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Preface to the Fifth Edition

Four significant factors have led us to update this text. The first is the breathtaking
progress in technology, especially in receiver and digital techniques. The second is
the advance of radio astronomy to shorter wavelengths, and the increased availabil-
ity of astronomical satellites. The third is a need to reorganize some of the chapters
in order to separate the basic theory, that seldom changes, from practical aspects
that change often. Finally, it is our desire to enhance the text by including problem
sets for each chapter. In view of this ambitious plan, we have expanded the number
of authors.

In the reorganization of this edition, we have divided Chap. 4 of the 4th edition
into two Chaps. 4 and 5. The first remains Chap. 4, with a slightly different ti-
tle, Signal Processing and Receivers: Theory. This was expanded to include digital
processing and components including samplers and digitizers. In Chap. 5, Practi-
cal Receiver Systems. we have relegated the presentations of maser and parametric
amplifier front ends, which are no longer commonly used as microwave receivers
in radio astronomy, to a short section on “historical developments” and We have
retained and improved the presentations of current state-of-the-art devices, cooled
transistor and superconducting front ends. We have also included descriptions of
local oscillators and phase lock loops. Chapters 5 and 6 in the 4th edition has now
become Chap. 6, Fundamentals of Antenna Theory and Chap. 7, Practical Aspects
of Filled Aperture Antennas. Our goal is to have an exposition of the rather mathe-
matical theory, in Chap. 6 followed by a treatment of the practical aspects of anten-
nas. Chapter 7 in the 4th edition is now Chap. 8, titled Single Dish Observational
Methods. Chapter 9 deals with Interferometers and Aperture Synthesis. Aperture
synthesis has become the most important imaging technique in radio astronomy;
this provides the only general method available for obtaining images of extremely
high resolution and quality, so the discussion has been extended and improved with
material pertenant to interferometers such as the Atacama Large Millimeter Array
(ALMA) and the Square Kilometer Array (SKA). Chapters 10 to 14 of this edition
have been updated to include recent observational results. Chapter 15 of the 4th edi-
tion, Molecules in Interstellar Space, has been divided into two Chapters, Overview
of Molecular Basics and Chap. 16, Molecules in the Interstellar Medium. Chapters
15 and 16 have been updated to take new developments into account.
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vi Preface to the Fifth Edition

The existing facilities are providing new results on a daily basis. The increased
number of ground based radio single dish telescopes, especially in the millime-
ter and sub-mm wavelength range, such as ASTE, APEX, and NANTEN2, and
the availability of astronomical satellites starting with IRAS, and then ISO, ODIN,
MSX, CHANDRA and SPITZER have increased the number of discoveries. Some-
what more specialized are the radio telescopes dedicated to the study of the 3 K
microwave background: these include the satellite missions COBE and WMAP and
the balloon mission Boomerang, as well as numerous additional ground based fa-
cilities. Taken together, these have changed our concepts of astronomy. A sample of
these results have been included. This trend is expected to continue with the launch
of the Herschel Satellite Observatory and the start of scientific measurements with
the Stratospheric Observatory for Infrared Astronomy, SOFIA.

We believe that this text is of interest for communications engineers as well as
radio astronomers. We hope this new edition will serve a useful purpose as radio
astronomy enters the era of Herschel, SOFIA, ALMA, SKA, SKA precursors.

The Table of interstellar molecules was provided by T. Millar (Queen’s Univer-
sity Belfast) & E. Herbst (Ohio State University). Advice from G. H. Tan, H. Rudolf,
R. Laing (all ESO) and A. Veronig (Graz University), W. Alef (MPIfR, Bonn), A.
Clegg (NSF), D. Boboltz (USNO) and A. Fey (USNO) is greatfully acknowledged.
We thank E. Janssen, J. Howard and M. Martins (ESO) who provided new or up-
dated figures for this edition. As in previous editions, we have corrected a number
of errors in the text. Most of these were kindly provided by J. J. Condon (NRAO),
A. Guzmann (Chile) and Biwei Jiang (Peking).

Web sites are a new mode of communicating recent results. However we have
limited our references to these as much as possible since the addresses change of-
ten. A remark about nomenclature: in the index, we have (with some arbitrariness)
ordered single radio telescopes under antennas, arrays of antennas with coupled
outputs under interferometers and facilities such as Herschel and SOFIA under their
names.

Munich, Bonn and Bochum T. L. Wilson
September 2008 Kristen Rohlfs

S. Hüttemeister



Excerpts from the Prefaces of Previous Editions

This book describes the tools radio astronomers need to pursue their goals. These
tools consist of: (1) descriptions of the properties and use of radio telescopes and
various types of receivers needed to analyze cosmic radio signals, and (2) descrip-
tions of radiation mechanisms responsible for broadband and spectral line radiation.
This book developed from a one-year graduate course that was given repeatedly at
the Ruhr-Universität at Bochum. We hope that this text will be useful for all who
use results obtained from radio astronomy. Our aim is to help them to understand
the origin of well known results particularly the underlying assumptions and this
book may occasionally save some scientists working in the field of radio astronomy
from long searches in the literature when questions concerning tools occur.

The students to whom this course was addressed have had a rather thorough back-
ground knowledge of physics. However, difficulties often arose when the instrumen-
tal tools were discussed. Clearly there is a difference between how such a subject
is treated in general physics books and the way it is presented in texts intended for
engineers. Our explanations are meant to use concepts familiar to astrophysicists
and physicists.

For each chapter, a list of references is given. Usually this list has two parts:
general references give a list of papers and books that cover the general aspects and
which often give a more thorough treatment of the subjects covered, and special
references document the sources for specific topics. However, these references do
not give a complete review of the relevant literature. The papers cited are those that
present the subject in a convenient way.

The basic concepts used in the first edition have remained unchanged. This book
gives an outline of the methods and tools of radio astronomy. Results are given to
illustrate aspects of the theories or to make the approach used plausible. The book
is intended to be of help in applying radio astronomy, but it is not a description of
the many results. This book is not intended to be a review of the entire field of radio
astronomy in the literature but describes only the basic and undisputed concepts and
results.

Another problem encountered when writing a textbook is that of consistent des-
ignations, symbols, and units. Since the astronomical community prefers their tra-
ditional mixed set of units, we use the Gaussian CGS system, augmented when

vii



viii Excerpts from the Prefaces of Previous Editions

necessary with other units. Where needed, we give the relations in their respective
units in the equations.

References to the current literature have been updated. We do not attempt to give
a complete review and we chose those references that are the most recent or cover
the subject most comprehensively.
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Chapter 1
Radio Astronomical Fundamentals

1.1 On the Role of Radio Astronomy in Astrophysics

Almost everything that we know about distant sources, that is, stars and the interstel-
lar medium, has been obtained from electromagnetic radiation. This includes spatial
distributions, kinematics and composition. Only a very small part of our knowledge
stems from material information carriers, such as meteorites that impact the earth,
cosmic ray particles or samples of material collected by manned or unmanned space
probes.

For many thousands of years, mankind was restricted to measurements of visible
light; only since the time of Herschel was this wavelength range slightly expanded
into the near Infrared; in 1930, it extended from the near ultraviolet to the near
infrared: 0.35μm ≤ λ ≤ 1μm. At other wavelengths, investigations were limited
either because the terrestrial atmosphere blocks radiation or because no detectors
for this radiation were available. In 1931 this situation changed dramatically when
Jansky showed that radiation at a wavelength of 14.6 m (=20.5 MHz) received with
a direction sensitive antenna array, must be emitted by an extraterrestrial source
which was not the sun. Jansky continued his observations over several years without
achieving much scientific impact. His observations were first taken up and improved
after 1937 by another radio engineer, Grote Reber, who carried out measurements at
a shorter wavelength, λ = 1.87m (=160 MHz). These observations were published
in a professional astronomical journal. Later, after the end of World War II, im-
proved receivers allowed the new radio window to develop. Radio physics had made
great progress during the war years, mainly due to efforts directed towards the devel-
opment of sensitive and efficient radar equipment. After the war, some researchers
turned their attention towards the radio “noise” from extraterrestrial sources.

We will not follow this historical development any further, except to note that the
historical development has been toward higher sensitivity, shorter wavelength, and
higher angular resolution. The radio window reaches from λ ∼= 10–15 m to short-
ward of λ ∼= 0.3 mm. Outside the near Infrared–optical window, this was the first
new spectral range that became available to astronomy. The new astronomical disci-
pline of radio astronomy has been instrumental in changing our view of astronomy.
The results required mechanisms for their explanation that differed considerably

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 1
DOI 10.1007/978-3-540-85122-6 1, c© Springer-Verlag Berlin Heidelberg 2009
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from those used previously. While the objects studied in the optical wavelength
range usually radiate because they are hot and therefore thermal physics is the rule.
Most often, in radio astronomy the radiation has a nonthermal origin and different
physical mechanisms apply.

More recently, technological advances have opened up of additional astronomi-
cal “windows”. Balloons, high-flying aircraft or satellites like IRAS, ISO and MSX
permitted observations in the mid and far infrared (FIR). Other satellites such as IUE
and CHANDRA permitted measurements in the ultraviolet and X-ray wavelength
range. Satellite systems allow measurements over the spectral range from γ-rays to
wavelengths greater than 104 m. Each of these spectral windows requires its own
technology. The art of carrying out measurements differs for each. Astronomers
have tended to view these different windows as forming different astronomies: ra-
dio astronomy, X-ray astronomy, infrared astronomy and so on. Not only does wave-
length range and (to some extent) technology differ. The types of objects that emit at
these wavelengths can also differ: some objects are detected only in certain spectral
windows. For example, diffuse cool gas is detected only because it emits or absorbs
the (first order forbidden) hyperfine structure line at λ= 21 cm; emission from this
gas cannot be detected by any other means. To a lesser extent, this is true for denser,
cool gas traced by allowed rotational transitions of carbon monoxide, CO. This ma-
terial is detected only by molecular or atomic lines and broadband dust radiation.
Although interpretations differ for each spectral window there is one single reality.
An astrophysicist investigating a specific object collects information with optical,
radio or other techniques. In this sense there is no such thing as a separate scientific
discipline of radio astronomy.

New experimental techniques provide additional paths to attack old problems.
More dramatically, when new kinds of objects are detected by these means, meth-
ods and results are often collected into a new discipline such as radio astronomy.
However, when the experimental methods have become mature and both the advan-
tages and limitations of the methods become clearer, it is appropriate to integrate
the specialized field into main stream astrophysics. Radio astronomy is now in such
a situation. The first, vigorous years when the pioneers worked alone or in small
groups are over. Today radio astronomers rarely build their telescopes and receivers
themselves. This has profound effects on the way research is done. In the pioneer
days, a project usually started with an instrument collecting data; in many cases
the results were unusual and exciting, so these required new explanations. Now a
researcher starts with the problem and then searches for the means to attack it.

Today radio astronomy is not just a collection of the results, but also a science
concerned with the instruments used to gather the data, including the instrumental
properties, advantages and limitations. These instruments are usually no longer built
by the astronomer. Rather, the astronomer’s task is to optimize their use for a partic-
ular study. For this, the user must have a clear idea how the measurements are to be
carried out. As to nomenclature, we refer to single radio telescopes as antennas and
arrays of antennas with coupled outputs as interferometers. Together, either of these
with receivers are the material tools used by radio astronomers. However there are
more than only material tools: in interpreting the measurements theoretical concepts
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must be applied to data. These concepts belong to a wide variety of physical fields,
from plasma physics to molecular physics. All these concepts are tools, and so we
have collected these in a “toolbox” that is consistent and useful.

1.2 The Radio Window

From the surface of the earth, the atmosphere is transparent to radio waves as long
as none of its constituents is able to absorb this radiation to a noticeable extent.
This earth-bound radio window extends roughly from a lower frequency limit of
ν ∼= 15 MHz (λ ∼= 20 m) to a high frequency cut-off at ν ∼= 1.5 THz (λ ∼= 0.2 mm).
These limits are not sharp (Fig. 1.1) since there are variations both with altitude,
geographical position and with time.

The high-frequency cut-off occurs because the resonant absorption of the lowest
rotation bands of molecules in the troposphere fall into this frequency range. Two
molecules are mostly responsible for this: water vapor, H2O and O2. Water vapor
has bands at ν = 22.2 GHz (λ = 1.35 cm) and 183 GHz (1.63 mm), while O2 has an
exceedingly strong band at 60 GHz (5 mm). Lines of O2 consist of closely spaced
rotational levels of the ground electronic state, resulting in two interleaved series of
absorption lines near 60 GHz (5 mm) and a single line near 119 GHz (2.52 mm). The

Fig. 1.1 The transmission of the earth’s atmosphere for electromagnetic radiation. The diagram
gives the height in the atmosphere at which the radiation is attenuated by a factor 1/2
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absorption of astronomical signals by other abundant molecules in the atmosphere,
N2 and CO2, occurs at frequencies above 300 GHz.

There is great interest to extend the upper frequency limits of the measurements
to as high a value as possible, since the astronomical sources produce more intense
spectral lines in this range. The rotational transitions of carbon monoxide, CO, play
an especially important role since this molecule is very widespread and its chem-
istry is thought to be well understood. The circumstance that water vapor is one
of the determining factors for this cut-off makes it possible to extend the accessi-
ble frequency range somewhat by carrying out measurements from locations with
a low total water vapor content. With respect to the absorption caused by oxygen
little can be done from earth’s surface. In some parts of the sub-mm wavelength
range, measurements must be carried out from satellites such as the Herschel Space
Observatory, the airborne facility SOFIA (Stratospheric Observatory for Infrared
Astronomy), or from high flying balloons. Interstellar spectral lines of water vapor
and oxygen are best observed from satellites orbiting above the earth’s atmosphere.
On earth, high-altitude observatories with a dry climate are the best one can do. We
will discuss the effects of the atmosphere in the chapter on observational methods.

At the lowest frequencies, the terrestrial atmosphere ceases to be transparent be-
cause of free electrons in the ionosphere. Transmission through the atmosphere is
not possible if the frequency of the radiation is below the plasma frequency νp. As
we will show later (Eq. 2.77) this frequency is given by:

νp

kHz
= 8.97

√
Ne

cm−3 ,

where Ne is the electron density of the plasma in cm−3 and νp is given in kHz. Thus
the low-frequency limit of the radio window will be near 4.5 MHz at night when the
F2 layer of the ionosphere has an average maximum density of Ne

∼= 2.5×105 cm−3,
and near 11 MHz at daytime, because then Ne

∼= 1.5×106 cm−3. However the elec-
tron densities in the ionosphere depend on solar activity, and therefore this low-
frequency limit varies with “space weather”. Only when the observing frequency
is well above this limit do ionospheric properties have no noticeable effect. Radio
astronomy in the kHz frequency range must be performed from satellites above the
earth’s ionosphere.

Radio frequency interference (RFI) has an increasingly detrimental impact on as-
tronomical observations. Man-made sources of radio signals, including intentional
emitters (such as cell phones, wireless networks, garage door openers, and satellites)
and unintentional radiators (such as computers and automobiles), can swamp very
weak cosmic signals being studied. Some forms of RFI can be partially removed,
but the presence of RFI always compromises the utility of the data and/or the effi-
ciency of data acquisition. The International Telecommunication Union (ITU), an
agency of the United Nations, is responsible for the global management of the ra-
dio spectrum, including the protection of radio astronomy. Expert committees, such
as the European Science Foundation’s Committee on Radio Astronomy Frequen-
cies (CRAF) and the U.S. National Academy of Sciences’ Committee on Radio
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Frequencies (CORF), study spectrum issues and their impact on radio astronomy.
In most radio observatories and at the U.S. National Science Foundation, at least one
staff member is dedicated to the protection of radio astronomy observations. More
information on the management of interference to radio astronomy can be found in
the ITU Handbook on Radio Astronomy (http://www.itu.int/publ/R-HDB-22/en)

1.3 Some Basic Definitions

Electromagnetic radiation in the radio window is a wave phenomenon, but when
the scale of the system involved is much larger than the wavelength, we can con-
sider the radiation to travel in straight lines called rays. The infinitesimal power dP
intercepted by an infinitesimal surface dσ (Fig. 1.2) then is

dP = Iν cosθ dΩ dσ dν , (1.1)

where

dP = infinitesimal power, in watts,
dσ = infinitesimal area of surface, cm2,
dν = infinitesimal bandwidth, in Hz,
θ = angle between the normal to dσ and the direction to dΩ ,
Iν = brightness or specific intensity, in W m−2 Hz−1 sr−1.

Equation (1.1) should be considered to be the definition of the brightness Iν .
Quite often the term intensity or specific intensity Iν is used instead of the term
brightness. We will use all three designations interchangeably.

The total flux of a source is obtained by integrating (1.1) over the total solid angle
Ωs subtended by the source

Sν =
∫
Ωs

Iν(θ ,ϕ)cosθ dΩ , (1.2)

Fig. 1.2 A sketch to illustrate
the definition of brightness
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and this flux density is measured in units of W m−2 Hz−1. Since the flux density of
radio sources is usually very small, a special radio astronomical flux density unit,
the Jansky (abbreviated Jy) has been introduced

1Jy = 10−26 Wm−2Hz−1 = 10−23 ergs−1cm−2Hz−1 . (1.3)

Very few sources are as bright as 1 Jy, but even such a source would produce a
signal of only 10−15 W with the 100 m telescope (effective aperture A ∼= 5×103m2,
Δν = 20MHz).

The brightness of an extended source is a quantity similar to the surface bright-
ness in optical astronomy: it is independent of the distance to the source, as long as
the effects of diffraction and extinction can be neglected. Consider a bundle of rays
emitted by a source (Fig. 1.3), which contains the power dW . As long as the surface
element dσ covers the ray bundle completely, the power remains constant:

dP1 = dP2 . (1.4)

For each of these we have

dP1 = Iν1dσ1 dΩ1 dν and

dP2 = Iν2dσ2 dΩ2 dν .

If the distance between dσ1 and dσ2 is R, then the solid angles are dΩ2 = dσ1/R2,
dΩ1 = dσ2/R2 and thus

dP1 = Iν1 dσ1
dσ2

R2 dν and dP2 = Iν2 dσ2
dσ1

R2 dν .

Using (1.4) we thus obtain
Iν1 = Iν2 (1.5)

so that the brightness is independent of the distance. As we show next the total flux
Sν density shows the expected dependence of 1/r2. Consider a sphere with uniform
brightness Iν with a radius R (Fig. 1.4). The total flux received by an observer at the
distance r then is, according to (1.2),

Fig. 1.3 A sketch used to show that the brightness is independent of the distance along a ray
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Fig. 1.4 Total flux received at
a point P from an uniformly
bright sphere

Sν =
∫
Ωs

Iν cosθ dΩ = Iν

2π∫
0

( θc∫
0

sinθ cosθ dθ

)
dϕ ,

where

sinθc =
R
r

defines the angle θc that the radius of the sphere subtends at r. We obtain

Sν = πIν sin2 θc

or

Sν = Iν
πR2

r2 = IνΔΩ , (1.6)

where ΔΩ is defined as the area subtended by an object at a distance r.
Another useful quantity related to the brightness is the radiation energy density

uν in units of erg cm−3. From dimensional analysis, uν is intensity divided by speed.
Since radiation propagates with the velocity of light c, we have for the spectral
energy density per solid angle

uν(Ω) =
1
c

Iν . (1.7)

If integrated over the whole sphere, 4π steradian, (1.7) results in the total spectral
energy density

uν =
∫

(4π)

uν(Ω)dΩ =
1
c

∫

(4π)

Iν dΩ . (1.8)

1.4 Radiative Transfer

Equation (1.5) shows that for radiation in free space the specific intensity Iν remains
independent of the distance along a ray. Iν will change only if radiation is absorbed
or emitted, and this change of Iν is described by the equation of transfer. The theory
to be outlined here is a macroscopic one: for a change in Iν certain expressions are
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adopted which contain free parameters. Only experience will then show whether
these expressions are appropriate, or whether different ones should be preferred.

For a change in Iν along the line of sight, a loss term dIν− and a gain term dIν+
are introduced, and we adopt the form

dIν− = −κν Iν ds ,

dIν+ = εν ds ,

so that the change of intensity in a slab of material of the thickness ds will be
[
Iν(s+ds)− Iν(s)

]
dσ dΩ dν = [−κν Iν + εν ]dσ dΩ dν ds ,

resulting in the equation of transfer

dIν
ds

= −κν Iν + εν . (1.9)

From general experience, the linear absorption coefficient κν is independent of
the intensity Iν leading to the adoption of the above form for dIν−; similar arguments
hold for the emissivity εν .

There may be situations for which εν depends strongly on Iν , such as an en-
vironment in which radiation is strongly scattered. However, there are many other
important situations where εν is independent of Iν .

There are several limiting cases for which the solution of the differential equation
(1.9) is especially simple.

1) Emission only: κν = 0

dIν
ds

= εν , Iν(s) = Iν(s0)+
s∫

s0

εν(s)ds . (1.10)

2) Absorption only: εν = 0

dIν
ds

= −κν Iν ,

Iν(s) = Iν(s0)exp

⎧⎨
⎩−

s∫
s0

κν(s)ds

⎫⎬
⎭ . (1.11)

3) Thermodynamic equilibrium (TE): If there is complete equilibrium of the radia-
tion with its surroundings, the brightness distribution is described by the Planck
function, which depends only on the thermodynamic temperature T , of the sur-
roundings

dIν
ds

= 0 , Iν = Bν(T ) = εν/κν (1.12)
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Bν(T ) =
2hν3

c2

1

ehν/kT −1
. (1.13)

4) Local thermodynamic equilibrium (LTE): Full thermodynamic equilibrium will
be realized only in very special circumstances such as in a black enclosure or,
say, in stellar interiors. Often Kirchhoff’s law is

εν
κν

= Bν(T ) (1.14)

applicable independent of the material, as is the case with complete thermody-
namic equilibrium. In general however, Iν will differ from Bν(T ).

If we define the optical depth dτν (Fig. 1.5) by

dτν = −κν ds (1.15)

or

τν(s) =
s∫

s0

κν(s)ds , (1.16)

then the equation of transfer (1.9) can be written as

− 1
κν

dIν
ds

=
dIν
dτν

= Iν −Bν(T ) . (1.17)

The solution of (1.17) is obtained by first multiplying (1.17) by exp(−τν) and
then integrating τν by parts:

τν (s)∫
0

e−τ
dIν
dτ

dτ = Iν e−τ
∣∣∣∣∣
τν (s)

0

+

τν (s)∫
0

Iν e−τdτ =

τν (s)∫
0

(Iν −Bν)e−τdτ

Fig. 1.5 A sketch showing the
quantities used in the equation
of transfer
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Iν(τν(s))e−τν (s) − Iν(τν(s0))e0 = −
τν (s)∫
0

Bν(T (τ))e−τdτ

or finally

Iν(s) = Iν(0)e−τν (s) +

τν (s)∫
0

Bν(T (τ))e−τdτ . (1.18)

Due to the definition (1.15), s and τ increase in opposite directions as indicated
in Fig. 1.5.

If the medium is isothermal, that is, if

T (τ) = T (s) = T = const.

the integral in (1.18) can be computed explicitly resulting in

Iν(s) = Iν(0)e−τν (s) +Bν(T )
(

1− e−τν (s)
)

. (1.19)

For a large optical depth, that is for τν(0) → ∞, (1.19) in LTE approaches the
limit

Iν = Bν(T ) . (1.20)

The observed brightness Iν for the optically thick case is equal to the Planck
black-body brightness distribution independent of the material. If the intensity is
to be compared with the result obtained in the absence of an intervening medium,
Iν(0), we have

Δ Iν(s) = Iν(s)− Iν(0) = (Bν(T )− Iν(0))(1− e−τ) . (1.21)

1.5 Black Body Radiation and the Brightness Temperature

The spectral distribution of the radiation of a black body in thermodynamic equilib-
rium is given by the Planck law (cf. (1.13))

Bν(T ) =
2hν3

c2

1

ehν/kT −1
.

It gives the power per unit frequency interval. Converting this to the wavelength
scale, we obtain Bλ (T ). Because Bν(T )dν = −Bλ (T )dλ and dν = (−c/λ 2)dλ
this is
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Bλ (T ) =
2hc2

λ 5

1

ehc/kλT −1
. (1.22)

Integrating either (1.13) over ν or (1.22) over λ , the total brightness of a black
body is obtained

B(T ) =
2h
c2

∞∫
0

ν3

ehν/kT −1
dν .

Putting

x =
hν
kT

, (1.23)

we get

B(T ) =
2h
c2

(
kT
h

)4 ∞∫
0

x3

ex −1
dx .

The integral has the value π4/15 [an explicit demonstration of this is given in,
e.g., Reif (1965), Sect. A.11]. Thus

B(T ) = σT 4 , σ =
2π4k4

15c2h3 = 1.8047×10−5 ergcm−2s−1K−4 . (1.24)

In some texts, such as Leighton’s Principles of Modern Physics, the value of σ is
given with an extra factor of π so that in CGS units, the value is σ = 5.67 × 10−5.

Equation (1.24) is the Stefan-Boltzmann radiation law which was found experi-
mentally in 1879 by J. Stefan and derived theoretically in 1884 by L. Boltzmann be-
fore Planck’s radiation law was known. In the literature quite often a different value
for σ is given which is obtained, when the total radiation emitted into a solid angle
of 2π is computed from (1.24). Both (1.13) and (1.22) have maxima (Fig. 1.6) which
are found by solving ∂Bν/∂ν = 0 and ∂Bλ/∂λ = 0 respectively. Using (1.23), these
correspond to solving 3(1− e−x)−x = 0 and 5(1− e−x)−x = 0 with the solutions

xm = 2.82143937 and x̂m = 4.96511423 .

Thus (1.13) attains its maximum at

νmax

GHz
= 58.789

(
T
K

)
, (1.25)

while from (1.22)
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Fig. 1.6 Planck spectra for black bodies of different temperatures

(
λmax

cm

) (
T
K

)
= 0.28978 . (1.26)

Equations (1.25) and (1.26) are both known as Wien’s displacement law. If x =
hν/kT is far from the maximum, (1.13) can be approximated by simpler expressions
(Fig. 1.7).

1) hν � kT : Rayleigh-Jeans Law. An expansion of the exponential

ehν/kT ∼= 1+
hν
kT

+ . . . (1.27)

results in

BRJ(ν ,T ) =
2ν2

c2 kT . (1.28)

This is the classical limit of the Planck law since it does not contain Planck’s
constant. In the millimeter and submillimeter range, one frequently defines a
radiation temperature, J(T ) as
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Fig. 1.7 Normalized Planck
curve and the Rayleigh-Jeans
and Wien approximation
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J(T ) =
c2

2kν2 I =
hν
k

1

ehν/kT −1
. (1.29)

Inserting numerical values for k and h, we see that the Rayleigh-Jeans relation
holds for frequencies

ν
GHz

� 20.84

(
T
K

)
. (1.30)

It can thus be used for all thermal radio sources except perhaps for low tempera-
tures in the millimeter or sub-mm range.

2) hν � kT : Wien’s Law. In this case ex � 1, so that

BW(ν ,T ) =
2hν3

c2 e−hν/kT . (1.31)

While this limit is quite useful for stellar measurements in the visual and ultravi-
olet range, it plays no role in radio astronomy.

One of the important features of the Rayleigh-Jeans law is the implication that
the brightness and the thermodynamic temperature of the black body that emits this
radiation are strictly proportional (1.28). This feature is so useful that it has become
the custom in radio astronomy to measure the brightness of an extended source by its
brightness temperature Tb. This is the temperature which would result in the given
brightness if inserted into the Rayleigh-Jeans law

Tb =
c2

2k
1
ν2 Iν =

λ 2

2k
Iν . (1.32)

Combining (1.6) with (1.32), we have

Sν =
2kν2

c2 TbΔΩ . (1.33)
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For a Gaussian source, this relation is

[
Sν
Jy

]
= 2.65Tb

[
θ

arcminutes

]2 [ λ
cm

]−2

(1.34)

That is, with a measurement of the flux density Sν in Janskys, and the source
size, the brightness temperature, Tb, of the source can be determined.

If emitted by a black body and hν � kT then Tb gives the thermodynamic tem-
perature of the source, a value that is independent of ν . If other processes are re-
sponsible for the emission of the radiation, Tb will depend on the frequency; it is,
however, still a useful quantity and is commonly used in practical work.

This is the case even if the frequency is so high that condition (1.30) is not valid.
Then (1.34) can still be applied, but it should be understood that Tb is different from
the thermodynamic temperature of a black body. However, it is rather simple to
obtain the appropriate correction factors.

It is also convenient to introduce the concept of brightness temperature into the
radiative transfer equation (1.21). Formally one can obtain

J(T ) =
c2

2kν2 (Bν(T )− Iν(0))(1− e−τν (s)) .

Usually calibration procedures (see Sect. 8.2) allow one to express J(T ) as T .
This measured quantity is referred to as T ∗

R , the radiation temperature, or the bright-
ness temperature, Tb. In the centimeter wavelength range, one can apply (1.32) to
(1.17) and one obtains

dTb(s)
dτν

= Tb(s)−T (s) , (1.35)

where T (s) is the thermodynamic temperature of the medium at the position s. The
general solution is

Tb(s) = Tb(0)e−τν (s) +

τν (s)∫
0

T (s)e−τdτ . (1.36)

If the medium is isothermal, this becomes

Tb(s) = Tb(0)e−τν (s) +T (1− e−τν (s)) . (1.37)

For the sake of simplicity, let us assume that Tb(0) = 0. Then two limiting cases
that are often applicable are:

1) for optically thin τ � 1,
Tb = τνT , (1.38)

and
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2) for optically thick τ � 1,
Tb = T . (1.39)

These relations are correct only if both the geometry of the source and the radiat-
ing medium are not important. One usually expresses this as “the sources are much
larger than the telescope beam”.

1.6 The Nyquist Theorem and the Noise Temperature

Finally, we relate electrical power and temperature. Suppose a resistor R is con-
nected across the input terminals of a linear amplifier. The thermal motion of the
electrons in the resistor will produce a current i(t) which forms a random input to the
amplifier. Though the mean value of this current will be zero, its rms value will not
be so. Since 〈i2〉 
= 0 represents a power, the resistor provides a power input to the
amplifier. In thermal equilibrium, this power is determined by the physical temper-
ature. This is Johnson noise. This situation was investigated in 1929 by H. Nyquist,
who showed that this is a problem similar to that of the random walk of a particle in
Brownian motion including a friction term. A detailed discussion goes beyond the
scope of this book, it can be found in many treatments of stochastic processes [see
the appropriate chapters in Reif (1965) or Papoulis and Pillai (2002)].

The average power per unit bandwidth produced by the resistor R in the circuit
shown in Fig. 1.8 is

Pν = 〈iv〉 =
〈v2〉
2R

=
1

4R
〈v2

N〉 , (1.40)

where v(t) is the voltage that is produced by i across R, and 〈· · · 〉 indicates a time
average. The first factor 1/2 arises from the need to transfer maximum power to the
element on the right. This condition is met by setting Rx = R; then i = v/2R. The
second factor 1/2 arises from the time average of v2. An analysis of the random
walk process now shows that

〈v2
N〉 = 4Rk T . (1.41)

Inserting this into (1.40) we obtain

Pν = k T . (1.42)

Fig. 1.8 A sketch of a circuit
containing a resistor R, to
illustrate the origin of Johnson
noise. The resistor R, on the
left, at a temperature T ,
provides a power k T to a
matched load RX , on the right
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Expression (1.42) can also be obtained by a reformulation of (1.13) for one di-
mension and the Rayleigh-Jeans limit. Then, the available noise power of a resistor
is proportional to its temperature, the noise temperature TN, and independent of
the value of R. Throughout the whole radio range, from the longest waves to the
far infrared region the noise spectrum is white, that is, its power is independent of
frequency. For receivers, since the impedance of a noise source must be matched
to that of the amplifier, such a noise source can only be matched over some finite
bandwidth.

Not all circuit elements can be characterized by thermal noise. For example a
microwave oscillator can deliver the equivalent of more than 1016 K, although the
physical temperature is only 300 K. Clearly this is a very nonthermal process, and
in this case temperature is not a useful concept.

Problems

1. If the average electron density in the interstellar medium (ISM) is 0.03 cm−3, what
is the lowest frequency of electromagnetic radiation which one can receive due to
the effect of this plasma? Compare this to the ionospheric plasma cutoff frequency
if the electron density, Ne, in the ionosphere is ∼105 cm−3.

2. (a) A researcher measures radio emission at a frequency of 250 kHz and finds that
the emission is present over the whole sky with a brightness temperature of 250 K.
Could the origin of this radiation be the earth’s ionosphere?
(b) Assume that the source fills the entire visible sky, taken to be a half hemisphere.
What is the power received by an antenna with A = 1 m2 collecting area in a B =
1 kHz bandwidth?

3. There is a proposal to orbit a downward-pointing radar in a satellite, Cloudsat,
moving in a polar orbit. The satellite will orbit at an altitude of 500 km. The operat-
ing frequency is 94 GHz. Assume that the power is radiated over a hemisphere. The
peak power will be 1500 W, uniformly distributed over a bandwidth of 1 GHz. If
no power is absorbed in the earth’s atmosphere, what is the peak flux density of this
satellite when it is directly overhead? This radar is transmitting 3% of the time (duty
cycle). What is the average power radiated and the corresponding flux density?

4. A unit commonly used in astronomy is flux density, Sν , the Jansky (Jy). One Jy is
10−26 W m−2 Hz−1. Calculate the flux density, in Jy, of a microwave oven with an
output of 1 kW at a distance of 10 m if the power is radiated over all angles and is
uniformly emitted over a bandwidth of 1 MHz.

5. (a) What is the flux density, Sν , of a source which radiates a power of 1 kW in
the microwave frequency band uniformly from 2.6 GHz to 2.9 GHz, when placed
at the distance of the Moon (3.84× 105 km)? Repeat for an identical source if the
radiation is in the optical frequency band, from 3×1014 to 8×1014 Hz.



Problems 17

(b) If we assume that the number of photons is uniform over the band, what is the
average energy, E = hν , of a photon? Use this average photon energy and the power
to determine N, the number of photons. How many photons pass through a 1 m2

area in one second in the optical and radio frequency bands?

6. In the near future there may be an anti-collision radar installed on automobiles. It
will operate at ∼70 GHz. If the bandwidth is 10 MHz, and at a distance of 3 m, the
power per area is 10−9 W m−2. Assume the power level is uniform over the entire
bandwidth of 10 MHz. What is the flux density of this radar at 1 km distance? A
typical large radio telescope can measure to the mJy (=10−29 W m−2 Hz−1) level.
At what distance will such radars disturb such radio astronomy measurements?

7. If the intensity of the Sun peaks in the optical range, at a frequency of about
3.4×1014 Hz, what is the temperature of the Sun? Use the Wien displacement law
(1.25). If all of the power is emitted only between 3 and 4×1014 Hz, how many
photons per cm2 arrive at the earth when the Sun is directly overhead? What is the
power received on earth per cm2? A value for the solar power is 135 mW per cm2.
How does this compare to your calculation?

8. (a) At what frequency does the intensity of a 2.73 K black body reach a maxi-
mum? At what wavelength?
(b) Could the difference between the maximum wavelength and frequency be caused
by the different weightings of the Planck relation? Determine Bν at the maximum
frequency.
(c) What is the (integrated) energy density u = (1/c)

∫
IdΩ = (4π/c) I?

(d) Reformulate the derivation of the Stefan–Boltzmann relation to obtain the num-
ber density of photons. Make use of the relation

∫ ∞

0

x2

ex −1
dx = 2.404

to determine how many photons are present in a volume of 1 cm−3.
(e) What is the error in applying the Rayleigh–Jeans approximation, instead of the
Planck relation to calculate the intensity of the 2.73 K black body radiation at 4.8
GHz, 115 GHz and 180 GHz?

9. From Eq. (1.42), the power radiated in one dimension is P = k T Δν . If a mi-
crowave oscillator delivers 1 mW of power uniformly over a bandwidth of 1 Hz,
what is the equivalent temperature T ? Since the physical temperature of such an
oscillator is ∼300 K, this is an example of a non-thermal process.

10. A cable has an optical depth, τ , of 0.1 and a temperature of T = 300 K. A signal
of peak temperature Tb(0)=1 K is connected to the input of this cable. Use Eq. (1.37)
to analyze this situation. What is Tb(s), the temperature of the output of the cable?
Repeat the problem for T = 100 K. What is the signal-to-noise ratio for these two
cases, using signal = 1 K, and noise from the cable contribution.?
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11. A signal passes through two cables with the same optical depth, τ . These have
temperatures T1 and T2, with T1 < T2. Which cable should be connected first to
obtain the lowest output power from this arrangement?

12. Show that (1.34) can be obtained from (1.33).

13. If Jupiter has TB = 150 K, with θ = 40′′, what is Sν at 1.4 GHz? At 115 GHz?
Repeat for the HII region Orion A, with θ = 2.5′, with TB = 330 K at 4.8 GHz, and
TB = 24 K at 23 GHz.



Chapter 2
Electromagnetic Wave Propagation
Fundamentals

2.1 Maxwell’s Equations

Maxwell’s theory of electrodynamics describes electromagnetic fields in terms of
the space and time variations of electromagnetic field components. In most treatises
on electrodynamics, this theory is derived by induction starting with static situations.

Here we give only those features of the theory that are needed to understand
the formation, emission and propagation of electromagnetic waves. These will be
given in a uniform set of quantities, in the CGS system. These are the electric field
intensity E, the electric displacement D, the magnetic field intensity H, the mag-
netic induction B, and the electric current density J. The electric charge density is
designated by �.

The relations of the five vector fields and one scalar field which are required to
(properly) describe the electromagnetic phenomena are given by Maxwell’s equa-
tions. These are conveniently divided into several groups. Some of the field compo-
nents are related by the properties of the medium in which they exist. These are the
so-called material equations

J = σ E
D = εE
B = μH .

(2.1)

(2.2)

(2.3)

σ ,ε and μ are scalar functions that are almost constant in most materials. For the
Gaussian CGS system the values of ε and μ are unity (=1) in vacuum, while (2.1) is
the differential form of Ohm’s law, where σ is the specific conductivity.

Maxwell’s equations proper can now be further divided into two groups: The first
group involves only the spatial structure of the fields

∇ ·D = 4π�

∇ ·B = 0 ,
(2.4)

(2.5)

while the second group includes time derivatives

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 19
DOI 10.1007/978-3-540-85122-6 2, c© Springer-Verlag Berlin Heidelberg 2009
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∇×E = −1
c

Ḃ

∇×H =
4π
c

J +
1
c

Ḋ .

(2.6)

(2.7)

Taking the divergence of (2.7) the left side of the resulting equation is found to
be equal to zero (see Appendix A). If we use (2.4), we obtain

∇ ·J + �̇ = 0 ; (2.8)

that is, charge density and current obey a continuity equation.

2.2 Energy Conservation and the Poynting Vector

By considering the forces that a static electric or magnetic field imposes on a test
charge it can be shown that the energy density of an electromagnetic field is given
by

u =
1

8π
(E ·D+B ·H) =

1
8π

(εE2 +μH2) . (2.9)

If both ε and μ are time-independent, the time derivative of u is given by

u̇ =
1

4π
(εE · Ė+μH · Ḣ) =

1
4π

(E · Ḋ+H · Ḃ) . (2.10)

Substituting both Ḋ and Ḃ from Maxwell’s equations (2.6) and (2.7), this be-
comes

u̇ =
c

4π
(E · (∇×H)−H · (∇×E))−E ·J

u̇ = − c
4π
∇ · (E×H)−E ·J (2.11)

if the vector identity (A 9) given in Appendix A is applied. By introducing the
Poynting vector S (Poynting 1884)

S =
c

4π
E×H , (2.12)

(2.11) can be written as an equation of continuity for S:

∂u
∂ t

+∇ ·S = −E ·J . (2.13)
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Fig. 2.1 A sketch to illus-
trate energy conservation. We
show the Poynting vector for
a circular straight wire carry-
ing a steady current density
produced by the electric field

The time variation of the energy density u thus consists of two parts: a spatial
change of the Poynting vector or energy flux S and a conversion of electromagnetic
energy into thermal energy (Joule’s energy theorem).

The significance of (2.13) becomes clearer if we consider a simple example. Let
a straight wire of circular cross section carry a steady current I (Fig. 2.1). If all con-
ditions are constant, the total electromagnetic energy density, u, must be constant, so
that u̇ = 0. However if a constant current I is flowing in the wire there is a constant
transformation of electric energy into thermal energy. Per unit length l of the wire,
this thermal energy is formed at a rate

dW
dl

= rI2 , (2.14)

where r is the specific resistance of the wire. Obviously

r =
1

σπR2

so that
dW
dl

=
I2

σπR2 .

But

|J| = I
πR2 ,

and according to (2.1)

E =
1
σ

J ,

so that the thermal loss rate is
dW
dl

= |E| I . (2.15)

But according to Ampere’s law (see e.g. Jackson Equation (5.6))

|H| = 2I
cR

with a direction perpendicular to I. Then
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|S| = c
4π

|E×H| = |E| I
2πR

,

where S is oriented such that E,H and S form a right-handed system. Therefore

|E| I = 2πR |S| . (2.16)

Thus the total flux of S at the surface of the wire and, from the direction of J
and H, we see that S flows into it (Fig. 2.1). But according to (2.15) this is just the
conversion rate of electrical energy into thermal energy. Therefore the Poynting flux
just compensates for this loss, as it must in a steady state.

2.3 Complex Field Vectors

In situations where electromagnetic wave phenomena are considered, the field vec-
tors usually show a harmonic time dependence described by sine or cosine functions.
But since these functions are related to the exponential function by the Euler relation

cosx+ i sinx = eix ,

the inconvenience of having to apply the rather complicated trigonometric addition
theorem can be avoided, if complex field vectors are introduced by

E = (E1 + iE2) e− iωt ; E1, E2 real vector fields , (2.17)

and
H = (H1 + iH2) e− iωt ; H1, H2 real vector fields . (2.18)

In any application the electric or magnetic field considered is then identified with
the real part of E and H or the imaginary part, whichever is more convenient. All
mathematical operations can then be performed on E or H directly, as long as they
are restricted to linear operations. Only if nonlinear operations are involved must
one return to real quantities. Even here convenient simplifications exist. Such is the
case for the Poynting vector. For S obviously the expression

S =
c

4π
Re{E}×Re{H} (2.19)

should be used. But since

Re{E} = E1 cosωt +E2 sinωt

and

Re{H} = H1 cosωt +H2 sinωt ,
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this is

Re{E}×Re{H} = (E1 ×H1) cos2ωt +(E2 ×H2) sin2ωt

+(E1 ×H2 +E2 ×H1) cosωt sinωt .

If we now do not consider the instantaneous value of S, but the mean value over
a full oscillation, and if such mean values are designated by 〈〉, then since

〈sin2ωt〉 = 〈cos2ωt〉 = 1
2

and
〈sinωt cosωt〉 = 0 ,

one obtains

〈Re{E}×Re{H}〉 = 1
2 (E1 ×H1 +E2 ×H2) . (2.20)

On the other hand

E×H∗ = (E1 + iE2) e− iωt × (H1 − iH2) eiωt

= (E1 + iE2)× (H1 − iH2)

so that
Re{E×H∗} = E1 ×H1 +E2 ×H2 ,

where H∗ denotes the complex conjugate of H. Inserting this in (2.20) the average
value of S is

〈S〉 =
c

4π
Re{E×H∗} . (2.21)

From (2.17) and (2.18), this formula applies only to complex electromagnetic
fields that have harmonic time variations.

2.4 The Wave Equation

Maxwell’s equations (2.4–2.7) give the connection between the spatial and the time
variation of the electromagnetic field. However, the situation is complicated by the
fact that the equations relate different fields: e.g. curl E is related to Ḃ (2.6), and the
other equations show a similar behavior.

A better insight into the behavior of the fields can be obtained if the equations
are reformulated so that only a single vector field appears in each equation. This is
achieved by the use of the wave equations. To simplify the derivation, the conduc-
tivity σ , the permittivity ε and the permeability μ will be assumed to be constants
both in time and in space. Taking the curl of (2.7)
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∇× (∇×H) =
4π
c
∇×J +

1
c
∂
∂ t
∇×D

=
4π
c
∇× (σE)+

1
c
∂
∂ t
∇× (εE)

=
1
c

(
4πσ + ε

∂
∂ t

)
∇×E ,

where the order of ∇ and time derivation have been interchanged, and J and D have
been replaced by σ E and εE respectively by application of (2.1) and (2.2). Using
(2.6) and (2.3), this can be further modified to

∇× (∇×H) = − μ
c2

(
4πσ + ε

∂
∂ t

)
∂
∂ t

H = − μ
c2 (4πσḢ + εḦ) . (2.22)

By a similar procedure from (2.6)

∇× (∇×E) = −1
c
∂
∂ t

(∇×B) = −μ
c
∂
∂ t

(∇×H) .

Using (2.7) this becomes

∇× (∇×E) = −μ
c
∂
∂ t

(
4π
c

J +
1
c

Ḋ
)

= −μ
c
∂
∂ t

(
4π
c
σE+

ε
c

Ė
)

= − μ
c2 (4πσ Ė+ εË) . (2.23)

The left-hand side of (2.22) and (2.23) can be reduced to a more easily recognis-
able form by using the vector identity [see Appendix (A.13)]

∇× (∇×P) = ∇(∇ ·P)−∇2P ;

applying this relation to (2.5)

∇× (∇×H) = ∇(∇ ·H)−∇2H = −∇2H

and, if it can be assumed that there are no free charges in the medium, that is, if

∇ ·D = 0 ,

similarly
∇× (∇×E) = ∇(∇ ·E)−∇2E = −∇2E .

we obtain, finally

∇2H =
εμ
c2 Ḧ +

4πσμ
c2 Ḣ

∇2E =
εμ
c2 Ë+

4πσμ
c2 Ė .

(2.24)

(2.25)
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Both E and H obey the same inhomogeneous wave equation, a linear second
order partial differential equation. Since these equations are derived from Maxwell’s
equations, every solution of these will also be a solution of the wave equation. The
reverse conclusion is not true under all conditions. For example, in (2.24) and (2.25)
the E and the H fields are decoupled, and therefore any arbitrary solution for E can
be coupled to any solution for H provided that they obey the initial conditions. In
Maxwell’s equations this is not true; here E and H are interdependent. For simple
cases it is rather easy to specify which H solution belongs to a given E solution of
Maxwell’s equations; for more complicated situations other methods must be used.
Some of these will be outlined in Chap. 6; here a direct solution of the wave equation
should suffice to show the principle.

2.5 Plane Waves in Nonconducting Media

Consider a homogeneous, nonconducting medium (σ = 0) that is free of currents
and charges. In rectangular coordinates each vector component u of E and H obeys
the homogeneous wave equation

∇2u− 1
v2 ü = 0 , (2.26)

where

v =
c√εμ (2.27)

is a constant with the dimension of velocity. For the vacuum this becomes

v = c . (2.28)

When Kohlrausch and Weber in 1856 obtained this result experimentally, it be-
came one of the basic facts used by Maxwell when he developed his electromagnetic
theory predicting the existence of electromagnetic waves. Eventually this prediction
was confirmed experimentally by Hertz (1888).

Equation (2.26) is a homogeneous linear partial differential equation of second
order. The complete family of solutions forms a wide and sometimes rather compli-
cated group. No attempt will be made here to discuss general solutions, rather we
will restrict our presentation to the properties of the harmonic waves.

u = u0 ei(kx±ωt) (2.29)

is a solution of (2.26) if the wave number k obeys the relation

k2 =
ε μ
c2 ω

2 (2.30)
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This can be confirmed by the substitution of (2.29) into (2.26). If we set

ϕ = kx±ωt , (2.31)

where ϕ is the phase of the wave, we see that points of constant phase move with
the phase velocity

v =
ω
k

=
c√εμ , (2.32)

This gives a physical meaning to the constant v appearing in (2.26). Introducing
the index of refraction n as the ratio of c to v this becomes

n =
c
v

=
√
εμ =

c
ω

k . (2.33)

For plane electromagnetic waves, each component of E and H will have solutions
(2.29) but with an amplitude, u0, that generally is complex. The use of (2.29) permits
us to introduce some important simplifications. For a traveling plane wave

A(x, t) = A0 ei(k·x−ωt) , A0,k,ω = const. , (2.34)

Ȧ = − iωA , (2.35)

Ä = −ω2A , (2.36)

∇ ·A = ik ·A , (2.37)

∇2A = −k2A . (2.38)

The E and H fields of an electromagnetic wave are not only solutions of the
wave equation (2.26), but these also must obey Maxwell’s equations. Because of
the decoupling of the two fields in the wave equation, this produces some additional
constraints.

In order to investigate the properties of plane waves as simply as possible, we
arrange the rectangular coordinate system such that the wave propagates in the pos-
itive z direction. A wave is considered to be plane if the surfaces of constant phase
form planes z = const. Thus all components of the E and the H field will be inde-
pendent of x and y for fixed z; that is,

∂Ex

∂x
= 0 ,

∂Ey

∂x
= 0 ,

∂Ez

∂x
= 0 ,

∂Ex

∂y
= 0 ,

∂Ey

∂y
= 0 ,

∂Ez

∂y
= 0 ,

(2.39)

and a similar set of equations for H. But according to Maxwell’s equations (2.4)

and (2.5) with � = 0 and ε = const.

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂ z
= 0 and

∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂ z
= 0 .
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Because of (2.39) this results in

∂Ez

∂ z
= 0 and

∂Hz

∂ z
= 0 . (2.40)

From the remaining Maxwell’s equations (2.6) and (2.7) we similarly obtain

∂Ez

∂ t
= 0 and

∂Hz

∂ t
= 0 . (2.41)

Therefore both the longitudinal components Ez and Hz must be constant both in
space and time. Since such a constant field is of no significance here, we require that

Ez ≡ 0 , Hz ≡ 0 (2.42)

that is, the plane electromagnetic wave in a nonconducting medium is transverse
(Fig. 2.2). The remaining components have the form of traveling harmonic waves
[as given by (2.29)]. The only components of (2.6) and (2.7) which differ from zero
are

∂Ex

∂ z
= −μ

c

∂Hy

∂ t
,

∂Ey

∂ z
=
μ
c
∂Hx

∂ t
,

and

∂Hx

∂ z
=
ε
c

∂Ey

∂ t
,

∂Hy

∂ z
= −ε

c
∂Ex

∂ t
.

(2.43)

Applying the relations (2.35) and (2.37) for plane harmonic waves, we find

∂Ex

∂ z
= ikEx = −μ

c
Ḣy =

iωμ
c

Hy ,

∂Ey

∂ z
= ikEy =

μ
c

Ḣx = − iωμ
c

Hx ,

(2.44)

Fig. 2.2 A sketch of the field
vectors in a plane electromag-
netic wave propagating in the
z-direction
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resulting in

E ·H = ExHx +EyHy = − ck
ωμ

ExEy +
ck
ωμ

EyEx = 0 ,

E ·H = 0 . (2.45)

E and H are thus always perpendicular; together with the wave vector k, these
form an orthogonal system. For the ratio of their absolute values, (2.44) and (2.30)
result in

| E |
| H | =

√
μ
ε

. (2.46)

The unit of this intrinsic impedance of the medium in which the wave propagates
is the Ohm (Ω). In a vacuum it has the value

Z0 = 376.73Ω . (2.47)

Finally, the energy flux of the Poynting vector of this wave is of interest. As given
by (2.12) we find

| S |= c
4π

√
ε
μ

E2 , (2.48)

and S points in the direction of the propagation vector k. The (time averaged) energy
density, u, of the wave given by (2.9) is then1

u =
1

8π
(εE ·E∗ +μH ·H∗) . (2.49)

The argument used in this is quite similar to that used in deriving (2.21). In using
(2.46) we find that (2.49) becomes

u =
ε

4π
E2 . (2.50)

The time averaged Poynting vector is often used as a measure of the intensity of
the wave; its direction represents the direction of the wave propagation.

2.6 Wave Packets and the Group Velocity

A monochromatic plane wave

u(x, t) = A ei(kx−ωt) (2.51)

propagates with the phase velocity

1 This energy density should not be confused with the Cartesian component u of E or H in (2.26)
and following.
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v =
ω
k

. (2.52)

If this velocity is the same for a whole range of frequencies, then a wave packet
formed by the superposition of these waves will propagate with the same velocity.
In general, however, the propagation velocity, v, will depend on the wave number k.
Then such wave packets have some new and interesting properties. A wave with an
arbitrary shape can be formed by superposing simple harmonic waves

u(x, t) =
1√
2π

∞∫
−∞

A(k) ei(kx−ωt) dk , (2.53)

where A(k) is the amplitude of the wave with the wave number k. The angular
frequency of these waves will be different for different k; this distribution is

ω = ω(k) (2.54)

and it will be referred to as the dispersion equation of the waves. If A(k) is a fairly
sharply peaked function around some k0, only waves with wave numbers not too
different from k0 will contribute to (2.53), and quite often a linear approximation
for (2.54)

ω(k) = ω0 +
dω
dk

∣∣∣∣
0
(k− k0) (2.55)

will be sufficient. The symbol after the derivative indicates that it will be evaluated
at k = 0. Substituting this into (2.53) we can extract all factors that do not depend
on k from the integral, obtaining

u(x, t) =
1√
2π

exp

[
i

(
dω
dk

∣∣∣∣
0

k0 −ω0

)
t

] ∞∫
−∞

A(k)exp

[
ik

(
x− dω

dk

∣∣∣∣
0

t

)]
dk .

(2.56)

According to (2.53), at the time t = 0 the wave packet has the shape

u(x,0) =
1√
2π

∞∫
−∞

A(k) eikx dk .

Therefore the integral in (2.56) is u(x′,0), where x′ = x− dω
dk

∣∣
0 t. The entire ex-

pression is

u(x, t) = u

(
x− dω

dk

∣∣∣∣
0

t,0

)
exp

[
i

(
k0

dω
dk

∣∣∣∣
0
−ω0

)
t

]
. (2.57)

The exponential in (2.57) has a purely imaginary argument and therefore is only a
phase factor. Therefore, the wave packet travels undistorted in shape except for an
overall phase factor with the group velocity
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vg =
dω
dk

. (2.58)

This is strictly true if the angular frequency is a linear function of k. If ω(k) is
more general, the group velocity depends on wave number, and the form of the wave
packet (made up of waves with a finite range of wave numbers) will be distorted in
time. That is, the pulse will disperse.

Whether phase velocity (2.52) or group velocity (2.58), is larger depends on the
properties of the medium in which the wave propagates. Writing (2.52) as

ω = k v ,

one finds
dω
dk

= vg = v+ k
dv
dk

. (2.59)

Recalling the definition of the index of refraction (2.33)

n =
c
v

and that the wavelength is given by

λ =
2π
k

, (2.60)

we see that normal dispersion dn/dλ < 0 in the medium corresponds to dv/dk < 0 .
In a medium with normal dispersion therefore vg < v. Only for anomalous dispersion
will we have vg > v.

Energy and information are usually propagated with the group velocity. The sit-
uation is, however, fairly complicated if propagation in dispersive media is consid-
ered. These problems have been investigated by Sommerfeld (1914) and Brillouin
(1914). Details can be found in Sommerfeld (1959).

2.7 Plane Waves in Conducting Media

In Sect. 2.5 the propagation properties of plane harmonic waves in a nonconducting
(σ = 0) medium have been investigated. Now this assumption will be dropped so
that σ 
= 0, but we still restrict the investigation to strictly harmonic waves propa-
gating in the direction of increasing x

E(x, t) = E0 ei(kx−ωt) . (2.61)

Both E0 and k are complex constants. Making use of (2.35) to (2.38), the wave
equations (2.24) and (2.25) become
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[
k2 −

(
ε μ
c2 ω

2 + i
4πσμ ω

c2

)]{
E
H

}
= 0 . (2.62)

If these equations are to be valid for arbitrary E or H [of the form (2.61)] the
square bracket must be zero, so that the dispersion equation becomes

k2 =
με ω2

c2

(
1+ i

4πσ
ωε

)
. (2.63)

The wave number k thus is indeed a complex number. Writing

k = a+ ib , (2.64)

we find

a =
√
εμ
ω
c

√√√√√1
2

⎛
⎝
√

1+
(

4πσ
ε ω

)2

+1

⎞
⎠ (2.65)

b =
√
εμ
ω
c

√√√√√1
2

⎛
⎝
√

1+
(

4πσ
ε ω

)2

−1

⎞
⎠ (2.66)

and the field therefore can be written

E(x, t) = E0 e−bx ei(ax−ωt) . (2.67)

Thus the real part of the conductivity gives rise to an exponential damping of
the wave. If (2.67) is written using the index of refraction n and the absorption
coefficient κ ,

E(x, t) = E0 exp
(
−ω

c
nκx

)
exp

[
iω

(n
c

x− t
)]

, (2.68)

we obtain

nκ =
√εμ

√√√√√1
2

⎛
⎝
√

1+
(

4πσ
ε ω

)2

−1

⎞
⎠

n =
√εμ

√√√√√1
2

⎛
⎝
√

1+
(

4πσ
ε ω

)2

+1

⎞
⎠

.

(2.69)

(2.70)
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2.8 The Dispersion Measure of a Tenuous Plasma

The simplest model for a dissipative medium is that of a tenuous plasma where free
electrons and ions are uniformly distributed so that the total space charge density
is zero. This model was first given by Drude (1900) to explain the propagation of
ultraviolet light in a transparent medium, but this model was later applied to the
propagation of transverse electromagnetic radio waves in a tenuous plasma.

The free electrons are accelerated by the electric field intensity; their equation of
motion is

mev̇ = mer̈ = −eE0 e− iωt (2.71)

with the solution
v =

e
imeω

E0 e− iωt = − i
e

meω
E . (2.72)

Equation (2.72) describes the motion of the electrons. Moving electrons, how-
ever, carry a current, whose density is

J = −∑
α

evα = −Nev = i
Ne2

meω
E = σE . (2.73)

This expression explains why the ions can be neglected in this investigation. Due
to their large mass (mi � 2× 103 me), the induced ion velocity (2.72) is smaller
than that of the electrons by the same factor, and since the charge of the ions is the
same as that of the electrons, the ion current (2.73) will be smaller than the electron
current by the same factor.

According to (2.73) the conductivity of the plasma is purely imaginary:

σ = i
Ne2

meω
. (2.74)

Inserting this into (2.63) we obtain, for a thin medium with ε ≈ 1 and μ ≈ 1

k2 =
ω2

c2

(
1−

ω2
p

ω2

)
, (2.75)

where

ω2
p =

4πNe2

me
(2.76)

is the square of the plasma frequency. It gives a measure of the mobility of the
electron gas. Inserting numerical values we obtain

νp

kHz
= 8.97

√
N

cm−3 (2.77)
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if we convert (2.76) to frequencies by ν = ω/2π . For ω > ωp, k is real, and we
obtain from (2.52)

v =
c√

1−
ω2

p

ω2

(2.78)

for the phase velocity v and so v > c for ω > ωp. For the group velocity it follows
from (2.58)

vg =
dω
dk

=
1

dk/dω
,

so that

vg = c

√
1−

ω2
p

ω2 (2.79)

and vg < c for ω > ωp. Both v and vg thus depend on the frequency ω . For ω = ωp,
vg = 0; thus for waves with a frequency lower than ωp, no wave propagation in the
plasma is possible. The frequency dependence of v and vg are in the opposite sense;
taking (2.78) and (2.79) together the relation

vvg = c2 (2.80)

is obtained.
For some applications the index of refraction is a useful quantity. According to

(2.33) and (2.75) it is

n =

√
1−

ω2
p

ω2 . (2.81)

Electromagnetic pulses propagate with the group velocity. This varies with fre-
quency so that there is a dispersion in the pulse propagation in a plasma. This fact
took on a fundamental importance when the radio pulsars were detected in 1967.
The arrival time of pulsar pulses depends on the frequency: The lower the observing
frequency, the later the pulse arrives. This behavior can easily be explained in terms
of wave propagation in a tenuous plasma, as the following discussion shows.

The plasma frequency of the interstellar medium (ISM) is much lower than the
observing frequency. In the ISM, N is typically 10−3–10−1 cm−3, so νp is in the
range 2.85–0.285 kHz; however, the observing frequency must be ν > 10 MHz in
order to propagate through the ionosphere of the earth. For vg, we can use a series
expansion of (2.79)

1
vg

=
1
c

(
1+

1
2

ν2
p

ν2

)
(2.82)

with high precision. A pulse emitted by a pulsar at the distance L therefore will be
received after a delay
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τD =
L∫

0

dl
vg

∼= 1
c

L∫
0

(
1+

1
2

(νp

ν

)2
)

dl =
1
c

L∫
0

(
1+

e2

2πme

1
ν2 N(l)

)
dl ,

τD =
L
c

+
e2

2πcme

1
ν2

L∫
0

N(l) dl . (2.83)

The difference between the pulse arrival times measured at two frequencies ν1

and ν2 therefore is given by

ΔτD =
e2

2πcme

[
1

ν2
1

− 1

ν2
2

] L∫
0

N(l) dl . (2.84)

The quantity
∫ L

0 N(l)dl is the column-density of the electrons in the intervening
space between pulsar and observer. Since distances in astronomy are measured in
parsecs (1 pc = 3.085677×1018 cm), it has become customary to measure N(l) in
cm−3 but dl in pc. The integral then is called the dispersion measure (Fig. 2.3)

DM =
∞∫

0

(
N

cm−3

)
d

(
l

pc

)
(2.85)

Fig. 2.3 Dispersion measure, DM, for pulsars at different galactic latitudes [adapted from B. Klein
(MPIfR) unpublished]



Problems 35

and therefore we find

ΔτD

μs
= 1.34×10−9

[
DM

cm−2

]⎡⎢⎣ 1( ν1

MHz

)2 − 1( ν2

MHz

)2

⎤
⎥⎦ (2.86)

or

ΔτD

μs
= 4.148×109

[
DM

cm−3 pc

][
1( ν1

MHz

)2 − 1( ν2
MHz

)2

]
. (2.87)

Since both the time delay ΔτD and the observing frequencies ν1 and ν2 can be
measured with high precision, a very accurate value of DM for a given pulsar can
be determined from

DM
cm−3 pc

= 2.410×10−4
(
ΔτD

s

)[
1( ν1

MHz

)2 − 1( ν2
MHz

)2

]−1

. (2.88)

Provided the distance L to the pulsar is known, this gives a good estimate of the
average electron density between observer and pulsar. However since L is usually
known only very approximately, only approximate values for N can be obtained in
this way. Quite often the opposite procedure is used: From reasonable guesses for
N, a measured DM provides information on the unknown distance L to the pulsar.

Dispersion in the ISM, combined with a finite pulse width, sets a limit to the fine
structure on can resolve in a pulse. The frequency dependence of the pulse arrival
time is τD from (2.83). This gives a condition for the bandwidth b needed to resolve
a time feature τ

b
MHz

= 1.205×10−4 1[
DM

cm−3 pc

] [ ν
MHz

]3 τ
s

. (2.89)

Since the pulses will have a finite width in both time and frequency, a differential
form of (2.89) will give a limit to the maximum bandwidth that can be used at a
given frequency and DM if a time resolution τ is wanted. This will be re discussed
in the context of pulsar back ends.

Problems

1. There is a proposal to transmit messages to mobile telephones in large U.S. cities
from a transmitter hanging below a balloon at an altitude of 40 km. Suppose the
city in question has a diameter of 40 km. What is the solid angle to be illuminated?



36 2 Electromagnetic Wave Propagation Fundamentals

Suppose mobile telephones require an electric field strength, E, of 200μV per meter.
If one uses S = E2/R with R = 50,Ω, what is the E field at the transmitter? How
much power must be transmitted? At what distance from the transmitter would the
microwave radiation reach the danger level, 10 mW cm−2?

2. Radiation from an astronomical source at a distance of 1.88 kpc, (= 7.1 ×
1021 cm) has a flux density of 103 Jy over a frequency band of 600 Hz. If it is
isotropic, what is the power radiated? Suppose the source size is 1 milli arc sec-
ond (see (1.34)). What is the value of Tb? Compare to the surface temperature of an
O star ≈40,000 K.

3. A plane electromagnetic wave perpendicularly approaches a surface with con-
ductivity σ . The wave penetrates to a depth of δ . Apply (2.25), taking σ � ε/4π ,
so ∇2E = (4πσμ/c2) Ė. The solution to this equation is an exponentially decaying
wave. Use this to estimate the 1/e penetration depth, δ .

4. Estimate the value of δ = c/
√

4πσμω for copper, which has (in CGS units)
σ = 1017 s−1, and μ ≈ 1, for ν = 1010 Hz.

5. Suppose that vphase = c√
1−(λ0/λc)2

. What is vgroup? Evaluate both of these quanti-

ties for λ0 = 1
2 λc.

6. There is a 1 D wave packet. At time t=0, the amplitudes are distributed as
a(k) = a0 exp(−k2/(Δk)2), where a0 and Δk are constant. From the use of Fourier
transform relations in Appendix B, determine the product of the width of the wave
packet, Δk, and the width in time, Δ t.

7. Repeat problem 7 with a(k) = a0 exp(−(k− k0)2/(Δk)2).

8. Repeat problem 7 for a(k) = a0 for k1 < k < k2, otherwise a(k) = 0.

9. Assume that pulsars emit narrow periodic pulses at all frequencies simultane-
ously. Use (2.83) to show that a narrow pulse (width of order ∼10−6 s) will traverse
the radio spectrum at a rate, in MHz s−1, of ν̇ = 1.2×10−4 (DM)−1 ν [MHz]3.

10. (a) Show that using a receiver bandwidth B will lead to the smearing of a very
narrow pulse, which passes through the ISM with dispersion measure DM, to a
width Δ t = 8.3×103 DM [ν [(MHz)]−3 B s.
(b) Show that the ionosphere (electron density 105 cm−3, height 20 km) has little
influence on the pulse shape at 100 MHz.

11. (a) Show that the smearing Δ t, in milli seconds, of a short pulse is (202/νMHz)3

DM ms per MHz of receiver bandwidth.
(b) If a pulsar is at a distance of 5 kpc, and the average electron density is 0.05 cm−3,
find the smearing at 400 MHz. Repeat for 800 MHz.

12. Suppose you would like to detect a pulsar located at the center of our Galaxy.
The pulsar may be behind a cloud of ionized gas of size 10 pc, and electron density
103 cm−3. Calculate the dispersion measure, DM. What is the bandwidth limit if the
observing frequency is 1 GHz, and the pulsar frequency is 30 Hz?
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13. A typical value for DM is 30 cm−3 pc, which is equivalent to an electron column
density of 1020 cm−2. For a frequency of 400 MHz, use (2.87) to predict how much
a pulse will be delayed relative to a pulse at an infinitely high frequency. Repeat for
a frequency of 1000 MHz.

14. To resolve a pulse feature with a width of 0.1 μs at a received frequency of
1000 MHz and DM = 30 cm−3 pc, what is the maximum receiver bandwidth?



Chapter 3
Wave Polarization

3.1 Vector Waves

In the preceding Chapter we have shown that plane electromagnetic waves in a
dielectric medium are transverse and that the x and the y component of both E and
H for a wave propagating in the z direction obey the same wave equation. For the
sake of simplicity, we have investigated the propagation of only one component
of these fields. In this Chapter, we present the theory of polarization. This can be
caused by a number of mechanisms that will be presented in Chaps. 10 and 11.
In the references for this Chapter are a few papers that present the analysis and
interpretation of polarization data.

In general both the x and the y component have to be specified but, in a strictly
monochromatic wave, they are not independent, since both share the same harmonic
dependence, although with a different phase:

Ex = E1 cos(kz−ωt +δ1) ,

Ey = E2 cos(kz−ωt +δ2) ,

Ez = 0 . (3.1)

Here k = 2π/λ , where λ is the wavelength in cm, and ω = 2πν , where ν is
frequency in Hz. Regarding (Ex,Ey,z) as the coordinates of a point in a rectangular
coordinate system we find that (3.1) describes a helical path on the surface of a
cylinder. The cross section of this cylinder can be determined by eliminating the
phase of this wave, abbreviated by

τ = kz−ωt . (3.2)

Rewriting the first two equations of (3.1) as
Ex

E1
= cosτ cosδ1 − sinτ sinδ1 ,

Ey

E2
= cosτ cosδ2 − sinτ sinδ2

(3.3)

gives

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 39
DOI 10.1007/978-3-540-85122-6 3, c© Springer-Verlag Berlin Heidelberg 2009
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Ex

E1
sinδ2 −

Ey

E2
sinδ1 = cosτ sin(δ2 −δ1) ,

Ex

E1
cosδ2 −

Ey

E2
cosδ1 = sinτ sin(δ2 −δ1) .

Squaring and adding we obtain

(
Ex

E1

)2

+
(

Ey

E2

)2

−2
Ex

E1

Ey

E2
cosδ = sin2 δ

δ = δ1 −δ2 .

(3.4)

(3.5)

This is the equation of an ellipse, since the discriminant is not negative
∣∣∣∣∣∣∣∣∣

1

E2
1

−cosδ
E1E2

−cosδ
E1E2

1

E2
2

∣∣∣∣∣∣∣∣∣
=

1− cos2 δ
E2

1 E2
2

=
sin2 δ
E2

1 E2
2

≥ 0 . (3.6)

The wave is said to be elliptically polarized, and this applies to both the electric
and the magnetic field of the wave; sinδ determines the sense in which the electric
vector rotates.

The ellipse (3.4) usually is arbitrarily oriented with respect to the coordinate sys-
tem. Its geometric properties are seen best by selecting a coordinate system oriented
along the major and minor axes (Fig. 3.1). In this system the ellipse equation is

Eξ = Ea cos(τ+δ ) ,

Eη = Eb sin(τ+δ ) ,
(3.7)

and the relation between the coordinate systems (x,y) and (ξ ,η) is given by the
linear transformation

Eξ = Ex cosψ+Ey sinψ ,

Eη = −Ex sinψ+Ey cosψ .
(3.8)

Fig. 3.1 The polarization
ellipse for the electric vector,
E, of an elliptically polarized
wave
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The intrinsic parameters of the polarization ellipse Ea and Eb, as well as the angle
ψ by which the major axis is tilted with respect to the x axis, can then be determined
by requiring that (3.4) transformed by (3.8) should lead to (3.7). Substituting (3.3)
and (3.7) into (3.8) while simultaneously expanding the cos(τ+δ ) term leads to

Ea (cosτ cosδ − sinτ sinδ ) = E1 (cosτ cosδ1 − sinτ sinδ1)cosψ
+E2 (cosτ cosδ2 − sinτ sinδ2)sinψ (3.9)

and

Eb (sinτ cosδ + cosτ sinδ ) = −E1 (cosτ cosδ1 − sinτ sinδ1)sinψ
+E2 (cosτ cosδ2 − sinτ sinδ2)cosψ .

(3.10)

These equations are valid for all τ , i.e. also for τ = 0 and τ = π
2 , resulting in

Ea cosδ = E1 cosδ1 cosψ+E2 cosδ2 sinψ , (3.11)

−Ea sinδ = −E1 sinδ1 cosψ−E2 sinδ2 sinψ , (3.12)

Eb cosδ = E1 sinδ1 sinψ−E2 sinδ2 cosψ , (3.13)

Eb sinδ = −E1 cosδ1 sinψ+E2 cosδ2 cosψ . (3.14)

Squaring these equations and adding we obtain

S0 ≡ E2
a +E2

b = E2
1 +E2

2 . (3.15)

Recalling (2.50), we find that this can be interpreted that the total Poynting flux of
the polarized wave is equal to the sum of the fluxes of two orthogonal, but otherwise
arbitrary directions.

Multiplying (3.11) by (3.13) and (3.12) by (3.14) and subtracting the results, we
obtain

Ea Eb = E1 E2 sinδ , (3.16)

while division and addition of the same pairs of equations result in

− (E2
1 −E2

2 )sinψ cosψ = E1E2 cosδ (sin2ψ− cos2ψ) ,

(E2
1 −E2

2 )sin2ψ = 2E1E2 cosδ cos2ψ . (3.17)

If we now define α by

E1

E2
= tanα , (3.18)

(3.17) can be rewritten as

tan2ψ =
2E1E2

E2
1 −E2

2

cosδ = − 2tanα
1− tan2α

cosδ
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or

tan2ψ = − tan2α cosδ . (3.19)

Dividing (3.16) by (3.15) results in

2EaEb

E2
a +E2

b

=
2E1E2

E2
1 +E2

2

sinδ .

Defining

Ea

Eb
= tanχ , (3.20)

(3.19) is equivalent to

sin2χ = sin2α sinδ . (3.21)

Equations (3.15, 3.18, 3.19, 3.20 and 3.21) now permit the computation of all in-
trinsic polarization properties of the elliptically polarized wave from the intensities
specified in an arbitrary coordinate system. Values for E1,E2 and δ (3.15) give S0,
the total intensity, while (3.19) combined with (3.18) allows the determination of the
angle ψ , while the angle χ is determined from (3.21). Ea and Eb can be computed
from (3.20) and (3.15).

The phase difference δ is important in several respects. Its sign determines the
sense in which the wave vector is rotating. If sinδ > 0 or equivalently tanχ > 0,
the polarization is called right-handed; conversely sinδ < 0 or tanχ < 0 describes
left-handed elliptical polarization. For right-handed polarization, the rotation of the
E vector and the direction of propagation form a right-handed screw. This conven-
tion is the one generally adopted in microwave physics and modern physical optics.
According to this definition, right-handed helical beam antennas radiate or receive
right-circular polarization, a result which is easy to remember. Traditional optics
used a different definition resulting in just the opposite sense of rotation based on
the apparent behavior of E when “viewed” face-on by the observer. Here we will
follow the modern definition, but care should be taken when comparing some of our
results with those in older texts.

If the phase difference is

δ = δ1 −δ2 = mπ , m = 0,±1,±2 . . . (3.22)

the polarization ellipse degenerates into a straight line and E is linearly polarized.
As we have seen, an elliptically polarized wave can be regarded as the superposition
of two orthogonal linearly polarized waves.

Another important special case is that of a circularly polarized wave. For this

E1 = E2 = E (3.23)
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and

δ =
π
2

(1+m) , m = 0,1,±2±3, · · · , (3.24)

so that (3.4) reduces to the equation of a circle

E2
x +E2

y = E (3.25)

with the orthogonal linear components

Ex = E cosτ ,

Ey = ±E cos

(
τ− π

2

)
. (3.26)

From this we see that an arbitrary elliptically polarized wave can be decomposed
into the sum of two circularly polarized waves, because (3.7) can be written as

Eξ = Ea cos(τ+δ ) = (Er +El)cos(τ+δ ) ,

Eη = Eb sin(τ+δ ) = (Er −El)cos

(
τ+δ − π

2

)
.

Solving for Er and El , we find that
Er = 1

2 (Ea +Eb) ,

El = 1
2 (Ea −Eb) ,

(3.27)
and, for the total Poynting flux of the wave, we obtain

S0 = E2
a +E2

b = E2
r +E2

l . (3.28)

3.2 The Poincaré Sphere and the Stokes Parameters

The results of the preceding section show that three independent parameters are
needed to describe the state of the polarization of a monochromatic vector wave.
For this we have introduced several sets of parameters:

1) the amplitudes E1,E2 and the relative phase δ of two orthogonal, linearly polar-
ized waves;

2) the amplitudes Er and El , and the relative phase δ of a right- and a left-hand
circularly polarized wave;

3) the major and minor axis Ea,Eb and the position angle ψ of the polarization
ellipse.

Poincaré (1892) introduced another representation that permits an easy visual-
ization of all the different states of polarization of a vector wave. If we interpret
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Fig. 3.2 A sketch which
illustrates the definition of the
Stokes parameters

the angles 2ψ of (3.19) and 2χ of (3.21) as longitude and latitude on a sphere with
the radius S0 of (3.15) there is a one-to-one relation between polarization states and
points on the sphere (Fig. 3.2). The equator represents linear polarization; the north
pole corresponds to right-circular and the south pole to left-circular polarization
(Fig. 3.3).

There is a natural relation between the Poincaré sphere and the Stokes parame-
ters (1852). These are the Cartesian coordinates of the points on the sphere with the
definitions:

Fig. 3.3 Polarization and the Poincaré sphere. Considering the angles 2ψ and 2χ as angles in a
polar coordinate system, each point on the surface of the resulting sphere corresponds to a unique
state of polarization. The positions on the equator (2χ = 0) correspond to linear polarization,
those at the northern latitudes (2χ > 0) contain right-handed circular polarization, while those on
the southern hemisphere contain left-handed. If we orient the (x,y) coordinate system parallel to
Q and U , the linear polarization of the waves are oriented as indicated
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S0 = I = E2
a +E2

b

S1 = Q = S0 cos2χ cos2ψ
S2 = U = S0 cos2χ sin2ψ
S3 = V = S0 sin2χ .

(3.29)

Only three of these parameters are independent, since according to the construc-
tion of the Poincaré sphere

S2
0 = S2

1 +S2
2 +S2

3

I2 = Q2 +U2 +V 2 . (3.30)

The Stokes parameters can also be directly expressed by the parameters of the
polarization ellipse (3.4). To do this we derive from (3.18)

tan2α =
2tanα

1− tan2α
= − 2E1E2

E2
1 −E2

2

, (3.31)

cos2α =
1√

1+ tan2 2α
= −E2

1 −E2
2

E2
1 +E2

2

, (3.32)

sin2α =
2E1E2

E2
1 +E2

2

. (3.33)

Then from (3.21), using (3.33) and (3.15),

sin2χ =
2E1E2

E2
1 +E2

2

sinδ =
2E1E2

I
sinδ , (3.34)

cos2χ =
1
I

√
I2 − (2E1E2)2 sin2 δ . (3.35)

And from (3.19) with (3.31),

tan2ψ =
2E1E2

E2
1 −E2

2

cosδ (3.36)

and

cos2ψ =
1√

1+ tan2 2ψ
=

E2
1 −E2

2√
I2 − (2E1E2)2 sin2 δ

, (3.37)
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sin2ψ =
2E1E2 cosδ√

I2 − (2E1E2)2 sin2 δ
. (3.38)

Substituting (3.34), (3.35) and (3.37), (3.38) into (3.29) we then obtain the de-
sired result

S0 = I = E2
1 +E2

2

S1 = Q = E2
1 −E2

2

S2 = U = 2E1 E2 cosδ
S3 = V = 2E1 E2 sinδ .

(3.39)

These equations permit us to express the Stokes parameters directly in terms of
observable quantities. A few special cases will illustrate the principle.

1) For a right-handed circularly polarized wave we have E1 = E2 and δ = π
2 , so that

S0 = I = S ,

S1 = Q = 0 ,

S2 = U = 0 ,

S3 = V = S .

2) For a left-handed circularly polarized wave we have

S0 = I = S ,

S1 = Q = 0 ,

S2 = U = 0 ,

S3 = V = −S .

3) For a linearly polarized wave we have Eb = E and Ea = 0, so that χ = 0 and

S0 = I = E2 = S ,

S1 = Q = I cos2ψ ,

S2 = U = I sin2ψ ,

S3 = V = 0 .

Finally, one should note that so far we have implied (but not explicitely stated)
that a strictly monochromatic wave is always polarized; there is no such thing as
an unpolarized monochromatic wave. This becomes evident if we remember that
for a monochromatic plane harmonic wave, E1,E2,δ1 and δ2 are always constants.
This situation will be different when we consider quasi-monochromatic radiation, in
which ω is restricted to some small but finite bandwidth. Radiation of this kind can
be unpolarized or partially polarized. To analyze this, one must have a convenient
way to describe such radiation. This will be done in the next section.
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3.3 Quasi-Monochromatic Plane Waves

To this point, the description of the polarization properties of electromagnetic waves
applies only to strictly monochromatic waves. The problem is how to modify the
results to allow for a finite frequency interval.

Both the electric and the magnetic field intensity of the wave at a given fixed
position can then be expressed by an integral of the form

V (r)(t) =
∞∫

0

a(ν)cos[φ(ν)−2πνt] dν . (3.40)

Equation (3.40) has precisely the form of a Fourier integral. Therefore it is con-
venient to associate V (r) with the complex function

V (t) =
∞∫

0

a(ν)ei [φ(ν)−2πνt] dν , (3.41)

where

V (t) = V (r)(t)+ iV (i)(t) , (3.42)

V (i)(t) =
∞∫

0

a(ν)sin[φ(ν)−2πνt] dν . (3.43)

V (i) does not contain information not already contained in V (r). V is referred to
as the analytic signal associated with V (r). The integral in (3.41) formally extends
over an infinite range in frequency. This allows phase to be determined. Frequently
a(ν) has a form that effectively limits this range to an interval Δν which is small
compared with the mean frequency ν̄ ; i.e.,

Δν/ν̄ � 1 . (3.44)

If this condition is fulfilled, the signal is said to be quasi-monochromatic. If we
express V in the form

V (t) = A(t)ei [Φ(t)−2πν̄t] , (3.45)

A(t) will only vary slowly with t, if the bandwidth Δν of the signal is small. How-
ever, even this variation is often too rapid to be directly measured; all that is really
needed is some kind of time average. Such an average will be denoted by 〈· · · 〉:

〈F(t)〉 = lim
T→∞

1
2T

T∫
−T

F(t) dt (3.46)
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so that

〈A2(t)〉 = 〈VV ∗〉 = lim
T→∞

1
2T

T∫
−T

V (t)V ∗(t) dt . (3.47)

If we require that 〈A2〉 has a finite value, then
∫ ∞
−∞VV ∗ dt diverges. However,

according to Wiener (1949), the techniques of Fourier analysis can be extended to
such a generalized harmonic analysis; therefore we will assume that time averaged
values for A can be computed from (3.47) This will be rediscussed in Sect. 4.1. We
give an example of a quasi-monochromatic wave in problem 8 f f .

3.4 The Stokes Parameters for Quasi-Monochromatic Waves

The observable intensity of a wave is given by its time averaged Poynting flux which
is, apart from a constant that is of no importance in this connection given by

I(P) = 〈V (P, t)V ∗(P, t)〉 . (3.48)

Let us now consider a quasi-monochromatic wave of frequency ν propagating in
the z direction:

Ex(t) = a1(t)ei(φ1(t)−2πν̄ t) , Ey(t) = a2(t)ei(φ2(t)−2πν̄ t) (3.49)

where Ex and Ey are the analytic signals associated with the components E(r)
x (t) =

a1(t)cos[φ1(t)−2πν̄ t] and E(r)
y (t) = a2(t)cos[φ2(t)−2πν̄ t]. If the y component is

retarded in phase by ε relative to the x component, then the electric vector in the θ
direction is

E(t;θ ,ε) = Ex cosθ +Ey eiε sinθ (3.50)

and the intensity in this polarization angle is

I(θ ,ε) = 〈E(t;θ ,ε)E∗(t;θ ,ε)〉 , (3.51)

The Stokes parameters of a quasi-monochromatic wave are straightforward gen-
eralizations of the expressions in (3.39). For the wave field (3.49), they are

S0 = I = 〈a2
1〉+ 〈a2

2〉
S1 = Q = 〈a2

1〉−〈a2
2〉

S2 = U = 2〈a1a2 cosδ 〉
S3 = V = 2〈a1a2 sinδ 〉 .

(3.52)

and these can be calculated from 6 intensity measurements. Using (3.51) we find
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S0 = I = I(0◦,0)+ I(90◦,0)

S1 = Q = I(0◦,0)− I(90◦,0)

S2 = U = I(45◦,0)− I(135◦,0)

S3 = V = I(45◦, π2 )− I(135◦, π2 ) .

(3.53)

These are the relationships used to analyze the outputs of radio polarimeters. We
will return to this later. For partially polarized light we find from (3.52)

S2
0

>= S2
1 +S2

2 +S3
3

I2 >= Q2 +U2 +V 2 (3.54)

instead of (3.30), which is valid for strictly monochromatic waves. It is then easy to
express the degree of polarization

p =

√
S2

1 +S2
2 +S3

3

S0
. (3.55)

The Stokes parameters of the superposition of several independent vector waves
will be the sum of the Stokes parameters of the individual waves.

3.5 Faraday Rotation

In 1845, Faraday detected that the polarization angle of dielectric materials will
rotate if a magnetic field is applied to the material in the direction of the light propa-
gation. This indicated to him that light must be an electromagnetic phenomenon. In
radio astronomy this Faraday rotation has become an important tool to investigate
the interstellar magnetic field (see, e.g., Fig. 3.4). As shown in Sect. 2.8 interstellar
gas must be treated as a tenuous plasma. Wave propagation in such a medium in
the presence of an external magnetic field is a rather complicated subject with many
different wave modes, cut-offs, etc. It is treated rather extensively in most textbooks
on plasma physics and we refer to a few of these in the reference list for this chapter.

Here we will disregard all these complications and treat only the one remaining
mode in the high-frequency limit where the frequency of the electromagnetic wave
is well above all the resonances, though still low enough that the interaction of the
free electrons in the plasma with the external magnetic field cannot be neglected
altogether. Since the effects of wave propagation in the direction of the magnetic
field are so much larger than those of propagation perpendicular to the field, only
this case will be considered.

In Sect. 2.7, we have obtained the dispersion equation linking wave number
k = 2π/λ , and circular frequency ω = 2πν for wave propagation in a dispersive
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Fig. 3.4 A plot of the line-of-sight magnetic field strength determined from Faraday rotation.
From the rotation measure and dispersion measure one can obtain the column density of electrons.
This data is for pulsars with distances < 3 kpc. Positive fields are shown by filled circles, negative
fields by open circles. The size of the symbols are proportional to field strength [adapted from
Backer, in Verschuur and Kellermann (1988)]

medium. In Sect. 2.8, we studied wave propagation in a tenuous plasma by examining
the effects of the conductivity σ on an electromagnetic wave in a medium with free
electrons. Here we will repeat this process but will include an external magnetic
field.

To be exact, the material constants ε,μ and σ should be treated as tensors with 9
components each. However, by choosing a small angle between the direction of the
magnetic field and the propagation direction and a high enough frequency, we can
use scalar values for ε,μ and σ .

We assume that the interstellar gas is a tenuous plasma with free electrons and
ions. As in Sect. 2.8, only electrons need to be considered, since the motion of the
ions is at least three orders of magnitude less than that of the electrons. The equation
of motion for an electron in the presence of a magnetic field B is

m v̇ = m r̈ = −e(E+
1
c

ṙ×B) . (3.56)

If the magnetic field B is oriented in the z direction (3.56) becomes

r̈x +
e

mc
Bṙy = − e

m
Ex

r̈y −
e

mc
Bṙx = − e

m
Ey .

(3.57)

Multiplying (3.57) by the factors 1 and ± i and adding, this becomes

r̈±∓ i
e

mc
Bṙ± = − e

m
E±

r± = rx ± iry

E± = Ex ± iEy .

(3.58)
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Equation (3.58) is a differential equation for the complex quantities r and E.
Depending on the sign of i(e/mc)Bṙ, we distinguish between the solutions E+ and
E−. These can be regarded as circularly polarized waves because the rectangular
coordinates are given by

Ex =
1
2

(E+ +E−) , Ey =
1
2i

(E+ −E−) . (3.59)

To obtain solutions of (3.58) in the form of a harmonic wave we put

E± = A ei(k±z−ωt) (3.60)

where A is assumed to be real. Inserting this into (3.58), we see a solution for r of
the form

r± = r0 ei(k±z−ωt) (3.61)

with r0 being in general a complex quantity. This is possible provided that

r±
(
−ω2 ∓ e

mc
Bω

)
= − e

m
E±

or

r± =
− e

m

−ω2 ∓ e
mc Bω

E± (3.62)

and

ṙ± =
i e

m

−ω2 ∓ e
mc Bω

ωE± .

Thus, we find a current density

| J |= −Neṙ± = i
Ne2

m
(
ω± e

mc
B
)E± = σ±E±

with

σ± = i
Ne2

m
(
ω± e

mc
B
) . (3.63)

The conductivity therefore is purely imaginary. For ω = ωc, where

ωc =
e

mc
B

νc =
e

2πmc
B

(3.64)
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is the cyclotron frequency, the frequency of the wave is in resonance with the gyra-
tion frequency of the electrons in the magnetic field. Then | σ− |→ ∞, and the E−
wave cannot propagate. This is seen most easily when (3.63) is substituted in the
dispersion equation (2.63), again assuming ε ∼= 1 and μ ∼= 1. Then

k2
± =

ω2

c2

(
1−

ω2
p

ω(ω±ωc)

)
, (3.65)

where we have introduced the plasma frequency (2.76). The index of refraction thus
becomes according to (2.33)

n2
± = 1−

ω2
p

ω(ω±ωc)
, (3.66)

and consequently, the two modes E+ and E− have slightly different phase propaga-
tion velocities v± = c/n±. Then the two circularly polarized waves E+ and E− will
have a relative phase difference 2Δψ after a propagation length Δz given by

2Δψ = (k+ − k−)Δz . (3.67)

The two circularly polarized waves can be superposed to form an elliptically
polarized wave. If one does this first for the original wave, and then after the wave
has left the slab Δz, we find that the polarization angle has changed by Δψ .

Truncating the series expansions of (3.65) after the second term, which is per-
missible for ω � ωp and ω � ωc, we obtain

Δψ =
ω2

pωc

2cω2Δz =
2πNe3B
m2cω2 Δz . (3.68)

For a finite slab with variable density N(z) and magnetic flux density B(z), we
thus obtain the total rotation of the polarization direction

Δψ =
e3

2πm2c
1
ν2

L∫
0

B‖(z)N(z)dz . (3.69)

In astronomy a system of mixed units is usually employed. Using this system, we
have

Δψ
rad

= 8.1×105
(
λ
m

)2 L/pc∫
0

(
B‖

Gauss

)(
Ne

cm−3

)
d

(
z

pc

)
. (3.70)
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The dependence of Δψ on ν−2 can be used to determine the value of
∫

BN dz from
the measurement of the polarization direction at two frequencies:

RM
radm−2 = 8.1×105

L/pc∫
0

(
B‖

Gauss

)(
Ne

cm−3

)
d

(
z

pc

)

=

(
Δψ1

rad

)
−
(
Δψ2

rad

)
(
λ1

m

)2

−
(
λ2

m

)2

. (3.71)

In this expression the unknown intrinsic polarization angle of the source cancels.
The units of RM are radians per m2, and positive RM indicates that B‖ points toward
us. Equation (3.71) can, conversely, be used to determine the intrinsic polarization
angle from (3.70) and thus be used to correct the measured polarization. For pulsars,
one can combine the values of RM from the Faraday rotation of pulsars and DM,
from the pulse dispersion from (2.85). The resulting ratio gives the average magnetic
field parallel to the line-of-sight

B̄‖
Gauss

= 1.23×10−6 RM
DM

. (3.72)

If there are line-of-sight reversals, B‖ is a lower limit to the actual value. Results
for pulsars at distances less than 3 kpc show a scatter, but in the galactic longitude
range 0◦ to 180◦, the direction of B̄‖ is away from the Sun, and at longitudes 180◦ to
360◦, towards the Sun. This is in the sense of galactic rotation. The B̄‖ fields obtained
from pulsar studies are in the range of 0.3 μGauss to 3 μGauss. Faraday rotation
measurements in our galaxy can be affected by field reversals. This is especially the
case for the inner parts of our galaxy, where reversals in B field direction are thought
to be present.

Problems

1. A source is 100% linearly polarized in the north–south direction. Express this in
terms of Stokes parameters.

2. If the degree of polarization is 10% in Eq. (3.55) with S3=0, S1=S2 in Eq. (3.53),
what is the state of polarization?

3. Intense spectral line emission at 18 cm wavelength is caused by maser action of
the OH molecule. At certain frequencies, such emission shows nearly 100% circu-
lar polarization, but little or no linear polarization. Express this in terms of Stokes
parameters.
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4. Determine the upper limit of the angle through which a linearly polarized elec-
tromagnetic wave is rotated when it traverses the ionosphere. (a) Find RM using
(Eq. (3.73)) with the following parameters: an ionospheric depth of 20 km, an av-
erage electron density of 105 cm−3 and a magnetic field strength (assumed to be
parallel to the direction of wave propagation) of 1 G.
(b) Carry out the calculation for the Faraday rotation, Δψ , for frequencies of
100 MHz, 1 GHz and 10 GHz, if the rotation is Δψ/rad = (λ/m)2 RM.
(c) What is the effect if the magnetic field direction is perpendicular to the direction
of propagation? What is the effect on circularly polarized electromagnetic waves?
(d) Repeat for the conditions which hold in the solar system: the average charged
particle density in the solar system is 5 cm−3, the magnetic field 5μG and the av-
erage path 10 AU (=1.46 × 1014 cm). What is the maximum amount of Faraday
rotation of an electromagnetic wave of frequency 100 MHz, 1 GHz? Must radio as-
tronomical results be corrected for this?

5. A 100% linearly polarized interstellar source is 3 kpc away. The average electron
density in the direction of this source is 0.03 cm−3. The magnetic field along the
line-of-sight direction, B‖, is 3μG. What is the change in the angle of polarization
at 100 MHz, at 1 GHz?

6. A right hand circularly polarized electromagnetic wave is sent perpendicular to a
perfectly conducting metallic flat surface. The electromagnetic energy must be zero
inside this conductor.
(a) Use a qualitative argument to show that the sense of the polarization of the
reflected wave is opposite to that of the incoming wave.
(b) What is the effect of reflection on a linearly polarized signal?

7. If the DM for a given pulsar is 50, and the value of RM is 1.2×102, what is the
value of the average line-of-sight magnetic field? If the magnetic field perpendicular
to the line of sight has the same strength, what is the total magnetic field

8. Consider a quasi-monochromatic wave with Δν/ν̄ = 0.1 and ν = ν0, a constant.
Use (3.42) with a(ν)=a0, a constant, and φ(ν̄ + μ) = φ0 likewise a constant. With
these values, calculate A(t). This is an idealization, however is a commonly used
approximation to describe wide band signals limited by narrow filters.

9. Repeat problem 8 for the function

a(ν) = a0 e

(
(ν−ν0)2

Δν2

)
.

Show that Δν Δ t=1.



Chapter 4
Signal Processing and Receivers: Theory

In this chapter, we cover some general topics concerned with signal processing and
noise analysis (Sects. 4.1 and 4.2). These are needed to understand the general prop-
erties of radiometers. It is not expected that these topics will change greatly with
time. Specifics of actual receivers will be presented in the next chapter. It is essen-
tial to have a working knowledge of Fourier transforms in order to make use of the
concepts presented in Chaps. 4–8. We give a summary of the relevant concepts of
Fourier transforms (FT) in Appendix B, including convolutions and related topics.

4.1 Signal Processing and Stationary Stochastic Processes

The concept of spectral power density was introduced in Chap. 1 in a purely phe-
nomenological way. Radio receivers are devices that measure spectral power den-
sity. A detailed understanding of the principles governing the operation of certain
receivers, such as autocorrelation spectrometers, as well as the discussion of the
limiting receiver sensitivity is possible only if this concept is discussed more thor-
oughly.

In the preceding chapters, the signals considered were periodic functions of the
time which could be conveniently expressed as the superposition of simple har-
monic functions of time. It is now necessary to consider a more general class of
time variable functions; that is, those allowing representations of signals as station-
ary random processes, x(t). The signal x(t) is a function of time t, but it is not fully
determined. One can only specify certain statistical properties of the signal.

4.1.1 Probability Density, Expectation Values and Ergodicity

Perhaps the most important of these statistical quantities is the probability density
function, p(x), which gives the probability that at any arbitrary moment of time
the value of the process x(t) falls within an interval (x− 1/2dx, x + 1/2dx). For a
stationary random process, p(x) will be independent of the time t.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 55
DOI 10.1007/978-3-540-85122-6 4, c© Springer-Verlag Berlin Heidelberg 2009
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The expected value E{x} or mean value of the random variable x is given by the
integral

E{x} =
∞∫

−∞

x p(x)dx (4.1)

and, by analogy, the expectation value E{ f (x)} of a function f (x) is given by

E{ f (x)} =
∞∫

−∞

f (x) p(x)dx . (4.2)

This is different from the expected value of the transformation y = f (x)

E{y} =
∞∫

−∞

y py(y)dy =
∞∫

−∞

f (x) px(x)
dx

| f ′(x)| . (4.3)

Frequently encountered expected values are the mean value

μ = E{x} (4.4)

and the variance or dispersion

σ2 = E{x2}−E2{x} . (4.5)

Another average that can be formed for a stationary random process is the time
average of the values of the function f . This average will be designated (as in earlier
chapters) by acute brackets:

〈 f (x)〉 = lim
T→∞

1
2T

T∫
−T

f (x(t))dt . (4.6)

There are stochastic signals for which this limit does not exist. However, condi-
tions can be formulated [the ergodic theorem of Birkoff, see Khinchin (1949)] so
that the results of the definitions (4.2) and (4.6) agree. We will assume this to be the
case in the following.

4.1.2 Autocorrelation and Power Spectrum

The concept of Fourier Transforms plays a fundamental role in many branches of
physics and engineering, and it is convenient to use this in the discussion of noise
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signals. However, there are difficulties in doing this because a stationary time series
does not decrease to zero for t →±∞. Therefore the simple definition for the FT

X(ν) = lim
T→∞

1/2T∫

−1/2T

x(t)e−2π iν t dt (4.7)

does not exist; the integral varies irregularly as T increases. As first shown by
N. Wiener, the concept of the Cesaro sum of an improper integral can be used to
advantage in this situation. The Cesaro sum is defined as

∞∫
−∞

A(x)dx = lim
N→∞

1
N

N∫
0

⎡
⎣

r∫
−r

A(x)dx

⎤
⎦dr , (4.8)

that is, as the limit of the average over the finite integrals. This limit will exist for
a wide class of functions where the ordinary improper integral does not exist. For
those cases where the ordinary limit exists, this will equal the Cesaro sum, as can
be seen if the sequence of the integrations in (4.8) is interchanged using Dirichlet’s
theorem on repeated integrations (see Whittaker and Watson, Sect. 4.3):

1
N

N∫
0

⎡
⎣

r∫
−r

A(x)dx

⎤
⎦dr =

N∫
−N

(
1− |x|

N

)
A(x)dx . (4.9)

For any finite section of a stochastic time series we can define the Fourier trans-
form

XT (ν) =

1/2T∫

−1/2T

x(t)e−2π iν t dt .

The mean-squared expected value is

ET
{
|X(ν)|2

}
= E

⎧⎪⎨
⎪⎩

1/2T∫

−1/2T

1/2T∫

−1/2T

x(s)x(t)e−2π iν (t−s) dsdt

⎫⎪⎬
⎪⎭ . (4.10)

Because x(t) is assumed to be stationary, we must have

RT (τ) = ET {x(s)x(s+ τ)} = ET {x(t − τ)x(t)} (4.11)

where RT (τ) is the autocorrelation function (ACF). Introducing the ACF into the
above expression and performing the integration with respect to s, we find
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ET
{
|X(ν)|2

}
= T

T∫
−T

(
1− |τ|

T

)
RT (τ)e−2π iν τ dτ . (4.12)

But the right-hand side is a Cesaro sum, and therefore by defining the power
spectral density (PSD), S(ν), as

S(ν) = lim
T→∞

1
T

ET
{
|X(ν)|2

}
, (4.13)

we obtain from (4.12)

S(ν) =
∞∫

−∞

R(τ)e−2π iν τ dτ . (4.14)

This is the Wiener-Khinchin theorem stating that the ACF, R(τ), and the PSD,
S(ν), of an ergodic random process are FT pairs (see a graphical representation in
Fig. 4.1). Taking the inverse FT of (4.14) we obtain

R(τ) =
∞∫

−∞

S(ν)e2π iν τ dν . (4.15)

Fig. 4.1 A sketch of the relation between the voltage input as a function of time, V (t), and fre-
quency, V (ν), with the autocorrelation function, ACF, R(τ), and corresponding power spectral
density, PSD, S(ν). The two-headed arrows represent reversible processes
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Thus the total power transmitted by the process is given by

R(0) =
∞∫

−∞

S(ν)dν = E
{

x2(t)
}

. (4.16)

The limit T →∞ of the autocorrelation function (ACF) RT (τ) can be found using
the Cesaro sum resulting in

R(τ) = E {x(s)x(s+ τ)} = lim
T→∞

T∫
−T

(
1− |s|

2T

)
x(s)x(s+ τ)ds . (4.17)

Using the concept of ensemble average, this can also be written as

R(τ) =
∞∫ ∫

−∞
x1(s)x2(s+ τ) p(x1,x2;τ)dx1 dx2 (4.18)

where p(x1,x2;τ) is the joint probability density function for the appearance of val-
ues x1 and x2 which are separated by the time τ . For ergodic stationary processes,
(4.17) and (4.18) lead to identical results, but sometimes one or the other is easier
to apply.

Applications of these concepts will be illustrated in the following two sections in
which we illustrate the influence that linear systems and square-law detectors have
on a random process. The results for square law detectors will be used later in the
discussion of the limiting sensitivity of radio receivers. A schematic representation
of these concepts is given in Fig. 4.2.

4.1.3 Linear Systems

Let the signal x(t) be passed through a fixed linear filter whose time response to a
unit impulse δ (t) is h(t), see (Fig. 4.2). The output of this system is the convolution
of x(t) with h(t) that is,

y(t) =
∞∫

−∞

x(t − τ)h(τ)dτ =
∞∫

−∞

x(τ)h(t − τ)dτ . (4.19)

Fig. 4.2 A schematic diagram
to illustrate the analysis of
noise in a linear system. The
symbols above represent the
time behavior, those below
the frequency behavior
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In physical systems the impulse response h(t) = 0 for t < 0. This permits a corre-
sponding change of the integration limits in (4.19). However, in the following it will
not be necessary to make this assumption.

The FT of the filter response is

H(ν) =
∞∫

−∞

h(t)e−2π iν t dt . (4.20)

Taking the expectation value of (4.19) and exchanging the order of expectation
value and integration we find

E {y(t)} =
∞∫

−∞

E {x(t − τ)} h(τ)dτ (4.21)

or using (4.4)

E {y(t)} = μy = E {x(t)}
∞∫

−∞

h(τ)dτ . (4.22)

With (4.20) this can be written as

μy = H(0)μx (4.23)

showing how the mean value of a stochastic process will be affected if passed
through a linear system. If the mean value of the input signal is zero, this will also
be true for the output signal.

The autocorrelation Ryy(τ) of the output y(t) is most easily determined by first
considering the cross-correlation Rxy(τ) between x(t) and y(t). Multiplying both
sides of (4.19) by x(t −ϑ) we have

y(t)x(t −ϑ) =
∞∫

−∞

x(t − τ)x(t −ϑ)h(τ)dτ . (4.24)

But

E{x(t − τ)x(t −ϑ)} = Rxx((t − τ)− (t −ϑ)) = Rxx(ϑ − τ) .

Taking the expectation value of both sides of (4.24) and again exchanging inte-
gration and expectation value, we get

E{y(t)x(t −ϑ)} =
∞∫

−∞

Rxx(ϑ − τ)h(τ)dτ .



4.1 Signal Processing and Stationary Stochastic Processes 61

This integral is obviously time independent and equal to the convolution of Rxx(τ)
with h(τ); the left side is the cross-correlation of y(t) and x(t), so that

Ryx(τ) = Rxx(τ)⊗h(τ) , (4.25)

where ⊗ indicates convolution. Multiplying (4.19) by y(t +ϑ) we have

y(t +ϑ)y(t) =
∞∫

−∞

y(t +ϑ)x(t − τ)h(τ)dτ

and

Ryy(ϑ) =
∞∫

−∞

Ryx(ϑ + τ)h(τ)dτ = Ryx(ϑ)⊗h(−ϑ) . (4.26)

From the definition of ACF,

Rxy(τ) = Ryx(τ) ,

if we combine (4.25) and (4.26), we obtain

Ryy(τ) = Rxx(τ)⊗h(τ)⊗h(−τ) . (4.27)

written in full, this is

Ryy(τ) =
∞∫

−∞

Rxx(τ− t)

⎡
⎣

∞∫
−∞

h(ϑ + t)h(ϑ)dϑ

⎤
⎦ dt .

Therefore, in order to compute a single value of the output autocorrelation func-
tion (ACF) of a linear filter, the entire input ACF must be known.

If we take the FT of (4.27) we obtain the following relation for the input and
output power spectral densities

Sy(ν) = Sx(ν) |H(ν)|2 . (4.28)

4.1.4 Filters

Filters are devices that limit the frequencies passed through a system or change
the phase of an input. Filters can be grouped in a number of categories. The most
commonly encountered are the following:

1) A band pass filter allows a range of frequencies, νmin < ν < νmax to pass further
in the system
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2) A low pass filter allows a range of frequencies up to but not beyond a specified
frequency, ν < νmax to pass further in the system.

3) A high pass filter allows a range of frequencies, ν > νmax to pass further in the
system.

4) A band stop filter eliminates a range of frequencies, νmin < ν < νmax from the
system.

5) An all pass filter allows all of the input frequencies to pass further, but changes
the phase of the input signal.

The properties of such filters are more easily appreciated in plots of their fre-
quency behavior rather than time behavior. Such filters may be either analog or
digital. One example relevant for the following is a low pass filter. Low pass filters
allow frequencies 0 < ν < νmax to pass unchanged to the digitization and sampling
stage. This is usually referred to as a Video band. In practical systems, the D. C.
term is not passed in order to avoid large offsets.

4.1.5 Digitization and Sampling

The essential part of any digital system is the device that produces a digital output
from the analog input. Functionally, the operation of such devices can be divided
into two parts:

1) Analog-to-Digital converters (A/D converters) and
2) Samplers.

In both cases, the input is usually in the video band, that is, from very close to zero
frequency to a maximum frequency, which we call B.

First, the signal is digitized in an A/D converter. The quality of an A/D converter
depends on the speed at which it operates (in either MHz or GHz) and the accuracy
used to determine the amplitude of the result (the quantization usually expressed in
bits). Commercial A/D converters typically have quantizations of 8–12 bits but can
accomodate only relatively narrow input bandwidths. In Fig 4.3, we show a one bit
(2 level) and two bit (4 level) quantization of an analog function. The one bit quan-
tization of the input results in a positive or negative output level. This is referred to
as “hard clipping”; this will result in a lower signal-to-noise ratio since only part
of the information contained in the input is retained. Remarkably the properties of
the input can be recovered, albeit with a lower S/N ratio. The mathematical details
(first derived by Van Vleck) of the recovery from the input from hard clipped data
are given in Appendix C. Clearly multi-level quantization of an input will preserve
more information, and will thus result in an improved signal-to-noise ratio. An im-
proved but still simple scheme uses a 3 level (sometimes called 1.5 bit) digitization.
This scheme allows a differentiation between amplitudes that are very positive, very
negative, positive or negative but close to zero. The limits chosen for 4 level (2 bit)
digitization are: (1) larger than +1σ , (2) between +1σ and 0, (3) between 0 and
−1σ , and (4) lower than −1σ . For a multi-level output, the reconstruction of the
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Fig. 4.3 A sketch to illustrate
the digitization in an analog-
to-digital converter (A/D
converter). In (a) we show the
analog input. In (b) is shown
the one bit digitization of the
input. In (c) is shown the 2 bit
digitization

input is usually based on tables generated from computer simulations. In all practi-
cal versions of such devices, there is a long term (i.e. a few seconds) average of the
input that is used to compensate the input so that the average does not drift far from
a given value, usually zero. A recent application in radio astronomy is the A/D con-
verter designed by Recoquillon et al. (2005). For a video input, the low frequency
side of the input band is usually not well determined and DC offsets become im-
portant. The ALMA (Atacama Large Millimeter Array) design operates between 2
and 4 GHz for this reason. The ALMA the A/D converter operates at a rate of 4
Gigasamples per second.

Second, the digitized function must be sampled at regular intervals. The sam-
pling of a sinusoid is shown in Fig. 4.4. In this example, the maximum frequency of
the input is ν0. Samples of this function are shown for rates of 2ν0 and 4ν0. Given
an input from 0 Hz to B Hz, the sampling rate, ν0, must be ν0 = 2B to characterize
the sinusoid, that is, at twice the highest frequency to be analyzed. This is referred
to as the Nyquist Sampling Rate. Clearly a higher sampling rate can only improve
the characterization of the input. The sampling functions must occupy an extremely
small time interval. A higher sampling rate will allow the input to be better charac-
terized, thus giving a better S/N ratio.

In both the digitization and sampling we have assumed that the reaction of the
devices and that the sampling interval is shorter than any changes of the input.

An example of the sampling process in time and frequency is shown in Fig. 4.5.
The time variation of an analog function in panel (a) determines the maximum range
of frequencies in panel (b). Note that negative frequencies are also plotted to allow
a determination of phase of the input. The process of sampling in the time domain
is a multiplication of the function in panel (a) with the sampling function in (c). In
the frequency domain this is a convolution (see Fig. 4.1). In the frequency domain,
it is clear that a minimum sampling rate is needed to prevent an overlap of the
sampled function in frequency. If an overlap, there will be a mixture of frequency
compontents. This effect, aliasing, usually causes a degration of the sampled signal.

If only a portion of the input function is retained in the quantization and sampling
process, information is lost. This results in a lowering of the signal-to-noise (S/N)



64 4 Signal Processing and Receivers

Fig. 4.4 An illustration of
the Nyquist Sampling Rate. In
panel (a) the sine wave input.
In panel (b) two samples per
period, at the best possible
position. In panel (c), four
samples per period. If the
sampling rate is 2ν0, the
properties of the sinusoid
can be characterized. If the
sampling rate is higher the
characterization will be even
better

ratio. The effects of sampling rate and quantization on the S/N ratio are quantified
in Table 4.1. The effect on the signal-to-noise ratios for 1, 2 and 3 bit quantizations
at the Nyquist sampling rate (where 1/2Δν) are listed in Col. 2. In addition, the im-
provement of the S/N ratios with sampling at twice the Nyquist sampling. Sampling
at a rate much higher than the Nyquist rate is referred to as “oversampling”. rate are
listed in Col. 3.

Fig. 4.5 The time and frequency distribution of a sampled function: (a) The time variation, (b), the
frequency behavior, (c) the time behavior of a regularly spaced sampling function (referred to as
a “picket fence” function), (d) the frequency behavior of the “picket fence” function, (e) the time
behavior of the sampled function, and (f) the frequency behavior of the function sampled with a
“picket fence”. The result in (f) is low pass filtered. The maximum frequency extent in (b), νm, is
smaller than the sampling rate, ν0 as shown in (d). See Appendix B for the “picket fence” function
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Table 4.1 Signal-to-noise ratio as function of quantization and sampling rate

(1) (2) (3)
No. of bits Sampling rate

1
2Δν

1
4Δν

1 0.64 0.74
2 0.81 0.89
3 0.88 0.94
∞ 1.00 1.00

[from: D‘Addario (1989)]

4.1.6 Gaussian Random Variables

For the practical analysis of complicated systems the class of stationary random
processes is often too large, so one restricts the analysis to functions with less gen-
eral properties to simplify the investigations. Here stationary normally distributed
random variables or Gaussian noise, for which the probability density distribution
function is a Gaussian function with the mean μ = 0, are frequently used. For ex-
ample, a function with a Gaussian distribution of its values can be used to represent
white noise which is passed through a band limiting filter. At each instant of time,
the probability distribution of a variable x is given by

p(x) =
1

σ
√

2π
e−x2/2σ2

. (4.29)

For this random variable we have

E{x} = μ = 0 and E{x2} = σ2 .

It is particularly important to note that the FT of a Gaussian is also a Gaussian,
and that the widths of these FT pairs are inversely related.

Δν ·Δ t = 1 .

Similar situations encountered in Quantum Mechanics, under the description
Heisenberg Uncertainty Principle. This represents the fact that certain variables are
FT pairs. In Table 4.2 we give a set of values for the area within the positive half of a
normalized Gaussian curve in terms of the RMS standard deviation, σ . These values
give the probability that a Gaussian distributed quantity lies above the average.

4.1.7 Square Law Detectors

In radio receivers, the noise is passed through a device that produces an output signal
y(t) which is proportional to the power in a given input v(t):
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Table 4.2 Gaussian noise statistics

σ Value outside the curve Value inside

1 0.3174 0.6826
2 0.0456 0.9544
3 0.0026 0.9974
4 0.0020 0.9980

y(t) = av2(t) . (4.30)

This involves an evaluation of the integral

E{y(t)} = E{av2(t)} =
a

σ
√

2π

∫ +∞

−∞
v2e−v2/2σ2

dv

The standard approach used to evaluate this expression is the following. First,
take the square of this integral. Then in each of the factors of the square, use the
variables x and y. Transform from rectangular (x, y) to two-dimensional polar coor-
dinates (ρ, θ). The result is

E{y(t)} = E{v2(t)} = aσ2
v (4.31)

For the evaluation of E{y2(t)}, one must evaluate

E{y(t)2} = E{v4(t)} =
1

σ
√

2π

∫ +∞

−∞
v4e−v4/2σ2

dv

This is best done using an integration by parts, with u = x3, and dv = xe−x2/2σ2
.

The result of this integration is

E{y2(t)} = 3a2σ4
v (4.32)

and hence
σ2

y = E{y2(t)}−E2{y(t)} = 2E2{y(t)} . (4.33)

Thus, in contrast to linear systems, the mean value of the output signal of a
square-law detector does not equal zero, even if the input signal has a zero expected
mean value.

4.2 Limiting Receiver Sensitivity

Radio receivers are devices used to measure the PSD. A receiver should contain the
following basic units:
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1) A reception (usually band pass) filter that defines the spectral range of the re-
ceiver.

2) A square-law detector used to produce an output signal that is proportional to the
average power in the reception band.

3) A smoothing filter or averager, which determines the time response of the output.

In some cases, processes in (2) and (3) are carried out after digitizing the signal, so
the operations could be carried out in a computer. In some cases, a receiver might
record the sampled voltages on a storage device for later analysis (see, e.g., Problem
1(c) for example). In other cases, for a fast receiver response, item (3) might be
dispensed with.

A receiver must be sensitive, that is, be able to detect faint signals in the presence
of noise. Just as with any other measuring device there are limits for this sensitivity,
since the receiver input and the receiver itself are affected by noise. We will derive
the expression for the limiting sensitivity as a function of receiver parameters. Even
when no input source is connected to a receiver, there is an output signal, since any
receiver generates thermal noise. This noise is amplified together with the signal.
Since signal and noise have the same statistical properties, these cannot be distin-
guished. To analyze the performance of a receiver we will use the model of an ideal
receiver producing no internal noise, but connected simultaneously to two noise
sources, one for the external source noise and a second for the receiver noise. These
form a 2 port network which is characterized by noise power, bandwidth, and gain.
The system gain is the available gain, G(ν) . This is the ratio of the output power
to the input power. To be useful, receivers must increase the input power level. The
power per unit bandwidth entering a receiver can be characterized by a temperature,
as given by Eq. Pν = kT (1.42). Furthermore, it is always the case that the noise
contributions from source, atmosphere, ground and receiver, Ti, are additive,

Tsys =∑Ti

We apply these concepts to a 2 port system, as shown in Fig. 4.6. The signal
input, S1, and output S2 are related by the system gain, G. The noise output, N2 is
the noise input, N1, multiplied by the gain, plus the noise added by the system, Nint.
An often-used figure of merit is the Noise Factor, F . This is defined as

F =
S1/N1

S2/N2
=

N2

GN1
= 1+

TR

T1
(4.34)

that is, any additional noise generated in the receiver contributes to N2. For a direct
detection system, G = 1. If T1 is set equal to T0 = 290K, we have

TR = F −1

Given a value of F , one can determine the receiver noise temperature. The section
relates receiver properties to the minimum uncertainty in a measurement.
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Fig. 4.6 A schematic of a two port system. The receiver is represented as a box, with the signal
T1, and noise TR, shown on the left. On the right are these quantities after an amplification G. For
a direct detection device, G=1

4.2.1 Noise Uncertainties due to Random Processes

The following is an exact derivation that makes use of Nyquist sampling of the input.
We assume that the signal is a Gaussian random variable with mean zero which

is sampled at a rate equal to twice the bandwidth.
Refer to Fig. 4.7. By assumption E(v1) = 0. The input, v1 has a much larger band-
width, B, than the bandwidth of the receiver, that is, Δν � B. The output of the
receiver is v2, with a bandwidth Δν . The power corresponding to the voltage v2 is〈
v2

2

〉
.

P2 = v2
2 = σ2 = k Tsys GΔν , (4.35)

where Δν is the receiver bandwidth, G is the gain, and Tsys is the total noise from
the input TA and the receiver TR. The contributions to TA are the external inputs from
the source, ground and atmosphere. Given that the output of the square law detector
is v3

〈v3〉 =
〈
v2

2

〉
(4.36)

then after square-law detection we have

〈v3〉 =
〈
v2

2

〉
= σ2 = kTsysGΔν . (4.37)

Crucial to a determination of the noise is the mean value and variance of 〈v3〉
From (4.32) the result is 〈

v2
3

〉
=

〈
v4

2

〉
= 3

〈
v2

2

〉
(4.38)

this is needed to determine
〈
σ2

3

〉
. Then,

σ2
3 =

〈
v2

3

〉
−〈v3〉2 (4.39)

Fig. 4.7 The principal parts of a receiver
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〈
v2

3

〉
is the total noise power (= receiver plus input signal). Using the Nyquist sam-

pling rate, the averaged output, v4, is (1/N)Σv3 where N = 2Δν τ .

