (3.24)

so that (3.4) reduces to the equation of a circle
E}+E =E (3.25)
with the orthogonal linear components
E.=EcosT,
E, = +Ecos (r—Z). (3.26)

From this we see that an arbitrary elliptically polarized wave can be decomposed
into the sum of two circularly polarized waves, because (3.7) can be written as

Eg = E,cos(T7+6) = (E, +Ej)cos(T+9),

Ey = Epsin(1+6) = (E, — E;) cos <‘L’+572r),

Solving for E, and E;, we find that
E, = % (Ea +Eb) ;
E =Y (E,~E),
1= 2 (Ea—Ep) (3.27)
and, for the total Poynting flux of the wave, we obtain

So=EX+E}=E>+E? | . (3.28)

3.2 The Poincaré Sphere and the Stokes Parameters

The results of the preceding section show that three independent parameters are
needed to describe the state of the polarization of a monochromatic vector wave.
For this we have introduced several sets of parameters:

1) the amplitudes E, E, and the relative phase 6 of two orthogonal, linearly polar-
ized waves;

2) the amplitudes E, and E;, and the relative phase § of a right- and a left-hand
circularly polarized wave;

3) the major and minor axis E,,E;, and the position angle y of the polarization
ellipse.

Poincaré (1892) introduced another representation that permits an easy visual-
ization of all the different states of polarization of a vector wave. If we interpret



44 3 Wave Polarization

Fig. 3.2 A sketch which
illustrates the definition of the
Stokes parameters

the angles 2y of (3.19) and 2y of (3.21) as longitude and latitude on a sphere with
the radius Sy of (3.15) there is a one-to-one relation between polarization states and
points on the sphere (Fig. 3.2). The equator represents linear polarization; the north
pole corresponds to right-circular and the south pole to left-circular polarization
(Fig.3.3).

There is a natural relation between the Poincaré sphere and the Stokes parame-
ters (1852). These are the Cartesian coordinates of the points on the sphere with the
definitions:

Fig. 3.3 Polarization and the Poincaré sphere. Considering the angles 2y and 2y as angles in a
polar coordinate system, each point on the surface of the resulting sphere corresponds to a unique
state of polarization. The positions on the equator (2 = 0) correspond to linear polarization,
those at the northern latitudes (2 > 0) contain right-handed circular polarization, while those on
the southern hemisphere contain left-handed. If we orient the (x,y) coordinate system parallel to
Q and U, the linear polarization of the waves are oriented as indicated
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So =1=E+E}
S1 = Q0 =Spcos2ycos2y
S> = U = Spcos2ysin2y
S3 =V =S8psin2y

45

(3.29)

Only three of these parameters are independent, since according to the construc-

tion of the Poincaré sphere

55 =St+55+S;
=0+ U*+V?

(3.30)

The Stokes parameters can also be directly expressed by the parameters of the

polarization ellipse (3.4). To do this we derive from (3.18)

2tan o 2E\E,
tan20 = =— ,
1 —tanZ o E?—E3
1 E}—E2
cos2q = =—— 5
V 1 +tan2206 El +E2
. 2E
sin2q = =3 -
E{ +E;

Then from (3.21), using (3.33) and (3.15),

2E\E,

2E\E
sin2y = ——— sind = 12 §ing,
E?+ E2 I

1
cos2y = 7 \/12 — (2E(E,)?sin’§ .

And from (3.19) with (3.31),

2E\E;
E} —E3

tan2y = cosd

and

1 E? —E?
cos2y = 1 2

V1+tan?2y \/12 — (2E\E,)?sin® 8

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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sin2y =

2E\E>cos &

\/12 — (2E(E,)?sin® §

3 Wave Polarization

(3.38)

Substituting (3.34), (3.35) and (3.37), (3.38) into (3.29) we then obtain the de-

sired result

So =1=E}+E?
Sy =Q=E}—E;

Sy = U =2E| E;cos 0
S3 =V =2E|E>siné

(3.39)

These equations permit us to express the Stokes parameters directly in terms of
observable quantities. A few special cases will illustrate the principle.

1) For a right-handed circularly polarized wave we have E| = E> and 6 = 7, so that

2) For a left-handed circularly polarized wave we have

3) For a linearly polarized wave we have

So=1=§S,
$1=0=0,
S, =U=0
S3=V=_.

So=1=S5
S =0=0
S$=U=0
Sy=V

E

So=1=E>=S§,
S =0 =1Icos2y,
S, =U =1Isin2y,

S3 =V =0.

=Fand E, =0, so that y =0 and

Finally, one should note that so far we have implied (but not explicitely stated)
that a strictly monochromatic wave is always polarized; there is no such thing as
an unpolarized monochromatic wave. This becomes evident if we remember that
for a monochromatic plane harmonic wave, Ey, E>,8; and &, are always constants.
This situation will be different when we consider quasi-monochromatic radiation, in
which o is restricted to some small but finite bandwidth. Radiation of this kind can
be unpolarized or partially polarized. To analyze this, one must have a convenient
way to describe such radiation. This will be done in the next section.
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3.3 Quasi-Monochromatic Plane Waves

To this point, the description of the polarization properties of electromagnetic waves
applies only to strictly monochromatic waves. The problem is how to modify the
results to allow for a finite frequency interval.

Both the electric and the magnetic field intensity of the wave at a given fixed
position can then be expressed by an integral of the form

v (@)= [ a(v)coso(v) —2mvi] dv. (3.40)

St~

Equation (3.40) has precisely the form of a Fourier integral. Therefore it is con-
venient to associate V() with the complex function

V() = / a(v)eiloM=2mvil gy | (3.41)
0
where
V)=V @) +ivi(r), (3.42)
/a sin[¢(v) —2zve] dv (3.43)
0

V() does not contain information not already contained in V"), V is referred to
as the analytic signal associated with V"), The integral in (3.41) formally extends
over an infinite range in frequency. This allows phase to be determined. Frequently
a(v) has a form that effectively limits this range to an interval Av which is small
compared with the mean frequency V; i.e.,

Av/v < 1. (3.44)

If this condition is fulfilled, the signal is said to be quasi-monochromatic. If we
express V in the form

V(t) = Ar)e!l®0 -2, (3.45)

A(t) will only vary slowly with ¢, if the bandwidth Av of the signal is small. How-
ever, even this variation is often too rapid to be directly measured; all that is really
needed is some kind of time average. Such an average will be denoted by (- - -):

(F(t)) = lim 5T /F (3.46)

T—oo
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so that ,
1 .
(@) = (VV7) = Jim — / VOV (1) dr. (3.47)
Gy

If we require that (A?) has a finite value, then [~ VV*dt diverges. However,
according to Wiener (1949), the techniques of Fourier analysis can be extended to
such a generalized harmonic analysis; therefore we will assume that time averaged
values for A can be computed from (3.47) This will be rediscussed in Sect.4.1. We
give an example of a quasi-monochromatic wave in problem 8ff.

3.4 The Stokes Parameters for Quasi-Monochromatic Waves

The observable intensity of a wave is given by its time averaged Poynting flux which
is, apart from a constant that is of no importance in this connection given by

I(P) = (V(Pt)V*(Pt)). (3.48)

Let us now consider a quasi-monochromatic wave of frequency v propagating in
the z direction:

E (t) = a)(t)e! @O0 B (1) = ay(r) ¢! () 2700 (3.49)

where E, and E|, are the analytic signals associated with the components E)Sr) (1) =
ay(r)cos[y(t) —2mvi] and E)(,r) (1) = ax(t) cos[¢a(t) — 2mv¢]. If the y component is
retarded in phase by € relative to the x component, then the electric vector in the 0

direction is _
E(1;0,€) = Eccos 0 +E,e'®sin0 (3.50)

and the intensity in this polarization angle is
1(0,e) = (E(t;0,€)E*(1;0,¢)), (3.51)

The Stokes parameters of a quasi-monochromatic wave are straightforward gen-
eralizations of the expressions in (3.39). For the wave field (3.49), they are

So = 1= (a7)+ (a3)
S1=0=(aj) —(a3)
Sy = U =2{ajaycos b) (3.52)
S3 =V =2{ajaysind)

and these can be calculated from 6 intensity measurements. Using (3.51) we find
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So = I =1(0°,0) +1(90°,0)
Sy = Q=1(0°,0) - 1(90°,0)
Sy = U =1(45°,0) — I(135°,0) (3.53)
Sy =V =1(45°,2)—1(135°, %)

These are the relationships used to analyze the outputs of radio polarimeters. We
will return to this later. For partially polarized light we find from (3.52)

S35 +83+53
(3.54)

P=Q+U4Vv?

instead of (3.30), which is valid for strictly monochromatic waves. It is then easy to
express the degree of polarization

\/ST+83+83
1723 . (3.55)

pP= So

The Stokes parameters of the superposition of several independent vector waves
will be the sum of the Stokes parameters of the individual waves.

3.5 Faraday Rotation

In 1845, Faraday detected that the polarization angle of dielectric materials will
rotate if a magnetic field is applied to the material in the direction of the light propa-
gation. This indicated to him that light must be an electromagnetic phenomenon. In
radio astronomy this Faraday rotation has become an important tool to investigate
the interstellar magnetic field (see, e.g., Fig. 3.4). As shown in Sect. 2.8 interstellar
gas must be treated as a tenuous plasma. Wave propagation in such a medium in
the presence of an external magnetic field is a rather complicated subject with many
different wave modes, cut-offs, etc. It is treated rather extensively in most textbooks
on plasma physics and we refer to a few of these in the reference list for this chapter.

Here we will disregard all these complications and treat only the one remaining
mode in the high-frequency limit where the frequency of the electromagnetic wave
is well above all the resonances, though still low enough that the interaction of the
free electrons in the plasma with the external magnetic field cannot be neglected
altogether. Since the effects of wave propagation in the direction of the magnetic
field are so much larger than those of propagation perpendicular to the field, only
this case will be considered.

In Sect.2.7, we have obtained the dispersion equation linking wave number
k=2m/A, and circular frequency @ = 2zv for wave propagation in a dispersive
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240
= 0.3 uG
P B = 104G
@B = 30 uG

Fig. 3.4 A plot of the line-of-sight magnetic field strength determined from Faraday rotation.
From the rotation measure and dispersion measure one can obtain the column density of electrons.
This data is for pulsars with distances < 3 kpc. Positive fields are shown by filled circles, negative
fields by open circles. The size of the symbols are proportional to field strength [adapted from
Backer, in Verschuur and Kellermann (1988)]

medium. In Sect. 2.8, we studied wave propagation in a tenuous plasma by examining
the effects of the conductivity o on an electromagnetic wave in a medium with free
electrons. Here we will repeat this process but will include an external magnetic
field.

To be exact, the material constants €, i and ¢ should be treated as tensors with 9
components each. However, by choosing a small angle between the direction of the
magnetic field and the propagation direction and a high enough frequency, we can
use scalar values for &, and ©.

We assume that the interstellar gas is a tenuous plasma with free electrons and
ions. As in Sect. 2.8, only electrons need to be considered, since the motion of the
ions is at least three orders of magnitude less than that of the electrons. The equation
of motion for an electron in the presence of a magnetic field B is

1
mv=mi=—e(E+ —ixXB). (3.56)
¢

If the magnetic field B is oriented in the z direction (3.56) becomes

.. € 5. e
ix+—Biy, = ——E;
mc m
e

(3.57)

) e
Py Briy = ——E,.
m

mc

Multiplying (3.57) by the factors 1 and £i and adding, this becomes

e F iiBi'i =——F4
mc m

ry =rytir (3.58)

Ey =E,+iE,
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Equation (3.58) is a differential equation for the complex quantities » and E.
Depending on the sign of i(e/mc) B, we distinguish between the solutions £ and
E_. These can be regarded as circularly polarized waves because the rectangular
coordinates are given by

1 1
Ev=5(E++E), Ey=-(E,—E-). (3.59)

To obtain solutions of (3.58) in the form of a harmonic wave we put
Ey =Aeileimon) (3.60)

where A is assumed to be real. Inserting this into (3.58), we see a solution for r of
the form _
ry = rg el k700 (3.61)

with ry being in general a complex quantity. This is possible provided that

€ e
I+ (—a) F —Bw) =——E4
m

mc
or
_e
=—" —F 3.62
" -0’ F LB - (3.62)
and
ie
fp=——5"——WE,.
- —0?F 5 Bo -

Thus, we find a current density

Né?

m (a):l: iB)
me

|J|: 7N6i‘i :i

with

(3.63)

The conductivity therefore is purely imaginary. For ® = @., where

e
w. = —B
mc

e B (3.64)
2wmce
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is the cyclotron frequency, the frequency of the wave is in resonance with the gyra-
tion frequency of the electrons in the magnetic field. Then | 6_ |— oo, and the E_
wave cannot propagate. This is seen most easily when (3.63) is substituted in the
dispersion equation (2.63), again assuming € = 1 and y = 1. Then

) )
) O w,
= — 1—7 .
A Cz( e im) , (3.65)

where we have introduced the plasma frequency (2.76). The index of refraction thus
becomes according to (2.33)

2

=1-—>2 3.66
ny (J)((}):l:wc) ) ( )

and consequently, the two modes E. and E_ have slightly different phase propaga-
tion velocities vy = ¢/ny. Then the two circularly polarized waves E and E_ will
have a relative phase difference 2A y after a propagation length Az given by
20y = (ky —k_)Az. (3.67)
The two circularly polarized waves can be superposed to form an elliptically
polarized wave. If one does this first for the original wave, and then after the wave
has left the slab Az, we find that the polarization angle has changed by Ay.
Truncating the series expansions of (3.65) after the second term, which is per-
missible for ® > @, and ® > @, we obtain

0. 2nNe’B
= Z =
2¢c ©?

Az

e A% (3.68)

Ay

For a finite slab with variable density N(z) and magnetic flux density B(z), we
thus obtain the total rotation of the polarization direction

&3

L
1

(3.69)

/ B (2)N(z) dz

-~ 2mm2e v?
0

In astronomy a system of mixed units is usually employed. Using this system, we
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(3.70)
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The dependence of Ay on v~2 can be used to determine the value of [ BN dz from

the measurement of the polarization direction at two frequencies:

RM B N,
7:8.1><105/ L a(=
radm—2 Gauss / \ cm—3 pc

0
Aviy _ (Ay: . @371
rad rad

MY (RY

m m
In this expression the unknown intrinsic polarization angle of the source cancels.
The units of RM are radians per m?, and positive RM indicates that B points toward
us. Equation (3.71) can, conversely, be used to determine the intrinsic polarization
angle from (3.70) and thus be used to correct the measured polarization. For pulsars,
one can combine the values of RM from the Faraday rotation of pulsars and DM,

from the pulse dispersion from (2.85). The resulting ratio gives the average magnetic
field parallel to the line-of-sight

By 6 RM
=123x107° — . 3.72
Gauss ~ DM ( )

If there are line-of-sight reversals, B| is a lower limit to the actual value. Results
for pulsars at distances less than 3 kpc show a scatter, but in the galactic longitude
range 0° to 180°, the direction of B“ is away from the Sun, and at lo_ngitudes 180° to
360°, towards the Sun. This is in the sense of galactic rotation. The B” fields obtained
from pulsar studies are in the range of 0.3 uGauss to 3 pGauss. Faraday rotation
measurements in our galaxy can be affected by field reversals. This is especially the
case for the inner parts of our galaxy, where reversals in B field direction are thought
to be present.

Problems

1. A source is 100% linearly polarized in the north—south direction. Express this in
terms of Stokes parameters.

2. If the degree of polarization is 10% in Eq. (3.55) with S3=0, S;=S; in Eq. (3.53),
what is the state of polarization?

3. Intense spectral line emission at 18 cm wavelength is caused by maser action of
the OH molecule. At certain frequencies, such emission shows nearly 100% circu-
lar polarization, but little or no linear polarization. Express this in terms of Stokes
parameters.
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4. Determine the upper limit of the angle through which a linearly polarized elec-
tromagnetic wave is rotated when it traverses the ionosphere. (a) Find RM using
(Eq. (3.73)) with the following parameters: an ionospheric depth of 20 km, an av-
erage electron density of 10° cm™ and a magnetic field strength (assumed to be
parallel to the direction of wave propagation) of 1 G.

(b) Carry out the calculation for the Faraday rotation, Ay, for frequencies of
100 MHz, 1 GHz and 10 GHz, if the rotation is Ay/rad = (1 /m)* RM.

(c) What is the effect if the magnetic field direction is perpendicular to the direction
of propagation? What is the effect on circularly polarized electromagnetic waves?
(d) Repeat for the conditions which hold in the solar system: the average charged
particle density in the solar system is 5 cm ™3, the magnetic field 5 uG and the av-
erage path 10 AU (=1.46 x 10" cm). What is the maximum amount of Faraday
rotation of an electromagnetic wave of frequency 100 MHz, 1 GHz? Must radio as-
tronomical results be corrected for this?

5. A 100% linearly polarized interstellar source is 3 kpc away. The average electron
density in the direction of this source is 0.03 cm—3. The magnetic field along the
line-of-sight direction, By, is 3 uG. What is the change in the angle of polarization
at 100 MHz, at 1 GHz?

6. A right hand circularly polarized electromagnetic wave is sent perpendicular to a
perfectly conducting metallic flat surface. The electromagnetic energy must be zero
inside this conductor.

(a) Use a qualitative argument to show that the sense of the polarization of the
reflected wave is opposite to that of the incoming wave.

(b) What is the effect of reflection on a linearly polarized signal?

7. If the DM for a given pulsar is 50, and the value of RM is 1.2 x 10%, what is the
value of the average line-of-sight magnetic field? If the magnetic field perpendicular
to the line of sight has the same strength, what is the total magnetic field

8. Consider a quasi-monochromatic wave with Av/¥ = 0.1 and v = vy, a constant.
Use (3.42) with a(v)=ay, a constant, and ¢ (V + 1) = ¢ likewise a constant. With
these values, calculate A(t). This is an idealization, however is a commonly used
approximation to describe wide band signals limited by narrow filters.

9. Repeat problem 8 for the function

Show that Av At=1.



Chapter 4
Signal Processing and Receivers: Theory

In this chapter, we cover some general topics concerned with signal processing and
noise analysis (Sects. 4.1 and 4.2). These are needed to understand the general prop-
erties of radiometers. It is not expected that these topics will change greatly with
time. Specifics of actual receivers will be presented in the next chapter. It is essen-
tial to have a working knowledge of Fourier transforms in order to make use of the
concepts presented in Chaps.4-8. We give a summary of the relevant concepts of
Fourier transforms (FT) in Appendix B, including convolutions and related topics.

4.1 Signal Processing and Stationary Stochastic Processes

The concept of spectral power density was introduced in Chap. 1 in a purely phe-
nomenological way. Radio receivers are devices that measure spectral power den-
sity. A detailed understanding of the principles governing the operation of certain
receivers, such as autocorrelation spectrometers, as well as the discussion of the
limiting receiver sensitivity is possible only if this concept is discussed more thor-
oughly.

In the preceding chapters, the signals considered were periodic functions of the
time which could be conveniently expressed as the superposition of simple har-
monic functions of time. It is now necessary to consider a more general class of
time variable functions; that is, those allowing representations of signals as station-
ary random processes, x(t). The signal x(¢) is a function of time 7, but it is not fully
determined. One can only specify certain statistical properties of the signal.

4.1.1 Probability Density, Expectation Values and Ergodicity

Perhaps the most important of these statistical quantities is the probability density
function, p(x), which gives the probability that at any arbitrary moment of time
the value of the process x(¢) falls within an interval (x — 1/2dx, x+ 1/2dx). For a
stationary random process, p(x) will be independent of the time ¢.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 55
DOI 10.1007/978-3-540-85122-6_4, (©) Springer-Verlag Berlin Heidelberg 2009
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The expected value E{x} or mean value of the random variable x is given by the
integral

=

E{x} = /xp(x)dx 4.1)

—oo

and, by analogy, the expectation value E{f(x)} of a function f(x) is given by

oo

EfW) = [ f@poa | @)

—oo

This is different from the expected value of the transformation y = f(x)

dx
E{y} =_Z ypy () dy =_[ 1P [ (43)
Frequently encountered expected values are the mean value
w=E{x} (4.4)
and the variance or dispersion
0% =E{x*} —E*{x}. (4.5)

Another average that can be formed for a stationary random process is the time
average of the values of the function f. This average will be designated (as in earlier
chapters) by acute brackets:

T
() = fim o [ fat)ar | @6)
-7

There are stochastic signals for which this limit does not exist. However, condi-
tions can be formulated [the ergodic theorem of Birkoff, see Khinchin (1949)] so
that the results of the definitions (4.2) and (4.6) agree. We will assume this to be the
case in the following.

4.1.2 Autocorrelation and Power Spectrum

The concept of Fourier Transforms plays a fundamental role in many branches of
physics and engineering, and it is convenient to use this in the discussion of noise
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signals. However, there are difficulties in doing this because a stationary time series
does not decrease to zero for + — F-eo. Therefore the simple definition for the FT

1/2T
X(v) = lim / x(t)e 2"V dy (4.7)

T—oo

—1/2T

does not exist; the integral varies irregularly as 7 increases. As first shown by
N. Wiener, the concept of the Cesaro sum of an improper integral can be used to
advantage in this situation. The Cesaro sum is defined as

Nesoo N

/D?A(x)dx: lim I/N /A(x)dx dr, (4.8)
e o

that is, as the limit of the average over the finite integrals. This limit will exist for
a wide class of functions where the ordinary improper integral does not exist. For
those cases where the ordinary limit exists, this will equal the Cesaro sum, as can
be seen if the sequence of the integrations in (4.8) is interchanged using Dirichlet’s
theorem on repeated integrations (see Whittaker and Watson, Sect. 4.3):

;]/N ./r.A(x)dx dr:/N(l—l;l)A(x)dx. 4.9)
0

—r -N

For any finite section of a stochastic time series we can define the Fourier trans-
form

1/2T

Xr(v) = / (1) e TV g
—1/2T

The mean-squared expected value is

1/2T 1/2T
Er{|X(V)[?} =E / /x(s)x(t)e*Z”iV<”")dsdt . (4.10)
—1/2T—1/2T

Because x(7) is assumed to be stationary, we must have
Rr(t) =Er{x(s)x(s+ 1)} = Er {x(r —7)x(¢) } 4.11)

where Ry () is the autocorrelation function (ACF). Introducing the ACF into the
above expression and performing the integration with respect to s, we find
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T
Er {|X(v)*} :T/ <1—|;> Rr(t)e *1Vidr. (4.12)
-T

But the right-hand side is a Cesaro sum, and therefore by defining the power
spectral density (PSD), S(v), as

1 >
S(v) = Jlim = Er {[X(v)]"}, (4.13)

we obtain from (4.12)
S(v):/R(T)e_z”i”dr : (4.14)

This is the Wiener-Khinchin theorem stating that the ACF, R(7), and the PSD,
S(v), of an ergodic random process are FT pairs (see a graphical representation in
Fig. 4.1). Taking the inverse FT of (4.14) we obtain

R(t) = / S(v)e™Vidy | . (4.15)
V(1) FOURIER TRANSFORM V(v)
(Voltage in Time) - * (Voltage in Frequency)

AUTO- ABSOLUTE VALUE
CORRELATION SQUARED
Y ¥
Rt FOURIER TRANSFORM SWv)
(Autocorrelation in - | » (Spectral Power
Time Delay) Density)

Fig. 4.1 A sketch of the relation between the voltage input as a function of time, V(¢), and fre-
quency, V(v), with the autocorrelation function, ACF, R(7), and corresponding power spectral
density, PSD, S(v). The two-headed arrows represent reversible processes
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Thus the total power transmitted by the process is given by
R(0) = /S(v)dv =E{x*(1)}. (4.16)

The limit 7 — oo of the autocorrelation function (ACF) Ry () can be found using
the Cesaro sum resulting in

R(t)=E{x(s)x(s+1)} = hm / (1 - ) x(s)x(s+1)ds. 4.17)
Using the concept of ensemble average, this can also be written as

= // xl(s)xg(s—i—‘L')p(xl,xz;‘c)dxldxz (4.18)

where p(x1,xy;7T) is the joint probability density function for the appearance of val-
ues x; and xp which are separated by the time 7. For ergodic stationary processes,
(4.17) and (4.18) lead to identical results, but sometimes one or the other is easier
to apply.

Applications of these concepts will be illustrated in the following two sections in
which we illustrate the influence that linear systems and square-law detectors have
on a random process. The results for square law detectors will be used later in the
discussion of the limiting sensitivity of radio receivers. A schematic representation
of these concepts is given in Fig. 4.2.

4.1.3 Linear Systems

Let the signal x(7) be passed through a fixed linear filter whose time response to a
unit impulse 6(¢) is A(t), see (Fig. 4.2). The output of this system is the convolution
of x(¢) with h(z) that is,

) = /x(tfr)h(r)dr: /x(r)h(tf'c)dr. (4.19)
Fig. 4.2 A schematic diagram x(t) hit) ym
to illustrate the analysis of Hiv)
noise in a linear system. The

symbols above represent the
time behavior, those below
the frequency behavior
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In physical systems the impulse response h(f) = 0 for t < 0. This permits a corre-
sponding change of the integration limits in (4.19). However, in the following it will
not be necessary to make this assumption.

The FT of the filter response is

H(v)= /h(t)e_zm‘”dt. (4.20)

Taking the expectation value of (4.19) and exchanging the order of expectation
value and integration we find

E{(n) = /E{x(tfr)}h(r)dr @.21)

or using (4.4)

EOO) = =E () [ (e | (4.22)

With (4.20) this can be written as

My = H(0) iy (4.23)

showing how the mean value of a stochastic process will be affected if passed
through a linear system. If the mean value of the input signal is zero, this will also
be true for the output signal.

The autocorrelation Ry, (7) of the output y() is most easily determined by first
considering the cross-correlation R,,(7) between x(r) and y(¢). Multiplying both
sides of (4.19) by x(r — ¥) we have

W) x(t = B) = / x(t — T)x(t — O) h(7) dr. (4.24)

But
E{x(t—1)x(t—0)} =Ru((t—7)—(t =) =R (¥ — 7).

Taking the expectation value of both sides of (4.24) and again exchanging inte-
gration and expectation value, we get

E{(f)x(t— )} = / Ru(® — 7)h()dx.
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This integral is obviously time independent and equal to the convolution of Ry, (T)
with A(7); the left side is the cross-correlation of y(r) and x(), so that

Ry (T) =Ru(T) ®A(1), (4.25)

where ® indicates convolution. Multiplying (4.19) by y(¢ + ¥) we have

Wi+ 0) (1) = / V(i + 9)x(t — 7) h(7) dT
and ,
Ryy(8) = /Ryx(19+r)h(r)dr:Ryx(ﬁ)®h(—z9). (4.26)

From the definition of ACF,
Ryy(7) = Ryx(7),

if we combine (4.25) and (4.26), we obtain

Ryy(T) =Ru(T) ®h(T)@h(—1T) | . 4.27)

written in full, this is

Ryy('L'):/Rxx(T—t) /h(z9+t)h(19)d19 dr.

Therefore, in order to compute a single value of the output autocorrelation func-
tion (ACF) of a linear filter, the entire input ACF must be known.

If we take the FT of (4.27) we obtain the following relation for the input and
output power spectral densities

S,(V)=S:(V)HW)[ | . (4.28)

4.1.4 Filters

Filters are devices that limit the frequencies passed through a system or change
the phase of an input. Filters can be grouped in a number of categories. The most
commonly encountered are the following:

1) A band pass filter allows a range of frequencies, Vi, < V < Vpax to pass further
in the system
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2) A low pass filter allows a range of frequencies up to but not beyond a specified
frequency, V < Vmayx to pass further in the system.

3) A high pass filter allows a range of frequencies, V > Vpax to pass further in the
system.

4) A band stop filter eliminates a range of frequencies, Vpin < V < Vmax from the
system.

5) An all pass filter allows all of the input frequencies to pass further, but changes
the phase of the input signal.

The properties of such filters are more easily appreciated in plots of their fre-
quency behavior rather than time behavior. Such filters may be either analog or
digital. One example relevant for the following is a low pass filter. Low pass filters
allow frequencies 0 < v < Vp,x to pass unchanged to the digitization and sampling
stage. This is usually referred to as a Video band. In practical systems, the D. C.
term is not passed in order to avoid large offsets.

4.1.5 Digitization and Sampling

The essential part of any digital system is the device that produces a digital output
from the analog input. Functionally, the operation of such devices can be divided
into two parts:

1) Analog-to-Digital converters (A/D converters) and
2) Samplers.

In both cases, the input is usually in the video band, that is, from very close to zero
frequency to a maximum frequency, which we call B.

First, the signal is digitized in an A/D converter. The quality of an A/D converter
depends on the speed at which it operates (in either MHz or GHz) and the accuracy
used to determine the amplitude of the result (the quantization usually expressed in
bits). Commercial A/D converters typically have quantizations of 8—12 bits but can
accomodate only relatively narrow input bandwidths. In Fig 4.3, we show a one bit
(2 level) and two bit (4 level) quantization of an analog function. The one bit quan-
tization of the input results in a positive or negative output level. This is referred to
as “hard clipping”; this will result in a lower signal-to-noise ratio since only part
of the information contained in the input is retained. Remarkably the properties of
the input can be recovered, albeit with a lower S/N ratio. The mathematical details
(first derived by Van Vleck) of the recovery from the input from hard clipped data
are given in Appendix C. Clearly multi-level quantization of an input will preserve
more information, and will thus result in an improved signal-to-noise ratio. An im-
proved but still simple scheme uses a 3 level (sometimes called /.5 bit) digitization.
This scheme allows a differentiation between amplitudes that are very positive, very
negative, positive or negative but close to zero. The limits chosen for 4 level (2 bit)
digitization are: (1) larger than +10, (2) between +10 and 0, (3) between 0 and
—10, and (4) lower than —10o. For a multi-level output, the reconstruction of the
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Fig. 4.3 A sketch to illustrate
the digitization in an analog- i Am - 1 @
to-digital converter (A/D N \‘ '\N N \\ I Nl\”\i, Time
converter). In (a) we show the -fo W VV MR
. : V
analog input. In (b) is shown
the one bit digitization of the ; (b}
input. In (c) is shown the 2 bit J—‘jH—H—H—l—% Time
digitization 0
3 ©
) I
S 1
0

input is usually based on tables generated from computer simulations. In all practi-
cal versions of such devices, there is a long term (i.e. a few seconds) average of the
input that is used to compensate the input so that the average does not drift far from
a given value, usually zero. A recent application in radio astronomy is the A/D con-
verter designed by Recoquillon et al. (2005). For a video input, the low frequency
side of the input band is usually not well determined and DC offsets become im-
portant. The ALMA (Atacama Large Millimeter Array) design operates between 2
and 4 GHz for this reason. The ALMA the A/D converter operates at a rate of 4
Gigasamples per second.

Second, the digitized function must be sampled at regular intervals. The sam-
pling of a sinusoid is shown in Fig. 4.4. In this example, the maximum frequency of
the input is vy. Samples of this function are shown for rates of 2vy and 4vy. Given
an input from 0 Hz to B Hz, the sampling rate, Vo, must be Vo = 2B to characterize
the sinusoid, that is, at twice the highest frequency to be analyzed. This is referred
to as the Nyquist Sampling Rate. Clearly a higher sampling rate can only improve
the characterization of the input. The sampling functions must occupy an extremely
small time interval. A higher sampling rate will allow the input to be better charac-
terized, thus giving a better S/N ratio.

In both the digitization and sampling we have assumed that the reaction of the
devices and that the sampling interval is shorter than any changes of the input.

An example of the sampling process in time and frequency is shown in Fig. 4.5.
The time variation of an analog function in panel (a) determines the maximum range
of frequencies in panel (b). Note that negative frequencies are also plotted to allow
a determination of phase of the input. The process of sampling in the time domain
is a multiplication of the function in panel (a) with the sampling function in (c). In
the frequency domain this is a convolution (see Fig. 4.1). In the frequency domain,
it is clear that a minimum sampling rate is needed to prevent an overlap of the
sampled function in frequency. If an overlap, there will be a mixture of frequency
compontents. This effect, aliasing, usually causes a degration of the sampled signal.

If only a portion of the input function is retained in the quantization and sampling
process, information is lost. This results in a lowering of the signal-to-noise (S/N)
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Fig. 4.4 An illustration of
the Nyquist Sampling Rate. In
panel (a) the sine wave input.
In panel (b) two samples per
period, at the best possible a)
position. In panel (c), four
samples per period. If the
sampling rate is 2vy, the
properties of the sinusoid

can be characterized. If the b)

sampling rate is higher the t T

characterization will be even 1 3

better 1 4v, 1 f 4v, 1 C)
1 3 S5 6

ratio. The effects of sampling rate and quantization on the S/N ratio are quantified
in Table 4.1. The effect on the signal-to-noise ratios for 1, 2 and 3 bit quantizations
at the Nyquist sampling rate (where 1/2Av) are listed in Col. 2. In addition, the im-
provement of the S/N ratios with sampling at twice the Nyquist sampling. Sampling
at a rate much higher than the Nyquist rate is referred to as “oversampling”. rate are
listed in Col. 3.

f{) (@) Fv) (b)

LN

-1t
JHHEAAAA&

Fig. 4.5 The time and frequency distribution of a sampled function: (a) The time variation, (b), the
frequency behavior, (¢) the time behavior of a regularly spaced sampling function (referred to as
a “picket fence” function), (d) the frequency behavior of the “picket fence” function, (e) the time
behavior of the sampled function, and (f) the frequency behavior of the function sampled with a
“picket fence”. The result in (f) is low pass filtered. The maximum frequency extent in (b), vy, is
smaller than the sampling rate, vy as shown in (d). See Appendix B for the “picket fence” function
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Table 4.1 Signal-to-noise ratio as function of quantization and sampling rate

)] (@) 3)
No. of bits Sampling rate

1 1

2Av 4Av
1 0.64 0.74
2 0.81 0.89
3 0.88 0.94
oo 1.00 1.00

[from: D*‘Addario (1989)]

4.1.6 Gaussian Random Variables

For the practical analysis of complicated systems the class of stationary random
processes is often too large, so one restricts the analysis to functions with less gen-
eral properties to simplify the investigations. Here stationary normally distributed
random variables or Gaussian noise, for which the probability density distribution
function is a Gaussian function with the mean y = 0, are frequently used. For ex-
ample, a function with a Gaussian distribution of its values can be used to represent
white noise which is passed through a band limiting filter. At each instant of time,
the probability distribution of a variable x is given by

1 2 /72
- . —x"]2c
e . 4.29
P = el

For this random variable we have
E{x}=u=0 and  E{x’}=0".

It is particularly important to note that the FT of a Gaussian is also a Gaussian,
and that the widths of these FT pairs are inversely related.

Av-At=1.

Similar situations encountered in Quantum Mechanics, under the description
Heisenberg Uncertainty Principle. This represents the fact that certain variables are
FT pairs. In Table 4.2 we give a set of values for the area within the positive half of a
normalized Gaussian curve in terms of the RMS standard deviation, 6. These values
give the probability that a Gaussian distributed quantity lies above the average.

