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Abstract Ionization of the Earth’s atmosphere by sunlight forms a complex, multilayered plasma
environment within the Earth’s magnetosphere, the innermost layers being the ionosphere and
plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts)
aligned along the Earth’s magnetic field, but direct evidence for these remains scarce. Here we report
the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper
ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their
heights and motions by feature tracking and parallax analysis. The structures are strikingly organized,
appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned
with the Earth’s magnetic field. These findings represent the first direct visual evidence for the existence
of such structures.

1. Introduction

The plasmasphere is a toroidal region within the Earth’s magnetosphere that is filled with plasma from the
ionosphere, which is a photoionized layer near the surface of the Earth [Goldstein, 2006]. The existence of
field-aligned ducts in the plasmasphere is widely accepted as the explanation for ground-based detections
of whistler-mode waves, which may be guided along such ducts [Ohta et al., 1996; Bakharev et al., 2010].
Wave-particle interactions that accelerate and precipitate particles into the atmosphere occur efficiently
within these ducts, so their existence aids the removal of energetic particles from the magnetosphere and
thereby influences global magnetospheric-ionospheric coupling and energetics [Sonwalkar, 2006]. Duct
properties have been studied mainly through indirect, ground-based observations of whistlers from both
natural sources (lightning) and man-made VLF transmitters [Singh et al., 1998; Ganguli et al., 2000; Clilverd
et al., 2003]. Since the guiding structures cannot be detected independently of the whistlers, observations
that use lightning-generated whistlers are necessarily intermittent, and those that use man-made whistlers
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are spatially restricted. Direct detections of plas-
maspheric ducts have been achieved by satel-
lite in situ measurements [Sonwalkar et al., 1994],
but these and also indirect satellite-based mea-
surements such as sounding [Darrouzet et al.,
2009; Yearby et al., 2011; Karpachev et al., 2014]
are heavily restricted by spacecraft orbital pat-
terns. Duct morphologies have thus been difficult
to establish.

The Murchison Widefield Array (MWA) [Lonsdale
et al., 2009; Tingay et al., 2013] is a low-frequency
(80–300 MHz) radio telescope located in Western
Australia at 26◦42′12′′S, 116◦40′15′′E (geographic),
and a geomagnetic latitude of 38.6◦S (McIlwain
L parameter [McIlwain, 1961] of 1.6). Although
chiefly intended for studying the cosmos, it is also
an exquisitely sensitive probe of the near-Earth
plasma. Novel design concepts include its wide field
of view (FoV) and high-cadence imaging capabil-
ity. A multitude of unresolved celestial radio sources
(mostly radio galaxies and quasars) back-illuminate
the plasma, allowing one to probe fluctuations at
high spatial completeness by measuring the angu-
lar distribution of source refractive shifts. Since
interferometers measure angular positions using
baseline phase differences, they are insensitive to
the constant offset component of the electron col-
umn density (“total electron content” (TEC)), which
adds an equal phase to all antennas and cancels
out. Rather, the refraction-induced angular shift Δ𝜃
of a radio source depends on the transverse gradi-
ent∇⊥TEC in the TEC toward the source and is given
by [Thompson et al., 2001]

Δ𝜃 = − 1
8𝜋2

e2

𝜖0me

1
𝜈2

∇⊥TEC . (1)

Figure 1. The vector fields of celestial source offsets for
the (a) first, (b) middle, and (c) last snapshots, overplotted
with the geomagnetic field lines (black solid lines) from a
single L shell. Field line positions were computed based
on the Australian Geomagnetic Reference Field model
[Geoscience Australia, 2010] at an altitude of 600 km.
Assumed to be locally straight and parallel, their apparent
convergence arises from a perspective distortion due to
their steep (−60◦) inclination. The center of each arrow
marks the time-averaged position (used as a reference
point) of a celestial radio source, and the arrow repre-
sents its displacement vector. Arrow lengths have been
scaled to 50 times the actual displacement distance.
Blue and red denote arrows with positive and negative
x components (westward and eastward), respectively.
North is up and east is to the left as per the astronom-
ical convention, and x = y = 0◦ marks the location of
the zenith. Units along the x and y axes correspond to
angular distance across the MWA FoV (1◦ ↔ 10 km at
600 km altitude).
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Figure 2. The vector divergence plot for the middle snapshot
(i.e., the divergence of the vector field shown in Figure 1b),
with the duct structure clearly visible. Positive divergence
regions (relative overdensities) are represented by red-
yellow hues, while negative divergence regions (relative
underdensities) are represented by blue-cyan hues. White
represents either values close to zero (within the FoV) or
non-numeric (outside the FoV). Geomagnetic field lines have
been overplotted as black solid lines, as for Figure 1.