From v4 and σ2
4 = σ2

3 /N, we obtain the result

σ4 = kΔνG(TA +TR)/
√
Δν τ (4.40)

We have explicitly separated Tsys into the sum TA + TR. Finally, we use the cali-
bration procedure to be described in Sect. 4.2.3, to eliminate the term kGΔν .

ΔT
Tsys

=
1√
Δν τ

. (4.41)

This result is so important that we review the process. We have assumed that
the receiver input is a stationary broadband signal. This is referred to as a white
noise spectrum. The voltage is assumed to follow a Gaussian distribution with zero
mean value. Then E(v1) = 0. After passing through the receiver, v2, is limited to a
bandwidth Δν . After passing through the square law detector, one has the result in
Eq. (4.37). One must determine the variance of v3 to find the RMS uncertainty in the
receiver output. Using the Nyquist theorem we can describe such a white noise PSD
by an equivalent noise temperature [cf. (1.42)] that would produce such a thermal
PSD. The calibration process allows us to specify the PSD of the receiver output
in degrees Kelvin instead of in Watts per Hz. We therefore characterize the receiver
quality by the system noise temperature Tsys = TA +TR. The analysis of another type
of detector is presented in Problem 4.2.3.

This result was first obtained by Dicke (1946), using a more complex derivation
(given in “Tools” 4th edition). Equation (4.41) is the fundamental relation between
system noise, bandwidth, integration time and rms fluctuations: For a given system,
the improvement in the RMS noise cannot be better than as given in Eq. (4.41).
Systematic errors will only increase ΔT , although the time behavior may follow
relation (4.41). We repeat for emphasis: Tsys is the noise from the entire system.
That is, it includes the noise from the receiver, atmosphere, ground, and the source.
Therefore ΔT is larger for an intense source. However this is an ideal situation since
the receiver noise is dominated by the signal.

4.2.2 Receiver Stability

Sensitive receivers are designed to achieve a low value for Tsys. Since the signals
received are of exceedingly low power, receivers must also provide sufficient output
power. This requires a large receiver gain. Then even very small gain instabilities
can dominate the thermal receiver noise. Therefore receiver stability considerations
are also of prime importance. Because the power measured at the receiver output is
that generated in the receiver plus the input, Tsys = TA +TR,
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P = k (TA +TR)GΔν , (4.42)

variations of the total system gain ΔG leading to

P+ΔP = k (TA +TR)(G+ΔG)Δν (4.43)

are indistinguishable from variations of TA or TR

P+ΔP = k (TA +ΔT +TR)GΔν . (4.44)

Comparing (4.44) and (4.43) using (4.42) we obtain

ΔTRMS

TR
=
ΔG
G

, (4.45)

This shows that variations of the output power caused by gain variations enter di-
rectly into the determination of limiting sensitivity. If a total power receiver is to
measure an input of 10−4 TR, the total gain must be kept constant to less than this
value. This is exceedingly difficult to achieve with an absolute measurement, so
therefore one must employ a receiver system based on a differential or comparison
measurement.

This was first applied to radio astronomical receivers by Dicke (1946). This is a
straightforward application of the compensation principle such as the Wheatstone
bridge. We show a schematic of such a system in Fig. 4.8. In this scheme a receiver is
switched periodically between an input TA and a resistive load at the thermodynamic
temperature Tref. If both input, TA, and reference, Tref, are matched to the receiver
input, the antenna gives the output

PA = k (TA +TR)GΔν

Fig. 4.8 A balanced receiver employing Dicke switching between a load at the temperature Tref,
and the sky at TA. The box joined by dotted lines connecting the two switches indicates a square
wave switching cycle. This is alternately multiplied by +1 or −1, so that the response from the
reference is subtracted from sky synchronously in the adding section on the far right
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while the reference load produces

Pref = k (Tref +TR)GΔν .

At the output of the receiver, the difference of these two signals as measured by
a phase sensitive detector or lock-in amplifier is then

PA −PR = k (TA −Tref)GΔν ,

provided Tsys does not change its value between a measurement of signal and ref-
erence. If a gain variation ΔG is wrongly interpreted as a variation ΔT of the input
we have, eliminating k and Δν ,

(TA −Tref)(G+ΔG) = (TA +ΔT −Tref)G

or

ΔTRMS

TR
=
ΔG
G

TA −Tref

TR
. (4.46)

The influence of gain fluctuations depends on the difference TA −Tref. For a bal-
anced receiver with TA = Tref, ΔT is completely independent of any gain variations.
Then the receiver is functioning as a zero point indicator. This is true only when
TA

∼= Tref. If TA 
= TR the receiver is no longer balanced, then gain variations will
influence the signal.

The rate at which the receiver is switched depends on the time behavior of the
stability of the receiver. While in the 1950s and early 1960s fast switching rates were
needed, present-day receiver systems are so stable that switching rates of a Hertz or
slower can be used.

There are different means of producing the comparison Tref. A straightforward
implementation is a resistive load at the temperature Tref. For low-noise systems, the
reference temperature should not be too different from TA. This might be provided
by an absorber immersed in a liquid nitrogen or liquid helium bath.

If the input power levels vary over a wide range, it is not always possible to
maintain a well-balanced system with TA

∼= Tref. One could add noise to the load,
increasing Tref. Alternatively the system can be stabilized by periodically injecting a
constant noise step for part of the measuring cycle. If this calibration cycle is faster
than the rate of gain changes, one can compare the output at appropriate phases of
the cycle, and with this information correct both the zero point and the gain of the
system. In the millimeter and sub-mm wavelength range, the sky temperature can
vary. This will have a large effect on TA. The compensation involves a determina-
tion of sky conditions at the receiver frequency. This involves a “chopper wheel”
calibration to be described in Chap. 8.

At all wavelengths, fluctuations in the atmosphere will affect high resolution im-
ages. At millimeter and sub-mm wavelengths, these fluctuations are mostly due to
water vapor, but for wavelengths in the range of a meter, the ionospheric fluctuations
can distort images. Corrections for such effects are complex, and will be described
in Chap. 9.
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4.2.2.1 Effect of Switching on Receiver Noise

The time spent measuring references or performing calibrations will not contribute
to an improvement in the S/N ratio. Thus this amount of time must be sub-
tracted from the total integration time in (4.41). So a system in which one half the
integration time is used to measure Tref will achieve a temperature resolution

ΔTRMS

Tsys
=

√
2√
Δν τ

. (4.47)

Often the ΔT quoted for a switched receiver has an additonal factor of
√

2 compared
to (4.47). This is caused by the fact that ΔT is computed as the difference Δz =
TA −Tref, where both TA and Tref have equal errors due to noise. There is a factor√

2 from spending only
√

2 of the total time on the source, and an additional 1/2
caused by subtracting two equally noisy signals. The time τ is the total time taken
for the measurement (i.e. on-source and off-source).

Even for the output of a total power receiver there will be additional noise in
excess of that given by (4.41) since the signals to be differenced are ΔT + Tsys and
Tsys. This is needed since ΔT << Tsys. The error of this difference signal is given
by (4.47).

If the time variation of G is included in the expression for the sensitivity limit, the
generalization of (4.41) for stochastic time variations of ΔG/G will be Eq. (4.48).
In Table 4.3 we list the noise performance for different types of receivers. The case
of total power and switched receivers have been discussed previously. Correlation
receivers are treated in Sect. 5.4.1; these use 2 identical receivers to reduce gain
variations, but require combining two noisy inputs, hence an additional factor of√

2. The additional noise contributions introduced by the use of one and two bit
quantization are listed in Table 4.1.

ΔT
Tsys

= K

√
1
Δν τ

+
(
ΔG
G

)2

. (4.48)

One can model the time behavior of ΔG. For a time dependence

(
ΔG
G

)2

= γ0 + γ1τ ,

we obtain the smallest value for the resolution ΔT/Tsys at the integration time

Table 4.3 Noise performance K of different receiver configurations

Receiver type K
Total power receiver (4.41) 1

ΔTRMS

Tsys
=

K√
Δν τ

Switched receiver
√

2
Correlation receiver

√
2

1-bit digital receiver 2.21
2-bit digital receiver 1.58
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τm =
1√
Δν γ1

. (4.49)

For actual receivers this time can be determined by sampling the normalized
output xi at equal time intervals τ . If

SN =
N

∑
i=1

xi , QN =
N

∑
i=1

x2
i ,

then the mean error of the mean value

x̄N =
1
N

SN

and the RMS uncertainty is

σ(N) =
1
N

√
QN −S2

N , (4.50)

and this can be computed using running averages of N, SN , and QN without needing
individual values of xi.

A plot of σ2 versus T = Nτ is sometimes referred to as an Allan plot, after
D.W. Allan (1966) who applied this type of analysis to determine the stability of
frequency standards. The value of τM depends on the stability of the receiver, and
the stability of the power entering the receiver. In the millimeter and sub-millimeter
wavelength range, the stability of the atmosphere plays a dominant role. The Allan
plot is the ultimate way to measure stability, but requires a great amount of mea-
surement time. Therefore it is often used to test receivers in a laboratory, but only
rarely on telescopes.

Before reaching a time τm, one must take a comparison measurement to prevent
an increase in ΔTRMS. This may involve directing the receiver to another part of the
sky, or connecting the receiver to an internal source, or changing frequency. A plot
of the behaviour of τm is shown in Fig. 4.9

4.2.3 Receiver Calibration

In the calibration process, a noise power scale must be established at the receiver
input. While the detailed procedures depend on the actual instruments in use, the
basic principles are following. In radio astronomy the noise power of coherent re-
ceivers (those which preserve the phase of the input) is usually measured in terms
of the noise temperature. To calibrate a receiver, one relates the noise temperature
increment ΔT at the receiver input to a given measured receiver output increment
Δz (this applies to heterodyne receivers. For the calibration of bolometer receivers,
see Sect. 8.2.6). In principle, the receiver noise temperature, TR, could be computed
from the output signal z provided the detector characteristics are known. In practice
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Fig. 4.9 The time depen-
dence of the relative receiver
uncertainty, ΔTRMS/Tsys nor-
malized to unit bandwidth
Δν . K is a factor accounting
for data taking procedures
(Table 4.3). For a total power
system, (K = 1). The differ-
ent one-parameter curves are
characterized by the value τm

in (4.49). The turn off in each
curve gives the integration
time leading to the smallest
value for ΔTRMS/Tsys

the receiver is calibrated by connecting two or more known power sources to the
input. Usually matched resistive loads at the known (thermodynamic) temperatures
TL and TH are used. The receiver outputs are then

zL = (TL +TR)G ,

zH = (TH +TR)G ,

from which

Trx =
TH −TL y

y−1
, (4.51)

where
y = zH/zL . (4.52)

The noise temperatures TH and TL are usually produced by matched resistive
loads (absorbers in the millimeter/sub-millimeter wavelength ranges) at the ambient
temperature (TH

∼= 293 K or 20◦C) and at the temperature of liquid nitrogen (TL
∼=

78 K or −195◦C) or sometimes liquid helium, which has a boiling point TL
∼= 4.2 K.

In this process, the receiver is assumed to be a linear power measuring device (i.e. we
assume that the non-linearity of the receiver is a small quantity). Usually such a
fundamental calibration of the receiver need be done infrequently. At centimeter
wavelengths, secondary standards are used. In the millimeter/sub-mm wavelength
range, measurements of the emission from the atmosphere and then from an ambient
resistive load are combined with models to provide an estimate of the atmospheric
transmission. For a determination of the receiver noise, an additional measurement,
usually with a cooled resistive load is needed. Note that the y factor as presented here
is determined in the Rayleigh-Jeans limit, and thus using the concepts of classical
physics.
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Problems

1. The Gaussian probability distribution function with mean m is

p(x) =
1

σ
√

2π
e−(x−m)2/2σ2

.

(a) Show that
∫ +∞
−∞ p(x)dx = 1. If the first moment, or mean value m, is

m = 〈x〉 =
∫ +∞

−∞
xp(x)dx

and the second moment is

〈
x2〉 =

∫ +∞

−∞
x2 p(x)dx ,

(b) find m and σ , the RMS standard deviation, where σ =
〈
x2
〉
−〈x〉2. The third

and fourth moments are defined in analogy with the definitions above. Determine
the third and fourth moments of the Gaussian distribution.
(c) The relation between

〈
x2
〉

and
〈
x4
〉

has been used to study the noise statistics
for very intense narrow band emission from an astronomical source at 18 cm (see
Evans et al. 1972 Phys. Rev. A6, 1643). If the noise input has zero mean, and if the
voltages

〈
v2
〉

and
〈
v4
〉

are compared, what would you expect the relation to be for
a Gaussian distribution of noise?

2. For an input
v(t) = Asin2πνt

calculate the FT, autocorrelation function and power spectrum. Note that this func-
tion extends to negative times. Repeat the calculation for

v(t) = Acos2πνt .

3. Calculate the power spectrum, Sν , for the sampling function v(t) = A for −τ/2 <
t < τ/2, otherwise v(t) = 0, by taking the Fourier transform to obtain V (ν) and
then squaring this. Next, form the autocorrelation of this function, and then FT to
determine the power spectrum. Show that these two methods are equivalent.

4. Repeat the analysis in Problem 5, but shifting this function by a time +τ/2: that
is, v(t) = A for 0 < t < τ , otherwise v(t) = 0. The FT shift theorem is given by
equation (B5) in Appendix B

f (x−a) ↔ e−i2πas F(s) .

Show that the result of this problem can be obtained from the result of Problem 5
by applying the shift theorem. What is the value of the shift constant, a?
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5. Repeat the above for the function v(t) = A for τ < t < 2τ , and −2τ < t < −τ ,
otherwise v(t) = 0. The result can be interpreted as the frequency distribution cal-
culated in Problem 5, modulated by cos2πντ . This is an example of the modulation
property of Fourier transforms, as in equation (B6) in Appendix B, namely,

f (x)cosx =
1
2

F(s−ν)+
1
2

F(s+ν) .

6. Consider another aspect of the situation described in the last problem. We have
a function cos(2πνct)cos(2πνst), where νs = νc + Δ , where Δ � νc. Apply the
identity cos(x+ y) = (1/2) [cos(x+ y)+ cos(x− y)]. Check whether the modula-
tion property of the Fourier transform applies.

7. A table of Gaussian integrals to determine the area within the boundary of the
curve at the σ , 2σ , 3σ and 4σ levels is given in Table 4.2.
(a) If you want to determine whether a feature is not noise at the 1% level, how
many standard deviations from the mean must this signal be?
(b) Suppose you want to detect a continuum signal of peak temperature 10−2 K with
a total power receiver with a system noise of 200 K, and a bandwidth of 500 MHz.
Assume that this system is perfectly stable, that is random noise is the only source
of error. How long must you integrate to obtain a 3σ detection?
(c) For an emission line with a total width of 10 kHz, use the same system, but using
a spectrometer which has a bandwidth equal to the linewidth. How long must one
integrate so that a detection is 99% certain if random noise is the only effect?
(d) If the spectrometer has 1000 channels, how many “false” emission lines, i.e.
noise peaks, will be found at the 1σ , 2σ , 3σ levels?
(e) Now suppose the signal could appear as either a positive or negative deflection.
How does this change the probabilities?

8. (a) On two days, labelled as 1 and 2, you have taken data which are represented
by Gaussian statistics. The mean values are x1 and x2, with σ1 and σ2. Assume that
the average is given by x̄ = f x1 + (1− f )x2 and the corresponding σ̄2 = f 2σ2

1 +
(1− f )2σ2

2 . Determine the value of f which gives the smallest σ̄ by differentiating
the relation for σ and setting the result equal to zero. Show that

x̄ =
(

σ2
2

σ2
1 +σ2

2

)
x1 +

(
σ2

1

σ2
1 +σ2

2

)
x2

and

σ̄2 =
(

σ4
2

(σ2
1 +σ2

2 )2

)
σ2

1 +
(

σ4
1

(σ2
1 +σ2

2 )2

)
σ2

2 .

(b) Use the relation σ2 ∼1/(time) to show that the expression for x̄ reduces to the
result, x̄ = (1/(t1 + t2))(t1x1 + t2x2).

9. Obtain (4.34) from the quantities in Fig. 4.6. Justify the definition of the
noise factor F in Eq. (4.34) based on the case of a noiseless receiver, i.e. one with
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F = 1. Show that this definition is consistent with the definition of receiver noise
temperature

TR = (F −1) · 290K

if a room-temperature load is connected to the receiver input. Suppose F = 2, what
is TR? Repeat for F = 1.2 and 1.5.

10. Use the analysis in Sect. 4.2.1, step for step, for a linear detector. In this device,
the output is taken to be the absolute value of the voltage input. Assume that the
signal is small compared to the receiver noise. Complete each calculation as in the
previous problem. The output of the linear detector is

v3 =
∫

|v2|exp(−v2
2/2σ2

2 )dx ,

while the noise depends on 〈v3〉2 = 〈v2〉2 = σ2.
To obtain the final result, one must make use of the relation

ΔTRMS =
σ4

(Δ 〈v4〉/ΔTs)
.

11. The y factor is used to determine receiver noise. Given that TL is 77 K and TH =
290 K, show that the plot in Fig. 4.10 correctly expresses the relation between Trx

and the y factor.

Fig. 4.10 A plot of receiver
noise versus y factor

12. Suppose a receiver accepts inputs from 2 frequencies, νu and νl . The response
of the receiver is the same at these frequencies.
(a). If all factors are equal, and the signal is present in both νu and νl , how does
the value of TR change in Eq. 4.41? (b). Suppose the signal is present in νu only.
Repeat part (a). (c). Repeat (b) for the situation in which the response at νu is twice
that at νl . What is the value of TR?

13. Derive the result in Eq. (4.49).



78 4 Signal Processing and Receivers

14. To detect a source one samples a large region of the sky. The receiver is perfectly
stable. If one has 10 samples at the position of the source, and 103 samples away
from the source. One can fit a curve to the off-source data and subtract this from the
on-source data. Justify the assertion the if the RMS noise of the on-source data is N,
the noise in the difference of on-source and off-source is N

√
1+0.01.



Chapter 5
Practical Receiver Systems

5.1 Historical Introduction

The first receivers used by Jansky and Reber were coherent radiometers. These ra-
diometers preserve the phase of the received wave field and are sensitive to a single
polarization. Usually coherent radiometers are superheterodyne systems. In such
systems the frequency of the input is translated to another (usually lower) frequency
before further processing. Usually this processing consists of amplification in the
Intermediate Frequency (IF) section and detection. Such receivers allow greater
flexibility in the analysis of the radiation, but involve a number of individual com-
ponents. One can divide coherent receivers into front ends and back ends. The divid-
ing point is somewhat arbitrary. Usually the front end operates at the sky frequency,
while the back end operates at lower frequencies.

Front ends consist of amplifiers that operate at the sky frequency and/or mix-
ers, which are frequency converters. The trend has been to improve the sensitivity
of front ends while extending operation to higher frequency. Initially front ends
consisted of room temperature mixers. Later these were replace by exotic devices
such as uncooled and then cooled parametric amplifiers, maser amplifiers, cooled
transistor amplifiers, and, at millimeter and sub-mm wavelengths, superconducting
mixers.

The back ends are devices that analyze the polarization, time structure or spec-
tral properties of the broadband radiation. The trend has been toward digital compo-
nents for all types of backends. Frequently these components are developed for use
in commercial electronics, but have been successfully adapted for radio astronom-
ical applications. Because both phase and amplitude are preserved, only coherent
radiometers are used in radio interferometers.

Incoherent radiometers do not preserve phase; these operate as direct detection
systems. The most common type of incoherent radiometer at millimeter wavelengths
is a bolometer. Bolometers are basically very sensitive thermometers. These have
wide bandwidths and high sensitivities. Bolometers are sensitive to both polariza-
tions. For single telescope continuum measurements in the millimeter and sub-mm
ranges, semiconductor bolometers have dominated the field. These all follow the
practical design pioneered by F. J. Low.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 79
DOI 10.1007/978-3-540-85122-6 5, c© Springer-Verlag Berlin Heidelberg 2009
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5.1.1 Bolometer Radiometers

The operation of a bolometer makes use of the effect that the resistance, R, of a
material varies with the temperature. When radiation is absorbed by the bolometer
material, the temperature varies; this temperature change is a measure of the in-
tensity of the incident radiation. Because this thermal effect is rather independent
of the frequency of the radiation absorbed, bolometers are intrinsically broadband
devices. The frequency discrimination needed is be provided by external filters. A
bias voltage must be applied to a bolometer for optimum performance. Although of
great practical importance, especially for superconducting bolometers, we neglect
the bias voltage in the following. This treatment follow the analysis of Mather (1982)
and Jones (1953).

Let the receiving element of the thermal detector (Fig. 5.1) be a piece of radi-
ation absorbing material coupled to a heat sink at a constant temperature T0. The
temperature response of this element to power absorption will be influenced both by
the thermal capacity and the thermal conductance between receiving element and
heat sink. A relation for the temperature response can be deduced from an analogy
with an R−C circuit. If capacity and conductance are denoted by C and G = 1/R,
respectively, the energy balance equation is

C
dΔT

dt
+G ·ΔT = P , (5.1)

where ΔT is the temperature increase of the receiving element above its (thermo-
dynamic) equilibrium value T0. P denotes the power absorbed. For a steady power
flow, eventually a constant temperature is reached; when dΔT/dt = 0 we find

ΔT =
P
G

. (5.2)

Fig. 5.1 A sketch of a bolometer represented by the smaller square to the right. The power from
an astronomical source, P0, raises the temperature of the bolometer element by Δ T , which is much
smaller than the temperature T0 of the heat sink. Heat capacity, C , is analogous to capacitance. The
conductance, G is analogous to electrical conductance, G, which is 1/R. The noise performance
of bolometers depends critically on the thermodynamic temperature, T0, and on the conductance
G . The temperature change causes a change in the voltage drop across the bolometer (the electric
circuit is not shown)
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If the power flow is suddenly stopped, the temperature at a time t later is

ΔT =
P
G

e−t/τ , (5.3)

where
τ = C /G (5.4)

is the thermal time constant of the element. Usually the radiation incident on the
bolometer is modulated at a chopper frequency ν . Then we can write

P = P0 e2π iνt . (5.5)

Ignoring any phase shifts in the system response, the solution of (5.1) is

ΔT =
P0 e2π iνt

G (1+2π iντ)
. (5.6)

The amplitude of the resulting temperature variation is

|ΔT | = P0

G
√

1+(2πντ)2
. (5.7)

For modulating frequencies fast compared to 1/τ the temperature response falls
off as 1/ν , while for ντ � 1

2π the result reduces to the steady-state response. In
practical use of bolometers τ falls within the range of milliseconds to seconds.

For a bolometer to be a useful detector in astronomy it must fulfill several re-
quirements. It should

• respond with a maximum temperature step ΔT to a given power input,
• have a short thermal time constant τ so that chopping frequencies faster than

instrumental and weather changes can be used,
• produce a detector noise which is as close to the theoretical minimum as possible.

The first two items require a detector for which both the thermal heat capacity C
and the thermal coupling to the heat sink G are optimal for a given situation. In the
ideal case, one wants to maximize the absorption and minimize the capacity.

5.1.2 The Noise Equivalent Power of a Bolometer

We next consider the minimum noise obtainable with a bolometer. The noise sources
are:

• Johnson noise in the bolometer,
• thermal fluctuations, or phonon noise,
• background photon noise, and
• noise from the amplifier and load resistor.



82 5 Practical Receiver Systems

Cooling will reduce all of these noise contributions. For ground based bolometers
the background photon noise will determine the noise of the system. We will give a
simplified semiclassical derivation of this noise, a full quantum statistical derivation
is possible [see e.g. Mather (1982) or Griffin and Holland (1988)].

A frequently used measure for the quality of a detector is its noise equivalent
power, NEP, defined as the power which must fall on the detector to raise output by
an amount equal to the RMS noise. This is defined as the response to a sinusoidally
modulated input which is switched between two temperatures.

For a Black Body radiation field, the square of the RMS fluctuations in the num-
ber of photons is

(ΔnRMS)2 = n(n+1) = n2 +n , (5.8)

where n is the photon occupation number

n =
1

ehν/kT −1
. (5.9)

The first term in (5.8) dominates in the Rayleigh-Jeans limit when n � 1. Thus
we retain only this term. To relate occupation numbers to macroscopic quantities
such as power, we must account for density of states factor, collecting area, A, and
the solid angle,Ω , of the background as seen by the bolometer. The density of states
factor is (2hν3/c2); to establish the proper units, we need a factor for photon energy,
hν . The total RMS value of fluctuations is twice the simpler expression, because of
arguments similar to those used for the extra factor of 2 in connection with Johnson
noise (Chap. 1). Then we have

(ΔPRMS)2 = 2ΩA

∞∫
0

(
2hν3

c2

)(
1

ehν/kT −1

)
hν

dν
ehν/kT −1

. (5.10)

For a narrow band of frequencies ν0 to ν0 +Δν , this is

(ΔPRMS)2 = 4ΩA
h2

c2

ν0+Δν∫
ν0

ν4

(ehν/kT −1)2
dν . (5.11)

Using hν � kT , we obtain

(ΔPRMS)2 =
4ΩA
λ 2 (kT )2Δν . (5.12)

The bolometer area, A, can be considered in many respects to be an antenna
receiving energy in the field of the background radiation. Then, for a simple antenna
(see Eq. 7.11), ΩA = λ 2, so this expression can be simplified. We have neglected
the factor ε , for the emissivity of the background. If we include this, we have,

NEPph = 2ε k TBG

√
Δν . (5.13)
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If ε = 0.5,TBG = 300 K and Δν = 50 GHz then NEPph = 9.3 × 10−16 Watts
Hz−1/2.

With the collecting area of the 30 m IRAM telescope and a 100 GHz bandwidth
one can easily detect mJy sources. This analysis is based on the assumption that
the Johnson noise and thermal fluctuations in the bolometers are negligible, which
is usually the case. There are other drawbacks: large bolometer bandwidths may
lead to a contamination of the continuum response by intense spectral lines in the
passband.

5.1.3 Currently Used Bolometer Systems

Bolometers mounted on ground based radio telescopes are background noise lim-
ited, so the only way to substantially increase mapping speed for extended sources
is to construct large arrays consisting of many pixels. In present systems, the pixels
are separated by 2 beamwidths, because of the size of individual bolometer feeds.
The systems which best cancel atmospheric fluctuations are composed of rings of
close-packed detectors surrounding a single detector placed in the center of the ar-
ray. Two large bolometer arrays have produced many significant published results.
The first is MAMBO2 (MAx-Planck-Millimeter Bolometer). This is a 117 element
array used at the IRAM 30-m telescope. This system operates at 1.3 mm, and pro-
vides an angular resolution of 11′′. The portion of the sky that is measured at one
instant is the field of view, (FOV). The FOV of MAMBO2 is 240′′. The second sys-
tem is SCUBA (Submillimeter Common User Bolometer Array). This is used on
the James-Clerk-Maxwell (JCMT) 15-m sub-mm telescope at Mauna Kea, Hawaii.
SCUBA consists of a 37 element array operating at 0.87 mm, with an angular reso-
lution of 14′′ and a 91 element array operating at 0.45 mm with an angular resolution
of 7.5′′; both have a FOV of about 2.3′. The LABOCA (LArge Bolometer CAmera)
array operates on the APEX 12 m telescope. APEX is on the 5.1 km high Chaijnan-
tor plateau, the ALMA site in north Chile. The LABOCA camera operates at 0.87
mm waqvelength, with 295 bolometer elements. These are arranged in 9 concentric
hexagons around a center element. The angular resolution of each element is 18.6′′,
the FOV is 11.4′.

5.1.3.1 Superconducting Bolometers

A promising new development in bolometer receivers is Transition Edge Sensors re-
ferred to as TES bolometers. These superconducting devices may allow more than
an order of magnitude increase in sensitivity, if the bolometer is not background
limited. For broadband bolometers used on earth-bound telescopes, the warm back-
ground limits the performance. With no background, the noise improvement with
TES systems is limited by photon noise; in a background noise limited situa-
tion, TES’s should be ∼2–3 times more sensitive than semiconductor bolometers.
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For ground based telescopes, TES’s greatest advantage is multiplexing many de-
tectors with a superconducting readout device, so one can construct even larger
arrays of bolometers. SCUBA will be replaced with SCUBA-2 now being con-
structed at the Astronomy Technology Center, Edinburgh. SCUBA-2 is an array
of 2 TES bolometers, each consisting of 6400 elements operating at 0.87 mm and
0.45 mm. The FOV of SCUBA-2 will be 8′. The SCUBA-2 design is based on
photo-deposition technology similar to that used for integrated circuits. This type
of construction allows for a closer packing of the individual bolometer pixels. In
SCUBA-2 these will be separated by 1/2 of a beam, instead of the usual 2 beam
spacing.

5.1.3.2 Polarization Measurements

In addition to measuring the continuum total power, one can mount a polarization-
sensitive device in front of the bolometer and thereby measure the direction and de-
gree of linear polarization. The polarimeter used with SCUBA consists of a rotatable
quartz half-wave plate and a fixed etched grid mounted in front of the SCUBA cryo-
stat. The waveplate introduces a λ /2 phase lag between the planes of polarization.
The signal is switched between sky positions by use of a nutating subreflector. Then
the direction of the λ /2 plate is changed, and the procedure is repeated. Another
instrument is PolKA. With PolKA one rotates the λ /2 plate continuously, without
nutating the subreflector. This rotation of the λ /2 plate gives rise to a modulated sig-
nal which is proportional to the polarized signal. Polarized thermal emission from
dust grains has been measured in a number of sources with this device (see Chap.
10 for the details of dust emission).

5.1.3.3 Spectral Line Measurements

Thus far, the presentation of bolometers has concentrated on broadband contin-
uum emission. It is possible to also carry out spectroscopy, if frequency sensitive
elements, either Michelson or Fabry-Perot interferometers, are placed before the
bolometer element. Since these spectrometers operate at the sky frequency, the fre-
quency resolution (ν/Δν) is limited. One such instrument is the South Pole Imag-
ing Fabry-Perot Interferometer, SPIFI (Stacey et al. 2002). SPIFI is a multi-beam
Fabry-Perot system working at 0.3 mm with a velocity resolution of about 300 km
s−1. SPIFI is designed to measure J = 7−6 carbon monoxide rotational spectra and
the 3P2−3P1 fine structure line of carbon simultaneously (see Chap. 13, Table 13.1
and Chap. 15, Sect. 15.8ff).
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5.2 Coherent Receivers

We first provide a simplified derivation of the minimum noise of a coherent system.
We then give descriptions of the major components of a receiver, and describe spe-
cific types of front ends. Then we give a description of back ends which are used to
extract continuum, polarization, spectral line or pulsar data.

5.2.1 The Minimum Noise in a Coherent System

The ultimate limit for a coherent receiver or an amplifier is obtained by application
of the Heisenberg uncertainty principle. We start with the familiar relation:

ΔEΔ t ≥ h/4π , (5.14)

This must be cast in a slightly different form. It can be rewritten in terms of the
uncertainty in the number of photons and the uncertainty in phase:

ΔE = hνΔn (5.15)

and
2πνΔ t = Δφ . (5.16)

Inserting relations (5.15) and (5.16) in relation (5.14), we obtain

Δφ Δn ≥ 1/2 . (5.17)

The equality in relation (5.17) is reached when both the photon number and phase
are Gaussian distributed.

We now apply relation (5.17) to obtain the desired result. A noiseless amplifier
with gain G > 1 has the property that n1 photons at the input produce n2 = Gn1

photons at the output. In addition, the output phase φ2 equals the input phase φ1

plus some constant phase shift. Then an ideal detector at the output of the amplifier
must obey relation (5.17):

Δφ2Δn2 = 1/2 . (5.18)

But then the uncertainty in input photon number is Δn1 = Δn2/G, and the un-
certainty in the phase remains the same. Then at the amplifier input, the uncertainty
relation would be

Δφ1Δn1 = 1/2G . (5.19)

But this is in contradiction to relation (5.17). The only way to avoid this con-
tradiction is to assume that the amplifier adds some noise. The minimum amount,
per unit bandwidth, needed to satisfy relation (5.18), at the output of the amplifier
is (G− 1)hν . When referred to the input of the amplifier, this is (1− 1/G)hν . To
minimize the noise contribution from following stages of amplification, we let G
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increase to a large value. Then the minimum noise of the amplifier is hν , which
results in a receiver noise temperature of

Trx(minimum) =
hν
k

. (5.20)

For incoherent detectors, such as bolometers, phase is not preserved, so this limit
does not exist. In the centimeter and even millimeter wavelength regions, this noise
temperature limit is quite small. For example, at 2.6 mm, it is 5.5 K. However, at a
wavelength of 0.3 mm, the limit is 47.8 K. Presently, the best receiver noise is ∼=5
times these values. This derivation is valid for receiver noise temperatures that are
rather far above the quantum limits. As pointed by Kerr, Feldman and Pan, (1996),
for receiver noise temperatures below 40 K, the effect of the zero point energy ex-
pressed in temperature units, hν

2k may be important. There are a number of subtle
effects, but in practice, for a given value of the y factor (see Fig. 4.10), this effect
raises the receiver noise estimate by 10%.

5.2.2 Basic Components: Passive Devices

5.2.2.1 Thermal Noise of an Attenuator

Attenuators appear at many positions in the circuit of a radiometer, either deliber-
ately in order to reduce the amplitude of a too large input or simply present as a
“lossy” piece of connecting cable, connector, switch etc. The equation of radiative
transfer together with Kirchhoff’s law can be used to determine the noise power
emitted by such a device if in Local Thermodynamic Equilibrium, LTE. The PSD
at the output of the attenuator is obtained by integrating the transfer equation (1.9)
along the signal path.

5.2.2.2 Isolators

Isolators are non-reciprocal devices, that is, these circuit elements allow power to
pass in one direction only. Isolators are used to prevent power reflections that arise
in one part of the receiver system from affecting other parts of the system. Isolators
consist of circuit elements containing magnetic materials that are in strong magnetic
fields. These elements are arranged so that a linearly polarized wave entering from
one direction is Faraday rotated so that it can propagate further. A wave entering
from the other direction cannot propagate. Thus, for a given direction of propagation
and magnetic field, this device will favor one direction over the other.
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5.2.2.3 Directional Couplers

These elements allow a certain amount of power to be diverted into another part
of the system. In waveguides, in the simplest case, these elements consist of two
openings separated by a quarter of a wavelength. In one direction the waves emitted
from these openings reinforces, while in the opposite direction, the waves cancel.
More complex versions consist of multi-hole couplers.

5.2.2.4 Phase Lock Systems

The purpose of a phase lock loop system (PLL) is to provide a stable frequency,
in both phase and frequency. This is needed for the coversion of frequencies in
heterodyne receivers. The essential features of a PLL are: (1) a voltage controlled
oscillator (VCO), i.e., one that changes frequency when the input voltage changes,
(2) a phase comparitor that produces a signal proportional to the difference of phases
of two inputs, and (3) a low pass filter. For item (2), the two inputs are from a
reference source and from the output of the VCO. We show a schematic of a PLL in
Fig. 5.2.

Fig. 5.2 A sketch of the Phase Lock Loop (PLL) which is used to control the LO frequencies in
the microwave range

5.2.3 Basic Components: Active Devices

5.2.3.1 Cascading of Amplifiers

The power amplification needed for a practical receiver is of the order of 80–100 dB.
Such a large amplification can only be obtained by cascading (Fig. 5.3) several am-
plification stages each with the gain Gi resulting in the total gain

G =
n

∏
i=1

Gi .

The question is now: what is the total noise temperature of the cascaded system
if each individual stage contributes the noise temperature TSi?
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Fig. 5.3 Cascading of amplifiers. In the upper part is a sketch showing the cascading of amplifiers.
The inputs to each amplifier are the signal (upper) and internal noise (lower). In the lower part of
this figure is the combined amplifier chain, with signal and noise inputs

If the input PSD of stage 1 is

P0 = k TA (5.21)

then stage i produces an output PSD

Pi(ν) = [Pi−1(ν)+ k TSi]Gi(ν) . (5.22)

The appropriate definition of the total system noise temperature TS of a system
with the total gain ∏Gi is

Pn(ν) = k (TA +TS)
n

∏
i=1

Gi(ν) . (5.23)

Substituting (5.21) and (5.22) into (5.23), we obtain the Friis formula which takes
into account the effect of having cascaded amplifiers :

TS = TS1 +
1

G1
TS2 +

1
G1G2

TS3 + · · ·+ 1
G1G2 . . .Gn−1

TSn . (5.24)

If several amplification stages are necessary, these should be arranged so that the
amplifier with the lowest noise temperature is used first; for the second and follow-
ing stages, the noise temperature can be higher. Another important point is that after
amplification the output power can be divided into several branches without intro-
ducing much additional noise into the system. Thus the output of a single receiver
can be used to provide a signal to many devices without worsening the signal-to-
noise ratio.

Purely lossy devices such as filters or mixers have G < 1. This is usually written
as L = 1/G, and is referred to as conversion loss. Classical mixers operated in the
DSB mode with equal response in the signal and image sidebands typically have 3
db loss.

In the case of interferometry (Chap. 9), amplified signals from an individual an-
tenna can be correlated with a large number of other antennas without a significant
loss in the signal-to-noise ratio.



5.2 Coherent Receivers 89

5.2.3.2 Mixers

Shifting the signal frequency is useful for two reasons:

• one avoids a feedback of amplified signals into the frontend. High-gain cascaded
amplifier chains are often affected by instabilities. If the total gain is of the order
of 108 to 1010 (80–100 dB) an exceedingly small amount of power leaking from
the output port back to the input port is sufficient to cause the system to oscillate
violently.

• one can choose a frequency at which the signal is more easily amplified. One
shifts the frequency of output signal from that of the input by mixing the signal
with a monochromatic signal from a local oscillator.

The local oscillator is usually referred to as the local oscillator, or LO. The pro-
cess of mixing may shift the phase of the signal by a constant value. Except for
additional noise from the mixing process, the information contents of the sifted sig-
nal should not be changed by the mixing process.

A mixer is the device that is performing the actual frequency shift. In principle
any circuit element with a nonlinear relation between input voltage and output cur-
rent can be used as a mixer. However, derivations of mixer properties are simplest
for a device with a purely quadratic characteristic. Mixers are an essential part of
heterodyne receiver. A semiconductor metal junction can be used as a mixer. Apply-
ing both a signal and a local oscillator frequency at the input of a Schottky junction,
one can produce a microwave mixer device. That is, the sum and difference of the
frequencies at the input will appear at the output. The quality of such a mixer is de-
pendent on the change in the current-voltage characteristic near the voltage at which
it is operated, that is, the operating point.

I = αU2 . (5.25)

Where U is the sum of the signal E sin(2πνSt + δS) and the local oscillator
V sin(2πνLOt +δLO). Then the output is

I = α [E sin(2πνSt +δS)+V sin(2πνLOt +δLO)]2

= α E2 sin2(2πνSt +δS)+αV 2 sin2(2πνLOt +δLO)
+2α E V sin(2πνSt +δS)sin(2πνLOt +δLO) (5.26)

Using trigonometric addition formulae, one obtains

I = 1
2α (E2 +V 2) (DC component)

− 1
2α E2 sin(4πνSt +2δS + π

2 ) (2nd harmonic of signal)

− 1
2αV 2 sin(4πνLOt +2δLO + π

2 ) (2nd harmonic of LO)

+αV E sin[2π(νS −νLO)t +(δS −δLO + π
2 )] (difference frequency)

−αV E sin[2π(νS +νLO)t +(δS +δLO + π
2 )] (sum frequency). (5.27)
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Fig. 5.4 Input and output frequencies of a mixer. The thick arrows are the given values. There are
two methods to specify the system: (a) when two input frequencies, νLO and νS are given. In case
(b) when νLO and νIF are specified. In this case, signals from both the upper sideband (νLO +νIF)
and lower sideband (νLO −νIF) contribute to the IF signal

The output consists of the superposition of several components at different fre-
quencies (Fig. 5.4): a DC signal, signals at twice the signal and the local oscillator
frequencies, and two components at the difference and the sum of signal and oscilla-
tor frequencies. While the amplitudes of all other components depend on the second
power of signal or local oscillator amplitude, the sum and difference frequency sig-
nals depend on the first power. Thus their amplitudes are accurate reproductions of
the amplitude of the input signal.

By use of an appropriate bandpass filter, all but the desired signal can be sup-
pressed. In this way the mixer can be considered to be a linear device producing
an output at the frequency νIF = νS − νLO. This is also the case for devices with
characteristic curves different from (5.25). Filters give rise to a loss of signal, so
for some applications a filter will not be placed before the mixer. Then the mixer
is used as a double sideband (DSB) device. The output of a DSB mixer is shown
in Fig. 5.5. For a given local oscillator frequency, two frequency bands, above and
below the LO frequency, separated by the intermediate frequency (IF) frequency,
are shifted into the IF band. Thus, a mixer will shift two frequency bands into the
same band. Usually one sideband is wanted, but the other not. These are referred
to as the signal and image bands. Mixers that consist of a single non-linear cir-
cuit element accept both sidebands. In the millimeter or sub-millimeter wavelength

Fig. 5.5 A sketch of the frequencies shifted from the sky frequency (top) to the output (lower) of
a double sideband mixer. In this example, the input is at the sky frequencies for the Upper Side
Band (USB) of 115 GHz, and Lower Side Band (LSB) of 107 GHz while the output frequency is
4 GHz. The slanted boxes represent the passbands; the direction of the slant in the boxes indicate
the upper (higher) and lower (lower) edge of the bandpass in frequency
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ranges, such mixers are still commonly used as the first stage of a receiver. For
single dish continuum measurements, both sidebands contain the signal, so in this
case, DSB operation does not decrease the signal-to-noise (S/N) ratio. However, for
single dish spectral line measurements, the spectral line of interest is in one side-
band only. The other sideband is then a source of extra noise and perhaps confusing
lines. Therefore single sideband (SSB) operation is desired. If the image sideband
is eliminated, the mixer is said to operate in SSB mode. This can be accomplished
by inserting a filter before the mixer. However, filters are lossy elements. Thus this
procedure will increase the system noise temperature. If the mixer is first element
of a receiver, the degradation of the system will be significant, so the filter-mixer
combination should be used after the signal is amplified. If a mixer is used as the
first circuit element in a receiver, it is better to make use of a single sideband mixer.
See Fig. 5.6 for asketch of suc a device. SSB mixers require two matched mixers
fed by a single local oscillator as well as additional circuit elements. Noise in mix-
ers has 3 causes. The first is the mixer itself. Since one half of the input signal is
shifted to a frequency νLO + νIF, the signal input power is a factor-of-two (3 db)
loss of signal. This is referred to as conversion loss. The simplest form of classical
mixers typically have 3 db loss. In addition there will be an additional noise con-
tribution from the mixer itself. Second, the LO may have “phase noise”, that is a
rapid change of phase, which will add to the uncertainty. Third, the amplitude of
the LO may vary; however this last effect can be minimized. For low levels of LO
power, the output power and thus the response of a mixer will increase linearly with
LO power. However, variations in the local oscillator power will appear as varia-
tions of the total gain of the system. Usually the mixer LO power is adjusted so
that the mixer output is saturated. Then no variation of the output signal power is
seen if LO power varies. This insures that the output remains within the operational
range.

Fig. 5.6 A sketch of the single sideband mixer (SSB). The input signal, f (t), is divided into two
equal parts. There are two identical mixers located in an upper and lower branch of the sketch.
The LO frequency from a central source, ωc, is shifted in phase by π/2 from the input to the
output of the mixer in the lower part of the sketch. In the lower branch, the phase of the input
signal is also shifted by π/2. After mixing the signals are added to produce the single sideband
output
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5.2.3.3 Local Oscillator Sources

There are many possible LO sources. In the meter and centimeter wavelength
range, one can make direct use of the output from commercially available fre-
quency synthesizers. These devices are rather stable, but their output should be
compared to known signals. Ultimately the frequency might be derived from a
frequency standard (see the upper left of Fig. 5.2). The method used in compar-
isons with this standard will be discussed in the next section. In the few GHz
to perhaps 100 GHz range, YIG (Yttrium-Iron-Garnet) oscillators are used in re-
ceivers and test instruments. YIG oscillators have wide tuning range, and produce
a signal that has a small frequency width. YIG oscillators are tuned by varying
an external magnetic field. At frequencies higher than 40 GHz, the output from
YIG oscillators or commercial frequency synthesizers becomes impractical. Thus
the output of a synthesizer is passed through a non-linear element, a multiplier,
to produce a higher frequency. Frequently the output of an LO source is dou-
bled, tripled or quadrupled. This process is similar to that described for mixers,
but with only a local oscillator input. In Fig. 5.4 the output at 2νLO would rep-
resent the output of a doubler; usually the non-linear element is optimized to en-
hance the desired harmonic. In some cases, a series of multipliers is needed to
reach the desired frequency. It is possible, for example, that the output of a fre-
quency source is doubled, then amplified, then tripled, then amplified again. The
amplifiers would be tuned to the desired frequency to avoid spurious output fre-
quencies. For frequencies of about 100 GHz and higher, Gunn oscillators, per-
haps with multipliers, are used to produce the LO signal at a micro-Watts levels.
Gunn oscillators are Gallium Arsenide crystals which oscillate when a voltage is
applied.

For the ALMA project, a completely different approach is used. Here a phase and
frequency stable microwave signal for the range 30–900 GHz must be distributed
over more than 10 km to each receiver. This is done by first producing two modu-
lated laser signals which are brought to the receivers by optic fibers. At the receivers,
the laser signals are mixed to produce a microwave signal. This signal is then mul-
tiplied and amplified to produce the needed LO frequency.

5.2.4 Semiconductor Junctions

Semiconductor amplifiers are the first stages of the best centimeter systems. First,
a review of a few essential concepts of the quantum theory of crystalline materials.
In this outline, the relevant concepts are presented. For an isolated atom, a bound
electron can only possess certain allowed energies, but when identical atoms are
combined in a solid, such as a metal, we know from experience that electrons can
move freely. Within a highly ordered crystal, a free electron can easily move only if
it has certain energies. That is, the electron can move only in certain energy bands.
By varying the material, both the width of the band, the band gap, and the minimum
energy to reach a conduction band can be varied.
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A widely used material for low-noise microwave applications is gallium arsenide,
GaAs. In order to increase the current, a small number of impurity atoms is intro-
duced. Usually silicon is adopted for a GaAs crystal. This addition of impurities
is referred to as doping. These impurities might have one or two excess electrons
compared to the basic material. In some cases, the doped material might have fewer
electrons. Most importantly, the doping atoms are chosen to have about the same
size, so that the crystal structure remains the same. The obvious choices are neigh-
boring elements in the periodic table. There are some extra conditions dependent on
purely chemical considerations.

The crucial part of any semiconductor device is the junction. On the one side
there is an excess of material with negative carriers, forming n-type material and
the other side material with a deficit of electrons, that is p-type material. The p-type
material has an excess of positive carriers, or holes. At the junction of a p- and n-
type material, the electrons in the n-type material can diffuse into the p-type material
(and vice-versa), so there will be a net potential difference. The diffusion of charges,
p to n and n to p, cannot continue indefinitely, but a difference in the charges near
the boundary of the n and p material will remain, because of the low conductivity of
the semiconductor material.

From the potential difference at the junction, a flow of electrons in the positive
direction is easy, but a flow in the negative direction will be hindered.

The current caused by the positive carriers is the same, and the relation remains
valid (see Fig. 5.7). Such p-n junctions have a large capacitance, so there can be
no fast response. Thus these are suitable only as square-law detectors. Schottky
junctions have a lower capacitance, so are better suited to applications such as mi-
crowave mixers. The I-V curves of Schottky mixers are similar to the curves for
conventional diodes. A sharper curve provides a more efficient conversion.

A simple extension of the p-n junction is the combination of three layers, p-n-p,
in a so-called “sandwich”. In Field Effect Transistors, FET’s, the electric field of
the gate, G, controls the carrier flow from source, S, to drain, D. Small variations
in the gate potential have large effects on the current flow from source to drain, so
this is an amplifier. The direct extension of such a concept is the bipolar transis-
tor, which operates by the motion of both holes and electrons. Such devices have

Fig. 5.7 A sketch of the
current flow in a diode as a
function of applied voltage,
this relation, the I-V curve, is
typical for classical mixers
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slow response times, so their use is restricted to less than a few GHz. For example,
uncooled Heterojunction Bipolar Transistors are useful up to 6 GHz.

At higher frequencies, unipolar devices, which have only one type of carrier, are
used as microwave amplifier front ends. These are Field Effect Transistors, FETs.
High Electron Mobility Transistors, HEMTs, are an evolution of FETs. The design
goals of HEMT’s are: (1) to obtain lower intrinsic amplifier noise and (2) opera-
tion at higher frequency. In HEMTs, the charge carriers are present in a channel of
small size. This confinement of carriers is arranged by having the channel at the
interface of two materials. In the first HEMTs, one used GaAs and AlGaAs as the
two materials. In Fig. 5.8 we show a sketch of a High Electron Mobility Transistor
or HEMT. The AlGaAs contributes electrons. These diffuse only a small distance
into the GaAs because of the positive space charge in AlGaAs. Thus the electrons
are confined to a narrow layer which is a potential well. This confinement gives
rise to a two dimensional electron gas, or “2 DEG”. We have denoted this region as
“channel” in Fig. 5.8. Flows in regions containing doped ions give rise to larger scat-
tering of electrons. Since the carriers are located in the 2 DEG region where there
are no doped ions, there is less scattering and hence lower noise. When cooled,
there is a significant improvement in the noise performance, since the main contri-
bution is from the oscillations of nuclei in the lattice, which are strongly temperature
dependent.

To extend the operation of HEMT to higher frequencies, one must increase elec-
tron mobility, μ , and saturation velocity Vs. A reduction in the scattering by doped
ions leads to a larger electron mobility, μ , and hence faster transit times, in addition

Fig. 5.8 This figure shows a HEMT amplifier. As with FETs, the current flow from Source to
Drain, around the Gate. The electric field from the Gate is shown as a darker, irregular region,
has a large effect on the current flow from Source to Drain. Thus, this amplifies the signal placed
on the Gate. Because of the potentials in the interface layers, the electrons can flow from Source
to Drain only in a very thin layer. This is shown enclosed in semicircles; this part of the HEMT
provides the gain. The quantity gm is the transconductance, and ugs is the velocity from gate to
source. The product of these is the gain of the amplifier. The quantities labelled “Ls, LD, etc.”
represent inductances internal to the HEMT; the “R”s are internal resistances, and “C”s are internal
capacitances
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to lower amplifier noise. The maximum saturated velocity is the limit to the value
of carrier velocity as the source-drain voltage is increased. Reducing the scattering
and increasing Vsat leads to higher maximum operating frequencies, that is, higher
cut-off frequencies. An exact analysis of HEMT behavior shows that the cut-off fre-
quency is directly proportional to the saturation velocity, and inversely proportional
to the sum of two terms: first, the width of the gate region and second, a correction
for (effectively) the fringing of the electric field from the gate.

5.2.5 Practical HEMT Devices

For use up to ν = 115 GHz with good noise performance, one has turned to modifica-
tions of HEMTs based on advances in material-growth technology. This technology
has led to the fabrication of junctions between dissimilar semiconductors. These
are referred to as heterojunctions. There has been a significant improvement of
carrier-transport properties for two reasons. The first is the quantum confinement
of the electron carriers created by the heterostructure. The second is the use of mod-
ulation doping, which reduces ionized impurity scattering in the channel where con-
duction takes place. The performance improvements such as higher gain and lower
noise, are directly related to the electron mobility, μ , saturated electron velocity,
vsat, and the channel sheet carrier concentration, ns0. From the use of these different
structures comes the name “pseudomorphic” HEMT, or PHEMTs. The heterostruc-
ture devices have evolved from GaAs HEMT, to Pseudomorphic HEMT (so-called
PHEMT) grown on GaAs, to a composition lattice matched HEMT grown on In-
dium Phosphide, a so-called InP HEMT, to a GaAs metamorphic HEMT (MHEMT).
InP HEMTs are used up to frequencies of 115 GHz. These have an additional layer
of indium gallium arsenide, InGaAs, which has a different lattice constant, inserted
between the doped AlGaAs and the GaAs buffer. In the InGaAs layer, enhanced
electron transport compared to the GaAs is possible. Thus there is a higher electron
density and higher current, as well as better confinement in the potential well than
with conventional HEMTs. Since InGaAs has a different crystal lattice constant, the
layer must be kept to less than 200 Å thick to insure that lattice strain is taken up
coherently by the surrounding material. All of this is mounted on a carrier layer of
GaAs, which serves as a buffer.

The InP based Indium-Aluminum-Arsenide (InAlAs/InGaAs) material heter-
ostructure with a InGaAs-channel of 53–65% Indium has the advantage of higher
bandgap discontinuity and higher saturation velocity, which leads to better
performance at higher frequencies compared to GaAs-based PHEMTs. However,
producing large numbers of these devices is difficult due to the brittle nature of InP
substrates and small available wafer size. In addition, increasing the Indium com-
position in the device channel generally leads to a decrease in breakdown voltage
due to enhanced impact ionization in the smaller bandgap material. In 1999, a GaAs-
based metamorphic HEMT, or MHEMT, technology has emerged as a low cost alter-
native to InP-HEMTs. MHEMT technology has the potential to eventually displace



96 5 Practical Receiver Systems

the InP HEMTs in millimeter-wave applications. In this new approach metamorphic
buffers are used to accommodate the lattice mismatch between the GaAS-substrate
and the active layers. Using the metamorphic buffer concept, it is expected that
unstrained InAlAs/InGaAs heterostructures can be grown with approximately any
InAs fraction. These metamorphic buffers are based on the controlled relaxation of
the strain due to the mismatch between the layer and the substrate. A controlled re-
laxation is obtained by growing an approximately one μm thick alloy-like InAlAs
and by varying the indium content with a lower value towards the substrate.

For low noise IF amplifiers, 4–8 GHz IF systems using GaAs HEMTs with 5 K
noise temperature and more than 20 db of gain have been built. With InP HEMTs
on GaAs-substrates, even lower noise temperatures are possible. As a rule of thumb,
one expects an increase of 0.7 K per GHz for GaAs, while the corresponding value
for InP HEMTs is 0.25 K per GHz. For front ends, noise temperatures of the am-
plifiers in the 18–26 GHz range are typically 12 K. High performance Metamor-
phic HEMTs (MHEMTs) are supplied by Raytheon, Filtronics and UMS. These
may eventually replace InP HEMTs. High performance Pseudomorphic HEMTs are
supplied by Mitsubishi and Fujitsu. See Fig. 5.9 for the photograph of such an IF
amplifier.

At higher frequencies, the SEQUOIA receiver array uses Microwave Monolithic
Integrated Circuits (MMIC’s) in 32 front ends for a 16 beam, two polarization sys-
tem. This development was pioneered by S. Weinreb. The MMIC is a complete
amplifier on a single semiconductor, instead of using lumped components. The
MMIC’s have excellent performance in the 80–115 GHz region without requiring
tuning adjustments. The simplicity makes MMIC’s better suited for multi-beam sys-
tems. The noise temperatures of individual array elements are not as low as the very

Fig. 5.9 An ALMA HEMT amplifier for 4–8 GHz. This low noise amplifier (LNA) was built by
OAN, the Spanish National Observatory. This will be used as the first IF section after the SIS front
end built at IRAM Grenoble. The receiver noise temperature is in the range of 5–7 K. The input is
on the right, the output is on the left
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best SIS devices, but the large number of beams compensates for this for the imag-
ing larger regions.

5.2.6 Superconducting Mixers

Very general, semi-classical considerations indicate that the slope of the I-V curve
shown in Fig. 5.7 changes gently. This is because the energy band gap energies are ≈
1 V, much too large compared to the input energies of photons even at submillimeter
wavelengths. This leads to a relatively poor noise figure, since much of the input
signal is not converted to a lower frequency.

A significant improvement can be obtained if the junction is operated in the su-
perconducting mode. Then the gap (see Fig. 5.10) between filled and empty states is
≈ 1 mV, and this is comparable to the photon energies at about 300 GHz. In addition,
the local oscillator power requirements are ≈ 1000 times lower than are needed for
conventional mixers. Finally, the physical layout of such devices is simpler since
the mixer is a planar device, deposited on a substrate by lithographic techniques.
SIS mixers consist of a superconducting layer, a thin insulating layer and another
superconducting layer. A diagram of the energy levels is shown in Fig. 5.10. There
is a gap between the filled states and the allowed unfilled states. In the filled states,
the electrons are paired (“Cooper Pairs”) and act as bosons which give rise to the
Josephson phenomenon. The Josephson Effect increases the noise in an SIS mixer,
so must be supressed. Thus, in addition to the mixer DC bias and LO signal, at fre-
quencies above 120 GHz, one must apply a steady magnetic field to eliminate the
Josephson Effect. SIS mixers depend on single carriers; a longer but more accurate

Fig. 5.10 (a) A sketch of the energy bands of a superconducting-insulating-superconducting (SIS)
layer. The gap between the filled states (below, shaded) and the empty states (above) is 2Δ . On the
left we sketch the process in which an electron absorbs a photon, gaining energy which allows it to
tunnel through the insulating barrier. (b) The I-V curve of the SIS junction. The dashed line is the
behavior when there is no local oscillator (LO) power; the solid line shows the behavior with LO
power supplied. When DC biased at 2Δ/e, the SIS mixer efficiently converts photons to a lower
frequency
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description of SIS mixers is “single quasiparticle photon assisted tunneling detec-
tors”. When the SIS junction is biased to a value of 2Δ/e , the filled states on the
left (see Fig. 5.10) reach the level of the unfilled band shown on the right, and the
electrons can quantum mechanically tunnel through the insulating strip. In the I-V
curve for a SIS device (Fig. 5.10) the sudden jumps in the I-V curve are typical of
quantum-mechanical phenomena. For low noise operation, the SIS mixer must be
DC biased at an appropriate voltage and current. If, in addition to the mixer bias,
there is a source of photons of energy hν , then the tunneling can occur at a lower
bias voltage, hν/e . If one then biases an SIS device and applies an LO signal at a
frequency ν , the I-V curve becomes very sharp. There are other jumps in that curve
at sub-harmonic frequencies, due to multiple photon absorptions. These can be min-
imized by filtering and proper biasing. For a weak (astronomical) signal present at
frequency ν , the conversion of such photons to lower frequency is much more ef-
fective than with a classical mixer. We show a sketch of SIS junction mounted in a
waveguide in Fig. 5.11. Under certain circumstances, SIS devices can produce gain.
If the SIS mixer is tuned to produce substantial gain the SIS device is unstable,
somewhat like the instability found with parametric amplifiers. Thus, this not use-
ful in radio astronomical applications. In the mixer mode, that is, as a frequency
converter, SIS devices can have a small amount of gain. This tends to balance in-
evitable losses, so SIS devices have losses that are lower than Schottky mixers. SIS
mixers have performance that is unmatched in the millimeter region. Improvements
to existing designs include tunerless and single sideband SIS mixers. Tunerless
mixers have the advantage of repeatability when returning to the same frequency.
Usually single sideband mixers require 2 backshorts. SIS mixers with a suppressed
sideband use 2 or more identical junctions and a more complex LO system and
electronics. For the Atacama Large Millimeter Array (ALMA) new SIS mixer de-
signs have been developed. These are wideband, tunerless, single sideband devices
with extremely low mixer noise temperatures. we show a photo of such a device in
Fig. 5.12.

An increase in the gap energy, to allow the efficient detection of higher energy
photons. This is done with Niobium superconducting materials with geometric junc-
tion sizes of 1μm by 1μm. For frequencies above 900 GHz, one uses niobium nitride

Fig. 5.11 A sketch of an
SIS junction placed in
a waveguide. Both the
astronomical and LO signals
enter through the waveguide;
the difference frequency is
present at the IF output. This
response is optimized by
tuning the back short
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Fig. 5.12 [An ALMA Band 9 SIS mixer] A photo of the feed horn on the right, and the SIS mixer
holder on the left. This was built at the Space Research Organization of the Netherlands (SRON).
This receiver covers the frequency range 610–720 GHz. This is a tunerless double sideband mixer.
This is typical for the sub-mm SIS mixers used in the ALMA instrument

junctions. Variants of such devices, such as the use of junctions in series, can be
used to reduce the capacitance. An alternative is to reduce the size of the individual
junctions to 0.25μm.

SIS mixers are the front ends of choice for operation between 150 GHz and
900 GHz because:

• these are low-noise devices;
• the IF bandwidths can be >1 GHz;
• these are tunable over ∼30% of the frequency range
• the local oscillator power needed is <1 μW.

5.2.7 Hot Electron Bolometers

Superconducting Hot Electron Bolometer-mixers (HEB) are heterodyne devices, in
spite of the name. These mixers make use of superconducting thin films which have
sub-micron sizes. In an HEB mixer excess noise is removed either by diffusion of
hot electrons out the junction, or by an electron-phonon exchange. The first HEBs
operating on radio telescopes and used to take astronomical data were HEB’s which
made use of electron-phonon exchange. The HEB junctions were of μm size, con-
sisting of Niobium Nitride (NbN), cooled to 4.2 K. Junctions using AlTiN have
provided lower receiver noise temperatures. The IF center frequency was 1.8 GHz,
and a had a full width of 1 GHz. Gershenzon et al. (1990) pioneered this develop-
ment. The first astronomical measurements using an HEB device were carried out at
0.5 mm and 0.35 mm by the Blundell group from the Harvard-Smithsonian Center
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for Astrophysics. A similar system was used to measure the J = 9–8 carbon monox-
ide line at 1.037 THz and later by the Köln University group using the Atacama
Pathfinder EXperiment (APEX) telescope to measure the [N II] line at 1.5 THz.

HEB devices have the following advantages:

• the IF frequencies are >1 GHz, so the IF bandwidths can be >1 GHz;
• they can operate at wavelengths shorter than 0.3 mm, where present-day SIS

mixer devices are approaching theoretical band-gap limits;
• these are low-noise devices;
• the local oscillator power needed is <1μW;
• these are essentially resistive devices with R = 20Ω to 200Ω and with R inde-

pendent of wavelengths to λ = 2μm;
• At 1.3 mm, HEB devices have higher noise temperatures than SIS devices, how-

ever, for λ < 0.3 mm, HEBs have a clear advantage.

5.3 Summary of Front Ends Presently in Use

5.3.1 Single Pixel Receiver Systems

Devices that provide the lowest noise front ends are:

• for ν < 115 GHz, High Electron Mobility Transistors (HEMT) and Microwave
Monolithic Integrated Circuits (MMIC)

• for 72 < ν < 800 GHz, Superconducting Mixers (SIS)
• for ν > 900 GHz, Hot Electron Bolometers (HEB)

See Fig. 5.13 for a comparison of front end receiver noise temperatures. For
λ > 3 mm, HEMT front ends have now replaced just about all other types of sys-
tems. In the future, the performance of HEMTs may be extended to λ = 1.3 mm. In
the cm range, Maser receivers may be somewhat more sensitive, but are much more
complex systems. As a result, these are used only in very special circumstances. SIS
mixers provide the lowest receiver noise in the mm and sub-mm range. SIS mixers
are much more sensitive than classical Schottky mixers, and require less local os-
cillator power, but must be cooled to 4 Kelvin. All millimeter mixer receivers are
tunable over 10–20% of the sky frequency. From the band gaps of junction mate-
rials, there is a short wavelength limit to the operation of SIS devices. For spectral
line measurements at wavelengths, at λ < 0.3 mm, superconducting Hot Electron
Bolometers (HEB), which have no such limit, have been developed. At frequencies
above 2 THz there is a transition to far-infrared and optical techniques. The high-
est frequency heterodyne systems in radio astronomy are used in the Herschel-HIFI
satellite. These are SIS and HEB mixers.

In addition to the front end mixers and amplifiers, the connections between feed
and receiver are also often cooled. For some receivers sections of the feed horn with
the coupling probes are cooled.
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Fig. 5.13 Receiver noise temperatures for coherent amplifier systems compared to the tempera-
tures from different astronomical sources and the atmosphere. The atmospheric emission is based
on a model of zenith emission for 0.4 mm of water vapor (plot from B. Nikolic (Cambridge Univ.)
from the “AM” program of S. Paine (CfA)). This does not take into account the absorption corre-
sponding to this emission. In the 1–26 GHz range, the horizontal bars represent the noise temper-
atures of HEMT amplifiers (priv. comm. H. Mattes, MPIfR). The shaded region between 85 and
115.6 GHz is the receiver noise for the SEQUOIA array which is made up of monolithic millime-
ter integrated circuits (MMIC), at Five College Radio Astronomy Observatory. The meaning of the
other symbols is given in the upper left of the diagram (partially taken from Rieke 2002). For the
SIS mixers, we have used the ALMA specifications. These are single sideband mixers covering
the frequency range shown by the horizantal bars. The mixer noise temperatures given as double
sideband (DSB) values were converted to single sideband (SSB) temperatures by increasing the
receiver noise by a factor of 2. The ALMA mixer noise temperatures are SSB. The HEMT values
are SSB

The SIS or HEB mixers convert the RF frequency to the fixed IF frequency, where
the signal is amplified by the IF amplifiers. Most of the amplification is done in the
IF. The IF should only contribute a negligible part to the system noise temperature.
Because some losses are associated with frequency conversion, the first mixer is a
major source for the system noise. Two ways exist to decrease this contribution:

• using either an SIS or HEB mixer to convert the input to a lower frequency, or
• at lower frequencies using a low-noise amplifier before the mixer.

5.3.2 Multibeam Systems

Since HEMT front ends are rather simple receiver systems, there has been a trend
to build many receivers in the focal plane. An array of N such receivers allows one
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to map a given region N times faster than with a single receiver, although at the cost
of more complexity. For spectral line mapping this involves both spectrometer hard-
ware and software. Compared to single pixel receivers, such array systems are more
complex but make more efficient use of observing time. These systems are usually
mounted in the secondary focus because of weight and to avoid optical distortions.
A 13 beam system for λ = 21cm, using HEMT receivers, has been installed in the
prime focus of the Parkes 64-m telescope in Australia. More than 300 pulsars have
been discovered with this system. For spectroscopy, back ends with many channels
are needed. At Parkes,one program involved blind searches for gas-rich-star-poor
galaxies in the λ = 21cm line . A 4-beam system for 21 cm, also using HEMT
receivers, has been installed in the 76-m Lovell telescope at Jodrell Bank to com-
plement the Parkes measurements. Another 21 cm system with 7 beams is ALFA,
installed on the Arecibo 305-m radio telescope; this is used for both H Iand pulsar
measurements. At 3 mm, the SEQUOIA array receiver with 32 MMIC front ends
connected to 16 beams had been used on 14-m telescope of the FCRAO for the last
few years.

Multibeam system that use SIS front ends are rare. A 9 beam Heterodyne Re-
ceiver Array of SIS mixers at 1.3 mm, HERA, has been installed on the IRAM
30-m millimeter telescope to measure spectral line emission. To simplify data tak-
ing and reduction, the HERA beams are kept on a Right Ascension- Declination
coordinate frame. HARP-B is a 16 beam SIS system in operation at the James-
Clerk-Maxwell telescope. The sky frequency is 325–375 GHz. The beam size of
each element is 14′′, with a beam separation of 30′′, and a FOV of about 2′. The to-
tal number of spectral channels in a heterodyne multi-beam system will be large.
In addition, complex optics is needed to properly illuminate all of the beams.
In the mm range this usually means that the receiver noise temperature of each
element is larger than that for a single pixel receiver system, unless great care
is taken.

For single dish continuum measurements at λ < 2 mm, multi-beam systems
make use of bolometers. In comparison to incoherent recievers, heterodyne systems
are still the most efficient receivers for spectral lines in the range λ >0.3 mm, al-
though systems such as SPIFI may be competitive for some projects. Presently, the
cooled GeGa bolometers are the most common systems and the best such systems
have a large number of beams. In the future, TES bolometers seem to have great
advantages.

5.4 Back Ends: Correlation Receivers, Polarimeters
and Spectrometers

In the following, to the end of this chapter, we describe the basic functions of the
back ends which are used to extract information about polarization, spectra, and
pulses in the data.
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5.4.1 Correlation Receivers and Polarimeters

Dicke switching is only one possible method to stabilize a receiver system; another
involves the correlation of signals. The block diagram for a correlation receiver is
shown in Fig. 5.14. The signals from the antenna and from the reference are input to
a 3 dB hybrid, a four-port device with two input and two output ports. If the signals
at the inputs are x(t) and y(t), the outputs are 1/2[UA(t)+Uref(t)] and 1/2[UA(t)−
Uref(t)]. Such hybrids can be built using various techniques, from coaxial to stripline
and waveguide, and in general the increase of noise and loss of signal in such a
device is lower than for a ferrite microwave switch, as in a Dicke receiver. The two
outputs of the hybrid are amplified by two independent radiometer receivers which
share a common local oscillator, and the IF signals then are correlated (Fig. 5.15). If
the input voltages to the correlator are

U1 =
√

G1 [(UA +Uref)/
√

2+UN1] ,

U2 =
√

G2 [(UA −Uref)/
√

2+UN2] ,

where UA is the voltage from the antenna and Uref that from the reference load, the
instantaneous output voltage is then

U =
√

G1G2 [(U2
A −U2

ref)/2+UN1(UA −Uref)/
√

2

+UN2(UA +Uref)/
√

2+UN1UN2] ,

where UN1 is the noise voltage from amplifier 1, and UN2 that from amplifier 2.
Since the stochastic signals UA,Uref,UN1 and UN2 are all uncorrelated, the time

average of all mixed products will average zero and only

〈U〉 = 1
2

√
G1G2

[
〈U2

A〉−〈U2
ref〉

]
(5.28)

remains. Gain fluctuations therefore affect only this difference signal; the stability
of the correlation receiver is therefore the same as that of a Dicke receiver. For the
limiting sensitivity we obtain

Fig. 5.14 A schematic of an analog correlation receiver. The operation of the “3 dB hybrid” is
described in the text
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Fig. 5.15 An analog polarization receiver with four outputs, which are the four Stokes parameters.
This is a Dicke system, with switching between the two senses of polarization. The “Polar Switch”
could be a polarization transducer that allows a separation of the input into 2 senses of polarization

ΔT
Tsys

=
√

2√
Δν τ

. (5.29)

A similar type of receiver can be used to measure the polarization of a wave
field as defined by the Stokes parameters (3.52). The orthogonal linear polarization
modes of a partially polarized wave field as collected by a circular horn are coupled
by orthogonal probes into the two input ports of a correlation receiver. A fairly
complex cross-correlation device then processes four output signals from the two IF
signals:

• output z1 is IF 1 detected by a square-law detector,
• output z2 is IF 2 detected by a square-law detector,
• output z3 is the correlation of IF 1 and IF 2,
• output z4 is the correlation of IF 2 and IF 2 with a phase delay of π/2 in one of

the channels.

Comparing these outputs with the definition of the Stokes parameters (3.52) we
have

I = const(z1 + z2) ,
Q = const(z1 − z2) ,
U = 2constz3 ,
V = 2constz4 .

(5.30)

The output signals z3 and z4 come from the cross-correlation of both IF channels;
they will therefore be fairly immune to amplification fluctuations. A polarimeter of
the type described in (5.30) allows accurate measurements of U and V , that is, in
wave fields with circular polarization. Usually the circular polarization of astro-
nomical sources is exceedingly small, so one is more interested in measuring linear
polarization. The polarimeter is easily converted for this purpose by including a
λ/4 phase shifter in the waveguide section of the horn, so that the probes collect
the left- and right-handed circular polarization components. If these are fed into the
polarimeter, we now have
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I = const(z1 + z2) ,
V = const(z1 − z2) ,
Q = 2constz3 ,
U = 2constz4 ,

(5.31)

so that the linear polarization components Q and U are now derived by correlated
outputs with the corresponding immunity to amplification fluctuations. This method
is used with interferometer systems (see Chap. 9).

5.4.2 Spectrometers

Of the many different receiver back ends that have been designed for specialized
purposes, spectrometers are probably the most widely used. Such spectrometers are
designed to measure the power spectral density (PSD). These follow the principles
shown in Fig. 4.1. Usually this is carried out in especially designed hardware, but
recently there have been devices based on general purpose digital computers. For
use with bolometers, one could use an analog Michelson or Fourier transform inter-
ferometer, or perhaps a Fabry-Perot system.

In designing spectrometers, emphasis is placed on the spectral information con-
tained in the radiation field. To accomplish this the receivers must be single sideband
and the frequency resolution Δν is usually small; perhaps in the kHz range, and the
time stability must be high. For spectroscopy, SSB receivers are desirable.

If a resolution of Δν is to be achieved for the spectrometer, all those parts of
the system that enter critically into the frequency response have to be maintained to
better than 0.1Δν . This applies in particular to the local oscillator; in this respect
the same demand is set on each local oscillator frequency in a double or triple con-
version super heterodyne receiver. If possible therefore, the local oscillator signal
should be obtained from a master oscillator, such as a rubidium clock or a hydrogen
maser by direct frequency multiplication. If this is difficult as e.g. for frequencies
> 10 GHz, frequency stabilization by applying phase lock schemes have been used.
In all modern installations oscillator frequencies are computer controlled.

A frequency resolution in the kHz-range is required if narrow spectral features
are to be resolved. The limiting sensitivity of the spectrometer is given by a slight
generalization of Eq. (4.41):

ΔT
Tsys

=
K√
Δν τ

(5.32)

(a list of values of K for different receiver configurations is given in Table 4.3). The
integration times, τ , needed to reach a given ΔT/Tsys can be quite long, since Δν
is small. For this reason spectrometer back ends must have a very high stability,
since any systematic errors will lead to fluctuations larger than that given by (5.32).
We will only discuss the those spectrometer types that are used with heterodyne
receivers. Recent descriptions of wide band spectrometers are to be found in Baker
et al. eds. (2007).
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5.4.2.1 Multichannel Filter Spectrometers

The time needed to measure the power spectrum for a given celestial position can
be reduced by a factor n if the IF section with the filters defining the bandwidth Δν ,
the square-law detectors and the integrators are built not merely once, but n times.
Then these form n separate channels that simultaneously measure different (usually
adjacent) parts of the spectrum. Filter spectrometers are analog devices. In Fig. 4.1
these devices transform the input voltage (in the upper left of the diagram) to the
PSD (in the lower right) by a path across the top and then down on the right. The
technical details of how such a multichannel spectrometer is built may differ from
one instrument to another, but experience has shown that the following design aims
are essential:

1) The shape of the bandpass Gi(ν) for the individual channels must be identical.
It is not sufficient that only the bandwidths Δνi are the same. In interferometer
systems, the phase characteristics of the filters must also be identical.

2) The square-law detectors for the channels must have identical characteristics.
This refers both to the mean output power level and to any deviations from an
ideal transfer characteristic.

3) Thermal drifts of the channels should be as identical as is technically feasible.

Goals 1 and 2 are determined by the need to detect weak spectral features in a few
spectral channels. Condition 3 must be met if the long term behavior of the different
channels is to be the same. For goal 3 the stability requirements for the individual
channels are determined by the condition that stability times from (4.49) are � the
time interval between the measurement of signal and reference.

The fundamental limitation of filter spectrometers is that these are analog de-
vices. As such these are sensitive to changes in the ambient temperature, as well as
other environmental factors. Another limitation is the lack of flexibility: varying the
frequency resolution, Δν is quite complex. The simplest solution is to build a num-
ber of separate filter banks. In the millimeter range, one usually has filter banks of
256 or 512 contiguous filters, each of width 100 kHz, 250 kHz and 1 MHz. For these
reasons, alternatives, such as autocorrelation spectrometers, have been employed.

5.4.3 Fourier and Autocorrelation Spectrometers

The PSD can be determined using the Wiener-Khinchin theorem. Referring to
Fig. 4.1, there are two paths to obtain the PSD. In the lower right side of the dia-
gram, from v(t), in the upper left of the diagram. These are presented in the next
two subsections.

5.4.3.1 Fourier Spectrometers

One method is to Fourier Transform (FT) the input, v(t), to obtain v(ν) and then
square v(ν) to obtain the PSD. In Fig. 4.1 this is equivalent to moving across the
top of the diagram, from left to right, then down on the right to obtain the PSD
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(4.13). From the Nyquist theorem (see Fig. 4.4 and discussion), it is necessary to
sample at a rate equal to twice the bandwidth. Then the FT’s can be carried out us-
ing Fast Fourier Transform algorithms (FFT). FT spectrometers using this approach
have been used at the Nobeyama Radio Observatory with notable success. These
are referred to as “FX” autocorrelators. Recent developments at the Jodrell Bank
Observatory have led to the building of COBRA (Coherent Baseband Receiver for
Astronomy). This system uses high speed computers and sophisticated software in
a flexible system which can be used as a spectrometer with a 100 MHz bandwidth,
and also as a pulsar de-disperser (see Sect. 5.4.4). A filter limits the IF input fre-
quency band. When used as a spectrometer, the analog input v(t) is mixed to the
video band (starting close to 0 Hz), digitized with 8 bit A/D converters, sampled at
200 MHz, the Nyquist rate, for a 100 MHz bandwidth transformed to v(ν) using
FFT’s, then squared to produce a detected signal and averaged.

5.4.3.2 Autocorrelation and Cross Correlation Spectrometers

The input v(t) is correlated, and this result is FT’ed to obtain the PSD. In Fig. 4.1
this is the path down the left side and then across the bottom. The autocorrela-
tion function R(τ) function is evaluated in hardware, then the FT is performed in
a general purpose digital computer. R(τ) is calculated by a multiplication of the
current sample with a sample delayed by a time τ . The first digital autocorrela-
tion spectrometer used in astronomy was designed and built by S. Weinreb (1963).
A description of the instrument and its theory is given in his thesis. Autocorrela-
tion can also be carried out with the help of analog devices as shown in Sect. 5.4.1
on correlation receivers, using a series of cable delay lines. A recent development
is WASP (Wideband Autocorrelation Spectrometer), a broadband autocorrelation
analog spectrometer. Presently WASP has a total bandwidth of 3.6 GHz in which
128 channels provide a frequency resolution of 33 MHz. WASP has been used to
measure extragalactic carbon monoxide rotational transitions.

For narrower bandwidths, digital techniques offer more stability and flexibility.
In the following, we describe the most used type of autorcorrelation spectrometer,
the “XF” digital autocorrelator. XF processing is shown in Fig. 5.16. The hardware
of an XF autocorrelator spectrometer shifts the digitized and sampled input at the
Nyquist frequency into a shift register which holds each delay. By comparing the
shift register content delayed by Δτ steps with the current sample, the contribution
to the counters is then proportional to Ry(τ). Dividing Ry(τ) by Ry(0), normalized
values for the ACF will be obtained.

The two significant advantages of digital spectrometers are: (1) flexibility and (2)
a noise behavior that follows 1/

√
t after many hours of integration. The flexibility

allows one to select many different frequency resolutions and bandwidths or even
to employ a number of different spectrometers, each with different bandwidths, si-
multaneously. The second advantage follows directly from their digital nature. Once
the signal is digitized, it is only mathematics. Tests on astronomical sources have
shown that the noise follows a 1/

√
Bt behavior for integration times >100 h; in

these aspects, analog spectrometers are more limited.
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Fig. 5.16 Schematic showing the essential functional blocks of an XF autocorrelation spectrometer

Corrections for one-bit (“hard clipping”) quantization can be expressed in a
closed form; the details are presented in Appendix D. Corrections for 3 level and 4
level (2 bit) digitization (see Fig. 4.3 for a sketch of such a 3 level clipping scheme)
follow similar procedures, but 3 and 4 level corrections cannot be expressed in a
closed form. The PSD of the received signal is then calculated following the Wiener-
Khinchin theorem (Eq. 4.14) by computing the FT of the measured autocorrelation
function. Note that the limits of the integral in (4.14) extend to ±∞; in an actual
instrument, however, R(τ) can be measured only up to a maximum delay τm. The
measured ACF R(τ) can thus be considered to be the product of two functions: the
true ACF R(τ) and a function describing the lag window

w(τ) =
{

1 for |τ| � τm

0 for otherwise
. (5.33)

The convolution theorem the measured PSD S̃(ν) is the convolution of the true
PSD S(ν) and a filter with the frequency response

S̃ = S(ν)⊗W (ν) . (5.34)

so that

W (ν) = 2τm sinc(2π ν τm) , (5.35)

The response W (ν) determines the resolution of the autocorrelation spectrometer.
If we define the frequency resolution of the spectrometer by the half width of (5.35)
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we find that

Δν =
0.605
τm

. (5.36)

If the spectral region which is analyzed by the N channel spectrometer has the
total bandwidth NΔν , the interval for the stochastic time series x(t) must be Δτ =
1/2Δν according to the sampling theorem. Provided that the autocorrelator has N
delay steps, multipliers and counters, then

τm = N/2Δν ,

resulting in a frequency resolution

Δν = 1.21
Δν
N0

(5.37)

or

Δν =
0.605
NΔτ

. (5.38)

For the autocorrelator discussed (N fixed), the frequency resolution can be
changed simply by changing the sampling time step Δτ , i.e. by changing the clock
frequency. In order to satisfy the sampling theorem, the total bandwidth accepted by
the spectrometer has to be simultaneously adjusted also, since Δν = 1/2Δτ .

Using the lag window (5.33) results in a filter function (5.35) with high side-
lobes. These will decline only slowly, since these vary as 1/2τm. If narrow, strong
features occur in the spectrum S(ν), S̃(ν) will be distorted. The sidelobes can be
reduced by using a lag window different from (5.33). The window first introduced
by J. von Hann (“hanning”) is given by

wH(τ) =

⎧⎨
⎩

cos2
(
πτ

2τm

)
for |τ| � τm ,

0 otherwise .
(5.39)

The corresponding filter frequency response is

WH = τm

[
sinc(2νπτm)+

2ντm

π[1− (2νπτm)2]
sin(2πντm)

]
. (5.40)

The frequency resolution corresponding to this lag window is

Δν =
1
τm

=
2Δν
N0

=
1

N0Δτ
; (5.41)

that is, the frequency resolution is 40 % less than using the window (5.33). The first
side lobe, however, is now at only 2.6 % of the peak, while for (5.33) it is 22 %.

Multiplying the time series x(t) with the lag window w(τ) is equivalent to con-
volving S(ν) with W (ν). Then introducing the lag window (5.39) can be done even
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after performing the FT of R(τ) by convolving with (5.40). For a spectrum S(ν)
given at equidistant frequencies with Δν = 1/2τm, this has the effect of forming a
new spectrum consisting of the running average of the original spectrum with the
weights 1/4,1/2,1/4. This is called hanning. In the spectral realm this operation
is equivalent to introducing the lag window (5.39); for lines of width comparable
to the spectrometer resolution it is good practice to smooth spectra obtained by an
autocorrelation spectrometer in this way.

In order to obtain the PSD S(ν) from the measured R̃(τ) an FT has to be per-
formed. Since R̃(τ) is obtained for a series of equidistant power-of-two or even
a factorable set of delays, τi, this transformation is best done by the Fast Fourier
transform (FFT) algorithm of Cooley and Tukey. The use of the FFT considerably
speeds up computations.

A serious drawback of digital auto and cross correlation spectrometers had been
limited bandwidths. Previously 50–100 MHz had been the maximum possible band-
width. This was determined by the requirement to meet Nyquist sampling rate, so
that the A/D converters, samplers, shift registers and multipliers would have to run
at a rate equal to twice the bandwidth. The speed of the electronic circuits was
limited. However, advances in digital technology in recent years have allowed the
construction of autocorrelation spectrometers with several 1000 channels covering
bandwidths of several 100 MHz. One can obtain larger analyzing bandwidths by two
methods. First, one can position a number, N, of individual autocorrelators side-by-
side. Each would have a fairly small bandwidth, but the total analyzing bandwidth
would be N times the bandwidth of each individual autocorrelator. In this arrange-
ment, the first part of the system is analog and the second part is digital. Thus, this
type of system is referred to as a hybrid system. In order to prevent unequal drifts in
the analog part of the system, so-called platforming of the spectral shape, the con-
nections between digital and analog parts of the system are periodically exchanged
by a control computer. A second method to increase the bandwidth of autocorrela-
tion spectrometers makes use of a single analog part, with a sampler which takes
data at a rate Δ t = 1/2B, but this output is then fed into M different shift register-
correlator digital sections. In each, the autocorrelation analysis can be carried out at
a rate which is M times slower.

Another improvement is the use of recycling auto and cross correlators. These
spectrometers have the property that the product of bandwidth, B times the number
of channels, N, is a constant. Basically, this type of system functions by having the
digital part running at a high clock rate, while the data are sampled at a much slower
rate. Then after the sample reaches the Nth shift register (Fig. 5.16) it is reinserted
into the first register and another set of delays are correlated with the current sample.
This leads to a higher number of channels and thus higher resolution. Such a system
has the advantage of high-frequency resolution, but is limited in bandwidth. This
has the greatest advantage for longer wavelength observations. Both of these de-
velopments have tended to make the use of digital spectrometers more widespread.
This trend is likely to continue.

Autocorrelation systems are used in single telescopes, and make use of the sym-
metric nature of the ACF (4.11). Thus, the number of delays gives the number of
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spectral channels. For cross-correlation, the current and delayed samples refer to
different inputs. As will be shown in Chap. 9, cross-correlation systems are used
in interferometers. This is a generalization of (4.11). In the simplest case of a
two-element interferometer, the output is not symmetric about zero time delay, but
can be expressed in terms of amplitude and phase at each frequency, where both
the phase and intensity of the line signal are unknown. Thus, for interferometry the
zero delay of the ACF is placed in channel N/2 and is in general asymmetric. The
number of delays, N, allows the determination of N/2 spectral intensities, and N/2
phases. The cross-correlation hardware can employ either an XF or a FX correlator.
The FX correlator has the advantage that the time delay is just a phase shift, so can
be introduced more simply.

5.4.3.3 Acousto-Optical Spectrometers

Since the discovery of molecular line radiation in the mm wavelength range there
has been a need for spectrometers with bandwidths of several hundred MHz. At
100 GHz, a velocity range of 300 km s−1 corresponds to 100 MHz, while the nar-
rowest line widths observed correspond to 30 kHz. Autocorrelation spectrometers
can reach such bandwidths only if complicated methods are used. Thus multichan-
nel filter spectrometers are more common in the mm and sub-mm ranges. As pointed
out in Sect. 5.4.2.1 these are rather inflexible and often have differential drift and
calibration problems, and thus there was a need for a wide band system with rea-
sonable stability that could be used to obtain different frequency resolutions and
bandwidths easily. It now seems that acousto-optical spectrometers (AOS) can meet
most of these requirements.

The AOS makes use of the diffraction of light by ultrasonic waves. This effect
had been predicted in 1921 by Brillouin: Sound waves cause periodic density varia-
tions in the medium through which it passes. These density variations in turn cause
variations in the bulk constants ε and n of the medium, so that a plane electromag-
netic wave passing through this medium will be affected. In “Principles of Optics”
by Born and Wolf (1965, p. 596ff) it is shown that using Maxwell’s equations such
a medium will cause a plane monochromatic electromagnetic wave (wave num-
ber k = 2π/λ and frequency ω = 2πν) to be dispersed. The emergent field can
be described by the superposition of a sequence of waves with the wave number
k sinθ + lK and frequency ω+ lΩ where K and Ω are wave number and frequency
of the sound wave, θ the angle between electric and acoustic wave, and l an index
l = 0,±1, . . . . The amplitudes of the different emerging waves can then be deter-
mined by recursion relations.

For a proper understanding of this mechanism, a series expansion of Maxwell’s
equations or the equivalent integral equation method [Born and Wolf (1965),
Sect. 12.2] must be used. We will use a more intuitive approach based on an anal-
ogy. The plane periodic variations of the index of refraction n can be considered to
form a 3-dimensional grating that causes diffraction of the electromagnetic wave.
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Fig. 5.17 Diffraction of light
by an acoustic wave. Λ is the
wavelength of the acoustic
wave, and the arrows show
the path of the light waves

Let a monochromatic light wave of angular frequency ω and wavelength λ make
an angle θ with the y axis, and let the angle of the diffracted ray be φ (Fig. 5.17).
Since the velocity v of the compression wave is always much smaller than the ve-
locity of light we can consider the periodic structure in the matter to be stationary.
The permitted angles φ are then determined by the condition that the optical path
difference from neighboring acoustic wave planes should be integral multiples of λ .
With a spacing Λ between adjacent acoustic wave crests, thus (see Fig. 5.17)

Λ (sinφ − sinθ) = lλ , l = 0,±1,±2 . . . . (5.42)

This is the Bragg condition met in the diffraction of X-rays in crystals; for this
reason, the device is referred to as a Bragg cell. Because of the interactions, an
acoustic wave affects the index of refraction. This produces a traveling wave, which
can be detected by illuminating the cell with a monochromatic light beam.

The practical problem is to find a transparent material with a low sound velocity
so that the acoustic wavelengthΛ is small for a given sound frequency νs. A second
problem is how to couple the transducer that converts the electric signal νs into an
acoustic wave with a reasonably constant conversion factor over a wide bandwidth.
And finally, an absorber of acoustic waves has to be provided so that no standing
wave pattern develops, since such a pattern will always have resonances and there-
fore is not suitable for broadband applications.

If the light beam is provided by a monochromatic laser and if the acoustic wave
intensity is small (in order to avoid problems with saturation) the intensity of the
diffracted light is proportional to the acoustic power. In the linear range, different
acoustic frequencies νs can be superposed, resulting in different diffracted angles
φs. Differentiating (5.42) and substituting Λs νs = vc we obtain

cosφ δθ =
lλ
vc
Δνs . (5.43)

The block diagram of an AOS is shown in Fig. 5.18. The light source is a laser;
the beam is expanded to match the aperture of the Bragg cell and the distribution of
the light intensity in the focal plane is detected by a CCD array. After an integration
time of some milliseconds, the counts recorded by the photo diodes are sampled,
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Fig. 5.18 A block diagram of an acousto optical spectrometer (AOS)

read out and transferred to a computer where the final integrations are carried out.
The maximum number of channels that can be resolved by such an instrument can
be determined by considering how well the wave front of light emerging from a
monochromatic grating can be determined. This uncertainty is

Δθ ∼= λ/L (5.44)

if L is the aperture of the Bragg cell. Therefore a total bandwidth Δν can at most be
resolved into

N0 =
δθ
Δθ

=
L

vc cosφ
Δν =

τc

cosφ
Δν (5.45)

channels. Δν is limited by the condition that adjacent orders of the diffraction (Δ l =
±1) should not overlap. τc is the time it takes the acoustic wave to pass through the
Bragg cell: τc = L/vc. A typical value for the total bandwidth possible for a single
Bragg cell is presently 1–2 GHz. The dynamic range is the ratio between the largest
and the smallest signal that can be measured with any certainty. There are several
effects that put limits on the dynamic range, the stability and consequently on the
achievable sensitivity of the AOS. The first limit is determined by nonlinearities
of the response, the second limit by the dark current of the CCD array and other
internal noise sources. In order to reach a large dynamic range, the response of the
Bragg cell to the radio frequency input must be linear, but a linear response means
low RF power, otherwise intermodulation effects occur in the deflector.

Often, practical experience with AOSs shows that another effect, laser speck-
les, is present. This adds considerable instrumental noise and shows strong, narrow
spikes which vary with channel position and time. Any variation of the optical path
length due to mechanical or thermal fluctuations in the order of fractions of the laser
wavelength causes spatial and amplitude fluctuations, giving rise to these speckles.
As a consequence both the dynamic range and the noise performance of the spec-
trometer can be degraded by more than one order of magnitude. The main cause of
these spikes is light scattered from the undeflected laser beam that is measured by
the photo detectors. One way to reduce the level of the speckles is to confine the
laser beam so that only a deflected signal reaches the CCD array. Another innova-
tion makes use of a polarized laser beam. If the deflector is operating in the acous-
tical shear mode, there is a change in the polarization of the deflected light, while



114 5 Practical Receiver Systems

the polarization of the undeflected and scattered light is not changed. Therefore a
polarization filter in front of the CCD array can reduce the level of the scattered
light by more than 20 dB. Today the integration time for an AOS is more than 100 s.
After this time, a reference measurement is needed. By alternately measuring sig-
nal and reference positions, one may be able to carry out measurements for much
longer periods. Due to their compactness and simplicity, AOS’s have been used in a
number of astronomcal satellites.

5.4.3.4 Chirp Transform Spectrometers

For not too wide bandwidths, an alternative to the AOS is the chirp transform spec-
trometer, CTS. The principle of the CTS was first given by Darlington (1964). The
CTS makes use of radio technology only, in contrast to the AOS that makes use
of both radio and optical technologies. As in an AOS, the radio signal is converted
into an acoustic wave in a delay line, but one that intentionally has a strong disper-
sion. Therefore an input pulse is converted into an output signal with a sweeping
frequency. This property can be used to form a FT-ing device using only electronic
means. The principles of CTS operation follow from Fourier transforms (see Ap-
pendix B). These relate the frequency spectrum F(ν) to the time behavior f (t) by

F(ν) =
∫ ∞

−∞
f (t)e− i2πνtdt . (5.46)

Setting ν = μ τ , we have

F(μτ) =
∫ ∞

−∞
f (t)e− i2πμτtdt . (5.47)

Using the identity
2tτ = t2 + τ2 − (t − τ)2 , (5.48)

we obtain
F(ν) =

∫ ∞

−∞
f (t)e− iπμ(t2+τ2−[t−τ ]2)dt . (5.49)

Factoring terms out of the integral, we have the expression

F(ν) = e− iπμτ2
∫ ∞

−∞

[
f (t)e− iπμt2

][
eiπ(t−τ)2

]
dt . (5.50)

The term outside the integral, forming a constant phase shift, is not relevant for
radio-astronomical applications. There are two terms inside the integral. The first
square bracket contains the input signal, f (t), modulated by a term e− iπμt2

. This
term is referred to as the chirp and the whole unit is called the compressor. The
multiplication of the input signal with the chirp is carried out by using a mixer and
it results in a conversion of a stationary frequency dependent signal into a time-
varying signal. The e− iπμt2

waveform is produced in a dispersive delay line.
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The second square bracket is a convolution. This is produced after mixing by
passing the signal through a matched filter and it is called the expander. A single
CTS has a duty cycle of about 50% which results from the ratio of the bandwidths
of compressor to expander. In practical systems, two or more such networks are
combined to produce a device with an effective 100% duty cycle. The operations are
carried out with analog electronics. The final output is digitized so that summations
can be made in a digital computer.

A prototype CTS was successfully used for astronomical measurements (Hartogh
and Oslerschek 1998). The total bandwidth of this system was 178 MHz, with 4000
spectral points and a channel resolution of 44 kHz.

5.4.4 Pulsar Back Ends

Back ends for pulsar observations differ from others used in radio astronomy be-
cause the pulsar signals change rapidly with time, although in a strictly periodic
fashion. Pulsars were first detected in 1967 when Hewish et al. (1968) employed
a receiving system which could respond to short time intensity variations (the sys-
tem was designed to measure the scintillation of small diameter radio sources which
passed behind the sun). Modern pulsar back ends are optimized to measure the prop-
erties of pulsar radiation. Therefore we will first give a short summary of the rele-
vant properties of this radiation. Pulsar radiation consists of short bursts of radiation
which repeat with remarkable precision; pulsars have periods that vary from a few
milliseconds to more than 4 s. The pulse width is usually only a small fraction (of
the order 10−3) of the total pulse period; the amplitude of the pulse can vary consid-
erably from one pulse to the next. Some pulsars show strong linear polarization with
systematic variations across the pulse; this is caused by the pulsar emission. For all
pulsars the radiation arrival times are strongly frequency dependent; this s caused
by propagation effects of the electromagnetic waves in the intervening interstellar
medium.

Two commonly employed pulsar measurement processes are the determination
of average pulse shapes and searches for periodic pulses with unknown periods.

In order to be able to measure the shape of the pulsar radiation, rather short
receiver time constants, τ , must be used in the back ends. Because of the frequency
dependence of the pulse arrival time, the IF bandwidth Δν must be kept small.
As a consequence the Dicke formula (4.41) the ΔT/Tsys is fairly large. In order to
suppress receiver noise, use is made of the strict pulse repetition rate; that is many
individual pulses are added together to obtain an average pulse profile. The main
part of most pulsar back ends therefore consists of a multichannel filter bank and
signal averager, in which the pulsar signal is sampled, digitized and averaged. The
fast sampling is controlled by a clock synchronized with the pulsar repetition rate.
Then mean profiles can be accumulated over hours, and thus good signal-to-noise
ratios can be obtained even if narrow bandwidths are used.
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An alternative to a multichannel backend for Pulsars is COBRA developed at
Jodrell Bank. With COBRA, the voltage from the receiver is sampled, digitized
and Fourier transformed. Then this is convolved with a chirp function, to remove
the frequency dependent delay in the interstellar medium, and FT to return to the
time domain. The profile is folded to produce the grand average. With this coherent
de-dispersion, one can analyze a 100 MHz bandwidth in all 4 Stokes parameters.
Such a process is equivalent to a filter bank with a very large number of very narrow
channels, so it allows a more accurate measurement of the details of the pulse shape.
A system such as COBRA is very useful for pulsar timing experiments, since the
instrumental broadening of the measured pulse shapes is less than those measured
using filter banks.

5.4.4.1 Pulse Dispersion and Dispersion Removal

The dispersion of the pulse arrival time with frequency has a profound influence
on the response of a receiver on such a signal. A thorough understanding of this
requires a complex analysis of the transfer properties of the receiver which is beyond
the scope of this book; a short version can be found in the review article by Phinney
and Kulkarni (1994) or the article by Backer (1988).

Pulse dispersion in the interstellar medium can be described by a transfer func-
tion in the time or frequency domain. A filter can be constructed that removes this
dispersion for a limited frequency range either by hardware or software techniques.
This predetection removal is necessary when the bandwidth of the receiver must be
widened in order to detect short time intensity variations in single pulses.

For a more intuitive description of the effect of a dispersed pulse on the receiver
output, the effect on the time resolution of the receiver is of importance. Suppose
the interstellar medium has a dispersion measure DM according to (2.85). The pulse
then is received with a frequency sweep rate α , resulting in a pulse duration of
at least

ts
s

=
B
α

= 0.830×104 DM
cm−3 pc

B/MHz
(ν/MHz)3 . (5.51)

Therefore, if no corrections are made, a small bandwidth must be used when a
high time resolution is required with a corresponding loss of amplitude resolution.

This situation can be improved by dividing the front end bandwidth into several
contiguous bands that are detected separately and then appropriately combined after
each signal has been delayed by the time given by (2.84). Conceptually the simplest
such system is a filter bank. Such postdetection dispersion removers are used at most
observatories where pulsar observations are carried out on a routine basis.

Comparing predetection and postdetection dispersion removal techniques, the
advantage of the first is the high time resolution which can be obtained even at low
frequencies and high dispersion measures. Hardware filters needed for this are, how-
ever, useful only for a single dispersion measure and it is difficult to readjust them
for a different DM. Software filtering cannot be done in real time, so that usually
predetection dispersion removal is only applied when the highest time resolution
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is needed. On the other hand, postdetection dispersion removal can be done in real
time, that is on-line, as the data is taken. The dispersion remover is easily reconfig-
ured for different DM, and therefore such an approach is usually used on a routine
basis.

5.4.4.2 Pulsar Searches

The first pulsars were detected by noting that there were periodic spikes on a chart
record; however weaker and more sporadic pulsars cannot be seen on individual
chart records. These have to be found by making use of the distinct signature of
pulsar radiation: that is, their regular pulse period and dispersion in frequency of
the pulse arrival time. The optimum detection of pulsar radiation in the presence of
Gaussian noise is obtained by convolution of the received signal with a matching
filter whose impulse response is given by rectangular functions spaced at the as-
sumed period. This is referred to as rail filtering, but the use of this method requires
a known period. In pulsar searches, the signal must be convolved with a whole se-
ries of rail filters covering a specified range of periods. Usually this is done using
software techniques. The signal is sampled at regular time intervals and stored digi-
tally. There exist two methods for the analysis of the presence of periodic signals in
data: a fast folding algorithm (FFA) and the fast Fourier transform (FFT) method.
Both can investigate the data in real time provided fast computers are used. Usually
some kind of dispersion removal is also used, so that surveys will be most sensitive
to pulsars within a certain range of dispersions.

Problems

1. What is the minimum noise possible with a coherent receiver operating at
115 GHz? At 1000 GHz, at 1014 Hz?

2. Coherent and incohent receivers are fundamentally different. However one can
determine the equivalent noise temperature of a coherent receiver Tn which corre-
sponds to the NEP of a bolometer. This can be determined by using the relation

NEP = 2kTn

√
Δν .

For Δν = 50 GHz, determine Tn for NEP = 10−16 W Hz−1/2. A bolometer re-
ceiver system can detect a 1 mK source in 60 s at the 3σ level. The bandwidth is
100 GHz. How long must one integrate to reach this RMS noise level with a coher-
ent receiver with a noise temperature of 50 K, and bandwidth 2 GHz?

3. In the millimeter and sub-millimeter range, the y factor (see Fig. 4.10) usually
represents a double-sideband system response. For spectral lines, one wants the
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single-sideband receiver noise temperature. If the sideband gains are equal, what
is the relation of the y factor for a single- and double-sideband system?

4. The definition of a decibel, db, is

db = 10log

(
Poutput

Pinput

)
.

If a 30 db amplifier with a noise temperature of 4 K is followed by a mixer with a
noise temperature of 100 K, what is the percentage contribution of the mixer to the
noise temperature of the total if

5. (a) In Fig. 5.5, the upper sideband (USB) frequency is 115 GHz, and the lower
sideband frequency is 107 GHz. What is the intermediate frequency? What is the
local Oscillator (LO) frequency?
(b) When observing with a double-sideband coherent receiver, an astronomical
spectral line might enter from either upper or lower sideband. To distinguish be-
tween these two possibilities, one uses the following procedure. To decide whether
the line is actually in the upper or lower sideband, the observer increases the lo-
cal oscillator frequency by 100 kHz. The signal moves to lower frequency. Is the
spectral line from the upper or lower sideband?

6. The same situation as in Problem 6, but after the first mixer is a second mixer
with an LO frequency which is higher than the intermediate frequency of the first
mixer. The spectral line is known to be in the upper sideband. To eliminate unwanted
spectral lines, someone tells you to move the LO higher frequencies in steps of
100 kHz, and at the same time, move LO2 to lower frequencies by the same step.
After repeating this procedure for 10 steps of 100 kHz, the result is added. Will
this procedure eliminate spectral lines in the lower sideband? If the unwanted lower
sideband spectral line has a width of 100 kHz, by how much is this line reduced in
intensity?

7. In Fig. 5.6, is the schematic of a single-sideband mixer. In such a system, the
image and signal bands are separated in the output if the input is f (t) = cosωst. Use
an analysis for this input signal to show that such a mixer is feasible. Repeat for
f (t) = sinωst.

8. The input power of a receiver can be 10−16 W, while the power at the output of a
receiver must be about a milli Watt. What must be the power amplification of such
a receiver? Express this in decibels. Suppose the gain stability of this receiver is
10−3 over 30 s. What is the change in the output power? Suppose that the system
noise is 100 K and the bandwidth is 1 GHz. This is used to measure a source with
a peak temperature of 0.01 K. What is the ratio of the signal intensity to that of
gain fluctuations? The fluctuations can be reduced by periodic comparisons with a
reference source; how often should one switch the receiver between the signal and
a reference to stabilize the output power?

9. Laboratory measurements frequently make use of a data-taking method which
involves a modulated signal. The output is then measured synchronously with the
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modulation rate in both frequency and phase. We can measure a weak input signal,
S = T (signal)e−τ , in the presence of noise, T (cable)(1−e−τ ), by modulating the sig-
nal with a known frequency, f1. The output is superimposed on noise background.
What is the noise in the switched output? What is the signal-to-noise ratio? How
will the signal-to-noise ratio change with time if only random noise is present?

10. If the bandwidth of a receiver is 500 MHz, how long must one integrate to reach
an RMS noise which is 0.1% of the system noise with a total power system? Re-
peat for a Dicke switched system, and for a correlation system. Now assume that
the receiver system has an instability described by (4.48). For a time dependence
(ΔG/G)2 = γ0 + γ1τ we take γ0 = 0, γ1 = 10−2 and K = 2. On what time scale will
the gain instabilities dominate uncertainties caused by receiver noise? If one wants
to have the noise decrease as 1/

√
t, what is the lowest frequency at which one must

switch the input signal against a comparison?

11. At 234 MHz, the minimum sky noise is ∼100 K. For use as a first stage amplifier
at 234 MHz should you buy an expensive receiver for use at a sky frequency of
234 MHz which has a noise temperature of 10 K, if a similar receiver has a noise
temperature of 50 K but costs 10% of the price of the lower-noise receiver? Explain
your decision by considering observational facts.

12. An all-sky continuum survey covering 41 252 square degrees, is carried out with
a 40′ beam at 234 MHz. Three spatial samples are taken for each beamwidth. These
samples are used to image the sky at 234 MHz.
(a) Compare the sampling procedure to the Nyquist sampling rate using the example
of the sampling of sine or cosine waves. What is the total number of samples?
(b) Next, assume that the sky noise dominates the receiver noise. If the bandwidth
B is 10 MHz and the integration time is 10 s per position, what is the RMS noise
as a fraction of Tsource, the sky noise? How many data points are needed to com-
pletely characterize the resulting map? If one needs 20 s of time for measuring each
position, how long will this survey require?
(c) Repeat this estimate for a survey at 5000 MHz carried out with a 3′ beam, for
a receiver with noise temperature 50 K, 500 MHz bandwidth, 10 s integration per
point. Note that the sky background contributes only a small amount of the receiver
noise at 5 GHz. How much observing time is needed for this survey?



Chapter 6
Fundamentals of Antenna Theory

6.1 Electromagnetic Potentials

Analytic solutions of Maxwell’s equations (2.4, 2.5, 2.6, 2.7) are rather simple for
plane harmonic waves, but are very complex for realistic configurations. As a sim-
plification of the mathematics, we introduce new functions, the electrodynamic po-
tentials Φ and A , which can be determined from given current and charge densities
J and �. These potentials give both E and B in a straightforward way. In electro-
magnetic theory, potential functions were first used by Green 1828, but this was
noted by the scientific community only in 1846, when Lord Kelvin directed atten-
tion to this paper. Independently, one year before Franz Neumann in Königsberg
had successfully used this method.

According to Maxwell’s equation (2.5), we always have ∇ ·B = 0. From Stokes’
theorem (A 22), we can write

B = ∇×A , (6.1)

so that (2.6) becomes

∇×
(

E+
1
c

Ȧ
)

= 0

where the order of time and spatial differentiation have been interchanged. But
Gauss’ theorem states that a vector whose curl vanishes can always be expressed
as the gradient of a scalar, so that

E+
1
c

Ȧ = −∇Φ

or

E = −∇Φ− 1
c

Ȧ . (6.2)

Both B and E can be expressed in terms of A and Φ . If these expressions are
to be useful, we require that the resulting fields B and E should obey Maxwell’s
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equations. To determine which additional restrictions this imposes on A and Φ , we
introduce (6.1) and (6.2) into Maxwell’s equations. For simplicity, we adopt free
space conditions and set ε,μ and σ equal to 1.

From (2.7) we then obtain

∇× (∇×A)+
1
c
∂
∂ t

[
∇Φ+

1
c

Ȧ
]

=
4π
c

J ,

∇(∇ ·A)−∇2A+
1
c
∂
∂ t

[
∇Φ+

1
c

Ȧ
]

=
4π
c

J ,

∇2A− 1
c2 Ä−∇

(
∇ ·A+

1
c
Φ̇
)

= −4π
c

J . (6.3)

Using (6.2) the remaining Eq. (2.4) gives

∇ ·∇Φ+
1
c
∇ · Ȧ = −4π �

or

∇2Φ− 1
c2 Φ̈+

1
c
∂
∂ t

[
∇ ·A+

1
c
Φ̇
]

= −4π � . (6.4)

Neither A norΦ are completely determined by the definitions (6.1) and (6.2). An
arbitrary vector can be added to A without changing the resulting B provided this
additive term has a zero value for the operation (∇×). This will be so if A is the
gradient of a scalar function

Â = A+∇Λ (6.5)

then B will be unchanged. According to (6.2), E will be affected, unless Φ is

Φ̂ =Φ− 1
c
Λ̇ . (6.6)

In (6.5) and (6.6) we are free in choosing Λ , so we can use this freedom in Λ to
simplify Eqs. (6.3) and (6.4). An obvious choice is

∇ ·A+
1
c
φ̇ = 0 . (6.7)

This is Lorentz gauge. This requires that the gauge function, Λ , satisfies (6.5),
(6.6) and (6.7):

∇ ·A+∇ ·∇Λ +
1
c
Φ̇− 1

c2 Λ̈ = 0
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∇2Λ − 1
c2 Λ̈ = 0 . (6.8)

Electrodynamic potentials in Lorentz gauge satisfy the equations

∇2A− 1
c2 Ä = −4π

c
J

∇2Φ− 1
c2 Φ̈ = −4π � .

(6.9)

(6.10)

Equations (6.9), (6.10) and (6.7) are equivalent to Maxwell’s equations (2.4) to (2.7)
together with the constitutive equations (2.1, 2.2, 2.3). These four equations are
decoupled and have the form of an inhomogeneous wave equation.

6.2 Green’s Function for the Wave Equation

The wave equations (6.9) and (6.10) have the form

∇2ψ− 1
v2 ψ̈ = − f (x, t) , (6.11)

where f (x, t) is the given source distribution and c is the propagation velocity as
derived in (2.32). Since the time dependence of (6.11) complicates the problem, it
is useful to eliminate the time in (6.11) by taking the inverse Fourier transform.
Substituting

ψ(x, t) =
∞∫

−∞

Ψ(x,ω)e iωt dω ,

f (x, t) =
∞∫

−∞

F(x,ω)e iωt dω ,

(6.12)

into (6.11) we find thatΨ(x,ω) obeys the time-independent Helmholtz wave equa-
tion

(∇2 + k2)Ψ(x,ω) = −F(x,ω) (6.13)

for brevity we have set
k = ω/c . (6.14)

The left-hand side of (6.13) is linear inΨ , but the function F on the right-hand side
prevents the application of a superposition principle to the complete equation. An
arbitrary linear combination of solutions of the homogeneous equation can always
be added to any particular solution of (6.13). A convenient method to construct a
particular solution of (6.13) that fulfills the given initial or boundary conditions is
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provided by Green’s functions. These are solutions of an inhomogeneous differential
equation in the form of (6.13) with a convenient form on the right hand side. This is
chosen such that the general function F can be expanded into a linear combination
of these special functions. The solution Ψ of the general equation (6.13) is then
formed by the same kind of linear superposition as F .

The Green’s function G(x,x′) therefore is defined as the solution of

(∇2 + k2)G(x,x′) = −δ (x−x′) . (6.15)

G(x,x′) must be a solution to (6.15), this expression also has the symmetries specific
to the problem and satisfies the initial or boundary conditions. The inverse FT of
G(x,x′),

g(x, t,x′, t ′) =
1

2π

∫
G(x,x′)eiωt dω , (6.16)

is then a solution of the inverse FT of (6.15), that is of

(
∇2 − 1

v2

∂ 2

∂ t2

)
g(x,x′, t, t ′) = −δ (x−x′)δ (t − t ′) . (6.17)

The Green’s function method will now be applied to the case of spherical waves
emitted from a point source. A spherical coordinate system (r,ϑ ,ϕ) is appropriate
in this case, so that (6.15) becomes [see Appendix (A.27)]

1
r

d2

dr2 (rG)+ k2G = −δ (r) . (6.18)

For r 
= 0 the solution is

G =
1

4πr
e± ikr , (6.19)

It can be shown that this solution also applies to r → 0. The corresponding
Green’s function for the time dependent problem is then obtained by the inverse
FT of (6.15), that is, by

g(x,x′; t) =
1

4π | x−x′ |
1

2π

∞∫
−∞

ei(ωt±k|x−x′|) dω , (6.20)

or, introducing a new, retarded (or advanced) time t ′

t ′ = t ∓ k
ω

| x−x′ |= t ∓ | x−x′ |
v

, (6.21)

by

g(x,x′, t, t ′) =
δ
(

t ′ +
| x−x′ |

v
− t

)

4π | x−x′ | . (6.22)
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In (6.21) two choices of the sign are in principle possible; here the upper sign,
which represents the retarded potentials is selected because only this results in the
proper causal relation. Selecting the retarded and not the advanced solution is an
indication of the arrow of time.

The solution for the wave equation (6.11) is then, in the absence of boundaries,

ψ(x, t) =
1

4π

∫ ∫ f (x′, t ′)δ
(

t ′ +
| x−x′ |

v
− t

)

| x−x′ | d3x′ dt ′ . (6.23)

If the integration over t ′ is performed we finally arrive at the result

ψ(x, t) =
1

4π

∫ f

(
x′, t − | x−x′ |

v

)

| x−x′ | d3x′ . (6.24)

A short hand version of this is

ψ(x, t) =
1

4π

∫ [ f (x′, t ′)]ret

| x−x′ | d3x′ , (6.25)

for [ ]ret, t is the retarded time t ′ = t− | x−x′ | /v.
If we use the expression (6.24) or (6.25) for the retarded Green’s function in the

wave equation for the electrodynamic potential (6.9) and (6.10), we can write any
reasonable solution of Maxwell’s equation as

A(x, t) =
μ
c

∫ ∫ ∫ J
(

x′, t − | x−x′ |
v

)

| x−x′ | d3x′ , (6.26)

Φ(x, t) =
1
ε

∫ ∫ ∫ �

(
x′, t − | x−x′ |

v

)

| x−x′ | d3x′ . (6.27)

To determine the electrodynamic potentials we must know the distribution of the
currents J and electric charges � over the whole volume. The actual situation is more
complicated, since specifying A and Φ (or E and B) result in currents and charges.
Thus this is a coupled problem, requiring a self-consistent field.

For investigations of the radiation fields of a system of oscillating charges and
currents, there is no loss of generality considering only quantities that vary sinu-
soidally with time. Therefore we adopt

�(x, t) = �(x) e− iωt ,

J(x, t) = J(x)e− iωt . (6.28)
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The amplitudes �(x) and J(x) can be complex quantities, so that the phases of
the oscillations will be dependent on the position x. According to (6.26) the vector
potential generated by these currents is

A(x, t) = A(x)e− iωt , (6.29)

where

A(x) =
1
c

∫ ∫ ∫
V

J(x′)
e ik|x−x′|

| x−x′ | d3x′ (6.30)

and

k =
ω
c

=
2π
λ

. (6.31)

Here V is the volume in which the current J flows.
For analytic solutions, the problem is often greatly simplified if the currents J (and
charges, if present) are confined to a finite region (for example the antenna proper)
and we postulate a given distribution for J. If one can assume that reactions of
fields on these currents can be neglected, the integrals in (6.26) and (6.27) can be
computed. Usually one can also take μ=ε=1.

6.3 The Hertz Dipole

Next, we analyze the Hertz dipole as an example of a simple antenna. Here the
volume over which the integrals must be computed is that of an infinitesimal dipole
with a length Δ l and a cross section q. H. Hertz calculated the solution for this
configuration and then performed the experiment to demonstrate the existence of
electromagnetic waves in 1888.

If a current I is flowing in this dipole, the current density is | J |= I/q in the
dipole, and J = 0 outside. Then the integration volume is only that of the dipole
dV = qΔ l. If the rectangular coordinate system (x,y,z) is oriented such that the
dipole extends from z = −Δ l/2 to z = +Δ l/2 on the z axis, then Jx = Jy = 0, and

Jz =
I
q

e− iωt .

Following (6.26), the vector potential A has only the component

Az =
1
c

Δ l/2∫

−Δ l/2

I
q
· q

r
· e− iω(t− r

c ) dl ,

resulting in

Az =
1
c

IΔ l
r

e− i(ωt−k r) . (6.32)
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Fig. 6.1 The geometry and
coordinate system used for the
treatment of radiation from an
electric dipole (Hertz dipole)

Thus Az is constant on concentric spheres r2 = x2 +y2 + z2. Introducing cylindri-
cal coordinates (�,ϕ,z, see Fig. 6.1) we derive from (6.1)

Bϕ = (∇×A)ϕ =
∂A�

∂ z
− ∂Az

∂�
.

But since A� ≡ 0, we find that

Bϕ = −∂Az

∂�
= −∂Az

∂ r
∂ r
∂�

.

Since

r2 = �2 + z2 ,

∂ r
∂�

=
�

r
= sinϑ ,

and

Hϕ = Bϕ ,

we find that

Hϕ = − i
IΔ l
2λ

sinϑ
r

[
1− 1

ik r

]
e− i(ωt−k r) (6.33)

where we have used (6.31). The other components of H are zero, because A� ≡
Aϑ ≡ 0. For the electric field, we again make use of Maxwell’s equations. According
to (2.7)
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∇×H =
1
c

Ḋ+
4π
c

J .

Outside the region occupied by the dipole, σ = 0, so J = 0. For a harmonic wave,
from (2.35), Ḋ = − iωD so

E =
ic
ω

(∇×H) .

