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PREFACE TO THE 
SECOND E:DITION 

Half a century of remarkable scientific progress has resulted from the application 
of radio interferometry to astronomy. Advances since 1986, when this book was 
first published, have resulted in the VLBA (Very Long Baseline Array) which 
is the first array fully dedicated to very-long-baseline interferometry (VLBI), 
the globalization of VLBI networks with the inclusion of antennas in orbit, in- 
creasing importance of spectral line observations, and improved instrumental 
performance at both ends of the radio spectrum. At the highest frequencies, 
millimeter-wavelength arrays of the Berkeley-Illinois-Maryland Association 
(BIMA), the Institut de Radio Astronomie MillimCtrique (IRAM), Nobeyama 
Radio Observatory (NF:O) and Owens Valley Radio Observatory (OVRO), which 
were in their infancy in 1986, have been greatly expanded in their capabili- 
ties. The Submillimeter Array (SMA), and the Atacama Large Millimeter Array 
(ALMA), which is a major international project at millimeter and submillimeter 
wavelengths, are under development. At low frequencies, with their special prob- 
lems involving the ionosphere and wide-field mapping, the frequency coverage of 
the Very Large Array (VLA) has been extended down to 75 MHz, and the Giant 
Meter-wave Radio Telescope (GMRT), operating down to 38 MHz, has been 
commissioned. The Australia Telescope and an expanded Multielement Radio- 
linked Interferometer Network (MERLIN) have provided increased capability at 
centimeter wavelengths. 

Such progress has led to this revised edition, the intent of which is not only 
to bring the material up to date but also to expand its scope and improve its 
comprehensibility and general usefulness. In a few cases symbols used in the 
first edition have been changed to follow the general usage that is becoming 
established in radio astronomy. Every chapter contains new material, and there 
are new figures and niany new references. Material in the original Chapter 3 
that was peripheral to the basic discussion has been condensed and moved to 
a later chapter. Chapter 3 now contains the essential analysis of the response 
of an interferometer. The section on polarization in Chapter 4 has been sub- 
stantially expanded, arid a brief introduction to antenna theory has been added 
to Chapter 5. Chapter 6 contains a discussion of the sensitivity for a wide va- 
riety of instrumental configurations. A discussion of spectral line observations 
is included in Chapter 10. Chapter 13 has been expanded to include a descrip- 

xix 



xx PREFACE TO THE SECOND EDITION 

tion of the new techniques for atmospheric phase correction, and site testing 
data and techniques at millimeter wavelengths. Chapter 14 has been added, and 
contains an examination of the van Cittert-Zernike theorem and discussions of 
spatial coherence and scattering, some of which is derived from the original 
Chapter 3. 

Special thanks are due to a number of people for reviews or other help during 
the course of the revision. These include D. C. Backer, J. W. Benson, M. Birkin- 
shaw, G. A. Blake, R. N. Bracewell, B. F. Burke, B. Butler, C. L. Carilli, B. G. 
Clark, J. M. Cordes, T. J. Cornwell, L. R. D’Addario, T. M. J. Dame, J. Davis, 
J. L. Davis, D. T, Emerson, R. P. Escoffier, E. B. Fomalont, L. J. Greenhill, M. A. 
Gurwell, C. R. Gwinn, K. I. Kellermann, A. R. Ken, E. R. Keto, S. R. Kulkami, 
S. Matsushita, D. Morris, R. Narayan, S.-K. Pan, S. J. E. Radford, R. Rao, M. J. 
Reid, A. Richichi, A. E. E. Rogers, J. E. Salah, F. R. Schwab, S. R. Spangler, 
E. C. Sutton, B. E. Turner, R. F. C. Vessot, W. J. Welch, M. C. Wiedner, and 
J.-H. Zhao. For major contributions to the preparation of the text and diagrams, 
we thank J. Heidenrich, G. L. Kessler, P. Smiley, S. Watkins, and P. Winn. For 
extensive help in preparation and editing we are especially indebted to I? L. Sim- 
mons. We are grateful to P. A. Vanden Bout, Director of the National Radio As- 
tronomy Observatory, and to I. 1. Shapiro, Director of the Harvard-Smithsonian 
Center for Astrophysics, for encouragement and support. The National Radio As- 
tronomy Observatory is operated by Associated Universities, Inc. under contract 
with the National Science Foundation, and the Harvard-Smithsonian Center for 
Astrophysics is operated by Harvard University and the Smithsonian Institution. 

A. RICHARD THOMPSON 
JAMES M. MORAN 
GEORGE W. SWENSON, JR. 

Charlottesville. Virginia 
Cambridge. Massachusetts 
Urbana, Illinois 
November 2000 



PREFACE 'TO THE 
FIRST EDITION 

The techniques of radio interferometry as applied to astronomy and astrometry 
have developed enormously in the past four decades, and the attainable angular 
resolution has advanced from degrees to milliarcseconds, a range of over six or- 
ders of magnitude. As arrays for synthesis mapping* have developed, techniques 
in the radio domain hake overtaken those in optics in providing the finest angular 
detail in astronomical images. The same general developments have introduced 
new capabilities in astiometry and in the measurement of the earth's polar and 
crustal motions. The theories and techniques that underlie these advances con- 
tinue to evolve, but have reached by now a sufficient state of maturity that it is 
appropriate to offer a detailed exposition. 

The book is intended primarily for graduate students and professionals in as- 
tronomy, electrical engineering, physics, or related fields who wish to use inter- 
ferometric or synthesis-mapping techniques in astronomy, astrometry, or geodesy. 
It is also written with radio systems engineers in mind and includes discussions 
of important parameter:; and tolerances for the types of instruments involved. Our 
aim is to explain the underlying principles of the relevant interferometric tech- 
niques but to limit the discussion of details of implementation. Such details of 
the hardware and the software are largely specific to particular instruments and 
are subject to change with developments in electronic engineering and computing 
techniques. With an understanding of the principles involved, the reader should be 
able to comprehend the instructions and instrumental details that are encountered 
in the user-oriented literature of most observatories. 

The book does not stem from any course of lectures, but the material included 
is suitable for a graduatAevel course. A teacher with experience in the techniques 
described should be able to interject easily any necessary guidance to emphasize 
astronomy, engineering, or other aspects as required. 

The first two chapters contain a brief review of radio astronomy basics, a short 
history of the development of radio interferometry, and a basic discussion of the 
operation of an interferometer. Chapter 3 discusses the underlying relationships 
of interferometry from the viewpoint of the theory of partial coherence and may 

*We define synthesis mapping as the reconstruction of images from measurements of the Fourier 
transforms of their brightness distributions. In this book the terms map, image, and brightness (intensity) 
distribution are largely interct angeable. 
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xxii PREFACE TO THE FIRST EDITION 

be omitted from a first reading. Chapter 4 introduces coordinate systems and pa- 
rameters that are required to describe synthesis mapping. It is appropriate then to 
examine configurations of antennas for multielement synthesis arrays in Chapter 
5 .  Chapters 6-8 deal with various aspects of the design and response of receiving 
systems, including the effects of quantization in digital correlators. The special re- 
quirements of very -long-baseline interferometry (VLBI) are discussed in Chapter 
9. The foregoing material covers in detail the measurement of complex visibility 
and leads to the derivation of radio maps discussed in Chapters 10 and 11. The 
former presents the basic Fourier transformation method, and the latter the more 
powerful algorithms that incorporate both calibration and transformation. Preci- 
sion observations in astrometry and geodesy are the subject of Chapter 12. There 
follow discussions of factors that can degrade the overall performance, namely, 
effects of propagation in the atmosphere, the interplanetary medium and the inter- 
stellar medium in Chapter 13, and radio interference in Chapter 14. Propagation 
effects are discussed at some length since they involve a wide range of compli- 
cated phenomena that place fundamental limits on the measurement accuracy. 
The final chapter describes related techniques including intensity interferometry, 
speckle interferometry, and lunar occultation observations. 

References are included to seminal papers and to many other publications and 
reviews that are relevant to the topics of the book. Numerous descriptions of in- 
struments and observations are also referenced for purposes of illustration. Details 
of early procedures are given wherever they are of help in elucidating the princi- 
ples or origin of current techniques, or because they are of interest in their own 
right. Because of the diversity of the phenomena described, it has been necessary, 
in some cases, to use the same mathematical symbol for different quantities. A 
glossary of principal symbols and usage follows the final chapter. 

The material in this book comes only in part from the published literature, and 
much of it has been accumulated over many years from discussions, seminars, 
and the unpublished reports and memoranda of various observatories. Thus we 
acknowledge our debt to colleagues too numerous to mention individually. Our 
special thanks are due to a number of people for critical reviews of portions of the 
book, or other support. These include D. C. Backer, D. S. Bagri, R. H. T. Bates, 
M. Birkinshaw, R. N. Bracewell, B. G. Clark, J. M. Cordes, T. J. Cornwell, L. R. 
D’Addario, J. L. Davis, R. D. Ekers, J. V. Evans, M. Faucherre, S. J. Franke, J. 
Granlund, L. J. Greenhill, C. R. Gwinn, T. A. Herring, R. J. Hill, W. A. Jeffrey, 
K. I. Kellermann, J. A. Klobuchar, R. S. Lawrence, J. M. Marcaide, N. C. Mathur, 
L. A. Molnar, P. C. Myers, P. J. Napier, P. Nisenson, H. V. Poor, M. J. Reid, J. T. 
Roberts, L. F. Rodriguez, A. E. E. Rogers, A. H. Rots, J. E. Salah, F. R. Schwab, 
I. I. Shapiro, R. A. Sramek, R. Stachnik, J. L. Turner, R. F. C. Vessot, N. Wax, and 
W. J. Welch. The reproduction of diagrams from other publications is acknowl- 
edged in the captions, and we thank the authors and the publishers concerned for 
permission to use this material. For major contributions to the preparation of the 
manuscript, we wish to thank C. C. Barrett, C. F. Burgess, N. J. Diamond, J. M. 
Gillberg, J. G. Hamwey, E. L. Haynes, G. L. Kessler, K. I. Maldonis, A. Patrick, 
V. J. Peterson, S. K. Rosenthal, A. W. Shepherd, J. F. Singarella, M. B. Weems, 
and C. H. Williams. We are grateful to M. S. Roberts and P. A. Vanden Bout, for- 
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mer Director and present Director of the National Radio Astronomy Observatory, 
and to G. B. Field and '1. I. Shapiro, former Director and present Director of the 
Harvard-Smithsonian Center for Astrophysics, for encouragement and support. 
Much of the contribution by J. M. Moran was written while on sabbatical leave at 
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1 Introduction and 
Historical Review 

The subject of this book can be broadly described as the principles of radio in- 
terferometry applied to the measurement of natural radio signals from cosmic 
sources. The uses of such measurements lie mainly within the domains of astron- 
omy, astrometry, and geodesy. As an introduction we consider in this chapter the 
applications of the technique, some basic terms and concepts, and the historical 
development of the instruments and their uses. 

1.1 APPLICATIONS OF RADIO INTERFEROMETRY 

Radio interferometers and synthesis arrays, which are basically ensembles of two- 
element interferometers, are used to make measurements of the fine angular de- 
tail in the radio emission from the sky. The angular resolution of single radio 
antennas is insufficient for many astronomical purposes. Practical considerations 
limit the resolution to a few tens of arcseconds. For example, the beamwidth of a 
100-m-diameter antenna at 7 mm wavelength is approximately 17 arcsec. In the 
optical range the diffraction limit of large telescopes (diameter -8 m) is about 
0.015 arcsec, but the angular resolution achievable from the ground by conven- 
tional techniques is limited to about one arcsec by turbulence in the troposphere. 
For progress in astronomy it is particularly important to measure the positions 
of radio sources with sufficient accuracy to allow identification with objects de- 
tected in the optical and other parts of the electromagnetic spectrum. It is also 
very important to be able to measure parameters such as intensity, polarization, 
and frequency spectrum with similar angular resolution in both the radio and op- 
tical domains. Radio interferometry enables such studies to be made. 

Precise measurement of the angular positions of stars and other cosmic ob- 
jects is the concern of astrometry. This includes the study of the small changes 
in celestial positions attributable to the parallax introduced by the earth’s orbital 
motion, as well as those resulting from the intrinsic motions of the objects. Such 
measurements are an essential step in the establishment of the distance scale of 
the universe. Astrometric measurements have also provided a means to test the 
general theory of relativity and to establish the dynamical parameters of the solar 
system. In making astrometric measurements it is essential to establish a refer- 
ence frame for celestial positions. A frame based on extremely distant large-mass 
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objects as position references is close to ideal. Radio measurements of distant, 
compact, extragalactic sources presently offer the best prospects for the estab- 
lishment of such a system. Radio techniques provide an accuracy of the order of 

arcsec or less for the relative posi- 
tions of objects closely spaced in angle. Optical measurements of stellar images, 
as seen through the earth’s atmosphere, allow the positions to be determined with 
a precision of about 0.05 arcsec. However, stellar positions have been measured 
to - 1 milliarcsecond (mas) with the Hipparcos satellite, and optical measure- 
ments with the National Aeronautics and Space Administration (NASA) Space 
Interferometry Mission hold promise of position measurements to -4 parcsec. 

As part of the measurement process, astrometric observations include a de- 
termination of the orientation of the instrument relative to the celestial reference 
frame. Ground-based observations therefore provide a measure of the variation of 
the orientation parameters for the earth. In addition to the well-known precession 
and nutation of the direction of the axis of rotation, there are irregular shifts of 
the earth’s axis relative to the surface. These shifts, referred to as polar motion, 
are attributed to the gravitational effects of the sun and moon on the equatorial 
bulge of the earth, and to dynamic effects in the earth’s mantle, crust, oceans, and 
atmosphere. The same causes give rise to changes in the angular rotation velocity 
of the earth, which are manifest as corrections that must be applied to the sys- 
tem of universal time. Measurements of the orientation parameters are important 
in the study of the dynamics of the earth. During the 1970s it became clear that 
radio techniques could provide an accurate measure of these effects, and in the 
late 1970s the first radio programs devoted to the monitoring of universal time 
and polar motion were set up jointly by the U.S. Naval Observatory and the U.S. 
Naval Research Laboratory, and also by NASA and the National Geodetic Sur- 
vey. Polar motion can also be studied by observation of satellites, in particular the 
Global Positioning System, but distant radio sources provide the best standard for 
measurement of earth rotation. 

In addition to revealing angular changes in the motion and orientation of the 
earth, precise interferometer measurements entail an astronomical determination 
of the vector spacing between the antennas, which for spacings of -100 km or 
more, is usually more precise than can be obtained by conventional surveying 
techniques. Very-long-baseline interferometry (VLBI) involves antenna spacings 
of hundreds or thousands of kilometers, and the uncertainty with which these 
spacings can be determined has decreased from a few meters in 1967, when 
VLBI measurements were first made, to a few millimeters. Average relative mo- 
tions of widely spaced sites on separate tectonic plates lie in the range 1-10 cm 
per year, and have been tracked extensively with VLBI networks. Interferometric 
techniques have also been applied to the tracking of vehicles on the lunar surface 
and the determination of the positions of spacecraft. In this book, however, we 
limit our concern mainly to measurements of natural signals from astronomical 
objects. The attainment of the highest angular resolution in the radio domain of 
the electromagnetic spectrum results in part from the ease with which radio fre- 
quency signals can be processed electronically. Also, the phase variations induced 
by the earth’s neutral atmosphere are less severe than at shorter wavelengths. Fu- 

arcsec for absolute positions and 
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ture technology will provide even higher resolution at infrared and optical wave- 
lengths from observatories above the earth’s atmosphere. However, radio waves 
will remain of vital importance in astronomy since they reveal objects that do not 
radiate in other parts of the spectrum, and they are able to pass through galactic 
dust clouds that obscure the view in the optical range. 

1.2 BASIC TERMS AND DEFINITIONS 

This section is written for readers who are unfamiliar with the basics of radio as- 
tronomy. It presents a brief review of some background information that is useful 
when approaching the subject of radio interferometry. 

Cosmic Signals 

The voltages induced in antennas by radiation from cosmic sources are gener- 
ally referred to as signals, although they do not contain information in the usual 
engineering sense. Such signals are generated by natural processes and almost 
universally have the form of Gaussian random noise. That is to say, the voltage 
as a function of time at the terminals of a receiving antenna can be described as 
a series of very short pulses of random Occurrence that combine as a waveform 
with Gaussian amplitude distribution. In a bandwidth Au the envelope of the ra- 
dio frequency waveform has the appearance of random variations with duration 
of order l /Au .  For most radio sources the characteristics of the signals are in- 
variant with time, at least on the scale of minutes or hours typical of the duration 
of a radio astronomy observation. Gaussian waveforms of this type are assumed 
to be identical in character to the noise voltages generated in resistors and ampli- 
fiers. Such waveforms are usually assumed to be stationary and ergodic, that is, 
ensemble averages and time averages converge to equal values. 

Most of the power is in the form of continuum radiarion, the power spectrum 
of which shows slow variation with frequency and may be regarded as constant 
over the receiving bandwidth of most instruments. Figure I .1 shows continuum 
spectra of three radio sources. Radio emission from the radio galaxy Cygnus A 
and from the quasar 3C48 is generated by the synchrotron mechanism [see, e.g., 
Rybicki and Lightman (1979), Longair (1992)], in which high-energy electrons 
in magnetic fields radiate as a result of their orbital motion. The radiating elec- 
trons are generally highly relativistic, and under these conditions the radiation 
emitted by each one is concentrated in the direction of its instantaneous motion. 
An observer therefore sees pulses of radiation from those electrons whose orbital 
motion lies in, or close to, a plane containing the observer. The observed polar- 
ization of the radiation is mainly linear, and any circularly polarized component 
is generally very small. The overall linear polarization from a source, however, 
is seldom large, since it is randomized by the variation of the direction of the 
magnetic field within the source and by Faraday rotation. The power in the elec- 
tromagnetic pulses from the electrons is concentrated at harmonics of the orbital 
frequency, and a continuous distribution of electron energies results in a contin- 
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Figure 1.1 Continuum spectra of three discrete sources: Cygnus A, B radio galaxy; 3C48, a 
quasar; and NGC7027, an ionized nebula within our Galaxy. Data are from Conway, Keller- 
mann, and Long ( 1963); Kellermann and Pauliny-Toth ( 1  969); and Thompson ( 1  974). [One 
jansky (Jy) = lo-*' W m-* Hz-'.I 

uum radio spectrum. The individual pulses from the electrons are too numerous to 
be separable, and the electric field appears as a continuous random process with 
zero mean. The variation of the spectrum as a function of frequency is related 
to the slope of the energy distribution of the electrons. In the quasar in Fig. 1.  I ,  
which is a very much more compact object than the radio galaxy, the electron 
density and magnetic fields are high enough to produce self-absorption of the 
radiation at low frequencies. 

NGC7027, the spcctrum of which is shown in Fig. 1.1, is a planetary nebula 
within our Galaxy in which the gas is ionized by radiation from a central star. The 
radio emission is a thermal process and results from free-free collisions between 
unbound electrons and ions within the plasma. At the low-frequency end of the 
spectral curve the nebula is opaque to its own radiation and emits a blackbody 
spcctrum, for which the Rayleigh-Jeans law is a valid approximation. As the 
frequency increases, the absorptivity, and hence the emissivity, decrease approxi- 
mately as v-* [see, e.g., Rybicki and Lightman (1979)], where v is the frequency. 
This behavior counteracts the v2  dependence of the Rayleigh-Jeans law, and thus 
the spectrum becomes flat when the nebula is no longer opaque to the radiation. 
Radiation of this type is unpolarized. 

In contrast to continuum radiation, specrml lirzr rudiution is generated at spe- 
cific frequencies by atomic and molecular processes. A fundamentally important 
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line is that of neutral atomic hydrogen at 1420.405 MHz, which results from the 
transition between two energy levels of the atom, the separation of which is re- 
lated to the spin vector of the electron in the magnetic field of the nucleus. The 
natural width of the hydrogen line is negligibly small, but Doppler shifts caused 
by thermal motion of the atoms and large-scale motion of gas clouds spread the 
line radiation. The overall Doppler spread within our Galaxy covers several hun- 
dred kilohertz. Information on galactic structure is obtained by comparison of 
these velocities with those of models incorporating galactic rotation. 