4.1.7 Square Law Detectors

In radio receivers, the noise is passed through a device that produces an output signal
y(t) which is proportional to the power in a given input v():
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Table 4.2 Gaussian noise statistics

o Value outside the curve Value inside
1 0.3174 0.6826
2 0.0456 0.9544
3 0.0026 0.9974
4 0.0020 0.9980
y(t) = aV? (). (4.30)

This involves an evaluation of the integral

B0} = Elar(0) = = [ e o

The standard approach used to evaluate this expression is the following. First,
take the square of this integral. Then in each of the factors of the square, use the
variables x and y. Transform from rectangular (x, y) to two-dimensional polar coor-
dinates (p, 6). The result is

E{y(t)} =E{*(1)} =ao; 4.31)

For the evaluation of E{y?(¢)}, one must evaluate

B0 = B0} = o [ e T

P . . . . 2 2
This is best done using an integration by parts, with u = x>, and dv = xe ™~ /207
The result of this integration is

E{y*(t)} =3d’c!} (4.32)

and hence
o; = E{y*(t)} —E*{y(1)} = 2E*{y(1)}. (4.33)

Thus, in contrast to linear systems, the mean value of the output signal of a
square-law detector does not equal zero, even if the input signal has a zero expected
mean value.

4.2 Limiting Receiver Sensitivity

Radio receivers are devices used to measure the PSD. A receiver should contain the
following basic units:
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1) A reception (usually band pass) filter that defines the spectral range of the re-
ceiver.

2) A square-law detector used to produce an output signal that is proportional to the
average power in the reception band.

3) A smoothing filter or averager, which determines the time response of the output.

In some cases, processes in (2) and (3) are carried out after digitizing the signal, so
the operations could be carried out in a computer. In some cases, a receiver might
record the sampled voltages on a storage device for later analysis (see, e.g., Problem
1(c) for example). In other cases, for a fast receiver response, item (3) might be
dispensed with.

A receiver must be sensitive, that is, be able to detect faint signals in the presence
of noise. Just as with any other measuring device there are limits for this sensitivity,
since the receiver input and the receiver itself are affected by noise. We will derive
the expression for the limiting sensitivity as a function of receiver parameters. Even
when no input source is connected to a receiver, there is an output signal, since any
receiver generates thermal noise. This noise is amplified together with the signal.
Since signal and noise have the same statistical properties, these cannot be distin-
guished. To analyze the performance of a receiver we will use the model of an ideal
receiver producing no internal noise, but connected simultaneously to two noise
sources, one for the external source noise and a second for the receiver noise. These
form a 2 port network which is characterized by noise power, bandwidth, and gain.
The system gain is the available gain, G(v) . This is the ratio of the output power
to the input power. To be useful, receivers must increase the input power level. The
power per unit bandwidth entering a receiver can be characterized by a temperature,
as given by Eq. P, = kT (1.42). Furthermore, it is always the case that the noise
contributions from source, atmosphere, ground and receiver, 7;, are additive,

Tsys ZZZ

We apply these concepts to a 2 port system, as shown in Fig.4.6. The signal
input, S1, and output S, are related by the system gain, G. The noise output, N, is
the noise input, Ny, multiplied by the gain, plus the noise added by the system, Njy.
An often-used figure of merit is the Noise Factor, F. This is defined as

S1/N N T
F71/172 R

= = =14+ — 4.34
S2/N2 GN; + Ti ( )

that is, any additional noise generated in the receiver contributes to N,. For a direct
detection system, G = 1. If 7] is set equal to Ty = 290K, we have

Tr=F—-1

Given a value of F', one can determine the receiver noise temperature. The section
relates receiver properties to the minimum uncertainty in a measurement.
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N, «—| — N,

Fig. 4.6 A schematic of a two port system. The receiver is represented as a box, with the signal
T, and noise Tr, shown on the left. On the right are these quantities after an amplification G. For
a direct detection device, G=1

4.2.1 Noise Uncertainties due to Random Processes

The following is an exact derivation that makes use of Nyquist sampling of the input.
We assume that the signal is a Gaussian random variable with mean zero which

is sampled at a rate equal to twice the bandwidth.

Refer to Fig. 4.7. By assumption E(v) = 0. The input, v; has a much larger band-

width, B, than the bandwidth of the receiver, that is, Av < B. The output of the

receiver is vy, with a bandwidth Av. The power corresponding to the voltage v, is

(3.

P, =vi=0%=kTyGAv, (4.35)

where Av is the receiver bandwidth, G is the gain, and Tyys is the total noise from
the input T and the receiver 7Tr. The contributions to 7y are the external inputs from
the source, ground and atmosphere. Given that the output of the square law detector
is V3

(v3) = (v3) (4.36)

then after square-law detection we have
(v3) = (V3) = 6% = kTyysGAV . (4.37)

Crucial to a determination of the noise is the mean value and variance of (v3)
From (4.32) the result is
(vi)={v)=3(v3 (4.38)

this is needed to determine (03 ). Then,

2
03 = (v3) — (v3) (4.39)
Input
[ Receiver Detector Averager —@
1 2 3 4

Fig. 4.7 The principal parts of a receiver
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<v§> is the total noise power (= receiver plus input signal). Using the Nyquist sam-
pling rate, the averaged output, v4, is (1/N)Xv3 where N = 2Av 1.

From v4 and 0] = 03 /N, we obtain the result

o1 =kAVG(Tp+TR)/VAVT (4.40)

We have explicitly separated Ty into the sum Ta + Tr. Finally, we use the cali-
bration procedure to be described in Sect. 4.2.3, to eliminate the term kGAv.

AT 1
_ . (4.41)
Tsys VAVT

This result is so important that we review the process. We have assumed that
the receiver input is a stationary broadband signal. This is referred to as a white
noise spectrum. The voltage is assumed to follow a Gaussian distribution with zero
mean value. Then E(v) = 0. After passing through the receiver, vy, is limited to a
bandwidth Av. After passing through the square law detector, one has the result in
Eq. (4.37). One must determine the variance of v3 to find the RMS uncertainty in the
receiver output. Using the Nyquist theorem we can describe such a white noise PSD
by an equivalent noise temperature [cf. (1.42)] that would produce such a thermal
PSD. The calibration process allows us to specify the PSD of the receiver output
in degrees Kelvin instead of in Watts per Hz. We therefore characterize the receiver
quality by the system noise temperature Tgys = Ta + Tr. The analysis of another type
of detector is presented in Problem 4.2.3.

This result was first obtained by Dicke (1946), using a more complex derivation
(given in “Tools” 4th edition). Equation (4.41) is the fundamental relation between
system noise, bandwidth, integration time and rms fluctuations: For a given system,
the improvement in the RMS noise cannot be better than as given in Eq. (4.41).
Systematic errors will only increase AT, although the time behavior may follow
relation (4.41). We repeat for emphasis: Tgys is the noise from the entire system.
That is, it includes the noise from the receiver, atmosphere, ground, and the source.
Therefore AT is larger for an intense source. However this is an ideal situation since
the receiver noise is dominated by the signal.

4.2.2 Receiver Stability

Sensitive receivers are designed to achieve a low value for Tgys. Since the signals
received are of exceedingly low power, receivers must also provide sufficient output
power. This requires a large receiver gain. Then even very small gain instabilities
can dominate the thermal receiver noise. Therefore receiver stability considerations
are also of prime importance. Because the power measured at the receiver output is
that generated in the receiver plus the input, Tsys = Ta + 1R,
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P=k(TA+Tr)GAvV, (4.42)

variations of the total system gain AG leading to
P+AP=k(TA+TR)(G+AG)Av (4.43)

are indistinguishable from variations of 75 or Tr
P+AP=k(To+AT +TR)GAv. (4.44)

Comparing (4.44) and (4.43) using (4.42) we obtain

ATrms  AG

4.45
Ta G | (4.45)

This shows that variations of the output power caused by gain variations enter di-
rectly into the determination of limiting sensitivity. If a total power receiver is to
measure an input of 10~* g, the total gain must be kept constant to less than this
value. This is exceedingly difficult to achieve with an absolute measurement, so
therefore one must employ a receiver system based on a differential or comparison
measurement.

This was first applied to radio astronomical receivers by Dicke (1946). This is a
straightforward application of the compensation principle such as the Wheatstone
bridge. We show a schematic of such a system in Fig. 4.8. In this scheme a receiver is
switched periodically between an input 75 and a resistive load at the thermodynamic
temperature Ti.¢. If both input, T, and reference, Tit, are matched to the receiver
input, the antenna gives the output

Py = k(TA+TR)GAV

Receiver

_____ [

T Switching
Cycle

Fig. 4.8 A balanced receiver employing Dicke switching between a load at the temperature T,
and the sky at T5. The box joined by dotted lines connecting the two switches indicates a square
wave switching cycle. This is alternately multiplied by +1 or —1, so that the response from the
reference is subtracted from sky synchronously in the adding section on the far right
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while the reference load produces
Pret =k(Tret +Tr) GAV .

At the output of the receiver, the difference of these two signals as measured by
a phase sensitive detector or lock-in amplifier is then

PA—PR:k(TA—Tref)GAV,

provided Tiys does not change its value between a measurement of signal and ref-
erence. If a gain variation AG is wrongly interpreted as a variation AT of the input
we have, eliminating k and Av,

(Ta = Tret) (G+AG) = (Ta + AT — Tres) G

or

ATrms _ AG Tp — Tret
T G Tx

(4.46)

The influence of gain fluctuations depends on the difference Tp — Tt. For a bal-
anced receiver with Ty = Tie¢, AT is completely independent of any gain variations.
Then the receiver is functioning as a zero point indicator. This is true only when
Ta = Ter. If Ty # TR the receiver is no longer balanced, then gain variations will
influence the signal.

The rate at which the receiver is switched depends on the time behavior of the
stability of the receiver. While in the 1950s and early 1960s fast switching rates were
needed, present-day receiver systems are so stable that switching rates of a Hertz or
slower can be used.

There are different means of producing the comparison Ties. A straightforward
implementation is a resistive load at the temperature Ti.¢. For low-noise systems, the
reference temperature should not be too different from Ta. This might be provided
by an absorber immersed in a liquid nitrogen or liquid helium bath.

If the input power levels vary over a wide range, it is not always possible to
maintain a well-balanced system with Tp =2 T.s. One could add noise to the load,
increasing Tr.r. Alternatively the system can be stabilized by periodically injecting a
constant noise step for part of the measuring cycle. If this calibration cycle is faster
than the rate of gain changes, one can compare the output at appropriate phases of
the cycle, and with this information correct both the zero point and the gain of the
system. In the millimeter and sub-mm wavelength range, the sky temperature can
vary. This will have a large effect on Tp. The compensation involves a determina-
tion of sky conditions at the receiver frequency. This involves a “chopper wheel”
calibration to be described in Chap. 8.

At all wavelengths, fluctuations in the atmosphere will affect high resolution im-
ages. At millimeter and sub-mm wavelengths, these fluctuations are mostly due to
water vapor, but for wavelengths in the range of a meter, the ionospheric fluctuations
can distort images. Corrections for such effects are complex, and will be described
in Chap. 9.
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4.2.2.1 Effect of Switching on Receiver Noise

The time spent measuring references or performing calibrations will not contribute
to an improvement in the S/N ratio. Thus this amount of time must be sub-
tracted from the total integration time in (4.41). So a system in which one half the
integration time is used to measure Ti.r will achieve a temperature resolution

ATrms _ V2
Tgys VAvT

Often the AT quoted for a switched receiver has an additonal factor of v/2 compared
to (4.47). This is caused by the fact that AT is computed as the difference Az =
Tp — Tier, where both T) and Ti.¢ have equal errors due to noise. There is a factor
/2 from spending only v/2 of the total time on the source, and an additional 1/2
caused by subtracting two equally noisy signals. The time 7 is the fotal time taken
for the measurement (i.e. on-source and off-source).

Even for the output of a total power receiver there will be additional noise in
excess of that given by (4.41) since the signals to be differenced are AT + Tgys and
Tgys. This is needed since AT << Tgys. The error of this difference signal is given
by (4.47).

If the time variation of G is included in the expression for the sensitivity limit, the
generalization of (4.41) for stochastic time variations of AG/G will be Eq. (4.48).
In Table 4.3 we list the noise performance for different types of receivers. The case
of total power and switched receivers have been discussed previously. Correlation
receivers are treated in Sect.5.4.1; these use 2 identical receivers to reduce gain
variations, but require combining two noisy inputs, hence an additional factor of
\/2. The additional noise contributions introduced by the use of one and two bit
quantization are listed in Table 4.1.

AT 1 AG\?
ok — (2. 4.48
Toys Avr+< G> ( )

(4.47)

One can model the time behavior of AG. For a time dependence

AG\?
G =%n+tnrt,

we obtain the smallest value for the resolution AT /Ty, at the integration time

Table 4.3 Noise performance K of different receiver configurations

Receiver type K

Total power receiver (4.41) 1

Switched receiver V2 Alrms K
Correlation receiver V2 Tsys VAVT
1-bit digital receiver 2.21

2-bit digital receiver 1.58
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1
Vavy

For actual receivers this time can be determined by sampling the normalized
output x; at equal time intervals 7. If

Ty = (4.49)

N N
Sv=Yx, Onv=2.%,
i=1 i=1

then the mean error of the mean value

1
X :—S
W= NN

and the RMS uncertainty is

1
o(N)= N\/QN—S%V’ (4.50)

and this can be computed using running averages of N, Sy, and Qn without needing
individual values of x;.

A plot of 62 versus T = N7 is sometimes referred to as an Allan plot, after
D.W. Allan (1966) who applied this type of analysis to determine the stability of
frequency standards. The value of 7); depends on the stability of the receiver, and
the stability of the power entering the receiver. In the millimeter and sub-millimeter
wavelength range, the stability of the atmosphere plays a dominant role. The Allan
plot is the ultimate way to measure stability, but requires a great amount of mea-
surement time. Therefore it is often used to test receivers in a laboratory, but only
rarely on telescopes.

Before reaching a time 7,,, one must take a comparison measurement to prevent
an increase in ATryms. This may involve directing the receiver to another part of the
sky, or connecting the receiver to an internal source, or changing frequency. A plot
of the behaviour of 7, is shown in Fig. 4.9

4.2.3 Receiver Calibration

In the calibration process, a noise power scale must be established at the receiver
input. While the detailed procedures depend on the actual instruments in use, the
basic principles are following. In radio astronomy the noise power of coherent re-
ceivers (those which preserve the phase of the input) is usually measured in terms
of the noise temperature. To calibrate a receiver, one relates the noise temperature
increment AT at the receiver input to a given measured receiver output increment
Az (this applies to heterodyne receivers. For the calibration of bolometer receivers,
see Sect. 8.2.6). In principle, the receiver noise temperature, Tr, could be computed
from the output signal z provided the detector characteristics are known. In practice
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the receiver is calibrated by connecting two or more known power sources to the
input. Usually matched resistive loads at the known (thermodynamic) temperatures
Ti, and Ty are used. The receiver outputs are then

2= (TL+TR)G,
za = (Tu+1r)G,

from which
Tu—T
T = MLy ’ (4.51)
y—1
where
y=2zH/7L. (4.52)

The noise temperatures Ty and 71, are usually produced by matched resistive
loads (absorbers in the millimeter/sub-millimeter wavelength ranges) at the ambient
temperature (75 = 293 K or 20°C) and at the temperature of liquid nitrogen (7, =
78 K or —195°C) or sometimes liquid helium, which has a boiling point 7}, = 4.2 K.
In this process, the receiver is assumed to be a linear power measuring device (i.e. we
assume that the non-linearity of the receiver is a small quantity). Usually such a
fundamental calibration of the receiver need be done infrequently. At centimeter
wavelengths, secondary standards are used. In the millimeter/sub-mm wavelength
range, measurements of the emission from the atmosphere and then from an ambient
resistive load are combined with models to provide an estimate of the atmospheric
transmission. For a determination of the receiver noise, an additional measurement,
usually with a cooled resistive load is needed. Note that the y factor as presented here
is determined in the Rayleigh-Jeans limit, and thus using the concepts of classical
physics.
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Problems

1. The Gaussian probability distribution function with mean m is

p(x) _ 1 e,<x,m)2/20-2 )
ovVin

(a) Show that [ p(x)dx = 1. If the first moment, or mean value m, is

m=(x) = /+mxp(x)dx

and the second moment is

~+oco
<x2> :/ X2 p(x)dx,
(b) find m and o, the RMS standard deviation, where 0 = (x*) — (x). The third
and fourth moments are defined in analogy with the definitions above. Determine
the third and fourth moments of the Gaussian distribution.

(c¢) The relation between <x2> and <x4> has been used to study the noise statistics
for very intense narrow band emission from an astronomical source at 18 cm (see
Evans et al. 1972 Phys. Rev. A6, 1643). If the noise input has zero mean, and if the
voltages (v?) and (v*) are compared, what would you expect the relation to be for
a Gaussian distribution of noise?

2. For an input
v(t) = Asin2nvt

calculate the FT, autocorrelation function and power spectrum. Note that this func-
tion extends to negative times. Repeat the calculation for

v(t) =Acos2mvr .

3. Calculate the power spectrum, Sy, for the sampling function v(¢) = A for —7/2 <
t < 1/2, otherwise v(r) = 0, by taking the Fourier transform to obtain V(v) and
then squaring this. Next, form the autocorrelation of this function, and then FT to
determine the power spectrum. Show that these two methods are equivalent.

4. Repeat the analysis in Problem 5, but shifting this function by a time +7/2: that
is, v(t) = A for 0 <t < 7, otherwise v(¢) = 0. The FT shift theorem is given by
equation (B5) in Appendix B

flx—a) & e 2mS p(s) .

Show that the result of this problem can be obtained from the result of Problem 5
by applying the shift theorem. What is the value of the shift constant, a?
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5. Repeat the above for the function v(r) = A for T <t < 27, and —27 <t < —1,
otherwise v(r) = 0. The result can be interpreted as the frequency distribution cal-
culated in Problem 5, modulated by cos27v7. This is an example of the modulation
property of Fourier transforms, as in equation (B6) in Appendix B, namely,

f(x)cosx = %F(sfv)+%F(s+v) :

6. Consider another aspect of the situation described in the last problem. We have
a function cos(2mvr)cos(2mvyt), where vy =Vv.+ A, where A < v.. Apply the
identity cos(x+y) = (1/2)[cos(x+y)+cos(x—y)]. Check whether the modula-
tion property of the Fourier transform applies.

7. A table of Gaussian integrals to determine the area within the boundary of the
curve at the 0, 20, 30 and 40 levels is given in Table 4.2.

(a) If you want to determine whether a feature is not noise at the 1% level, how
many standard deviations from the mean must this signal be?

(b) Suppose you want to detect a continuum signal of peak temperature 10~ K with
a total power receiver with a system noise of 200 K, and a bandwidth of 500 MHz.
Assume that this system is perfectly stable, that is random noise is the only source
of error. How long must you integrate to obtain a 3¢ detection?

(¢) For an emission line with a total width of 10 kHz, use the same system, but using
a spectrometer which has a bandwidth equal to the linewidth. How long must one
integrate so that a detection is 99% certain if random noise is the only effect?

(d) If the spectrometer has 1000 channels, how many “false” emission lines, i.e.
noise peaks, will be found at the 10, 20, 30 levels?

(e) Now suppose the signal could appear as either a positive or negative deflection.
How does this change the probabilities?

8. (a) On two days, labelled as 1 and 2, you have taken data which are represented
by Gaussian statistics. The mean values are x; and x, with o1 and 0. Assume that
the average is given by ¥ = fx; + (1 — f)x; and the corresponding 62 = 07 +
(I—-f )2022. Determine the value of f which gives the smallest & by differentiating
the relation for ¢ and setting the result equal to zero. Show that

(AN (e
X= X1 ——|x
o} +03 o} +03

4 4

- O O

= (2) o2+ (1) o2 .
(07 +03)2 (07 +03)>

(b) Use the relation 62 ~1/(time) to show that the expression for X reduces to the
result, ¥ = (1/(t; +t2)) (tix) + taxz).

and

9. Obtain (4.34) from the quantities in Fig. 4.6. Justify the definition of the
noise factor F in Eq. (4.34) based on the case of a noiseless receiver, i.e. one with
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F = 1. Show that this definition is consistent with the definition of receiver noise

temperature
Tr = (F—1)- 290K

if a room-temperature load is connected to the receiver input. Suppose F = 2, what
is Tr? Repeat for F = 1.2 and 1.5.

10. Use the analysis in Sect. 4.2.1, step for step, for a linear detector. In this device,
the output is taken to be the absolute value of the voltage input. Assume that the
signal is small compared to the receiver noise. Complete each calculation as in the
previous problem. The output of the linear detector is

vi= [ Inalexp(~13/203)dr,

while the noise depends on (v3)* = (1,)? = 62.
To obtain the final result, one must make use of the relation

O4
(4 (v4) /AT;)
11. The y factor is used to determine receiver noise. Given that 7y is 77 K and Ty =
290 K, show that the plot in Fig. 4.10 correctly expresses the relation between Ty
and the y factor.

Fig. 4.10 A plOt of receiver I T T T T T 171 T T T T T T T 17T L
noise versus y factor
1000 |- =
& L 4
2 L i
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® C ]
= L i
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1 2 3
Y FACTOR

12. Suppose a receiver accepts inputs from 2 frequencies, v, and v;. The response
of the receiver is the same at these frequencies.

(a). If all factors are equal, and the signal is present in both v, and v;, how does
the value of Tr change in Eq. 4.41? (b). Suppose the signal is present in v, only.
Repeat part (a). (¢). Repeat (b) for the situation in which the response at v, is twice
that at v;. What is the value of T ?

13. Derive the result in Eq. (4.49).
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14. To detect a source one samples a large region of the sky. The receiver is perfectly
stable. If one has 10 samples at the position of the source, and 10> samples away
from the source. One can fit a curve to the off-source data and subtract this from the
on-source data. Justify the assertion the if the RMS noise of the on-source data is N,
the noise in the difference of on-source and off-source is Nv/1+0.01.



Chapter 5
Practical Receiver Systems

5.1 Historical Introduction

The first receivers used by Jansky and Reber were coherent radiometers. These ra-
diometers preserve the phase of the received wave field and are sensitive to a single
polarization. Usually coherent radiometers are superheterodyne systems. In such
systems the frequency of the input is translated to another (usually lower) frequency
before further processing. Usually this processing consists of amplification in the
Intermediate Frequency (IF) section and detection. Such receivers allow greater
flexibility in the analysis of the radiation, but involve a number of individual com-
ponents. One can divide coherent receivers into front ends and back ends. The divid-
ing point is somewhat arbitrary. Usually the front end operates at the sky frequency,
while the back end operates at lower frequencies.

Front ends consist of amplifiers that operate at the sky frequency and/or mix-
ers, which are frequency converters. The trend has been to improve the sensitivity
of front ends while extending operation to higher frequency. Initially front ends
consisted of room temperature mixers. Later these were replace by exotic devices
such as uncooled and then cooled parametric amplifiers, maser amplifiers, cooled
transistor amplifiers, and, at millimeter and sub-mm wavelengths, superconducting
mixers.

The back ends are devices that analyze the polarization, time structure or spec-
tral properties of the broadband radiation. The trend has been toward digital compo-
nents for all types of backends. Frequently these components are developed for use
in commercial electronics, but have been successfully adapted for radio astronom-
ical applications. Because both phase and amplitude are preserved, only coherent
radiometers are used in radio interferometers.

Incoherent radiometers do not preserve phase; these operate as direct detection
systems. The most common type of incoherent radiometer at millimeter wavelengths
is a bolometer. Bolometers are basically very sensitive thermometers. These have
wide bandwidths and high sensitivities. Bolometers are sensitive to both polariza-
tions. For single telescope continuum measurements in the millimeter and sub-mm
ranges, semiconductor bolometers have dominated the field. These all follow the
practical design pioneered by F. J. Low.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 79
DOI 10.1007/978-3-540-85122-6_5, (©) Springer-Verlag Berlin Heidelberg 2009
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5.1.1 Bolometer Radiometers

The operation of a bolometer makes use of the effect that the resistance, R, of a
material varies with the temperature. When radiation is absorbed by the bolometer
material, the temperature varies; this temperature change is a measure of the in-
tensity of the incident radiation. Because this thermal effect is rather independent
of the frequency of the radiation absorbed, bolometers are intrinsically broadband
devices. The frequency discrimination needed is be provided by external filters. A
bias voltage must be applied to a bolometer for optimum performance. Although of
great practical importance, especially for superconducting bolometers, we neglect
the bias voltage in the following. This treatment follow the analysis of Mather (1982)
and Jones (1953).

Let the receiving element of the thermal detector (Fig.5.1) be a piece of radi-
ation absorbing material coupled to a heat sink at a constant temperature T¢. The
temperature response of this element to power absorption will be influenced both by
the thermal capacity and the thermal conductance between receiving element and
heat sink. A relation for the temperature response can be deduced from an analogy
with an R — C circuit. If capacity and conductance are denoted by 4" and ¢4 = 1/R,
respectively, the energy balance equation is

AT
%%§~H¢AT:P7 5.1

where AT is the temperature increase of the receiving element above its (thermo-
dynamic) equilibrium value 7j. P denotes the power absorbed. For a steady power
flow, eventually a constant temperature is reached; when dAT /dt = 0 we find

AT = 2. (5.2)

Fig. 5.1 A sketch of a bolometer represented by the smaller square to the right. The power from
an astronomical source, P, raises the temperature of the bolometer element by A 7', which is much
smaller than the temperature Tp of the heat sink. Heat capacity, %, is analogous to capacitance. The
conductance, ¢ is analogous to electrical conductance, G, which is 1/R. The noise performance
of bolometers depends critically on the thermodynamic temperature, 7y, and on the conductance
¢ . The temperature change causes a change in the voltage drop across the bolometer (the electric
circuit is not shown)
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If the power flow is suddenly stopped, the temperature at a time ¢ later is

AT = ;e*f/f, (5.3)
where
T=%/9 (5.4)

is the thermal time constant of the element. Usually the radiation incident on the
bolometer is modulated at a chopper frequency v. Then we can write

P = Pye?™ivt, (5.5)
Ignoring any phase shifts in the system response, the solution of (5.1) is

Pernivt
AT = ——————. 5.6
G(142mivr) (56)

The amplitude of the resulting temperature variation is

|AT| (5.7

- 9\/1+2rvi)?

For modulating frequencies fast compared to 1,/7 the temperature response falls
off as 1/v, while for vt < %n the result reduces to the steady-state response. In
practical use of bolometers 7 falls within the range of milliseconds to seconds.

For a bolometer to be a useful detector in astronomy it must fulfill several re-
quirements. It should

e respond with a maximum temperature step A7 to a given power input,
have a short thermal time constant 7 so that chopping frequencies faster than
instrumental and weather changes can be used,

e produce a detector noise which is as close to the theoretical minimum as possible.

The first two items require a detector for which both the thermal heat capacity ¢
and the thermal coupling to the heat sink ¢ are optimal for a given situation. In the
ideal case, one wants to maximize the absorption and minimize the capacity.

5.1.2 The Noise Equivalent Power of a Bolometer

We next consider the minimum noise obtainable with a bolometer. The noise sources
are:

Johnson noise in the bolometer,

thermal fluctuations, or phonon noise,
background photon noise, and

noise from the amplifier and load resistor.
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Cooling will reduce all of these noise contributions. For ground based bolometers
the background photon noise will determine the noise of the system. We will give a
simplified semiclassical derivation of this noise, a full quantum statistical derivation
is possible [see e.g. Mather (1982) or Griffin and Holland (1988)].

A frequently used measure for the quality of a detector is its noise equivalent
power, NEP, defined as the power which must fall on the detector to raise output by
an amount equal to the RMS noise. This is defined as the response to a sinusoidally
modulated input which is switched between two temperatures.

For a Black Body radiation field, the square of the RMS fluctuations in the num-
ber of photons is

(Angus)? =n(n+1) =n>+n, (5.8)

where n is the photon occupation number

1

= T (5.9)

The first term in (5.8) dominates in the Rayleigh-Jeans limit when n > 1. Thus
we retain only this term. To relate occupation numbers to macroscopic quantities
such as power, we must account for density of states factor, collecting area, A, and
the solid angle, €2, of the background as seen by the bolometer. The density of states
factor is (2hv? /c?); to establish the proper units, we need a factor for photon energy,
hv. The total RMS value of fluctuations is twice the simpler expression, because of
arguments similar to those used for the extra factor of 2 in connection with Johnson
noise (Chap. 1). Then we have

T 2hv3 1 dv
2 _
(AFws) _ZQAO/( 2 ) (ehv/kT_1>hv VAT ] (5.10)

For a narrow band of frequencies vy to vo+ Av, this is

Vo+AvV

2 n? v
Vo
Using hv < kT, we obtain
40QA
(ARrms)? = P (kT)*Av. (5.12)

The bolometer area, A, can be considered in many respects to be an antenna
receiving energy in the field of the background radiation. Then, for a simple antenna
(see Eq. 7.11), QA = A2, so this expression can be simplified. We have neglected
the factor €, for the emissivity of the background. If we include this, we have,

NEPph 228kTB(;VAV . (5.13)
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If £ =0.5,Tgc = 300K and Av = 50GHz then NEP,, = 9.3 x 1016 Watts
Hz /2,

With the collecting area of the 30 m IRAM telescope and a 100 GHz bandwidth
one can easily detect mJy sources. This analysis is based on the assumption that
the Johnson noise and thermal fluctuations in the bolometers are negligible, which
is usually the case. There are other drawbacks: large bolometer bandwidths may
lead to a contamination of the continuum response by intense spectral lines in the
passband.

5.1.3 Currently Used Bolometer Systems

Bolometers mounted on ground based radio telescopes are background noise lim-
ited, so the only way to substantially increase mapping speed for extended sources
is to construct large arrays consisting of many pixels. In present systems, the pixels
are separated by 2 beamwidths, because of the size of individual bolometer feeds.
The systems which best cancel atmospheric fluctuations are composed of rings of
close-packed detectors surrounding a single detector placed in the center of the ar-
ray. Two large bolometer arrays have produced many significant published results.
The first is MAMBO?2 (MAx-Planck-Millimeter Bolometer). This is a 117 element
array used at the IRAM 30-m telescope. This system operates at 1.3 mm, and pro-
vides an angular resolution of 11”. The portion of the sky that is measured at one
instant is the field of view, (FOV). The FOV of MAMBO?2 is 240". The second sys-
tem is SCUBA (Submillimeter Common User Bolometer Array). This is used on
the James-Clerk-Maxwell (JCMT) 15-m sub-mm telescope at Mauna Kea, Hawaii.
SCUBA consists of a 37 element array operating at 0.87 mm, with an angular reso-
lution of 14” and a 91 element array operating at 0.45 mm with an angular resolution
of 7.5”; both have a FOV of about 2.3’. The LABOCA (LArge Bolometer CAmera)
array operates on the APEX 12 m telescope. APEX is on the 5.1 km high Chaijnan-
tor plateau, the ALMA site in north Chile. The LABOCA camera operates at 0.87
mm wagqvelength, with 295 bolometer elements. These are arranged in 9 concentric
hexagons around a center element. The angular resolution of each element is 18.6”,
the FOV is 11.4.

5.1.3.1 Superconducting Bolometers

A promising new development in bolometer receivers is Transition Edge Sensors re-
ferred to as TES bolometers. These superconducting devices may allow more than
an order of magnitude increase in sensitivity, if the bolometer is not background
limited. For broadband bolometers used on earth-bound telescopes, the warm back-
ground limits the performance. With no background, the noise improvement with
TES systems is limited by photon noise; in a background noise limited situa-
tion, TES’s should be ~2-3 times more sensitive than semiconductor bolometers.
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For ground based telescopes, TES’s greatest advantage is multiplexing many de-
tectors with a superconducting readout device, so one can construct even larger
arrays of bolometers. SCUBA will be replaced with SCUBA-2 now being con-
structed at the Astronomy Technology Center, Edinburgh. SCUBA-2 is an array
of 2 TES bolometers, each consisting of 6400 elements operating at 0.87 mm and
0.45 mm. The FOV of SCUBA-2 will be 8. The SCUBA-2 design is based on
photo-deposition technology similar to that used for integrated circuits. This type
of construction allows for a closer packing of the individual bolometer pixels. In
SCUBA-2 these will be separated by 1/2 of a beam, instead of the usual 2 beam
spacing.

5.1.3.2 Polarization Measurements

In addition to measuring the continuum total power, one can mount a polarization-
sensitive device in front of the bolometer and thereby measure the direction and de-
gree of linear polarization. The polarimeter used with SCUBA consists of a rotatable
quartz half-wave plate and a fixed etched grid mounted in front of the SCUBA cryo-
stat. The waveplate introduces a A/2 phase lag between the planes of polarization.
The signal is switched between sky positions by use of a nutating subreflector. Then
the direction of the A/2 plate is changed, and the procedure is repeated. Another
instrument is PolKA. With PolKA one rotates the A/2 plate continuously, without
nutating the subreflector. This rotation of the A/2 plate gives rise to a modulated sig-
nal which is proportional to the polarized signal. Polarized thermal emission from
dust grains has been measured in a number of sources with this device (see Chap.
10 for the details of dust emission).

5.1.3.3 Spectral Line Measurements

Thus far, the presentation of bolometers has concentrated on broadband contin-
uum emission. It is possible to also carry out spectroscopy, if frequency sensitive
elements, either Michelson or Fabry-Perot interferometers, are placed before the
bolometer element. Since these spectrometers operate at the sky frequency, the fre-
quency resolution (vV/AvV) is limited. One such instrument is the South Pole Imag-
ing Fabry-Perot Interferometer, SPIFI (Stacey et al. 2002). SPIFI is a multi-beam
Fabry-Perot system working at 0.3 mm with a velocity resolution of about 300 km
s~!. SPIFT is designed to measure J = 7 — 6 carbon monoxide rotational spectra and
the 3P,—3P; fine structure line of carbon simultaneously (see Chap. 13, Table 13.1
and Chap. 15, Sect. 15.8ff).
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5.2 Coherent Receivers

We first provide a simplified derivation of the minimum noise of a coherent system.
We then give descriptions of the major components of a receiver, and describe spe-
cific types of front ends. Then we give a description of back ends which are used to
extract continuum, polarization, spectral line or pulsar data.

5.2.1 The Minimum Noise in a Coherent System

The ultimate limit for a coherent receiver or an amplifier is obtained by application
of the Heisenberg uncertainty principle. We start with the familiar relation:

AEAt > h/4r (5.14)

This must be cast in a slightly different form. It can be rewritten in terms of the
uncertainty in the number of photons and the uncertainty in phase:

AE = hvAn (5.15)

and
2AVAt =A¢Q. (5.16)

Inserting relations (5.15) and (5.16) in relation (5.14), we obtain
ApAn>1/2. (5.17)

The equality in relation (5.17) is reached when both the photon number and phase
are Gaussian distributed.

We now apply relation (5.17) to obtain the desired result. A noiseless amplifier
with gain G > 1 has the property that n; photons at the input produce ny = Gn
photons at the output. In addition, the output phase ¢, equals the input phase ¢
plus some constant phase shift. Then an ideal detector at the output of the amplifier
must obey relation (5.17):

A¢2An2:1/2. (518)

But then the uncertainty in input photon number is An; = Any /G, and the un-
certainty in the phase remains the same. Then at the amplifier input, the uncertainty
relation would be

ApiAny =1/2G. (5.19)

But this is in contradiction to relation (5.17). The only way to avoid this con-
tradiction is to assume that the amplifier adds some noise. The minimum amount,
per unit bandwidth, needed to satisfy relation (5.18), at the output of the amplifier
is (G — 1)hv. When referred to the input of the amplifier, this is (1 — 1/G)hv. To
minimize the noise contribution from following stages of amplification, we let G
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increase to a large value. Then the minimum noise of the amplifier is Av, which
results in a receiver noise temperature of

Tix(minimum) = h% . (5.20)

For incoherent detectors, such as bolometers, phase is not preserved, so this limit
does not exist. In the centimeter and even millimeter wavelength regions, this noise
temperature limit is quite small. For example, at 2.6 mm, it is 5.5 K. However, at a
wavelength of 0.3 mm, the limit is 47.8 K. Presently, the best receiver noise is =5
times these values. This derivation is valid for receiver noise temperatures that are
rather far above the quantum limits. As pointed by Kerr, Feldman and Pan, (1996),
for receiver noise temperatures below 40 K, the effect of the zero point energy ex-
pressed in temperature units, g—,‘{’ may be important. There are a number of subtle
effects, but in practice, for a given value of the y factor (see Fig. 4.10), this effect

raises the receiver noise estimate by 10%.