Returning to a spherical coordinate system (r,ϑ ,ϕ) we find that

Eϑ =
i
ω

(∇×H)ϑ .

since Hr ≡ 0, from (A.26),

(∇×H)ϑ = −1
r

∂ (rHϕ)
∂ r

so that

Eϑ = − i
IΔ l
2λ

sinϑ
r

[
1− 1

ik r
+

1

( i k r)2

]
e− i(ωt−k r) .

(6.34)

Finally, since Hϑ = 0, we find that

(∇×H)r =
1

r sinϑ
∂ (sinϑHϕ)

∂ϑ

and thus

Er = i
IΔ l
2λ

2cosϑ
r

[
1

i k r
− 1

( i k r)2

]
e− i(ωt−k r) .

(6.35)

Eϕ ≡ 0 since Hr ≡ 0 and Hϑ ≡ 0. Therefore (6.33), (6.34) and (6.35) are the
only non-vanishing components of the electromagnetic field of an electric dipole.
Forming the scalar product of E and H we find

E ·H = 0 (6.36)

As in the case of plane electromagnetic waves E and H of a radiating dipole are
perpendicular everywhere. However, the expressions for E and H contain different
powers of the distance r. Near and far field of an oscillating Hertz dipole are shown
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Fig. 6.2 The field for an oscillating Hertz dipole for the region close to the dipole

in Figs. 6.2 and 6.3. The 1/r2 terms in (6.33), (6.34) and (6.35) represent the induc-
tion field of a quasistationary electric dipole for slow oscillations. In addition, for E
there is the 1/r3 field of the static dipole. Most important for r � l is the radiation
field which has a 1/r dependence. This has components



130 6 Fundamentals of Antenna Theory

Fig. 6.3 The far field of an
oscillating Hertz dipole

Hϕ = − i
IΔ l
2λ

sinϑ
r

e− i(ωt−k r)

Eϑ = − i
IΔ l
2λ

sinϑ
r

e− i(ωt−k r)
.

(6.37)

(6.38)

As in the case of plane electromagnetic waves, we have

| E |
| H | = 1 . (6.39)

The Poynting vector for the radiation field is directed radially outward, its time
average value is, according to (2.21),

|〈S〉|= c
4π

| Re(E×H∗) |= c
4π

(
IΔ l
2λ

)2 sin2ϑ
r2 . (6.40)

Thus the total radiated power is

P =
2π∫
0

π∫
0

|〈S〉| r2 sinϑ dϑ dϕ ,

using

π∫
0

sin3ϑ dϑ = 4
3
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this becomes

P =
2c
3

(
IΔ l
2λ

)2

. (6.41)

In MKS units, with I in amperes, and λ in meters, this is

[
P

Watts

]
= 395

(
IΔ l
λ

)2

This expression has the same general form as that giving the ohmic losses of a
resistor

[P] = 1
2 RI2

so that we are led to introduce a radiation impedance, RS, of the Hertz dipole

RS =
c
3

(
Δ l
λ

)2

. (6.42)

For MKS units, this is

[
RS

Ohms

]
= 790

(
Δ l
λ

)2

6.3.1 Arrays of Emitters

An important extension of the case of a single emitting element is the case of an
array. A particular case is one in which one has a number of identical emitters placed
parallel to each other in a plane, at a distance, D. Each element of the array produces
the same E field. From the principle of superposition, the E fields are additive.
Furthermore, we assume that the E field of each dipole does not affect any of the
others. In two dimensions, for a distant observer at r, two elements have a combined
field of

E = E1 +E1eiΦ (6.43)

The geometric arrangement is given in Fig. 6.4. with Φ = 2π
λ Dsinφ and 2π

λ = k,
we have

E = E1

[
1+ ei k Dsinφ

]
(6.44)

If we call the term in square brackets Ŝ, we have

Ŝ = 1+ ei k Dsinφ (6.45)
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Fig. 6.4 The arrangement for two (at 0 and D) and three (0, D/2 and D) emitters. The emitters are
placed on the vertical axis

for two emitters. For three emitters spaced equally between 0 and D, this is

Ŝ = 1+ ei k D/2sinφ + ei k Dsinφ (6.46)

A plot of |Ŝ|2 for a 2 and 3 element system is shown in Fig. 6.5. The 2 element
system has a set of equally spaced maxima and minima. For the 3 element system
some of the maxima are replaced by weaker secondary maxima. In antenna jargon,
these secondary maxima are referred to as “sidelobes”.

Fig. 6.5 Power patterns
for different configurations.
Panel (a) shows two elements
and panel (b) shows the
superposition of three emitters
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For a set of N emitters spaced equally by D, we have:

Ŝ = ΣN
n=0ei k nD sin(φ) (6.47)

The sum is

Ŝ = ei k D sin(φ) · e− i(N−1)k D/2 sin(φ) ·
[

sin k ND
2 sin(φ)

sin k D
2 sin(φ)

]
(6.48)

(see problem 1 at the end of this chapter). The radiated power is proportional to |Ŝ|2.
Then for (6.48), the radiated power is proportional to

|Ŝ|2 =

[
sin( k ND

2 sin(φ))

sin( k D
2 sin(φ))

]2

(6.49)

On axis, φ = 0, which gives a maximum value. At an angle

sin(φ) =
λ

N D

the sum of the contributions reaches zero. Using N D = D̂, the expression for the
angular distance to the zero point is

θ =
λ
D̂

This is usually referred to as the Rayleigh Criterion, since Rayleigh first showed
that when a second point source is separated from a point source by such an angle,
these two can be distinguished. That is, the second source is located at the first null
point of the diffraction pattern of the first source.

6.3.2 Arrays of Hertz Dipoles

For the particular case where each element is a Hertz dipole, the radiation field of
each dipole is given by (6.38). The sum of the E fields is the product of (6.38)
and (6.49). If each dipole antenna is connected a single source, the currents in the
dipoles are related, each with a definite phase, φ , and amplitude, I0. For the case of
two dimensions, we align the dipoles along the y axis, with dipoles parallel to the z
axis. Setting θ = 90o in (6.38), the Eϑ vector is in the x− y plane. Then the total E
is:

Eϑ =
(
− i

IΔ l
2λ

1
r

)
e− i(ωt−k r) Ŝ (6.50)

where Ŝ is given by (6.48).
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One can change the phase of each dipole to alter the direction of the maximum.
This so-called electronic steering is used to direct arrays of dipoles, which are re-
ferred to as phased arrays. In radio astronomy such concepts are used in instruments
such as LOFAR and the Allen Array. This will be used in the Square Kilometer
Array (SKA).

6.4 Radiation Fields of Filled Antennas

6.4.1 Two Dimensional Far Field

We start with (6.50) but change the Ŝ factor by keeping the total size of the array nD
constant, while increasing the number of dipoles, n and simultaneously decreasing
the distance, D between these. Then the summation in (6.47) becomes an integral
with variable x′. If we replace Ŝ by the symbol g(x′) and change the integration
variable, the expression becomes:

g(x′) =
∫ N

0
J(x′)ei k x′ sin(φ)dx′ (6.51)

The expression for the E field is

dEy(φ) = − i J0 g(x′)
1
r

e− i(ωt−k r) dx′ . (6.52)

The current grading g(x) takes into account changes in the currents across the aper-
ture; g(x) and the far field pattern are FT pairs. Given the importance of this expres-
sion, we present a few one dimensional FT pairs in graphical form in Fig. 6.6. The
most commonly used expression for a grading function is the Gaussian, since the
FT of a Gaussian is another Gaussian.

ELECTRIC
FAR FIELD PATTERN

ELECTRIC
FAR FIELD PATTERNCURRENT GRADING CURRENT GRADING

Uniform

Inverse taper

Triangular Gaussian

Cosine
squared

Cosine

Fig. 6.6 Pairs of current gradings and corresponding electric far field pattern. For each pair, the
sketch on the left is a current grading across the one-dimensional aperture, g. On the right is the
corresponding electric field pattern in the far field [adapted from Kraus (1986)]
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6.4.2 Three Dimensional Far Field

The clearest difference between the case of two and three dimensions is the inclu-
sion of coordinate systems. For two dimensions, either an x− y or r−θ coordinate
system is a reasonable choice. For three dimensions, there can be many coordinate
systems, depending on geometry, and, in addition, the coordinates of the observer
and the aperture will be rather different. So, for example, a rectangular aperture, an
x− y− z coordinate system is the choice, while for a circular aperture the choice is
a cylindrical coordinate system.

For a two-dimensional antenna structure, the current distribution J(x) must be
specified for the aperture. We assume that this is a plane aperture. We choose the
coordinate system such that the aperture is a finite area of the plane z′ = 0; this
aperture is assumed to be a surface of constant wave phase and the unit vector of the
current density is chosen to be J0 = (0,J0,0).

The current in a surface element dx′ dy′ at x′ in the aperture A is then J0 g(x′)
dx′ dy′. If we take x to be approximately perpendicular to A the only component of
the electric field induced by this current element in x is, according to (6.38),

dEy = − i
2
λJ0 g(x′)

Fe(n)
| x−x′ | e− i(ωt−k |x−x′|) dx′

λ
dy′

λ
. (6.53)

Again we make use of an extension of the case of a Hertz dipole. Here Fe(n) is the
field pattern of the current element for the direction n = x/|x| which, for the Hertz
dipole, is sinϑ where ϑ is the angle between n and J0. The total field in x is then
obtained by integrating (6.53) over the full aperture.

For the far field, at distance r, we have assumed that the extent of the aperture
is small compared to r, the integral can be simplified considerably by introducing
the Fraunhofer Approximation (see Fig. 6.7), | x− x′ |≈ r −n · x′, where r =| x′ |.
Because r � |n ·x′|, we can neglect n · x′ compared to r everywhere except in the
exponent. There the term k n ·x′ appears. We assumed that the aperture is larger than
λ , that is | x′ |> λ ,

k (n ·x′) =
2π
λ

(n ·x′) � 1 .

Fig. 6.7 The geometry of the
Fraunhofer approximation
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Then we have

Ey = − i
2
λJ0

Fe(n)
r

e− i(ωt−kr)
∫ ∫
A

g(x′)e− ik n·x′ dx′

λ
dy′

λ
(6.54)

or

Ey = − iλJ0π
Fe(n)

r
f (n)e− i(ωt−kr) (6.55)

where

f (n) =
1

2π

∞∫ ∫
−∞

g(x′)e− ik n·x′ dx′

λ
dy′

λ
. (6.56)

Thus the integral over the aperture A in (6.54) has been formally replaced by
the two dimensional Fourier integral (6.56) by setting g(x′) = 0 for x′ 
∈ A . The
expression for the magnetic field strength H is similar to (6.55). The normalized
power pattern Pn (see 6.40 and following) is then

Pn(n) =
P(n)
Pmax

=
| E ·E∗ |

| E ·E∗ |max
,

so that

Pn =
| f (n) |2
| fmax |2

. (6.57)

As will be shown in Chap. 9, the FT relations also play a fundamental role in
interferometry.

An excellent illustration of the application of (6.56) and (6.57) is given by the
example below.
The Normalized Power Pattern of a Rectangular Aperture with Uniform Illumina-
tion

If the linear dimensions of the aperture are Lx and Ly, then the current grading
can be written as

g(x,y) =
{

1 for |x| � Lx/2, |y| � Ly/2
0 otherwise

. (6.58)

The components of the unit vector are n = (l,m,n) with l2 +m2 +n2 = 1. If the
aperture is part of the plane z′ = 0, then (6.56) becomes

f (l,m) =
1

2π

∞∫
−∞

∞∫
−∞

g(x′,y′)exp

{
− i

2π
λ

(lx′ +my′)
}

dx′

λ
dy′

λ
.

With (6.58) this becomes

f (l,m) =
sin(πl Lx/λ )
πl Lx/λ

sin(πmLy/λ )
πmLy/λ

(6.59)
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and the normalized power pattern is

Pn(l,m) =
[

sin(πl Lx/λ )
πl Lx/λ

sin(πmLy/λ )
πmLy/λ

]2

. (6.60)

The main beam is the solid angle between the first nulls of Pn at

l0 = ±λ/Lx ; m0 = ±λ/Ly (6.61)

The full width to half power (FWHP), i.e. the angle between those points of the
main beam for which Pn = 1/2, is

FWHPx = 0.88
λ
Lx

rad = 50.3◦
λ
Lx

, (6.62)

with a similar expression for FWHPy. The first side lobes are located at

1
2
λ
Lx

= 28.0◦
λ
Lx

from the axis; these have an intensity (relative to the main beam) of Pn = 0.0472
corresponding to an attenuation of 13.3 dB. This is a rather high side-lobe level. For
rectangular apertures, the far field patterns are the products of the one-dimensional
FT pairs.

The full width to half power (FWHP), relative gain and sidelobe levels depend
on the shape of g. These quantities can be changed by altering the illumination or
grading g(x,y). This will be investigated in more detail for the case of circular aper-
tures because these are widely used for large antennas in radio astronomy. Usually
small antennas with a rectangular apertures are used as feed horns at wavelengths
shorter than 30 cm to efficiently couple the receiver to the free space waves focussed
by the radio telescope. Large horn antennas are also used for calibration purposes.
Well known examples of radio telescopes with a rectangular aperture are the Bell
Laboratories Horn antenna, at Holmdel, N. J., used to discover the 2.7 K background
radiation and the “Little Big Horn” of the National Radio Astronomy Observatory
in Greenbank W.Va., USA, that was used to establish the time variation of the flux
density of the supernova remnant Cassiopeia A.

6.4.3 Circular Apertures

Circularly symmetric paraboloids are the most commonly used antennas. For a cir-
cular aperture it is convenient to introduce polar coordinates �,ϕ by

x = λ�cosϕ
y = λ�sinϕ . (6.63)
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If we now assume that the aperture is defined by � � D/2λ and that the current
grading g depends on � only, then the resulting beam pattern will also show circular
symmetry; instead of two directional cosines l and m, only a single value, u, the sine
of the angle between n and the direction of the main beam is needed. Substituting
(6.63) into (6.56) we obtain

f (u) =
1

2π

2π∫
0

∞∫
0

g(�)e−2π iu�cosϕ� d�dϕ . (6.64)

Since the integral representation of the Bessel function of order zero is

J0(z) =
1

2π

2π∫
0

eizcosϕ dϕ , (6.65)

(6.64) can be written as

f (u) =
∞∫

0

g(�)J0(2πu�)� d� . (6.66)

For the case of circular symmetry the electric and magnetic field strength is thus
the Hankel transform of the current grading. For the normalized beam pattern we
then obtain

Pn(u) =

⎡
⎢⎢⎢⎢⎢⎣

∞∫
0

g(�)J0(2πu�)� d�

∞∫
0

g(�)� d�

⎤
⎥⎥⎥⎥⎥⎦

2

(6.67)

because J0(0) = 1.
For a circular aperture with uniform illumination, that is for

g(�) =
{

1 for � � D/2λ
0 else ,

(6.68)

(6.67) then becomes

Pn(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D/2λ∫
0

J0(2πu�)� d�

D/2λ∫
0

� d�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2

=

⎡
⎣ 2λ
πuD

πuD/λ∫
0

J0(z)z dz

⎤
⎦

2

. (6.69)
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For Bessel functions, the relation

d
dz

{znJn(z)} = znJn−1(z) (6.70)

[cf. Abramowitz and Stegun (1964), Eq. (9.1.30)] applies so that

xnJn(x) =
x∫

0

znJn−1(z) dz ,

and we obtain for the normalized power pattern

Pn(u) =
[

2J1(πuD/λ )
πuD/λ

]2

=Λ 2
1 (πuD/λ ) (6.71)

where

Λ1(u) =
2
u

J1(u) . (6.72)

If the region up to and including the first nulls of Pn(u) at πuD/λ = 3.83171
is included in the main beam region, the full beam width between the first nulls,
BWFN, that is from one null to the other, is:

BWFN = 2.439
λ
D

rad � 139.8◦
λ
D

(6.73)

and the full width to half power beam width, FWHP, that is, from one half power
point to the other, is:

FWHP = 1.02
λ
D

rad � 58.4◦
λ
D

(6.74)

For an aperture with a nonuniform illumination or grading the antenna pattern
will be different from (6.71), see Fig. 6.8; the relation between grading and antenna

Fig. 6.8 A representative set of illumination tapers g(�) = K +(1−�2)p. Note that p = 0 is a
horizontal line at the top of the right panel



140 6 Fundamentals of Antenna Theory

pattern is given by (6.67). Depending on the choice of g(�), the integral (6.67) may
be difficult to evaluate. However the qualitative dependence of Pn on the grading
can be obtained by selecting a convenient interpolation formula. If g is chosen such
that (6.67) can be evaluated in a closed form, we can obtain analytical expressions.
Such a family of functions is

g(�) =

[
1−

(
2λ�

D

)2
]p

+K . (6.75)

Because
1∫

0

(1− r2)pJ0(qr)r dr =
2p p!Jp+1(q)

qp+1 (6.76)

[Gradshteyn and Ryzhik (1965), Eq. (6.567.1)], (6.67) can be evaluated in terms
of Jp;

Pn(u) =
[

2p+1 p!Jp+1(πuD/λ )
(πuD/λ )p+1

]2

. (6.77)

The values of BWFN and FWHP are given in Table 6.1.

Table 6.1 Normalized power pattern characteristics produced by aperture illumination following
(6.75)

p K FWHP (rad) BWFN (rad) Relative gain First side lobe (dB)

0 1.02 2.44 1.00 −17.6
1 1.27 3.26 0.75 −24.6
2 1.47 4.06 0.56 −30.6
1 0.25 1.17 2.98 0.87 −23.7
2 0.25 1.23 3.36 0.81 −32.3
1 0.50 1.13 2.66 0.92 −22.0
2 0.50 1.16 3.02 0.88 −26.5

6.4.4 Antenna Taper Related to Power Pattern

By selecting a taper, one can influence the properties of an antenna, to some ex-
tent. A strong gradation results in a lower side-lobe level but lower relative gain.
Antennas used for transmission to distant space probes must be designed for high
relative gain; that is, one must use a low gradation. However, this results in a high
sidelobe level. Since from the prime focus, the far side lobes are directed towards
the hot (300 K) ground, low-noise antennas should have a beam pattern with low
side-lobe levels. A compromise is to adjust the illumination. A better approach is
to make use of the secondary focus, so that the sidelobes are directed at cold sky
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(see, e.g. Fig. 7.6). Then for a given sidelobe level, the unwanted noise power will
be lower.

The radiation properties of antennas can be changed, somewhat, using the grad-
ing function, g(x), as shown in Figs. 6.6 and 6.8. In many applications, the gra-
dations are between the extremes of p = 2 and p = 0 in Table 6.1. For low noise
antennas used in satellite communication, p = 0 has advantages since the relative
gain should be as large as possible for such point-like sources. However the prime
focus should not be used, since the receiver noise is raised substantially due to side-
lobes coupled to the 300 K ground radiation. In this case the receiver is mounted in
the Cassegrain with sidelobes coupled to cold sky.

However the relative (on-axis) gain is lower. This is achieved by using a strong
gradation for g(�).

6.5 The Reciprocity Theorem

So far, we have discussed antennas used to emit radiation. However, in general, the
parameters of an antenna when used to receive or transmit radiation are the same.
For the Hertz dipole with λ � Δ l, this is rather simple to prove. However, there is a
proof of the general case of the reciprocity theorem that provides a general solution
for this problem. The details of this derivation are presented in Appendix D.

6.6 Summary

The Hertz dipole has been used to introduce the expression for power radiated; this
will be used later in presentations of spectral line radiation. Arrays of dipoles will
enhance the power radiated in a given direction. These dipole arrays can be used
to steer beams in direction. This feature is used in the LOFAR and Allen Array
instruments, and will be used in the Square Kilometer Array. A collection of such
elements can also be used to illuminate a filled aperture.

The basic results for scalar wave diffraction in 2 dimensions can be obtained
from a number of starting points. Many are given in optics texts such as Jenkins and
White (2001), where the sum of waves passing through an aperture of size D is used
to obtain a one dimensional diffraction pattern for the far field or Fraunhofer case.
This analysis is used to obtain the well-know result that the angular resolution for a
uniformly illuminated aperture is θ = λ/D. However, a grading function is difficult
to introduce in this analysis.

In presentations of diffraction in 3 dimensions, Rossi (1957) has used the Huygens
Principle. Other authors (e.g. Slater and Frank 1933) simply postulated the mathe-
matical expression (6.19), choosing a time delayed expanding spherical wave. For
one dimension, geometry and coordinate systems are less of a concern but in two di-
mensions these must be addressed consistently. We have shown that the expression
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for diffraction in one dimension can be derived from the limit of an array of dipoles.
We then related the 3 dimensional case to that in 2 dimensions; some details are to
be completed (see Problem 9). The two dimensional expression can also be obtained
directly from the vector potential, A (see Eq. 6.29). Such a derivation is complex,
but even this rather lengthy development has been simplified since polarization was
neglected. An excellent summary of the diffraction problem is given in Stratton
(pp. 460–470)

Problems

1. Complete the mathematical details of summing the expression in Eq. (6.48). First,
show that

Ŝ = ΣN
n=0q =

1−qn+1

1−q

(multiply by q to obtain one variant, then subtract from the relation above). With
q = ei k D sin(φ), show that we obtain (6.48).

From this, one can obtain the power pattern:

Ŝ2 =
[

sin [k (n+1)D/2] sin(φ)
sin [k D/2] sin(φ)

]2

Use limits to show that the square of the x component of (6.60) can be obtained
from the expression above.

2. You read that there are antennas without sidelobes. That is, all of the energy is
contained in the main lobe. Should you believe the report? Comment using qualita-
tive arguments, but not detailed calculations.

3. If the size of the pupil of the human eye, D is 0.5 cm, what are the number of
wavelengths across this aperture for light of λ = 500 nm? Compare this to the num-
ber of wavelengths across the aperture of a 100 m radio telescope for a wavelength
of 2 m, 1 cm. Repeat for the ALMA radio telescope, with a diameter of 12 m, for
λ =1 cm, 3 mm, 0.3 mm. Discuss the implications of these results.

4. Derive the increase in the radiated power for an array of N dipoles, for the case
of phases set to zero in Eq. (6.50). Compare this to the maximum power radiated in
a given direction by a Hertz dipole.

5. The full width half power (FWHP) angular size, θ , in radians, of the main beam
of a diffraction pattern from an aperture of diameter D is θ ≈ 1.02λ/D.
(a) Determine the value of θ , in arc min, for the human eye, where D = 0.3 cm, at
λ = 5×10−5 cm.
(b) Repeat for a filled aperture radio telescope, with D = 100 m, at λ = 2cm, and
for the very large array interferometer (VLA), D = 27 km, at λ = 2cm.
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Fig. 6.9 A sketch of a parabola showing angles used in Problem 9

(c) Show that when λ has the units of millimeters, and D the units of kilometers and
θ the units of arc seconds, then θ = 0.2λ/D. Is this consistent with (6.74)?

6. Hertz used λ ≈ 26 cm for the shortest wavelength in his experiments.
(a) If Hertz employed a parabolic reflector of diameter D ≈ 2 m, what was the
FWHP beam size? (See Problem 3.)
(b) If the Δ l ≈ 26 cm, what was the radiation resistance, from equation (6.42)?
(c) Hertz’s transmitter was a spark gap. Suppose the current in the spark was 0.5 A.
What was the average radiated power?

7. Over the whole world, there have been (on average) 100 radio telescopes of (av-
erage) diameter 25 m operating since 1960. Assume that the power received by each
is 10−15 W over this period of time. What amount of energy has been received in
this period of time? Compare this to the energy released by an ash (taken to be 1 g)
from a cigarette falling a distance of 2 cm in the earth’s gravity.

8. Refer to Fig. 6.9; the surface is y(x) = (1/4 f )x2.
(a) Find a general expression for the path from the pupil plane (dashed line) to the
focus, f .
(b) If an on-axis plane wave is in the pupil plane, show that for a paraboloid, there
is a single focus.

(c) Is there such a relation for a circle, y(x) =
√

R2
0 − x2?

9. Show that the two dimensional equation (6.52) and one of the factors in the three
dimensional diffraction equation (6.53) are related by equating (| x− x′ |) = 1

r and
identifying J0 as IΔ l/2λ , the current density.

10. If two dipoles spaced by λ /4 are connected to a coherent input, what is the far
field radiation pattern if the phases of the dipoles differ by λ /4?

11. Suppose you have a single dipole at λ /4 in front of a perfectly conducting plate.
Determine the far field radiation pattern. Compare this to the result of problem 10.



Chapter 7
Practical Aspects of Filled Aperture Antennas

7.1 Descriptive Antenna Parameters

In general, most antenna systems, especially those with high gain and directivity
used in radio astronomy and communications must be analyzed using detailed nu-
merical models such as GRASP. The most important antennas used in these appli-
cations are fully steerable paraboloids whose properties are treated at greater length
in the monograph by Baars (2007). If one wants an accurate but rather simple de-
scription of antenna properties, one must use the concepts presented in the following
Sections, which allow one to characterize the antenna properties based on astronom-
ical measurements. In the following we provide details of realistic antennas, starting
with some necessary details.

7.1.1 The Power Pattern PPP(((ϑϑϑ ,,,ϕϕϕ)))

Often, the normalized power pattern, not the power pattern is measured:

Pn(ϑ ,ϕ) =
1

Pmax
P(ϑ ,ϕ) . (7.1)

The reciprocity theorem provides a method to measure this quantity. The radi-
ation source can be replaced by a small diameter radio source. The flux densities
of such sources are determined by measurements using horn antennas at centimeter
and millimeter wavelengths. At short wavelengths, one uses planets, or moons of
planets, whose surface temperatures are determined from infrared data.

If the power pattern is measured using artificial transmitters, care should be taken
that the distance from antenna A to antenna B is so large that B is in the far radiation
field of A. This requires that the curvature of a wavefront emitted by B is much
less than a wavelength across the geometric dimensions of A. From geometry, this
curvature must be k � 2D2/λ , for an antenna of diameter D and a wavelength λ .

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 145
DOI 10.1007/978-3-540-85122-6 7, c© Springer-Verlag Berlin Heidelberg 2009



146 7 Practical Aspects of Filled Aperture Antennas

Consider the power pattern of the antenna used as a transmitter. If the total spec-
tral power, Pν in [W Hz−1] is fed into a lossless isotropic antenna, this would
transmit P power units per solid angle per Hertz. Then the total radiated power at
frequency ν is 4π Pν In a realistic, but still lossless antenna, a power P(ϑ ,ϕ) per
unit solid angle is radiated in the direction (ϑ ,ϕ). If we define the directive gain
G(ϑ ,ϕ) as the

P(ϑ ,ϕ) = G(ϑ ,ϕ)P

or

G(ϑ ,ϕ) =
4πP(ϑ ,ϕ)∫∫
P(ϑ ,ϕ) dΩ

. (7.2)

Thus the gain or directivity is also a normalized power pattern similar to (7.1),
but with the difference that the normalizing factor is

∫
P(ϑ ,ϕ)dΩ/4π . This is the

gain relative to a lossless isotropic source. Since such an isotropic source cannot
be realized in practice, a measurable quantity is the gain relative to some standard
antenna such as a half-wave dipole whose directivity is known from theoretical con-
siderations.

7.1.2 The Main Beam Solid Angle

The beam solid angle ΩA of an antenna is given by

ΩA =
∫ ∫
4π

Pn(ϑ ,ϕ) dΩ =
2π∫
0

π∫
0

Pn(ϑ ,ϕ)sinϑ dϑ dϕ (7.3)

this is measured in steradians (sr). The integration is extended over the full sphere
4π , such that ΩA is the solid angle of an ideal antenna having Pn = 1 for all of
ΩA and Pn = 0 everywhere else. Such an antenna does not exist; for most antennas
the (normalized) power pattern has considerably larger values for a certain range of
both ϑ and ϕ than for the remainder of the sphere. This range is called the main
beam or main lobe of the antenna; the remainder are the side lobes or back lobes
(Fig. 7.1). For actual situations, the properties are well defined up to the shortest
operating wavelengths. At the shortest wavelength, there is indeed a main beam, but
much of the power enters through sidelobes. In addition, the main beam efficiency
may vary significantly with elevation. Thus, the ability to accurately calibrate the
radio telescope at the shortest wavelengths may be challenging.

In analogy to (7.3) we define the main beam solid angle ΩMB by

ΩMB =
∫ ∫
main
lobe

Pn(ϑ ,ϕ) dΩ . (7.4)
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Fig. 7.1 A polar power
pattern showing the main
beam, and near and far side
lobes. The weaker far side
lobes have been combined to
form the stray pattern

The quality of an antenna as a direction measuring device depends on how well
the power pattern is concentrated in the main beam. If a large fraction of the received
power comes from the side lobes it would be rather difficult to determine the location
of the radiation source, the so-called “pointing”.

It is appropriate to define a main beam efficiency or (usually) beam efficiency,
ηB, by

ηB =
ΩMB

ΩA
. (7.5)

The main beam efficiency is not related to the angular size of the main beam.
A small antenna with a wide main beam can have a high beam efficiency: ηB is an
indication of the fraction of the power is concentrated in the main beam. The main
beam efficiency can be modified (within certain limits) for parabolic antennas by
a choice grading function (6.58) of the main reflector. This can easily be accom-
plished by the choice of primary feeds and foci. If the FWHP beamwidth is well
defined, the location of an isolated source is determined to an accuracy given by
the FWHP divided by the S/N ratio. Thus, it is possible to determine positions to a
small fraction of the FWHP beamwidth.

Substituting (7.3) into (7.2) it is easy to see that the maximum directive gain Gmax

or directivity D can be expressed as

D = Gmax =
4π
ΩA

. (7.6)

The angular extent of the main beam is usually described by the half power beam
width (HPBW), which is the angle between points of the main beam where the nor-
malized power pattern falls to 1/2 of the maximum (Fig. 7.2). This is also referred
to as the full width to half power (FWHP). Less frequently used definitions are the
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Fig. 7.2 A sketch of the telescope beamwidth, together with commonly used measurements of
beam size for a one-dimensional power pattern. EWMB is the equivalent width of the (full) half
power beam width. The HPBW is sometimes referred to as FWHP, or full width to half power.
BWFN denotes the beam width between first nulls. This is indicated by the two dots

beam width between first nulls (BWFN) or the equivalent width of the main beam
(EWMB). The latter quantity is defined by

EWMB =

√
12
π
ΩMB . (7.7)

For elliptically shaped main beams, values for widths in orthogonal directions
are needed. The beamwidth is related to the geometric size of the antenna and the
wavelength used; the exact beamsize depends on grading functions and illumination.

7.1.3 The Effective Aperture

Let a plane wave with the power density | 〈S〉 | be intercepted by an antenna. A
certain amount of power is then extracted by the antenna from this wave; let this
amount of power be Pe. We will then call the fraction

Ae = Pe / | 〈S〉 | (7.8)

the effective aperture of the antenna. Ae is a quantity very much like a cross-section
in particle physics, Ae has the dimension of m2. Comparing this to the geometric
aperture Ag we can define an aperture efficiency ηA by

Ae = ηAAg . (7.9)

For some antennas, such as the Hertz dipole there is no clearly defined geometric
aperture; in such cases there is no simple expression for the aperture efficiency ηA.
For a calculation of the effective aperture, the peak value of Ae is used; this is the
direction of the telescope axis. Directivity is related to Ae by
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D = Gmax =
4πAe

λ 2 (7.10)

which according to (7.6) is equivalent to

AeΩA = λ 2 . (7.11)

Often derivations of (7.10) or (7.11) are given by computing D and Ae for some
simple antennas and then generalizing the result. To obtain a result that is gener-
ally applicable, we follow the derivation of (7.10) given by Pawsey and Bracewell
(1954) which makes use of thermodynamic considerations. Let antenna, receiver
and a radiating surface C all be enclosed by a black body at the temperature T .
Let us assume thermodynamic equilibrium for the whole system. Then the antenna
will radiate power into the black enclosure, and this power will be absorbed there.
The black body will also radiate, and part of this radiation will be received by the
antenna. Let the radiation surface C subtend the solid angle ΩA as seen from the
antenna (Fig. 7.3), whose directivity is D , effective aperture Ae and receiver band-
width Δν . According to the Rayleigh-Jeans relation, the surface C radiates with the
intensity

Iν =
2kT
λ 2 Δν

in units of W m−2Hz−1 per unit solid angle. Then the antenna collects a total power
of

W = Ae
kT
λ 2 ΔνΩA (7.12)

since, according to (7.8) only one polarization component is recorded.

Fig. 7.3 A sketch to illustrate the relation between effective aperture and directivity
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If the whole system is in thermal equilibrium, the principle of detailed balance
holds. Then the antenna must reradiate the same amount of power that it receives.
If the antenna terminals are connected by a matched resistor R, then the transmitted
power according to the Nyquist theorem (1.42) is

LΔν = kT Δν .

According to the definition (7.6) the fraction

L′Δν = kT ΔνD
ΩA

4π
(7.13)

is intercepted by the surface C. As stated, relation (7.12) and (7.13) are equal if
thermodynamic equilibrium prevails; thus

Ae
kT
λ 2 ΔνΩA = kT ΔνD

ΩA

4π

so that

D =
4πAe

λ 2 .

Although this relation has been derived under the assumption of thermodynamic
equilibrium, this relates quantities which do not involve thermodynamics, so will
always be valid.

7.1.4 The Concept of Antenna Temperature

Consider a receiving antenna with a normalized power pattern Pn(ϑ ,ϕ) that is
pointed at a brightness distribution Bν(ϑ ,ϕ) in the sky. Then at the output terminals
of the antenna, the total power per unit bandwidth, Pν is

Pν = 1
2 Ae

∫∫
Bν(ϑ ,ϕ)Pn(ϑ ,ϕ) dΩ . (7.14)

By definition, we are in the Rayleigh-Jeans limit, and can therefore exchange the
brightness distribution by an equivalent distribution of brightness temperature. Us-
ing the Nyquist theorem (1.42) we can introduce an equivalent antenna temperature
TA by

Pν = k TA . (7.15)

This definition of antenna temperature relates the output of the antenna to the
power from a matched resistor. When these two power levels are equal, then the an-
tenna temperature is given by the temperature of the resistor. Instead of the effective
aperture Ae we can introduce the beam solid angle ΩA, from (7.11). Then (7.14)
becomes
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TA(ϑ0,ϕ0) =
∫

Tb(ϑ ,ϕ)Pn(ϑ −ϑ0,ϕ−ϕ0)sinϑ dϑ dϕ∫
Pn(ϑ ,ϕ)dΩ

(7.16)

which is the convolution of the brightness temperature with the beam pattern of the
telescope. The brightness temperature Tb(ϑ ,ϕ) corresponds to the thermodynamic
temperature of the radiating material only for thermal radiation in the Rayleigh-
Jeans limit from an optically thick source; in all other cases Tb is only an convenient
quantity that in general depends on the frequency.

The quantity TA in (7.16) was obtained for an antenna with no ohmic losses, and
no absorption in the earth’s atmosphere. In terms of the definitions in Sect. 8.2.5,
the expression TA in (7.16) is actually T ′

A, that is, a temperature corrected for at-
mospheric losses. We will use the term T ′

A in Sect. 8.2.5. Since TA is the quantity
measured while Tb is the one desired, (7.16) must be inverted. (7.16) is an integral
equation of the first kind, which in theory can be solved if the full range of TA(ϑ ,ϕ)
and Pn(ϑ ,ϕ) are known. In practice this inversion is possible only approximately.
Usually both TA(ϑ ,ϕ) and Pn(ϑ ,ϕ) are known only for a limited range of ϑ and
ϕ values, and the measured data are not free of errors. Therefore usually only an
approximate deconvolution is performed. A special case is one for which the source
distribution Tb(ϑ ,ϕ) has a small extent compared to the telescope beam. Given a
finite signal-to-noise ratio, the best estimate for the upper limit to the actual FWHP
source size is one half of the FWHP of the telescope beam. This will be described
further in Chap. 8, where the steps necessary to calibrate an antenna are discussed.

7.2 Primary Feeds

In the preceding paragraphs we indicated how the antenna pattern depends on the
current grading across the aperture, but we have not specified how this grading is
achieved in practical situations. Generally a receiving antenna can be considered
as a device which transforms an electromagnetic wave in free space into a guided
wave. The reflector transforms the plane wave into a converging spherical wave. The
primary feed accepts this converging wave and transforms its characteristics so that
the power will reach the receiver.

For a successful antenna design many aims have to be met simultaneously; some
of these may be contradictory, so that one can only be fulfilled at the expense of oth-
ers. Antenna design therefore is more empirical than analytical; there is no general
theory that covers all aspects simultaneously. Provided the current distribution J(x′)
is given, the vector potential A(x) and thus the electromagnetic fields E(x) and
H(x) or B(x) can be computed. However, these induce currents J so that we have
the problem of self-consistency. These complications make rigorous analytic so-
lutions so difficult to obtain that Sommerfeld’s 1896 rigorous analytical solution of
the diffraction of a plane wave by a perfectly conducting semi-infinite screen has not
been markedly improved after 100 years. Methods involving numerical solutions are
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therefore necessary. From the reciprocity theorem, the parameters of a given antenna
are identical if used for transmission or for reception. Some concepts are more eas-
ily visualized if a receiving situation is assumed, while others are best understood in
terms of transmitting antennas. A discussion of current grading as influenced by the
feed is best given for the case of transmission. Thus we consider the primary feed of
a transmitting antenna. At point x′ of the reflector, the power will induce a surface
current depending on the amplitude of the oscillating field strength. If the primary
feed is sufficiently far from the reflector that far field conditions can be adopted, the
relative distribution of the field strength (for both electric and magnetic fields) can
be computed from the normalized power pattern of the feed and, in most cases, this
can be used at least as a first approximation.

7.2.1 Prime Focus Feeds: Dipole and Reflector

As an introduction, we first discuss a simple feed which is no longer in common
use. The simplest feed is formed by a short dipole in front of a reflecting disk λ/4
behind the dipole. Such designs were frequently used as primary feeds for deep
parabolic dishes with a small f /D ratios ( f = focal length, D = diameter). Simple
dipoles are not very efficient primary feeds. Main reflectors with f /D = 0.25 the
prime focus must illuminate the half sphere, 2π . There are very few other designs
that can illuminate such a large angle, so dipoles are sometimes used. For reflectors
with f /D ratios larger than 0.3, simple dipole disk feeds produce large spillover
losses. In some cases, the illumination angle has been adapted to the reflector by
using dipole arrays as prime feeds, but this is usually done only if the central focus
position is occupied by a waveguide feed for some other frequency. A simple dipole
feed is sensitive only to linear polarization with the electric field strength directed
parallel to the dipole. The greatest disadvantage of a dipole feed is the nonuniform
illumination. This results in a non circular main beam of the telescope (see Fig. 7.4).
Since the phase of the electromagnetic waves vary rather strongly across the aper-
ture, both the aperture efficiency and the beam efficiency of dipole-disk feeds are
rather low.

7.2.2 Horn Feeds Used Today

The electric and magnetic field strengths at the open face of a wave guide will vary
across the aperture. The power pattern of this radiation depends both on the dimen-
sion of the wave guide in units of the wavelength, λ, and on the mode of the wave.
The greater the dimension of the wave guide in λ , the greater is the directivity of
this power pattern. However, the larger the cross-section of a wave guide in terms of
the wavelength, the more difficult it becomes to restrict the wave to a single mode.
Thus wave guides of a given size can be used only for a limited frequency range.
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Fig. 7.4 Equivalent current
distribution in the aperture
plane of a dipole fed
paraboloid. The numbers
give the absolute value of the
current density, phases are
not indicated, except for the
loci of phase reversal [after
Heilmann (1970)]

The aperture required for a selected directivity is then obtained by flaring the sides
of a section of the wave guide so that the wave guide becomes a horn.

Simple pyramidal horns are usually designed to transmit only the lowest modes.
However, then the electric and magnetic field strengths are distributed differently
along the sides of the horn aperture.

Great advances in the design of feeds have been made since 1960, and most
parabolic dish antennas now use hybrid mode feeds (Fig. 7.5). If a truly circular
beam for an arbitrary polarization angle is wanted, more than TE modes are used;
the electric field in the aperture has to be oriented in the direction of propagation. But
then the conductivity of the horn in this direction has to be zero. This is achieved by
constructing the walls of the circular horn from rings that form periodic structures

Fig. 7.5 A corrugated waveguide hybrid mode feed for λ 2 mm for the IRAM Plateau de Bure
interferometer (courtesy of B. Lazareff)
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which have a characteristic size of λ/4. For such corrugated horns, the theory is to
be found in Love (1976). These are also referred to as Scalar or Multi-Mode feeds.
Such feed horns are used on all parabolic antennas. These provide much higher effi-
ciencies than simple single mode horn antennas and are well suited for polarization
measurements.

At centimeter wavelengths, a more recent development is the use of phased arrays
of individual feeds to synthesize a beam that has characteristics that are superior to
that of the individual components. In Sect. 6.3.1, a scheme using a simplified de-
scription of individual elements was presented. This has been extended to the use of
feed horns in the centimeter wavelength range, at a larger cost. In this scheme, after
each feed horn there is a cooled receiver system, and the outputs of each receiver
system are combined using phase shifters to produce a series of beams. The advan-
tage of this method is that the properties of the beams can be varied until the desired
result is obtained. With extra complexity, multiple beams can be produced.

7.2.3 Multiple Reflector Systems

If the size of a radio telescope is more than a few hundred wavelengths, designs
similar to those of optical telescopes are preferred. For such telescopes Cassegrain,
Gregorian and Nasmyth systems have been used. In a Cassegrain system, a convex
hyperbolic reflector is introduced into the converging beam immediately in front of
the prime focus. This reflector transfers the converging rays to a secondary focus
which, in most practical systems is situated close to the apex of the main dish. A
Gregorian system makes use of a concave reflector with an elliptical profile. This
must be positioned behind the prime focus in the diverging beam. In the Nasmyth
system this secondary focus is situated in the elevation axis of the telescope by
introducing another, usually flat, mirror. The advantage of a Nasmyth system is that
the receiver front ends remain horizontal while when the telescope is pointed toward
different elevations. This is an advantage for receivers cooled with liquid helium,
which become unstable when tipped.

There are several reasons why secondary focus systems are useful in radio as-
tronomy. In small telescopes the weight of the secondary reflector is much less than
that of receiver front ends, especially if these must be cooled. In addition, these are
usually more easily mounted and are more accessible at the apex. The effective fo-
cal ratio f /D of Cassegrain or Gregorian systems (Fig. 7.6) is usually 5–10 times
larger than that of primary focus systems. Then optical distortions such as coma
are negligible for much larger fields than in primary focus configurations. For such
foci several receiving systems can be placed at different positions, including some
far off axis. In this way, systems at a number of different frequencies or an array
of receivers for the same frequency range can be accommodated in the secondary
focus.

Finally, it is much easier to build low noise systems using such a design. High
aperture efficiency requires a current grading with a good illumination up to the
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Fig. 7.6 The geometry of (a) Cassegrain, (b) Gregory, (c) Nasmyth and (d) offset Cassegrain
systems

edge of the dish. If, however, in a prime focus configuration, the spillover side-lobe
pattern of the feed extends beyond the edge of the dish, the feed will also receive
300 K thermal radiation of the ground. In a system with a secondary reflector, the
power received by the feed from beyond the edge of the secondary reflector is radi-
ation from the sky, which has a temperature of only a few K. For low-noise systems,
this results in an overall system noise temperature that is significantly less than for
prime focus systems, in which the power is received from the ground. This can be
quantified in the so-called “G/T value”, the ratio of the gain of the antenna to the
system noise. Any telescope design must aim to minimize the excess noise at the re-
ceiver input while maximizing gain. For a specific antenna, this maximization may
involve the design of feeds and the choice of foci. Naturally secondary focus sys-
tems also have disadvantages. While the angle that the telescope disk subtends as
seen from the prime focus is usually between 100◦ and 180◦, a secondary reflector
usually subtends only 10–15◦. Then the secondary focus feed horns must have much
larger directivity and consequently greater dimensions. The dimensions increase di-
rectly with wavelength and therefore there is usually a lower limit for frequencies
measured at the secondary focus. For the Effelsberg 100 m dish secondary focus
this limit is near f = 2.3 GHz. At this frequency, the primary feed horns have aper-
ture diameters of 1.5 m and overall lengths of 3 m. Thus, at longer wavelengths, the
prime focus must be used. At shorter wavelengths, the secondary focus can be used
and is preferred. First, the Field of View, that is, the region of the sky that can be ac-
curately measured, is larger. Second, the noise due to the reception of radiation from
the ground is smaller. Third, it is possible to correct for large scale deformations of
the primary reflector by deforming the subreflector appropriately.

That the secondary reflector blocks the central parts in the main dish from reflect-
ing the incoming radiation causes some interesting differences between the actual
beam pattern from that of an unobstructed telescope. For the simple case of a circu-
lar annular aperture antenna with uniform illumination (g ≈ 1) and an inner/outer
radius of d/2 and D/2 the normalized illumination pattern can be computed by an
expression similar to (6.69), when the lower limit of the integral, d/2λ is used. If
the blocking factor is given by
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b = d/D

then the resulting normalized beam pattern is

Pn(u,D,b) =
[

J1(πuD/λ)−bJ1(πubD/λ)
πuD(1−b2)/2λ

]2

. (7.17)

The main differences between this result, compared to the beam pattern of an
unobstructed dish, are (1) the increased level of the first side lobe for a finite value
for b and (2) a slightly lower angular resolving power. Effect 2 can be understood
intuitively by considering that (7.17) is formed by subtracting the voltage produced
by a circular reflector with the diameter bD from that of one with diameter D. For
small values of u these contributions are in phase, while for larger u the phases
may differ. Therefore those contributions that form the main beam will always be
diminished by this process, while the contributions to the outer side lobes can have
any phase. Normalizing the main beam contribution to unity therefore will increase
the side-lobe level.

Realistic filled aperture antennas will have a beam pattern different from (7.17)
for several reasons. First the illumination of the reflector will not be uniform but has
a taper by 10 dB or more at the edge of the reflector. As seen in Table 6.1 the side-
lobe level is strongly influenced by this taper, and aperture blocking will again pro-
duce a different result. Second, the secondary reflector must be supported by three
or four support legs, which will produce aperture blocking and thus affect the shape
of the beam pattern. In particular feed leg blockage will cause deviations from circu-
lar symmetry. For altitude-azimuth telescopes these side lobes will change position
on the sky with hour angle. This may be a serious defect, since these effects will
be significant for maps of low intensity regions if the main lobe is near an intense
source. The side lobe response can also dependent on the polarization of the in-
coming radiation. Telescopes that employ only a primary focus will suffer the same
effects, since the primary focus has to be supported by wide support legs if there
is a massive prime focus to accommodate receivers. Such blocking is usually larger
than for telescopes with receivers only in the secondary foci. The Effelsberg 100 m
telescope has both foci, prime and Gregory, and four rather wide legs. The geomet-
ric blockage is 17%, a large value. Calculations show that the minimum blockage
which might be achieved for an Effelsberg-type design is ∼ 7%.

Another disadvantage of on-axis systems, regardless of focus, is that they are
often more susceptible to instrumental frequency baselines, so-called baseline rip-
ples across the receiver band than primary focus systems. Part of this ripple is
caused by multiple reflections of noise from source or receiver in the antenna struc-
ture. Ripples can arise in the receiver, but these can be removed or compensated
rather easily. Telescope baseline ripples are more difficult to eliminate: it is known
that large amounts of blockage and larger feed sizes lead to large baseline ripples.
The effect is discussed in somewhat more detail in Sect. 8.4. This effect depends
on many details, so can only be handled by experience. The influence of baseline
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ripples on measurements can be reduced to a limited extent by appropriate observ-
ing procedures. A possible solution is the construction of off-axis systems. There
are four reasons for favoring off axis telescopes. These have: (1) baseline ripples
with smaller amplitudes, (2) lower side lobes and thus higher antenna and beam ef-
ficiencies, (3) higher G/T values and (4) since the sidelobe levels are lower, there
will be less interference entering through sidelobes. However, there are drawbacks:
(1) the reflecting surfaces must have a more complex shape, without axial symme-
try, and (2) the polarization properties of the radiation in off-axis designs are also
complex. However, such off-axis systems with active surface adjustment have great
advantages.

7.3 Antenna Tolerance Theory

When the relation between aperture illumination and antenna pattern was derived
in Sect. 6.4, the aperture was assumed to be a plane of constant phase. If there are
deviations, some of the results must be modified. The modifications caused by phase
variations across the aperture are the subject of this section. Most results will only be
stated qualitatively; a more detailed treatment can be found in textbooks on antenna
theory.

It is convenient to distinguish several different kinds of phase errors in the current
distribution across the aperture of a two-dimensional antenna.

1) A phase error that varies linearly along some direction across the aperture is
treated most simply by defining a new aperture plane oriented such that the phase
remains constant. All directions then have to be measured relative to this new
aperture plane. A linear phase error therefore results only in a tilt of the direction
of the main beam.

2) A phase error which varies quadratically across the aperture is more complex.
A treatment of this requires the introduction of Fresnel integrals, which describe
the conditions of the electromagnetic field in a slightly defocussed state. We will
not discuss this further here, but such errors can be avoided by properly focusing
the telescope.

3) A third class of phase errors is caused by the fabrication tolerances of the reflec-
tor; such errors are avoidable only to some extent. The theoretical shape of the
reflector can be approached only up to some finite tolerance ε . This will cause a
phase error

δ = 4π
ε
λ

(7.18)

in the aperture plane. If δ is measured in radians, ε is the displacement of the re-
flector surface element in the direction of the wave propagation. We will discuss
this error in some detail.

The current grading in the aperture plane according to (6.53) can then be
written as
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g(x) = g0(x)eiδ (x) , g0 real . (7.19)

The directivity gain of the reflector is, according to (7.2), (6.56) and (6.57)

G =
4π
λ2

∣∣∣∣
∫ ∫
A

g0(x)e− i [k n·x−δ (x)] d2x

∣∣∣∣
2

∫ ∫
A

g2
0(x)d2x

. (7.20)

Assuming that δ is small, the exponential function in (7.20) can be expanded in
a power series including terms up to the second order

eiδ = 1+ iδ − 1
2
δ 2 . . . .

The ratio of the directivity gain of a system with random phase errors δ to that
of an error-free system G0 of identical dimensions then becomes

G
G0

= 1+ δ̄
2 − δ̄ 2

, (7.21)

where

δ̄ =

∫ ∫
A

g0(x)δ (x)d2x

∫ ∫
A

g0(x)d2x

(7.22)

and

δ̄ 2 =

∫ ∫
A

g0(x)δ 2(x)d2x

∫ ∫
A

g0(x)d2x

. (7.23)

δ̄ is the illumination weighted mean phase error. By selecting a suitable aperture
plane, we can always force δ̄ to be zero. Then only the illumination weighted mean
square phase error remains. This results in

G
G0

= 1− δ̄ 2 , (7.24)

For practical applications this series expansion has two drawbacks:

1) it is valid only for small δ while phase errors of δ � 1 and even larger will occur
if antennas are used near their short wavelength limit, and
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2) a more sophisticated antenna tolerance theory is needed because the phase er-
rors δ (x) are not completely independent and randomly distributed across the
aperture.

This second effect is the result of the following practical considerations. If at
some point δ < 0, chances are great that δ is also < 0 in an area surrounding this
point. The reason for this is that the reflecting surface is smooth and has a cer-
tain stiffness, so that some kind of correlation distance for the phase errors has to
be introduced. If this correlation distance d is of the same order of magnitude as
the diameter of the reflector, part of the phase error can be treated as a systematic
phase variation, either a linear error resulting only in a tilt of the main beam, or in a
quadratic phase error which could be largely eliminated by refocussing. For d � D
the phase errors are almost independently distributed across the aperture, while for
intermediate cases according to a good estimate for the expected value of the RMS
phase error is given by [Ruze (1952, 1966)]

δ̄ 2 =
(

4πε
λ

)2 [
1− exp

{
−Δ

2

d2

}]
, (7.25)

where Δ is the distance between two points in the aperture that are to be compared
and d is the correlation distance. The gain of the system now depends both on δ̄ 2

and on d. In addition, there is a complicated dependence both on the grading of the
illumination and on the manner in which δ is distributed across the aperture. Ruze
has given several approaches to such a theory. All of these lead to results which
are basically similar. These results can be expressed by stating that the gain of a
reflector containing phase errors can be approximated by an expression

G(u) = η e−δ̄
2
(
πD
λ

)2

λ2
1

(
πDu
λ

)
+(1− e−δ̄

2
)
(

2πd
λ

)2

λ2
1

(
2πd u
λ

)
, (7.26)

where

η is the aperture efficiency,
u = sinϑ ,
λ1(u) = 2

u J1(u) is the Lambda function,
D the diameter of the reflector, and
d the correlation distance of the phase errors.

There are now two contributions to the beam shape of the system. The first is that
of a circular aperture with a diameter D as given by (6.71) but reduced in sensitivity
due to the random phase error δ as given by (7.24). The second term is the so-called
error beam. This can be described as equal to the beam of a (circular) aperture with
a diameter 2d, its amplitude multiplied by

(1− e−δ̄
2
)

The error beam contribution therefore will decrease to zero as δ̄ → 0.
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The gain of a filled aperture antenna with phase irregularities δ cannot increase
indefinitely with increasing frequency but reaches a maximum at λm = 4πε , and
this gain is 4.3 dB below that of an error-free antenna of identical dimensions. Then,
if the frequency can be determined at which the gain of a given antenna attains its
maximum value, the RMS phase error and the surface irregularities ε can be mea-
sured electrically. Experience with many radio telescopes shows reasonably good
agreement of such values for ε with direct measurements, giving empirical support
for the Ruze tolerance theory. The effect of surface errors on antenna efficiency is
shown in Fig. 7.7. A plot of gain versus efficiency for a number of antennas is shown
in Fig. 7.8.

Fig. 7.7 Aperture efficiency
ηA (——) and beam
efficiency ηMB (−−−)
for different values of K in
Table 6.1. The values for both
an ideal reflector (δ = 0) and
one that introduces random
phase errors of δ = 0.04λ are
given [after Nash (1964)]

Fig. 7.8 The gain G in dB (left axis) of some high-precision filled aperture radio telescopes is
plotted against wavelength λ. The Full Width to Half Power, θ is plotted on the right axis. The
ALMA 12 m antennas will have the same properties as the APEX antenna. The curve for these
antennas extends to 0.3 mm, and to longer wavelengths, where it joins the curve for the Kitt Peak
12 m antenna which has a lower surface accuracy. The 15 m diameter JCMT (James Clerk Maxwell
Telescope) on Mauna Kea and PdeB (IRAM Plateau de Bure interferometer) antennas are also
shown. Smaller but highly accurate antennas are a part of the SOFIA and Herschel observatories
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7.4 The Practical Design of Parabolic Reflectors

7.4.1 General Considerations

Measurements of the mechanical properties of an antenna are of importance for
its performance. This is especially true if the telescope deforms homologously. By
Homology it is meant that, at various elevations, the main reflector deforms from
one paraboloid into another. Today, homology is an intrinsic part of the design of all
symmetric reflectors.

Non-homologous telescopes with diameters up to 12 m surfaces have been ad-
justed with the help of templates to accuracies of 100μm. This is not possible for
telescopes of larger diameter or if great precision is needed. Surveying and adjust-
ment of the surface panels can be done by measuring the position of fiducial marks
with surveying techniques. Previously one had used Invar tapes to measure distances
along the surface and a theodolite to measure angles from the apex of the dish, gives
sufficient precision. Other methods use laser ranging, as well as the theodolite.
These methods have been replaced by photogrametry, in which optical measure-
ments of small reflectors attached to theantenna surface are used to determine the
positions of panels to accuracies of about 50μm. Most recently, holographic meth-
ods have become popular. In such measurements, the usual source of coherent radi-
ation is a signal transmitted from an earth satellite at 7 mm. A small telescope and
the large dish to be measured receive the signal, which is then correlated, preserving
both the relative phase and amplitude. The large dish is scanned, thus allowing an
accurate measurement of amplitude and phase from the main beam and the side
lobes. A second holographic method employs radiation from a giant planet such as
Jupiter. This has been used to set the panels of the Caltech Submillimeter Obser-
vatory (CSO) 10 m dish to 17μm. A third method, most commonly used today, is
to use holography with a transmitter in the near field of the radio telescope. This
is a more complex undertaking, since the near radiation field is important, and the
distance to the transmitter must be accurately determined. The advantage in using
this method is that it allows a very high S/N ratio. As a result of such near field
measurements, the surface of the IRAM 30 m telescope has been set to a precision
of 70μm and that of the James Clark Maxwell Telescope (JCMT) to 50μm.

Pointing errors rather than surface inaccuracies have usually set the ultimate
limit to telescope performance. Due to the diurnal rotation of the earth, all celes-
tial objects rotate about the celestial pole. Therefore for prolonged measurements
in a given direction, a mounting that permits compensation for this motion has
to be provided. Even for small reflectors a straightforward adaptation of the clas-
sical equatorial mount for optical telescopes is seldom used today. In the 1950s,
this mount was commonly used before adequate digital control systems were avail-
able. In an equatorial mount the telescope is turned with constant angular velocity
around a polar axis which is parallel to the earth’s axis of rotation. Different de-
clinations can be reached by tilting the reflector about the declination axis, which
is perpendicular to the polar axis. The advantage of this design is the simplicity
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of the resulting telescope control; as long as the telescope is aimed at a point with
fixed celestial coordinates the telescope must rotate only about the polar axis with
a constant angular velocity. However, this mount has the great disadvantage that
the forces due to the weight of the telescope act on bearings at an arbitrary an-
gle, and for the case of the declination axis these angles are always changing in
the course of the diurnal motion. For these reasons all modern telescopes make
use of an altitude-azimuthal mounting; the altitude-azimuth to equatorial coordinate
transformation is carried out with a computer. The azimuthal axis is vertical, the
elevation axis horizontal and both remain so even when the telescope is turning.
The gravity load of the telescope acts either parallel or perpendicular to these axes
and, when the telescope is tilted, the resulting gravitational force vector will always
remain in a plane as seen from the telescope, while for the equatorial mounting this
force vector can point to any direction within a hemisphere. For celestial positions
which pass through the zenith, the azimuthal angular velocity becomes singular,
so that no observations are possible in a region surrounding the zenith. The size
of this region depends on the maximum possible speed for azimuth, but usually a
field with a diameter of not more than 2–5◦ has to be avoided. For altitude-azimuth
mountings, the relation between celestial and telescope coordinates is constantly
changing, so the polarization angle and position angles of side lobes caused by feed
legs also change as a source is moving across the sky. This may be turned to ad-
vantage since this effect can be used to eliminate a large part of these side lobe
effects.

Pointing corrections for small dishes can be determined by mounting a small
optical telescope approximately parallel to the axis of the telescope and tracking
stars. Large homology dishes use radio measurements. Usually most of the errors
remain constant over weeks or months and can be incorporated as constants in a
pointing model in the telescope control computer program. Other errors, such as the
collimation error, which depend on how the receiver currently in use is mounted in
the telescope, must be determined more frequently.

Determinations of pointing constants are carried out by dedicated measurements.
These constants are then stored in the control computer. If the control program in-
cludes such corrections, there will be compensations for known flexure of the tele-
scope, changes in focus position, etc. Then a considerable precision of telescope
pointing can be reached. In this way an RMS pointing error of � 10′′ in both co-
ordinates is obtained for the 100 m telescope at Effelsberg, if no special efforts for
obtaining positional accuracies are taken. With frequent position checks, observing
only at night and in low wind, an RMS error of 4′′ is possible. Even better per-
formance has been reached with modern large single dishes used in the mm and
sub-mm range.

The discussion in the preceding sections showed how the radio frequency char-
acteristics of parabolic reflectors depend on the electric properties of the design and
the precision with which it can be built. This must be supplemented by some re-
marks about limits based on mechanical and practical restrictions.
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7.4.2 Specific Telescopes

The sole purpose of the telescope backup structure is to support the main reflector
surface. This surface may be perforated sheet metal or wire mesh as long as the
mesh size is about 1/16th of the shortest wavelength. This is acceptable if the in-
tended wavelength is more than a few cm. For shorter wavelengths solid surfaces
are needed. Usually the surface consists of panels that can be adjusted individually
to the desired paraboloid shape. Attempts to include the surface into the support
structure of the dish have not been successful.

When considerations of the costs are of prime importance, savings are often pos-
sible by restricting the range of the motion for the telescope. The prime example
for this is the fixed 305 m spherical reflector at Arecibo, Puerto Rico (Fig. 7.9).
The spherical main reflector is completely stationary and its mesh surface is con-
structed in a depression in the ground. The telescope beam is directed by moving
the structure containing the feed horns and receivers. The shape of the reflector was
chosen to be spherical. A sphere has no single focus, only a focal line (or caustic),
and therefore a feed must be used to compensate for the spherical aberration. For
many years so-called line feeds were used with Arecibo. In the last years, to sim-
plify the optics, the secondary reflector was installed. This is a 26 m reflector which
feeds the radiation to a tertiary Gregorian reflecting surface were placed above the

Fig. 7.9 A sketch of the Arecibo 305 m telescope in Puerto Rico, USA. The main reflector does
not move; the telescope beam is steered by moving the carriage house suspended over the main
reflector. On the left is the line feed used originally to correct the systematic phase errors caused
by the spherical primary main reflector. The new arrangement to the right includes two reflectors
which refocus the power from the main reflector and compensate for its large spherical aberrations.
The 25 m diameter secondary and an 8 m diameter tertiary reflector (inside the structure marked
“new secondary”) direct the power to the receiver system. The receiver and the two reflectors
are housed inside a radome on the right, below the carriage house. In addition to the new feed
arrangement, a ground screen, 16 m high, was erected around the edge of the primary reflector
(courtesy National Astronomy and Ionosphere Center). There are plans for an even larger Arecibo-
type instrument in China. This would be one of the possible Square Kilometer Array (SKA) designs
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primary reflector. With this, conventional horn feed illuminates approximately a
225 m aperture with very low spillover, high efficiency. The Arecibo antenna can
track sources over a 20◦ range from zenith, enabling observations for declinations
between 0 and +40◦. A limiting frequency of about 10 GHz is the design goal.
Arecibo has the largest collecting area of any radio telescope. There is a proposal
from China to build a 500 m diameter version of Arecibo as a prototype for their
version of the “Square Kilometer Array”, SKA. In our presentation of antenna tol-
erance theory, it was shown that the shape of the reflecting surface must be < λ/16
in order to achieve a telescope gain within 67 % of an ideal reflector. For a 30 m
radio telescope usable to λ = 1 mm the tolerance must be 0.06 mm RMS. This re-
quirement must be met for all positions at which the telescope can be pointed. Any
structure that is built from existing material will show flexure due to its own weight
if tilted. This is caused by the finite maximum stress that the material can transmit,
the modulus of elasticity and the density of the material used for the construction.
The geometric shape introduces only a numerical factor; it cannot completely sup-
press the deformation. In order to obtain some idea of the size of these deformations
it should be noted that the rim of the dish of the 100 m telescope at Effelsberg de-
forms by about 60 mm when the telescope is tilted from zenith to horizon. This
should be compared to the required precision of about 0.5 mm, RMS, if the tele-
scope is to be fully usable for λ = 1 cm. Closer scrutiny shows that what is needed
is not the absence of deflections but only that the shape of the reflector remains a
paraboloid of revolution; changes in both the shape and the position (apex, focal
point and axis) of this paraboloid can be tolerated. Such deformations are called
homologous, and it is imperative that only such deformations occur. The first large
radio telescope designed specifically with a homology design was the 100 m tele-
scope at Effelsberg (see Fig. 7.10). The success of this design was such that this
telescope is usable at wavelengths as short as λ= 3 mm, since the error due to tele-
scope deformations always remains smaller than 0.5 mm. More modern homology
telescopes have a much stiffer design than Effelsberg, but the principle of homology
has been incorporated in the design of symmetric dishes such as the IRAM 30 m. A
larger version of the IRAM dish is the 50 m diameter Large Millimeter Telescope
(LMT) located near Puebla, Mexico. The LMT is near completion.

One large telescope that does not have a homologous design is the GBT, since this
has an asymmetric structure. Rather the individual panels of the GBT are equipped
with an actuator system that adjusts the surface for maximum gain. In some sense
one can compare the Effelsberg homology design to an analog computer, and the
GBT system to a digital computer. The GBT design allows more freedom.

The use of homology insures that deformations due to gravity are compensated.
The practical limits are now given by thermal and wind deformations. In order to
minimize thermal deformations, and to protect the telescope from adverse weather
conditions, these are often contained in radomes or astrodomes. Two examples are
the 15 m James Clerk Maxwell Telescope (JCMT) and the 10 m CSO telescope,
both at 4 km elevation on Mauna Kea, Hawaii. Another approach to reduce the
effect of temperature fluctuations is to use structures made of low expansion ma-
terials. Since the surface tolerances are so critical, the support structure is often
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Fig. 7.10 A sketch showing the homology design principle of the 100 m-telescope at Effelsberg
(after Grahl). The support for the surface is provided by a set of radial struts from the backup
structure to the central hub. The support for the prime focus is provided by four legs. The surface
is free to deform from one paraboloid to another. Such a design places strong constraints on the
symmetry of the structure. For off-axis systems such as the GBT, active surface adjustment is used
to replace the effect of homology

now made of a low expansion material, carbon fiber reinforced plastic, or CFRP.
With CFRP, together with the Invar nodes joining the CFRP tubes, a space frame
structure with a negligible temperature expansion coefficient over a fairly wide tem-
perature range can be built. From this design, differences in temperature within the
telescope structure will not influence the shape of the dish. The progress in tele-
scope construction made in the last years may be seen by the fact that modern
versions of telescopes do not require protection from weather in the form of an
astrodome. The most remarkable example of such a design is the 12 m sub-mm tele-
scope, the Atacama Pathfinder EXperiment (APEX). Although APEX operates at
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a site of 5000 m elevation at Chajnantor/Chile. APEX, a telescope project operated
jointly by MPIfR, ESO and the Onsala Space Observatory is now taking data. The
individual antennas of the Atacama Large Millimeter/sub-mm Array (ALMA) are
similar to APEX. The specifications of these instruments are: RMS surface accu-
racy better than 25 μm, pointing accuracy 2′′ over the whole sky, tracking accuracy
0.6′′. APEX and the ALMA dishes are the highest performance radio telescopes
built. SOFIA (Fig. 7.12, see http://www.nasa.gov/mission pages/SOFIA/index.html
for a description) has a 2.5 meter reflector that has optical quality, while the Her-
schel Satellite Observatory has a 3.5 meter silicon-carbide reflector (Fig. 7.13, see
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=16 for more information).

For longer wavelength observations, equipment has to be placed near the position
of the prime focus since feeds must have sizes of more than λ/4 to be efficient. In
the prime focus, the telescope is illuminated by the primary feed. In order to avoid
the losses of long transmission lines, the receiver front end is also mounted at the
prime focus. At shorter wavelengths the secondary focus in Cassegrain, Gregory
or Nasmyth foci can be used, a secondary reflector is then required. In symmetric
telescopes both the supporting legs and the secondary reflector or the receiver cabin
obstruct part of the aperture, giving rise to aperture blocking. Usually the loss of gain
caused by blockage of the effective aperture is minor. Of much greater importance
is the influence on the side-lobe level. A complete analytical treatment of this effect
is rather difficult because of geometry, thus empirical estimates are used. Support
structures with three and four legs have been used; the resulting side lobe structure
shows a six-fold or a four-fold symmetry – at least to a first approximation.

Aperture blocking and all the problems connected with it, that is baseline rip-
ple due to standing wave patterns of radiation reflected from the feed horn and the
supporting legs (see Section 8.4.3), increased side-lobe level and an increased sus-
ceptibility to man-made interference, can be avoided if an off-axis construction is
used. This is the design principle chosen for the new Green Bank Telescope, GBT
(Fig. 7.11). The design of an offset paraboloid has, however, complications. Since
the design has less symmetry homology is more difficult to achieve and therefore
active, real time adjustments of the surface are needed if the design limit of 7 mm
or perhaps even 3 mm wavelength is to be reached. This will be accomplished by
an actuator system controlled in real time by a laser measuring system. But for a
wavelength larger than 2 cm the GBT will not require active surface adjustment.

Considerations resulting in a high efficiency for the telescope are only some of
the criteria in the design of radio telescopes. Of almost equal importance are features
that result in an overall low-noise system. These refer mainly to the receiver design,
but the telescope design can be important also, since not all the radiation that is re-
ceived arises from the radio source at which the telescope is pointed. A large part of
the signal, in some systems up to 50%, arises from the immediate telescope vicin-
ity. This could be radiation from the ground, either leaking through the perforated
reflecting surface or picked up by spillover lobes of the primary feed extending over
the edge of the reflector dish. As already noted, the noise performance of Cassegrain
or Gregorian systems is usually much better than that of prime focus systems be-
cause such spillover lobes. The influence of spillover noise can be decreased by
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Fig. 7.11 The Green Bank Telescope (GBT) at West Virginia, U.S.A. The telescope is an off-axis
paraboloid with a 110 m by 100 m diameter. This design was chosen in order to minimize side lobes
and reflections in the telescope structure that lead to instrumental artefacts or “baseline ripples”

Fig. 7.12 The SOFIA facility will fly at about 12 km altitude, above most of the water in the earth’s
atmosphere. This will allow measurements in the sub-mm and far infrared range. The modified
747SP airplane contains a 2.5 m optical telescope. This is a joint project of NASA and the German
Space Agency, DLR. The first test flights are now taking place
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Fig. 7.13 The Herschel
Space Observatory will
observe at sub-mm and far
infrared wavelengths with
bolometer and heterodyne
instruments. The antenna is a
3.5 m paraboloid made of
silicon carbide. The structure
behind the antenna is a sun
shield; the structure below the
main reflector is the cryostat
containing the receiver
systems. Herschel is equipped
with two bolometer cameras,
SPIRE (covering 250–520
μm) and PACS (covering
75–170 μm, and a single
pixel heterodyne instrument,
HIFI (covering 157–212 and
240–625 μm). The
bolometers also have
spectroscopic capability.
Launch is planned for
mid-2008

suitably placed screens that direct the side lobes towards cold sky and not ground.
These have much the same purpose as baffle tubes in optical telescopes.

7.5 Summary

1) Fully steerable paraboloids of revolution have become the standard antennas in
the centimeter, millimeter and sub-mm wavelength regions. In the mm and sub-
mm ranges, these were housed in shelters, but recently designs have allowed high
performance paraboloids to operate in the open air.

2) All symmetric paraboloids have designs that make use of the homology principle.
That is, with changing elevation, the surfaces deform freely from one symmetric
parabolic shape to another.

3) All modern designs use Altitude-Azimuth mounts. The control is carried out with
digital computer systems.

4) For millimeter and sub-mm paraboloids, Carbon Fiber Reinforced Plastic (CFRP)
rods are employed in the support structures and subreflector support legs. CFRP
is needed to minimize the changes in structures due to changing temperatures.
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5) The aim of all designs is to minimize the blockage of the primary reflector. This
requires thin, “knife edge” subreflector support legs. Thus the weight of the sub-
reflector must be kept to a minimum.

6) The Cassegrain and Nasmyth foci are preferred for millimeter and sub-mm tele-
scopes, since these help to minimize the reception of noise from the ground,
have additional reflecting surfaces that allow optimization of telescope gain, and
provide larger amounts of space for receivers.

Problems

1. (a) Use Eqs. (7.3), (7.14) and (7.15) to show that for a source with an angular
size � the telescope beam, TA = Sν Ae/2k. Use these relations and Eq. (7.16) to
show that TA = ηBTB, where TB is the observed brightness temperature.
(b) Suppose that a Gaussian-shaped source has an actual angular size θs and actual
peak temperature T0. This source is measured with a Gaussian-shaped telescope
beam size θB. The resulting peak temperature is TB. The flux density, Sν , integrated
over the entire source, must be a fixed quantity, no matter what the size of the tele-
scope beam. Use this argument to obtain a relation between temperature integrated
over the telescope beam, TB

TB = T0

(
θ 2

s

θ 2
B +θ 2

s

)
.

Show that when the source is small compared to the beam, the main beam
brightness temperature TB = T0(θs/θB)2, and further the antenna temperature TA =
ηBT0 (θs/θB)2.

2. Suppose that a source has T0 = 600 K, θ0 = 40′′, θB = 8′ and ηB = 0.6. What is
TA? (Use the result of Problem 1(b).)

3. Suppose your television needs 1μW of power at the input for good reception.
The transmitter radiates 100 kW in all azimuthal directions, and within an angle
±10o about the horizontal direction, and is at 100 m elevation. Ignore reflections
and assume that the earth is perfectly flat. Calculate the effective area, Ae, that your
TV antenna must have if you live 30 km from the transmitter.

4. Suppose that your antenna has a normalized peak power, P, with the following
values: P = 1 for θ < 1o, P = 0.1 for 1o < θ < 10o, and P = 0 for θ > 10o. What is
ΩA, from Eq. (5.51) in “Tools”? What is ΩMB and ηB.

5. A scientist claims that for a very special antenna the source brightness tempera-
ture of a compact source exceeds the antenna temperature. Do you believe this?

6. You are told that there is a special procedure which allows the measured Gaussian
source size (not the deconvolved size) to be smaller than the Gaussian telescope
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beam. This can occur (so the claim goes) if the source is very intense. Do you
believe this?

7. The Gaussian function considered in Chap. 4 was:

y(x) = A exp

(
− x2

2σ2

)
,

where A is a normalization constant. For radio astronomical applications, one usu-
ally takes the form of this function as

y(x) = A exp

(
−4ln2(x− x0)2

θ 2
1/2

)
.

Relate the parameters σ and θ1/2. The quantity θ1/2 is the FWHP, full width to
half power. In the literature, the “width” of a Gaussian function is usually the FWHP.

8. The ground screen for the Arecibo telescope has a height of 15 m, and is mounted
around the edge of the 305 m diameter radio telescope. Assume you could direct the
entire ground screen so that the power is collected at a single location. (a) What is
the geometric area of this ground screen? Take the antenna as a ring, with an inner
radius of 305 m, the outer radius being 315 m. (b) Calculate the far-field antenna
pattern. What are the location and intensity in the first sidelobe, relative to the main
lobe? (c) Calculate the conversion factor, from Jy to K, for the antenna temperature
if the antenna efficiency is 0.6.

9. Single telescope pointing is checked by scanning through the center positions of
known sources by a few beamwidths in orthogonal directions. The positional error,
Δθ , caused by random noise, as measured with a beam of FWHP size θ0 and signal-
to-noise ratio of (S/N) is θ0/(S/N). Neglect all systematic errors. What would have
to be the (S/N) to determine a source position to 1/50 of the FWHP beamwidth of
the telescope? Is there a contradiction between the angular resolution of a telescope,
θ ∼ λ/D, and the positional accuracy?

10. Figure 7.6d represents the AT&T Bell Labs 7 m radio telescope. This has a beam
efficiency of 0.95 at a wavelength of 3 mm. Assume that K = 0 in Eq. (6.75) and
Table 6.1. From Fig. 7.7, what must be the surface accuracy? (a) What must be
the antenna efficiency from Fig. 7.7? (b) At one time, this telescope was used for
satellite tests at 28 GHz. The satellite is a point source in the beam of this telescope,
so ηA should be optimized for a point source. Now what are the values of antenna
and beam efficiency? What is the beam size?

11. Combine (7.5), (7.8) and (7.9), together with θgeom = λ
D and Ageom = π

4 D2 to
obtain the relation

ηB = ηA
πD2

4λ2

[
θB

θgeom

]2

(7.27)
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12. Use expression (6.40), to determine the normalized power pattern of the Hertz
dipole. Use Eq. (7.2) to determine the gain of the Hertz dipole. For the Hertz dipole,
P(θ) = P0 sin2 θ . Use Eqs. (7.3), (7.5) and 7.11 to obtain ΩA, ΩMB, ηB and Ae.

13. What is the Rayleigh distance, k = 2D2/λ, for an antenna of diameter D = 100 m
and a wavelength λ= 3 cm.

14. For a 305 m diameter radio telescope with ηA=0.5, what is the ratio of antenna
temperature to flux density for a point source? for an antenna of diameter D = 100 m
and a wavelength λ= 3 cm.



Chapter 8
Single Dish Observational Methods

8.1 The Earth’s Atmosphere

For ground–based radio telescopes, the signal entering the receiver has been atten-
uated by the earth’s atmosphere. In addition to attenuation, there is atmospheric
emission, the signal is refracted and there are changes in the path length. Usually
these effects change slowly with time, but there can also be rapid changes such as
scintillation and anomalous refraction. Thus the propagation properties of the at-
mosphere and detailed features of its radiation must be taken into account, if the
astronomical measurements are to be interpreted properly. In Sect. 1.2 it was noted
that the earth’s atmosphere is fairly transparent to radio waves for frequencies above
the cut-off given by the critical frequency of free electrons in the ionosphere. This
cut-off frequency varies depending on the electron density but usually in the region
below 10 MHz. Most radio astronomical measurements are made at frequencies well
above this limit. At lower frequencies ionospheric effects can be important; these
are of great intrinsic interest for geophysics, and must be compensated for in high
angular resolution, low frequency astronomical images.

For the cm and mm wavelength range and especially in the submillimeter range,
tropospheric absorption has to be taken into account. The various constituents of the
atmosphere absorb by different amounts. Because the atmosphere can be considered
to be in LTE, these constituents are also radio emitters. Clouds of water droplets ab-
sorb and scatter radio waves even at frequencies as low as 6 GHz – a large rain cloud
will cause an attenuation as high as 1.5 dB, while the average value for clear sky at
zenith is of the order of 0.2 dB. At higher frequencies the atmospheric absorption
increases.

The dry atmosphere below 80 km is a mixture of gases with the principle
constituents nitrogen (N2 : 78.09% by volume), oxygen (O2 : 20.95%) and argon
(Ar: 0.93%). This mixture is almost constant in the lower atmosphere, but there are
several minor constituents whose relative percentage may vary both with altitude
and time.

The most important of these is water vapor (H2O). Its concentration, given by the
mixing ratio r (in g/kg air) varies erratically with the local weather conditions and
with altitude. Carbon dioxide (CO2) with an average percentage of 0.03% shows
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both seasonal variations and a secular trend. In recent years it has come to promi-
nence in connection with the greenhouse effect.

Equally notable is ozone (O3). This has maximum concentration at an altitude
between 20 and 30 km, with a total number density of about 5×1012 cm−3. Ozone
shows strong seasonal and geographical variations, and in addition, the total amount
has decreased dramatically in the last 10 to 15 years. Since ozone is responsible for
the absorption of the near UV solar radiation, this decrease is of great practical im-
portance. Spectral lines of ozone are present at 67.36 GHz and higher. The emission
lines in the zenith reach ΔTb = 60 K for dry air; with a total amount of 2gcm−2 H2O,
ΔTb remains below 5–6 K.

The atmospheric pressure decreases roughly exponentially with the altitude h

P(h) = P0 e−h/H . (8.1)

The determination of H, the scale height, is rather approximate, with a typical
value of

H =
R

μ
T
g
≈ 7998m , (8.2)

where μ is the mean molecular mass of air, R the gas constant, g the gravitational
acceleration and T the gas temperature.

The total amount of precipitable water (usually measured in mm) above an al-
titude h0 is an integral along the line-of-sight. Frequently, the amount of H2O is
determined by radio measurements carried out at 225 GHz combined with models
of the atmosphere. For excellent sites, measurements of the 183 GHz spectral line of
water vapor can be used to estimate the total amount of H2O in the atmosphere. For
sea level sites, the 22.235 GHz line of water vapor is used for this purpose. The scale
height HH2O ≈ 2km, is considerably less than Hair ≈ 8km of dry air. For this reason,
sites for submillimeter radio telescopes are usually mountain sites with elevations
above ≈ 3000 m.

The variation of the intensity of an extraterrestrial radio source due to propaga-
tion effects in the atmosphere is given by [see (1.17)]

Iν(s) = Iν(0)e−τν (0) +

τν (0)∫
0

Bν(T (τ))e−τ dτ , (8.3)

where

τν(s) =
s∫

s0

κν(s)ds . (8.4)

Here s is the (geometric) path length along the line-of-sight with s = 0 at the
upper “edge” of the atmosphere and s = s0 at the receiving telescope. Both the
(volume) absorption coefficient κ and the gas temperature T will vary with s, intro-
ducing the mass absorption coefficient kν by

κν = kν ·� , (8.5)
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where � is the gas density; this variation of κ can mainly be traced to that of � as
long as the gas mixture remains constant along the line-of-sight.

Because the variation of � with s is so much larger that that of T (s), a useful
approximation can be obtained by introducing an effective temperature for the at-
mosphere so that

TA(s) = Tb(0)e−τ(0) +TAtm(1− e−τ(0)) . (8.6)

The first term is absorption in the earth’s atmosphere, while the second is emis-
sion. The physics of the atmosphere is contained in the derivation of τ(0), the total
opacity along the line-of-sight, and in TAtm. In Fig. 8.1 we show a model of the
atmosphere used to predict attenuation from O2 and H2O, and other constituents.
This example gives an indication of the influence of the atmosphere at cm, mm
and sub-mm wavelengths. High frequency resolution measurements of the atmo-
spheric emission are possible and aid in improving models. In the cm region, there
is some effect near 22.235 GHz from H2O and a large effect at 50–70 GHz from O2.
If we assume the physical parameters of the atmosphere are independent of position
(within a neighborhood of ≈ 100 km diameter) so that all variations of atmospheric
mixture, density, pressure and temperature are only dependent on the height h in the
atmosphere, then the total opacity τ(z) along the line-of-sight at the zenith angle z
will be

τ(z) = τ0 ·X(z) , (8.7)

where τ0 is the optical depth for zenith and X(z) is the relative air mass

X(z) =
1

∞∫
0

�(h)dh

∞∫
0

�(h)√
1−

(
R

R+h
n0

n

)2

sin2 z

dh . (8.8)

Here R is the earth radius, �(h) the gas density at the height h = r −R in the
atmosphere, n(h) the index of refraction at this height, n0 that at h = 0. In deriving
this expression the surfaces of equal physical state in the atmosphere are assumed
to be concentric spheres, and the curvature of the rays due to varying refraction
has been taken into account. Tables of X(z) have been computed by Bemporad [see
Schoenberg (1929)], a Chebyshev fit up to X = 5.2 with a mean error of less than
6.4×10−4 is given by

X(z) = −0.0045+1.00672secz−0.002234sec2 z−0.0006247sec3 z . (8.9)

If the atmosphere can be considered to be reasonably stable so that both TAtm

and τ0 will not vary noticeably within several hours, these atmospheric parameters
can be obtained by measuring a calibration source repeatedly so that its radiation
enters the telescope after passing through different air masses X . The unknown at-
mospheric parameters then can be obtained from a least squares fit of TA against X .
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Fig. 8.1 A plot of the transmission properties of an atmospheric model for a precipitable water
vapor of 0.2 mm, for an altitude of 4.2 km. In panel (a) is shown the total transmission, in (b) the
transmission if only O2 is present, and in (c) if only water vapor is present. The total in (a) also
takes the effect of trace gases and the interaction with N2 [produced using the AM program of
S. Paine by B. Nikolic (unpublished)]
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Refraction effects in the atmosphere depend on the real part of the (complex)
index of refraction (2.33). Except for the anomalous dispersion near water vapor
lines and oxygen lines, it is essentially independent of frequency and given by

(n−1)×106 = 77.6
( p

hPa

)(T
K

)−1

+3.73×105
( pw

hPa

)(T
K

)−2

, (8.10)

where p is the total air pressure in hectoPascals (hPa = 100 mB), pw the partial
pressure of water vapor (in hPa) and T the gas temperature in K. Therefore the
refraction will depend on the humidity of the air. For z < 80◦

Δz = β tanz , (8.11)

where

β = (n−1) .

A rapidly time variable effect is anomalous refraction (Altenhoff et al. 1987).
This has been found at 1.3 cm at Effelsberg and at 3 mm and 1.3 mm at Pico Veleta
as well as other sites. If anomalous refraction is important, the apparent positions
of radio sources appear to move away from their actual positions by up to 40′′ for
time periods of 30 s. This effect occurs more frequently in summer afternoons than
during the night. Anomalous refraction is caused by small variations in the H2O
content, perhaps by single cells of moist air. In the mm and sub-mm range, there
are measurements of rapidly time variable noise contributions, the so-called sky
noise. This is probably produced by variations in the water vapor content in the
telescope beam, and it does not depend in an obvious way on the transmission of the
atmosphere. But experience has shown that times of high atmospheric attenuation
are often times of low sky noise. The fluctuations of the water content along the
line-of-sight probably cancel reasonably well when the water content is high, but
then the transmission is small. As expected, sky noise increases with increasing
telescope beam separation, being larger for small telescopes (D < 3 m) than for
large telescopes (D > 10 m). This behavior is expected if the effects arise within a
few km above the telescope and the cells have limited sizes.

8.2 Calibration Procedures

8.2.1 General

In Sect. 7.1, a set of characteristic parameters was given that describes the basic
properties of an antenna as a measurement device. These parameters have to be de-
termined for a specific antenna. The efficiencies defined in Chap. 6 are more difficult
to estimate. For smaller antennas used in communications, calibrations are usually
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carried out using an antenna test stand using transmitters with known power output.
Such a transmitter must be situated in the far field, at a distance d,

d > 2D2/λ , (8.12)

if easily interpretable results are to be obtained. The required distance d is of the
order of 2× 103 km for a telescope with D = 100 m at λ = 1 cm. Such calibration
set up is not possible to arrange on a routine basis and therefore radio telescopes
and larger communications antennas are best calibrated using astronomical sources
as standards.

Thus, in radio astronomy, one must follow a two step procedure characteristic for
many astronomical applications. First, the measurements must be calibrated using a
set of celestial primary calibration sources, but to establish these primary calibration
sources is a complicated task. Second, once the primary flux density calibrators are
available, relative calibrations can be made, using secondary standards.

The primary calibration standards are measured using horn antennas. The an-
tenna parameters can either be computed theoretically, or can be measured in an
antenna test range. The same sources are then measured again with the larger tele-
scope to be calibrated. The scale measured with the larger telescope is then adjusted
to produce the values obtained with the calibrators in catalogs. A list of radio sources
with known flux densities for a wide range of frequencies is available; for conve-
nience a sample is given in Appendix F.

For a uniformly illuminated circular aperture, as in an optical telescope, the far
field is given by the Airy pattern (the first entry in Table 6.1). The illumination of
radio telescopes differs from that used in classical optical telescopes in two ways:
(1) because of the low focal ratios, the illumination pattern differs significantly from
the Airy pattern, and (2) the waveguide feeds give a nearly Gaussian variation of
electric field strength across the aperture. Such a situation is better represented by
the second entry in Table 6.1. For a Gaussian shaped main beam, the solid angle is
given by

Ω = 1.133 θ 2
b , (8.13)

where θb is the full width to half power (FWHP). From direct comparisons, this
relation has an accuracy of 5 %. An accuracy of 1 % can be obtained by using the
0.1 power point of the beam:

Ω = 0.3411 θ 2
0.1power . (8.14)

8.2.2 Compact Sources

Usually the beam of radio telescopes are well approximated by Gaussians. As men-
tioned previously, Gaussians have the great advantage that the convolution of two
Gaussians is another Gaussian. For Gaussians, the relation between the observed
source size, θo, the beam size θb, and actual source size, θs, is given by:
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θ 2
o = θ 2

s +θ 2
b . (8.15)

This is a completely general relation, and is widely used to deconvolve source
from beam sizes. Even when the source shapes are not well represented by Gaus-
sians these are usually approximated by sums of Gaussians in order to have a con-
venient representation of the data. The accuracy of any determination of source size
is limited by (8.15). A source whose size is less than 0.5 of the beam is so uncertain
that one can only give as an upper limit of 0.5θb.

If the (lossless) antenna (outside the earth’s atmosphere) is pointed at a source
of known flux density Sν with an angular diameter that is small compared to the
telescope beam, a power at the receiver input terminals

Wν dν = 1
2 Ae Sν dν = k TA dν

is available. Thus

T ′
A = Γ Sν (8.16)

where Γ is the sensitivity of the telescope measured in K Jy−1. Introducing the
aperture efficiency ηA according to (7.9) we find

Γ = ηA
πD2

8k
. (8.17)

Thus Γ or ηA can be measured with the help of a calibrating source provided
that the diameter D and the noise power scale in the receiving system are known. In
practical work the inverse of relation (8.16) is often used. Inserting numerical values
we find

Sν = 3520
T ′

A[K]
ηA[D/m]2

. (8.18)

The brightness temperature is defined as the Rayleigh-Jeans temperature of an
equivalent black body which will give the same power per unit area per unit fre-
quency interval per unit solid angle as the celestial source. Both TA and Tb are de-
fined in the classical limit, and not through the Planck relation, even when hν ≈ kT .
In this sense, both TA and Tb may be idealizations. However the brightness tem-
perature scale has been corrected for antenna efficiency. Usually this scale, the main
beam brightness temperature, is determined by measurements of the planets, or mea-
surements of calibration sources. The conversion from source flux density to source
brightness temperature for sources with sizes small compared to the telescope beam
is given by the Rayleigh-Jeans relation:

S =
2k TMBΩ
λ 2 . (8.19)
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For Gaussian source and beam shapes, this relation is:

S = 2.65
TMB θ 2

o

λ 2 , (8.20)

where the wavelength is in centimeters, and the observed source size is taken to be
the beam size, given in arc minutes. Then the flux density is in Jy, and the brightness
temperature is in Kelvin.

The expression TMB is still antenna dependent, in the sense that the tempera-
ture is a weighted average over the telescope beam, but this relation does take into
account corrections for imperfections in the antenna surface and the efficiency of
feed coupling. For sources small compared to the beam, the antenna and main beam
brightness temperatures are related by the main beam efficiency, ηB:

ηB =
T ′

A

TMB
. (8.21)

The actual source brightness temperature, Ts is related to the main beam bright-
ness temperature by:

Ts = TMB
(θ 2

s +θ 2
b )

θ 2
s

. (8.22)

Here, we have made the assumption that source and beam are Gaussian shaped.
The actual brightness temperature is a property of the source. To obtain this, one
must determine the actual source size. This is a science driver for high angular reso-
lution (i.e. interferometry) measurements. Although the source may not be Gaus-
sian shaped, one normally fits multiple Gaussians to obtain the effective source
size.

8.2.3 Extended Sources

For sources extended with respect to the beam, the process is vastly more complex,
because the antenna side lobes also receive power from the celestial source, and a
simple relation using beam efficiency is not possible without detailed measurements
of the antenna pattern. As shown in Sect. 8.2.5 the error beam may be a very signifi-
cant source of errors, if the measurements are carried out near the limit of telescope
surface accuracy. In principle ηMB could be computed by numerical integration of
Pn(ϑ ,ϕ) [cf. (7.3) and (7.4)], provided that Pn(ϑ ,ϕ) could be measured for large
range of ϑ and ϕ . Unfortunately this is not possible since nearly all astronomi-
cal sources are too weak; measurements of bright astronomical objects with known
diameters can be useful.

If we assume a source has a uniform brightness temperature over a certain solid
angle Ωs, then the telescope measures an antenna temperature given by (7.16)
which, for a constant brightness temperature across the source, simplifies to
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T ′
A =

∫
source

Pn(ϑ ,ϕ)dΩ

∫
4π

Pn(ϑ ,ϕ)dΩ
Tb

or, introducing (7.3, 7.4 and 7.5),

T ′
A = ηB

∫
source

Pn(ϑ ,ϕ)dΩ

∫
main
lobe

Pn(ϑ ,ϕ)dΩ

Tb = ηB fBEAMTB , (8.23)

where fBEAM is the beam filling factor. If the source diameter is of the same order
of magnitude as the main beam the correction factor in (8.23) can be determined
with high precision from measurements of the normalized power pattern and thus
(8.23) gives a direct determination of ηB, the beam efficiency. A convenient source
with constant surface brightness in the long cm wavelength range is the moon whose
diameter of ∼= 30′ is of the same order of magnitude as the beams of most large radio
telescopes and whose brightness temperature

Tb moon
∼= 225K (8.24)

is of convenient magnitude. In the mm and submillimeter range the observed
Moon temperature changes with Moon phase. The planets form convenient thermal
sources with known diameters that can be used for calibration purposes (Altenhoff
1985).

8.2.4 Calibration of cm Wavelength Telescopes

In the centimeter wavelength range, the noise from the atmosphere is small (Fig. 8.1),
so Trx � Tatm. Then a small amount of noise from a broadband calibration source,
whose value is known in Kelvin, is added to the system noise. The cycle consists
of two parts: system plus calibration noise on, system plus calibration noise off. If
there is no zero offset these two measurements give the noise of the system (= re-
ceiver + atmosphere). There are two methods to establish the calibration scale: (1)
if the temperature of the calibration noise is determined by a comparison with astro-
nomical sources, then noise source intensity can be given in Jy or TMB, or (2) if the
noise source is calibrated using the response to a hot and cold absorber in front of the
prime feed, the calibration noise source intensity is given in Kelvin, antenna temper-
ature, TA. This TA value is usually determined at one frequency since the response
of the calibration varies with frequency because of mismatches in the calibration
system. To convert from a TA to a TMB scale, one can use the beam efficiency but
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must also correct for atmospheric extinction. More accurate is the measurement of
an astronomical source of known flux density (or equivalently TMB). If at a different
elevation, the variation caused by the atmosphere and telescope gain must be taken
into account.

8.2.5 Calibration of mm and sub-mm Wavelength Telescopes
for Heterodyne Systems

In the millimeter and submillimeter wavelength range, the atmosphere has a larger
influence and can change rapidly, so we must make accurate corrections to obtain
well calibrated data. In addition, in the mm range, most large telescopes are close to
the limits caused by their surface accuracy, so that the power received in the error
beam may be comparable to that received in the main beam. Thus, one must use
a relevant value of beam efficiency. We give an analysis of the calibration proce-
dure which is standard in spectral line mm astronomy following the presentations of
Downes (1989) and Kutner and Ulich (1981). This calibration reference is referred
to as the chopper wheel method. The procedure consists of: (1) the measurement of
the receiver output when an ambient (room temperature) load is placed before the
feed horn, and (2) the measurement of the receiver output, when the feed horn is
directed toward cold sky at a certain elevation. For (1), the output of the receiver
while measuring an ambient load, Tamb, is Vamb:

Vamb = G(Tamb +Trx) . (8.25)

For step (2), the load is removed; then the response to empty sky noise, Tsky and
receiver cabin (or ground), Tgr, is

Vsky = G [Feff Tsky +(1−Feff)Tgr +Trx] . (8.26)

Feff is referred to as the forward efficiency. This is basically the fraction of power
in the forward beam of the feed. If we take the difference of Vamb and Vsky, we have

Vcal = Vamb −Vsky = GFeff Tamb e−τν , (8.27)

where τν is the atmospheric absorption at the frequency of interest. The response to
the signal received from the radio source, TA, through the earth’s atmosphere, is

ΔVsig = GT ′
A e−τν

or

T ′
A =

ΔVsig

ΔVcal
Feff Tamb
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where T ′
A is the antenna temperature of the source outside the earth’s atmosphere.

We define

T ∗
A =

T ′
A

Feff
=
ΔVsig

ΔVcal
Tamb . (8.28)

The quantity T ∗
A is commonly referred to as the corrected antenna temperature,

but it is really a forward beam brightness temperature. This is the TMB of a source
filling a large part of the sky, certainly more than 30′.

For sources (small compared to 30′), one must still correct for the telescope beam
efficiency, which is commonly referred to as Beff. Then

TMB =
Feff

Beff
T ∗

A

for the IRAM 30 m telescope, Feff
∼= 0.9 down to 1 mm wavelength, but Beff varies

with the wavelength. So at λ = 3 mm, Beff = 0.65, at 2 mm Beff = 0.6 and at 1.3 mm
Beff = 0.45, for sources of diameter < 2′. For an object of size 30′, Beff at all these
wavelength is 0.65. As usual TMB can be considered a black body with the tempera-
ture TMB, which just fills the beam. This analysis is the one used at IRAM; an earlier
analysis by Kutner and Ulich (1981) is common in the USA. This uses a somewhat
different notation, but the physics is basically the same. We give a comparison be-
tween these systems.

Kutner & Ulich CLASS/IRAM

ηl Feff
ηs Beff
ηc –
ηfss Beff/Feff
ηf –

ηs = ηl ·ηfss, ηf = ηfss ·ηc

In the notation of Kutner and Ulich (1981), T ∗
R = TMB, in terms of our notation

in Chap. 7

ηMB =
ΩMB

ΩF
=

Beff

Feff
,

while in that of Kutner and Ulich

ηfss =
ΩD

ΩF
,

where ΩD is the solid angle of the diffraction pattern and ΩF is the forward beam
solid angle.

An antenna pointing at an elevation z to a position of empty sky will produce an
antenna temperature
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TA(z) = Trx +Tatmηl (1− e−τ0X(z))+Tamb(1−ηl) , (8.29)

where

Trx: system noise temperature,
Tatm: effective temperature of the atmosphere,
Tamb: ambient temperature,
ηl: feed efficiency (typically ηl = 0.9),
τ0: zenith optical depth,
X(z): air mass at zenith distance z.

These parameters can be determined by a series of calibration measurements.
The efficiency ηl and the other parameters can be determined by a least squares
fit of (8.29), that is a skydip giving TA as a function of X(z). Depending on the
weather conditions these measurements have to be repeated at time intervals from
15 min to hours or so, to be able to detect variations in the atmospheric conditions.
At some observatories a small separate instrument, a taumeter is available to sample
the opacity τ at 10 min intervals.

For small telescopes used for dedicated projects, such as the Harvard CfA 1.2 m
dish, or its identical Chilean counterpart, operated by the University of Chile, one
has an ideal situation for accurate calibrations, so one can carry out tipping mea-
surements often, and determine all the parameters in (8.29). In addition, the surface
accuracy is quite high, so that the error beam contribution is small. Using these,
one can accurately correct the data. The CO in and near the galactic plane has been
mapped, and these results are on the TMB scale.

For larger mm wavelength telescopes one cannot perform tipping measurement
often. If a taumeter is not available one must use a more elaborate procedure. By
measuring the response to a cold load, one can determine the receiver noise, and
can obtain a good estimate of the noise from the atmosphere. Then, assuming a
value of Tatm and ηl = Feff, one can then determine τ = τ0 X(z), and can use this to
correct for atmospheric absorption.

At present many millimeter and submillimeter front ends are still double side-
band mixers. This can cause additional uncertainties for line measurements. One
is that the sensitivity for line radiation is lowered compared to wide band contin-
uum signals. The reason is that the spectral lines will be present only in one of the
side bands, but the calibration signal and the noise, from both the atmosphere and
receiver, will enter both side bands. Additional complications may arise if the atmo-
spheric absorption is noticeably different in the two side bands. Generalizing (8.29)
for a double side-band system with a gain of 1 in the signal band and a relative gain
gi in the image band, with optical depths in the image band, τi and signal band, τs,
we find

Tcal = (Tamb −Tatm)(1+gi)e−τs +Tatm(1+gi eτs−τi) . (8.30)

To calibrate spectral lines, one frequently measures sources for which one has
single sideband spectra. Finally observations often have to be corrected for yet
another effect: the telescope efficiency usually depends on elevation. Usually the
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telescope surface is set optimally for some intermediate zenith distance z ≈ 40◦.
Both for z ≈ 0◦ and 70◦ the efficiency usually decreases by about 25%.

8.2.6 Bolometer Calibrations

Since most bolometers are AC coupled, the D. C. response to “hot–cold” or “chop-
per wheel” calibration methods are not used. Instead astronomical data are cali-
brated in two steps: (1) measurements of atmospheric emission to determine the
opacities at the azimuth of the target source, and (2) the measurement of the response
of a nearby source with a known flux density; immediately after this, a measurement
of the target source is carried out.

8.3 Continuum Observing Strategies

8.3.1 Point Sources

Even the most carefully designed astronomical receivers are affected by random
noise and instabilities. Prolonging the observing time will diminish the influence
of the first kind of error, but after a certain time the growth of instabilities will
worsen the result. This is the physical content of the Allan plots described in Chap. 4.
Thus one must minimize the effect of instabilities. The solution to this problem
involves the use of differential techniques as far as possible; this has been standard
practice both in astronomy and physics since the days of Wheatstone. The various
schemes differ, depending on the dominant source of instability. In the early days of
radio astronomical systems the amplifiers were the main source of instabilities and
therefore sophisticated compensation schemes with Dicke switches etc. as described
in Chap. 4 have been implemented. The technical advances in the art of receiver
construction resulted in an ever improving stability of these systems so that rapid
switching is not needed to cancel receiver instabilities. In the cm range it is now
possible to have total power systems with separate feed horns mounted side-by-side.
The observing method consists of switching between the outputs in software. This
“software switching” is used for sensitive continuum measurements at the 100–m
telescope where variations in the atmospheric properties are the dominant source of
instabilities.

In the submillimeter range the earth’s atmosphere is a large source of radia-
tion. In average weather conditions at the 2.4 km high Pico Veleta site in Spain,
at 1.3 mm the atmospheric emission contributes 100 K (≈ 680 Jy in the 12′′ beam
of the IRAM 30 m telescope) at 30◦ elevation. If flux densities in the mJy range are
to be measured with multi-beam cameras, sophisticated compensation schemes are
used. These involve both rapid beam switching and the subtraction of “off-source”
from “on-source” measurements.
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From (Eq. 8.5) there are two effects: absorption and emission. The emission al-
ways raises the system noise. For narrow band spectral lines the effects are some-
what less serious since usually the emission effects can be neglected because of
the narrow band and only absorption has to be taken into account. For contin-
uum measurements, the emission can be significant and strongly affects the contin-
uum data. For antennas with single beams, various on–off schemes are used when
“point” sources are to measured. Whether the position switching is made in azimuth-
elevation, right ascension and elevation or any other coordinate system depends on
the telescope or on the problem to be investigated. Usually the on–off measurements
are arranged to be symmetrical, to balance the atmospheric effects.

A much better compensation of transmission variations in the atmosphere is pos-
sible if double beam systems can be used. In the simplest system the individual tele-
scope beams should be spaced by a distance of at least 3 FWHP beam widths, and
the receiver should be switched between them. The separate beams can be imple-
mented in different ways depending on the frequency and the technical facilities at
the telescope. At fairly low frequencies, such as the 10 GHz system at the Effelsberg
100 m telescope, separate feed horns and receivers are installed in the secondary fo-
cus. After detection the receiver outputs are differenced in a computer. At 1.3 cm, on
this telescope, the direction of the single feed horn is mechanically moved rapidly by
a few mm, changing the illumination of the dish by this. This changes the direction
of the beam direction by a few beamwidths.

At higher frequencies, in the mm and submillimeter range, the rapid movement of
the telescope beam over small angles, so-called “wobbling” is used to produce two
beams on the sky from a single pixel. This is used at all large millimeter facilities.

Multi-beam bolometer systems are now the rule. With these, one can measure
a fairly large region simultaneously. This allows a higher mapping speed, and also
provides a method to better cancel sky noise due to weather. Such weather effects
are sometimes referred to as “coherent noise”. Some details of more recent data
methods are given in e.g. Motte et al. (2007). Usually, a wobbler system is needed
for such arrays, since the bolometer output is AC–coupled.

Observing procedures for a double beam system are usually as follows: the
source is first centered on beam one, and the difference of the two beams is mea-
sured, optimally by wobbling the sub reflector. Then the source is centered on beam
two, and again the difference is measured. This on–off method (better called on–on,
because the source is always in one of the beams) is often arranged in a time sym-
metric fashion so that time variations of the sky noise and other instrumental effects
can be eliminated.

8.3.2 Imaging of Extended Continuum Sources

If extended areas are to be mapped, some kind of raster scan is employed: there must
be reference positions at the beginning and the end of the scan. Usually the area is
measured at least twice in orthogonal directions. After gridding, the differences of
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the images are least squares minimized to produce the best result. This procedure is
called “basket weaving”.

Extended emission regions can also be mapped using a double beam system,
with the receiver input periodically switched between the first and second beam.
In this procedure, there is some suppression of very extended emission. A simple
summation along the scan direction has been used to reconstruct infrared images. A
more sophisticated scheme, the so-called “EKH” method (Emerson et al. 1979) is
given here. Let TA(s) be the distribution of the antenna temperature as measured by
a single beam telescope. A double beam system consisting of two identical beams
that point at positions differing by the (constant) B then gives a response

ΔT (s,B) =
∫ [
δ (t − s)−δ (t − (s+B))

]
TA(t)dt , (8.31)

ΔT (s,B) =
∫

II a(t − s)TA(t)dt , (8.32)

where

II a(t) = δ (t)−δ (t +B) (8.33)

is the antisymmetric impulse pair and δ (t) the Dirac delta function. The result of the
observations with the double beam system therefore can be described as the convo-
lution of the antenna temperature distribution with the antisymmetric impulse pair
(8.33). The aim of the reduction software is to reconstruct the antenna temperature
distribution TA(s) from the measured ΔT (s).

This reconstruction can again be written as a convolution equation

TA(s) =
∫

III a(t − s)ΔT (t,B)dt (8.34)

if a solving kernel III a(t) can be constructed. Designating the Fourier transform of
F(t) by F(s), i.e.

F(s) =
∫

F(t)e−2π ist dt

then according to the convolution theorem of Fourier transforms (see Appendix B)

ΔT (t) = II a(t) ·TA(t) (8.35)

so that

III a(t) =
1

II a(t)
. (8.36)
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Since
II a(z,B) = 1− e−2π iBz , (8.37)

we find formally

III a(z,B) =
1

1− e−2π iBz . (8.38)

Using the identity

(1− e−2π iBz)
[

1+
∞

∑
n=1

(e−2π inBz − e2π inBz)
]

= 2 (8.39)

we find

III a(z,B) =
1
2

[
1+

∞

∑
n=1

(e−2π inBz − e2π inBz)
]

(8.40)

so that

III a(t,B) =
1
2

[
δ (t)+

∞

∑
n=1

(δ (t −nB)−δ (t +nB))
]

. (8.41)

This antisymmetric replicating function is the solving kernel for reconstructing
the distribution function of the antenna temperature. With this deconvolution algo-
rithm, one can recover most, but not all of the information. Most telescopes there-
fore have wobbler switching in azimuth to cancel ground radiation. By measuring a
source using scans in azimuth at different hour angles, and then combining the maps
(see Johnstone et al. 2000) one can recover more information. Another account of
data processing for multi-beam bolometers is contained in Motte et al. (2007).

8.4 Additional Requirements for Spectral Line Observations

In addition to the requirements placed on continuum receivers, there are three re-
quirements specific to spectral line receiver systems.

8.4.1 Radial Velocity Settings

If the observed frequency of a line is compared to the known rest frequency, the
relative radial velocity of the line emitting (or absorbing) source and the receiving
system can be determined. But this velocity contains the motion of the source as
well as that of the receiving system. Both are measured relative to some standard of
rest. However, usually only the motion of the source is of interest. Thus the velocity
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of the receiving system must be determined. This velocity can be separated into
several independent components.

1) Earth Rotation. Due to the rotation of the earth, the receiving system moves
with a velocity v = 0.46510cosϕ km s−1 in the direction due east in the horizon-
tal coordinate system. Here ϕ is the geographic latitude of the observing station.
If the contribution of this velocity is subtracted the resulting radial velocity is
said to refer to the geocentric system.

2) The Motion of the Center of the Earth Relative to the Barycenter of the
Solar System. If this contribution is eliminated the radial velocity is said to be
reduced to the heliocentric system. This velocity of the earth could be computed
from the annually published Astronomical Ephemeris, but due to the many ef-
fects that must be taken into account, this is a complicated procedure.

Today there are convenient computer algorithms that can be run on any personal
computer and which correct the observations for the motion of the earth relative
to center of mass of the solar system. For high-precision radial velocity or pulsar
timing data, even relativistic corrections must be included. The resulting radial ve-
locities are then as close to an inertial system as we can hope to come, so there
is no physical reason to transform the observed radial velocities further. Stellar ra-
dial velocity observations and practically all extragalactic work are therefore usually
published in this, the Heliocentric velocity system. In galactic work it is, however,
convenient to obtain the radial velocities in a system such that gas in the solar neigh-
borhood is at rest. Therefore the motion of the center of mass of the solar system rel-
ative to the local gas has to be determined. For this, neutral hydrogen gas as given by
the 21 cm line both in emission and in absorption is best suited, but stellar data can
be used also. All results obtained by many independent investigations [for a sum-
mary see Crovisier (1978)] show that the solar system moves with a velocity given
by the standard solar motion (v0 = 20kms−1 towards α1900 = 18 h, δ1900 = +30◦).
This is the solar motion relative to the mode of the velocity of the stars in the solar
neighborhood. In practice this is the velocity relative to stars most commonly listed
in general catalogs of radial velocity and proper motion; these stars are mostly of
spectral types A to G. The reason why the gas velocity is the mode of the velocity
of the stars is probably that interstellar gas is collision dominated and therefore not
sensitive to outlying extreme velocities, while the moments of the collisionless stel-
lar velocity distribution will be affected. Data from which the standard solar motion
has been eliminated are said to refer to the local standard of rest (LSR). This is a
point coinciding with the position of the sun and moving with the local circular ve-
locity around the galactic center. Sometimes it is advantageous to refer velocities to
a system in which the galactic center is at rest. The required correction obviously de-
pends on the adopted galactic circular velocity of the LSR. For many years the value
Θ0 = 250 km s−1 as proposed by IAU convention has been used; recently slightly
smaller values of Θ0 = 220–230 km s−1 are preferred, although values as low as
Θ0 = 185 km s−1 have been proposed. In all cases the velocity vector is directed
towards l = 90◦,b = 0◦.
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8.4.2 Stability of the Frequency Bandpass

In addition to the stability of the total power of the receiver, one must also have a
stable shape of the receiver bandpass. At millimeter and sub-mm wavelengths, it is
possible that changes in the weather conditions between on-source and reference
measurements may lead to serious baseline instabilities. If so, the time between on-
source and reference measurements must be shortened until stable conditions are
reached. Such stability is easier to obtain if the bandwidth of the spectrometer is
narrow compared to the bandwidth of those parts of the receiver in front of the
spectrometer.

8.4.3 Instrumental Frequency Baselines

The result of any observing procedure should result in a spectrum in which TA(ν)→
0 for ν outside the frequency range of the line. However, quite often this is not so
because the signal response was not completely compensated for by a reference
measurement, even if receiver stability is ideal. For larger bandwidths, there is an
instrumental spectrum and a “baseline” must be subtracted from the difference spec-
trum. Often a linear function of frequency is sufficient, but sometimes some curva-
ture is found, so that polynomials of second or higher order must be subtracted. This
should be done with great care because high-order polynomials can easily introduce
spurious effects when fitted to disjointed sections of the line spectrum. On many oc-
casions a sinusoidal or quasi-periodic baseline ripple is present. This ripple appears
because quite often a small fraction of the signal is reflected off obstructions in the
aperture plane of the telescope. In axially symmetric telescopes this reflected signal
can form a standing wave pattern. A phase change of 2π radians will occur if either
the distance, d, over which the signals are interfering is changed by λ/2 (where λ
is the wavelength) or if the frequency is changed by

Δν =
c

2d
. (8.42)

For the 100 m telescope at Effelsberg with d = f ≈ 30 m where f is the focal
length of the telescope, so Δν ≈ 5 MHz; the 43 m Green Bank telescope with its
smaller dimensions has Δν = 10.4 MHz. Attempts to eliminate this ripple usually
employ defocusing of the telescope along the axis by ±λ/8, thereby shifting the
phase of the ripple by π radians. The sum of the two baselines then usually shows
considerably less ripple; for the 43 m Green Bank telescope it is decreased by about
one order of magnitude; experience with the Effelsberg 100 m telescope shows that
this procedure is less effective, since the decrease is only a factor of ≈ 3. Very
probably, for the 43 m telescope the largest reflection that produces the standing
wave pattern occurs along the axis, with a single path. Thus the reflected waves
can be canceled by appropriate defocusing. For the 100 m dish a larger part of the
power must be reflected by off-axis structures, perhaps in the prime focus support
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structure. Thus, there is no adequate defocusing procedure. In any case the 17 %
aperture blocking of the 100 m telescope certainly gives rise to larger instrumental
baseline effects.

There are several possible sources of reflected radiation: (1) the front end of
the receiver that injects some noise power into the antenna, part of which is then
reflected back; or (2) strong continuum radiation from cosmic sources. In both cases
the partial reflection of the radiation in the horn aperture is the main cause of the
instrumental baseline ripple (Figs. 8.2 and 8.3). Both changes in the position of the
telescope and small changes in the receiving equipment can cause large changes in
the amplitude of the observed ripple. Sometimes the amplitude of baseline ripple
can be reduced considerably by installing a cone at the apex of the telescope that
scatters the radiation forming the standing wave pattern.

The different receiving methods outlined in Sect. 8.4.5 are susceptible to baseline
ripple by quite different amounts. If the background emission is position indepen-
dent the method of position switching using total power mode or “on the fly” map-
ping should result in the smallest ripple, while frequency switching will produce the
largest. Clearly instruments such as the GBT with off-axis receivers and very small
aperture blocking have a vastly lower amount of baseline ripples and also have much
lower sidelobe levels.

Fig. 8.2 Instrumental baseline ripples for the Effelsberg 100 m telescope measured at ±λ/8 axial
offset from the best focus and the average. The data were taken toward Virgo A at 3.5 cm (Bania
et al. 1994)
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Fig. 8.3 Formation of
instrumental baseline ripple
by reflections in the feed
horn: (a) noise emitted by the
first stages of the receiver and
radiated into the telescope;
(b) noise from a strong source
reflected at the feed horn and
after reflection in the
telescope accepted by the
feed horn. In both cases, only
a part of the power is
accepted by the feed horn

8.4.4 The Effect of Stray Radiation

Accurate measurements are much more difficult to obtain for extended sources, es-
pecially for regions of low brightness temperature. This is because, according to
(7.16), the observed temperature TA is related to the actual source temperature, Tb,
by the power pattern P(x,y)

TA(x,y) =

∫
P(x− x′,y− y′)Tb(x′,y′)dx′ dy′∫

P(x′,y′)dx′ dy′
. (8.43)

Here we have set the radiation efficiency ηR of the antenna equal to 1. In real-
ity spherical coordinates have to be used, but this merely introduces some minor
practical and mathematical complications.

Our goal is to invert (8.43), to obtain Tb in terms of the measured TA. To derive
an approximate expression, the radiation received by the antenna is separated into
one part received by the main beam (mb) and another by the stray pattern (sp). The
integral (8.43) can then be separated into

TA(x,y) =
1
ΩA

⎡
⎢⎣

∫

(mb)

P(x− x′,y− y′)Tb(x′,y′)dx′ dy′

+
∫

(sp)

P(x− x′,y− y′)Tb(x′,y′)dx′ dy′

⎤
⎥⎦ . (8.44)
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If we now suppose that the position dependence of Tb varies very little over an-
gular scales comparable to the beam width, Tb can be extracted from the integral for
the main beam, yielding that part of TA received by the main beam, TAM:

TAM(x,y) =
1
ΩA

∫

(mb)

P(x− x′,y− y′)Tb(x′,y′)dx′ dy′

=
Tb(x,y)
ΩA

∫

(mb)

P(x,y)dxdy ,

TAM = ηB Tb . (8.45)

Here we have introduced the main beam efficiency as defined in (7.5). Substitut-
ing this into (8.44) and solving for Tb which we will call the corrected brightness
temperature, we obtain

Tb(x,y) =
1
ηB

⎡
⎢⎣ TA(x,y)− 1

ΩA

∫

(sp)

P(x− x′,y− y′)Tb(x′,y′)dx′ dy′

⎤
⎥⎦ .

(8.46)

The integral involves the unknown Tb(x,y), but since this is an average over large
angles, there will not be a large change if Tb is replaced by Tb from (8.45). The
computation of Tb thus results in an iterative procedure leading to a Neumann series.
As shown by Kalberla et al. (1980) this sequence can be solved by use of

Tb(x,y) =
1
ηB

⎡
⎢⎣TA(x,y)−

∫

(sp)

R(x− x′,y− y′)TA(x′,y′)dx′ dy′

⎤
⎥⎦ ,

(8.47)

where R is the so-called resolving kernel which can be derived from P by successive
approximations. For practical applications R usually differs very little from P. The
correction procedure is very complicated and requires knowledge of the radiation
TA across the full sky!

These arguments apply to both wide band continuum radiation and to spectral
line radiation. For continuum measurements of regions of low TMB, within a few
degrees of an intense source there may be serious errors. The largest side lobes in
P(x,y) are caused by the feed support legs; for alt-azimuth telescopes, the position
of these side lobes varies with the hour angle, so that the error is a function of time.
However, the TMB of these astronomical sources is assumed to remain constant. This
observation allows a practical solution: one can employ a beam correction technique
in which one first determines the beam shape over a limited angle to ≈ 0.1% of the
maximum intensity by mapping an intense point source out to the limits of the pro-
posed image. This is carried out for different hour angles; the source of interest is
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also mapped at the same hour angles, and then the beam is iteratively subtracted
from the source image. After subtractions, the images are compared to eliminate
artifacts, so that a set of intensities as a function of position remains. This is con-
volved with a Gaussian beam having the telescope resolution. The continuum image
of Orion at 6 cm (Fig. 11.5) was produced using such a process.