Our Galaxy and others like it also contain large molecular clouds at tempera- 
tures of 10-100 K in which new stars are continually forming. These clouds give 
rise to many atomic and molecular transitions in the radio and far-infrared ranges. 
Over 4500 molecular lines from approximately 80 molecular species have been 
measured (Lovas, Snyder, and Johnson 1979; Lovas 1992). A list of atomic and 
molecular lines is given by Rohlfs and Wilson (1996)-see bibliography. A few 
of the more important lines are given in Table 1.1. Note that this table contains 
less than 1% of the known lines in the frequency range below 1 THz. Figure 1.2 
shows the spectrum of radiation of many molecular lines from the Orion nebula 
in the bands from 214 to 246 and from 329 to 360 GHz. Although the radio win- 

TABLE 1.1 Some Important Radio Lines 

Chemical 
Chemical Name Formula Transition 

Frequency 
(GHz) 

Deuterium 

Hydrogen 

Hydroxyl radical 

Hydroxyl radical 

Hydroxyl radical 

Hydroxyl radical 

Methyladyne 

Hydroxyl radical 

Formaldehyde 
Hydroxyl radical 

Methanol 
Helium 

Methanol 
Formaldehyde 
Cyclopropenylidene 
Water 
Ammonia 
Ammonia 
Ammonia 
Methanol 
Silicon monoxide 
Silicon monoxide 

D 

HI 

OH 

OH 

OH 

OH 

CH 

OH 

H2CO 
OH 

CH3OH 
3He+ 

CH30H 
H2CO 
C3H2 
H 2 0  
NH3 
NH3 
NH3 
CHjOH 
SiO 
SiO 

2 S , . F =  ; -+ $ 
2 S I , F =  I - + O  

I 3  

I 3  

= 3  2 n , , J = 2 . F = 2 - +  I 

2 

'n,, J = 2 ,  F = 1 -+ 2 

* f l 3 , J = ? , F = I +  I 1 

2n,, J = ;, F = 2 + 2 

2 n l . J = Z . F = ~ +  ? I  1 
I 

2 
* IT, ,  J = i ,  F = 1 -+ 0 

1 10 - 1 1 1 ,  sixF transitions 
5 

51 + 60A+ 

2 n 3 , J  = 2 .  F = 3 -+ 3 

2 S , , F = I + 0  

I 

2 
20 + 3-1 E 
211 + 212, four F transitions 
110 -+ 101 
616 + 523. five F transitions 
I ,  1 + 1 .  1,eighteen F transitions 
2 .2  + 2,2,  seven F transitions 
3.3 -+ 3,3 ,  seven F transitions 
62 + 61. E 
u = 2 ,  J = I -+ 0 
u =  1 . J  = 1 4 0  

0.327 

1.420 

1.612" 

1.665' 

1.667' 

1.721" 

3.335 

4.766' 

4.830 
6.035a 

6.668" 
8.665 

12.119" 
14.488 
18.343 
22.235" 
23.694 
23.723 
23.870 
25.018 
42.821" 
43.122' 
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TABLE 1.1 (Continued) 

Chemical Frequency 
Chemical Name Formula Transition (GH4 

Carbon monosulfide 
Silicon monoxide 
Hydrogen cyanide 
Formylium 
Diazenylium 
Carbon monosulfide 
Carbon monoxide 
Carbon monoxide 
Carbon monoxide 
Carbon monoxide 
Carbon monosulfide 
Water 
Carbon monoxide 
Carbon monosulfide 
Carbon monosulfide 
Carbon monoxide 
Water 
Carbon monoxide 
Heavy water 
Carbon 
Water 
Ammonia 
Carbon monoxide 
Carbon monoxide 
Carbon 

J = I + O  
u = l , J = 2 - + 1  
J = I -+ 0, three F transitions 
J = l - + O  
J = 1 -+ 0, seven F transitions 
J = 2 - + 1  
J = 1 + 0  
J = I - * O  
J = 1 -+ 0, three F transitions 
J = I - + O  
J = 3 - + 2  

313 -+ 220 
J = 2 +  1 
J = 5 + 4  
J = 7 - + 6  
J = 3 - + 2  
414 -+ 321 

101 --* 0, 
3pl -+ 3p0 

110 -+ 101 
10 -+ 0, 

3 9  -+ 3p, 

J = 4 - + 3  

J = 6 - + 5  
J = 7 - + 6  

48.991 
86.243" 
88.632 
89.189 
93.174 
97.981 

109.782 
110.201 
112.359 
115.271 
146.969 
183.31V 
230.538 
244.936 
342.883 
345.7% 
380.197 
461.041 
464.925 
492.162 
556.936 
572.498 
69 1.473 
806.652 
809.340 

"Strong maser transition. 

dow in the earth's atmosphere ends above -1 THz, sensitive submillimeter- and 
millimeter-wavelength arrays should be able to detect such lines as the ' P 3 / 2  + 

line of CII at 1.90054 THz (158 pm), which will be Doppler shifted into the 
radio window for redshifts (z) greater than -2. Some of the lines, notably those 
of OH, H20,  SiO, and CH30H, show very intense emission from sources of very 
small apparent angular diameter. This emission is believed to be generated by a 
maser process [see, e.g., Reid and Moran (1988), Elitzur (1992)l. 

The strength of the radio signal received from a discrete source is expressed as 
the spectralflux density, or spectral powerflux density, and is measured in watts 
per square meter per hertz (W m-2 Hz-I). For brevity, astronomers often refer to 
this quantity asflux density. The unit of spectral power flux density is the jansky 
(Jy); 1 Jy = 10-26W m-2 Hz-'. It is used for both spectral line and continuum 
radiation. The measure of radiation integrated in frequency over a spectral band 
has units of W m-' and is referred to as powerflux density, or simplyflux density. 
In the standard definition of the IEEE (1977), power flux density is equal to the 
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Figure 1.3 Elements of solid angle and surface area illustrating the definition of intensity. d A  
is normal to s. 

time average of the Poynting vector of the wave. In producing a map or image* of 
a radio source the desired quantity is the spectral power flux density emitted per 
unit solid angle subtended by the radiating surface, which is measured in units of 
W m-2 Hz-* sr-’. This quantity is variously referred to as the intensity, specific 
intensity, or brightness of the radiating surface. In radio astronomical mapping we 
can measure the intensity in only two dimensions on the surface of the celestial 
sphere, and the measured emission is the component normal to that surface, as 
seen by the observer. 

In radiation theory the quantity intensity, or specific intensity, often repre- 
sented by I,, is the measure of radiated energy flow per unit area, per unit time, 
per unit frequency bandwidth, and per unit solid angle. Thus in Fig. 1.3 the power 
flowing in direction s within solid angle dSt, frequency band du, and area d A  is 
I,(s)  dR du d A .  This can be applied to emission from the surface of a radiating 
object, to propagation through a surface in space, or to reception on the surface of 
a transducer or detector. The last case applies to reception in an antenna and the 
solid angle then denotes the area of the celestial sphere from which the radiation 
emanates. Henceforth we use I to denote I, [note that in optical astronomy the 
specific intensity is usually defined as the intensity per unit bandwidth I*;  see, 
e.g., Rybicki and Lightman (1979)l. 

For thermal radiation from a blackbody the intensity is related to the physical 
temperature T of the radiating matter by the Planck formula, for which 

where k is Boltzmann’s constant, c is the velocity of light, and h is Planck’s con- 
stant. When hu << k T ,  we can use the Rayleigh-Jeans approximation, in which 
case the expression in the square brackets is replaced by unity. The Rayleigh- 

*The terms mop and image are basically interchangeable as used in most places in this book. However. 
in the presentation there is some logic in using mop for a contour depiction and image for one in gray 
scale or false color. 
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Jeans approximation requires u (GHz) << 20T (K), and is violated at high fre- 
quencies and low temperatures in many astronomical stiuations. However, for any 
radiation mechanism a brightness temperature TB can be defined: 

c2 1 
2k v 2  ' 

TB = - 

In the Rayleigh-Jeans domain the brightness temperature TB is that of a black- 
body at physical temperature T = TB. In the examples in Fig. 1.1, TB is of the or- 
der of lo4 K for NGC7027 and indicates the electron temperature. For Cygnus A 
and 3C48, TB is of the order of 10' K or greater and is a measure of the energy 
density of the electrons and the magnetic fields, not a physical temperature. As a 
spectral line example, TB for the carbon monoxide lines from molecular clouds is 
typically 10-100 K. In this case Ts is proportional to the excitation temperature 
associated with the energy levels of the transition, and is related to the tempera- 
ture and density of the gas as well as to the temperature of the radiation field. 

Source Positions and Nomenclature 

The positions of radio sources are measured in the celestial coordinates right as- 
cension and declination. On the celestial sphere these quantities are analogous, 
respectively, to longitude and latitude on the earth. The zero of right ascension 
is arbitrarily chosen as the point at which the sun crosses the celestial equator at 
the first point of Aries at a given epoch. In the international system of nomencla- 
ture (IAU 1974) radio sources are designated as follows. The first four characters 
give the hour and minutes of right ascension (RA); the fifth, the sign of the dec- 
lination; and the remaining three, the degrees and truncated tenths of a degree of 
declination (Dec.) for the mean equator and equinox of 1950. For example, the 
source at RA O l h  34m49.83S, Dec. 32" 54' 20.5" is designated 0134 + 329. Ear- 
lier nomenclature persists for many sources. Thus in Fig. 1.1, Cygnus A is the 
strongest radio source in the constellation of Cygnus, and 3C48 indicates source 
number 48 in the third Cambridge survey (Edge et al. 1959). NGC7027 is an op- 
tical designation and refers to the New General Catalog of nonstellar objects by 
Dreyer (1888). in which the majority of listings are galaxies. 

Positions of objects in celestial coordinates vary as a result of precession and 
nutation of the earth's axis of rotation, aberration, and proper motion. Positions of 
radio sources are usually listed for the standard epochs 1950 or 2000. Procedures 
for the reduction of these positions to those for specific dates and times are given 
in Seidelmann (1992). A survey by Condon et al. (1998) using the Very Large 
Array (VLA) at 1.4 GHz contains approximately 2 x lo6 sources. Most of the 
radio sources that have been detected are believed to be radio galaxies or quasars 
that lie far beyond our Galaxy. Another notable source list contains the 212 extra- 
galactic sources with positional accuracy exceeding 1 mas that are used to define 
the International Celestial Reference Frame of the IAU, plus 396 sources with 
positions to a few milliarcseconds (Ma et al. 1998). 



10 INTRODUCTION AND HISTORICAL REVIEW 

Reception of Cosmic Signals 

The antennas used most commonly in radio astronomy are of the reflector type 
mounted to allow tracking over most of the sky. The exceptions are mainly in- 
struments designed for meter or longer wavelengths. The collecting area A of a 
reflector antenna, for radiation incident in the center of the main beam, is equal 
to the geometric area multiplied by an aperture efficiency factor which is typi- 
cally within the range 0.3-0.8. The received power PA delivered by the antenna 
to a matched load in a bandwidth Av,  from a randomly polarized source of flux 
density S ,  assumed to be small compared to the beamwidth, is given by 

P A  = ;AS AV.  (1.3) 

Note that S is the intensity 1 integrated over the solid angle of the source. The fac- 
tor takes account of the fact that the antenna responds to only one-half the power 
in the randomly polarized wave. It is often convenient to express random noise 
power, P, in terms of an effective temperature T = P / k  A v  where k is Boltz- 
mann's constant. In the Rayleigh-Jeans domain, P is equal to the noise power de- 
livered to a matched load by a resistor at physical temperature T (Nyquist 1928). 
In the general case, if we use the Planck formula, we can write P = kTplanck Av,  
where Tplanck is an effective radiation temperature, or noise temperature, of a load 
at physical temperature T ,  and is given by 

The noise power in a receiving systemt can be specified in terms of the sys- 
tem temperature Ts associated with a matched resistive load that would produce 
an equal power level in an equivalent noise-free receiver when connected to the 
input terminals. Ts is defined as the power available from this load divided by 
k Av. In terms of the Planck formula, the relation between TS and the physical 
temperature, T ,  of such a load is given by replacing Tplanck by TS in Eq. (1.4). 

The system temperature consists of two parts: TR, the receiver temperature, 
which represents the internal noise from the receiving amplifiers; and T i ,  the 
antenna temperature, which represents the unwanted noise from the antenna 
produced by ground radiation, atmospheric attenuation, ohmic losses, and other 
sources. 

It is important to note that the term antenna temperature is also used to refer 
to the component of the antenna output power that results from a source under 
study, which is the way it is most often used in this book. In that case the power 
received in an antenna from the source is 

'In radio astronomy the terms receiver and receiving system are broadly used and generally denote 
the electronic system following the output of the antenna(s) and may, or may not, include one or more 
detectors or correlators (which we define later) and subsequent processing and recording equipment. 
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and TA is related to the flux density by Eqs. (1.3) and (1 S).  It is useful to express 
this relation as TA(K) = S(Jy) x A(m2)/2800. Astronomers sometimes specify 
the performance of an antenna in terms of junskys per kelvin, that is, the flux 
density (in units of W m-2 Hz-I), of a point source that increases TA by 
one kelvin. Thus this measure is equal to 2800/A(m2) Jy K-I. 

Another term that may be encountered is the system eyuivafentJlux density, SE,  
which is an indicator of the combined sensitivity of both an antenna and receiving 
system. It is equal to the flux density of a point source in the main beam of the 
antenna that would cause the noise power in the receiver to be twice that of the 
system noise in the absence of a source. Equating PA in Eq. (1.3) with kTs A v ,  
we obtain 

The ratio of the signal power from a source to the noise power in the receiving 
amplifier is TA/Ts.  Because of the random nature of the signal and noise, mea- 
surements of the power levels made at time intervals separated by (2Au)-’ can be 
considered independent. A measurement in which the signal level is averaged for 
a time T contains approximately 2A vr independent samples. The signal-to-noise 
ratio Rsn at the output of a power-measuring device attached to the receiver is 
increased in proportion to the square root of the number of independent samples 
and is of the form 

TA 
TS 

R,,, = c - G ,  (1.7) 

where C is a constant. This result appears to have been first obtained by Dicke 
(1946). More detailed examination [see, e.g., Tiuri (1964), Tiuri and Raisanen 
(1986)] shows that C = 1 for a simple power-law receiver with a rectangular 
passband, and varies by factors -2 for more complicated systems. Typical values 
of Au and 7 are 50 MHz and 5 h,  which result in a value of lo6 for the factor 
( A v T ) ” ~ .  As a result, it is possible to detect a signal for which the power level is 
little more than lop6 times the system noise. A particularly effective use of long 
averaging time is found in the observations with the Cosmic Background Explorer 
satellite, in which it was possible to measure structure at a brightness temperature 
level less than of the system temperature (Smoot et al. 1990, 1992). The 
following calculation may help to illustrate the low energies involved in radio 
astronomy. Consider a large radio telescope with a total collecting area of lo4 m2 
pointed toward a radio source of flux density 1 mJy(= lop3 Jy) and accepting 
signals over a bandwidth of 50 MHz. In lo3 years the total energy accepted is 
about lo-’ J ( I  erg), which is comparable to a few percent of the kinetic energy 
in a single falling snowflake. To detect the source with the same telescope, and 
a system temperature of 50 K, would require an observing time of about 5 min, 
during which time the energy received would be about J .  
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1.3 DEVELOPMENT OF RADIO INTERFEROMETRY 

Evolution of Synthesis Techniques 

This section presents a brief history of interferometry in radio astronomy. As an 
introduction, the following list indicates some of the more important steps in the 
progress from the Michelson stellar interferometer to the development of multi- 
element, synthesis mapping arrays and VLBI: 

1. Michelson stellar interferometer: This instrument introduced the technique 
of using two spaced receiving apertures, and the measurement of fringe 
amplitude to determine angular width (1890-1921). 

2. First astronomical observations with a two-element radio interferometer: 
Ryle and Vonberg (1946), solar observations. 

3. Phase-switching interferometer: First implementation of the voltage multi- 
plying action of a correlator, which is the device used to combine the signals 
from two antennas (1952). 

4. Astronomical calibrarion. Gradual accumulation during the 1950s and 
1960s of accurate positions for small-diameter radio sources from opti- 
cal identifications and other means. Observations of such sources enabled 
accurate calibration of interferometer baselines and instrumental phases. 

5. Early measurements of angular dimensions of sources. Use of variable 
baseline interferometers (- 1952 onward). 

6. Solar arrays. Development of multi-antenna arrays of centimeter-wave- 
length tracking antennas that provided detailed maps and profiles of the 
solar disk (mid-1950s onward). 

7. Arrays of tracking antennas. General movement from meter-wavelength, 
non-tracking antennas to centimeter-wavelength, tracking antennas. Devel- 
opment of multielement arrays with a separate correlator for each baseline 
(- 1960s). 

8. Earth-rotation synthesis. Introduced by Ryle with some precedents from 
solar mapping. Development of computers to control receiving systems and 
perform Fourier transforms required in mapping was an essential compo- 
nent (1962). 

9. Spectral line capabiliry. Introduced into radio interferometry (- 1962). 
10. Development of image processing techniques. Based on phase closure, non- 

linear deconvolution and other techniques, as described in Chapters 10 and 
11 (-1974 onward). 

1 1. Very-long-baseline interferometry (VLBI). First observations 1967. 
12. Millimeter-wavelength instruments (- 100-300 GHz). Major developments 

mid- 1980s onward. 
13. Orbiting VLBI (OVLBI). U.S. Tracking and Data Relay Satellite System 

(TDRSS) experiment, 1986-88. HALCA satellite, 1997. 
14. Submillimeter-wavelength instruments (300 GHz-I THz). JCMT-CSO in- 

terferometer (1992-1996). Submillimeter Array of the Smithsonian Astro- 
physical Observatory and Acadernica Sinica of Taiwan, -2001. Atacama 
Large Millimeter Array (ALMA), first decade of the twenty-first century. 
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Michelson Interferometer 

Interferometric techniques in astronomy date back to the optical work of Michel- 
son (1890, 1920) and of Michelson and Pease (1921 ), who were able to ob- 
tain sufficiently fine angular resolution to measure the diameters of some of the 
nearer and larger stars such as Arcturus and Betelgeuse. The basic similarity of 
the theory of radio and optical radiation fields was recognized early by radio as- 
tronomers, and optical experience has provided valuable precedents to the theory 
of radio interferometry. 

As shown in Fig. 1.4, beams of light from a star fall upon two apertures and 
are combined in a telescope. The resulting stellar image has a finite width and is 
shaped by effects that include atmospheric turbulence, diffraction at the mirrors, 
and the bandwidth of the radiation. Maxima in the light intensity resulting from 
interference occur at angles 8 for which the difference A in the path lengths from 
the star to the point at which the light waves are combined is an integral number 
of wavelengths at the effective center of the optical passband. If the angular width 
of the star is small compared with the spacing in 8 between adjacent maxima, the 
image of the star is crossed by alternate dark and light bands, known as inter- 
ference fringes. If, however, the width of the star is comparable to the spacing 
between maxima, one can visualize the resulting image as being formed by the 
superposition of images from a series of points across the star. The maxima and 
minima of the fringes from different points do not coincide, and the fringe ampli- 
tude is attenuated as shown in Fig. 1.4b. As a measure of the relative amplitude 
of the fringes, Michelson defined thefringe Visibility, VM, as 

intensity of maxima - intensity of minima 
intensity of maxima + intensity of minima' 

VM = (1  .g> 

Note that with this definition the visibility is normalized to unity when the inten- 
sity at the minima is zero, that is, when the width of the star is small compared 
with the fringe width. If the fringe visibility is measurably less than unity the star 
is said to be resolved by the interferometer. Let I ( 2 ,  m) be the two-dimensional 
intensity of the star, or of a source in the case of a radio interferometer. (1, m) are 
coordinates on the sky, with 1 measured parallel to the aperture spacing vector and 
m normal to it. The fringes provide resolution in a direction parallel to the aper- 
ture spacing only. In the orthogonal direction the response is simply proportional 
to the intensity integrated over solid angle. Thus the interferometer measures the 
intensity projected onto the 1 direction, that is, the one-dimensional profile 11 (1) 
given by 

11(1) = 1 I ( 1 ,  m ) d m .  

As will be shown in later chapters, the fringe visibility is proportional to the mod- 
ulus of the Fourier transform of ZI (1) with respect to the spacing of the apertures 
measured in wavelengths. Figure 1.5 shows the integrated profile Z, for three 
simple models of a star or radio source and the corresponding fringe visibility 
as a function of u ,  the spacing of the interferometer apertures in units of the 
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Figure 1.4 (a) Schematic diagram of the Michelson-Pease stellar interferometer. The incom- 
ing rays are guided into the telescope aperture by mirrors m 1 to m4, of which the outer pair 
define the two apertures of the interferometer. Rays a1 and 6, traverse equal paths to the eye- 
piece at which the image is formed, but rays a:! and b ~ .  which approach at an angle 0 to the 
instrumental axis, traverse paths that differ by a distance A. (b) The intensity of the image as a 
function of position angle in a direction parallel to the spacing of the interferometer apertures. 
The solid line shows the fringe profiles for an unresolved star (V, = 1 .O), and the broken line 
is for a partially resolved star for which 'V, = 0.5. 

wavelength. At the top of the figure is a rectangular pillbox distribution, in the 
center a circular pillbox, and at the bottom a circular Gaussian function. The 
rectangular pillbox represents a uniformly bright rectangle on the sky with sides 
parallel to the 1 and m axes, and width a in the 1 direction. The circular pill- 
box represents a uniformly bright circular disk of diameter a. When projected 
onto the 1 axis the one-dimensional intensity function 1, has a semicircular pro- 
file. The Gaussian model is a circularly symmetric source with Gaussian taper 
of the intensity from the maximum at the center. The intensity is proportional to 
exp [-4 In 2 ( 1 2  + m2) /a2] ,  resulting in circular contours and a diameter a at the 
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Figure 1.5 The one-dimensional intensity profiles I ,  ( I )  for three simple intensity models: 
(a) left, a uniform rectangular source; (b) left, a uniform circular source; (c) left, a circular 
Gaussian distribution. The corresponding Michelson visibility functions V,+, are on the right. 
I is an angular variable on the sky, u is the spacing of the receiving apertures measured in 
wavelengths, and a is the characteristic angular width of the model. The solid lines in the 
curves of Y,+, indicate the modulus of the Fourier transform of I , ( I ) ,  and the broken lines 
indicate negative values of the transform. See text for further explanation. 
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half-intensity level. Any slice through the model in a plane perpendicular to the 
(I, rn) plane has a Gaussian profile with the same half-height width, a. 