5.2.2 Basic Components: Passive Devices

5.2.2.1 Thermal Noise of an Attenuator

Attenuators appear at many positions in the circuit of a radiometer, either deliber-
ately in order to reduce the amplitude of a too large input or simply present as a
“lossy” piece of connecting cable, connector, switch etc. The equation of radiative
transfer together with Kirchhoff’s law can be used to determine the noise power
emitted by such a device if in Local Thermodynamic Equilibrium, LTE. The PSD
at the output of the attenuator is obtained by integrating the transfer equation (1.9)
along the signal path.

5.2.2.2 Isolators

Isolators are non-reciprocal devices, that is, these circuit elements allow power to
pass in one direction only. Isolators are used to prevent power reflections that arise
in one part of the receiver system from affecting other parts of the system. Isolators
consist of circuit elements containing magnetic materials that are in strong magnetic
fields. These elements are arranged so that a linearly polarized wave entering from
one direction is Faraday rotated so that it can propagate further. A wave entering
from the other direction cannot propagate. Thus, for a given direction of propagation
and magnetic field, this device will favor one direction over the other.
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5.2.2.3 Directional Couplers

These elements allow a certain amount of power to be diverted into another part
of the system. In waveguides, in the simplest case, these elements consist of two
openings separated by a quarter of a wavelength. In one direction the waves emitted
from these openings reinforces, while in the opposite direction, the waves cancel.
More complex versions consist of multi-hole couplers.

5.2.2.4 Phase Lock Systems

The purpose of a phase lock loop system (PLL) is to provide a stable frequency,
in both phase and frequency. This is needed for the coversion of frequencies in
heterodyne receivers. The essential features of a PLL are: (1) a voltage controlled
oscillator (VCO), i.e., one that changes frequency when the input voltage changes,
(2) a phase comparitor that produces a signal proportional to the difference of phases
of two inputs, and (3) a low pass filter. For item (2), the two inputs are from a
reference source and from the output of the VCO. We show a schematic of a PLL in
Fig.5.2.

Volt
Ref. Phase Loop Cortr.
Oscill Det. Filter Oscill

Fig. 5.2 A sketch of the Phase Lock Loop (PLL) which is used to control the LO frequencies in
the microwave range

5.2.3 Basic Components: Active Devices

5.2.3.1 Cascading of Amplifiers
The power amplification needed for a practical receiver is of the order of 80—100 dB.

Such a large amplification can only be obtained by cascading (Fig. 5.3) several am-
plification stages each with the gain G; resulting in the total gain

G:ﬁG,-.
i=1

The question is now: what is the total noise temperature of the cascaded system
if each individual stage contributes the noise temperature 7g;?
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Ta

Ts

Fig. 5.3 Cascading of amplifiers. In the upper part is a sketch showing the cascading of amplifiers.
The inputs to each amplifier are the signal (upper) and internal noise (lower). In the lower part of
this figure is the combined amplifier chain, with signal and noise inputs

If the input PSD of stage 1 is
Py=kTy (5.21)
then stage i produces an output PSD
P(v)=[P_1(v)+kTs] Gi(v). (5.22)
The appropriate definition of the total system noise temperature 7g of a system
with the total gain []G; is

Py(v) =k(Ta+Ts) [[ Gi(v). (5.23)

i=1

Substituting (5.21) and (5.22) into (5.23), we obtain the Friis formula which takes
into account the effect of having cascaded amplifiers :

1 1
Ts =Ts1+ —T1s2 + Tsz+ -+ ———FTs, . (5.24)
Gy GGy G1Gy...Gy

If several amplification stages are necessary, these should be arranged so that the
amplifier with the lowest noise temperature is used first; for the second and follow-
ing stages, the noise temperature can be higher. Another important point is that after
amplification the output power can be divided into several branches without intro-
ducing much additional noise into the system. Thus the output of a single receiver
can be used to provide a signal to many devices without worsening the signal-to-
noise ratio.

Purely lossy devices such as filters or mixers have G < 1. This is usually written
as L = 1/G, and is referred to as conversion loss. Classical mixers operated in the
DSB mode with equal response in the signal and image sidebands typically have 3
db loss.

In the case of interferometry (Chap. 9), amplified signals from an individual an-
tenna can be correlated with a large number of other antennas without a significant
loss in the signal-to-noise ratio.
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5.2.3.2 Mixers

Shifting the signal frequency is useful for two reasons:

e one avoids a feedback of amplified signals into the frontend. High-gain cascaded
amplifier chains are often affected by instabilities. If the total gain is of the order
of 10% to 10'% (80-100 dB) an exceedingly small amount of power leaking from
the output port back to the input port is sufficient to cause the system to oscillate
violently.

e one can choose a frequency at which the signal is more easily amplified. One
shifts the frequency of output signal from that of the input by mixing the signal
with a monochromatic signal from a local oscillator.

The local oscillator is usually referred to as the local oscillator, or LO. The pro-
cess of mixing may shift the phase of the signal by a constant value. Except for
additional noise from the mixing process, the information contents of the sifted sig-
nal should not be changed by the mixing process.

A mixer is the device that is performing the actual frequency shift. In principle
any circuit element with a nonlinear relation between input voltage and output cur-
rent can be used as a mixer. However, derivations of mixer properties are simplest
for a device with a purely quadratic characteristic. Mixers are an essential part of
heterodyne receiver. A semiconductor metal junction can be used as a mixer. Apply-
ing both a signal and a local oscillator frequency at the input of a Schottky junction,
one can produce a microwave mixer device. That is, the sum and difference of the
frequencies at the input will appear at the output. The quality of such a mixer is de-
pendent on the change in the current-voltage characteristic near the voltage at which
it is operated, that is, the operating point.

I=aU>. (5.25)

Where U is the sum of the signal Esin(2mwvst + &s) and the local oscillator
Vsin(2mviof + 8L0)- Then the output is

I = o[Esin(2rvst + 8s) + V sin(2mviof + 8.0)]?

= o E%sin®(2mvst + 8s) + a V2 sin? (2 v ot + L0)
+20EV sin(2mvst + 8s) sin(2w vy of + dL0) (5.26)

Using trigonometric addition formulae, one obtains

1= %(x (E2 + Vz) (DC component)
- % aE? sin(4mvsr +28s + %) (2nd harmonic of signal)
— % aV*sin(4nviot 4+ 280 + Z) (2nd harmonic of LO)
+oVEsin[2r(vs — vLo)t + (s — 6Lo + 5)]  (difference frequency)
—oVEsin2n(vs +vLo)t + (8s + 8o+ F)]  (sum frequency).  (5.27)
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Fig. 5.4 Input and output frequencies of a mixer. The thick arrows are the given values. There are
two methods to specify the system: (a) when two input frequencies, v o and vs are given. In case
(b) when vi o and vip are specified. In this case, signals from both the upper sideband (VLo + Vir)
and lower sideband (VLo — Vi) contribute to the IF signal

The output consists of the superposition of several components at different fre-
quencies (Fig.5.4): a DC signal, signals at twice the signal and the local oscillator
frequencies, and two components at the difference and the sum of signal and oscilla-
tor frequencies. While the amplitudes of all other components depend on the second
power of signal or local oscillator amplitude, the sum and difference frequency sig-
nals depend on the first power. Thus their amplitudes are accurate reproductions of
the amplitude of the input signal.

By use of an appropriate bandpass filter, all but the desired signal can be sup-
pressed. In this way the mixer can be considered to be a linear device producing
an output at the frequency vir = Vs — V. This is also the case for devices with
characteristic curves different from (5.25). Filters give rise to a loss of signal, so
for some applications a filter will not be placed before the mixer. Then the mixer
is used as a double sideband (DSB) device. The output of a DSB mixer is shown
in Fig. 5.5. For a given local oscillator frequency, two frequency bands, above and
below the LO frequency, separated by the intermediate frequency (IF) frequency,
are shifted into the IF band. Thus, a mixer will shift two frequency bands into the
same band. Usually one sideband is wanted, but the other not. These are referred
to as the signal and image bands. Mixers that consist of a single non-linear cir-
cuit element accept both sidebands. In the millimeter or sub-millimeter wavelength

1t 1,

107GHz LC 115GHz

|/|| UPPER y
m LOWER .

Fig. 5.5 A sketch of the frequencies shifted from the sky frequency (top) to the output (lower) of
a double sideband mixer. In this example, the input is at the sky frequencies for the Upper Side
Band (USB) of 115 GHz, and Lower Side Band (LSB) of 107 GHz while the output frequency is
4 GHz. The slanted boxes represent the passbands; the direction of the slant in the boxes indicate
the upper (higher) and lower (lower) edge of the bandpass in frequency

IF
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ranges, such mixers are still commonly used as the first stage of a receiver. For
single dish continuum measurements, both sidebands contain the signal, so in this
case, DSB operation does not decrease the signal-to-noise (S/N) ratio. However, for
single dish spectral line measurements, the spectral line of interest is in one side-
band only. The other sideband is then a source of extra noise and perhaps confusing
lines. Therefore single sideband (SSB) operation is desired. If the image sideband
is eliminated, the mixer is said to operate in SSB mode. This can be accomplished
by inserting a filter before the mixer. However, filters are lossy elements. Thus this
procedure will increase the system noise temperature. If the mixer is first element
of a receiver, the degradation of the system will be significant, so the filter-mixer
combination should be used after the signal is amplified. If a mixer is used as the
first circuit element in a receiver, it is better to make use of a single sideband mixer.
See Fig. 5.6 for asketch of suc a device. SSB mixers require two matched mixers
fed by a single local oscillator as well as additional circuit elements. Noise in mix-
ers has 3 causes. The first is the mixer itself. Since one half of the input signal is
shifted to a frequency vio + ViF, the signal input power is a factor-of-two (3 db)
loss of signal. This is referred to as conversion loss. The simplest form of classical
mixers typically have 3 db loss. In addition there will be an additional noise con-
tribution from the mixer itself. Second, the LO may have “phase noise”, that is a
rapid change of phase, which will add to the uncertainty. Third, the amplitude of
the LO may vary; however this last effect can be minimized. For low levels of LO
power, the output power and thus the response of a mixer will increase linearly with
LO power. However, variations in the local oscillator power will appear as varia-
tions of the total gain of the system. Usually the mixer LO power is adjusted so
that the mixer output is saturated. Then no variation of the output signal power is
seen if LO power varies. This insures that the output remains within the operational
range.

@ f (t) cos w¢t
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Fig. 5.6 A sketch of the single sideband mixer (SSB). The input signal, f(¢), is divided into two
equal parts. There are two identical mixers located in an upper and lower branch of the sketch.
The LO frequency from a central source, @, is shifted in phase by 7/2 from the input to the
output of the mixer in the lower part of the sketch. In the lower branch, the phase of the input
signal is also shifted by 7/2. After mixing the signals are added to produce the single sideband
output
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5.2.3.3 Local Oscillator Sources

There are many possible LO sources. In the meter and centimeter wavelength
range, one can make direct use of the output from commercially available fre-
quency synthesizers. These devices are rather stable, but their output should be
compared to known signals. Ultimately the frequency might be derived from a
frequency standard (see the upper left of Fig.5.2). The method used in compar-
isons with this standard will be discussed in the next section. In the few GHz
to perhaps 100 GHz range, YIG (Yttrium-Iron-Garnet) oscillators are used in re-
ceivers and test instruments. YIG oscillators have wide tuning range, and produce
a signal that has a small frequency width. YIG oscillators are tuned by varying
an external magnetic field. At frequencies higher than 40 GHz, the output from
YIG oscillators or commercial frequency synthesizers becomes impractical. Thus
the output of a synthesizer is passed through a non-linear element, a multiplier,
to produce a higher frequency. Frequently the output of an LO source is dou-
bled, tripled or quadrupled. This process is similar to that described for mixers,
but with only a local oscillator input. In Fig.5.4 the output at 2vi o would rep-
resent the output of a doubler; usually the non-linear element is optimized to en-
hance the desired harmonic. In some cases, a series of multipliers is needed to
reach the desired frequency. It is possible, for example, that the output of a fre-
quency source is doubled, then amplified, then tripled, then amplified again. The
amplifiers would be tuned to the desired frequency to avoid spurious output fre-
quencies. For frequencies of about 100 GHz and higher, Gunn oscillators, per-
haps with multipliers, are used to produce the LO signal at a micro-Watts levels.
Gunn oscillators are Gallium Arsenide crystals which oscillate when a voltage is
applied.

For the ALMA project, a completely different approach is used. Here a phase and
frequency stable microwave signal for the range 30—-900 GHz must be distributed
over more than 10 km to each receiver. This is done by first producing two modu-
lated laser signals which are brought to the receivers by optic fibers. At the receivers,
the laser signals are mixed to produce a microwave signal. This signal is then mul-
tiplied and amplified to produce the needed LO frequency.

5.2.4 Semiconductor Junctions

Semiconductor amplifiers are the first stages of the best centimeter systems. First,
areview of a few essential concepts of the quantum theory of crystalline materials.
In this outline, the relevant concepts are presented. For an isolated atom, a bound
electron can only possess certain allowed energies, but when identical atoms are
combined in a solid, such as a metal, we know from experience that electrons can
move freely. Within a highly ordered crystal, a free electron can easily move only if
it has certain energies. That is, the electron can move only in certain energy bands.
By varying the material, both the width of the band, the band gap, and the minimum
energy to reach a conduction band can be varied.
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A widely used material for low-noise microwave applications is gallium arsenide,
GaAs. In order to increase the current, a small number of impurity atoms is intro-
duced. Usually silicon is adopted for a GaAs crystal. This addition of impurities
is referred to as doping. These impurities might have one or two excess electrons
compared to the basic material. In some cases, the doped material might have fewer
electrons. Most importantly, the doping atoms are chosen to have about the same
size, so that the crystal structure remains the same. The obvious choices are neigh-
boring elements in the periodic table. There are some extra conditions dependent on
purely chemical considerations.

The crucial part of any semiconductor device is the junction. On the one side
there is an excess of material with negative carriers, forming n-type material and
the other side material with a deficit of electrons, that is p-type material. The p-type
material has an excess of positive carriers, or holes. At the junction of a p- and n-
type material, the electrons in the n-type material can diffuse into the p-type material
(and vice-versa), so there will be a net potential difference. The diffusion of charges,
p to n and n to p, cannot continue indefinitely, but a difference in the charges near
the boundary of the n and p material will remain, because of the low conductivity of
the semiconductor material.

From the potential difference at the junction, a flow of electrons in the positive
direction is easy, but a flow in the negative direction will be hindered.

The current caused by the positive carriers is the same, and the relation remains
valid (see Fig.5.7). Such p-n junctions have a large capacitance, so there can be
no fast response. Thus these are suitable only as square-law detectors. Schottky
junctions have a lower capacitance, so are better suited to applications such as mi-
crowave mixers. The I-V curves of Schottky mixers are similar to the curves for
conventional diodes. A sharper curve provides a more efficient conversion.

A simple extension of the p-n junction is the combination of three layers, p-n-p,
in a so-called “sandwich”. In Field Effect Transistors, FET’s, the electric field of
the gate, G, controls the carrier flow from source, S, to drain, D. Small variations
in the gate potential have large effects on the current flow from source to drain, so
this is an amplifier. The direct extension of such a concept is the bipolar transis-
tor, which operates by the motion of both holes and electrons. Such devices have

Fig. 5.7 A sketch of the
current flow in a diode as a
function of applied voltage,
this relation, the I-V curve, is
typical for classical mixers
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slow response times, so their use is restricted to less than a few GHz. For example,
uncooled Heterojunction Bipolar Transistors are useful up to 6 GHz.

At higher frequencies, unipolar devices, which have only one type of carrier, are
used as microwave amplifier front ends. These are Field Effect Transistors, FETs.
High Electron Mobility Transistors, HEMTs, are an evolution of FETs. The design
goals of HEMT’s are: (1) to obtain lower intrinsic amplifier noise and (2) opera-
tion at higher frequency. In HEMTs, the charge carriers are present in a channel of
small size. This confinement of carriers is arranged by having the channel at the
interface of two materials. In the first HEMTs, one used GaAs and AlGaAs as the
two materials. In Fig. 5.8 we show a sketch of a High Electron Mobility Transistor
or HEMT. The AlGaAs contributes electrons. These diffuse only a small distance
into the GaAs because of the positive space charge in AlGaAs. Thus the electrons
are confined to a narrow layer which is a potential well. This confinement gives
rise to a two dimensional electron gas, or “2 DEG”. We have denoted this region as
“channel” in Fig. 5.8. Flows in regions containing doped ions give rise to larger scat-
tering of electrons. Since the carriers are located in the 2 DEG region where there
are no doped ions, there is less scattering and hence lower noise. When cooled,
there is a significant improvement in the noise performance, since the main contri-
bution is from the oscillations of nuclei in the lattice, which are strongly temperature
dependent.

To extend the operation of HEMT to higher frequencies, one must increase elec-
tron mobility, tt, and saturation velocity V;. A reduction in the scattering by doped
ions leads to a larger electron mobility, i, and hence faster transit times, in addition

Source Drain
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Fig. 5.8 This figure shows a HEMT amplifier. As with FETs, the current flow from Source to
Drain, around the Gate. The electric field from the Gate is shown as a darker, irregular region,
has a large effect on the current flow from Source to Drain. Thus, this amplifies the signal placed
on the Gate. Because of the potentials in the interface layers, the electrons can flow from Source
to Drain only in a very thin layer. This is shown enclosed in semicircles; this part of the HEMT
provides the gain. The quantity gy, is the transconductance, and ugs is the velocity from gate to
source. The product of these is the gain of the amplifier. The quantities labelled “Ls, Lp, etc.”
represent inductances internal to the HEMT; the “R”’s are internal resistances, and “C”’s are internal
capacitances
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to lower amplifier noise. The maximum saturated velocity is the limit to the value
of carrier velocity as the source-drain voltage is increased. Reducing the scattering
and increasing Vi, leads to higher maximum operating frequencies, that is, higher
cut-off frequencies. An exact analysis of HEMT behavior shows that the cut-off fre-
quency is directly proportional to the saturation velocity, and inversely proportional
to the sum of two terms: first, the width of the gate region and second, a correction
for (effectively) the fringing of the electric field from the gate.

5.2.5 Practical HEMT Devices

For use up to v =115 GHz with good noise performance, one has turned to modifica-
tions of HEMTs based on advances in material-growth technology. This technology
has led to the fabrication of junctions between dissimilar semiconductors. These
are referred to as heterojunctions. There has been a significant improvement of
carrier-transport properties for two reasons. The first is the quantum confinement
of the electron carriers created by the heterostructure. The second is the use of mod-
ulation doping, which reduces ionized impurity scattering in the channel where con-
duction takes place. The performance improvements such as higher gain and lower
noise, are directly related to the electron mobility, u, saturated electron velocity,
Vgat, and the channel sheet carrier concentration, nsg. From the use of these different
structures comes the name “pseudomorphic” HEMT, or PHEMTs. The heterostruc-
ture devices have evolved from GaAs HEMT, to Pseudomorphic HEMT (so-called
PHEMT) grown on GaAs, to a composition lattice matched HEMT grown on In-
dium Phosphide, a so-called InP HEMT, to a GaAs metamorphic HEMT (MHEMT).
InP HEMTs are used up to frequencies of 115 GHz. These have an additional layer
of indium gallium arsenide, InGaAs, which has a different lattice constant, inserted
between the doped AlGaAs and the GaAs buffer. In the InGaAs layer, enhanced
electron transport compared to the GaAs is possible. Thus there is a higher electron
density and higher current, as well as better confinement in the potential well than
with conventional HEMTs. Since InGaAs has a different crystal lattice constant, the
layer must be kept to less than 200 A thick to insure that lattice strain is taken up
coherently by the surrounding material. All of this is mounted on a carrier layer of
GaAs, which serves as a buffer.

The InP based Indium-Aluminum-Arsenide (InAlAs/InGaAs) material heter-
ostructure with a InGaAs-channel of 53—-65% Indium has the advantage of higher
bandgap discontinuity and higher saturation velocity, which leads to better
performance at higher frequencies compared to GaAs-based PHEMTs. However,
producing large numbers of these devices is difficult due to the brittle nature of InP
substrates and small available wafer size. In addition, increasing the Indium com-
position in the device channel generally leads to a decrease in breakdown voltage
due to enhanced impact ionization in the smaller bandgap material. In 1999, a GaAs-
based metamorphic HEMT, or MHEMT, technology has emerged as a low cost alter-
native to InP-HEMTs. MHEMT technology has the potential to eventually displace
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the InP HEMTs in millimeter-wave applications. In this new approach metamorphic
buffers are used to accommodate the lattice mismatch between the GaAS-substrate
and the active layers. Using the metamorphic buffer concept, it is expected that
unstrained InAlAs/InGaAs heterostructures can be grown with approximately any
InAs fraction. These metamorphic buffers are based on the controlled relaxation of
the strain due to the mismatch between the layer and the substrate. A controlled re-
laxation is obtained by growing an approximately one tm thick alloy-like InAlAs
and by varying the indium content with a lower value towards the substrate.

For low noise IF amplifiers, 4-8 GHz IF systems using GaAs HEMTs with 5 K
noise temperature and more than 20 db of gain have been built. With InP HEMTs
on GaAs-substrates, even lower noise temperatures are possible. As a rule of thumb,
one expects an increase of 0.7 K per GHz for GaAs, while the corresponding value
for InP HEMTs is 0.25 K per GHz. For front ends, noise temperatures of the am-
plifiers in the 18-26 GHz range are typically 12 K. High performance Metamor-
phic HEMTs (MHEMTs) are supplied by Raytheon, Filtronics and UMS. These
may eventually replace InP HEMTs. High performance Pseudomorphic HEMTs are
supplied by Mitsubishi and Fujitsu. See Fig. 5.9 for the photograph of such an IF
amplifier.

At higher frequencies, the SEQUOIA receiver array uses Microwave Monolithic
Integrated Circuits (MMIC’s) in 32 front ends for a 16 beam, two polarization sys-
tem. This development was pioneered by S. Weinreb. The MMIC is a complete
amplifier on a single semiconductor, instead of using lumped components. The
MMIC’s have excellent performance in the 80—115 GHz region without requiring
tuning adjustments. The simplicity makes MMIC’s better suited for multi-beam sys-
tems. The noise temperatures of individual array elements are not as low as the very

Fig. 5.9 An ALMA HEMT amplifier for 4-8 GHz. This low noise amplifier (LNA) was built by
OAN, the Spanish National Observatory. This will be used as the first IF section after the SIS front
end built at IRAM Grenoble. The receiver noise temperature is in the range of 5-7 K. The input is
on the right, the output is on the left
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best SIS devices, but the large number of beams compensates for this for the imag-
ing larger regions.

5.2.6 Superconducting Mixers

Very general, semi-classical considerations indicate that the slope of the I-V curve
shown in Fig. 5.7 changes gently. This is because the energy band gap energies are ~
1 'V, much too large compared to the input energies of photons even at submillimeter
wavelengths. This leads to a relatively poor noise figure, since much of the input
signal is not converted to a lower frequency.

A significant improvement can be obtained if the junction is operated in the su-
perconducting mode. Then the gap (see Fig. 5.10) between filled and empty states is
~ 1 mV, and this is comparable to the photon energies at about 300 GHz. In addition,
the local oscillator power requirements are ~ 1000 times lower than are needed for
conventional mixers. Finally, the physical layout of such devices is simpler since
the mixer is a planar device, deposited on a substrate by lithographic techniques.
SIS mixers consist of a superconducting layer, a thin insulating layer and another
superconducting layer. A diagram of the energy levels is shown in Fig.5.10. There
is a gap between the filled states and the allowed unfilled states. In the filled states,
the electrons are paired (“Cooper Pairs”) and act as bosons which give rise to the
Josephson phenomenon. The Josephson Effect increases the noise in an SIS mixer,
so must be supressed. Thus, in addition to the mixer DC bias and LO signal, at fre-
quencies above 120 GHz, one must apply a steady magnetic field to eliminate the
Josephson Effect. SIS mixers depend on single carriers; a longer but more accurate
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Fig. 5.10 (a) A sketch of the energy bands of a superconducting-insulating-superconducting (SIS)
layer. The gap between the filled states (below, shaded) and the empty states (above) is 2A. On the
left we sketch the process in which an electron absorbs a photon, gaining energy which allows it to
tunnel through the insulating barrier. (b) The /-V curve of the SIS junction. The dashed line is the
behavior when there is no local oscillator (LO) power; the solid line shows the behavior with LO
power supplied. When DC biased at 2A /e, the SIS mixer efficiently converts photons to a lower
frequency



98 5 Practical Receiver Systems

description of SIS mixers is “single quasiparticle photon assisted tunneling detec-
tors”. When the SIS junction is biased to a value of 2A /e, the filled states on the
left (see Fig. 5.10) reach the level of the unfilled band shown on the right, and the
electrons can quantum mechanically tunnel through the insulating strip. In the I-V
curve for a SIS device (Fig.5.10) the sudden jumps in the /-V curve are typical of
quantum-mechanical phenomena. For low noise operation, the SIS mixer must be
DC biased at an appropriate voltage and current. If, in addition to the mixer bias,
there is a source of photons of energy /v, then the tunneling can occur at a lower
bias voltage, hv/e. If one then biases an SIS device and applies an LO signal at a
frequency v, the I-V curve becomes very sharp. There are other jumps in that curve
at sub-harmonic frequencies, due to multiple photon absorptions. These can be min-
imized by filtering and proper biasing. For a weak (astronomical) signal present at
frequency v, the conversion of such photons to lower frequency is much more ef-
fective than with a classical mixer. We show a sketch of SIS junction mounted in a
waveguide in Fig. 5.11. Under certain circumstances, SIS devices can produce gain.
If the SIS mixer is tuned to produce substantial gain the SIS device is unstable,
somewhat like the instability found with parametric amplifiers. Thus, this not use-
ful in radio astronomical applications. In the mixer mode, that is, as a frequency
converter, SIS devices can have a small amount of gain. This tends to balance in-
evitable losses, so SIS devices have losses that are lower than Schottky mixers. SIS
mixers have performance that is unmatched in the millimeter region. Improvements
to existing designs include funerless and single sideband SIS mixers. Tunerless
mixers have the advantage of repeatability when returning to the same frequency.
Usually single sideband mixers require 2 backshorts. SIS mixers with a suppressed
sideband use 2 or more identical junctions and a more complex LO system and
electronics. For the Atacama Large Millimeter Array (ALMA) new SIS mixer de-
signs have been developed. These are wideband, tunerless, single sideband devices
with extremely low mixer noise temperatures. we show a photo of such a device in
Fig.5.12.

An increase in the gap energy, to allow the efficient detection of higher energy
photons. This is done with Niobium superconducting materials with geometric junc-
tion sizes of 1 um by 1 um. For frequencies above 900 GHz, one uses niobium nitride
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Fig. 5.11 A sketch of an
SIS junction placed in

a waveguide. Both the
astronomical and LO signals
enter through the waveguide;
the difference frequency is
present at the IF output. This SIS on
response is optimized by Quartz

tuning the back short Feedhorn
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Fig. 5.12 [An ALMA Band 9 SIS mixer] A photo of the feed horn on the right, and the SIS mixer
holder on the left. This was built at the Space Research Organization of the Netherlands (SRON).
This receiver covers the frequency range 610-720 GHz. This is a tunerless double sideband mixer.
This is typical for the sub-mm SIS mixers used in the ALMA instrument

junctions. Variants of such devices, such as the use of junctions in series, can be
used to reduce the capacitance. An alternative is to reduce the size of the individual
junctions to 0.25 um.

SIS mixers are the front ends of choice for operation between 150 GHz and
900 GHz because:

these are low-noise devices;

the IF bandwidths can be >1 GHz;

these are tunable over ~30% of the frequency range
the local oscillator power needed is <1 UW.

5.2.7 Hot Electron Bolometers

Superconducting Hot Electron Bolometer-mixers (HEB) are heterodyne devices, in
spite of the name. These mixers make use of superconducting thin films which have
sub-micron sizes. In an HEB mixer excess noise is removed either by diffusion of
hot electrons out the junction, or by an electron-phonon exchange. The first HEBs
operating on radio telescopes and used to take astronomical data were HEB’s which
made use of electron-phonon exchange. The HEB junctions were of pum size, con-
sisting of Niobium Nitride (NbN), cooled to 4.2 K. Junctions using AITiN have
provided lower receiver noise temperatures. The IF center frequency was 1.8 GHz,
and a had a full width of 1 GHz. Gershenzon et al. (1990) pioneered this develop-
ment. The first astronomical measurements using an HEB device were carried out at
0.5 mm and 0.35 mm by the Blundell group from the Harvard-Smithsonian Center
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for Astrophysics. A similar system was used to measure the J = 9-8 carbon monox-

ide line at 1.037 THz and later by the Ko6ln University group using the Atacama

Pathfinder EXperiment (APEX) telescope to measure the [N II] line at 1.5 THz.
HEB devices have the following advantages:

e the IF frequencies are >1 GHz, so the IF bandwidths can be >1 GHz;

e they can operate at wavelengths shorter than 0.3 mm, where present-day SIS
mixer devices are approaching theoretical band-gap limits;

e these are low-noise devices;

o the local oscillator power needed is <1 uW;

o these are essentially resistive devices with R = 20£2 to 200£2 and with R inde-
pendent of wavelengths to A = 2um;

e At 1.3 mm, HEB devices have higher noise temperatures than SIS devices, how-
ever, for A < 0.3 mm, HEBs have a clear advantage.

5.3 Summary of Front Ends Presently in Use

5.3.1 Single Pixel Receiver Systems

Devices that provide the lowest noise front ends are:

e for v < 115 GHz, High Electron Mobility Transistors (HEMT) and Microwave
Monolithic Integrated Circuits (MMIC)

e for 72 < v < 800 GHz, Superconducting Mixers (SIS)

e for v > 900 GHz, Hot Electron Bolometers (HEB)

See Fig.5.13 for a comparison of front end receiver noise temperatures. For
A > 3 mm, HEMT front ends have now replaced just about all other types of sys-
tems. In the future, the performance of HEMTs may be extended to A = 1.3 mm. In
the cm range, Maser receivers may be somewhat more sensitive, but are much more
complex systems. As a result, these are used only in very special circumstances. SIS
mixers provide the lowest receiver noise in the mm and sub-mm range. SIS mixers
are much more sensitive than classical Schottky mixers, and require less local os-
cillator power, but must be cooled to 4 Kelvin. All millimeter mixer receivers are
tunable over 10-20% of the sky frequency. From the band gaps of junction mate-
rials, there is a short wavelength limit to the operation of SIS devices. For spectral
line measurements at wavelengths, at A < 0.3 mm, superconducting Hot Electron
Bolometers (HEB), which have no such limit, have been developed. At frequencies
above 2 THz there is a transition to far-infrared and optical techniques. The high-
est frequency heterodyne systems in radio astronomy are used in the Herschel-HIFI
satellite. These are SIS and HEB mixers.

In addition to the front end mixers and amplifiers, the connections between feed
and receiver are also often cooled. For some receivers sections of the feed horn with
the coupling probes are cooled.
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Fig. 5.13 Receiver noise temperatures for coherent amplifier systems compared to the tempera-
tures from different astronomical sources and the atmosphere. The atmospheric emission is based
on a model of zenith emission for 0.4 mm of water vapor (plot from B. Nikolic (Cambridge Univ.)
from the “AM” program of S. Paine (CfA)). This does not take into account the absorption corre-
sponding to this emission. In the 1-26 GHz range, the horizontal bars represent the noise temper-
atures of HEMT amplifiers (priv. comm. H. Mattes, MPIfR). The shaded region between 85 and
115.6 GHz is the receiver noise for the SEQUOIA array which is made up of monolithic millime-
ter integrated circuits (MMIC), at Five College Radio Astronomy Observatory. The meaning of the
other symbols is given in the upper left of the diagram (partially taken from Rieke 2002). For the
SIS mixers, we have used the ALMA specifications. These are single sideband mixers covering
the frequency range shown by the horizantal bars. The mixer noise temperatures given as double
sideband (DSB) values were converted to single sideband (SSB) temperatures by increasing the
receiver noise by a factor of 2. The ALMA mixer noise temperatures are SSB. The HEMT values
are SSB

The SIS or HEB mixers convert the RF frequency to the fixed IF frequency, where
the signal is amplified by the IF amplifiers. Most of the amplification is done in the
IF. The IF should only contribute a negligible part to the system noise temperature.
Because some losses are associated with frequency conversion, the first mixer is a
major source for the system noise. Two ways exist to decrease this contribution:

e using either an SIS or HEB mixer to convert the input to a lower frequency, or
e at lower frequencies using a low-noise amplifier before the mixer.

5.3.2 Multibeam Systems

Since HEMT front ends are rather simple receiver systems, there has been a trend
to build many receivers in the focal plane. An array of N such receivers allows one



102 5 Practical Receiver Systems

to map a given region N times faster than with a single receiver, although at the cost
of more complexity. For spectral line mapping this involves both spectrometer hard-
ware and software. Compared to single pixel receivers, such array systems are more
complex but make more efficient use of observing time. These systems are usually
mounted in the secondary focus because of weight and to avoid optical distortions.
A 13 beam system for A = 21 cm, using HEMT receivers, has been installed in the
prime focus of the Parkes 64-m telescope in Australia. More than 300 pulsars have
been discovered with this system. For spectroscopy, back ends with many channels
are needed. At Parkes,one program involved blind searches for gas-rich-star-poor
galaxies in the A = 21cm line . A 4-beam system for 21 cm, also using HEMT
receivers, has been installed in the 76-m Lovell telescope at Jodrell Bank to com-
plement the Parkes measurements. Another 21 cm system with 7 beams is ALFA,
installed on the Arecibo 305-m radio telescope; this is used for both H 1and pulsar
measurements. At 3 mm, the SEQUOIA array receiver with 32 MMIC front ends
connected to 16 beams had been used on 14-m telescope of the FCRAO for the last
few years.

Multibeam system that use SIS front ends are rare. A 9 beam Heterodyne Re-
ceiver Array of SIS mixers at 1.3 mm, HERA, has been installed on the IRAM
30-m millimeter telescope to measure spectral line emission. To simplify data tak-
ing and reduction, the HERA beams are kept on a Right Ascension- Declination
coordinate frame. HARP-B is a 16 beam SIS system in operation at the James-
Clerk-Maxwell telescope. The sky frequency is 325-375 GHz. The beam size of
each element is 14", with a beam separation of 30", and a FOV of about 2’. The to-
tal number of spectral channels in a heterodyne multi-beam system will be large.
In addition, complex optics is needed to properly illuminate all of the beams.
In the mm range this usually means that the receiver noise temperature of each
element is larger than that for a single pixel receiver system, unless great care
is taken.

For single dish continuum measurements at A < 2 mm, multi-beam systems
make use of bolometers. In comparison to incoherent recievers, heterodyne systems
are still the most efficient receivers for spectral lines in the range A >0.3 mm, al-
though systems such as SPIFI may be competitive for some projects. Presently, the
cooled GeGa bolometers are the most common systems and the best such systems
have a large number of beams. In the future, TES bolometers seem to have great
advantages.