For spectral line radiation we meet with more complexity, since there are dif-
ferent features at different frequencies; also Tb has a wide distribution for H I. For
CO line emission at λ = 2.6 mm the problems are less since: (1) CO is less widely
distributed than H I, and (2) an 8′ FWHP beam requires a 100 m dish at 21 cm, while
at 2.6 mm, only a 1.2 m antenna with a cassegrain focus is needed. Use of this focus
allows low feed leg blockage. All other molecular and recombination line measure-
ments are probably free from this effect because these lines are emitted by discrete
sources that cover only a tiny fraction of the sky.

The contribution to TA from the stray pattern puts rather stringent limits on the
calibration schemes used extensively in galactic 21 cm line work. The calibration
of H I data makes use of the following procedure: A number of regions have been
measured with well-calibrated, but lower angular resolution horn antennas so that
accurate line profiles Tb(v) can be given. If these regions are now mapped with
larger parabolic antennas, scaling factors for transforming the measured output of
the profiles into Tb values can be determined directly. Unfortunately both the output
of the larger antenna and the published reference profiles are contaminated by time-
dependent stray radiation. Kalberla et al. (1980, 1982) have shown how to correct the
reference spectra but stray radiation contributions are still present in the corrected
data. It will thus be very difficult to achieve a Tb scale with a precision of better
than 10%. Higher accuracies are needed, however to estimate the column density
of galactic H I at high galactic latitudes. This is critical for a comparison with data,
such as X ray emission, measured toward extragalactic sources. This situation is
considerably better for measurements done with an off axis paraboloid such as the
GBT. Clearly, H I data taken with the GBT are to be preferred to data taken with e.g.
the Effelsberg 100 m telescope.

8.4.5 Spectral Line Observing Strategies

In radio astronomy line radiation is almost always only a small fraction of the to-
tal power received; the signal sits on a large pedestal of wide band noise signals
contributed by different sources: the system noise, spillover from the antenna and in
some cases, a true background noise. To avoid the stability problems encountered
in total power systems (see Chap. 4) the signal of interest must be compared with
another signal that contains the same total power and differs from the first only in
that it contains no line radiation. To achieve this aim modern spectral line receivers
usually permit four different observing modes that differ only in the way the com-
parison signal is produced.
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1) Switching Against an Absorber. If receiver fluctuation time scales are too short
for switching in the total power mode, the receiver can be connected alternately
to the antenna and to a matched resistive load. By noise injection the output
power in both switch positions can be equalized, and then the difference of the
signals is the line radiation. A good balance for both switch positions is essential
if good results are to be achieved (see also Sect. 4.2.2 for a discussion of the
receiver stability achieved using this method). Particularly serious residual in-
strumental baseline ripples may be present in spectra obtained in this observing
mode. This method is used only in exceptional circumstances today.

2) Frequency Switching. For many sources, spectral line radiation is a narrow-
band feature, that is, the emission is centered at ν0, present over a small fre-
quency interval, Δν , with ν0/Δν ≈ 10−6. If all other effects vary very little
over Δν , then changing the frequency of a receiver by perhaps 10Δν produces
a comparison signal with the line shifted. It is assumed that other contributions
hardly differ. The final spectrum is proportional to the difference of these two
measurements. Such “frequency switched” measurements can be done with al-
most any speed, and produces a particularly good compensation for wide-band
atmospheric instabilities. Such observations can be made for mm wave radiation
even in poor weather conditions but functions best for lines having widths of less
than a few MHz. If the spectral line is included in the analyzing band in both the
signal and the reference phases, the integration time is doubled. Early measure-
ments of the 21 cm line of neutral hydrogen from the plane of our galaxy were
made using this method.

3) Position Switching and Wobbler Switching. The received signal “on source”
is compared with another signal obtained at a nearby position in the sky. If the
emission is rather extended and the atmospheric effects are large (for example
in the case of galactic Carbon Monoxide emission), one may use two reference
measurements, one at a higher, and the other at a lower elevation. A number of
conditions must be fulfilled: (1) the receiver is stable so that any gain and band-
pass changes occur only over time scales which are long compared to the time
needed for position change, and (2) there is little line radiation at the comparison
region. If so, this method is efficient and produces excellent line profiles. This
method is especially advantageous if baseline ripples are a problem, since these
can be cancelled quite well if this method is used, provided that the broadband
emission from sky, ground or continuum sources are similar at both positions.
A variant of this method is wobbler switching. This is very useful for compact
sources, especially in the mm and sub–mm range.

4) On the Fly Mapping. This very important observing method is an extension of
method (3). In this procedure, one takes spectral line data at a rate of perhaps one
spectrum or more per second. As with total power observing, usually one first
takes a reference spectrum, and then takes data along a given direction. Then one
changes the position of the telescope in the perpendicular direction, and repeats
the procedure until the entire region is sampled. Because of the short integra-
tion times an entire image of perhaps 15′ ×15′ taken with a 30′′ beam could be
finished in roughly 20 min. At each position, the signal to noise ratio may be
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low, but the procedure can be repeated. With each data transfer, the telescope
position is read out. Even if there are absolute pointing errors, over this short
time and small angle the relative positions where spectra were taken are accu-
rate. The accuracy of the result is improved because the spectra are oversampled
and weather conditions are uniform over the region mapped. To produce the final
image the individual spectra are placed on a grid and then averaged.

8.5 The Confusion Problem

8.5.1 Introduction

The classical approach to the topic of discrete “source confusion” as presented in the
1950s and 1960s was done to provide completeness for source surveys, in that one
could count sources to limits that were not possible with instruments then available.
That is, the noise in excess of that from the receivers and earth’s atmosphere was
assumed to be caused by the sum of the sources that are too weak or numerous to
be detected individually.

At first, the analysis used was in terms of obtaining a result for a given limit
of source flux density, rather than a given level of instrumental response. This was
noted by Condon (1974); we will follow the approach of Condon.

We define the effective beam, Ωe, as

Ωe =
∫

[Pn(n)]γ−1 dΩ . (8.48)

where [Pn(n)] is the normalized antenna power pattern.
The deflection of the instrument is

x = f S

where f (θ ,φ) is the antenna response. Then the average differential number of
sources with flux densities between S and S + dS, dn̄, is

dn̄ =
∫

n(S)dΩdx (8.49)

A standard expression for n(S) is

n(S) = k S−γ (8.50)

Using these expressions, we have

dn̄ = k
∫

f−γ−1 S−γ dΩ dx (8.51)
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or

dn̄ = k f−γ−1 S−γ Ωe dx (8.52)

The distribution of dn̄ is Poisson, so the mean value is the variance. The sum of
the variances of the responses from 0 to the cut off Dc is

σ2 =
∫ Dc

0
x2 dn̄ (8.53)

When Eq. (8.52) is substituted into Eq. (8.53), one obtains the result

σ =
(

kΩe

3− γ

)
D3−γ

c (8.54)

For 2,γ < 3 Eliminating Dc by a factor q times σ , we have

σ =
(

q3−γ

3− γ

) 1
γ−1

(kΩe)
1
γ−1 (8.55)

The first factor in Eq. (8.55) depends only on the number count exponent and the
choice of q. The second factor is related to the angular resolution as given by
Eq. (8.48).

Therefore, the higher the angular resolution, the deeper the survey before confu-
sion occurs. Usually there is a uniform flux density cutoff limit Sc This flux density
is the confusion limit for the telescope at the chosen frequency. For q a value of 5
is usually considered to be acceptable; this corresponds to a probability of 10−6 for
erroneous source identifications.

The problem of source confusion remains, but the interest in radio source counts
as a cosmological tool has declined in the last 30 years, since radio sources evolve
strongly with time. Thus, the interpretation of source counts in terms of a universe
consisting of a collection of sources with the same characteristics, but with differ-
ent distances, is no longer accepted. It is clear that progress will be made only by
studying statistically significant collections of sources at different redshifts. Thus
accurate flux densities and positions are needed. For this reason, the effect of con-
fusion must be reduced by making beamsizes and reducing the effect of sidelobes.
Such concepts are not limited to radio astronomy, but must be considered in the
interpretation of deep surveys carried out in the infrared.

Problems

1. Investigate the effect of the earth’s atmosphere on radio observations by using a
single layer atmosphere (Eq. 1.37). Suppose we know that the atmospheric optical
depth, τ , is 0.1, and the temperature is 250 K.
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(a) What is the excess noise from the atmosphere, and what is the reduction in the
intensity of a celestial source?
(b) Repeat for τ = 0.5, 0.7, 1.0, 1.5.
(c) If τ is related to the optical depth in the zenith by τ = τz/sin(elv), determine the
increase in τ between 30◦ and 20◦ elevation. (Elevation is measured relative to the
horizon.)
(d) Repeat this calculation for the increase between 20o and 19o, then 20o and 15o.
(e) For spectral line measurements, one is interested in a comparison of the re-
sponses of the receiver system over a (relatively) small frequency interval. Consider
the measurement of a 10 mK spectral line through an atmosphere with τ = 0.2, if
the receiver noise is 100 K. Repeat this calculation for a receiver noise of 20 K.

2. A standard method to determine atmospheric τ values employs a receiver to de-
termine the emission of the earth’s atmosphere at 225 GHz. Suppose this emission
is found to be 15 K at elevation 90o, 18 K at 60o, 30 K at 30o, and 42 K at 20o. If the
temperature of the atmosphere is 250 K, what is the zenith τ? Is the curve in Fig. 8.1
consistent with ratios of zenith τ to that at 225 GHz are 3.4 (at 340 GHz), 6.7 (at
410 GHz), 9.9 (at 460 GHz) and 19.0 (at 490 GHz).

3. Suppose you are observing at 1 cm wavelength with a filled aperture telescope.
When pointed toward cold sky, in the zenith, your system noise temperature is twice
what you expect. Normally the receiver noise temperature is 70 K and system noise
temperature is 100 K. Your partner notices that the radio telescope is filled with wet
snow. Assuming that the snow has a temperature of 260 K, and is a perfect absorber
at 1 cm, how much of the telescope surface is covered with snow?

4. A group observe sources at 1.3 cm at elevations between 8◦ and 11◦. If the zenith
optical depth is τz = 0.1, use an assumed dependence of τ=τz/sin(elv) to deter-
mine τ at the lowest and highest elevations. These astronomers see at most a 30%
change in τ over this range of elevations. Is this reasonable? If the receiver noise is
40 K, what is the system noise, including the atmospheric contribution, for a 200 K
atmosphere, at these elevations? The observations are mostly of spectral lines; how
much is the attenuation? The temperature scale is calibrated using a nearby source
with peak main beam brightness temperature 16 K. What is the RMS error for each
continuum data point, from noise only, if the bandwidth used is 40 MHz and the
integration time is 1 s?

5. Use the Rayleigh–Jeans approximation to calculate the numerical relation be-
tween flux density, Sν and brightness temperature, TB, if the source and beam have
Gaussian shapes. Sν must be in units of janskys (= 10−26 W m−2 Hz−1), wavelength
must be in cm, and the observed angle θ0 in arc min.

6. For a Gaussian-shaped source of actual angular size θsource and observed size
θobserved, find the relation between the apparent or main beam brightness temper-
ature, TMB, and the actual brightness temperature, TB. (Use the fact that the flux
density of a discrete source must not depend on the telescope.) Show that TB > TMB.
Show that the observed or apparent, actual and telescope beam sizes, θobserved, θsource

and θbeam, are related by θ 2
observed = θ 2

actual +θ
2
beam.
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7. An outburst of an H2O maser (at 22.235 GHz) in the Orion region (distance from
the Sun 500 pc) gave a peak flux density of 106 Jy over a 1 MHz band. If this maser
radiation were measured with the 100 m telescope, which has a collecting area of
7800 m2, and antenna efficiency 0.4, what is the peak power? If the safety level for
microwave radiation for humans is 10 mW cm−2, at what distance would the Orion
maser be a threat for humans?

8. Use the Rayleigh–Jeans relation to calculate the flux density of the Sun at 30 GHz
if the disk has a diameter of 30′ at a uniform surface temperature 5800 K? Suppose
we had a 40 m radio telescope with effective collecting area 1000 m2. What is the
value of TMB? If ηA = 0.5 and ηMB = 0.65, what is TA?

9. Use Eq. (8.20) to determine the peak main beam brightness temperature of the
planetary nebula NGC7027 at 1.3 cm with the 100 m telescope (S(Jy) = 5.4 Jy,
θo = 43′′).
(a) If the actual source size is θs = 10′′, use Eq. (8.22) to determine the actual source
brightness temperature Ts. Then use Eq. (1.37), with T0 = 0, and Tν = 14000 K to
determine the peak optical depth of this region at 1.3 cm.

10. A celestial source has a flux density of 1 Jy at 100 MHz. If the angular size is
10′′, and source and telescope beams are Gaussians, estimate the source brightness
temperature in the Rayleigh–Jeans limit. Repeat this for an observing frequency of
1 GHz.

11. The planet Venus is observed at the distance of closest approach, a distance
of 0.277 AU. The radius of Venus is 6100 km. What is the full angular width of
Venus in arc seconds? Suppose the measured brightness temperature of Venus at
3.5 cm wavelength in a telescope beam of 8.7′ is 8.5 K. What is the actual surface
brightness temperature of Venus?

12. In the sub-millimeter range, sky noise dominates, but one wants to have the most
sensitive receivers possible. Is this a contradiction? If not, why not?

13. The APEX submillimeter telescope on the ALMA site has a diameter of 12 m,
an estimated beam efficiency of 0.5 at a wavelength of 350 μm. At 350μm the
atmospheric transmission is 5%.
(a) Show that this is equivalent to a τ of 3.
(b) What is the sky noise for this situation if the physical temperature of the sky is
200 K?
(c) If the receiver noise is 50 K, what is the total system noise?
(d) Suppose you plan to measure a small diameter source with a flux density of 0.1
Jy. After what length of time will you have a signal-to-noise ratio of unity if the
receiver bandwidth is 2 GHz?

14. Spectral line observations are carried out using position switching, that is the
“on–off” observing mode. Thus effects of ground radiation should cancel in the dif-
ference spectrum. However, there is usually a residual instrumental baseline found
in the case of centimeter wavelength observations. The amplitude of this residual
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instrumental baseline is found (with the 100 m telescope) to be ∼10−3 of the contin-
uum intensity of the source being observed. This effect is caused by the correlation
of signal voltage Ei, with that reflected by the primary feed horn, Er. How much
power flux, E2

r , (in W m−2) relative to Ei, is reflected from the feed?

15. A search for dense molecular gas in the Orion cloud shows the presence of 125
sources, each with a FWHP of 1′. The region searched is 15′ by 120′. If the beam
size is 20′′, what is the mean number of sources per angular area? Now use Poisson
statistics P = e−m mn/n! where n is the number of expected sources, and m is the
mean, to find the probability of finding a dense clump of gas in this region if one
uses a 20′′ beam. What is the chance of finding two such sources?

16. (a) In an extragalactic survey, the average number of sources per beam is 0.04.
Use Poisson statistics to find the chance of finding 2 or 3 sources in the same beam?
(b) Use these results to estimate the number of beam areas per source needed to
insure that source confusion is a small effect.

17. (a) Derive the result in (8.55) showing all steps.
(b) For radio telescopes, the one dimensional power pattern is y(x) =

A exp

(
− 4ln2x2

θ2
1/2

)
Use this expression to evaluate (8.48).

(c) Calculate k = γNc S−γc for γ = 1.5, q = 5, Ω=80 × 100 arc sec, Nc = 105 per
steradian, and Sc = 10−28W m−2 Hz−1.



Chapter 9
Interferometers and Aperture Synthesis

9.1 The Quest for Angular Resolution

In Chap. 6, we have shown that from diffraction theory, the angular resolution of a
radio telescope is θ = kλ/D, where θ is the angular resolution, λ is the wavelength
of the radiation received, D is the diameter of the instrument and k is a factor of or-
der unity that depends on details of antenna illumination. For a given wavelength, to
improve this angular resolution, the diameter D must be increased. Materials limit
the size of a single telescope to ∼300 m. As shown by Michelson (see, e.g. Jenkins
and White 2001), a resolving power θ ≈ λ /D can be obtained by coherently com-
bining the output of two reflectors of diameter d � D separated by a distance D. We
will show that this is the case in Sect. 9.2.

A more complex topic is aperture synthesis, that is, producing high quality im-
ages of a source by combining a number of independent measurements in which the
antenna spacings cover an equivalent aperture. In Sect. 9.3 of this chapter, we give
an introduction to the principles of aperture synthesis. More detailed accounts are to
be found in Thompson, Moran and Swenson (2001), Dutrey (2000) or Taylor, Carilli
and Perley (1999). Techniques similar to those used in aperture synthesis have been
applied to radar as “Synthetic Aperture Radar” or SAR (see e.g. Mensa 1991)

9.1.1 The Two Element Interferometer

The basic principle governing angular resolution can be understood from a consid-
eration of Fig. 9.1. In panel (a) is the response of a single uniformly illuminated
aperture of diameter D. In panels (b) and (c) we show the response of a two element
interferometer consisting of two small antennas (diameter d) separated by a distance
D and 2D, where d � D. The interferometer response is obtained from the multi-
plication of the outputs of the two antennas. The uniformly illuminated aperture
has a dominant main beam of width θ = kλ/D, accompanied by smaller secondary
maxima, or sidelobes. There are two differences between the case of a single dish
response compared to the case of an interferometer. First, for an interferometer,

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 201
DOI 10.1007/978-3-540-85122-6 9, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 9.1 Power patterns for
different antenna
configurations. The
horizontal axis in this figure
is angle. Panel (a) shows that
of a uniformly illuminated
full aperture with a diameter
D. This full width to half
power (FWHP) is kλ/D, with
k ≈ 1. In panel (b) we show
the power pattern of a two
element multiplying
interferometer consisting of
two antennas of diameter d
spaced by a distance D where
d � D. In panel (c) we show
the power pattern of the
interferometer system
described in (b) but now with
a spacing 2D

the nomenclature is different. Instead of ′main beam and sidelobes′ one speaks of
′fringes′. There is a central fringe (or ′white light′ fringe in the analogy with Young’s
Two Slit experiment) and adjacent fringes. Second, as we will show in Sect. 9.2.3.2,
for the correlation of the outputs of two antennas, the fringes are centered about
zero; this procedure improves the dynamic range of the measurements since the
large total power output of each antenna is supressed (also the signal-to-noise ratio
is better; see problem 9). This comes with a cost: some of the information (i.e. total
power) is not available, so for a given spacing only source structure comparable to
(or smaller than) a fringe is recorded fully. We compare responses of two systems
in Fig. 9.1. In panel (a) is a single dish of diameter D. In (b) we show the case of an
interferometer composed of two small dishes (with dish diameter d much smaller
than the separation D) there is no prominent main beam and the sidelobe level does
not decrease with increasing angular offset from the axes of the antennas. In panel
(c) the separation of the two dishes is 2D. Comparing the width of the fringes in
panels (b) and (c) one finds that by doubling the separation D of the small antennas,
the fringe width is halved. For the interferometer spacing (usually referred to as the
baseline) D, in panel (b) the resolving power of the filled aperture is not greatly
different from the single dish in panel (a), but the collecting area of this two element
interferometer is smaller. For larger spacings, the interferometer angular resolution
is greater.

By increasing D, finer and finer source structure can be measured. Combining the
outputs of independent data sets for spacings of D and 2D shows that these select
different structural components of the source. Finer source structure can be recorded
if in addition, nD antenna spacings are measured. Such a series of measurements can
be made by increasing the separation of two antennas whose outputs are coherently
combined.
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A general procedure, aperture synthesis, is now the standard method to obtain
high quality, high angular resolution images. The first practical demonstration of
Aperture Synthesis in radio astronomy was made by Ryle and his associates. Aper-
ture synthesis allows us to reproduce the imaging properties of a large aperture
by sampling the radiation field at individual positions within the aperture. Super-
ficially, this appears to be similar to the Kirchhoff diffraction theory of Sect. 6.4,
which leads to (6.54). However in the case of Kirchhoff diffraction theory, the indi-
vidual samples would have to be measurements of the E or B fields including phase,
at each position. Thus, sampling would be a complex process. In analogy with the
approach used by Michelson in the optical wavelength range, the advance in radio
astronomy was to measure the mutual coherence function and to show that these
results were sufficient to produce images. This approach involved inverting the van
Cittert-Zernike relation (see Appendix G), which allows one to derive the intensity
distribution. The mutual coherence function describes the cross–correlation of the
radiation field at two given points. This has the dimension of power, and can be
easily measured using two element interferometers. This can be done by sequential
measurements with different antenna spacings. Using this approach, a remarkable
improvement in radio astronomical imaging was possible.

In the following, both the hardware and the software tools for radio interferom-
etry will be described. In Appendix G we outline some concepts, mainly the van
Cittert-Zernike theorem. These are needed to proceed from the E field emitted by
an extended source to the production image. The first step is the description of a
phase stable two-element interferometer. This is presented in the next section. We
follow with an introduction to aperture synthesis in Sect. 9.3. The sensitivity of such
a device is discussed in Sect. 9.5. Thus far, we have described interferometers whose
individual antennas are connected in real time by cables, optical fibers or microwave
links. An extension of this situation is Very Long Baseline Interferometer (VLBI).
In VLBI, the antennas have such large separations that real time links are difficult.
Currently, the link is achieved by precise timing, with data and time recorded at each
antenna. Producing fringes requires aligning the data recorded at each antenna using
the time signals. The production of images with VLBI requires additional software
techniques. There is progress in using near real-time links via internet connections,
however. This technique is known as e-VLBI.

9.2 Two-Element Interferometers

The coherence function Γ (u,τ) is measured by correlating the outputs of two an-
tenna systems. The simplest example of this process is a two-element interferometer.
Let us assume that the interferometer consists of two antennas A1 and A2 separated
by the distance B (directed from A2 to A1), and that both antennas are sensitive only
to radiation of the same state of polarization (Fig. 9.2).

A plane electromagnetic wave (from a very distant source) of amplitude E in-
duces the voltage U1 at the output of antenna A1
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Fig. 9.2 A schematic
diagram of a two-element
correlation interferometer.
The antenna output voltages
are V1 and V2; the
instrumental delay is τi and
the geometric delay is τg
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U1 ∝ E e iωt , (9.1)

while at A2 we obtain
U2 ∝ E e iω (t−τ) , (9.2)

where τ is the geometric delay caused by the orientation of the interferometer base-
line B relative to the direction of the wave propagation. For simplicity, in (9.1) and
(9.2) we have neglected receiver noise and instrumental effects. The outputs will be
correlated. In a correlation the signals are input to a multiplying device followed by
an integrator. The output is proportional to

R(τ) ∝
E2

T

T∫
0

e iωt e− iω(t−τ) dt .

If T is a time much longer than the time of a single full oscillation, i.e., T � 2π/ω
then the average over time T will not differ much from the average over a single full
period; that is

R(τ) ∝
ω
2π

E2

2π/ω∫
0

e iωτ dt

∝
ω
2π

E2 e iωτ
2π/ω∫
0

dt ,

resulting in

R(τ) ∝ 1
2 E2 e iωτ . (9.3)
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The output of the correlator + integrator thus varies periodically with τ , the de-
lay time; this output is the mutual coherence function (Appendix H, Eq. G.3) of
the received wave. If the relative orientation of interferometer baseline B and wave
propagation direction s remain invariable, τ remains constant, so does R(τ). But
since s is slowly changing due to the rotation of the earth, τ will vary, and we will
measure interference fringes as a function of time.

In order to understand the response of interferometers in terms of measurable
quantities, we consider a two-element system. The basic constituents are shown in
Fig. 9.2. If the radio brightness distribution is given by Iν(s), the power received per
bandwidth dν from the source element dΩ is A(s)Iν(s)dΩ dν , where A(s) is the
effective collecting area in the direction s; we will assume the same A(s) for each
of the antennas. The amplifiers are assumed to have constant gain and phase factors
which we neglect for simplicity.

The output of the correlator for radiation from the direction s (Fig. 9.2) is

r12 = A(s) Iν(s) eiωτ dΩ dν (9.4)

where τ is the difference between the geometrical and instrumental delays τg and τi.
If B is the baseline vector for the two antennas

τ = τg − τi =
1
c

B · s− τi (9.5)

and the total response is obtained by integrating over the source S

R(B) =
∫ ∫
Ω

A(s)Iν(s)exp

[
i2πν

(
1
c

B · s− τi

)]
dΩ dν . (9.6)

This function R(B), the Visibility Function is closely related to the mutual coherence
function of the source (G.17) but, due to the power pattern A(s) of the individual an-
tennas, it is not identical to Γ (B,τ) as given in Appendix G. For parabolic antennas
it is usually assumed that A(s) = 0 outside the main beam area so that (9.6) is inte-
grated only over this region.

A one dimensional version of (9.6), with a baseline B, ν = ν0 and τi = 0, is

R(B) =
∫

A(θ) Iν(θ)exp

[
i2πν0

(
1
c

B ·θ
)]

dθ (9.7)

9.2.1 Hardware Requirements

In an interferometer, the E fields received by each antenna (which can be sepa-
rated by distances of up to hundreds of kilometers for the MERLIN system) must
be coherently combined. This involves the use of heterodyne receiver systems. One
shifts the frequency of the input from the sky frequency to a frequency that allows
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transmission to a central point where the outputs of the different antennas are com-
bined pairwise. This frequency shifting process must preserve the phase of the sig-
nal. For interferometers operating at frequencies of a few GHz and above, the limits
to the performance are set by the stability of the local oscillator (LO). For such
systems a small part of the LO signal is reflected at each antenna. This reflected sig-
nal is compared to the input LO signal. Any known, calculated, geometric shift in
phase is corrected by changing the cable lengths or digital delays in a so-called “line
length corrector”. However, there may be unwanted, time variable delays in the sig-
nal phase that corrupt the geometrical delay. For example, at low frequencies, there
are fluctuations in the ionosphere, while at high frequencies, there are fluctuations
in the water vapor.

Presently, the antenna outputs are phase switched by shifting the first LO at the
antenna by 180o synchronously with an equal change of phase in a second LO at the
central point where the outputs are combined. In this way, the signal to be combined
is not affected, but the instrumental effects are greatly reduced. Compared to single
dish measurements this procedure has the advantage that the signals are correlated
so receiver gains and offsets are less important.

In addition to the phase of the LO phase, the interfometer baselines must be
constant over the time needed to carry out a set of measurements of calibrator and
source. Such “baseline corrections” can be made in the post-data taking phase, but
it is very useful to have a fairly accurate estimate of the baseline (to a fraction of
a wavelength if possible) before starting the measurements. This is carried out by
measurement of a number of calibration sources with known positions over a range
of hour angles.

As will be discussed in the next section, the use of a very large bandwidth will
reduce the field of view of an interferometer. This can be avoided by dividing the
continuum band into smaller wavelength intervals, and using the second LO to place
the output on the central, or “white light” fringe.

9.2.2 Calibration

Two quantities that must be calibrated for continuum measurements are amplitude
and phase. In addition, for spectral line measurements the instrument passband must
also be calibrated.

The amplitude scale is calibrated using methods that are similar to those used
for single dish measurements. This consists of using the response of each antenna
to determine the system noise of the receiver being used. In the centimeter range,
the atmosphere plays a small role while in the millimeter and sub-mm wavelength
ranges, the atmospheric effects must be accounted for. For phase measurements, a
suitable point-like source with an accurately known position is required to deter-
mine the instrumental phase 2πντi in Eq. 9.6. For interferometers, the calibration
sources are usually unresolved or point-like sources. Most often these are extra-
galactic sources (of necessity these are compact sources; sometimes these may be
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time variable). To calibrate the response in units of flux density or brightness tem-
perature, these measurements must be referenced to a thermal calibrator.

The calibration of the instrument passband is carried out by an integration of
an intense source to determine the channel-to-channel gains and offsets. The am-
plitude, phase and passband calibrations are carried out (at least) before the source
measurements. The passband calibration is usually carried out once per observing
session. The amplitude and phase calibrations are made more often. The frequency
depends on the stability of the electronics and weather. At millimeter wavelengths,
the calibrations are usually made every few minutes, but may have to be made more
often in bad weather or at shorter wavelengths. If weather demands that frequent
measurements of calibrators are required, this is referred to as fast switching.

9.2.3 Responses of Interferometers

9.2.3.1 Finite Bandwidth

So far, in (9.6), we have assumed that the radiation is monochromatic. This is cer-
tainly not the case in most applications. Equation (9.6) can be used to estimate the
effect of a finite bandwidth Δν . The geometric delay τg = 1

c B · s is by definition in-
dependent of frequency, but the instrumental delay τi may not be. Adjusting τi the
sum τ = τg − τi can be made equal to zero for the center of the band. Introducing
the relative phase of a wave by

ϕ =
[cτ
λ

]
fractional part

we obtain

ϕ =
1
λ

B · s+ϕi , (9.8)

where ϕi is the instrumental phase corresponding to the instrumental delay. This
phase difference varies across the band of the interferometer Δν by

Δϕ =
1
λ

B · s Δν
ν

. (9.9)

The fringes will disappear when Δϕ � 1 radian. As can be seen the response is
reduced if the frequency range, that is, the bandwidth, is large compared to the
time delay caused by the separation of the antennas. For large bandwidths, the loss
of visibility can be minimized by adjusting the delay τi between antennas so that
the time delay between the antennas (see Fig. 9.2) is negligible. In effect, this is
only possible if the exponential term in Eq. (9.6) is kept small. In practice, this is
done by inserting a delay between the antennas so that 1/cB · s equals τi. In the first
interferometric systems this was done by switching lengths of cable into the system;
currently this is accomplished by first digitizing the signal after conversion to an
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intermediate frequency, and then using digital shift registers. In analogy with the
optical wavelength range, this adjustment of cable length is equivalent to centering
the response on the central, or white light fringe in Young’s two-slit experiment.

The reduction of the response caused by finite bandwidth can be estimated by
an integration of Eq. (9.6) over frequency. Taking A(s) and Iν(s) to be constants,
and integrating over a range of frequencies Δν = ν1 − ν2. Then the result is an
additional factor, sin(Δντ)/Δντ in Eq. (9.6). This will reduce the interferometer
response if Δϕ � 1. For typical bandwidths of 100 MHz, the offset from the zero
delay must be � 10−8 s. This adjustment of delays is referred to as fringe stopping.
This causes the response of (9.6) to lose a component. To recover this input, an extra
delay of a quarter wavelength relative to the input of the correlator is inserted, so that
the sine and cosine response in (9.6) can be measured. In digital cross-correlators,
(see Sect. 5.4.3.2), the sine and cosine components are obtained from the positive
and negative delays. The component with even symmetry is the cosine component,
while that with odd symmetry is the sine component.

9.2.3.2 Source Size and Minimum Spacing

We now consider an idealized (square) source, of shape I(ν0) = I0 for θ < θ0 and
I(ν0) = 0 for θ > θ0. In addition, we take the primary beamsize of each antenna
to be much larger than the source size, so the beam size of each antenna can be
neglected. We define θb the fringe spacing of the interferometer as λB , The result is

R(B) = AI0 ·θ0 exp

[
iπ
θ0

θb

] [
sin(πθ0/θb)
(πθ0/θb)

]
(9.10)

The first terms are normalization and phase factors. The important term, in the sec-
ond set of brackets, is a sinx/x function. If θ0 � θb, the interferometer response is
reduced. This is sometimes referred to as the problem of ′′missing short spacings′′.

9.2.3.3 Bandwidth and Beam Narrowing

In 9.2.3.1, we noted that on the white light fringe the compensation must reach a
certain accuracy to prevent a reduction in the interferometer response. However for
a finite primary antenna beamwidth, A, this cannot be the case over the entire beam.
In Fig. 9.4 we show the geometry for a two element interferometer used to measure
a source at an offset angle θoffset. For two different wavelengths λl and λs, there will
be a phase difference

Δφ = 2π d

[
sin(θoffset)

λs
− sin(θoffset)

λl

]

converting the wavelengths to frequencies, and using sinθ = θ , we have
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Δφ = 2π θoffset
d
c
Δν

With use of the relation d = λ
θb

, we have

Δφ = 2π
θoffset

θb

Δν
ν

(9.11)

The effect in Eq. (9.11) is most important for continuum measurements made
with large bandwidths. This effect can be reduced if the continuum measurements
are carried out using a series of contiguous Intermediate Frequency (IF) sections,
where for each of these IF sections, an extra delay is introduced to center the re-
sponse at the value which is appropriate for that wavelength. This arrangement
introduces extra complexity. However this compensation is performed after digi-
tization. The cost of such digital components has decreased over the last decades,
so that these systems have now become standard.

9.2.3.4 Multibeam Interferometer Systems

The concepts presented in the previous sections can be used to understand the op-
eration of interferometer arrays such as LOFAR, the Low Frequency Array and the
Allen Telescope Array or ATA. Both arrays are in the construction phase. These con-
sists of many individual fairly small antennas spread over a large region, connected
by optical fibers. For LOFAR the antennas are sets of dipoles (see Sect. 6.3.1). The
antennas of the ATA are small paraboloids. LOFAR will operate at rather low fre-
quencies, where the combination of small physical size and low frequency results in
a rather large primary antenna beam. Since the contribution of receiver noise can be
quite small even at λ = 1.3 cm (see Eq. 5.20), the signal from each antenna can be
amplified almost without degredation and then digitized. The digitized signals can
be processed using different sets of digital delay lines to produce a number of fringes
with zero delay. Some of these can be directed far from the axis of the individual
small antennas. In this way, large portions of the sky can be measured simultane-
ously. A more ambitious version using similar design concepts is the SKA, or the
Square Kilometer Array (see, e.g. Hall 2005). The concept of the SKA is not yet
fully determined, but presently the plan is an array with the collecting area equal
to 100 times that of a 100 m radio telescope. The SKA is more ambitious than ei-
ther ATA or LOFAR in the size of collecting area and in the short wavelength limit,
1.3 cm. Since SKA is also planned to operate at long wavelengths, the design of the
individual elements including feeds and the receivers may have to include a variety
of different concepts.

Another type of multibeam interferometer system has been proposed for use at
millimeter wavelengths. This involves the use of a number of cooled receiver sys-
tems located at the Cassegrain focus of each individual parabolic reflectors in the
interferometer array. In this concept, there would be three rows of three receiver
systems, each with an individual output. Thus, each antenna has nine simultaneous
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main beams; this multibeam system can map extended sources at nine times the
speed of a single beam interferometer. The complexity is nine times higher, but in
contrast to LOFAR, ATA and SKA this complexity includes the quite expensive
cooled receivers. In all of these examples, the data rates are much greater than the
simplest interferometer systems and vastly greater than any single dish. Thus there
will be a much higher demand for data processing facilities.

9.3 Aperture Synthesis

Aperture Synthesis is a designation for methods used to derive the intensity distri-
bution Iν(s) of a part of the radio sky from the measured visibility function R(B).
To accomplish this we must invert the integral equation (9.6). This involves Fourier
transforms. For even simple images, a large number of computations are needed.
Thus Aperture Synthesis and digital computing are intimately connected. In addi-
tion, a large number of approximations have to be applied. We will outline the most
important steps of this development without, however, raising any claims to com-
pleteness.

9.3.1 An Appropriate Coordinate System

To solve equation (9.6) for Iν(s) by measuring R(B) a convenient coordinate system
must be introduced for the two vectorial quantities s and B. The image center can be
chosen as the position of zero phase. This geometry can be introduced using a unit
vector s pointing towards origin chosen (Fig. 9.5)

s = s0 +σσσ , |σσσ | = 1 ,

where s0 is a conveniently chosen position close to the center of the region investi-
gated. Substituting this, (9.6) can be written as

R(B) = exp

[
iω

(
1
c

B · s0 − τi

)]
dν

∫ ∫
S

A(σσσ) I(σσσ) exp
(

i
ω
c

B ·σσσ
)

dσσσ . (9.12)

The exponential factor extracted from the integral describes a plane wave which
defines the phase of R(B) for the image center. The integral V of the intensity dis-
tribution I(σσσ),

V (B) =
∫ ∫

S

A(σσσ) I(σσσ) exp
(

i
ω
c

B ·σσσ
)

dσσσ . (9.13)
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Since the phases of the correlated signals are adjusted to produce a zero delay at the
image center, the visibility is referred to this position.

If the coordinate systems are chosen such that

ω
2πc

B = (u,v,w) ,
ω±δω

2πc
=

f
c

(
1± Δ f

f

)
,

where u,v,w are measured in units of the wavelength λ = 2πc/ω . The direction
(0,0,1) is parallel to s0, u points in the local east direction while v points north;
the vector σ = (x,y,z) is defined such that x and y are the direction cosines with
respect to the u and v axes. Then the xy plane represents a projection of the celestial
sphere onto a tangent plane with the tangent point (and origin) at s0 (Fig. 9.6). In
these coordinates (9.13) becomes

V (u,v,w) =
∞∫

−∞

∞∫
−∞

A(x,y)I(x,y)

×exp[ i2π(ux+ vy+w
√

1− x2 − y2)]
dxdy√

1− x2 − y2
.

(9.14)

The integration limits have been formally extended to ±∞ by demanding that
A(x,y) = 0 for x2 +y2 > l2; where l is the full width of the primary telescope beams.
Equation 9.14 closely resembles a two dimensional Fourier integral; these would be
identical if the term w

√
1− x2 − y2 could be extracted from the integral. If only a

small region of the sky is to be mapped then
√

1− x2 − y2 ∼= const ∼= 1 and (9.14)
becomes

V (u,v,w)e− i2πw =
∞∫

−∞

∞∫
−∞

A(x,y) I(x,y)ei2π(ux+vy) dxdy . (9.15)

The factor e− i2πw is the approximate conversion required to change the observed
phase of V to the value that would be measured with antennas in the uv plane:

V (u,v,w)e− i2πw ∼= V (u,v,0) . (9.16)

Substituting this into (9.15) and performing the inverse Fourier transform we obtain

I′(x,y) = A(x,y) I(x,y) =
∞∫

−∞

V (u,v,0)e− i2π(ux+vy) dudv , (9.17)

where I′(x,y) is the intensity I(x,y) modified by the primary beam shape A(x,y).
One can easily correct I′(x,y) by dividing by A(x,y).
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Fig. 9.3 A sketch to illustrate the angles used to derive the expression for the narrowing of the
field caused by bandwidth

If only simple geometries are to be determined with a small number of measure-
ments, models can be fitted to the distribution of V as a function of hour angle. Such
distributions are shown in Fig. 9.3. This approach is limited to situations where only
a few antennas are available (this has been the case in sub-mm interferometry).

In more detailed investigations, comparisons can be made between the correlated
flux densities and the flux densities obtained with a single telescope. If the source
structures are small compared to a single fringe, the single dish and interferometer
flux densities should agree. If the flux densities remain constant as a function of the
separation between the interferometer antennas, the source is said to be unresolved
(i.e. point-like). If however, the angular size of the sources, θs, are extended over
more than one fringe, the fringe visibilities (for a correlation interferometer) are
both positive and negative, and the correlated flux densities are reduced by a factor
sinx/x, where x = 2πθs/Bm with Bm the baseline spacing. In this case, the flux den-
sity measured with correlation interferometers will be smaller than that measured
with a single telescope, or with a smaller spacing between the antennas. If the flux
densities are plotted against antenna spacings, a source size can be deduced. Usually
a Gaussian fit is used, and the source size is referred to as an equivalent Gaussian
size. An example is shown in Fig. 9.3b.

As the sensitivity of interferometer arrays improved and the number of anten-
nas increased, it became clear that the simple representations of source structure in
Fig. 9.3 were only a first approximation. The simple Model Fits illustrated in Fig. 9.4
have been replaced by images using the technique of Aperture Synthesis which in-
volves solutions of (9.17). An example of this process is shown in Fig. 11.6. The
detail in this image is vastly greater than the examples in Fig. 9.4. This improve-
ment is due to:

i the increased number of independent measurements of the visibilities of this
source,

ii better receiver sensitivity and
iii more sophisticated data processing, especially the increased speed and storage

capacity of digital computers and to new image processing algorithms.
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Fig. 9.4 The visibility function for various brightness distribution models. The solid lines are
amplitudes, the dashed lines are phases. (a) A point source displaced from the phase center; a
displacement of x0 = 1′′ shifts phase by one fringe for a k1 = 206265 wavelength baseline. (b)
A displaced Gaussian shaped extended source of FWHP 1′′; the amplitude reaches a value of
0.5 at k2 = 91000 wavelengths. (c) Two point sources with an intensity ratio R; the period of
amplitude and phase depends on the separation. If the centroid of the double is the phase center,
the sign of phase gives the direction of the more intense components, with positive to the east. (d)
Two extended double sources; this has been obtained from the response to a pair of point sources
by multiplying the visibility amplitude by the envelope shown in (b). The numerical values are
k3 = 103000 if s = 1′′ and k2 = 91000 if d = 1′′ [after Fomalont and Wright (1974)]
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Fig. 9.5 Geometry and coordinates for a detailed discussion of interferometry, leading to aperture
synthesis. Here the coordinates u and v are shown [after Thompson et al. (1982)]
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Fig. 9.6 Mapping of points on the celestial sphere onto a plane surface [after Thompson
et al. (1986)]

In solving (9.17) the main question is: How many values of V (u,v,0) are sufficient
to produce a good image? We will attempt to answer this question after a brief
historical survey.

9.3.2 Historical Development

The theory of producing images from interferometry was published in the late
1940s. The development of practical synthesis radio interferometers began at the
Mullard Radio Astronomy Observatory at Cambridge University UK. This culmi-
nated in the 5 km Ryle Telescope (RT). The RT consists of an east-west (EW) con-
figuration of eight 13-m antennas, 4 of which are movable.
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Classical designs using east-west baselines were continued with the Westerbork
Synthesis Radio Telescope (WSRT) which came into operation in the late 1960s (see
Fig. 9.7). WSRT consists of fourteen 25-m antennas on an EW line; ten of these are
fixed. WSRT can be used for both spectral line and continuum measurements. The
spacings of the fixed antennas are equal so that one has many measurements of
the same Fourier component. This redundancy increases the accuracy of the (u,v)
components that are measured, but limits the number of independent (u,v) samples.

The Fourier transform of such a data set is again a system of elliptical rings with
semi-axes kc/νΔL and kc/νΔLsinδ0 where ΔL is the interval in the baseline and
k is an integer. These are referred to as grating lobes. If the interferometer consists
of telescopes of diameter D, spaced by some multiple of D, the presence of such
grating rings usually cannot be avoided. If the array contains antennas at equidis-
tant positions such as the Westerbork array, identical functions Vik can be measured
simultaneously by many antenna pairs, and this can then be used by the so-called
redundant calibration method (Hamaker et al. 1977). However the (u,v) plane is not
as efficiently filled. At the Jodrell Bank observatory, the instrumentational develop-
ment was carried out in a somewhat different way. A major goal was to achieve very

Fig. 9.7 A sketch of the locations in the uv plane which are filled with correlated data from the
outputs of pairs of antennas located along an east-west (EW) baseline. The uv data are collected
while tracking a source from rising to setting. The data form a system of elliptical rings with the
small axis in the v direction. The Fourier transform of such a system produces an elliptical beam
with the Declination elongated by 1/sinδ0, where δ0 is the source Declination
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high angular resolution; this was carried out by transmitting the information from
each antenna by means of radio links. With this method, sub-arcsecond angular res-
olutions were obtained. At the CSIRO Radiophysics Laboratory the developments
led to the Mills Cross and grating interferometers; these produced images using
analog methods. At the Caltech Owens Valley Observatory the major efforts were
devoted to model fitting using results obtained with a two element system.

Starting with the Very Large Array (VLA), technical advances allowed one to
use minimum redundancy arrays which have geometries that are spiral-like distri-
butions. These produce (u,v) pairs faster and more efficiently, so that, for a given
number of antennas, many more (u,v) components could be measured simultane-
ously. The most recent design using this concept is ALMA (see Fig. 9.10). Even
though modern arrays have many antennas and make use of minimum redundancy
concepts, there are still gaps in the (u,v) plane. These gaps produce beam structures,
or point spread functions that are in many cases inferior to those produced by filled
apertures.

Both WSRT and VLA are designed to measure spectral lines as well as con-
tinuum radiation. As with single telescope observations, spectral line interferome-
try places some additional requirements on the receiver systems. For example, the
frequency stability of the systems must be higher, of the order of 0.1 of a linewidth.
However, the delay setting error, Δ ti, can be larger, since Δ f , the resolution needed
to resolve the lines, is usually much smaller than the bandwidth used for continuum
observations. In the early days of spectral line interferometry, one carried out the
measurements by having a bank of contiguous phase matched filters at each tele-
scope. With large systems such as WSRT and VLA, this is not practical and one
uses instead a cross correlation system (see Sect. 5.4.3.2). The data rates for spec-
tral line measurements are factors of ∼100–1000 larger than those from continuum
measurements. In the last few decades, the number of interferometer arrays has in-
creased. The largest are MERLIN, operated by Manchester University, the Australia
Telescope, operated by CSIRO Radiophysics Division and the GMRT, Pune, India,
operated by a part of the Tata Institute. The most recent developments include the
merging of the Caltech Owens Valley and Berkley-Illnois-Maryland-Association
arrays into CARMA, which consists of six 10.4 m and nine 6.1 m antennas (see
Fig. 9.8). CARMA operates to a wavelength of 0.8 mm, with a total geometric col-
lecting area of 772 m2. The Harvard-Smithsonian/ASIAA SMA consists of eight
6 m sub-mm antennas (Fig. 9.9).

For the following discussions, important definitions are:

(1) Dynamic Range: The ratio of the maximum to the minimum intensity in an im-
age. In images made with an interferometer array, it should be assumed that the
corrections for primary beam taper have been applied. If the minimum intensity
is determined by the random noise in an image, the dynamic range is defined
by the signal to noise ratio of the maximum feature in the image. The dynamic
range is an indication of the ability to recognize low intensity features in the
presence of intense features. If the minimum noise is determined by artefacts,
i.e. noise in excess of the theoretical noise, the image can be improved by ′image
improvement techniques′.
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Fig. 9.8 The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is located
in northern California, at an elevation of 2.2 km. CARMA is the merger of the Owens Valley Radio
Observatory (OVRO) millimeter array (consisting of six 10-m dishes) and the Berkeley-Illnois-
Maryland Association (BIMA) array (consisting of nine 6-m dishes). Funding for CARMA is
provided by the U. S. National Science Foundation and the consortium universities (photo courtesy
of J. Miller and D. Bock)

Fig. 9.9 The Sub Millimeter Array (SMA) consists of eight 6-m antennas that are designed to
operate to 0.3 mm, with a total geometric collecting area is 226 m2. The SMA is located on Mauna
Kea, at an altitude of 4.1 km. It was built and is operated by the Harvard-Smithsonian Center for
Astrophysics (CfA) and the Academia Sinica Institute for Astronomy & Astrophysics (ASIAA),
Taiwan (photo courtesy of N. Patel, CfA.)

(2) Image Fidelity: This is defined by the agreement between the measured results
and the actual (so-called ′′true′′) source structure. A quantitative comparison
would be

F = |(S−R)|/R

where F is the fidelity, R is the resulting image obtained from the measure-
ment, and S is the actual source structure. Of course one cannot have a priori
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Fig. 9.10 The most ambitious construction project in radio astronomy is the Atacama Large Mil-
limeter Array (ALMA), a joint project of North America, Europe and East Asia. ALMA will be
built in north Chile on a 5 km high site. It will consist of fifty-four 12-m and twelve 7-m antennas,
operating in 10 bands between wavelength 1 cm and 0.3 mm. The collecting area of ALMA is 55%
that of the VLA, but is vastly more ambitious because of the more complex receivers, the need
for highly accurate antennas, and the high altitude site. In addition, the data rates will be orders of
magnitude higher than any presently operating interferometer. At the longest antenna spacing, and
shortest wavelength, the angular resolution will be ≈5 milli arcseconds (sketch courtesy European
Southern Observatory)

knowledge of the correct source structure. In the case of simulations, S is a
source model, R is the result of processing S through R.

9.3.3 Interferometric Observations

Usually measurements are carried out in 1 of 3 ways.

• In the first procedure, measurements of the source of interest and a calibrator are
made. This is as in the case of single telescope position switching. One signif-
icant difference with single dish measurements is that the interferometer mea-
surement extends over a wide range of hour angles to provide a better coverage
of the uv plane, if the baseline is EW (see 9.7). One first measures a calibration
source or reference source, which has a known position and size, to remove the
effect of instrumental phases in the instrument and atmosphere and to calibrate
the amplitudes of the sources in question. Sources and calibrators are usually
observed alternately. The time variations caused by instrumental and weather
effects must be slower than the time between measurements of source and cal-
ibrator. If, as is the case for millimeter and sub-mm wavelength measurements,
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weather is an important influence, one must switch frequently between on and
off. In fast switching one might spend 10 s on a nearby calibrator, then a few
minutes on-source. This method will reduce the amount of phase fluctuations,
but also the amount time available for source measurements. For more rapid
changes in the earth’s atmosphere, one can correct the phase using measure-
ments of atmospheric water vapor, or changes in the system noise temperature
of the individual receivers caused by atmospheric effects. The corrections for
instrumental amplitudes and phases are assumed to be constant over the times
when the source is observed. The ratio of amplitudes of source and calibrator
are taken to be the normalized source amplitudes. Since the calibrators have
known flux densities and positions, the flux densities and positions of the sources
can be determined. The reference source should be as close to the on-source as
possible, but must have a large enough intensity to guarantee a good signal-to-
noise ratio after a short time. Frequently nearby calibrators are time variable over
months, so a more distant calibrator with a known or fixed flux density is mea-
sured at the beginning or end of the session. This source is usually rather intense,
so may also serve as a bandpass calibrator for spectral line measurements. The
length of time spent on the off-source measurement is usually no more than few
minutes.

• In the next procedure, the so-called snapshots, one makes a series of short ob-
servations (at different hour angles) of a large number of sources. For sensitivity
reasons these are usually made in the radio continuum or intense maser lines.
As in the first observing method, one intersperses measurements of a calibration
source which has a known position and size to remove the effect of instrumen-
tal phases in the instrument and atmosphere and to calibrate the amplitudes of
the sources in question. The images are affected by the shape of the synthesized
beam of the interferometer system. If the size of the source to be imaged is com-
parable to the primary beam of the individual telescopes, the power pattern of the
primary beams will have a large effect. This effect can be corrected easily.

• In the third procedure, one aims to produce a high-resolution image of a source
where the goal is either high dynamic range or high sensitivity. The dynamic
range is the ratio of the highest to the lowest brightness level of reliable detail
in the image. This may depend on the signal-to-noise ratio for the data, but for
centimeter aperture synthesis observations, spurious features in the image caused
by the incomplete sampling of the (u,v) plane are usually more important than
the noise. Frequently one measures the source in a number of different interfer-
ometer configurations to better fill the uv plane. These measurements are taken
at different times and after calibration, the visibilities are entered into a common
data set.
In order to eliminate the loss of source flux density due to missing short spacings,
one could supplement the interferometer data with single dish measurements.
The diameter of the single dish telescope should be larger than the shortest spac-
ing between interferometer dishes. This single dish image must extend to the
FWHP of the smallest of the interferometer antennas. When Fourier transformed
and appropriately combined with the interferometer response, this data set has
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no missing flux density. Such “missing spacings” are frequently a problem with
interferometer images. Usually, interferometer images have shortcomings. Im-
provements to such images will be surveyed in the next sections.
An extension of this procedure may involve the measurement of adjacent regions
of the sky. This is mosaicing. In a mosaic, the primary beams of the telescopes
should overlap, ideally this would be at the half power point. In the simplest case,
the images are formed separately and then combined to produce an image of the
larger region.

9.3.4 Improving Visibility Functions

Ideally the relation between the measured Ṽik and actual Vik functions can be con-
sidered as linear:

Ṽik(t) = gi(t)g∗k(t)Vik + εik(t) . (9.18)

Average values for the antenna gain factors gk and the noise term εik(t) are deter-
mined by measuring calibration sources as frequently as possible. Actual values for
gk are then computed by linear interpolation. These methods make full use of the
fact that the (complex) gain of the array is obtained by multiplication the gains of the
individual antennas. If the array consists of n such antennas, n(n−1)/2 visibilities
can be measured simultaneously, but only (n−1) independent gains gk are needed
(for one antenna, one can arbitrarily set gk = 1 as a reference). In an array with many
antennas, the number of antenna pairs greatly exceeds the number of antennas. For
phase, one must determine n phases.

Often these conditions can be introduced into the solution in the form of closure
errors. Introducing the phases ϕ,θ and ψ by

Ṽik = |Ṽik| exp{ iϕik} ,
Gik = |gi| |gk| exp{ iθi}exp{− iθk} ,
Vik = |Vik| exp{ iψik} .

(9.19)

From (9.18) the phase ψik on the baseline ik will be related to the observed phase
ϕik by

ϕik = ψik +θi −θk + εik , (9.20)

where εik is the phase noise. Then the closure phaseΨikl around a closed triangle of
baseline ik,kl, li,

Ψikl = ϕik +ϕkl +ϕli = ψik +ψkl +ψli + εik + εkl + εli , (9.21)

will be independent of the phase shifts θ introduced by the individual antennas and
the time variations. With this procedure, on can minimize phase errors.

Closure amplitudes can also be formed. If four or more antennas are used simul-
taneously, then ratios, the so-called closure amplitudes, can be formed. These are
independent of the antenna gain factors:
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Aklmn =
|Vkl ||Vmn|
|Vkm||Vln|

=
|Γkl ||Γmn|
|Γkm||Γln|

. (9.22)

Both phase and closure amplitudes can be used to improve the quality of this
complex function.

If each antenna introduces an unknown complex gain factor g with amplitude
and phase, the total number of unknown factors in the array can be reduced signif-
icantly by measuring closure phases and amplitudes. If four antennas are available,
50% of the phase information and 33% of the amplitude information can thus be re-
covered; in a 10 antenna configuration, these ratios are 80% and 78% respectively.
A more extensive discussion is to be found in the review articles by Pearson and
Readhead (1984) and Cornwell and Fomalont (1989) where references are given.

9.3.5 Multi-Antenna Array Calibrations

For two antenna interferometers, phase calibration can only be made pair-wise. This
is referred to as “baseline based” solutions for the calibration. For a multi-antenna
system, there are other and better methods. One can use sets of three antennas to de-
termine the best phase solutions and then combine these to optimize the solution for
each antenna. For amplitudes, one can combine sets of four antennas to determine
the best amplitude solutions and then optimize this solution to determine the best
solution. This process leads to ′antenna based′ solutions are used. Antenna based
calibrations are used in most cases. These are determined by applying phase and
amplitude closure for subsets of antennas and then making the best fit for a given
antenna.

9.3.6 Data Processing

9.3.6.1 Gridding uuuvvv Data

Before we consider specialized techniques, we must arrange the data in a mathemat-
ically and computationally useful way. The computation of (9.28) even for a modest
data set is quite time consuming. Therefore methods for inverting (9.15) that are
based on the Cooley-Tukey fast Fourier transform algorithm (FFT) are generally
used. In order to use the FFT in its simplest version, the visibility function must
be placed on a regular grid with total sizes that are powers of two of the sampling
interval. Since the observed data seldom lie on such regular grids, an interpolation
scheme must be used. If the measured points are randomly distributed, this interpo-
lation is best carried out using a convolution procedure.

The gridded visibility function may be represented by

V ′′(u,v) = III (u,v)
{

G(u,v)⊗V ′(u,v)
}

, (9.23)
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where V ′(u,v) is the measured function sampled on the irregular ui,vi grid, G(u,v)
is a convolving function, and ⊗ is the convolution operator by which a value for an
interpolated function V ′′(u,v) is defined for every u,v. Finally, the Sha function

III (u,v) = ΔuΔv
∞

∑
j,k=−∞

δ (u− jΔu)δ (v− kΔv) (9.24)

defines the regular grid on the (uv) plane with Δu and Δv being the cell sizes.
The intensity distribution I′(x,y) is now obtained by substituting (9.23) into

(9.17). The Fourier transform (9.17) can be computed by the FFT because V ′′(u,v)
is now arranged on a regular grid. However, (9.17) with (9.23) have certain draw-
backs that are most easily seen by rewriting these equations using some of the
fundamental properties of Fourier transforms. Recalling that the Fourier trans-
form of the Sha function is another Sha function with a grid spacing 1/Δu and
1/Δv

III (x,y) =
∞

∑
i, j=−∞

δ (x− i/Δu)δ (y− i/Δv) , (9.25)

and applying the convolution theorem to (9.23), we obtain

I(x,y) = III (x,y)⊗
[

g(x,y)I′(x,y)
]

, (9.26)

where g(x,y) is the Fourier transform of G(u,v), that is, the grading that gives rise
to the beam G(u,v). The important property of (9.26) is the fact that gI′ is con-
volved with a Sha function that extends over the full x,y space. If the grading g(x,y)
does not remain equal to zero outside the image area, radiation from outside this re-
gion may be aliased into the image. This will happen for most practical convolving
functions. Adopting a pill box beam,

G(u,v) =
{

1 for u2 + v2 � u2
max

0 otherwise ,
(9.27)

the corresponding grading will be a sinx/x function which has nonzero values ex-
tending over the full xy plane. Other convolving functions will produce slightly less
aliasing, but this effect can never be completely avoided. By a proper choice of the
convolution function, aliasing can be suppressed by factors of 102 to 103 at two to
three image radii, and this usually is sufficient. Image structures caused by alias-
ing can, however, be recognized by regridding the function V (u,v) to another grid
size Δu, Δv, since the aliased data will then be shifted in position in the resulting
image.
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9.3.6.2 Principal Solution, Dirty Map and Dirty Beam

If some of the spatial frequencies present in the intensity distribution are not present
in the (u,v) plane data, then changing the amplitude or phase of the corresponding
visibilities will not have any effect on the reconstructed intensity distribution – these
have been filtered out by the dirty beam.

Expressed mathematically, if Z is an intensity distribution containing only the
unmeasured spatial frequencies, and PD is the dirty beam, then

PD ⊗Z = 0.
Hence, if I is a solution of the convolution equation (9.29) then so is I +αZ

where α is any number. This obviously shows that there is no unique solution to the
problem.

The solution with visibilities V = 0 for the unsampled spatial frequencies is usu-
ally called the principal solution, and it differs from the true intensity distribution by
some unknown invisible or ghost distribution. It is the aim of image reconstruction
to obtain reasonable approximations to these ghosts by using additional knowledge
or plausible extrapolations, but there is no direct way to select the “best” or “cor-
rect” image from all possible images. The familiar linear deconvolution algorithms
are not adequate and nonlinear techniques must be used. For quick look or snap-
shot images, hybrid techniques are used that improve the appearance of the images
by employing heuristic recipes. These methods often form the first steps in a more
sophisticated image restoration procedure.

The result obtained from the gridded uv data can be Fourier transformed to obtain
an image with a resolution corresponding to the size of the array. However, this may
still contain artifacts caused by the details of the observing procedure, especially
restricted coverage of the (uv) plane. Therefore the dynamic range of such so-called
dirty maps is rather small. This can be improved by further data analysis, as will be
described next.

If the calibrated function V (u,v) is known for the full (u,v) plane both in am-
plitude and in phase, this can be used to determine the (modified) intensity distri-
bution I′(x,y) by performing the Fourier transformation (9.17). However, in a re-
alistic situation V (u,v) is only sampled at discrete points within a radius ∼= umax

along elliptical tracks, and in some regions of the (u,v) plane, V (u,v) is not
measured due to missing short spacings, antenna shadowing or perhaps a miss-
ing angular wedge in the orientation of the baseline vector B. We show a typical
(u,v) plane distributions for a low Declination source as measured by the VLA in
Fig. 9.11.

In direct analogy with single telescope illumination patterns, we can weight the
visibilities by a grading function, g. Then for a discrete number of visibilities, we
have a version of (9.17) involving a summation, not an integral, to obtain an image
via a discrete Fourier transform (DFT):

ID(x,y) =∑
k

g(uk,vk)V (uk,vk)e− i2π(ukx+vky) , (9.28)



224 9 Interferometers and Aperture Synthesis

Fig. 9.11 (a) The (u,v)
plane sampling for the VLA
measurements of Sgr B2. (b)
The uniformly weighted PSF,
and (c) The natural weighted
point spread function (PSF).
The intensity scales have been
chosen to emphasize levels
which are a few percent of the
maximum value of the PSF
[courtesy of R. A. Gaume]

where g(u,v) is a weighting function called the grading or apodisation. To a large
extent g(u,v) is arbitrary and can be used to change the effective beam shape and
side lobe level. There are two widely used weighting functions: uniform and natu-
ral. Natural weighting uses g(uk,gk) = 1/Ns(k), where Ns(k) is the number of data
points within a symmetric region of the (u,v) plane. In contrast, uniform weighting
uses g(uk,vk) = 1. In a simple case Ns(k) would be a square centered on point k.
Data which are naturally weighted result in lower angular resolution but give a bet-
ter signal-to-noise ratio than uniform weighting. But these are only extreme cases.
One can choose intermediate weighting schemes. These are often referred to as ro-
bust weighting (in the nomenclature of the AIPS data reduction package). Often the
reconstructed image ID may not be a particularly good representation of I′, but these
are related. In another form, (9.28) is

ID(x,y) = PD(x,y)⊗ I′(x,y) , (9.29)

where
PD =∑

k

g(uk,vk)e− i2π(ukx+vky) (9.30)

is the response to a point source. This is the point spread function PSF for the dirty
beam. Thus the dirty beam can be understood as a transfer function that distorts
the image. (The dirty beam, PD, is produced by the Fourier transform of a point
source in the regions sampled; this is the response of the interferometer system to a
point source). That is, the dirty map ID(x,y) contains only those spatial frequencies
(uk,vk) where the function has been measured. The sum in (9.30) extends over the
same positions (uk,vk) as in (9.28), and the side lobe structure of the beam depends
on the distribution of these points.

In Fig. 9.12 we show the (u,v) plane distribution for an extremely dense sampling
of a low-declination source. In Fig. 9.12c, the resulting point spread function using
all the independent data points is shown, and in Fig. 9.12b the PSF resulting from
uniform weighting is given. Clearly, the uniformly weighted PSF will emphasize
larger spacings in the (u,v) plane. Since less than all of the information is used, the
signal-to-noise ratio will be lower.
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Fig. 9.12 A block diagram
showing the steps needed to
convert aperture synthesis
measurements into images.
Each of the steps is described
in Sect. 9.4. For schemes in-
volving self-calibration, the
final image from the proce-
dure above can be used as
the input model. Usually one
CLEANs the image produced
and then self-calibrates the re-
sulting image. In modern data
reduction, considerable effort
is expended in self-calibration
and image restoration sections

9.4 Advanced Image Improvement Methods

The image produced from visibilities measured by an interferometer is first formed
in the digital computer. Digital computing therefore is clearly an integral part of
synthesis array data processing, and a large part of the advances in radio synthesis
imaging during the last 15–20 years relies on the progress made in the field of image
restoration. A schematic of this improvement process is shown in Fig. 9.12.

9.4.1 Self-Calibration

Amplitude and phase errors scatter power across the image, giving the appearance
of enhanced noise. Quite often this problem can be alleviated to an impressive ex-
tent by the method of self-calibration. This process can be applied if there is a
sufficiently intense source in the field contained within the primary beam of the in-
terferometer system. Basically, self-calibration is the equivalent of focusing on the
source, analogous to using the focus of a camera to sharpen up an object in the field
of view. One can restrict the self-calibration to an improvement of phase alone or to
both phase and amplitude. However, self-calibration is carried in the (u,v) plane. If
properly used, this method leads to a great improvement in interferometer images
of compact intense sources such as those of masering spectral lines. If this method
is used on objects with low signal-to-noise ratios, this method may give very wrong
results by concentrating random noise into one part of the interferometer image.

In measurements of weak spectral lines, the self-calibration is carried out with
a continuum source in the field. The corrections are then applied to the spectral
line data. In the case of intense lines, one of the frequency channels containing the
emission is used. If self-calibration is applied, the source position information is
usually lost.
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9.4.2 Applying CLEAN to the Dirty Map

CLEANing is the most commonly used technique to improve single radio interfer-
ometer images. The dirty map is a representation of the principal solution, but with
shortcomings. In addition to its inherent low dynamic range, the dirty map often
contains features such as negative intensity artifacts. These cannot be real. Another
unsatisfactory aspect is that the principal solution is quite often rather unstable, in
that it can change drastically when more visibility data are added. Instead of a prin-
ciple solution that assumes V = 0 for all unmeasured visibilities, values for V should
be adopted at these positions in the (u,v) plane. These are obtained from some plau-
sible model for the intensity distribution.

The CLEAN method approximates the actual but unknown intensity distribution
I(x,y) by the superposition of a finite number of point sources with positive intensity
Ai placed at positions (xi,yi). It is the aim of CLEAN to determine the Ai(xi,yi) such
that

I′′(x,y) =∑
i

Ai PD(x− xi,y− yi)+ Iε(x,y) (9.31)

where I′′ is the dirty map obtained from the inversion of the visibility function and
PD is the dirty beam (9.30). Iε(x,y) is the residual brightness distribution after de-
composition. Approximation (9.31) is deemed successful if Iε is of the order of the
noise in the measured intensities. This decomposition cannot be done analytically,
rather an iterative technique has to be used.

The concept of CLEAN was first devised by J. Högbom (1974). The algorithm
is most commonly applied in the image plane. This is an iterative method which
functions in the following fashion: First find the peak intensity of the dirty image,
then subtract a fraction γ with the shape of the dirty beam from the image. Then
repeat this n times. This loop gain 0 < γ < 1 helps the iteration converge, and it is
usually continued until the intensities of the remaining peaks are below some limit.
Usually the resulting point source model is convolved with a clean beam, usually
of Gaussian shape with a FWHP similar to that of the dirty beam. Whether this
algorithm produces a realistic image, and how trustworthy the resulting point source
model really is, are unanswered questions, although Schwarz (1978) has been able
to prove its validity under some conditions.

There are several modifications of the CLEAN algorithm that can reduce the
computing time under certain conditions. Clark (1980) shifted part of the computa-
tion from the image plane to the (u,v) plane. Cotton and Schwab (see Schwab 1984)
also shifted some of these computations to the visibility data. CLEAN is used widely
in radio interferometry, even if the problems of non uniqueness and instabilities of
solution are not solved.

9.4.3 Maximum Entropy Deconvolution Method (MEM)

The Maximum Entropy Deconvolution Method (MEM) is commonly used to pro-
duce a single optimal image from a set of separate but contiguous images. The
problem of how to select the “best” image from many possible images which all
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agree with the measured visibilities is solved by MEM. Using MEM, those values of
the interpolated visibilities are selected, so that the resulting image is consistent with
all previous relevant data. In addition, the MEM image has maximum smoothness.
This is obtained by maximizing the entropy of the image. One possible definition of
entropy is given by

H = −∑
i

Ii

[
ln

(
Ii

Mi

)
−1

]
, (9.32)

where Ii is the deconvolved intensity and Mi is a reference image incorporating all
“a priori” knowledge. In the simplest case Mi is the empty field Mi = const > 0, or
perhaps a lower angular resolution image.

Additional constraints might require that all measured visibilities should be re-
produced exactly, but in the presence of noise such constraints are often incompati-
ble with Ii > 0 everywhere. Therefore the MEM image is usually constrained to fit
the data such that

χ2 =∑ |Vi −V ′
i |2

σ2
i

(9.33)

has the expected value, where Vi is the measurement while V ′
i corresponds to the

MEM image and σi is the error of the measurement.
Algorithms for solving this maximization problem have been given by vari-

ous authors (Wernecke and d’Addario 1976, Gull and Daniell 1978, Cornwell and
Evans 1985). Programs for MEM are available in different astronomical data reduc-
tion packages. Both CLEAN and MEM are used to produce radio aperture synthesis
images, although CLEAN is used perhaps ∼ 100 times more frequently. The use
of MEM has been widely adopted in the fields of image processing since MEM is
better suited to handling images of sources which are larger than a telescope pri-
mary beam, that is, multi-field images. Point sources are best handled by CLEAN,
while MEM is better for extended sources of low surface brightness. Computation-
ally CLEAN is usually faster than MEM provided the image is not too big. The
break-even point is around one million pixels.

9.5 Interferometer Sensitivity

The random noise limit to an interferometer system is calculated following the
method used for a single telescope. The RMS fluctuations in antenna temperature
are

ΔTA =
M Tsys√

tΔν
, (9.34)

where M is a factor of order unity used to account for extra noise from analog
to digital conversions, digital clipping etc. If we next apply the definition of flux
density, Sν in terms of antenna temperature for a two-element system, we find:

ΔSν = 2k
Tsys eτ

Ae
√

2tΔν
, (9.35)
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where τ is the atmospheric optical depth and Ae is the effective collecting area of a
single telescope of diameter D. There is additional in this expression since a mul-
tiplying interferometer does not process all of the information (i.e. the total power)
that the antennas receive. In this case, there is an additional factor of

√
2 compared

to the noise in a single dish with an equivalent collecting area since there is infor-
mation not collected by a multiplying interferometer. We denote the system noise
corrected for atmospheric absorption by T ′

sys = Tsys expτ , in order to simplify the
following equations. For an array of n identical telescopes, there are N = n(n−1)/2
simultaneous pair-wise correlations. Then the RMS variation in flux density is

ΔSν =
2M k T ′

sys

Ae
√

2N tΔν
. (9.36)

This relation can be recast in the form of brightness temperature fluctuations using
the Rayleigh-Jeans relation;

S = 2k
TbΩb

λ 2 . (9.37)

Then the RMS brightness temperature, due to random noise, in aperture synthesis
images is

ΔTb =
2M kλ 2 T ′

sys

AeΩb
√

2N tΔν
. (9.38)

For a Gaussian beam, Ωmb = 1.133θ 2 (see (8.13)), we can then relate the RMS
temperature fluctuations to observed properties of a synthesis image.

A few qualitative comments concerning (9.38) are in order. First, with shorter
wavelengths, the RMS temperature fluctuations are predicted to be lower. Thus,
for the same collecting area and system noise, if weather changes are unimpor-
tant, a millimeter image should be more sensitive than an image made at centimeter
wavelengths. Second, if the effective collecting area remains the same and for a
larger main beam solid angle, temperature fluctuations will decrease. For this rea-
son, smoothing an image will result in a lower RMS noise in an image. However, if
smoothing is too extreme, this process effectively leads to a decrease in collecting
area; then there will be no further improvement in sensitivity. Finally, it is frequently
noted that multi-element interferometers are capable of producing images faster than
single dishes. This is due to the fact that there are n receivers in an interferometer
system. If a single dish of equivalent collecting area and angular resolution also
had n receivers, it would produce an image of the same area in the same amount of
time.

Inserting numerical values in (9.36) and (9.38), we have

ΔSν = 1.02
M T ′

sys

Ae
√

N tΔν
,

ΔTb = 13.58
Mλ 2 T ′

sys

Aeθ 2
√

N tΔν
,
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where λ is expressed in mm, θ in arc sec, and Δν in kHz. As an example, one can
compare the performance of the VLA at 1.3 cm with the bilateral ALMA (i.e. fifty
12 m antennas) at 2.7 mm. We set M = 1 for the VLA. For the twenty-seven 25 m
diameter antennas of the VLA at 1.3 cm, each with Ae = 300m2, after a four hour in-
tegration on source with a 100 K system noise and 7.8 kHz (= 0.1 km s−1) frequency
resolution, in a 3′′ synthesized beam, the flux density RMS sensitivity is 3.2 mJy and
the brightness temperature RMS sensitivity is 0.8 K. For the fifty 12 m diameter an-
tennas of ALMA, each with Ae = 90m2 after a similar integration, with a 128 K
system noise temperature at 2.6 mm and a 38 kHz frequency resolution (= 0.1 , the
RMS spectral line flux density sensitivity is 2.8 mJy, while the corresponding RMS
temperature sensitivity is 0.03 K. For continuum measurements, the flux density sen-
sitivities can be increased by using broader bandwidths. The bandwidth of ALMA
is 8 GHz. This gives an RMS noise of 6.3μJy. With the VLA one can have 50 MHz
bandwidth, which gives an RMS noise of 40μJy. The sensitivity may be limited
by confusion. This was discussed in Sect. 8.5; if there are less than five beams per
source, the angular resolution must be increased. For a 0.3 ′′ synthesized beam, the
RMS temperature sensitivities are a factor of 100 larger.

The temperature sensitivity (in Kelvins) for higher angular resolution is worse
than for a single telescope with an equal collecting area. From the Rayleigh-Jeans
relation, the sensitivity in Jansky (Jy) is fixed by the antenna collecting area and
the receiver noise, so only the wavelength and the angular resolution can be var-
ied. Thus, the increase in angular resolution is made at the expense of temperature
sensitivity. All other effects being equal, at shorter wavelengths one gains in temper-
ature sensitivity (cf. The VLA versus ALMA in the previous example). This is not
such a great problem for the high-brightness radio sources, which radiate by non-
thermal processes, such as synchrotron radiation, but would be for thermal sources,
for which the maximum brightness temperature is about 2× 104 K for regions of
ionized gas surrounding massive stars. Our sun has a corona with a temperature of
106 K. However, even this temperature is small compared to brightness temperatures
of up to 1012 K, found for nonthermal sources.

Compared to single dishes, interferometers have the great advantage that un-
certainties such as pointing and beam size depend fundamentally on timing. Such
timing uncertainties can be made very small compared to all other uncertainties. In
contrast, the single dish measurements are critically dependent on mechanical de-
formations of the telescope. In summary, the single dish results are easier to obtain,
but source positions and sizes on arc second scales are difficult to estimate. The
interferometer system has a much greater degree of complexity, but allows one to
measure such fine details. The single dish system responds to the source irrespective
of the relation of source to beam size; the correlation interferometer will not record
source structures larger than a few fringes.

Aperture synthesis is based on sampling the function V (u,v,0) with pairs of an-
tennas to provide samples in the (u,v) plane. Many configurations are possible, but
the goal is the densest possible coverage of the (u,v) plane. If one calculates the
RMS noise in a synthesis image obtained by simply Fourier transforming the (u,v)
data, one usually finds a noise level many times higher than that given by (9.38)
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or (9.36). There are various reasons for this. One cause is phase fluctuations due
to atmospheric or instrumental influences such as LO instabilities. Another cause is
due to incomplete sampling of the (u,v) plane. This gives rise to instrumental fea-
tures, such as stripe-like features in the final images. Yet another systematic effect
is the presence of grating rings around more intense sources; these are analogous to
high side lobes in single dish diffraction patterns. Over the past 20 years, it has been
found that these effects can be substantially reduced by software techniques such as
CLEAN and Maximum Entropy.

9.6 Very Long Baseline Interferometers

For a given wavelength the angular resolving power of an interferometer depends
only on the length of the interferometer baseline B. But the need to provide phase-
stable links (optical fibers) between individual antennas and the correlator sets limits
on |B| to ∼200 km as is the case for e-MERLIN. Over longer paths, it becomes
more difficult to guarantee the phase stability, since transient irregularities in the
transmission path will have detrimental effects, so systems such as MERLIN are
limited to baselines of a few hundred kilometers.

The development of atomic clocks, together with extremely phase-stable
oscillators opened up the possibility of completely avoiding the transmission of a
phase-stable local oscillator signal. The measurements are made independently at
the individual antennas of the interferometer. The data are recorded on storage me-
dia together with precise time marks. These data are correlated later. Currently the
data are recorded on hard disks that are shipped to a central correlator location; in
the near future these will be sent in real time or near real time over the internet. The
antenna outputs contain accurate records of the time variation of the electrical field
strength so that the appropriately time-averaged product obtained by multiplying the
digitized signal gives the mutual correlation function directly.

Local oscillators with extreme phase stability are needed at each station for two
reasons. The media which are normally used usually permit the recording of signals
in a band reaching from zero to at most a hundred MHz; the signal therefore must be
mixed down to this band, and for this a phase-stable local oscillator is needed, since
all phase jumps of the oscillator affect the IF signal. The second use of the phase sta-
bility is to provide the extremely precise time marks needed to align the signals from
two stations. Again phase jumps would destroy the coherence, that is the correla-
tion of signals from the source. For the local oscillators, different systems have been
used with varying success, ranging from rubidium clocks, free-running quartz oscil-
lators and, most successfully, hydrogen masers. With present day hydrogen maser
technologies, it is possible to have frequency and phase stability that allows mea-
surements for many minutes. At longer centimeter wavelengths, the maximum time
over which the visibility function can be coherently integrated, that is, where we
can determine the amplitude and phase of the visibility function is not limited by
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the best currently commercially available maser clocks. At wavelengths or 1 cm or
shorter, the atmosphere is the limit.

Today in VLBI only digital data recording is used. The media from different
observatories are processed on special purpose digital correlators that align the sig-
nals in time, account for local oscillator offsets and geometric delays, clock rate
offsets and differential Doppler shifts arising from Earth rotation and then gener-
ate a correlation function for each pair of observation sites. Amplitudes and phases
of these correlation functions are directly comparable to the complex visibilities of
a conventional connected element interferometer. The delay time between the two
independent telescopes can vary rapidly. In the past, one could not determine the
instrumental phases from measurements of a calibration source, so one had to use
fringe fitting to allow the accumulation of data over much longer times. (Fringe
fitting is the process by which one determines the phase of the visibility and the
rate of change of this phase.) The procedure is similar to that used, for example,
at the VLA. The correlator delivers an amplitude as a function of time for a delay
range larger than any uncertainty. In the Fourier transform domain the time axis be-
comes frequency (residual fringe frequency or fringe rate) and then the maximum
should appear as a peak in this two-dimensional distribution. The coordinates of
this peak, the fringe rate and the lag are the required parameters. For strong sources
this maximum can be determined directly, but for weaker sources more sophisti-
cated techniques are needed. Once these parameters are determined, further reduc-
tion procedures are basically identical to those used for the analysis of conventional
synthesis array data. To remove the remaining errors, one solves and corrects for
residual delays and fringe rate offsets. This is an additional reduction step beyond
that used in VLA data reduction. This step, fringe fitting, is necessary for VLBI data
reductions. There are several reasons for the phase variations:

(1) random delays in the atmospheric propagation properties at the individual sites
and

(2) phase changes in the electronics and the independent clocks.

For these reasons, without fringe fitting the correlations will be only fairly short
for a given source.

Observationally, VLBI can be used to carry out surveys of a large number of
sources. Such surveys make use of procedures that are similar to those used in the
snapshot observing mode of instruments such as the VLA. Each measurement has a
total integration time of up to tens of minutes. For such surveys, the observing runs
may extend over 1–2 days so that hundreds of sources are measured.

At present there are a number of instrumental limitations in VLBI. For exam-
ple, VLBI surveys are biased toward bright sources because of the short integration
times and limited bandwidths. Improvements are planned to provide more sensitiv-
ity and ease of observing. There are now the first successful efforts to transmit data
over the internet. This exchange of data will occur more rapidly, and will facilitate
the detection of fringes shortly after a run begins. This will help to eliminate instru-
mental problems early in an observing session. Improvements in sensitivity depend
on collecting area, system noise and increased bandwidth; this in turn will require
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increased storage/transmission capacity, faster correlators and computers. For ex-
ample, the field of view can be expanded by recording the data with a larger number
of contiguous channels each with a narrower bandwidth. From the discussion at
the end of Sect. 9.2.3.3, with narrower bandwidths one can image sources over the
entire field of view of the single dishes. The storage and sensitivity improvements
allow for shorter integration times, and thus better compensation for fluctuations
in phase. In addition, with software one can shift the phase center to positions far
from center of the primary beam, and thus form additional images using the same
data set. Usually, one applies self-calibration (Sect. 9.4.1) to increase the sensitivity
and dynamic range. Since the computing needed varies as the square of the num-
ber of baselines. As an example, in going from 10 to 20 antennas requires 18 times
more computing; one can hope that with Moore’s Law computing will keep pace. It
has become possible to use clusters of personal computers, PC’s, for the correlation
of the VLBI data. Although slower than hardware correlators, the PC software can
easily be modified to apply new algorithms. The end result will be VLBI surveys
extending to the μJy level over fields of many degrees in size.

9.7 Interferometers in Astrometry and Geodesy

The value of V (B) for a brightness distribution Iν(s) as measured by an interferom-
eter provides a measure of the scalar product B · s , and it therefore depends both on
the orientation and size of the baseline B and on the source position s . In deriving
Iν(s) from this we assumed that both B and s can be specified to an accuracy of
a milli-arcsecond (mas). However this is not always a simple matter, and it may be
necessary to include the variation of the earth’s rotation vector and of the antenna
positions. In favorable cases, when Iν(s) is that of a high intensity unresolved simple
source, this procedure may be reversed. With a sufficient number of measurements
of a large number of sources, high accuracy source positions, information on the
geodetic data of the antenna positions, variations in the rotation rate of the Earth
and highly accurate time keeping data can be derived.

This has become a highly sophisticated subject using specialized measurements.
We will outline the basic principles here and will not give too much detail which
can be found in the literature.

Let us assume that we have observations of an unresolved point source at the
position s made with an interferometer with the baseline vector B . The fringe phase
ϕ then is given by Eq. (9.8), and an error ΔB of B and a position error Δs then will
result in a variation of the fringe phase

ϕ+Δϕ = Δϕ =
1
λ

(B−ΔB) · (s−Δs)+ϕi

or

Δϕ = ϕi −
1
λ

(ΔB · s+B ·Δs) (9.39)

if second order terms are neglected.
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Introducing hour angle – declination as our coordinate system (X ,Y,Z) and ex-
pressing both B and s in these coordinates we obtain

Δϕ =
1
λ

[E cosH +F sinH +G]+ϕi (9.40)

where

E = (ΔBx +ΔαBy)cosδ −Δδ Bx sinδ
F = (−ΔBy +ΔαBx)cosδ +Δδ By sinδ (9.41)

G = ΔBz sinδ +ΔδBz cosδ

and (ΔBx,ΔBy,ΔBz) is the (true - adopted) antenna baseline vector in (metric)
units, and (Δα,Δδ ) is the (true - adopted) source position.

The computations leading from (9.39) to (9.40) and (9.41) are straightforward
but tedious and are standard for typical astrometric derivations. They may be found
in the books by Thompson et al. (2001 in Chap. 12), or in Green (1985, Chaps. 15
and 16). According to (9.40) we will therefore observe a variation of the fringe
phase with the hour angle when there is either a ΔB of the baseline vector or a po-
sition error (Δα,Δδ ) or both. Unfortunately there is an instrumental term ϕi in this
variation. But for stable connected type interferometric arrays of kilometer–size this
instrumental phase can be kept reasonably constant and can be determined by an
observing program in which one intersperses measurements of target sources with
measurements of sources with accurately known positions. It is usually even possi-
ble to determine the total number of fringes. For km–size two–dimensional arrays
accuracies of 50 mas are generally obtained and the grid of calibration sources are
known with an accuracy of 10 mas.

VLBI global arrays have baselines 100 times longer, so the variations of the
fringe phase are correspondingly larger. Then it is almost impossible to analyse it
using Eq. (9.40), because the instrumental phase ϕi is mainly determined by insta-
bilities of the independent local oscillators, ionosphere and atmosphere. Differenti-
ating (9.40) with respect to time we find for the fringe rate variation

Δν =
1
λ

[−E sinH +F cosH]+νi . (9.42)

Δν shows a diurnial variation, so E and H and νi can be determined. In order
to get and idea of the precision obtainable consider two antennas separated by an
equatorial spacing of 1000 km, observing at a wavelength of 3 cm then the fringe
frequency will be ∼2 kHz for δ � 0. Assuming a coherence time for the local os-
cillators of 10 min then about 106 fringes can be counted resulting in a precision of
about 10−7. The corresponding error for |B| is 10 cm or 0.02 arcsec.

In the last few years there have been a number of advances in the art of extracting
the astronomical or geodetic data from VLBI observations. These advances concern
predominantly the software by applying self–calibration (for astronomy) and multi-
band (for geodesy) schemes. These have resulted in absolute source positions to
tenths of milliarcseconds and station locations to a few millimeters (Walker 1999).
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If the best possible positional information in VLA and VLBI observations are
wanted, all source positions have to be analyzed with the full set of the Earth’s
precession and nutation expressions. These describe the effects of the spin vector
of the earth that may be as large as 50 arcsec per year and show how their the
effect on the coordinate system may be taken into account. This is described in
textbooks on spherical astronomy or astrometry. A reference that explicitly treats
radio interferometry is by R. M. Green (1985).

Precession and nutation affect the coordinate system in which the position vec-
tor pointing towards the source region is expressed. There is an additional effect,
the polar motion that influences the baseline vector B. While the first two act on
the spin vector the polar motion describes the shifting of the axis of the figure of
the earth relative to the spin. This motion is partly periodic, partly irregular and not
well understood. Over the last century the distance between geographic pole and
the earth’s figure has varied by 0.5 arcsec or 15 m on the earth’s surface. This effect
must be taken into account when the highest possible positional precision is needed.

Comparing position information on the base vector B of VLBI data obtained at
different times possible time variations of B can be estimated and these may be
interpreted as estimates for the shift of tectonic plates. For long times, the precision
of such data of the order of a few cm were unrivalled, but recently the accuracy of
global position systems (GPS) have given hope that these methods may rival those
obtained by VLBI techniques.

Problems

1. In one dimension, one can make a simple interferometer from a paraboloid by
masking off all of the reflecting surface except for two regions of dimension a,
which are separated by a length b, where b >> a. Assume that the power incident
on these two regions is reflected without loss, then coherently received at the prime
focus. A receiver there amplifies and square law detects these signals. This system
is used to measure the response of an isolated source.
(a) Write out a one-dimensional version of Eq. (6.56). Apply this equation and
Eq. (6.57) to determine the far-field pattern of this instrument.
(b) Use Eq. (9.6) to analyze the response of such a one-dimensional 2 element in-
terferometer consisting of 2 paraboloids of diameter a, separated by a distance b,
measuring a star by a disk of size θs. Show how one can determine the size of the
star from the response, R.

2. Show that the one-dimensional version of Eq. (9.6) is Eq. (9.7). Rearranging
terms, show that one obtains

R(B) =
∫

A(θ) Iν(θ)exp

[
i2πν0

(
B
λ

)
·θ

]
dθ (9.43)

Interpret this relation that the FT pair is u and θ . In Fig. 9.3 one dimensional distri-
butions of u = D/λ are shown. Show that the “Image-plane distributions” (on the
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Fig. 9.13 One-dimensional (u,v) patterns on the left, and the resulting beams on the right

right) are related to the “one-dimensional” (u, v) plane distributions (on the left) us-
ing Eq. 9.43.

3. Use Eq. 9.43 to obtain the interferometer beam shapes (left side of Fig. 9.13 from
the coverage of the (u,v) plane, shown on the right side of this figure.

4. The next three problems illustrate features of Fig. 9.3 and the use of Eq. 9.43. The
Sun is assumed to be a uniformly bright disk of diameter 30′. This source is mea-
sured using a multiplying interferometer at 10 GHz which consists of two identical
1 m diameter radio telescopes. Each of these dishes is uniformly illuminated. We
assume that the instrumental phase is adjusted to zero, i.e. τi = 0, the bandwidth of
this system is small, and one measures the central fringe.
(a) What is the FWHP of each dish? Compare to the diameter of the Sun.
(b) Assume that the antenna efficiency and beam efficiency of each of the 1 m tele-
scopes are 0.5 and 0.7, respectively. What is the antenna temperature of the Sun, as
measured with each? What is the main beam brightness temperature measured with
each telescope?
(c) Now the outputs are connected as a multiplying interferometer, with a separa-
tion on an east–west baseline of 100 m. Suppose the Sun is observed when directly
overhead. What is the fringe spacing? Express the response in terms of brightness
temperature measured with each dish individually.
(d) Now consider the more general case of a source which is not directly overhead.
Determine the response as a function of B, the baseline.
(e) What is the response when the two antennas are brought together as close as
possible, namely 2 m?

5. Repeat Problem 4 for a simplified model of the radio galaxy Cygnus A. Take
this source to be a one-dimensional double with centers separated by 2θ1 = 1.5′.
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Assume that each region have uniform intensity distributions, with FWHP sizes of
θ2 = 50′′. Each region has a total flux density of 50 Jy.

6. Repeat Problem 4 for the HII region Orion A, taking this as a one-dimensional
Gaussian region with angular size FWHP 2.5′. Repeat for the supernova remnant
Cassiopeia A, a ring-shaped source. In one dimension model this source is a region
of outer diameter 5.5′ with a ring thickness of 1′.

7. Suppose the receivers of an interferometer are double-sideband mixers. In each
mixer, power arrives from the upper sideband and from the lower sideband. Use
Fig. 9.2 and Eq. 9.6 to show that the upper and lower sidebands can be separated
since the geometric phase delays for the upper and lower sideband frequencies φg =
2πντg, will differ.

8. The interferometer described in Problem 4 is used to measure the positions of in-
tense water masers at 22.235 GHz. The individual masers are very compact sources,
unresolved even with interferometer antenna spacings of hundreds to thousands of
kilometers. These masers normally appear as clusters of individual sources, but usu-
ally do not have identical, radial velocities.
(a) Discuss using a set of contiguous narrow frequency filters as a spectrometer.
Should these filters be placed before or after multiplication? How wide a frequency
band can be analyzed without diminishing the response of this system? What must
the phase and frequency characteristics of these filters be?
(b)∗ An alternative to filters is a cross-correlation spectrometer. Discuss how this
system differs from the filter system. Analyze the response of such a cross correlator
system if the instrumental phase differences between antennas can be eliminated
before the signals enter the cross correlator.

9. Suppose we use an interferometer for which one: (1) added the voltage outputs
of the two antennas, and then square-law detected this voltage and (2) inserted a
phase difference of 180o into one of the inputs, (3) repeated this process and (4)
then subtracted these outputs to obtain the correlated voltages. Compare the noise
arising from this process with that from a direct multiplication of the voltages. Show
that direct multiplication is more sensitive.

10. Derive Eq. 9.10 using Eq. 9.43. Derive Eq. 9.11. Show all steps in both deriva-
tions.

11. Use Eq. (9.38) with M = 1, to show that the following is an alternative form of
this relation:

ΔTB ∼ λ 0.5TsysB2
max

nd2
√
τΔV

,

where Bmax is the maximum baseline of the interferometer system, d is the diameter
of an individual antenna and ΔV is the velocity resolution. In addition, N = n(n−
1)/2 ≈ n2/2 where n is the number of correlations.

12∗. Suppose we have a filled aperture radio telescope with the same diameter and
collecting area as an interferometer used to carry out a full synthesis.



Problems 237

(a) If the filled aperture diameter is D(= Bmax of Problem 11) and the diameter of
each individual interferometer antenna is d, how many elements are needed to make
up the interferometer? (This is the number of dishes of diameter d which fit into the
area of the filled aperture D.)
(b) Calculate the times needed to map a region of a given size with the filled aperture
(equipped with a single receiver) and the interferometer array.
(c) The following is related to “mosaicing”, which is needed for interferometer
imaging of a very extended source of sizeΘ which is very extended compared to the
beamsize of each individual interferometer antenna, θ . Calculate how many point-
ings are needed to provide a complete image of the extended source. The RMS noise
for a map made with a single pointing is

ΔTB ∼ 1

nd2
√

2N τ Δν

(see previous problem). If the total time available for the measurement of a region
is T , show that the number of pointings is proportional to T/d2. Then show that the
RMS noise in a mosaiced map is ΔTB ∼ 1/d instead of ΔTB ∼ 1/d2.

13. A source with a FWHP of ∼30′′ and maximum intensity of 2.3 K, T MB is
observed with ALMA interferometer. If a velocity resolution of 0.15 km s−1 is used
to measure the J = 1−0 line of CO at 2.7 mm, with a 10′′ angular resolution, how
long must one integrate to obtain a 5-to-1 peak signal-to-noise ratio?

14. The MERLIN interferometer system has a maximum baseline length of 227 km.
At an observing frequency of 5 GHz, what is the angular resolution? Suppose that
the RMS noise after a long integration is 50μJy, that is 5 × 10−5 Jy. Use the
Rayleigh–Jeans relation to obtain the RMS noise in terms of main beam bright-
ness temperature. If a thermal source has at most a peak temperature of 5× 105 K,
can one detect thermal emission?



Chapter 10
Emission Mechanisms
of Continuous Radiation

10.1 The Nature of Radio Sources

In the early days of radio astronomy the receiver sensitivities restricted measure-
ments to the few hundred megahertz range. At such relatively low frequencies the
resolving power of the available radio telescopes was low. Initially only very few of
the discrete sources could be identified with objects known from the optical region
of the spectrum. Further investigations showed an increase in the number of sources
with decreasing source flux density and gave the distribution of sources in the sky. It
was then concluded that there are two different families of sources: galactic sources,
concentrated towards the galactic plane and extragalactic sources distributed more
or less uniformly in space. The unresolved, spatially continuous radiation belongs to
the galactic component. In addition, there is the 2.7 K thermal background radiation
which is cosmological in origin.

The nature of the discrete sources was investigated by measurements at differ-
ent frequencies to determine the spectral characteristics. Again two large families
of sources appeared. While the flux density of one type of source is roughly con-
stant with increasing frequency, the other type is more intense at lower frequencies
(Fig. 10.1). Some of the most intense sources found were of the second type, for
example the source Cassiopeia A which was later identified as the remnant of a su-
pernova explosion in our Galaxy in the year 1667. Another prominent source is
Cygnus A, an extragalactic radio source; Cygnus A is a radio galaxy, with a redshift
of z = 0.057. Those sources which show an increasing flux density with increasing
frequency could be identified with objects well known from the optical range of the
spectrum. Both the moon and the sun are radio sources of this kind; for the sun this
is true only if measurements are restricted to times when there are no disturbances,
that is, to the quiet sun. Weaker emitters, such as the Orion nebula (Messier 42,
NGC 1976) which is an H II region, and other similar sources such as M 17 which
are optically thick at lower frequencies, belong to this category. The moon is an
example of a black body and its spectrum is an almost exact representation of the
Rayleigh-Jeans law for a temperature of T ≈ 225 K. The spectrum of the Orion neb-
ula also indicates an optically thick thermal origin for frequencies below 1 GHz. In
that range the observations can be well represented by the Rayleigh-Jeans law, but
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Fig. 10.1 The spectral distributions of various radio sources. The Moon, the quiet Sun and (at
lower frequencies) the H II region Orion A are examples of Black Bodies. Close to 300 GHz there
is additional emission from dust in the molecular cloud Orion KL. The active Sun, supernova
remnants such as Cassiopeia A, the radio galaxies Cygnus A, Virgo A (Messier 87, 3C274) and
the Quasi Stellar radio source (QSO) 3C273 are nonthermal emitters. The hatching around the
spectrum of 3C273 is meant to indicate rapid time variability. (The 3C catalog is the fundamental
list of intense sources at 178 MHz (Bennett 1962))

above this frequency the observed flux density falls below that extrapolated from
lower frequencies.

For sources such as Orion A the explanation is fairly straightforward. If we con-
sider the solution of the equation of radiation transfer (1.19) for an isothermal object
without a background source

Iν = Bν(T )(1− e−τν ) ,

we see that Iν < Bν if τν � 1; the frequency variation of Iν depends on τν .
Radio sources can thus be classified into two categories: those which radiate

by thermal mechanisms and the others, which radiate by nonthermal processes. In
principle many different radiation mechanisms could be responsible for nonthermal
emission, but in practice one single mechanism seems to dominate: synchrotron
emission or magnetic bremsstrahlung.

The other division of the discrete radio sources into galactic and extragalactic
ones, is in principle completely independent of this classification. However, we find
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predominantly nonthermal sources among the extragalactic sources. This is simply a
result of the fact that the most intense emitters are nonthermal in origin. Even if ther-
mal sources are abundant in extragalactic objects, these will not easily be detected.

With the exception of thermal line emission of atoms and molecules and thermal
emission from solid bodies, radio emission always arises from free electrons, and
since free electrons can exchange energy by arbitrary amounts, no definite energy
jumps – that result in sharp emission or absorption lines – will occur: thus we are
dealing with a continuous spectrum. A free electron will only emit radiation if it is
accelerated, and therefore the acceleration mechanisms for free electrons will have
to be studied if the continuous radio spectrum of discrete sources is to be understood.

When astrophysicists had to explain the thermal radio emission of gaseous neb-
ulae, it turned out to be unnecessary to make a completely new start when devel-
oping the physics of the processes involved. A starting point was the theory de-
vised 40 years earlier to explain the continuous X-ray emission spectrum of ordinary
X-ray tubes. Both in thermal radio emission and in X-ray tubes the electromagnetic
radiation is emitted by free electrons that suffer sudden accelerations in the elec-
tric field of ions. The relative change of the kinetic energy of the electrons is of
the same order of magnitude in both cases: radio radiation with ν = 1 GHz and a
quantum energy hν ∼= 4×10−6 eV emitted by the thermal electrons in a hot plasma
(T ≈ 104 K, mv2/2 = 1 eV). This corresponds to a relative change of the kinetic
energy of ΔE/E ∼= 10−5, while X-rays produced by a 100 keV beam corresponds
to changes ΔE/E ∼= 10−2. These values are similar enough so that the same theory
can be applied to both situations. We will present this theory not in its most general
form but with simplifications that are valid for the radio range.

10.1.1 Black Body Radiation from Astronomical Objects

The first examples of black bodies found were solar system objects such as planets,
and other solid bodies. For such objects, τ = ∞, so from the equation of radiative
transfer, (1.37) gives Iν = Bν(T ). A radio telescope measures the temperature at
a depth corresponding to a wavelength or so. This temperature, referred to as the
disk or surface temperature, is nearly constant with frequency. So the flux density
increases with λ−2, as shown in Fig. 10.1. In the last few years, the use of large
millimeter radio telescopes and sensitive bolometers has given rise to the detection
of asteroids, comets and moons of the outer planets. The broadband emission mech-
anism is the same as that for the Moon and planets, but as the newly found sources
have small angular sizes, we have:

TMB = f Tsurface (10.1)

where f is the beam filling factor. If the sizes are known, such observations can
provide a reasonably good estimate of the surface temperature and albedo of such
objects.
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Another research area related to black body emission is the study of dust in
molecular clouds (see Chap. 14). In the case of molecular clouds, the emission is
from small dust particles. If we use the exact relation, we have

Tb(ν) = T0

(
1

exp{T0/Tdust}−1
− 1

exp{T0/2.7}−1

)
(1− e−τdust) , (10.2)

where T0 = hν/k. This is completely general; if we neglect the 2.7 K background,

Tdust = T0

(
1

exp{T0/Tdust}−1

)
(1− e−τdust) . (10.3)

If Tdust � T0, we can simplify this expression, but the most important step is in
making a quantitative connection between τdust and NH2 . The relation between τdust

and the gas column density must be determined empirically. Unlike the planets,
which have measured sizes, the radiation from dust grains depends on the surface
area of the grains, which cannot be determined directly. If a relation between dust
mass and τ can be determined, it is simple to convert to the total mass, since dust
is generally accepted to be between 1/100 and 1/150th of the total mass. All astro-
nomical determinations are based on the analysis of Hildebrand (1983). One typical
parameterized version is given by Mezger et al. (1990) for λ > 100μm:

τdust = 7×10−21 Z
Z�

bNHλ−2 (10.4)

where λ is the wavelength in μm, NH is in units cm−2, Z is the metalicity as a
ratio of that of the sun Z�. The parameter b is an adjustable factor used to take into
account changes in grain sizes. Currently, it is believed that b = 1.9 is appropriate
for moderate density gas and b = 3.4 for dense gas (but this is not certain). At long
millimeter wavelengths, a number of observations have shown that the optical depth
of such radiation is small. Then the observed temperature is

T = Tdust τdust , (10.5)

where the quantities on the right side are the dust temperature and optical depth.
Then the flux density is

S =
2k T
λ 2 = 2k Tdustλ−2 τdustΔΩ . (10.6)

If the dust radiation is expressed in Jy, the source in FWHP sizes, θ in arc seconds,
and the wavelength, λ in μm, one has for the column density of hydrogen in all
forms, NH, in the Rayleigh-Jeans approximation, the following relation:

If the dust radiation is expressed in mJy, the source FWHP size, θ , in arc seconds,
and the wavelength, λ in mm, the column density of hydrogen in all forms, NH, in
the Rayleigh-Jeans approximation, is:
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NH = 1.93×1024 Sν
θ 2

λ 4

Z/Z� bTdust
. (10.7)

In the cm and mm wavelength range, the dust optical depth is small and increases
with λ−2; then flux density increases as λ−4.

Observationally, it has been determined that, in most cases, the dust optical depth
increases with λ−2; then flux density increases as λ−4. Thus, dust emission will
become more important at millimeter wavelengths and in the infrared.

It appears that cold dust, with temperatures 10–30 K, makes up most of the mass
of dust and by implication traces cold interstellar gas in our galaxy. For this tem-
perature range, the mass can be estimated using either sub millimeter or far infrared
data.

In addition to the total intensity of thermal dust emission, one can also measure
the polarization properties of this emission. If the dust grains are non-spherical,
and some process aligns the grains, one would expect the thermal emission to be
polarized. In the simplest case, we expect the grains to have an electric charge,
and a magnetic field causes the alignment; in this case, the largest dimension of
the grains will be aligned perpendicular to the direction of the magnetic field and
so the thermal emission will be more intense perpendicular to the B field. These
measurements provide the direction of the B field, averaged along the line of sight,
but cannot allow estimates of B field strengths. Since dust polarization at 0.87 mm
is of order a few percent or less, and since the total power emission from dust is
weak, polarization measurements require great care (see Chrysostomou et al. 2002;
another method is the use of millimeter interferometry, see Marrone et al. 2007).
Synchrotron radiation is also polarized; see Sects. 10.9.1 and 10.9.2.

Of course, the most famous example of black body radiation is the 2.73 K cos-
mic microwave background, CMB. This source of radiation is fit by a Planck curve
to better than 0.1%. This radiation was discovered only in 1965. The difficulty in
detecting it was not due to weak signals, but rather due to the fact that the radia-
tion is present in all directions, so that scanning a telescope over the sky and taking
differences will not lead to a detection. The actual discovery was due to absolute
measurements of the noise temperature from the sky, the receiver and the ground,
compared to the temperature of a helium cooled load using Dicke switching.

10.2 Radiation from Accelerated Electrons

For a general theory of the radiation from moving charges we must start with the
appropriate electrodynamic potentials, the so-called Liénard-Wiechert potentials.
These results can then be applied to all energy ranges, thermal as well as relativistic.
The basic theories are presented in many textbooks on electrodynamics: Jack-
son (1975), Chaps. 14 and 15; Landau and Lifschitz (1967), Vol. II, §§ 68–71; Panof-
sky and Phillips (1962), Chaps. 19 and 20; Rybicki and Lightman (1979), Chaps.
3–6.tool-mar23. A delightful overview is given in Scheuer (1967).
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We will not derive the full theory here from first principles but only cite those
results that are useful for radio astronomy. The electric field induced at the position
of the observer by a charge at the distance r moving with the velocity v(t) is given
by an expression that contains both the velocity v(t) and the acceleration v̇ of the
charge e at the retarded time. While the terms depending on v(t) vary like 1/r2 those
depending on v̇ vary only like 1/r. If we observe the moving charge in a reference
frame where its velocity is small compared to that of light, only field components
depending on the acceleration are present. We orient the coordinate system such that
ϑ = π/2 points in the direction of v. Then we have

Eϑ = −e v̇(t)
c2

sinϑ
r

. (10.8)

The other components are zero. This is equivalent to the far field radiation of a
Hertz dipole with

IΔ l
2λ

=
e v̇
c2 . (10.9)

The Poynting flux, that is, the power per surface area and steradian emitted into
the direction (ϑ ,ϕ) is then according to (6.40)

|S| = 1
4π

e2 v̇2

c3

sin2ϑ
r2 . (10.10)

Integrating this over the full sphere results in the total amount of power radiated
when a charge e is accelerated by v̇:

P(t) =
2
3

e2 v̇2(t)
c3 . (10.11)

P(t) is the power emitted at the moment t due to the acceleration v̇(t) of the
electron. The total amount of energy emitted during the whole encounter is obtained
by integrating (10.11); that is,

W =
∞∫

−∞

P(t)dt =
2
3

e2

c3

∞∫
−∞

v̇2 dt . (10.12)

In this development we have not specified the frequency at which this radiation
will be emitted. This frequency is obviously governed by the speed with which E
varies, that is, according to (10.8), the speed with which v̇(t) is varying. If v̇ and E
are different from zero only for a very short time interval then we can obtain the
frequency dependence of E by a Fourier analysis of the pulse of E. But in order to
do this we have to investigate the acceleration process in detail. In the next section
we consider the radiation caused by the collision of the electron with an ion. This is
necessary in order to compute the integral in (10.12).
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10.3 The Frequency Distribution of Bremsstrahlung
for an Individual Encounter

The parameter p/v alone determines the speed and strength of the electric field in-
tensity pulse. Here p is the collision parameter and v the velocity which the electron
attains when it is at closest approach, p, to the ion (Fig. 10.2). Now, the required rel-
ative change ΔE /E ∼= 10−5 of the kinetic energy corresponds to such large values
of p that the electron’s path, which in reality is a hyperbola, can be approximated
by a straight line. For the ion-electron distance l we then have

l =
p

cosψ
. (10.13)

The acceleration of the electron is given by Coulomb’s law

mv̇ = −Ze2

l3 l .

For orbits with large p the acceleration is both parallel and perpendicular to the
orbit. The parallel component is nearly sinusoidal. We will simplify the problem by
only considering the perpendicular component,

v̇ = |v̇|cosψ ,

so that

v̇ = − Ze2

m p2 cos3ψ (10.14)

and

W =
4
3

Z2 e6

c3 m2 p4

∞∫
0

cos6ψ(t)dt . (10.15)

The functional dependence ψ(t) can be obtained from Kepler’s law of areas, but
the energies of the electrons are low so that the electron velocites are nearly constant.
If we define

Fig. 10.2 An electron moving
past an ion of charge Ze
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dF = 1
2 l2 dψ ,

then in any motion governed by a central force

Ḟ =
1
2

l2 dψ
dt

= const .

But at the time t = 0 the electron attains its closest approach p and has the veloc-
ity v, so

Ḟ = 1
2 pv

and

dt =
l2

v p
dψ =

p
vcos2ψ

dψ . (10.16)

Therefore we find

W =
4
3

Z2 e6

c3 m2 p4

p
v

π
2∫

0

cos4ψ dψ

or, since

π
2∫

0

cos4 xdx =
3
16
π ,

W =
π
4

Z2 e6

c3 m2 p3

1
v

. (10.17)

This is the total energy radiated by the charge e if it moves in the field of an
ion with the charge Ze. It is valid only for low-energy collisions for which the
straight-line approximation is valid. For collisions with small p another approxi-
mation would have to be used.

The E field intensity induced by the accelerated electron during the encounter
with the ion was given by (10.8). This again gives only a pulse E(t) of the electric
field intensity. Taking the Fourier transform of E(t) we can represent this pulse
as a wave packet formed by the superposition of harmonic waves of frequency ω;
that is,

E(t) =
∞∫

−∞

A(ω) e− iωt dω . (10.18)
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The wave amplitude A(ω) in (10.18) is given by

A(ω) =
1

2π

∞∫
−∞

E(t)eiωt dt , (10.19)

so that A(ω) is a real quantity if E(t) is symmetric with respect to t = 0. According
to (10.8) the Fourier analysis of E(t) can be obtained by an analysis of v̇(t). We are
therefore interested in

C(ω) =
1

2π

∞∫
−∞

v̇(t)cosωt dt . (10.20)

Substituting v̇(t) from (10.14) this is

C(ω) = − Ze2

m p2

1
π

∞∫
0

cosωt cos3ψ(t)dt . (10.21)

Using (10.16) this can be written as an integral over ψ . The solution can be
written in closed form using modified Bessel functions with an imaginary argu-
ment (Hankel functions), see e.g. Oster (1961), but the precise form of the spectrum
C(ω) is of no great concern; crucial is that C(ω) > 0 for only a finite range of ω
(Fig. 10.3). We can estimate this limiting ωg in the following way: The total amount
of energy radiated in a single encounter as given by W in (10.17) must be equal to
the sum of the energies radiated at the different frequencies. This can be stated as

∞∫
0

|C(ω)|2 dω =
1

2π

∞∫
−∞

|v̇(t)|2 dt . (10.22)

Fig. 10.3 The power
spectrum of the radiation of a
single encounter (Bekefi
1966). p is the impact
parameter, v is the velocity, ω
is the radiation frequency
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This is nothing but the Rayleigh theorem in Fourier transformation theory. The
left-hand side of (10.22) can be approximated by C2(0)ωg, while (10.12) substituted
into the right-hand side of (10.22) results in

C(0)ωg =
3

8π
c3

e2 W .

From (10.21) and using (10.16) we obtain

C(0) = − Ze2

πm pv
, (10.23)

so that finally, with (10.17), we find

ωg =
3π2

64
v
p

= 0.463
v
p

. (10.24)

This is the limiting frequency below which the spectral density of the bremsstr-
ahlung of an electron colliding with an ion can be considered to be flat.

10.4 The Radiation of an Ionized Gas Cloud

The radiation emitted by a single encounter of an electron and an ion thus depends
in all its characteristic features – be this the total radiated energy W , its average
spectral density or the limiting frequency νg – on the collision parameters p and v.
In a cloud of ionized gas these occur with a wide distribution of values, and thus
the appropriate average will be the total radiation emitted by this cloud. In addition,
the radiation of each collision will be polarized differently; then the resulting emis-
sion will be randomly polarized. If, therefore, a single polarization component is
measured, this represents only 1/2 of the total emitted power.

From the last section we adopt the result that a collision with the parameters
p and v will emit bremsstrahlung with a flat spectrum, which, using (10.17) and
(10.24), is

Pν(p,v) =

⎧⎪⎨
⎪⎩

16
3

Z2e6

c3 m2

1
p2 v2 for ν < νg =

3π
64

v
p

0 for ν � νg

. (10.25)

Since we consider only collisions with small relative energy changes ΔE /E for
the electrons, their velocity is changed only very slightly during the collision, so
that a Maxwell distribution can be adopted for the distribution function of v:

f (v) =
4v2
√
π

( m
2kT

)3/2
exp

{
−mv2

2kT

}
. (10.26)
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The number of electrons in a unit volume of space with a given speed v =
√

v2

that will pass by a given ion with a collision parameter between p and p + dp is
(Fig. 10.4)

2π pdpvNe f (v)dv .

But since there are Ni ions per unit volume, a total of

dN(v, p) = 2πNi Ne v p f (v)dvdp (10.27)

collisions with collision parameters between p and p+ dp and velocities between v
and v+ dv will occur per second. As a result of these collisions a power of 4πεν dν
will be radiated in the frequency interval ν to ν+ dν given by

4πεν dν = Pν(v, p)dN(v, p)dν .

Substituting here (10.25) and (10.27) and integrating p from p1 to p2 and v from
0 to ∞ we find

4πεν =
p2∫

p1

∞∫
0

8
3

Z2e6

c3 m2

1
p2 v2 NiNe f (v)2π pvdpdv

=
32π

3
Z2e6

c3

NiNe

m2

∞∫
0

1
v

f (v)dv

p2∫
p1

dp
p

.

Using (10.26) the first integral becomes

∞∫
0

1
v

f (v)dv =

√
2m
πkT

,

so that finally

εν =
8
3

Z2e6

c3

NiNe

m2

√
2m
πkT

ln
p2

p1
. (10.28)

Fig. 10.4 A sketch
illustrating the derivation of
the probability of collisions
given the impact parameter p
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This is the coefficient for thermal emission of an ionized gas cloud. It contains the
appropriate limits for the collision parameter p1 and p2. If either p1 → 0 or p2 →∞,
εν diverges logarithmically; therefore appropriate values for these limits have to
be estimated. For p2, an upper limit should be the mean distance between the ions
or the Debye length in the plasma. This is a very large quantity in the interstellar
medium, so p2 = v/2πν . The values of p1 and p2 are traditionally collected into the
Gaunt factor.

Oster (1961) arrives at

pmax

pmin
=

p2

p1
=

(
2k T
γm

)3/2 m
πγ Ze2 ν

, (10.29)

where γ = eC = 1.781 and C = 0.577, Euler’s constant, which is valid as long as
T > 20 K and νmax > 30 GHz.

If the emission coefficient is known the absorption coefficient κν can be com-
puted using Kirchhoff’s law (1.14):

κν =
εν

Bν(T )

where Bν(T ) is the Planck function. Using the Rayleigh-Jeans approximation, we
obtain

κν =
4Z2e6

3c
NiNe

ν2

1√
2π(mkT )3

ln
p2

p1
. (10.30)

If we assume that the plasma is macroscopically neutral and that the chemical
composition is given approximately by NH : NHe : Nother

∼= 10 : 1 : 10−3, then to high
accuracy Ni = Ne. If further Te is constant along the line of sight in an emission
nebula, then it is useful to insert in the formula for the optical depth

τν = −
s∫

0

κν ds , (10.31)

both (10.30) and the emission measure EM as given by

EM
pccm−6 =

s/pc∫
0

(
Ne

cm−3

)2

d

(
s

pc

)
. (10.32)

Substituting numerical values in (10.30), we have

τν = 3.014×10−2
(

Te

K

)−3/2( ν
GHz

)−2
(

EM
pccm−6

)
〈gff〉 , (10.33)
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where the Gaunt factor for free-free transitions is given by

〈gff〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln

[
4.955×10−2

( ν
GHz

)−1
]

+1.5 ln

(
Te

K

)

1 for
ν

MHz
�

(
Te

K

)3/2
. (10.34)

Approximating 〈gff〉 by α T β νγ and substituting this into (10.33), the simpler
expression (Altenhoff et al. 1960)

τν = 8.235×10−2
(

Te

K

)−1.35( ν
GHz

)−2.1
(

EM
pccm−6

)
a(ν ,T ) (10.35)

can be derived. The correction a(ν ,T ) is usually ∼= 1. Substituting (10.35) into
(1.19) with the background set to zero, we find that the brightness of a gas cloud
is as given in Fig. 10.5. Using (1.37) this can be converted into the frequency distri-
bution Tb(ν) shown in this diagram. For an optically thin H II region we have

TB = Teτν = 8.235×10−2
(

Te

K

)−0.35( ν
GHz

)−2.1
(

EM
pccm−6

)
a(ν ,T )

(10.36)

Fig. 10.5 Thermal radiation
of a gas cloud. (a) Spectral
distribution of the intensity. I0
is the intensity, the electron
temperature is Te, and τ is the
optical depth, ν0 is the turn
over frequency, where τ = 1.
(b) Spectral distribution of
the brightness temperature
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where once again, a(ν ,T ) is usually ∼= 1.
When the frequency is given in units of ν0, where ν0 is that frequency at which

the optical depth is unity, we have, from (10.35):

ν0

GHz
= 0.3045

(
Te

K

)−0.643(a(ν ,T )EM
pccm−3

)0.476

. (10.37)

10.5 Nonthermal Radiation Mechanisms

Even though it had become clear that there are two kinds of radio sources, ther-
mal and nonthermal, the radiation mechanism of the second type of source long
remained an enigma since the proposed mechanisms were all unsatisfactory in one
way or another. The solution to this problem was presented in two papers in 1950,
one by Alfvén and Herlofson, the other by Kiepenheuer.

Alfvén and Herlofson proposed that the nonthermal radiation is emitted by rela-
tivistic electrons moving in intricately “tangled” magnetic fields of extended coro-
nas believed to surround certain kinds of stars. Kiepenheuer modified this proposal,
showing that the intensity of the nonthermal galactic radio emission can be under-
stood as the radiation from relativistic cosmic ray electrons that move in the general
interstellar magnetic field. Kiepenheuer deduced that a field of 10−6 Gauss and rel-
ativistic electrons of an energy of 109 eV would give about the observed intensity
if the electron concentration is a small percentage of that of the heavier particles in
cosmic rays.

This solution to the nonthermal radiation enigma proved to be tenable, and be-
ginning in 1951 Ginzburg and collaborators developed this idea further in a series
of papers. The radiation was given the name “synchrotron radiation” since it was
observed to be emitted by electrons in synchrotrons, but much of the relevant theory
had been developed earlier by Schott (1907, 1912) who used the name “magneto
bremsstrahlung”.

A fairly complete exposition of this theory which includes the polarization prop-
erties of this radiation is presented in the books of Pacholczyk (1970, 1977) where
extensive bibliographical notes are also given. Very readable accounts of the theory
are given by Rybicki and Lightman (1979) or by Tucker (1975). On a qualitative
level, the article by Scheuer (1967) is to be recommended.

In radio astronomy we usually observe only the radiation from an ensemble of
electrons with an energy distribution function that spans a wide range of electron en-
ergies. The electron distribution functions can quite often be expressed as a power
law, and many of the details of the synchrotron radiation are thus lost in the aver-
aging process. Therefore we will present here only a more qualitative discussion
emphasizing, however, the underlying basic principles. In this we will follow the
development by Rybicki and Lightman.
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Since the electrons that emit the synchrotron radiation are highly relativistic,
Lorentz transformations must be used to describe their motion. In the full theory
starting with the Liénard-Wiechert potentials of moving charges, all this is taken into
account, since Maxwell’s equations are invariant under Lorentz transformations.
Here we will start with a short review of these transformations.