Michelson and Pease used mainly the circular disk model to interpret their ob- 
servations and determined the stellar diameter by varying the aperture spacing 
of the interferometer to locate the first minimum in the visibility function. The 
adjustment of such an instrument and the visual estimation of 'VM required great 
care, since the fringes were not stable but vibrated across the image in a random 
manner as a result of atmospheric fluctuations. The published results on stellar di- 
ameters measured with this method were never extended beyond the seven bright 
stars in Pease's (193 1) list; for a detailed review see Hanbury Brown (1968). How- 
ever, the use of electro-optical techniques now offers much greater instrumental 
capabilities in optical interferometry, as discussed in Section 16.4 of Chapter 16. 

Early Two-Element Radio Interferometers 

In 1946 Ryle and Vonberg constructed a radio interferometer to investigate cos- 
mic radio emission, which had been discovered and verified by earlier investiga- 
tors (Jansky 1933, Reber 1940, Appleton 1945, Southworth 1945). This interfer- 
ometer used dipole antenna arrays at 175 MHz, with a baseline (i.e., the spacing 
between the antennas) that was variable between 10 and 140 wavelengths (17 and 
240 m). A diagram of such an instrument and the type of record obtained are 
shown in Fig. 1.6. In this and most other meter-wavelength interferometers of the 
1950s and 1960s, the antenna beams were pointed in the meridian and the rotation 
of the earth provided scanning in right ascension. 

The receiver in Fig. 1.6 is sensitive to a narrow band of frequencies, and a 
simplified analysis of the response of the interferometer can be obtained in terms 
of monochromatic signals at the center frequency UO. We consider the signal from 
a radio source of very small angular diameter that is sufficiently distant that the 
incoming wavefront effectively lies in a plane. Let the signal voltage from the 
right-hand antenna in Fig. 1.6 be represented by V sin(2lr uot).  The longer path 
length to the left-hand antenna introduces a time delay t = ( D / c )  sin 8, where D 
is the antenna spacing, 8 is the angular position of the source, and c is the velocity 
of light. Thus, the signal from the left-hand antenna is V sin[2nvo(t - t)]. The 
detector of the receiver generates the squared sum of the two signal voltages: 

The output of the detector contains a lowpass filter that removes any frequencies 
greater than a few hertz or tens of hertz, so in expanding (1.10) we can ignore 
terms in harmonics of 217 uor, which represent radio frequencies. The detector 
output is therefore 

F = V 2 [  1 + cos(2nuor)]. (1.11) 
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Figure 1.6 (a) Simple interferometer in which the signals are combined additively. (b) Record 
from such an interferometer with east-west antenna spacing. The ordinate is the total power 
received and the abscissa is time. The source at the left is Cygnus A and the one at the right 
Cassiopeia A. The increase in level near Cygnus A results from the galactic background radi- 
ation, which is concentrated toward the plane of our Galaxy but is completely resolved by the 
interferometer fringes. The record is from Ryle (1952). 

Because r varies only slowly as the earth rotates, the frequency represented by 
c o s ( 2 ~ ~ 0 r )  is not filtered out. In terms of the source position, 0, we have 

F = V 2 [ l + c o s (  2nvoDsin0 )]. 
(1.12) 

Thus as the source moves across the sky, the output fringe pattern F varies be- 
tween 0 and V 2 ,  as shown by the sources in Fig. 1.6b. The response is modulated 
by the beam pattern of the antennas, of which the maximum is pointed in the 
meridian. The cosine function in Eq. (1.12) represents the Fourier component of 
the source brightness to which the interferometer responds. The angular width of 
the fringes is less than the angular width of the antenna beam by (approximately) 
the ratio of the width of an antenna to the baseline D, which in this example is 
about 1/ 10. The use of an interferometer instead of a single antenna results in 
a corresponding increase in precision in determining the time of transit of the 
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source. The form of the fringe pattern in Eq. ( I .  12) also applies to the Michelson 
interferometer in Fig. 1.4. 

Sea Interferometer 

A different implementation of interferometry, known as the sea interferometer, or 
Lloyd’s mirror interferometer (Bolton and Slee 1953), was provided by a number 
of horizon-pointing antennas near Sydney, Australia. These had been installed for 
radar during World War I1 at several coastal locations, at elevations of 60-120 m 
above the sea. Radiation from sources rising over the eastern horizon was received 
both directly and by reflection from the sea, as shown in Fig. 1.7. The frequencies 
of the observations were in the range 40400 MHz, the middle part of the range 
being the most satisfactory because of ionospheric effects at lower frequencies 
and sea roughness at higher frequencies. The sudden appearance of a rising source 
was useful in separating individual sources. Because of the reflected wave, the 
power received at the peak of a fringe was four times that for direct reception 
with the single antenna, and twice that of an adding interferometer (Fig. 1.6a) 
with two of the same antennas. Observations of the sun by McCready, Pawsey, 
and Payne-Scott (1947) using this system provided the first published record of 
interference fringes in radio astronomy. Observations of the source Cygnus A by 
Bolton and Stanley (1948) provided the first positive evidence of the existence of 
a discrete non-solar radio source. Thus the sea interferometer played an important 
part in early radio astronomy, but the effects of the long atmospheric paths and 
the roughness of the sea surface precluded further useful development. 

Phase-Switching Interferometer 

A problem with the interferometer systems in both Figs. 1.6 and 1.7 is that in 
addition to the signal from the source, the output of the receiver contains compo- 
nents from other sources of noise power such as the galactic background radia- 
tion, thermal noise from the ground picked up in the antenna sidelobes, and the 
noise generated in the amplifiers of the receiver. For all except the few strongest 
cosmic sources, the component from the source is several orders of magnitude 
less than the total noise power in the receiver. Thus a large offset has been re- 
moved from the records shown in Figs. 1.6b and 1.7b. This offset is proportional 
to the receiver gain, changes in which are difficult to eliminate entirely. The re- 
sulting drifts in the output level degrade the detectability of weak sources and the 
accuracy of measurement of the fringes. With the technology of the 1950s, the 
receiver output was usually recorded on a paper chart, and could be lost when 
baseline drifts caused the recorder pen to go off scale. 

The introduction of phase switching by Ryle (1952), which removed the un- 
wanted components of the receiver output leaving only the fringe oscillations, was 
the most important technical improvement in early radio interferometry. If VI and 
V, represent the signal voltages from the two antennas, the output from the sim- 
ple adding interferometer is proportional to (V ,  + V2)2. In the phase-switching 
system, shown in Fig. 1.8, the phase of one of the signals is periodically reversed, 
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(b) 
Figure 1.7 (a) Schematic diagram of a sea interferometer. The fringe pattern is similar to 
that which would be obtained with the actual receiving antenna and one at the position of 
its image in the sea. The reflected ray undergoes a phase change of 180" on reflection and 
travels an extra distance A in reaching the receiving antenna. (b) Sea interferometer record of 
the source Cygnus A at 100 MHz by Bolton and Stanley (1948). The source rose above the 
horizon at approximately 22.17. The broken line was inserted to show that the record could 
be interpreted in terms of a steady component and a fluctuating component of the source; the 
fluctuations were later shown to be of ionospheric origin. The fringe width was approximately 
1.0" and the source is unresolved, that is, its angular width is small in comparison with the 
fringes. Part (b) is reprinted by permission from Nature, Vol. 161. No. 4087, p. 313; copyright 
@ 1948 Macmillan Journals Limited. 
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so the output of the detector alternates between ( V ,  + V# and ( V ,  - V2)’. The 
frequency of the switching is a few tens of hertz, and a synchronous detector 
takes the difference between the two output terms, which is proportional to V ,  V2. 
Thus the output of a phase-switching interferometer is the time average of the 
product of the signal voltages; that is, it is proportional to the cross-correlation of 
the two signals. The circuitry that performs the multiplication and averaging of 
the signals in a modem interferometer is known as a correlator; a more general 
definition of a correlator will be given later. Comparison with the output of the 
system in Fig. 1.6 shows that if the signals from the antennas are multiplied in- 
stead of added and squared, then the constant term within the square brackets in 
Eq. (1.12) disappears and only the cosine term remains. The output consists of the 
fringe oscillations only, as shown in Fig. 1.9. With the reduction in the sensitivity 
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Figure 1.9 Output of a phase-switching interferometer as a function of time showing the 
response to a number of sources. From Ryle (1952). 
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to instrumental gain variation, it became practicable to install amplifiers at the an- 
tennas to overcome attenuation in the transmission lines. This advance resulted in 
the use of longer antenna spacings and larger arrays. Most interferometers from 
about 1950 onward incorporated phase switching, which provided the first means 
of implementing the action of a correlator. It is no longer necessary to use phase 
switching to obtain the voltage-multiplying action, but it is often included to help 
eliminate various instrumental imperfections, as described in Section 7.5. 

Optical Identifications and Calibration Sources 

Interferometer observations by Bolton and Stanley (1948), Ryle and Smith 
(1948), Ryle, Smith, and Elsmore (1950), and others provided evidence of numer- 
ous discrete sources. Identification of the optical counterparts of these required 
accurate measurement of radio positions. The principal method then in use for 
position measurement with interferometers was to determine the time of transit 
of the central fringe using an east-west baseline, and also the frequency of the 
fringe oscillations, which is proportional to the cosine of the declination. The 
measurement of position is only as accurate as the knowledge of the interferom- 
eter fringe pattern, which is determined by the relative locations of the electrical 
centers of the antennas. In addition, any inequality in the electrical path lengths 
in the cables and amplifiers from the antennas to the point where the signals 
are combined introduces an instrumental phase term, which offsets the fringe 
pattern. Smith (1952a) obtained positions for four sources with rms errors as 
small as f 2 0  arcsec in right ascension and f40 arcsec in declination, and gave 
a detailed analysis of the accuracy that was attainable. The optical identification 
of Cygnus A and Cassiopeia A by Baade and Minkowski (1954a,b) was a direct 
result of improved radio positions by Smith ( I95 1) and Mills (1952). Cygnus A 
proved to be a distant galaxy and Cassiopeia A a supernova remnant, but the 
interpretation of the optical observations was not fully understood at the time. 

The need for absolute calibration of the antennas and receiving system rapidly 
disappeared after a number of compact radio sources were identified with optical 
objects. Optical positions accurate to - 1  arcsec could then be used, and obser- 
vations of such sources enabled calibration of interferometer baseline parameters 
and fringe phases. Although it cannot be assumed that the radio and optical posi- 
tions of a source coincide exactly, the offsets for different sources are randomly 
oriented. Thus errors were reduced as more calibration sources became available. 
Another important way of obtaining accurate radio positions during the 1960s 
and 1970s was by observation of occultation of sources by the moon, which is 
described in Section 16.2. 

Early Measurements of Angular Width 

Comparison of the angular widths of radio sources with the corresponding dimen- 
sions of their optical counterparts helped in some cases to confirm identifications, 
as well as to provide important data for physical models of the emission processes. 
In the simplest procedure, measurements of the fringe amplitude are interpreted 
in terms of intensity models such as those shown in Fig. 1.5. The peak-to-peak 
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fringe amplitude for a given spacing normalized to the same quantity when the 
source is unresolved provides a measure of the fringe visibility equivalent to the 
definition in Eq (1 3). 

Some of the earliest measurements were made by Mills (1953), who used an 
interferometer operating at 101 MHz, in which a small transportable array of 
Yagi elements could be located at distances up to 10 km from a larger antenna. 
The signal from this remote antenna was transmitted back over a radio link, and 
fringes were formed. Smith (1952b,c), at Cambridge, England, also measured the 
variation of fringe amplitude with antenna spacing, but used shorter baselines 
than did Mills and concentrated on precise measurements of small changes in the 
fringe amplitude. Results by both investigators provided dimensions of a number 
of the strongest sources: Cassiopeia A, the Crab nebula, NGC4486 (Virgo A), and 
NGC5128 (Centaurus A). 

A third early group working on angular widths at the Jodrell Bank Experimen- 
tal Station,* England, used a different technique: intensify interferometry (Jen- 
nison and Das Gupta 1953, 1956; Jennison 1994). Hanbury Brown and Twiss 
(1954) had shown that if the signals received by two spaced antennas are passed 
through square-law detectors, the fluctuations in the intensity that result from the 
Gaussian fluctuations in the received field strength are correlated. The degree 
of correlation varies in proportion to the square of the visibility that would be 
obtained in a conventional interferometer in which signals are combined before 
detection. The intensity interferometer has the advantage that it is not necessary 
to preserve the radio-frequency phase of the signals in bringing them to the loca- 
tion at which they are combined. This simplifies the use of long baselines, which 
in this case extended up to 10 km. A VHF radio link was used to transmit the 
detected signal from the remote antenna, for measurement of the correlation. The 
disadvantage of the intensity interferometer is that it requires a high signal-to- 
noise ratio, and even for Cygnus A and Cassiopeia A, the two highest flux density 
sources in the sky, it was necessary to construct large arrays of dipoles, which 
operated at 125 MHz. The intensity interferometer is discussed further in Sec- 
tion 16.1, but it has been of only limited use in radio astronomy because of its 
lack of sensitivity. 

The most important result of these intensity interferometer measurements was 
the discovery that for Cygnus A the fringe visibility for the east-west inten- 
sity profile falls close to zero and then increases to a secondary maximum as 
the antenna spacing is increased. Two symmetric source models were consis- 
tent with the visibility values derived from the measurements. These were a two- 
component model in which the phase of the fringes changes by 180" in going 
through the minimum, and a three-component model in which the phase does not 
change. The intensity interferometer gives no information on the fringe phase, so 
a subsequent experiment was made by Jennison and Latham (1959) using con- 
ventional interferometry. Because the instrumental phase of the equipment was 
not stable enough to permit calibration, three antennas were used and three sets 

*Later known as the Nuffield Radio Astronomy Laboratories, and since 1999 as the Jodrell Bank 
Observatory. 
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of fringes for the three pair combinations were recorded simultaneously. If &,,,, is 
the phase of the fringe pattern for antennas rn and n, it is easy to show that at any 
instant the combination 

"123 = 412 + 4 2 3  + 431 (1.13) 

is independent of instrumental and atmospheric phase effects and is a measure of 
the corresponding combination of fringe phases (Jennison 1958). By moving one 
antenna at a time it was found that the phase does indeed change by approximately 
180" at the visibility minimum, and therefore that the two-component model in 
Fig. 1.10 is the appropriate one. The use of combinations of simultaneous visibil- 
ity measurements typified by Eq. (1.13), now referred to as closure relationships, 
became important about 20 years later in image processing techniques, Closure 
relationships and the conditions under which they apply are discussed in Section 
10.3. 

The results on Cygnus A demonstrated that the simple models of Fig. 1.5 are 
not generally satisfactory for representation of radio sources. To determine even 
the most basic structure, it is necessary to measure the fringe visibility at spacings 
well beyond the first minimum of the visibility function to detect multiple com- 
ponents, and to make such measurements at a number of position angles across 
the source. 

An early interferometer aimed at achieving high angular resolution with high 
sensitivity was developed by Hanbury Brown, Palmer, and Thompson (1955) at 
the Jodrell Bank Experimental Station, England. This interferometer used an off- 
set local oscillator technique that took the place of a phase switch and also enabled 
the frequency of the fringe pattern to be slowed down to within the response time 
of the chart recorder used to record the output. A radio link was used to bring 
the signal from the distant antenna. Three sources were found to have diameters 
less than 12 arcsec using spacings up to 20 km at 158 MHz observing frequency 
(Moms, Palmer, and Thompson 1957). During the 1960s this instrument was ex- 
tended to achieve resolution of less than I arcsec and greater sensitivity (Elgaroy, 

30 30 " 

Figure 1.10 Two-component model of Cygnus A derived by Jennison and Das Gupta (1953) 
using the intensity interferometer. Reprinted by permission from Nature, Vol. 172, No. 4387, 
p. 996; copyright @ 1953 Macrnillan Journals Limited. 
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Morris, and Rowson 1962). The program later led to the development of a mul- 
tielement, radio-linked interferometer known as the MERLIN array (Thomasson 
1986). 

Survey Interferometers and the Mills Cross 

In the middle 1950s the thrust of much of the work was toward cataloging larger 
numbers of sources with positions of sufficient accuracy to allow optical identi- 
fication. The instruments operated mainly at meter wavelengths, where the spec- 
trum was then much less heavily crowded with man-made emissions. A large in- 
terferometer at Cambridge used four antennas located at the comers of a rectangle 
580 m east-west by 49 m north-south (Ryle and Hewish 1955). This arrangement 
provided both east-west and north-south fringe patterns for measurement of right 
ascension and declination. 

A different type of survey instrument was developed by Mills et al. (1958) at 
Fleurs, near Sydney, consisting of two long, narrow antenna arrays in the form of 
a cross, as shown in Fig. 1.1 1. Each array produced afun beam, that is, a beam that 
is narrow in a plane containing the long axis of the array and wide in the orthogo- 
nal direction. The outputs of these two arrays were combined in a phase-switching 
receiver, and the voltage-multiplying action produced a power response pattern 
equal to the product of the voltage responses of the two arrays. This combined 
response had the form of a narrow pencil beam. The two arrays had a common 
electrical center, so there were no interferometer fringes. The arrays were 457 m 
long, and the cross produced a beam of width 49 arcmin and approximately cir- 
cular cross section at 85.5 MHz. The beam pointed in the meridian and could be 
steered in elevation by adjusting the phase of the dipoles in the north-south arm. 
The sky survey made with this instrument provided a list of over 2200 sources. 

A comparison of the source catalogs from the Mills cross with those from 
the Cambridge interferometer, which initially operated at 8 1.5 MHz (Shakeshaft 
et al. 1955), showed poor agreement between the source lists for a common area 
of sky (Mills and Slee 1957). The discrepancy was found to result principally 
from the occurrence of source confusion in the Cambridge observations. When 
two or more sources are simultaneously present within the antenna beams, they 
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Figure 1.11 Simplified diagram of the Mills cross radio telescope. The cross-shaped area 
represents the apertures of the two antennas. 
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produce fringe oscillations with slightly different frequencies, resulting from dif- 
ferences in the source declinations. Maxima in the fringe amplitude, which occur 
when the fringe components happen to combine in phase, can mimic responses to 
sources. This was a serious problem because the beams of the interferometer an- 
tennas were too wide, a problem that did not arise in the Mills cross, which was 
designed to provide the required resolution for accurate positions in the single 
pencil beam. The frequency of the Cambridge interferometer was later increased 
to 159 MHz, thereby reducing the solid angles of the beams by a factor of 4, and 
a new list of 471 sources was rapidly compiled (Edge et al. 1959). This was the 
3C survey (source numbers are preceded by 3C, indicating the third Cambridge 
catalog), a revised version of which (Bennett 1962) became a cornerstone of ra- 
dio astronomy for the following decade. To avoid confusion problems with these 
types of instruments, some astronomers subsequently recommended that the den- 
sity of sources cataloged should not, on average, exceed one in about twenty times 
the solid angle of the antenna beams (Pawsey 1958, Hazard and Walsh 1959). 

In the 1960s a generation of new and larger survey instruments began to ap- 
pear. Two such instruments developed at Cambridge are shown in Fig. 1.12. One 
was an interferometer with one antenna elongated in the east-west direction and 
the other north-south, and the other was a large T-shaped array which had char- 
acteristics similar to those of a cross, as explained in Section 5.3. In each of these 
instruments the north-south element was not constructed in full, but the response 
with such an aperture was synthesized by using a small antenna that was moved 
in steps to cover the required aperture; a different position was used for each 24-h 
scan in right ascension (Ryle, Hewish, and Shakeshaft 1959; Ryle and Hewish 
1960). The records from the various positions were combined by computer to 
synthesize the response with the complete north-south aperture. An analysis of 
these instruments is given by Blythe ( 1  957). The large interferometer produced 

Figure 1.12 Schematic diagrams of two instruments, in each of which a small antenna is 
moved to different positions between successive observations to synthesize the response that 
would be obtained with a full aperture corresponding to the rectangle shown by the broken 
line. The arrangement of two signal-multiplying correlators producing real (R) and imaginary 
( I )  outputs is explained in Section 6.1 under Simple and Complex Correfators. Instruments of 
both types, the T-array (a), and the two-element interferometer (b), were constructed at the 
Mullard Radio Astronomy Observatory, Cambridge, England. 
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the 4C (fourth Cambridge) catalog containing over 4800 sources (Gower, Scott, 
and Wills 1967). At Molonglo in Australia a larger Mills cross (Mills et al. 1963) 
was constructed with arrays 1 mile long producing a beam of 2.8 arcmin width at 
408 MHz. The development of the Mills cross is described in papers by Mills and 
Little (1953), Mills (1963), and Mills et al. (1958, 1963). Crosses of compara- 
bie dimensions located in the northern hemisphere included one at Bologna, Italy 
(Braccesi et al. 1969), and one at Serpukhov in the Russian Federation (Vitkevich 
and Kalachev 1966). 