5.4 Back Ends: Correlation Receivers, Polarimeters
and Spectrometers

In the following, to the end of this chapter, we describe the basic functions of the
back ends which are used to extract information about polarization, spectra, and
pulses in the data.
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5.4.1 Correlation Receivers and Polarimeters

Dicke switching is only one possible method to stabilize a receiver system; another
involves the correlation of signals. The block diagram for a correlation receiver is
shown in Fig. 5.14. The signals from the antenna and from the reference are input to
a 3 dB hybrid, a four-port device with two input and two output ports. If the signals
at the inputs are x(7) and y(¢), the outputs are 1/2[Ux (t) 4 Uet(t)] and 1/2[Ua(t) —
Uref(2)]. Such hybrids can be built using various techniques, from coaxial to stripline
and waveguide, and in general the increase of noise and loss of signal in such a
device is lower than for a ferrite microwave switch, as in a Dicke receiver. The two
outputs of the hybrid are amplified by two independent radiometer receivers which
share a common local oscillator, and the IF signals then are correlated (Fig. 5.15). If
the input voltages to the correlator are

Ui = \/G1 [(Ua + Uses) /V2+ Uni]
Us = /G2 [(Ua — Uset) /V2+ Unal,

where U, is the voltage from the antenna and Uy,r that from the reference load, the
instantaneous output voltage is then

U= Gle[(Ui_[Jrzef)/z—"_UNl(IJA_Uref)/\f2
+Un2(Ua + Urer) /V2 + Uni Una)

where Uy is the noise voltage from amplifier 1, and Uny that from amplifier 2.
Since the stochastic signals Ua,U,et,Un1 and Unp are all uncorrelated, the time
average of all mixed products will average zero and only

(U)=3VG1Gy [(UR) — (Uzp)] (5.28)

remains. Gain fluctuations therefore affect only this difference signal; the stability
of the correlation receiver is therefore the same as that of a Dicke receiver. For the
limiting sensitivity we obtain
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Fig. 5.14 A schematic of an analog correlation receiver. The operation of the “3dB hybrid” is
described in the text
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Fig. 5.15 An analog polarization receiver with four outputs, which are the four Stokes parameters.
This is a Dicke system, with switching between the two senses of polarization. The “Polar Switch”
could be a polarization transducer that allows a separation of the input into 2 senses of polarization
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A similar type of receiver can be used to measure the polarization of a wave
field as defined by the Stokes parameters (3.52). The orthogonal linear polarization
modes of a partially polarized wave field as collected by a circular horn are coupled
by orthogonal probes into the two input ports of a correlation receiver. A fairly
complex cross-correlation device then processes four output signals from the two IF
signals:

(5.29)

output z; is IF 1 detected by a square-law detector,

output z; is IF 2 detected by a square-law detector,

output z3 is the correlation of IF 1 and IF 2,

output z4 is the correlation of IF 2 and IF 2 with a phase delay of /2 in one of
the channels.

Comparing these outputs with the definition of the Stokes parameters (3.52) we
have
I = const(z1 +22),
Q = const(z1 — 22),
U = 2constz3,
V = 2constzy.

(5.30)

The output signals z3 and z4 come from the cross-correlation of both IF channels;
they will therefore be fairly immune to amplification fluctuations. A polarimeter of
the type described in (5.30) allows accurate measurements of U and V/, that is, in
wave fields with circular polarization. Usually the circular polarization of astro-
nomical sources is exceedingly small, so one is more interested in measuring linear
polarization. The polarimeter is easily converted for this purpose by including a
A /4 phase shifter in the waveguide section of the horn, so that the probes collect
the left- and right-handed circular polarization components. If these are fed into the
polarimeter, we now have
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I = const(z; +22),
V = const(z; — 22),
Q = 2constzz,
U = 2constzy,

(5.31)

so that the linear polarization components Q and U are now derived by correlated
outputs with the corresponding immunity to amplification fluctuations. This method
is used with interferometer systems (see Chap. 9).

5.4.2 Spectrometers

Of the many different receiver back ends that have been designed for specialized
purposes, spectrometers are probably the most widely used. Such spectrometers are
designed to measure the power spectral density (PSD). These follow the principles
shown in Fig.4.1. Usually this is carried out in especially designed hardware, but
recently there have been devices based on general purpose digital computers. For
use with bolometers, one could use an analog Michelson or Fourier transform inter-
ferometer, or perhaps a Fabry-Perot system.

In designing spectrometers, emphasis is placed on the spectral information con-
tained in the radiation field. To accomplish this the receivers must be single sideband
and the frequency resolution Av is usually small; perhaps in the kHz range, and the
time stability must be high. For spectroscopy, SSB receivers are desirable.

If a resolution of AV is to be achieved for the spectrometer, all those parts of
the system that enter critically into the frequency response have to be maintained to
better than 0.1 Av. This applies in particular to the local oscillator; in this respect
the same demand is set on each local oscillator frequency in a double or triple con-
version super heterodyne receiver. If possible therefore, the local oscillator signal
should be obtained from a master oscillator, such as a rubidium clock or a hydrogen
maser by direct frequency multiplication. If this is difficult as e.g. for frequencies
> 10 GHz, frequency stabilization by applying phase lock schemes have been used.
In all modern installations oscillator frequencies are computer controlled.

A frequency resolution in the kHz-range is required if narrow spectral features
are to be resolved. The limiting sensitivity of the spectrometer is given by a slight
generalization of Eq. (4.41):

AT K

Tsys VAVT 632
(a list of values of K for different receiver configurations is given in Table 4.3). The
integration times, 7, needed to reach a given AT /Ty can be quite long, since Av
is small. For this reason spectrometer back ends must have a very high stability,
since any systematic errors will lead to fluctuations larger than that given by (5.32).
We will only discuss the those spectrometer types that are used with heterodyne
receivers. Recent descriptions of wide band spectrometers are to be found in Baker
et al. eds. (2007).
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5.4.2.1 Multichannel Filter Spectrometers

The time needed to measure the power spectrum for a given celestial position can
be reduced by a factor » if the IF section with the filters defining the bandwidth A v,
the square-law detectors and the integrators are built not merely once, but n times.
Then these form n separate channels that simultaneously measure different (usually
adjacent) parts of the spectrum. Filter spectrometers are analog devices. In Fig. 4.1
these devices transform the input voltage (in the upper left of the diagram) to the
PSD (in the lower right) by a path across the top and then down on the right. The
technical details of how such a multichannel spectrometer is built may differ from
one instrument to another, but experience has shown that the following design aims
are essential:

1) The shape of the bandpass G;(v) for the individual channels must be identical.
It is not sufficient that only the bandwidths Av; are the same. In interferometer
systems, the phase characteristics of the filters must also be identical.

2) The square-law detectors for the channels must have identical characteristics.
This refers both to the mean output power level and to any deviations from an
ideal transfer characteristic.

3) Thermal drifts of the channels should be as identical as is technically feasible.

Goals 1 and 2 are determined by the need to detect weak spectral features in a few
spectral channels. Condition 3 must be met if the long term behavior of the different
channels is to be the same. For goal 3 the stability requirements for the individual
channels are determined by the condition that stability times from (4.49) are >> the
time interval between the measurement of signal and reference.

The fundamental limitation of filter spectrometers is that these are analog de-
vices. As such these are sensitive to changes in the ambient temperature, as well as
other environmental factors. Another limitation is the lack of flexibility: varying the
frequency resolution, Av is quite complex. The simplest solution is to build a num-
ber of separate filter banks. In the millimeter range, one usually has filter banks of
256 or 512 contiguous filters, each of width 100 kHz, 250 kHz and 1 MHz. For these
reasons, alternatives, such as autocorrelation spectrometers, have been employed.

5.4.3 Fourier and Autocorrelation Spectrometers

The PSD can be determined using the Wiener-Khinchin theorem. Referring to
Fig. 4.1, there are two paths to obtain the PSD. In the lower right side of the dia-
gram, from v(z), in the upper left of the diagram. These are presented in the next
two subsections.

5.4.3.1 Fourier Spectrometers

One method is to Fourier Transform (FT) the input, v(¢), to obtain v(v) and then
square v(V) to obtain the PSD. In Fig.4.1 this is equivalent to moving across the
top of the diagram, from left to right, then down on the right to obtain the PSD
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(4.13). From the Nyquist theorem (see Fig.4.4 and discussion), it is necessary to
sample at a rate equal to twice the bandwidth. Then the FT’s can be carried out us-
ing Fast Fourier Transform algorithms (FFT). FT spectrometers using this approach
have been used at the Nobeyama Radio Observatory with notable success. These
are referred to as “FX” autocorrelators. Recent developments at the Jodrell Bank
Observatory have led to the building of COBRA (Coherent Baseband Receiver for
Astronomy). This system uses high speed computers and sophisticated software in
a flexible system which can be used as a spectrometer with a 100 MHz bandwidth,
and also as a pulsar de-disperser (see Sect.5.4.4). A filter limits the IF input fre-
quency band. When used as a spectrometer, the analog input v(z) is mixed to the
video band (starting close to 0 Hz), digitized with 8 bit A/D converters, sampled at
200 MHz, the Nyquist rate, for a 100 MHz bandwidth transformed to v(Vv) using
FFT’s, then squared to produce a detected signal and averaged.

5.4.3.2 Autocorrelation and Cross Correlation Spectrometers

The input v(¢) is correlated, and this result is FT ed to obtain the PSD. In Fig.4.1
this is the path down the left side and then across the bottom. The autocorrela-
tion function R(7) function is evaluated in hardware, then the FT is performed in
a general purpose digital computer. R(T) is calculated by a multiplication of the
current sample with a sample delayed by a time 7. The first digital autocorrela-
tion spectrometer used in astronomy was designed and built by S. Weinreb (1963).
A description of the instrument and its theory is given in his thesis. Autocorrela-
tion can also be carried out with the help of analog devices as shown in Sect. 5.4.1
on correlation receivers, using a series of cable delay lines. A recent development
is WASP (Wideband Autocorrelation Spectrometer), a broadband autocorrelation
analog spectrometer. Presently WASP has a total bandwidth of 3.6 GHz in which
128 channels provide a frequency resolution of 33 MHz. WASP has been used to
measure extragalactic carbon monoxide rotational transitions.

For narrower bandwidths, digital techniques offer more stability and flexibility.
In the following, we describe the most used type of autorcorrelation spectrometer,
the “XF” digital autocorrelator. XF processing is shown in Fig. 5.16. The hardware
of an XF autocorrelator spectrometer shifts the digitized and sampled input at the
Nyquist frequency into a shift register which holds each delay. By comparing the
shift register content delayed by A7 steps with the current sample, the contribution
to the counters is then proportional to Ry (7). Dividing R,(7) by R,(0), normalized
values for the ACF will be obtained.

The two significant advantages of digital spectrometers are: (1) flexibility and (2)
a noise behavior that follows 1/+/¢ after many hours of integration. The flexibility
allows one to select many different frequency resolutions and bandwidths or even
to employ a number of different spectrometers, each with different bandwidths, si-
multaneously. The second advantage follows directly from their digital nature. Once
the signal is digitized, it is only mathematics. Tests on astronomical sources have
shown that the noise follows a 1/ /Bt behavior for integration times >100h; in
these aspects, analog spectrometers are more limited.
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Fig. 5.16 Schematic showing the essential functional blocks of an XF autocorrelation spectrometer

Corrections for one-bit (“hard clipping”) quantization can be expressed in a
closed form; the details are presented in Appendix D. Corrections for 3 level and 4
level (2 bit) digitization (see Fig. 4.3 for a sketch of such a 3 level clipping scheme)
follow similar procedures, but 3 and 4 level corrections cannot be expressed in a
closed form. The PSD of the received signal is then calculated following the Wiener-
Khinchin theorem (Eq. 4.14) by computing the FT of the measured autocorrelation
function. Note that the limits of the integral in (4.14) extend to 4-eo; in an actual
instrument, however, R(7) can be measured only up to a maximum delay 7,. The
measured ACF R(T) can thus be considered to be the product of two functions: the
true ACF R(7) and a function describing the lag window

_ [ 1for|t| £ T
w(t) = {0 for otherwise (5.33)

The convolution theorem the measured PSD S(v) is the convolution of the true
PSD S(v) and a filter with the frequency response

S=8v)eaW(v). (5.34)
so that
W(Vv) =2Ty,sinc(2av ty), (5.35)

The response W (V) determines the resolution of the autocorrelation spectrometer.
If we define the frequency resolution of the spectrometer by the half width of (5.35)
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we find that 0,605
Av == ) (5.36)
Tm

If the spectral region which is analyzed by the N channel spectrometer has the
total bandwidth NAv, the interval for the stochastic time series x(¢) must be AT =
1/2Av according to the sampling theorem. Provided that the autocorrelator has N
delay steps, multipliers and counters, then

Tm =N/2AV,

resulting in a frequency resolution

Av=1212Y (5.37)
No
or
0.605
Av = . 5.38
V= Nar (5.38)

For the autocorrelator discussed (N fixed), the frequency resolution can be
changed simply by changing the sampling time step A7, i.e. by changing the clock
frequency. In order to satisfy the sampling theorem, the total bandwidth accepted by
the spectrometer has to be simultaneously adjusted also, since Av = 1/2Ar.

Using the lag window (5.33) results in a filter function (5.35) with high side-
lobes. These will decline only slowly, since these vary as 1/2 7y, If narrow, strong
features occur in the spectrum S(v),S(v) will be distorted. The sidelobes can be
reduced by using a lag window different from (5.33). The window first introduced
by J. von Hann (“hanning”) is given by

5[ 7T
— | f <
wi () =4 (mm) or || = %, (5.39)
0 otherwise .

The corresponding filter frequency response is

2VTn

Wi = 1, [sinc(ZWrTm) + [l — (2vaty)?

sin(2eviy) | . (5.40)

The frequency resolution corresponding to this lag window is

1 2Av 1
Tm No NoAT

(5.41)

that is, the frequency resolution is 40 % less than using the window (5.33). The first

side lobe, however, is now at only 2.6 % of the peak, while for (5.33) it is 22 %.
Multiplying the time series x(¢) with the lag window w(7) is equivalent to con-

volving S(v) with W(v). Then introducing the lag window (5.39) can be done even
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after performing the FT of R(7) by convolving with (5.40). For a spectrum S(v)
given at equidistant frequencies with Av = 1/2 1, this has the effect of forming a
new spectrum consisting of the running average of the original spectrum with the
weights 1/4,1/2,1/4. This is called hanning. In the spectral realm this operation
is equivalent to introducing the lag window (5.39); for lines of width comparable
to the spectrometer resolution it is good practice to smooth spectra obtained by an
autocorrelation spectrometer in this way.

In order to obtain the PSD S(v) from the measured R(7) an FT has to be per-
formed. Since R(7) is obtained for a series of equidistant power-of-two or even
a factorable set of delays, 7;, this transformation is best done by the Fast Fourier
transform (FFT) algorithm of Cooley and Tukey. The use of the FFT considerably
speeds up computations.

A serious drawback of digital auto and cross correlation spectrometers had been
limited bandwidths. Previously 50-100 MHz had been the maximum possible band-
width. This was determined by the requirement to meet Nyquist sampling rate, so
that the A/D converters, samplers, shift registers and multipliers would have to run
at a rate equal to twice the bandwidth. The speed of the electronic circuits was
limited. However, advances in digital technology in recent years have allowed the
construction of autocorrelation spectrometers with several 1000 channels covering
bandwidths of several 100 MHz. One can obtain larger analyzing bandwidths by two
methods. First, one can position a number, N, of individual autocorrelators side-by-
side. Each would have a fairly small bandwidth, but the total analyzing bandwidth
would be N times the bandwidth of each individual autocorrelator. In this arrange-
ment, the first part of the system is analog and the second part is digital. Thus, this
type of system is referred to as a hybrid system. In order to prevent unequal drifts in
the analog part of the system, so-called platforming of the spectral shape, the con-
nections between digital and analog parts of the system are periodically exchanged
by a control computer. A second method to increase the bandwidth of autocorrela-
tion spectrometers makes use of a single analog part, with a sampler which takes
data at a rate At = 1/2B, but this output is then fed into M different shift register-
correlator digital sections. In each, the autocorrelation analysis can be carried out at
a rate which is M times slower.

Another improvement is the use of recycling auto and cross correlators. These
spectrometers have the property that the product of bandwidth, B times the number
of channels, NV, is a constant. Basically, this type of system functions by having the
digital part running at a high clock rate, while the data are sampled at a much slower
rate. Then after the sample reaches the Nth shift register (Fig. 5.16) it is reinserted
into the first register and another set of delays are correlated with the current sample.
This leads to a higher number of channels and thus higher resolution. Such a system
has the advantage of high-frequency resolution, but is limited in bandwidth. This
has the greatest advantage for longer wavelength observations. Both of these de-
velopments have tended to make the use of digital spectrometers more widespread.
This trend is likely to continue.

Autocorrelation systems are used in single telescopes, and make use of the sym-
metric nature of the ACF (4.11). Thus, the number of delays gives the number of
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spectral channels. For cross-correlation, the current and delayed samples refer to
different inputs. As will be shown in Chap.9, cross-correlation systems are used
in interferometers. This is a generalization of (4.11). In the simplest case of a
two-element interferometer, the output is not symmetric about zero time delay, but
can be expressed in terms of amplitude and phase at each frequency, where both
the phase and intensity of the line signal are unknown. Thus, for interferometry the
zero delay of the ACF is placed in channel N/2 and is in general asymmetric. The
number of delays, N, allows the determination of N /2 spectral intensities, and N /2
phases. The cross-correlation hardware can employ either an XF or a FX correlator.
The FX correlator has the advantage that the time delay is just a phase shift, so can
be introduced more simply.

5.4.3.3 Acousto-Optical Spectrometers

Since the discovery of molecular line radiation in the mm wavelength range there
has been a need for spectrometers with bandwidths of several hundred MHz. At
100 GHz, a velocity range of 300kms~! corresponds to 100 MHz, while the nar-
rowest line widths observed correspond to 30 kHz. Autocorrelation spectrometers
can reach such bandwidths only if complicated methods are used. Thus multichan-
nel filter spectrometers are more common in the mm and sub-mm ranges. As pointed
out in Sect.5.4.2.1 these are rather inflexible and often have differential drift and
calibration problems, and thus there was a need for a wide band system with rea-
sonable stability that could be used to obtain different frequency resolutions and
bandwidths easily. It now seems that acousto-optical spectrometers (AOS) can meet
most of these requirements.

The AOS makes use of the diffraction of light by ultrasonic waves. This effect
had been predicted in 1921 by Brillouin: Sound waves cause periodic density varia-
tions in the medium through which it passes. These density variations in turn cause
variations in the bulk constants € and n of the medium, so that a plane electromag-
netic wave passing through this medium will be affected. In “Principles of Optics”
by Born and Wolf (1965, p. 596ff) it is shown that using Maxwell’s equations such
a medium will cause a plane monochromatic electromagnetic wave (wave num-
ber k = 2m/A and frequency @ = 27v) to be dispersed. The emergent field can
be described by the superposition of a sequence of waves with the wave number
ksin 0 +[K and frequency w + /€2 where K and €2 are wave number and frequency
of the sound wave, 0 the angle between electric and acoustic wave, and [ an index
I =0,%1,... . The amplitudes of the different emerging waves can then be deter-
mined by recursion relations.

For a proper understanding of this mechanism, a series expansion of Maxwell’s
equations or the equivalent integral equation method [Born and Wolf (1965),
Sect. 12.2] must be used. We will use a more intuitive approach based on an anal-
ogy. The plane periodic variations of the index of refraction n can be considered to
form a 3-dimensional grating that causes diffraction of the electromagnetic wave.
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Let a monochromatic light wave of angular frequency ® and wavelength A make
an angle 0 with the y axis, and let the angle of the diffracted ray be ¢ (Fig.5.17).
Since the velocity v of the compression wave is always much smaller than the ve-
locity of light we can consider the periodic structure in the matter to be stationary.
The permitted angles ¢ are then determined by the condition that the optical path
difference from neighboring acoustic wave planes should be integral multiples of A.
With a spacing A between adjacent acoustic wave crests, thus (see Fig.5.17)

A (sing —sinf) =11, [=0,+£1,+£2.... (5.42)

This is the Bragg condition met in the diffraction of X-rays in crystals; for this
reason, the device is referred to as a Bragg cell. Because of the interactions, an
acoustic wave affects the index of refraction. This produces a traveling wave, which
can be detected by illuminating the cell with a monochromatic light beam.

The practical problem is to find a transparent material with a low sound velocity
so that the acoustic wavelength A is small for a given sound frequency vs. A second
problem is how to couple the transducer that converts the electric signal vy into an
acoustic wave with a reasonably constant conversion factor over a wide bandwidth.
And finally, an absorber of acoustic waves has to be provided so that no standing
wave pattern develops, since such a pattern will always have resonances and there-
fore is not suitable for broadband applications.

If the light beam is provided by a monochromatic laser and if the acoustic wave
intensity is small (in order to avoid problems with saturation) the intensity of the
diffracted light is proportional to the acoustic power. In the linear range, different
acoustic frequencies vy can be superposed, resulting in different diffracted angles
¢s. Differentiating (5.42) and substituting Ag Vs = v, we obtain

cosp 60 = & Avg | . (5.43)

c

The block diagram of an AOS is shown in Fig. 5.18. The light source is a laser;
the beam is expanded to match the aperture of the Bragg cell and the distribution of
the light intensity in the focal plane is detected by a CCD array. After an integration
time of some milliseconds, the counts recorded by the photo diodes are sampled,
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Fig. 5.18 A block diagram of an acousto optical spectrometer (AOS)

read out and transferred to a computer where the final integrations are carried out.
The maximum number of channels that can be resolved by such an instrument can
be determined by considering how well the wave front of light emerging from a
monochromatic grating can be determined. This uncertainty is

AO=A/L (5.44)

if L is the aperture of the Bragg cell. Therefore a total bandwidth Av can at most be
resolved into 56 .
T

A0 v.cos¢ v_cosq)Av (5.45)
channels. Av is limited by the condition that adjacent orders of the diffraction (Al =
+1) should not overlap. 7, is the time it takes the acoustic wave to pass through the
Bragg cell: 7. = L/v.. A typical value for the total bandwidth possible for a single
Bragg cell is presently 1-2 GHz. The dynamic range is the ratio between the largest
and the smallest signal that can be measured with any certainty. There are several
effects that put limits on the dynamic range, the stability and consequently on the
achievable sensitivity of the AOS. The first limit is determined by nonlinearities
of the response, the second limit by the dark current of the CCD array and other
internal noise sources. In order to reach a large dynamic range, the response of the
Bragg cell to the radio frequency input must be linear, but a linear response means
low RF power, otherwise intermodulation effects occur in the deflector.

Often, practical experience with AOSs shows that another effect, laser speck-
les, is present. This adds considerable instrumental noise and shows strong, narrow
spikes which vary with channel position and time. Any variation of the optical path
length due to mechanical or thermal fluctuations in the order of fractions of the laser
wavelength causes spatial and amplitude fluctuations, giving rise to these speckles.
As a consequence both the dynamic range and the noise performance of the spec-
trometer can be degraded by more than one order of magnitude. The main cause of
these spikes is light scattered from the undeflected laser beam that is measured by
the photo detectors. One way to reduce the level of the speckles is to confine the
laser beam so that only a deflected signal reaches the CCD array. Another innova-
tion makes use of a polarized laser beam. If the deflector is operating in the acous-
tical shear mode, there is a change in the polarization of the deflected light, while

No
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the polarization of the undeflected and scattered light is not changed. Therefore a
polarization filter in front of the CCD array can reduce the level of the scattered
light by more than 20 dB. Today the integration time for an AOS is more than 100s.
After this time, a reference measurement is needed. By alternately measuring sig-
nal and reference positions, one may be able to carry out measurements for much
longer periods. Due to their compactness and simplicity, AOS’s have been used in a
number of astronomcal satellites.

5.4.3.4 Chirp Transform Spectrometers

For not too wide bandwidths, an alternative to the AOS is the chirp transform spec-
trometer, CTS. The principle of the CTS was first given by Darlington (1964). The
CTS makes use of radio technology only, in contrast to the AOS that makes use
of both radio and optical technologies. As in an AOS, the radio signal is converted
into an acoustic wave in a delay line, but one that intentionally has a strong disper-
sion. Therefore an input pulse is converted into an output signal with a sweeping
frequency. This property can be used to form a FT-ing device using only electronic
means. The principles of CTS operation follow from Fourier transforms (see Ap-
pendix B). These relate the frequency spectrum F(Vv) to the time behavior f(z) by

F(v)= / fr)e 2™igr . (5.46)
Setting v = 1 7, we have
Fut) = / F(r)ei2mTgy (5.47)
Using the identity
AT =1*+12— (1 —1)°, (5.48)
we obtain ,
F(v)= / Ft)e =) g (5.49)

Factoring terms out of the integral, we have the expression
F(v) =e imH® / [ 1) e—i”mz} [e“f(’—f)z] dr. (5.50)

The term outside the integral, forming a constant phase shift, is not relevant for
radio-astronomical applications. There are two terms inside the integral. The first
square bracket contains the input signal, f(¢), modulated by a term e~ i7H” This
term is referred to as the chirp and the whole unit is called the compressor. The
multiplication of the input signal with the chirp is carried out by using a mixer and
it results in a conversion of a stationary frequency dependent signal into a time-
varying signal. The e~ im waveform is produced in a dispersive delay line.
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The second square bracket is a convolution. This is produced after mixing by
passing the signal through a matched filter and it is called the expander. A single
CTS has a duty cycle of about 50% which results from the ratio of the bandwidths
of compressor to expander. In practical systems, two or more such networks are
combined to produce a device with an effective 100% duty cycle. The operations are
carried out with analog electronics. The final output is digitized so that summations
can be made in a digital computer.

A prototype CTS was successfully used for astronomical measurements (Hartogh
and Oslerschek 1998). The total bandwidth of this system was 178 MHz, with 4000
spectral points and a channel resolution of 44 kHz.

5.4.4 Pulsar Back Ends

Back ends for pulsar observations differ from others used in radio astronomy be-
cause the pulsar signals change rapidly with time, although in a strictly periodic
fashion. Pulsars were first detected in 1967 when Hewish et al. (1968) employed
a receiving system which could respond to short time intensity variations (the sys-
tem was designed to measure the scintillation of small diameter radio sources which
passed behind the sun). Modern pulsar back ends are optimized to measure the prop-
erties of pulsar radiation. Therefore we will first give a short summary of the rele-
vant properties of this radiation. Pulsar radiation consists of short bursts of radiation
which repeat with remarkable precision; pulsars have periods that vary from a few
milliseconds to more than 4 s. The pulse width is usually only a small fraction (of
the order 103) of the total pulse period; the amplitude of the pulse can vary consid-
erably from one pulse to the next. Some pulsars show strong linear polarization with
systematic variations across the pulse; this is caused by the pulsar emission. For all
pulsars the radiation arrival times are strongly frequency dependent; this s caused
by propagation effects of the electromagnetic waves in the intervening interstellar
medium.

Two commonly employed pulsar measurement processes are the determination
of average pulse shapes and searches for periodic pulses with unknown periods.

In order to be able to measure the shape of the pulsar radiation, rather short
receiver time constants, 7, must be used in the back ends. Because of the frequency
dependence of the pulse arrival time, the IF bandwidth Av must be kept small.
As a consequence the Dicke formula (4.41) the AT/ T4ys is fairly large. In order to
suppress receiver noise, use is made of the strict pulse repetition rate; that is many
individual pulses are added together to obtain an average pulse profile. The main
part of most pulsar back ends therefore consists of a multichannel filter bank and
signal averager, in which the pulsar signal is sampled, digitized and averaged. The
fast sampling is controlled by a clock synchronized with the pulsar repetition rate.
Then mean profiles can be accumulated over hours, and thus good signal-to-noise
ratios can be obtained even if narrow bandwidths are used.
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An alternative to a multichannel backend for Pulsars is COBRA developed at
Jodrell Bank. With COBRA, the voltage from the receiver is sampled, digitized
and Fourier transformed. Then this is convolved with a chirp function, to remove
the frequency dependent delay in the interstellar medium, and FT to return to the
time domain. The profile is folded to produce the grand average. With this coherent
de-dispersion, one can analyze a 100 MHz bandwidth in all 4 Stokes parameters.
Such a process is equivalent to a filter bank with a very large number of very narrow
channels, so it allows a more accurate measurement of the details of the pulse shape.
A system such as COBRA is very useful for pulsar timing experiments, since the
instrumental broadening of the measured pulse shapes is less than those measured
using filter banks.

5.4.4.1 Pulse Dispersion and Dispersion Removal

The dispersion of the pulse arrival time with frequency has a profound influence
on the response of a receiver on such a signal. A thorough understanding of this
requires a complex analysis of the transfer properties of the receiver which is beyond
the scope of this book; a short version can be found in the review article by Phinney
and Kulkarni (1994) or the article by Backer (1988).

Pulse dispersion in the interstellar medium can be described by a transfer func-
tion in the time or frequency domain. A filter can be constructed that removes this
dispersion for a limited frequency range either by hardware or software techniques.
This predetection removal is necessary when the bandwidth of the receiver must be
widened in order to detect short time intensity variations in single pulses.

For a more intuitive description of the effect of a dispersed pulse on the receiver
output, the effect on the time resolution of the receiver is of importance. Suppose
the interstellar medium has a dispersion measure DM according to (2.85). The pulse
then is received with a frequency sweep rate ¢, resulting in a pulse duration of

at least
Is

B DM  B/MH
g:a=0.830x104 /MHz

cm3pe (v/MHz)3 "

Therefore, if no corrections are made, a small bandwidth must be used when a
high time resolution is required with a corresponding loss of amplitude resolution.

This situation can be improved by dividing the front end bandwidth into several
contiguous bands that are detected separately and then appropriately combined after
each signal has been delayed by the time given by (2.84). Conceptually the simplest
such system is a filter bank. Such postdetection dispersion removers are used at most
observatories where pulsar observations are carried out on a routine basis.

Comparing predetection and postdetection dispersion removal techniques, the
advantage of the first is the high time resolution which can be obtained even at low
frequencies and high dispersion measures. Hardware filters needed for this are, how-
ever, useful only for a single dispersion measure and it is difficult to readjust them
for a different DM. Software filtering cannot be done in real time, so that usually
predetection dispersion removal is only applied when the highest time resolution

(5.51)
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is needed. On the other hand, postdetection dispersion removal can be done in real
time, that is on-line, as the data is taken. The dispersion remover is easily reconfig-
ured for different DM, and therefore such an approach is usually used on a routine
basis.

5.4.4.2 Pulsar Searches

The first pulsars were detected by noting that there were periodic spikes on a chart
record; however weaker and more sporadic pulsars cannot be seen on individual
chart records. These have to be found by making use of the distinct signature of
pulsar radiation: that is, their regular pulse period and dispersion in frequency of
the pulse arrival time. The optimum detection of pulsar radiation in the presence of
Gaussian noise is obtained by convolution of the received signal with a matching
filter whose impulse response is given by rectangular functions spaced at the as-
sumed period. This is referred to as rail filtering, but the use of this method requires
a known period. In pulsar searches, the signal must be convolved with a whole se-
ries of rail filters covering a specified range of periods. Usually this is done using
software techniques. The signal is sampled at regular time intervals and stored digi-
tally. There exist two methods for the analysis of the presence of periodic signals in
data: a fast folding algorithm (FFA) and the fast Fourier transform (FFT) method.
Both can investigate the data in real time provided fast computers are used. Usually
some kind of dispersion removal is also used, so that surveys will be most sensitive
to pulsars within a certain range of dispersions.

Problems

1. What is the minimum noise possible with a coherent receiver operating at
115 GHz? At 1000 GHz, at 10'* Hz?

2. Coherent and incohent receivers are fundamentally different. However one can
determine the equivalent noise temperature of a coherent receiver 7, which corre-
sponds to the NEP of a bolometer. This can be determined by using the relation

NEP = 2kT, VAv .

For Av = 50 GHz, determine 7, for NEP = 10~'® WHz /2. A bolometer re-
ceiver system can detect a I mK source in 60s at the 30 level. The bandwidth is
100 GHz. How long must one integrate to reach this RMS noise level with a coher-
ent receiver with a noise temperature of 50 K, and bandwidth 2 GHz?

3. In the millimeter and sub-millimeter range, the y factor (see Fig. 4.10) usually
represents a double-sideband system response. For spectral lines, one wants the
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single-sideband receiver noise temperature. If the sideband gains are equal, what
is the relation of the y factor for a single- and double-sideband system?

4. The definition of a decibel, db, is

P
db = 10log ("“‘"‘“)

mput

If a 30 db amplifier with a noise temperature of 4 K is followed by a mixer with a
noise temperature of 100 K, what is the percentage contribution of the mixer to the
noise temperature of the total if

5. (a) In Fig. 5.5, the upper sideband (USB) frequency is 115 GHz, and the lower
sideband frequency is 107 GHz. What is the intermediate frequency? What is the
local Oscillator (LO) frequency?

(b) When observing with a double-sideband coherent receiver, an astronomical
spectral line might enter from either upper or lower sideband. To distinguish be-
tween these two possibilities, one uses the following procedure. To decide whether
the line is actually in the upper or lower sideband, the observer increases the lo-
cal oscillator frequency by 100 kHz. The signal moves to lower frequency. Is the
spectral line from the upper or lower sideband?

6. The same situation as in Problem 6, but after the first mixer is a second mixer
with an LO frequency which is higher than the intermediate frequency of the first
mixer. The spectral line is known to be in the upper sideband. To eliminate unwanted
spectral lines, someone tells you to move the LO higher frequencies in steps of
100kHz, and at the same time, move LO2 to lower frequencies by the same step.
After repeating this procedure for 10 steps of 100kHz, the result is added. Will
this procedure eliminate spectral lines in the lower sideband? If the unwanted lower
sideband spectral line has a width of 100 kHz, by how much is this line reduced in
intensity?

7. In Fig. 5.6, is the schematic of a single-sideband mixer. In such a system, the
image and signal bands are separated in the output if the input is f(¢) = cos w,t. Use
an analysis for this input signal to show that such a mixer is feasible. Repeat for
f(t) = sin .

8. The input power of a receiver can be 1071 W, while the power at the output of a
receiver must be about a milli Watt. What must be the power amplification of such
a receiver? Express this in decibels. Suppose the gain stability of this receiver is
1073 over 30s. What is the change in the output power? Suppose that the system
noise is 100 K and the bandwidth is 1 GHz. This is used to measure a source with
a peak temperature of 0.01 K. What is the ratio of the signal intensity to that of
gain fluctuations? The fluctuations can be reduced by periodic comparisons with a
reference source; how often should one switch the receiver between the signal and
a reference to stabilize the output power?

9. Laboratory measurements frequently make use of a data-taking method which
involves a modulated signal. The output is then measured synchronously with the
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modulation rate in both frequency and phase. We can measure a weak input signal,
S =T (signal)e™7, in the presence of noise, T'(cable)(1—e~7), by modulating the sig-
nal with a known frequency, f;. The output is superimposed on noise background.
What is the noise in the switched output? What is the signal-to-noise ratio? How
will the signal-to-noise ratio change with time if only random noise is present?

10. If the bandwidth of a receiver is 500 MHz, how long must one integrate to reach
an RMS noise which is 0.1% of the system noise with a total power system? Re-
peat for a Dicke switched system, and for a correlation system. Now assume that
the receiver system has an instability described by (4.48). For a time dependence
(AG/G)* =1+ 1T wetake 1 =0, 7 = 1072 and K = 2. On what time scale will
the gain instabilities dominate uncertainties caused by receiver noise? If one wants
to have the noise decrease as 1/4/t, what is the lowest frequency at which one must
switch the input signal against a comparison?