10.6 Review of the Lorentz Transformation

The special theory of relativity is based on two postulates.

1) The laws of nature are the same in any two frames of reference that are in uniform
relative motion.

2) The speed of light, c, is constant in all such frames.

If we now consider two frames K and K′ that move with relative uniform veloc-
ity v along the x axis (Fig. 10.6), and if we assume space to be homogeneous and
isotropic, then the coordinates in the two frames are related by the Lorentz transfor-
mations

x = γ (x′ + vt ′)
y = y′

z = z′

t = γ
(

t ′ +β
x′

c

) , (10.38)

where

β =
v
c

(10.39)

and

γ = (1−β 2)−1/2 . (10.40)

Fig. 10.6 Coordinate systems
in relative motion. In the
(x,y,z) system, (x′,y′,z′)
moves to the right with
constant velocity, v
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Define the (three) velocity u by

ux =
dx
dt

=
dx
dt ′

dt ′

dt
= γ (u′x + v)

dt ′

dt
,

dt
dt ′

= γ
(

1+β
u′x
c

)
= γ σ , (10.41)

σ = 1+β u′x/c ,

so that

ux =
u′x + v

1+β
u′x
c

=
1
σ

(u′x + v) , (10.42)

uy =
u′y

γ
(

1+β
u′x
c

) =
1
γ σ

u′y , (10.43)

uz =
u′z

γ
(

1+β
u′x
c

) =
1
γ σ

u′z . (10.44)

For an arbitrary relative velocity v that is not parallel to any of the coordinate
axes, the transformation can be formulated in terms of the velocity components of
u parallel and perpendicular to v

u‖ =
u′‖ + v

1+β
u′‖
c

, (10.45)

u⊥ =
u′⊥

γ

(
1+β

u′‖
c

) . (10.46)

Although special relativity theory is concerned with the transformation of phys-
ical quantities moving with uniform velocity, it is also possible to compute how an
acceleration is transformed. Differentiating (10.42) to form

ax =
dux

dt
=

dux

dt ′
dt ′

dt

and using (10.41) so that
dσ
dt ′

=
β
c

a′x , (10.47)
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we obtain

ax = u̇x = γ−3σ−3a′x (10.48)

and

ay = u̇y = γ−2σ−3
(
σa′y −β

u′y
c

a′x

)
. (10.49)

For the special case when the particle is at rest in system K′, that is, that initially
u′x = u′y = u′z = 0, we have σ = 1 and

a′‖ = γ3 a‖ ,

a′⊥ = γ2 a⊥ .
(10.50)

The transformation equations (10.42–10.44) are fairly complicated and are dif-
ferent from the Lorentz transformations. This is so because neither the velocity
ux,uy,uz nor the accelerations ax,ay are components of four-vectors, and only four-
vectors obey the simple transformation laws of the coordinates.

Equation (10.41) describes the time dilation, giving the different rate at which a
clock at rest in the system K′ is seen in the system K:

Δ t = γ Δ t ′ . (10.51)

This should not be confused with the apparent time dilatation (contraction)
known as the Doppler effect. Let the distance between clock and observer change
with the speed vr. During the intrinsic time interval Δ t ′ the clock has moved, so that
the next pulse reaches the observer at

Δ t =
(

1+
vr

c

)
γ Δ t ′ . (10.52)

The factor γ is a relativistic effect, whereas (1 + vr/c) is due to nonrelativistic
physics.

10.7 The Synchrotron Radiation of a Single Electron

The motion of a particle with the charge e and the mass m that moves with a (three)
velocity v in a (homogeneous) magnetic field with the flux density B is governed by
the relativistic Einstein-Planck equations

d
dt

(γmv) =
e
c

(v×B) . (10.53)
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If there is no electric field E, then energy conservation results in the additional
equation

d
dt

(γmc2) = 0 . (10.54)

But this implies that γ is a constant and therefore that |v| is a constant. We project
v into two components, v‖ parallel to B and v⊥ perpendicular to B. Then we find
that

dv‖
dt

= 0 (10.55)

and

dv⊥
dt

=
e
γmc

(v⊥×B) . (10.56)

Equation (10.55) has the solution v‖ = constant so that, since |v| is constant,
|v⊥| must also be constant. The solution to (10.56) therefore must obviously be
uniform circular motion with a constant orbital velocity v⊥ = |v|. The frequency of
the gyration is

ωB =
eB
γmc

, ωG =
eB
mc

= γ ωB . (10.57)

Since the constant velocity v‖ is superimposed on this circular motion, the path
followed by the electron is a helix winding around B with the constant pitch
angle

tanα =
|v⊥|
|v‖|

. (10.58)

Inserting numerical values for e and m, we find

ωG

MHz
= 17.6

(
B

Gauss

)

so that, for B ∼= 10−6 Gauss in interstellar space, ωG = 18 Hz. For a relativistic par-
ticle with γ > 1 ωB will be even smaller! From (10.56) we see that the electron is
accelerated in its orbit, this acceleration is directed ⊥ to B and its magnitude is

a⊥ = ωB v⊥ . (10.59)

Since the electron is accelerated, it will radiate. We will investigate this radiation
in a three-step procedure for a single electron: (1) obtain the total power radiated,
(2) derive the polar radiation pattern, and (3) calculate the frequency distribution
of the emission. We will then consider an ensemble of electrons with a power law
distribution.



10.7 The Synchrotron Radiation of a Single Electron 257

10.7.1 The Total Power Radiated

Let us assume v‖ = 0 for simplicity. If we then select an inertial frame K′ that moves
with respect to rest frame K such that the electron is at rest at a certain time, then this
particle will not remain at rest for long since its acceleration is not zero. However,
for an infinitesimal time interval we can adopt this assumption. In frame K′, the
electron is nonrelativistic and radiates according to the Larmor formula (10.11)

P′ =
2e2

3c3 a′2⊥ , (10.60)

where a′⊥ is the acceleration of the electron in the rest frame K′.
We will now transform the emitted power P′ into the rest frame K which moves

relative to K′ with the velocity v⊥. The energy is one component of the four-
component vector (momentum, energy), and it is transformed accordingly by

W = γW ′ .

For a time interval (at constant space position) we have similarly

dt = γ dt ′

so that for the power emitted

P =
dW
dt

, P′ =
dW ′

dt ′

we find that
P = P′ . (10.61)

Considering in addition the transformation of the acceleration (10.49) we find

P =
2e2

3c3 γ
4 a2

⊥ =
2e2

3c3 a′2⊥ = P′ . (10.62)

Introducing the total energy E of the electron through

γ =
E

mc2 (10.63)

and using (10.59) we obtain as the power emitted by a relativistic (β ∼= 1) electron

P =
2e4v2

⊥B2

3m2 c5

(
E

mc2

)2

= 2σT γ2 cuB , (10.64)

where uB = B2/8π and σT = 6.65×10−25 cm2 is the Thomson cross section. Note
that the energy E introduced in (10.63) and (10.64) is a quantity entirely different
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from the electric field intensity E of (10.8) or of Chaps. 2, 3, 4, 5, 6. This unfortunate
double meaning for E cannot be avoided if we conform to the general usage. In the
subsequent sections, E will always be used in the sense of (10.63).

10.7.2 The Angular Distribution of Radiation

The electron moving along the Larmor circle is radiating because it is accelerated.
Because this acceleration is directed perpendicular to the direction of motion (in the
system K′), the power pattern of this emission will be that of a dipole field with the
dipole oriented along the direction of the acceleration. This power P′ has an angular
distribution given by

dP′(ϑ ′,ϕ ′)
dΩ ′ =

1
4π

e2

c3 a′⊥
2(1− sin2ϑ ′ cos2ϕ ′) (10.65)

and shown in Fig. 10.7. Transformed into the laboratory frame K this becomes

dP(ϑ ,ϕ)
dΩ

=
1

4π
e2

c3 a′⊥
2 1
(1−β cosϑ)3

{
1− sin2ϑ cos2ϕ

γ2(1−β cosϑ)2

}
(10.66)

as shown in Fig. 10.7 for an extremely mild relativistic case of β = 0.2.
Inspecting the low velocity limit β → 0 represented by (10.65) we see that no

radiation is emitted towards ϑ = 0,π . Thus we have u′⊥ = ±c and u′‖ = 0 for these
directions, and in the laboratory frame K they subtend the angle

Fig. 10.7 Instantaneous emission cones for an electron gyrating in a homogeneous magnetic
field. The electron is moving to the right in the plane of the paper, and the acceleration is di-
rected towards the bottom. θ and φ are angles in a polar coordinate system, θ = 0 is the di-
rection of the acceleration, φ = 0 points towards the direction of the motion for the electron.
(a) shows the emission for an electron with β = v/c � 1, while (b) gives that for β = 0.2.
When β � 1 the emission cone degenerates into a narrow pencil beam subtending the angle
tanθ = c/γv
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tanθ =
u⊥
u‖

=
c
γ v

=
1
γ

. (10.67)

The power P of (10.66) is then confined to a cone with the angle θ and we obtain
a strong beaming effect for relativistic electrons.

10.7.3 The Frequency Distribution of the Emission

The spectrum of synchrotron radiation is related to the detailed form of the varia-
tion of the electromagnetic field as seen by the observer; the strong beaming effect
that the dipole field experiences for a gyrating relativistic electron is the reason why
such electrons emit radiation with fairly high frequencies although the cyclotron
frequency ωG of these particles (according to (10.57)) is very low indeed. An ex-
ternal observer will be able to “see” the radiation from the electron only for a time
interval when the cone of emission of angular width 2/γ includes the direction of
observation.

In the comoving frame K′ of the electron the time for one gyration is

Δ t ′ =
2π
ωG

.

The pulse of radiation is visible, however, only for 2/2πγ due to the beaming
effect, so that the pulse emitted lasts only for the time interval

Δ t =
2π
ωG

=
2

2πγ
=

2
γ ωB

.

In the relevant part of the orbit the electron moves towards the observer, so that
vr = −v, and therefore is the pulse width in the frame K of the observer using the
Doppler formula

Δ t ′ = γ
(

1− v
c

)
Δ t ′ =

2
ωG

(
1− v

c

)
.

Now

(
1+

v
c

)(
1− v

c

)
= 1− v2

c2 = 1−β 2 =
1
γ2

and

1+
v
c
∼= 2 for γ � 1 ,

so that

1− v
c
∼= 1

2γ2



260 10 Emission Mechanisms of Continuous Radiation

and

Δ t =
1

γ3ωB
=

1
γ2ωG

.

If, in addition, the electron has some velocity component v 
= 0 parallel to the
magnetic field, it will move in a helix with a pitch angle α given by (10.58)

tanα =
|v⊥|
|v‖|

, (10.68)

and we obtain approximately

Δ t =
1

γ3ωB

1
sinα

. (10.69)

Radiation from the electron is therefore only seen for a time interval ∼ 1/γ3. If
the pulse is Fourier analyzed to derive the frequency distribution of the radiation we
see that very high harmonics of ωB will be present.

Tracing back the derivation of (10.57) we see that the factors γ2, γ3 ωG and ωB

arise from the following roots. The relativistic ωB is lower than ωG by the factor 1/γ
(10.57) because of the relativistic mass increase. The emitted pulse width becomes
shorter by the factor 1/γ due to relativistic beaming effect, and finally the Doppler
effect shortens the emitted pulse by another factor 1/γ2. Therefore the received
pulse width is shorter by 1/γ3 when the nonrelativistic ωB is used, while 1/γ2 enters
for ωG.

In effect, this factor causes energy emitted by the accelerated electron over a
fairly long time interval to pile up in one short pulse. This effect dramatically in-
creases both the radiated power and the highest radiated frequency. This frequency
distribution can be derived by Fourier analysis of the pulse shape; the details can be
found in Westfold (1959) or Pacholczyk (1970).

The total emissivity of an electron of energy E with γ � 1 which has a pitch
angle α with respect to the magnetic field is

P(ν) =
√

3
e3Bsinα

mc2

ν
νc

∞∫

ν/νc

K5/3(η)dη (10.70)

and the critical frequency νc is defined by

νc = 3
2γ

2νG sinα = 3
2γ

3νB sinα , (10.71)

where νG = ωG/2π is the non relativistic gyro-frequency according to (10.58), and
K5/3 is the modified Bessel function of 5/3 order.



10.8 The Spectrum and Polarization of Synchrotron Radiation 261

10.8 The Spectrum and Polarization of Synchrotron Radiation

If a more precise description of the radiation field of highly relativistic electrons
orbiting in a homogeneous magnetic field is required, more details of the orbit ge-
ometry have to be considered. Let the electron move with the (constant) velocity
components v‖ and v⊥ measured with respect to the direction of the magnetic field.
The emitted radiation will then be strongly beamed in the direction of the instanta-
neous velocity of the electron. Since this velocity vector describes a cone with the
opening angle α given by (10.58) whose axis is the direction of the magnetic field,
this is also the direction for the emission pattern of the radiation. The narrowness
of the instantaneous beam is determined solely by the energy γ of the electron. The
other properties of the radiation field depend on the angle between the observer and
the velocity vector.

Obviously radiation is only detected if the direction to the observer is inside the
emission beam. The instantaneous radiation is, in general, elliptically polarized, but
since the position angle of the polarization ellipse is rotating with the electron, the
time-averaged polarization is linear. This is true also for the radiation emitted by an
ensemble of monoenergetic electrons moving in parallel orbits.

The details of the Fourier expansion and the integration procedures needed are
rather complicated. If expressions for the time averaged radiation integrated over the
full sky are required, they are given by Westfold (1959), Ginzburg Syrovatskii (1965)
and Pacholczyk (1970). According to these, the spectral radiation density averaged
over all directions for linear polarizations parallel and perpendicular to the (pro-
jected) magnetic field is given by

P⊥ =
√

3
2

e3Bsinα
mc2 [F(x)+G(x)] , (10.72)

P‖ =
√

3
2

e3Bsinα
mc2 [F(x)−G(x)] , (10.73)

where

F(x) = x

∞∫
x

K5/3(t)dt , (10.74)

G(x) = xK2/3(x) , (10.75)

are shown in Fig. 10.8 and

x = ν/νc , (10.76)

νc =
3
2
γ2 eB

mc
sinα . (10.77)
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Fig. 10.8 The spectral distribution of the power of synchrotron radiation. The functions F(x) and
G(x) are related by (10.72) and (10.73) to the linear polarization components parallel and perpen-
dicular to the magnetic field, the frequency (10.76) is normalized by (10.77)

Table 10.1 Spectral Distribution of the emission from a charged particle moving in a magnetic
field

x F(x) G(x) p x F(x) G(x) p

0.00 0.0000 0.0000 0.500 1.00 0.6514 0.4945 0.759
0.01 0.4450 0.2310 0.519 1.10 0.6075 0.4669 0.769
0.02 0.5472 0.2900 0.530 1.20 0.5653 0.4394 0.777
0.03 0.6136 0.3305 0.539 1.30 0.5250 0.4123 0.785
0.04 0.6628 0.3621 0.546 1.40 0.4867 0.3859 0.793
0.05 0.7016 0.3881 0.553 1.50 0.4506 0.3604 0.800
0.06 0.7332 0.4102 0.560 1.60 0.4167 0.3359 0.806
0.07 0.7597 0.4295 0.565 1.70 0.3849 0.3125 0.812
0.08 0.7822 0.4465 0.571 1.80 0.3551 0.2904 0.818
0.09 0.8015 0.4617 0.576 1.90 0.3274 0.2694 0.823
0.10 0.8182 0.4753 0.581 2.00 0.3016 0.2502 0.829
0.12 0.8454 0.4988 0.590 2.50 0.1981 0.1682 0.849
0.14 0.8662 0.5184 0.598 3.00 0.1286 0.1112 0.865
0.16 0.8822 0.5348 0.606 3.50 0.0827 0.07256 0.877
0.18 0.8943 0.5486 0.613 4.00 0.0528 0.04692 0.888
0.20 0.9034 0.5604 0.620 4.50 0.0336 0.03012 0.897
0.22 0.9099 0.5703 0.627 5.00 0.0213 0.01922 0.904
0.24 0.9143 0.5786 0.633 5.50 0.0134 0.01221 0.910
0.26 0.9169 0.5855 0.639 6.00 0.00837 0.00773 0.916
0.28 0.9179 0.5913 0.644 6.50 0.00530 0.00487 0.920
0.30 0.9177 0.5960 0.649 7.00 0.00332 0.00306 0.923
0.40 0.9019 0.6069 0.673 7.50 0.002076 0.00192 0.926
0.50 0.8708 0.6030 0.692 8.00 0.001298 0.00120 0.927
0.60 0.8315 0.5897 0.709 8.50 0.000812 0.000752 0.926
0.70 0.7879 0.5703 0.724 9.00 0.000507 0.000469 0.924
0.80 0.7424 0.5471 0.737 9.50 0.0003177 0.0002920 0.919
0.90 0.6966 0.5214 0.749 10.0 0.0001992 0.0001816 0.912
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K5/3 and K2/3 are modified Bessel functions of (fractional) order (see Abramowitz
and Stegun 1964, Chaps. 9 and 10), P‖ and P⊥ is the radiative spectral power density
for linear polarization.

For the limiting cases of small and large arguments approximate expressions can
be given for both F(x) and G(x):

F(x) = 4π√
3Γ ( 1

3 )

(
x
2

)1/3
, x � 1 (10.78)

G(x) = 2π√
3Γ ( 1

3 )

(
x
2

)1/3
, x � 1 (10.79)

and

F(x) =
√
π
2

e−x√x = G(x) , x � 1 . (10.80)

Thus both functions vary like x1/3 for small x while they decrease as e−x for
large x.

F(x) attains its maximum value of 0.9180 at x = 0.2858, while the maximum
0.6070 of G(x) is at x = 0.4169.

It is rather difficult to compute numerical values for F and G at intermediate
values because this requires extensive use of asymptotic expansion, and it is rather
cumbersome to keep track of the precision. The values given in the literature are
probably all based on a tabulation given by Oort and Walraven (1956), since they
all contain identical inaccuracies. Table 10.1 has been computed independently and
should be correct to better than 3 or 4 decimal places.

The linear polarization of the radiation averaged over all directions is remarkably
high. This is given by

p =
P⊥−P‖
P⊥ +P‖

=
G(x)
F(x)

. (10.81)

This varies between 0.5 for x = 0 and 1.0 for x → ∞.

10.9 The Spectral Distribution of Synchrotron Radiation
from an Ensemble of Electrons

Equation (10.70) gives the spectral density distribution for the emission of a single
electron. Obviously the emission of N electrons, all with identical velocity and pitch
angle is N-fold this value. But in nature any situation is rarely so simple: the rela-
tivistic electrons move with velocities that vary over a wide range and they move in
a wide variety of directions. In addition, the magnetic field is frequently inhomoge-
neous and tangled.

Quite generally the volume emissivity (power per unit frequency interval per unit
volume and per unit solid angle) of the relativistic electrons is given by

ε(ν) =
∫
E

P(ν ,E)N(E) dE , (10.82)
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Fig. 10.9 The energy
spectrum of cosmic ray
electrons [from Meyer
(1969)]
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where P(ν ,E) is the total power that one electron with the energy E radiates ac-
cording to (10.70) and N(E)dE is the number of electrons per unit volume and per
unit solid angle moving in the direction of the observer and whose energies lie in
the range E,E + dE. From empirical evidence, cosmic ray data (Fig. 10.9) show
that N(E) is well described by a power law spectrum. But very little is known about
the pitch angle distribution. For many situations of astrophysical interest we assume
this distribution to be homogeneous and isotropic, so that

N(E)dE = KE−δ dE for E1 < E < E2 (10.83)

applies independently of the direction of electron motion.
In expression (10.70) for the total radiated power of a relativistic electron in a

magnetic field, E (or γ) appears only through νc. This alone is sufficient to derive
an important result concerning the shape of the synchrotron spectrum emitted by
electrons with a power law distribution of their energies. Introducing (10.83) into
(10.82) and using (10.63) and (10.77) we find

ε(ν) =
E2∫

E1

P(ν/νc)E−δ dE
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and
νc = μE2 , (10.84)

where

μ =
3

4π
eBsinα

m3c5 . (10.85)

Substituting

x =
ν
μE2 , dE = − 1

2
√μ ν

1/2 x−3/2 dx (10.86)

we obtain

ε(ν) ∝ ν(1−δ )/2

x2∫
x1

P(x)x(δ−3)/2 dx , (10.87)

where
ν1 = μE1 , ν2 = μE2 . (10.88)

If we now put

n = 1
2 (δ −1) (10.89)

or equivalently

δ = 2n+1 (10.90)

(10.87) can be written as

ε(ν) ∝ ν−n

ν/ν1∫

ν/ν2

xn−1P(x) dx . (10.91)

ε(ν) ∝ ν−n [Q(n,ν/ν1)−Q(n,ν/ν2)] , (10.92)

where

Q(n,ν/νc) =
∞∫

ν/νc

xn−1F(x)dx . (10.93)

For ν/ν2 � x � ν/ν1, Q is independent of the frequency and

ε ∝ ν−n (10.94)

independently of the pitch angle distribution. For ν > ν2 the synchrotron spectrum
should fall off exponentially, while for ν < ν1 the spectral index should approach
that of the low-frequency approximation (10.78) of F(x), viz. n = 1/3. Therefore it
should be possible to investigate the shape of the distribution function of relativistic
electrons (10.83) from the shape of their synchrotron spectrum. The spectral index
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δ of the power-law distribution of the electrons is related to n through (10.89), and
the energy limits E1 and E2 are given by ν1 and ν2 of (10.77), and they therefore
should be observable.

Practical experience with this technique has, however, been rather inconclusive.
Bona fide high-frequency breaks in the spectrum that can be interpreted as high-
energy cut-offs in the energy distribution function of the relativistic electrons are
not observed, and the interpretation of low-frequency breaks is unclear because of
optical depth effects either due to absorption in the foreground thermal interstellar
plasma or due to synchrotron self-absorption. Another discussion of these problems
is presented in Sect. 10.11 and again in Chap. 11, in connection with supernovae.

While the spectral shape of the synchrotron emission is fairly independent of the
strength and geometry of the magnetic field in the region, where the radiation is
emitted, both the intensity and the state of polarization depend strongly on these
quantities. It is rather difficult to obtain general statements valid for all configura-
tions of the magnetic field and pitch angle distributions of the relativistic electrons.
Thus we will discuss only two limiting cases: (1) a homogeneous magnetic field
with a uniform direction, and (2) a field with completely random orientation. The
energy limits E1 and E2 where (10.83) ceases to be valid are assumed to be well
outside the accessible regions, so that (10.94) with (10.89) applies.

10.9.1 Homogeneous Magnetic Field

Let us assume that the synchrotron emission arises from a region in which the mag-
netic field is uniform in strength and orientation and which extends for the depth
L along the line of sight. Introducing (10.70) into (10.82) we obtain for the total
intensity of the emission provided the optical depth is small (Lang 1974)

ε(ν) = a(n) K

√
3

8π
e3

mc2

[
3e

4πm3c5

]n

(Bsinα)n+1ν−n , (10.95)

where

a(n) = 2n−1 n+5/3
n+1

Γ
(

3n+1
6

)
Γ
(

3n+5
6

)
. (10.96)

Numerical values for a(n) are given in Table 10.2. Inserting CGS values for the
physical constants, this becomes

I(ν) = 0.933 a(n)K LBn+1
⊥

(
6.26×109

ν/GHz

)n

Jy rad−2 . (10.97)

In the preceding we had shown that the average radiation of monochromatic rela-
tivistic electrons is linearly polarized provided the magnetic field is homogeneous.
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Table 10.2 Weighting factors for synchrotron emission of a power-law distribution of relativistic
electrons

n δ a(n) b(n) p(n) n δ a(n) b(n) p(n)

0.0 1.0 5.236 0.2834 0.600 3.0 7.0 5.016 0.1844 0.857
0.2 1.4 3.156 0.1646 0.643 3.2 7.4 6.240 0.2253 0.863
0.4 1.8 2.320 0.1169 0.677 3.4 7.8 7.866 0.2792 0.868
0.6 2.2 1.913 0.0933 0.706 3.6 8.2 10.039 0.3505 0.873
0.8 2.6 1.705 0.0806 0.730 3.8 8.6 12.963 0.4454 0.878
1.0 3.0 1.612 0.0741 0.750 4.0 9.0 16.923 0.5725 0.882
1.2 3.4 1.596 0.0714 0.767 4.2 9.4 22.325 0.7440 0.886
1.4 3.8 1.642 0.0715 0.783 4.4 9.8 29.744 0.9768 0.890
1.6 4.2 1.744 0.0741 0.796 4.6 10.2 40.003 1.2951 0.894
1.8 4.6 1.905 0.0791 0.808 4.8 10.6 54.288 1.7335 0.897
2.0 5.0 2.133 0.0866 0.818 5.0 11.0 74.310 2.3411 0.900
2.2 5.4 2.441 0.0970 0.828
2.4 5.8 2.849 0.1109 0.836
2.6 6.2 3.385 0.1292 0.844
2.8 6.6 4.089 0.1531 0.851

The degree of linear polarization will, however, be dependent on frequency. It is
remarkable that the radiation emitted by an ensemble of relativistic electrons with a
power law distribution of energies still shows linear polarization.

Introducing (10.83) into (10.82) we obtain

p =

∫
G(x)γ−δ dγ∫
F(x)γ−δ dγ

.

Expressing γ in terms of x, and introducing n through (10.89) this becomes

p =

∫
G(x)x−(n+2) dx∫
F(x)x−(n+2) dx

. (10.98)

Since

∞∫
0

xμF(x)dx =
2μ+1

μ+2
Γ
(
μ
2

+
7
3

)
Γ
(
μ
2

+
2
3

)
, (10.99)

∞∫
0

xμG(x)dx = 2μΓ
(
μ
2

+
4
3

)
Γ
(
μ
2

+
2
3

)
, (10.100)

and using the functional equation Γ (x+1) = xΓ (x), (10.98) can be simplified to
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p =
n+1

n+5/3
. (10.101)

Note that the resulting degree of linear polarization is independent of the fre-
quency, and has the remarkably high value of 72 % for n = 0.75.

10.9.2 Random Magnetic Field

It is only the assumption of a homogeneous and regular magnetic field distribution
that leads to this high degree of linear polarization. Adopting a field with random
orientation (10.95) must be averaged correspondingly. Using the relation

1
2

π/2∫
0

sinn+1α sinα dα =
π
2

Γ
(

n+3
2

)

Γ
(

n+4
2

) (10.102)

we obtain for the average emissivity of the radiation

ε(ν) = b(n)K
e3

mc2

[
3e

4πm3c5

]n

Bn+1 ν−n , (10.103)

where b(n) is another function of the (observed) spectral index n

b(n) = 2n−4

√
3
π

Γ
(

3n+1
6

)
Γ
(

3n+11
6

)
Γ
(

n+3
2

)

(n+1)Γ
(

n+4
2

) (10.104)

The polarization of the radiation field vanishes. In terms of CGS units (10.103)
becomes

I(ν) = 13.5 b(n)K LBn+1
(

6.26×109

ν/GHz

)n

Jy rad−2 (10.105)

Therefore, if the observations show partial linear polarization for the radiation,
we can be certain that the magnetic field must be uniform in the region where the
synchrotron radiation is emitted. Observations show that such regions can extend
over ranges of the order of kpc; this is the case both for our own Galaxy and for
distant extragalactic systems.
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10.10 Energy Requirements of Synchrotron Sources

When physical models for nonthermal radio sources are proposed, one of the first
considerations must be the energetics. The total energy content of the source can
only be estimated when the physical mechanism that provide their power is known.
For nonthermal sources, thermal radiation is usually not seen in the radio range, but
may be in the infrared. Thus the thermal energy content is not well determined from
radio data alone.

The energy output of nonthermal sources in the radio range is mainly in the form
of synchrotron emission, and therefore the energetics of this process are of main
interest here. Energy must be present in two different forms for such emission to
occur: the kinetic energy of the relativistic particles, Wpart, and the energy stored in
the magnetic field, Wmag. We will now estimate how much of these must be available
in order to provide the observed flux density Sν .

If V is the volume of the source then the total energy content that is available for
the synchrotron mechanism is, for μ = ε = 1

Wtot = Wpart +Wmag = V
(
up +umag

)
. (10.106)

Here up is the energy density of the relativistic particles, that is, of the electrons
and protons (and ions with Z > 1). Since protons emit only very little synchrotron
radiation compared to electrons of the same kinetic energy E, very little is known
about their energy density, and it is customary to assume that

up = η ue , (10.107)

where ue is the energy density of the electrons and η > 1 is a factor taking all other
particles into account. Now if we again assume a power law (10.83) for the energy
spectrum of the electrons, the energy density of the synchrotron source in the form
of particles will be

up = ηK

Emax∫
Emin

E1−δ dE , (10.108)

umag =
1

8π
B2 . (10.109)

An electron with a kinetic energy E will radiate over a wide range of frequencies
with a spectral density given by (10.72, 10.73, 10.74, 10.75, 10.76, 10.77), but since
radiated power peaks strongly close to νc, no large error will be made if we substitute
a frequency ν for E in (10.108). From (10.77) and (10.63), there is

ν =
3
2

eB
m3c5 E2 , (10.110)
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so that
up = K ×G×Bn−1/2 (10.111)

where

G =
η

1−2n

( e
m3c5

)n−1/2(
ν1/2−n

max −ν1/2−n
min

)
(10.112)

and

Wtot = V ×
(

K ×G×Bn−1/2 +
1

8π
B2

)
. (10.113)

In these expressions K and B are independent variables and the total energy con-
tent of the source can vary within wide limits depending on which values for K
and B are chosen. We will restrict this wide range of values by making use of the
fact that the same electrons that contribute to the energy content also radiate. Their
emissivity is given by (10.95) or (10.103); which of these expression is used de-
pends on the large-scale morphology of the magnetic field in the source. But since
only order-of-magnitude estimates are used here, the numerical differences of these
two formulae are not very critical.

Assuming a spherical shape for the synchrotron source with a volume V , and a
source distance R, then the observed flux density will be

Sν = K H
V
R2 Bn+1ν−n (10.114)

with

H = b(n)
e3

mc2

(
3e

4πm3c5

)n

. (10.115)

Using (10.114) K can be eliminated from (10.113) resulting in

Wtot =
G
H

R2 (Sννn)B−3/2 +
V
8π

B2 . (10.116)

Provided that both the distance, R, and the source volume, V , are known, B is the
only unknown quantity. Then Wtot attains the minimum value for

Beq =
(

6π
G
H

R2

V
Sν νn

)2/7

, (10.117)

and for this magnetic field strength we find

up

umag
=

4
3

, (10.118)

so that

Wtot =
7
4
(6π)−3/7

(
Gνn

H
Sν

)4/7

R8/7 V 3/7 . (10.119)

This equation is normally used in high-energy astrophysics to estimate the mini-
mum energy requirements of a synchrotron source.
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10.11 Low-Energy Cut-Offs in Nonthermal Sources

The interpretation of the spectrum of nonthermal radio sources as synchrotron emis-
sion of relativistic electrons and estimates of the distribution function of the elec-
trons, their energy range, cut-off, etc. as described here is incomplete, since other
effects have not been considered. In the low-frequency range, in particular, there
are several mechanisms that will affect the observed spectral index of the radiation,
and it is difficult to decide for a particular source which of the possible cases does
applies.

Synchrotron radiation at frequencies below the low-frequency cut-off ν1

(cf. (10.88)) should have a spectral index of n = 1/3 according to the low-frequency
asymptotic form (10.78) of F(x). This interpretation is, however, far from unique,
so other interpretations are possible.

In synchrotron radiation fields spontaneous photon emission will be accompa-
nied by absorption and stimulated emission as in any other radiation field. This
absorption can become important in compact, high-intensity radio sources at low
frequencies when the optical depth becomes large. The spectral distribution of such
optically thick sources is n = −5/2 (cf. Scheuer 1967, Rybicki and Lightman 1979,
p. 190). That this index is different from the value n =−2 (the Rayleigh-Jeans value)
is an indication of the nonthermal quality of the synchrotron radiation. This is also
indicated by the fact that such sources can still show linear polarization if their mag-
netic field is homogeneous and smooth.

Another effect that could cause a low-frequency cut-off in the synchrotron spec-
trum has been discussed by Razin (c.f. Rybicki and Lightman (1979) p. 234). This
effect is based on the fact that the interstellar medium in a radio source is a plasma.
If the frequency of the radiation field comes close to the plasma frequency, the re-
fractive index is

nP =

√
1− ν

2
P

ν2 ,

so that the speed of light is c/n. Therefore the relativistic beaming, which is
needed if frequencies higher than the local cyclotron frequency νG are to be reached,
is not effective. The synchrotron emission, therefore, will be reduced below this
frequency. The Razin effect is therefore not absorption, but rather a failure of syn-
chrotron emission.

Finally, there might be a foreground thermal plasma which will absorb the syn-
chrotron emission at lower frequencies. In conclusion, the interpretation of the low-
frequency range of the spectrum of nonthermal sources is far from simple and
unique. Interpretations may be obtained by combining information obtained from
high-resolution aperture synthesis observations, spectral data and variability studies.
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10.12 Inverse Compton Scattering

10.12.1 The Sunyaev-Zeldovich Effect

We can have a situation in which photons from a cold source, the 2.7 K background,
interact with a hot foreground source, a cluster of galaxies. Such clusters have free
electrons with Tk > 107 K; so the bremsstrahlung radiation peaks in the X-ray range.
The net effect of an interaction of the photons and electrons is to shift longer wave-
length photons to shorter wavelengths.

Quantitatively, this scattering can be analyzed using the approach described at
the beginning of Sect. 10.7, if we use for the acceleration

a =
e

m0
E ,

where E is the electric field. The Lorentz transformation for the electron is

E’ = γ
(

E+
v
c
×B

)
, (10.120)

so that the radiation in the zeroth-order rest frame of the electron is

P =
2e2

3c3 a2
⊥ =

2e4

3m2c3 (E’)2 . (10.121)

Transforming this to the laboratory rest frame,

P = 2
8π
3

(
e4

m2
0c4

)
γ2

(
E+

v
c
×B

)2

c

8π

= σT γ2 cuphotons = 1.99×10−14 γ2 cuphotons (10.122)

where

σT =
8π
3

(
e2

mc2

)2

= 6.65×10−25 cm2 (10.123)

is the Thomson electron cross section, and uphoton is the laboratory rest-frame photon
energy density. The power radiated is manifested as an apparent absorption, and the
energy lost by the electrons is the energy gained by the photons, namely γ2. Then

(
Eafter −Ebefore

Ebefore

)
= (γ2 −1) ∼= v2

c2
∼= 3kT

m0c2 . (10.124)

The total effect is a loss of photons at wavelengths longer than 1.6 mm (the peak
of the 3 K background). The fractional decrease in the background temperature is
the product of the Thomson cross section times the column density of the electrons
times the energy loss:
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ΔT
T

=
1
2

3kT
m0c2 σT LNe . (10.125)

There is an additional factor of 4
3 from a detailed analysis using the Kompaneets

equation (see, e.g. Rybicki and Lightman (1979) p. 213). Thus, the final result, re-
ferred to as the Sunyaev-Zeldovich effect, is:

ΔT
T

=
2kTe

mec2 σT Ne L = 2.24×10−34 Te Ne L . (10.126)

The X-ray bremsstrahlung depends on N2
e L. When combining maps of the

X-ray emission and the Sunyaev-Zeldovich or S-Z absorption, these effects can be
used to estimate distances independently of assumptions about any red-shift dis-
tance relation. Thus, one could obtain another estimate of the Hubble constant. We
give an example in the next chapter.

10.12.2 Energy Loss from High-Brightness Sources

We can also use a simple form of the inverse Compton effect to estimate limits on
brightness temperature in high-brightness nonthermal sources. From (10.124) we
have, for the energy loss of electrons

−P =
dE
dt

= σT γ2 c2 uph = (γmec2)
(
γeσT

mec2

)
uph , (10.127)

where me is the electron rest mass. Then

− dE
dt

= E
σTγ
mec

uph , (10.128)

1
E

dE
dt

= 2.4×10−8 γ uph . (10.129)

We have assumed here that the photon energy is much less than that of the rel-
ativistic electrons. This allows us to avoid a more complex expression for the scat-
tering. The expression in (10.129) gives a characteristic time for energy losses. The
quantity γ is a free parameter, but the highest observed frequency of synchrotron
emission can be combined with (10.77) and a value for νG = 17B, where B is in
Gauss and ν in MHz, we have a limit on electron lifetimes. This expression should
be compared to (10.64), the energy loss for synchrotron emission. Taking the ratio
we find

ELCompton

ELsynchrotron
=

uph

uB
. (10.130)

That is, the ratio of the energy in the photon field to that in the magnetic field. If
these are equal, Compton losses dominate.
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Problems

1. Suppose an object of radius 100 m, with a uniform surface temperature of 100 K
passes within 0.01 AU of the earth (an astronomical unit, AU, is 1.46×1013 cm).
(a) What is the flux density of this object at 1.3 mm?
(b) Suppose this object is observed with a 30 m telescope, at 1.3 mm, with a beam-
size of 12′′. Assume that the object has a Gaussian shape; calculate the peak bright-
ness temperature by considering the dilution of the object in the telescope beam.
Neglect the absorption by the earth’s atmosphere.
(c) This telescope is equipped with a bolometer with NEP = 10−15 W Hz−1/2 and
bandwidth 20 GHz; how long must one integrate to detect this object with a 5 to
1 signal-to-noise ratio, if the beam efficiency is 0.5, and the earth’s atmospheric
optical depth can be neglected?

2. The Orion hot core is a molecular source with an average temperature of 160 K,
angular size 10′′, located 500 pc (= 1.5×1021 cm) from the Sun. The average local
density of H2 is 107 cm−3.
(a) Calculate the line-of-sight depth of this region in pc, if this is taken to be the
diameter.
(b) Calculate the column density, N(H2), which is the integral of density along the
line of sight. Assume that the region is uniform.
(c) Obtain the flux density at 1.3 mm using Tdust = 160 K, the parameter b = 1.9,
and solar metallicity (Z = Z�) in Eq. 10.7.
(d) Use the Rayleigh–Jeans relation to obtain the dust continuum main beam bright-
ness temperature from this flux density, in a 10′′ beam. Show that this is much
smaller than Tdust.
(e) At long millimeter wavelengths, a number of observations have shown that
the optical depth of such radiation is small. Then the observed temperature is
T = Tdust τdust, where the quantities on the right hand side of this equation are the
dust temperature and dust optical depth. From this relation, determine τdust.
(f) At what wavelength is τdust = 1 if τdust ∼ λ−4?

3. (a) From Fig. 10.1, determine the “turnover” frequency of the Orion A HII region,
that is the frequency at which the flux density stops rising, and starts to decrease.
This can be obtained by noting the frequency at which the linear extrapolation of the
high and low frequency parts of the plot of flux density versus frequency meet. At
this point, the optical depth, τff, of free–free emission through the center of Orion
A, is unity, that is τff = 1. Call this frequency ν0.
(b) From Eq. (10.35), there is a relation of turnover frequency, electron temperature,
Te, and emission measure. This relation applies to a uniform density, uniform tem-
perature region; actual HII regions have gradients in both quantities, so this rela-
tion is at best only a first approximation. Determine EM for an electron temperature
Te = 8300 K.
(c) The FWHP size of Orion A is 2.5′, and Orion A is 500 pc from the Sun. What
is the linear diameter for the FWHP size? Combine the FWHP size and emission
measure to obtain the RMS electron density.
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4. A more accurate method to obtain the emission measure of the high electron
density core of an HII region such as Orion A is to use TB = Teτff, where TB is the
brightness temperature of the source corrected for beam dilution.
(a) Use the Te and source FWHP size values given in the last problem. For
ν = 23 GHz, take the main beam brightness temperature, TMB = 24 K, and the
FWHP beamsize as 43′′. Correct the main beam brightness temperature, TMB, for
source size to obtain TB.
(b) Determine τff.
(c) Use Eq. (10.35) with a = 1 to find ν0 and EM; compare these results to those
obtained in the last problem. Discuss the differences. Which method is better for
determining the EM value for the core of an HII region at high frequencies?

5(a). For frequencies above 2 GHz, the optical depth of Orion A is small (i.e., the
source is optically thin) and τff varies as ν−2.1. Calculate τff at 5 GHz, 10 GHz,
23 GHz, 90 GHz, 150 GHz and 230 GHz.
(b) Next calculate the peak brightness temperature, at the same frequencies, for
a telescope beam much smaller than the FWHP source size. Use the expression
TB = Teτff.
(c) With the IRAM radio telescope of 30 m diameter, one has a FWHP beamwidth
in arc seconds of θb = 2700/ν , where ν is measured in GHz. Calculate the main
beam brightness temperature at the frequencies given in part (a).

6. (a) Given the characteristics of the sources Orion A (from the last two problems)
and Orion hot core (Problem 2), at what frequency will the continuum temperatures
of these sources be equal when measured with the 30 m telescope?
(b) Repeat this calculation for the Heinrich Hertz sub-millimeter telescope, of 10 m
diameter, where now the FWHP beamwidth is θ = (8100/ν) for ν measured in
GHz. Will Tdust equal Tff at a higher or lower frequency?

7. (a) The HII region W3(OH) is 1.88 kpc from the Sun, has a FWHP size of 2′′

and a turn over frequency of 23 GHz. Determine the RMS electron density if the
Te=8500 K. Determine the mass of ionized gas.
(b) There is a molecular cloud of size 2′′ located 7 arcsec East of W3(OH). The dust
column density of order 1024 cm−2, with Tdust=100 K. Given these characteristics,
at what frequency will the continuum temperatures of these sources be equal when
measured with the 30 m telescope?
(c) Repeat this calculation for the Heinrich Hertz sub-millimeter telescope. Will
Tdust equal Tff at a higher or lower frequency?

8. The Sunyaev–Zeldovich (S-Z) effect can be understood in a qualitative sense
by considering the interaction of photons in the 2.73 K black body distribution with
much more energetic electrons, with an energy of 5 keV and density of ∼10−2 cm−3.
(a) What is the energy of photons with a wavelength of 1.6 mm (the peak of the
background distribution)? Compare to the energy of the electrons.
(b) Obtain the number of 2.73 K photons per cm3 from Problem 20c of Chap. 1.
(c) Assume that the interaction of the 2.73 K black body photons with the elec-
trons (assumed monoenergetic) in the cluster will lead to the equipartition of energy.
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Make a qualitative argument that this interaction leads to a net increase in the en-
ergy of the photons. Justify why there is a decrease in the temperature of the photon
distribution for wavelengths longer than 1.6 mm and an increase shorter than this
wavelength.

9. The source Cassiopeia A is a cloud of ionized gas associated with the remnant of
a star which exploded about 330 years ago. The radio emission has the relation of
flux density as a function of frequency shown in Fig. 10.1 in “Tools”. For the sake
of simplicity, assume that the source has a constant temperature and density, in the
shape of a ring, with thickness 1′ and outer radius of angular size 5.5′. What is the
actual brightness temperature at 100 MHz, 1 GHz, 10 GHz, 100 GHz?

10. Obtain the integrated power and spectral index for synchrotron radiation from
an ensemble of electrons which have a distribution N(E) = N0, that is a constant
energy distribution from Emin to Emax.



Chapter 11
Some Examples of Thermal and Nonthermal
Radio Sources

As mentioned previously, radio sources can be divided into two classes: thermal
and nonthermal. Here we will give examples of each class and discuss the physics
involved in some detail.

As an example of a thermal source, we will first describe the emission from the
quiet sun. As a second, perhaps more important type of thermal source we discuss
galactic H II regions and ionized outflows. H II regions will be discussed later in
connection with recombination line radiation. For nonthermal sources, we use su-
pernova remnants as one example. We will present a sketch of their time evolution
without discussing the energy sources driving the explosion and the mechanisms
producing the highly relativistic electrons and magnetic fields. As additional exam-
ples, we consider the radio emission from Cygnus A and an example of the Sunyaev-
Zeldovich effect. Finally we discuss some considerations of the time variability of
flux density of some sources.

11.1 The Quiet Sun

First attempts to identify the radio emission of the sun were made soon after the
detection of radio waves by H. Hertz. Kennelly, one of Edison’s coworkers, men-
tioned in a letter that such investigations took place in 1890. However, these at-
tempts, like those of Scheiner and Wilsing in Potsdam (1896), Sir Oliver Lodge
in England (1900) and of Nordman in France (1902), proved unsuccessful. There
are two reasons why these experiments failed. In 1900 Planck derived the spectral
distribution of thermal radiation so that the expected intensity of solar radiation at
radio wavelengths could be computed. This was found to be much too small for
the sensitivity of the then available radio receivers. Second, in 1902 Kennelly and
Heavyside concluded, from the possibility of transoceanic radio transmission, that
there must be a conducting layer high in the earth’s atmosphere that reflects radio
waves and that this layer would prevent the reception of solar radio radiation at long
wavelengths.

More than 40 years later Southworth (1942) detected thermal radiation of the
quiet sun, while in the same year Hey found very intense, time variable solar
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radiation whose emission was associated with the sunspot phenomenon. Jansky did
not detect the Sun because he observed during the period of minimum solar activity.
Observations of the time and spatial distributions of these microwave bursts, and a
theoretical explanation in terms of concepts of plasma physics belong to solar radio
astronomy proper. This is an extensive and specialized field which will not be cov-
ered here; several monographs listed in the list of general references for this chapter
give a good review. We will be concerned only with the radio emission of the quiet
sun, that is, with the thermal radiation of the sun’s corona.

As was known from optical measurements there is an extended atmosphere above
the solar photosphere in which the gas temperature increases rapidly with height
from about 6000 K in the photosphere to a temperature of several million K. The
gas density in the corona is lower than that of the photosphere. Because of the lower
density, the corona does not stand out in the visual range; its influence is best seen
in observations made at solar eclipses. The opposite is true in the radio range: here
the radiation of the hot gas is dominant.

Due to the high temperature in the corona the gas is almost fully ionized. The
electron density distribution is described by the Baumbach-Allen formula

Ne

cm−3 =

[
1.55

(
r
r0

)−6

+2.99

(
r
r0

)−16
]
×108 (11.1)

and for the electron temperature a constant value of Te
∼= 106 K can be adopted for

h = r− r0 > 2×109 cm (Fig. 11.1) where r0 is the solar radius, 7×1010 cm.
The optical depth τν and the resulting brightness temperature of the corona could

now be computed using (10.35) and (1.37) starting with τν = 0 at h → ∞. But for

Fig. 11.1 The solar corona after Baumbach and Allen
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Fig. 11.2 Refraction in the
solar corona

low frequencies not too far away from the plasma frequency (2.77) the index of
refraction (2.81) is significantly less than unity (n < 1), so that refraction effects
must be taken into account in the radio range. The radio waves will propagate along
curved paths. We will now determine the differential equation governing the shape
of these rays.

If the corona is considered to consist of concentric shells of constant index of
refraction n (Fig. 11.2), then the law of refraction gives

n′ sinϕ ′ = nsinψ , (11.2)

while in the triangle C P Q

sinψ
r

=
sin(180◦ −ϕ)

r′
=

sinϕ
r′

. (11.3)

From this
nr sinϕ = n′ r′ sinϕ ′ = � = const , (11.4)

where the parameter � of the ray is equal to the minimum distance from the solar
center that a straight line tangent to the exterior part of the ray would have attained.
The angle ϕ(r) between the ray and the solar radius is closely related to the slope
of the ray, so that (11.4) or the equivalent

n(r)r sinϕ(r) = � (11.5)

is a differential equation for the rays in the solar corona.
If the brightness distribution across the solar disk is to be computed, the equation

of transfer (1.17) has to be solved along a representative sample of rays as shown in
Fig. 11.3. Each ray has a point of closest approach and it is symmetrical around this
point. The radius of this point of closest approach is found from (11.5) by putting
ϕ = π

2 .
The brightness distribution across the solar disk now depends on how the opti-

cal depth is distributed along the ray in relation to this point of closest approach
(Fig. 11.4).
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Fig. 11.3 Ray geometry in
the solar atmosphere [after
Jaeger and Westfold (1949)]

1) For low frequencies ν < 0.1 GHz (λ > 3 m) the refraction effects in the outer
parts of the solar corona are so strong that the points of closest approach are
situated well above those layers where τν approaches unity. The solar disk is
brightest at the center and the brightness decreases smoothly with r reaching
zero only after several solar radii. Because τν � 1, the brightness temperature is
less than the corona temperature.

2) For 0.1 GHz < ν < 3 GHz, the optical depth reaches unity, τν ∼= 1, near the point
of closest approach. Refraction effects can be neglected. The situation can be
modelled by a luminous atmosphere above a non luminous stellar body, resulting
in a bright rim.

3) For ν > 3 GHz conditions approach those met in the optical range. The optical
thickness produced by the corona is so small that very little radiation is emitted
by it and there is no bright rim.

The study of thermal radiation from the quiet sun is considered to be rather well
understood. This emission is often negligible compared to the nonthermal, slowly

Fig. 11.4 Brightness distribution across the solar disk at different wavelengths [after Smerd
(1950)]
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varying component, and much less than the intensity of solar bursts. Active solar
events are studied using instruments such as the Nancay and Nobeyama Radio He-
liographs. The instruments, observational techniques and models needed to study
active regions such as solar flares, coronal mass ejections and non-thermal phe-
nomena differ considerably from those used in the other areas of radio astronomy.
Thus this subject has become a separate but important discipline that affects “space
weather”. A summary of more recent solar radio results is given in McLean and
Labrum (1985), Bastian et al. (1998) and Gary and Keller (2004).

11.2 Radio Radiation from H II Regions

11.2.1 Thermal Radiation

The radio radiation from H II regions was discovered later than nonthermal radi-
ation, since the peak intensities are at most the electron temperature, Te. For all
H II regions Te < 20000 K. In the following, we illustrate the principles given in
Sect. 9.4, using data taken for the nearby H II region Orion A, M 42. This well-
known, visible source is located about 450 pc from the sun, and is on the front side
of a massive molecular cloud. Figure 11.5 contains two radio maps. Both were taken
with the 100 m telescope. The lower map was measured at a frequency of 4.8 GHz,
or a wavelength 6.2 cm. The beamsize was measured to be 2.45′. In order to recover
the detailed structure at the low intensity levels, a variant of CLEAN was applied
(see Sect. 9.4.2). The peak intensity in main beam brightness units is 330 K.

The map shown at the top was made at a frequency of 23 GHz, a wavelength of
1.3 cm. The beam size of the 100 m telescope was measured to be 40′′. The FWHP
size of the core of Orion A is measured to be 2.5′ at 23 GHz. The peak main beam
brightness temperature of Orion A at 23 GHz is 24 K. Since the measured size of
the core of Orion A is much larger, this is the actual brightness temperature (if
small scale structure is not important). At 4.8 GHz, there is some confusion with
NGC 1982, to the north, but the size of the core is consistent with the result ob-
tained at 23 GHz. At 4.8 GHz, the size of the beam is comparable to that of the core,
so that the observed peak brightness temperature must be corrected for beam size
to obtain the actual peak brightness temperature. Then the peak brightness temper-
ature at 4.8 GHz is 650 K. The difference in brightness temperatures at 23 GHz and
4.8 GHz is consistent with (10.35). From (1.17), these results are consistent with the
same electron temperature, Te and small optical depth, τ . From Fig. 11.5, the radio
emission of Orion A is far more extended at 4.8 GHz than at 23 GHz. This is not
a result of lower receiver sensitivity at 23 GHz, but is caused by the fact that for a
given emission measure and Te, brightness temperatures decrease at shorter wave-
lengths. This is illustrated in Fig. 11.5. In effect, at shorter wavelengths, the ionized
gas becomes optically thin, and we are looking through a more and more transparent
medium.
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Fig. 11.5 Single-dish radio maps of Orion A, made with the 100 m telescope. In the upper panel
is the 1.3 cm map (angular resolution 40′′). The peak main beam brightness temperature is 24 K
(Wilson and Pauls 1984). In the lower panel, we show the map made at 6.2 cm (angular resolution
2.45′). The peak main beam brightness temperature is 330 K (Wilson et. al 1997). The angular
scale of both maps is identical

From optical and radio spectral line measurements (see Chap. 13), the elec-
tron temperature of Orion A is 8 500 K. To obtain the emission measure (EM),
we apply (10.36), with a = 1, Te = 8500 K, τ � 1 at ν = 23.0 GHz to give
EM = 4× 106 cm−6 pc, averaged over the telescope beam. For a comparison with
physical models, and to estimate the mass of the ionized gas, we need the density or
column density. For a first approximation based on radio continuum measurements,
we can obtain the RMS electron density by dividing the emission measure by the
line-of-sight path (A refinement of this method is given later in this section). We first
assume that the Gaussian FWHP size of the core, when deconvolved from the beam,
is the diameter. In our simple geometrical model, we have assumed that the core has
a spherical shape. Since the measured diameter is 0.33 pc, this is also the line-of-
sight path. Using this value, we obtain an electron density, 〈Ne〉 = 3.5× 103 cm−3.
Small scale structure or nonspherical geometry will give rise to a larger value for
〈Ne〉. The corresponding electron (or proton) column density is 3.4× 1021 cm−2.
Using this value and applying a correction for 36% mass in helium, we find that
the mass of the ionized gas in the core of Orion A is 2 solar masses. This is an
upper limit to the actual value. This mass is about 10% of the mass in the stars in
Orion A.
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There are three improvements one can apply to the previous analysis. The first
two are connected with geometry, and the last with physical conditions. In our es-
timate of source size, we have tacitly assumed that the diameter of the core is the
FWHP deconvolved size. This is true if the source shape is Gaussian. However, our
estimate of electron density made use of a spherical uniform density source distri-
bution. For a sphere, there is a general relation between the ratio of the Gaussian
circular beam size to the assumed spherical source size and deconvolved spheri-
cal source size (Panagia and Walmsley 1978). If the beam is much smaller than
the source, the limiting source radius is 0.73 times the deconvolved FWHP size. In
the case of the core of Orion A, this is 0.48 pc. The RMS electron density is then
〈Ne〉 = 2.9× 103 cm−3, and the column density is 4.2× 1021 cm−2 and the mass is
5 solar masses.

The second refinement to the calculation of electron density involves relaxing
the assumption of spherical geometry. From determinations of electron densities
on the basis of optical observations and models of Orion A based on radio recom-
bination lines (see Chap. 13), it has been established that the electron densities in
the core of Orion A are ≥ 104 cm−3. To obtain such densities from radio contin-
uum data, the line of sight must be ≤ 0.3 of the measured diameter. This is usually
referred to as clumping; one could also envision the source as having a structure
composed of a series of very thin slabs whose axes are parallel to the line of sight.
For a well-studied source such as the core of Orion A, very simple models cannot
match the large body of data available, and such complex, multi-layer models are
needed.

Finally, in applying (10.36), it was assumed that the H II region is isothermal.
This is a fairly good approximation, since both the heating, by photo ionization,
and the cooling, by collisions of electrons with ions such as O++ and N++, are
proportional to N2

e , and thus Te is only weakly dependent on density. However, radio
recombination line measurements have shown that while the core of Orion A has
Te = 8500 K, the outer parts have Te = 6500 K.

11.2.2 Radio Radiation from Ionized Stellar Winds

The theory for thermal radio emission from ionized stellar winds is a good applica-
tion of the thermal emission formulas in Chap. 10. Our sketch follows the exposition
of Panagia and Felli (1975). The wind from a star is assumed to be ionized. The den-
sities depend on radius r as

ρcs = qr−2 =
Ṁ

4πvw
r−2 , (11.6)

where Ṁ is the mass loss rate and vw is the wind velocity. For spherical geometry at
distances large compared to the radius we have the result:
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Sν = 8.2

(
n0 r2

0

1036

)4/3 ( ν
GHz

)0.6
(

Te

104 K

)0.1 (
d

kpc

)−2

, (11.7)

where r0 is the photospheric radius in cm, n0 is the electron density in cm−3, and Sν
is in units of mJy.

The spectral index is caused by the fact that at different frequencies, larger or
smaller portions of the ionized outflow are optically thick. Using the solar data as
given in Fig. 11.1, we find that solar-like stars are expected to have a flux density
of < 2 mJy at 100 pc. Supergiant stars should be detectable in the radio range at
larger distances because of their larger radii. However, at frequencies of ∼ 1 GHz,
some stars radiate by nonthermal processes; this radiation seems to be caused by
gyro synchrotron emission in large B fields (for a review of more recent results see
Dulk 1985).

11.3 Supernovae and Supernova Remnants

The brightest radio sources at low frequencies (ν < 1 GHz) turn out to be non-
thermal. Early radio studies allowed an identification of the source Taurus A with
the Crab nebula, the remnant of the supernova explosion observed by Chinese as-
tronomers in 1054. The source Cas A is thought to be the remnant of a supernova
that exploded in about 1667 and may have been observed by Flamsteed in spite of
interstellar absorption (Fig. 11.6). These early identifications made it plausible that
supernova remnants are sources of nonthermal radio emission.

While the Crab nebula radio source Taurus A is an elliptical region completely
filled with radio emission, Cassiopeia A is a spherical shell source. In the case of
Cas A, the radio emission is confined almost exclusively to a thin shell and ob-
servations made at different epochs show that this shell is expanding. Many other
nonthermal radio sources were also found to have a similar morphology, although
the shell was often incomplete. In some cases, additional evidence was found show-
ing that these sources are indeed remnants of supernova explosions. X-ray emission
is quite commonly observed in supernova remnants, and X-ray measurements of
SNRs, particularly with the ROSAT satellite, are important inputs for models.

The number of known supernova remnants has increased considerably in the last
ten years due to the increasing resolving power and sensitivity of the radio con-
tinuum surveys. Usually a procedure consisting of several steps is needed before a
source is considered to be a bona-fide supernova remnant. As a first step, one elim-
inates objects from catalogs of radio sources that have positive spectral indices and
thus might be extragalactic. Optical identifications can be used to classify sources
away from the galactic plane. Otherwise, where interstellar dust extinction prevents
a direct identification, a source of diameter of < 1′ might be extragalactic. The re-
maining sources with negative spectral indices are tentatively SNRs. However, it is
possible to confuse filled-center SNRs with H II regions. Before a definite identi-
fication is possible, additional evidence is required. This might be high-resolution
radio continuum measurements showing a shell structure, distance estimations from
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Fig. 11.6 The supernova remnant Cas A; (also known as 3C 461) from observations with the VLA
at a wavelength of 6 cm. The array has been used in the configurations A+B+C+D reaching a
resolution of 0.2 × 0.2 arc-sec for a field of 6.1 × 6.1 arcmin (courtesy NRAO/AUI)

21 cm absorption measurements, or expanding gas filaments visible in the optical
range. Today, it is usual to have X-ray observations to confirm the identification. At
present more than 200 supernova remnants have been identified in this way. Even-
tually the total list of such sources in our Galaxy might be doubled, but confusion
of low surface brightness objects will set severe limits on old SNRs. The number of
pulsars is much larger. This result also reflects the greater age of pulsars. Studies of
the early time evolution of SNRs in other galaxies is a relatively new research tool
in radio astronomy; these can be carried out for times of ≤ 100 years after the SN
explosion.

11.4 The Hydrodynamic Evolution of Supernova Remnants

When the core of a star implodes as a supernova, a part of its gravitational binding
energy is set free ejecting some fraction of the stellar mass expanding with a high
velocity. Initial expansion velocities of ∼ 20000kms−1 are observed. This ejected
shell will expand freely at early times, because its density is so much larger than
that of the density of interstellar gas or circumstellar shells. We expect a collisional
shock to form when the shell has swept over a distance about equal to the mean free
path in the surroundings. Protons ejected by the SN with v = 20000 km−1 have a
kinetic energy of 2 MeV and a mean free path of about 500 pc if the mean density
of interstellar neutral hydrogen is 1.2 cm−3 and if all possible loss mechanisms are
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taken into account. Obviously, no shock would form under such conditions. But pro-
tons from a supernova are charged particles and therefore they will gyrate around
interstellar magnetic field lines. A magnetic flux density of B = 3μGauss would
result in a Larmor radius of only RL

∼= 1011 cm ∼= 10−8 pc and, even though the
energy density of such a field is much too small to affect directly the outward mo-
tion of these protons, it will serve as a massless barrier between the supernova gas
and the ionized interstellar material so that a hydromagnetic shock will form. The
magnetic field is swept up by this process and is collected, along with the gas, by
the outward moving shock front. Since the motion of the charged particles along
the field lines is not affected, part of the kinetic energy contained in the relativis-
tic particles will be able to diffuse to greater distances. However, the details of the
scattering processes for these particles are complicated and are as yet incompletely
understood, so that the number of relativistic particles injected by a supernova into
the general interstellar medium is rather uncertain.

Four different stages may be distinguished in the evolution of a supernova rem-
nant. This is a rather approximate, empirical classification. Not all SNRs fit into this
scheme; the most notable exception is the Crab nebula. The first stage is the (ap-
proximately) free expansion; the mass of the gas swept up by the expanding shell is
still less than the initial mass Ms and R ∝ t:

4
3πr3

s �1 � Ms . (11.8)

The details of this phase are governed by the SN explosion. For �1
∼= 2 ×

10−24 g cm−3,Ms = 0.25M0
∼= 0.5× 1033 g, rs

∼= 1.3 pc and this stage will last for
about 60 years. This phase has been studied in other galaxies.

The second phase is the Sedov or adiabatic phase. Here the remnant is domi-
nated by swept-up material, but radiative losses are still negligible compared to the
total amount of energy that was produced by the supernova. This is therefore ex-
pansion under energy conservation and the evolution of the remnant is governed by
the interaction between the high-energy particles in the remnant that put pressure on
the shell and the surrounding material. The second phase has been investigated for
SNRs in our galaxy. In the Sedov phase R ∝ t2/5.

The third phase is the radiative or snowplow phase: This occurs when the rem-
nants age is comparable to radiative cooling time scales. Expansion energy is not
conserved, but radial momentum is, and so approximately R ∝ t1/4.

The fourth phase is dissipation, when the shock velocity falls below the speed of
sound. This happens at t ∼ 106 years.

11.4.1 The Free-Expansion Phase

In the last few years, there has been a great interest in this phase of the SNR
evolution due to observational opportunities given by the Very Large Array. The
VLA has been used to observe the early development of SNRs in external galaxies.
In the case of type II supernovae, a theoretical framework has been developed by
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Chevalier (1994). Observationally, classical type I supernovae (so-called type Ia),
such as Tycho’s SNR, are those showing no H line emission at maximum light,
while type Ib are those showing lines of H prominently. Within the class of type II
SNRs, there are a number of different subclasses, based on optical light curves. The
observations of the early development are in effect the “destructive testing” of the
circumstellar environment. The theory presented below is based on measurements
obtained for type II and type Ib SNRs.

In the earliest phases of the SN development, we assume that the SN shock wave
expands with a constant velocity, v. The progenitor star is believed to have under-
gone a time-independent mass loss prior to the explosion. The mass-loss rate is taken
to be of the order of Ṁ = 10−4 to 10−5M� per year. Since the mass loss occurs over
a period of about ∼ 104 years, the star is surrounded by a dense circumstellar shell.
It is assumed that the density in the circumstellar shell is distributed as

�cs = qr−2 =
Ṁ

4πvw
r−2 , (11.9)

where Ṁ is the mass-loss rate and vw is the wind velocity. After the SN explosion,
a shell with a mass of 1030 g emerges with a velocity of ∼ 104 kms−1. The density
dependence of the SN shell in free expansion is assumed to be:

�sn = t−3
(

r
t Uc

)−n

, (11.10)

where Uc is the expansion velocity of the shell and t the time since the outbreak,
n is thought to be between 7 and 12. This has been estimated from fits to density
profiles of SNRs at maximum light. Taking this dependence of density on radius,
and assuming a spherically symmetric model, we denote the circumstellar shell as
component 1, and the SN shell as component 2. Then the deceleration of these
components is equal to the pressure difference across the shell:

(M1 +M2)
d2R
dt2 = 4πR2 (P2 −P1) . (11.11)

The masses on the left-hand side of this relation can be obtained by an integration
of the density distributions. It is assumed that the lower limits to the integrals of the
density for the SN shell, i.e., the photosphere of the progenitor, can be neglected.
The pressure terms on the right-hand side are given by P = ρ v2. The velocities of
the components are given by

v1 =
dR
dt

(11.12)

and

v2 =
R
t
− dR

dt
. (11.13)

Using the mass and pressure relations given above we find that the relation does
not involve initial conditions. Assuming a time dependence of radius, R = K tm,
where K is a constant, one obtains
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R =
[

2Un
c

(n−4)(n−3)q

]1/(n−2)

t(n−3)/(n−2) ∼ tm , (11.14)

where we define m = (n− 3)/(n− 2). As time increases, the shell radius will tend
towards this solution. For the values of n, this is almost a constant velocity. Crucial
to understanding this phase of the SNR is the behavior of the energy densities of
relativistic electrons and of the magnetic field. From observations, these appear to
vary as the thermal energy density. This in turn varies as 1/R2, since the volume is
increasing as R3, but mass is being swept up as R. From (10.114), the flux density
emitted by the synchrotron process is given by

Sν = K H
V
d2 Bn+1 ν−n . (11.15)

In order to determine the time evolution of the synchrotron emission, we assume
that B varies as t−1, and that the energy of the relativistic electrons varies as R−2. In
addition, the radiating volume increases as t3m. Combining these terms, we find that:

Sν ∼ t(5+δ )/(2+3m)ν−(δ−1)/2 . (11.16)

This time dependence does not match observations at early times. In addition,
there is an absorption at lower frequencies. Thus, it has been concluded that ther-
mal ionized gas in the circumstellar shell outside the SNR absorbs the synchrotron
radiation. From (10.35), the optical depth of the thermal ionized gas varies as

τ ∼ T−1.35
e ν−2.1 N2

e R . (11.17)

The circumstellar electron density Ne varies as R−2, so the variation of τ is R−3

or t−3m. Combining the synchrotron emission and circumstellar thermal absorption
effects, we have

Sν ∼ t(5+δ )/(2+3m)ν−(δ−1)/2 exp{−T−1.35
e ν−2.1 N2

e R} . (11.18)

This relation seems to fit the behavior of some SNRs rather well (see Figs. 11.7
and 11.8).

11.4.2 The Second Phase: Adiabatic Expansion

For a realistic treatment numerical models are needed, but many features of the
time evolution can be described by the similarity solution of Sedov. Most can be
obtained by using simple arguments and first principles if some general properties
of the similarity solutions are adopted. If the supernova explosion deposits the total
energy E in the remnant, the similarity solution shows that the fraction K1E is in
the form of heat energy and the remainder in kinetic energy. This factor K1 = 0.72
is a constant in the similarity solution, independent of time. A second result taken
from this solution is the ratio K2 = 2.13 of the pressure immediately behind the
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Fig. 11.7 The radio “light curve” for the type Ib supernova 1983N in the galaxy M 83. The data for
20 cm wavelength (crosses) and 6 cm wavelength are shown in the same plot. The time scale is
measured in days from the estimated date of the explosion, 29 June 1983, eighteen days before
maximum light, 17 July 1983. The solid lines represent the best fit [taken from Weiler et al. (1986)]
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Fig. 11.8 A plot of luminosity versus age for supernovae and young (< 104 yr) SNRs. The shell
SNRs are shown as open circles, while filled center (i.e. Crab nebula-like) as filled circles. The best
fit 6 cm curves are shown for those radio SNRs for which radio “light curves” are available [taken
from Weiler et al. (1986)]
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shock to the mean pressure of the heated gas within the spherical volume enclosed
by the shock. These two factors permit us now to connect this pressure p2 behind the
shock with the total energy of the supernova explosion. For an ideal gas, the specific
internal energy e is related to the gas pressure p and the specific volume v by

e = 3
2 pv .

Solving this for the mean pressure of the gas enclosed by the shock with the
volume

V = 4
3πr3

s

we find

p2 = K2
2
3

3K1E

4πr3
s

=
KE
2πrs

3

K = K1 K2 = 1.53 .

(11.19)

(11.20)

The velocity Us with which the shock is expanding into the surrounding gas of
density �1 and temperature T1 can be obtained from the “jump conditions” that relate
physical quantities on each side of the front. If u1 and u2 are the streaming velocities
in the gas, conservation of mass requires

�1u1 = �2u2 , (11.21)

while the conservation of momentum gives

p1 +�1u2
1 = p2 +�2u2

2 . (11.22)

Since we assumed radiation losses to be negligible in this phase, the total energy E
in the gas must be conserved during the expansion and the shock must be treated as
an adiabatic transition. The third shock condition is then

1
2

u2
1 +

p1

�1
+

e1

�1
=

1
2

u2
2 +

p2

�2
+

e2

�2
,

which, for an ideal gas, becomes

u2
1 +

2γ
γ−1

p1

�1
= u2

2 +
2γ
γ−1

p2

�2
, (11.23)

where γ = cp/cv = 5/3 for a monoatomic gas. This γ here should not be confused
with γ = (1−v2/c2)−1/2 of the special theory of relativity in Chap. 10. From (11.21
to 11.23) we obtain after some algebra (see Landau and Lifschitz 1967)

p2

p1
=

2
γ+1

�1

p1
u2

1 −
γ−1
γ+1

(11.24)
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and

�1

�2
=
γ−1
γ+1

+
2γ
γ+1

p1

�1u2
1

. (11.25)

For strong shocks with

p2 �
γ−1
γ−1

p1 (11.26)

we find an asymptotic solution:

p2 =
2�1

γ+1
u2

1 (11.27)

and

�1

�2
=
γ−1
γ+1

. (11.28)

Equation (11.28) gives the largest possible jump of the densities for an adiabatic
shock, that is, for γ = 5/3 we obtain �2/�1 � 4, even if the ratio of the pressures
p2/p1 → ∞.

For the expansion velocity of the shock we must put Us = u1. Substituting (11.19)
into (11.27), we find that

U2
s =

2KE
3π�1 r3

s
. (11.29)

The temperature behind the shock is obtained using the equation of state as well
as (11.27) and (11.28):

T2 =
μmH

k
p2

�2
=
μmH

k
2
γ+1

�1

�2
u2

1 =
μmH

k
2
γ+1

γ−1
γ+1

u2
1

or

T2 =
3
16
μmH

k
U2

s = 0.061
μmH

k
E

�1r3
s

. (11.30)

Here μ is the mean molecular weight per particle for fully ionized gas with a
cosmic abundance (NH/NHe

∼= 10) of μ = 0.61. Since Us = drs/dt, (11.29) can be
integrated resulting in

rs =
(

5
2

)2/5( 2KE
3π�1

)1/5

t2/5

or

rs

pc
= 0.26

(
NH

cm−3

)−1/5( t
yr

)2/5

(11.31)
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for E ∼= 4 ·4×1050 erg as a representative mean value, and �1 is the 1 gas density in
g cm−3. By using the adiabatic shock conditions we obtain

c2
s =

2KE
3π�1r3

s
. (11.32)

This can be related to Ts using the Boltzmann relation, or T2, the post-shock
temperature from the conservation equation. Then we have

T2

K
= 1.5×1011

(
NH

cm−3

)−2/5( t
yr

)−6/5

. (11.33)

T2 is the temperature immediately behind the shock; for smaller values of r/rs,
T/T2 decreases as more detailed model computations show. The same applies to the
density �/�2. Consequently, most of the gas of the supernova remnant is collected in
a thin layer in which practically all of the radiation, both radio emission and X-rays,
is emitted.

According to (11.33), T2 decreases with time and, when it falls below 106 K,
the abundant ions C, N and O are able to acquire bound electrons so that they be-
come efficient cooling agents. The thermal energy of the supernova remnant will
be radiated away in a short time so that the shock can no longer be treated as
adiabatic.

We then enter into the third phase. Let trad be the time at which the remnant has
radiated away half of the initial energy E ejected by the supernova. The cooling
time then is so short that the matter behind the shock cools quickly and there are
no longer any pressure forces to drive the shock. The shell will move at a constant
radial momentum piling the swept-up interstellar gas like a snowplow. Constant
radial momentum implies that

4
3πr3

s �1 Us = const ,

which can be integrated to

rs = rrad

(
8
5

t
trad

− 3
5

)1/4

. (11.34)

Here rrad is the radius of the shell at the time trad when the adiabatic rela-
tion (11.31) ceases to be applicable. The supernova remnant will eventually be
lost in the fluctuating density distribution of the interstellar gas when the expan-
sion velocity of the shell approaches Us

∼= 10 km s−1, a value close to the RMS
velocity dispersion of the interstellar gas. The last phase is the dissipation of
the SNR.



11.5 The Radio Evolution of Older Supernova Remnants 293

11.5 The Radio Evolution of Older Supernova Remnants

Supernova remnants emit radiation in the radio range and thus the question of their
radio evolution is of importance. In numerical models the radio emission is com-
puted along with the hydrodynamic evolution; here we will estimate this semi-
analytically using ideas first presented by Shklovsky (1960).

As outlined in Sect. 11.3 we will assume that the radio emission of the remnant
is synchrotron radiation so that the total flux density of a source assumed to be
optically thin is, from (10.114)

Sν = K H
V
R2 Bn+1 ν−n (11.35)

where V is the volume of the source, B the average magnetic flux density, and ν the
observing frequency. K is a constant appearing in the distribution function of the
differential number density of the relativistic electrons

N(E)dE = K E−δ dE (11.36)

per unit volume with energies between E and E + dE, and H is a constant. The
constant K must somehow depend on the total power output of the supernova: the
larger the power output the larger K will be. However, no specific relation between
these two quantities is known. The problem is: how will Sν evolve with time if the
remnant expands according to (11.31) or (11.34)?

Following (11.33) the temperature T in the supernova remnant remains > 104 K
throughout the whole evolution. Therefore the gas is ionized and of great con-
ductivity, so that any magnetic field remains “frozen” into the gas. If the gas
expands, the magnetic field B will decrease. It is difficult to estimate the pre-
cise rate, but since expansion along the field lines should be without effect, a
dependence

B(r) = B0

( r0

r

)2
(11.37)

seems reasonable.
Let us consider the evolution of the high-energy electrons. These electrons are

confined in a volume V whose expansion is caused by their pressure. If the radi-
ation losses are negligible, this expansion is adiabatic, and the work done by the
electrons is

dW = −pdV

where

W = V
∫

E N(E)dE .
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For a relativistic gas

p =
1
3

e =
1
3

W
V

=
1
3

∫
E N(E)dE

and

dW
W

= −1
3

dV
V

and

dW
W

=
dE
E

,

so that for spherical expansion we have

dE
E

= − dr
r

. (11.38)

The number of relativistic electrons remains constant but as the energy of each
electron decreases as

E(r) = E0
r0

r
,

we obviously must have

V0

E2∫
E1

K0E−δ dE = V0

(
r
r0

)3 E2r0/r∫

E1r0/r

K(r)E−δ dE

or

K(r)
K0

=
(

r
r0

)−(2+δ )

. (11.39)

The exponent δ remains constant during adiabatic expansion

δ = δ0 . (11.40)

Substituting (11.37, 11.38, 11.39, 11.40) into (11.35) we obtain

Sν(r) = Sν(r0)
(

r
r0

)−2δ
(11.41)

or, if the time dependence of r in the adiabatic or Sedov phase according to (11.31)
is substituted,
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Sν(t) = Sν(t0)
(

t
t0

)−4δ/5

. (11.42)

This is the time evolution of a supernova remnant. In differential form (11.42)
becomes

Ṡν
Sν

= −4
5
δ
t

(11.43)

and it relates the spectral index α = (δ −1)/2 to the time dependence of the source
flux. This relation can be tested. For Cas A with α = 0.77,δ = 2.54, and t ∼= 300
years, an annual decrease Ṡν/Sν =−0.7% is predicted, while the observed Ṡν/Sν =
−(1.3±0.1) % is in approximate agreement with this result.

11.6 Pulsars

11.6.1 Detection and Source Nature

Pulsars are radio sources whose emission consist of a train of regularly spaced
wideband pulses. Except for the first detected millisecond Pulsar 4C21.53 (Backer
et al. 1982), in continuum surveys made before 1967, the time-averaged intensities
of even the brightest pulsars were undetectable. The first Pulsars were detected only
when Hewish built a high-time-resolution, low-frequency (ν = 81 MHz) system of
great sensitivity. This system was intended for an investigation of the scintillation
of small-diameter radio sources by the solar corona. In addition to huge amounts
of man-made interference spikes and the searched-for scintillating sources curious
spikes spaced at regular time-intervals of 1.3 sec were first recorded on November
28, 1967. These signals were recognized as non-spurious celestial signals by Joce-
lyn Bell.

A careful search revealed several more sources of this kind, all with different
pulse periods, and they eventually were given the name pulsar by the discoverers.
When the search started at other radio observatories the total number of known pul-
sars increased rapidly, reaching 50 by the end of 1969, 500 by 1990 and 1000 in
2000 (see Fig. 11.9). The pulse periods covered a wide range, from P = 5.1 s for the
longest to P = 1.5 ms for the shortest. It was of great importance for the interpre-
tation of the pulsar phenomenon that in 1968 the Crab pulsar with P = 0.033 s was
detected.

The pulse periods of most pulsars can be measured with a remarkable precision,
and it soon became evident that many, if not all, showed a slight systematic length-
ening of P with time. Average derivatives Ṗ of 10−12 to 10−21 seem to be typical,
and any detailed model must account for this. The region from which the radiation
is emitted by the pulsar must be smaller in extent than the speed of light times the
transit time of the sharpest pulse observed, that is, less than 10 000 km for the Crab
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Fig. 11.9 Distribution of 558 pulsars in Galactic coordinates (from Taylor et al. 1993)

pulsar. This diameter can be further reduced if we consider that some kind of clock
device is needed for the pulsing. A suitable system would be a rotating body held
together by its own gravitation. The centrifugal acceleration then has to be less than
the gravitational attraction, that is (2π/P)2 ≤ GM/R2 . This results in

�̄

gcm−3 ≥ 1.41×108
(

P
s

)−2

(11.44)

for the average density. If an oscillating body instead of a rotating one is considered,
the ≥ has to be replaced by = , and a slightly different numerical constant results.
Otherwise the expression remains unchanged.

The Crab pulsar thus requires �̄≥ 1.3×1011 gcm−3, a mean density well outside
the possible range for white dwarfs, so only neutron stars can be considered to be
feasible models. This is true for all pulsar periods shorter than about 1/2 s. Only ro-
tating neutron star models need to be considered, because then (11.44) forms a lower
limit, while for oscillating star models the equals sign applies. A third observational
feature that is typical for all pulsars was found in the very first pulsar observations.
The pulse arrival times for a given pulsar depend strongly on frequency. The lower
the frequency, the larger the delay of a selected pulse. Quantitative measurements
showed the delay to be given by (2.87) with high precision, so that the dispersion
measure (2.85) is caused by a low-density plasma, that is, by the intervening inter-
stellar medium.

11.6.2 Distance Estimates and Galactic Distribution

Pulsars are designated by PSR Jhhmm±ddmm for pulsating radio source followed
by data for the position in the J2000 coordinate system. Other coordinates such
as B1950 coordinates should be prefixed by “B” The last two digits, representing
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minutes of declination, can be omitted if the positional accuracy is lower and if there
is no danger of confusion with other pulsars. Well-known objects are often quoted
by their detection names, that is CP for pulsars detected at Cambridge, MP for those
from Molonglo, JP for pulsars from Jodrell Bank, AP for Arecibo pulsars, etc.

The most recent published catalogs of pulsar data are in the book by Lyne and
Graham-Smith (2006). More modern data are available on the Internet. Plotting
these positions in an equal area map, there is a strong concentration of the pul-
sars towards the galactic plane as well as an increase of the pulsar numbers for the
longitude range 60◦ ≤ �≤ 300◦ , but part of this non-uniformity may be due to vari-
ations in the sensitivity of the pulsar searches. The distribution of pulsars is that of
Pop I objects. See the distribution in Fig. 11.9.

Fundamental to any understanding of pulsar physics is a good estimate of the
distances. Fortunately there exist several independent methods that supplement each
other. Taken together, these give a good estimate of the distance scale.

• Annual parallax measurements have been made for a handful of nearby pulsars.
Five pulsars have interferometric parallax measurements, three are obtained from
extremely precise timing data and one, the parallax of the Crab pulsar, is based
on optical measurements. These data involve state-of-the-art measurements. The
possibilities for systematic errors abound, but these form the best available direct
determinations of pulsar distances.

• About 26 young pulsars are associated with supernova remnants. Their distances
should be about the same as that of the remnants.

• The distance to low-latitude pulsars can be estimated on the basis of λ 21cm
neutral hydrogen (H I) absorption measurements (see Chap. 12). About 50 pul-
sar distances have been successfully investigated in this way. Pulsars are rather
unique background sources in view of the precision with which the neutral hy-
drogen absorption can be measured. This is because the expected line emission
at the position of the pulsar can be determined with a precision not possible with
other background sources. By timing the line profile measurements to those mo-
ments when the pulsar signal is off, the expected H I emission line profile can
be measured directly for the pulsar position. This avoids all interpolation of the
emission profile from that of neighboring positions. By comparing the shape of
the emission and the absorption profile, the pulsar can be positioned in front of
or behind a particular cloud. Such clouds are measured in H I emission line sur-
veys. A model for galactic rotation is then used to convert the radial velocities
into distance. While individual distance estimates obtained by such means may
differ by a large factor, the average pulsar distance scale can be calibrated quite
well.

• In the paper announcing the discovery of the first pulsars the dispersion measure
DM was used as an indication for the distance by Hewish et al. (1968). Distance
estimates using adopted values for Ne are much better than corresponding esti-
mates using a value for the total gas density, Ntot, because the values for Ne are
much less variable that those of Ntot. Pulsar distances, therefore, are usually de-
termined from the measured dispersion measure, DM. Most often the electron
densities from the model of Taylor and Cordes (1993) are used. In this model a
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smooth run of Ne with galactic radius is assumed and in addition a contribution
from spiral arms is included. Individual pulsar distances thus estimated may be
in error by a factor of 2, but the pulsar distance scale should be within 30% of
that found with other methods.

If the distances are known, estimates for the galactic distribution of pulsars can
be constructed. For the radial distribution �R(R) , there is a gradual increase to-
wards the galactic center. In the solar neighborhood near 8 kpc, there are about
30± 6 observable pulsars per square kiloparsec. This value increases to about 200
at R = 4kpc. In the anticenter direction at R = 12 kpc, the density declines to 10–15
pulsars/kpc2 .

The z distribution �z(R) is approximately exponential with a scale height of
600 pc. This is much larger than that of any other class of Pop I objects, but it
can be understood if the velocity distribution is considered: Precise position data
for pulsars usually also provide quite good estimates for proper motions. Dis-
tance information then results in estimates for the transverse velocity. As early
as 1982 it was clear that transverse velocities of 100–200 km s−1 are quite com-
mon for pulsars. It is not quite so easy to derive unbiased estimates, but Lorimer
et al. (1995) obtained a mean space velocity of 450 km s−1 for a sample of 99
pulsars.

At such velocities about half of the galactic pulsars will escape the gravitational
field of the Galaxy, and it is conceivable that the z distribution of pulsars will be
much wider than their Pop I progenitors. The fundamental problem of the origin of
this formidable space velocity still remains unsolved. Two possible mechanisms are:
(1) the disruption of a close binary by a supernova, and (2) asymmetric supernova
explosions.

11.6.3 Intensity Spectrum and Pulse Morphology

Pulsar radio emission is investigated with two quite different research goals in mind.
One is to find out what pulsars are and what kind of physics is controlling their be-
havior. A concise summary of the current majority views will be outlined in the
remaining parts of this section. A few remarks should, however, be made on a dif-
ferent aspect.

Pulsar radiation is often used as a research tool for investigations of the interstel-
lar medium between pulsar and observer. Several of the constituents of the interstel-
lar medium, both matter and magnetic field, exert influence on the propagation of
radiation, and the characteristics of the pulsar emission are such that this influence
can be clearly measured. Some of these methods have already been discussed in
preceding chapters of this book, so a short reference should suffice here.

In the discussion of the dispersion measure in Sect. 2.8 it was shown how the
mean electron density Ne could be determined, and in Eq. (3.70) a similar relation
was given for the rotation measure of the Faraday rotation, depending on both the
electron density Ne and the longitudinal magnetic field strength. By combining both
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DM and RM, average values for the mean longitudinal magnetic field (3.72) can be
determined without too many restrictive assumptions.

Another advantage of the periodic time structure of the pulsar radiation is that in
addition to the various mean values, a multitude of time variations can be measured.
Interpretations of these data require rather complicated theories of wave propaga-
tion in a medium of moving stochastic scattering screens. We will not go further into
this interesting field but only mention that by these means it is possible to measure
several interesting quantities, such as, the transverse pulsar velocity. These measure-
ments confirm the high pulsar space velocities found from proper motion studies.

Pulsars are nonthermal radio sources with a spectrum that usually can be repre-
sented by a power law S ∼ ν−α , with a spectral index α close to 1.6, but which show
large variations both from one object to the other and, in time, for a single object.
For frequencies below 400 MHz there is usually a break in the spectrum.

The total luminosity emitted in the radio range by a typical pulsar averaged over
many pulse periods is only ∼ 1030 ergs−1. This low average luminosity is caused by
the small pulse duty cycle. Thus it is rare that pulsars were found in low frequency
surveys. A prominent exception is the first millisecond pulsar found (Backer et al.
1982), which was identified as 4C21.53. Pulsar emission was detected only because
it occurs in pulse form. If it were not for pulse dispersion, the optimal frequency
for detecting and investigating the pulsar phenomenon would be 400 MHz. Strongly
dispersed pulsars suffer not only from pulse smearing across the receiving band –
this could be removed by some dispersion-removal device, at least for some selected
range of dispersion measures – but also from irregular scattering of the pulses at all
frequencies. Here the only remedy is to make the measurement at higher frequen-
cies, where the effects of the dispersion by the interstellar plasma are less. The
reduction in dispersion more than compensates for the lower signal strength caused
by the power law spectrum. Therefore searches for high-dispersion pulsars are now
conducted at frequencies in the GHz range.

The pulses are emitted by highly directional beams rotating with the spinning
neutron stars. Different pulse periods for different pulsars are found because these
stars rotate with different rates. The average total-intensity profiles of most pulsars
often contain up to three distinct peaks, and these usually result from a combination
of higher than average intensity in a few pulses and lower than average intensity in
many. The total pulse width when measured in degrees of rotational phase is roughly
independent of the rotational period. The emission cone is remarkably narrow w50 �
30mP � 10◦ , where the pulse width is expressed in fractions of the pulse period.

Pulse profiles are different because:

• the beam cuts the direction towards the observer at different angles for different
pulsars and

• the radiation in the emission cones will be different.

Most pulse profiles change slowly with observing frequency and also the com-
ponent intensity and spacing may change. A representative sample is shown in
Fig. 11.10. Such features can easily be accommodated into the polar cap emission
model if the emissivity is assumed to depend on the height above the neutron star
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Fig. 11.10 Integrated pulse profiles plotted in the same rotation scale for each pulsar for frequen-
cies 0.1–10.5 GHz. The pulse dispersion has been removed (figure from data in Kuzmin et al.
1998)

surface. So far no consistent model applicable to more than only a selected few
pulsar candidates has been presented.

Pulsar radiation is often strongly polarized. Radhakrishnan and Cooke (1969)
detected a rapid monotonic change of the linear polarization angle across the pulse
of the Vela pulsar PSR 0833-45, at a rate of 6.2◦ polarization angle per degree
of rotation. They proposed that pulsar radiation is produced by groups of particles
streaming along curved magnetic field lines in the vicinity of the dipole axis. The
radiation is linearly polarized with its electric vector in the plane of the field curva-
ture. When the pulsar rotates the polarization angle will also rotate, and this can be
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used to determine the angle between the rotation axis and the magnetic axis of the
neutron star.

This model of polar cap radio emission with a rotating polarization angle is a
basic piece of evidence for intense magnetic fields in the radio emission regions
of pulsars. Other observational support is given by the braking mechanism for the
spinning neutron stars. This is needed to explain the empirical fact that all pulsars
show a noticeable slowing down in their periods, and hence spin rate.

11.6.4 Pulsar Timing

Pulsars are extremely precise clocks. Timing measurements require not only the
best terrestrial clocks but also an application of relativistic celestial mechanics to
describe the effects of the motion of both the planetary and the pulsar system. This
has become part of astrometry and here only a rough indication of the methods must
suffice.

Arrival times are measured by sampling the pulsar signal in a narrow receiver
passband at a rate of about 1000 samples per pulse. Narrow passbands must be used
in order to avoid pulse smearing caused by interstellar dispersion. Alternately some
dispersion removal scheme must be employed. If the sampling is synchronized with
the local clock setting this results in a determination of the local pulse phase.

If, however, the intrinsic pulsar properties are to be determined, the pulse phase
must be converted into the pulsar coordinate system. To do this several different
effects have to be taken into account. In order not to neglect any important effects a
full relativistic treatment is needed. Here it should suffice to quote the result.

The plasma properties of the intervening interstellar medium are compensated
for by eliminating the total dispersion delay using (2.87) with ν2 → ∞:

ΔτD

μs
= 4.148×109

[
DM

cm−3 pc

]( ν
MHz

)−2
. (11.45)

Similarly it is important to eliminate the motion and the gravitational interaction
of the emitter and the receiver with their respective surroundings. Here effects of
general relativity theory (GRT) must be included up to order c−2 using the PPN sys-
tem of the parameterized post Newtonian coordinate transformations of Will (1981).
Photons from the pulsar will follow null geodesics. It is sufficient to neglect devi-
ations of the signal path by the gravitational field of the sun and only include the
gravitational redshift. The time of flight of the pulse N from a pulsar at RN to the
earth at rN is

c(tN −TN) = |RN − rN|−∑
p

2Gmp

c2 ln

[
n · rpN + rpN

n ·RpN +RpN

]
. (11.46)

where rpN is the position of the receiver and RpN is the pulsar’s position relative to
body p, and n is a unit vector in the direction of the pulsar.
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When these time transformation equations are applied to the pulsar timing obser-
vations, it will usually be sufficient to use an appropriate linearization. This allows
one to obtain a timing model for the pulsar. The resulting series of corrected pulse
phases can, in most cases, be represented by a power series in T . The resulting value
for Ṗ measured in units of ss−1 is, in all cases, positive with

0 ≤ 10−20 < Ṗ < 10−11 .

The vector n defines the direction of the wavefront emitted by the pulsar. Quite
often these data can be used to improve n. For some nearby pulsars it has even been
possible to measure the spherical shape of this wavefront by using the positional
variation of the Earth in its orbit around the Sun. This is equivalent to measuring the
pulsar’s parallax.

The precision of the timing for most pulsars is very good, with timing uncer-
tainties of a few microseconds. Some even compete with the best terrestrial clocks.
Such a case is pulsar PSR 1937+21, whose timing noise continues to drop as the
time scale of the timing data increases (see Fig. 11.11).

Most pulsars show a regular slowdown that is steady and predictable. However,
some show erratic behavior described as glitches. These are a sudden increase of
the rotation rate usually followed by an exponential recovery back to the pre-glitch
frequency. This behavior was first detected in the Vela pulsar, which showed 6 such
glitches with 10−6 <ΔΩ/Ω < 3×10−6 during a period of 14 years (see Fig. 11.12).
Glitches have also been detected in other pulsars. The Crab pulsar has shown a series
with ΔΩ/Ω ∼ 10−8 to10−7. In about 2−3% of all pulsars this effect is observable.
The exceptions are the millisecond pulsars.

Possible explanations for glitches might be star quakes of the partly crystalline
neutron star. This abruptly changes the elliptic shape of the pulsar. An alternative is
the interaction of the vortex structure of the superfluid inner parts with the crystal

Fig. 11.11 Fractional frequency stability for different technical and natural clock systems (from
Backer and Hellings 1986)
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Fig. 11.12 The slowdown of the Vela pulsar over 14 years before (upper panel) and after (lower
panel) subtraction of a constant value of ν̇ (ν = 1/P) (after Lyne 2006)

lattice. It is, however, difficult to state how far these explanations go beyond a qual-
itative description of the observed facts and permit rigorous physics.

As noted, no glitches have yet been observed in millisecond pulsars with Ṗ <
10−16 . This is remarkable, since the linear rotational velocity at the surface of these
objects must reach a moderate percentage of c, and the shape of such pulsars should
be rather elliptical. On the contrary, some of these, like PSR 1937+21, are the most
precise celestial clocks known.

11.6.5 Rotational Slowdown and Magnetic Moment

If we adopt the model of a rotating neutron star for a pulsar, an increase of the pulsar
period Ṗ > 0 corresponds to a decrease in the rotational energy

dErot

dt
=

d
dt

(
1
2

IΩ 2
)

= IΩ Ω̇ = −4π2 I Ṗ
P3 .

This energy must be transported away from the neutron star by some means.
The most plausible is magnetic dipole radiation, since neutron stars should usually
possess rather strong magnetic fields. This is the result of flux conservation in the
collapse of stars.

Let the magnetic moment of the neutron star be m⊥ ; then this configuration will
experience an energy loss

(
dE

dt

)
mag

= − 2
3c3

(
d2m⊥

d t2

)2

.
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This is the formula corresponding to the Poynting flux of an electric dipole as
given by (6.40). If the magnetic moment m⊥ is varying with the angular velocity
2π/P we obtain

d2m⊥
d t2 = −m⊥ ·Ω 2 = −m⊥ ·

(
2π
P

)2

.

Adopting a magnetic moment m⊥0 perpendicular to the rotation axis

m⊥0 = B0R3 sinα ,

where B0 is the surface magnetic field of the neutron star, R its radius and α the
angle between rotation and magnetic axis, we obtain

(
dE

dt

)
mag

= − 2
3c3

(
4π2 B0R3 sinα

P2

)2

. (11.47)

If we now require the loss of rotational energy to be caused by the magnetic
dipole radiation, this gives a condition for the magnetic field strength B0 sinα , or,
since |sinα| ≤ 1,

B0 ≥
(

3 I c3PṖ
8π2R6

)1/2

. (11.48)

For a neutron star with a radius R = 106 cm and a moment of inertia I =
1045 gcm2 we then obtain

B0 ≥ 3.2×1019(PṖ)1/2 . (11.49)

All pulsar magnetic field strengths given in the literature are computed following
this recipe, even when this is not so explicitly stated. It is strictly a lower limit,
because, depending on the value of α , fields with larger field strengths could be
tolerated.

When the magnetic field strength of pulsars is computed from the observed val-
ues of P and Ṗ by using (11.49), a range of 108 ≤B0 ≤ 1014 G is obtained, where all
those known to be associated with SNRs possess large magnetic fields while binary
and millisecond pulsars usually have fields of B0 ≤ 1011 G.

Taking B0 as a constant (11.48) gives us a differential equation for the time evo-
lution of P :

PṖ = k . (11.50)

Integrating and eliminating k gives
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P2 −P2
0 = P2

0

(
2 Ṗ0

P0

)
(t − t0) ,

which results in a timescale

τ =
P0

2 Ṗ0
, (11.51)

the characteristic age of the pulsar. For the Crab pulsar this gives an age of 1260
years, a reasonable approximation to the known age of 940 years.

Equation (11.50) defines the evolutionary tracks of pulsars provided the basic
assumption of B0 = const is valid. These evolutionary tracks are straight lines with
a slope of −1 in the logP–log Ṗ diagram, while lines of constant age are straight
lines with the slope +1. If one accepts the concept of large values of B0 as well
as large initial values for P from the collapse of the progenitor, very young pulsars
should start at positions near the Crab pulsar in the P–Ṗ diagram. However, if this
is to apply to the majority of the observed pulsars, the evolutionary process outlined
here cannot be entirely correct. A decay of B0 with time is not plausible for a variety
of reasons, so this is an unsolved problem.

This situation becomes even more acute when millisecond pulsars are consid-
ered. These are situated in the lower left corner of the P–Ṗ diagram with character-
istic ages between 108 and 109 years. Their evolutionary rate is minute. Since most
of these are members of binary systems the idea has generally been accepted that
they are recycled pulsars, whose rotational speed has been increased by a large fac-
tor due to mass transfer from a binary companion. If this mass is first assembled in a
Keplerian disk from where it then passes on to the neutron star, a plausible scenario
can be constructed.

Some millisecond pulsars seem to be single stars. Here the model is rescued
by supposing that these pulsars were formerly members of a binary system which
eventually broke up due to supernova explosions.

11.6.6 Binary Pulsars and Millisecond Pulsars

In July 1974 the pulsar PSR B1913+16 with the then remarkable short period P =
0.059 s was detected by Hulse and Taylor at the Arecibo Observatory. When they
attempted to measure the pulse arrival times they met with curious “irregularities”.
After accounting for all known gravitational and kinematic effects from the solar
system they found the pulse phase jumped by up to 80μs from day to day, some-
times even by 8μs over 5 min. The observed effects therefore had to be caused by
the dynamics of the pulsar. By converting the phase shifts into equivalent radial
velocities, Hulse and Taylor could explain their data by a model of a binary pul-
sar moving in an elliptical orbit. The orbit parameters could be determined from
the data by using the classical Thiele-Innes method for a single-line spectroscopic
binary.

The orbital elements describing the system (based on the 1974 data) are:
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• projected semi-major axis a1 sin i = 6.96 ·105 km
• eccentricity e = 0.615
• orbital period Pb = 0.323d

• velocity curve semi amplitude K1 = 199kms−1 .

Since β = v/c � 7×10−4, relativity effects should become rather important for
this system. This becomes clear when the expected advance of the periastron due to
relativistic effects is calculated. From any textbook on the theory of general relativ-
ity, one can obtain the shift of the periastron in radians per orbital revolution:

Δω =
6πG(m1 +m2)

c2a(1− e2)
. (11.52)

If the measured orbital elements are inserted, and account is taken of Kepler’s
third law,

a3

P2
b

=
G(m1 +m2)

4π2 , (11.53)

we obtain the rate of the periastron advance

ω̇ = 2.1◦ (m1 +m2)2/3 yr−1 . (11.54)

From estimated masses for the pulsar binary, the periastron advance is more than
105 times that of the orbit of planet Mercury (0.43”yr−1). This system therefore
provides the unprecedented chance of a high precision test of the general theory of
relativity. This opportunity has been seized by Taylor in subsequent investigations.

In order to carry out such an investigation, high precision values for the pulsar
system are needed, and an analysis along the classical lines by converting pulse
phases into equivalent radial velocity data is not appropriate. What we need is an
arrival time analysis as given in (11.46), but now including the dynamics of the
binary pulsar.

We will continue to assume that the pulsar clock controlling the pulse emission
is described by a power series in T . But this clock is now carried on an orbit that
is elliptic in the Newtonian approximation and described by an osculating ellipse
with a rotating line of the apsides if the GRT applies. So, if the pulse phase of the
received pulses is to be determined properly, a transformation of the emission time
sequence to the barycentric coordinate system must be determined. If terms up to
and including v2/c2 are included, we obtain from the Schwarzschild solution

c(tN −TN) = |RN − rN|+ cT1 sinE +
2Gm2

c2 ln

(
2rN

r−R

)
, (11.55)

where rN is the (relative) position of the pulsar in its orbit at emission of the pulse N,
and R is the barycentre of this orbit. E is the eccentric anomaly of the pulsar system,
which is related to time by the Kepler equation
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2π
Pb

(t − t0) = E − esinE

and by

r = a(1− ecosE)

to the orbital geometry. The advantage of using E is that the corresponding ex-
pressions resulting from a fully relativistic treatment are formally identical and use
expressions for a and e that deviate from the classical formulae only by exceedingly
small factors.

The quantity T1 has the dimension of time and is given by

T1 =
√

Ga
c2 em2

m1 +2m2

(m1 +m2)3/2
. (11.56)

T1 has been determined from a long series of timing observations of PSR
1913+16 with an accuracy of better that 10%. If the semi-major axis a is eliminated
from (11.56) we obtain

T1

s
= 1.74×10−3 m2

m1 +2m2

(m1 +m2)3/2
(11.57)

where the masses are in solar masses. Introducing the observed value ω̇ = 4.226◦

yr−1 into (11.54) we obtain m1 +m2 = 2.85M�, while (11.57) then results in m1 =
1.43M�, m2 = 1.42M� and sin i = 0.72.

This analysis of the orbit of the binary pulsar with the help of GRT has another
implication. Since the system is emitting gravitational waves it must lose energy,
and therefore the size of the orbit will shrink. Using

E = −G(m1 +m2)
2a

,

for the total energy of the orbit, and Kepler’s third law (11.53), we obtain

Ṗ/P = −3
2
E −1dE /dt .

Assuming that the total energy is changed only by gravitational quadrupole radi-
ation we find

Ṗb = −96
5

Pb
1+73/24e2 +37/96e4

(1− e2)7/2

G3m1 m5
2

(m1 +m2)3a4
1 c5

. (11.58)

Introducing the measured orbital parameters, one obtains Ṗb = (−2.40±0.09)×
10−12 . A direct fit to the observed phase shift of the pulse arrival times results in
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Ṗb =−2.40 ·10−12 . This provides striking confirmation of Einstein’s GRT and gives
the first empirical evidence for the existence of gravitational waves.

Since 1975, almost 50 binary and millisecond pulsars have been discovered, in
addition to about 30 in globular clusters. In none of these are the relativistic effects
nearly as spectacular as in PSR 1913+16. However for two systems, PSR B1534-12
and PSR J1518+1904, interesting results are expected in the future.

The binary pulsar PSR 1913+16 discussed in the preceding sections is a remark-
able system for other reasons: it has a remarkably short pulse period, P = 59 ms.
At the time of its detection it was the second shortest known; only the Crab pul-
sar was a faster rotator. However, in contrast to the Crab pulsar, the magnetic field
strength of PSR 1913+16 is with B0 = 2.3×1010 G. This is almost 4 orders of mag-
nitude smaller. A similar system, PSR B1937+21 with P = 1.55ms, Ṗ = 1.05×10−4

was detected 1981 by Backer. It has an even smaller magnetic field strength, only
B0 = 4× 108 G, and this pulsar is not known to be a member of a binary system.
Its characteristic age computed according to (11.51) is rather large (2×108 yr ), so
obviously these systems must have had a history very different from that of the Crab
pulsar.

The ms pulsars, which populate the lower-left part of the P–Ṗ diagram (see
Fig. 11.13), form a population different from the regular pulsars. This is also shown
by the fact that many of these system are detected in galactic globular clusters, which
are generally considered to be rather old objects.

11.6.7 Radio Emission Mechanism

Pulsars were discovered more than 30 years ago. Extensive observational and the-
oretical efforts have gone into attempts to understand the mechanism of the pulsar
emission. The cause for the pulsing is quite clear – it is the rotation of the neutron
stars together with their magnetospheres. The central problem is to understand what
“makes them shine” as Taylor and Stinebring (1986) put it. Obviously this must be
connected with both their large magnetic fields and their fast rotation, but this is not
sufficient to select the appropriate radiation mechanism.

The rotation of the pulsar must have a profound influence on the structure of the
corotationg magnetosphere, because at the radius rcΩ = 2πrc/P = c , the field lines
reach the velocity of light, and these field lines as well as those originating closer to
the magnetic poles cannot be closed. In 1968 T.Gold noticed this feature and pointed
out that it should be of importance to the radiation emission mechanism.

The general idea is that the radiation is emitted from the polar caps with the open
field lines, and that the pulse width is related to the opening angle. A fundamen-
tal problem is the exceedingly high brightness temperature of pulsars, resulting in
a ratio kTb/hν � 1028 . Because of that, this region must be entirely free of mat-
ter, otherwise thermal emission occurring at frequencies with hν/kTb � 1, which
are in the X-ray region, should be observed. As Gold put it “there can be no dirt
in the waveguide”. The high brightness temperature of the emitted radiation could
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Fig. 11.13 Distribution of periods P and period derivatives Ṗ for 466 galactic pulsars. Dots sur-
rounded by circles denotes pulsars that are members of binary systems. Symbol size denotes rela-
tive radio luminosity. (After Taylor et al. 1993)

be caused by a large number of charges emitting in phase, that is, by a coherent
emission of radiation.

Another possibility is that the observed high brightness temperature is caused by
a masering process in some kind of periodic structure. A number of theories have
been proposed, but as yet none is really convincing.

Another characteristic feature we do not yet understand is the large variation in
pulse intensity. High time resolution studies have shown strong intensity variations
with time scales from 10 to 1000 μs that reach intensities of 104 Jy correspond-
ing to brightness temperatures of 1032 K if sizes corresponding to the time scale
are adopted for the emission region. In some pulsars the emission is quite erratic,
showing strong variations from pulse to pulse so that the smooth average pulse pro-
file may be obtained only after a rather long time. Some other pulsars may switch
off altogether, or null, for intervals ranging from a few to several hundred periods,
and others show a drifting pattern of sub-pulses. For all these effects, ad hoc ex-
planations have been advanced, but no coherent model valid for all pulsars has yet
emerged.
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11.7 Extragalactic Sources

Most radio sources are extragalactic, but the radio emission from most of these
is considerably weaker than from radio sources in our galaxy. Among the most
powerful extragalactic sources are Perseus A (3C84), Cygnus A and Centaurus A.
The first two were contained in the initial source surveys made before 1950. Sources
like these make up only a few percent of all extragalactic sources. Most of these
have active galactic nuclei (AGN), which have luminosities of ∼ 1046 erg s−1. These
AGNs include quasars, Seyfert galaxies, radio galaxies and BL Lacertae objects.
AGNs are observed from the radio range up to the gamma ray (∼ 100 MeV) region,
although it seems clear that most quasars are radio quiet. It is believed that the
“prime movers” powering the AGNs are black holes; but as yet there is no definite
proof of this hypothesis. Most radio sources show evidence for jets, that is, elongated
features which emanate from the nucleus ending in one of the regions of extended
emission. A scheme to unify Quasars, BL Lac, Seyfert and radio galaxies in terms of
a single type of object has been proposed by Scheuer and Readhead (1979). In this
hypothesis, the viewing angle is the most important parameter: The most rapidly
variable sources have jets pointing in our direction.

For these radio sources, the current questions are how the energy is transmitted
to the jets from the “prime mover”, how the jets are maintained, and the interaction
of the radio emission with the surroundings. For the last 25 years, the generally
accepted theory for luminous extragalactic radio sources has been the following: a
cold, highly collimated, high-velocity flow is formed in or near the parent. This flow
propagates without large losses to the ends of the radio lobes where they terminate in
shock interactions, converting much of the kinetic energy into relativistic electrons
and magnetic fields. There are bright hot spots where the flow impinges on the
external medium, and the momentum moves the hot spots forward, so that the lobes
grow in size and luminosity.

In the following, we will consider three extreme examples of extragalactic
sources: radio galaxies, as represented by Cygnus A, a cluster of galaxies which
is itself radio quiet, but interacts with the 2.7 K background, and the case of extreme
time variability.

11.7.1 Radio Galaxies: Cygnus A

Let us apply (10.114) to Cygnus A, which we take as a typical radio galaxy. This
source is at a distance of 170 Mpc (for a Hubble constant of 100 km s−1 Mpc−1).
After optical identification, Cygnus A was thought to be a collision of two galaxies.
This was shown to be incorrect, since the radio emission is much more extended
than the optical image. This source is an example of an FR2 region (Fanaroff and
Riley 1974), defined as a source for which the centroid of the brightness distribu-
tion of each lobe is further than half way from the nucleus to its outer boundary,
i.e. the source is edge brightened. Conversely FR1 sources are center brightened.
FR2 sources are more luminous than FR1’s at low radio frequencies. In the case
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of Cygnus A the emission consists of two lobes, each of diameter 20 kpc. Within
each of the lower brightness lobes are high-brightness compact regions, so-called
hot spots; these were first found in the 1970s. These maximum intensity peaks are
located about 60 kpc from the parent galaxy. In the cm wavelength range, the spec-
tral index, n, has the value 0.75. In (10.112), νmax is not important, but we must set
νmin = 10 MHz. We take νmax = 10 GHz. At 1 GHz, the radio luminosity per Hertz
is Lν = 4.3× 1027 W Hz−1. Using this result in (10.117), we obtain a minimum
magnetic field B of about 10−5 Gauss. From (10.118), the particle energy density is
4/3 the magnetic energy density. Then, given the source volume, V , we can obtain
an estimate of the minimum electron energy. For the two lobes this is

Uel = 2.6×1057 erg

where it is assumed that the entire volume is filled uniformly. It appears that the
intrinsic rotation measure is < 10 radian m−2. Then from (3.71) NB‖ < 1.23×10−9

where N is in cm−3 and B in Gauss. If we take B = 10−5 Gauss, then N ≈ 10−4 cm−3.
The radio lobes must be associated with the parent galaxy. Assuming the lobes to be
identical, but one moving towards us with v � 0.2c, and the other receding with the
same velocity (see Sect. 10.6.3), Doppler boosting (11.66) gives a flux density ratio
of 4.6 : 1. This difference in the flux densities increases very rapidly with approach
(and recession) velocity; in addition the nearer component is observed at a later stage
in its development. There are a fairly large number of sources similar to Cygnus A.
These are doubles with equal radio flux density, and this requires that the lobes are
moving with v ≤ 0.2c. For a lobe-parent separation of Rs = 100 kpc, the lobes must
have lifetimes of 5Rs/c = 2×106 yr. If the electrons are transported from the central
galaxy, these must survive for this time period. For B ∼ 10−5 Gauss, νg ≈ 170 Hz,
so γ = 1.3×104 for the radiation to reach λ = 1 cm. Then from (10.129)

1
E

dE
dt

= 1.99×10−14 (8×10−12)(1.3×104) = 2×10−21 .

This lifetime is very long, so an age of � 106 yr is no problem. How to contain
this hot mixture of magnetic fields and relativistic particles is not clear. It cannot be
gravitationally bound! From the volume and density given above the mass of each
lobe is ∼ 107 M�; the gravitational energy cannot balance the kinetic energy.

Carilli et al. (1991) have presented arc second resolution multi-frequency studies
of Cygnus A with the VLA. The analytic methods used to determine source ages
are similar to those used for supernova remnants. The minimum energy analysis
indicated a source age of 6 Myr, and an expansion velocity of 0.06c. If the B field
is a factor of 3 weaker, the lobe separation velocity is 0.01c and the source age is
30 Myr. As in previous studies, the synchrotron spectrum in the hot spots is flatter
than in regions closer to the parent galaxy; this is evidence for aging of the electrons.
Apparently electrons are accelerated in the hot spots and lose energy in the lobes.
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11.7.2 An Example of the Sunyaev-Zeldovich Effect: Clusters
of Galaxies

In another context, the 2.7 K background photons can interact with energetic elec-
trons in clusters of galaxies by means of the Sunyaev-Zeldovich effect (Sect.
10.12.1). As an example, at 1 cm wavelength, there is weak absorption of order
−700μK for the cluster CL 0016 and −600μK toward the cluster Abell 773. For the
cluster CL 0016+16, at redshift z = 0.541, the X-ray data give 1.6× 108 K, FWHP
size = 30±19′′ and RMS electron density 1.2×10−2 cm−3. When combined with
the radio data these parameters give reasonably consistent values for a Hubble con-
stant H0 ≤ 50kms−1 Mpc

−1
. More accurate radio and X-ray data may allow an

estimate of H0 which is independent of Cepheid variable parameters.
If the source is resolved, one can carry out a calculations in which images of X

ray emission from electrons is compared to images of Synchrotron emission. One
can assume that the relativistic electrons give rise to X rays by means of the inverse
Compton effect also give rise to Synchrotron emission. Combing these data, one
can determine quantities such as the B field without recourse to the equipartition
assumption. Results from the X ray satellites Chandra or XMM have been used in
such investigations. An example of this analysis is given in the paper by Goodger
et al. (2008).

11.7.3 Relativistic Effects and Time Variability

In the mid-1960s, it was noted that the radio output of QSOs varied on time scales
of months. A simple conversion of time scale to distance gave problems with
brightness temperatures (these are presented in the next section). M. Rees pointed
out that an analysis of the time scale of these changes must take the finite speed of
light into account.

Suppose material is ejected from a source S with a constant speed (cf. Fig. 11.14).
If v � c, after a time t, the material lies on a sphere of radius vt. This changes
dramatically if v ≈ c. Then, for an observer at O, the distance to which the material
appears to have moved depends on the direction. The apparent motion as seen from
O can be understood in terms of 2 very short light flashes. The first is at the start.
Then the travel time for SO is t. Later a second flash is emitted from R′. This arrives
at O at t2. At R′, the source has moved by vt and is closer to O by vt cosθ and
therefore R is smaller by vt cosθ , so

t2 = t1 + t − vt
c

cosθ

and the apparent expansion speed is

vapp =
r

t2 − t1
=

v

1− v
c

cosθ
. (11.59)
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Fig. 11.14 A sketch to illustrate the geometry of light propagation in an expanding source

For transverse velocities this is

(vapp)tranverse =
v sinθ

1− v
c

cosθ
. (11.60)

Clearly those parts of the source approaching at an angle cosθ ≈ v/c make the
largest contribution to the continuum emission. The observed flux density from a
region moving towards us will be increased over the intrinsic flux density by the
relativistic Doppler effect. For a region of intrinsic luminosity L0(ν), a flux density
between ν0 and ν0 + dν0 crosses a shell of radius R0 in the emitter frame:

S(νo)dν0 =
L0(ν)dν

4πR2
0

.

For a Doppler shift

(1+ z) =
λobs

λemitted
=

1+
v
c

cosθ√
1− v2

c2

,

the flux density is

S(ν)dν =
1

(1+ z)2 S(ν0)dν0 =
1

1+ z
S0(ν(1+ z))dν . (11.61)

Both the energy and the rate of photons are modified by the same factor; this can
also be seen by transforming the Poynting vector. If R0 is the distance in the emitter
frame, then the distance to the emitter, R, measured by the observer is R = R0/
(1+ z). Then

S(ν) =
L0(ν(1+ z))
4πR2 (1+ z)3 . (11.62)

If
L0(ν) = kν−α (11.63)

then
L0(ν(1+ z)) = kν−α(1+ z)−α . (11.64)

So
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S(ν) =
L0(ν)
4πR2

[
(1+ z)−3−α] ; (11.65)

that is, the observed flux density, S, is

S = S0 (1+ z)−(3+α) . (11.66)

This effect is known as Doppler boosting. As an extreme example, we consider a
plasma ejected with γ = 6, β = 0.986, at an angle 9.6◦ with our line of sight. For
a receeding region with α = 1, the observed flux density would be 0.000051 times
the intrinsic source flux density. For a region approaching with γ = 6, the observed
flux density would only be 1291 times the intrinsic value.

If it were not for these relativistic effects, one could use observations of time
variability to set limits on the source size, (i. e., a large variation in 3 months re-
quires a size of 3 light months) and this should allow one to set limits on the
B field using the self absorbed synchrotron emission from a determination of
νG = eB/m = 17BμGauss. However, beaming effects require a detailed knowledge
of source structure and kinematics. This is a current area of study using VLBI.

Irrespective of these questions, (10.129) provides an effective upper limit on
source brightness temperatures. If, for example, the brightness temperature is de-
termined to be 1012 K, at 3 cm, then the radiation energy density is, roughly,

uph = 8π
kΔTΔν
λ 2c

∼= 10−4 ergcm−3 s−1 .

Then

1
E

dE
dt

= −10−12 γ .

To have electrons radiate at λ = 3cm = 1010 Hz by the synchrotron process with
B ∼ 10−5 Gauss, then νG = 170 Hz, so γ ∼=

√
ν/νG

∼= 7700 and

1
E

dE
dt

= −7.7×10−9 s−1

or about 4 years. This means that the energy of such electrons must be replenished
on this time scale. Clearly, much larger brightness temperatures are out of the ques-
tion, unless there is a nearby source which can accelerate the electrons on short time
scales.

We can turn the problem around and determine the largest γ which can be main-
tained in the presence of the 2.7 K photons. Here the photon energy density is a
blackbody, so

u =
4πσ

c
T 4 = 2.376×10−14 T 4 ergcm−3 s−1 = 1.26×10−12 ergcm−3 s−1 .

Then
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− 1
E

dE
dt

= 3.03×10−20 γ .

For time scales of 106 years, this would limit γ to 106. For cosmic rays, this limits
proton energies to E ∼ 1015 eV.

Problems

1. (a) Use Eq. (11.1), with r0 = 7× 1010 cm to determine the emission measure of
the quiescent solar atmosphere.
(b) Determine the optical depth of the quiescent solar atmosphere, looking at the
center of the Sun, using Eq. (10.35), with Te = 106 K and for a frequency 100 MHz.
What is the brightness temperature of the Sun?

2. (a) At 5 GHz, the brightness temperature in the outer parts of Orion A is ∼0.5 K.
Use the assumption of an optically thin, smooth Bremsstrahlung emission from a
region with Te = 6500 K which fills the telescope beam completely to calculate the
brightness temperature of these regions at 23 GHz (use Eq. (10.36)). In the upper
part of Fig. 11.5 is the 23 GHz map of Orion A. The RMS noise in this map is 0.1 K.
Would this emission from the outer parts of Orion A be detected in the 23 GHz map?
(b) At what frequency would the outer regions of Orion A have an optical depth of
unity?