Centimeter- Wavelength Solar Mapping 

A number of instruments have been designed specifically for mapping the sun. 
The antennas are usually paraboloid reflectors mounted to track the sun, but since 
the sun is a strong radio source, the apertures do not have to be very large. Fig- 
ure 1.13a shows an array of antennas from which the signals at the receiver in- 
put are aligned in phase when the angle 8 between the direction of the source 
and a plane normal to the line of the array is such that sin 0 is an integer, 
where lA is the unit antenna spacing measured in wavelengths. This type of ar- 
ray is sometimes referred to as a grating array, since it forms a series of fan- 
shaped beams, narrow in the 8 direction, in a manner analogous to the response 
of an optical diffraction grating. Christiansen and Warburton (1955) obtained a 
two-dimensional map of the quiet sun at 2 1 -cm wavelength using both east-west 
and north-south grating arrays. These arrays consisted of 32 (east-west) and 16 
(north-south) uniformly spaced, paraboloid antennas. As the sun moved through 
the sky it was scanned at different angles by the different beams, and a two- 

v I 

Figure 1.13 (a) A linear array of eight equally spaced antennas connected by a branching 
network in which the electrical path lengths from the antennas to the receiver input are equal. 
This arrangement is sometimes referred to as a grating array, and in practice there are usually 
16 or more antennas. (b) An eight-element grating array combined with a two-element array 
to enhance the angular resolution. A phase-switching receiver, indicated by the multiplication 
symbol, is used to form the product of the signal voltages from the two arrays. The receiver 
output contains the simultaneous responses of antenna pairs with 16 different spacings. Sys- 
tems of this general type are known as compound interferometers. 
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dimensional map could be synthesized by Fourier analysis of the scan profiles. 
To obtain a sufficient range of scan angles, observations extending over 8 months 
were used. In later instruments for solar mapping it was generally necessary to be 
able to make a complete map within a day to study the variation of enhanced solar 
emission associated with active regions. Several instruments used grating arrays, 
typically containing 16 or 32 antennas, and crossed in the manner of a Mills cross. 
Crossed grating arrays produce a rectangular matrix pattern of beams on the sky, 
and the rotation of the earth enables sufficient scans to be obtained to provide 
daily maps of active regions and other features. Instruments of this type included 
crosses at 21-cm wavelength at Fleurs, Australia (Christiansen and Mullaly 1963), 
and at 10-cm wavelength at Stanford, California (Bracewell and Swarup 1961), 
and a T-shaped array at 1.9-m wavelength at Nanqay, France (Blum, Boischot, 
and Ginat 1957; Blum 1961). These were the earliest mapping arrays with large 
numbers (- 16 or more) antennas. 

Figure I .  13b illustrates the principle of a configuration known as a compound 
interferometer (Covington and Broten 1957), which was used to enhance the per- 
formance of a grating array or other antenna with high angular resolution in one 
dimension. The system shown consists of the combination of a grating array with 
a two-element array. An examination of Fig. 1.I3b shows that pairs of antennas, 
chosen one from the grating array and one from the two-element array, can be 
found for all spacings from one to sixteen times the unit spacing t i .  In compar- 
ison, the grating array alone provides only one to seven times the unit spacing, 
so the number of different spacings simultaneously contributing to the response 
is increased by a factor of more than 2 by the addition of two more antennas. 
Arrangements of this type were used to increase the angular resolution of one- 
dimensional scans of strong sources (Picken and Swarup 1964, Thompson and 
Krishnan 1965). By combining a grating array with a single larger antenna it 
was also possible to reduce the number of grating responses on the sky (Labrum 
et al. 1963). Both the crossed grating arrays and the compound interferometers 
were originally operated with phase-switching receivers to combine the outputs 
of the two subarrays. In modem implementations the signal from each antenna is 
converted to an intermediate frequency (IF), and a separate voltage-multiplying 
correlator is used for each spacing. This allows further possibilities in arranging 
the antennas to maximize the number of different antenna spacings, as discussed 
in Section 5.5. 

Measurements of Intensity Profiles 

Continuing measurements of the structure of sources indicated that in general the 
intensity profiles are not symmetrical, so their Fourier transforms, and hence the 
visibility functions, are complex. This will be explained in detail in later chap- 
ters, but at this point we note that it means that the phase of the fringe pattern, as 
well as the amplitude, varies with antenna spacing and must be measured to allow 
the intensity profiles to be recovered. To accommodate both fringe amplitude and 
phase, visibility is expressed as a complex quantity. Measurement of the fringe 
phase became possible in the 1960s and 1970s, by which time a number of com- 
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pact sources with well-determined positions, suitable for calibration of the fringe 
phase, were available. Electronic phase stability had also improved, and comput- 
ers were available for recording and processing the output data. Improvements in 
antennas and receivers enabled measurements to be made at wavelengths in the 
centimeter range (frequencies greater than - 1 GHz), using tracking antennas. 

An interferometer at the Owens Valley Radio Observatory, California (Read 
1961), provides a good example of one of the earliest instruments used ex- 
tensively for determining radio structure. It consists of two 27.5-m-diameter 
paraboloid antennas on equatorial mounts with a rail track system that allows 
the spacing between them to be vaned by up to 490 m in both the east-west and 
north-south directions. It has been used mainly at frequencies from 960 MHz 
to a few gigahertz. Studies by Maltby and Moffet (1962) and Fomalont (1968) 
illustrate the use of this instrument for measurement of intensity distributions, an 
example of which is shown in Fig. 1.14. 

Spectral Line Interferometry 

By the early 1960s the interferometer at the Owens Valley and several others had 
been fitted with spectral line receiving systems. The passband of each receiver is 
divided into a number of channels by a filter bank, usually in the IF (intermediate 
frequency) stages, and for each channel the signals from the two antennas go to 
a separate correlator. Alternatively, the IF signals are digitized and the filtering is 
performed digitally as described in Section 8.7. The width of the channels should 
ideally be less than that of the line to be observed so that the line profile can be 
studied. Spectral line interferometry allows the distribution of the line emission 
across a radio source to be examined. Roger et al. (1973) describe an array in 
Canada built specifically for observations in the 1420 MHz (21-cm wavelength) 
line of neutral hydrogen. 

Spectral lines can also be observed in absorption, especially in the case of the 
neutral hydrogen line. At the line frequency the gas absorbs the continuum ra- 
diation from any more distant source that is observed through it. Comparison of 
the emission and absorption spectra of neutral hydrogen yields information on its 
temperature and density. Measurement of absorption spectra of sources can be 
made using single antennas, but in such cases the antenna also responds to the 
broadly distributed emitting gas within the antenna beam. The absorption spectra 
for weak sources are difficult to separate from the line emission. With an interfer- 
ometer, the broad emission features on the sky are almost entirely resolved and 
the absorption spectrum can be observed directly. For examples of hydrogen line 
absorption, see Clark, Radhakrishnan, and Wilson (1962) and Hughes, Thomp- 
son, and Colvin (1971), and for absorption in the 4.8-GHz formaldehyde line, 
Moore and Marscher (1995). 

Earth-Rotation Synthesis Mapping 

A very important step in the development of synthesis imaging was the use of 
the variation of the antenna baseline provided by the rotation of the earth. Fig- 
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North Pole 

Axis of Earth% 
rotation 

Figure 1.15 Use of earth rotation in synthesis mapping as explained by Ryle (1962). The an- 
tennas A and B are spaced on an east-west line. By varying the distance between the antennas 
from one day to another, and observing for 12 h with each configuration, it is possible to en- 
compass all the spacings from the origin to the elliptical outer boundary of the lower diagram. 
Only 12 h of observing are required, since during the other 12 h the spacings covered are iden- 
tical but the positions of the antennas are effectively interchanged. Reprinted by permission 
from Nature, Vol. 194, No. 4828, p. 5 17; copyright @ 1962 Macmillan Journals Limited. 

ure 1.15 illustrates this principle as described by Ryle (1962). For a source at a 
high declination, the position angle of the baseline projected onto a plane normal 
to the direction of the source rotates through 180" in 12 h. Thus if the source 
is tracked across the sky for a series of 12-h periods, each one with a different 
antenna spacing, the required two-dimensional visibility data can be collected 
while the antenna spacing is varied in one dimension only. 

The Cambridge One-Mile Radio Telescope was the first instrument designed 
to exploit fully the earth-rotation technique and apply it to a large number of 
radio sources. The use of earth rotation was not a sudden development in ra- 
dio astronomy, and had been used in solar studies for a number of years. As 
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Figure 1.16 Map of the source Cygnus A, which was one of the first results (Ryle, Elsmore, 
and Neville 1965) from the Cambridge One-Mile Telescope using the earth-rotation principle 
shown in Fig. 1.15. The frequency is 1.4 GHz. The map has been scaled in declination so that 
the half-power beam contour is circular, as shown by the shaded area in the lower right corner. 
The dotted ellipse shows the outer boundary of the optical source, and its central structure is 
also indicated. Reprinted by permission from Nature, Vol. 205, No. 4978, p. 1260; 01965 
Macmillan Journals Limited. 

noted earlier, Christiansen and Warburton ( 1955) had obtained a two-dimensional 
map of the sun, using tracking antennas in two grating arrays. At Jodrell Bank, 
Rowson (1963) had used a two-element interferometer with tracking antennas 
to map strong non-solar sources. Also, Ryle and Neville (1962) had mapped the 
north polar region using earth rotation to demonstrate the technique. However, the 
first maps published from the Cambridge One-Mile telescope, those of the strong 
sources Cassiopeia A and Cygnus A (Ryle, Elsmore, and Neville 1965), exhib- 
ited a degree of structural detail unprecedented in earlier studies and heralded the 
development of synthesis mapping. The map of Cygnus A is shown in Fig. 1.16. 

Development of Synthesis Arrays 

Following the success of the Cambridge One-Mile Telescope, interferometers 
such as the NRAO instrument at Green Bank, West Virginia (Hogg et al. 1969), 
were rapidly adapted for synthesis mapping. Several large arrays designed to pro- 
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Figure 1.17 Map of the source Cygnus A by Hargrave and Ryle (1974) using the Cambridge 
Five-Kilometer Telescope at 5 GHz. This map showed for the first time the radio nucleus 
associated with the central galaxy and the high intensity at the outer edges of the radio lobes. 
Reprinted by permission of the Royal Astronomical Society. 

vide increased mapping speed, sensitivity, and angular resolution were brought 
into operation during the 1970s. Prominent among these were the Five-Kilometer 
Radio Telescope at Cambridge, England (Ryle 1972), the Westerbork Synthe- 
sis Radio Telescope in the Netherlands (Baars et al. 1973), and the Very Large 
Array (VLA) in New Mexico (Thompson et al. 1980; Napier, Thompson, and 
Ekers 1983). These instruments permit mapping of radio sources with a resolu- 
tion of less than one arcsec at centimeter wavelengths. By using n, antennas, 
where n, varies up to 27 in the arrays mentioned, as many as n,(n, - 1)/2 si- 
multaneous baselines are obtained. If the array is designed to avoid redundancy 
in the antenna spacings, the speed with which the visibility function is measured 
is approximately proportional to nf. Maps of Cygnus A obtained with two of the 
arrays mentioned above are shown in Figs. 1.17 and 1.18. A review of the de- 
velopment of synthesis instruments at Cambridge is given in the Nobel lecture 
by Ryle (1975). An array with large collecting area, the Giant Meter-Wave Ra- 
dio Telescope (GMRT), which operates at frequencies from 38 to 1420 MHz, 
was completed in 1998 near Pune, India (Swamp et al. 1991). Current advances 
in broadband antenna technology and large-scale integrated circuits should en- 
able further large increases in collecting area in the future, for example, the 
Square Kilometer Array (SKA) (Hopkins et al. 1999, Smolders and van Harlem 
1999). 
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Figure 1.18 Radio image of Cygnus A made with the VLA at 4.9 GHz by Perley, Dreher, 
and Cowan (1984). Observations with four configurations of the array were combined and the 
resolution is 0.4 arcsec. The display of the image shown here involves a nonlinear process to 
enhance the contrast of the fine structure. This emphasizes the jet from the central galaxy to 
the northwestern lobe (top right) and the filamentary structure in the main lobes. Comparison 
with other records of Cygnus A in this chapter illustrates the technical advances made during 
three decades. Reproduced by permission of NRAO/AUI. 

During the 1980s and 1990s synthesis arrays operating at short millimeter 
wavelengths (frequencies of 100 GHz or greater) were developed. Spectral lines 
are particularly numerous at these frequencies. Several considerations are more 
important at millimeter wavelengths than at centimeter wavelengths. Because the 
wavelengths are much shorter, any irregularity in the atmospheric path length re- 
sults in a proportionately greater effect on the signal phase. Attenuation in the 
neutral atmosphere is much more serious at millimeter wavelengths. Also, the 
beams of the individual antennas become narrower at shorter wavelengths, and 
maintenance of a sufficiently wide field of view is one reason why the antenna 
diameter tends to decrease with increasing frequency. Thus, to obtain the neces- 
sary sensitivity, larger numbers of antennas are required than at centimeter wave- 
lengths. Arrays for millimeter wavelengths include those at Hat Creek, California 
(Welch 1994); Owens Valley, California (Scoville et al. 1994); Nobeyama, Japan 
(Morita et al. 1994); the Plateau de Bure, France (Guilloteau 1994); Mauna Kea, 
Hawaii (Moran 1998a); and Chajnantor, Chile (Brown 1998). 

Very-LongBaseline Interferometry 

Investigation of the angular diameters of quasars and other objects that appear 
nearly pointlike in structure presented an important challenge throughout the 
early years of radio astronomy. An advance that led to an immediate increase 
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of an order of magnitude in resolution, and subsequently to several orders more, 
was the use of independent local oscillators and signal recorders. By using local 
oscillators at each antenna that are controlled by high-precision frequency stan- 
dards, it is possible to preserve the coherence of the signals for time intervals 
long enough to measure interference fringes. The received signals are converted 
to an intermediate frequency low enough that they can be recorded directly on 
magnetic tape, and the tapes are subsequently brought together and played into 
a correlator. This technique became known as very-long-baseline interjierometry 
(VLBI), and the early history of its development is discussed by Moran (1998b). 
The technical requirements for VLBI were widely discussed in the early 1960s 
[see, e.g., Matveenko, Kardashev, and Sholomitskii (19631. 

A successful early experiment was performed in January 1967 by a group at 
the University of Florida who detected fringes from the burst radiation of Jupiter 
at 18 MHz (Brown, Carr, and Block 1968). Because of the strong signals and 
low frequency, the required recording bandwidth was only 2 kHz and the fre- 
quency standards were crystal oscillators. Much more sensitive and precise VLBI 
systems, which used wider bandwidths and atomic frequency standards, were de- 
veloped by three other groups. In Canada an analog recording system was de- 
veloped, with a bandwidth of 1 MHz based on television tape recorders (Broten 
et al. 1967). Fringes were obtained at a frequency of 448 MHz on baselines of 
183 and 3074 km on several quasars in April 1967. In the United States, another 
group from the National Radio Astronomy Observatory and Cornell University 
developed a computer-compatible digital recording system with a bandwidth of 
360 kHz (Bare et al. 1967). They obtained fringes at 610 MHz on a baseline of 
220 km on several quasars in May 1967. A third group from MIT joined in the 
development of the NRAOCornell system in early 1967 and obtained fringes at 
a frequency of 1665 MHz on a baseline of 845 km on several OH-line masers, 
with spectroscopic analysis, in June 1967 (Moran et al. 1967). 

The initial experiments used signal bandwidths of less than a megahertz, but 
by the 1980s systems capable of recording signals with bandwidths greater than 
100 MHz were available, with corresponding improvements in sensitivity. Real- 
time linlung of the signals from remote telescopes to the correlator via a geosta- 
tionary satellite has been demonstrated (Yen et al. 1977). Also, experiments were 
performed in which the local oscillator signal was distributed over a satellite link 
(Knowles et al. 1982). These developments have lessened the distinction between 
VLBI and more conventional forms of interferometry. However, there are many 
technical peculiarities of VLBI, which are described in Chapter 9. 

An early example of the extremely high angular resolution that can be achieved 
with VLBI is provided by a measurement by Burke et al. (1  972), who obtained 
a resolution of 2 x arcsec using antennas in Westford, Massachusetts, and 
Simeiz in the Crimea, operating at a wavelength of 1.3 cm. Early results, ob- 
tained using a few baselines only, were generally interpreted in terms of the sim- 
ple models in Fig. I .5. During the mid-1970s several groups of astronomers be- 
gan to combine their facilities to obtain measurements over ten or more baselines 
simultaneously. In the United States the Network Users’ Group included the fol- 
lowing observatories: Haystack Observatory in Massachusetts (NEROC); Green 
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Bank, West Virginia (NRAO); Vermilion River Observatory in Illinois (Univ. of 
Ill.); North Liberty in Iowa (Univ. of Iowa); Fort Davis, Texas (Harvard College 
Observatory); Hat Creek Observatory, California (Univ. of Calif.); Owens Val- 
ley Radio Observatory, California (Caltech); Maryland Point in Maryland (U.S. 
Naval Observatory); and Goldstone in California (JPL). Observations by such 
groups led to more complex models [see, e g ,  Cohen et al. (1975)l. lmportant 
results were the discovery and investigation of superluminal (apparently faster- 
than-light) motions in quasars (Whitney et al. 1971, Cohen et al. 1971), as shown 
in Fig. 1.19, and the measurement of proper motion in H 2 0  line masers (Genzel 
et al. 1981). The first array of antennas built specifically for astronomical mea- 
surements by VLBI, the Very-Long-Baseline Array (VLBA) of the U.S. National 
Radio Astronomy Observatory (NRAO), was brought into operation in 1994. It 
consists of ten 25-m-diameter antennas, one in the U.S. Virgin Islands, eight in 
the continental United States, and one in Hawaii (Napier et al. 1994). The VLBA 
is often linked with additional antennas to form even larger arrays. 

A problem in VLBI observations is that the use of nonsynchronized local os- 
cillators complicates the calibration of the phase of the fringes. To overcome this 
problem, the phase closure relationship of Eq. (1.13) was first applied to VLBI 
data by Rogers et al. (1974). The technique rapidly developed into a method to 
obtain images known as hybrid mapping. For examples of hybrid mapping, see 
Figs. 1.19 and 1.20. This and related procedures are also used in mapping with 
connected-element0 arrays and are discussed in Chapter 11. For some spectral 
line observations when the source consists of spatially isolated masers, the sig- 
nals from which are separated by their individual Doppler shifts, it is possible to 
map the masers with phase referencing techniques (Reid et al. 1980). 

The great potential of VLBI in astrometry and geodesy was immediately rec- 
ognized [see, e.g., Gold (1967)l. Its use in these applications developed rapidly 
during the 1970s and 1980s; see, for example, Whitney et al. (1976) and Clark 
et al. (1985). In the United States, NASA and several other federal agencies set up 
a cooperative program of geodetic measurements in the early 1980s. This work 
evolved in part from the use of deep-space communications facilities for VLBI 
observations. The program includes the use of transportable antennas for periodic 
monitoring of the positions of many different sites. Astrometry with submilliarc- 
second accuracy has opened up new possibilities in astronomy, for example, the 
detection of the motion of the sun around the Galactic center from the proper 
motion of Sagittarius A* (Reid et al. 1999, Backer and Sramek 1999). The Inter- 
national Celestial Reference Frame, adopted by the International Astronomical 
Union, is based on VLBI measurements of 212 extragalactic sources (Ma et al. 
1998). 

The combination of VLBI with spectral line processing is particularly effective 
in the study of problems that involve both astrometry and dynamical analysis of 
astronomical systems. The galaxy NGC4258, which exhibits an active galactic 

$The term connected-eiemetif, or linked-elemrttr, is used to describe arrays of the conventional type in 
which the signals are brought to the correlators in real time, usually by transmission lines or radio links, 
in contrast to systems in which the IF signals are recorded for subsequent correlation. 