11. At 234 MHz, the minimum sky noise is ~100 K. For use as a first stage amplifier
at 234 MHz should you buy an expensive receiver for use at a sky frequency of
234 MHz which has a noise temperature of 10K, if a similar receiver has a noise
temperature of 50 K but costs 10% of the price of the lower-noise receiver? Explain
your decision by considering observational facts.

12. An all-sky continuum survey covering 41252 square degrees, is carried out with
a 40’ beam at 234 MHz. Three spatial samples are taken for each beamwidth. These
samples are used to image the sky at 234 MHz.

(a) Compare the sampling procedure to the Nyquist sampling rate using the example
of the sampling of sine or cosine waves. What is the total number of samples?

(b) Next, assume that the sky noise dominates the receiver noise. If the bandwidth
B is 10 MHz and the integration time is 10 s per position, what is the RMS noise
as a fraction of Tyoyrce, the sky noise? How many data points are needed to com-
pletely characterize the resulting map? If one needs 20 s of time for measuring each
position, how long will this survey require?

(¢) Repeat this estimate for a survey at 5000 MHz carried out with a 3’ beam, for
a receiver with noise temperature 50 K, 500 MHz bandwidth, 10 s integration per
point. Note that the sky background contributes only a small amount of the receiver
noise at 5 GHz. How much observing time is needed for this survey?



Chapter 6
Fundamentals of Antenna Theory

6.1 Electromagnetic Potentials

Analytic solutions of Maxwell’s equations (2.4, 2.5, 2.6, 2.7) are rather simple for
plane harmonic waves, but are very complex for realistic configurations. As a sim-
plification of the mathematics, we introduce new functions, the electrodynamic po-
tentials @ and A , which can be determined from given current and charge densities
J and p. These potentials give both E and B in a straightforward way. In electro-
magnetic theory, potential functions were first used by Green 1828, but this was
noted by the scientific community only in 1846, when Lord Kelvin directed atten-
tion to this paper. Independently, one year before Franz Neumann in Konigsberg
had successfully used this method.

According to Maxwell’s equation (2.5), we always have V- B = 0. From Stokes’
theorem (A 22), we can write

B=VxA | , 6.1)

so that (2.6) becomes

1.
V x (E + A) =0
¢
where the order of time and spatial differentiation have been interchanged. But

Gauss’ theorem states that a vector whose curl vanishes can always be expressed
as the gradient of a scalar, so that

1

E+-A=-Vo®
C
or
1.
E=-Vo—--A| . (6.2)
C

Both B and E can be expressed in terms of A and @. If these expressions are
to be useful, we require that the resulting fields B and E should obey Maxwell’s

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 121
DOI 10.1007/978-3-540-85122-6_6, (©) Springer-Verlag Berlin Heidelberg 2009
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equations. To determine which additional restrictions this imposes on A and @, we
introduce (6.1) and (6.2) into Maxwell’s equations. For simplicity, we adopt free
space conditions and set €, it and o equal to 1.

From (2.7) we then obtain

Vx(VxA)—klg {V<1>+1A} = 4—”17
c ot c c

V(V-A)—V2A+12 |:V<D+1A:| = 411,
C c C

ot
VZA—12A—V<V~A+1<15> . (6.3)
c c c
Using (6.2) the remaining Eq. (2.4) gives
V-V<D+1V-A =—4ro
c
o 1 10 1
V2q>—2<15+[V~A+<15]:—47rQ. (6.4)
c c ot c

Neither A nor @ are completely determined by the definitions (6.1) and (6.2). An
arbitrary vector can be added to A without changing the resulting B provided this
additive term has a zero value for the operation (V x). This will be so if A is the
gradient of a scalar function

A=A+VA (6.5)

then B will be unchanged. According to (6.2), E will be affected, unless @ is

o 1.
b= -A | . (6.6)
Cc

In (6.5) and (6.6) we are free in choosing A, so we can use this freedom in A to
simplify Egs. (6.3) and (6.4). An obvious choice is

V-A+%¢:O . 6.7)

This is Lorentz gauge. This requires that the gauge function, A, satisfies (6.5),
(6.6) and (6.7):

L1
VA+V-VA+-d— —A=0
C C
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VA — izA' =0 . (6.8)
C

Electrodynamic potentials in Lorentz gauge satisfy the equations

1. 4r
VA A =-——
2 e 6.9)

1 .
2
\% cD—?cD = —4rwo | . (6.10)

Equations (6.9), (6.10) and (6.7) are equivalent to Maxwell’s equations (2.4) to (2.7)
together with the constitutive equations (2.1, 2.2, 2.3). These four equations are
decoupled and have the form of an inhomogeneous wave equation.

6.2 Green’s Function for the Wave Equation

The wave equations (6.9) and (6.10) have the form

1
Vi — i =—f(x.0), (6.11)

where f(x,r) is the given source distribution and c¢ is the propagation velocity as
derived in (2.32). Since the time dependence of (6.11) complicates the problem, it
is useful to eliminate the time in (6.11) by taking the inverse Fourier transform.
Substituting

=

wix,1) = /‘P(x, ®)ei® do,

—oo

- (6.12)
Fle,t) = /F(x,co)ei“”da),

—oo

into (6.11) we find that ‘¥ (x, @) obeys the time-independent Helmholtz wave equa-
tion

(V2 4+ 1) ¥ (x,0) = —F(x, ) (6.13)

for brevity we have set

k=w/c. (6.14)
The left-hand side of (6.13) is linear in ¥, but the function F on the right-hand side
prevents the application of a superposition principle to the complete equation. An
arbitrary linear combination of solutions of the homogeneous equation can always
be added to any particular solution of (6.13). A convenient method to construct a
particular solution of (6.13) that fulfills the given initial or boundary conditions is
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provided by Green’s functions. These are solutions of an inhomogeneous differential
equation in the form of (6.13) with a convenient form on the right hand side. This is
chosen such that the general function F' can be expanded into a linear combination
of these special functions. The solution ¥ of the general equation (6.13) is then
formed by the same kind of linear superposition as F.

The Green’s function G(x,x") therefore is defined as the solution of

(V2 +13)Gx,x)=-8(x—x) | . (6.15)

G(x,x") must be a solution to (6.15), this expression also has the symmetries specific
to the problem and satisfies the initial or boundary conditions. The inverse FT of
G(x,x'),

1 .
glx,t,x' 1) = —E/G(xgc’)e‘“” do, (6.16)

is then a solution of the inverse FT of (6.15), that is of
& 1 o ") =-8 N&(r—1 6.17
v glx,x' 1ty ==8(x—x")8(r—1"). (6.17)

The Green’s function method will now be applied to the case of spherical waves
emitted from a point source. A spherical coordinate system (r, ¥, @) is appropriate
in this case, so that (6.15) becomes [see Appendix (A.27)]

1 d? 5

For r # 0 the solution is

1 .
G= meil’”, (6.19)

It can be shown that this solution also applies to » — 0. The corresponding
Green’s function for the time dependent problem is then obtained by the inverse
FT of (6.15), that is, by

oo

1 1 . /
g(x,x/;t) = mﬂ / el(wt:tklx_x D dw, (620)
X —X

or, introducing a new, retarded (or advanced) time ¢’

k B
t':t:FB\x—x/|:t:F|x%7 6.21)

by

-
5</+ |x—x _t>
4 . (6.22)

/ /
X, X ,t, )=
g(7 [AS) ) 47r|x—x’|
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In (6.21) two choices of the sign are in principle possible; here the upper sign,
which represents the refarded potentials is selected because only this results in the
proper causal relation. Selecting the retarded and not the advanced solution is an
indication of the arrow of time.

The solution for the wave equation (6.11) is then, in the absence of boundaries,

< e )

t+ —t

w(x,1) / / 4 &y dr’ (6.23)
4717

| x —x'|

If the integration over ¢’ is performed we finally arrive at the result

rlee-)
X ,t—
v(x,1) = / RN (6.24)

| x —x'|

A short hand version of this is

wiet) = - / V& et o | (6.25)

an) x—x|

for [ ], ¢ is the retarded time ¢’ =¢— |x —x' | /v.

If we use the expression (6.24) or (6.25) for the retarded Green’s function in the
wave equation for the electrodynamic potential (6.9) and (6.10), we can write any
reasonable solution of Maxwell’s equation as

o )
A, =H / / / &y, (6.26)

| x— X’I

|x—x'|
Dx,1) = — /// < - x,| )d3x/. 6.27)

To determine the electrodynamic potentials we must know the distribution of the
currents J and electric charges o over the whole volume. The actual situation is more
complicated, since specifying A and @ (or E and B) result in currents and charges.
Thus this is a coupled problem, requiring a self-consistent field.

For investigations of the radiation fields of a system of oscillating charges and
currents, there is no loss of generality considering only quantities that vary sinu-
soidally with time. Therefore we adopt

J(x,t) = J(x)e 1", (6.28)
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The amplitudes o(x) and J(x) can be complex quantities, so that the phases of
the oscillations will be dependent on the position x. According to (6.26) the vector
potential generated by these currents is

A(x,t) = A(x)e 1@ (6.29)
where
A 1 . e iklx—x'| B
(x)f;/// I [ (6.30)
1
and )
0} T

Here V is the volume in which the current J flows.

For analytic solutions, the problem is often greatly simplified if the currents J (and
charges, if present) are confined to a finite region (for example the antenna proper)
and we postulate a given distribution for J. If one can assume that reactions of
fields on these currents can be neglected, the integrals in (6.26) and (6.27) can be
computed. Usually one can also take u=e=I.

6.3 The Hertz Dipole

Next, we analyze the Hertz dipole as an example of a simple antenna. Here the
volume over which the integrals must be computed is that of an infinitesimal dipole
with a length Al and a cross section g. H. Hertz calculated the solution for this
configuration and then performed the experiment to demonstrate the existence of
electromagnetic waves in 1888.

If a current [ is flowing in this dipole, the current density is | J |=1/q in the
dipole, and J = 0 outside. Then the integration volume is only that of the dipole
dV = gAl. If the rectangular coordinate system (x,y,z) is oriented such that the
dipole extends from z = —Al/2 to z = +Al/2 on the z axis, then J, = J, = 0, and

J, = I e 1o,

q

Following (6.26), the vector potential A has only the component

AlJ2
A, = 1 / I a e io(i—%) di,
C q r
—Al)2
resulting in
11A1 _.
A, = ———e o=k | (6.32)
cr
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Fig. 6.1 The geometry and
coordinate system used for the
treatment of radiation from an
electric dipole (Hertz dipole)

——*y

Thus A, is constant on concentric spheres 7> = x> +y? +z2. Introducing cylindri-
cal coordinates (g, ¢, z, see Fig. 6.1) we derive from (6.1)

d0A dA
By=(VxA)y=—2—- "=,
¢ ( )(P 0z aQ
But since A, = 0, we find that
dA; JdA; dr
By=——=—=— —
do dr do
Since
r? = Q2+Zz,
d
a—; = %:sint?,
and
Hy = By,
we find that
IAl sind 1 .
Ho— 2l 1— | e-iloi—kr) 6.33
Y { ikr}e (633)

where we have used (6.31). The other components of H are zero, because A, =
Ay = 0. For the electric field, we again make use of Maxwell’s equations. According

to (2.7)
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1

4
VxH=-D+-27.
C C

Outside the region occupied by the dipole, o =0, so J = 0. For a harmonic wave,
from (2.35), D = —iwD so

E="S(VxH).
)
Returning to a spherical coordinate system (r, 9, ¢) we find that
i
Eﬁ = — (V X H)ls .
0]

since H, = 0, from (A.26),

1 d(rHyp)
VxH)y = ———->
(VxH)y r oJr
so that
IAl sin? 1 1 .
E — =" 1_7 71((0[71{7‘)
YT T [ ikr+(ik,»)2]e
(6.34)
Finally, since Hy = 0, we find that
1 Jd(sindHy)
VxH), =
(VxH), rsin® 00
and thus
IAl 2cos V¥ 1 1 .
E ki 71((0[7]{1‘)
TR |k (ikr)Z]e
(6.35)

Ey = 0 since H, = 0 and Hy = 0. Therefore (6.33), (6.34) and (6.35) are the
only non-vanishing components of the electromagnetic field of an electric dipole.
Forming the scalar product of E and H we find

As in the case of plane electromagnetic waves E and H of a radiating dipole are
perpendicular everywhere. However, the expressions for E and H contain different
powers of the distance r. Near and far field of an oscillating Hertz dipole are shown
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Fig. 6.2 The field for an oscillating Hertz dipole for the region close to the dipole

in Figs. 6.2 and 6.3. The 1/r2 terms in (6.33), (6.34) and (6.35) represent the induc-
tion field of a quasistationary electric dipole for slow oscillations. In addition, for E
there is the 1/ 3 field of the static dipole. Most important for r > [ is the radiation
field which has a 1/r dependence. This has components
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Fig. 6.3 The far field of an
oscillating Hertz dipole

_ _AISInG k) (6.37)
¢ 20 r
) (6.38)
Ey = _IESIH‘& i(wt—kr)
24 1
As in the case of plane electromagnetic waves, we have
|E |
—=1. (6.39)
|H |

The Poynting vector for the radiation field is directed radially outward, its time
average value is, according to (2.21),

c . ¢ (IAI\? sin®
[(S)|= i |Re (ExH") |= i (2),) | - (6.40)
Thus the total radiated power is
2r
P://|(S)| 2sinddddg,
0 0

using
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this becomes

2¢ (IAIN?
P=—|(— . 6.41
F (%) 641
In MKS units, with / in amperes, and A in meters, this is

P 1AL ?
{Watts} =39 (A)

This expression has the same general form as that giving the ohmic losses of a
resistor

[P| = iRP?

so that we are led to introduce a radiation impedance, Rg, of the Hertz dipole

c (AlN?
RSZ?)(/I) . (6.42)

Rs | AL
{Ohms} =70 (l)

6.3.1 Arrays of Emitters

For MKS units, this is

An important extension of the case of a single emitting element is the case of an
array. A particular case is one in which one has a number of identical emitters placed
parallel to each other in a plane, at a distance, D. Each element of the array produces
the same E field. From the principle of superposition, the E fields are additive.
Furthermore, we assume that the E field of each dipole does not affect any of the
others. In two dimensions, for a distant observer at r, two elements have a combined
field of

E=E +Ee'® (6.43)

. . . . . . 2 . o
The geometric arrangement is given in Fig. 6.4. with @ = S=Dsin¢ and 5* =k,
we have

E =By [14¢/kPin] (6.44)
If we call the term in square brackets S, we have

§=1+elkPsing (6.45)
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<
“A

Fig. 6.4 The arrangement for two (at 0 and D) and three (0, D/2 and D) emitters. The emitters are
placed on the vertical axis

for two emitters. For three emitters spaced equally between 0 and D, this is
§: 1 +eikD/2Sin¢ +eikDSin¢ (646)

A plot of |S’ |? for a 2 and 3 element system is shown in Fig. 6.5. The 2 element
system has a set of equally spaced maxima and minima. For the 3 element system
some of the maxima are replaced by weaker secondary maxima. In antenna jargon,
these secondary maxima are referred to as “sidelobes”.

a)

Fig. 6.5 Power patterns

for different configurations.
Panel (a) shows two elements
and panel (b) shows the
superposition of three emitters
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For a set of N emitters spaced equally by D, we have:

§ =z jelknlsin(@) (6.47)
The sum is
§ — ikDsin(9)  o—i(N=1)kD/2sin(9) . Slfl kzD ?111((])) (6.48)
sin %3~ sin (@)

(see problem 1 at the end of this chapter). The radiated power is proportional to |S]?.
Then for (6.48), the radiated power is proportional to

2
S = sin(kNTD sin(9))
B sin(kTD sin (¢))
On axis, ¢ = 0, which gives a maximum value. At an angle

_ A
" ND

(6.49)

sin (@)
the sum of the contributions reaches zero. Using ND = D, the expression for the

angular distance to the zero point is

0%

o

This is usually referred to as the Rayleigh Criterion, since Rayleigh first showed
that when a second point source is separated from a point source by such an angle,
these two can be distinguished. That is, the second source is located at the first null
point of the diffraction pattern of the first source.

6.3.2 Arrays of Hertz Dipoles

For the particular case where each element is a Hertz dipole, the radiation field of
each dipole is given by (6.38). The sum of the E fields is the product of (6.38)
and (6.49). If each dipole antenna is connected a single source, the currents in the
dipoles are related, each with a definite phase, ¢, and amplitude, /y. For the case of
two dimensions, we align the dipoles along the y axis, with dipoles parallel to the z
axis. Setting 68 = 90° in (6.38), the Ey vector is in the x — y plane. Then the total E
is:

Ey = <iIAl 1> e i@k g (6.50)

where $ is given by (6.48).
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One can change the phase of each dipole to alter the direction of the maximum.
This so-called electronic steering is used to direct arrays of dipoles, which are re-
ferred to as phased arrays. In radio astronomy such concepts are used in instruments
such as LOFAR and the Allen Array. This will be used in the Square Kilometer
Array (SKA).

6.4 Radiation Fields of Filled Antennas

6.4.1 Two Dimensional Far Field

We start with (6.50) but change the S factor by keeping the total size of the array nD
constant, while increasing the number of dipoles, n and simultaneously decreasing
the distance, D between these. Then the summation in (6.47) becomes an integral
with variable x’. If we replace S by the symbol g(¥’) and change the integration
variable, the expression becomes:

N o,
g(¥) = / J(x’)e'kx sin(0) g/ (6.51)
Jo
The expression for the E field is
1 .
dE,(9) = —iJog(¥) - e Ok gy (6.52)

The current grading g(x) takes into account changes in the currents across the aper-
ture; g(x) and the far field pattern are FT pairs. Given the importance of this expres-
sion, we present a few one dimensional FT pairs in graphical form in Fig. 6.6. The
most commonly used expression for a grading function is the Gaussian, since the
FT of a Gaussian is another Gaussian.

ELECTRIC ELECTRIC
CURRENT GRADING FAR FIELD PATTERN CURRENT GRADING FAR FIELD PATTERN

Uniform

Cosine
T 1 Aflsn

\,/
Inverse taper Cosine
l—\—/—l squared
TAY N

VvV

\g
Triangular A\ Gaussian \

Fig. 6.6 Pairs of current gradings and corresponding electric far field pattern. For each pair, the
sketch on the left is a current grading across the one-dimensional aperture, g. On the right is the
corresponding electric field pattern in the far field [adapted from Kraus (1986)]
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6.4.2 Three Dimensional Far Field

The clearest difference between the case of two and three dimensions is the inclu-
sion of coordinate systems. For two dimensions, either an x —y or r — 6 coordinate
system is a reasonable choice. For three dimensions, there can be many coordinate
systems, depending on geometry, and, in addition, the coordinates of the observer
and the aperture will be rather different. So, for example, a rectangular aperture, an
x —y—z coordinate system is the choice, while for a circular aperture the choice is
a cylindrical coordinate system.

For a two-dimensional antenna structure, the current distribution J(x) must be
specified for the aperture. We assume that this is a plane aperture. We choose the
coordinate system such that the aperture is a finite area of the plane 7/ = 0; this
aperture is assumed to be a surface of constant wave phase and the unit vector of the
current density is chosen to be Jo = (0,Jp,0).

The current in a surface element dx’dy’ at x’ in the aperture <7 is then Jy g(x')
dx’ dy’. If we take x to be approximately perpendicular to .27 the only component of
the electric field induced by this current element in x is, according to (6.38),

Fe(n) efi(wsz\xfx’\)%/dy,

dE, = —%uo g(x)

Again we make use of an extension of the case of a Hertz dipole. Here F,(n) is the
field pattern of the current element for the direction n = x/|x| which, for the Hertz
dipole, is sin where ¥ is the angle between r and Jy. The total field in x is then
obtained by integrating (6.53) over the full aperture.

For the far field, at distance r, we have assumed that the extent of the aperture
is small compared to r, the integral can be simplified considerably by introducing
the Fraunhofer Approximation (see Fig.6.7), | x —x' |~ r—n-x', where r =| x' |.
Because r > |n-x'|, we can neglect n -x’ compared to r everywhere except in the
exponent. There the term kn -x” appears. We assumed that the aperture is larger than
A, thatis |x' |> A,

Fig. 6.7 The geometry of the
Fraunhofer approximation
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Then we have

__i Fe(n) 7i(a)tfkr)// ﬂknx Eiy
Ey = 27LJ0 - e g( ) (6.54)
or >
E, = iAo efﬁ”)f(n)efi(wt—kr) (6.55)
where
_ dx’ dy'
ikn-x' -
e ff e e

Thus the integral over the aperture <7 in (6.54) has been formally replaced by
the two dimensional Fourier integral (6.56) by setting g(x') = 0 for x’ & 7. The
expression for the magnetic field strength H is similar to (6.55). The normalized
power pattern P, (see 6.40 and following) is then

_P) _ |E-E"]

P,(n) = = ,
n( ) Pmax |EE* |max
so that
2
gy @) P 657
| fmax |

As will be shown in Chap. 9, the FT relations also play a fundamental role in
interferometry.

An excellent illustration of the application of (6.56) and (6.57) is given by the
example below.
The Normalized Power Pattern of a Rectangular Aperture with Uniform Illumina-
tion

If the linear dimensions of the aperture are L, and Ly, then the current grading
can be written as

Lfor [x] S L./2, [y SLy/2

0 otherwise (6.58)

ngZ{

The components of the unit vector are n = (I,m,n) with > +m? 4n> = 1. If the
aperture is part of the plane 7/ = 0, then (6.56) becomes

oo oo

) =5z [ [atesren{ =i} T

—oc0 —o0

With (6.58) this becomes

sin(rlLy/A) sin(mmLy/A)

L/ wmLy/A (6:59)

f(l,m) =
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and the normalized power pattern is

sin(zl Ly /) sin(nmL,/A)]?

Py(l,m) = 6.60
a(l,m) mlLy/2 mLy /A (6.60)

The main beam is the solid angle between the first nulls of P, at
lo=2A/Ly; my==+A/L, (6.61)

The full width to half power (FWHP), i.e. the angle between those points of the
main beam for which P, = 1/2, is

A A
FWHP, = 0.88 —rad =50.3° —, (6.62)
L, L,

with a similar expression for FWHP,. The first side lobes are located at

LA =28.0° A

2L, Ly
from the axis; these have an intensity (relative to the main beam) of P, = 0.0472
corresponding to an attenuation of 13.3 dB. This is a rather high side-lobe level. For
rectangular apertures, the far field patterns are the products of the one-dimensional
FT pairs.

The full width to half power (FWHP), relative gain and sidelobe levels depend
on the shape of g. These quantities can be changed by altering the illumination or
grading g(x,y). This will be investigated in more detail for the case of circular aper-
tures because these are widely used for large antennas in radio astronomy. Usually
small antennas with a rectangular apertures are used as feed horns at wavelengths
shorter than 30 cm to efficiently couple the receiver to the free space waves focussed
by the radio telescope. Large horn antennas are also used for calibration purposes.
Well known examples of radio telescopes with a rectangular aperture are the Bell
Laboratories Horn antenna, at Holmdel, N. J., used to discover the 2.7 K background
radiation and the “Little Big Horn” of the National Radio Astronomy Observatory
in Greenbank W.Va., USA, that was used to establish the time variation of the flux
density of the supernova remnant Cassiopeia A.

6.4.3 Circular Apertures

Circularly symmetric paraboloids are the most commonly used antennas. For a cir-
cular aperture it is convenient to introduce polar coordinates g, ¢ by

X = AgcosQ
y = Agsing. (6.63)
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If we now assume that the aperture is defined by ¢ < D/2A and that the current
grading g depends on o only, then the resulting beam pattern will also show circular
symmetry; instead of two directional cosines / and m, only a single value, u, the sine
of the angle between n and the direction of the main beam is needed. Substituting
(6.63) into (6.56) we obtain

2T oo

fw) =5 [ [sle)e =g dodp. (6.64)

00

Since the integral representation of the Bessel function of order zero is

2m
— L izcos @
Jo(z) = 2n/e do, (6.65)
0
(6.64) can be written as
fw) = [ glo)hoCruc)ode | - (6.66)
0

For the case of circular symmetry the electric and magnetic field strength is thus
the Hankel transform of the current grading. For the normalized beam pattern we
then obtain

2

/8(@)]0(27“4@)9 do
Py(u) = |2 (6.67)

oo

Jg(0)e do
0

because Jy(0) = 1.
For a circular aperture with uniform illumination, that is for

1 for o <D/2A

g(0) = { Lior 02D/ (6.68)
(6.67) then becomes
[ D/2A 12
/ Jo(2mug)e deo DA 2
_ |0 | 24

Po(u) = D727 = 7D / Jo(z)zdz| . (6.69)

g odo 0
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For Bessel functions, the relation
d n n
« {'(2)} =7"T-1(2) (6.70)

[cf. Abramowitz and Stegun (1964), Eq. (9.1.30)] applies so that

X

X (x) = / 201 (2) dz,
0

and we obtain for the normalized power pattern

2
Py(u) = {W} = A% (nuD/1.) (6.71)
where )
Al(u) = ;Jl (Lt) . (6.72)

If the region up to and including the first nulls of P,(u) at TuD/A = 3.83171
is included in the main beam region, the full beam width between the first nulls,
BWEFN, that is from one null to the other, is:

BWFN =2.439 & rad ~ 139.8° & (6.73)
D D

and the full width to half power beam width, FWHP, that is, from one half power
point to the other, is:

A A
FWHP = 1.02 7 rad ~ 58.4° (6.74)

For an aperture with a nonuniform illumination or grading the antenna pattern
will be different from (6.71), see Fig. 6.8; the relation between grading and antenna

p:O
T T T T 1 1 T 1T T T 17T
p=1 -+ # p=2
I s

o2 4
Ay o

o &
Q 4

4 T 0

| Y U SN TS SRS W S S § TS U S RS TN U U T
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Fig. 6.8 A representative set of illumination tapers g(0@) = K + (1 — @%)?. Note that p = 0 is a
horizontal line at the fop of the right panel
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pattern is given by (6.67). Depending on the choice of g(p), the integral (6.67) may
be difficult to evaluate. However the qualitative dependence of P, on the grading
can be obtained by selecting a convenient interpolation formula. If g is chosen such
that (6.67) can be evaluated in a closed form, we can obtain analytical expressions.
Such a family of functions is

220\*]"
glo) = [1 <DQ> +K. (6.75)
Because |
P pl
/(1 — AP Jy(gr)rdr = W (6.76)

0
[Gradshteyn and Ryzhik (1965), Eq. (6.567.1)], (6.67) can be evaluated in terms
of Jp;
Pofu) = [zp“mm(nwm :
(ruD/A)P+1
The values of BWFN and FWHP are given in Table 6.1.

6.77)

Table 6.1 Normalized power pattern characteristics produced by aperture illumination following
(6.75)

p K FWHP (rad) BWEN (rad) Relative gain First side lobe (dB)
0 1.02 2.44 1.00 —-17.6
1 1.27 3.26 0.75 —24.6
2 1.47 4.06 0.56 -30.6
1 0.25 1.17 2.98 0.87 —23.7
2 0.25 1.23 3.36 0.81 —-32.3
1 0.50 1.13 2.66 0.92 -22.0
2 0.50 1.16 3.02 0.88 —26.5

6.4.4 Antenna Taper Related to Power Pattern

By selecting a taper, one can influence the properties of an antenna, to some ex-
tent. A strong gradation results in a lower side-lobe level but lower relative gain.
Antennas used for transmission to distant space probes must be designed for high
relative gain; that is, one must use a low gradation. However, this results in a high
sidelobe level. Since from the prime focus, the far side lobes are directed towards
the hot (300 K) ground, low-noise antennas should have a beam pattern with low
side-lobe levels. A compromise is to adjust the illumination. A better approach is
to make use of the secondary focus, so that the sidelobes are directed at cold sky
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(see, e.g. Fig. 7.6). Then for a given sidelobe level, the unwanted noise power will
be lower.

The radiation properties of antennas can be changed, somewhat, using the grad-
ing function, g(x), as shown in Figs. 6.6 and 6.8. In many applications, the gra-
dations are between the extremes of p =2 and p = 0 in Table 6.1. For low noise
antennas used in satellite communication, p = 0 has advantages since the relative
gain should be as large as possible for such point-like sources. However the prime
focus should not be used, since the receiver noise is raised substantially due to side-
lobes coupled to the 300 K ground radiation. In this case the receiver is mounted in
the Cassegrain with sidelobes coupled to cold sky.

However the relative (on-axis) gain is lower. This is achieved by using a strong
gradation for g(p).

6.5 The Reciprocity Theorem

So far, we have discussed antennas used to emit radiation. However, in general, the
parameters of an antenna when used to receive or transmit radiation are the same.
For the Hertz dipole with A > Al, this is rather simple to prove. However, there is a
proof of the general case of the reciprocity theorem that provides a general solution
for this problem. The details of this derivation are presented in Appendix D.

6.6 Summary

The Hertz dipole has been used to introduce the expression for power radiated; this
will be used later in presentations of spectral line radiation. Arrays of dipoles will
enhance the power radiated in a given direction. These dipole arrays can be used
to steer beams in direction. This feature is used in the LOFAR and Allen Array
instruments, and will be used in the Square Kilometer Array. A collection of such
elements can also be used to illuminate a filled aperture.

The basic results for scalar wave diffraction in 2 dimensions can be obtained
from a number of starting points. Many are given in optics texts such as Jenkins and
White (2001), where the sum of waves passing through an aperture of size D is used
to obtain a one dimensional diffraction pattern for the far field or Fraunhofer case.
This analysis is used to obtain the well-know result that the angular resolution for a
uniformly illuminated aperture is 6 = A /D. However, a grading function is difficult
to introduce in this analysis.

In presentations of diffraction in 3 dimensions, Rossi (1957) has used the Huygens
Principle. Other authors (e.g. Slater and Frank 1933) simply postulated the mathe-
matical expression (6.19), choosing a time delayed expanding spherical wave. For
one dimension, geometry and coordinate systems are less of a concern but in two di-
mensions these must be addressed consistently. We have shown that the expression
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for diffraction in one dimension can be derived from the limit of an array of dipoles.
We then related the 3 dimensional case to that in 2 dimensions; some details are to
be completed (see Problem 9). The two dimensional expression can also be obtained
directly from the vector potential, A (see Eq. 6.29). Such a derivation is complex,
but even this rather lengthy development has been simplified since polarization was
neglected. An excellent summary of the diffraction problem is given in Stratton
(pp. 460-470)

Problems

1. Complete the mathematical details of summing the expression in Eq. (6.48). First,
show that
n+1

A 1—¢q
S:Zﬁzoq:Tq

(multiply by ¢ to obtain one variant, then subtract from the relation above). With
qg=e'kP sin(@) show that we obtain (6.48).
From this, one can obtain the power pattern:

2

g _ [sink(n+1)D/2]sin (¢)
sin[kD/2] sin(¢)

Use limits to show that the square of the x component of (6.60) can be obtained
from the expression above.

2. You read that there are antennas without sidelobes. That is, all of the energy is
contained in the main lobe. Should you believe the report? Comment using qualita-
tive arguments, but not detailed calculations.

3. If the size of the pupil of the human eye, D is 0.5 cm, what are the number of
wavelengths across this aperture for light of A = 500 nm? Compare this to the num-
ber of wavelengths across the aperture of a 100 m radio telescope for a wavelength
of 2m, 1 cm. Repeat for the ALMA radio telescope, with a diameter of 12 m, for
A =lcm, 3 mm, 0.3 mm. Discuss the implications of these results.

4. Derive the increase in the radiated power for an array of N dipoles, for the case
of phases set to zero in Eq. (6.50). Compare this to the maximum power radiated in
a given direction by a Hertz dipole.

5. The full width half power (FWHP) angular size, 0, in radians, of the main beam
of a diffraction pattern from an aperture of diameter D is 6 ~ 1.02A/D.

(a) Determine the value of 0, in arc min, for the human eye, where D = 0.3 cm, at
A =5x10"3cm.

(b) Repeat for a filled aperture radio telescope, with D = 100 m, at A = 2cm, and
for the very large array interferometer (VLA), D =27 km, at A = 2cm.
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Fig. 6.9 A sketch of a parabola showing angles used in Problem 9

(¢) Show that when A has the units of millimeters, and D the units of kilometers and
0 the units of arc seconds, then 8 = 0.24 /D. Is this consistent with (6.74)?

6. Hertz used A ~ 26 cm for the shortest wavelength in his experiments.

(a) If Hertz employed a parabolic reflector of diameter D ~ 2 m, what was the
FWHP beam size? (See Problem 3.)

(b) If the Al ~ 26 cm, what was the radiation resistance, from equation (6.42)?

(c) Hertz’s transmitter was a spark gap. Suppose the current in the spark was 0.5 A.
What was the average radiated power?

7. Over the whole world, there have been (on average) 100 radio telescopes of (av-
erage) diameter 25 m operating since 1960. Assume that the power received by each
is 10715 W over this period of time. What amount of energy has been received in
this period of time? Compare this to the energy released by an ash (taken to be 1 g)
from a cigarette falling a distance of 2 cm in the earth’s gravity.

8. Refer to Fig. 6.9; the surface is y(x) = (1/4f)x>.

(a) Find a general expression for the path from the pupil plane (dashed line) to the
focus, f.

(b) If an on-axis plane wave is in the pupil plane, show that for a paraboloid, there
is a single focus.

(¢) Is there such a relation for a circle, y(x) = |/R5 — x2?

9. Show that the two dimensional equation (6.52) and one of the factors in the three
dimensional diffraction equation (6.53) are related by equating (| x —x' [) = L and

identifying Jy as IAl/2A, the current density.

10. If two dipoles spaced by A/4 are connected to a coherent input, what is the far
field radiation pattern if the phases of the dipoles differ by A/4?

11. Suppose you have a single dipole at A/4 in front of a perfectly conducting plate.
Determine the far field radiation pattern. Compare this to the result of problem 10.



Chapter 7
Practical Aspects of Filled Aperture Antennas

7.1 Descriptive Antenna Parameters

In general, most antenna systems, especially those with high gain and directivity
used in radio astronomy and communications must be analyzed using detailed nu-
merical models such as GRASP. The most important antennas used in these appli-
cations are fully steerable paraboloids whose properties are treated at greater length
in the monograph by Baars (2007). If one wants an accurate but rather simple de-
scription of antenna properties, one must use the concepts presented in the following
Sections, which allow one to characterize the antenna properties based on astronom-
ical measurements. In the following we provide details of realistic antennas, starting
with some necessary details.

7.1.1 The Power Pattern P(9, )

Often, the normalized power pattern, not the power pattern is measured:

Pn(197(p) =

P P(%,0) | . (7.1)

The reciprocity theorem provides a method to measure this quantity. The radi-
ation source can be replaced by a small diameter radio source. The flux densities
of such sources are determined by measurements using horn antennas at centimeter
and millimeter wavelengths. At short wavelengths, one uses planets, or moons of
planets, whose surface temperatures are determined from infrared data.

If the power pattern is measured using artificial transmitters, care should be taken
that the distance from antenna A to antenna B is so large that B is in the far radiation
field of A. This requires that the curvature of a wavefront emitted by B is much
less than a wavelength across the geometric dimensions of A. From geometry, this
curvature must be k < 2D? /2, for an antenna of diameter D and a wavelength A.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 145
DOI 10.1007/978-3-540-85122-6_7, (©) Springer-Verlag Berlin Heidelberg 2009
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Consider the power pattern of the antenna used as a transmitter. If the total spec-
tral power, &, in [W Hz '] is fed into a lossless isotropic antenna, this would
transmit P power units per solid angle per Hertz. Then the total radiated power at
frequency v is 4w P, In a realistic, but still lossless antenna, a power P(1%, @) per
unit solid angle is radiated in the direction (¥, ). If we define the directive gain
G(0, @) as the

P(ﬁ’(p) = G(ﬁa(p)P

or

G(9,0) = Jm . (7.2)

Thus the gain or directivity is also a normalized power pattern similar to (7.1),
but with the difference that the normalizing factor is [ P(1%,¢)d€2/4x. This is the
gain relative to a lossless isotropic source. Since such an isotropic source cannot
be realized in practice, a measurable quantity is the gain relative to some standard
antenna such as a half-wave dipole whose directivity is known from theoretical con-
siderations.