3. Suppose a solar type star is to be detected at the 1 μ Jy level at λ = 3mm. Given
that Te = 5700 K and r0 = 7× 1010 cm, what is the maximum distance that such a
star can be detected?

4. (a) Calculate the radio continuum flux density at ν = 10 GHz for a B3 supergiant
(T = 1.6×104 K, r0 = 3.6×1012 cm). Use an electron and ion density of 1010 cm−3

and Eq. (11.7) with r = r0 for such a star which is 3 kpc distant.
(b) Is this source detectable with the 100 m telescope if the receiver noise is 50 K,
if 1 Jy corresponds to 1.3 K, TA, and the receiver bandwidth is 500 MHz? Do not
consider confusion effects.
(c) With the VLA at 23 GHz, a source was found to have a continuum flux density
of 27 mJy. This is at a distance of 7 kpc. What would n0r2

0 have to be if this emission
be caused by an ionized outflow of T = 20000 K?
(d) If n0 = 1010 cm−3, what is r0?

5∗. Reformulate equation (11.7) by substituting the mass loss rate for a steady ion-
ized wind. The product of electron density and radius squared can be related to

ne(r) =
Ṁ

4πr2vwμmH
.

Substitute this relation into the equation in Problem 4, where Ṁ is the mass loss
rate in 10−5 Ṁ (per year) and vw is the wind velocity, in units of 1000 km s−1. μ is
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the average mass as a multiple of the mass of the hydrogen atom, mH. Use this result
to find the mass loss rate for the source analyzed in Problem 4
(a) if vw = 100 km s−1.

6. The parameters of a B0 zero age main sequence (ZAMS) star are T = 3.1×104 K,
luminosity L = 2.5×104 L� and radius r = 3.8×1011 cm. Suppose this object has
a mass loss rate of 10−6M� per year and is 7 kpc distant. What is the flux density
for a frequency of 10 GHz? Is this source detectable with the 100 m telescope? With
the VLA?

7. From the flux density at 100 MHz in Fig. 10.1, calculate the peak brightness tem-
perature of the Crab nebula, if the FWHP angular size of this source is 5′, and
the source shape is taken to be Gaussian. Repeat this calculation for a frequency
of 10 GHz, using the same angular size. If the maximum brightness temperature
for Bremsstrahlung emission from a pure hydrogen HII region is considered to be
20 000 K, is the emission from the Crab nebula thermal or non-thermal?

8. If Cassiopeia A has an angular diameter of 5.5′, determine the present-day linear
size of Cassiopeia A if this source is 3 kpc from the Sun. If the explosion occurred
in 1667, and if the expansion velocity has been constant, what is vexp? The VLA can
measure positions of “point” sources to 0.05′′ accuracy. If there are such “point” fea-
tures in Cas A, and if these features do not change shape with time, but merely move
with vexp, over what time scale would you have to carry out VLA measurements to
observe expansion?

9. (a) Use (Eq. 11.43) with δ = 2.54, to extrapolate the radio flux density of Cas-
siopeia A to a time when this source was 100 years old; that is, what was Sν at
100 MHz in 1777? See Fig. 10.1 for the flux today. What would be the angular size
if the expansion is linear with time?
(b) Calculate the peak brightness temperature in 1777 assuming that this source was
Gaussian, using (Eq. 8.20).

10. There is a sharp decrease in the flux density of Cassiopeia A at a frequency of
about 10 MHz. If this source is 3 kpc from the Sun, and the average electron den-
sity is 0.03 cm−3, calculate whether the cause of the fall off is free–free absorption
by electrons along the line of sight. These will have an effect only if τ = 1. Use
Eq. (10.35) with Te = 6000 K.

11. (a) Make use of the minimum energy theorem to estimate the magnetic fields and
relativistic particle energies on the basis of synchrotron emission, using (Eq. 10.119)
to obtain a numerical result if the spectral index, n, is 0.75, and b(n) = 0.086. For
the maximum frequency, take νmax equal to 50 GHz and for the minimum frequency,
νmin, equal to 0.1 GHz. Finally, take η (the ratio of other relativistic particles to that
of electrons) to be 10. With these parameters, show that the expression for the B
field is

Beq = 1.2×10−5
(

Sν [Jy]R2[Mpc]ν0.75[GHz]
V [kpc]

)2/7

.

12. Assume that the galaxy NGC 253 is similar to our Milky Way. The radius of
the synchrotron-emitting halo is 10 kpc at a distance of 3.4 Mpc. At ν = 8.7 GHz,
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the integrated flux density is 2.1 Jy and the spectral index is n = 0.75 (Sν =
S0(ν/ν0)−0.75). Take νmax = 50 GHz and νmin = 10 MHz to calculate the B field
and estimate the relativistic particle energy assuming that the minimum energy con-
dition holds, i.e. using (Eq. 10.119).

13. Assume that the distance to Cygnus A is 170 Mpc. This source has a flux density
of 104 Jy at 100 MHz. Assume that the electrons radiate over a frequency range from
10 MHz to 50 GHz with a spectral index n = 0.75. Find the power, P, radiated by
the electrons via the synchrotron process, using

P = 4πR2
∫ νmax

νmin

Sνdν .

Compare to the total energy of the radio lobes, 2× 1057 erg, calculated under
the assumption of equipartition. What is the lifetime of these relativistic electrons
if synchrotron emission is the only loss mechanism? Compare this to the expected
lifetime of the source if the lobes are 7×104 pc apart and are thought to be moving
with a speed <0.2c. What do you conclude about the need to replenish the energy
of the electrons?

14. (a) The quasi-stellar radio source 3C273 has a red shift of 0.16. Take the Hubble
constant, H0, to be 70 km s−1 per Mpc. Find this distance. The flux density varies on
a time scale of months. Use a simple relation of R = cṫ to determine the source size,
without taking any relativistic effects into account. What is the angular size? Next,
using this angular size, convert the flux density at 20 GHz, which is ∼20 Jy, into a
source brightness temperature. What is the result? Does this exceed the maximum
temperature of 1012 K, the limit predicted by the inverse Compton effect? This is an
indication that relativistic beaming effects are important.
(b) Refer to (Eq. 11.59); for transverse velocities this is given by (Eq. 11.60). What
is the angle at which the apparent transverse velocity is a maximum? What is the
apparent velocity at this angle? If the apparent expansion velocity is 7c, what is the
beaming angle? There is no counter jet. Explain why not, taking “Doppler boosting”
into account, using (Eq. 11.66).



Chapter 12
Spectral Line Fundamentals

12.1 The Einstein Coefficients

In local thermodynamic equilibrium (LTE) the intensities of emitted and absorbed
radiation are not independent but are related by Kirchhoff’s law (1.14). This applies
to both continuous radiation and line radiation. The Einstein coefficients give a con-
venient means to describe the interaction of radiation with matter by the emission
and absorption of photons.

Consider a cavity containing atoms with discrete energy levels Ei . According
to Einstein (1916) a system in the excited level E2 will return spontaneously to the
lower level E1 with a certain probability A21 such that N2A21 is the number of
such spontaneous transitions per second in a unit volume if N2 is the density in
the state E2 (Fig. 12.1). The energy levels E1 and E2 have a finite energy spread so
that E2−E1 will have a certain energy distribution. Converting this into frequencies
using E2 −E1 = hν , the absorption line will be described by a line profile function
ϕ(ν) which is sharply peaked and normalized so that

∞∫
0

ϕ(ν)dν = 1 . (12.1)

If the intensity of the radiation field is Iν (see Sect. 1.3) we can define an average
intensity by

Ī =
∞∫

0

Iν ϕ(ν)dν (12.2)

and the probability of the absorption of a photon is B12Ū such that the number of
absorbed photons is N1 B12 Ū where Ū = 4π Ī/c is the average energy density of the
radiation field. Einstein found that to derive Planck’s law another emission process
proportional to Ū was needed. This is N2 B21 Ū , equal to the number of photons
emitted by stimulated emission.

If the system is in a stationary state, the number of absorbed and emitted photons
must be equal, so that

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 319
DOI 10.1007/978-3-540-85122-6 12, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 12.1 Transitions
between the states 1 and 2
and the Einstein probabilities

N2 A21 +N2 B21 Ū = N1 B12 Ū . (12.3)

The Einstein coefficients A21,B21 and B12 are not independent as can be seen
if we consider a system in full thermodynamic equilibrium (TE). The systems in
the cavity are not all in one state but are distributed over different states so that the
different atomic levels are populated according to the Boltzmann distribution

N2

N1
=

g2

g1
exp

(
− hν0

k T

)
, (12.4)

where g1 and g2 are the statistical weights of the states and T is the temperature of
the cavity in Kelvin. Solving (12.3) for Ū gives

Ū =
A21

N1

N2
B12 −B21

. (12.5)

From this and (12.4) we have

Ū =
A21

g1

g2
exp

(
hν0

k T

)
B12 −B21

. (12.6)

But in TE we know that Ū must be given by the Planck function (1.13):

Ū =
4π
c

Bν(T ) =
8πhν3

0

c3

1

exp

(
hν0

k T

)
−1

. (12.7)

The expressions (12.6) and (12.7) should be identical; this is so only if

g1 B12 = g2 B21 (12.8)

and

A21 =
8πhν3

0

c3 B21 . (12.9)
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In deriving these relations no reference is made to any thermodynamic property
of the cavity. Therefore they must be valid for systems independent of the assump-
tion of a TE environment.

12.2 Radiative Transfer with Einstein Coefficients

When the radiative transfer was considered in Sect. 1.4, the material properties were
expressed as the emission coefficient εν and the absorption coefficient κν . Both εν
and κν are macroscopic parameters; for a physical theory these must to be related to
atomic properties of the matter in the cavity. If line radiation is considered, the Ein-
stein coefficients in Sect. 12.1 are very useful because these can be linked directly to
the properties of the transition responsible for the spectral line. For radiative trans-
fer εν and κν are needed, so we must investigate the relation between κν and Aik

and Bik. This is best done by considering the possible change of intensity Iν passing
through a slab of material with thickness ds just as in Sect. 1.4. Now we will use Aik

and Bik.
According to Einstein there are three different processes contributing to the in-

tensity Iν . Each system making a transition from E2 to E1 contributes the energy
hν0 distributed over the full solid angle 4π . Then the total amount of energy emitted
spontaneously is

dEe(ν) = hν0 N2 A21ϕe(ν)dV
dΩ
4π

dν dt . (12.10)

For the total energy absorbed we similarly obtain

dEa(ν) = hν0 N1 B12
4π
c

Iν ϕa(ν)dV
dΩ
4π

dν dt (12.11)

and for the stimulated emission

dEs(ν) = hν0 N2 B21
4π
c

Iν ϕe(ν)dV
dΩ
4π

dν dt . (12.12)

The line profiles ϕa(ν) and ϕe(ν) for absorbed and emitted radiation could be
different, but in astrophysics it is usually permissible to put ϕa(ν) = ϕe(ν) = ϕ(ν).
For the volume element we put dV = dσ ds, where dσ is the unit area perpendicular
to the beam direction. For a stationary situation, we find

dEe(ν)+ dEs(ν)− dEa(ν) = dIν dΩ dσ dν dt

=
hν0

4π

[
N2 A21 +N2 B21

4π
c

Iν −N1 B12
4π
c

Iν

]
ϕ(ν)dΩ dσ dsdν dt .

The resulting equation of transfer with Einstein coefficients is
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dIν
ds

= −hν0

c
(N1 B12 −N2 B21) Iν ϕ(ν)+

hν0

4π
N2 A21ϕ(ν) . (12.13)

Comparing this with (1.9) we obtain agreement by putting

κν =
hν0

c
N1 B12

(
1− g1N2

g2N1

)
ϕ(ν) (12.14)

and

εν =
hν0

4π
N2 A21ϕ(ν) , (12.15)

where we used (12.8) to relate B12 and B21. The factor in brackets in (12.14) is the
correction for stimulated emission. In radio astronomy, where the stimulated emis-
sion almost completely cancels the effect of the true absorption, this is important.
How this comes about is best seen if we investigate what becomes of (12.13–12.15)
if LTE is assumed.

From (12.14) and (12.15) we find by substituting (12.8) and (12.9) that

εν
κν

=
2hν3

c2

(
g2N1

g1N2
−1

)−1

.

But for LTE, according to (1.14), this should be equal to the Planck function
(1.13), resulting in

N2

N1
=

g2

g1
exp

(
− hν0

k T

)
. (12.16)

In LTE, the energy levels are populated according to the same Boltzmann dis-
tribution (12.4) for the temperature T that applied to full TE. Then the absorption
coefficient becomes

κν =
c2

8π
1

ν2
0

g2

g1
N1 A21

[
1− exp

(
−hν0

k T

)]
ϕ(ν) , (12.17)

where we have replaced the B coefficient by the A coefficient, using

B12 =
g2

g1
A21

c3

8πhν3 .

This last relation is obtained from (12.8) and (12.9). In (12.17) the expression in
brackets is the correction for stimulated emission. Since

h
k

= 4.79927(15)×10−11 KHz−1 , (12.18)
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Table 12.1 Physical line parameters at different frequencies

Line ν/Hz
hν
k

/K T10%/K

Ly cont. 3.29×1015 1.58×105 6.9×104

Hα 4.57×1014 2.19×104 9.5×103

21 cm 1.42×109 6.82×10−2 3.0×10−2

we obtain the values in Table 12.1. In it we give for a few transitions the temperatures
for which stimulated emission will be important. In the second column, we give the
line frequency, in the third T0 = hν/k, and in the fourth the temperature at which
the correction for stimulated emission is 10%.

For radiation in the ultraviolet and visual range, the correction for stimulated
emission is small, and only absorption is relevant. Only when hν/k T < 1 must
stimulated emission be taken into account, as in the radio range. When hν/k T � 1
it is sufficient to use the first term of the Taylor series

1− exp

(
− hν

k T

)
∼= hν/k T − 1

2
(hν/k T )2 + . . . . (12.19)

Thus stimulated emission cancels most of the absorption; for molecular line ra-
diation in the mm wavelength range of low-temperature regions (T < 10 K) some of
the higher terms in (12.19) or even the full exponential function might be needed.
The last column in Table 12.1 gives the temperature at which the correction for stim-
ulated emission amounts to 10%, that is, for which exp{−hν/k T} = 0.1.

12.3 Dipole Transition Probabilities

The simplest sources for electromagnetic radiation are oscillating dipoles. Radiating
electric dipoles have already been treated classically in Chap. 6, but it should also
be possible to express these results in terms of the Einstein coefficients. There are
two types of dipoles that can be treated by quite similar means: the electric and the
magnetic dipole.

Electric Dipole. Consider an oscillating electric dipole

d(t) = ex(t) = ex0 cosωt . (12.20)

According to electromagnetic theory, this will radiate. The power emitted into a
full 4π steradian is, according to (10.11),

P(t) =
2
3

e2v̇(t)2

c3 . (12.21)
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Expressing x = d/e and v̇ = ẍ, we obtain an average power, emitted over one
period of oscillation of

〈P〉 =
64π4

3c3 ν
4
mn

(ex0

2

)2
. (12.22)

This mean emitted power can also be expressed in terms of the Einstein A coef-
ficient:

〈P〉 = hνmn Amn . (12.23)

Equating (12.22) and (12.23) we obtain

Amn =
64π4

3hc3 ν
3
mn |μmn|2 , (12.24)

where
μmn =

ex0

2
(12.25)

is the mean electric dipole moment of the oscillator for this transition.
Strictly speaking, expression (12.24) is applicable only to classical electric dipole

oscillators. It turns out to be valid for quantum systems also. Thus the transition
probability for atomic hydrogen close to the Lyman limit is about 109 s−1. This is
obtained by putting x0 = a0 = 5.29×10−9 cm = Bohr radius, νmn = cR∞ = 3.29×
1015 Hz = frequency at the Lyman limit, and μmn = ea0/2 = 4.24×10−19 [cgs].

Magnetic Dipole. For a magnetic dipole,

m(t) = m0 cosωt , (12.26)

the corresponding Einstein A coefficient is

Amn =
64π4

3hc3 ν
3
mn |μ∗mn|2 , (12.27)

where μ∗mn is the mean magnetic dipole moment of the oscillator for this transition.
If we again apply this relation to the hydrogen atom and compute

|μ∗mn| =
eh̄

2mec
∼= 9.27×10−21 ergGauss−1 (12.28)

in terms of the magnetic moment of the lowest Bohr orbit we obtain

Amn
∼= 104 s−1 . (12.29)

The transition probability for a magnetic dipole is thus smaller than that of an
electric dipole by a factor of 2092 provided all other parameters of the two dipoles
are identical; this is because the typical dipole moment of a magnetic dipole is a
factor 46 smaller than that of an equivalent electric dipole.

The Einstein coefficients for transitions in atomic systems in which the elec-
tric dipole moment changes are therefore much larger than those for transitions in
which only the magnetic dipole moment or the electric quadrupole moment changes.
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Electric dipole transitions therefore are referred to as “allowed”, while the others are
termed “forbidden”.

12.4 Simple Solutions of the Rate Equation

In order to compute absorption or emission coefficients in (12.14) and (12.15), both
the Einstein coefficients and the number densities Ni and Nk must be known. In the
case of LTE, the ratio of Ni to Nk given by the Boltzmann function (12.16) of the
local temperature leads to (12.17). If LTE does not apply, the individual processes
that lead to the population or depopulation of an energy level have to be considered.
Usually such processes involve not only the two levels, giving rise to the transition
in question but the whole system of all transitions.

Let Ry
jk be the transition probability for the transition j → k caused by the process

y and let Nj be the number density in the state j. Then

dNj

dt
= −Nj∑

k
∑
y

Ry
jk +∑

k

Nk∑
y

Ry
k j . (12.30)

For a stationary situation dNj/dt = 0. Depending on which processes cause the
transitions, the solution of (12.30) can be rather complicated. Here we will consider
two simple cases; a slightly more complicated situation will be met in the case of
radio recombination lines in Chap. 14 and of molecular lines in Chap. 15.

First we consider the case of two states, 1 and 2 where the only way to change
states is by the emission and absorption of radiation. We do not, however, assume
that LTE applies. The transition rates in (12.30) are given by the Einstein coeffi-
cients. For a stationary situation we must have

N1 B12 Ū = N2(A21 +B21 Ū) , (12.31)

where Ū is given by (12.2). Ū is a single number and can be formally expressed by
a radiation density

Ū =
4π
c

Ī =
8πhν3

0

c3

1

exp

(
hν0

k Tb

)
−1

(12.32)

resulting in a brightness temperature

Tb =
hν0

k
1

ln

(
8πhν3

0

c3 Ū
+1

) . (12.33)

Combining (12.31) with (12.9), we have

N2

N1
=

B12

B21

Ī

2hν3
0

c2 + Ī

=
g2

g1
exp

(
−hν0

k Tb

)
. (12.34)
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The number densities N1 and N2 thus will be described by a Boltzmann distribution
as in the case of LTE. The temperature Tb in this distribution describes the radiation
density at the frequency corresponding to the transition 2 → 1. This need have
nothing to do with a thermodynamic temperature of the system.

Another simplification of (12.30) is possible if it is used to describe the number
densities of the cool parts of the interstellar gas. Let us assume that only the two
lowest states are populated to any extent, but that collisions, not radiation governs
the transition rates.

If C12 and C21 are the collision probabilities for the transitions 1 → 2 and 2 → 1,
respectively, then the rate equation (12.30) for a stationary situation will be

N1(C12 +B12 Ū) = N2 (A21 +B21 Ū +C21) , (12.35)

where Ci j are the probabilities per particle (in cm3 s−1).

Cik = NiCik = Ni

∞∫
0

σik(v)v f (v)dv , (12.36)

where σik is the collision cross section and f (v) the velocity distribution function of
the colliding particles. If collisions dominate, the principle of detailed balance leads
to

C12

C21
=

N2

N1
=

g2

g1
exp

(
− hν0

k TK

)
, (12.37)

where TK is the temperature describing the velocity distribution,
hν0 = E2 −E1 and

f (v) =
(

2
π

)1/2

v2
(

mr

k TK

)3/2

exp

(
− mrv2

2k TK

)
, (12.38)

with

mr =
ma mb

ma +mb

the reduced mass of the colliding particles. TK is the kinetic temperature.
Substituting (12.36) and (12.37) together with (12.32) into (12.35) we obtain

N2 g1

N1 g2
= exp

(
− hν

k Tex

)

= exp

(
− hν

kTb

)A21 +C21 exp

(
− hν

k TK

)[
exp

(
hν
k Tb

)
−1

]

A21 +C21

[
1− exp

(
− hν

k Tb

)]
, (12.39)
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where we characterize N2/N1 by a formal excitation temperature Tex defined

N2

N1
=

g2

g1
exp

(
− hν

k Tex

)
. (12.40)

This excitation temperature is a mean between the radiation temperature Tb and
the kinetic temperature TK. When Tex, Tb and TK � hν/k, and if we use for abbre-
viation

T0 =
hν
k

(12.41)

we have

Tex = TK
TbA21 +T0C21

TKA21 +T0C21
(12.42)

If radiation dominates the rate equation (C21 � A21), then T0 → 0, (12.39) tends
to (12.34) and Tex → Tb . If on the other hand collisions dominate (C21 � A21),
then Tex → TK. Since Cik increases with increasing N collisions will dominate the
distribution in high-density situations and the excitation temperature of the line will
be equal to the kinetic temperature. In low-density situations Tex → Tb. The density
when A21 ≈C21 ≈ N∗〈σ v〉 is called the critical density. The smaller A21, the lower
is N∗. We will return to this point in Chap. 14.

Problems

1. Use Eq. (12.4) to estimate T for a two-state system with equal statistical weight
factors and level populations N1=1.01N2 (upper state is 2).

2. We now investigate the variation of Tex with the collision rate, C21, and the spon-
taneous decay rate, A21, for a two-level system. Equation (12.42) gives the depen-
dence on the kinetic temperature, TK, and the temperature of the radiation field, Tb,
and the ratio of collision rates to A coefficients. Suppose that the collision rate, C21,
is given by n〈σv〉, where the value of 〈σv〉 is ∼10−10. When n〈σv〉 = A21 for the
transition involved, this is referred to as the “critical density”, n∗. For the 21 cm line,
A21 = 2.85× 10−15 s−1. Find n∗ for this transition. For neutral hydrogen, in most
cases, only two levels are involved in the formation and excitation of the 21 cm line
since the N = 2 level is 9 eV higher. Less secure is any result for multi-level systems.
However, to obtain an order of magnitude estimate, repeat this calculation for the
J = 1−0 transition of the molecule HCO+, modelling the molecule as a two-level
system in which the Einstein A coefficient is A21 = 3×10−5 s−1. What is the value
of n∗? Compare this to the value for the 21 cm line. For HCO+, take TK = 100K;
find the value of the local density for which Tex = 3.5 K. Tb=2.7 K. For the same
density, calculate n∗ for the J = 1−0 transition of the carbon monoxide molecule,
CO, modelling this as a two-level system with A21 = 7.4×10−8 s−1.
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3∗. Line shapes can be obtained using a semi-classical model of the atom. Use the
model of a classical oscillator, but now with a loss term proportional to velocity:
ẍ = −ω2

0 x− γ ẋ.
(a) Solve for x under the assumption that γ � ω0, using x = x0eαt .
(b) Determine the electric field caused by the motion of the oscillating charge.
(c) Determine the line shape using the Fourier transform (F.T.) of the electric field.
(d) Obtain the line intensity as the absolute value of the square of the F.T. of the
electric field. This is the Lorentzian line shape.
(e) Determine the line shape if the thermal motion of the atoms, described by f (v) =
(m/2kT )3/2 exp(−mv2/2kT ), is combined with the relation for the Doppler shift,
Δv/c = Δν/ν0.
(f) Assume that the areas of these two line profiles are equal, and plot the line shapes.
Discuss the difference in intensities of the line wings.
(g) Compare values of γ and ω0 for the Lyman α line, given that the line frequency,
ν , is 3.29×1015 s−1 and the A coefficient is 5.4×109 s−1. Take γ as A, the Einstein
coefficient for spontaneous decay. Repeat this for the 1.420 GHz line of hydrogen,
emitted by hydrogen atoms in regions of density 1 cm−3, 105 cm−3 and 1019 cm−3

if γ = 2.87×1015 s−1.

4. The energy of the ground state of the hydrogen atom can be obtained using the
following analysis, which is closer to the spirit of quantum mechanics than the usual
semi-classical orbit analysis. Assume that the nucleus has a very large mass, and
charge e. The electron has a mass m and change −e. The electron moves with a
momentum p at a distance x from the nucleus.
(a) Write down the energy equation for this situation.
(b) Use the relation obtained in Problem 7 in Chap. 2, namely ΔxΔk = 1. Use the de
Broglie relation k = p/h̄ in the energy equation. Differentiate the energy equation,
and set the result to zero to obtain the minimum value of x. What is this value?
Compare to the lowest Bohr orbit. Calculate the energy. The value x is the lowest
orbit of the electron. The radius increases with n2, where n is the principal quantum
number. Calculate the energy of the lowest two orbits. Now take the difference and
set the energy difference equal to hν . What is the value of ν? Compare this to the
frequency of the Lyman α line.

5. Evaluate the constants in Eq. (12.24) to show that

Aul = 1.165×10−11 ×ν3
ul|μul|2 (12.43)

where νul is in GHz, and μul is in 10−18 esu units.



Chapter 13
Line Radiation of Neutral Hydrogen

Most atomic transitions give rise to spectral lines at wavelengths in the infrared or
shorter. With the exception of radio recombination lines (Chap. 14), atomic radio
lines are rare. The energy levels are described by the scheme 2S+1LJ . In this descrip-
tion, S is the total spin quantum number, and 2S + 1 is the multiplicity of the line,
that is the number of possible spin states. L is the total orbital angular momentum
of the system in question, and J is the total angular momentum. For the lighter ele-
ments, the energy levels are best described using LS coupling. This is constructed by
vectorially summing the orbital momenta to obtain the total L, then combining the
spins of the individual electrons to obtain S, and then vectorially combining L and
S to obtain J. If the nucleus has a total spin, I, this can be vectorially combined with
J to form F. For an is olated system, all of these quantum numbers have a constant
magnitude and also a constant projection in one direction. Usually the direction is
arbitrarily chosen to be along the z axis, and the projected quantum numbers are
referred to as MF , MJ , ML and MS.

Compared to the famous 21 cm hyperfine line of H I, most other fine structure and
hyperfine structure lines are not very intense. We give a list of the quantum assign-
ments together with line frequencies, Einstein A coefficients and critical densities in
Table 13.1. A few comments about this table is in order. First, the 327 MHz line of
D I is the deuterium analog of the 21 cm line of H I. There have been intense searches
over a 50 year time period. These searches were rewarded with the detection of a
weak line; an overview of the results is to be found in Rogers et al. (2007). The mea-
surements were made toward the galactic anticenter where hydrogen and deuterium
are found only in the atomic form. The D/H ratios from these data are consistent
with Big Bang nucleosynthesis. In other regions, it is likely that much of the D is in
the molecule HD. The 3He+ hyperfine transition has been has been studied in a num-
ber of galactic sources. The relative abundance of this isotope of helium provides
an important observational constraint to standard big bang nucleosynthesis, and is
also produced in solar mass stars from D. Unlike D, helium is chemically inert, so
cannot be incorporated in molecules. There are radio lines of neutral carbon at 492
and 809 GHz. These lines arise from the somewhat protected molecular regions. In
less dense regions, ionized carbon, C+ or C II is present. This ion has a fine struc-
ture line at 157μm and is expected to be a dominant cooling line in denser clouds.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 329
DOI 10.1007/978-3-540-85122-6 13, c© Springer-Verlag Berlin Heidelberg 2009



330 13 Line Radiation of Neutral Hydrogen

Table 13.1 Parameters of some atomic lines

Element and Transition ν/GHz Ai j/s−1 Critical Notes
ionization density
state n∗

DI 2S1/2, F = 3/2−1/2 0.327 4.65×10−17 ∼ 1 a,b

HI 2S1/2, F = 1−0 1.420 2.87×10−15 ∼ 1 a,b
3He+ 2S1/2, F = 0−1 8.665 1.95×10−12 ∼ 10 a

CI 3P1 −3 P0 492.16 7.93×10−8 5×102 b

CI 3P2 −3 P1 809.34 2.65×10−7 104 b

CII 2P3/2 −2 P1/2 1900.54 2.4×10−6 5×103 b

OI 3P0 −3 P1 2060.07 1.7×10−5 ∼ 4×105 b

OI 3P1 −3 P2 4744.77 8.95×10−5 ∼ 3×106 a,b

OIII 3P1 −3 P0 3392.66 2.6×10−5 ∼ 5×102 a

OIII 3P2 −3 P1 5785.82 9.8×10−5 ∼ 4×103 a

NII 3P1 −3 P0 1473.2 2.1×10−6 ∼ 5×101 a

NII 3P2 −3 P1 2459.4 7.5×10−6 ∼ 3×102 a

NIII 2P3/2 −2 P1/2 5230.43 4.8×10−5 ∼ 3×103 a,b

a ions or electrons as collision partners.
b H2 as a collision partner.

Although these lines might be considered as part of infrared astronomy, the hetero-
dyne techniques have reached the 1 000 GHz = 1 THz frequency range (=300 μm).

13.1 The 21 cm Line of Neutral Hydrogen

The interstellar medium pervades the whole galactic system; neutral interstellar gas
is present practically everywhere as shown by the 21 cm observations of neutral
hydrogen, H I. The structure of this medium is rather irregular. On the one hand,
there are large regions with extremely low gas density and, on the other hand, we
find large cloud complexes (Fig. 13.1).

This medium is not in a state of equilibrium; violent internal motions are super-
posed on the general differential galactic rotation field. The physical state of this
medium varies markedly from one region to the other because the gas tempera-
ture has a dependence on the local energy input and cooling processes. There exist
large, cool cloud complexes in which both dust grains and many different molecular
species are abundant, and warmer regions where only atomic lines are found.

The 21 cm line is the transition between the hyperfine structure levels 12 S1/2,
F = 0 and F = 1 of neutral hydrogen or H I. The energy of these differs slightly due
to the interaction of the spin of the nucleus and that of the electron. The frequency
of the resulting line has been measured with high precision in the laboratory; it is,
in fact, one of the most precisely measured physical quantities with a mean relative
error of only 2×10−11:
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Fig. 13.1 In the upper
diagram, a 21 cm line profile
for l = 41.9◦,b = 0◦

measured with the Effelsberg
100 m telescope (8′) is
shown, below is a profile of
the CO J = 1 → 0 taken with
the same resolution, for
comparison. (CO spectrum
courtesy of T. Dame,
S. Hüttemeister and
P. Thaddeus). Note that the
CO profile is more structured.
This is an indication that CO
exists mostly in clouds, while
H I is also present in the
general interstellar medium
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ν10 = 1.420405751786(30)×109 Hz (13.1)

(Peters et al. 1965). This radiation is caused by a magnetic dipole transition with a
dipole matrix element of one Bohr magneton. Substituting (13.1) into (12.27) we
then obtain

A10 = 2.86888(7)×10−15 s−1 . (13.2)

This transition probability is about a factor 1023 smaller than that of an allowed
optical transition, mostly due to the difference frequency, which enters as ν3 in
(12.24); an additional factor of 5 × 105 comes from the small magnitude of the
magnetic dipole moment.

The spontaneous mean half-life time of the F = 1 state is

t1/2
∼= 1/A10 = 3.49×1014 s ∼= 1.11×107 yr .

Since a typical interstellar hydrogen atom will change the spin of the electron
due to collisions about every 400 years, only a very small fraction of all collisions
will give rise to the emission or absorption of a photon. Thus in practically all as-
tronomical situations the relative population of the hyperfine structure levels will be
determined by collisions.

Let the relative population of the levels be described by an excitation temperature
which in this case is usually called the spin temperature Ts
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N1

N0
=

g1

g0
exp

(
−hν10

k Ts

)
, (13.3)

with

T0 =
hν10

k
= 0.0682K , (13.4)

and

N1

N0
=

g1

g0
= 3 , for Ts � T0 .

The exponential function in (12.17) can be replaced by the first two terms of the
Taylor series, so that

κν =
3c2

32π
1
ν10

A10 NH
h

k Ts
ϕ(ν) (13.5)

where the total number of neutral hydrogen atoms (per unit volume) has been intro-
duced by NH = N0 +N1 = 4N0.

Equation (13.5) gives the absorption coefficient per unit frequency interval. Since
in radio astronomy the line shapes are usually given in terms of the corresponding
Doppler velocities

ν10 −ν
ν10

=
v
c

, (13.6)

(13.5) can be transformed into

dτ
( v

kms−1

)
= −κν(s)d

( s
cm

)

= −5.4873(10)×10−19
(

NH

cm−3

)(
Ts(s)

K

)−1( ϕ(v)
km−1 s

)
d
( s

cm

) . (13.7)

If the spin temperature Ts is constant along the line of sight, we obtain from
(13.7) by integrating both over s and over v

∞∫
−∞

τ(v)d
( v

kms−1

)
= 5.4873(10)×10−19

(
Ts

K

)−1 ∞∫
0

NH(s)ds

or

NH

cm−2 = 1.8224(3)×1018
(

Ts

K

) ∞∫
−∞

τ(v)d
( v

kms−1

)
(13.8)

if we define the column density NH by
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NH

cm−2 =
∞∫

0

(
NH(s)
cm−3

)
d
( s

cm

)
. (13.9)

In general, τ is defined as

τ = − ln

(
1− TL

Ts −TBG

)
, (13.10)

where TL is the observed line brightness temperature.

13.2 The Zeeman Effect

From Faraday rotation and a value of the electron density, one can estimate the value
of the line-of-sight component of the interstellar B field (Sect. 3.5). Another estimate
of the line-of-sight B field strength can be obtained from the Zeeman effect using
the magnitude of the frequency shift of the circularly polarized components of an
H I line profile. These two components are the ΔF = ±1 transitions and they have
an opposite sense of circular polarization. This polarization and the line frequency
shift allow an unambiguous identification of a Zeeman shifted line. Zeeman mea-
surements are carried out by switching between two senses of circular polarization.
In the switched power spectrum, the result is usually given by the difference of the
intensities of the right and left polarized line intensities, corrected for the instrumen-
tal bandpass. The resulting profile should be “S” shaped if the H I line is split by the
Zeeman effect. Since the shift in frequency is 2.8 Hz per μGauss for the λ = 21 cm
line, the Zeeman effect measurements are limited by both noise and systematic ef-
fects. More than 30 results have been published; absorption line results are easier
to measure and more reliable, but emission line results are needed to determine the
direction of the magnetic field in a particular H I cloud. Zeeman effects also occur
in molecules with unpaired electron spins.

The most popular molecule for studying the Zeeman effect is OH. The Zeeman
effect is present in both the ground state and in rotationally excited states of OH.
In the OH ground state, the shift is 3.27 Hz per μGauss for the 1.665 GHz line and
1.96 Hz per μGauss for the 1.667 GHz line. We show an energy level diagram of the
OH molecule in Fig. 15.9.

13.3 Spin Temperatures

The excitation temperature for a given transition in a stationary state will be some
average between the brightness temperature describing the ambient radiation field at
the wavelength of the transition considered and the kinetic temperature describing
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the local velocity distribution of the colliding particles. Because Ts � T0 we can use
(12.42)

Ts = TK
Tb A10 +T0 C10

TK A10 +T0 C10
(13.11)

or

Ts =
Tb + yTK

1+ y
, (13.12)

where

y =
hν10

k TK

C10

A10
. (13.13)

The y values are given in Table 13.2. Ts is thus a weighted mean of the kinetic
gas temperature and the brightness temperature of the radiation field. The weighting
factor y depends on the collision probabilities of the colliding partners H I – H I and
H I – e which have to be computed by quantum mechanical methods. A survey of
the methods and the results are given by Purcell and Field (1956), Field (1958) and
Elwert (1959) show that for gas with the density NH > 1cm−3, Ts

∼= TK is always
true irrespective of whether the gas is mainly neutral or ionized, and this also ap-
plies for low-density gas (NH < 0.1cm−3) if it is partly ionized. Therefore we can
safely adopt Ts = TK for neutral hydrogen gas. Note that the weighting factor y given
by Kulkarni and Heiles (1988) is defined as the inverse of (13.13). Although their
definition is more plausible in some ways than that used here, we have preferred to
keep the definition introduced originally by Purcell and Field (1956) which is used
throughout the literature.

The spin temperature Ts will quite often vary with s because the line-of-sight
intersects clouds of different kinetic temperature. Then it is possible to determine
an average spin temperature which, according to Kahn (1955), will be the harmonic
mean value of the temperatures encountered. Let

Table 13.2 Weighting factors for the determination of the spin temperature of neutral hydrogen

TK

K
yH

/
NH

cm−3

a

ye

/
Ne

cm−3

b

1 1200.0 6700
3 490.0 3900
10 190.0 2100
30 85.0 1200
100 35.0 650
300 16.0 350
1000 6.7 130
3000 3.9 66
10000 1.3 18

a computed for collisions with neutral hydrogen atoms.
b computed for collisions with electrons.
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Nv(s) = NH(s)ϕ(v|s)

be the space density of neutral hydrogen atoms with velocities between v and v+ dv
at the position s. Equation (13.7) then can be integrated from 0 to s yielding

τv(s) = 5.4873×10−19

s∫
0

Nv(s)
Ts(s)

ds

= 5.4873×10−19

〈
1

Ts(v)

〉 s∫
0

Nv(s)ds ,

where 〈1/Ts〉 is the appropriate mean value of the inverse spin temperature

〈
1

Ts(v)

〉
=

s∫
0

Nv(s)
Ts(s)

ds

s∫
0

Nv(s)ds

. (13.14)

This average is a weighted harmonic mean value where the neutral hydrogen gas
density is the weighting factor and, since Nv depends on the velocity, the harmonic
mean spin temperature depends on v also.

13.4 Emission and Absorption Lines

We now will estimate NH from 21 cm measurements. Consider an isothermal cloud
of gas in front of some background source. The solution of the equation of radiation
transfer (1.37) in terms of the brightness temperature is then

Tb(v) = Ts

[
1− e−τ(v)

]
+Tc e−τ(v) , (13.15)

where Ts is the spin temperature of the cloud, Tc the brightness temperature of the
background source, and τ(v) the optical depth of the cloud at the radial velocity v.
For positions without a background source, Tc = 0 and we observe a pure emission
line profile. If τ(v) � 1, quadratic and higher terms in the Taylor series e−τ =
1− τ+ τ2/2− . . . can be neglected resulting in

Tb(v) = Ts τ(v) for τ(v) � 1 . (13.16)
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Substituting this into (13.8) we find

NH

cm−2 = 1.8224(3)×1018

∞∫
−∞

(
Tb(v)

K

)
d
( v

kms−1

)
(13.17)

where Tb is the main beam brightness temperature and v is the radial velocity. Thus,
for optically thin radiation the column density is independent of the spin temperature
of the gas. Ns can be determined unambiguously from the integral over the emission
line. If the optical depth is not very small, one can correct the column density using
the factor F , where

F =
τ

1− e−τ
.

This is also treated in regard to molecular lines in (15.38).
While (13.17) is valid only for optically thin radiation, (13.8) is applicable ir-

respective of the value of τ . But then the column density depends critically on the
adopted value for Ts. Solving (13.15) with Tc = 0 for τ and substituting this into
(13.8) we find that

NH

cm−2 = −1.8224(3)×1018
(

Ts

K

) ∞∫
−∞

ln

[
1− Tb(v)

Ts

]
d
( v

kms−1

)
. (13.18)

Precise measurements of Ts for an actual cloud of gas are rather difficult. Limits
can be estimated from (13.15): Tb(v) → Ts as τ(v) → ∞ (Fig. 13.2). This is the
basis for the “classical” value Ts = 125 K reported by Dutch radio astronomers.
This harmonic mean depends sensitively on the relative amount of low- and high-
temperature gases.

Determinations of parameters for the interstellar gas are more accurate if there is
a background source with a small angular size, measured by a large telescope. But
the relationship between the source geometry and the telescope beam plays a role.

13.4.1 The Influence of Beam Filling Factors
and Source Geometry

The following formalism provides the detailed analysis needed to understand spec-
tral line transfer for homogeneous clouds. Whether a given line is seen in emission
or in absorption depends critically on geometric factors. If the telescope beam is
small compared to the cloud size, which is small compared to the size of the back-
ground source, the observed line temperature TL is given by

TL =
c2

2kν2
10

[Bν(Ts)−Bν(TC)] (1− e−τ) , (13.19)
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Fig. 13.2 The brightness temperature Tb of galactic H I over the entire sky. This emission has been
integrated over the radial velocity [after Dickey and Lockman (1990)]. Recently a survey with
36 arcmin angular resolution, the Leiden/Argentine/Bonn survey, has been published by Kalberla
et al. (2005)

where TC is the true brightness temperature of the continuum source, Ts is the spin
temperature and τ is the optical depth. The physics of the line enters only through
Ts and τ . In all following considerations, we assume TC � 2.7 K, that is, we will
neglect the presence of the microwave background radiation. Using the Rayleigh-
Jeans approximation this equation becomes

TL = (Ts −TC)(1− e−τ) . (13.20)

Now we will relax the assumption about filling factors, f , for both the line radi-
ation and the continuum source. Consider a cloud of the size Ωcl and a continuum
source ΩC only partly filling the telescope beam ΩB. The continuum source is situ-
ated behind the cloud and partially covered by it.

In this general case, one has:

TL = fcl Ts (1− e−τ)− f0 fC TC (1− e−τ) (13.21)

= ( fcl Ts − f0 fC TC)(1− e−τ) . (13.22)

Here, fcl and fC are the beam filling factors of the cloud and continuum source,
respectively, and f0 denotes the fraction of the continuum source covered by the
cloud. The relations 0 ≤ fcl, fC, f0 ≤ 1 must be fulfilled. If both the sources and the
beams are Gaussian shaped, fcl and fC are given by

fsource =
Ωsource

Ωsource +Ωbeam
, (13.23)
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whereΩsource andΩbeam denote the solid angles covered by the source and the beam,
respectively. The influence of the different factors become more obvious when one
considers special cases.

1) Optical Depth. For an optically thin line (13.21) becomes

TL = ( fcl Ts − f0 fC)τ , (13.24)

while for an optically thick line one has

TL = fcl Ts − f0 fC TC . (13.25)

2) Degree to which the continuum source is covered. If the continuum source is not
covered by the cloud, is in front of the cloud or if there is no continuum source,
one has f0 = 0 and

TL = fcl Ts (1− e−τ) . (13.26)

Then the line will always appear in emission. If, on the other hand, the con-
tinuum source is completely covered by the cloud ( f0 = 1), one has

TL = ( fcl Ts − fC TC)(1− e−τ) (13.27)

and the probability of absorption dominating emission is largest.
3) Source size. In the simplest case possible, both the line radiation emitting

cloud and the continuum source are significantly larger than the telescope beam
(Ωcl,ΩC �ΩB). All filling factors approach unity and we recover (13.20). If ab-
sorption lines are observed and there is reason to assume Ts � TC, it is possible
to calculate optical depths from the ratio of the observed line temperatures and
the continuum temperature by using

τ ≡ τapp = − ln

(
1− |TL|

TC

)
. (13.28)

This method works best if the optical depths are fairly low. In the case of
high τ , TL/TC will be very close to unity. Then the exact value of τ becomes
fairly uncertain. If the cloud has no fine structure and is larger that the beam, but
the continuum source is smaller (Ωcl � ΩB > ΩC ⇒ fcl = 1, f0 = 1), (13.21)
becomes

TL = (Ts −TMC)(1− e−τ) (13.29)

with the main beam continuum brightness temperature defined as TMC ≡ fC TC.
Emission is now very likely.
If the beam size is larger than both ΩC and Ωcl, without further assumptions we
get the general case as described by (13.23). Assuming, however, Ωcl =ΩC and
for simplicity f0 = 1, resulting in fcl = f0 fC = f , (13.21) becomes

TL = f (Ts −TC)(1− e−τ) . (13.30)
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Now absorption is more likely. Finally, Ωcl may be smaller that both ΩC and
ΩB. One gets

0 ≤ f0 ≤
fcl

fC
(13.31)

and if f0 = fcl/ fC, that is, if the line emitting cloud is completely in front of the
larger continuum source, (13.21) becomes

TL = fcl (Ts −TC)(1− e−τ) . (13.32)

Of course, many other situations are possible but these are combinations of
the simple cases shown here: sometimes there will be several gas clumps with
different properties and geometries present in the beam. The only possibility
to disentangle such a mixture is if the clouds have different radial velocities or
positions.

13.5 The Physical State of the Diffuse Interstellar Gas

The physical properties of the neutral hydrogen regions are widely different. How-
ever the H I line is always excited by collisions. This permits a great simplifica-
tion in the analysis of H I line radiation. The mean free path for neutral hydrogen
atoms is

� = (Nπa2
0)

−1 ≈ 1016
[

N
cm−3

]−1

cm ≈ 1
300

[
N

cm−3

]−1

pc (13.33)

and the mean free time, τ , between collisions for hydrogen atoms in a gas with a
Maxwellian velocity distribution corresponding to a temperature T is given by

τ ≈ 1012
[

T
K

]−1/2 [ N
cm−3

]−1

s ≈ 3.2×104
[

T
K

]−1/2 [ N
cm−3

]−1

years. (13.34)

For 10−3 < N/cm−3 < 1 and 10 < T/K < 3000 we thus find 1/3000 < �/pc <
3 and 1000 < τ/yr < 6 × 105 so that we can safely adopt a single Maxwellian
distribution for each volume element of the interstellar gas, and that a single kinetic
temperature is sufficient to describe the gas at each position.

These considerations can have far reaching consequences. An example shows
this: The large magellanic cloud (LMC) is a dwarf galaxy that is a close satellite of
the galaxy with a distance of only about 50 kpc. It is a barred irregular system with
a flat disk seen nearly face-on with a tilt of i � 33◦ ± 6◦. However, we encounter
problems if we try to incorporate the observed line profile shapes for H I in the LMC
into this simple model. Surveys of the 21 cm line in the LMC show double-peaked
line profiles for a large percentage of the positions. From a detailed analysis of these
data one can associate one of these peaks with a flat, gaseous disk in differential
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rotation extending over all of the LMC, while the other peak arises from another gas
sheet at lower radial velocity extending over roughly 40% of the cloud area. Both
structures are large-scale features compared to the main beam of the telescope. If
the disk model of the LMC was also applicable to the H I gas, then the two gas
features, the so-called D and the L components, would occupy the same volume.
But due to the collision time argument this is not possible. Thus, given their large
angular extent, only a line-of-sight superposition is possible. The gas of the LMC
therefore cannot all belong to a flat disk; the L component must be situated either in
front or behind. In any case, the gas is distributed in three-dimensions and not only
a disk.

The value of the local kinetic gas temperature will be determined by a balance
between energy gain and loss. For monatomic gas the thermal energy is given by
3
2 k TkN, so that this balance is governed by

N
d
dt

(
3
2

k Tk

)
− k Tk

dN
dt

= Γ −Λ (13.35)

where Γ is the energy per cm−3 gained, and Λ the corresponding loss function. An
extensive discussion of the different processes involved can be found in the review
of observations and theory by Kulkarni and Heiles (1988). Below, we give a short
summary.

Cooling of the gas occurs by collisional excitation of fine structure transitions.
The excitation energy is subsequently lost from the gas by spectral line emission,
provided the gas is transparent. Neutral hydrogen itself contributes little to the cool-
ing for T < 104 K; in this temperature range rarer heavy elements in the interstellar
medium are much more efficient. In particular the 157.7μm fine structure line of
singly ionized carbon is usually dominant, but depletion of carbon on dust grains
may complicate the situation, so cooling lines of other elements may be important.

Heating processes convert external energy into thermal motion of the gas parti-
cles. There are many different heating mechanisms. On a microscopic scale, heating
by ionization is probably most important. If a bound electron is stripped off an atom
or grain it is usually ejected with excess kinetic energy, and this then is shared with
the other gas particles by collisions. The ionization could be caused by radiation;
then the frequency is of paramount importance. Another mechanism is heating by
high-energy particles. Depending on which process is considered, different prop-
erties of the ISM are of importance, but in any case the detailed theory is fairly
complicated.

On a macroscopic scale a heating source might be the collision of gas clouds or
streams with different velocities. There are many situations conceivable in which
such collisions could happen – stellar winds, collisions with supernova ejecta or
high-velocity clouds are only some examples. The observed line width of the 21 cm
line emission usually is ∼ 6–9 km s−1. This value is much too high to be interpreted
as thermal in origin; thus one must consider the processes mentioned above. In any
case, the heating depends on gas density, while cooling depends on density squared.
Thus, in a steady state solution of (13.35), Tk will depend on density.
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Observations of the galactic interstellar medium show a wide number of compo-
nents. Certainly these are not in thermodynamic equilibrium and it is often not even
certain whether pressure equilibrium can be adopted. We can divide the phenomena
into four classes according to temperature and degree of ionization.

CNM (cold neutral medium) appears as narrow absorption features in the 21 cm
line spectrum in front of strong galactic sources. Comparing emission and absorp-
tion, a gas temperature T < 50 K and a high-volume gas density (N > 1−10cm−3)
is found. At higher local densities and column densities larger than 1020 cm−2 the
H I is converted to H2 on grains (see Chap. 15).

WNM (warm neutral medium). Estimating upper limits for the optical depth of
21 cm line radiation it can be shown that a considerable part of the gas must have
T > 200 K. This gas usually has emission with a large line width, it is present prac-
tically everywhere near the galactic plane.

WIM (warm ionized medium): sensitive observations of Hα emission show this
to have a fairly widespread distribution in the galaxy not confined to the vicinity of
hot stars. Therefore ionized hydrogen gas with Tk ≈ 104 K must be present in large
portions in the interstellar medium.

HIM (hot ionized medium): the detection of diffuse soft X-ray emission and of an
O VI absorption line in the UV requires the presence of yet another hot (T ≈ 106 K)
gas component in the ISM.

The distribution, physics and evolutionary history of the interstellar medium
forms one of the most active branches of present day astrophysics, that incorporates
observations of many branches of observational astronomy as well as theoretical as-
trophysics. At this moment there is no comprehensive model which incorporates all
major observational facts, so each case must be considered individually.

13.6 Differential Velocity Fields and the Shape of Spectral Lines

Velocity fields in a line emitting gas will affect the appearance of this radiation in a
number of different ways. The bulk velocity of the gas will shift the mean frequency;
random velocities of the gas atoms will also influence the line shapes. In H I, line
emission arises from a large volume so that large-scale velocity gradients are of
great importance.

Let us assume that neutral hydrogen gas has a bulk velocity U(s) that is a function
of the position s along the line of sight. For the sake of simplicity we will assume
that the local line shape does not depend on s. Then the line-of-sight element ds
contributes dτ at the velocity v according to (13.7) and

dτ(v) = −w
NH(s)
TK(s)

ϕ [v−U(s)] ds . (13.36)

The coefficient w depends on the units used for s and v; if s is in cm and v in
km s−1 we have w = 5.4873(10)× 10−19, while w = 1.6932 for s in pc and v in
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km s−1. For the total optical depth at the velocity v for gas between 0 and s we
therefore obtain

τ(v,s) = w

s∫
0

NH(x)
TK(x)

ϕ [v−U(x)] dx (13.37)

or

τ(v,U) = w

U(s)∫

U(0)

NH[s(U)]
TK[s(U)]

ϕ [v−U ]
dU∣∣∣∣ dU
ds

∣∣∣∣
(13.38)

if
U = U(s) . (13.39)

A simple example illustrates the use of these expressions. We assume that a Gaus-
sian line shape is emitted in a homogeneous medium with a quadratic velocity field:

U(s) = Uc +b(s− sc)2 ;

then for NH = const, TK = const and s → ∞ we have

τ(v) =
wNH

TK

⎡
⎣

sc∫
0

ϕ [v−U(x)] dx+
∞∫

sc

ϕ [v−U(x)] dx

⎤
⎦ = I + II .

For the range of the integral I we find

s = sc −
1√
|b|

|U −Uc|1/2 ,

while for II we have

s = sc +
1√
|b|

|U −Uc|1/2 ,

and therefore

I = −1
2

wNH

TK

1√
|b|

Uc∫

Uc+bs2
c

ϕ(v−U)
dU√

|U −Uc|

and

II =
1
2

wNH

TK

1√
|b|

∞∫
Uc

ϕ(v−U)
dU√

|U −Uc|
.
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Assuming

ϕ(v) =
1

σ
√

2
exp

(
− v2

2σ2

)

and

bs2
c � σ

so that we can adopt effectively Uc + bs2
c → ∞, I and II can be taken together and

we obtain

τ(v) =
w√
2π

NH

σTK

1√
|b|

∞∫
Uc

1√
|U −Uc|

exp

[
− (v−U)2

2σ2

]
dU .

Substituting

σ x = U −Uc

we find

τ(v) =
w√
2πσ

NH

TK

1√
|b|

P

(
v−Uc

σ

)

P(ξ ) =
∞∫

0

1√
x

exp

[
−1

2
(ξ − x)2

]
dx .

(13.40)

(13.41)

For ξ < 1 the shape of P(ξ ) is quite similar to a shifted Gaussian. The values are
given in Table 13.3 (Fig. 13.3) since they will be used to describe the shape of the
21 cm line emission near the galactic equator close to the radial velocities that are

Table 13.3 The function P(ξ ) =
∞∫

0

1√
x

exp

[
−1

2
(ξ − x)2

]
dx

ξ P ξ P ξ P

−5.0 0.0000 −1.0 0.9015 1.0 2.5263
−4.0 0.0003 −0.8 1.1467 1.2 2.4532
−2.8 0.0110 −0.6 1.4096 1.4 2.3516
−2.6 0.0202 −0.4 1.6762 1.6 2.2333
−2.4 0.0358 −0.2 1.9304 1.8 2.1095
−2.2 0.0610 0.0 2.1560 2.0 1.9893
−2.0 0.1002 0.2 2.3388 2.2 1.8793
−1.8 0.2414 0.4 2.4690 2.4 1.7835
−1.6 0.3545 0.6 2.5420 2.6 1.7026
−1.4 0.5014 0.8 2.5591 2.8 1.6349
−1.2 0.6844 1.0 2.5263 3.0 1.5758
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Fig. 13.3 The function P(ξ )

measured at the tangential or subcentral points in the longitude range 270◦ < l <
360◦ and 0◦ < l < 90◦.

13.7 The Galactic Velocity Field in the Interstellar Gas

Neutral hydrogen gas is one of the main constituents of the interstellar medium; it is
distributed over the whole Galaxy. Since H I is thermalized at low densities, it should
be always observable, so the 21 cm line forms an almost ideal tool for the study of
galactic kinematics. Its only shortcomings are the problems often encountered when
the exact distance of features must be determined. Therefore, models are needed to
provide the possible structure; however, these cannot give a conclusive solution.

The large-scale kinematics of galactic interstellar gas are governed by galactic
rotation, except for non circular motions close to the galactic center. In addition, the
velocity field may be perturbed by streaming velocities, and on a more local scale,
supernova explosions which may introduce irregularities in the velocity field. Here
we will describe the large scale field and how it influences the radial velocity and
shape of the line radiation.

For the sake of simplicity we will assume that all motions are axially symmetric if
seen from the galactic center. IfΘ(r) is the (linear) rotational velocity at the galactic
radius r, and Π(r) the corresponding motion along r as defined by

Θ(r) = rΩ(r) and Π(r) = rH(r) (13.42)

respectively, and if Ω(r) is the angular velocity and H(r) is the expansion rate, then
the radial velocity of a point P relative to the local standard of rest is

vr =Θ(r)sin(l +ϑ)−Θ(r0)sin l −Π(r)cos(l +ϑ)+Π(r0)cos l .
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Now

r0 sin l = r sin(l +ϑ) and r cos(l +θ) = r0 cos l − s

so that

vr = r0 [Ω(r)−Ω(r0)]sin l − r0 [H(r)−H(r0)]cos l +H(r)s .

(13.43)

This is the law of differential galactic rotation. Experience has shown that H(r0)
is very small in the solar neighborhood so that the velocity field is well described by
pure rotation.

Another observational result is that Θ(r) varies very slowly with r outside the
immediate surroundings of the galactic center. Therefore the series expansion

Θ(r) =Θ(r0)+
dΘ
dr

∣∣∣∣∣
0

(r− r0) (13.44)

should be a good representation ofΘ(r) in the solar neighborhood. Now, from

r2 = r2
0 + s2 −2r0 scos l , (13.45)

the approximations

r = r0

(
1− s

r0
cos l

)
and

1
r

=
1
r0

(
1+

s
r0

cos l

)

are obtained so that

vr = r0

[
Θ0

(
1
r
− 1

r0

)
− dΘ

dr

∣∣∣∣∣
0

s
r0

cos l

]
sin l

=

(
Θ0

r0
− dΘ

dr

∣∣∣∣∣
0

)
scos l sin l ,

and

vr = sA(r0)sin2l (13.46)

when using

A(r0) =
1
2

(
Θ0

r0
− dΘ

dr

∣∣∣∣∣
0

)
= −1

2
r0

dΩ
dr

∣∣∣∣∣
0

. (13.47)

This is the famous Oort sin2l relation describing the differential galactic rotation
in the solar neighborhood. For given l,vr is proportional to s, but obviously this is
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Fig. 13.4 Radial velocity in
km s−1 caused by differential
galactic rotation and
expansion for l = 20◦. The
abscissa is the distance
Δs = s− sc from the
subcentral point defined by
(13.49)

valid only close to the sun. In the first galactic quadrant (0◦ < l < 90◦)vr reaches
a maximum (see Fig. 13.4) and in the fourth quadrant (270◦ < l < 360◦) a mini-
mum. This can be shown formally in the following way: Along a given line of sight
(l = const)

dvr

ds
=

dvr

dr
dr
ds

and from (13.43) with H ≡ 0 using (13.47)

dvr

dr
= r0

dΩ
dr

∣∣∣∣∣
0

sin l = −2A(r0)sin l , (13.48)

while (13.45) gives

dr
ds

=
s− r0 cos l

r
=

s− sc

r

so that

dvr

ds
= −2A(r0)sin l

s− sc

r
.

Therefore dvr/ds = 0 for

s = sc = r0 cos l and rc = r0|sin l| . (13.49)

The measured radial velocity thus adopts an extreme value; at the subcentral
point, the radial velocity from (13.43) is
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vc =
[
Θ(r0|sin l|)−Θ0|sin l|

] sin l
|sin l| . (13.50)

This relation can be used to construct the rotation curve point by point for r < r0

from the extremes of the measured radial velocity for each longitude. Equation
(13.49) gives the galactic position of the gas that emitted this radiation, and

Θ(r0|sin l|) = vc
sin l
|sin l| +Θ0|sin l| . (13.51)

If the series expansion (13.44) is introduced into (13.50) we obtain using (13.47)

vc = 2A(r0)r0 (1−|sin l|) sin l
|sin l| . (13.52)

This relation is a good approximation for the conditions in our galaxy for
|sin l| > 0.5, that is, for r > r0/2, and so a linear function in this range must be
a good approximation for Θ(r), (see Fig. 13.5). Most investigations of the galactic
velocity field use a formula differing slightly from (13.52), but it was shown by
Gunn et al. (1979) that (13.52) is the correct expression for galaxies with almost flat
rotation curves.

Close to the subcentral point (where gas is closest to the center) the run of radial
velocity along the line of sight will not be represented well by a linear function;
higher terms of the appropriate Taylor series have to be included.

Fig. 13.5 Terminal velocity as function of |sin l|. “ | ” for 1st galactic quadrant 0◦ < l < 90◦; “–”
for 4th galactic quadrant 270◦ < l < 360◦, the continuous line shows the difference of the two
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Let

vr(s) = vc +
dv
ds

∣∣∣∣∣
c

(s− sc)+
1
2

d2v
ds2

∣∣∣∣∣
c

(s− sc)2 + . . . ;

then from (13.48), changing the suffix 0 to c we obtain,

d2v
ds2 = −2rc

r2 A(r)− (s− sc)
d
ds

(
2rc

r2 A(r)
)

.

Substituting this into the Taylor series we find for terms up to and including
(s− sc)2:

vr(s) = vc −
A(rc)

rc
(s− sc)2 . (13.53)

The large-scale velocity field of galactic rotation thus appears as a linear velocity
field with a sin2l longitudinal dependence (13.46) in the solar neighborhood, while
it shows up as a quadratic velocity field (13.53) in the vicinity of the subcentral
point. Not only will such a velocity field influence the observed frequency of the
line, but it will also have an effect on the line shape. The peak optical depth for the
local gas should have its lowest value in longitudes around l ∼= 45◦ with

τmax � w
NH

Ts

1
A

, (13.54)

while τmax →∞ near l ∼= 90◦. Indeed the largest brightness temperatures in the local
gas are observed near l = 70◦ to 75◦ where values of Tb

∼= 125 K are reached. If we
therefore observe a local value of Tb

∼= 45 K near l = 45◦ the optical depth should
be less than one in these regions resulting in

Tb = Ts τ = w
NH

A
. (13.55)

With A = 15 km s−1 kpc−1 this results in NH = 0.4 cm−3.
Because we can assume such an optically thin situation, the results thus obtained

remain correct even if, in fact, the interstellar gas consists of several different phases,
each with its own density and spin temperature. For the local gas the appropriate
average values are NH = 0.4 cm−3,Ts = 125 K.

13.8 Atomic Lines in External Galaxies

The study of the distribution and motion of interstellar gas in external galaxies is
mostly based on H I, although mapping of the rotational lines of the CO molecule
will complement these data. For a galaxy at a distance D in Mpc, the total mass of
H I in a beam of θ arcsec, if the line is optically thin, is (from (13.17):
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MHI = 0.39×102 D2 θ 2
∫

TMB dv (13.56)

or

MHI = 2.36×105 D2
∫

Sν dv , (13.57)

where the line is integrated over velocity in km s−1 and Sν is in Jy. For rotation
curves, one must take into account the inclination and the motions in the galaxy.
We show a sketch in Figs. 13.6 and 13.7. The galaxy is assumed to have a systemic
velocity v0 and non circular velocities z and ω , and the disk of this (planar) galaxy
is inclined at an angle i. Then the observed radial velocity of the galaxy, v0, is

v0(r,φ) = zcos i+ω sin isinφ +θ(r,φ)sin icosφ . (13.58)

From the (model) rotation curve in Fig. 13.7, one obtains the result, which would
be observed with a very small beam and a noiseless receiver.

Mapping results are restricted to relatively close galaxies. A short summary of
mapping results shows that: (1) the H I is not centrally concentrated, (2) the H I

extent in isolated spiral galaxies is larger than the optical extent, (3) many spiral
galaxies show distortions in the distribution of the H I in their outer regions, (4) H I

links and bridges have been found between galaxies whose separations are a few
tens of kiloparsecs, (5) in most spiral galaxies, the rotation curve appears to be flat
to large distances, from the center, while the optical light decreases exponentially (in
interacting systems the rotation curves appear to decline, however), and (6) galaxies
in groups (for example, the Virgo cluster or even in small groups) show deficiencies
of H I as compared to galaxies of the same type outside groups.

Fig. 13.6 (a) A side-view sketch to illustrate the geometry used in obtaining the standard relation
for rotation curves of galaxies, (b) a face-on view of the same geometry
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Fig. 13.7 The differential
velocity field of a flat, inclined
model galaxy with solid body
rotation for the inner parts
and a flat rotation curve in
the outer regions. The solid
body rotation velocity field
is shown as equal spaced
parallel contour lines

13.8.1 Virial Masses

The simplest and in many ways the most reliable estimate of mass is obtained by ap-
plying the virial theorem. The fundamental assumption is that the objects are stable
entities whose motions are gravitationally bound. In addition, one assumes that the
linewidths reflect only the effect of gravitation, and that the lines used are not sig-
nificantly broadened by high optical depth. The derivation of this result is contained
in most classical mechanics textbooks (see, e.g., Binney and Tremaine 1987). We
begin by examining the interactions between all constituents, treating each as a clas-
sical particle. The momentum of each is pi = mivi. Then

d
dt

(pi · si) = ṗi · si +pi · ṡi . (13.59)

Averaging over time, we have

1
τ

τ∫
0

d(pi · si) =
1
τ

τ∫
0

ṗi · si dt +
1
τ

τ∫
0

pi · ṡi dt . (13.60)

The term on the left side is simply

1
τ

[p(τ)i · s(τ)i −p(0)i · s(0)i] . (13.61)

On the right-hand side,

pi · ṡi = mivi · vi = 2Ti . (13.62)

here Ti is the kinetic energy. Also, we note that ṗi = Fi. From this, we have:
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1
τ

[p(τ)i · s(τ)i −p(0)i · s(0)i] = 2T +∑
i

Fi · si . (13.63)

Allowing time to increase without bound, the term on the left will tend to zero
for bounded motion. This is the fundamental assumption. The first term on the right
side is the total energy of motion, kinetic and turbulent, the second term is the grav-
itational energy of all constituents of the cloud.

The gravitational force between points i and j is:

Fi j =
Gmim j

s3
i j

(s j − si) . (13.64)

The total gravitational force from objects j acting on object i is then:

Fi =∑
j 
=i

Fi j (13.65)

then,

∑
i

Fi · si =∑
i
∑
j 
=i

Gmim j

s3
i j

(s j − si) · si . (13.66)

If the double sum in (13.66) were written out, we would find that any pair of ob-
jects, say k and l, would contribute twice; the first arising when the first summation
index equaled k and the second l, and again when the first summation index equaled
l and the second k. This allows us to reduce the double sum to a single sum, by
combining the terms of the form [(sl − sk) · sk +(sk − sl) · sl ]. If this is done, terms
in (13.65) of the form

Gmim j

s3
kl

(sk − sl) · (sl − sk) =
Gmim j

skl
(13.67)

can be simplified. Then using this relation, (13.60) reduces to

2T = − ∑
allpairs ij

Gmim j

si j
. (13.68)

If we assume that all particles have the same mass, then

2T =∑mi v2
i = nm〈v2〉 . (13.69)

For the gravitational part of the expression,

∑
allpairs ij

Gmim j

si j
=

Gm2

〈R〉 ∑
allpairs

. (13.70)

The sum over all pairs is n(n−1)/2. For large n, n−1≈ n. Furthermore, nm = M,
the total mass. Then the expression becomes,
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v2 =
GM
2R

(13.71)

The velocity in (13.71) is the three-dimensional root mean square, RMS, velocity.
Since we observe the one-dimensional velocity, we must multiply this measured
value by a factor 3; to convert to a FWHP velocity, we must divide by 8ln2. That is,
v2 = (3/8ln2)Δv2

1/2. Then, the virial relation becomes:

M
M�

= 250

( Δv1/2

kms−1

)2( R
pc

)
. (13.72)

13.8.2 The Tully-Fisher Relation

One can also determine a distance scale by comparing the luminosity and maximum
rotational velocity, V , of a galaxy. The Tully -Fisher (T-F) relation, V 4 ∼ L, was
shown to exist by Tully and Fisher (1976). Basically, the approach is to measure
the maximum velocity from H I data, and then to compare this with luminosity.
There is an observational problem in that the best estimate of the velocity range
is measured for an edge-on galaxy. However, because of extinction, the luminosity
will be underestimated. For face-on galaxies, on the other hand, the luminosity will
be unbiased, but the velocity range is decreased because of projection effects.

This problem can be best dealt with if one uses near infrared luminosities, be-
cause then absorption effects are reduced. The basis of the near IR correlation for
normal, quiescent spiral galaxies is that the old disk population dominates the near
IR luminosity as well as the total mass. When corrected for inclination, the mass is
proportional to the total extent of velocity to some power (i.e. the virial theorem).
The T-F relation is calibrated using a set of galaxies with known mass and lumi-
nosities. If one fits a dependence of the near infrared H (i.e. 1.6μm) magnitude on
velocity width, one obtains the relation

H−0.5 = −21.23−10.0 [log(Vm)−2.5] (13.73)

where Vm is the velocity width and H−0.5 is the integrated IR luminosity out to
−0.5m from the maximum luminosity of the galaxy in question. More recent studies
(see, e.g., the study of the Coma cluster by Bernstein et al. 1994) have found the IR
intensity in magnitudes to be 5.6 times the logarithm of the linewidth.

Clearly this method will not be very accurate for face-on galaxies. One notes that
magnitude is proportional to 10 times the logarithm of line width. The dependence
is a general one if all galaxies have the same mass profile, central mass density, and
average mass to light ratio. This can be proven as follows:

Take the mass distribution as

ρ(r) = ρ0 f (x) = ρ0 f (r/re) , (13.74)
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the corresponding surface density on the plane of the sky is

μ(r) = μ0 g(r/re) = μ0 g(x) . (13.75)

The functions f and g are dimensionless relations and re is a characteristic scale
length. The rotation curve is similarly written

V (r) = Vm h(x) . (13.76)

Then the kinetic energy is

T = 1
2

∫
ρ(r)V 2(r)dτ = 1

2ρ0 V 2
m r3

e

∫
f (x)h2(x)dτ = 1

2ρ0 V 2
m r3

e a ,
(13.77)

where a is a numerical constant computed from the potential energy

Ω = 1
2

∫
Φ(r)ρ(r)dτ . (13.78)

Φ(r) can be expressed as a Green’s function solution of the Poisson equation:

Φ(r) = Gρ0

∫
f (r′′′)
|r− r′′′| dτ . (13.79)

Then

Ω =
1
2

Gρ2
0

∫
f (r′′′)

∫
f (r′)
|r− r′′′| dτ dτ ′

=
1
2

Gρ2
0 r5

e

∫ ∫
f 2(x)
|x−x′′′| dτ dτ ′ =

1
2

Gρ2
0 r5

e b . (13.80)

Adopting T =Ω , from the virial theorem we have

V 2
m = Gρ0 r2

e
b
a

. (13.81)

But

M =
∫
μ(x)dσ = μ0 r2

e

∫
g(x)dσ

= ρ0 r3
e

∫
f (x)dτ = ρ0 r3

e d =
1
G

V 2
m

R
, (13.82)

where the right-most relation is obtained from the virial theorem. The integrals over
density and the parameter re must be eliminated, since these are basically not mea-
surable – they are, at least, very uncertain. Doing this we finally obtain

Vm
4 =

b2c
4a2d2 μ0 G2M , (13.83)
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that is, a relation between Vm and the total mass M of the galaxy. Adopting M ∼ L,
where L is a conveniently chosen total luminosity then

2.5logL ∝ 2.5logV 4
m = 10logVm . (13.84)

This is the Tully-Fisher relation.

Problems

1. The ratio of the populations in the upper, Nu and lower, Nl levels of the ground
state of HI is given by the Boltzmann relation, where the statistical weights in these
levels are 3 and 1, respectively: Nu/Nl = 3exp(−0.0682/Ts). Assume that the spin
temperature, Ts, equals the kinetic temperature, TK. Calculate the population ratio
for a temperature of 100 K. Repeat for a temperature of 3 K (the lowest temperature
possible under local thermodynamic equilibrium), for 104 K (the warm interstellar
medium) and 106 K. Compare the differences in populations.

2. In this problem, we determine the value of the FWHP linewidth in terms of TK,
the kinetic temperature, and the mass of the emitter, m. We assume that the thermal
motion of atoms in three dimensions is described by the Boltzmann relation for

velocities v between ±∞: f (v) = (m/2πkTK)3/2 exp
(
− mV 2

2kTK

)
.

(a) Show that the requirement
∫

f (v)dV = 1 is fulfilled.
(b) Use the distribution from part (a), with the definition VRMS =

√∫
V 2 f (v)dV .

The above relation between the line-of-sight FWHP ΔV1/2 (which is measured) and

the three-dimensional Vrms is ΔV1/2 =
√

8ln2/3VRMS. Use this to relate the mea-
sured linewidth to the emitter mass and kinetic temperature for hydrogen. Show that
1 km s−1 is equivalent to motion in a gas of TK = 21.2 K.
(c) Show that the general result is TK = 21.2(m/mH)(ΔV1/2)2, where mH is the mass
of a hydrogen atom.
(d) Compare this value with the speed of sound in an isothermal gas, c0 =

√
P/ρ ,

where P is pressure in dyne cm−2 and ρ is density in g cm−3. Check that this is
dimensionally correct, then evaluate c0 in terms of kinetic temperature and density
(in cm−3) for a perfect gas consisting of hydrogen atoms.

3. In Fig. 13.8, we show the (idealized) cross section for a neutral–neutral collision
to excite the population of a two-level system (levels are separated by an energy
E0). On the basis of this description, explain the behavior of the cross section with
particle energy.

4. The Zeeman effect allows an estimate of the magnetic field without assumptions.
If the sensitivity of the Zeeman splitting of the HI line to B field strength is 2.8 Hz
per μG for HI, estimate the splitting on earth (B ∼ 1 G), the Sun (B ∼ 103 G) and in
the interstellar medium (B ∼ 1μG). Assume that ΔV1/2 in the interstellar medium is
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Fig. 13.8 The excitation cross
section (in arbitrary units) for
a two-level system in which
the energy levels are separated
by E0

1 km s−1. As a fraction of this linewidth, what is the shift in the line center caused
by the Zeeman effect?

5. (a) Show that the classical expression for the magnetic field at r of a nucleus
at position s with a magnetic moment μnμnμn is B = μnμnμn(3

r(r×s)
r5 − s

r3 ). From this, the
potential energy of an electron with magnetic moment −μeμeμe is

W = −μeμeμe ×B =
μnμnμn ×μeμeμe

r3 −3
(μnμnμn × r)(μeμeμe × r)

r5 . (13.85)

(b) Find the size of the Bohr magneton, μB = he/4πmc, where m is the mass of
the electron. Find the size of the nuclear magneton, μN, given by the same relation
except that the mass of the electron is replaced by the mass of a proton.
(c) Make a qualitative estimate of the energy of interaction as W = (μn ×μe)/r3,
taking r as one-half the radius of the lowest Bohr orbit, and the μ of the HI nucleus
as 1 nuclear magnetron and that of the electron as 1 Bohr magneton. If W = hν ,
what is the frequency of such a transition?
(d) In the vector model of the atom, the total angular momentum, F, is the vector
sum of the electron orbital angular momentum, the electron spin angular momentum
and the nuclear spin angular momentum: F = L+S+I = J+I. For each of the vec-
tors, one has a quantum-mechanical relation, for example, F×F = F(F +1) where
F is the eigenvalue. Obtain similar expressions for, and then obtain the expression
for the energy level spacings in terms of these angular momentum quantum numbers
using the relations above. The hyperfine interaction energy follows the conditions
that μμμn = μnI and μμμe = μeJ. Use the relation in part 5(c) to obtain similar rela-
tions for L, S, I and J. Show that the interaction energy of the magnetic moments is
μnμnμn ×μμμe = I×J ∼ [F(F +1)− I(I +1)− J(J +1)].

6. The ground states (orbital angular momentum vector L = 0,J = 1/2) of HI, DI and
3He+ have spherically symmetric electron distributions. From this, use a qualitative
approach to show that the semi-classical model involving circular orbits and electron
spin perpendicular to the plane of the orbit will not produce hyperfine energy level
splitting, since the orbital plane can take on different angles with respect to the
direction of the nuclear spin. To produce the hyperfine level splitting for L = 0
states, the electron wavefunction must be evaluated at the location of the nucleus.
Only with this concept can one arrive at a non-zero value for the frequency of the
hyperfine transitions. Thus, the very existence of the HI line relies completely on
the non-classical concept that the electron has a finite probability of being located at
the nucleus. This is only possible in a wave mechanics picture where the electron is
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treated as a probability density. The wave mechanical treatment is given in the next
problem.

7. For the electronic ground state (L = 0) of HI, DI and 3He+, the energy of interac-
tion of the electron and nuclear magnetic moments is given by

W =
4
3
μeμeμe ×μnμnμn

(
4Z3

I n3

)
, (13.86)

where Z is the nuclear charge, I is the angular momentum quantum number of the
nucleus, and n is the principal quantum number. For HI, the energy levels are des-
ignated by the quantum numbers Fu = 1, Fl = 0 and I = 1/2. For DI, Fu = 3/2,
Fl = 1/2 and I = 1. In both cases, J = 1/2. The magnetic moment of the HI nucleus
is 2.79 nuclear magnetons. For the DI nucleus this is 0.857 nuclear magnetons. Use
(Eq. 12.43) to scale the DI frequency from the HI frequency.

8. Repeat the previous problem for the hyperfine interaction for 3He+. For this ion,
Z = 2, and the upper and lower energy levels have quantum numbers Fu = 0 and
Fl = 1. The magnetic moment of the 3He+ nucleus is −2.1274 nuclear magnetons.

9. An estimate of |μul| for hyperfine transitions is given in, e.g., Field (1958): |μ2
ul |=

β 2μ2
e where β 2 is 4/3 for a spin −1 system (D nucleus), and 1 for a spin −1/2

system (H nucleus). For HI, Aul = 2.869×10−15 s−1. Given this result, the relations
above, and the result of Problem 5, Chap. 11, use the line rest frequencies of HI, DI
and 3He, 1420.406 MHz, 327.384 MHz and 8665.65 MHz, respectively, and scaling
arguments to obtain the A coefficients for DI and 3He+. Compare the results with
the compilation in Table 13.1.

10∗. This problem outlines an estimate of the amount of telescope integration
time needed to detect the 92 cm DI line toward an intense background contin-
uum source. When the 100 m telescope, FWHP beam size 9′ at 21 cm, and beam
efficiency, ηB = 0.75 is used to measure absorption of the 21 cm line of HI to-
ward the supernova remnant Cassiopeia A, one finds an apparent optical depth,
τapp = −ln(1− (Tline)/(Tcont)), of 2.5. The total continuum flux density of Cas A
at 21 cm is S = 3000 Jy; this varies with wavelength as S ∼ λ 0.7. Take the FWHP
size of Cas A as 5.5′ and assume that the source and beam are Gaussian shaped. We
want to search for deuterium using the hyperfine transition.
(a) Use the source and telescope parameters to estimate the FWHP beamwidth of the
100 m telescope, and the peak continuum antenna temperature at the DI wavelength,
92 cm.
(b) If the HI and DI lines arise from the same region, the linewidths in km s−1

are equal. The linewidth in frequency units, Δνl, will follow the Doppler relation
(ΔV/c = Δνl/νl). The DI profile is assumed to have a FWHP of 2 km s−1; estimate
the FWHP of the DI line profile in kHz.
(c) Use (Eq. 12.17) and set ϕ(ν) equal to dV obtain an expression for the total
column density of DI. The completely general relation between temperature and
column density of any two-level system, namely
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Nl = 93.5
gl ν3

gu Aul

1
[1− exp(−4.80×10−2ν/Tex)]

∫
τdV , (13.87)

where Nl is the column density in the lower level.
(d) Derive this relation.
(e) For DI, as for HI, Tex = Ts = Tkin. Assume that hν� kTex to simplify this relation.
For the 92 cm line, Aul = 4.63× 10−17 s−1, gu=4 and gl=2, what is the relation
for DI?

Assume that the spin temperatures, Ts, of DI and HI are equal that τ(HI) = 2.5
and that the D/H ratio is 1.5× 10−5. What is the antenna temperature of the DI
line at 92 cm if Tline = Tcontτ? From the DI line antenna temperature and the system
noise (= receiver noise of 100 K plus the source noise), determine the integration
time needed to detect a DI line, for a spectral resolution which is 1/2 of the FWHP
linewidth. Compare to the results in Heiles et al. 1993 ApJ Suppl 89, 271.

11. (a) Suppose a uniform, extended HI cloud has a physical temperature of TK =
2.73 K. If the only background source is the 2.73 K microwave background, would
you expect to observe the HI line in emission or absorption or no line radiation at all?
(b) Repeat if there is a background source with main beam brightness temperature,
TMB = 3 K, that is, TMB > TK. What would be the temperature of the absorption,
ΔTL, in K if τ = 1?
(c) Repeat for TK = 3.5 K.

12. Suppose that there is a layer of neutral gas in thermal equilibrium at a temper-
ature TK, next to a layer of ionized gas, also at an actual temperature TMB = TK =
T �2.73 K. Assume that all layers are much larger than the telescope beam and as-
sume that there is no absorption of the HI line radiation in the ionized gas. Calculate
the line intensity in two cases:
(a) The ionized layer is behind the neutral gas layer, and
(b) the ionized layer is in front of the neutral gas layer.

13. In the next three problems we investigate the details of geometry (Fig. 13.9).
Assume that all regions are Gaussian shaped. There is a continuum source behind

Fig. 13.9 Three sketches for Problems 12, 13 and 14. These deal with the geometry of a neutral
gas cloud in front of a continuum source where the relative sizes of antenna beam θa, the cloud θcl,
and the continuum source θ0 differ
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the cloud of neutral gas containing HI. The HI in this cloud has an excitation tem-
perature Tcl and an angular size θcl. The continuum source has an actual brightness
temperature T0 and angular size θ0. Assume that θa, the beam size of the antenna,
is much larger than all other sizes. The cloud covers a fraction f of the background
source, that is θcl = fθ0. Specify the conditions under which there will be line ab-
sorption against the continuum source. Obtain the expression for the main beam
brightness temperature of the line, ΔTL = TL−T0. If τ�1, show that |ΔTL/T0|= f τ

14. Repeat the last problem for the situation in which θcl � θ0, but both are much
smaller than the antenna beam, θa. Obtain the expression for the main beam bright-
ness temperature. Under what conditions does one find line absorption?

15. Repeat for the case in which the antenna beam is much smaller than either θcl or
θ0. Under what conditions does one find absorption?



Chapter 14
Recombination Lines

14.1 Emission Nebulae

The physical state of the interstellar medium varies greatly from one region to the
next because the gas temperature depends on the local energy input. There exist
large, cool cloud complexes in which both dust grains and many different molecular
species are abundant. Often new stars are born in these dense clouds, and since
they are sources of thermal energy the stars will heat the gas surrounding them.
If the stellar surface temperature is sufficiently high, most of the energy will be
emitted as photons with λ < 912 Å. This radiation has sufficient energy to ionize
hydrogen. Thus young, luminous stars embedded in gas clouds will be surrounded
by emission regions in which the gas temperature and consequently the pressure will
be much higher than in cooler clouds. The emission nebulae therefore will expand;
this expansion is probably aided by strong stellar winds.

Occasionally an ion will recombine with a free electron. Since the ionization rate
is rather low, the time interval between two subsequent ionizations of the same atom
will generally be much longer than the time for the electron to cascade to the ground
state, and the cascading atom will emit recombination lines. For large H II regions,
dynamic time scales are 2L/Δv ∼ 10pc/10kms−1 ∼ 106 years, while the ionized
gas recombines in 1/αni ∼ 104 years. H II regions are thus dynamical features with
an evolutionary time scale comparable only to that of other extremely young objects.

Planetary nebulae (PN) are another class of ionized nebula. They are objects of
much greater age than classical H II regions. Stars in a fairly advanced stage of evo-
lution produce extended atmospheres which are only loosely bound and which have
such large dimensions that they appear as faintly luminous greenish disks resem-
bling planets in visual observations with small telescopes – hence their name.

In this chapter the physics of the radio line emissions of these different objects
will be discussed, and we will describe how the physical parameters of these nebulae
can be derived from these observations.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 359
DOI 10.1007/978-3-540-85122-6 14, c© Springer-Verlag Berlin Heidelberg 2009
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14.2 Photoionization Structure of Gaseous Nebulae

14.2.1 Pure Hydrogen Nebulae

Stellar photons with λ < 912 Å can ionize neutral hydrogen. After some time a sta-
tionary situation will form in the gas in which the recombinations will just balance
the ionizations. The ionization rate by stellar radiation is fairly low in an average
H II region, resulting in a typical ionization time scale of 108 s; this is much longer
than the time it takes an excited atom to cascade down to the ground state by ra-
diative transitions. If ionization by starlight is the dominant energy source of the
gas, virtually all hydrogen atoms are either ionized or they are in the 12S1/2 ground
level, and we need only to consider this photoionization cross section (Fig. 14.1).
The detailed computations are complicated [see, e.g. Rybicki and Lightman (1979),
p. 282, or Spitzer (1978), p. 105, for further details]. Figure 14.1 shows the general
frequency dependence of the ionization with σν = 6.30×10−18 cm−2 per atom for
ν ∼= ν1 = 3.3× 1015 Hz decreasing as ν−3 for ν > ν1 and σν ≈ 0 for ν < ν1. The
optical depth τν = σν NHI s therefore is large for ν � ν1, with a mean free path (path
s0 for which τ = 1) of (

NHI

cm−3

)(
s0

pc

)
=

1
20

. (14.1)

Therefore, all neutral hydrogen atoms within s0 will be ionized and NHI will
be absent; at some s1 there will be a transition from H+ to H. The width of this
transition region is governed by the recombination rate of hydrogen. When a proton
recombines with a free electron the resulting hydrogen atom could be in any excited
state. If αi is the probability for recombination into the quantum state i, then the
total recombination coefficient is

αt =
∞

∑
i=1
αi .

Since on recombination, the excess energy of the free electron is radiated away as
a photon, this photon energy is usually less than the ionization energy of hydrogen in
the ground level; only if the atom recombines to the ground state, will hνc > 13.6 eV.
Due to the large absorption coefficient this radiation will be quickly re-absorbed. It
is therefore scattered throughout the nebula until a recombination occurs at i > 1.
Therefore the effective recombination probability is given by

αt =
∞

∑
i=2
αi .

Surrounding a young, high-temperature star we will therefore find an ionized re-
gion. For the details we would need to consider the detailed balance of the ionization
equation; see Spitzer (1978) or Osterbrock (1989).
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Fig. 14.1 The photoionization cross sections for H0, He0 and He+ (Osterbrock 1989)

Let the ionizing star emit NLc Lyman continuum quanta per unit surface area,
and let its radius be R∗, then the effective radius of the ionized region will be such
that the total ionization rate caused by the star should just be equal to the total
recombination rate of the surrounding H II region; that is,

4π R2
∗ NLc = 4

3πNeNpαt s3
0 . (14.2)

If the nebula consists mainly of hydrogen, then Ne ≈ Np and

s0 N2/3
e =

[
3R2

∗ NLc

αt

]1/3

= U , (14.3)

where U is a function of the spectral type of the star. Except for some atomic proper-
ties the quantity in square brackets depends only on properties of the exciting stars; it
does not depend on properties of the nebula. NLc depends mainly on the surface tem-
perature of the star, and this again is measured by its spectral type, so that the quan-
tity on the right-hand side of (14.3), the excitation parameter U , will be a function of
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Table 14.1 The flux of Lyman continuum photons NLc and the excitation parameter U for stars of
spectral type O4–B1 [after Panagia (1973)]

Sp T Teff/K log (Lc / photons s−1) U/(pccm2/3)

O 4 52 000 50.01 148.0
O 5 50 200 49.76 122.0
O 6 48 000 49.37 90.0
O 7 45 200 48.99 68.0
O 8 41 600 48.69 54.0
O 9 37 200 48.35 41.0
O 9.5 34 800 48.10 34.0
B 0 32 200 47.62 24.0
B 0.5 28 600 46.65 11.0
B 1 22 600 45.18 3.5

the spectral type only (see Table 14.1). The more recent stellar atmosphere models
of Kurucz (1979) indicate that the number of He ionizing photons are reduced.

The average degree of ionization in the H II region can be estimated in the fol-
lowing way. Defining

x =
Np

NHI +Np
(14.4)

where NHI is the neutral hydrogen gas density and Np the number density of the
protons, then using (14.1)

x
1− x

=
Ne

NHI

∼= 20

(
s0

pc

)(
Ne

cm−3

)

or, with (14.3),

x
1− x

= 20

(
Ne

cm−3

)1/3

U(SpT) . (14.5)

From (14.5) we find that x/(1− x) is of the order of 103 in almost the whole of
the H II region. The value of x changes abruptly only at the boundary between the
H II and the H I region.

We can estimate the thickness of this transition layer by assuming a fractional
ionization x = 1/2 in it, i.e. by putting Np ≈ NHI. From (14.1) the thickness of this
transition zone will be

Δs
pc

=
1
20

(
NHI

cm−3

)−1

,

a value that is usually quite small compared to that of s0 in (14.3). The gas is
therefore divided into two sharply separated regions: the almost completely ion-
ized H II region surrounded by the almost completely non ionized H I region. The
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dependence of x on s can be determined explicitly using the ionization equation as
first done by Strömgren (1939); for the following discussion this accuracy should
suffice.

14.2.2 Hydrogen and Helium Nebulae

So far we have not accounted for the fact that about 10% of the atoms in the in-
terstellar gas are helium. These will be ionized also, but, due to their ionization
potential of 24.6 eV, the wavelength of the ionizing radiation must be shorter than
504 Å. Provided that the excitation of He radio recombination lines is like that of
H recombination lines, one could hope to determine the He abundance relative to
hydrogen in interstellar space in a way that is reasonably free from many of the
problems met when the He abundance is determined from optical data; due to the
large difference in the excitation energies needed for H and He lines in the optical
range, it is very difficult to separate small abundance differences from differences in
temperature and pressure. As will be shown for Rydberg atoms, in an environment
with small optical depth for the lines we obtain from (14.24)

TL(H II)
TL(He II)

=

s2∫
s1

Ni(H II )ds

s′2∫
s′1

Ni(He II)ds

∝

s2∫
s1

N2
e (s)ds

s′2∫
s′1

N2
e (s)ds

. (14.6)

Then we obtain
TL(H II)
TL(He II)

=
〈

N(H)
N(He)

〉
(14.7)

only if:

1) The H II and He II regions have the same extent. This will be the case if the
number of UV photons emitted by the exciting stars which can ionize He is
similar to those that can do this for H. As shown in Sect. 14.2 this is so if T ∗ >
37000 K.

2) N(He++) is negligible compared to N(He+). Since the ionization potential for
He++ is χ2 = 54.4 eV compared to χ1 = 24.6 eV this can safely be adopted.

3) N(H I) ∼= 0 ∼= N(He III) in H II regions.
4) The H and He recombination lines have the same excitation.

Each photon that can ionize He is able to ionize H, but the reverse may not be
true. For a precise description of the situation we would need a system of coupled
differential equations. However, we can obtain quite a good estimate by a qualitative
calculation.

The number of UV photons that can ionize H I is given by

∞∫
ν1

Lν
hν

dν = Q(H I)
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and in a stationary situation, this number should equal the total number of H recom-
binations. Therefore

Q(H I) = 4
3π s3

0 Ne Npαt(H I) , (14.8)

where s0 is the radius of the H II region and αt(H I) the total effective recombination
coefficient for hydrogen. For He we obtain a similar expression

Q(He) = 4
3π s3

1 Ne NHeαt(He) (14.9)

and, due to the different ionization potentials of H and He, s1 < s0. In the He II re-
gion the electrons arise from both H and He, so that Ne(Heii) = NH +NHe, while in
the H I region outside s1, only H contributes, so that Ne(H I) = NH. Dividing (14.8)
by (14.9), we obtain

(
s0

s1

)3

=
Q(H I)

Q(He II)
NHe

NH

(
1+

NHe

NH

)
αt(He II)
αt(H I)

. (14.10)

In this, only the Q factors depend on the exciting star; the remaining factors
depend only on the properties of the interstellar medium.

The most realistic stellar atmosphere models are from Kurucz (1979). For an
accurate measurement of the He/H ratio, if the true He/H ratio is 0.10, one requires
that the ionization is provided by a star of O7 (luminosity 105 L�) or earlier (Mezger
1980).

Observationally, there is a problem. The large beams of single radio telescopes
include many H II regions with very different excitation parameters. A prime ex-
ample is the Sgr B2 region; with a 2.6′ beam, He+/H+ number ratios ≤ 0.014 were
measured, while with high-resolution interferometry, maximum ratios of ≈ 0.08 are
reached (Mehringer et al. 1993). These differences show that the angular resolution
used has a large effect on the observed He+/H+ ratio, and that only the highest
angular resolution data can provide reliable results.

14.2.3 Actual HII Regions

Actual H II regions contain H, He and “metals”, that is, elements heavier than He.
Mostly, one assumes that “metals” consist of the elements C, N, and O. For solar
metalicity, the combined abundance of C, N, O relative to H is ∼ 10−3 by number.
Since C, N and O are produced in stars, there can be considerable variation in this
abundance. Although these elements make up only a small part of the mass of H II

regions, they have a large effect on the electron temperature. This is because of the
following considerations. In a time independent situation the value of Te is obtained
by setting the heating rate equal to the cooling rate. The heating rate is given by the
number of photoelectrons ejected from atoms:

G = Γ NaΔE (14.11)
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where G is in erg cm−3 s−1 and ΔE is a few eV. The loss Λ is

Λ = Ne Ntβ Eex e
−

Eex

kTe (14.12)

where Nt is the number density of target ions, β is a temperature dependent, slowly
varying rate constant. The exponential is the Boltzmann factor. The equilibrium
temperature is obtained by setting G =Λ , and assuming the equality of ionizations
and recombinations

ΓNa = αNeNi , (14.13)

so
αNeNiΓΔE = NeNtβE eEex/kTe (14.14)

or
Te =

Eex

k ln

(
Nt Eexβ
Niα ΔE

) . (14.15)

Then the value of Te depends on the abundance of coolants, in this case C, N,
O, relative to the number of ions, but not on density. This qualitative treatment is
confirmed by detailed calculations carried out by Rubin (1985).

14.3 Rydberg Atoms

When ionized hydrogen recombines at some level with the principal quantum num-
ber n > 1, the atom will emit recombination line emission on cascading down to the
ground state. The radius of the nth Bohr orbit is

an =
h̄2

Z2 me2 n2 , (14.16)

and so for large principle quantum number n, the effective radius of the atom be-
comes exceedingly large. Systems in such states are generally called Rydberg atoms.
Energy levels in these are quite closely spaced, and since pressure effects at large
n caused by atomic collision may become important, the different lines eventually
will merge. The Inglis-Teller formula gives a semi-empirical relation between the
maximum number of resolvable lines nmax and the electron density

log

(
Ne

cm−3

)
= 23.26−7.5lognmax . (14.17)

For Ne < 106 cm−3 this gives nmax > 200 so that lines with very large quantum
numbers should be observable. The frequency of the atomic lines of hydrogen-like
atoms are given by the Rydberg formula

νki = Z2RM

(
1
i2
− 1

k2

)
, i < k (14.18)
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where

RM =
R∞

1+
m
M

(14.19)

if m is the mass of the electron, M that of the nucleus and Z is the effective charge
of the nucleus in units of the proton charge. For n > 100 we always have Z ≈ 1 and
the spectra of all atoms are quite hydrogen-like, the only difference being a slightly
changed value of the Rydberg constant (Table 14.2).

Lines corresponding to the transitions n+1 → n are most intense and are called
α lines. Those for transitions n + 2 → n are β lines; n + 3 → n transitions are γ
lines; etc. In the identification of a line both the element and the principle quantum
number of the lower state are given: so H 109α is the line corresponding to the
transition 110 → 109 of H while He 137 β corresponds to 139 → 137 of He (see
Fig. 14.2). Transitions with Δn = 1, that is, α transitions with n > 60, produce lines
with λ > 1 cm in the radio wavelength range. Kardashev (1959) first suggested that
such lines might be observable; they were first positively detected by Höglund and
Mezger (1965). All radio recombination lines are fairly weak, even in bright, nearby
H II regions such as the Orion nebula M 42.

All atoms with a single electron in a highly excited state are hydrogen-like. The
radiative properties of these Rydberg atoms differ only by their different nuclear
masses. The Einstein coefficients Aik, the statistical weights gi and the departure co-
efficients bi are identical for all Rydberg atoms, if the electrons in the inner atomic
shells are not involved. The frequencies of the recombination lines are slightly
shifted by the reduced mass of the atom. If this frequency difference is expressed
in terms of radial velocities (see Table 14.2), this difference is independent of the
quantum number for a given element.

The line width of interstellar radio recombination lines is governed by external
effects; neither the intrinsic line width nor the fine structure of the atomic levels has
observable consequences. In normal H II regions, evidence for broadening of the
lines by inelastic collisions is found for N ≥ 130, from the broad line wings. For
N < 60 the observed linewidth is fully explainable by Doppler broadening. One part
of this is thermal Doppler broadening since for H,

Table 14.2 The Rydberg constant for the most abundant atoms

Atom Atomic mass RA/(Hz)(a) ΔV/(kms−1)(b)

(a.m.u.)

1H 1.007825 3.288 051 29 (25) ×1015 0.000
4He 4.002603 3.289 391 18 −122.166
12C 12.000000 3.289 691 63 −149.560
14N 14.003074 3.289 713 14 −151.521
16O 15.994915 3.289 729 19 −152.985

∞ 3.289 842 02 −163.272

(a) Rydberg constant for the atom.
(b) velocity offset from Hydrogen.
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Fig. 14.2 Recombination lines in the H II region W 3 at 8.5 GHz. The most intense lines are
H 91α , He 91α , C 91α , the total integration time, t, for this spectrum is 75 hours; even after this
time, the RMS noise follows a theoretical dependence of 1/

√
t [from Balser et al. (1994)]

ΔV1
2

= 0.21
√

TK .

The electrons have a velocity distribution that is described very closely by a
Maxwellian velocity distribution; long range Coulomb forces eliminate any devia-
tions with a relaxation time that is exceedingly short. This distribution is character-
ized by an electron temperature Te and, due to the electrostatic forces, the protons
should have a similar distribution with the same temperature. The spectral lines are
observed to have Gaussian shapes. Thermal Doppler motions for Te

∼= 104 K produce
a line width of only 21.4 km s−1, however a width of ∼ 25 km s−1 to ∼ 30 km s−1

is observed. Therefore it is likely that nonthermal motions in the gas contribute to
the broadening. These motions are usually referred to as micro turbulence. If we
include this effect, the half width of hydrogen is generalized to

ΔV1
2

=
√

0.04576Te + v2
t . (14.20)

14.4 Line Intensities Under LTE Conditions

To compute the absorption coefficient as given by (12.17) for a given recombination
line of hydrogen in local thermodynamic equilibrium, several further parameters for
this transition must be specified. For the statistical weight gn of the level with the
principal quantum number n, quantum theory gives

gn = 2n2 . (14.21)
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This is assumed to hold in high n states of hydrogen. The transition probability
Aki for hydrogen has been determined by many different authors. From the corre-
spondence principle, the data for high quantum numbers can be computed by using
classical methods, and therefore we will use for Aki the expression (12.24) for the
electric dipole. For the dipole moment in the transition n+1 → n we put

μn+1,n =
ean

2
=

h2

8π2me
n2 ,

where an = a0 n2 is the Bohr radius of hydrogen, and correspondingly

νn+1,n =
me4

4π2 h3 n3 .

Substituting this expression into (12.24) we obtain, for the limit of large n

An+1,n =
64π6 me10

3h6 c3

1
n5 =

5.36×109

n5 s−1 . (14.22)

We adopt a Gaussian line shape, ϕ(ν). Introducing the full line width Δν at half
intensity points, we obtain for the value of ϕ at the line center

ϕ(0) =
(

ln2
π

)1/2 2
Δν

. (14.23)

Another factor in (12.17) is Nn, the density of atoms in the principal quantum
state n. This is given by the Saha-Boltzmann equation [cf. Osterbrock (1989), p. 61,
Spitzer (1978), Sect. 2.4, or Rybicki and Lightman (1979), (9.45)]

Nn = n2
(

h2

2πmk Te

)3/2

eXn/k Te Np Ne , (14.24)

where

Xn = hν0 −χn =
hν0

n2 (14.25)

is the ionization potential of the level n.
Substituting (14.21, 14.22, 14.23, 14.24) into (12.17) and using Xn � k Te for

lines in the radio range so that exp(Xn/k Te) ∼= 1 and 1 − exp(−hνn+1,n/k Te) ∼=
hνn+1,n/k Te, we obtain for the optical depth in the center of a line emitted in a
region with the emission measure for an α line

EM =
∫

Ne(s)Np(s)ds =
∫ (

Ne(s)
cm−3

)2

d

(
s

pc

)

τL = 1.92×103
(

Te

K

)−5/2( EM
cm−6 pc

)(
Δν
kHz

)−1

.

(14.26)

(14.27)
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Here we have assumed that Np(s)≈ Ne(s) which should be reasonable due to the
large abundance of H and He (= 0.1 H). We always find that τL � 1, and therefore
that TL = Te τL, or

TL = 1.92×103
(

Te

K

)−3/2( EM
cm−6 pc

)(
Δν
kHz

)−1

. (14.28)

For ν > 1 GHz we find that τc < 1 for the continuum, so that we obtain on divid-
ing (14.27) by (10.35) and using the Doppler relation

TL

Tc

(
Δv

kms−1

)
=

6.985×103

a(ν ,Te)

[ ν
GHz

]1.1
[

Te

K

]−1.15 1
1+N(He+)/N(H+)

. (14.29)

The last factor is due to the fact that both NH+ and NHe+ contribute to Ne =
NH+ + NHe+ while Np in (14.24) is due to NH only. Typical values for the H II re-
gion Orion A are N(H+

e )/N(H+) = 0.08, TL/TC = 0.245 and ΔV1/2 = 25.7kms−1

at 22.364 GHz (λ = 1.3 cm); the value of T ∗
e is 8200 K. Equation (14.29) is valid

only if both the line radiation and the continuous radiation are optically thin, but the
effect of a finite optical depth is easily estimated.

We assume that both the line and the continuum radiation are emitted by the
same cloud region with an electron temperature Te. At the line center, the brightness
temperature is

TbL = Te (1− e−(τL+τc)) .

At frequencies adjacent to the line, we obtain

Tbc = Te (1− e−τc)

so that, for the brightness temperature of the line alone, we find

TL = TbL −Tbc = Te e−τc(1− e−τL) . (14.30)

Therefore, if τc � 1, no recombination lines are visible (Fig. 14.3); they are ob-
served only if τc is small! This is simply another version of the general principle
that optically thick thermal radiation approaches black body radiation and, in black
body radiation, there are no lines!

Recombination lines occur over an extremely wide frequency range, from the
decimeter range down to the ultraviolet; just to the long wavelength side of the
Lyman limit at λ = 912 Å. Low frequencies, for which the continuous radiation
becomes optically thick, must be avoided. But there are also limits for the highest
frequency that can be usefully employed. In Sect. 14.3 we showed that TL ∝ ν−1;
so the amplitude of the recombination line decreases with the frequency. There-
fore recombination line radiation of extended diffuse objects is best observed at low
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Fig. 14.3 A sketch of the intensities for thermal continuum and recombination lines. Radio recom-
bination lines are visible only in the hatched region. The turnover frequency ν0 is that frequency
where τ ≈ 1

frequencies in order to maximize TL, staying however well above the limiting fre-
quency (10.37) where the source becomes optically thick. Compact H II regions are
frequently optically thick even at frequencies of a few GHz and have diameters less
than the angular resolution of the telescope. They are, in contrast, best observed at
the shortest possible wavelength permitted by both telescope, radiometer, and atmo-
sphere in order to maximize TL leaving TL/Tc unchanged.

14.5 Line Intensities when LTE Conditions do not Apply

The diameter of hydrogen atoms is strongly dependent on the principle quantum
number [cf. (14.16)].

Atoms in states with high principal quantum numbers are large (cf. Table 14.3),
so collisions will have a large effect. A test for the influence of collisions which is
independent of instrumental influences therefore should be useful. Let us consider
the ratio of the optical depth for two recombination lines which have approximately
the same frequency but correspond to different upper (k,k′) and lower (i, i′) quantum
levels. From (12.17) we have

Δν TL

Δν ′ T ′
L

=
g′i gk Ni Aki

g′k gi N′
i A′

ki
, (14.31)

but in LTE the density of the different states is governed by the Boltzmann distribu-
tion (12.16)

Ni

N′
i

=
gi

g′i
exp

(
− Xi −X ′

i

kTe

)
.
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Table 14.3 Diameter and relative density of the hydrogen atom as a function of the principle
quantum number

n Diameter �/�1
(cm)

1 1.06×10−8 1
10 1.06×10−6 10−6

100 1.06×10−4 10−12

200 4.24×10−4 1.6×10−14

300 9.52×10−4 1.4×10−15

Since

Xi −X ′
i � kTe ,

the exponential term will be = 1, so we arrive at

Δν TL

Δν ′ T ′
L

=
gk Aki

g′k A′
ki

. (14.32)

The right-hand side of this equation contains only atomic quantities and can thus
be computed theoretically, while the left-hand side contains observable quantities.
There are many possible candidates for this test; the transitions H 110α , H 138 β ,
H 158 γ , H 173 δ and H 186 ε all have frequencies close to 4.9 GHz, but numerous
other combinations are possible.

The simplification from (14.31) to (14.32) can be made only if LTE conditions
hold. If the observations give a result that differs from that theoretically expected,
we can be certain that LTE does not apply. Unfortunately even if the observations
give a result that agrees with (14.32) we still cannot be certain that LTE applies since
the different NLTE effects sometimes seem to “conspire” to fulfill (14.32). This has
been discussed by Seaton (1980). We will now investigate how such deviations from
LTE will affect the recombination line radiation.

By reversing the arguments leading to (12.16), it is clear that NLTE is equivalent
to deviations from the Boltzmann equation. We have already met an elementary
version of this situation in low-temperature gas for a two-level system, where the
brightness temperature Tb of the ambient radiation field and the kinetic temperature
of the gas TK differed. We then described the relative population of the two lowest
states by introducing an excitation temperature Tex, that is some appropriate mean
of the brightness temperature Tb and the kinetic temperature TK. But with a many
level system we would find a different excitation temperature for each transition.
Therefore the procedure introduced by Menzel (1937) has been applied: departure
coefficients bn relate the true population of level, Nn, to the population under LTE
conditions, N∗

n , by
Nn = bn N∗

n . (14.33)
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The bn factors are always < 1, since the A coefficient for the lower state is larger
and the atom is smaller so collisions are less effective. For states i and k, with k > i
we have therefore bn → 1 for LTE, and

Nk

Ni
=

bk

bi

gk

gi
exp

(
− Xk −Xi

k Te

)
=

bk

bi

gk

gi
e−hνki/k Te . (14.34)

Using (12.17) we obtain

κν =
c2

8π
1

ν2
ki

gk

gi
Ni Aki

(
1− bk

bi
e−hνki/k Te

)
ϕ(ν) (14.35)

so that we can write (Goldberg 1968)

κν = κ∗ν biβik , (14.36)

where

βik =
1− bk

bi
exp

(
−hνki

k Te

)

1− exp

(
−hνki

k Te

) . (14.37)

κ∗ν is the absorption coefficient as given by (12.17) for local thermodynamic equi-
librium. Since hνki � k Te, (14.37) can be simplified to

βik =
[

1− bk

bi

(
1− hνki

k Te

)]
k Te

hνki

or

βik =
bk

bi

[
1− k Te

hνik

bk −bi

bk

]
. (14.38)

For 0 < bk −bi � bk,
kTe

hνik
� 1 and k− i = Δn, this is equal to

βik =
bk

bi

[
1− k Te

hνik

dlnbn

dn

∣∣∣∣∣
i

Δn

]
, (14.39)

where the differential is evaluated for level i. Substituting numerical values for the
physical constants we obtain for β = (bi/bk)βik
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β = 1−20.836

(
Te

K

)( ν
GHz

)−1 d lnbn

dn
Δn (14.40)

and

κν = κ∗ν bnβ . (14.41)

Although 0 < bn < 1, β can differ considerably from 1 and may become negative.
This means that κν < 0; that is, we have maser amplification. In order to obtain an
indication of how the line intensities are affected the equation of transfer has to be
solved. From the definition (12.15) for the emissivity εν , we must have

εL = ε∗L bk (14.42)

where ε∗L is the appropriate value for LTE. According to Kirchhoff’s law, we must
have

ε∗L
κ∗L

= Bν(T ) . (14.43)

The equation of transfer (1.9) then becomes

− dIν
dτν

= Sν − Iν (14.44)

with the source function

Sν =
εν
κν

=
ε∗L bn + εc

κ∗L biβin +κc
. (14.45)

Using (14.43) this can be written as

Sν = ην Bν(T ) (14.46)

where

ην =
κ∗L bn +κc

κ∗L biβin +κc
. (14.47)

Kirchhoff’s law is therefore not valid under NLTE conditions. For an isothermal
slab of material with constant density, the brightness temperature at the line center
is

TL +Tc = ην Te (1− e−τL−τc)

or

r =
TL

Tc
= ην

1− e−τL−τc

1− e−τc
−1 . (14.48)
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Under conditions of LTE, bi = 1 and βik = 1 so that ην = 1 and

r∗ =
T ∗

L

Tc
=

1− e−τ
∗
L−τc

1− e−τc
−1 . (14.49)

Dividing (14.48) by (14.49) we have

TL

T ∗
L

=
r
r∗

so that this ratio describes the influence of NLTE effects on the line intensity. Ex-
panding the exponentials in (14.48) and retaining the quadratic terms in τL and τc,
we obtain

r = ην
τL

(
1− 1

2 τL − 1
2 τc

)
τc
(
1− 1

2 τc
) −1 . (14.50)

Substituting (14.47) for ην and (14.35) and (14.36) for κν with τL = −κL s and
τc = −κc s we find that

r
r∗

= bk −
1
2
τc bk

[
1+

bi

bk
βi (1+ r∗ bk)

]
. (14.51)

In most cases of interest |βik| � 1 and r∗ bk � 1; hence

r
r∗

=
TL

T ∗
L

= b

(
1− 1

2
τcβ

)
. (14.52)

The first term of (14.52) accounts for NLTE line formation effects while the
second describes NLTE transfer effects, that is, Maser amplification of the line
radiation.

One may wonder why the continuum optical depth multiplies β . This is because
the atoms do not distinguish between line and continuum photons, but amplify a
background. Actually (14.52) is an approximation to a uniform region. In actual
situation the equation of transfer must be evaluated at each position through the
nebula. In our direction the largest amplification will occur in the layer nearest us,
since the line and continuum intensities increase from back to front.

In order to apply these concepts, the departure coefficients bn for a given H II

region must be determined. But this requires that all important processes affecting
the level population are taken into account. These are

1) level population and transfer effects;
2) collisional excitation and de-excitation by electrons and protons;
3) collisional ionization and three body recombination;
4) redistribution of angular momentum by collisions.

We will consider these processes one by one. First, to obtain the b and β terms in
(14.52), the level populations must be calculated using the rate equation:
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∑
r 
=s

(NrCrs +NrBrsUrs)+∑
r>s

NrArs +NeNi (αis +Cis)

= Ns∑
l<s

Asl +Ns∑
l 
=s

(Csl +BslUsl)+NsCsi , (14.53)

where Ne is the electron density, Ni the ion density, Ars the spontaneous Einstein
coefficient for the transition r → s and Brs and Bsr the corresponding coefficients
for stimulated emission and absorption. Urs = 4πIν/c is the radiation density at
the frequency νrs corresponding to the transition r → s, and αis is the radiative
recombination coefficient for transitions to the level s. Finally, Csi represents the
collisional ionization rate for transitions for the level s, and Cis the corresponding
three body recombination rate.

Using a procedure described by Dupree (1969) this can be rewritten to arrive at
the equation

r=s+s0

∑
r=s−s0

Rrsbs = Ss (14.54)

where

Rrs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−gr

gs
eXr−Xs(Crs +BrsUrs +Ars); r < s

∑
l<s

Asl +
s+s0

∑
l 
=s

s−s0

(Csl +BslUsl)+Csi; r = s

−gr

gs
eXr−Xs(Crs +BrsUrs); r > s

(14.55)

and

Sn =
∞

∑
r=n+n0+1

br
gr

gn
eXr−XnArn +Cni +

(2πmk Te)3/2

h3

2gi

gn
e−Xn αin . (14.56)

Here gn and gi are the statistical weights of an electron at the bound state n and
in the continuum,

Xn = 1.58×105
(

Te

K

)−1 1
n5

and n0 is the maximum value of Δr = |r − n| for which collisions and stimulated
radiative transitions are considered.

This is mainly a numerical problem once the transition rates Ars,Brs, Iν and the
collision rates are specified. Approximate numerical solutions were first given by
Menzel and Pekeris (1935); in the meantime much larger systems, with the rate
equations above, have been solved, in particular by Brocklehurst (1970).

Usually two major cases are considered.

Case A: The nebula is optically thin in all lines: each photon leaves the nebula.
Case B: The Lyman photons never escape; after many scatterings they are broken
down into two photons or are absorbed by dust.
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In most nebulae, case B is likely to apply and the collision rates Crs in (14.54,
14.55, 14.56) have to be computed by quantum mechanical methods, but accord-
ing to (12.36) they will depend on the local electron density. In low-density regions
the bn factors will therefore be determined mainly by the radiation field. Obser-
vationally, the relative importance of collisions and the radiation field are strongly
dependent on the principal quantum number of the level considered. In a diagram
of bn values as functions of the quantum number n (Fig. 14.4) we can therefore dis-
tinguish two main regions: a radiative domain for low n independent of the ambient
density and a collisional domain where the bn values depend strongly on the electron
density Ne. As n → ∞, bn → 1 and β → 0.

14.5.1 Collisional Broadening

The intensity of the recombination lines as found from the arguments presented in
the preceding sections seems to be remarkably insensitive to gas density. Reasons
for this become clear if line broadening is explicitly considered. The broadening is
not so much caused by the quasi static electric fields of the colliding ions (Stark
effect) as by random phase perturbation of the emitted line (impact effects). These
have been investigated by Griem (1967) and Brocklehurst and Leeman (1971). The
line shape is a Lorentz profile but, since this will be convolved by the Doppler profile
caused by the random velocities of the atoms, the observed line profile eventually
will be a Voigt function [see Rybicki and Lightman (1979), (10.76)].

Brocklehurst and Seaton (1972) find

ΔνI

ΔνD
= 0.142

( n
100

)7.4
(

Ne

104 cm−3

)(
Te

104 K

)−0.1( TD

2×104 K

)−1/2

(14.57)

for the ratio of the dispersion profile for the H recombination lines and the half
power line width of the Doppler broadening in a medium, with Te = 1×104 K and
an equivalent Doppler temperature TD = 2×104 K.

The impact line width thus depends very strongly on the principal quantum num-
ber of the line. For Ne = 104 cm−3 we find ΔνI/ΔνD = 0.14 if n = 100, while for
n = 150, ΔνI/ΔD = 20. Lines with such large impact widths are not easily detectable
with presently used techniques, since instrumental baselines blend with the broad-
ened profiles. In removing instrumental baseline ripple, one may also remove wide
real line wings. Therefore there is a rather sharply defined maximum principal quan-
tum number nmax for which the recombination lines of gas of given density can be
detected. In this sense the Inglis-Teller criterion (14.17) can be derived from (14.57).

If we observe the recombination line radiation of a strongly clumped cloud, the
line radiation of the high density parts will not be collisionally broadened if n > nmax

for this density. Lines of a given n can therefore only be detected for a gas with a
density below a critical density Nn. High n lines are indicative of a gas of low density
while high density gas can only be detected by low n lines.
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Fig. 14.4 Population departure coefficients bn and their differential variation dlnbn/dn plotted
against the principal quantum number for Te = 104 K and different Ne (Walmsley 1990)

In regard to condition 3, the relatively low densities insure that three body pro-
cesses are rare. With respect to condition 4, if N(n) is the total population in level
n, Pengelly and Seaton (1964) showed that

N(n, l) =
2 l +1

n2 N(n)

holds for n > 47 at an electron density of 1 cm−3. At higher densities this holds at
even lower n levels.
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14.6 The Interpretation of Radio Recombination Line
Observations

Recombination line measurements provide a reasonably simple way to determine
the radial velocities and electron temperatures, Te, of H II regions, even those which
are optically obscured. As shown, Te depends in a rather complicated manner on
TL/Te,〈Ne〉, EM and ΔV ; that is, on the details of the structure of the H II region.
However, insight into the physics is gained by the following approximate method.
If we have an H II region in which

1) the structure is plane-parallel, homogeneous and isothermal;
2) all optical depths are small: |τL + τc| � 1 and τc � 1;
3) the lines can be treated as if they were formed and transferred in LTE: bn = 1,
β = 1, then

(14.29) is valid and can be solved for Te which we will call T ∗
e here:

T ∗
e

K
=

[
6.985×103

a(ν ,T )

( ν
GHz

)1.1 1

1+ N(He)
N(H)

(
Δv 1

2

kms−1

)−1(
Tc

TL

)]0.87

.(14.58)

For most galactic H II regions this is a good approximation of the actual electron
temperature Te for ν ≈ 10 to 40 GHz. The exact precision is not clear, but is prob-
ably better than 20%; for higher precision, detailed numerical models are needed.
Even if assumptions 2 and 3 are valid, a different geometry can cause significant de-
viations of Te from T ∗

e . Non-LTE effects can be taken into account by using (14.52)
resulting in

Te = T ∗
e

[
b(1− 1

2 β τc)
]0.87

. (14.59)

It has been remarked by several observers that the radio recombination lines of
H seem to be emitted close to LTE, or are in LTE. This is certainly not a correct
conclusion, since a number of factors conspire to produce a selection which appears
to be close to LTE. Brown et al. (1978) had presented models which predicted a
large maser effect in HII regions, but these were based on an unrealistic choice
of source parameters. Basically, at very low densities, large quiescent H II regions
would produce radio recombination lines which are dominated by line masering.
However, such regions are very rare (see Sect.14.6.1).