Figure 1.19 VLBI maps of the quasar 3C273 at five epochs, showing the relative positions 
of two components. From the distance of the object, deduced from the optical red shift, the 
apparent relative velocity of the components exceeds the velocity of light, but this can be 
explained by relativistic and geometric effects. The observing frequency is 10.65 GHz. An 
angular scale of 2 mas is shown in the lower right comer. From Pearson et al. (1981). Reprinted 
from Nature. Vol. 290, No. 5805. p. 366; copyright @ 198 I Macmillan Journals Limited. 
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Cyg A 1979.44 

Figure 1.20 VLBI map of the small central component of Cygnus A by Linfield (1981). made 
using four antennas at 10.65 GHz. The half-power contour of the synthesized beam, shown 
by the shaded ellipse, has dimensions of 0.5 x I mas. The contour interval for the source is 
8 x lo8 K in brightness temperature. The major axis of the source is in the same direction as 
the jet in Fig. 1.17. 

nucleus, has been found to contain a number of small regions that emit strongly in 
the 22.235 GHz water line as a result of maser processes. VLBI observations have 
provided an angular resolution of 2 x arcsec, an accuracy of a few microarc- 
seconds in the relative positions of the masers, and measurements of Doppler 
shifts to an accuracy of 0.1 km s-' in radial velocity. NGC4258 is fortuitously 
aligned so that the disk is almost edge-on as viewed from the earth. The orbital 
velocities of the masers are accurately known as a function of radius from the cen- 
ter of motion because they obey Kepler's law. Hence the distance can be found 
by comparing the linear and angular motions. The angular motions are about 30 
parcsec per year. These results provide a value for the central mass of 3.9 x lo7 
times the mass of the sun (Miyoshi et al. 1995), and 7.260.3 Mpc for the distance 
(Herrnstein et al. 1999). It is believed that the central mass cannot be explained in 
terms of a dense cluster of stars, but provides strong evidence of a black hole at 
the center of NCC4258. Analysis of the maser orbits indicates that the disk sur- 
rounding the black hole has a slightly warped profile, as shown in Fig. 1.21. The 
uncertainty of 4% in the distance of an extragalactic object, measured directly, is 
without precedent and is likely to be improved by continuing studies of this and 
similar galaxies. 

VLBI Using Orbiting Antennas 

The use of spaceborne antennas in VLBI observations is referred to as the OVLBI 
(orbiting VLBI) technique. The first observations of this type were made in 1986 
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Figure 1.21 The warped annular disk surrounding the central mass of NGC4258, modeled 
to the maser positions, velocities, and accelerations observed using VLBI with spectral pro- 
cessing. The black spot at the center marks the dynamical center of the disk. The diameter of 
the disk is 0.6 pc ( 1  parsec = 3.1 x 10l6 m). The continuum emission at 1.3 cm wavelength 
is shown as the gray-scale feature near the center. The position of the continuum is regis- 
tered with respect to the masers to an accuracy of a few parcsec. From Moran et al. (1999), 
J. Asrrophys. Astx, published by the Indian Academy of Sciences, Bangalore. 

using a satellite of the U.S. Tracking and Data Relay Satellite System (TDRSS). 
These satellites are in geostationary orbit at a height of approximately 36,000 km, 
and are used to relay data from low-earth-orbit spacecraft to earth. They carry two 
4.9-m antennas used to communicate with other satellites at 2.3 and 15 GHz and 
a smaller antenna for the space-to-earth link. In this experiment one of the 4.9-m 
antennas was used to observe a radio source and the other received a reference 
signal from a hydrogen maser on the ground (Levy et al. 1989). The received 
signals were transmitted to the ground and recorded on a VLBI tape system for 
correlation with signals from ground-based antennas. The numbers of sources 
detected were 23 and 11 at 2.3 and 15 GHz, respectively (Linfield et al. 1989, 
1990). At 15 GHz the fringe width was of order 0.3 mas, and interpretation of the 
results in terms of circular Gaussian models indicated brightness temperatures as 
high as 2 x 10’’ K. 

VLBI observations using a satellite in a non-geostationary orbit were first 
made in 1997 following the launch of the HALCA satellite of Japan (Hirabayashi 
et al. 1998), designed specifically for VLBI observations. This was equipped with 
an antenna of 8 m diameter, and observations were made at 1.6 and 5 GHz. The 
orbital period was approximately 6.6 h and the apogee, 21,000 km. The rapid 
orbiting of such a satellite provides greater variation in the baseline vectors to 
terrestrial antennas than is provided by a geosynchronous satellite, and thus more 
effective measurement of source structure. However, correction of the phase data 
for the satellite motion requires very accurate orbit modeling. 

The achievement of very long baselines by reflection from the moon, a nat- 
ural satellite of the earth, has been discussed by Hagfors, Phillips, and Belcora 
(1990). Reflection from the surface of the moon could provide baselines up to a 
length approaching the radius of the lunar orbit. An antenna of 100 m aperture, or 
larger, would be used to track the moon and receive the reflected signal from the 
source under study, and a smaller antenna could be used for the direct signal. It is 
estimated that the sensitivity would be about three orders of magnitude less than 
would be obtained by observing the source directly with both antennas. Further 
complications result from the roughness of the lunar surface and from libration. 



1.4 QUANTUMEFFECT 39 

The technique could be useful for special observations requiring very high angu- 
lar resolution of strong sources, for example, for the burst radiation from Jupiter. 
In the future, VLBI using a station on the moon is also a possibility. 

1.4 QUANTUM EFFECT 

The development of VLBI introduced a new facet into the apparent paradox in the 
quantum-mechanical description of interferometry (Burke 1969). The radio inter- 
ferometer is the analog of Young's two-slit interference experiment. It is well 
known (Louden 1973) that a single photon creates an interference pattern, but 
that any attempt to determine which slit the photon entered will destroy the inter- 
ference pattern; otherwise the uncertainty principle would be violated. Consider- 
ation of VLBI suggests that it might be possible to determine at which antenna a 
particular photon arrived, since its signature is captured on the tape as well as in 
the fringe pattern generated during correlation. However, in the radio frequency 
range, the input stages of receivers used as the measurement devices consist of 
amplifiers or mixers which conserve the received phase in their outputs. This al- 
lows formation of the fringes in subsequent stages. The response of such devices 
must be consistent with the uncertainty principle, A E  At 2: h/2n ,  where A E  
and Ar are the uncertainties in signal energy and measurement time. This princi- 
ple can be written in terms of uncertainty in photon number, AN, and phase, A#, 
as 

A N A # - 1 ,  (1.14) 

where AE = hv AN and A$ = 2 n v  At. To preserve phase, A$ must be small, 
so AN must be correspondingly large and there must be an uncertainty of at 
least one photon per unit bandwidth per unit time in the output of the receiving 
amplifier. Hence the signal-to-noise ratio is less than unity in the single-photon 
limit, and it is impossible to determine at which antenna a single photon entered. 
An alternative but equivalent statement is that the output of any receiving system 
must contain a noise component that is not less than an equivalent input power 
approximately equal to h v  per unit bandwidth. 

The individual photons that constitute a radio signal arrive at an antenna at 
random times, but with an average rate that is proportional to the signal strength. 
For phenomena of this type, the number of events that occur in a given time 
interval t varies statistically in accordance with the Poisson distribution. For a 
signal power Psig, the average number of photons that arrive within time t is = 
P, i , t /hv .  The rms deviation of the number arriving during a series of intervals 
t is, for Poisson statistics, given by AN = 0. From Eq. ( I .  14) the resulting 
uncertainty in the signal phase is 

1 hv 
A # = - -  (1.15) 
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We can also express the uncertainty in the measurement of the signal phase in 
terms of the noise that is present in the receiving system, The minimum noise 
power, PnOise. is approximately equal to the thermal noise from a matched resistive 
load at temperature h u l k ,  that is, Pnoise = hu Au. The uncertainty in the phase, 
as measured with an averaging time 5 ,  becomes 

A & = /  Pnoise . 
Psigr A U  

(1.16) 

Note that A& is the accuracy with which the phase of the amplified, received 
signal from one antenna can be measured: for example, in Doppler tracking of a 
spacecraft (Cannon 1990). This is not to be confused with the accuracy of mea- 
surement of the fringe phase of an interferometer. For a frequency u = l GHz, 
the effective noise temperature h u l k  is equal to 0.048 K. Thus for frequencies up 
to some tens of gigahertz the quantum effect noise makes only a small contribu- 
tion to the receiver noise. At 900 GHz, which is generally considered to be about 
the high-frequency limit for ground-based radio astronomy, h u l k  = 43 K, and 
the contribution to the system noise is becoming important. In the optical region 
u = 500 THz, h u l k  M 30, OOO K, and heterodyne systems are hardly practical, 
as discussed in Section 16.4. However, in the optical region it is possible to build 
“direct detection” devices that detect power without conserving phase, so A 4  in 
Eq. (1.16) effectively tends to infinity, and there is no constraint on the measure- 
ment accuracy of the number of photons. Thus most optical interferometers form 
fringes directly from the light received, and measure the resulting patterns of light 
intensity to determine the fringe parameters. 

For further reading on the general subject of thermal and quantum noise, 
see, for example, Oliver (1965) and Ken; Feldman, and Pan (1997). Nityananda 
(1994) compares quantum issues in the radio and optical domains, and a discus- 
sion of basic concepts is given by Radhakrishnan (1999). 
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2 Introductory Theory 
of Interferometry 
and Synthesis Imaging 

In the first chapter we introduced some of the principles of interferometry while 
reviewing the historical development of the subject. This chapter provides a sim- 
plified analysis of interferometry and introduces several Fourier transform rela- 
tionships and other basic concepts. It is intended to provide a broad introduction 
to the principles of synthesis imaging to facilitate the understanding of more de- 
tailed development in later chapters. 

2.1 PLANAR ANALYSIS 

The instantaneous response of a radio interferometer to a point source can most 
simply be analyzed by considering the signal paths in the plane containing the 
electrical centers of the interferometer antennas and the source under observa- 
tion. For an extended observation it is necessary to take account of the rotation 
of the earth and consider the geometric situation in three dimensions, as can be 
seen from Fig. 1.15. However, the two-dimensional geometry is a good approx- 
imation for short-duration observations, and the simplified approach facilitates 
visualization of the response pattern. 

Consider the geometric situation shown in Fig. 2.1, where the antenna spacing 
is east-west. The two antennas are separated by a distance D, the baseline, and 
observe the same cosmic source which is in the fur je ld  of the interferometer; 
that is, it is sufficiently distant that the incident wavefront can be considered to 
be a plane over the distance D. The source will be assumed for the moment to 
have infinitesimal angular dimensions. For this discussion, the receivers will be 
assumed to have narrow bandpass filters that pass only signal components very 
close to w .  

As explained for the phase-switching interferometer in Chapter 1, the signal 
voltages are multiplied and then time-averaged, which has the effect of filtering 
out high frequencies. The wavefront from the source in direction 8 reaches the 
right-hand antenna at a time rX = ( D / c )  sin 8 before it reaches the left-hand one. 
rg is called the geometric delay and c is the velocity of light. Thus, in terms of 
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Figure 2.1 Geometry of an elementary interferometer. D is the interferometer baseline. 

the frequency u, the output of the multiplier is proportional to 

F = 2 sin(2nur) sin 2n u ( t  - r g )  

= cos2nur, - cos(4nur) c o s ( 2 n u ~ ~ )  - sin(4nur) sin(2nurR). (2.1) 

The center frequency of the receivers is generally in the range of tens of megahertz 
to hundreds of gigahertz. As the earth rotates the most rapid rate of variation of 
8 is equal to the earth’s rotational velocity, which is of the order of rad s-’. 
Also, because D cannot be more than, say, lo7 m for terrestrial baselines, the rate 
of variation of urg is smaller than that of ut by at least six orders of magnitude. 
The more rapidly varying terms in Eq. (2.1) are easily filtered out, leaving the 
fringe function 

F = cos2jrvrg = cos <‘“p‘>, - 

where I = sin 8; the definition of the variable I is discussed further in Section 2.4. 
For sidereal sources, the variation of 8 with time as the earth rotates generates 
quasisinusoidal fringes at the comelator, which are the output of the interferome- 
ter. Figure 2.2 shows an example of this function, which can be envisaged as the 
directional power reception pattern of the interferometer for the case where the 
antennas either track the source or have isotropic responses, and thus do not affect 
the shape of the pattern. 

An alternate and equivalent way of envisaging the formation of the sinusoidal 
fringes is to note that because of the rotation of the earth, the two antennas have 
different components of velocity in the direction of the source. The signals reach- 
ing the antennas thus suffer different Doppler shifts. When the signals are com- 
bined in the multiplying action of the receiving system, the sinusoidal output 
arises from the beats between the Doppler-shifted signals. 
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Figure 2.2 Polar plot to illustrate the fringe function F = cos((2nD/A)sin0]. The radial 
component is equal to IF) and 0 is measured with respect to the vertical axis. Alternate lobes 
correspond to positive and negative half-cycles of the quasisinusoidal fringe pattern, as indi- 
cated by the plus and minus signs. To simplify the diagram a very low value of 3 is used for 
D/A. The increase in fringe width due to foreshortening of the baseline as 101 increases is 
clearly shown. The maximum in the horizontal direction is a result of the arbitrary choice of 
an integer value for D/A. 

A development of the simple analysis can be made if we consider two Fourier 
components of the received signal at frequencies uI and u2. These frequency com- 
ponents are statistically independent so that the interferometer output is the linear 
sum of the responses to each component. Hence the output has components FI 
and Fz, as in Eq. (2.2). For frequency u2 the coefficient 2?rD/A = 2 x 0  u2Ic will 
be different from that for u I ,  so F2 will have a different period from F, at any 
given angle 8. This difference in period gives rise to interference between FI and 
F2, so that the fringe maxima have superimposed on them a modulation function 
that also depends on 8. Similar effects occur in the case of a continuous band of 
frequencies. For example, if the signals at the correlator are of uniform power 
spectral density over a band of width Au  and center frequency UO. the output 
becomes 

F(1)  = 's w ~ ~ / ~  cos ( 7 ) d v  2nDlu 

2nDlvo sin(nD1Aulc) 

Au q,-Av/2 

= cos (--) RDl Avlc ' 
(2.3) 

Thus the fringe pattern has an envelope in the form of a sinc function [sinc ( x )  = 
sinnxlrrx]. This is an example of the general result, to be discussed in the fol- 
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lowing section, that in the case of uniform power spectral density at the antennas 
the envelope of the fringe pattern is the Fourier transform of the instrumental 
frequency response. 

2.2 EFFECT OF BANDWIDTH 

Figure 2.3 shows an interferometer of the same general type as in Fig. 2.1 but with 
the amplifiers HI and H2, the multiplier, and an integrator (with respect to time) 
shown explicitly. An instrumental time delay ti is inserted into one arm. Assume 
that for a point source each antenna delivers the same signal voltage V ( t )  to the 
correlator, and that one voltage lags the other by a time delay t = tR - T,, as 
determined by the baseline D and the source direction 8. The integrator within the 
correlator has a time constant 2T; that is, it sums the output from the multiplier 
for 2T seconds and then resets to zero after the sum is suitably recorded. The 
output of the correlator may be a voltage, a current, or a coded set of logic levels, 
but in any case it represents a physical quantity with the dimensions of voltage 
squared. 

Figure 2.3 Elementary interferometer showing bandpass amplifiers HI and H2. the geometric 
time delay r g ,  the instrumental time delay r;, and the correlator consisting of a multiplier and 
an integrator. 
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The output from the correlator resulting from a point source is 

l T  
2T -T 

r = -1 V ( t ) V ( t  - r ) d r .  

We have ignored system noise and assumed that the two amplifiers have iden- 
tical bandpass characteristics, including finite bandwidths A u outside which no 
frequencies are admitted. The integration time 2T is typically milliseconds to 
seconds, that is, very much larger than Au-'. Thus, Eq. (2.4) can be written as 

r (5 )  = lim - V ( t ) V ( t  - r ) d t ,  
~ + m  2T J' -T  

(2.5) 

which is an (unnormalized) autocorrelation function.* The condition T + 00 is 
satisfied if a very large number of variations of the signal amplitude, which have 
a duration - A v - ' ,  occur in time 2T. The integration time used in practice must 
clearly be finite and much less than the fringe period. 

As described in Chapter 1, the signal from a natural cosmic source can be 
considered as a continuous random process that results in a broad spectrum, of 
which the phases are a random function of frequency. It will be assumed for our 
immediate purpose that the time-averaged amplitude of the cosmic signal in any 
finite band is constant with frequency over the passband of the receiver. 

The squared amplitude of a frequency spectrum is known as the power density 
spectrum, or power spectrum. The power spectrum of a signal is the Fourier trans- 
form of the autocorrelation function of that signal. This statement is known as the 
Wiener-Khinchin relation, and is discussed further in Section 3.2. It applies to 
signals that are either deterministic or statistical in nature, and can be written 

and 

(2.7) 

where H ( u )  is the amplitude (voltage) response, and hence IH(v)l2 is the power 
spectrum of the signal input to the correlator. In this case, because the cosmic 
signal is assumed to have a spectrum of constant amplitude, the spectrum H ( v )  
is determined solely by the passband characteristics (frequency response) of the 
amplifiers. Thus the output of the interferometer as a function of the time delay r 

*For simplicity we consider only the signals from a point source, which are identical except for a 
time delay. In practical systems the input waveforms at the correlator may contain the partially correlated 
signals from a partially resolved source as well as instrumental noise. These nonidentical components can 
be taken into account by considering the cross-correlation function. 
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is the Fourier transform of the power spectrum of the cosmic signal as bandlimited 
by the amplifiers. Assume, as a simple example, a Gaussian passband centered 
at UO: 

where u is the bandwidth factor (the full bandwidth at half-maximum level is 

Note that to perform the Fourier transforms in Eqs. (2.6) and (2.7), we include 
a negative frequency response centered on -UO. The spectrum is then symmetrical 
with respect to zero frequency, which is consistent with the fact that the autocor- 
relation function is real. The negative frequencies have no physical meaning but 
arise mathematically from the use of the exponential kernel of the transform. The 
interferometer response is 

&iizu).  

which is illustrated in Fig. 2.4a. Note that r ( r )  is a cosinusoidal function mul- 
tiplied by an envelope function, in this case a Gaussian, whose shape and width 
depend on the amplifier passband. This envelope function is referred to as the 
delay pattern, bandwidth pattern, or fringe washing function. 

By setting the instrumental delay ti to zero and substituting for the geometric 
delay rg = ( D / c )  sin 8 in Eq. (2.9), we obtain the response 

The period of the fringes varies inversely as the quantity voD/c  = D / h  and does 
not depend on the bandwidth parameter u . The width of the bandwidth pattern, 
however, is a function of both (T and D; wide bandwidths and long baselines result 
in narrow fringe envelopes. This result is quite general. For example, a rectangular 
amplifier passband of width Au, as considered in EQ. (2.3), results in an envelope 
pattern of the form [sin(nAur)]/(nAur),  as shown in Fig. 2.4b. 

In mapping applications the fringe envelope is often considered a nuisance, 
although there are some applications, particularly in very-long-baseline interfer- 
ometry, in which the envelope is useful. In most cases it is desirable to observe 
the fringes in the vicinity of the maximum of the pattern, where the fringe am- 
plitude is greatest. This condition can be achieved by changing the instrumental 
delay ti continuously or periodically so as to keep t = tg - ri suitably small. If 
ri is adjusted in steps of the reciprocal of the center frequencyt LJO. the response 

'This adjustment method is useful to consider here, but more commonly used methods are described 
in Section 7.3 under Drluy-Setring Tolerunces. 
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(b) 

Figure 2.4 Point-source response of an interferometer with (a) Gaussian and (b) rectangu- 
lar passbands. The abscissa is the geometric delay r,. The bandwidth pattern determines the 
envelope of the fringe term. 
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remains cosinusoidal with rg. Note that as Au approaches u,  the width of the 
envelope function becomes so narrow that only the central fringe remains. This 
occurs mainly in optics, where a central fringe of this type is called the “white 
light” fringe. 

2.3 ONE-DIMENSIONAL SOURCE SYNTHESIS 

Except for a few instruments built for low frequencies, most radio astronomy an- 
tennas operate at frequencies above - I GHz because broader bandwidths, which 
enhance sensitivity, and increased angular resolution are more practical at higher 
frequencies. The ability to track a source across the sky becomes important be- 
cause the antenna beams become narrower as frequency increases, and also be- 
cause the rotation of the earth is important in two-dimensional imaging, as illus- 
trated in Fig. 1.15. In the analysis of an interferometer in which the antennas and 
the instrumental delay track the position of the source, it is convenient to specify 
angles of the antenna beam and other variables with respect to a reference position 
on the sky, usually the center or nominal position of the source under observation. 
This is commonly referred to as the phase reference position. Since the range of 
angles required to specify the source intensity distribution relative to this point is 
generally no more than a few degrees, small-angle approximations can be used to 
advantage. The instrumental delay is constantly adjusted to equal the geometric 
delay for radiation from the reference position. If we designate the reference po- 
sition as the direction 00, then 5 = tgle=so - ri = 0, and t&+, = ( D / c )  sin 00. 