Here e and me are the electron charge and mass,
𝜖0 is the vacuum permittivity, and 𝜈 is the radio
observing frequency. The negative sign indi-
cates that the direction of refraction is toward
decreasing TEC.

2. Observations and Results

We analyzed MWA data comprising 46 snap-
shots, each integrated for 2 min at a frequency
of 183 MHz over a 30.72 MHz bandwidth, of a
30◦ × 50◦ (N-S × E-W) patch of sky near zenith.
These were recorded over a 1.5 h interval on
15 October 2013 between 1346 and 1517 UTC
(premidnight local time), in which the telescope
was tracking celestial coordinates RA = 0◦, Dec =
−27◦ (J2000). We measured the refractive shifts
of the ∼1000 celestial sources visible in each
∼ 30◦ wide snapshot by fitting to the posi-
tions of the same sources seen in each snapshot
and computing offsets from the time-averaged
positions. In more detail, the source-finding
software AEGEAN [Hancock et al., 2012] was first
used to locate intensity peaks (candidate radio
sources) in the images. We subjected the candi-

date sources to a number of quality restrictions and then cross matched the remainder with the National Radio
Astronomy Observatory Very Large Array (VLA) Sky Survey (NVSS) catalog [Condon et al., 1998], a published
database of celestial radio sources, retaining only those candidates with counterparts in NVSS. Cross match-
ing was performed by identifying the nearest NVSS source to the candidate source within the search radius
(3 arc min) and associating it to the latter.

We took the reference position of a source, uniquely identified by its NVSS catalog name, to be the average of
its celestial coordinates (measured by AEGEAN) over all snapshots. Then for each snapshot, we computed the
angular offset vector of each source from its reference position. The distributions of these offsets (equivalently
the TEC gradient field) are shown in Figure 1 for several snapshots (see Movie S1 in the supporting information
for an animation of the full data set). Strikingly organized bands of arrows are visible, with a characteristic band
separation of ∼ 2◦. These reflect a spatially oscillating gradient field, implying alternating bands of underden-
sities and overdensities. The bands are tightly aligned with the Earth’s magnetic field. Taking the divergence
of the vector field reveals the duct structure more prominently. This is shown in Figure 2 for a representative
snapshot (see Movie S2 for an animation of the full data set).

The measured offsets display a 𝜆2 proportionality (Figure 3a) consistent with equation (1), where 𝜆 is the
observing wavelength. Source motions exceed measurement errors and are often larger than the width of
the telescope point spread function (119 arc sec at 183 MHz). Quasi-sinusoidal oscillations of radio sources
are apparent; the time series for one source, with errors, is shown in Figure 3b. Note that celestial sources drift
across the sky much faster than do the structures, which are almost stationary above the MWA. Their charac-
teristic TEC gradient (a measure of the amplitude), obtained from the mean angular offset using equation (1),
increases over time and roughly doubles in 1.5 h (Figure 3c). This is comparable to the growth timescales
predicted and reported for whistler ducts in the literature [Singh et al., 1998; McCormick, 2002].

We estimated the altitude, motion, and orientation of the structures by using the MWA as a stereo camera.
The MWA consists of 128 receiving elements (“tiles”) spread over an area about 3 km across (Figure 4a). By
dividing the array east-west and imaging using the two groups of tiles separately, we measured a parallax
shift (Figure 4b) that implies a characteristic altitude of 570 ± 40 km (L = 1.8), averaged over the interval
and the FoV. This is within the L range previously inferred for similar structures [Jacobson and Erickson, 1993;
Hoogeveen and Jacobson, 1997].
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Figure 3. (a) Wavelength (𝜆) dependence of the size of the offset for
five bright radio sources, whose flux densities are shown in the figure
legend (1 Jy ≡ 10−26 W m−2 Hz−1). Each set of points represents mea-
surements taken in a single snapshot of time. Straight lines represent
best fits to measurements at four different frequencies within the
30 MHz observing bandwidth, constrained to pass through the origin.
(b) East-west component of the displacement of one of the sources
in Figure 3a as a function of time. Different colors represent measure-
ments at four independent frequencies. Dashed lines indicate the width
of the telescope point spread function. Error bars in Figures 3a and
3b represent position fitting errors. (c) Time dependence of the aver-
age magnitude of the TEC gradient over all sources in a snapshot, for
images formed using the full 30 MHz band.

