Radio Continuum:

Rainer Beck MPIfR Bonn

Synchrotron emission

Radio continuum tools to study GeV Cosmic ray electrons (CRE)

- Synchrotron spectrum: Energy density, energy spectrum, energy losses of CRE
- Distribution of synchrotron spectral index: Propagation type and velocity of CRE
- Scale height/length of galaxy and cluster halos: Bulk outflow velocity, diffusion coefficient

Synchrotron emission

 Power-law energy spectrum of CRE (with spectral index ε):
 N(E) dE = N₀ E^{-ε} dE

• Intensity of synchrotron spectrum: $I_v \sim \int N_0 B_{\perp}^{(\epsilon+1)/2} v^{-(\epsilon-1)/2} dL$

Synchrotron spectral index:
 α = (ε-1)/2
 Strong shocks: ε=2, α=0.5

Energy loss mechanisms of CRE

Ionisation	$-\left(rac{{\sf d}E}{{\sf d}t} ight)_{ m ion} \propto \ln E \sim {\sf constant}$
Bremsstrahlung	$-\left(rac{{ m d}E}{{ m d}t} ight)_{ m brem} \propto E$
Adiabatic cooling	$-\left(rac{{\sf d}E}{{\sf d}t} ight)_{ m adiab} \propto E$
Synchrotron	$-\left(rac{{\sf d} E}{{\sf d} t} ight)_{ m syn} \propto E^2$
Inverse Compton	$-\left(rac{\mathrm{d}E}{\mathrm{d}t} ight)_{\mathrm{invC}}\propto E^2$
Escape into halo	diffusion coefficient $D \propto E^{\delta}.$

Synchrotron lifetime of GeV CRE

 $t_{syn} \approx 1 \text{ Gyr } B_{\perp} [\mu G]^{-1.5} V_{syn} [GHz]^{-0.5}$

Continuous injection: synchrotron spectrum steepens by $\Delta \alpha = 0.5$ above a critical frequency

Typical radio continuum spectrum of a spiral galaxy

Thermal-nonthermal separation of total flux densities of galaxies

Origin of GeV CRE spectra in galaxies

Observed: $\epsilon \approx 2.7$ in most galaxies (and in the Milky Way)

■ Injection by supernova remnants ($\epsilon \approx 2.2$) + energy-dependent escape ($\rightarrow \epsilon \approx 2.7$)

■ Mixture of young CRE from SNRs (ε≈2.2) and old CRE steepened by synchrotron loss (ε≈3.2)

Injection with $\varepsilon \approx 2.7$ (?)

NGC 6946 20cm VLA Total intensity (Beck 2007)

Exponential radio disk: mostly synchrotron

Extent is limited by energy losses of the CRE

Typical exponential scale lengths of radio disks of spiral galaxies

• Cold & warm gas: ≈ 4 kpc

Synchrotron:

≈ 4 kpc

■ Cosmic-ray electrons: ≤ 8 kpc (assuming equipartition, upper limit due to energy losses)

• Total magnetic field: \geq 16 kpc

NGC 253

6cm VLA+Effelsberg Total intensity + B-vectors (Heesen et al. 2009)

Exponential radio halo:

Extent is limited by energy losses of the CRE

Typical exponential scale heights of radio halos

Cold gas:	≈0.1 kpc
Warm gas:	≈1 kpc
Synchrotron:	≈2 kpc
Cosmic-ray electrons: (assuming equipartition upper line)	≤4 kpc
 Total magnetic field: 	≥8 kpc

Spectral index in M51

Spectral index is flat in the spiral arms and steep in interarm regions:

Synchrotron & IC losses of CRE

NGC 253

Spectral index 6/20cm (Heesen et al. 2009)

Spectral index steepens with height:

Synchrotron & IC losses of CREs

Scale heights of cosmic-ray electrons in NGC 253

Heesen et al. 2009

• North: Convection dominates, bulk speed $v_7 = 300 \pm 30$ km/s

• South: Diffusion dominates, $D = (2 \pm 0.2) \ 10^{29} \ cm^2 \ s^{-1}$

Radio continuum tools to study Magnetic fields

 Total synchrotron intensity: Strength of total B₁

 Polarized synchrotron intensity: Strength and structure of ordered B₁

 Faraday rotation: Strength and sign of ordered B₁

 Faraday depolarization: Strength and scale of turbulent fields

Equipartition strength of the total field

(assuming equipartition between magnetic fields and cosmic rays)

Beck & Krause 2005

$$\mathbf{B}_{eq,\perp} \propto \left(\mathbf{I}_{sync} \left(\mathsf{K}+1 \right) / \mathsf{L} \right) \frac{1}{(3+\alpha)}$$

Isync: Synchrotron intensity

- L: Pathlength through source
- **α**: Synchrotron spectral index
- K: Ratio of cosmic-ray proton/electron number densities n_p/n_e Usual assumption: K \approx 100 (no energy losses of CR electrons)

Energy spectra of cosmic rays

Diffusive shock acceleration: $\epsilon \ge 2$

Bell 1978

α ≥ 0.5E > 1 GeV: K=(m_p/m_e)^{(ε-1)/2} ε≈2.2: K≈90

Equipartition magnetic field strengths

CRE energy losses:

- Spectral index (ε_e) is modified
- Proton/electron ratio is larger than 100
- Equipartition field estimate is too small (Beck & Krause 2005)

Needed: independent data on CR proton spectrum (e.g. from γ rays) or CR electron spectrum (from X-rays)

M 51 20cm VLA Total intensity (Fletcher et al. 2010)

Equipartition field strengths in M 51

Equipartition underestimates the field in the outer galaxy due to energy losses of CRE

Fletcher et al. 2010

Equipartition field strengths in NGC 253

Equipartition underestimates the halo field due to energy losses of CR electrons

Heesen et al. 2009

5 10 15 micro Gauss -25 08 10 12 14 16 18 20 22 24 26 00 48 15 00 47 45 30 15 00

Equipartition magnetic field strengths in spiral galaxies

Total field in spiral arms:	20	- 30	μ <mark>G</mark>
Regular field in interarm regions:	5	- 15	μ G
Total field in circum-nuclear rings:	40 -	100	μG
Total field in galaxy center filaments:		≈ 1	mG

Synchrotron polarization for a power-law electron spectrum

Intrinsic degree of linear polarization: $p_0 = (\epsilon+1) / (\epsilon+7/3)$ $= (\alpha+1) / (\alpha+5/3)$ Typical value: $\alpha=0.85$, $p_0=74\%$

Note: circular polarization is generally negligible

Synchrotron polarization

Beck & Hoernes 1996

NGC 6946 Total and polarized intensity at 6cm

Faraday depolarization

Beck 2007

NGC 6946 Polarized intensity at 6cm and 20.5cm

Degree of polarization in galaxies: $\leq 5\%$ in spiral arms 20 - 60% in magnetic arms at ≥ 5 GHz, $\leq 10\%$ at ≤ 1.4 GHz

Ratio of random to regular magnetic fields: \geq 4 in spiral arms and starburst regions, 0.5 – 2 in magnetic arms

Fletcher et al. 2004

Regular (coherent) field

Anisotropic (incoherent) field

Polarization :

Faraday rotation :

strong high strong

low

Faraday rotation

Faraday rotation angles

	M =	10	1	0.1 rad m ⁻²	
1400 MHz	Δχ =	30°	3°	0.3°	
200 MHz	Δχ =	1300°	130°	13°	
120 MHz	$\Delta \chi =$	3600°	360°	36°	

RM Synthesis

The observed complex polarization *P* is the Fourier transform of the complex Faraday spectrum $F(\varphi)$ (the "source distribution" in Faraday depth φ)

Brentjens & de Bruyn 2005

RM Synthesis (radio spectro-polarimetry)

- The observed spectrum of complex polarization in frequency is Fourier-transformed into the Faraday spectrum in Faraday depth
- Faraday depth ($\phi \propto \int B_{\parallel} n_e dl$) is a physical quantity, different from the classical (observable) rotation measure
- The Faraday spectrum allows to model different layers of magneto-ionic gas along the line of sight (Faraday tomography)

"Mean-field" dynamo theory for galactic magnetic fields

- Ingredients: Ionized gas + differential rotation + turbulence
- Dynamical separation between large scales and small scales
- Microphysics approximated by the average parameters "alpha-effect" (helicity) and magnetic diffusivity
- Solutions: large-scale modes

Antisymmetric and symmetric dynamo modes

Stix 1975

Fig. 1a and b. Poloidal field lines (a) and curves of constant toroidal field strength (b) for a dipole type field, with R = 15 kpc, b = 2 kpc, and $P = 1.1 \cdot 10^3$

Fig. 2a and b. Poloidal field lines (a) and curves of constant toroidal field strength (b) for a quadrupole type field, with R = 15 kpc, b = 2 kpc, and $P = -8.5 \cdot 10^3$

Global cosmic-ray driven MHD model

Hanasz et al. 2009

Generation of a dominant axisymmetric mode: Confirmation of the mean-field model

Finding dynamo modes: Azimuthal variation of Faraday rotation

Bisymmetric spiral (m=1)

Future radio telescopes

- Higher resolution: EVLA, SKA
- Larger sensitivity: EVLA, MeerKAT, SKA
- Higher frequencies: ALMA
- Lower frequencies: LOFAR, SKA
- Higher survey speed: LOFAR, ASKAP, APERTIF, SKA

The advantages of low-frequency radio observations

- Low frequency synchrotron emission traces cosmic-ray electrons in weak magnetic fields
- Low frequencies trace old cosmic-ray electrons far away from their acceleration sites
- Low frequencies measure small rotation measures from weak magnetic fields

Halo and relic emission from Abell521 (GMRT 240MHz)

Brunetti et al. 2008

Faraday rotation with LOFAR

- LOFAR can in measure very low Faraday rotation measures of polarized background sources and hence detect very weak magnetic fields:
- Galaxy halos, clusters, relics: n_e=10⁻³ cm⁻³, B_{||} =1 µG, L=1 kpc: RM~1 rad m⁻²
- Intergalactic magnetic fields: n_e=10⁻⁵ cm⁻³, B_{||} =0.1 µG, L=100 kpc: RM~0.1 rad m⁻²

AUGER UHECR events (> 5 10¹⁹ eV)

AUGER 2010

Localizing the UHECR sources requires knowledge about the Milky Way s magnetic field