For radiation from a direction (0, - AO), where A0 is a small angle, the fringe 
response term is 

2: cos[2lru0(D/c) sin ABcos0~].  (2.11) 

When observing a source at any position in the sky, the angular resolution of the 
fringes is determined by the length of the baseline projected onto a plane normal 
to the direction of the source. In Fig. 2.1, for example, this is the distance desig- 
nated D cos 8. We therefore introduce a quantity u that is equal to the component 
of the antenna spacing normal to the direction of the reference position 60. u is 
measured in wavelengths, A, at the center frequency UO, that is, 

(2.12) 

Since A0 is small, we can assume that the bandwidth pattern is near maximum 
(unity) in the direction 60 - AO. Then the response to radiation from that direction 
is, from Eqs. (2.1 1) and (2.12), 

F(1)  = cos(2TTugt) = cos(2lrul), (2.13) 
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where I = sinA8. This is the response to a point source at 8 = 9, - A0 of an 
interferometer whose net delay ts - t i  is zero at 8 = 8,. As we shall show, the 
quantity u is interpreted as spariulfrequency. It can be measured in cycles per 
radian, since the spatial variable I ,  being small, can be expressed in radians. 

Interferometer Response as a Convolution 

The response of a single antenna or an interferometer to a source can be expressed 
in terms of a convolution. Consider first the response of a single antenna and a 
receiver that measures the power received. Figure 2.5 shows the power reception 
pattern of the antenna A(8), which is a polar plot of the effective area of the 
antenna as a function of angle from the center of the antenna beam. Also shown is 
the one-dimensional intensity profile of a source I ,  (W), as defined in Eq. (1.9), in 
which 9’ is measured with respect to the center, or nominal position, of the source. 
The component of the output power in bandwidth A u contributed by each element 
&’of the source is ~A~A(8’-9)1~(9’)d8’,  where the factor 1/2 takes account of 
the ability of the antenna to respond to only one component of randomly polarized 
radiation. The total output power from the antenna, omitting the constant factor 
~ A U ,  is proportional to 

(2.14) 

This integral is equal to the cross-correlation of the antenna reception pattern 
and the intensity distribution of the source. It is convenient to define 4 9 )  = 

B 

0 
Figure 2.5 The power pattern of an antenna A ( @ )  and the intensity profile of a source 11 (0’) 
used to illustrate the convolution relationship. The angle 0 is measured with respect to the 
beam center OC and 0’ is measured with respect to the direction of the nominal position of the 
source 05. 
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A(-8) ,  where A is the mirror image of A with respect to 8.  Then expression 
(2.14) becomes 

(2.15) 

The integral in expression (2.15) is an example of the convolution integral; see, 
for example, Bracewell (2000) or Champeney (1973). We can say that the output 
power of the antenna is given by the convolution of the source with the mirror 
image of the power reception pattern of the antenna. The mirror-image reception 
pattern can be described as the response of the antenna to a point source. 

In the case of an interferometer we can express the response as a convolution 
by replacing the antenna power pattern in (2.15) by the overall power pattern of 
the interferometer. From the results presented earlier we find that the response of 
an interferometer is determined by three functions: 

The reception pattern of the antennas, which we represent as A(1). 
The fringe pattern, F ( f ) ,  as in the example of Fig. 2.2 and given by 
Eq. (2.13). Note that the fringe term in the interferometer output, being 
the product of two voltages, is proportional to power. 
The bandwidth pattern, for example, as given by the sinc-function factor in 
Eq. (2.3). In the general case we can represent this by F s ( l ) .  

Note that these functions are all ideally symmetrical, and thus we can generally 
disregard the distinction between the interferometer power pattern and its mirror 
image in using the convolution relationship. 

First consider an interferometer with tracking antennas and an instrumental de- 
lay that is adjusted so that the bandwidth pattern also tracks the source across the 
sky. In effect, the intensity distribution is modified by the antenna and bandwidth 
patterns. We can therefore envisage the output of the interferometer as the convo- 
lution of (the mirror image of) the fringe pattern with the modified intensity. In 
terms of the convolution integral the response can be written as 

~ ( 1 )  = 1 cos [2nu(i - /’)I A ( ~ ’ ) F B ( ~ ’ ) z , ( ~ ’ ) ~ ~ ‘ .  (2.16) 

It is often convenient to use the asterisk symbol (*) as a concise notation for 
convolution, with which Eq. (2.16) becomes 

source 

R ( l )  = COS(2Td) * [ A ( l ) F ~ ( l ) l i ( / ) ] .  (2.17) 

(Note that convolution is commutative, i.e., f * g = g * f.) The intensity dis- 
tribution measured with the interferometer is modified by A ( l )  and FB(f), but 
since these are measurable instrumental characteristics, I ,  (1 )  can generally be re- 
covered. In many cases the angular size of the source is small compared with 
the antenna beams and the bandwidth pattern, so these two functions introduce 
only a constant in the expression for the response. To simplify the discussion we 
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shall consider this case, and omitting constant factors, we can write the essential 
response of the interferometer as 

R(1) = cos ( 2 x 4  * I ,  ( 1 ) .  (2.18) 

In the case of the early interferometer shown in Fig. I .6, in which the antennas are 
fixed in the meridian and do not track the source, the delays in the signal paths be- 
tween the antennas and the point at which the signals are multiplied are equal and 
there is no variable instrumental delay. Thus the three functions that determine the 
interferometer power pattern are all fixed with respect to the interferometer base- 
line. The interferometer power pattern is of the form A(f)  cos (2xuf)FB(f). Then 
the response of the interferometer to the source is [ A ( I )  cos (2nd)FB(l)] * I ,  (I). 

Interferometers with non-tracking antennas, as discussed above, are generally 
limited to frequencies no greater than a few hundred megahertz. At such long 
wavelengths it is possible to obtain antennas of large collecting area and still 
have wide enough beams that some minutes of observing time are obtained as 
the source passes through in sidereal motion. Generally the bandwidth of such 
low-frequency instruments is small so F B ( l )  is wide and can be omitted. Also, the 
antenna beams are usually wider than the source and sufficiently wide that several 
cycles of the fringe pattern can be measured as the source transits the beam. So 
in the non-tracking case the essential form of the response is also represented 
by Eq. (2.18). Except for a few instruments built especially for low-frequency 
observing, non-tracking antennas are mainly a feature of the early years of radio 
astronomy. 

Convolution Theorem and Spatial Frequency 

We now examine the interferometer response, as given in Eq. (2.18), using the 
convolution theorem of Fourier transforms. This theorem states that the Fourier 
transform of the convolution of two functions is the product of their Fourier trans- 
forms: 

f * g + F $ ,  (2.19) 

where f + F, g + 8,  and + indicates Fourier transformation. A proof of 
the convolution theorem can be found in almost any text on Fourier transforms. 
Consider the Fourier transforms with respect to 1 and u of the three functions in 
Eq. (2.18). For the interferometer response we have r ( u )  + R(1). For a particular 
value u = uo, the Fourier transform of the fringe term is given by 

cos(2sruol) + $ [6(u + uo) + S(u - UO)], (2.20) 

where S is the delta function. The Fourier transform of I ,  (1) is the visibility func- 
tion Y ( u ) .  Thus from Eqs. (2.18), (2.19), and (2.20), we obtain 

r(u) = ; [S(u + uo) + S(u - U 0 ) l  Y(u)  

(2.21) 
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This result shows that the instantaneous output of the interferometer as a function 
of spatial frequency consists of two delta functions situated at plus and minus uo 
on the u axis. Now Y ( u ) ,  the Fourier transform of I l ( l ) .  represents the ampli- 
tude and phase of the sinusoidal component of the intensity profile with spatial 
frequency u cycles per radian. The interferometer acts as a filter that responds 
only to spatial frequencies f u o .  The negative spatial frequency -UO, like the neg- 
ative frequencies in Eq. (2.8), has no physical meaning. It arises from the use, for 
mathematical convenience, of the exponential Fourier transform rather than the 
sine and cosine transforms, which correspond more directly to the physical situa- 
tion. As a result, the spatial frequency spectra are symmetrical about the origin in 
the hermitian sense, that is, with even real parts and odd imaginary parts, which 
is appropriate since the intensity is a real, not complex, quantity. 

Fringe visibility, as originally defined by Michelson [YM, see Eq. (1.8)], is a 
real quantity and is normalized to unity for an unresolved source. Complex visi- 
bility (Bracewell 1958) was defined to take account of the phase of the visibility, 
measured as the fringe phase, to allow mapping of asymmetric and complicated 
sources. The normalization is convenient when comparing measurements with 
simple models, as shown in Fig. 1.5. However, in maps or images it is desirable 
to display the magnitude of the intensity or brightness temperature, so the gen- 
eral practice is to retain the measured value of visibility, without normalization, 
since this incorporates the required information. Thus visibility 7, as used here 
is an unnormalized complex quantity with units of flux density (W m-* Hz-I). 
The quantity u ,  which was introduced as the projected baseline in wavelengths, 
is seen also to represent the spatial frequency of the Fourier components of the 
intensity. The concepts of spatial frequency and spatial frequency spectra are fun- 
damental to the Fourier synthesis of astronomical images, and this general subject 
is discussed in a seminal paper by Bracewell and Roberts (1954). 

Example of One-Dimensional Synthesis 

To illustrate the observing process outlined in this chapter, we present a rudi- 
mentary simulation of measurements of the complex visibility of a source using 
arbitrary parameters. The source consists of two components separated by 0.34" 
of angle, the flux densities of which are in the ratio 2 : 1. The measurements are 
made with pairs of antennas placed along a line parallel to the direction of sepa- 
ration of the two components. Measurements are made for antenna spacings that 
are integral multiples of a unit spacing of 30 wavelengths. All spacings from one 
to 23 times the unit spacing are measured. These results could be obtained using 
two antennas and a single correlator, observing the source as it transits the merid- 
ian on 23 different days, and moving the antennas to provide a new spacing each 
day. Alternatively, the 23 measurements could be made simultaneously using 23 
correlators and a number of antennas that could be as small as eight, if they were 
set out with minimum redundancy in the spacings, as discussed in Section 5.5. 
The angular sizes of the two components of the source are too small to be re- 
solved by the interferometer, so they can be regarded as point radiators. The two 
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components radiate noise, and their two outputs are uncorrelated. The source is at 
a sufficient distance that incoming wavefronts can be considered to be plane over 
the measurement baselines. 

Figures 2.6a and 2.6b show, respectively, the amplitudes and phase of the visi- 
bility function as it would be measured. Since the data are derived from a model, 
there are no measurement errors, so the points indicate samples of the Fourier 
transform of the source intensity distribution, which can be represented by two 
delta functions with strengths in the ratio 1 : 2. Taking the inverse transform of 
the visibility yields the synthesized image of the source in Fig. 2 . 6 ~ .  The two 
components of the source are clearly represented. The extraneous oscillations 
arise from the finite extent of the visibility measurements, which are uniformly 
weighted out to a cutoff at 23 times the unit spacing. This effect is further il- 
lustrated in Fig. 2.6d, which shows the response of the measurement procedure 
to a single point source; equivalently, it is the synthesized beam. The profile of 
this response is the sinc function that is the Fourier transform of the rectangular 
window function, which represents the cutoff of the measurements at the longest 
spacing. In the image domain the double-source profile can be viewed as the con- 
volution of the source with the point-source response. The point-source nature 
of the model components maximizes the sidelobe oscillations, which would be 
partially smoothed out if the width of the components were comparable to that of 
the sidelobes. 

As is clear from the convolution relationship, information on the structure of 
the source is contained in the whole response pattern in Fig. 2 . 6 ~  that is, in the 
sidelobe oscillations as well as the main-beam peaks. A way to extract the max- 
imum information on the source structure would be to fit scaled versions of the 
response in Fig. 2.6d to the two peaks in Fig. 2 . 6 ~  and then subtract them from the 
profile. In an actual observation this would leave the noise and any structure that 
might be present in addition to the point sources, but would remove all or most of 
the sidelobes. The fitting of the point-source responses could be adjusted to min- 
imize some measure of the residual fluctuations, and further components could 
be fitted to any remaining peaks and subtracted. This technique would ,clearly be 
a good way to estimate the strengths and positions of the two components, and 
look for evidence of any low-level structure that could be hidden by the side- 
lobes in Fig 2.6~. The algorithm CLEAN, which is discussed in Chapter 11, uses 
this principle, but also replaces the components that are removed by model beam 
responses that are free of sidelobes. Removal of the sidelobes allows any lower- 
level structure to be investigated, down to the level of the noise. Most synthesis 
images are processed by nonlinear algorithms of this type, and the range of inten- 
sity levels achieved in some two-dimensional images exceeds 1@ to 1. 

$It is arguable that the modulus of the complex visibility should be referred to as magnitude rather than 
amplitude since the dimensions of visibility include power rather than voltage. However, the term visibility 
amplirude is widely used in radio astronomy, probably resulting from the early practice of recording the 
fringe pattern as a quasisinusoidal waveform, and subsequently analyzing the amplitude and phase of the 
oscillations. 
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2.4 TWO-DIMENSIONAL SYNTHESIS 

To synthesize a map or image of a source in two dimensions on the sky requires 
measurement of the two-dimensional spatial frequency spectrum in the (u, u )  
plane, where u is the north-south component as shown in Fig. 2.7a. Similarly, 
it is necessary to define a two-dimensional coordinate system ( 1 ,  rn) on the sky. 
The (1 ,  m) origin is the reference position, or phase reference position, introduced 
in the last section. In considering functions in one dimension in the earlier part 
of this chapter, it was possible to define 1 in Eq. (2.2) as the sine of an angle. In 
two-dimensional analysis I and m are defined as the cosines of the angles between 
the direction (1 ,  rn) and the u and u axes, respectively, as shown in Fig. 2 . 7 ~ .  If 
the angle between the direction (1,  m) and the w axis is small, I and m can be 
considered as the components of this angle measured in radians in the east-west 
and north-south directions, respectively. 

For a source near the celestial equator, measuring the visibility as a function 
of u and u requires observing with a two-dimensional array of interferometers, 
that is, an array in which the baselines between pairs of antennas contain com- 
ponents in the north-south as well as the east-west directions. Although we have 
considered only east-west baselines, the results derived in terms of angles rnea- 

,,-u cycles per radian 

V L 
/ U 

Figure 2.7 (a) The ( u ,  u )  plane in which the arrow point indicates the spatial frequency, q 
cycles per radian, of one Fourier component of an intensity map (or image) of a radio source. 
The components u and u of the spatial frequency are measured along axes in the east-west 
and north-south directions, respectively. (b) The ( 1 ,  m )  plane in which a single component of 
spatial frequency in the intensity domain has the form of sinusoidal corrugations on the sky. 
The figure shows corrugations that represent one such component. The diagonal lines indicate 
the ridges of maximum intensity. The dots indicate the positions of these maxima along lines 
in three directions. In a direction normal to the ridges the frequency of the oscillations is q 
cycles per radian, and in directions parallel to the u and u axes it is u and u cycles per radian, 
respectively. (c) The u and u coordinates define a plane and the w coordinate is perpendicular 
to it. The coordinates ( 1 ,  m )  are used to specify a direction on the sky in two dimensions. I and 
rn are defined as the cosines of the angles made with the u and u axes, respectively. 
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sured with respect to a plane that is normal to the baseline hold for any baseline 
direction. 

A source at a high declination (near the celestial pole) can be mapped in two 
dimensions with either one- or two-dimensional arrays, as shown in Fig. 1.15 
and further explained in Section 4.1. As the earth rotates, the baseline projection 
on the celestial sphere rotates and foreshortens. A plot of the variation of the 
length and direction of the projected baseline as the antennas track the source 
across the sky is an arc of an ellipse in the (u ,  u )  plane. The parameters of the 
ellipse depend on the declination of the source, the length and orientation of the 
baseline, and the latitude of the center of the baseline. In the design of a synthesis 
array, the relative positions of the antennas are chosen to provide a distribution 
of measurements in u and u consistent with the angular resolution, field of view, 
declination range, and sidelobe level required, as discussed in Chapter 5 .  The two- 
dimensional intensity distribution is then obtained by taking a two-dimensional 
Fourier transform of the observed visibility, U ( u ,  v). 

Projection-Slice Theorem 

Some important relationships between one-dimensional and two-dimensional 
functions of intensity and visibility are summarized in Fig. 2.8, which illustrates 
the “projection-slice” theorem of Fourier transforms (Bracewell 1956, 1995, 
2000). At the top left is the two-dimensional intensity distribution of a source 
I ( 1 ,  m), and at the bottom right is the corresponding visibility function V ( u ,  u ) .  
These two functions are related by a two-dimensional Fourier transform, as indi- 
cated on the arrows shown between them. Note the general property of Fourier 
transforms that the width in one domain is inversely related to the width in the 
other domain. At the lower left is the projection of I ( / ,  rn) on the 1 axis, which 
is equal to the one-dimensional intensity distribution II (I). This projection is ob- 
tained by line integration along lines parallel to the rn axis, as defined in Eq. (1.9). 
I ,  is related by a one-dimensional Fourier transform to the visibility measured 
along the u axis at the lower right, that is, the profile of a slice Y ( u ,  0) through the 
visibility function V ( u ,  u ) ,  indicated by the shaded area in the diagram. V ( u ,  0) 
could be measured, for example, by observations of a source made at meridian 
transit with a series of interferometer baselines in an east-west direction. This 
relationship was encountered in Chapter 1 in the description of the Michelson 
interferometer, and examples of such pairs of functions are shown in Fig. 1.5. At 
the upper right is a projection of Y ( u ,  u )  on the u axis, YI ( u )  = Y ( u ,  u )  du, 
and this is related by a one-dimensional Fourier transform to a slice profile of the 
source intensity Z ( 1 , O )  along the 1 axis at the upper left, indicated by the shaded 
area. The relationships between the projections and slices are not confined to the 
u and I axes, but apply to any sets of axes that are paralle1 in the two domains. 
For example, integration of I ( I ,  rn) along lines parallel to OP results in a curve, 
the Fourier transform of which is the profile of a slice through V ( u ,  u )  along the 
line QR. 

The relationships in Fig. 2.8 apply to Fourier transforms in general, and their 
application to radio astronomy was recognized during the early development 
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r71Y/ 1 I U 

Figure 2.8 Illustration of the “projection-slice” theorem, which explains the relationships 
between one-dimensional projections and cross sections of intensity and visibility functions. 
One-dimensional Fourier transforms are organized horizontally and projections vertically. The 
symbols F and 2F indicate one-dimensional and two-dimensional Fourier transforms, respec- 
tively. See the text for further explanation. From Bracewell, Strip Integration in Radio Astron- 
omy, courtesy Aust. J. Phys. (Vol. 9, p. 208, 1956). 

of the subject. For example, in determining the two-dimensional intensity of a 
source from a series of fan-beam scans at different angles, one can perform one- 
dimensional transforms of the scans to obtain values of Y along a series of lines 
through the origin of the (u ,  u )  plane, thus obtaining the two-dimensional visi- 
bility Y (u ,  u ) .  Then f(1 m) can be obtained by two-dimensional Fourier trans- 
formation. In the early years of radio astronomy, before computers were widely 
available, such computation was a very laborious task and various alternative pro- 
cedures for image formation from fan-beam scans were devised (Bracewell 1956, 
Bracewell and Riddle 1967). 
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3 Analysis of the Interferometer 
Response 

In this chapter we introduce the full two-dimensional analysis of the interferom- 
eter response, without small-angle assumptions, and then investigate the small- 
field simplifications commonly used in the transformation from the measured 
visibility to the intensity distribution. This is followed by a discussion of the 
relationship between the cross-correlation of the received signals and the cross 
power spectrum, which results from the Wiener-Khinchin relation and is funda- 
mental to spectral line interferometry. An analysis of the basic response of the 
receiving system is also given. An appendix considers some approaches to the 
representation of noise-like signals, including the analytic signal. 