7.1.2 The Main Beam Solid Angle

The beam solid angle 25 of an antenna is given by

2n w

Qp = // P.(9,9) dQ://PH(ﬂ,(p)sinﬁdﬁd(p (73)
4 00

this is measured in steradians (sr). The integration is extended over the full sphere
4r, such that 4 is the solid angle of an ideal antenna having P, = 1 for all of
Q4 and P, = 0 everywhere else. Such an antenna does not exist; for most antennas
the (normalized) power pattern has considerably larger values for a certain range of
both ¥ and ¢ than for the remainder of the sphere. This range is called the main
beam or main lobe of the antenna; the remainder are the side lobes or back lobes
(Fig.7.1). For actual situations, the properties are well defined up to the shortest
operating wavelengths. At the shortest wavelength, there is indeed a main beam, but
much of the power enters through sidelobes. In addition, the main beam efficiency
may vary significantly with elevation. Thus, the ability to accurately calibrate the
radio telescope at the shortest wavelengths may be challenging.
In analogy to (7.3) we define the main beam solid angle Qyg by

QMB://Pn(t‘},(p) | . (7.4)

main
lobe
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The quality of an antenna as a direction measuring device depends on how well
the power pattern is concentrated in the main beam. If a large fraction of the received
power comes from the side lobes it would be rather difficult to determine the location
of the radiation source, the so-called “pointing”.

It is appropriate to define a main beam efficiency or (usually) beam efficiency,

ng, by

Qvp
Qp

ng = (7.5)

The main beam efficiency is not related to the angular size of the main beam.
A small antenna with a wide main beam can have a high beam efficiency: ng is an
indication of the fraction of the power is concentrated in the main beam. The main
beam efficiency can be modified (within certain limits) for parabolic antennas by
a choice grading function (6.58) of the main reflector. This can easily be accom-
plished by the choice of primary feeds and foci. If the FWHP beamwidth is well
defined, the location of an isolated source is determined to an accuracy given by
the FWHP divided by the S/N ratio. Thus, it is possible to determine positions to a
small fraction of the FWHP beamwidth.

Substituting (7.3) into (7.2) it is easy to see that the maximum directive gain Gpax
or directivity & can be expressed as

4

@:GmaX—EA

(7.6)

The angular extent of the main beam is usually described by the half power beam
width (HPBW), which is the angle between points of the main beam where the nor-
malized power pattern falls to 1/2 of the maximum (Fig. 7.2). This is also referred
to as the full width to half power (FWHP). Less frequently used definitions are the
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1. sidelobe

Fig. 7.2 A sketch of the telescope beamwidth, together with commonly used measurements of
beam size for a one-dimensional power pattern. EWMB is the equivalent width of the (full) half
power beam width. The HPBW is sometimes referred to as FWHP, or full width to half power.
BWEN denotes the beam width between first nulls. This is indicated by the two dots

beam width between first nulls (BWFN) or the equivalent width of the main beam
(EWMB). The latter quantity is defined by

12
EWMB = ﬂ/;QMB . (7.7)

For elliptically shaped main beams, values for widths in orthogonal directions
are needed. The beamwidth is related to the geometric size of the antenna and the
wavelength used; the exact beamsize depends on grading functions and illumination.

7.1.3 The Effective Aperture

Let a plane wave with the power density | (S) | be intercepted by an antenna. A
certain amount of power is then extracted by the antenna from this wave; let this
amount of power be P.. We will then call the fraction

Ac=F/[(S)| (7.8)

the effective aperture of the antenna. A. is a quantity very much like a cross-section
in particle physics, A, has the dimension of m?. Comparing this to the geometric
aperture Ay we can define an aperture efficiency 14 by

Ae=Nadg | . (7.9)

For some antennas, such as the Hertz dipole there is no clearly defined geometric
aperture; in such cases there is no simple expression for the aperture efficiency 1, .
For a calculation of the effective aperture, the peak value of A. is used; this is the
direction of the telescope axis. Directivity is related to A by
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47A
D = Gmax = /126 (7.10)
which according to (7.6) is equivalent to
AcQr =27 | . (7.11)

Often derivations of (7.10) or (7.11) are given by computing & and A, for some
simple antennas and then generalizing the result. To obtain a result that is gener-
ally applicable, we follow the derivation of (7.10) given by Pawsey and Bracewell
(1954) which makes use of thermodynamic considerations. Let antenna, receiver
and a radiating surface C all be enclosed by a black body at the temperature 7.
Let us assume thermodynamic equilibrium for the whole system. Then the antenna
will radiate power into the black enclosure, and this power will be absorbed there.
The black body will also radiate, and part of this radiation will be received by the
antenna. Let the radiation surface C subtend the solid angle €25 as seen from the
antenna (Fig.7.3), whose directivity is &, effective aperture A, and receiver band-
width Av. According to the Rayleigh-Jeans relation, the surface C radiates with the
intensity

2kT

=7z A

Iy

in units of W m~2Hz ™! per unit solid angle. Then the antenna collects a total power
of

kT
W=Ae 75 AV (7.12)

since, according to (7.8) only one polarization component is recorded.

Fig. 7.3 A sketch to illustrate the relation between effective aperture and directivity
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If the whole system is in thermal equilibrium, the principle of detailed balance
holds. Then the antenna must reradiate the same amount of power that it receives.
If the antenna terminals are connected by a matched resistor R, then the transmitted
power according to the Nyquist theorem (1.42) is

LAV =kT Av.

According to the definition (7.6) the fraction
Q
L'Av=kTAvZ -2 (7.13)
4r

is intercepted by the surface C. As stated, relation (7.12) and (7.13) are equal if
thermodynamic equilibrium prevails; thus

kT Q4
Ae ﬁAVQA :kTAV9 H
so that

4mA,

D = 2

Although this relation has been derived under the assumption of thermodynamic
equilibrium, this relates quantities which do not involve thermodynamics, so will
always be valid.

7.1.4 The Concept of Antenna Temperature

Consider a receiving antenna with a normalized power pattern P,(1,¢) that is
pointed at a brightness distribution By (1%, @) in the sky. Then at the output terminals
of the antenna, the total power per unit bandwidth, £, is

2= 14, [[Bu(0.9)R(0.0) 02 (714

By definition, we are in the Rayleigh-Jeans limit, and can therefore exchange the
brightness distribution by an equivalent distribution of brightness temperature. Us-
ing the Nyquist theorem (1.42) we can introduce an equivalent antenna temperature
TA by

Py =kTy. (7.15)

This definition of antenna temperature relates the output of the antenna to the
power from a matched resistor. When these two power levels are equal, then the an-
tenna temperature is given by the temperature of the resistor. Instead of the effective
aperture A. we can introduce the beam solid angle 24, from (7.11). Then (7.14)
becomes
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L9, 0)P (0 — B9, ¢ — o) sin ) d do
B [P.(0,9)dQ

Ta(Do, o) (7.16)

which is the convolution of the brightness temperature with the beam pattern of the
telescope. The brightness temperature T;, (1}, ¢) corresponds to the thermodynamic
temperature of the radiating material only for thermal radiation in the Rayleigh-
Jeans limit from an optically thick source; in all other cases T}, is only an convenient
quantity that in general depends on the frequency.

The quantity Ty in (7.16) was obtained for an antenna with no ohmic losses, and
no absorption in the earth’s atmosphere. In terms of the definitions in Sect. 8.2.5,
the expression T in (7.16) is actually 75, that is, a temperature corrected for at-
mospheric losses. We will use the term T in Sect. 8.2.5. Since Tj is the quantity
measured while Ty, is the one desired, (7.16) must be inverted. (7.16) is an integral
equation of the first kind, which in theory can be solved if the full range of Ta (%, @)
and P,(¥, @) are known. In practice this inversion is possible only approximately.
Usually both Tx (9, @) and P, (¥, ¢) are known only for a limited range of ¥ and
¢ values, and the measured data are not free of errors. Therefore usually only an
approximate deconvolution is performed. A special case is one for which the source
distribution T;,(¥, @) has a small extent compared to the telescope beam. Given a
finite signal-to-noise ratio, the best estimate for the upper limit to the actual FWHP
source size is one half of the FWHP of the telescope beam. This will be described
further in Chap. 8, where the steps necessary to calibrate an antenna are discussed.

7.2 Primary Feeds

In the preceding paragraphs we indicated how the antenna pattern depends on the
current grading across the aperture, but we have not specified how this grading is
achieved in practical situations. Generally a receiving antenna can be considered
as a device which transforms an electromagnetic wave in free space into a guided
wave. The reflector transforms the plane wave into a converging spherical wave. The
primary feed accepts this converging wave and transforms its characteristics so that
the power will reach the receiver.

For a successful antenna design many aims have to be met simultaneously; some
of these may be contradictory, so that one can only be fulfilled at the expense of oth-
ers. Antenna design therefore is more empirical than analytical; there is no general
theory that covers all aspects simultaneously. Provided the current distribution J (x”)
is given, the vector potential A(x) and thus the electromagnetic fields E(x) and
H(x) or B(x) can be computed. However, these induce currents J so that we have
the problem of self-consistency. These complications make rigorous analytic so-
lutions so difficult to obtain that Sommerfeld’s 1896 rigorous analytical solution of
the diffraction of a plane wave by a perfectly conducting semi-infinite screen has not
been markedly improved after 100 years. Methods involving numerical solutions are
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therefore necessary. From the reciprocity theorem, the parameters of a given antenna
are identical if used for transmission or for reception. Some concepts are more eas-
ily visualized if a receiving situation is assumed, while others are best understood in
terms of transmitting antennas. A discussion of current grading as influenced by the
feed is best given for the case of transmission. Thus we consider the primary feed of
a transmitting antenna. At point x’ of the reflector, the power will induce a surface
current depending on the amplitude of the oscillating field strength. If the primary
feed is sufficiently far from the reflector that far field conditions can be adopted, the
relative distribution of the field strength (for both electric and magnetic fields) can
be computed from the normalized power pattern of the feed and, in most cases, this
can be used at least as a first approximation.

7.2.1 Prime Focus Feeds: Dipole and Reflector

As an introduction, we first discuss a simple feed which is no longer in common
use. The simplest feed is formed by a short dipole in front of a reflecting disk A /4
behind the dipole. Such designs were frequently used as primary feeds for deep
parabolic dishes with a small f/D ratios (f = focal length, D = diameter). Simple
dipoles are not very efficient primary feeds. Main reflectors with f/D = 0.25 the
prime focus must illuminate the half sphere, 2. There are very few other designs
that can illuminate such a large angle, so dipoles are sometimes used. For reflectors
with f/D ratios larger than 0.3, simple dipole disk feeds produce large spillover
losses. In some cases, the illumination angle has been adapted to the reflector by
using dipole arrays as prime feeds, but this is usually done only if the central focus
position is occupied by a waveguide feed for some other frequency. A simple dipole
feed is sensitive only to linear polarization with the electric field strength directed
parallel to the dipole. The greatest disadvantage of a dipole feed is the nonuniform
illumination. This results in a non circular main beam of the telescope (see Fig. 7.4).
Since the phase of the electromagnetic waves vary rather strongly across the aper-
ture, both the aperture efficiency and the beam efficiency of dipole-disk feeds are
rather low.

7.2.2 Horn Feeds Used Today

The electric and magnetic field strengths at the open face of a wave guide will vary
across the aperture. The power pattern of this radiation depends both on the dimen-
sion of the wave guide in units of the wavelength, A, and on the mode of the wave.
The greater the dimension of the wave guide in A, the greater is the directivity of
this power pattern. However, the larger the cross-section of a wave guide in terms of
the wavelength, the more difficult it becomes to restrict the wave to a single mode.
Thus wave guides of a given size can be used only for a limited frequency range.
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Fig. 7.4 Equivalent current y
distribution in the aperture 4
plane of a dipole fed
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give the absolute value of the
current density, phases are
not indicated, except for the
loci of phase reversal [after
Heilmann (1970)]
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The aperture required for a selected directivity is then obtained by flaring the sides
of a section of the wave guide so that the wave guide becomes a horn.

Simple pyramidal horns are usually designed to transmit only the lowest modes.
However, then the electric and magnetic field strengths are distributed differently
along the sides of the horn aperture.

Great advances in the design of feeds have been made since 1960, and most
parabolic dish antennas now use hybrid mode feeds (Fig.7.5). If a truly circular
beam for an arbitrary polarization angle is wanted, more than TE modes are used;
the electric field in the aperture has to be oriented in the direction of propagation. But
then the conductivity of the horn in this direction has to be zero. This is achieved by
constructing the walls of the circular horn from rings that form periodic structures

Fig. 7.5 A corrugated waveguide hybrid mode feed for A 2 mm for the IRAM Plateau de Bure
interferometer (courtesy of B. Lazareff)
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which have a characteristic size of A/4. For such corrugated horns, the theory is to
be found in Love (1976). These are also referred to as Scalar or Multi-Mode feeds.
Such feed horns are used on all parabolic antennas. These provide much higher effi-
ciencies than simple single mode horn antennas and are well suited for polarization
measurements.

At centimeter wavelengths, a more recent development is the use of phased arrays
of individual feeds to synthesize a beam that has characteristics that are superior to
that of the individual components. In Sect. 6.3.1, a scheme using a simplified de-
scription of individual elements was presented. This has been extended to the use of
feed horns in the centimeter wavelength range, at a larger cost. In this scheme, after
each feed horn there is a cooled receiver system, and the outputs of each receiver
system are combined using phase shifters to produce a series of beams. The advan-
tage of this method is that the properties of the beams can be varied until the desired
result is obtained. With extra complexity, multiple beams can be produced.

7.2.3 Multiple Reflector Systems

If the size of a radio telescope is more than a few hundred wavelengths, designs
similar to those of optical telescopes are preferred. For such telescopes Cassegrain,
Gregorian and Nasmyth systems have been used. In a Cassegrain system, a convex
hyperbolic reflector is introduced into the converging beam immediately in front of
the prime focus. This reflector transfers the converging rays to a secondary focus
which, in most practical systems is situated close to the apex of the main dish. A
Gregorian system makes use of a concave reflector with an elliptical profile. This
must be positioned behind the prime focus in the diverging beam. In the Nasmyth
system this secondary focus is situated in the elevation axis of the telescope by
introducing another, usually flat, mirror. The advantage of a Nasmyth system is that
the receiver front ends remain horizontal while when the telescope is pointed toward
different elevations. This is an advantage for receivers cooled with liquid helium,
which become unstable when tipped.

There are several reasons why secondary focus systems are useful in radio as-
tronomy. In small telescopes the weight of the secondary reflector is much less than
that of receiver front ends, especially if these must be cooled. In addition, these are
usually more easily mounted and are more accessible at the apex. The effective fo-
cal ratio f/D of Cassegrain or Gregorian systems (Fig.7.6) is usually 5-10 times
larger than that of primary focus systems. Then optical distortions such as coma
are negligible for much larger fields than in primary focus configurations. For such
foci several receiving systems can be placed at different positions, including some
far off axis. In this way, systems at a number of different frequencies or an array
of receivers for the same frequency range can be accommodated in the secondary
focus.

Finally, it is much easier to build low noise systems using such a design. High
aperture efficiency requires a current grading with a good illumination up to the
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Fig. 7.6 The geometry of (a) Cassegrain, (b) Gregory, (¢) Nasmyth and (d) offset Cassegrain
systems

edge of the dish. If, however, in a prime focus configuration, the spillover side-lobe
pattern of the feed extends beyond the edge of the dish, the feed will also receive
300K thermal radiation of the ground. In a system with a secondary reflector, the
power received by the feed from beyond the edge of the secondary reflector is radi-
ation from the sky, which has a temperature of only a few K. For low-noise systems,
this results in an overall system noise temperature that is significantly less than for
prime focus systems, in which the power is received from the ground. This can be
quantified in the so-called “G/T value”, the ratio of the gain of the antenna to the
system noise. Any telescope design must aim to minimize the excess noise at the re-
ceiver input while maximizing gain. For a specific antenna, this maximization may
involve the design of feeds and the choice of foci. Naturally secondary focus sys-
tems also have disadvantages. While the angle that the telescope disk subtends as
seen from the prime focus is usually between 100° and 180°, a secondary reflector
usually subtends only 10—15°. Then the secondary focus feed horns must have much
larger directivity and consequently greater dimensions. The dimensions increase di-
rectly with wavelength and therefore there is usually a lower limit for frequencies
measured at the secondary focus. For the Effelsberg 100 m dish secondary focus
this limit is near f = 2.3 GHz. At this frequency, the primary feed horns have aper-
ture diameters of 1.5 m and overall lengths of 3 m. Thus, at longer wavelengths, the
prime focus must be used. At shorter wavelengths, the secondary focus can be used
and is preferred. First, the Field of View, that is, the region of the sky that can be ac-
curately measured, is larger. Second, the noise due to the reception of radiation from
the ground is smaller. Third, it is possible to correct for large scale deformations of
the primary reflector by deforming the subreflector appropriately.

That the secondary reflector blocks the central parts in the main dish from reflect-
ing the incoming radiation causes some interesting differences between the actual
beam pattern from that of an unobstructed telescope. For the simple case of a circu-
lar annular aperture antenna with uniform illumination (g &~ 1) and an inner/outer
radius of d/2 and D/2 the normalized illumination pattern can be computed by an
expression similar to (6.69), when the lower limit of the integral, d/2A is used. If
the blocking factor is given by
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b=d/D

then the resulting normalized beam pattern is

Ji(muD/\) — bJ; (rubD /)]
muD(1—b2) /2

Py(u,D,b) = (7.17)

The main differences between this result, compared to the beam pattern of an
unobstructed dish, are (1) the increased level of the first side lobe for a finite value
for b and (2) a slightly lower angular resolving power. Effect 2 can be understood
intuitively by considering that (7.17) is formed by subtracting the voltage produced
by a circular reflector with the diameter b D from that of one with diameter D. For
small values of u these contributions are in phase, while for larger u the phases
may differ. Therefore those contributions that form the main beam will always be
diminished by this process, while the contributions to the outer side lobes can have
any phase. Normalizing the main beam contribution to unity therefore will increase
the side-lobe level.

Realistic filled aperture antennas will have a beam pattern different from (7.17)
for several reasons. First the illumination of the reflector will not be uniform but has
a taper by 10 dB or more at the edge of the reflector. As seen in Table 6.1 the side-
lobe level is strongly influenced by this taper, and aperture blocking will again pro-
duce a different result. Second, the secondary reflector must be supported by three
or four support legs, which will produce aperture blocking and thus affect the shape
of the beam pattern. In particular feed leg blockage will cause deviations from circu-
lar symmetry. For altitude-azimuth telescopes these side lobes will change position
on the sky with hour angle. This may be a serious defect, since these effects will
be significant for maps of low intensity regions if the main lobe is near an intense
source. The side lobe response can also dependent on the polarization of the in-
coming radiation. Telescopes that employ only a primary focus will suffer the same
effects, since the primary focus has to be supported by wide support legs if there
is a massive prime focus to accommodate receivers. Such blocking is usually larger
than for telescopes with receivers only in the secondary foci. The Effelsberg 100 m
telescope has both foci, prime and Gregory, and four rather wide legs. The geomet-
ric blockage is 17%, a large value. Calculations show that the minimum blockage
which might be achieved for an Effelsberg-type design is ~ 7%.

Another disadvantage of on-axis systems, regardless of focus, is that they are
often more susceptible to instrumental frequency baselines, so-called baseline rip-
ples across the receiver band than primary focus systems. Part of this ripple is
caused by multiple reflections of noise from source or receiver in the antenna struc-
ture. Ripples can arise in the receiver, but these can be removed or compensated
rather easily. Telescope baseline ripples are more difficult to eliminate: it is known
that large amounts of blockage and larger feed sizes lead to large baseline ripples.
The effect is discussed in somewhat more detail in Sect. 8.4. This effect depends
on many details, so can only be handled by experience. The influence of baseline
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ripples on measurements can be reduced to a limited extent by appropriate observ-
ing procedures. A possible solution is the construction of off-axis systems. There
are four reasons for favoring off axis telescopes. These have: (1) baseline ripples
with smaller amplitudes, (2) lower side lobes and thus higher antenna and beam ef-
ficiencies, (3) higher G/T values and (4) since the sidelobe levels are lower, there
will be less interference entering through sidelobes. However, there are drawbacks:
(1) the reflecting surfaces must have a more complex shape, without axial symme-
try, and (2) the polarization properties of the radiation in off-axis designs are also
complex. However, such off-axis systems with active surface adjustment have great
advantages.

7.3 Antenna Tolerance Theory

When the relation between aperture illumination and antenna pattern was derived
in Sect. 6.4, the aperture was assumed to be a plane of constant phase. If there are
deviations, some of the results must be modified. The modifications caused by phase
variations across the aperture are the subject of this section. Most results will only be
stated qualitatively; a more detailed treatment can be found in textbooks on antenna
theory.

It is convenient to distinguish several different kinds of phase errors in the current
distribution across the aperture of a two-dimensional antenna.

1) A phase error that varies linearly along some direction across the aperture is
treated most simply by defining a new aperture plane oriented such that the phase
remains constant. All directions then have to be measured relative to this new
aperture plane. A linear phase error therefore results only in a tilt of the direction
of the main beam.

2) A phase error which varies quadratically across the aperture is more complex.
A treatment of this requires the introduction of Fresnel integrals, which describe
the conditions of the electromagnetic field in a slightly defocussed state. We will
not discuss this further here, but such errors can be avoided by properly focusing
the telescope.

3) A third class of phase errors is caused by the fabrication tolerances of the reflec-
tor; such errors are avoidable only to some extent. The theoretical shape of the
reflector can be approached only up to some finite tolerance €. This will cause a

phase error

£
6_47TX (7.18)

in the aperture plane. If 0 is measured in radians, € is the displacement of the re-
flector surface element in the direction of the wave propagation. We will discuss
this error in some detail.

The current grading in the aperture plane according to (6.53) can then be
written as
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g(x) =go(x)e®™  gyreal. (7.19)
The directivity gain of the reflector is, according to (7.2), (6.56) and (6.57)
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o

Assuming that § is small, the exponential function in (7.20) can be expanded in
a power series including terms up to the second order

2

(7.20)
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The ratio of the directivity gain of a system with random phase errors § to that
of an error-free system Gy of identical dimensions then becomes

Gﬁoz 118 -5, (721)
where
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/ / go(x) d’x
o
and

// 20(x)8%(x) d%x
%

i // go(x)d’x |
o

d is the illumination weighted mean phase error. By selecting a suitable aperture
plane, we can always force § to be zero. Then only the illumination weighted mean
square phase error remains. This results in

52

(7.23)

G -
— =1-62, 7.24
Go (7.24)
For practical applications this series expansion has two drawbacks:

1) itis valid only for small § while phase errors of 6 Z 1 and even larger will occur
if antennas are used near their short wavelength limit, and



7.3 Antenna Tolerance Theory 159

2) a more sophisticated antenna tolerance theory is needed because the phase er-
rors O(x) are not completely independent and randomly distributed across the
aperture.

This second effect is the result of the following practical considerations. If at
some point 0 < 0, chances are great that § is also < 0 in an area surrounding this
point. The reason for this is that the reflecting surface is smooth and has a cer-
tain stiffness, so that some kind of correlation distance for the phase errors has to
be introduced. If this correlation distance d is of the same order of magnitude as
the diameter of the reflector, part of the phase error can be treated as a systematic
phase variation, either a linear error resulting only in a tilt of the main beam, or in a
quadratic phase error which could be largely eliminated by refocussing. For d < D
the phase errors are almost independently distributed across the aperture, while for
intermediate cases according to a good estimate for the expected value of the RMS
phase error is given by [Ruze (1952, 1966)]

2 2
6'2=(47;8> [1—exp{—32H , (7.25)

where A is the distance between two points in the aperture that are to be compared
and d is the correlation distance. The gain of the system now depends both on §2
and on d. In addition, there is a complicated dependence both on the grading of the
illumination and on the manner in which § is distributed across the aperture. Ruze
has given several approaches to such a theory. All of these lead to results which
are basically similar. These results can be expressed by stating that the gain of a
reflector containing phase errors can be approximated by an expression

G(u)—ne_‘§2< x) x2<”§”>+(1—e—‘§2)<2§d> 7@(2”;”), (7.26)

where

n is the aperture efficiency,

u=-sin?,

Ai(u) = %Jl(u) is the Lambda function,

D the diameter of the reflector, and

d the correlation distance of the phase errors.

There are now two contributions to the beam shape of the system. The first is that
of a circular aperture with a diameter D as given by (6.71) but reduced in sensitivity
due to the random phase error 6 as given by (7.24). The second term is the so-called
error beam. This can be described as equal to the beam of a (circular) aperture with
a diameter 2d, its amplitude multiplied by

(1—6752)

The error beam contribution therefore will decrease to zero as & — 0.
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The gain of a filled aperture antenna with phase irregularities § cannot increase
indefinitely with increasing frequency but reaches a maximum at A, = 47e, and
this gain is 4.3 dB below that of an error-free antenna of identical dimensions. Then,
if the frequency can be determined at which the gain of a given antenna attains its
maximum value, the RMS phase error and the surface irregularities € can be mea-
sured electrically. Experience with many radio telescopes shows reasonably good
agreement of such values for € with direct measurements, giving empirical support
for the Ruze tolerance theory. The effect of surface errors on antenna efficiency is
shown in Fig. 7.7. A plot of gain versus efficiency for a number of antennas is shown
in Fig. 7.8.

Fig. 7.7 Aperture efficiency
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Fig. 7.8 The gain G in dB (left axis) of some high-precision filled aperture radio telescopes is
plotted against wavelength A. The Full Width to Half Power, 0 is plotted on the right axis. The
ALMA 12 m antennas will have the same properties as the APEX antenna. The curve for these
antennas extends to 0.3 mm, and to longer wavelengths, where it joins the curve for the Kitt Peak
12 m antenna which has a lower surface accuracy. The 15 m diameter JCMT (James Clerk Maxwell
Telescope) on Mauna Kea and PdeB (IRAM Plateau de Bure interferometer) antennas are also
shown. Smaller but highly accurate antennas are a part of the SOFIA and Herschel observatories
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7.4 The Practical Design of Parabolic Reflectors

7.4.1 General Considerations

Measurements of the mechanical properties of an antenna are of importance for
its performance. This is especially true if the telescope deforms homologously. By
Homology it is meant that, at various elevations, the main reflector deforms from
one paraboloid into another. Today, homology is an intrinsic part of the design of all
symmetric reflectors.

Non-homologous telescopes with diameters up to 12 m surfaces have been ad-
justed with the help of templates to accuracies of 100um. This is not possible for
telescopes of larger diameter or if great precision is needed. Surveying and adjust-
ment of the surface panels can be done by measuring the position of fiducial marks
with surveying techniques. Previously one had used Invar tapes to measure distances
along the surface and a theodolite to measure angles from the apex of the dish, gives
sufficient precision. Other methods use laser ranging, as well as the theodolite.
These methods have been replaced by photogrametry, in which optical measure-
ments of small reflectors attached to theantenna surface are used to determine the
positions of panels to accuracies of about 50 um. Most recently, holographic meth-
ods have become popular. In such measurements, the usual source of coherent radi-
ation is a signal transmitted from an earth satellite at 7mm. A small telescope and
the large dish to be measured receive the signal, which is then correlated, preserving
both the relative phase and amplitude. The large dish is scanned, thus allowing an
accurate measurement of amplitude and phase from the main beam and the side
lobes. A second holographic method employs radiation from a giant planet such as
Jupiter. This has been used to set the panels of the Caltech Submillimeter Obser-
vatory (CSO) 10m dish to 17pum. A third method, most commonly used today, is
to use holography with a transmitter in the near field of the radio telescope. This
is a more complex undertaking, since the near radiation field is important, and the
distance to the transmitter must be accurately determined. The advantage in using
this method is that it allows a very high S/N ratio. As a result of such near field
measurements, the surface of the IRAM 30 m telescope has been set to a precision
of 70 um and that of the James Clark Maxwell Telescope (JCMT) to 50 um.

Pointing errors rather than surface inaccuracies have usually set the ultimate
limit to telescope performance. Due to the diurnal rotation of the earth, all celes-
tial objects rotate about the celestial pole. Therefore for prolonged measurements
in a given direction, a mounting that permits compensation for this motion has
to be provided. Even for small reflectors a straightforward adaptation of the clas-
sical equatorial mount for optical telescopes is seldom used today. In the 1950s,
this mount was commonly used before adequate digital control systems were avail-
able. In an equatorial mount the telescope is turned with constant angular velocity
around a polar axis which is parallel to the earth’s axis of rotation. Different de-
clinations can be reached by tilting the reflector about the declination axis, which
is perpendicular to the polar axis. The advantage of this design is the simplicity
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of the resulting telescope control; as long as the telescope is aimed at a point with
fixed celestial coordinates the telescope must rotate only about the polar axis with
a constant angular velocity. However, this mount has the great disadvantage that
the forces due to the weight of the telescope act on bearings at an arbitrary an-
gle, and for the case of the declination axis these angles are always changing in
the course of the diurnal motion. For these reasons all modern telescopes make
use of an altitude-azimuthal mounting; the altitude-azimuth to equatorial coordinate
transformation is carried out with a computer. The azimuthal axis is vertical, the
elevation axis horizontal and both remain so even when the telescope is turning.
The gravity load of the telescope acts either parallel or perpendicular to these axes
and, when the telescope is tilted, the resulting gravitational force vector will always
remain in a plane as seen from the telescope, while for the equatorial mounting this
force vector can point to any direction within a hemisphere. For celestial positions
which pass through the zenith, the azimuthal angular velocity becomes singular,
so that no observations are possible in a region surrounding the zenith. The size
of this region depends on the maximum possible speed for azimuth, but usually a
field with a diameter of not more than 2-5° has to be avoided. For altitude-azimuth
mountings, the relation between celestial and telescope coordinates is constantly
changing, so the polarization angle and position angles of side lobes caused by feed
legs also change as a source is moving across the sky. This may be turned to ad-
vantage since this effect can be used to eliminate a large part of these side lobe
effects.

Pointing corrections for small dishes can be determined by mounting a small
optical telescope approximately parallel to the axis of the telescope and tracking
stars. Large homology dishes use radio measurements. Usually most of the errors
remain constant over weeks or months and can be incorporated as constants in a
pointing model in the telescope control computer program. Other errors, such as the
collimation error, which depend on how the receiver currently in use is mounted in
the telescope, must be determined more frequently.

Determinations of pointing constants are carried out by dedicated measurements.
These constants are then stored in the control computer. If the control program in-
cludes such corrections, there will be compensations for known flexure of the tele-
scope, changes in focus position, etc. Then a considerable precision of telescope
pointing can be reached. In this way an RMS pointing error of < 10” in both co-
ordinates is obtained for the 100 m telescope at Effelsberg, if no special efforts for
obtaining positional accuracies are taken. With frequent position checks, observing
only at night and in low wind, an RMS error of 4” is possible. Even better per-
formance has been reached with modern large single dishes used in the mm and
sub-mm range.

The discussion in the preceding sections showed how the radio frequency char-
acteristics of parabolic reflectors depend on the electric properties of the design and
the precision with which it can be built. This must be supplemented by some re-
marks about limits based on mechanical and practical restrictions.
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7.4.2 Specific Telescopes

The sole purpose of the telescope backup structure is to support the main reflector
surface. This surface may be perforated sheet metal or wire mesh as long as the
mesh size is about 1/16th of the shortest wavelength. This is acceptable if the in-
tended wavelength is more than a few cm. For shorter wavelengths solid surfaces
are needed. Usually the surface consists of panels that can be adjusted individually
to the desired paraboloid shape. Attempts to include the surface into the support
structure of the dish have not been successful.

When considerations of the costs are of prime importance, savings are often pos-
sible by restricting the range of the motion for the telescope. The prime example
for this is the fixed 305 m spherical reflector at Arecibo, Puerto Rico (Fig.7.9).
The spherical main reflector is completely stationary and its mesh surface is con-
structed in a depression in the ground. The telescope beam is directed by moving
the structure containing the feed horns and receivers. The shape of the reflector was
chosen to be spherical. A sphere has no single focus, only a focal line (or caustic),
and therefore a feed must be used to compensate for the spherical aberration. For
many years so-called line feeds were used with Arecibo. In the last years, to sim-
plify the optics, the secondary reflector was installed. This is a 26 m reflector which
feeds the radiation to a tertiary Gregorian reflecting surface were placed above the
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Fig. 7.9 A sketch of the Arecibo 305 m telescope in Puerto Rico, USA. The main reflector does
not move; the telescope beam is steered by moving the carriage house suspended over the main
reflector. On the left is the line feed used originally to correct the systematic phase errors caused
by the spherical primary main reflector. The new arrangement to the right includes two reflectors
which refocus the power from the main reflector and compensate for its large spherical aberrations.
The 25 m diameter secondary and an 8 m diameter tertiary reflector (inside the structure marked
“new secondary”) direct the power to the receiver system. The receiver and the two reflectors
are housed inside a radome on the right, below the carriage house. In addition to the new feed
arrangement, a ground screen, 16 m high, was erected around the edge of the primary reflector
(courtesy National Astronomy and Ionosphere Center). There are plans for an even larger Arecibo-
type instrument in China. This would be one of the possible Square Kilometer Array (SKA) designs
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primary reflector. With this, conventional horn feed illuminates approximately a
225 m aperture with very low spillover, high efficiency. The Arecibo antenna can
track sources over a 20° range from zenith, enabling observations for declinations
between 0 and +40°. A limiting frequency of about 10 GHz is the design goal.
Arecibo has the largest collecting area of any radio telescope. There is a proposal
from China to build a 500 m diameter version of Arecibo as a prototype for their
version of the “Square Kilometer Array”, SKA. In our presentation of antenna tol-
erance theory, it was shown that the shape of the reflecting surface must be < A/16
in order to achieve a telescope gain within 67 % of an ideal reflector. For a 30 m
radio telescope usable to A = 1 mm the tolerance must be 0.06 mm RMS. This re-
quirement must be met for all positions at which the telescope can be pointed. Any
structure that is built from existing material will show flexure due to its own weight
if tilted. This is caused by the finite maximum stress that the material can transmit,
the modulus of elasticity and the density of the material used for the construction.
The geometric shape introduces only a numerical factor; it cannot completely sup-
press the deformation. In order to obtain some idea of the size of these deformations
it should be noted that the rim of the dish of the 100 m telescope at Effelsberg de-
forms by about 60 mm when the telescope is tilted from zenith to horizon. This
should be compared to the required precision of about 0.5 mm, RMS, if the tele-
scope is to be fully usable for A = 1 cm. Closer scrutiny shows that what is needed
is not the absence of deflections but only that the shape of the reflector remains a
paraboloid of revolution; changes in both the shape and the position (apex, focal
point and axis) of this paraboloid can be tolerated. Such deformations are called
homologous, and it is imperative that only such deformations occur. The first large
radio telescope designed specifically with a homology design was the 100 m tele-
scope at Effelsberg (see Fig. 7.10). The success of this design was such that this
telescope is usable at wavelengths as short as A = 3 mm, since the error due to tele-
scope deformations always remains smaller than 0.5 mm. More modern homology
telescopes have a much stiffer design than Effelsberg, but the principle of homology
has been incorporated in the design of symmetric dishes such as the IRAM 30 m. A
larger version of the IRAM dish is the 50 m diameter Large Millimeter Telescope
(LMT) located near Puebla, Mexico. The LMT is near completion.