A parallax analysis is only meaningful for
structures that are localized in altitude.
However, the MWA measures the spatial
derivative of a column-integrated quan-
tity and so is sensitive to irregularities over
a wide range of altitudes. An argument
against the structures being extended
in altitude, and thus for the applicabil-
ity of the parallax analysis, comes from
the observation that the bands are still
prominent up to zenith angles of 𝜁∼20◦.
If they were extended in altitude (like ver-
tical sheets), then oblique lines of sight
would pierce multiple sheets, causing
the features to blend into one another
and wash out. Clear bands in the ∇⊥TEC
vector field exist out to 𝜁 ∼ 20◦, implying
that the irregularities cannot be extended
in altitude by more than cot 𝜁 ≈ 3 times
the interband separation, i.e., that their
horizontal and vertical cross-sectional
widths are comparable. This further
supports the cylindrical duct interpre-
tation, as opposed to vertical sheet-like
structures. The contribution to the TEC
from the smooth plasma above and
below the irregularity layer cancels away
when the horizontal spatial derivative
is taken, and so the situation is obser-
vationally equivalent to a thin layer of
plasma embedded with irregularities
that is bounded above and below by
vacuum. This supports the validity of
the parallax technique and explains why
we obtained a well-defined altitude
upon measurement.

Computing the parallax separately over
the first and second halves of the inter-
val establishes a downward drift from
720 ± 90 km to 470 ± 40 km with time.
Splitting the data spatially into northern
and southern halves of the FoV reveals
larger altitudes to the north. This is con-
sistent with the steep magnetic inclina-
tion at the MWA site (−60◦) and implies
that the structures stretch between ∼400
and 1000 km within the FoV, likely extend-
ing above this. Thus, they bridge the top-
side ionosphere and inner plasmasphere,
and so the transition from a neutral- to
plasma-dominated medium. These prop-

erties are consistent with the altitudes that whistler ducts are expected to occupy at night [Sonwalkar, 2006].
The physical spacings of the tubes are then 10–50 km, and associated TEC fluctuations between about 0.1 and
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Figure 4. (a) Layout of the 128 MWA tiles, with hollow square and
circle markers highlighting the two groups of tiles used for measuring
the parallax shift. Central core tiles (crosses) were excluded to maximize
the effective baseline (∼890 m), leaving 37 tiles for the east half and 35
for the west. (b) Histograms of the parallax shifts measured for the east
and west halves, each from 92 independent measurements (46 snapshots
× two instrumental polarizations). The relative displacement of the two
histograms represents a parallax of 5.3 ± 0.4 arc min.

0.7 total electron content units (TECU)
(1 TECU = 1016 el m−2), again in agree-
ment with inferred properties of
whistler ducts [Sonwalkar, 2006].

3. Discussion
3.1. Previous Capabilities
While the hypothesized existence of
field-aligned density ducts accounts
for a large body of experimental data
[Ohta et al., 1996; Singh et al., 1998;
Carpenter and Smith, 2001], it has not
been previously possible to directly
verify that large, cylindrical density
structures greatly extended along the
Earth’s magnetic field lines exist or to
track their motions precisely and con-
tinuously over regional scales. Satellite
in situ observations [Sonwalkar et al.
1994] can only measure densities
at single points and cannot instan-
taneously probe the regional-scale
density distribution. Topside sound-
ing data and whistler spectrograms
have been interpreted in terms of sig-
nal guidance by field-aligned ducts
[Darrouzet et al., 2009; Yearby et al.,
2011], but such methods rely on
assumptions about wave propagation
[Singh et al., 1998], and detections
are only possible under suitable
conditions. They also suffer from spa-
tial restrictions imposed by satellite
orbital paths and the placements of
ground-based receivers. With a model

for the Earth’s magnetic field, radial motions of ducts and their L shell values can be deduced from
whistler spectrograms, but zonal drifts cannot be similarly established [Saxton and Smith, 1989; Carpenter
and Smith, 2001].

Claims of regularly spaced, regional-scale, field-aligned density structures with properties similar to those
seen here have been made based on observations by the Very Large Array (VLA) radio interferometer
[Jacobson and Erickson, 1993; Helmboldt et al., 2012a, 2012b] and the Los Alamos plasmaspheric drift radio
interferometer [Jacobson et al., 1996; Hoogeveen and Jacobson, 1997]. Although these studies could measure
zonal drifts, identification of the structures relied on fitting plane waves to sparsely sampled measurements,
a model whose suitability could not be independently verified. The assumption that the irregularities were
field aligned, together with a model for the Earth’s magnetic field, is required to infer their altitudes. Many
of these assumptions are unnecessary here. The sampling completeness of the MWA surpasses that of the
VLA and Los Alamos instruments by a factor of ∼100, making it the first radio telescope capable of imaging
the plasma. This has allowed us to visualize for the first time the regional-scale, field-aligned nature of these
density structures and to demonstrate a clear and remarkable spatial periodicity in their layout, without any
prior assumptions about their morphology. Unlike these and other ground-based studies, our parallax tech-
nique to establish the altitudes requires no knowledge of the Earth’s magnetic field. By removing the reliance
on wave transmission for detection of the ducts, they may be monitored passively and continuously for long
durations, including periods when structural distortions or imperfections may prevent them from sustaining
wave propagation.
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3.2. Formation Mechanism
Plasmaspheric density irregularities appear more often during geomagnetically disturbed periods, but the
underlying formation mechanisms are not well established [Hoogeveen and Jacobson, 1997; Darrouzet et al.,
2009]. Geomagnetic conditions during the interval were mildly unsettled with a Kp index of 2, the observa-
tions taking place in the recovery phase of a moderate storm (maximum ring current of Dst = −45 nT near
04 UTC, 24 h maximum Kp of 4). Theoretical studies indicate that ripples and undulations in the plasmas-
pheric electron density may be produced by an interchange instability that preferentially occurs just after
periods of strong magnetospheric convection [Sazykin et al., 2004; Buzulukova et al., 2008]. Such ripples have
been observed on a global scale in satellite observations [Goldstein, 2005]. Although below the spatial scale
of the grids used in those simulation studies, smaller duct-like structures such as those seen in our data may
form if this mechanism continues to operate on smaller spatial scales. We note that field-aligned structures of
lesser prominence and multiplicity often appear in MWA data under quieter geomagnetic conditions. They are
visible on around half of all nights inspected so far, most of which (with the exception of the current data set)
were not obtained during periods of storm time activity.