3.1 FOURIER TRANSFORM RELATIONSHIP BETWEEN 
INTENSITY AND VISIBILITY 

We begin by deriving the relationship between intensity and visibility in a 
coordinate-free form and then show how the choice of a coordinate system 
results in an expression in the familiar form of the Fourier transform. Suppose 
that the antennas track the source under observation, which is the most com- 
mon situation, and let the unit vector in Fig. 3.1 indicate the phase reference 
position introduced in Section 2.3. This position, sometimes also known as the 
phase-tracking center, becomes the center of the field to be mapped. An element 
of the source of solid angle d!2 at position s = so + a contributes a component 
of power ~ A ( u ) ~ ( u ) A u ~ Q  at each of the two antennas, where A ( a )  is the 
effective collecting area of each antenna, I(a) is the source intensity distribu- 
tion as observed from the distance of the antennas, and Au is the bandwidth of 
the receiving system. It is easily seen that this expression has the dimensions 
of power since the units of I are W m-2 Hz-' sr-I. From the considerations 
outlined in the derivation of Eqs. (2.1) and (2.2), including the far-field condition 
for the source, the resulting component of the correlator output is proportional to 
the received power and to the fringe term c0s(2rrurR), where rR is the geomet- 
ric delay. If the vector DA specifies the baseline measured in wavelengths, then 
urK = DA * s = DA (sg 4- a). Thus the output from the correlator is represented 
by 
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Figure 3.1 Baseline and position vectors that specify the interferometer and the source. The 
source is represented by the outline on the celestial sphere. 

r(DA, so) = Au ln A ( a ) l ( o )  cos 12nDA * (sg + a)] dR 

= A U  C O S ( ~ T D ~  SO) A ( a ) l ( a )  COS(~TDA * a) dS2 4 
- Au sin(2nDl - sn) A ( o ) f  (a) sin(2xDA * a) d Q .  (3.1) 

Note that the integration of the response to the element dR over the source in 
Eq. (3.1) requires the assumption that the source is spatially incoherent, that is, 
that the radiated waveforms from different elements dR are uncorrelated. This 
assumption is justified for essentially all cosmic radio sources. Spatial coherence 
is discussed further in Section 14.2. Let A0 be the antenna collecting area in direc- 
tion so in which the beam is pointed. We introduce a normalized reception pattern 
A N ( a )  = A ( a ) / A o  and consider the modified intensity distribution AN(u)Z(U). 
Now we define the complex visibility* as 

Then by separating the real and imaginary parts we obtain 

*In formulating the fundamental Fourier transform relationship in synthesis mapping, which follows 
from Eq. (3.2). we use the negative exponent to derive the complex visibility function (or mutual coherence 
function) from the intensity distribution, and the positive exponent for the inverse operation. From a 
physical viewpoint the choice is purely arbitrary, and the literature contains examples of both this and the 
reverse convention. Our choice follows Born and Wolf (1999) and Bracewell (1958). 
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(3.4) 

and from E@ (3.1) 

Thus the output of the correlator can be expressed in terms of a fringe pattern 
corresponding to that for a hypothetical point source in the direction SO, which is 
the phase reference position. As noted earlier, this is usually the center or nominal 
position of the source to be mapped. The modulus and phase of 'V are equal to the 
amplitude and phase of the fringes; the phase is measured relative to the fringe 

Figure 3.2 Geometric relationship between a source under observation I ( I ,  m )  and an inter- 
ferometer or one antenna pair of an array. The antenna baseline vector, measured in wave- 
lengths, has length DA and components ( u ,  u ,  w). 
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phase for the hypothetical source. As defined above, Y has the dimensions of flux 
density (W rn-' Hz-'), which is consistent with its Fourier transform relation- 
ship with I .  Some authors have defined visibility as a normalized, dimensionless 
quantity, in which case it is necessary to reintroduce the intensity scale in the re- 
sulting image. Note that the bandwidth has been assumed to be small compared 
to the center frequency in deriving Eq. (3.5). 

In introducing a coordinate system, the geometry that we now consider is il- 
lustrated in Fig. 3.2. The two antennas track the center of the field to be mapped. 
They are assumed to be identical, but if they differ, A N ( a )  is the geometric mean 
of the beam patterns of the two antennas. The magnitude of the baseline vector is 
measured in wavelengths at the center frequency of the observing band, and the 
baseline has components (u, u ,  w) in a right-handed coordinate system, where 
u and u are measured in a plane normal to the direction of the phase reference 
position. The spacing component u is measured toward the north as defined by 
the plane through the origin, the source, and the pole, and u toward the east. The 
component w is measured in the direction SO. which is the phase reference posi- 
tion. On Fourier transformation, the phase reference position becomes the origin 
of the derived intensity distribution Z ( 1 ,  m), where 1 and m are direction cosines 
measured with respect to the axes u and u. In terms of these coordinates, we find 

where 41 - l 2  - m2 is equal to the third direction cosine n measured with respect 
to the w axist. Note also that D,, - u = DA . s - D,, so. Thus from Eq. (3.2): 

'The expression for dQ is obtained by considering the unit sphere centered on the (u,  u .  w )  origin. 
A point P on the sphere with coordinates ( u ,  u, w )  is projected onto the ( u ,  u )  plane at u = I, u = m, 
and the increments d l ,  dm define a column of square cross section running through (u,  u ,  0) parallel 
to the w axis. The column makes an angle cos-' n with the normal to the spherical surface at P ,  and 
dQ is equal to the surface area intersected by the column, which is dI d m / n ,  or dI d r n / d m .  
Alternatively, the solid angle can be expressed in polar coordinates as dQ = sine d0 dg, where 0 and 4 
arethepolarandazimuthalanglesinthe(u, u .  w)plane,thatis,e =sin-' d w a n d g  = tan- lmll .  
Calculation of the Jacobian of the transfornation from (8 ,  g) coordinates to ( 1 ,  m )  coordinates gives the 
result dQ = dldm/J- (Apostol 1962). 
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A factor on the right-hand side in Eq. (3.7) results from the measurement 
of angular position with respect to the w axis. For a source on the w axis, 1 = 
m = 0, and the argument of the exponential term in Eq. (3.7) is zero. For any 
other source, the fringe phase is measured relative to that for a source on the w 
axis, which is the phase reference position, SO. The function ANZ in Eq. (3.7) 
is zero for Z 2  + m2 2 1, and in practice it usually falls to very low values for 
directions outside the field to be mapped as a result of the antenna beam pattern, 
the bandwidth pattern, or the finite size of the source. Thus we can extend the 
limits of integration to f m .  Note, however, that Eq. (3.7) requires no small- 
angle assumptions. The reason why we use direction cosines rather than a linear 
measure of angle in interferometer theory is that they occur in the exponential 
term of this relationship. 

The coordinate system (I, m) defined above is a convenient one in which to 
present an intensity distribution. It corresponds to the projection of the celestial 
sphere onto a plane that is a tangent at the field center, as shown in Fig. 3.3. 
The distance of any point in the map from the (I, m) origin is proportional to the 
sine of the corresponding angle on the sky, so for small fields distances on the 
map are closely proportional to the corresponding angles. The same relationship 
usually applies to the field of an optical telescope. For a detailed discussion of 
relationships on the celestial sphere and tangent planes, see Konig (1962). 

If all the measurements could be made with the antennas in a plane normal to 
the w direction so that w = 0, Eq. (3.7) would reduce to an exact two-dimensional 
Fourier transform. In general this is not possible, and we now consider ways in 
which the transform relationship can be applied. Recall first that the basis of the 
synthesis mapping process is the measurement of V over a wide range of u and u. 
For a ground-based array this can be achieved by varying the length and direction 
of the antenna spacing and also by tracking the field-center position as the earth 
rotates. The rotation causes the projection of DA to move across the (u ,  u )  plane. 
Thus an observation often lasts for 6-12 h. As the earth’s rotation carries the 

Figure 3.3 Mapping of the celestial sphere onto a plane, shown in one dimension. The posi- 
tion of the point P is measured in terms of the direction cosine m with respect to the u axis. 
When projected onto a plane surface with a scale linear in m, P appears at P’ at a distance 
from the field center C proportional to sin 3 .  
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antennas through space, the baseline vector remains in a plane only if DA has no 
component parallel to the rotation axis, that is, the baseline is an east-west line on 
the earth’s surface. In the general case there is a three-dimensional distribution of 
the measurements of Y .  The simplest form of the transform relationship that can 
then be used is based on an approximation that is valid so long as the synthesized 
field is not too large. If 1 and m are small enough that the term 

can be neglected, JZq. (3.7) becomes 

Thus for a restricted range of 1 and m ,  Y ( u ,  u ,  w )  is approximately independent 
of w, and for the inverse transform we can write 

With this approximation it is usual to omit the w dependence and write the visi- 
bility as the two-dimensional function V ( u ,  u ) .  Note that the factor J1 - l2 - tn2 
in Eqs. (3.9) and (3.10) can be subsumed into the function AN(l ,  m ) ,  if desired. 
Equation (3.10) is a form of the van Cittert-Zernike theorem, which originated in 
optics and is discussed in Section 14. I under Mutual Coherence of an Incoherent 
Source . 

The approximation in Eq. (3.9) introduces a phase error equal to 271 times 
the neglected term, that is, n( f2  + m2)w.  Limitation of this error to some toler- 
able value places a restriction on the size of the synthesized field, which can be 
estimated approximately as follows. If the antennas track the source under obser- 
vation down to low elevation angles, the values of w can approach the maximum 
spacings (DJmax in the array, as shown in Fig. 3.4. Also, if the spatial frequen- 

/ 

I I 

Figure 3.4 When observations are made at a low angle of elevation, and at an azimuth close 
to that of the baseline, the spacing component w becomes comparable to the baseline length 
4, which is measured in wavelengths. 



74 ANALYSIS OF THE INTERFEROMETER RESPONSE 

cies measured are evenly distributed out to the maximum spacing, the synthesized 
beamwidth 0, is approximately equal to (DA),&. Thus the maximum phase error 
is approximately 

2 

3T (2) e;’, (3.1 1) 

where Of is the width of the synthesized field. The condition that no phase errors 
can exceed, say, 0.1 rad then requires that 

(3.12) 

where the angles are measured in radians. For example, if 0, = 1 arcsec, 01 < 2.5 
arcmin. Much synthesis mapping in astronomy is performed within this restric- 
tion, but ways of mapping larger fields will be discussed later. 

We now return to the case of arrays with east-west spacings only, and discuss 
further the conditions for which we can put w = 0, and the resulting effects. Let 
us first rotate the (u,  u,  w )  coordinate system about the u axis until the w axis 
points toward the pole as shown in Fig. 3.5. We indicate by primes the quantities 
measured in the rotated system. The (u’, u’) axes lie in a plane parallel to the 
earth’s equator, The east-west antenna spacings contain components in this plane 
only (i.e., w’ = O) ,  and as the earth rotates, the spacing vectors sweep out circles 

Figure 3.5 The (u’ ,  u‘, w’ )  coordinate system for an east-west array. The (u’ ,  u’) plane is the 
equatorial plane and the antenna spacing vectors trace out arcs of concentric circles as the 
earth rotates. Note that the directions of the u’ and u‘ axes are chosen so that the u’ axis lies in 
the plane containing the pole, the observer, and the point under observation (ao, 60). In Fourier 
transformation from the (u’. u ’ )  to the ( l ’ ,  in’) planes the celestial hemisphere is mapped as a 
projection onto the tangent plane at the pole. The (u ,  u ,  w )  coordinates for observation in the 
direction (ao, So) are also shown. 
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concentric with the (u’, u ‘ )  origin. From Eq. (3.7) we can write 

where (l’, m’) are direction cosines measured with respect to (u’, u’). Equation 
(3.13) holds for the whole hemisphere above the equatorial plane. The inverse 
transformation yields 

In this mapping the hemisphere is projected onto the tangent plane at the pole, 
as shown in Fig. 3.5. In practice, however, a map is usually confined to a small 
area within the antenna beams. In the vicinity of such an area, centered at right 
ascension and declination (ao, a”), angular distances in the map are compressed 
by a factor sin SO in the m’ dimension. Also, in mapping the (ao, SO) vicinity it is 
convenient if the origin of the angular position variables is shifted to (ao, SO). Ex- 
pansion of the scale and shift of the origin can be accomplished by the coordinate 
transformation 

1 = l ‘ ,  m“ = (m’ - cosgO)cosecSo. (3.15) 

If we write F(l ’ ,  m’) for the left-hand side of Eq. (3.14). then 

F ( t ,  m’)  + Y(u’,  u’ ) ,  (3.16) 

and 

where + indicates Fourier transformation. Equation (3.17) follows from the be- 
havior of Fourier pairs with change of variable and involves the application of 
the similarity and shift theorems [see, e.g., Bracewell (2000)l. The coordinates 
(u ’ ,  u’ sin So) on the right-hand side of Eq. (3.17) represent the projection of the 
equatorial plane onto the (u ,  u )  plane, which is normal to the direction ( a ~ ,  SO). In 
the ( u ,  u ,  w )  system u = u’ and u = u’ sin SO. The coordinate w shown in Fig. 3.5 
is equal to -u’cos SO. Thus e-j2nu‘coss~ in . Eq. (3.17) is the same factor that occurs 
in Eq. (3.7) as a result of the measurement of visibility phase relative to that for a 
point source in the w direction. Equation (3.14) now becomes 
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o o o o  

(3.18) = J_, s_, Y ( u *  u)e j 2 n ( u l + v m N )  du du  

A similar analysis is given by Brouw ( 197 I ). 
The derivation of Eq. (3.18) from Eq. (3.14) involves a redefinition of the 

m coordinate, but no approximations. Equation (3.18) is of the same form as 
Eq. (3.10) in which the term in Eq. (3.8) was neglected. Thus if we apply the 
mapping scheme of Eq. (3.10), which is based on omitting this term, to observa- 
tions made with an east-west array, the phase errors introduced distort the map 
in a way that corresponds exactly to the change of definition of the m variable to 
mr’. Since M” is derived from a direction cosine measured from the u’ axis in the 
equatorial plane, there is a progressive change in the north-south angular scale 
over the map. The factor cosec 60 in Eq. (3.15) establishes the correct angular 
scale at the center of the map, but this simple correction is acceptable only for 
small fields. The crucial point to note here is that when visibility data measured 
in a plane are projected into (u ,  u ,  w )  coordinates, w is a linear function of u 
and u (and a linear function of u alone for east-west baselines). Hence the phase 
error n(12 + m2)w is linear in u and u.  Phase errors of this kind have the effect 
of introducing position shifts in the resulting map, but there remains a one-to-one 
correspondence between points in the map and on the sky. The effect is simply to 
produce a predictable, and hence correctable, distortion of the coordinates. 

It is clear from Fig. 3.5 that if all the measurements lie in the (u‘, u’ )  
plane, then the values of u in the (u ,  u )  plane become seriously foreshort- 
ened for directions close to the celestial equator. To obtain two-dimensional 
resolution in such directions requires components of antenna spacing paral- 
lel to the earth’s axis. The design of such arrays is discussed in Chapter 5.  
The effect of the earth’s rotation is then to distribute the measurements in 
(u ,  u ,  w )  space so that they no longer lie in a plane, unless the observation 
is of short time duration. In many cases the restriction of the synthesized 
field in Eq. (3.12) is acceptable. However, at low frequencies (-100 MHz 
and lower) antennas have wide primary beams and it is often necessary to map the 
entire beam to avoid source confusion. In such circumstances several techniques 
are possible, based on the following approaches: 

Equation (3.7) can be written in the form of a three-dimensional Fourier 
transform. The resulting intensity distribution is then taken from the surface 
of a unit sphere in (I, m ,  n) space. 
Large maps can be constructed as mosaics of smaller ones that individually 
comply with the field restriction for two-dimensional transformation. The 
centers of the individual maps must be taken at tangent points on the same 
unit sphere referred to in I .  
Since in most terrestrial arrays the antennas are mounted on an approxi- 
mately plane area of ground, measurements taken over a short time interval 
lie close to a plane in (u ,  u ,  w )  space. It is therefore possible to analyze an 
observation lasting several hours as a series of short duration maps, which 
are subsequently combined after adjustment of the coordinate scales. 
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Practical implementation of the three approaches outlined above requires the non- 
linear deconvolution techniques described in Chapter 1 1. A more detailed discus- 
sion of the resulting methods is given in Section 11.8. 

3.2 CROSS-CORRELATION AND THE 
WIENER-KHINCHIN RELATION 

The Fourier transform relationship between the power spectrum of a waveform 
and its autocorrelation function, expressed in Eqs. (2 .6)  and (2.7),  is known as the 
Wiener-Khinchin relation. It is also useful to examine the corresponding relation 
for the cross-correlation function of two different waveforms. The response of a 
correlator, as used in a radio interferometer, can be written as 

(3.19) 

In practice the correlation is measured for a finite time period 2T,  which is usually 
a few seconds or minutes, but is long compared with both the period and the 
reciprocal bandwidth of the waveforms. The factor 1/2T is sometimes omitted, 
but for the waveforms considered here it is required to obtain convergence. Cross- 
correlation is represented by the pentagram symbol (*): 

Vl(r)  * V2(t) = lim Vl(t)V;(r - r ) d r .  (3.20) 

This integral can be expressed as a convolution in the following way: 

Vl( t )  V2(r)  = lim - 
T - t m  2T s” --oo 

Vl(r)V:-(r - t ) d r  = Vl(t)  * V;-(r), (3.21) 

where V 2 - ( r )  = V2(-t). Now the u,  r Fourier transforms, denoted by +, are as 
follows’: V,( t )  $ VI(U) ,  V2(r) + cz(u) ,  and V;_(r) + c ; (u ) .  Then from the 
convolution theorem 

vl(r) * v2(r) + Vl(u>V;<u). (3.22) 

The right-hand side of Eq. (3.22) is known as the cross power spectrum of V, ( t )  

and V2(r). The cross power spectrum is a function of frequency, and we see that 
it is the Fourier transform of the cross-correlation, which is a function of T .  This 
is a useful result, and in the case where Vl = V2 it becomes the Wiener-Khinchin 
relation. The relationship expressed in Eq. (3.22) is the basis of cross-correlation 
spectrometry, described in Section 8.7 under Principles of Digiral Specrral Mea- 
surements. 

$In cases where the same letter is used for functions of both time and frequency. the circumflex (hat) 
accent is used to distinguish functions of frequency. 
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3.3 BASIC RESPONSE OF THE RECEIVING SYSTEM 

From a mathematical viewpoint, the basic components of the interferometer re- 
ceiving system are the antennas that transform the incident electric fields into 
voltage waveforms, the filters that select the frequency components to be pro- 
cessed, and the correlator that forms the averaged product of the signals. These 
components are shown in Fig. 3.6. Most other effects can be represented by mul- 
tiplicative gain constants, which we shall ignore here, or as variations of the fre- 
quency response that can be subsumed into the expressions for the filters. Thus 
we assume that the frequency response of the antennas and the strength of the 
received signal are effectively constant over the filter passband, which is realistic 
for most continuum observations. 

Antennas 

In order to consider the responses of the two antennas independently, we should 
introduce their voltage reception patterns, since the correlator responds to the 
product of the signal voltages. The voltage reception pattern of an antenna 
VA( l ,  m) has the dimension length, and responds to the electric field specified 
in volts per meter. VA(I,  m) is the Fourier transform of the field distribution in 
the aperture G ( X ,  Y ) ,  as shown in Section 14.1 under Dflruction at an Aperture 
and the Response of an Antenna. X and Y are coordinates of position within the 
antenna aperture. Omitting constant factors, we can write 

vA( / ,  rn) a J [ : G ( X ,  y)ej*nl(xl*)'+(ul~)mldX d Y ,  (3.23) 

Output, r 

Figure 3.6 Basic components of the receiving system of a two-element interferometer. 
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where )c is the wavelength. In applying Eq. (3.23), X and Y are measured from 
the center of each antenna aperture. The power reception pattern is proportional 
to the squared modulus of the voltage reception pattern. VA(Z, m )  is a complex 
quantity, and it represents the phase of the radio frequency voltage at the antenna 
terminals as well as the amplitude. For an interferometer (with antennas denoted 
by subscripts 1 and 2) the response is proportional to V A ~  V i 2 ,  which is purely 
real if the antennas are identical. For each antenna the collecting area A(1, m) is 
a real quantity. In practice, it is usual to specify the antenna response in terms of 
A(I ,  m), and to replace VA(I,  m )  by ,/-, which is proportional to the mod- 
ulus of vA(f, m ) .  Any phase introduced by differences between the antennas is 
ignored in the analysis, but in effect is combined with the phase responses of the 
amplifiers, filters, transmission lines, and other elements that make up the signal 
path to the correlator input. The overall instrumental response of the interferom- 
eter in both phase and amplitude is calibrated by observing an unresolved source 
of known position and flux density. 

For the case where the antennas track the source, both the antenna beam center 
and the center of the source are at the (I, m )  origin. If E(1, m )  is the incident field, 
the output voltage of an antenna can be written (omitting constant factors) as 

If the antennas do not track the source, a convolution relationship of the form 
shown in Eq. (2.15) applies. 

Filters 

The filters in Fig. 3.6 will be regarded as a representation of the overall effect of 
components that determine the frequency response of the receiving channels, in- 
cluding amplifiers, cables, and other components as well as filters. The fre_quency 
response of a filter will be represented by H ( u ) .  The output of the filter Vc(u)  is 
related to the input F( u )  by 

V,(U) = H ( U ) V ( U ) .  (3.25) 

The Fourier transform of H ( u )  with respect to time and frequency is the impulse 
response of the filter h ( t ) ,  which is the response to a voltage impulse 8 ( t )  at the 
input. Thus in the time domain the corresponding expression to Eq. (3.25) is 

h(r’)V(r  - r’)dr’ = h ( r )  * v(t) .  (3.26) 

In specifying filters it is usual to use the frequency response rather than the im- 
pulse response because the former is more directly related to the properties of 
interest in a receiving system, and is usually easier to measure. 
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Correlator 

The correlator$ produces the cross-correlation of the two voltages fed to it. If 
V l ( r )  and V2(r) are the input voltages, the correlator output is 

(3.27) 

r is the time by which voltage Vz is delayed with respect to voltage Vl and for 
continuum observations is maintained small or zero. The functions V,  and V2 that 
represent the signals in Eq. (3.27) may be complex. The output of a single multi- 
plying device is a real voltage or number. To obtain the complex cross-correlation, 
which represents both the amplitude and the phase of the visibility, one can record 
the fringe oscillations and measure their phase, or use a complex correlufor which 
contains two multiplying circuits, as described in Section 6.1 under Simple and 
Complex Correlafors. As follows from Eqs. (3.20) and (3.22), the Fourier trans- 
form of r ( r )  is the cross power spectrum, which is required in observations of 
spectral lines. This is usually obtained by inserting a series of instrumental delays 
in the signal to determine the cross-correlation as a function of r, as described in 
Section 8.7 under Lug (XF) Correluror. 