One large telescope that does not have a homologous design is the GBT, since this
has an asymmetric structure. Rather the individual panels of the GBT are equipped
with an actuator system that adjusts the surface for maximum gain. In some sense
one can compare the Effelsberg homology design to an analog computer, and the
GBT system to a digital computer. The GBT design allows more freedom.

The use of homology insures that deformations due to gravity are compensated.
The practical limits are now given by thermal and wind deformations. In order to
minimize thermal deformations, and to protect the telescope from adverse weather
conditions, these are often contained in radomes or astrodomes. Two examples are
the 15m James Clerk Maxwell Telescope (JCMT) and the 10 m CSO telescope,
both at 4km elevation on Mauna Kea, Hawaii. Another approach to reduce the
effect of temperature fluctuations is to use structures made of low expansion ma-
terials. Since the surface tolerances are so critical, the support structure is often
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turret

Fig. 7.10 A sketch showing the homology design principle of the 100 m-telescope at Effelsberg
(after Grahl). The support for the surface is provided by a set of radial struts from the backup
structure to the central hub. The support for the prime focus is provided by four legs. The surface
is free to deform from one paraboloid to another. Such a design places strong constraints on the
symmetry of the structure. For off-axis systems such as the GBT, active surface adjustment is used
to replace the effect of homology

now made of a low expansion material, carbon fiber reinforced plastic, or CFRP.
With CFRP, together with the Invar nodes joining the CFRP tubes, a space frame
structure with a negligible temperature expansion coefficient over a fairly wide tem-
perature range can be built. From this design, differences in temperature within the
telescope structure will not influence the shape of the dish. The progress in tele-
scope construction made in the last years may be seen by the fact that modern
versions of telescopes do not require protection from weather in the form of an
astrodome. The most remarkable example of such a design is the 12 m sub-mm tele-
scope, the Atacama Pathfinder EXperiment (APEX). Although APEX operates at
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a site of 5000 m elevation at Chajnantor/Chile. APEX, a telescope project operated
jointly by MPIfR, ESO and the Onsala Space Observatory is now taking data. The
individual antennas of the Atacama Large Millimeter/sub-mm Array (ALMA) are
similar to APEX. The specifications of these instruments are: RMS surface accu-
racy better than 25 um, pointing accuracy 2" over the whole sky, tracking accuracy
0.6”. APEX and the ALMA dishes are the highest performance radio telescopes
built. SOFIA (Fig. 7.12, see http://www.nasa.gov/mission_pages/SOFIA/index.html
for a description) has a 2.5 meter reflector that has optical quality, while the Her-
schel Satellite Observatory has a 3.5 meter silicon-carbide reflector (Fig. 7.13, see
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=16 for more information).
For longer wavelength observations, equipment has to be placed near the position
of the prime focus since feeds must have sizes of more than A/4 to be efficient. In
the prime focus, the telescope is illuminated by the primary feed. In order to avoid
the losses of long transmission lines, the receiver front end is also mounted at the
prime focus. At shorter wavelengths the secondary focus in Cassegrain, Gregory
or Nasmyth foci can be used, a secondary reflector is then required. In symmetric
telescopes both the supporting legs and the secondary reflector or the receiver cabin
obstruct part of the aperture, giving rise to aperture blocking. Usually the loss of gain
caused by blockage of the effective aperture is minor. Of much greater importance
is the influence on the side-lobe level. A complete analytical treatment of this effect
is rather difficult because of geometry, thus empirical estimates are used. Support
structures with three and four legs have been used; the resulting side lobe structure
shows a six-fold or a four-fold symmetry — at least to a first approximation.
Aperture blocking and all the problems connected with it, that is baseline rip-
ple due to standing wave patterns of radiation reflected from the feed horn and the
supporting legs (see Section 8.4.3), increased side-lobe level and an increased sus-
ceptibility to man-made interference, can be avoided if an off-axis construction is
used. This is the design principle chosen for the new Green Bank Telescope, GBT
(Fig.7.11). The design of an offset paraboloid has, however, complications. Since
the design has less symmetry homology is more difficult to achieve and therefore
active, real time adjustments of the surface are needed if the design limit of 7mm
or perhaps even 3 mm wavelength is to be reached. This will be accomplished by
an actuator system controlled in real time by a laser measuring system. But for a
wavelength larger than 2 cm the GBT will not require active surface adjustment.
Considerations resulting in a high efficiency for the telescope are only some of
the criteria in the design of radio telescopes. Of almost equal importance are features
that result in an overall low-noise system. These refer mainly to the receiver design,
but the telescope design can be important also, since not all the radiation that is re-
ceived arises from the radio source at which the telescope is pointed. A large part of
the signal, in some systems up to 50%, arises from the immediate telescope vicin-
ity. This could be radiation from the ground, either leaking through the perforated
reflecting surface or picked up by spillover lobes of the primary feed extending over
the edge of the reflector dish. As already noted, the noise performance of Cassegrain
or Gregorian systems is usually much better than that of prime focus systems be-
cause such spillover lobes. The influence of spillover noise can be decreased by
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Fig. 7.11 The Green Bank Telescope (GBT) at West Virginia, U.S.A. The telescope is an off-axis
paraboloid with a 110 m by 100 m diameter. This design was chosen in order to minimize side lobes
and reflections in the telescope structure that lead to instrumental artefacts or “baseline ripples”

Fig. 7.12 The SOFIA facility will fly at about 12 km altitude, above most of the water in the earth’s
atmosphere. This will allow measurements in the sub-mm and far infrared range. The modified
747SP airplane contains a 2.5 m optical telescope. This is a joint project of NASA and the German
Space Agency, DLR. The first test flights are now taking place
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Fig. 7.13 The Herschel
Space Observatory will
observe at sub-mm and far
infrared wavelengths with
bolometer and heterodyne
instruments. The antenna is a
3.5 m paraboloid made of
silicon carbide. The structure
behind the antenna is a sun
shield; the structure below the
main reflector is the cryostat
containing the receiver
systems. Herschel is equipped
with two bolometer cameras,
SPIRE (covering 250-520
wm) and PACS (covering
75-170 um, and a single
pixel heterodyne instrument,
HIFI (covering 157-212 and
240-625 um). The
bolometers also have
spectroscopic capability.
Launch is planned for
mid-2008
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suitably placed screens that direct the side lobes towards cold sky and not ground.
These have much the same purpose as baffle tubes in optical telescopes.

7.5 Summary

1) Fully steerable paraboloids of revolution have become the standard antennas in
the centimeter, millimeter and sub-mm wavelength regions. In the mm and sub-
mm ranges, these were housed in shelters, but recently designs have allowed high
performance paraboloids to operate in the open air.

2) All symmetric paraboloids have designs that make use of the homology principle.
That is, with changing elevation, the surfaces deform freely from one symmetric

parabolic shape to another.

3) All modern designs use Altitude-Azimuth mounts. The control is carried out with

digital computer systems.

4) For millimeter and sub-mm paraboloids, Carbon Fiber Reinforced Plastic (CFRP)
rods are employed in the support structures and subreflector support legs. CFRP
is needed to minimize the changes in structures due to changing temperatures.
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5) The aim of all designs is to minimize the blockage of the primary reflector. This
requires thin, “knife edge” subreflector support legs. Thus the weight of the sub-
reflector must be kept to a minimum.

6) The Cassegrain and Nasmyth foci are preferred for millimeter and sub-mm tele-
scopes, since these help to minimize the reception of noise from the ground,
have additional reflecting surfaces that allow optimization of telescope gain, and
provide larger amounts of space for receivers.

Problems

1. (a) Use Eqgs. (7.3), (7.14) and (7.15) to show that for a source with an angular
size < the telescope beam, Tp = Sy A./2k. Use these relations and Eq. (7.16) to
show that Ty = np7Tg, where Tg is the observed brightness temperature.

(b) Suppose that a Gaussian-shaped source has an actual angular size 6; and actual
peak temperature Tp. This source is measured with a Gaussian-shaped telescope
beam size Og. The resulting peak temperature is 7g. The flux density, Sy, integrated
over the entire source, must be a fixed quantity, no matter what the size of the tele-
scope beam. Use this argument to obtain a relation between temperature integrated
over the telescope beam, T

B0\e+e2)

Show that when the source is small compared to the beam, the main beam
brightness temperature Tg = To(6s/6p)?, and further the antenna temperature Ty =

nBTO (95/93)2.

2. Suppose that a source has Ty = 600K, 6y = 40", 6g = 8’ and ng = 0.6. What is
TA? (Use the result of Problem 1(b).)

3. Suppose your television needs 1 UW of power at the input for good reception.
The transmitter radiates 100kW in all azimuthal directions, and within an angle
£10° about the horizontal direction, and is at 100 m elevation. Ignore reflections
and assume that the earth is perfectly flat. Calculate the effective area, A., that your
TV antenna must have if you live 30 km from the transmitter.

4. Suppose that your antenna has a normalized peak power, P, with the following
values: P=1for 6 < 1°, P=0.1for 1° < 0 < 10°, and P = 0 for 6 > 10°. What is
Qy, from Eq. (5.51) in “Tools”? What is 2y and 1.

5. A scientist claims that for a very special antenna the source brightness tempera-
ture of a compact source exceeds the antenna temperature. Do you believe this?

6. You are told that there is a special procedure which allows the measured Gaussian
source size (not the deconvolved size) to be smaller than the Gaussian telescope



170 7 Practical Aspects of Filled Aperture Antennas

beam. This can occur (so the claim goes) if the source is very intense. Do you
believe this?

7. The Gaussian function considered in Chap. 4 was:

X2
—A —
y(x) =Aexp ( 202) ,

where A is a normalization constant. For radio astronomical applications, one usu-
ally takes the form of this function as

n2(x —xp)>
y(x) =Aexp (—412(920)> )

1/2
Relate the parameters ¢ and 6;,. The quantity 6/, is the FWHP, full width to
half power. In the literature, the “width” of a Gaussian function is usually the FWHP.

8. The ground screen for the Arecibo telescope has a height of 15 m, and is mounted
around the edge of the 305 m diameter radio telescope. Assume you could direct the
entire ground screen so that the power is collected at a single location. (a) What is
the geometric area of this ground screen? Take the antenna as a ring, with an inner
radius of 305 m, the outer radius being 315 m. (b) Calculate the far-field antenna
pattern. What are the location and intensity in the first sidelobe, relative to the main
lobe? (c) Calculate the conversion factor, from Jy to K, for the antenna temperature
if the antenna efficiency is 0.6.

9. Single telescope pointing is checked by scanning through the center positions of
known sources by a few beamwidths in orthogonal directions. The positional error,
A, caused by random noise, as measured with a beam of FWHP size 6, and signal-
to-noise ratio of (S/N) is 6y/(S/N). Neglect all systematic errors. What would have
to be the (S/N) to determine a source position to 1/50 of the FWHP beamwidth of
the telescope? Is there a contradiction between the angular resolution of a telescope,
0 ~ A/D, and the positional accuracy?

10. Figure 7.6d represents the AT&T Bell Labs 7 m radio telescope. This has a beam
efficiency of 0.95 at a wavelength of 3 mm. Assume that K = 0 in Eq. (6.75) and
Table 6.1. From Fig.7.7, what must be the surface accuracy? (a) What must be
the antenna efficiency from Fig.7.7? (b) At one time, this telescope was used for
satellite tests at 28 GHz. The satellite is a point source in the beam of this telescope,
so Na should be optimized for a point source. Now what are the values of antenna
and beam efficiency? What is the beam size?

11. Combine (7.5), (7.8) and (7.9), together with Ogeom = % and Ageom = %D2 to
obtain the relation
D> [ 65 r

=Ny — 7.27
N =14 e (7.27)

egeom
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12. Use expression (6.40), to determine the normalized power pattern of the Hertz
dipole. Use Eq. (7.2) to determine the gain of the Hertz dipole. For the Hertz dipole,
P(0)=P sin% 6. Use Eqgs. (7.3), (7.5) and 7.11 to obtain Qa, Qup, N and Ae.

13. What is the Rayleigh distance, k = 2D? /A, for an antenna of diameter D = 100 m
and a wavelength A = 3 cm.

14. For a 305 m diameter radio telescope with ny=0.5, what is the ratio of antenna
temperature to flux density for a point source? for an antenna of diameter D = 100 m
and a wavelength A = 3 cm.



Chapter 8
Single Dish Observational Methods

8.1 The Earth’s Atmosphere

For ground—based radio telescopes, the signal entering the receiver has been atten-
uated by the earth’s atmosphere. In addition to attenuation, there is atmospheric
emission, the signal is refracted and there are changes in the path length. Usually
these effects change slowly with time, but there can also be rapid changes such as
scintillation and anomalous refraction. Thus the propagation properties of the at-
mosphere and detailed features of its radiation must be taken into account, if the
astronomical measurements are to be interpreted properly. In Sect. 1.2 it was noted
that the earth’s atmosphere is fairly transparent to radio waves for frequencies above
the cut-off given by the critical frequency of free electrons in the ionosphere. This
cut-off frequency varies depending on the electron density but usually in the region
below 10 MHz. Most radio astronomical measurements are made at frequencies well
above this limit. At lower frequencies ionospheric effects can be important; these
are of great intrinsic interest for geophysics, and must be compensated for in high
angular resolution, low frequency astronomical images.

For the cm and mm wavelength range and especially in the submillimeter range,
tropospheric absorption has to be taken into account. The various constituents of the
atmosphere absorb by different amounts. Because the atmosphere can be considered
to be in LTE, these constituents are also radio emitters. Clouds of water droplets ab-
sorb and scatter radio waves even at frequencies as low as 6 GHz — a large rain cloud
will cause an attenuation as high as 1.5 dB, while the average value for clear sky at
zenith is of the order of 0.2 dB. At higher frequencies the atmospheric absorption
increases.

The dry atmosphere below 80km is a mixture of gases with the principle
constituents nitrogen (N2: 78.09% by volume), oxygen (O, : 20.95%) and argon
(Ar: 0.93%). This mixture is almost constant in the lower atmosphere, but there are
several minor constituents whose relative percentage may vary both with altitude
and time.

The most important of these is water vapor (H>O). Its concentration, given by the
mixing ratio r (in g/kg air) varies erratically with the local weather conditions and
with altitude. Carbon dioxide (CO,) with an average percentage of 0.03% shows

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 173
DOI 10.1007/978-3-540-85122-6_8, (© Springer-Verlag Berlin Heidelberg 2009



174 8 Single Dish Observational Methods

both seasonal variations and a secular trend. In recent years it has come to promi-
nence in connection with the greenhouse effect.

Equally notable is ozone (O3). This has maximum concentration at an altitude
between 20 and 30 km, with a total number density of about 5 x 10'>cm™3. Ozone
shows strong seasonal and geographical variations, and in addition, the total amount
has decreased dramatically in the last 10 to 15 years. Since ozone is responsible for
the absorption of the near UV solar radiation, this decrease is of great practical im-
portance. Spectral lines of ozone are present at 67.36 GHz and higher. The emission
lines in the zenith reach AT;, = 60 K for dry air; with a total amount of 2 gcm’2 H,O0,
AT, remains below 5-6 K.

The atmospheric pressure decreases roughly exponentially with the altitude &

P(h) = Pye "1 | (8.1)

The determination of H, the scale height, is rather approximate, with a typical
value of
xT

H=——~7998m, (8.2)
ug

where u is the mean molecular mass of air, # the gas constant, g the gravitational
acceleration and 7 the gas temperature.

The total amount of precipitable water (usually measured in mm) above an al-
titude Ao is an integral along the line-of-sight. Frequently, the amount of H,O is
determined by radio measurements carried out at 225 GHz combined with models
of the atmosphere. For excellent sites, measurements of the 183 GHz spectral line of
water vapor can be used to estimate the total amount of H>O in the atmosphere. For
sea level sites, the 22.235 GHz line of water vapor is used for this purpose. The scale
height Hy,0 ~ 2km, is considerably less than Hy;; ~ 8km of dry air. For this reason,
sites for submillimeter radio telescopes are usually mountain sites with elevations
above ~ 3000 m.

The variation of the intensity of an extraterrestrial radio source due to propaga-
tion effects in the atmosphere is given by [see (1.17)]

7y(0)
I(s) = I (0)e™© / By(T(t))e "dr, 8.3)
0
where R
T(s) = / Ky (s)ds. (8.4)

S0

Here s is the (geometric) path length along the line-of-sight with s = O at the
upper “edge” of the atmosphere and s = sg at the receiving telescope. Both the
(volume) absorption coefficient x and the gas temperature 7' will vary with s, intro-
ducing the mass absorption coefficient k, by

Ky =kv-o, (8.5)
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where p is the gas density; this variation of k can mainly be traced to that of o as
long as the gas mixture remains constant along the line-of-sight.

Because the variation of o with s is so much larger that that of T'(s), a useful
approximation can be obtained by introducing an effective temperature for the at-
mosphere so that

Ta(s) = Ty(0) e "0 4 Ty (1 — e 7O (8.6)

The first term is absorption in the earth’s atmosphere, while the second is emis-
sion. The physics of the atmosphere is contained in the derivation of 7(0), the total
opacity along the line-of-sight, and in Tay,. In Fig. 8.1 we show a model of the
atmosphere used to predict attenuation from O, and H,O, and other constituents.
This example gives an indication of the influence of the atmosphere at cm, mm
and sub-mm wavelengths. High frequency resolution measurements of the atmo-
spheric emission are possible and aid in improving models. In the cm region, there
is some effect near 22.235 GHz from H,O and a large effect at 50-70 GHz from O.
If we assume the physical parameters of the atmosphere are independent of position
(within a neighborhood of ~ 100 km diameter) so that all variations of atmospheric
mixture, density, pressure and temperature are only dependent on the height 4 in the
atmosphere, then the total opacity 7(z) along the line-of-sight at the zenith angle z
will be

7(2) =1 X(2), (8.7)

where T is the optical depth for zenith and X (z) is the relative air mass

X(z) = —1 / o(h) ——an | . (8.8)
[o(h)d s \/1_<Rno) o
0 R+hn

Here R is the earth radius, o(h) the gas density at the height # = r — R in the
atmosphere, n(h) the index of refraction at this height, ng that at 2 = 0. In deriving
this expression the surfaces of equal physical state in the atmosphere are assumed
to be concentric spheres, and the curvature of the rays due to varying refraction
has been taken into account. Tables of X (z) have been computed by Bemporad [see
Schoenberg (1929)], a Chebyshev fit up to X = 5.2 with a mean error of less than
6.4 x 10~ is given by

X(z) = —0.0045 4 1.00672 secz — 0.002234 sec> z — 0.0006247 sec’ 7. (8.9)

If the atmosphere can be considered to be reasonably stable so that both Tagm
and 7y will not vary noticeably within several hours, these atmospheric parameters
can be obtained by measuring a calibration source repeatedly so that its radiation
enters the telescope after passing through different air masses X. The unknown at-
mospheric parameters then can be obtained from a least squares fit of T against X.
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Fig. 8.1 A plot of the transmission properties of an atmospheric model for a precipitable water
vapor of 0.2 mm, for an altitude of 4.2 km. In panel (a) is shown the total transmission, in (b) the
transmission if only O, is present, and in (c) if only water vapor is present. The total in (a) also
takes the effect of trace gases and the interaction with N, [produced using the AM program of
S. Paine by B. Nikolic (unpublished)]
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Refraction effects in the atmosphere depend on the real part of the (complex)
index of refraction (2.33). Except for the anomalous dispersion near water vapor
lines and oxygen lines, it is essentially independent of frequency and given by

-1 -2
_ 6_ pPN(T s(PwN(T
(n—1) x 10 _77.6(hpa) <K> +3.73% 10 (hpa) <K) . (8.10)

where p is the total air pressure in hectoPascals (hPa = 100mB), p,, the partial
pressure of water vapor (in hPa) and T the gas temperature in K. Therefore the
refraction will depend on the humidity of the air. For z < 80°

Az=f tanz, (8.11)

where

B=(n—1).

A rapidly time variable effect is anomalous refraction (Altenhoff et al. 1987).
This has been found at 1.3 cm at Effelsberg and at 3 mm and 1.3 mm at Pico Veleta
as well as other sites. If anomalous refraction is important, the apparent positions
of radio sources appear to move away from their actual positions by up to 40" for
time periods of 30s. This effect occurs more frequently in summer afternoons than
during the night. Anomalous refraction is caused by small variations in the H,O
content, perhaps by single cells of moist air. In the mm and sub-mm range, there
are measurements of rapidly time variable noise contributions, the so-called sky
noise. This is probably produced by variations in the water vapor content in the
telescope beam, and it does not depend in an obvious way on the transmission of the
atmosphere. But experience has shown that times of high atmospheric attenuation
are often times of low sky noise. The fluctuations of the water content along the
line-of-sight probably cancel reasonably well when the water content is high, but
then the transmission is small. As expected, sky noise increases with increasing
telescope beam separation, being larger for small telescopes (D < 3m) than for
large telescopes (D > 10 m). This behavior is expected if the effects arise within a
few km above the telescope and the cells have limited sizes.

8.2 Calibration Procedures

8.2.1 General

In Sect. 7.1, a set of characteristic parameters was given that describes the basic
properties of an antenna as a measurement device. These parameters have to be de-
termined for a specific antenna. The efficiencies defined in Chap. 6 are more difficult
to estimate. For smaller antennas used in communications, calibrations are usually
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carried out using an antenna test stand using transmitters with known power output.
Such a transmitter must be situated in the far field, at a distance d,

d>2D*/A, (8.12)

if easily interpretable results are to be obtained. The required distance d is of the
order of 2 x 103 km for a telescope with D = 100m at A = 1 cm. Such calibration
set up is not possible to arrange on a routine basis and therefore radio telescopes
and larger communications antennas are best calibrated using astronomical sources
as standards.

Thus, in radio astronomy, one must follow a two step procedure characteristic for
many astronomical applications. First, the measurements must be calibrated using a
set of celestial primary calibration sources, but to establish these primary calibration
sources is a complicated task. Second, once the primary flux density calibrators are
available, relative calibrations can be made, using secondary standards.

The primary calibration standards are measured using horn antennas. The an-
tenna parameters can either be computed theoretically, or can be measured in an
antenna test range. The same sources are then measured again with the larger tele-
scope to be calibrated. The scale measured with the larger telescope is then adjusted
to produce the values obtained with the calibrators in catalogs. A list of radio sources
with known flux densities for a wide range of frequencies is available; for conve-
nience a sample is given in Appendix F.

For a uniformly illuminated circular aperture, as in an optical telescope, the far
field is given by the Airy pattern (the first entry in Table 6.1). The illumination of
radio telescopes differs from that used in classical optical telescopes in two ways:
(1) because of the low focal ratios, the illumination pattern differs significantly from
the Airy pattern, and (2) the waveguide feeds give a nearly Gaussian variation of
electric field strength across the aperture. Such a situation is better represented by
the second entry in Table 6.1. For a Gaussian shaped main beam, the solid angle is
given by

Q=113362 | , (8.13)

where 60y, is the full width to half power (FWHP). From direct comparisons, this
relation has an accuracy of 5 %. An accuracy of 1 % can be obtained by using the
0.1 power point of the beam:

Q =0.3411 65 poyer - (8.14)

8.2.2 Compact Sources

Usually the beam of radio telescopes are well approximated by Gaussians. As men-
tioned previously, Gaussians have the great advantage that the convolution of two
Gaussians is another Gaussian. For Gaussians, the relation between the observed
source size, 0,, the beam size 6, and actual source size, 6, is given by:
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02 =62+67. (8.15)

This is a completely general relation, and is widely used to deconvolve source
from beam sizes. Even when the source shapes are not well represented by Gaus-
sians these are usually approximated by sums of Gaussians in order to have a con-
venient representation of the data. The accuracy of any determination of source size
is limited by (8.15). A source whose size is less than 0.5 of the beam is so uncertain
that one can only give as an upper limit of 0.5 6.

If the (lossless) antenna (outside the earth’s atmosphere) is pointed at a source
of known flux density S, with an angular diameter that is small compared to the
telescope beam, a power at the receiver input terminals

W, dv = 1A. S, dv =kTxdv

is available. Thus

T\ =TSy (8.16)

where I' is the sensitivity of the telescope measured in K Jy~!. Introducing the
aperture efficiency 7Ma according to (7.9) we find

D?
r=m-| . (8.17)

Thus I' or na can be measured with the help of a calibrating source provided
that the diameter D and the noise power scale in the receiving system are known. In
practical work the inverse of relation (8.16) is often used. Inserting numerical values
we find

TA K]
NA[D/m]>”

The brightness temperature is defined as the Rayleigh-Jeans temperature of an
equivalent black body which will give the same power per unit area per unit fre-
quency interval per unit solid angle as the celestial source. Both T4 and T, are de-
fined in the classical limit, and not through the Planck relation, even when hv ~ kT .
In this sense, both 75 and 7;, may be idealizations. However the brightness tem-
perature scale has been corrected for antenna efficiency. Usually this scale, the main
beam brightness temperature, is determined by measurements of the planets, or mea-
surements of calibration sources. The conversion from source flux density to source
brightness temperature for sources with sizes small compared to the telescope beam
is given by the Rayleigh-Jeans relation:

S, = 3520 (8.18)

| 2kTvp Q2

§=——7r— (8.19)
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For Gaussian source and beam shapes, this relation is:

T™mB 93

§=2.65"5",

(8.20)

where the wavelength is in centimeters, and the observed source size is taken to be
the beam size, given in arc minutes. Then the flux density is in Jy, and the brightness
temperature is in Kelvin.

The expression Typ is still antenna dependent, in the sense that the tempera-
ture is a weighted average over the telescope beam, but this relation does take into
account corrections for imperfections in the antenna surface and the efficiency of
feed coupling. For sources small compared to the beam, the antenna and main beam
brightness temperatures are related by the main beam efficiency, ng:

T

. 8.21
Tvs (8.21)

B =
The actual source brightness temperature, 75 is related to the main beam bright-
ness temperature by:
— 8.22
02 (8.22)
Here, we have made the assumption that source and beam are Gaussian shaped.
The actual brightness temperature is a property of the source. To obtain this, one
must determine the actual source size. This is a science driver for high angular reso-
lution (i.e. interferometry) measurements. Although the source may not be Gaus-
sian shaped, one normally fits multiple Gaussians to obtain the effective source
size.

8.2.3 Extended Sources

For sources extended with respect to the beam, the process is vastly more complex,
because the antenna side lobes also receive power from the celestial source, and a
simple relation using beam efficiency is not possible without detailed measurements
of the antenna pattern. As shown in Sect. 8.2.5 the error beam may be a very signifi-
cant source of errors, if the measurements are carried out near the limit of telescope
surface accuracy. In principle 1y could be computed by numerical integration of
P,(9%, @) [cf.(7.3) and (7.4)], provided that P,(®, @) could be measured for large
range of ¥ and ¢. Unfortunately this is not possible since nearly all astronomi-
cal sources are too weak; measurements of bright astronomical objects with known
diameters can be useful.

If we assume a source has a uniform brightness temperature over a certain solid
angle €, then the telescope measures an antenna temperature given by (7.16)
which, for a constant brightness temperature across the source, simplifies to
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/ Py(0,9)dQ
TA — source Tb

[Rv.0)a2

4r

or, introducing (7.3, 7.4 and 7.5),

/ Py(9,¢9)dQ
Ty = Mg Ty, = N8 fBEAMTB , (8.23)
| h.pan

main
lobe

where fggam is the beam filling factor. If the source diameter is of the same order
of magnitude as the main beam the correction factor in (8.23) can be determined
with high precision from measurements of the normalized power pattern and thus
(8.23) gives a direct determination of g, the beam efficiency. A convenient source
with constant surface brightness in the long cm wavelength range is the moon whose
diameter of 22 30/ is of the same order of magnitude as the beams of most large radio
telescopes and whose brightness temperature

Ty moon == 225K (8.24)

is of convenient magnitude. In the mm and submillimeter range the observed
Moon temperature changes with Moon phase. The planets form convenient thermal
sources with known diameters that can be used for calibration purposes (Altenhoff
1985).

8.2.4 Calibration of cm Wavelength Telescopes

In the centimeter wavelength range, the noise from the atmosphere is small (Fig. 8.1),
S0 Tix > Tym. Then a small amount of noise from a broadband calibration source,
whose value is known in Kelvin, is added to the system noise. The cycle consists
of two parts: system plus calibration noise on, system plus calibration noise off. If
there is no zero offset these two measurements give the noise of the system (= re-
ceiver + atmosphere). There are two methods to establish the calibration scale: (1)
if the temperature of the calibration noise is determined by a comparison with astro-
nomical sources, then noise source intensity can be given in Jy or Tyg, or (2) if the
noise source is calibrated using the response to a hot and cold absorber in front of the
prime feed, the calibration noise source intensity is given in Kelvin, antenna temper-
ature, T5. This Ty value is usually determined at one frequency since the response
of the calibration varies with frequency because of mismatches in the calibration
system. To convert from a Tp to a Tyig scale, one can use the beam efficiency but
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must also correct for atmospheric extinction. More accurate is the measurement of
an astronomical source of known flux density (or equivalently Typ). If at a different
elevation, the variation caused by the atmosphere and telescope gain must be taken
into account.

8.2.5 Calibration of mm and sub-mm Wavelength Telescopes
for Heterodyne Systems

In the millimeter and submillimeter wavelength range, the atmosphere has a larger
influence and can change rapidly, so we must make accurate corrections to obtain
well calibrated data. In addition, in the mm range, most large telescopes are close to
the limits caused by their surface accuracy, so that the power received in the error
beam may be comparable to that received in the main beam. Thus, one must use
a relevant value of beam efficiency. We give an analysis of the calibration proce-
dure which is standard in spectral line mm astronomy following the presentations of
Downes (1989) and Kutner and Ulich (1981). This calibration reference is referred
to as the chopper wheel method. The procedure consists of: (1) the measurement of
the receiver output when an ambient (room temperature) load is placed before the
feed horn, and (2) the measurement of the receiver output, when the feed horn is
directed toward cold sky at a certain elevation. For (1), the output of the receiver
while measuring an ambient load, Ty, 1S Vamp:

Vamb = G (Tamp + Tix) - (8.25)

For step (2), the load is removed; then the response to empty sky noise, Ty and
receiver cabin (or ground), Ty, is

Vsky =G [Feff Tsky =+ (1 - Feff) Tgr + Trx] . (8.26)

Fygr is referred to as the forward efficiency. This is basically the fraction of power
in the forward beam of the feed. If we take the difference of Vymp and Vi, we have

Veal = Vamb — Veky = G Feft Tympe ™ ™ , (8.27)

where 7y is the atmospheric absorption at the frequency of interest. The response to
the signal received from the radio source, Ty, through the earth’s atmosphere, is

AV = GT{e ™

or

AVig
A Vca]

TA = F eff Tamb
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where T is the antenna temperature of the source outside the earth’s atmosphere.
We define .

T — i _ AVsig

Fegr Avcal

The quantity T, is commonly referred to as the corrected antenna temperature,
but it is really a forward beam brightness temperature. This is the Ty of a source
filling a large part of the sky, certainly more than 30’

For sources (small compared to 30"), one must still correct for the telescope beam
efficiency, which is commonly referred to as B.g. Then

Tamb - (8.28)

Fote

eff

Tvs = Ty

for the IRAM 30 m telescope, Fegr =2 0.9 down to 1 mm wavelength, but Beg varies
with the wavelength. So at A = 3 mm, Begr = 0.65, at 2 mm Begr = 0.6 and at 1.3 mm
Betr = 0.45, for sources of diameter < 2’. For an object of size 30/, B at all these
wavelength is 0.65. As usual 7y can be considered a black body with the tempera-
ture Typ, which just fills the beam. This analysis is the one used at IRAM; an earlier
analysis by Kutner and Ulich (1981) is common in the USA. This uses a somewhat
different notation, but the physics is basically the same. We give a comparison be-
tween these systems.

Kutner & Ulich CLASS/IRAM
m Fegr

s Beff

Me -

MNiss Bett/ Fes

Ul -

Ns = M- Nss» Mt = Niss * Te

In the notation of Kutner and Ulich (1981), Ty = Tyus, in terms of our notation
in Chap. 7

— Ovp _ Betr
Qr  Fg’
while in that of Kutner and Ulich
Qp
Nfss = EF )

where Qp is the solid angle of the diffraction pattern and Qp is the forward beam
solid angle.

An antenna pointing at an elevation z to a position of empty sky will produce an
antenna temperature
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Ta(2) = T+ T M (1= & X @) 4 Ty (1= 1), (8.29)

where

Tix: system noise temperature,

Taum: effective temperature of the atmosphere,
Tamp: ambient temperature,

n: feed efficiency (typically n; = 0.9),

To: zenith optical depth,

X (z): air mass at zenith distance z.

These parameters can be determined by a series of calibration measurements.
The efficiency 7m; and the other parameters can be determined by a least squares
fit of (8.29), that is a skydip giving Ty as a function of X(z). Depending on the
weather conditions these measurements have to be repeated at time intervals from
15 min to hours or so, to be able to detect variations in the atmospheric conditions.
At some observatories a small separate instrument, a faumeter is available to sample
the opacity 7 at 10 min intervals.

For small telescopes used for dedicated projects, such as the Harvard CfA 1.2m
dish, or its identical Chilean counterpart, operated by the University of Chile, one
has an ideal situation for accurate calibrations, so one can carry out tipping mea-
surements often, and determine all the parameters in (8.29). In addition, the surface
accuracy is quite high, so that the error beam contribution is small. Using these,
one can accurately correct the data. The CO in and near the galactic plane has been
mapped, and these results are on the Ty scale.

For larger mm wavelength telescopes one cannot perform tipping measurement
often. If a taumeter is not available one must use a more elaborate procedure. By
measuring the response to a cold load, one can determine the receiver noise, and
can obtain a good estimate of the noise from the atmosphere. Then, assuming a
value of Ty and 1) = Fegr, one can then determine 7 = 79 X (z), and can use this to
correct for atmospheric absorption.

At present many millimeter and submillimeter front ends are still double side-
band mixers. This can cause additional uncertainties for line measurements. One
is that the sensitivity for line radiation is lowered compared to wide band contin-
uum signals. The reason is that the spectral lines will be present only in one of the
side bands, but the calibration signal and the noise, from both the atmosphere and
receiver, will enter both side bands. Additional complications may arise if the atmo-
spheric absorption is noticeably different in the two side bands. Generalizing (8.29)
for a double side-band system with a gain of 1 in the signal band and a relative gain
gi in the image band, with optical depths in the image band, 7; and signal band, 7,
we find

Teal = (Tamb — Tam) (1 +gi) e ™ 4+ Tym (1 +gie™ 7). (8.30)

To calibrate spectral lines, one frequently measures sources for which one has
single sideband spectra. Finally observations often have to be corrected for yet
another effect: the telescope efficiency usually depends on elevation. Usually the
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telescope surface is set optimally for some intermediate zenith distance z ~ 40°.
Both for z = 0° and 70° the efficiency usually decreases by about 25%.

8.2.6 Bolometer Calibrations

Since most bolometers are AC coupled, the D. C. response to “hot—cold” or “chop-
per wheel” calibration methods are not used. Instead astronomical data are cali-
brated in two steps: (1) measurements of atmospheric emission to determine the
opacities at the azimuth of the target source, and (2) the measurement of the response
of a nearby source with a known flux density; immediately after this, a measurement
of the target source is carried out.