A consideration of numerical values for the right side of (14.59) is useful. For the
2.5′ diameter dense core of Orion A, one has an RMS electron density of 〈Ne〉= 5×
103 cm−3, and T ∗

e of 8200 K. At 23 GHz, the continuum optical depth is τC = 3.7×
10−3. Then from the tabulations of Brocklehurst (1970), we have for the H 66α line,
b66 = 0.99 and β66 = −42. Then TL = 1.07T ∗

L , and the LTE value of Te represents
the actual value of Te very well. Because masering effects are more important at
lower frequencies, the best choice of frequency for a survey of many galactic H II

regions will be ∼ 10 GHz.
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Large scale surveys of H II regions in the disk region of our galaxy show a de-
crease of T ∗

e with distance from the galactic center, DGC (see Fig. 14.6). Studies of
the heating and cooling of H II regions indicate that Te is less dependent on density
than on the abundance of heavier elements such as C, N and O. Presumably this
trend is caused by an increase in the abundance of C, N and O with DGC. However,
in the galactic center itself, the Te values reach those found near the Sun. These
higher Te values indicate that additional factors may influence Te.

A comparison of radio and optical determinations of Te shows that the optical
value from the O++ forbidden line ratio is

exp

(
− ER

k Te

)
=

∫
NeN(O++)exp

(
−E31

k Te

)
dV

∫
NeN(O++)exp

(
−E21

k Te

)
dV

, (14.60)

where E21/k = 28700 K and E31/k = 61700 K. If Te varies over the nebula, this ratio
is weighted towards the higher values of Te, while (14.59) is weighted towards the
lowest value. In a uniform density region, Te should be a constant, so variations of Te

indicate density enhancements. Of course, detailed comparisons can be made only
for nearby, optically un obscured regions. Up to the last few years it appeared that
the Te values for the dense core of Orion A from the O++ forbidden lines and from
radio recombination lines agreed fairly well. Newer values, from optical recombi-
nation lines, indicate some discrepancies. These Te values are of great importance
since the conversion of optical line intensities to column densities depends criti-
cally on Te. Another determination of N and O abundances can be made using fine
structure lines of N and O in the far IR. These have the advantage of being largely
temperature independent, but they are also somewhat density dependent.

Martin-Hernandez et al. (2002) have presented the distribution of the N++/O++

ratio from fine structure lines. These lines are emitted from ultra-compact HII re-
gions. The data were taken using the long and short wavelength spectrometers of
the ISO mission. In the disk of our galaxy, this ratio shows a factor of 8 increase
in the ratio from 15 kpc to 4 kpc from the galactic center. This increase reflects
the production and ejection of processed material, such as nitrogen in lower mass
stars in the Asymptotic Giant Branch (AGB). A larger amount of heavier elements
is consistent with the decrease in Te, this is plotted in Fig. 14.6.

14.6.1 Anomalous Cases

The curves for the β factors in Fig. 14.4 show that the high quantum number states
for the H atoms are always inverted. This is because decays become faster as n
becomes smaller, and the collision rates, which bring the H atom closer to LTE,
also become smaller. Then the trend is always bn < bn+1. Since hν

k � Te, and gn ≈
gn+1 for large n, this requires a negative value of Tex, which means an inverted
population. However, an inverted population alone will not give rise to line masering
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(see (1.38)), since from (12.17), τ ∼Nm/Tex and then Texτ ∝Nm. For this reason, the
optical depth of the continuum is important. Observations show that strong maser
emission from radio recombination lines is very rare [see e.g. Martin-Pintado et al.
(1994)]. The most prominent example of a recombination line maser is the source
MWC349. This masering extends even into the infrared (Martin-Pintado et al. 1994,
Thum et al. 1998).

14.7 Recombination Lines from Other Elements

Recombination lines of other elements besides H and He have been observed. Un-
ambiguous identifications are more difficult because the radial velocity differences
due to the atomic weights of the nuclei become less with increasing reduced masses
MA and converge towards ΔV = −163.3 km s−1 for MA → ∞ (see Tab. 14.5). The
line seen blended with the He line in the spectrum (Fig. 14.2) has been identified
with carbon. If this line originates in the same volume as the H and He lines, the
line intensity is a factor of about 60 stronger than expected from the average abun-
dance of carbon.

The following explanation is generally accepted: the line does not originate in the
H II region but in the surrounding gas which is only partly ionized and has a much
lower electron temperature (Te

∼= 200 K) than the H II region. This gives rise to a
larger value of TL, for a given emission measure EM. In addition, the behavior of
β and b factors also increases TL at lower observing frequencies. This also explains
why the radial velocity of the C II lines may differ from that of the H II lines by a
few km s−1, and usually agrees much better with the velocity of adjacent molecular
clouds. To explain why the line should be identified with carbon and not oxygen
which is more abundant, one notes that for recombination line radiation the atoms
must be ionized. Oxygen has an ionization potential of 13.6 eV while that for carbon
is 11.3 eV. Therefore recombination line radiation of oxygen could only be emitted
inside H II regions, while carbon can be ionized outside H II regions. All other
elements are less abundant than carbon by large factors and their lines would hardly
be detectable.

The b and β factors for carbon may be enhanced by the dielectronic recombi-
nation process. This allows the excess energy and momentum in the recombination
process to be shared with another electron, in this case, the electron which gives
rise to the fine structure line at 157μm. A complete set of measurements of carbon
recombination lines toward the SNR Cas A has been carried out. These lines arise
from the envelopes of clouds in front of the intense continuum source. At low fre-
quencies the populations of ionized carbon are thermalized, so the lines absorb the
continuum radiation. At higher frequencies the NLTE effects dominate, and the lines
appear in emission, amplifying the continuum source. At even higher frequencies,
above a few GHz, the b factors are very small and the background is weaker. In all
cases, the optical depths of these lines are ∼ 10−3. The lack of corresponding lines
of hydrogen indicates that the ionization is via photons with λ > 912 Å; if ionized
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by cosmic rays, one would expect to find H lines. Detailed arguments can be used
to set limits on the cosmic ray rates near these regions.

Problems

1. A spherically symmetric, uniform HII region is ionized by an O7 star (mass about
50 M�), with an excitation parameter U = 68pccm2/3.
(a) Interpret the meaning of the excitation parameter.
(b) If Ne = 104 cm−3 what is the radius of this region?
(c) Calculate the Emission Measure, EM = N2

e L, where L is the diameter of the HII
region.
(d) If this region consists of pure hydrogen, determine the mass.

2. If the ionization is caused by a cluster of B0 stars (each with mass 18 M�), with
U = 24 pc cm2/3, how many of these stars are needed to provide the same excitation
as with one O7 star?

3. (a) Compare the mass of the HII region in Problem 1 to that of the exciting stars
needed to ionize the regions in Problems 1 and 2.
(b) Suppose that the HII region in Problem 1 has an electron density, Ne, of 3×
104 cm−3, but the same Emission Measure, EM = N2

e L, where L is the diameter of
the HII region. Determine the mass of ionized gas in this case.
(c) Now repeat this calculation for the same excitation parameter, but with Ne =
3×103 cm−3.

4. In the core of the HII region Orion A, the diameter is 0.54 pc, the emission
measure, N2

e L = 4×106 cm−6 pc, and the electron density Ne is 104 cm−3. Combine
Ne with the emission measure to obtain the line-of-sight depth. Compare this result
with the RMS electron density obtained by assuming a spherical region with a line-
of-sight depth equal to the diameter. The “clumping factor” is defined as the ratio of
the actual to the RMS electron densities. What is this factor?

5. The assumption in Problem 2 is that all of the exciting stars are of the same
spectral type (and mass). This is not found to be the case. Rather the distribu-
tion of stellar masses follows some distribution. One is the Salpeter distribution,
N(M) = N0M−1.35. Integrate over mass

∫
M N(M)dM to obtain the total mass of

stars between the limits Mlower and Mupper. Take Mlower as 0.08 M�, and Mupper as
50 M�. Is there more mass in stars of type B0 and larger or in stars with masses
below class B0?

6. (a) In Fig. 14.1 is a sketch of the photoionization cross sections for hydrogen
and two ionization states of helium. Explain why there is a sharp decrease in the
absorption cross section for frequencies lower than ν0. Calculate the photon energy
corresponding to ν0.
(b) At frequencies higher than ν0, the photons are only slowly absorbed. Suppose
that only these (higher energy) photons escape and are absorbed in the outer parts



382 14 Recombination Lines

of an HII region. On this basis, do you expect the electron temperature to be higher
or lower than in the center of the H IIregion? Give an explicit argument.

7. Calculate the Rydberg constant for the nuclei of deuterium (2H) and 3-helium
(3He), using (Eq. 14.19). For the electron, the mass is 9.109× 10−28 g. For D, the
nuclear mass is 3.344×10−24 g, and for 3He, this is 5.008×10−24 g.

8. (a) If the Rydberg constant for 4He is 3.28939118×1015 Hz, find the separation
between the 4He and 3He lines (in km s−1). Given that the linewidths of 4He and
3He are ∼24 km s−1, and that the number ratio 3He/4He = 10−4, sketch the shape
of each profile and that of the combined profile.
(b) For a 4He line TA of 2 K, frequency resolution 100 kHz, and system noise tem-
perature of 40 K, how long must one integrate using position switching to detect a
3He recombination line?

9. The exact formula for a transition from the ith to the nth level, where i < k is given
in (Eq. 14.18)
(a) If we set k = n+1, show that the approximate Rydberg formula for the transition
from the n+1th to the nth levels, that is for the nα line, is

ν =
2Z2 RM

n3 .

(b) Determine the error for this approximation in the case of nα transitions, for
n = 126, 109, 100 and 166. If a total analyzing bandwidth of 10 MHz is used to
search for these recombination lines, show that the line frequencies calculated using
the approximate formula do not fall in the spectrometer band.

10. Suppose that the recombination lines from the elements 4He and 12C are emit-
ted without turbulence. The 4He arises from a region of electron temperature,
Te, 104 K, while the 12C arises from a region with electron temperature 100 K.
(Modify (Eq. 14.20), which is valid for H, for these elements using the atomic
weights. Assume that the turbulent velocity, vt, is zero.) The 4He−12C separation
is 27.39 km s−1. If the intensities are equal, at what level do these lines overlap?
Suppose the turbulence of the 4He line is 20 km s−1. Now what is the overlap?

11. (a) At larger principal quantum number values, n, the sizes of atoms are larger, so
collisional broadening is more important. In Fig. 14.5, we show the behavior of var-
ious broadening mechanisms as a function of frequency. Determine the dependence
of fractional linewidth on frequency for the most realistic relation, by Brocklehurst
and Seaton, given in Eq. (14.57). For Ne = 103 cm−3 and Te = 104 K, TD = 2×104 K,
this is Δνcoll/ΔνD = 2.25× 10−17 n7.4. Find the limit of detectability for this line-
broadening mechanism if the separation between α transitions is equal to twice the
line broadening.
(b) The first reliable detection of a radio recombination line was made with a spec-
trometer which covered a total bandwidth of 2 MHz, at a center frequency of 5 GHz.
The Doppler width was 26 km s−1. If the line broadening followed the curve marked
“Kardashev”, could a line be detected?
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Fig. 14.5 A graph of fractional linewidths predicted by various broadening models, versus fre-
quency. The electron density, Ne, is 103 cm−3, the electron temperature, Te, is 104 K (see Prob-
lem 11)

Fig. 14.6 A plot of the LTE electron temperatures, T∗
e , obtained from measurements of the H 76α

line and source continuum, plotted versus distance from the galactic center. The different symbols
refer to H II regimes with different excitation parameters, U (Table 13.1). The data show a gradient
in T∗

e which is believed to represent a gradient in the relative abundance of “metals”, mainly C, N
and O (Wink et al. 1983)



384 14 Recombination Lines

12. A simple model for line broadening is to use the Bohr radius of the atom, an, as
the characteristic size, and to then set this geometric cross section, σ , times the prod-
uct of velocity, v, and free electron density, Ne, to determine the collision rate. By
setting this equal to the spontaneous decay rate, one can obtain the critical density,
N∗. Evaluate the expression for the Bohr radius (Eq. 14.16), an = (h2/Z2 me2)n2, to
obtain a numerical result, 0.529×10−8 n2/Z2 cm, where n is the principal quantum
number and Z is the nuclear charge. Now use this to estimate σ = πa2

n. To obtain the
critical density, set An+1,n = 5.36×109n−5 s−1, the spontaneous decay rate (this is
obtained in the next problem) equal to 〈N∗σV 〉. Compare this result to Fig. 14.5 and
(Eq. 14.57). What must be the coefficient of the relation derived in this problem to
obtain agreement? This adjustment is identified with the fact that for large principal
quantum numbers the disturbance in the upper and lower levels is very similar so
that the effect on the linewidth is considerably reduced.

13. Repeat the derivation given in Eq. (14.22, 14.23, 14.24, 14.25, 14.26, 14.27,
14.28, 14.29) for the recombination of the remaining electron of singly ionized he-
lium. This electron will experience the field of the doubly ionized nucleus.
(a) Estimate the line frequencies
(b) For measurements of recombination lines of He+ and He at nearly the same fre-
quency, which line is more intense? For this, one must calculate the dipole moment
and A coefficient. The dipole moment as obtained from the correspondence princi-
ple is μn+1,n = (1/2)ean, where an is the Bohr radius for principal quantum number
n (cf. (Eq. 12.24)). Refer to the previous problem to obtain an for an atom with nu-
clear charge Z. Use the expression for the dipole moment given above, then use this
to show that the A coefficient for high nα lines is An+1,n = 5.36×109 n−5 Z2 s−1.

14. Use (Eq. 14.30), with τL � 1 but τc � 1 to investigate how TL is affected by a
finite continuum optical depth. Suppose you are unaware of the effect of the con-
tinuum optical depth; show that the value of TL is reduced. Use the fact that TL is
proportional to 1/Te to show that the value of Te obtained from the measurement of
TL and Tc will be larger than the value one would obtain if τc is small.

15. The level populations of hydrogen atoms in an HII region deviate from LTE.
We use a specific set of parameters to estimate the size of these quantities. From the
Boltzmann relation for T = 104 K, we find that

N(LTE,101)/N(LTE,100) = 1.00975 .

Use the ratio of the bn factors, b101/b100 = 1.0011 for Ne = 103 cm−3 and Te =
104 K (from Brocklehurst 1970), to determine the excitation temperature between
the n = 100 and n = 101 energy levels. Is Tex greater or less than zero? Determine
the ratio of bn factors for n = 100 and 101 which allows superthermal populations
(Tex > Tk > 0) by setting Te = ∞.

16. For the n = 40 and 41 levels, for Ne = 103 cm−3 and Te = 104 K and hν/k =
4.94 K, the ratio of b41/b40 = 1.005. Determine the excitation temperature between
these levels.
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17. For Ne = 103 cm−3 and Te = 104 K, for the principal quantum number, n =
100, the departure coefficient is b = 0.9692 and (dlnb100/dn)Δn = 1.368× 10−3.
Determine β using (Eq. 14.40). Then calculate TL/T ∗

L using (Eq. 14.52).

18. From the previous problems, as well as an examination of Fig. 14.4, show that
the level populations approach LTE with increasing Ne, and also increasing principal
quantum number n. Given the HII region parameters in Problem 19 below, will non-
LTE effects be larger at smaller values of n?

19. Assume that the carbon 166 α recombination lines, at ν = 1.425 GHz, are emit-
ted from an isolated region, i.e. without a background source. The parameters of this
region are NC = Ne = 1 cm−3, L = 0.4 pc and Te = 100 K. Using the LTE relation,
what is Tline and Tcontinuum if Δν = 4.7kHz = 1 km s−1? Now use the appropriate
non-LTE coefficients, bn = 0.75, β =−7, and repeat the calculation (Use equations
referenced in Problem 17).

20. Modify (Eq. 14.44), with the source function, S � I, to show that I = I0 eκνβbL.
This is the situation in which there is an intense background source with TBG � Te.
Then repeat Problem 19 for TBG = 2500 K.

21. There are a few neutral clouds along the line of sight to the supernova rem-
nant Cassiopeia A. Assume that these are the only relevant carbon recombination
line sources. These clouds are known to have H2 densities of ∼ 4×103 cm−3, col-
umn densities of ∼ 4× 1021 cm−2, diameters of 0.3 pc. If we assume that all of
the carbon is ionized, we have C+/H = 3× 10−4. At wavelengths of more than a
few meters, the carbon lines are in absorption. Assume that the line formation is
hydrogen-like. For the C166α line, we estimate that the peak line temperature is
3 K, and the Doppler FWHP is ΔV1/2 = 3.5 km s−1(see Kantharia et al. (1998) for
a model and references).
(a) Show that for n > 300 collisions dominate radiative decay, so that the popula-
tions are thermalized, but that the populations are dominated by radiative decay for
n < 150.
(b) An observer claims that “Since the C166α line is in emission, the excitation
temperature must be larger than the background temperature, or negative.” Do you
agree or disagree? Cite equations to justify your decision.
(c) If hν � kT and LTE conditions hold, show that a reformulation of (Eq. 14.28)
gives the relation between column density and line intensity

TL =
576

T 3/2
e

EM
ν0ΔV1/2

,

where ΔV1/2 is in km s−1, ν0 in GHz, EM in cm−6 pc and all temperatures in Kelvin.
(d) Estimate the maximum brightness temperature of Cas A at 1.425 GHz. Assum-
ing that the level populations are not inverted, the excitation temperature, Tex, of
the C166α transition is >0. Given the background continuum temperature of Cas-
siopeia A, estimate a lower limit for Tex from the continuum brightness temperature
of Cassiopeia A. Next, use the cloud parameters in part (a) to determine the emis-
sion measure of C+. Finally, make use of the expression in part (c) to determine the
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integrated C166α line intensity. From a comparison with the observed result, is it
more reasonable to assume that Tex > 0 or that population inversion is more likely?
In this case, population inversion will give rise to line masering effects.

22. The LTE version of the Saha equation is (Eq. 14.24). Assume that Ne = Np.
(a) Evaluate the constants in this relation.
(b) For hydrogen, for T = 5000 K, 104 K and 2×104 K, determine the ratio of pop-
ulations in the n = 1 and n = 100 states with respect to the number of ions (i.e. the
left hand side of the relation). From these results can you explain why the Orion
nebula is fully ionized given that the temperature of the gas is 8000 K?



Chapter 15
Overview of Molecular Basics

We begin with a summary of the basic facts of molecular line physics. In the next
chapter we will present an overview of molecular line astronomy. For more com-
plete accounts of molecular structure relevant to the microwave region, consult the
extensive treatments by Herzberg and Herzberg (1960), Bingel (1969), Townes and
Schawlow (1975), Gordy and Cook (1970), Flygare (1978) and Kroto (1992). The
texts by Gordy and Cook (1970) and Kroto (1992) have the most modern notation,
the text by Flygare (1978) treats more topics, the introduction in Kroto has appli-
cations to astronomy, but the presentation by Townes and Schawlow (1975) is the
standard. In the following presentation, we start with simpler species, extend this
treatment to include vibrational states, and then include symmetric and asymmetric
top molecules. In the Section on symmetric top molecules, we include nuclear spin.
As examples, we treat molecules that are widespread in the Interstellar Medium
(ISM). For linear molecules, examples are carbon monoxide, CO, SiO, N2H+; for
symmetric top molecules, these are ammonia, NH3, CH3CN and CH3CCH and for
asymmetric top molecules these are water vapor, H2O, formaldehyde, H2CO and
H2D+. Finally we have a short secton on molecules with non-zero electronic an-
gular momentum in the ground state, using OH as an example, and then present an
account of methanol, CH3OH which has hindered motion. In each section, we relate
the molecular properties to a determination of column densities and local densities.

15.1 Basic Concepts

Compared to atoms, molecules have a complicated structure and the Schrödinger
equation of the system will be correspondingly complex, involving positions and
moments of all constituents, both the nuclei and the electrons. All particles, how-
ever, are confined to a volume with the diameter of a typical molecule diameter a,
and therefore each particle will possess an average momentum h̄/a due to the uncer-
tainty principle Δ pΔq ≥ h̄. The kinetic energy will then have states with a typical
spacing ΔE ∼= Δ p2/2m ∼= h̄2/2ma2. For electrons these energies are about an eV,
corresponding to a temperature of 104 Kelvins; for rotational energies of the nuclei
they are in the milli eV (10 K) range.

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 387
DOI 10.1007/978-3-540-85122-6 15, c© Springer-Verlag Berlin Heidelberg 2009
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In the Schrödinger equation of a molecule, therefore, those parts of the Hamil-
tonian operator that describe the kinetic energy of the nuclei can be neglected
compared to the kinetic energy of the electrons. The nuclei enter into the Coulomb
potential only through their position and therefore these positions enter as param-
eters into the solution. Because the motion of the nuclei is so slow, the electrons
make many cycles while the nuclei move to their new positions. This separation
of the nuclear and electronic motion in molecular quantum mechanics is called the
Born-Oppenheimer approximation.

Transitions in a molecule can therefore be put into three different categories ac-
cording to different energies, W :

a) electronic transitions with typical energies of a few eV – that is lines in the visual
or UV regions of the spectrum;

b) vibrational transitions caused by oscillations of the relative positions of nuclei
with respect to their equilibrium positions. Typical energies are 0.1− 0.01 eV,
corresponding to lines in the infrared region of the spectrum;

c) rotational transitions caused by the rotation of the nuclei with typical energies of
∼= 10−3 eV corresponding to lines in the cm and mm wavelength range.

W tot = W el +W vib +W rot . (15.1)

W vib and W rot are the vibrational and rotational energies of the nuclei of the
molecule and W el is the energy of the electrons. Under this assumption, the Hamil-
tonian is a sum of W el +W vib +W rot. From quantum mechanics, the resulting wave-
function will be a product of the electronic, vibrational and rotational wavefunctions.

In general, molecular line radiation arises from a transition between two states
described by different electronic, vibrational and rotational quantum numbers. If
transitions involve different electronic states, the corresponding spectral lines will
lie in the optical range. If we confine ourselves to the centimeter/millimeter/sub-mm
wavelength ranges, only transitions between different rotational levels and perhaps
different vibrational levels (e.g., rotational transitions of SiO or HC3N from vibra-
tionally excited states) will be involved. This restriction results in a much simpler
description of the molecular energy levels. Occasionally differences between geo-
metrical arrangements of the nuclei result in a doubling of the energy levels. An
example of such a case is the inversion doubling found for the Ammonia molecule.

The position of the nuclei of a molecule in equilibrium can usually be approx-
imated by some average distance r between the nuclei and the potential energy is
then specified as P(r) (Fig. 15.1). If re is the equilibrium value, then

De = P(∞)−P(re) (15.2)

is the dissociation energy of the molecule. This is a unique value if we neglect, for
the time being, that in a molecule consisting of more than 2 nuclei, De might depend
on which of the nuclei would increase its distance r.
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Fig. 15.1 The solid line
shows the potential curve
P(r) of a binary molecule.
The dashed line shows a
harmonic approximation.
The quantities re and De are
explained in the text

For diatomic molecules the potential curve P(r) is well represented by the Morse
potential:

P(r) = De [1− exp[−a(r− re)]]
2 (15.3)

where De is the value of the potential energy at large distances (in the equilibrium, or
zero vibration state), and re is the corresponding minimum point of potential energy.
Often the even simpler harmonic approximation

P(r) =
k
2

(r− re)2 = a2De (r− re)2 (15.4)

is sufficient.

15.2 Rotational Spectra of Diatomic Molecules

Because the effective radius of even a simple molecule is about 105 times the radius
of the nucleus of an atom, the moment of inertia Θe of such a molecule is at least
1010 times that of an atom of the same mass. The kinetic energy of rotation is

Hrot = 1
2Θeω2 = J2/2Θe , (15.5)

where J is the angular momentum. J is a quantity that cannot be neglected compared
with the other internal energy states of the molecule, especially if the observations
are made in the centimeter/millimeter/sub-mm wavelength ranges. (Note that J is
not the same as the quantum number used in atomic physics.)

For a rigid molecule consisting of two nuclei A and B, the moment of inertia is

Θe = mA r2
A +mB r2

B = mr2
e (15.6)

where

re = rA − rB (15.7)
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and

m =
mA mB

mA +mB
, (15.8)

and

J = Θeωωω (15.9)

is the angular momentum perpendicular to the line connecting the two nuclei. For
molecules consisting of three or more nuclei, similar, more complicated expressions
can be obtained. Θe will depend on the relative orientation of the nuclei and will
in general be a (three-axial) ellipsoid. In (15.9) values of Θe appropriate for the
direction of ωωω will then have to be used.

This solution of the Schrödinger equation then results in the eigenvalues for the
rotational energy

Erot = W (J) =
h̄2

2Θe
J(J +1) , (15.10)

where J is the quantum number of angular momentum, which has integer values

J = 0,1,2, . . . .

Equation (15.10) is correct only for a molecule that is completely rigid; for a
slightly elastic molecule, re will increase with the rotational energy due to centrifu-
gal stretching. (There is also the additional complication that even in the ground
vibrational state there is still a zero point vibration; this will be discussed after the
concept of centrifugal stretching is presented.) For centrifugal stretching, the rota-
tional energy is modified to first order as:

Erot = W (J) =
h̄2

2Θe
J(J +1)−hD [J(J +1)]2 . (15.11)

Introducing the rotational constant

Be =
h̄

4πΘe
(15.12)

and the constant for centrifugal stretching D, the pure rotation spectrum for electric
dipole transitions ΔJ = +1 (emission) or ΔJ = −1 (absorption) is given by the
following expression:

ν(J) =
1
h

[W (J +1)−W (J)] = 2Be (J +1)−4D(J +1)3 . (15.13)

Since D is positive, the observed line frequencies will be lower than those pre-
dicted on the basis of a perfectly rigid rotator. Typically, the size of D is about 10−5

of the magnitude of Be for most molecules. In Fig. 15.2, we show a parameterized
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Fig. 15.2 A schematic plot of
rotational energy levels for a
molecular rotator. The hori-
zontal bars in the upper part
represent the rotational en-
ergy levels for a rigid rotator
(right part) and one deformed
by centrifugal stretching with
D/Be = 10−3 (left part). In
fact, most molecules have
D/Be ≈ 10−5. The resulting
line frequencies, ν , are shown
in the lower part. The num-
bers next to ν refer to the J
values

plot of the behavior of energy above ground and line frequency of a rigid rotor with
and without the centrifugal distortion term. The function plotted vertically on the
left, Erot/Be, is proportional to the energy above the molecular ground state. This
function is given by

Erot/Be = 2π h̄ J(J +1)−2π h̄D/Be [J(J +1)]2 (15.14)

while those on the right are given by the first term of (15.14) only. Directly below
the energy level plots is a plot of the line frequencies for a number of transitions
with quantum number J. The deviation between rigid rotor and actual frequencies
becomes rapidly larger with increasing J, and in the sense that the actual frequen-
cies are always lower than the frequencies predicted on the basis of a rigid rotor
model. In Fig. 15.3 we show plots of the energies above ground state for a number
of diatomic and triatomic linear molecules. As mentioned previously, because of
zero-point vibrations, actual measurements give the value B0, not Be. In the molec-
ular vibrational ground state, these are related by B0 = Be −αe, where the value of
αe is less than 1% of the value of Be; see the discussions in Townes and Schawlow
or Kroto for details.

Allowed dipole radiative transitions will occur between different rotational states
only if the molecule possesses a permanent electric dipole moment; that is, the
molecule must be polar. Homonuclear diatomic molecules like H2, N2 or O2 do
not possess a permanent electric dipole moment. Thus they cannot undergo allowed
transitions. This is one reason why it was so difficult to detect these species. In
the interstellar medium, the H+

3 molecule has been identified on the basis of vibra-
tional transitions in the near-infrared and the deuterium isotoomer, H2D+, has been
detected on the basis of mm/sub-mm transitions.

For molecules with permanent dipole moments, a classical picture of molecular
line radiation can be used to determine the angular distribution of the radiation. In
the plane of rotation, the dipole moment can be viewed as an antenna, oscillating as
the molecule rotates. Classically, the acceleration of positive and negative charges
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Fig. 15.3 Rotational energy
levels of the vibrational
ground states of some linear
molecules which are
commonly found in the
interstellar medium (ISM). To
convert the vertical scale
from GHz to Kelvins,
multiply by 4.8×10−2

gives rise to radiation whose frequency is that of the rotation frequency. For a dipole
transition the most intense radiation occurs in the plane of rotation of the molecule.
In the quantum mechanical model, the angular momentum is quantized, so that the
radiation is emitted at discrete frequencies. Dipole radiative transitions occur with
a change in the angular momentum quantum number of one unit, that is, ΔJ = ±1.
The parity of the initial and final states must be opposite for dipole radiation to
occur.

15.2.1 Hyperfine Structure in Linear Molecules

The magnetic dipole or electric quadrupole of nuclei interact with electrons or other
nuclei. These give rise to hyperfine structure. For example, the 14N and Deuterium
nuclei have spin I = 1 and thus a nonzero quadrupole moment. This gives rise to
quadrupole splitting in molecules such as HCN, HNC and HC3N. For nuclei with
electric quadrupole moments, such as 14N, the hyperfine splitting of energy levels
depends on the position of the nucleus in the molecule. The effect is smaller for
HNC than for HCN. In general, the effect is of order of a few MHz, and decreases
with increasing J. For nuclei with magnetic dipole moments, such as 13C or 17O, the
hyperfine splitting is smaller. In the case of hyperfine structure, the total quantum
number F = J + I is conserved. Allowed transitions obey the selection rule ΔF =
±1,0 but not ΔF = 0

→←0.
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Fig. 15.4 Vibrational energy
levels, eigenstates (- - -) and
probability densities (–) for a
harmonic oscillator

W(v) P(r)
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15.3 Vibrational Transitions

If any of the nuclei of a molecule suffers a displacement from its equilibrium dis-
tance re, it will on release perform an oscillation about re. The Schrödinger equation
for this is (

p2

2m
+P(r)

)
ψvib(x) = W vibψvib(x) , (15.15)

where x = r − re and P(r) is the potential function given in (15.3). If (15.4) can
be used, we have the simple harmonic approximation (Fig. 15.4) with the classical
oscillation frequency

ω = 2πν =

√
k
m

= a

√
2De

m
, (15.16)

and (15.15) has the eigenvalue

W vib = W (v) = h̄ω (v+ 1
2 ) (15.17)

with

v = 0,1,2, . . . . (15.18)

The solutions ψvib(x) can be expressed with the help of Hermite polynomials.
For the same rotational quantum numbers, lines arising from transitions in different
vibrational states, in a harmonic potential, are separated by a constant frequency
interval.
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For large x, the precision of relation (15.4) is no longer sufficient and the Morse
potential (15.3), or even an empirical expression, will have to be introduced into
(15.15). The resulting differential equation can no longer be solved analytically, so
numerical methods have to be used. Often it is sufficient to introduce anharmonic
factors xe,ye into the solution corresponding to (15.17), viz.

W (v) = h̄ω (v+ 1
2 )+ xe h̄ω (v+ 1

2 )2 + ye h̄ω (v+ 1
2 )3 + . . . . (15.19)

Usually xe and ye are small numbers which can be determined either empirically
or by a fit to a numerical solution of (15.15). For example, for the H2 molecule in
the ground state we have xe = −2.6×10−2 and ye = 6.6×10−5. The negative sign
of x results in a decrease of the step size of the harmonic energy ladder.

A molecule consisting of only two nuclei can vibrate only in one direction; it
has only one vibrational mode. The situation is more complex for molecules with
three or more nuclei. In this case, a multitude of various vibrational modes may
exist, each of which will result in its own ladder of vibrational states, some of which
may be degenerate. For a certain molecular vibrational state, there are many internal
rotational states. Vibrational motions along the molecular axis can be and usually
are hindered in the sense that these are subject to centrifugal forces, and thus must
overcome an additional barrier.

It is possible to have rotational transitions between energy levels in a vibra-
tionally excited state. An example is the J = 1− 0 rotational transition of the SiO
molecule from the v = 0,1 and 2 levels. The dipole moment in a vibrational state
is usually the same as in the ground state. The dipole moment for a purely vibra-
tional transition in the case of diatomic molecules is usually about 0.1 Debye. A
more complex example is the polyatomic linear molecule HC3N, for which a num-
ber of transitions have been measured in the ISM (see Lafferty and Lovas (1978)
for details of molecular structure and Lovas (1992) for references to astronomical
measurements).

15.4 Line Intensities of Linear Molecules

In this section, we will give the details needed to relate the observed line intensities
to column densities of the species emitting the transition. In the Born-Oppenheimer
approximation, the total energy can be written as a sum of the electronic, vibrational
and rotational energies in (15.1). In the line spectrum of a molecule, transitions
between electronic, vibrational and rotational states are possible. We will restrict
the discussion to rotational transitions, and in a few cases to vibrational transitions.

Computations of molecular line intensities proceed following the principles out-
lined in Chap. 12. The radial part of molecular wavefunctions is extremely complex.
For any molecular or atomic system, the spontaneous transition probability, in s−1,
for a transition between an upper, u, and lower, l, level is given by the Einstein A
coefficient Aul . In the CGS system of units, Aul is given by
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Aul =
64π4

3hc3 ν
3 |μul |2 . (15.20)

After inserting numerical constants into the above relation, we have:

Aul = 1.165×10−11 ν3|μul |2 . (15.21)

The units of the line frequency ν are GHz, and the units of μ are Debyes (i.e.,
1 Debye = 10−18 e.s.u.) Eq. 15.21 is a completely general relation for any transi-
tion. The expression |μ |2 contains a term which depends on the integral over the
angular part of the wavefunctions of the final and initial states; the radial part of
the wavefunctions is contained in the value of the dipole moment, μ (This is usu-
ally determined from laboratory measurements). For dipole transitions between two
rotational levels of a linear molecule, J

→←J + 1, there can be either absorption or
emission. For the case of absorption, for a dipole moment |μul |2 = |μJ|2, we have:

|μJ |2 = μ2 J +1
2J +1

for J → J +1 (15.22)

while for emission, the expression is given by:

|μJ |2 = μ2 J +1
2J +3

for J +1 → J (15.23)

where νr is the spectral line frequency. Here, μ is the permanent electric dipole
moment of the molecule. For a number of species μ is tabulated in Townes and
Schawlow. In Table 16.2, we give a collection of Einstein A coefficients for some
molecules of astrophysical significance, together with some other essential data.

After inserting (15.23) into (15.21) we obtain the expression for dipole emission
between two levels of a linear molecule:

AJ = 1.165×10−11 μ2 ν3 J +1
2J +3

for J +1 → J (15.24)

where A is in units of s−1, μJ is in Debyes (i.e. 1018 times e.s.u. values), and ν is
in GHz. This expression is valid for a dipole transition in a linear molecule, from a
level J +1 to J.

Inserting the expression for A in (12.17), the general relation between line optical
depth, column density in a level l and excitation temperature, Tex, is:

Nl = 93.5
gl ν3

gu Aul

1
[1− exp(−4.80×10−2ν/Tex)]

∫
τ dv (15.25)

where the units for ν are GHz and the linewidths are in km s−1. n is the local density
in units of cm−3, and N = nl is the column density, in cm−2.
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Although this expression appears simple, this is deceptive, since there is a de-
pendence on Tex. The excitation process may cause Tex to take on a wide range of
values. If Tex/ν � 4.80×10−2 K, the expression becomes:

Nl = 1.94×103 gl ν2 Tex

gu Aul

∫
τ dv . (15.26)

Values for Tex are difficult to obtain in the general case. Looking ahead a bit,
for the J = 1 → 0 and J = 2 → 1 transitions, CO molecules are found to be almost
always close to LTE, so it is possible to obtain estimates of TK from (15.30). This
result could be used in (15.26) if the transition is close to LTE. Expression (15.26)
can be simplified even further if τ� 1. Then, if the source fills the main beam (this
is the usual assumption) the following relation holds:

Tex τ ∼= TMB (15.27)

where the term TMB represents the main beam brightness temperature. In the gen-
eral case, we will use TB, which depends on source size. For a discussion, see
Sects. 8.2.4, 8.2.5, and 12.4.1. Inserting this in (15.26), we have:

Nl = 1.94×103 gl ν2

gu Aul

∫
TB dv . (15.28)

In this relation, Tex appears nowhere. Thus, for an optically thin emission line, ex-
citation plays no role in determining the column density in the energy levels giving
rise to the transition. The units are as before; the column density, Nl , is an average
over the telescope beam.

15.4.1 Total Column Densities of CO Under LTE Conditions

We apply the concepts developed in the last section to carbon monoxide, a sim-
ple molecule that is abundant in the ISM. Microwave radiation from this molecule
is rather easily detectable because CO has a permanent dipole moment of μ =
0.112 Debye. CO is a diatomic molecule with a simple ladder of rotational levels
spaced such that the lowest transitions are in the millimeter wavelength region. A
first approximation of the abundance of the CO molecules can be obtained by a very
standard LTE analysis of the CO line radiation; this is also fairly realistic since the
excitation of low rotational transitions is usually close to LTE. Stable isotopes exist
for both C and O and several isotopic species of CO have been measured in the inter-
stellar medium; among these are 13C16O, 12C18O, 12C17O, 13C16O and 13C18O. The
temperature scales used in mm-wave radio astronomy have been treated in Sects. 8.2
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and 13.4.1. For the distribution of CO, we adopt the simplest geometry, that is, an
isothermal slab which is much larger than the telescope beam. Then the solution
(1.37) may be used. If we recall that a baseline is usually subtracted from the mea-
sured line profile, and that the 2.7 K microwave background radiation is present
everywhere, the appropriate formula is

TB(ν) = T0

(
1

eT0/Tex −1
− 1

eT0/2.7 −1

)
(1− e−τν ) , (15.29)

where T0 = hν/k. On the right side of (15.29) there are two unknown quantities: the
excitation temperature of the line, Tex, and the optical depth, τν . If τν is known it is
possible to solve for the column density NCO as in the case of the line λ = 21 cm
of H I. But in the case of CO we meet the difficulty that lines of the most abundant
isotope 12C 16O always seem to be optically thick. It is therefore not possible to
derive information about the CO column density from this line without a model for
the molecular clouds. Here we give an analysis based on the measurement of weaker
isotope lines of CO. This procedure can be applied if the following assumptions are
valid.

• All molecules along the line of sight possess a uniform excitation temperature in
the J = 1 → 0 transition.

• The different isotopic species have the same excitation temperatures. Usually the
excitation temperature is taken to be the kinetic temperature of the gas, TK.

• The optical depth in the 12C 16O J = 1 → 0 line is large compared to unity.
• The optical depth in a rarer isotopomer transition, such as the 13C 16O J = 1 → 0

line is small compared to unity.
• The 13CO and CO lines are emitted from the same volume.

Given these assumptions, we have Tex = TK = T , where TK is the kinetic tempera-
ture, which is the only parameter in the Maxwell-Boltzmann relation for the cloud
in question. In the remainder of this section and in the following section we will
use the expression T , since all temperatures are assumed to be equal. This is cer-
tainly not true in general. Usually, the molecular energy level populations are often
characterized by at least one other temperature, Tex.

In general, the lines of 12C 16O are optically thick. Then, in the absence of back-
ground continuum sources, the excitation temperature can be determined from the
appropriate T 12

B of the optically thick J = 1−0 line of 12C 16O at 115.271 GHz:

T = 5.5

/
ln

(
1+

5.5

T 12
B +0.82

)
. (15.30)

The optical depth of the 13C 16O line at 110.201 GHz is obtained by solving
(15.29) for
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τ13
0 = − ln

⎡
⎣1− T 13

B

5.3

{[
exp

(
5.3
T

)
−1

]−1

−0.16

}−1
⎤
⎦ . (15.31)

Usually the total column density is the quantity of interest. To obtain this for CO,
one must sum over all energy levels of the molecule. This can be carried out for the
LTE case in a simple way. For non–LTE conditions, the calculation is considerably
more complicated. We discuss some cases in the next Chapter. In this section, we
concentrate on the case of CO populations in LTE.

For CO, there is no statistical weight factor due to spin degeneracy. In a level
J, the degeneracy is 2J + 1. Then the fraction of the total population in a particular
state, J, is given by:

N(J)/N(total) =
(2J +1)

Z
exp

[
−hBeJ(J +1)

kT

]
. (15.32)

Z is the sum over all states, or the Partition function. If vibrationally excited states
are not populated, Z can be expressed as:

Z =
∞

∑
J=0

(2J +1) exp

[
−hBe J(J +1)

k T

]
. (15.33)

The total population, N(total) is given by the measured column density for a
specific level, N(J), divided by the calculated fraction of the total population in this
level:

N(total) = N(J)
Z

(2J +1)
exp

[
hBe J(J +1)

k T

]
. (15.34)

This fraction is based on the assumption that all energy levels are populated under
LTE conditions. For a temperature, T , the population will increase as 2J + 1, until
the energy above the ground state becomes large compared to T . Then the negative
exponential becomes the significant factor and the population will quickly decrease.
If the temperature is large compared to the separation of energy levels, the sum can
be approximated by an integral,

Z ≈ k T
hBe

for hBe � kT . (15.35)

Here Be is the rotation constant (15.12), and the molecular population is assumed
to be characterized by a single temperature, T , so that the Boltzmann distribution
can be applied. Applying (15.34) to the J = 0 level, we can obtain the total column
density of 13CO from a measurement of the J = 1 → 0 line of CO and 13CO, using
the partition function of CO, from (15.35), and (15.25):
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N(total)13
CO = 3.0×1014

T
∫
τ13(v)dv

1− exp{−5.3/T} . (15.36)

It is often the case that in dense molecular clouds 13CO is optically thick. Then
we should make use of an even rarer substitution, C18O. For the J = 1 → 0 line of
this substitution, the expression is exactly the same as (15.36). For the J = 2 → 1
line, we obtain a similar expression, using (15.34):

N(total)13
CO = 1.5×1014

T exp{5.3/T}
∫
τ13(v)dv

1− exp{−10.6/T} . (15.37)

In both (15.36) and (15.37), the beam averaged column density of carbon monox-
ide is in units of cm−2 the line temperatures are in Kelvin, main beam brightness
temperature and the velocities, v, are in km s−1. If the value of T � 10.6 or 5.3 K,
the exponentials can be expanded to first order and then these relations are consid-
erably simplified.

Furthermore, in the limit of optically thin lines, integrals involving τ(v) are equal
to the integrated line intensity

∫
TMB(v)dv, as mentioned before. However, there

will be a dependence on Tex in these relations because of the Partition function. The
relation T τ(v) = TMB(v) is only approximately true. However, optical depth effects
can be eliminated to some extent by using the approximation

T

∞∫
−∞

τ(v)dv ∼= τ0

1− e−τ0

∞∫
−∞

TMB(v)dv . (15.38)

This formula is accurate to 15% for τ0 < 2, and it always overestimates N when
τ0 > 1. The formulas (15.30), (15.31), (15.36) and (15.37) permit an evaluation of
the column density N13

CO only under the assumption of LTE.

15.4.1.1 Astronomical Considerations

CO is by far the most widespread molecule with easily measured transitions. How-
ever, even though the excitation of CO is close to LTE and the chemistry is thought
to be well understood, there are limits to the accuracy with which one can measure
the CO column densities, set by excitation and interstellar chemistry. Even if all
of the concepts presented in this section are valid, there can be uncertainties in the
calculation of the column densities of CO. These arise from several sources which
can be grouped under the general heading non-LTE effects. Perhaps most impor-
tant is the uncertainty in the excitation temperature. While the 12CO emission might
be thermalized even at densities < 100 cm−3, the less abundant isotopes may be
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sub-thermally excited, i.e., populations characterized by Tex < TK. (This will be dis-
cussed in conjunction with the large velocity gradient (LVG) approximation in the
next Chapter). Alternatively, if the cloud in question has no small scale structure,
13CO emission will arise primarily from the cloud interior, which may be either
hotter or cooler than the surface; the optically thick 12CO emission may only reflect
conditions in the cloud surface. Another effect is that, although Tex may describe
the population of the J = 0 and J = 1 states well, it may not for J > 1. That is, the
higher rotational levels might not be thermalized because their larger Einstein A co-
efficients lead to a faster depopulation. This lack of information about the population
of the upper states leads to an uncertainty in the partition function. Measurements
of other transitions and use of a large velocity gradient model will allow better ac-
curacy. For most cloud models, LTE gives overestimates of the true 13CO column
densities by factors from 1 to 4 depending on the properties of the model and of the
position in the cloud. Thus a factor of ∼ two uncertainties should be expected when
using LTE models.

As is well established, CO is dissociated by line radiation. Since the optical depth
of CO is large, this isotopomer will be self-shielded. If there is no fine spatial struc-
ture, selective dissociation will cause the extent of 12CO to be greater than that of
13CO, which will be greater than the extent of C18O. This will cause some uncer-
tainty since the geometry of molecular clouds is complex. Finally, for H2 densities
> 106 cm−3, one might expect a freezing out onto grains for dense regions of small
size. For such regions, the thermal emission from dust gives an alternative method to
derive H2 abundances. In spite of all these uncertainties, one most often attempts to
relate measurements of the CO column density to that of H2; estimates made using
lines of CO (and isotopomers) are probably the best method to obtain the H2 column
density and mass of molecular clouds. This will be discussed further in Sect. 16.4.

For other linear molecules, such as HC3N, HC5N, etc., the expressions for the
dipole moments and the partition functions are similar to that for CO and the treat-
ment is similar to that given above. There is one very important difference however.
The simplicity in the treatment of the CO molecule arises because of the assumption
of LTE. This may not be the case for molecules such as HC3N or HC5N since these
species have dipole moments of order 3 Debye. Thus populations of high J levels
(which have faster spontaneous decay rates) may have populations lower than pre-
dicted by LTE calculations. Such populations are said to be subthermal, because the
excitation temperature characterizing the populations would be Tex < TK.

15.5 Symmetric Top Molecules

15.5.1 Energy Levels

The rotation of a rigid molecule with an arbitrary shape can be considered to be
the superposition of three free rotations about the three principal axes of the inertial
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ellipsoid. Depending on the symmetry of the molecule these principal axes can all
be different: in that case the molecule is an asymmetric top. If two principal axes are
equal, the molecule is a symmetric top. If all three principal axes are equal, it is a
spherical top. In order to compute the angular parts of the wavefunction, the proper
Hamiltonian operator must be solved in the Schrödinger equation and the stationary
state eigenvalues determined.

In general, for any rigid rotor asymmetric top molecule in a stable state, the
total momentum J will remain constant with respect to both its absolute value and
its direction. As is known from atomic physics, this means that both (J)2 and the
projection of J into an arbitrary but fixed direction, for example Jz, remain constant.
If the molecule is in addition symmetric, the projection of J on the axis of symmetry
will be constant also.

Let us first consider the symmetric top molecule. Suppose J is inclined with re-
spect to the axis of symmetry z. Then the figure axis z will precess around the di-
rection J forming a constant angle with it, and the molecule will simultaneously
rotate around the z axis with the constant angular momentum Jz. From the defini-
tion of a symmetric top,Θx =Θy. TakingΘx =Θy =Θ⊥ andΘz =Θ‖, we obtain a
Hamiltonian operator:

H =
J2

x + J2
y

2Θ⊥
+

J2
z

2Θ‖
=

J2

2Θ⊥
+ J2

z ·
(

1
2Θ‖

− 1
2Θ⊥

)
. (15.39)

Its eigenvalues are:

W (J,K) = J(J +1)
h̄2

2Θ⊥
+K2 h̄2

(
1

2Θ‖
− 1

2Θ⊥

)
(15.40)

where K2 is the eigenvalue from the operator J2
z and J2 = J2

x + J2
y + J2

z is the eigen-
value from the operator J2

x + J2
y + J2

z .
The analysis of linear molecules is a subset of that for symmetric molecules.

For linear molecules,Θ‖ → 0 so that 1/(2Θ‖) → ∞. Then finite energies in (15.40)
are possible only if K = 0. For these cases the energies are given by (15.10). For
symmetric top molecules each eigenvalue has a multiplicity of 2J +1.

J = 0,1,2, . . . K = 0,±1,±2, · · ·± J . (15.41)

From (15.40), the energy is independent of the sign of K, so levels with the same
J and absolute value of K coincide. Then levels with K > 0 are doubly degenerate.

It is usual to express
h̄

4πΘ⊥
as B, and

h̄
4πΘ‖

as C. The units of these rotational

constants, B and C are usually either MHz or GHz. Then (15.40) becomes

W (J,K)/h = BJ(J +1)+K2 (C−B) . (15.42)
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15.5.2 Spin Statistics

In the case of molecules containing identical nuclei, the exchange of such nuclei,
for example by the rotation about an axis, has a spectacular effect on the selection
rules. Usually there are no interactions between electron spin and rotational motion.
Then the total wavefunction is the product of the spin and rotational wavefunctions.
Under an interchange of fermions, the total wave function must be antisymmetric
(these identical nuclei could be protons or have an uneven number of nucleons).
The symmetry of the spin wavefunction of the molecule will depend on the relative
orientation of the spins. If the spin wavefunction is symmetric, this is the ortho-
modification of the molecule; if antisymmetric it is the para-modification. In ther-
mal equilibrium in the ISM, collisions with the exchange of identical particles will
change one modification into the other only very slowly, on time scales of > 106

years. This could occur much more quickly on grain surfaces, or with charged parti-
cles. If the exchange is slow, the ortho and para modifications of a particular species
behave like different molecules; a comparison of ortho and para populations might
give an estimate of temperatures in the distant past, perhaps at the time of molecular
formation.

For the H2 molecule, the symmetry of the rotational wavefunction depends on the
total angular momentum J as (−1)J . In the J = 0 state the rotational wavefunction
is symmetric. However, the total wavefunction must be antisymmetric since protons
are fermions. Thus, the J = 0,2,4, etc., rotational levels are para-H2, while the J =
1,3,5, etc., are ortho-H2. Spectral lines can connect only one modification. In the
case of H2, dipole rotational transitions are not allowed, but quadrupole rotational
transitions (ΔJ = ±2) are. Thus, the 28μm line of H2 connects the J = 2 and J = 0
levels of para-H2. Transitions between the ground and vibrational states are also
possible.

Finally, as a more complex example of the relation of identical nuclei, we con-
sider the case of three identical nuclei. This is the case for NH3, CH3CN and
CH3C2H. Exchanging two of the nuclei is equivalent to a rotation by 120o. An
exchange as was used for the case of two nuclei would not, in general, lead to a
suitable symmetry. Instead combinations of spin states must be used (see Townes
and Schawlow). These lead to the result that the ortho to para ratio is two to one if
the identical nuclei are protons. That is, NH3, CH3CN or CH3C2H the ortho form
has S(J,K) = 2, while the para form has S(J,K) = 1. In summary, the division of
molecules with identical nuclei into ortho and para species determines selection
rules for radiative transitions and also rules the for collisions.

15.5.3 Hyperfine Structure

For symmetric top molecules, the simplest hyperfine spectra is found for the inver-
sion doublet transitions of NH3. Since both the upper and lower levels have the same
quantum numbers (J,K), there will be 5 groups of hyperfine components separated
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Table 15.1 Intensities of satellite groups relative to the Main Component [after Mauersberger
(1983)]

(J,K) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (2,1)

Iinner 0.295 0.0651 0.0300 0.0174 0.0117 0.0081 0.0651
Iouter 0.238 0.0628 0.0296 0.0173 0.0114 0.0081 0.0628

by a few MHz. Because of interactions between the spins of H nuclei there will be
an additional splitting, within each group, of order a few kHz. In Table 15.1 we give
the relative intensities of the NH3 satellites for the case of low optical depth and
LTE. For a molecule such as OH, one of the electrons is unpaired. The interaction
of the nuclear magnetic moment with the magnetic moment of an unpaired electron
is described as magnetic hyperfine structure. This splits a specific line into a num-
ber of components. In the case of the OH molecule, this interaction gives rise to a
hyperfine splitting of the energy levels, in addition to the much larger Λ doubling.
Together with the Λ doublet splitting, this gives rise to a quartet of energy levels
in the OH ground state. Transitions between these energy levels produces the four
ground state lines of OH at 18 cm wavelength (see Fig. 15.9).

NH3 is an example of an oblate symmetric top molecule commonly found in the
ISM. A diagram of the lower energy levels of NH3 are shown in Fig. 15.5. A prolate
top molecule has a cigar-like shape. Then A replaces C, and A > B. The energy-level
diagrams for prolate symmetric top molecules found in the ISM, such as CH3CCH
and CH3CN, follow this rule. However, since these molecules are much heavier than
NH3, the rotational transitions give rise to lines in the millimeter wavelength range
(see Churchwell and Hollis (1983)).

Differences in the orientation of the nuclei can be of importance. If a reflec-
tion of all particles about the center of mass leads to a configuration which cannot
be obtained by a rotation of the molecule, these reflections represent two different
states. For NH3, we show this situation in the upper part of Fig. 15.5. Then there
are two separate, degenerate states which exist for each value of (J,K) for J ≥ 1.
(The K = 0 ladder is an exception because of the Pauli principle.) These states are
doubly degenerate as long as the potential barrier separating the two configurations
is infinitely high. However, in molecules such as NH3 the two configurations are
separated only by a small potential barrier. This gives rise to a measurable split-
ting of the degenerate energy levels, which is referred to as inversion doubling. For
NH3, transitions between these inversion doublet levels are caused by the quantum
mechanical tunneling of the nitrogen nucleus through the plane of the three pro-
tons. The wavefunctions of the two inversion doublet states have opposite parities,
so that dipole transitions are possible. Thus dipole transitions occur between states
with the same (J,K) quantum numbers. The splitting of the (J,K) levels for NH3

shown in Fig. 15.5 is exaggerated; the inversion transitions give rise to spectral lines
in the wavelength range near 1 cm. For CH3CCH or CH3CN, the splitting caused by
inversion doubling is very small since the barrier is much higher than for NH3.
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Fig. 15.5 The energy-level diagram of the vibrational ground state of NH3, a prolate symmetric
top molecule. Ortho-NH3 has K = 0,3,6,9, · · · , while para-NH3 has all other K values (see text).
Rotational transitions with ΔJ = 1,ΔK = 0, give rise to lines in the far IR. This molecule also has
transitions with ΔJ = 0,ΔK = 0 between inversion doublet levels. The interaction of the nuclear
spin of 14N with the electrons causes quadrupole hyperfine structure. In the ΔJ = 0,ΔK = 0 tran-
sitions, the line is split into 5 groups of components. A sketch of the structure of the groups of
hyperfine components of the (J,K) = (1,1) inversion doublet line is indicated in the lower right;
the separation is of order of MHz. In the upper right is a sketch of the molecule before and after
an inversion transition, which gives rise to a 1.3 cm photon [adapted from Wilson et al. (2006)]
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The direction of the dipole moment of symmetric top molecules is parallel to
the K axis. Spectral line radiation can be emitted only by a changing dipole mo-
ment. Since radiation will be emitted perpendicular to the direction of the dipole
moment, there can be no radiation along the symmetry axis. Thus the K quantum
number cannot change in dipole radiation, so allowed dipole transitions cannot con-
nect different K ladders. The different K ladders are connected by octopole radiative
transitions which require ΔK =±3. These are very slow, however, and collisions are
far more likely to cause an exchange of population between different K ladders. We
will discuss this in Sect. 15.6.3 in connection with the determination of TK using the
ratio of populations of different (J,K) states in symmetric top molecules.

15.5.4 Line Intensities and Column Densities

The extension of this analysis to symmetric top molecules is only slightly more
complex. The dipole moment for an allowed transition between energy level J+1,K
and J,K for a symmetric top such as CH3CN or CH3C2H is

|μJK |2 = μ2 (J +1)2 −K2

(J +1)(2J +3)
for (J +1,K) → (J,K) . (15.43)

For these transitions, J ≥ K always.
For NH3, the most commonly observed spectral lines are the inversion transitions

at 1.3 cm between levels (J,K) and (J,K). The dipole moment is

|μJK |2 = μ2 K2

J(J +1)
for ΔJ = 0, ΔK = 0 . (15.44)

When these relations are inserted in (15.21), the population of a specific level
can be calculated following (15.25). If we follow the analysis used for CO, we can
use the LTE assumption to obtain the entire population

N(total) = N(J,K)
Z

(2J +1)S(J,K)
exp

[
W (J,K)

k T

]
, (15.45)

where W is the energy of the level above the ground state, and the nuclear spin
statistics are accounted for through the factor S(J,K) for the energy level corre-
sponding to the transition measured. For symmetric top molecules, we have, using
the expression for the energy of the level in question (15.42),

N(total) =
Z N(J,K)

(2J +1)S(J,K)
exp

[
BJ(J +1)+(C−B)K2

k T

]
. (15.46)

For prolate tops, A replaces C in (15.46), and in (15.47, 15.48, 15.49, 15.50,
15.51). If we sum over all energy levels, we obtain N(total), the partition function,
Z in the following:
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Z =
∞

∑
J=0

K=J

∑
K=0

(2J +1)S(J,K) exp

[
−BJ(J +1)+(C−B)K2

k T

]
. (15.47)

If the temperature is large compared to the spacing between energy levels, one
can replace the sums by integrals, so that:

Z ≈
√
π(k T )3

h3 B2 C
. (15.48)

If we assume that hν � kT , use CGS units for the physical constants, and GHz
for the rotational constants A, B and C, the partition function, Z, becomes

Z ≈ 168.7

√
T 3

B2 C
. (15.49)

Substituting into (15.47), we have:

N(total) = N(J,K)
168.7

√
T 3

B2 C
(2J +1)S(J,K)

exp

[
W (J,K)

k T

]
. (15.50)

Here, N(J,K) can be calculated from (15.25) or (15.26), using the appropriate
expressions for the dipole moment, (15.44), in the Einstein A coefficient relation,
(15.21) and W is the energy of the level above the ground state. In the ISM, ammonia
inversions lines up to (J,K)=(18,18) have been detected (Wilson et al. 2006).

We now consider a situation in which the NH3 population is not thermalized. This
is typically the case for dark dust clouds. We must use some concepts presented in
the next few sections for this analysis. If n(H2) ∼ 104 cm−3, and the infrared field
intensity is small, a symmetric top molecule such as NH3 can have a number of
excitation temperatures. The excitation temperatures of the populations in doublet
levels are usually between 2.7 K and TK. The rotational temperature, Trot, which
describes populations for metastable levels (J = K) in different K ladders, is usually
close to TK. This is because radiative transitions between states with a different K
value are forbidden to first order. The excitation temperature which describes the
populations with different J values within a given K ladder will be close to 2.7 K,
since radiative decay with ΔK=0, ΔJ=1 is allowed. Then the non–metastable energy
levels, (J > K), are not populated. In this case, Z is simply given by the sum over
the populations of metastable levels:

Z(J = K)

=
∞

∑
J=0

(2J +1)S(J,K = J) exp

[
−BJ(J +1)+(C−B)J2

k T

]
. (15.51)
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For the NH3 molecule in dark dust clouds, where TK = 10 K and n(H2)=
104 cm−3, we can safely restrict the sum to the three lowest metastable levels:

Z(J = K) ≈ N(0,0)+N(1,1)+N(2,2)+N(3,3) . (15.52)

Substituting the values for NH3 metastable levels:

Z(J = K)

≈ N(1,1)
[

1
3

exp

(
23.1
k T

)
+1+

5
3

exp

(
−41.2

k T

)
+

14
3

exp

(
−99.4

k T

)]
. (15.53)

For NH3 we have given two extreme situations: in the first case, described by
(15.53), is a low-density cloud for which only the few lowest metastable levels are
populated. The second case is the LTE relation, given in (15.50). This represents a
cloud in which the populations of the molecule in question are thermalized. More
complex are those situations for which the populations of some of the levels are
thermalized, and others not. Methods needed to describe these situations will be
discussed in Sect. 16.2.3.

15.6 Asymmetric Top Molecules

15.6.1 Energy Levels

For an asymmetric top molecule there are no internal molecular axes with a time-
invariable component of angular momentum. So only the total angular momentum
is conserved and we have only J as a good quantum number. The moments of in-
ertia about each axis are different; the rotational constants are referred to as A,B
and C, with A > B > C. The prolate symmetric top (B = C) or oblate symmetric top
(B = A) molecules can be considered as the limiting cases. But neither the eigen-
states nor the eigenvalues are easily expressed in explicit form. Each of the levels
must be characterized by three quantum numbers. One choice is JKaKc , where J is
the total angular momentum, Ka is the component of J along the A axis and Kc is
the component along the C axis. If the molecule were a prolate symmetric top, J and
Ka would be good quantum numbers; if the molecule were an oblate symmetric top,
J and Kc would be good quantum numbers. Intermediate states are characterized
by a superposition of the prolate and oblate descriptions. In Fig. 15.7, we show the
energy level diagram for the lower levels of H2CO. H2CO is almost a prolate sym-
metric top molecule with the dipole moment along the A axis. Since radiation must
be emitted perpendicular to the direction of the dipole moment, for H2CO there can
be no radiation emitted along the A axis, so the quantum number Ka will not change
in radiative transitions.
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15.6.2 Spin Statistics and Selection Rules

The case of a planar molecule with two equivalent nuclei, such as H2CO, shows is
a striking illustration of these effects (see Fig. 15.7). The dipole moment lies along
the A axis. A rotation by 180o about this axis will change nothing in the molecule,
but will exchange the two protons. Since the protons are fermions, this exchange
must lead to an antisymmetric wavefunction. Then the symmetry of the spin wave
function and the wave function describing the rotation about the A axis must be
antisymmetric. The rotational symmetry is (−1)Ka . If the proton spins are parallel,
that is ortho-H2CO, then the wave function for Ka must be anti-symmetric, or Ka

must take on an odd value. If the proton spins are anti-parallel, for para-H2CO,
Ka must have an even value (Fig. 15.7). For ortho-H2CO, the parallel spin case,
there are three possible spin orientations. For para-H2CO, there is only one possible
orientation, so the ratio of ortho-to-para states is three. Such an effect is taken into
account in partition functions (15.33) by spin degeneracy factors, which are denoted
by the symbol S(J,K). For ortho-H2CO, S(J,K) = 3, for para-H2CO, S(J,K) = 1.
This concept will be applied in Sect. 15.6.3.

Allowed transitions can occur only between energy levels of either the ortho
or the para species. For example, the 6 cm H2CO line is emitted from the ortho-
modification only (see Fig. 15.7). Another example is the interstellar H2O maser line
at λ = 1.35 cm which arises from ortho-H2O (see Fig. 15.6). The H2O molecule is a
more complex case since the dipole moment is along the B axis. Then in a radiative
transition, both Ka and Kc must change between the initial and final state.

15.6.3 Line Intensities and Column Densitiess

For asymmetric molecules the moments of inertia for the three axes are all differ-
ent; there is no symmetry, so three quantum numbers are needed to define an en-
ergy level. The relation between energy above the ground state and quantum num-
bers is given in Appendix IV of Townes and Schawlow or in databases for specific
molecules (see figure captions for references). The relation for the dipole moment
of a specific transition is more complex; generalizing from (15.21), we have, for a
spontaneous transition from a higher state, denoted by u to a lower state, denoted
by l:

A = 1.165×10−11 ν3
x μ2

x
S (u; l)
2J′ +1

. (15.54)

This involves a dipole moment in a direction x. As before, the units of ν are GHz,
and the units of μ are Debyes (i.e., 1 Debye = 10−18 times the e.s.u. value). The
value of the quantum number J′ refers to the lower state. The expression for S (u; l),
the line strength is an indication of the complexity of the physics of asymmetric top
molecules. The expression S (u; l) is the angular part of the dipole moment between
the initial and final state. The dipole moment can have a direction which is not along
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Fig. 15.6 Energy level
diagrams for ortho- and
para-H2O. This is an
asymmetric top molecule,
with the dipole moment along
the B axis, that is, the axis
with an intermediate moment
of inertia. Because of the two
identical nuclei, the energy
level diagram is split into
ortho and para, that show
almost no interaction under
interstellar conditions. The
transitions marked by arrows
are masers [adapted from
Menten (1994)]. In the upper
part of the diagram is a sketch
of the structure of H2O. See
DeLucia et al. (1972) for
details, including line
strengths and selection rules

a single axis. In this case there are different values of the dipole moment along dif-
ferent molecular axes. In contrast, for symmetric top or linear molecules, there is a
dipole moment for rotational transitions. Methods to evaluate transition probabili-
ties for asymmetric molecules are discussed at length in Townes and Schawlow; a
table of S (u; l) in their Appendix V. We give references for S (u; l) in our figure
captions. From the expression for the Einstein A coefficient, the column density in a
given energy level can be related to the line intensity by (15.25). Following the pro-
cedures used for symmetric top molecules, we can use a relation similar to (15.47)
to sum over all levels, using the appropriate energy, W , of the level JKaKc above the
ground state and the factor S(JKaKc) for spin statistics:

N(total) = N(JKaKc)
Z

(2J +1)S(JKaKc)
exp

(
W
k T

)
. (15.55)

If the populations are in LTE, one can follow a process similar to that used to
obtain (15.49). Then we obtain the appropriate expression for the partition function:

Z = 168.7

√
T 3

ABC
. (15.56)
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When combined with the Boltzmann expression for a molecule in a specific en-
ergy level, this gives a simple expression for the fraction of the population in a
specific rotational state if LTE conditions apply:

N(total) ≈ N(JKaKc)
168.7

√
T 3

ABC
(2J +1)S(JKaKc)

exp

(
W
k T

)
. (15.57)

In this expression, S(JKaKc) accounts for spin statistics for energy level JKaKc , and
A, B and C are the molecular rotational constants in GHz. W , the energy of the level
above the ground state, and T , the temperature, are given in Kelvin. Given the total
molecular column density and the value of T , the feasibility of detecting a specific
line can be obtained when the appropriate A coefficient value is inserted into (15.25)
or (15.26).

As pointed out in connection with NH3, T need not be TK. In reality, a number of
different values of T may be needed to describe the populations. We will investigate
the influence of excitation conditions on molecular populations and observed line
intensities next.

Two important interstellar molecules are H2CO and H2O. Here we summarize
the dipole selection rules. Rotating the molecule about the axis along the direction
of the dipole moment, we effectively exchange two identical particles. If these are
fermions, under this exchange the total wavefunction must be antisymmetric. For
H2CO, in Sect. 15.5.2 we reviewed the spin statistics. Since the dipole moment is
along the A axis, a dipole transition must involve a change in the quantum numbers
along the B or C axes. From Fig. 15.7, the Ka = 0 ladder is para-H2CO, so to have
a total wavefunction which is antisymmetric, one must have a space wavefunction
which is symmetric. For a dipole transition, the parities of the initial and final states
must have different parities. This is possible if the C quantum number changes. For
H2O, the dipole moment is along the B axis, from Fig. 15.6. In a dipole transition,
the quantum number for the B direction will not change. For ortho-H2O, the spin
wavefunction is symmetric, so the symmetry of the space wavefunction must be
antisymmetric. In general, this symmetry is determined by the product of Ka and
Kc. For ortho-H2O, this must be KaKc = (odd)(even), i.e. oe, or eo. For allowed
transitions, one can have oe−eo or eo−oe. For para-H2O, the rule is oo−ee or ee−
oo. Clearly H2S follows the selection rules for H2O. These rules will be different
for SO2 since the exchanged particles are bosons. More exotic are D2CO, ND3 and
D2O (Butner et al. 2007).

The species H+
3 has the shape of a planar triangle. It is a key to ion-molecule

chemistry (see next Chapter), but has no rotational transitions because of its sym-
metry (see Oka et al. 2005). The deuterium isotopomer, H2D+ is an asymmetric top
molecule with a permanent dipole moment. The spectral line from the 110-111 lev-
els ortho species was found at 372.421 GHz. A far infrared absorption line from the
212-111 levels was also detected (Cernicharo et al. 2007; see references therein). We
show an energy level diagram in Fig. 15.8. The doubly deuterated species, D2H+,has
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Fig. 15.7 Energy-level diagram of formaldehyde, H2CO. This is a planar asymmetric top, but the
asymmetry is very small. The energy-level structure is typical of an almost prolate symmetric top
molecule. In the lower right is a sketch of the structure of the molecule [adapted from Mangum
and Wootten (1993)]. See Johnson et al. (1972) for details about line strengths and selection rules

Fig. 15.8 Energy-level
diagram of formaldehyde,
H2D+. This is a planar,
triangular-shaped asymmetric
top. The diagram is adapted
from Gerlich et al. (2006)
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been detected in the 110-101 line at 691.660 GHz from the para species (see, e.g. Vas-
tel et al. 2006).

15.6.4 Electronic Angular Momentum

In many respects the description of electronic angular momentum is similar to that
of atomic fine structure as described by Russell-Saunders (LS) coupling. Each elec-
tronic state is designated by the symbol 2S+1ΛΩ , where 2S + 1 is the multiplicity
of the state with S the electron spin and Λ is the projection of the electronic or-
bital angular momentum on the molecular axis in units of h̄. The molecular state is
described as Σ ,Π ,Δ etc., according to whether Λ = 0,1,2, . . . .
Σ is the projection of the electron spin angular momentum on the molecular axis

in units of h̄ (not to be confused with the symbol Σ , for Λ = 0). Finally, Ω is the
total electronic angular momentum. For the Hund coupling case A, Ω = |Λ +Σ |
[see e.g., Hellwege (1974) for other cases].

Since the frequencies emitted or absorbed by a molecule in the optical range are
due to electronic state changes, many of the complications found in optical spectra
are not encountered when considering transitions in the cm and mm range. How-
ever the electronic state does affect the vibrational and rotational levels even in the
radio range. For most molecules, the ground state has zero electronic angular mo-
mentum, that is, a singlet sigma, 1Σ state. For a small number of molecules such
as OH, CH, C2H, or C3H, this is not the case; these have ground state electronic
angular momentum. Because of this fact, the rotational energy levels experience an
additional energy-level splitting, which is Λ doubling. This is a result of the in-
teraction of the rotation and the angular momentum of the electronic state. This
splitting causes the degenerate energy levels to separate. This splitting can be quite
important for Π states; for Δ and higher states it is usually negligible. The OH
molecule is a prominent example for this effect. Semi-classically, the Λ doubling
of OH can be viewed as the difference in rotational energy of the (assumed rigid)
diatomic molecule when the electronic wave function is oriented with orbitals in a
lower or higher moment of inertia state. We show a sketch of this in the upper part
of Fig. 15.9. Since the energy is directly proportional to the total angular momentum
quantum number and inversely proportional to the moment of inertia, the molecule
shown on the left has higher energy than the one shown on the right.

There are also a few molecules for which the orbital angular momentum is zero,
but the electron spins are parallel, so that the total spin is unity. These molecules
have triplet sigma 3Σ ground states. The most important astrophysical example is
the SO molecule; another species with a triplet Σ ground state is O2. These energy
levels are characterized by the quantum number, N, and the orbital angular momen-
tum quantum number J. The most probable transitions are those within a ladder,
with ΔJ = ΔN = ±1, but there can be transitions across N ladders. As with the OH
molecule, some states of SO are very sensitive to magnetic fields. One could then
use the Zeeman effect to determine the magnetic field strength. This may be difficult
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Fig. 15.9 The lower energy
levels of OH showing
Λ -doubling. F is the total
angular momentum, including
electron spin, while J is the
rotational angular momentum
due to the nuclear motion.
The quantum number F
includes hyperfine splitting of
the energy levels. The parities
of the states are also shown
under the symbol F . The Λ
doubling causes a splitting of
the J states. In the sketch of
the OH molecule, the shaded
regions represent the electron
orbits in the Λ state. The two
unshaded spheres represent
the O and H nuclei. The
configuration shown on the
left has the higher energy OH
diagram [taken from Barrett
(1964)]. The sketch of the
energy levels is adapted from
Wilson et al. (1990)

since a 1 μGauss field will cause a line splitting of only about 1 Hz in linear polar-
ization. Even so, measurements of the polarization of the JN = 10 − 01 line of SO
(see Tiemann (1974) for structural details) may allow additional determinations of
interstellar magnetic fields.

15.6.5 Molecules with Hindered Motions

The most important hindered motion involve quantum mechanical tunneling; such
motions cannot occur in classical mechanics because of energy considerations. A
prime example of this phenomenon is the motion of the hydrogen atom attached to
oxygen in CH3OH, methanol. This H atom can move between 3 positions between
the three H atoms in the CH3 group. Another example is motion of the CH3 group
in CH3COOH, methyl formate (see Plummer et al. 1987). These are dependent on
the energy. At low energy these motions do not occur, while at larger energies are
more important. For both methanol and methyl formate these motions allow a large
number of transitions in the millimeter and sub-millimeter range.
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The description of energy levels of methyl formate follows the standard nomen-
clature. For methanol, however, this is not the case, due to historical developments.
Lees (1973) has presented a description of the energy levels of E type methanol.
The energy levels are labelled as Jk, where K can take on both positive and negative
values. Figure 15.10 is taken from that paper. There is a similar scheme for naming
energy levels of A type methanol, as A±

k . A and E type methanol are analogous to
ortho and para species, in that these states are not normally coupled by collisions.

Torsionally excited states of methanol have been found in the interstellar medium.
These are analogous to transitions from vibrationally excited states to the ground
state of a molecule. Another complexity is that because of its structure, there are
two dipole moments, along either the c or the a axis (see the plot in the upper right
of Fig. 15.10.

Fig. 15.10 Energy-level diagram of E type methanol, CH3OH. This is an asymmetric top. The
energy-level structure is typical of an almost prolate symmetric top molecule. The lines connecting
the levels show the spontaneous transitions with the largest A coefficients from each level; where
the two largest A coefficients are within a factor of 2, both transitions are shown. [adapted from
Lees (1973)]. See Anderson et al. (1992) for details and further references
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Problems

1. (a) For T = 273 K and pressure 1 atmosphere, that is 106 dyne cm−2 (760 mm of
Hg), find the density, n, of an ideal gas in cm−3. Repeat for conditions in a molecular
cloud, that is T = 10 K, pressure 10−12 mm of Hg.
(b) For both sets of conditions, find the mean free path, λ , which is defined as
1/(σ n), and the mean time between collisions, τ , which is 1/(σ nv), where v is the
average velocity. In both cases, take σ = 10−16 cm−3. For the laboratory, take the
average velocity to be 300 m s−1; for the molecular cloud, take the average velocity
of H2 as 0.2 km s−1.
(c) Suppose that the population of the upper level of a molecule decays in 105 s.
How many collisions in both cases occur before a decay?
(d) For extinction we define the penetration depth, λv, in analogy with the mean free
path. When λv = 1 the light from a background star is reduced by a factor 0.3678.
For a density of atoms n, λv in cm is 2× 1021/n. Calculate the value of λv for a
molecular cloud and for standard laboratory conditions. The parameters for both are
given in part (a) of this problem.

2. (a) The result of Problem 2, Chap. 13 is Tk = 21.2(m/mH) (ΔVt)
2 where ΔVt is

the FWHP thermal width, i.e. there is no turbulence and the gas has a Maxwell–
Boltzmann distribution. Apply this formula to the CO molecule (mass 28 mH) for a
gas of temperature T . What is ΔVt for T = 10 K, T = 100 K, T = 200 K?
(b) The observed linewidth is 3 km s−1 in a dark cloud for which T = 10 K. What is
the turbulent velocity width in such a cloud if the relation between the observed
FWHP linewidth, ΔV1/2, the thermal linewidth, ΔVt and the turbulent linewidth
ΔVturb is

ΔV 2
1/2 = ΔV 2

t +ΔV 2
turb ?

3. The following expression is apropriate for a linear molecule: Aul = 1.165 ×
10−11 μ2

0ν3 (J +1)/(2J +3) where ν is in GHz, μ0 is in Debyes and J is the lower
level in the transition from J +1 → J. Use this to estimate the Einstein A coefficient
for a system with a dipole moment of 0.1 Debye for a transition from the J = 1 level
to the J = 0 level at 115.271 GHz.

4. To determine whether a given level is populated, one frequently makes use of the
concept of the “critical density”, n∗

Aul = n∗ 〈σv〉 .

Here u is the quantum number of the upper level, and l is that for the lower
level. If we take 〈σv〉 to be 10−10 cm3 s−1, determine n∗ from the following Aul

coefficients
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CS : A10 = 1.8×10−6 s−1

CS : A21 = 2.2×10−5 s−1

CO : A10 = 7.4×10−8 s−1.

5. (a) Suppose the effective radius re = 1.1× 10−8 cm and the reduced mass, mr,
of a perfectly rigid molecule is 10 atomic mass units, AMU (an AMU is 1/16 of the
mass of a 16-oxygen atom; 1 AMU= 1.660×10−24 g), whereΘ = mrr2

e .
(a) Calculate the lowest four rotational frequencies and energies of the levels above
the ground state.
(b) Repeat if the reduced mass is (2/3) AMU with a separation of 0.75× 10−8 cm;
this is appropriate for the HD molecule. The HD molecule has a dipole moment
μ0 = 10−4 Debye, caused by the fact that the center of mass is not coincident with
the center of charge. Take the expression for A(i j) from Problem 3 and apply to the
J = 1−0 and J = 2−1 transitions.
(c) Find the “critical density” n∗ ≈ 1010 A(i j).

6. The 12C16O molecule has Be = 57.6360 GHz and De = 0.185 MHz. Calculate
the energies for the J = 1,2,3,4,5 levels and line frequencies for the J = 1− 0,
2− 1, 3− 2, 4− 3 and 5− 4 transitions. Use the expression energy E(J)/h ≈ Be J
(J + 1) − De J2(J + 1)2 for the energy calculation. Check the results against
Table 14.2.

7. Apply for J = 0, 1 the analysis in Problem 10 to the linear molecule HC11N,
which has Be = 169.06295 MHz and De = 0.24 Hz. Estimate J for a transition near
20 GHz. What is the error if one neglects the distortion term?

8. In the following, we neglect the distortion term De and assume that the popula-
tion is in LTE. The population in a given J level for a linear molecule is given by
(Eq. 15.32)

n(J)/n(total) = (2J +1)eB0J(J+1)/kT /Z

where Z, the partition function, does not depend on J. Differentiate n(J) with re-
spect to J to find the state which has the largest population for a fixed value of
temperature, T . Calculate this for CO if T = 10 K and T = 100 K. Repeat for CS
(B0 = 24.584 GHz) and HC11N, for T = 10 K.

9. Extend (Eq. 15.32) to include the optical depth relation (Eq. 15.26) to obtain an
estimate of which J level has the largest optical depth, τ , in the case of emission for
a linear molecule.
(a) Show that when the expression for the A coefficient for a linear molecule is
inserted into (Eq. 15.26), we have Nl = 1.67×1014

μ2
0ν [GHz]

2J+1
J+1 Tex τΔ v , where μ is in Debyes

and v is in km s−1.
(b) Use the above expression to estimate whether the J for the maximum TMB = Tex τ
is larger or smaller than the J obtained in Problem 12.

10. Find the ratio of the intensities of the J = 2−1 to J = 1−0 transitions for a linear
molecule if the excitation temperature of the system, T , is very large compared to
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the energy of the J = 2 level above the ground state, and both lines are optically
thin. What is the ratio if both are optically thick?

11. The ammonia molecule, NH3, is an oblate symmetric top. For ammonia, A =
298 GHz, C = 189 GHz. If T � A, C, the value of Z, the partition function, with C
and B in GHz, is Z = 168.7

√
(T 3)/(B2 A).

(a) Evaluate Z for NH3 for T = 50 K, 100 K, 200 K, 300 K. For this approximation
to be valid, what is a lower limit to the value of T ?
(b) The (3,3) levels are 120 K above ground. Use the partition function and

n(J)/n(total) = (2J +1)e120/T /Z

to calculate the ratio of the total population to that in the (3,3) levels.
(c) If only metastable (J = K) levels are populated, use the definition of Z as a sum
over all populated states, and

n(J)/n(total) = (2J +1)e(BJ(J+1)+K2(C−B))/kT /Z

and the A and C values for NH3 to obtain the ratio between the population of the
(3,3) levels and all metastable levels.

12. The selection rules for dipole transitions of the doubly deuterated isotopomer
D2CO differ from that of H2CO since D2CO has two Bosons, so the symmetry
of the total wavefunction must be symmetric. Determine these rules following the
procedure in Sect. 15.6.2.



Chapter 16
Molecules in Interstellar Space

We begin with a history of the field of molecular line astronomy starting from the
simpler situations typical of the ISM, including radiative processes. In Chap. 15,
we analyzed the excitation of carbon monoxide, CO, under local thermodynamic
equilibrium (LTE). This is a simple situation but has limited validity; more common
are deviations from LTE. In this Chapter, we give examples of two level and three
level systems, the latter being used for an analysis of one-dimensional maser am-
plification. We then derive the large velocity gradient (LVG) approximation, which
is one method of analyzing the transport of moderately optically thick lines, and
an account of Photon Dominated Regions (PDRs). A brief exposition of the use of
molecules as probes of the interstellar medium follows.000 These tools are those
used to investigate molecular line sources in our galaxy as well as other galaxies.
We close the chapter with an introduction to interstellar chemistry.

Since the literature in this field is so immense, we quote only the most recent
references. In these, one can find citations to earlier publications. One general re-
cent publication is “Protostars and Planets V” (2007) edited by Reipurth, Jewitt
and Keil, hereafter “PPV”; previous editions of Protostars and Planets by Mannings
et al. (2000) and Levy and Lunine (1993) are also given in the references. General
texts related to the results in this Chapter are by Lequeux (2005), Stahler and Palla
(2005) and Sparke and Gallagher (2000). An interactive data base for molecular
lines is described in Remijan, A. J. et al. (2007).

16.1 Introduction

As we have seen in Chaps. 13 and 14, only a few atomic species have been detected
at radio wavelengths, the study of molecular line radiation provides a vastly richer
field of study. It is well established that stars form in molecular clouds and therefore
a determination of the physical conditions in these clouds will help us to under-
stand the star formation process. Also, newly formed stars greatly influences their
birthplaces. Molecular line studies are essential to understanding how stars such as
our sun and our solar system formed. From molecular line studies we can determine

T.L. Wilson et al., Tools of Radio Astronomy, 5th ed., Astronomy and Astrophysics Library, 419
DOI 10.1007/978-3-540-85122-6 16, c© Springer-Verlag Berlin Heidelberg 2009
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conditions on the surface of planets and in the interiors of comets. From these results
we may be able to estimate conditions in the primitive solar nebula.

Molecular clouds consist mostly of H2. The production of H2 must occur on
dust grains whose surfaces act as catalysts for the conversion of hydrogen into H2.
Efficient production requires a minimum density, which is generally thought to be
≥ 50 cm−3. Since the H2 molecule is dissociated by spectral line photons with ener-
gies >11 eV, H2 must also be shielded against the interstellar radiation field (ISRF).
Some shielding is supplied by dust grains, but H2 in the outer layers of the clouds
provides more protection from the ISRF since H2 is destroyed by spectral line radia-
tion. These constituents prevent dissociating radiation from penetrating deeply into
the cloud. The minimum H2 column density is ≈ 1020 cm−2, equivalent to a visual
extinction, Av ∼ 0.1m. By mass, clouds consist of ∼ 63% H2, ∼ 36% He and ∼ 1%
dust, other molecules and atoms.

The study of molecules is far more complex than the study of neutral hydrogen
(Chap. 13) for three reasons:

(1) deviations of the populations of energy levels from LTE. Then the populations
are characterized by excitation temperatures, Tex. Sometimes the population of
a given species must be specified by a number of different values of Tex;

(2) non-equilibrium interstellar chemistry, including depletion from the gas phase
onto dust grain surfaces and the formation of species in the gas phase and on
grain surfaces;

(3) the presence of small scale structure, or clumping that leads to large inho-
mogeneities; these lead to differences between beam-averaged and source-
averaged abundances.

16.1.1 History

Molecular lines in the optical range were detected in late type stars with low surface
temperatures, planetary atmospheres, and comets in the 1930s. About this time, in-
terstellar absorption lines of CN were found in a dust cloud toward the star ζ Oph;
later, lines of CH+ and CH were identified. These results showed that diatomic
molecules can exist in the interstellar medium, given the proper physical conditions.

Molecular line radio astronomy began in 1963 when two OH lines were detected
by the absorption (see Fig. 15.9) of continuum radiation from the supernova remnant
Cassiopeia A. The clouds containing OH are not associated with the intense radio
source Cas A, but are line-of-sight objects. There are four ground state OH transi-
tions; the two with the largest line strengths at 1.665 and 1.667 GHz were detected
in absorption. It soon became clear that the excitation of OH deviates from LTE,
since toward Cassiopeia A, the highest frequency line from the OH ground state at
1.720 GHz, appeared in emission, while the other three OH ground state lines ap-
peared in absorption. This cannot occur under LTE conditions. Such line emission
is an indication that the upper level is overpopulated and amplifies the continuum
background, so this is a natural maser. For clouds near H II regions these deviations
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are much more spectacular. The peak OH line intensities as observed with single
dishes are even stronger than H I lines and show narrow spectral features. These re-
sults were first attributed to an as yet unknown molecule “Mysterium”. Further mea-
surements showed that the emission is polarized and time variable. Data taken with
interferometers showed that the OH emission arises from very compact sources,
with sizes of milli arc seconds. Thus the true brightness temperatures are > 1012 K.
At this temperature the OH would be dissociated, so these brightness temperatures
cannot represent the kinetic temperature, TK. Thus it was concluded that the peak
temperatures are not related to kinetic temperatures, but caused by non-LTE pro-
cesses. Ultimately, it was shown that stimulated emission or Maser line emission
is the cause of this effect. The excitation of OH masers is now thought to be well
understood (see Sect. 16.2.2).

Until 1968 all interstellar molecules detected consisted of only two atoms. This
was believed to be a natural limit caused by low densities in the ISM. Then, however,
the line radiation of ammonia, NH3 (see Fig. 15.5), was found at 1.3 cm. Later a
centimeter wavelength line of water vapor, H2O (see Fig. 15.6), was found in the
same frequency band by the same group. Toward some of the sources, the λ =
1.35 cm water vapor line showed intense radiation consisting of features with narrow
linewidths. It was soon found that this emission is time variable. Later, a series
of radio interferometer measurements showed that the true brightness temperatures
are > 1015 K, so it was concluded that the centimeter wavelength emission of H2O
is caused by strong maser action. At present, the excitation of H2O masers is not
completely understood; determinations of the abundance of H2O using non-maser
lines is a subject of current research.

In 1969, the 6 cm K-doublet line of H2CO, formaldehyde, was discovered (see
Fig. 15.7). In some regions, H2CO is seen in absorption against the 2.7 K microwave
background. The 2.7 K background pervades all of space. Then in LTE all kinetic
temperatures must be equal to or larger than 2.7 K, i.e. 2.7 K < Tex < TK must hold,
so the absorption of the 2.7 K background must be caused by non-LTE effects. In
terms of (11.13), the population of the lower level is increased, so that the absorption
is enhanced. This enhanced absorption is the opposite of maser action.

After this initial discovery period, perhaps the most important molecule found
was carbon monoxide (see Fig. 15.3), in mid-1970. Early empirical studies indi-
cated that the CO to H2 ratio appeared to be ≈ 10−4 in dense molecular clouds. In
recent years there is an indication that in small (< 0.1 pc) cold (TK ≈ 10K) regions,
CO may freeze out onto grains. At about this time, it was recognized that such
complex molecules must be in dense clouds of molecular hydrogen, H2, since the
excitation is in part through collisions and because these species are easily disso-
ciated so these must be protected from the ISRF. At the kinetic temperatures of
such clouds, H2 lines are not excited, so the properties of molecular clouds must be
traced by molecules with permanent dipole moments. In 1976, vibrational lines of
H2 were found in shocked regions and later, rotational lines of H2 were found in
warm molecular clouds (see the account in Townes 1994).

The molecule which showed the importance of ion-molecule chemistry was
termed “X-ogen” in 1970. This was later shown to be HCO+ (see Herbst 1999,
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2001). The number of detected molecular species increased greatly during this time.
By 1970, six molecules had been found, by 1980 there were 51, by 1990 there
were 85, by 2004 there were 130, and today there are 151. In the last few years,
the rate of detection of new molecules is a few per year. Most of these species
were found in the radio range, although in the last years a few species without per-
manent dipole moments have been found from infrared (FIR) vibrational transi-
tions. In the mid-1970s, there were a number of studies of isotopic ratios of car-
bon, nitrogen and oxygen. These continued with varying amounts of effort into
the 1990s.

While large scale surveys of atomic hydrogen date back to the 1950s (see
Chap. 13) imaging of the galaxy in the J = 1 − 0 line of CO began in the early
1970s. The first measurement of CO in another galaxy was in 1975. This work con-
tinues to the present. From these data, estimates of cloud masses, correlations of
cloud parameters, the distribution of H2 (compared to that of HI) and histograms of
clump masses have been made. Our galactic center has been imaged repeatedly in
CO; the distribution is asymmetric with most of the emission north of the center.
This is associated with the source Sgr B2.

The study of specific sources began with the discovery of an intense source of
molecular lines in Orion and this has been expanded to include a number of sources.
Toward the end of the 1970s, it was found that very young stars pass through a period
where material is ejected in a bipolar outflow. Apparently this is the case for both
high and low mass stars (see PPV). The relation between molecular clouds and star
formation is a close one, since molecular clouds are cold and dense, so collapse is
likely. For a kinetic temperature of 10 K, the time in years for the collision between
a gas particle and a grain is

tgas−grain =
1.2×1010

nH2

(16.1)

However, this does not seem to be the case for all molecules, since NH3, H2D+

and N2H+ are found in dense quiescent cores. This empirical result has generated
interest in these species. With high resolution measurements of these species one
can image the dynamics of dense cores that may be collapsing.

It is well established that when low mass stars end their Main Sequence lives,
moving to the Asymptotic Giant Branch (AGB), these eject processed material,
and enrich the interstellar medium. Molecular line studies of this phase have
concentrated on the source IRC+10216, a nearby carbon star but recently has been
extended to other AGB stars and Planetary Nebulae. From molecular line studies,
we know of a number of such post-main sequence sources in different evolutionary
phases.

Beginning in the mid-1970s, CO was found in nearby galaxies. This has opened
the vast field of extragalactic molecular line astronomy. This study has been ex-
tended to a wide range of molecules, as well as fine structure lines (see Table 13.1)
of neutral carbon (C I) and C+ ([C II]), oxygen [OI] and nitrogen [N II]. The
correlation between the intensities of [C II] and CO have led to the concept of a
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Photon Dominated Regions, or PDR, in which the radiation field is ∼102 to 105

times that near the Sun, but in which simple molecules such as CO can survive
and produce intense emission. Such regions are prominent in galaxies undergo-
ing bursts of star formation (see Ivison et al. (2002)). Searches for CO and dust
emission was extended to high redshift objects, reaching a record of z = 6.42 (see
e.g. Maiolino et al. 2007; Solomon and vanden Bout 2005). Objects with the most
intense emission may be gravitational lensed, but are at least abnormally intense.
Most are dust enshrouded star forming regions which are best studied in the radio
or infrared.

For solar system studies, radio astronomical molecular line measurements of the
planets and comets started in the 1970s. The most remarkable results for comets
were obtained when Hale-Bopp and Hyakutake passed close to the Sun in the mid-
1990s since these had a large amount of gas-phase molecules. Studies of disks
around low mass stars showed the presence of dust and gas. The H2 densities are
very large by ISM standards, and geometries are complex, so that high angular res-
olutions are needed to accurately determine abundances as a function of position
from the star.

In the following sections, we consider solutions to the following problem: given
a line intensity, one wishes to separate excitation, radiative transfer and abundance
effects. In the last chapter, we presented some particularly simple situations for CO,
and NH3. LTE formulae were also given. However, LTE is the exception in the
ISM. Thus, more specific models must be applied to interpretet the data. We present
an overview of excitation in the next section. Following this, we present a more
complex model of radiative transport, and then present a discussion of molecules as
probes of the ISM. Following this a brief overview of results.

16.2 Molecular Excitation

16.2.1 Excitation of a Two-Level System

So far, we have only considered molecules populated under LTE conditions. We
will now start a much more general analysis. In this section, we will consider a
two-level approximation to molecular energy level populations and we will apply
this formalism to two- and three-level models to investigate masers. Then we will
generalize the photon transport and apply this to quasi-thermally excited molecules,
and use these results to probe physical conditions in molecular clouds.

The methods and expressions used in this study have practically all been cov-
ered in Chap. 12. Although molecules are vastly more complex, a first discussion
of molecular excitation will be made in analogy with the analysis used for H I. The
following discussion will show that the observation of emission from a single line
is, contrary to common belief, not sufficient to establish a minimum gas density. For
such effects, at least three energy levels must be involved.
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The emissivity using the two-level approximation has been derived in Chap. 12
resulting in the expression (12.15):

εν =
hν0

4π
nu Aul ϕ(ν) , (16.2)

where nu is the population of the upper level and ϕ(ν) the line shape [cf. (12.1)].
This emissivity is proportional to Aul , and this seems to be the reason for the above-
mentioned belief. A line with an exceedingly small Aul would be very weak, unless
nu is very large.

But εν is proportional to the population nu of the excited level, and in the limit
of small A we will have to consider collisional excitation even in a low density
situation. The rate equation (12.30) then results in a stationary population as given
by (12.35); that is

nl (Clu +Blu Ū) = nu (Aul +Bul Ū +Cul) . (16.3)

Note that Ū is the average radiation field intensity in (12.32). To solve for the
emissivity, we substitute (16.3) into (16.2), obtaining:

εν =
hν0

4π
nl(Clu +Blu Ū)

Aul +Bul Ū +Cul
ϕ(ν) . (16.4)

If collisions dominate, (16.3) shows Clu and Cul , the collision rates, are connected
by the principle of detailed balance (12.37):

Clu

C21
=

gu

gl
exp−hν0/k Tk (16.5)

and the A and B coefficients are connected by the Einstein relations given in
Chap. 11, (12.8) and (12.9). Using these, and substituting for brevity

S̃ν =
2hν3

0

c2 , (16.6)

(16.4) then becomes (Fig. 16.1)

εν =
hν0

4π
gu nl

gl

Ū/S̃ν +
Cul

Aul
exp(−hν0/k TK)

1+Ū/S̃ν +Cul/Aul
ϕ(ν) . (16.7)

As expected, in the limit of Cul/Aul � 1, the population of the two-level system
is determined by the kinetic temperature, TK. However, even in the limit of small
Cul/Aul , that is, a very sub thermally excited state, there will be some emission. For
a detectable line however, the abundance must be sufficiently large. From (16.7)
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Fig. 16.1 Emissivity and
excitation temperature as a
function of C/A in the case of
weak lines

the emissivity also depends on column density. Because CO has a small A coeffi-
cient, the levels are populated at densities of a few 100 cm−3. Emission from the
J = 1 → 0 or J = 2 → 1 lines of CO is widespread because of the large column
density.

If a level is populated by collisions with H2, the main collision partner, a first
approximation to the H2 density can be had if one sets the collision rate, n(H2)〈σ v〉
equal to the A coefficient. The brackets indicate an average over velocities of H2,
which are assumed to be Boltzmann distributed. The H2 density for a given transi-
tion which will bring Tex midway between the radiation temperature and TK is re-
ferred to as the critical density, and is denoted by n∗. That is n∗〈σ v〉 = A. As noted
at the beginning of this section, this can be at best only an approximate estimate.

In some cases, the collision cross section, σ , is known from calculations or from
experiment. As a first approximation one can assume that σ = 10−16 cm−2. If the
velocity, v, is taken to be 1 km s−1, the critical density is nH2 = A × 1010 cm−2.
Taking the Einstein A coeffients from Table 14.2, we find that to produce significant
emission from the J = 1 → 0 line of CO, we need densities of ∼ 740 cm−3. To
produce emission from the J = 1 → 0 line of CS, we require densities of 1.8×
104 cm−3. Thus, CO emission can arise from both lower and higher density regions,
while CS emission can arise only from higher density regions.

For an optically thin line, every collision results in a photon being emitted. If
the collision rate is less than the A coefficient, the line is said to be sub thermally
excited, that is 2.7 K < Tex < TK. Then, the line emitted will be weaker, but may
be detectable. This two-level model is a first approximation for the case of the
J = 1 → 0 line of molecule HCO+. For this line, n∗ = 3×105 cm−3. Then, in clouds
where densities are of order 103 cm−3, this line is sub thermally excited. The line
can be detected only because the optical depth is large; estimates of HCO+ opti-
cal depths are obtained from comparisons with isotopic lines, following methods
similar to those used for CO and 13CO.

From Fig. 16.1 there is a smooth variation in the emissivity between the limits
where the radiation field dominates and where collisions dominate. When calculat-
ing the emissivity, one must account for the radiation field itself.

Before considering photon transport in optically thick lines, we will briefly con-
sider three-level systems. As is clear from Fig. 16.1, a two-level system cannot give
rise to maser emission, or anomalous absorption Tex < 2.7K.
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16.2.2 Maser Emission Processes in One Dimension

In radio astronomy, the concept of maser emission can be used to explain many of
the observed molecular lines. The maser phenomenon is very natural in interstellar
space, since there are usually deviations from LTE. In fact, it is very unusual to find
molecular excitation which is close to LTE. Our treatment is a simplified version of
that given in Chap. 4 of Elitzur (1992).

Masers arise when the population of the upper energy level, nu is more than the
factor (gu/gl)nl . This is formally represented by a negative Tex in the expression

nu

nl
=

gu

gl
exp−hν0/k Tex . (16.8)

For this situation, the transition connecting nu with nl can amplify a background
source of radiation, if one is present. As we will show later in this section, if there
is no background continuum and if the line optical depth is small, no masering line
will be produced.

Shortly after Weinreb et al. (1963) detected the OH line in absorption, OH lines
were found with intensity ratios that could not be explained at all by line radia-
tion emitted under LTE conditions. This conclusion was strengthened when OH line
emission spectra in some sources were found to be linearly and circularly polarized,
and that the sources of the emission lines had exceedingly small angular diame-
ters leading to very high brightness temperatures for the sources. Another intense
maser line is the 616–523 rotational transition of H2O. After this discovery it was
generally accepted that deviations from LTE were a general feature of molecular
excitation, and that OH and H2O emission is merely an extreme case. Since then
many more masering transitions have been detected for many different molecules.
Deviations from LTE could also enhance absorption. For example, in a large num-
ber of galactic sources, the K doublet transitions of H2CO even absorb the 2.7 K
background, that is, absorption is found even at positions where no discrete back-
ground source is present. Such phenomena have been found for some transitions
of CH3OH. These transitions act as “cosmic refrigerators”. However, an overpop-
ulation of the lower level for a given transition can only lead to a limited degree
of absorption.

Masers are classed as either strong or weak. Strong masers produce intense spec-
tral line radiation, such as the 18 cm lines of OH, or the 1.3 cm line of H2O. The
large brightness temperatures produced by maser emission allow the use of high-
resolution interferometry, which allows us to investigate phenomena on a very small
scale. The excitation processes which lead to strong masers are very difficult to un-
derstand, since the processes are very nonlinear.

In the following, we will show a highly simplified version of the one-dimensional
galactic maser process. We emphasize that this is an example to show the basic
physical principles. At the end of this section, we will describe specific astrophysical
maser models, explaining some details of the maser excitation. For a more detailed
discussion of maser models, see Watson (1994).
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Let us consider a cloud of molecules with three energy levels l, u and 3. For
the sake of simplicity the statistical weights of the levels are taken to be the same.
The radiation transfer equation (12.13) corresponding to the transition l

→←u with the
frequency ν0, is then

dIν
ds

=
hν0

4π

[
(nu −nl)B

4π
c

Iν +nu A

]
ϕ(ν) , (16.9)

where we write A for Aul , and B for Blu and Bul , the last two being equal now

because we assumed gl = gu. The populations nl and nu of the levels can be changed
by spontaneous emission, described by the transition rate A; by stimulated emission
M given by

M =
4π
c

B Ī =
4π
c

BI
Ωm

4π
(16.10)

where Ωm is the beam solid angle of the radiation; or by collisions described by

the rate C; and finally by the pumping rates from levels l and u to a third level, Plu

and Pul . Such a transfer to a third energy level is essential to produce population
inversion. If the system is stationary then, as in (12.35),

nl (Clu +Mlu +Plu) = nu (Cul +Mul +Pul +Aul) . (16.11)

In the study of microwave masers we can assume that A is negligible compared
to C and M, and that Clu ≈Cul ≈C and Mlu ≈ Mul ≈ M. Then we can write:

nu

nl
=

Plu +M +C
Pul +M +C

. (16.12)

The population inversion which the pump would establish if M = C = 0, is then

Δn0 = (nu −nl)
∣∣
M=C=0 = n

Plu −Pul

Plu +Pul
(16.13)

with
n = nl +nu . (16.14)

For C 
= 0 and C 
= M we have from (16.12) with P = Plu +Pul :

Δn =
Δn0

1+
2(C +M)

P

. (16.15)

Substituting this into (16.9) results in

dIν
ds

=
α Iν

1+ Iν/Is
+ ε (16.16)



428 16 Molecules in Interstellar Space

where

α =
hν0

c
B
Δn0

1+
2C
P

ϕ(ν) , (16.17)

Is =
cP

2BΩm

(
1+

2C
P

)
, (16.18)

and

ε =
hν0

4π
nu Aϕ(ν) . (16.19)

In most astrophysical applications the term ε is taken to be a constant and often
this can be dropped altogether.

For Iν � Is we have the solution for the unsaturated maser for ν = ν0

Iν0 = I0 eα0l +
ε
α0

(eα0l −1) (16.20)

where l is the length along the line of sight within the maser region. Converting this
relation to temperature, we have

Tb = Tc eα0l + |Tex|(eα0l −1) . (16.21)

This is equal to the isothermal solution (1.37) with τ = −α0 l.
For Iν � Is the right-hand side of (16.16) is a constant, and so the solution for

the saturated maser becomes

Iν0 = I0 +(α0 Is + ε) l . (16.22)

In this case the intensity increases linearly with l compared to the exponential
growth with l in the unsaturated maser. If a maser is unsaturated the width of the
line will steadily decrease with increasing maser gain (Fig. 16.2). A wide band back-
ground source with a brightness temperature Tc will, according to (16.21), produce
the output signal

Tb(ν) = Tc eα(ν) l . (16.23)

Assuming a gaussian line shape ϕ in (16.17), α(ν) is given by

α(ν) = α0 exp
(
−(ν−ν0)2/2σ2

0

)
.

As long as we concentrate our attention on the center of the line this can be
approximated by

α(ν) = α0

[
1− 1

2

(
ν−ν0

σ0

)2
]

,

so that (16.23) then becomes
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Fig. 16.2 A plot of the gain and linewidth as a function of distance for a linear maser

Tb(ν) = Tc e
α0 exp

(
− α0 l

2σ2
0

(ν−ν0)2
)

.

But this is a gaussian with the dispersion

σ(α0 l) =
σ0√
α0 l

(16.24)

where σ0 = 3/8ln2Δv1/2. From (16.23), the width will decrease until the center
of the line begins to saturate. The linewidth then broadens as the wings of the line
continue to experience exponential growth until the line again has the original line
width σ0. In a saturated maser the linewidth remains constant. The saturated and
unsaturated masers are extreme cases. Intense masers are usually a mixture of these
two categories: unsaturated when the signal intensity is small, but then saturated
when the intensity becomes large.

What we have given here is only a much simplified phenomenological descrip-
tion of the maser effect in one dimension. If the astrophysics of any given maser
source is to be fully understood this is only the very first step. A detailed specifi-
cation of the pump mechanism, the detailed solution of the rate equations and an
account of the energy sources are needed just as a geometrical model. In the fol-
lowing we give a few examples of interstellar masers, emphasizing the qualitative
aspects.

All masers can be understood in terms of thermodynamics, in the sense that these
are like Carnot engines. In the case of interstellar masers this consists of producing
useful work, or more generally, organization, in the form of directional radiation,
which is sometimes highly polarized, at the expense of increasing entropy, or dis-
organization, in the place where the radiation is produced. In terms of Carnot en-
gines, there must be a heat source and a heat sink. That is, there must always be
two influences operating on the molecular species. Usually these are radiation and
collisions, because in the ISM, in general, the radiation color temperature is very
different from the kinetic temperature. However, two radiation sources, for example
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in different wavelength ranges, or two collision sources, for example electrons and
neutrals with different temperatures are also possible.

16.2.3 Non-LTE Excitation of Molecules

In this section, we present a few observational examples to which the concepts
in the last two sections can be applied. The discussion will begin with a consid-
eration of LTE excitation, and then move onto larger and larger deviations from
LTE, especially masers (A more detailed discussion of interstellar masers is given
in Elitzur (1992), Chaps. 9, 10, 11, 12, 13 and 14).

First, as noted, the CO molecule is exceptional in that the excitation always seems
to be close to LTE. However, even for CO, there is a level J for which the value of
the Einstein A coefficient is large enough that the population is subthermal. For
molecules such as CS, with larger dipole moments, subthermal excitation occurs
even in lower J levels. For symmetric top molecules such as NH3, the inversion
doublet transitions require densities of order 104 cm−3, but transitions across K lad-
ders can occur only as octopole transitions, that is, these are first and second order
forbidden. Thus, the value of Tex within a ladder can be small, but the temperature
which characterizes populations in different K ladders will be much higher. In the
case of NH3, this temperature, Trot, is close to TK. There are many examples of dif-
ferent excitation temperatures, even within the same K ladder. This is found in the
case of H2CO, where a transition between the K doublet levels, for example the 110

and 111 levels at 6 cm, can have a Tex of less than 2.7 K, whereas the rotational tran-
sitions, for example between the 212 and 111 levels, have Tex larger than 2.7 K. The
fact that Tex < 2.7 K for the K doublet levels depends on the geometry of the H2CO
molecule and the parity of the levels.

Weak masers are very often found in the ISM. These can be more easily under-
stood than intense or strong masers which involve very nonlinear processes. One ex-
cellent example is the J = 1→ 0 emission line of HC3N. The energy-level scheme is
shown in Fig. 15.3. As one example, the galactic continuum source Sgr B2 is behind
an extended molecular cloud with n (H2)≈ 103 cm−3. Toward Sgr B2, the J = 1 → 0
line is found in emission, the J = 3 → 2 and J = 4 → 3 lines are found in absorp-
tion. The simplest way to explain these observations is the following: The popu-
lations of HC3N are determined by collisions. The collisions follow “hard sphere”
rules, meaning that collisional selection rules, ΔJ, can have any value. Then pop-
ulations can be transferred from J = 0 to higher J values. These high J popula-
tions decay radiatively following the dipole rule ΔJ = +1. For higher J, the decay
rate is faster, since the frequency is higher, from the dependence of the Einstein A
coefficient. However, for the transition J = 1 → 0, this rate is slower than the rate
for the J = 2 → 1 transition. Then population builds up in the J = 1 level, and there
is an overpopulation in the J = 1 level relative to J = 0 level. These lines are op-
tically thin, but in the centimeter wavelength range there are a number of intense
continuum sources. Thus the overpopulation of the J = 1 level leads to stimulated
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emission, which amplifies the background continuum. In this example, the Carnot
heat source is provided by the hot molecular collision partners, and the Carnot heat
sink by the cold, centimeter wavelength radiation field.

Strong maser lines are characterized by line profiles which have narrow fea-
tures, which may vary on short time scales, and are sometimes highly polarized.
The explanations offered for strong masers must be more vague than for weak
masers, since nonlinear effects are central, and small influences may play a ma-
jor role. In the following, we summarize the currently accepted maser models. For
the 18 cm wavelength masering lines from the OH molecule, there are 1.612 GHz
maser lines from circumstellar envelopes and a large number of lines from inter-
stellar masers. The circumstellar masers are explained by the absorption of 35μm
far infrared photons, which are copiously produced by the cool, dust enshrouded
star. The OH populations are transferred via the 35μm radiation field from the
2Π3/2,J = 3/2 states to the 2Π1/2,J = 5/2 state (see Fig. 15.9). The radiative decay
down the 2Π1/2 ladder occurs at much longer wavelengths, where there are many
fewer photons. These decays then occur without much of an interaction with the
radiation field, through optically thin transitions. The bottom of the 2Π1/2 ladder
connects radiatively by allowed transitions to the 2Π3/2 ground state. The net re-
sult is a population transfer from the F = 2 to the F = 1 levels in the OH ground
state.

There has been some recent progress in our understanding of the excitation of
interstellar OH masers from rotationally excited levels. The ground state populations
are transferred to higher rotational states by the absorption of far infrared radiation.
Since these masers are located in dusty regions near young stars, this radiation field
is very large. This excitation is followed by a radiative decay in the far infrared, back
to the ground state. Collisions play an important role in determining populations
during this decay, but the most important process leading to these OH masers is the
overlap between different far infrared line components.

The H2O masers are thought to arise in regions where the H2 densities are
≈ 109 cm−3, and TK values are ≈ 500 K or more. In the ISM, these conditions are
thought to be due to hydromagnetic shock waves caused by very young nearby stars.
The excitation of the H2O maser at 1.35 cm can be qualitatively understood (see
Fig. 15.6) in that the 616 level is populated by collisions, and that this population has
only a small number of allowed radiative decay routes. In contrast, the population of
the 523 level can decay via a number of different routes. Thus, a population inversion
is almost inevitable. The difficulty is to explain the line intensities, which in some
cases reach 1015 K. One possibility is that these masers are very elongated cylinders
pointing in our direction; another is that the high-brightness masers are amplified
in two regions which are aligned in our direction. Boboltz et al. (1998) find a re-
sult for a flare in the source W49N that they interpret in terms of the amplification
by a foreground cloud of H2O emission from a background cloud. H2O masers
in the circumstellar envelopes of late type stars are thought to be caused by col-
lisonal excitation to high rotational levels, followed by radiative decays. A number
of millimeter and submillimeter wavelength transitions of H2O masers show maser
emission; some are indicated in Fig. 15.6.
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The strong SiO masers arise from rotational transitions J +1→ J in vibrationally
excited states. Most of these masers are found in the circumstellar envelopes of late
type stars, such as Mira variables, supergiants and M stars. The maser lines are emit-
ted from vibrationally excited states (see Table 16.2). These lines are highly time
variable and rather intense. It is thought that the masers are excited by collisions,
but this is not completely conclusive. The SiO masers are located closer to the star
than are circumstellar H2O masers, which are, in turn, closer than circumstellar OH
masers. At present, it appears that the SiO masers are a part of the extended pho-
tosphere of the star, and their behavior reflects the motions in turbulent cells. The
measured sizes of these maser regions are between 0.1 and 5 Astronomical Units.

The most recently discovered intense, widespread masers in the ISM are those
of methanol CH3OH. These can be placed in two distinct categories, depending
on whether they are found close to compact H II regions or not. Methanol has an
asymmetric top structure, with the ′O-H′ arm tunneling through the maxima at the
locations of the hydrogen atoms in the CH3 group. As expected, there is a very large
number of transitions. At first glance, the energy-level diagram for E type methanol
(Fig. 15.10) has an overall structure which is somewhat like that of NH3. However,
there are no doublet levels, and transitions between K ladders are allowed. There
is an additional difficulty with methanol in that the labelling of the energy levels is
somewhat different from that of other asymmetric top molecules. For CH3OH, there
are two modifications, A± and E. These are based on the behavior of the ′O-H′ arm
of CH3OH. The energy levels within each modification are labelled as Jk, where K
can take on both positive and negative values. The masers observed are just those
due to transitions between adjacent ladders. In contrast, the populations within a
given ladder appear to be close to LTE. This difference of populations between
ladders may be related to population transfers between the ground and vibrationally
excited states, due to far infrared radiation, or by collisional selection rules which
favor a change in ladders.

16.3 Models of Radiative Transfer

There are a number of radiative transfer approximations. Two sophisticated exam-
ples of radiative transfer models are Monte Carlo and Accelerated Lambda Iteration
methods [see van Zadelhoff et al. (2002) for a discussion]. In the following we
present a simple commonly used method.

16.3.1 The Large Velocity Gradient Model

In this section we will describe the treatment of photon transport in order to char-
acterize the interaction between molecular populations and the radiation field due
to the radiation from the molecule. Our previous treatment in regard to the CO
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molecule was carried out under the assumption that the molecular populations were
in LTE. The treatment we present next does not use this assumption. Furthermore as
shown in the preceding section, a model of molecular excitation involving only two
levels cannot account for complex excitation processes. The sketch of maser exci-
tation in Sect. 16.2.2 illustrates this point dramatically. To obtain a more complete
picture of molecular excitation, several spectral lines of the same molecule have to
be observed. Commonly, some of these lines have τ > 1, that is, they are optically
thick. In addition, there may be deviations from LTE, so an analysis should include
effects which lead to deviations from LTE.

In the following, we will present the most widely used method of radiative trans-
fer which satisfactorily accounts for photon transport when lines are optically thick.
This is the large velocity gradient (or LVG) approximation. First, we consider the
LVG method qualitatively. It is assumed that the spherically symmetric cloud pos-
sesses large scale systematic motions so that the velocity is a function of distance
from the center of the cloud, that is, V = V0(r/r0). Furthermore, the systematic ve-
locity is much larger than the thermal line width. Then the photons emitted at one
position in the cloud can only interact with molecules which are nearby, and the
global problem of photon transport is reduced to a local problem.

For excitation close to LTE, the qualitative effect of taking line optical depths into
account can be illustrated by the following example: If a cloud is filled with 2 level
molecular systems, we find that for a certain H2 density, a portion of the systems
must be in the upper level, if the photons can freely escape. If these photons are
reabsorbed within the cloud the portion in the upper level will be larger than if the
photons can freely escape, if all other factors remain the same. This is because the
photons slowly diffuse out of the cloud.

In general, the excitation involves collision and radiation. The radiative excitation
can take several forms: The most obvious such interaction is caused by radiation
emitted by the same species. A photon emitted by one molecule in the cloud is
absorbed by another nearby molecule. This is referred to as photon trapping. In
addition to this molecular line radiation, there can be interactions with broadband
radiation. These radiation sources include the 2.7 K background radiation; in some
cases emission from dust may excite some transitions.

We present the LVG treatment for a uniform density cloud. This discussion, from
(16.25) to (16.38) is based on a general treatment of radiative transfer. From (16.39)
onward, the treatment is restricted to two-energy-level molecular systems. (This is
not an essential feature of the LVG approximation, but is used here to illustrate basic
principles.) We assume that all parameters depend only on the coordinate r. Rather
than using u and l, in the following we will use i and j to label the levels, in order
to preserve generality. A potentially important effect not included is the effect of
local dust (for a discussion, see Deguchi 1981). This effect may be important for
sub-millimeter line transitions in clouds with high densities.

The populations, ni, of a level i are given by

ni(r)∑
j

Pi j =∑
j

n jPji (16.25)
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where Pi j can be expressed in terms of the Einstein A and B coefficients, and the
collision rates, Ci j. Then Pi j has the form,

Pi j = Ai j +Bi j 〈Ui j〉+Ci j for i > j (16.26)

and
Pi j = Bi j 〈Ui j〉+Ci j for i < j . (16.27)

Here 〈Ui j〉 is the average radiation field at the frequency of the transition from
level i to j. 〈Ui j〉 is related to the line source function, Si j, by a mathematical kernel
〈Ki j〉 containing the physics of the radiative transfer, cloud physics and structure,

〈Ui j(r)〉 =
∫

Ki j(|r− r′|)Si j(r′)dr′ . (16.28)

The boundary condition is that outside the cloud 〈Ui j(r)〉 equals the Planck func-
tion for a 2.7 K background, Bi j, at the frequency of interest. Equation (16.28) can
be simplified if there are large monotonic velocity gradients in the cloud. Then pho-
tons emitted at some point can be absorbed only within a distance l ≈ vtR/V � R,
where V is the large scale velocity and vt is the thermal velocity of the molecules.
We assume that there is a complete redistribution of frequencies; that is, when a
photon is absorbed and afterwards emitted, there is no “memory” of the previous
frequency, direction and polarization. Then the source function can be taken outside
the integral, and (16.28) becomes:

〈Ui j(r)〉 = (1−βi j(r))Si j +β Bi j(νi j,TBB) . (16.29)

Here βi j(r) is the probability that a photon emitted in the transition from level i to
j at a radius r will escape from the cloud. The second term represents the interaction
with the 2.7 K radiation field. If all the photons escape, βi j(r) = 1 and 〈Ui j(r)〉 is
the blackbody radiation field intensity. If no photons escape from the cloud, 〈Ui j(r)〉
is the source function. This source function must depend on the molecular level
populations by the expression given below:

Si j =
2hν3

i j

c2

1
g jn j/gini −1

. (16.30)

Equation (16.30) couples the radiation field and the molecular populations. The
expression for the optical depth is needed to obtain the form of βi j(r). For a given
direction, given by the direction cosine, μ , and frequency, ν , the optical depth is:

τi j(ν ,r,μ) =
∫

k0(r,s,μ)ϕ
(
ν−ν0 +

ν0 s
c

dvs

ds

)
ds (16.31)

where k0 is the standard absorption coefficient, given in (12.17), and ϕ is the nor-
malized line shape function (taken to be a Gaussian in most cases). If the velocity
gradient is large, ϕ is nonzero only at s = 0 and can be taken outside the integral.
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By assumption the value of the gradient dvs/ds = α is also a constant, defined as
α0 and can be taken outside the integral. This is the crucial step in the analysis

τ(ν ,r,μ) = k0(r)
c

α0 ν0

∫
ϕ(x′)dx′ (16.32)

where x′ = ν −ν0 +
ν0

c
α0

s
c

. The escape probability in the line, averaged over the

line and all angles, is

β (r) =
1

4π

∫ ∫
ϕ(x′) exp(−τi j(x,r,μ))dΩ dx′ . (16.33)

Changing the variable to

y =
∫
ϕ(x′)dx′ (16.34)

and using the normalization ∫
ϕ(x′)dx′ = 1 , (16.35)

we obtain

β (r) =
1
2

∫ 1− exp
(
− τi j(r,μ)

)
τi j(r,μ)

dμ (16.36)

where τi j(r,μ) = (k0(r)c)/(ν0α0(r,μ)). In this plane parallel geometry, we have
set (dvs/ds) = μ2(dv/dz), where z is the depth and v is the velocity normal to the
plane. Applying the Eddington approximation, which is equivalent to replacing μ2

by 1/3, the escape probability becomes

β (r) =
1− exp(−3τi j)

3τi j
. (16.37)

The plane parallel result differs from the spherical cloud result for large values
of τi j. Substituting this result into (16.29), we have

〈Ui j(r)〉=1−1−exp(−3τi j)
3τi j

Si j+
1−exp(−3τi j)

3τi j
Bi j(νi j,TBB) . (16.38)

This is the radiation field in the cloud. In order to qualitatively show the effect of
this field on molecules, we will first analyze a two-level system, and then we will
show results for numerical models of multilevel systems of CO and CS.