Organized azimuthal structures in the outer plasmasphere have been attributed to E×B convection under the
influence of ultralow frequency (ULF) standing waves [Adrian et al., 2004]. Although the spatial scales of ULF
waves greatly exceed those observed here, small-scale density structures can grow by flux tube interchange
under the imposition of a much larger-scale electric field [Rodger et al., 1998]. The steady downward transport
established above is consistent with E × B convection for a westward electric field of ∼1 mV m−1, a reason-
able value for periods of substorm activity [Carpenter and Smith, 2001]. Quasiperiodic, field-aligned structures
called plasma bubbles form through a related process, where traveling ionospheric disturbances (TIDs) trig-
ger the Rayleigh-Taylor instability [Buhari et al., 2014]. However, plasma bubble formation is only viable near
the equator where near-horizontal geomagnetic field lines can support the plasma against gravity and not at
midlatitudes. The fluctuations are unlikely to be TIDs themselves, which have a dispersion relation [Shiokawa
et al., 2013] grossly inconsistent with the spatial and temporal properties measured here. Furthermore,
TID-like fluctuations routinely appear in MWA data, and these exhibit markedly different properties from those
seen here.

Spatially varying electric fields in the plasmasphere may cause localized compressions, squeezing plasma
down selected flux tubes [Park and Banks, 1974]. Secondary ionization from particle precipitation may also
produce flux tube selective densifications. Although natural precipitation events are largely confined to the
auroral zones, the powerful VLF navigation beacon at North West Cape (∼400 km north of the MWA) is
known to cause electron precipitation concentrated toward the south [Parrot et al., 2007]. A Fourier analysis
of our data reveals the existence of structures drifting in opposite directions. Components with larger spa-
tial frequencies are observed to drift eastward, while those with smaller spatial frequencies drift westward.
We measure drift speeds within 2% of corotation, consistent with these being in the inner plasmasphere
where corotation is relatively strict [Galvan et al., 2010]. The regular spacing of the structures could have
arisen from a Kelvin-Helmholtz instability driven by shear in the plasma and thereafter amplified through an
interchange instability.

4. Conclusion and Outlook

Despite the seeming ubiquity of field-aligned ducts in magnetospheric systems (e.g., Io-Jupiter [Imai et al.,
1992] and the Sun [Duncan, 1979]), self-organization processes in plasmas have been difficult to isolate obser-
vationally. Our results demonstrate that widefield radio telescopes such as the MWA are powerful quantitative
tools for studying their formation, dynamics, and morphology. Radio telescopes differ fundamentally from
many approaches for probing the ionosphere and plasmasphere in that they measure density gradients rather
than absolute density. Their insensitivity to the constant offset component of the TEC makes them particularly
suitable for studying plasma density disturbances/irregularities and permits them to probe regions above the
peak electron density with ease, since they are not significantly shielded by the denser underlying plasma.

The ground-based feature tracking and altitude triangulation capabilities we have demonstrated here offer
valuable opportunities for the real-time, regional-scale monitoring of inner magnetospheric structures and
dynamics on a near-continuous basis, unconstrained by the limitations of spacecraft orbits or the propa-
gation of whistlers. Unlike ground-based whistler observations, which only allow for radial motions to be
measured, the MWA can track both radial and horizontal motions, thereby allowing bulk plasma drifts to be
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characterized in three dimensions. Its potential to perform 3-D reconstruction of density structures can pro-
vide empirical constraints on the plasma distribution both along and across magnetic flux tubes. This may
be useful, for example, for specifying appropriate boundary conditions in simulation studies of global plasma
flows [Tu et al., 2006].
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