8.3 Continuum Observing Strategies

8.3.1 Point Sources

Even the most carefully designed astronomical receivers are affected by random
noise and instabilities. Prolonging the observing time will diminish the influence
of the first kind of error, but after a certain time the growth of instabilities will
worsen the result. This is the physical content of the Allan plots described in Chap. 4.
Thus one must minimize the effect of instabilities. The solution to this problem
involves the use of differential techniques as far as possible; this has been standard
practice both in astronomy and physics since the days of Wheatstone. The various
schemes differ, depending on the dominant source of instability. In the early days of
radio astronomical systems the amplifiers were the main source of instabilities and
therefore sophisticated compensation schemes with Dicke switches etc. as described
in Chap.4 have been implemented. The technical advances in the art of receiver
construction resulted in an ever improving stability of these systems so that rapid
switching is not needed to cancel receiver instabilities. In the cm range it is now
possible to have total power systems with separate feed horns mounted side-by-side.
The observing method consists of switching between the outputs in software. This
“software switching” is used for sensitive continuum measurements at the 100-m
telescope where variations in the atmospheric properties are the dominant source of
instabilities.

In the submillimeter range the earth’s atmosphere is a large source of radia-
tion. In average weather conditions at the 2.4 km high Pico Veleta site in Spain,
at 1.3 mm the atmospheric emission contributes 100K (= 680Jy in the 12" beam
of the IRAM 30 m telescope) at 30° elevation. If flux densities in the mJy range are
to be measured with multi-beam cameras, sophisticated compensation schemes are
used. These involve both rapid beam switching and the subtraction of “off-source”
from “on-source” measurements.
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From (Eq. 8.5) there are two effects: absorption and emission. The emission al-
ways raises the system noise. For narrow band spectral lines the effects are some-
what less serious since usually the emission effects can be neglected because of
the narrow band and only absorption has to be taken into account. For contin-
uum measurements, the emission can be significant and strongly affects the contin-
uum data. For antennas with single beams, various on—off schemes are used when
“point” sources are to measured. Whether the position switching is made in azimuth-
elevation, right ascension and elevation or any other coordinate system depends on
the telescope or on the problem to be investigated. Usually the on—off measurements
are arranged to be symmetrical, to balance the atmospheric effects.

A much better compensation of transmission variations in the atmosphere is pos-
sible if double beam systems can be used. In the simplest system the individual tele-
scope beams should be spaced by a distance of at least 3 FWHP beam widths, and
the receiver should be switched between them. The separate beams can be imple-
mented in different ways depending on the frequency and the technical facilities at
the telescope. At fairly low frequencies, such as the 10 GHz system at the Effelsberg
100 m telescope, separate feed horns and receivers are installed in the secondary fo-
cus. After detection the receiver outputs are differenced in a computer. At 1.3 cm, on
this telescope, the direction of the single feed horn is mechanically moved rapidly by
a few mm, changing the illumination of the dish by this. This changes the direction
of the beam direction by a few beamwidths.

At higher frequencies, in the mm and submillimeter range, the rapid movement of
the telescope beam over small angles, so-called “wobbling” is used to produce two
beams on the sky from a single pixel. This is used at all large millimeter facilities.

Multi-beam bolometer systems are now the rule. With these, one can measure
a fairly large region simultaneously. This allows a higher mapping speed, and also
provides a method to better cancel sky noise due to weather. Such weather effects
are sometimes referred to as “coherent noise”. Some details of more recent data
methods are given in e.g. Motte et al. (2007). Usually, a wobbler system is needed
for such arrays, since the bolometer output is AC—coupled.

Observing procedures for a double beam system are usually as follows: the
source is first centered on beam one, and the difference of the two beams is mea-
sured, optimally by wobbling the sub reflector. Then the source is centered on beam
two, and again the difference is measured. This on—off method (better called on—on,
because the source is always in one of the beams) is often arranged in a time sym-
metric fashion so that time variations of the sky noise and other instrumental effects
can be eliminated.

8.3.2 Imaging of Extended Continuum Sources

If extended areas are to be mapped, some kind of raster scan is employed: there must
be reference positions at the beginning and the end of the scan. Usually the area is
measured at least twice in orthogonal directions. After gridding, the differences of
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the images are least squares minimized to produce the best result. This procedure is
called “basket weaving”.

Extended emission regions can also be mapped using a double beam system,
with the receiver input periodically switched between the first and second beam.
In this procedure, there is some suppression of very extended emission. A simple
summation along the scan direction has been used to reconstruct infrared images. A
more sophisticated scheme, the so-called “EKH” method (Emerson et al. 1979) is
given here. Let T (s) be the distribution of the antenna temperature as measured by
a single beam telescope. A double beam system consisting of two identical beams
that point at positions differing by the (constant) B then gives a response

AT(s,B):/[5(t—s)—5(t—(s+B))] Ta(t)dr, 8.31)
Ar(s,B) = / Malt—$)Ta(0)ds | (8.32)

where
Ma(t)=06()—6(t+B) (8.33)

is the antisymmetric impulse pair and 0 (¢) the Dirac delta function. The result of the
observations with the double beam system therefore can be described as the convo-
lution of the antenna temperature distribution with the antisymmetric impulse pair
(8.33). The aim of the reduction software is to reconstruct the antenna temperature
distribution Ty (s) from the measured A7 (s).

This reconstruction can again be written as a convolution equation

Ta(s) = / 1La( — ) Ar (1, B)dr (8.34)

if a solving kernel IIT,(#) can be constructed. Designating the Fourier transform of
F(t) by F(s), i.e.

Fls) = / Fl)e 20 &t

then according to the convolution theorem of Fourier transforms (see Appendix B)

Az (1) =T0a(r) - Ta(t) (8.35)

so that
(8.36)
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Since '
Ma(z,B) =1 — e 27iBz (8.37)
we find formally
_ 1
Using the identity
(1 _ e—27riBz) |:1 4 i (e—2ninBz _ eZninBZ):| _—) (8.39)
n=1
we find
_ 1 > . .
Mla(2,B) = 5 [1 + ) (eI eZ””’BZ)} (8.40)
n=1
so that
1 .
I.(t,B) = 3 {5(r)+ Z(5(t—nB)—5(t+nB))] . (8.41)
n=1

This antisymmetric replicating function is the solving kernel for reconstructing
the distribution function of the antenna temperature. With this deconvolution algo-
rithm, one can recover most, but not all of the information. Most telescopes there-
fore have wobbler switching in azimuth to cancel ground radiation. By measuring a
source using scans in azimuth at different hour angles, and then combining the maps
(see Johnstone et al. 2000) one can recover more information. Another account of
data processing for multi-beam bolometers is contained in Motte et al. (2007).

8.4 Additional Requirements for Spectral Line Observations

In addition to the requirements placed on continuum receivers, there are three re-
quirements specific to spectral line receiver systems.

8.4.1 Radial Velocity Settings

If the observed frequency of a line is compared to the known rest frequency, the
relative radial velocity of the line emitting (or absorbing) source and the receiving
system can be determined. But this velocity contains the motion of the source as
well as that of the receiving system. Both are measured relative to some standard of
rest. However, usually only the motion of the source is of interest. Thus the velocity
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of the receiving system must be determined. This velocity can be separated into
several independent components.

1) Earth Reotation. Due to the rotation of the earth, the receiving system moves
with a velocity v = 0.46510cos ¢ km s~ ! in the direction due east in the horizon-
tal coordinate system. Here ¢ is the geographic latitude of the observing station.
If the contribution of this velocity is subtracted the resulting radial velocity is
said to refer to the geocentric system.

2) The Motion of the Center of the Earth Relative to the Barycenter of the
Solar System. If this contribution is eliminated the radial velocity is said to be
reduced to the heliocentric system. This velocity of the earth could be computed
from the annually published Astronomical Ephemeris, but due to the many ef-
fects that must be taken into account, this is a complicated procedure.

Today there are convenient computer algorithms that can be run on any personal
computer and which correct the observations for the motion of the earth relative
to center of mass of the solar system. For high-precision radial velocity or pulsar
timing data, even relativistic corrections must be included. The resulting radial ve-
locities are then as close to an inertial system as we can hope to come, so there
is no physical reason to transform the observed radial velocities further. Stellar ra-
dial velocity observations and practically all extragalactic work are therefore usually
published in this, the Heliocentric velocity system. In galactic work it is, however,
convenient to obtain the radial velocities in a system such that gas in the solar neigh-
borhood is at rest. Therefore the motion of the center of mass of the solar system rel-
ative to the local gas has to be determined. For this, neutral hydrogen gas as given by
the 21 cm line both in emission and in absorption is best suited, but stellar data can
be used also. All results obtained by many independent investigations [for a sum-
mary see Crovisier (1978)] show that the solar system moves with a velocity given
by the standard solar motion (vo = 20kms ™! towards 0900 = 18 h, 819990 = +30°).
This is the solar motion relative to the mode of the velocity of the stars in the solar
neighborhood. In practice this is the velocity relative to stars most commonly listed
in general catalogs of radial velocity and proper motion; these stars are mostly of
spectral types A to G. The reason why the gas velocity is the mode of the velocity
of the stars is probably that interstellar gas is collision dominated and therefore not
sensitive to outlying extreme velocities, while the moments of the collisionless stel-
lar velocity distribution will be affected. Data from which the standard solar motion
has been eliminated are said to refer to the local standard of rest (LSR). This is a
point coinciding with the position of the sun and moving with the local circular ve-
locity around the galactic center. Sometimes it is advantageous to refer velocities to
a system in which the galactic center is at rest. The required correction obviously de-
pends on the adopted galactic circular velocity of the LSR. For many years the value
O = 250km s~ as proposed by IAU convention has been used; recently slightly
smaller values of @y = 220-230kms~! are preferred, although values as low as
O = 185kms~! have been proposed. In all cases the velocity vector is directed
towards / = 90°,b = 0°.
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8.4.2 Stability of the Frequency Bandpass

In addition to the stability of the total power of the receiver, one must also have a
stable shape of the receiver bandpass. At millimeter and sub-mm wavelengths, it is
possible that changes in the weather conditions between on-source and reference
measurements may lead to serious baseline instabilities. If so, the time between on-
source and reference measurements must be shortened until stable conditions are
reached. Such stability is easier to obtain if the bandwidth of the spectrometer is
narrow compared to the bandwidth of those parts of the receiver in front of the
spectrometer.

8.4.3 Instrumental Frequency Baselines

The result of any observing procedure should result in a spectrum in which T (v) —
0 for v outside the frequency range of the line. However, quite often this is not so
because the signal response was not completely compensated for by a reference
measurement, even if receiver stability is ideal. For larger bandwidths, there is an
instrumental spectrum and a “baseline” must be subtracted from the difference spec-
trum. Often a linear function of frequency is sufficient, but sometimes some curva-
ture is found, so that polynomials of second or higher order must be subtracted. This
should be done with great care because high-order polynomials can easily introduce
spurious effects when fitted to disjointed sections of the line spectrum. On many oc-
casions a sinusoidal or quasi-periodic baseline ripple is present. This ripple appears
because quite often a small fraction of the signal is reflected off obstructions in the
aperture plane of the telescope. In axially symmetric telescopes this reflected signal
can form a standing wave pattern. A phase change of 27 radians will occur if either
the distance, d, over which the signals are interfering is changed by A /2 (where 4
is the wavelength) or if the frequency is changed by
c
Av = 2d (8.42)
For the 100 m telescope at Effelsberg with d = f ~ 30 m where f is the focal
length of the telescope, so Av ~ 5 MHz; the 43 m Green Bank telescope with its
smaller dimensions has Av = 10.4 MHz. Attempts to eliminate this ripple usually
employ defocusing of the telescope along the axis by +A /8, thereby shifting the
phase of the ripple by 7 radians. The sum of the two baselines then usually shows
considerably less ripple; for the 43 m Green Bank telescope it is decreased by about
one order of magnitude; experience with the Effelsberg 100 m telescope shows that
this procedure is less effective, since the decrease is only a factor of ~ 3. Very
probably, for the 43 m telescope the largest reflection that produces the standing
wave pattern occurs along the axis, with a single path. Thus the reflected waves
can be canceled by appropriate defocusing. For the 100 m dish a larger part of the
power must be reflected by off-axis structures, perhaps in the prime focus support
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structure. Thus, there is no adequate defocusing procedure. In any case the 17 %
aperture blocking of the 100 m telescope certainly gives rise to larger instrumental
baseline effects.

There are several possible sources of reflected radiation: (1) the front end of
the receiver that injects some noise power into the antenna, part of which is then
reflected back; or (2) strong continuum radiation from cosmic sources. In both cases
the partial reflection of the radiation in the horn aperture is the main cause of the
instrumental baseline ripple (Figs. 8.2 and 8.3). Both changes in the position of the
telescope and small changes in the receiving equipment can cause large changes in
the amplitude of the observed ripple. Sometimes the amplitude of baseline ripple
can be reduced considerably by installing a cone at the apex of the telescope that
scatters the radiation forming the standing wave pattern.

The different receiving methods outlined in Sect. 8.4.5 are susceptible to baseline
ripple by quite different amounts. If the background emission is position indepen-
dent the method of position switching using total power mode or “on the fly”” map-
ping should result in the smallest ripple, while frequency switching will produce the
largest. Clearly instruments such as the GBT with off-axis receivers and very small
aperture blocking have a vastly lower amount of baseline ripples and also have much
lower sidelobe levels.
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Fig. 8.2 Instrumental baseline ripples for the Effelsberg 100 m telescope measured at +A /8 axial
offset from the best focus and the average. The data were taken toward Virgo A at 3.5 cm (Bania
et al. 1994)
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8.4.4 The Effect of Stray Radiation

Accurate measurements are much more difficult to obtain for extended sources, es-
pecially for regions of low brightness temperature. This is because, according to
(7.16), the observed temperature Ty is related to the actual source temperature, Ty,
by the power pattern P(x,y)

/P(xfx’,y =) T (¥,y)dx' dy

T =
A('xay) /P( iy dx/d ,
x,y)dx'dy

(8.43)

Here we have set the radiation efficiency ngr of the antenna equal to 1. In real-
ity spherical coordinates have to be used, but this merely introduces some minor
practical and mathematical complications.

Our goal is to invert (8.43), to obtain 7y, in terms of the measured 7. To derive
an approximate expression, the radiation received by the antenna is separated into
one part received by the main beam (mb) and another by the stray pattern (sp). The
integral (8.43) can then be separated into

. .
Ta(x,y) = o / Px—x',y—y)L(x',y)dx' dy’
(mb)

+ [ Py =) R )| (8.44)
(sp)
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If we now suppose that the position dependence of T, varies very little over an-
gular scales comparable to the beam width, 7; can be extracted from the integral for
the main beam, yielding that part of T received by the main beam, Tawm:

1
TAm(x,y)=!7A / P(x—x,y—y ) T(x,y)dx' dy
(mb)
Ty
_ hiwy) /P(x,y)dxdy,
Qp
(mb)

Tam = s Th. (8.45)

Here we have introduced the main beam efficiency as defined in (7.5). Substitut-
ing this into (8.44) and solving for T;, which we will call the corrected brightness
temperature, we obtain

1 1
Te) = o | Tated) — 5o [ Py =) i ) a'ayf
(sp)

(8.46)

The integral involves the unknown T (x, y), but since this is an average over large
angles, there will not be a large change if T;, is replaced by T;, from (8.45). The
computation of T;, thus results in an iterative procedure leading to a Neumann series.
As shown by Kalberla et al. (1980) this sequence can be solved by use of

_ 1
Tb(x7y)=nfB TA(w)—/R(x—XCy—y’)TA(XCy’)dX’dy’ :
(sp)
(8.47)

where R is the so-called resolving kernel which can be derived from P by successive
approximations. For practical applications R usually differs very little from P. The
correction procedure is very complicated and requires knowledge of the radiation
T across the full sky!

These arguments apply to both wide band continuum radiation and to spectral
line radiation. For continuum measurements of regions of low Tyg, within a few
degrees of an intense source there may be serious errors. The largest side lobes in
P(x,y) are caused by the feed support legs; for alt-azimuth telescopes, the position
of these side lobes varies with the hour angle, so that the error is a function of time.
However, the Tyg of these astronomical sources is assumed to remain constant. This
observation allows a practical solution: one can employ a beam correction technique
in which one first determines the beam shape over a limited angle to ~ 0.1% of the
maximum intensity by mapping an intense point source out to the limits of the pro-
posed image. This is carried out for different hour angles; the source of interest is
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also mapped at the same hour angles, and then the beam is iteratively subtracted
from the source image. After subtractions, the images are compared to eliminate
artifacts, so that a set of intensities as a function of position remains. This is con-
volved with a Gaussian beam having the telescope resolution. The continuum image
of Orion at 6 cm (Fig. 11.5) was produced using such a process.

For spectral line radiation we meet with more complexity, since there are dif-
ferent features at different frequencies; also 7;, has a wide distribution for H1. For
CO line emission at A = 2.6 mm the problems are less since: (1) CO is less widely
distributed than H1, and (2) an 8 FWHP beam requires a 100 m dish at 21 cm, while
at 2.6 mm, only a 1.2 m antenna with a cassegrain focus is needed. Use of this focus
allows low feed leg blockage. All other molecular and recombination line measure-
ments are probably free from this effect because these lines are emitted by discrete
sources that cover only a tiny fraction of the sky.

The contribution to T from the stray pattern puts rather stringent limits on the
calibration schemes used extensively in galactic 21 cm line work. The calibration
of H1 data makes use of the following procedure: A number of regions have been
measured with well-calibrated, but lower angular resolution horn antennas so that
accurate line profiles T;(v) can be given. If these regions are now mapped with
larger parabolic antennas, scaling factors for transforming the measured output of
the profiles into 7;, values can be determined directly. Unfortunately both the output
of the larger antenna and the published reference profiles are contaminated by time-
dependent stray radiation. Kalberla et al. (1980, 1982) have shown how to correct the
reference spectra but stray radiation contributions are still present in the corrected
data. It will thus be very difficult to achieve a T;, scale with a precision of better
than 10%. Higher accuracies are needed, however to estimate the column density
of galactic HT at high galactic latitudes. This is critical for a comparison with data,
such as X ray emission, measured toward extragalactic sources. This situation is
considerably better for measurements done with an off axis paraboloid such as the
GBT. Clearly, H1 data taken with the GBT are to be preferred to data taken with e.g.
the Effelsberg 100 m telescope.

8.4.5 Spectral Line Observing Strategies

In radio astronomy line radiation is almost always only a small fraction of the to-
tal power received; the signal sits on a large pedestal of wide band noise signals
contributed by different sources: the system noise, spillover from the antenna and in
some cases, a true background noise. To avoid the stability problems encountered
in total power systems (see Chap. 4) the signal of interest must be compared with
another signal that contains the same total power and differs from the first only in
that it contains no line radiation. To achieve this aim modern spectral line receivers
usually permit four different observing modes that differ only in the way the com-
parison signal is produced.
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1)

2)

3)

4)

Switching Against an Absorber. If receiver fluctuation time scales are too short
for switching in the total power mode, the receiver can be connected alternately
to the antenna and to a matched resistive load. By noise injection the output
power in both switch positions can be equalized, and then the difference of the
signals is the line radiation. A good balance for both switch positions is essential
if good results are to be achieved (see also Sect.4.2.2 for a discussion of the
receiver stability achieved using this method). Particularly serious residual in-
strumental baseline ripples may be present in spectra obtained in this observing
mode. This method is used only in exceptional circumstances today.
Frequency Switching. For many sources, spectral line radiation is a narrow-
band feature, that is, the emission is centered at vy, present over a small fre-
quency interval, Av, with vo/Av ~ 107°. If all other effects vary very little
over Av, then changing the frequency of a receiver by perhaps 10 Av produces
a comparison signal with the line shifted. It is assumed that other contributions
hardly differ. The final spectrum is proportional to the difference of these two
measurements. Such “frequency switched” measurements can be done with al-
most any speed, and produces a particularly good compensation for wide-band
atmospheric instabilities. Such observations can be made for mm wave radiation
even in poor weather conditions but functions best for lines having widths of less
than a few MHz. If the spectral line is included in the analyzing band in both the
signal and the reference phases, the integration time is doubled. Early measure-
ments of the 21 cm line of neutral hydrogen from the plane of our galaxy were
made using this method.

Position Switching and Wobbler Switching. The received signal “on source”
is compared with another signal obtained at a nearby position in the sky. If the
emission is rather extended and the atmospheric effects are large (for example
in the case of galactic Carbon Monoxide emission), one may use two reference
measurements, one at a higher, and the other at a lower elevation. A number of
conditions must be fulfilled: (1) the receiver is stable so that any gain and band-
pass changes occur only over time scales which are long compared to the time
needed for position change, and (2) there is little line radiation at the comparison
region. If so, this method is efficient and produces excellent line profiles. This
method is especially advantageous if baseline ripples are a problem, since these
can be cancelled quite well if this method is used, provided that the broadband
emission from sky, ground or continuum sources are similar at both positions.
A variant of this method is wobbler switching. This is very useful for compact
sources, especially in the mm and sub—mm range.

On the Fly Mapping. This very important observing method is an extension of
method (3). In this procedure, one takes spectral line data at a rate of perhaps one
spectrum or more per second. As with total power observing, usually one first
takes a reference spectrum, and then takes data along a given direction. Then one
changes the position of the telescope in the perpendicular direction, and repeats
the procedure until the entire region is sampled. Because of the short integra-
tion times an entire image of perhaps 15’ x 15’ taken with a 30" beam could be
finished in roughly 20 min. At each position, the signal to noise ratio may be
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low, but the procedure can be repeated. With each data transfer, the telescope
position is read out. Even if there are absolute pointing errors, over this short
time and small angle the relative positions where spectra were taken are accu-
rate. The accuracy of the result is improved because the spectra are oversampled
and weather conditions are uniform over the region mapped. To produce the final
image the individual spectra are placed on a grid and then averaged.

8.5 The Confusion Problem

8.5.1 Introduction

The classical approach to the topic of discrete “source confusion” as presented in the
1950s and 1960s was done to provide completeness for source surveys, in that one
could count sources to limits that were not possible with instruments then available.
That is, the noise in excess of that from the receivers and earth’s atmosphere was
assumed to be caused by the sum of the sources that are too weak or numerous to
be detected individually.

At first, the analysis used was in terms of obtaining a result for a given limit
of source flux density, rather than a given level of instrumental response. This was
noted by Condon (1974); we will follow the approach of Condon.

We define the effective beam, £2,, as

Q, = [ [P(n)]" " dQ. (8.48)

where [P, (n)] is the normalized antenna power pattern.
The deflection of the instrument is

x=fS

where f(6,¢) is the antenna response. Then the average differential number of
sources with flux densities between S and S+ dS, d7, is

dii = / n(S)dQdx (8.49)
A standard expression for n(S) is

n(S) = kS~ (8.50)

Using these expressions, we have

dﬁ:k/f"’_lS_”dex (8.51)
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or
di=kf 71857 Q.dx (8.52)

The distribution of d7 is Poisson, so the mean value is the variance. The sum of
the variances of the responses from O to the cut off D, is

D,
o2 = / 2di (8.53)
0

When Eq. (8.52) is substituted into Eq. (8.53), one obtains the result

o= (m> D7 (8.54)
3y

For 2,y < 3 Eliminating D, by a factor g times ¢, we have

¢ & kQ = 8.55
= e — =

The first factor in Eq. (8.55) depends only on the number count exponent and the
choice of g. The second factor is related to the angular resolution as given by
Eq. (8.48).

Therefore, the higher the angular resolution, the deeper the survey before confu-
sion occurs. Usually there is a uniform flux density cutoff limit S. This flux density
is the confusion limit for the telescope at the chosen frequency. For g a value of 5
is usually considered to be acceptable; this corresponds to a probability of 107° for
erroneous source identifications.

The problem of source confusion remains, but the interest in radio source counts
as a cosmological tool has declined in the last 30 years, since radio sources evolve
strongly with time. Thus, the interpretation of source counts in terms of a universe
consisting of a collection of sources with the same characteristics, but with differ-
ent distances, is no longer accepted. It is clear that progress will be made only by
studying statistically significant collections of sources at different redshifts. Thus
accurate flux densities and positions are needed. For this reason, the effect of con-
fusion must be reduced by making beamsizes and reducing the effect of sidelobes.
Such concepts are not limited to radio astronomy, but must be considered in the
interpretation of deep surveys carried out in the infrared.

Problems

1. Investigate the effect of the earth’s atmosphere on radio observations by using a
single layer atmosphere (Eq. 1.37). Suppose we know that the atmospheric optical
depth, 7, is 0.1, and the temperature is 250 K.
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(a) What is the excess noise from the atmosphere, and what is the reduction in the
intensity of a celestial source?

(b) Repeat for 7 =0.5, 0.7, 1.0, 1.5.

(¢) If 7 is related to the optical depth in the zenith by 7 = 7,/sin(elv), determine the
increase in T between 30° and 20° elevation. (Elevation is measured relative to the
horizon.)

(d) Repeat this calculation for the increase between 20° and 19°, then 20° and 15°.
(e) For spectral line measurements, one is interested in a comparison of the re-
sponses of the receiver system over a (relatively) small frequency interval. Consider
the measurement of a 10 mK spectral line through an atmosphere with 7 = 0.2, if
the receiver noise is 100 K. Repeat this calculation for a receiver noise of 20 K.

2. A standard method to determine atmospheric T values employs a receiver to de-
termine the emission of the earth’s atmosphere at 225 GHz. Suppose this emission
is found to be 15 K at elevation 90°, 18 K at 60°, 30 K at 30°, and 42 K at 20°. If the
temperature of the atmosphere is 250 K, what is the zenith 7? Is the curve in Fig. 8.1
consistent with ratios of zenith 7 to that at 225 GHz are 3.4 (at 340 GHz), 6.7 (at
410 GHz), 9.9 (at 460 GHz) and 19.0 (at 490 GHz).

3. Suppose you are observing at 1 cm wavelength with a filled aperture telescope.
When pointed toward cold sky, in the zenith, your system noise temperature is twice
what you expect. Normally the receiver noise temperature is 70 K and system noise
temperature is 100 K. Your partner notices that the radio telescope is filled with wet
snow. Assuming that the snow has a temperature of 260 K, and is a perfect absorber
at 1 cm, how much of the telescope surface is covered with snow?

4. A group observe sources at 1.3 cm at elevations between 8° and 11°. If the zenith
optical depth is 7, = 0.1, use an assumed dependence of 7=1,/sin(elv) to deter-
mine 7 at the lowest and highest elevations. These astronomers see at most a 30%
change in 7 over this range of elevations. Is this reasonable? If the receiver noise is
40 K, what is the system noise, including the atmospheric contribution, for a 200 K
atmosphere, at these elevations? The observations are mostly of spectral lines; how
much is the attenuation? The temperature scale is calibrated using a nearby source
with peak main beam brightness temperature 16 K. What is the RMS error for each
continuum data point, from noise only, if the bandwidth used is 40 MHz and the
integration time is 1s?

5. Use the Rayleigh—Jeans approximation to calculate the numerical relation be-
tween flux density, Sy and brightness temperature, Tg, if the source and beam have
Gaussian shapes. S, must be in units of janskys (= 1072 W m~2 Hz~!), wavelength
must be in cm, and the observed angle 6y in arc min.

6. For a Gaussian-shaped source of actual angular size Oource and observed size
Oobserved, find the relation between the apparent or main beam brightness temper-
ature, Ty, and the actual brightness temperature, 7. (Use the fact that the flux
density of a discrete source must not depend on the telescope.) Show that Tg > Tp.
Show that the observed or apparent, actual and telescope beam sizes, Oypserveds Osource

2 _n2 2
and 9beam: are related by 6observed - eactual + ebeam'
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7. An outburst of an HoO maser (at 22.235 GHz) in the Orion region (distance from
the Sun 500 pc) gave a peak flux density of 10° Jy over a 1 MHz band. If this maser
radiation were measured with the 100 m telescope, which has a collecting area of
7800 m?, and antenna efficiency 0.4, what is the peak power? If the safety level for
microwave radiation for humans is 10 mW cm 2, at what distance would the Orion
maser be a threat for humans?

8. Use the Rayleigh—Jeans relation to calculate the flux density of the Sun at 30 GHz
if the disk has a diameter of 30’ at a uniform surface temperature 5800 K? Suppose
we had a 40 m radio telescope with effective collecting area 1000 m2. What is the
value of Tyg? If na = 0.5 and s = 0.65, what is Tx?

9. Use Eq. (8.20) to determine the peak main beam brightness temperature of the
planetary nebula NGC7027 at 1.3cm with the 100m telescope (S(Jy) = 5.47y,
0, = 43").

(a) If the actual source size is 6; = 10”, use Eq. (8.22) to determine the actual source
brightness temperature 75. Then use Eq. (1.37), with Ty = 0, and 7, = 14000K to
determine the peak optical depth of this region at 1.3 cm.

10. A celestial source has a flux density of 1Jy at 100 MHz. If the angular size is
10”, and source and telescope beams are Gaussians, estimate the source brightness
temperature in the Rayleigh—Jeans limit. Repeat this for an observing frequency of
1 GHz.

11. The planet Venus is observed at the distance of closest approach, a distance
of 0.277 AU. The radius of Venus is 6100 km. What is the full angular width of
Venus in arc seconds? Suppose the measured brightness temperature of Venus at
3.5 cm wavelength in a telescope beam of 8.7" is 8.5 K. What is the actual surface
brightness temperature of Venus?

12. In the sub-millimeter range, sky noise dominates, but one wants to have the most
sensitive receivers possible. Is this a contradiction? If not, why not?

13. The APEX submillimeter telescope on the ALMA site has a diameter of 12 m,
an estimated beam efficiency of 0.5 at a wavelength of 350 um. At 350 um the
atmospheric transmission is 5%.

(a) Show that this is equivalent to a T of 3.

(b) What is the sky noise for this situation if the physical temperature of the sky is
200K?

(c) If the receiver noise is 50 K, what is the total system noise?

(d) Suppose you plan to measure a small diameter source with a flux density of 0.1
Jy. After what length of time will you have a signal-to-noise ratio of unity if the
receiver bandwidth is 2 GHz?

14. Spectral line observations are carried out using position switching, that is the
“on—off” observing mode. Thus effects of ground radiation should cancel in the dif-
ference spectrum. However, there is usually a residual instrumental baseline found
in the case of centimeter wavelength observations. The amplitude of this residual
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instrumental baseline is found (with the 100 m telescope) to be ~ 103 of the contin-
uum intensity of the source being observed. This effect is caused by the correlation
of signal voltage Ej, with that reflected by the primary feed horn, E;.. How much
power flux, E?, (in W m~2) relative to E;, is reflected from the feed?

15. A search for dense molecular gas in the Orion cloud shows the presence of 125
sources, each with a FWHP of 1’. The region searched is 15’ by 120'. If the beam
size is 20", what is the mean number of sources per angular area? Now use Poisson
statistics P = e~ ™ m" /n! where n is the number of expected sources, and m is the
mean, to find the probability of finding a dense clump of gas in this region if one
uses a 20” beam. What is the chance of finding two such sources?

16. (a) In an extragalactic survey, the average number of sources per beam is 0.04.
Use Poisson statistics to find the chance of finding 2 or 3 sources in the same beam?
(b) Use these results to estimate the number of beam areas per source needed to
insure that source confusion is a small effect.

17. (a) Derive the result in (8.55) showing all steps.
(b) For radio telescopes, the one dimensional power pattern is y(x) =
A exp (—43‘22’62) Use this expression to evaluate (8.48).

12
(c¢) Calculate k = YN, S.” for y=1.5, ¢ =5, Q=80 x 100 arc sec, N, = 10° per
steradian, and S. = 1072W m~2 Hz L.



Chapter 9
Interferometers and Aperture Synthesis

9.1 The Quest for Angular Resolution

In Chap. 6, we have shown that from diffraction theory, the angular resolution of a
radio telescope is 6 = kA /D, where 0 is the angular resolution, A is the wavelength
of the radiation received, D is the diameter of the instrument and k is a factor of or-
der unity that depends on details of antenna illumination. For a given wavelength, to
improve this angular resolution, the diameter D must be increased. Materials limit
the size of a single telescope to ~300 m. As shown by Michelson (see, e.g. Jenkins
and White 2001), a resolving power 6 =~ A/D can be obtained by coherently com-
bining the output of two reflectors of diameter d < D separated by a distance D. We
will show that this is the case in Sect. 9.2.

A more complex topic is aperture synthesis, that is, producing high quality im-
ages of a source by combining a number of independent measurements in which the
antenna spacings cover an equivalent aperture. In Sect. 9.3 of this chapter, we give
an introduction to the principles of aperture synthesis. More detailed accounts are to
be found in Thompson, Moran and Swenson (2001), Dutrey (2000) or Taylor, Carilli
and Perley (1999). Techniques similar to those used in aperture synthesis have been
applied to radar as “Synthetic Aperture Radar” or SAR (see e.g. Mensa 1991)

9.1.1 The Two Element Interferometer

The basic principle governing angular resolution can be understood from a consid-
eration of Fig. 9.1. In panel (a) is the response of a single uniformly illuminated
aperture of diameter D. In panels (b) and (c) we show the response of a two element
interferometer consisting of two small antennas (diameter d) separated by a distance
D and 2D, where d < D. The interferometer response is obtained from the multi-
plication of the outputs of the two antennas. The uniformly illuminated aperture
has a dominant main beam of width @ = kA /D, accompanied by smaller secondary
maxima, or sidelobes. There are two differences between the case of a single dish
response compared to the case of an interferometer. First, for an interferometer,

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 201
DOI 10.1007/978-3-540-85122-6_9, (© Springer-Verlag Berlin Heidelberg 2009
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Fig. 9.1 Power patterns for
different antenna
configurations. The
horizontal axis in this figure
is angle. Panel (a) shows that
of a uniformly illuminated a)
full aperture with a diameter O+
D. This full width to half
power (FWHP) is kA /D, with
k =~ 1. In panel (b) we show 0
the power pattern of a two
element multiplying b)
interferometer consisting of

two antennas of diameter d
spaced by a distance D where
d < D. In panel (c) we show
the power pattern of the Ot
interferometer system
described in (b) but now with C)
a spacing 2D

the nomenclature is different. Instead of ‘main beam and sidelobes’ one speaks of
'fringes’. There is a central fringe (or'white light’ fringe in the analogy with Young’s
Two Slit experiment) and adjacent fringes. Second, as we will show in Sect. 9.2.3.2,
for the correlation of the outputs of two antennas, the fringes are centered about
zero; this procedure improves the dynamic range of the measurements since the
large total power output of each antenna is supressed (also the signal-to-noise ratio
is better; see problem 9). This comes with a cost: some of the information (i.e. total
power) is not available, so for a given spacing only source structure comparable to
(or smaller than) a fringe is recorded fully. We compare responses of two systems
in Fig. 9.1. In panel (a) is a single dish of diameter D. In (b) we show the case of an
interferometer composed of two small dishes (with dish diameter d much smaller
than the separation D) there is no prominent main beam and the sidelobe level does
not decrease with increasing angular offset from the axes of the antennas. In panel
(c) the separation of the two dishes is 2D. Comparing the width of the fringes in
panels (b) and (c) one finds that by doubling the separation D of the small antennas,
the fringe width is halved. For the interferometer spacing (usually referred to as the
baseline) D, in panel (b) the resolving power of the filled aperture is not greatly
different from the single dish in panel (a), but the collecting area of this two element
interferometer is smaller. For larger spacings, the interferometer angular resolution
is greater.

By increasing D, finer and finer source structure can be measured. Combining the
outputs of independent data sets for spacings of D and 2D shows that these select
different structural components of the source. Finer source structure can be recorded
if in addition, n D antenna spacings are measured. Such a series of measurements can
be made by increasing the separation of two antennas whose outputs are coherently
combined.
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A general procedure, aperture synthesis, is now the standard method to obtain
high quality, high angular resolution images. The first practical demonstration of
Aperture Synthesis in rad