To illustrate the effects of photon trapping in the LVG approximation, we will
use (16.38) in (16.3):

ni (Ci j +Bi j Ū) = n j (A ji +B ji Ū +Cji) . (16.39)

We neglect the 2.7 K background in (16.38) and substitute this expression into
(16.39). After grouping terms and using relations T0 = hν/k and (16.5) and (16.8),
we have
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T
T0

=
Tk/T0

1+Tk/T0 ln

[
1+

A ji

3Cji τi j

(
1− exp(−3τi j)

)] . (16.40)

The term (1− exp(−3τi j))/τi j is caused by “photon trapping” in the cloud. If
τi j � 1, the case of interest, then Ai j is replaced by Ai j/τi j. In a qualitative way this
additional factor explains why the spontaneous decay out of the J = 1 level of CO
is 100 times lower (for τ ≈ 100), and thus the J = 1 → 0 line of CO can arise in the
lower density part of the cloud. In contrast, decay out of the J = 1 level for 13CO
with τ ≈ 2, is only two times lower, and thus the J = 1 → 0 line arises from denser
regions. For C18O emission, with τ < 1 and the J = 1 → 0 line must arise from still
denser regions.

In Fig. 16.3, we show calculations which can be used to determine X , the ratio
of total abundance of CO relative to H2 (per velocity gradient) and local H2 density
from the measurement of two transitions of CO. The plots show results for two dif-
ferent values of TK. A comparison of the two sets of curves shows that for TK = 10 K,

Fig. 16.3 Plots of the line intensities calculated using the LVG approximation for the two lowest
rotation transitions of the CO molecule. There are four input quantities. The first two are the kinetic
temperature of the cloud, and X , where X is the abundance of CO relative to H2, per velocity
gradient, dV/dR. The other two inputs are measurements of the two lines in question. It is usual
to estimate this gradient from the ratio of the cloud size to typical linewidth, expressed in units of
km s−1 per pc. Typical values are in the range 1–100 km s−1 pc−1. An upper limit for the value of
X(CO) is 10−4. The emission region is expected to be larger than the telescope beam, so the peak
temperatures are not beam diluted. [Adapted from Goldsmith et al. (1983)]
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the kinetic temperature is more important for setting a limit to the ratio of the line
temperatures. That is, if the CO in the cloud is smoothly distributed and if the line
ratio of the two lowest transitions of CO give a low value, the cloud has either a
low H2 density or a low TK. Using additional information, it might be possible to
decide between these alternatives. For 100 K, in the limit of low X and high H2 den-
sity, the ratio approaches 4. This is the limit expected for optically thin, thermalized
CO lines from a hot medium [cf. (15.23) and (15.25)]. In examining the plot for
TK = 100 K, we see that the analysis of these CO lines cannot be used to determine
densities larger than 104 cm−3: the line ratio of unity usually indicates large optical
depths and thermalization in the transitions. Provided that the measurements are not
strongly affected by noise and that the lines of CO arise from the same volume,
then the measurements of CO correspond to a point on these curves, so that the H2

density and column density of CO can be obtained. For a consistent pair of measure-
ments, the LVG approximation gives a value of n(H2) and X/(dV/dR). Here dV is
usually taken to be the measured linewidth, and dR the cloud size. If one multiplies
X/(dV/dR) by n(H2), one obtains the total CO abundance per velocity gradient.
Multiplying the CO abundance per velocity gradient by the observed linewidth, one
obtains the CO column density. To obtain the H2 column density from this result,
one must then assume a CO to H2 ratio. This is usually close to the “cosmic” value
of (C/H) = 3×10−4. A commonly used value is (CO/H2) = 10−4; this is based on
the assumption that 15% of C is in the form of CO.

An application of the LVG analysis to carbon monosulfide, CS, allows the es-
timation of larger densities since the spontaneous decay rates for CS transitions
are faster than for the corresponding transitions of CO (see our Table 16.1). Also,
the abundance of CS is much lower than that of CO, so line optical depths should
be smaller (Fig. 16.4). It is not at all clear what the relative abundance of CS to
H2 should be. There have been a number of estimates; these are in the range
∼ 10−9, but a factor of 10 larger or smaller could be possible. This is because
CS is much more chemically reactive than CO. So CS might be chemically con-
verted into other species at higher densities. In contrast, CO is chemically stable and
quite abundant, so if CO were chemically converted into other species, the chem-
istry of the cloud would be greatly affected, and this would give rise to observable
differences.

In summary, the LVG approximation requires at least two measurements of a
species in addition to the kinetic temperature. From the data and the model one
can determine n(H2). One could also use the LVG approach to determine another
parameter, such as either the abundance of the molecule in question relative to
H2, per velocity gradient, or the column density of the molecule per linewidth.
These two results are equivalent, since the H2 density is determined in this anal-
ysis and the gradient is taken to be ΔV/ΔR, where ΔV is the linewidth and ΔR
is the cloud size. It is important to note that in the case of linear molecules es-
timates of H2 density and kinetic temperature are coupled closely. For example,
if one detects the J = 1 − 0 line of CO but has a limit of < 0.4 for the ra-
tio of the J = 2 − 1 to J = 1 − 0 line, and no estimate of kinetic temperature,
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Table 16.1 Parameters of the more commonly observed molecular lines

Chemicala Molecule Transition ν/GHzb Eu/Kc Ai j/s−1d

formula name

OH hydroxyl radical 2Π3/2F = 1−2 1.612231 0.1 1.3×10−11

OH hydroxyl radical 2Π3/2F = 1−1 1.665400 0.1 7.1×10−11

OH hydroxyl radical 2Π3/2F = 2−2 1.667358 0.1 7.7×10−11

OH hydroxyl radical 2Π3/2F = 2−1 1.720529 0.1 0.9×10−11

H2CO ortho-formaldehyde JKaKc = 110 −111 4.829660 14 3.6×10−9

CH3OH methanol∗ JK = 51 −60A+ 6.668518 49 6.5×10−10

HC3N cyanoacetylene J = 1−0,F = 2−1 9.009833 0.4 3.8×10−8

CH3OH methanol∗∗ JK = 20 −3−1E 12.178593 12 8.2×10−9

H2CO ortho-formaldehyde JKaKc = 211 −212 14.488490 22 3.2×10−8

C3H2 ortho-cyclopropenylidene JKaKc = 110 −101 18.343137 0.9 3.9×10−7

H2O ortho-water∗ JKaKc = 616 −523 22.235253 640 1.9 ×10−9

NH3 para-ammonia (J,K) = (1,1)− (1,1) 23.694506 23 1.7 ×10−7

NH3 para-ammonia (J,K) = (2,2)− (2,2) 23.722634 64 2.2 ×10−7

NH3 ortho-ammonia (J,K) = (3,3)− (3,3) 23.870130 122 2.5 ×10−7

SiO silicon monoxide∗ J = 1−0,v = 2 42.820587 3512 3.0 ×10−6

SiO silicon monoxide∗ J = 1−0,v = 1 43.122080 1770 3.0 ×10−6

SiO silicon monoxide J = 1−0,v = 0 43.423858 2.1 3.0 ×10−6

CS carbon monosulfide J = 1−0 48.990964 2.4 1.8 ×10−6

DCO+ deuterated formylium J = 1−0 72.039331 3.5 2.2 ×10−5

SiO silicon monoxide∗ J = 2−1,v = 2 85.640456 3516 2.0 ×10−5

SiO silicon monoxide∗ J = 2−1,v = 1 86.243442 1774 2.0 ×10−5

H13CO+ formylium J = 1−0 86.754294 4.2 3.9 ×10−5

SiO silicon monoxide J = 2−1,v = 0 86.846998 6.2 2.0 ×10−5

HCN hydrogen cyanide J = 1−0,F = 2−1 88.631847 4.3 2.4 ×10−5

HCO+ formylium J = 1−0 89.188518 4.3 4.2 ×10−5

HNC hydrogen isocyanide J = 1−0,F = 2−1 90.663574 4.3 2.7 ×10−5

N2H+ diazenylium J = 1−0, F1 = 2−1,
F = 3−2 93.173809 4.3 3.8 ×10−5

CS carbon monosulfide J = 2−1 97.980968 7.1 2.2 ×10−5

C18O carbon monoxide J = 1−0 109.782182 5.3 6.5 ×10−8

13CO carbon monoxide J = 1−0 110.201370 5.3 6.5 ×10−8

CO carbon monoxide J = 1−0 115.271203 5.5 7.4 ×10−8

H2
13CO ortho-formaldehyde JKaKc = 212 −111 137.449959 22 5.3 ×10−5

H2CO ortho-formaldehyde JKaKc = 212 −111 140.839518 22 5.3 ×10−5

CS carbon monosulfide J = 3−2 146.969049 14.2 6.1 ×10−5

C18O carbon monoxide J = 2−1 219.560319 15.9 6.2 ×10−7

13CO carbon monoxide J = 2−1 220.398714 15.9 6.2 ×10−7

CO carbon monoxide J = 2−1 230.538001 16.6 7.1 ×10−7

CS carbon monosulfide J = 5−4 244.935606 33.9 3.0 ×10−4

HCN hydrogen cyanide J = 3−2 265.886432 25.5 8.5 ×10−4

HCO+ formylium J = 3−2 267.557625 25.7 1.4 ×10−3

HNC hydrogen isocyanide J = 3−2 271.981067 26.1 9.2 ×10−4

a If isotope not explicitly given, this is the most abundant variety, i.e., 12C is C, 16O is O, 14N
is N, 28Si is Si,32S is S.

b The line rest frequency from Lovas (1992).
c Energy of upper level above ground, in Kelvin.
d Spontaneous transition rate, i.e., the Einstein A coefficient.
∗ Always found to be a maser transition.
∗∗ Often found to be a maser transition.
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Fig. 16.4 Plots of the line intensities calculated using the LVG approximation for the lower rota-
tional transitions of the CS molecule. The input quantities are the kinetic temperature of the cloud,
dV/dR, and measurements of the two lines in question. An internally consistent solution gives a
value of n(H2) and the abundance of CS relative to H2, X , per velocity gradient. In this analysis,
the emission region is expected to be larger than the telescope beam, so the calculated peak tem-
peratures are the observed temperatures; otherwise the line emission must be corrected for beam
dilution. [Adapted from Linke and Goldsmith (1978)]

either the density is 150 cm−3 and Tk > 100 K, or Tk = 10 K or less and density
could be >103 cm−3.

16.4 Spectral Lines as Diagnostic Tools

We will now indicate applications of the methods described in the previous sec-
tions in order to determine cloud parameters. Inherent in these measurements is
the limitation that for a given direction, spectra provide weighted, line of sight av-
eraged estimates of FWHP linewidth, ΔV1/2, radial velocity, Vlsr, beam averaged
line intensity in Kelvin, polarization percentage, and in some cases, line optical
depths.
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16.4.1 Kinetic Temperatures

A crucial input parameter for the LVG calculations is TK. Linewidths of thermally
excited species provide a definite value for TK if the turbulent velocity can be
neglected. The relation is

Tk = 21.2(m/mH) (ΔVt)
2

where m is the molecule, mH is the mass of hydrogen, and ΔVt is the FWHP thermal
width. Such a relation has been applied to NH3 lines in quiescent dust clouds.

Historically, TK was obtained at first from the peak intensities of rotational tran-
sitions of CO, which has a small spontaneous decay rate. From the ratio of CO to
13CO line intensities, τ(CO)� 1. After correcting for cloud size, from (15.30) TMB

and Tex are directly related. In addition, the large optical depths reduce the critical
density by a factor τ , the line optical depth, so that for the J = 1 → 0 line, the value
of the critical density n∗ ≈ 50 cm−3. Then, the level populations are determined by
collisions, so the excitation temperature for the J = 1 → 0 transition is TK. Usu-
ally, it is assumed that the beam filling factor is unity; for distant clouds or external
galaxies, the filling factor is clearly less.

An alternative to CO measurements makes use of the fact that radiative transi-
tions between different K ladders in symmetric top molecules are forbidden. Then
the populations of the different K ladders are determined by collisions. Thus a
method of determining TK is to use the ratio of populations in different K ladders of
molecules such as NH3, CH3CCH or CH3CN. This is also approximately true for
different Ka ladders of H2CO. Since ratios are involved, beam filling factors play no
role. Even for extended clouds, Tk values from CO and NH3 may not agree. This is
because NH3 is more easily dissociated so must arise from the cloud interior. Thus
for a cloud heated externally, the Tk from CO data will be larger than that from NH3.

For NH3, the rotational transitions, (J +1,K) → (J,K), occur in the far infrared
and have Einstein A coefficients of order 1 s−1; for inversion transitions, A val-
ues are ∼ 10−7 s−1 (see, e.g., Table 14.2). These non metastable states require ex-
tremely high H2 densities or intense far infrared fields to be populated. Thus NH3

non metastable states (J > K) are not suitable for TK determinations. Rather, one
measures the inversion transitions in different metastable (J = K) levels. Popula-
tions cannot be transferred from one metastable state to another via allowed radiative
transitions. This occurs via collisions, so the relative populations of metastable lev-
els are directly related to TK. The column densities are obtained from the inversion
transitions from different metastable states, and converts these to column densities
using (15.25, 15.26, 15.27 and 15.28). If the NH3 lines are optically thick, one can
use the ratios of satellite components to main quadrupole hyperfine components, in
most cases, to determine optical depths. A large number of TK determinations have
been made using NH3 in dark dust clouds. Usually these involve the (J,K) = (1,1)
and (2,2) inversion transitions.

From the ratio of column densities in the Boltzmann relation, one obtains a ro-
tational temperature, Trot. This temperature describes the relative populations in
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Fig. 16.5 A plot of the kinetic temperature, TK, as a function of Trot obtained from the column
densities of the (1,1) and (2,2) inversion lines of NH3. The H2 density and NH3 density per gradient
are as shown [Adapted from Schilke (1989)]

different K ladders of the NH3 molecule. Although the (2,2) and (1,1) populations
are not linked by radiative transitions, collisions can cause a transfer of population
from the (2,2) levels to the (2,1) levels and by radiative decay to the (1,1) levels.
The very fast decay from the (2,1) to the (1,1) levels normally causes Trot to be an
underestimate of TK. Only at very high densities is this population exchange equal
in both directions. From model calculations, such as the one shown in Fig. 16.5, one
can correct for this bias, to obtain a reliable estimate of TK.

16.4.2 Linewidths, Radial Motions and Intensity Distributions

From the spectra themselves, the linewidths, ΔV1/2, and radial velocities, Vlsr, give
an estimate of motions in the clouds. The ΔV1/2 values are a combination of ther-
mal and turbulent motions. Observations show that the widths are supersonic in most
cases. In cold dense cores, motions barely exceed Doppler thermal values. Detailed
measurements of lines with moderate to large optical depths show that the shapes
are nearly Gaussian. However, simple models in which unsaturated line shapes are
Gaussians would give flat topped shapes at high optical depths. This is not found.
More realistic models of clouds are those in which shapes are determined by the
relative motion of a large number of small condensations, or clumps, which emit
optically thick line radiation. If the motions of such small clumps are balanced by
gravity, one can apply the virial theorem. Images of isolated sources can be used
for comparing with models. One example is the attempt to characterize the kinetic
temperature and the H2 density distributions from spectral line or thermal dust emis-
sion data. Clearly there are a number of parameters in any comparison. An example
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of fits to a pre-protostellar region is given in Galli et al. (2002). For lower density,
more extended clouds, one can interprete sharp velocity changes in a cloud as evi-
dence for the presence of shock waves (see e.g. Megeath and Wilson (1997)), but a
confirmation requires high angular resolution imaging.

16.4.3 Determination of H2 Densities

To obtain a reliable determination of H2 densities n(H2) one must measure at least
two spectral lines of a given species. To interpret these data, one needs an estimate
of the kinetic temperature, collision rates, and a radiative transport model. One can
assume that the lines are optically thin, and use a statistical equilibrium model, but
the present approach is to apply the LVG model to these data. We show examples
of this approach in Figs. 16.3 and 16.4. Clearly, the more lines measured, the more
reliable the result. For linear molecules such as CO or CS, it is not possible to
separate kinetic temperature and density effects. For example, CO with TK = 10 K
will have a J = 2-1 line much weaker than the J = 1-0 line no matter how high the
density. However, if the plot of CO line intensity versus frequency shows a turn
over, that is a decrease in intensity, it is possible to find a unique combination of TK

and n(H2).

16.4.4 Estimates of H2 Column Densities

The CO molecule has four properties which allow a good estimate of the total col-
umn density of H2, namely; a high line intensity, low critical density, an excitation
close to LTE, and a large abundance relative to H2. From all of the radio observa-
tions made, it appears that the abundance of CO relative to H2 seems to be close to
10−4 in most cases. There have been long discussions about which isotopomer of
CO is best suited for this purpose. For regions with densities < 102 cm−3, 12C16O
is the best choice, for somewhat denser regions, 13CO, and for n(H2)> 500 cm−3,
C18O is the best choice, since the transitions are optically thin. As can be seen from
the LTE treatment of the J = 1 → 0 line (15.36), the total column density of CO
varies directly with the value of Tex = TK. For an LTE treatment of the J = 2 → 1
line, the effect of TK is somewhat less, since the J = 1 energy level is 5.5 K above
the ground state (15.37).

An LVG treatment of the dependence of the total column density on the line
intensity of the J = 2 → 1 line shows that a simple relation is valid for TK from 15 K
to 80 K, and n(H2) from ∼ 103 to ∼ 106 cm−3. An assumption used in obtaining this
relation is that the ratio of C18O to H2 is 1.7× 10−7, which corresponds to (C/H2)
= 104, and (16O/18O) = 500. The latter ratio is obtained from isotopic studies for
molecular clouds near the Sun. Then we have
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NH2 = 2.65×1021
∫

TMB(C18O,J = 2 → 1)dv . (16.41)

The units of v are km s−1, of TMB(C18O, J = 2 → 1) are Kelvin, and of NH2 are
cm−2. This result can be used to determine cloud masses, if the distance to the cloud
is known, by a summation over the cloud, position by position, to obtain the total
number of H2. There is an additional 36% of mass in other constituents, mostly in
helium. The mass obtained from the method given above, or similar methods, is
sometimes referred to as the “CO mass”; this terminology can be misleading, but is
frequently found in the literature.

16.4.5 Masses of Molecular Clouds from Measurements of 12C16O

In large scale surveys of the CO J = 1 → 0 line in our galaxy and external galaxies,
it has been found, on the basis of a comparison of CO with 13CO maps, that the CO
integrated line intensities measure mass, even though this line is optically thick. The
line shapes and intensity ratios along different lines of sight are remarkably similar
for both 12CO and 13CO line radiation. This can be explained if the total emission
depends primarily on the number of clouds. If so, 12CO line measurements can be
used to obtain estimates of N12

CO. Observationally, in the disk of our galaxy, the ratio
of these two quantities varies remarkably little for different regions of the sky.

This empirical approach has been followed up by a theoretical analysis. The ba-
sic assumption is that the clouds are virial objects, with self-gravity balancing the
motions. If these clouds are thought to consist of a large number of clumps, each
with the same temperature, but sub thermally excited (i.e., Tex < TK), then from an
LVG analysis of the CO excitation, the peak intensity of the CO line will increase
with

√
n(H2), and the linewidth will also increase by the same factor, as can be

seen from (16.45). The exact relation between the integrated intensity of the CO
J = 1 → 0 line and the column density of H2 must be determined empirically. Such
a relation has also been applied to other galaxies and the center of our galaxy. How-
ever, the environment, such as the ISRF, may be very different and this may have
a large effect on the cloud properties. For the disk of our galaxy, a frequently used
conversion factor is:

NH2 = X
∫

TMB(CO,J = 1 → 0)dv

= 2.3×1020
∫

TMB(CO,J = 1 → 0)dv . (16.42)

where X = 2.3×1020 and NH2 is in units of cm−2. By summing the intensities over
the cloud, the mass in M� is obtained. Strictly speaking, this relation is only valid
for whole clouds. The exact value of the conversion factor between CO integrated
line intensity and mass, X , is a matter of some dispute. Most large-scale surveys
are restricted to the J = 1− 0 line of CO. In Fig. 16.6, we show the distribution
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Fig. 16.6 A plot of the surface density of CO and HI as a function of distance from the galactic
center. Dame estimates that the total mass in HI in the disk is 5.2±1.2 109 M�, the mass in H2 is
1.5±0.2 109. Fich and Tremaine (1991) estimate a total mass of about 4 1011 M�. [Figure adapted
from Dame (1993)]

of HI and H2 deduced from 21 cm and CO surveys. The H2 mass estimates were
obtained from an application of (16.42). The differing amounts of HI in the outer
galaxy are caused by different choices of rotation curves. The general opinion is
that the coefficient in (16.42) should be 0.3–0.5 for the galactic center region, and
perhaps ∼5 for the outer galaxy. From the CO surveys, large clouds, so-called Giant
Molecular Clouds (GMC’s) contain 90% of the total mass of H2, and follow the
relationships

σ ∼ R0.5

where σ is the linewidth and R is the cloud size, another relation is,

M ∼ R2 .

If (16.42) holds, one can obtain a relation similar to that of Tully-Fisher, namely
LCO ∼ σ4.

16.4.6 The Correlation of CO and H2 Column Densities

One widely used method involves estimates of the column densities of carbon
monoxide. As far as we know, CO is the most abundant polar molecule in the ISM;
thus we believe that there should be other noticeable effects if interstellar chemistry
should affect the abundance of CO. The abundance of CO can be determined with
some confidence since the rotational transitions are emitted in LTE and there are a
large number of isotopomer lines. Clearly it is of interest to investigate whether there
is a relation between the column density of CO, NCO, and N(H2). If so, CO could be
used as a mass tracer. Even if we assume that interstellar chemistry and excitation
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do not affect the CO molecule, the destruction of CO by UV photons must be taken
into account. Outside dust clouds, the interstellar radiation field contains enough
UV quanta able to photo dissociate most molecules so that the molecular fractional
abundance will be small. But with increasing depth in the clouds, the radiation will
be attenuated. This results in a corresponding increase of the fractional abundance
of molecular species. The CO molecule is dissociated by UV spectral lines, so dif-
ferent isotopomers will have different destruction thresholds. From this qualitative
sketch, it should be expected that CO will be observed only if AV is above a cer-
tain threshold value. Frerking et al. (1982) found a value AV > 1m for 13CO and
AV > 1.9m for C18O.

CO can be used as a tracer of molecular hydrogen in interstellar clouds where
AV > 1m. The mass of the molecular cloud should be determined from observations
of an isotope of CO that is readily observable, optically thin and not affected by
enhancements of the isotope by fractionation. Comparing CO abundances with H2

column densities obtained in the infrared and the UV, Frerking et al. (1982) give
relations for dense cores of clouds. If we use the standard relation between visual
extinction in magnitudes and column density of H2, we have

N(H2) =
[

N(C18O)
2.29×1014

]
×1021 cm−2 forN(H2) < 1.5×1022 cm−2

=
[

N(13CO)
2.18×1015

]
×1021 cm−2 forN(H2) < 5×1021 cm−2 .

(16.43)

As noted by the authors of various such studies, a scatter of factor two to five in
the correlations is always present; Lada et al. (1994) noted that the scatter increases
with increasing extinction. If this is random, this is a fundamental limit, perhaps
caused by small scale structure in the clouds which allows UV to penetrate deep
into the interior. Kramer et al. (1998) noted a decrease in the C18O to H2 ratio for
the darkest parts of IC5146, indicating a freezing out of C18O.

16.4.6.1 Column Densities from Dust Measurements

In the ISM, one expects a more-or-less constant dust-to-gas ratio, since dust is made
up of metals such as carbon and silicon, and the mass fraction in metals is 1%. Thus,
from the column density of dust one can estimate the total column density of gas.
In molecular clouds, the gas will be in the form of H2 which cannot be measured
under most circumstances. However, there are relations between the column den-
sity of dust and visual extinction, AV. In nearby regions of lower extinction, we can
measure AV from star counts or measurements of the infrared extinction. In darker
regions or regions far from the Sun, extinction must be measured using indirect
methods, for example by measuring the column density of H2. Another method to
determine column densities is the use of dust continuum emission. This is important
in very dense, cold regions, since from a simplified (perhaps oversimplified) theory,
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there is a gas-grain collision given by (16.1). For H2 densities > 106 cm−3, tmg is
3000 years, short compared to most other time scales. Then CO and most other
molecules might be condensed out of the gas phase, so that spectroscopic measure-
ments cannot be used as a probe of very dense regions. An alternative (for column
densities but not dynamics) are measurements of the thermal emission from dust.
The most critical step is making a quantitative connection between τdust and N(H2).
All astronomical determinations are based on the analysis of Hildebrand (1983). For
λ > 100μm, Mezger et al. (1990) used the Rayleigh-Jeans approximation to obtain
the following relation (presented previously in 10.7):

N(H) = 1.93×1024 Sν
θ 2

λ 4

Z/Z� bTdust
, (16.44)

where the dust flux densities, Sν , are in mJy, the source FWHP sizes, θ , in arc sec-
onds, and wavelengths, λ in mm, the column density of hydrogen in all forms, N(H),
in cm−2. The value of Z for the Sun is Z�, and b is an adjustable factor used to take
into account changes in grain sizes. At present it is believed that b = 1.9 is appro-
priate for moderate density gas and b = 3.4 for very dense gas, although Ossenkopf
and Henning (1994) report that a range of ±2.5 is likely. Since dust emission mea-
surements using ground based telescopes usually require beam switching, the results
emphasize compact structures.

16.4.7 Mass Estimates and Cloud Stability

We repeat here the result obtained in Chap. 12. If we assume that only gravity is to
be balanced by the motions in a cloud, then, for a uniform density cloud of radius
R, in terms of the line of sight FWHP velocity, virial equilibrium requires:

M
M�

= 250

( Δv1/2

kms−1

)2( R
pc

)
. (16.45)

Once again very optically thick lines should not be used in determining masses
using (16.45).

It is interesting to investigate what occurs if isolated clouds are not stable. This is
a very complex question in the general case where clumping and large temperature
differences are present. If we consider only a uniform density isothermal cloud,
there are two possibilities: (1) the gravitational attraction is too weak to bind the
cloud, in which case the cloud disperses in a time (D/ΔV1/2), or the cloud must
be confined by external pressure or (2), the motion of gas in the cloud is too small
to balance gravity, in which case the cloud collapses. The collapse of a uniform,
pressure free, non rotating cloud will occur in a free fall time. From the integration
of the equation of motion of a spherical region, we have
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t f f =

√
3π

32Gρ(0)
, (16.46)

where G is the gravitational constant, and ρ(0) = m(H2)n(H2) is the initial density
of the cloud. In CGS units, this is

t f f = 5×107/
√

n(H2) , (16.47)

where the free fall time t f f is given in years if the H2 density n(H2) is in cm−3.
The estimate given above leads to an interesting conclusion if applied to clouds

in our galaxy. If one takes the average H2 density in giant molecular clouds as
102 cm−3, the collapse time is 5×106 years. There are >500 such clouds each with
mass 106M�, so the average star formation rate must be ∼ 5×102 M� year−1. This
is much too large to be compatible with models of the galaxy, from direct observa-
tions of selected clouds, so there must be a support mechanism. This could be either
turbulence or magnetic fields. Supersonic turbulence has a rapid decay time, so if
present, there must be a source to resupply the turbulent energy.

The support may be provided by magnetic fields. If so, it is likely that magne-
tohydrodynamic waves are present. An estimate of the contribution of such waves
to the observed linewidth can be obtained by considering the Alfvén velocity, va, in
km s−1:

Va = 1.1

(
B
μG

)( n
cm−2

)−1/2
. (16.48)

In regard to linewidths, this situation might be described by the phrase linewidths
appear to be supersonic, but may be sub-Alfvénic. For a typical cloud of density
103 cm−3, with a 10μGauss field, the Alfvén wave velocity would be 0.3 km s−1.

The strengths of line-of-sight magnetic fields can be obtained from circular po-
larization measurements of the Zeeman effect (see, e.g., Chap. 12). However linear
polarization has been detected in CO lines. This is caused by a combination of mag-
netic field, excitation and optical depth effects. This is the Goldreich-Kylafis effect
(Goldreich and Kylafis 1982). Crutcher (2008) has reviewed both line and con-
tinuum polarization measurements. Even if the magnetic field strength is known,
the coupling of this field to the neutral gas also depends on the relative electron
abundance. Estimates of the relative electron abundances can be estimated on the
basis of HCO+ measurements, if the electron recombination rates are known. See
Sect. 16.61 for a discussion of the use of HCO+ measurements to determine electron
abundances. According to standard theory [see, e.g., Spitzer (1978)], if the relative
electron abundance is [e] ≥ 10−7, the magnetic field will be coupled to the gas and
this will help to prevent collapse. If the relative electron density is less than 10−7,
the gas and magnetic field are decoupled. Then if the molecular gas is gravitation-
ally unstable, magnetic effects will not hinder collapse of the molecular cloud. A
detailed discussion of cloud collapse is given in Shu et al. (1987).

If magnetic fields have a large effect on line widths, the virial mass is an upper
limit. The magnetic energy density is given by B2/8π . If one assumes that there is
equipartition between magnetic, kinetic and gravitational energies, one can obtain,
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B
μG

= 15.2

( Δv1/2

kms−1

)2 (
R
pc

)
. (16.49)

16.4.8 Signatures of Cloud Collapse

We know that stars form in molecular clouds, because of the close spatial and phys-
ical associations. The details of the process are not well determined, so an active
field of study to the determination of collapse criteria, and the search for objects
that are collapsing. Models for collapse begin with sizes of 1016 cm, continuing to
pre-planetary disk sizes 1014 cm around the resulting star. At present, mm and sub-
mm instrumentation limits us to nearby objects which could be imaged on scales
<1016 cm. After many searches, a number of candidate objects have been found.
These are mostly in dark dust clouds where low mass stars are expected to form.
The collapse signature is based on a model where the cloud center has higher tem-
perature and density, and where the collapse motions exceed the thermal motions.
The measurements of optically thick lines, such as carbon monosulfide, 12C32S will
show a narrow absorption feature (from gas in the outer part of region). This locates
the center of the emission profile. If the cloud is collapsing, the blue shifted portion
of this profile has a larger intensity than the red-shifted portion, since the radiation
from hotter blue- shifted gas passes through the red-shifted gas without being ab-
sorbed. The red-shifted radiation from equally hot gas is absorbed by cooler gas at
nearly the same velocity. Thus the blue wing arises closer to the warmer gas. If the
cloud is expanding, the red-shifted portion is more intense. A measurement of the
rarer isotope 13C32S must show no narrow absorption feature or asymmetry. After
a large number of attempts, a few well established cases of collapsing clouds have
now been found (Evans 1999). The next steps are to establish the chemistry of pre-
collapse objects and the details of chemistry and dynamics in disks around young
stars.

16.5 A Selected Sample of Results

In Table 16.2, we give a classification of molecular regions together with some of
their properties. The diffuse clouds are studied mostly by their absorption lines to-
ward bright background stars. UV photons from the ISRF can penetrate diffuse
clouds and rapidly destroy most molecules, so the fraction of atomic species is
high and complex species are rare. The translucent clouds form a bridge to the dark
molecular clouds, with higher values of density and lower values of Tk. Photopro-
cesses play a large role in the outer parts of these clouds, but much less in the cen-
ters. These clouds are found as IRAS 100 μm cirrus emission and also in CO lines.
Little or no star formation has occurred in these, perhaps due to the high fractional
ionization. The cold, dark molecular clouds show complex morphologies. These are
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Table 16.2 Physical Characteristics of Molecular Regions in the ISM [after van Dishoeck et al.
(1993)]

Density T Mass Av Size ΔV Example
(cm−3) (K) M� mag pc km s−1

Diffuse clouds 100–800 30–80 1–100 ≈1 1–5 0.5–3 ζ Oph
Transluc. clouds 500–5000 15–50 3–100 1–5 0.5–5 Hi-lat-cl
Cold dark clouds
Complex 102–103 >10 103–104 1–2 6–20 1–3 Taurus
clouds 102–104 >10 10–103 2–5 0.2–4 0.5–1.5 NGC 1333
cores 104–105 ≈10 0.3–10 5–25 0.05–0.4 0.2–0.4 TMC-1
GMC complex 102–103 15–20 (1–30)105 1–2 20–80 6–15 M17, Orion
clouds 102–104 >20 103–105 >2 3–20 3–12 Ori. OMC–1
warm clumps 104–107 25–70 1–103 5–1000 0.05–3 1–3 M17 clumps
hot cores 107–109 100–200 10–103 50–1000 0.05–1 1–10 Ori.Hot Core

the birthplaces of low mass stars (i.e. < 2 M�) and extend over tens of parsec; in
Taurus this is several square degrees of sky. In some parts of these clouds, complex
molecules have been detected (see the discussion of TMC 1). The Giant Molecular
Clouds (GMC’s) have a similarly complex morphology but are warmer and more
massive than cold dark clouds. GMC’s have the same average density as cold dark
clouds, but GMC clumps can have densities n(H2)≈ 106 cm−3. GMC cores are also
the sites of massive star formation, in addition to low mass star formation. It is be-
lieved that dark clouds and GMC’s are close to virial equilibrium, so self gravity is
important in determining the structure and evolution. Diffuse and translucent clouds
are not in virial equilibrium, but probably in pressure balance. There is no consen-
sus on ages, with values from 107 to 108 years in the literature. The cores may have
much shorter lifetimes. If star formation has occurred, perhaps 104 to 105 years;
cores without stars may have lifetimes of 10 times longer. From the star formation
rate, cores must be supported against collapse for many free fall times.

16.6 Chemistry

In the following, we treat two examples of molecular clouds to illustrate the wide
variety of chemistries.

In Table 16.3, we give a list of the known interstellar molecules ordered by the
number of atoms. Of the interstellar molecular species identified so far, 90 contain
carbon, and are considered organic. From this table, one notes first, that many of the
molecules are organic. The remaining 40, mostly diatomic species, belong to what
is commonly called inorganic chemistry. Aside from H2 itself, the most widespread
inorganic species are OH, NH3 and SiO and H2O. Nearly all of the complex molecu-
lar species contain carbon. Among these are formaldehyde, H2CO, cyanoacetylene,
HCCCN, formamide, NH2CHO and ethyl alcohol, CH3CH2OH.
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Table 16.3 Gas-phase interstellar and circumstellar molecules a)

(2) (2) (3)–(4) (5) (6) (8)
H2 PO N2O CH4 C4H2 H2C6
CH SO SO2 SiH4 H2C4 C6H2
CH+ SO+ SiCN H2COH+ HC2CHO C7H
NH FeO SiNC CH2NH c-C3H2O (9)–(10)
OH (3) AlNC H2C3 HC3NH+ CH3CHCH2

SH H+
3 MgCN c-C3H2 C5N CH3OCH3

C2 CH2 MgNC CH2CN HC4N CH3CONH2
CN NH2 NaCN NH2CN CH3C4H
CO H2O CH3 CH2CO (7) C8H
CO+ H2S NH3 HCOOH CH3CHO C8H−

CF+ CCH H3O+ C4H CH3NH2 HC7N
CP HCN H2CO C4H− CH3CCH C3H6
CS HNC HCCH HC3N C2H3OH C2H5CHO
HF HCO+ H2CN HC2NC c-CH2OCH2 CH3COCH3
NO HOC+ HCNH+ HNCCC C2H3CN HOCH2CH2OH
PN HCO H2CS C5 HC5N CH3C5N
NS HN+

2 C3H C4Si C6H (11)
AlF HCP c-C3H CNCHO C6H− CH3C6H
AlCl HNO HCCN CH2CHO (8) HC9N
NaCl HCS+ HNCO C2H4 C2H6 (12)
KCl C3 HOCO+ CH3OH HCOOCH3 C6H6
SiC C2O HNCS CH3SH CH3COOH (13)
SiN C2S C3N CH3CN HOCH2CHO HC11N
SiO c-C2Si C3O CH3NC C2H3CHO
SiS CO2 C3S CH2CNH CH3C3N
N2? OCS c-SiC3 NH2CHO CH2CCHCN
O2 CCP C3N− C5H NH2CH2CN

a) “c” stands for cyclic species; “?” stands for ambiguous detections; isotopomers excluded. Table
provided by E. Herbst and T. Millar

Only a few ring molecules, marked with a prefix “c”, have been detected so far,
although extensive searches have been conducted. It is not clear yet whether this
indicates a true deficiency of ring molecules, since the molecular structures of ring
molecules are complex with a large number of energy levels. In addition, some may
have no permanent dipole moments. Thus even at low interstellar temperatures, the
population in any one level is low since a large number of energy levels are popu-
lated. In radio astronomy, usually only one transition is measured at a time, so this
discriminates against the detection of complex species which lack internal symme-
try. Alternatively, the excitation mechanisms for the lines searched for so far may
be unfavorable. At present, the abundance of molecules without permanent dipole
moments, such as CH4 or C2H2, can be determined to only a limited extent. For
polar molecules, one can use the results of detailed abundance analyses (presented
earlier in this chapter) to estimate the relative abundance of molecules in different
classes of sources. In Fig. 16.8, we show a plot of relative abundances for the ex-
tended molecular region in Orion (a warm dense core, with TK ≥ 60 K), TMC-1S
(a cold moderately dense core, with TK = 10 K) and the envelope of a carbon star
IRC+10216.
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16.6.1 Clouds for which the UV Field can be Neglected

Even in very dense, hot neutral regions such as the Orion Hot Core, three body
collisions hardly ever occur. In the more typical regions where the H2 density is
� 102 cm−3, and TK � 20 K, collisions between two neutral partners rarely lead
to chemical reactions since there is an activation energy. Rather, as was found in
the 1970s, gas phase production of more complex molecules commonly found in
the ISM requires a nonstandard chemistry involving ions [for a short history, see
Herbst (1999, 2001)].

16.6.2 Models of Photon Dominated Regions

One finds high intensity, extended emission in various CO rotational lines and
atomic fine structure lines (Table 12.1) toward a variety of sources such as star
burst galaxies, molecular clouds near giant HII regions, Planetary Nebulae and even
disks around young stars (see Hollenbach and Tielens 1999). The Orion region has
good examples of PDRs. These arise from the interface between the HII region and
molecular cloud in a Photon Dominated Region (PDR). One of the most well stud-
ied PDRs is the ′Orion Bar′, to the SE of the Orion H II region. Here, the radiation
field is ∼105 times larger than found near the Sun, and the proton density is ∼ 105

cm−3. In PDRs, the molecules are close to a source of far UV (energies between
6 eV and 13.6 eV) radiation from the O stars which give rise to the HII region. This
UV field alters the chemistry and heat balance. The most obvious change is that CII
and CI become much more abundant. The layer containing CI may extend to a depth
which is a significant fraction of the width of the PDR.

PDR models are complex since in the PDR scheme one must account both for
the heating and chemistry of the region. The present view is that the heating in the
PDR is caused by the absorption of stellar UV by dust grains, with the photoejec-
tion of electrons. To reach the high temperatures observed, small grains must play
a large role; the details of this heating process are a topic of current research. The
models are characterized by G0, the ratio of the radiation field to that found near
the Sun, and n, the proton density. In a plane parallel geometry, from the HII re-
gion toward the molecular cloud interior, one finds thin layers of H2, then CII, CI
and then CO (see Störzer et al. 1996 for spherical geometry). The CO line emission
from a PDR arises from a layer corresponding to Av=1–2m, or 2–4 1021 cm−2 pro-
tons. For a time-stationary PDR, this layer must be rather dense (n(H2)≈105 cm−3),
so that H2 formation times are fast compared to dynamical times. There is a strat-
ification in a PDR, so this is not a uniform region. Closer to the UV source, OI
and CII provide most of the cooling. Deeper into the molecular region, CO rota-
tional lines contribute more to the cooling. In Fig. 16.7 we show a set of ratios
for far IR fine structure and CO rotational lines. For these plots, it is assumed that
there is a single PDR, more extended than the telescope beam. As can be seen,
in CO emission from high density PDRs, higher rotational lines have larger peak
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Fig. 16.7 Plots of the intensity ratios of the fine structure lines of OI and CII, and the ratio of the
rotational lines of CO as a function of the UV radiation field (in terms of G0 the field near the Sun)
and the proton density, n. In (a) we plot the ratio of OI to CII, in (b) the ratio of the J = 3− 2 to
J = 1−0 lines of CO are shown. [Adapted from Kaufman et al. (1999)]

temperatures; from the ratios of CO lines one can also characterize conditions in
the PDR.

From more detailed studies has it become necessary to introduce high density
condensations in the PDRs. This inclusion of such clumps complicates the analysis,
but clumping is needed to explain sub-mm CO line intensities.

At the surface of clouds, ions can be produced by radiation. However, the radia-
tion would also destroy the molecules. Deeper inside the clouds, the molecules can
survive, and there the ions are produced by cosmic rays which can penetrate into the
interior of a molecular cloud.

16.6.3 Results

We have plotted selected observational abundances in Fig. 16.8. These are corrected
for source and beam size effects. The typical error bars are shown for IRC+10216.
These apply to all sources plotted. We restrict ourselves to the abundances of the
more commonly found species. For CO, the abundance is about 10−4, which 30%
of the carbon to H ratio. For IRC+10216, the ratio may be higher, but this is a star in
which carbon is overabundant compared to the usual ISM ratio . It is believed that at
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Fig. 16.8 A plot of the relative abundances of molecular species for the sources TMC-1, represent-
ing dust clouds, IRC+10216, representing carbon star envelopes, and Orion KL, representing hot
dense molecular cores and IRAS 16293-2422, representing low mass star forming regions [adapted
from van Dishoeck and Blake (1998), van Dishoeck et al. (1993) with IRC+10216 data from Irvine
et al. (1985) and some additional data from Langer et al. (2002)]

the very highest densities all molecules (except H2, H+
3 and H2H+) are condensed

onto grains. Uncertainties are thought to be <2; for other species, the error in the
total abundances is likely to be ±3, and the abundance relative to H2 must be even
larger.

In most cases, the abundances are averaged over the source, not the telescope
beam. That is, corrections for source size have been applied. In most cases, this re-
quires high angular resolution imaging. Except for TMC-1S (the HCxN, x = 2n+1,
with n = 1,2 . . . abound in Taurus) such images exist for some transitions of the
molecules. From top to bottom in the table, one finds a small scatter in the CO
abundance, but a large scatter for water vapor. One has to bear in mind that determi-
nations of the H2O abundance are made difficult since the earth’s atmosphere is not
transparent at the line frequencies, and that many transitions of H2O show maser
emission. From SWAS (sub-mm water astronomy satellite) data, the relative abun-
dance of H2O is ≈ 10−5 in warm sources, but orders of magnitude smaller in cold
sources. H2O is produced in the gas phase at high TK, but may also be evaporated
from grains.
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Methanol, CH3OH and methyl formate, HCOOCH3, are 10–100 times more
abundant in the Orion Hot Core than elsewhere. This is an indication that these
species are favored in “Hot Core chemistry”. One surmises that these are formed
on and evaporated from grains when a protostar evolves into a Young Stellar Object
(YSO). Both species are asymmetric top molecules, so have many energy levels.
Thus even if the lines are weak there is no assurance that the total abundance is low.

Formaldehyde, H2CO, ammonia, NH3, and hydrogen cyanide, HCN, also show
a large abundance spread. In the case of H2CO and NH3, there are indications that
in warmer source these are produced on grains and evaporated. There must be ad-
ditional mechanisms to produce these, and HCN, in regions where Tkin=10 K. The
formyl ion, HCO+, and protonated molecular nitrogen, N2H+ are produced in the
gas phase. At present, we believe that these species exist in the gas phase even at
the highest densities. The spread in the HCO+ and N2H+ abundances gives an in-
dication of the effect of local conditions on the abundance. The silicon monoxide
molecule, SiO, is found only where strong shock waves are present. The generally
accepted scenario is that grains, which consist of Si and carbon, are broken up by
the shocks, and the Si is set free. SiO can form only at high temperatures, but the
shocks also raise the gas temperature, so this is also provided by shock waves. Car-
bon monosulfide, CS, is found in cold clouds, so this is very likely produced in the
gas phase. In the quiescent TMC-1S region and in the Orion extended ridge, methyl
cyanide, CH3CN, has a much lower abundance than methyl acetylene, CH3C2H,
which reflects a very different chemistry. This may indicate that CH3C2H is a gas
phase product. It is thought that sulfur monoxide, SO, sulfur dioxide, SO2, and hy-
drogen sulfide, H2S, are produced only a higher temperatures, so probably in shocks.
The long chain polyenes at the bottom of the table are produced in gas phase chem-
istry.

Some of the molecules are commonly found on earth; examples are NH3, HCN
and NaCl. However, others, such as OH, CN, CO+, CH+, HCO+, and N2H+ are
chemically unstable even under laboratory conditions and will quickly combine to
form other, chemically stable species. An immediate question is how such species
are formed. As will be discussed in the next section, the observed abundance of
even diatomic molecules requires a chemistry which is different from that normally
encountered on earth.

16.6.4 Ion-Molecule Chemistry

In cold clouds prior to star formation the chemistry is dominated by low temperature
gas phase ion molecule and neutral-neutral reactions. These lead to small radicals
and unsaturated molecules. Ion-molecule chemistry is very successful in explain-
ing many aspects of this chemistry. At typical densities, neutral-neutral chemical
reactions between atoms are simply too slow to form even triatomic molecules in a
few 106 years. The solution to this problem involves ion-molecule chemistry. The
ions, mostly hydrogen but about 10% helium by number, are produced by cosmic
rays. The hydrogen ions either form H+

3 , or charge exchange with atoms such as
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carbon or oxygen. The usual reaction rates for ion molecule reactions are thousands
of times faster than neutral reactions, and this satisfactorily explains the abundance
of diatomic molecules such as CO or OH in dark clouds. Ion-molecule reactions
also play a large part in the formation of molecules in the envelopes of low-mass
stars in the red giant phase.

As far as we know, with one exception, simpler species are produced in the
gas phase by reactions of ions and molecules. The exception is the most abundant
molecule, H2. Because H2 is a homopolar molecule, that is, without a permanent
dipole moment, the formation via collisions of two H atoms will occur very rarely.
This is because of the need to conserve both energy and momentum; the radiation
process is simply too slow to allow the excess energy to escape. For this reason, the
formation of H2 must occur on dust grain surfaces. It has been proposed that at den-
sities ≥ 1010 cm−3, three body reactions in the gas phase could occur, but such high
densities are thought to occur only rarely, perhaps in early universe before grains
were formed.

Gas phase chemistry consists of 3 types: carbon insertion (C++CH4 → C2 + H2

H+
2 ), condensation reactions (CH+

3 + CH4→C2H+
5 + H2), and radiative associa-

tion (C+ + Cn→C+
n+1+hν). The build up of polyatomic molecules is limited by

photodissociation at the edges of clouds and near young stars. At larger AV, re-
actions with O and C+ tie up atoms in CO, which is very stable. At higher kinetic
temperatures, Tk, these reactions lead to H2O. Element abundances play a role, es-
pecially C versus O. In the ISM, one finds that C, N and O are ≈ 25% below the
solar system values. Dust must contain nearly 100% of the Si and Fe, and ≈ 25% of
the O, and 60% of the C. Dust contains a few % of N. Gas phase O2 abundance is
small, with 40% of the O in the form of OI. In cold clouds, the H2O abundance is
≈10−7 to 10−8. In warmer clouds the water abundance is much larger. Most of the
O is in dust grains or condensed as ices. In the gas phase, oxygen is in OI and CO,
and perhaps H2O.

In warmer, denser clouds, the chemistry is more complex, since it is possible that
certain complex molecules are formed on the surfaces of dust grains, and are then
liberated. For grain surface chemistry, the reaction sites and reaction mechanisms
may not be well determined. Even for the rather well-understood ion-molecule gas
phase chemistry, there are many possible reactions leading to an observed product.
This is even the case for an abundant species such as CO. Also, reaction rates for
low temperatures are not measured in many cases. Usually, reactions involving ions
are not very temperature sensitive, but in any production path, there may be reac-
tions involving neutrals and these are very temperature dependent. (See the web site
www.rate99.co.uk for a database.)

We now consider a simple example of gas phase production of molecules. This
is meant to serve as an example for other schemes which have a larger number of
production pathways. An excellent example of ion-molecule chemistry is the case
of HCO+. In the following, we show one of the production and destruction paths for
this molecule in well shielded regions where the interstellar radiation field, (ISRF)
plays only a minor role. This example illustrates many of the general principles of
the preceding discussion and shows how laboratory and astronomical data can be



456 16 Molecules in Interstellar Space

combined to yield results which are otherwise unreachable. It should be noted that
CO, OH and other species are also produced in a similar way, although the processes
are somewhat more complex. We assume that the ISRF plays no role. Then, the first
reaction is cosmic ray (CR) radiation reacting with H2:

H2 +CR → H+ +H+ e− , (16.50)

H+ +H2 → H+
3 . (16.51)

These reactions and similar ones involving ionized helium or H+
2 lead to H+

3
rather than to H+ + H. Once H+

3 has formed, it can react with many partners. For
example, one reaction is:

H+
3 +CO → HCO+ +H2 . (16.52)

These reactions lead to the production of HCO+. The destruction of HCO+ or
H+

3 can occur via recombination with electrons:

H+
3 + e− → H2 +H , (16.53)

HCO+ + e− → H+CO . (16.54)

The total cosmic ray ionization rate per H2 is given by ζ , in units of s−1; the
rate per H atom is ζ/2. The destruction of H+

3 is via reactions with electrons, either
from those resulting from the formation of H+

3 , with a rate ke, or those resulting
from other ions, with a rate ki. When formation and destruction are in equilibrium,
we arrive at a steady state relation for the abundance of HCO+ and H+

3 in a cloud
with a local H2 density n(H2). For the reaction rate in (16.53) we use ke for electrons
from H+

3 and ki for electrons from metals. Similarly for (16.54) we use kHCO+ for the
reaction of HCO+ with electrons from the ion itself, and k′i for the reaction charge
exchange with metals. Balancing the creation and destruction rates of H+

3 we have

ke nH+
3

ne + ki nH+
3

nXi = ζ nH2 . (16.55)

For HCO+ the reaction balance is

kHCO+ n(HCO+) ne + k′i n(HCO+) nXi = k n(H+
3 ) nCO . (16.56)

Dividing by the local density of H2 in these two relations, we obtain the concen-
trations of the species involved. We use square brackets to indicate concentrations,
then:

[H+
3 ](ke[e]+ ki[Xi]) = ζ/nH2 . (16.57)

For the abundance of HCO+, the steady state result is:

[HCO+](kHCO+[e]+ k′i[Xi]) = k [H+
3 ] [CO] . (16.58)

Combining these two relations, we can solve for the abundance of HCO+ in
terms of the cosmic ray rate, ζ , the abundance of CO and the ionization fraction in
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a cloud:

[HCO+] =
kζ [CO]/n(H2)

(kHCO+[e]+ k′i[Xi]) (ke[e]+ ki[Xi])
(16.59)

where k is the ion-molecule rate which H+
3 reacts with CO to form HCO+; this is

a measured value. If we take ∑Xi � 10−4, and define R = n(H2)n(HCO+)/n(CO),
then (16.59) reduces to:

R ≤ kζ
(k+

HCO [e])(ke[e])
(16.60)

or, solving for [e],

[e] ≤
√

ζ k
RkHCO+ ke

. (16.61)

From the abundances of HCO+, CO and the cosmic ray rates, one can obtain the
electron abundances. We take k = 10−9, ke = 4×10−5 T−0.5 cm−3 s−1, and kHCO+ =
6× 10−6T−0.5 cm−3 s−1. For molecular clouds, the typical values are TK = 10 K,
R ≈ 1,ζ = 4×10−17 s−1. From these values, an upper limit to the electron fraction
is 10−8. See our discussion of magnetic support in Sect. 14.10.4.

As one might expect, the real situation is not so simple, because of: (1) the in-
homogeneous structure of clouds, (2) possible non-LTE excitation and (3) uncertain
reaction rates for H+

3 or other reactions.
The inhomogeneous structure of molecular clouds may have an effect because

their envelopes will have a larger abundance of electrons due to ionization of
metals with potentials below the ionization energy of H (13.6 eV) by the ISRF.
In the cloud interior these are less abundant because of the extensive depletion
expected at high densities, and shielding by dust. Thus HCO+ may be present
mainly in the outer parts of clouds, and one cannot simply combine the CO
abundance for the whole cloud with HCO+ results. The excitation will play a
role since HCO+ requires a high H2 density for thermalization (see Sect. 14.6).
Finally, the calculated electron abundances depend on how fast H+

3 exchanges
charge.

The HCO+ scheme makes it clear that the gas phase abundance of any species
in a molecular cloud is a delicate balance between the production and destruction
processes. The production process depends on the type of chemistry; either ion-
molecule, neutral-neutral or grain surface reaction. These in turn depend on TK , as
well as the abundance of relevant ions and constituents and their form, either molec-
ular or atomic. The destruction processes can be either chemical, that is, processing
into more complex species, or physical, that is, the freezing out onto grains, or de-
struction by the ISRF or cosmic rays. All of these are dynamic processes, which
can change on time scales of 103 years, much shorter than the lifetime of molecular
clouds.

At present, it seems clear that for the vast majority of clouds in most circum-
stances, the most important gas phase chemical production mechanisms have been
identified, but the quantitative reaction rates at low TK have not been settled in many
cases. The question of which chemical paths are most important must be settled
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on an individual basis, from laboratory measurements. One sweeping philosophical
conclusion is that interstellar chemistry has shown us that standard processes known
from laboratory chemistry are only a special case of many possible chemistries.

16.6.5 Grain Chemistry

If the cloud begins to collapse, the densities rise and for a while the kinetic tem-
perature falls. One result will be that a significant fraction of gas phase molecules
condense on icy mantles. High abundances of some species and detection of ices
demand gas-grain, or surface chemistry. These contain important information on
the temperature and irradiation history of the region. There are two regimes for the
surface chemistry: In the first, the mobile species moves over the surface faster than
the accretion time of the reactant. In the second, the accretion time is faster. Most
models of surface chemistry use the second approach, although the first approach
can be analyzed via a Monte-Carlo method. After the reaction, the species must
return to the gas phase. The dust temperature must reach 20 K for thermal evapora-
tion of CO. Other mechanisms are cosmic ray spot heating, or exothermic heating
via chemical reactions, grain-grain collisions. The efficiencies are dependent on the
binding energies of the molecules on the grain surfaces.

Grain chemistry can be modified by surface reactions and through processing by
UV, X rays from nearby stars and cosmic rays. After the new star has formed its ra-
diation heats up the surrounding gas and dust and the molecules begin to evaporate
back into the gas phase with the most volatile returned first. In addition, outflows
from the young stars penetrate the surrounding envelope creating high tempera-
ture shocks and lower temperature turbulent regions. In which the grain mantles
are returned to the gas. Finally the envelope is dispersed by winds and in the case
of massive stars, UV photons leading the appearance of photon dominated regions
(PDR).

In connection with present-day gas-grain models, one must bear in mind that
these have dependences on time. With enough data, one could determine the age
of the source. However, given the incomplete state of our knowledge of sources,
time-dependence is likely to be used as a free parameter to determine source age.

16.6.6 Searches for New Molecules

Initially, molecular identifications were usually based on one transition. Today, this
is done only in exceptional cases for species expected to be abundant in certain
regions. Recent examples are D2O and H2D+. For less abundant asymmetric top
molecules without characteristic hyperfine signatures, there is a good chance of line
confusion. For example, in the frequency range between 100 and 110 GHz there are
362 lines, of which 113 are unidentified (“U”) lines

(Lovas (1992)). The weakest lines detected have peak intensities at the 20 milli
K level. For a survey in the 325-60 GHz interval, Schilke et al. (1997) can identify
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94% of the lines found. There are 29 lines per GHz. Many of the identified lines
are due to transitions from the ground or vibrationally excited states of abundant
species such as methanol, methyl formate or dimethyl ether. It would appear that
the chance of finding new species is better in the band around 100 GHz, where
there are fewer intense lines from known species, and where one can obtain sensi-
tive spectra. However, even at 100 GHz, there are so many spectral lines that the
chance of line overlap is large. The recent discovery of new complex species such
as vinyl alcohol, (CH2CHOH), glycolaldehyde (CH2OHCHO, the first sugar) and
ethylene glycol (HOCH2OH; see Hollis et al. (2002)) makes it more likely that
glycine (NH2CH2COOH), the simplest amino acid, may be present at some level.
(Amino acids have been found in meteorites; in some proposals life may have been
brought to the early earth from outer space). The discoveries of complex organic
molecules show that we have not yet reached the ultimate limit. However, it is be-
coming more likely that an increase in sensitivity might not lead to the identification
of new species in the classical sources such as Orion or Sgr B2. The most direct
method (see, e.g., Chap. 9), is to increase the angular resolution using interferome-
try. This is effective since different molecular species are usually found in slightly
different spatial locations. In addition, one could conduct searches in sources with
narrower linewidths.

We conclude that in order to identify a particular molecule, there must be: (1)
good agreement between the astronomical frequencies of at least four, and prefer-
ably more transitions known to an accuracy of better than 100 kHz, and (2) a com-
mon exitation mechanism.

For such accuracies, there must be laboratory frequencies. For stable species,
such results are available, as are molecular structures (see e.g. Harmony et al.
(1978)). These are usually based on a series of measurements in the millimeter
wavelength region. When combined with a model of the molecular structure one
can calculate the frequencies of all allowed transitions. The measured frequencies
are usually accurate to a few kHz, the model dependent frequencies to better than
a MHz. For unstable molecules, such as ions, laboratory frequencies are more of a
problem. For these species, one must measure the frequencies before destruction by
reactions in the gas phase or contact with walls. To carry out such measurements,
one usually produces the desired species in a volume much larger and a density
lower than is normally used in microwave spectroscopy, and then proceeds to mea-
sure the frequencies quickly. P. Thaddeus and coworkers (see Gordon et al. (2002))
have produced a variety of long carbon chains. Searches for such species can be
made in IRC+10216 or TMC 1, where the lines are narrower and density of lines is
smaller.

In order to have a certain detection of a new species, it may be necessary to es-
cape from the problem of confusion of those lines from the molecule sought with
lines from other molecules. In addition, the intensities of the lines for a given species
should yield a common rotational temperature. That is, one expects that the excita-
tion follows a simple model. Deviations from this rule may indicate that some of the
lines assigned to this species are the result of misidentifications.
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Problems

1. For CH3CN, CH3C2H and NH3 there can be no radiative transitions between
different K ladders. The populations can however be exchanged via collisions. For
ammonia, there must be J > K. There is a rapid decay of populations with quantum
numbers from (J + N + 1,K) to (J + N,K), where N is ≥ 1. Use the relation in
Eq. (15.43) to show that rotational transitions of NH3 fall in the frequency range
≥ 500 GHz. Estimate the Einstein A coefficients for the J = 1− 0 and J = 2− 1
transitions using μ = 1.34 Debye. Compare these values to those for the inversion
transitions listed in Table 16.2, which are ∼ 10−7 s−1.

2.(a) Calculate the excitation temperature, Tex, between two energy levels which
have the same statistical weights, that is gu = gl, so that the Boltzmann equation is
nu/nl = e−hν/kTex with hν/k = 1.14 K. The values of nu/nl are 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, 1.1, 1.2, 1.3, 1.4, 1.5.
(b) Use the relation between optical depth and column density from Problem 13 to
calculate the optical depth, τ , for the J = 1−0 line which has a FWHP of 10 km s−1,
Tex = −100 K, μ0 = 3.6 Debye, and ν = 9.0 GHz.
(c) Substitute this value of τ into the relation TMB = (Tex−TBG)(1−e−τ). If |TBG|�
|Tex| and |τ| � 1, show that TMB gives an accurate estimate of the column density
in the lower level, N0. Aside from questions of English usage, would you agree with
the statement “Optically thin masers do not mase”?
(d) Evaluate the other extreme case, TBG � Tex, to show that the background radia-
tion is amplified.

3. Use the large velocity gradient (LVG) relation for a two-level system (Eq. 16.40)
to estimate the line temperature when TK �T0, A�C. In addition, (A ji)/(3Cji τi j)�
1. This is a hot, subthermally excited transition.

4. Repeat the above exercise for the case in which A �C, but with all other param-
eters unchanged. This is the case of a hot, thermalized gas. Compare these results
with those of Problem 20.

5. In circumstellar envelopes, one assumes that spherical symmetry holds, and that
density n(r) = n0r−2. In addition, r = (z2 + p2)1/2, where p is the projected distance
and z the line-of-sight distance, and a constant velocity of expansion.
(a) Show that

δ z = ΔV/(dv‖/dz) = p
ΔV
V

(1− (v‖/V )2)−3/2 .

(b) Take the abundance of a species to be a constant fraction of the abundance of
H2. Show that the optical depth for a given species at point p and for a given v‖ is

τ(p,v‖) =
μ2 f n0(J +1)

1.67×1014 Tex

p
V (2J +1)

(1− (v‖/V )2)−1/2 .

(c) Take the beam to be much larger than the source. Then show that
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T = 2π
∫ pmax

0
T0(1− e−τ)pdp .

(d) Assume that the line is optically thin. Show that the line profile is flat–topped.
Then assume that the line is optically thick. Show that the profile is parabolic
shaped.

6∗. Bipolar outflows are common in pre-main sequence sources. This is a very ele-
mentary analysis of molecular line emission from well-defined bipolar outflows.
(a) Approximate the outflow as a cylinder of length l, width w, with constant density
n, inclined at an angle i to the line of sight. Show that the functional description of
the mass of the outflowing material is (1/4)n(H2)π l w2.
(b) If the observed velocity of the outflow is vo, show that the age of the outflow is

age = lo/(vo tan i) .

(c) Show that the total kinetic energy in the outflow is (1/2)Mv2
o sin i/cos2 i.

(d) If we define the mechanical luminosity L as Ė = (2×kinetic energy in the out-
flow)/age, show that L = M(M�)v3/(sin icos3 i), where M is the mass of the outflow.

7∗. For linear molecules, in principle one can determine both the kinetic temperature
and the H2 density if one can measure the “turn over” in the distribution of column
densities from different transitions. One example is given by measurements of the
CO molecule in Orion KL.
(a) Estimate the wavelengths, frequencies and Einstein A coefficients for the J =
30− 29, J = 16− 15 and J = 6− 5 transitions, if CO is a rigid rotor molecule.
Compare these to the value for the J = 2− 1 transition. If the lines are optically
thin, and 〈σv〉 = 10−10 cm3 s−1, what are the critical densities?
(b) Determine the energies of the J = 30, J = 16 and J = 6 levels above the ground
state. If the kinetic temperature of this outflow region is ∼2000 K, find the ratio
of populations of the J = 30 to J = 6 levels, assuming LTE conditions. If the H2

density, n, is ∼106 cm−3, set A equal to the collision rate, C = n〈σv〉, to determine
which of the transitions is sub-thermally excited, i.e. A �C.

8. The quantity σg ng equals 10−22 nH cm−1. The mean free path, λ , is equal to
1/σg ng. If the mean time between collisions, tgas−grain = λ/V , where the expression
for V is taken to be ΔV1/2.

9. From (Eq. 16.47), the free-fall time in years for a cloud under the influence of self
gravity is tff = 5×107/

√
n(H2), where n(H2) is the molecular hydrogen density in

cm−3. From this result and the result in the previous problem, find the density at
which the free-fall time equals the average time for a molecule to strike a grain.

10. A typical giant molecular cloud (GMC) is thought to have a diameter of 30 pc,
and total mass of 106M�. Assume that GMC’s have no small scale structure.
(a) Develop a general formula relating the H2 density to the mass and radius of a
uniform spherical cloud. Because the He/H number ratio is 0.1, the average molec-
ular mass is 4.54×10−24 g.
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(b) What is the density of the GMC? Find the column density of H2 in this cloud.
If the visual extinction is related to column density by 1m = 1021 cm−2, what is the
extinction through the GMC?
(c) What is the FWHP width of a line if the cloud is in virial equilibrium? Use the
simplest condition for virial equilibrium, as given in (Eq. 13.72).
(d) If the mass of the ISM in the galaxy from 2 kpc to 8.5 kpc is 3×109 M�, and if
there are ∼100 GMCs as described in part (a) in this part galaxy, how much of the
total mass of the interstellar medium is in GMCs? If the thickness of the galaxy is
200 pc, how much of the volume is contained in GMCs?

(e) What is the H2 column density through a GMC? If one visual magnitude is
equivalent to a column density of 1021 cm−2 of H2, what is Av of a GMC?

11. (a) A well-established ion exchange reaction in diffuse molecular clouds is

H2 +D+ = HD+H+ +ΔE, (16.62)

where the zero point energy difference between H2 and HD is ΔE/k = 500 K. It is
thought that reaction (16.62) reaches equilibrium. Then one can relate the initial and
final products by the Boltzmann relation

HD
H2

=
D+

H+ eΔE/kT .

If the relevant temperature, T , is Tk = 100 K, what is the overabundance of HD?
(b) A similar reaction to that given in part (a) occurs for isotopes of carbon monox-
ide (CO) if the carbon ion, C+, is present in the outer parts of molecular clouds:

12CO+ 13C+ = 13CO+ 12C+ +ΔE .

In this case, ΔE/k = 35 K. Repeat the steps in part (a) for the case of CO.



Appendix A
Some Useful Vector Relations1

Let A,B,C,D be arbitrary vector fields assumed to be continuous and differentiable
everywhere except at a finite number of points, and let φ and ψ be arbitrary scalar
fields for which the same assumptions are adopted. If A ·B is the scalar product and
A×B the vector product then the following algebraic relations are true:

A · (B×C) = (A×B) ·C = (A,B,C) = (B,C,A)
= (C,A,B) = −(A,C,B) = −(C,B,A)
= −(B,A,C) , (A.1)

A× (B×C) = (A ·C)B− (A ·B)C , (A.2)

A× (B×C) + B× (C×A)+C× (A×B) = 0 , (A.3)

(A×B) · (C×B) = A · [B× (C×D)]
= (A ·C)(B ·D)− (A ·D)(B ·C) , (A.4)

(A×B)× (C×D) = [(A×B) ·D]C− [(A×B) ·C]D . (A.5)

Introducing the gradient of a scalar as ∇φ ,∇ considered as a differential operator
obeys the following identities

grad(φ ψ) = ∇(φ ψ) = φ ∇ψ+ψ∇φ , (A.6)

div(φ A) = ∇ · (φ A) = A ·∇φ +φ ∇ ·A , (A.7)

curl(φ A) = rot(φ A) = ∇× (φ A) = φ ∇×A−A×∇φ , (A.8)

div(A×B) = ∇ · (A×B) = B · (∇×A)−A · (∇×B) , (A.9)

curl(A×B) = rot(A×B) = ∇× (A×B) ,

= A(∇ ·B)−B(∇ ·A)+(B ·∇)A− (A ·∇)B , (A.10)

grad(A ·B) = ∇(A ·B) = A× (∇×B)+B× (∇×A)

+(B ·∇)A+(A ·∇)B . (A.11)

1 Mainly adopted from Panofsky, W., Phillips, M. (1962): Classical Electricity and Magnetism
(Addision-Wesley, Reading MA).
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For ∇ some second-order formulae are useful

∇2φ = ∇ ·∇φ = Δφ (A.12)

∇2A = ∇(∇ ·A)−∇× (∇×A) (A.13)

∇×∇φ = 0 (A.14)

∇ · (∇×A) = 0 . (A.15)

Relations for Special Functions. Let r be the radius vector from the origin to the
point x,y,z. Then

∇ · r = 3 , (A.16)

∇× r = 0 , (A.17)

∇r = ∇|r| = r/|r| , (A.18)

∇(1/r) = −r/r3 , (A.19)

∇ · (r/r3) = −∇2(1/r) = 4πδ (r) . (A.20)

Integral Relations. Let a vector field A and its divergence ∇ ·A be continuous over
a closed region V with the surface S, the surface element dS being counted positive
in the direction outward from the enclosed volume. Then Gauss theorem states

∮
S

A · dS =
∫
V

(∇ ·A)dv , (A.21)

while Stokes’ theorem postulates
∮
S

dS×A =
∫
V

(∇×A)dv . (A.22)

Green’s theorem is
∫
V

(φ ∇ ·∇ψ−ψ∇ ·∇φ)dv =
∮
S

(φ ∇ψ−ψ∇φ) · dS . (A.23)



Appendix B
The Fourier Transform1

Fourier transform:

F(s) =
∞∫

−∞

f (x)e− i2πsx dx . (B.1)

Inverse Fourier transform:

f (x) =
∞∫

−∞

F(s)ei2πxs ds . (B.2)

Table B.1 Theorems for the Fourier transform

Theorem f (x) F(s)

Similarity f (ax)
1
|a|F

( s
a

)
(B.3)

Addition f (x)+g(x) F(s)+G(s) (B.4)

Shift f (x−a) e− i2πas F(s) (B.5)

Modulation f (x)cosx
1
2

F
(

s− ω
2π

)
+

1
2

F
(

s+
ω
2π

)
(B.6)

Convolution f (x)⊗g(x) F(s)G(s) (B.7)

Autocorrelation f (x)⊗ f ∗(−x) |F(s)|2 (B.8)

Derivative f ′(x) i2πsF(s) (B.9)

Rayleigh theorem:
∞∫

−∞

| f (x)|2 dx =
∞∫

−∞

|F(s)|2 ds . (B.10)

Power theorem:

∞∫
−∞

f (x)g∗(x)dx =
∞∫

−∞

F(s)G∗(s)ds . (B.11)

1 Adopted from Bracewell, R. (1965): The Fourier Transform and its Applications 1965 (Mc Graw
Hill, New York).
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Table B.2 A short list of Fourier transform pairs

f (x) F(s) f (x) F(s)

e−πx2
e−πs2

e−|x| 2
1+(2πs)2

xe−πx2 − ise−πs2
e−|x| sinx

x
arctan

1
2π2s2

1 δ (s) |x|−1/2 |s|−1/2

cosπx II(s) e−|x| cosπx
2

1+(2πs)2 ⊗ II(s)

sinπx i I
I(s) sechπx sechπx

III(x) III(s) sech2 πx 2scosechπs

sincx II(s) H(x)
1
2
δ (s)− i

2πs

sinc2 x II(s)⊗ II(s) J0(2πx)
II(s/2)

π(1− s2)1/2

sinc3 x II(s)⊗ II(s)⊗ II(s) J1(2πx)/2x (1− s2)1/2 II
( s

2

)

Where:

sincx =
sinπx
πx

,

II(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for |x| < 1
2

0 for |x| > 1
2

,

H(x) =

⎧⎨
⎩

1 for |x| > 0

0 for |x| < 0 ,

III(x) =
∞

∑
n=−∞

δ (x−n) ,

II(x) = 1
2δ (x+1/2)+ 1

2δ (x−1/2) ,

I
I(x) = 1

2δ (x+1/2)− 1
2δ (x−1/2) .



Appendix C
The Van Vleck Clipping Correction: One Bit
Quantization

One-bit quantization strongly influences the appearance of both the signal and the
resulting ACF. We will determine the ACF Ry(τ) of some transformation y(t) =
ϕ[x(t)] chosen such that it can be easily implemented and Rx(τ) can be computed
from Ry(τ). Let the stochastic process y(t) be defined by (Fig. C.1)

y(t) =
{

1 for x(t) � 0
−1 for x(t) < 0

. (C.1)

Fig. C.1 An illustration of one-bit clipping of a signal, x(t), to produce the clipped signal, y(t).
The autocorrelation function of the input signal is recovered from that of y(t) using the arcsin law

Then the ACF of y, Ry(τ) is given by

Ry(τ) = E{y(t + τ)y(t)} = P{x(t + τ)x(t) > 0}−P{x(t + τ)x(t) < 0}
(C.2)

where P{x(t + τ)x(t) > 0} is the probability of finding x(t + τ)x(t) > 0. This can
be computed using the joint probability density function p(x1,x2;τ). For a general
stochastic process this is not known, but for a Gaussian process it is given by (C.5).
The ACF of the Gaussian signal x(t) is

E{x(t + τ)x(t)} = R(τ) ;
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then the random variables x(t +τ) and x(t) are jointly normal with the same variance
E{x2} = R(0) and the correlation coefficient

r =
E{x(t + τ)x(t)}√

E{x2(t + τ)}E{x2(t)}
=

R(τ)
R(0)

(C.3)

so that their joint density distribution function is given by

p(x1,x2;τ)

=
1

2π
√

R2(0)−R2(τ)
exp

[
−R(0)x2

1 −2R(τ)x1 x2 +R(0)x2
2

2 [R2(0)−R2(τ)]

]
(C.4)

=
1

2πσ1σ2
√

1− r2
exp

[
− 1

2(1− r2)

(
x2

1

σ2
1

− 2r x1 x2

σ1σ2
+

x2
2

σ2
2

)]
. (C.5)

Since the voltage distribution of the stochastic process describing both the signal
and the noise in a receiver are accurately described by such a distribution, (C.5) is
applicable.

Then we have,

P{x(t + τ)x(t) > 0} = P{[x(t + τ) > 0] ∧ [x(t) > 0]}
+P{[x(t + τ) < 0] ∧ [x(t) < 0]}

= P++ + P−− (C.6)

and similarly
P{x(t + τ)x(t) < 0} = P+− +P−+ = 2P+− , (C.7)

where

P++ =
∞∫

0

∞∫
0

p[x(t + τ),x(t);τ]dx(t + τ)dx(t) .

Substituting

x(t) = σ cosθ/σ1 ,

x(t + τ) = σ sinθ/σ2 ,

and (C.5) for p(x1,x2;τ) we obtain

P++ =
1

2πσ2(1− r2)1/2

π/2∫
0

∞∫
0

exp

[
− z2(1− r sin2θ)

2σ2(1− r2)

]
zdzdθ

=
1
4

+
1

2π
arctan

r√
1− r2

=
1
4

+
1

2π
arcsinr . (C.8)
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Similarly

P−− =
1
4

+
1

2π
arcsinr , (C.9)

P+− =
1
4
− 1

2π
arcsinr . (C.10)

Substituting (C.6, C.7, C.8, C.9 and C.10) into (C.2), we obtain with (C.3)

Ry(τ) =
2
π

arcsin
Rx(τ)
Rx(0)

(C.11)

or

Rx(τ) = Rx(0)sin[π/2Ry(τ)] . (C.12)

Rx(0) is the undelayed autocorrelation; the maximum value of the autocorrelated
signal. (C.11) is known as the arcsine law, the inverse relation (C.12) is the van
Vleck clipping correction. Thus if Ry(τ) can be measured, Rx(τ) can be easily com-
puted.



Appendix D
The Reciprocity Theorem

Consider two antennas, 1 and 2. Let 1 be a transmitting antenna powered by the
generator G while 2 is a receiving antenna that induces a certain current measured
by M (Fig. D.1). The receiving antenna is assumed to be oriented such that M shows
a maximum deflection and we will assume that no ohmic losses occur in 2.

Fig. D.1 A sketch to illustrate the reciprocity theorem; G is the generator, transmitting a signal,
and M is a meter for the measurement of the received signal

The reciprocity theorem now states that the current measurement on M remains
the same even if we exchange generator G and meter M. Therefore it does not matter
which antenna is transmitting and which is receiving. However, for the medium
between 1 and 2, we must require that it has no preferred direction; that is, that its
transmission properties are the same from 1 directed towards 2 as from 2 directed
towards 1. There are some materials, such as certain ferrites in a magnetic field, that
do not fulfill this prerequisite; these are used in direction-sensitive devices such as
circulators or isolators. If such material is involved, an application of the reciprocity
theorem needs special care.

To prove the reciprocity theorem consider Maxwell’s equations for the two sys-
tems 1 and 2:

∇×H1 =
4π
c

J1 + ε
c Ė1 , ∇×H2 =

4π
c

J2 + ε
c Ė2 ,

∇×E1 = −μ
c

Ḣ1 , ∇×E2 = −μ
c

Ḣ2 .
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Forming

∇ · (E1 ×H2) = H2 · (∇×E1)−E1 · (∇×H2)

= −μ
c

Ḣ1 ·H2 −
4π
c

E1 ·J2 −
ε
c

E1 · Ė2

∇ · (E2 ×H1) = H1 · (∇×E2)−E2 · (∇×H1)

= −μ
c

H1 · Ḣ2 −
4π
c

E2 ·J1 −
ε
c

Ė1 ·E2

according to (A.9), the difference of these two equations is

∇ · (E1 ×H2 −E2 ×H1) =
μ
c

(H1 · Ḣ2 − Ḣ1 ·H2)

−4π
c

(E1 ·J2 −E2 ·J1)

−ε
c

(E1 · Ė2 − Ė1 ·E2) .

We now consider harmonic waves as in (2.35)

Ḣ = − iωH , Ė = − iωE ,

and thus

H1 · Ḣ2 − Ḣ1 ·H2 = 0 , E1 · Ė2 − Ė1 ·E2 = 0 ,

so that

∇ · (E1 ×H2 −E2 ×H1) =
4π
c

(E2 ·J1 −E1 ·J2) .

But according to the Gauss theorem [see (A.21)]
∫
V

∇ · (E1 ×H2 −E2 ×H1) dV =
∮
S

(E1 ×H2 −E2 ×H1) · dS .

If V is a sphere, the radius of which tends towards ∞, then E and H tend to-
wards zero at the surface of this sphere and we suppose that the surface integral on
the right-hand side vanishes. For a rigorous proof of this, we would have to show
that | E1 ×H2 −E2 ×H1 | is indeed decreasing faster than 1/r2. This can be done
considering that E ⊥ H for spherical waves; we will not give the details here, but
adopting this we find ∫

V

(E2 ·J1 −E1 ·J2) dV = 0 . (D.1)

If the two antennas 1 and 2 are contained in different space regions V1 and V2,
then
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∫
V1

E2 ·J1 dV =
∫
V2

E1 ·J2 dV (D.2)

since J1 = 0 in V2 and J2 = 0 in V1; the distance between the two antennas is arbi-
trary.

If an antenna is contained in an infinitesimal cylinder with the cross section q and
the length dl

dV = q dl ,

the total current in the antenna is

I = q | J |

and the voltage

U = E dl

and thus
U2 I1 = U1 I2 . (D.3)

Here U1 is the voltage induced by antenna 2 in antenna 1 and I1 is the total
current in antenna 1; U2 and I2 are similar quantities for antenna 2. Equation (D.3)
is a quantitative formulation of the reciprocity theorem.



Appendix E
The Hankel Transform1

Hankel transform:

F(q) = 2π
∞∫

0

f (r)J0(2πqr)r dr . (E.1)

Inverse Hankel transform:

f (r) = 2π
∞∫

0

F(q)J0(2πqr)qdq . (E.2)

Table E.1 Theorems for the Hankel transform

Theorem f (r) F(q)

Similarity f (ar)
1
a2 F

(q
a

)

Addition f (r)+g(r) F(q)+G(q)
Shift shift of origin destroys circular symmetry

Convolution

∞∫
0

2π∫
0

f (r′)g(R)r′ dr′ dθ F(q)G(q)

R2 = r2 + r′2 −2r r′ cosθ

Rayleigh theorem:

∞∫
0

| f (r)|2 r dr =
∞∫

0

|F(q)|2 qdq . (E.3)

Power theorem:

1 Adopted from Bracewell, R. (1965): The Fourier Transform and its Applications 1965 (Mc Graw
Hill, New York).
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∞∫
0

f (r)g∗(r)r dr =
∞∫

0

F(q)G∗(q)qdq . (E.4)

Table E.2 Some Hankel transforms

f (r) F(q)

II
( r

2a

) a
q

J1(2πaq)

1
r

sin(2πar)
II(q/2a)

(a2 −q2)1/2

1
2
δ (r−a) πaJ0(2πaq)

e−πr2
e−πq2

(a2 + r2)−1/2 1
q

e−2πaq

(a2 + r2)−3/2 2π
a

e−2πaq

(a2 + r2)−1 2πK0(2πaq)

2a2 (a2 + r2)−2 4π2 aqK1(2πaq)

(a2 − r2) II
( r

2a

) a2

πq2 J2(2πaq)

1
r

1
q

e−ar 2πa(4π2q2 +a2)−3/2

1
r

e−ar 2π(4π2q2 +a2)−1/2

1
πr
δ (r) 1

1
2a2

[
II
( r

2a

)
⊗ II

( r
2a

)] 1
2a2 |J1(2πaq)|2

r2 e−π r2 1
π

(
1
π
−q2

)
e−π q2

All definitions given in this Table are as in Appendix B.



Appendix F
A List of Calibration Radio Sources

The usual method to determine the flux of radio sources is to measure the ratio
of the response of the antenna / receiver combination to the source and to that of
a well-known calibrator. In order to avoid as much as possible the effects of the
varying telescope efficiencies it is desirable to have a set of calibrators reasonably
well distributed over the sky, such that radio source and calibration source can be
measured at nearly equal zenith angles.

The list of calibration sources given in Table F.1 is based on a compilation origi-
nally given by Baars, J. W. M. et al. (1977): Astron. Astrophys. 61, 99 and updated
by Ott, M. et al. (1994): Astron. Astrophys. 284, 331. Values in brackets are taken
from the compilation of Baars et al.

In Table F.2 a list of secondary calibrators at submillimeter wavelengths is given.
This data are taken from G. Sandell (1994): M. N. R. A. S. 271, 75. The data
were obtained with the James Clerk Maxwell Telescope (JCMT) on Mauna Kea in
1989–1991 using the UKT14 bolometer at the Nasmyth focus. The flux density
scales are calibrated relative to Mars and Uranus. The standard deviations of the
data show that accuracies of a few percent are reached.
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Appendix G
The Mutual Coherence Function and van
Cittert-Zernike Theorem

G.1 The Mutual Coherence Function

It was shown in Chap. 3 that four parameters are needed to describe the full state of
polarization of a quasi-monochromatic electromagnetic wave field, even at a single
point. Therefore, when the wave fields at two separate points are to be compared,
a multitude of correlations can be formed. We will simplify the discussion by con-
sidering only wave fields with a single state of polarization, so that only one scalar
quantity is needed to describe the wave field at a single point. This quantity could
be any of the four Stokes parameters or any other component of an orthogonal rep-
resentation of the wave field. We now consider the distribution of this one parameter
over the whole wave field.

Considering the simplest wave field that can be imagined, namely, that of a plane
monochromatic wave, the field intensity at a position, P2, for all time can be calcu-
lated from that at another position, P1, once the phase difference for these two points
has been determined. An arbitrary polychromatic wave field is in some respects the
other extreme; If P1 and P2 are not too close, even a full knowledge of the field and
its time variation at P1 has no relation to the field at P2. The monochromatic plane
wave field is said to be fully coherent; the second example is that of an incoher-
ent wave field. Other wave fields will have properties between these two extremes.
Obviously a measure of this coherence is needed that can be determined in some
practical way, even for fields where the instantaneous values of the strengths at a
chosen point cannot be measured. A useful measure of coherence must be based on
time averages; we will only consider stationary fields. Therefore the mutual coher-
ence function of the (complex) wave field U(P1, t1) and U(P2, t2) will be defined as

Γ (P1,P2,τ) = lim
T→∞

1
2T

T∫
−T

U(P1, t)U∗(P2, t + τ) dt

= 〈U(P1, t)U∗(P2, t + τ)〉 .

(G.1)

Where the 〈· · · 〉 brackets are used to indicate time averaging, as introduced in
(3.46). We will assume that this limit exists. The intensity of the wave (3.48) is a
special case of this definition
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I(P) = Γ (P,P,0) = 〈U(P, t)U∗(P, t)〉 . (G.2)

For a plane monochromatic wave field propagating in the z direction, Γ is easily
computed. Using a complex representation,

U(P, t) = U0 ei(kz−ωt) ,

where

P = (x,y,z), k = 2π/λ = const, ω = 2πν = const,

then we have
Γ (P1,P2,τ) = |U0|2 ei [k(z1−z2)+ωτ ] , (G.3)

where τ is the time delay. The mutual coherence function of the travelling monochro-
matic wave field is periodic with a constant amplitude and a wavelength equal to that
of the original wave field. The coherence function does not propagate; it is a stand-
ing wave with a phase such that, for τ = 0,Γ = Γmax for z1 = z2 . It is often useful
to normalize Γ by referring it to a wave field of intensity I. Thus

γ(P1,P2,τ) =
Γ (P1,P2,τ)√

I(P1)I(P2)
. (G.4)

For this complex coherence, we always have

|γ(P1,P2,τ)| � 1 . (G.5)

G.2 The Coherence Function of Extended Sources: The van
Cittert-Zernike Theorem

Taking (G.3) and (G.4) together we see that for a monochromatic plane wave the
complex degree of coherence has the constant amplitude 1, while an arbitrary poly-
chromatic wave field will result in γ = 0 for P1 
= P2. Which properties of a wave
field result in a partial loss of coherence? We will gradually reduce the restrictions
imposed on the wave field in order to see the effect this has on the degree of co-
herence. In the following we will assume that the radiation is: (1) spatially inco-
herent, (2) well described by a single component of the two vector fields E and B,
(3) stationary in time, and (4) radiated by very distant sources. A wave field that
is only slightly more complex than a monochromatic plane wave is formed by the
(incoherent) superposition of two such wave fields with identical wavelengths (and
frequencies) but propagating in different directions (Fig. G.1):

Ua = U0a ei(k sa·x−ωt) ,

Ub = U0b ei(k sb·x−ωt) . (G.6)
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Fig. G.1 The coordinate systems and designations used in the discussion of the van Cittert-Zernike
theorem

Here sa and sb are unit vectors describing the propagation direction, and both
k = 2π/λ and ω = 2πν are assumed to be equal for both waves. The total wave
field is then formed by

U = Ua +Ub

and the mutual coherence function (G.1) is

〈U(P1, t1)U∗(P2, t2)〉 = 〈{Ua(P1, t1)+Ub(P1, t1)}{Ua(P2, t2)+Ub(P2, t2)}∗〉
= 〈Ua(P1, t1)U∗

a (P2, t2)〉+ 〈Ub(P1, t1)U∗
b (P2, t2)〉

+〈Ua(P1, t1)U∗
b (P2, t2)〉

+〈Ub(P1, t1)U∗
a (P2, t2)〉 . (G.7)

If we assume the two wave fields Ua and Ub are incoherent, we require that the
field strengths Ua and Ub are uncorrelated even when measured at the same point,
so that

〈Ua(P1, t1)U∗
b (P2, t2)〉 = 〈Ub(P1, t1)U∗

a (P2, t2)〉 ≡ 0 . (G.8)

Such incoherence is not possible for strictly monochromatic waves of identi-
cal polarization consisting of a wave train of infinite duration and length. Equation
(G.8) can be correct only if the wave is made up of sections of finite duration be-
tween which arbitrary phase jumps occur. Then the waves are not strictly monochro-
matic but have a finite, although small bandwidth. Substituting (G.8) into (G.7) we
obtain

Γ (P1,P2,τ) = 〈U(P1, t)U∗(P2, t + τ)〉
= 〈Ua(P1, t)U∗

a (P2, t + τ)〉+ 〈Ub(P1, t)U∗
b (P2, t + τ)〉

or, using (G.6),
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Γ (P1,P2,τ) = |U0a|2 ei(k sa·u+ωτ) + |U0b|2 ei(k sb·u+ωτ) , (G.9)

where
u = x1 −x2 . (G.10)

Thus only the difference of the two positions P1 and P2 enters into the problem.
For the case of two waves of equal amplitude,

|U0a| = |U0b| = |U0| ,

(G.9) can be simplified using the identities

sa =
1
2
(sa + sb)+

1
2
(sa − sb) ,

sb =
1
2
(sa + sb)−

1
2
(sa − sb) ,

resulting in

Γ (u,τ) = 2|U0|2 cos

(
k
2
(sa − sb) ·u

)
ei( k

2 (sa+sb)·u+ωτ) , (G.11)

or, if normalized,

γ(u,τ) = cos

(
k
2
(sa − sb)u

)
ei( k

2 (sa+sb)·u+ωτ) . (G.12)

For two waves propagating in directions that differ only slightly, |sa − sb|/2 is a
small quantity, while (sa + sb)/2 differs only little from either sa or sb. The normal-
ized coherence function (G.12) therefore is similar to that of a single plane wave,
but with an amplitude that varies slowly with position. We will have a complete loss
of coherence for

k
2
(sa − sb) ·u = (2n+1)

π
2

, n = 0,1,2, . . . . (G.13)

This principle of superposition of simple monochromatic plane waves can be
extended to an arbitrary number of plane waves, and the result will be a simple
generalization of (G.9) if we again assume these fields to be mutually incoherent.
The signals at P1 and P2 are then the sum of the components Un(P, t),

U(P, t) =∑
n

Un(P, t) , (G.14)

and, if the different waves are incoherent, then

〈Um(P1, t)U∗
n (P2, t + τ)〉 = 0 for all m 
= n , (G.15)
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while
〈Un(P1, t)U∗

n (P2, t + τ)〉 = |U0n|2 ei(k sn·u+ωτ) , (G.16)

so that

Γ (u,τ) = 〈U(P1, t)U∗(P2, t + τ)〉 =∑
n
|U0n|2 ei(k sn·u+ωτ) .

Or, if we go to the limit n → ∞

Γ (u,τ) =
∫ ∫

I(s)ei(k s·u+ωτ) ds , (G.17)

where

I(s) =
∫ ∫

U(s+σσσ)U∗(s+σσσ) dσσσ (G.18)

is the total intensity at the position P if the integral is taken over the angular extent
of those positions s+σσσ that contribute to the radiation field propagating into the
direction u, and the generalization of (G.14) is

U(x, t) =
∫ ∫

U(s)ei(k s·x−ωt) ds . (G.19)

Equation (G.17) is the monochromatic version of the van Cittert-Zernike the-
orem. This theorem specifies how the mutual coherence function of an arbitrary
monochromatic wave field (G.19), built up from plane waves is related to the inten-
sity distribution (G.18). The proof given here is simplified and abbreviated; a more
extensive version can be found in Born and Wolf (1964).

Provided that Γ (u,τ) can be measured and (G.17) can be solved for I(s), so we
can measure I(s). As stated earlier the possible angular resolution using I(s) depends
on the size of the telescope used. For (G.17) the difference in the positions where
measurements are made, |u| is introduced. Since it is possible to measure Γ (u,τ)
for values of |u| much larger than the largest single telescope diameters possible,
the resolution of I(s) obtainable from the inversion of (G.17) is much greater than
that which can be achieved by using telescopes that form direct images I(s).

The principle, the methods and the limitations of the recovery of I(s) from
Γ (u,τ) will be discussed in Chapter 9. Both the theory and the practical details of it
are fairly complicated, so this can only be considered an introduction. For detailed
presentation, specialized books (given in the references) should be consulted.



Bibliography

Chapter 1

a) General

Burke, B.F., Graham-Smith, F. (1996): An Introduction to Radio Astronomy (Cambridge Univer-
sity Press, Cambridge)

Condon, J., Ransom, S. (2007): Essential Radio Astronomy http: /www.cv.nrao.edu/course/534
Gurvits, L., Frey, S., Rawlings, S. eds. (2005): Radio Astronomy from Karl Jansky to Microjansky

(EDP Sciences, Paris)
Kraus, J.D. (1986): Radio Astronomy, 2nd ed. (Cygnus-Quasar, Powell, Ohio)
Leighton, R.B. (1960): Principles of Modern Physics (McGraw-Hill, New York)
Sullivan, W.T. ed. (1984): The Early Years of Radio Astronomy: Reflections 50 Years After Jansky’s

Discovery (Cambridge University Press, Cambridge)
Verschuur, G.L., Kellermann, K. I. eds. (1988): Galactic and Extragalactic Radio Astronomy 2nd

ed. (Springer-Verlag, Heidelberg)

b) Special

Mihalas, D. (1978): Stellar Atmospheres (Freeman, San Francisco), Chaps. 1, 2
ITU Handbook on Radio Astronomy (http://www.itu.int/publ/R-HDB-22/en)
Reif, F. (1965): Statistical and Thermal Physics (McGraw Hill, New York)
Rybicki, G.B., Lightman, A.P. (1979): Radiative Processes in Astrophysics (Wiley, New York)

Chapter 2

Becker, R., Sauter, F. (1962): Theorie der Elektrizität, Vol. I (Teubner, Stuttgart)
Jackson, J.D. (1975): Classical Electrodynamics, 2nd ed. (Wiley, New York)
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Brightness distribution, 279

residual, 226
Brightness temperature, 13, 150, 179, 192,

193, 314
Bulk velocity, 341

Calibration, 178
antenna, 177
astronomical, 178
differential, 194
redundant, 215
source, 218

Capacity
thermal, 80, 81

Carbon, 329, 380
Carbon dioxide, 173
Carbon monoxide, 421
Carrier

negative, 93
Cassiopeia A, 239
Catalyst, 420
Center

galactic, 379
Centrifugal stretching, 390
Cesaro sum, 57, 59
CFRP, 165
CH3OH energy levels, 414
Charge density, 20
Charges

moving, 243
Circular motion, 256
Circular polarization, 54
Circumstellar envelope, 432
CLEAN, 226, 281
Clean beam, 226
Clipping correction

van Vleck, 471
Closure amplitude, 221

Cloud
radiation field, 435

Cloud parameters, 439
Cloud physics, 434
CNM, 341
CO excitation, 396, 436, 442
Coefficient

absorption, 250, 322, 332
emission, 250
recombination, 360

Coherence
complex degree, 484
function, 203
loss of, 486

Coherence function
mutual, 483, 485

Cold neutral medium, 341
Collision, 425
Collision parameter, 245
Column density, 282, 394, 398, 442, 445
Comets, 241
Computing

Moore’s law, 232
Conductivity

electric, 32
Confusion limit, 197
Constituents

troposphere, 173
Conversion factor, 443
Convolution theorem, 108
Cooley-Tukey Fast Fourier Transform, 221
Cooling

collisional excitation, 340
Cooling time, 292
Coordinate system

barycentric, 306
Corona, 278
Correlator

digital, 231
recycling, 110

Cosmic rays, 252, 456
Cosmic refrigerators, 426
Cosmology

Big Bang nucleosynthesis, 329
Coulomb’s law , 245
Crab pulsar, 295
Critical density, 425, 440
Critical frequency, 260
CS excitation, 439
CTS, 114

duty cycle, 115
Current

dark, 113
Current element, 135
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Cyclotron
frequency, 52

Cygnus A, 239

Damping
exponential, 31

Damping factor, 226
Debye length, 250
Decibel

Receiver Noise, 118
Deformation

homologous, 164
mechanical, 229

Density
column, 332, 336
critical, 327
current, 51
low, 378
spectral, 61, 106

Departure coefficient, 371, 374
Departure Coefficients, 385
Depth

optical, 9
Destruction processes, 457
Detailed balance, 326, 424
Detector

square-law, 67, 106
Deuterium, 329
Dicke, 69
Dicke switch, 185, 195
Digital

A/D Converter, 62
aliasing, 63
Nyquist Sampling Rate, 63
oversampling, 64
sampler, 62
video, 62

Dipole
electric, 128
Hertz, 126, 131, 135
magnetic, 324
static, 129
transition probability, 323

Dipole emission, 395
Dipole moment, 396
Dipole radiation

magnetic, 303
Dipole transitions, 395
Directivity, 146, 147, 153, 158
Dirty beam, 223
Dirty map, 223
Disk

galactic, 379
Dispersion

equation, 29, 31
Lorentz, 376
normal, 30
postdetection removal, 116
predetection, 116

Dispersion delay
total, 301

Dispersion measure, 34, 296, 297
Dissipation phase, 286
Dissociation, 400
Dissociation energy, 388
Distortion

coma, 154
Distribution

Boltzmann, 320
Distribution function

Maxwell, 248
Domain

collisional, 376
radiative, 376

Doping, 93
Doppler

relativistic, 313
Doppler broadening, 366
Doppler effect, 255
Doppler shift, 313
Double beam system, 186
Dust, 242

cold, 243
polarization, 243

Dust grain, 420
Dust-to-gas ratio, 445
Dynamic range, 219

Eccentric anomaly, 306
Efficiency

beam, 181
main beam, 193

Einstein A coefficient, 324
Einstein coefficient, 319–321, 375, 394
Electric dipole

permanent, 391
Electron

accelerated, 246
distribution function, 265
number density, 264
relativistic, 288

Electron density, 283, 375
Electrons

relativistic, 252
Emission, 8

atmospheric, 185
continuum, 313
extended regions, 187
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spontaneous, 321
stimulated, 319, 321, 323, 375
synchrotron, 288
thermal, 250
X-ray, 284

Emission measure, 250, 282, 368
Emission region, 359
Emissivity, 270
Emitted power, 324
Energy

absorbed, 321
density, 269
gap, 97
kinetic, 288
thermal, 288, 292

energy density, 17
Energy level

populations, 397
Energy levels, 365

rotational, 391
Enhanced absorption, 426
Equation

continuity, 20
linear

homogeneous, 123
transfer, 373

Equation of transfer, 321
Equilibrium

thermodynamic, 8, 9
Ergodic theorem, 56
Error

closure, 220
pointing, 161

Error beam, 159
Evolution

time, 288
Excitation temperature, 397
Expansion

free, 286
spherical, 294
velocity, 291

Faraday rotation, 49
solar system, 54

Fast Fourier transform, 110
Features

dynamic, 359
Feed

dipole, 152
primary, 152

FFA, 117
FFT, 110, 117, 221
Field

electric, 244

electrical, 127
induction, 129
magnetic, 266, 288
pattern, 134
radiation, 129
random orientation, 266
self-consistency, 125

Field components
longitudinal, 27

Field of View, 83
Field pattern, 135
Field strength

mean values, 23
Field vector

complex, 22
Filling factor, 337, 338
Filter

all pass, 62
band pass, 61
band stop, 62
high pass, 62
low pass, 62
rail, 117
reception, 67
smoothing, 67

Filter bank, 106
Flux

observed, 270
Poynting, 41
total, 5, 6

Flux density, 227, 242
Forbidden transition, 325
Formaldehyde, 421
Fourier Transform

Gaussian wave packet, 36
modulation property, 76
shift property, 75

Fourier transform, 57
Free Fall Time, 446, 461
Freezing out, 400
Frequency

atomic lines, 330
change of, 109
cut-off, 3, 95, 173
distribution, 259
gyration, 256
lock in, 105
low-frequency cut-off, 271
molecular lines, 438
response, 105, 109
sweep rate, 116

Frequency multiplication, 105
Frequency switching, 195
Friis formula, 88
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Fringe
stopping, 208
white light, 206

Fringe fitting, 231
Frozen magnetic field, 293
Function

autocorrelation, 57, 107
Green’s, 124, 125

Gain, 146
directive, 147
power, 70

Gas
collision dominated, 339
interstellar, 50, 348

Gas phase production, 451
Gas phase reactions, 455
Gauge

function, 122
Gaunt factor, 250
Gauss theorem, 474
Gaussian

noise statistics, 75
probability, 75
standard deviation, 76
weighting, 76

Ghost image, 223
Giant molecular clouds, 447
Glitch, 302
Globular cluster pulsars, 308
Glycine, 459
Grading, 134, 137, 224
Grain-surface reactions, 455
Gravitational, 351
Gravitational quadrupole radiation, 307
Gravitational waves, 308
Green-house effect, 174
Gregorian feed, 163
Gregory system, 154
Group

velocity, 30

H2 clouds, 421
H2 lines, 421
H II region, 283
H II regions, 363

clumping, 381
linewidths, 382
non-LTE effects, 384
optical depths, 384
temperature gradients, 382

Half-life time, 331
Hanning, 110
Harmonic approximation, 389, 393

Heating and cooling of H II regions , 379
Heating processes, 340
HEB, 99
Heisenberg uncertainty principle, 85
Helium, 282, 329, 363
Herschel, 168
Hertz, 25
Hertz dipole, 244
HII regions

Emission Measure, 381
excitation parameter, 381
stars, 381

HIM, 341
Horn

hybrid mode feed, 153
pyramidal, 153

Hot ionized medium, 341
Hund coupling case, 412
Hydrogen

ionized, 365
neutral, 330

Hydrogen atom, 370
Hydrogen maser, 105
Hyperfine spectra, 402
Hyperfine structure, 392

level, 330, 331

Illumination pattern, 178
Image

dynamic range, 216
fidelity, 217
frequency, 90

Images
All sky, 119

Impact effect, 376
Impedance

intrinsic, 28
radiation, 131

Index of refraction, 33, 52, 279
Inertial system, 189
Infrared radiation, 243
Inglis-Teller formula, 365, 376
Instability

source of, 185
Integral

Fourier, 136
Intensity, 5
Interferometer, 2

Allen Array, 134
Allen Telescope Array (ATA), 209
ALMA, 218
Australia Telescope, 216
beam

point spread function, 216
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CARMA, 216, 217
Correlation interferometer, 204
double sideband, 236
e-VLBI, 203
fringe fitting, 231
fringe rate, 231
GMRT, 216
image center, 210
imaging speed, 237
LOFAR, 134, 209
Merlin, 216
mosaicing, 237
multiplying, 236
noise, 227, 236, 237

spectral line, 237
redundant arrays, 216
Ryle telescope, 214
SKA, 134, 164, 209
SMA, 216
spectral cross correlator, 236
spectral line, 236
synthesized beam, 219
two element, 234, 236
u-v plane distributions, 235
visibility function, 210

gridded, 221
VLA, 216
Westerbork, 216

Interstellar maser, 429
Interstellar molecules, 449
Inverse Compton effect, 273
Inversion doubling, 403
Invisible distribution, 223
Ion-molecule reaction, 454
Ionization

degree, 362
Ionosphere

Faraday rotation, 54
Ions

carbon, 385
departure coefficients, 385
Einstein A coefficients, 384
helium, 384
line broadening, 384
masering, 386
non-LTE effects, 385

ISM
average electron density, 16
extinction, 415
mean free path, 415

Isothermal
medium, 14

Jansky, 1

JCMT, 164
Johnson noise, 83
Josephson effect, 97

Kardashev, 366
Kepler equation, 306
Kinetic temperature, 440
Kirchhoff’s law, 250, 319, 373

Lag window, 109
Lambda doubling, 412
large velocity gradient model, 460
Larmor

circle, 258
Larmor radius, 286
Laser

speckles, 113
Levels

rotational, 388
Light

visible, 1
wavelength range, 1

Limits
sensitivity, 113

Line feed, 163
Line formation

NLTE, 374
Line width, 429
Lineshape

Doppler, 328
Gaussian, 354
Lorentzian, 328

Load
comparison, 71

Local standard of rest, 189
Lorentz gauge, 122
Lorentz transformation, 253
Loss

conversion, 88, 91
Loss rate

thermal, 21
LSR, 189
LTE, 319, 371, 442
Luminosity

infrared, 352
Luminous stars, 359
LVG, 433, 435, 442

Large Velocity Gradient, 433

Magnetic field
homogeneous, 266
random, 268

Magnetic field strength, 308
Magnetic moment, 303
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Magnetosphere
corotating, 308

Main beam, 146
Map

dirty, 224
Maser, 379, 425

models, 426
natural, 421
noise statistics, 75
saturated, 428, 429
unsaturated, 428

Masers
water vapor, 199

Mass
conservation, 290
reduced, 326

Mass loss rate, 283
Material equations, 19
Matter

isothermal, 373
Maximum entropy method, 227
Maxwell’s equations, 19, 122
Mean free path, 285, 339
Measurement

comparison, 70
Medium

dissipative, 32
MEM, 227
Metastable energy levels, 407
Metastable level, 440
Methanol masers, 432
Microturbulence, 367
Millimeter radiation, 243
Millisecond pulsar, 303–305
Mixer, 89

double sideband, 118
microwave, 89
sideband line smearing, 118
superconducting, 97

MMIC, 96
Molecular cloud

formation, 455
Molecular Clouds

clumping, 420
Molecular clouds

inhomogeneous structure, 457
Molecular formation, 402
Molecule

linear
energy levels, 392

Molecules
ammonia, 417
bipolar outflows, 461
carbon monoxide, 416, 461

centrifugal distortion, 416
CH3C2H, 460
CH3CN, 460
CH3OH, 413
circumstellar envelopes, 461
critical density, 415
CS, 415
Einstein A coefficient, 415
excitation temperatures, 460
fractionation, 462
free fall time, 461
galaxy GMC census, 462
Giant Molecular Clouds, 462
GMC’s, 461
H2CO, 411
H2D+, 411
H2O, 409
HD, 416
ion-molecule chemistry, 462
large velocity gradient model, 460
level populations, 416, 461
line ratios, 417
linewidth, 415
masers, 460
moment of inertia, 416
virial equilibrium, 462

Moment
magnetic, 324

Momentum
conservation, 290

Moons, 241
Morse potential, 389
Mysterium, 421

Neutral-neutral chemical reactions, 454
Neutron star, 296

magnetic field, 304
star quakes, 302
vortex structure, 302

New molecules, 458
NH3 energy levels, 404
NLTE effects, 371
Noise

atmosphere, 198
cascaded amplifiers, 88
cascaded systems, 87
excess, from snow, 198
figure, 97
Gaussian noise, 65
minimum, 86
performance, 113
sky, submillimeter, 199
total system, 88

Noise Equivalent Power, 117
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NEP, 82
Noise performance, 166
Nyquist theorem, 15, 150

Object
extended diffuse, 369

Observing
frequency limits, 4

OH energy levels, 413
OH lines, 420
On-off observing scheme, 186
On-the-fly mapping, 195
Oort relation, 345
Optical depth, 10, 338, 369

continuum, 374
Optically thin line, 396, 425
Organic molecules, 449
Orion A, 281, 378
Ortho-H2CO, 408
Ortho-modification, 402
Oscillator

local, 89, 105, 230
master, 105

Ozone
atmospheric, 174

Para-H2, 402
Para-modification, 402
Partition function, 398, 400, 405, 409
Phase

adiabatic, 286
closure, 220
stability, 230
velocity, 30

Photon trapping, 435
Physics

thermal, 2
Pitch angle, 256
Planck, 17
Planck function, 8, 10, 320
Planets, 241
Plasma

ionosphere, 16
Plasma frequency, 4, 32
Plastic

carbon fiber reinforced, 165
Poincaré sphere, 44
Pointing, 229
Polarization, 268

angle, 48
circular, 42, 46, 104
degree, 49
ellipse, 41, 45
elliptical, 40

intrinsic, 42
left-handed, 42
linear, 42, 46, 263, 268
masers, 53
right-handed, 42
state, 266
Stokes parameters, 53

Polarization of wave field, 104
Population inversion, 379, 427
Position switching, 195
Potential

advanced, 125
electrodynamic, 123, 125
functions, 121
ionization, 368, 380
retarded, 125
vector, 126

Potential energy, 388
Power

equivalent temperature, 17
normalized pattern, 145
radiation, 130
received in radio range, 143
sun, 17
telephone, 35
total radiated, 257

Power density
spectral, 55

Power emitted, 257
Power pattern

normalized, 137
Poynting flux, 244
Poynting vector, 20, 21, 28
Precipitable water, 174
Pressure

atmospheric, 174
Pressure equilibrium, 341
Principal axes, 400
Principal solution, 226
Probability

collision, 326
recombination, 360

Process
stochastic, 60

Profile
emission line, 335
mean, 115

Prolate top, 403
Propagation effects, 174
Pulsar, 53, 295

z-distribution, 298
annual parallax, 297
back end, 35, 116
catalog, 297
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characteristic age, 305, 308
designation, 296
distance, 297
distribution, 297
emission mechanism, 308
evolution timescale, 305
galactic distribution, 298
hydrogen absorption, 297
intensity spectrum, 299
intensity variations, 309
magnetic field strength, 304
number of known, 295
parallax, 302
period, 295
polar cap, 308
polarized radiation, 300
proper motion, 298
pulse profile, 299
pulse smearing, 36
pulse width, 299
slowdown, 302
space velocity, 298
time evolution of P, 304
timing model, 302
total luminosity, 299
young, 305

Pulsar emission
coherent, 309

Pulse
arrival time, 34, 301
delay, 35
dispersion, 35, 116

Pulse phase, 301
Pulse shape, 115
Pump mechanism, 429

Quasar, 310

Radar
automobile, 17
Cloudsat, 16
power, 16

Radial momentum, 292
Radial velocity

geocentric, 189
heliocentric, 189

Radiation
atomic, 328
coherent, 36
dust, 274
Einstein A coefficient, 328
emitted, 261
energy, 7
free-free, 274

lineshapes, 328
losses, 290
relativistic source expansion, 317
skin depth, 36
spectral index, 284
sun, 315
Sunyaev-Zeldovich, 275
synchrotron, 252, 276
synchrotron minimum energy theorem, 316
thermal, 277, 280

Radiation field
far field, 244
interstellar, 420

Radiation mechanism
thermal, 240

Radiative phase, 286
Radiative transfer, 321, 433
Radio

interference, 4
Radio galaxies, 310
Radio synthesis imaging, 225
Radiometer

coherent, 79
incoherent, 79

Random process, 55
Raster scan, 186
Rate

ionization, 360, 361
recombination, 361
transition, 325

Rate equation, 326, 374
Rayleigh theorem, 248
Rayleigh-Jeans, 17, 198
Rayleigh-Jeans law, 12, 149, 337
Razin effect, 271
Reber, 1
Receiver

available gain, 67
balanced, 71
calibration procedure, 73
correlation, 103
multi-beam, 101
noise factor, 67
radio, 2
single sideband, 91, 118
SSB, 105
stability, 69, 118, 119
synchronous detection, 119

Receiver Noise
linear detector, 77
minimum, 117
second stage contribution, 118
sky noise, 119
square law detector, 68
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y-factor, 77
Reciever Noise

NEP, 117
Reciprocity theorem, 141, 475
Recombination

linewidth, 366
Recombination line, 359, 366

carbon, 380
Reflected radiation, 191
Reflector

spherical, 163
Refraction effects

atmospheric, 177
Relative abundance, 450
Resistance

specific, 21
Resolution

angular, 201
Rayleigh criterion, 133

Rigid rotator, 390
Ring molecules, 450
RMS sensitivity, 229
Rotating body, 296
Rotation

galactic, 344, 345
Rotational energy, 303, 304
Rotational temperature, 440
Rubidium clock, 105
Russell-Saunders coupling, 412
Rydberg atom, 366
Rydberg constant, 366
Rydberg formula, 365

Saha equation, 386
Saha-Boltzmann equation, 368
Sampling

fast, 115
incomplete, 219

Scale height
atmospheric, 174

Schrödinger, 387
Scintillating sources, 295
Sedov phase, 286, 294
Selection rule, 392
Semiconductor

junction, 93
Sensitivity

limiting, 70
telescope, 179

Seyfert galaxies, 310
Shell

circumstellar, 287
expanding, 284
SN, 287

Shell source, 284
Shift register, 107
Shock

strong, 291
Shock condition, 292
Shock waves

hydromagnetic, 431
Side lobe, 166
Side lobes, 137, 230

spectrometer, 109
Signal

analytic, 47, 48
Signal path, 301
SiO masers, 432
SIS device, 98
Size

Gaussian, 212
Sky noise, 177
Skydip, 184
Snowplow, 292

phase, 286
SOFIA, 167
Solar disk, 279
Solar motion

standard, 189
Solar neighborhood, 348
Solution

principal, 223
Solving kernel, 188
Source

3C273, 317
asteroid, 274
background, 336
Cassiopeia A, 236, 276, 316, 356
Crab Nebula, 316
Cygnus A, 235, 317
detection with bolometer, 274
discrete, 239
discrete, Gaussian, temperature, 198
energetics, 269
excitation parameter, 381
extragalactic, 239, 310
flux density, 16
free-fall time, 461
galactic, 239, 277
galactic center, 36
line absorption, 356
NGC 253, 317
nonthermal, 240
Orion A, 236, 274, 315
Orion A, free-free, 275
Orion KL, 274, 461
relativistic expansion, 317
size, 338
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stellar, 315, 316
stellar mass loss, 316
thermal, 277
Venus, 199

Source function, 373
Spectral window, 2
Spectrometer, 105

acousto-optical, 111
autocorrelation, 107
Chirp Transform, 114
Fourier, 105
Michelson, 105
multichannel, 106
resolution, 108

Spherical top, 401
Spin statistics, 402
Stability

dynamic, 113
Standard

secondary, 74
Standing wave pattern, 190
Stark effect, 376
Stars

Salpeter mass distribution, 381
Statistical weight, 375
Statistics

Gaussian, 75
Poisson, 200

Stefan-Boltzmann constant, 11
Stefan-Boltzmann law, 11
Stellar wind, 283, 359
Stimulated emission, 427
Stokes parameters, 44, 45, 48
Stray pattern, 192
Stray radiation, 194
Strong maser, 431
Sub-pulse

drifting pattern, 309
Subcentral point, 347, 348
Submillimeter

optical depth, 198
Subthermal excitation, 424, 425, 430
Subthermal excitation temperature, 400
Sun, 277
Sunyaev-Zeldovich, 275
Sunyaev-Zeldovich effect, 272, 312
Supernova remnant, 284, 285, 292

evolution, 286
Superposition principle, 123
Support mechanism, 447
Surveys

time estimates, 119
Switching speed, 71
Symmetric molecules, 400

Symmetric top, 401, 405
Synchrotron

flat spectrum, 276
minimum energy theorem, 316
radiation, 259
source, 269

System
linear, 59

System instability, 185
System Noise

square law detector, 69

Telescope
radio, 2

Temperature
antenna, 150, 179–181, 183
brightness, 13, 151, 179–181, 183, 192, 193,

325, 333, 369
brightness, discrete, 198
brightness, flux density, 198
effective, 175
excitation, 327, 333
fluctuations, 228
harmonic mean, 334
kinetic, 326, 333, 339, 340, 354, 440, 461
main beam brightness, 179
noise, 16, 73
spin, 331, 334, 354, 357
stellar surface, 361
thermal, sun, 199

Temperature, main-beam, Gaussian, 199
Thermalization density, 457
Three-body collisions, 451
Time

arrow, 125
dilation, 255
resolution, 116

Transfer
effects, 374
equation, 8, 9

Transition layer, 362
Transition probability, 324, 331
Transitions

electronic, 388
rotational, 388
spontaneous, 319
vibrational, 388

Transmission
atmospheric, 185

Triplet ground state, 412
Tully-Fisher relation, 352
Two-level approximation, 424
Type I supernova, 287
Type II supernova, 287
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Units
Jansky, 16
power equivalent, 17

uv plane, 219

Value
expected, 56
mean, 56, 60

van Cittert-Zernike theorem, 487
variance, 56
Velocity

earth rotation, 189
expansion, 285
group, 33
phase, 26, 28, 33
propagation, 123
radial, 188
saturation, 94
thermal, 367

Velocity distribution
Maxwellian, 367

Velocity field
quadratic, 342

Vibrational modes, 394
Virial, 350

equilibrium, 446
objects, 443

virial equilibrium, 462
Volume absorption coefficient, 174

Warm ionized medium, 341
Warm neutral medium, 341
Water masers, 431
Water vapor, 173, 421
Wave

coherent, 483
equation, 123, 125

inhomogeneous, 123
harmonic, 128
incoherent, 483
intensity, 48
plane, 28

monochromatic, 483
quasi monochromatic, 47

Wave equation, 23, 25
Wave number, 25
Wave packets, 36
Waves

harmonic, 29
incoherent, 485
transverse, 27
vector, 39

Weak masers, 430
Weight

statistical, 367
Weighting

natural, 224
uniform, 224

Wien’s law, 12, 13
Wiener-Khinchin theorem, 58
WIM, 341
Wind velocity, 283
WNM, 341
Wobbling scheme, 186

X rays
Chandra, 312
XMM, 312

Y-factor
Receiver Noise, 117

Zero-point vibrations, 391
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