Response to the Incident Radiation 

We use subscripts 1 and 2 to indicate the two antennas and receiving channels 
as in Fig. 3.6. The response of angnna 1 to the signal field E(1, m )  given by 
Eiq. (3.24) is the voltage spectrum V ( u ) .  We multiply this by H ( v )  to obtain the 
signal at the output of the filter, and then take the Fourier transform to go from 
the frequency to the time domain. Thus 

V,, (2) = 1" 1" /" E(1,  m),/Al(l,m)HI (v)ei2nw' dl dm du.  (3.28) 
-m -w -m 

A similar expression can be written for the signal Vc2(r) from antenna 2, and the 
output of the correlator is obtained from Eq. (3.27). Note also that if the radiation 
were to have some degree of spatial coherence, we should integrate over ( I ,  m) 
independently for each antenna (Swenson and Mathur 1968), but here we make 
the usual assumption of incoherence. Thus the correlator output is 

r ( ~ )  = lim - Sm /" Srn [iU, m ) E * ( l ,  m)JAI( l ,  m ) A d l ,  m> 
T+w2T -w -w -w 

H, ( u ) ~ 2 * ( u ) e ; 2 n w r e - j 2 n v ( r - r )  dl dm dt  dv 

%The term correlafor basically refers to a device that measures the complex cross-correlation function 
r ( r )  as given in Q. (3.27). It is also used to denote simpler systems where the time delay r is zero, or 
where both signals are represented by real functions. Large systems that cross-correlate the signal pairs 
of multielement arrays may contain lo7 or more correlator circuits to accommodate many antennas and 
many spectral channels. Complete systems of this type are also commonly referred to as correlarors. 
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= l:[I[I I ( l , m ) , / A , ( l ,  rn)A2(l, m ) H l ( u ) H ~ ( u ) e J 2 n " r d l d m d u .  

(3.29) 

Here we have replaced the squared field amplitude by the intensity I.  The result is 
a very general one since the use of separate response functions A I and A2 for the 
two antennas can accommodate different antenna designs, or different pointing 
offset errors, or both. Also different frequency responses H I  and H2 are used. In 
the case where the antennas and filters are identical Eq. (3.29) becomes 

The result is a function of the delay 7 of the signal Vc2(t)  with respect to Vcl ( t ) .  

The geometric component of the delay is generally compensated by an adjustable 
instrumental delay (discussed in Chapters 6 and 7), so that t = 0 for radiation 
from the direction of the (I, m )  origin. For spectral line observations the correlator 
system may incorporate additional delay elements so that the correlation is mea- 
sured as a function of t. For a wavefront incident from the direction ( 1 ,  m), the 
difference in propagation times through the two antennas to the correlator results 
from a difference in path lengths of (u l  + urn) wavelengths, for the conditions in- 
dicated in Eqs. (3.8) and (3.9). The corresponding time difference is (u l+  urn)/u.  
If we take as V ,  the signal from the antenna for which the path length is the greater 
(for positive 1 and m),  then from Eq. (3.30), the correlator output becomes 

Equation (3.3 1) indicates that the correlator output measures the Fourier trans- 
form of the intensity distribution modified by the antenna pattern. Let us assume 
that, as is often the case, the intensity and the antenna pattern are constant over 
the bandpass range of the filters, and the width of the source is small compared 
with the antenna beam. The correlator output then becomes 

(3.32) 

where A0 is the collecting area of the antennas in the direction of the maximum 
beam response and 77 is the visibility. The filter response H ( u )  is a dimensionless 
(gain) quantity. If the filter response is essentially constant over a bandwidth Au, 
Eq. (3.32) becomes 

r = AoY(u, U) Au. (3.33) 
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V(u ,  u )  has units of W mP2 Hz-', A0 has units of m2, and Au has units of Hz. 
This is consistent with r ,  the output of the correlator, which is proportional to the 
correlated component of the received power. 

APPENDIX 3.1 MATHEMATICAL REPRESENTATION OF 
NOISE-LIKE SIGNALS 

Electromagnetic fields and voltage waveforms that result from the emissions of 
astronomical objects are generally characterized by variations of a random na- 
ture. The received waveforms are usually described as ergodic (time averages 
and ensemble averages converge to equal values), which implies strict stationar- 
ity. For a detailed discussion see, for example, Goodman (1985). Although such 
fields and voltages are entirely real, it is often convenient to represent them math- 
ematically as complex functions. These complex functions can be manipulated in 
exponential form, and it is then necessary to take the real part as a final step in a 
calculation. 

Analytic Signal 

A formulation that is often used in optical and radio signal analysis to represent a 
function of time is known as the analytic signal, which was introduced by Gabor 
(1946); see, for example, Born and Wolf (1999), Bracewell (2000), or Goodman 
(1985). Let VR(f )  represent a real function of which the Fourier (voltage) spec- 
trum is 

J - f f i  

where we use the circumflex accent to designate a function of frequency. The 
inverse transform is 

a, 

V R ( t )  = [ c(v)ei2n1"du.  (A3.2) 
J-00 

To form the analytic signal, the imaginary part that is added to produce a complex 
function is the Hilbert transform [see, e.g., Bracewell (2000)] of VR ( t ) .  One way 
of forming the Hilbert transform is to multiply the Fourier spectrum of the original 
function by jsgn(u)q. In forming the Hilbert transform of a function the ampli- 
tudes of the Fourier spectral components are unchanged, but the phases are shifted 
by x / 2 ,  with the sign of the shift reversed for negative and positive frequencies. 
The Hilbert transform of VR(t),  which becomes the imaginary part V , ( t ) ,  is ob- 
tained as the inverse Fourier transform of the modified spectrum, as follows: 

PThe function sgn(u) is equal to I for v ? 0 and - I for u < 0. The Fourier transform of sgn(u) is 
- j / n t .  
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m 
sgn(u)c(u)eJ2""'du 

0 

= j 1, c(u )eJZnur  du - j ~ ( u ) e J Z n v r  du. (A3.3) 

The analytic signal is the complex function that represents VR(t ) ,  and is 

(1 + j2)p(u)ei2nu'du + ( 1  - j 2 ) p ( u ) e i 2 n u r d u  (A3.4) 6" 
It can be seen that the analytic signal contains no negative-frequency components. 
From Eq. (A3.4), another way of obtaining the analytic signal for a real function 
V R ( ? )  is to suppress the negative-frequency components of the spectrum and dou- 
ble the amplitudes of the positive ones. It can also be shown [see, e.g., Born and 
Wolf ( 1999)] that 

where angle brackets ( ) indicate the expectation. The analytic signal is so called 
because, considered as a function of a complex variable, it is analytic in the lower 
half of the complex plane. 

From Eqs. (A3.2) and (A3.4), we obtain 

lI c(u)eJ2n"r d? = 2 Re [lw P(u)eJi""'dr]. (A3.6) 

This is a useful equality that can be used with any hemzitian function and its 
conjugate variable. 

In most cases of interest in radio astronomy and optics the bandwidth of a 
signal is small compared with the mean frequency UO, which in many instrumental 
situations is the center frequency of a filter. Such a waveform resembles a sinusoid 
with amplitude and phase that vary with time on a scale that is slow compared 
with the period 1 / u g .  The analytic signal can then be written as 

where C and 0 are real. The spectral components of the function under consider- 
ation are appreciable only for small values of J u  - U O I .  Thus c(t) and @(?) consist 
of low-frequency components, and the period of the time variation of C? and 0 is 
characteristically the reciprocal of the bandwidth. The real and imaginary parts 
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of the analytic signal can be written as 

V R ( t )  = e(t) cos[2nuot - @(?)I  
V,(r )  = e(r> sin[2nu0r - +(?)I 

(A3.8) 

(A3.9) 

The modulus C( t )  of the complex analytic signal can be regarded as a modulation 
envelope and @ ( t )  represents the phase. In cases where the width of the signal 
band and the effect of the modulation are not important, it is clearly possible to 
consider C and @ as constants, that is, to represent the signals as monochromatic 
waveforms of frequency UO, as in the introductory discussion. The case where 
the bandwidth is small compared with the center frequency, as represented by 
Eq. (A3.7). is referred to as the quasimonochromatic case. 

As a simple example, eJ2n”‘ is the analytic signal corresponding to the real 
function of time cos(2nut). The Fourier spectrum of eJ2n”‘ has a component at 
frequency u only, but the Fourier spectrum of cos(2nur) has components at the 
two frequencies f u .  In general it is necessary to consider the negative-frequency 
components in the analysis of waveforms, unless they are represented by the ana- 
lytic signal formulation, for which negative-frequency components are zero. For 
example, in Eq. (2.8) we included negative-frequency components. If we had 
omitted the negative frequencies and doubled the amplitude of the positive ones, 
the cosine term in Eq. (2.9) would have been replaced by ej2n”Or. We would then 
have taken the real part to arrive at the correct result. In the approach used in 
Chapter 2 it is necessary to include the negative frequencies since the autocor- 
relation function is real, and thus its Fourier transform is hermitian; that is, the 
real and imaginary parts have even and odd symmetry, respectively, along the 
frequency axis. In this book we have generally included the negative frequencies 
rather than using the analytic signal, and have made use of the relationship in 
Eq. (A3.6) when it was advantageous to do so. 

It is interesting to note another property of functions of which the real and 
imaginary parts are a Hilbert transform pair. If the real and imaginary parts of a 
waveform (i.e., a function of time) are a Hilbert transform pair, then its spectral 
components are zero for negative frequencies. If we consider the inverse Fourier 
transforms, it is seen that if the waveform amplitude is zero for r < 0, the real and 
imaginary parts of the spectrum are a Hilbert transform pair. The response of any 
electrical system to an impulse function applied at time t = 0 is zero for t c 0, 
since an effect cannot precede its cause. A function representing such a response 
is referred to as a causalfuncrion, and the Hilbert transform relationship applies 
to its spectrum. 

Ikuncated Function 

Another consideration in the representation of waveforms concerns the existence 
of the Fourier transform. A condition of the existence of the transform is that the 
Fourier integral over the range f o o  be finite. Although this is not always the case, 
it is possible to form a function for which the Fourier transform exists and that 
approaches the original function as the value of some parameter tends toward a 
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limit. For example, the original function can be multiplied by a Gaussian so that 
the product falls to zero at large values, and the Fourier integral exists. The Fourier 
transform of the product approaches that of the original function as the width 
of the Gaussian tends to infinity. Such transforms in the limit are applicable to 
periodic functions such as cos(217ut), as shown by Bracewell (2000). In the case 
of noise-like waveforms the frequency spectrum of a time function can always be 
determined with satisfactory accuracy by analyzing a sufficiently long (but finite) 
time interval. In practice the time interval needs to be long compared with the 
physically significant timescales that are associated with the waveform, such as 
the reciprocals of the mean frequency and of the bandwidth. Thus if the function 
V ( r )  is truncated at f T ,  the Fourier transform with respect to frequency becomes 

It is sometimes useful to define the truncated function as V T ( ~ ) ,  where 

Vr(f )  = V ( r )  It1 5 T 

V T ( t )  = 0 It1 > T ,  

and to write the Fourier transform as 

(A3.11) 

(A3.12) 

In the case of the analytic signal, truncation of the real part does not necessarily 
result in truncation of its Hilbert transform. It may therefore be necessary that the 
limits of the integral over time should be f o o  as in Eq. (A3.12), rather than f T. 
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4 Geometric Relationships 
and Polarimetry 

In this chapter we start to examine some of the practical aspects of interferome- 
try. These include baselines, antenna mounts and beamshapes, and the response 
to polarized radiation, all of which involve geometric considerations and coordi- 
nate systems. The discussion is concentrated on earth-based arrays with tracking 
antennas, which illustrate the principles involved, although the same principles 
apply to other systems such as those that include one or more antennas in earth 
orbit. 

4.1 ANTENNA SPACING COORDINATES AND (u, u) LOCI 

Various coordinate systems are used to specify the relative positions of the anten- 
nas in an array, and of these one of the more convenient for terrestrial arrays is 
shown in Fig. 4.1. A right-handed Cartesian coordinate system is used where X 
and Y are measured in a plane parallel to the earth's equator, X in the meridian 
plane (defined as the plane through the poles of the earth and the reference point 
in the array), Y is measured toward the east, and Z toward the north pole. In terms 
of hour angle H and declination 6, the coordinates (X, Y, Z) are measured toward 
(H = 0, S = 0) ,  ( H  = -6h, S = O), and (S = 90"), respectively. If (XA, Y,, ZA) 
are the components of DA in the ( X ,  Y, Z) system, the components ( u ,  u ,  w )  are 
given by 

cos H 

- cos 6 sin H 
[ J ]  = [ -sin6cosH sinH sinSsinH c:S] [::I. (4.1) 

cos S cos H sin S 

Here (H, S) are usually the hour angle and declination of the phase reference 
position. (In VLBI observations it is customary to set the X axis in the Green- 
wich meridian, in which case H is measured with respect to that meridian rather 
than a local one.) The elements of the transformation matrix given above are the 
direction cosines of the (u ,  u ,  w )  axes with respect to the (X, Y, Z) axes and can 
easily be derived from the relationships in Fig. 4.2. Another method of specifying 
the baseline vector is in terms of its length, D, and the hour angle and declina- 
tion, (h .  d) ,  of the intersection of the baseline direction with the northern celestial 
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Z 

Y J 

Figure 4.1 The (X, Y, Z) coordinate system for specification of relative positions of antennas. 
Directions of the axes specified are in terms of hour angle H and declination 6. 

hemisphere. The coordinates in the (X, Y, Z) system are then given by 

Celestial 
Pole 

equator 

Figure 4.2 Relationships between the (X, Y,  2)  and (u, u, w) coordinate systems. The 
( u ,  u ,  UJ) system is defined for observation in the direction of the point S, which has hour 
angle and declination H and 6. As shown, S is in the eastern half of the hemisphere and H is 
therefore negative. The direction cosines in the transformation matrix in Eq. (4.1) follow from 
the relationships in this diagram. The relationship in Eq. (4.2) can also be derived if we let S 
represent the direction of the baseline and put the baseline coordinates (h ,  d )  for (H, 6) .  
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Local 

Figure 4.3 Relationship between the celestial coordinates (H, 6) and the elevation and az- 
imuth (6, A) of a point S as seen by an observer at latitude %. P is the celestial pole and Z 
the observer's zenith. The parallactic angle qp is the position angle of the observer's vertical 
on the sky measured from north toward east. The lengths of the arcs measured in terms of 
angles subtended at the center of the sphere 0 are as follows: 

Z P = 9 0 " - L  P Q = %  S R = &  R Q = A  

S Z  = 90" - G S P  = 90" - S SQ = COS-'(COS & cos A) 

The required relationships can be obtained by application of the sine and cosine rules for 
spherical triangles to 2 P S  and P Q S ,  and are given in Appendix 4.1. Note that with S in the 
eastern half of the observer's sky, as shown, H and $,, are negative. 

The coordinates in the ( u ,  v ,  w) system are, from Eqs. (4.1) and (4.2), 

(4.3) 1 cos d sin( H - h)  
sindcosS-cosdsin6cos(H-h) . 
sin d sin 6 + cos d cos 6 cos( H - h )  

The (D, h,  d )  system was used more widely in the earlier literature, particularly 
for instruments involving only two antennas; see, for example, Rowson (1963). 

When the (X, Y, Z) components of a new baseline are first established, the 
usual practice is to determine the elevation E ,  azimuth A, and length of the base- 
line by field surveying techniques. Figure 4.3 shows the relationship between 
(G, A) and other coordinate systems; see also Appendix 4.1. For latitude Oe, us- 
ing Eqs. (4.2) and (A4.2). we obtain 
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(4.4) 
cos d: sin & - sin d: cos & cos A 

sin 63 sin & + cos L cos & cos A 

Examination of Eq. (4.1) or (4.3) shows that the locus of the projected antenna 
spacing components u and u defines an ellipse with hour angle as the variable. 
Let ( Ho, 60) be the phase reference position. Then from Eq. (4. I),  we have 

In the (u ,  u )  plane Eq. (4.5) defines an ellipse with the semimajor axis equal to 
,/=, and the semirninor axis equal to sin S o J m ' ,  as in Fig. 4.4a. The 
ellipse is centered on the u axis at (u,  u )  = (0, ZA cos60). The arc of the ellipse 
that is traced out during any observation depends on the azimuth, elevation, and 
latitude of the baseline; the declination of the source; and the range of hour angle 
covered, as illustrated in Fig. 4.5. Since Y(-u, - u )  = Y * ( u ,  u) ,  any observation 
supplies simultaneous measurements on two arcs, which are part of the same 
ellipse only if ZA = 0. 

(a) (b) 

Figure 4.4 (a) Spacing vector locus in the ( u ,  u )  plane from Eq. (4.5). (b) Spacing vector 
locus in the (u ' ,  u ' )  plane from Eq. (4.8). The lower arc in each diagram represents the locus 
of conjugate values of visibility. Unless the source is circumpolar the cutoff at the horizon 
limits the lengths of the arcs. 
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Figure 4.5 Examples of ( u ,  u )  loci to show the variation with baseline azimuth A and ob- 
serving declination 6 (the baseline elevation 6 is zero). The baseline length in all cases is 
equal to the length of the axes measured from the origin. The tracking range is -4 to +4 h for 
S = -30". and -6 to +6 h in all other cases. Marks along the loci indicate 1-h intervals in 
tracking. Note the change in ellipticity for east-west baselines (A = 90") with S = 30" and 
with S = 70". The loci are calculated for latitude 40". 

4.2 (u',u')PLANE 

The (u ' ,  u') plane, which was introduced in Section 3.1 with regard to east-west 
baselines, is also useful in discussing certain aspects of the behavior of arrays in 
general. This plane is normal to the direction of the pole and can be envisaged as 
the equatorial plane of the earth. For non-east-west baselines we can also consider 
the projection of the spacing vectors onto the (u', u')  plane. All such projected 
vectors sweep out circular loci as the earth rotates. The spacing components in 
the (u ' ,  u ' )  plane are derived from those in the (u, u )  plane by the transformation 
u' = u, u' = u cosec 60. In terms of the components of the baseline (Xi, Y,,  2,) 
for two antennas, we obtain from Eq. (4.1) 

u' = X A  sin Ho + YA cos Ho 

u' = - X i  cos HO + YA sin HO + ZA cot So. 

(4.6) 

(4.7) 
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The loci are circles centered on (0, ZA cot S o ) ,  with radii q’ given by 

as shown in Fig. 4.4b. The projected spacing vectors that generate the loci ro- 
tate with constant angular velocity w,, the rotation velocity of the earth, which 
is easier to visualize than the elliptic motion in the (u,  v )  plane. In particular, 
problems involving the effect of time, such as the averaging of visibility data, are 
conveniently dealt with in the (u’, u’) plane. Examples of its use will be found 
in Sections 4.4, 6.4, and 15.2. In Fourier transformation the conjugate variables 
of (u’ ,  u’ )  are ( l ’ ,  m’), where 1’ = 1 and m’ = m sin SO, that is, the map plane is 
compressed by a factor sin So in the m direction. 

4.3 FRINGE FREQUENCY 

The component w of the baseline represents the path difference to the two anten- 
nas for a plane wave incident from the phase reference position. The correspond- 
ing time delay is W / U O ,  where uo is the center frequency of the observing band. 
The relative phase of the signals at the two antennas changes by 217 radians when 
w changes by unity. Thus the frequency of the oscillations at the output of the 
correlator that combines the signals is 

dw d w d H  _ -  - -- = -w,[XA COSS sin H + YA COSS cos H] = -w,u cos8, (4.9) 
dt  dH dt  

where w, = dH/dr  = 7.29115 x lop5 rad s-’ is the rotation velocity of the 
earth: for greater accuracy, see Seidelmann (1992). The sign of d w / d t  indicates 
whether the phase is increasing or decreasing with time. The result shown above 
applies to the case where the signals suffer no time-varying instrumental phase 
changes between the antennas and the correlator inputs. In an array in which 
the antennas track a source, time delays to compensate for the space path dif- 
ferences w are usually applied under computer control to maintain correlation 
of the signals. If an exact compensating delay were introduced in the radio fre- 
quency section of the receivers, the relative phases of the signals at the correlator 
input would remain constant, and the correlator output would show no fringes. 
However, the compensating delays are usually introduced at an intermediate fre- 
quency, of which the band center vd is usually much less than the radio frequency 
uo. The adjustment of the compensating delay introduces a rate of phase change 
27r ud(dw/dr)/uo = --w,u(cos S ) V d / V o .  The resulting fringe frequency at the cor- 
relator output is 

Uf = * (1 ‘f ;) = --w,ucos8 
dt 

(4.10) 
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where the negative sign refers to upper-sideband reception and the positive sign to 
lower-sideband reception; these distinctions and the double-sideband case are ex- 
plained in Section 6.1. From Eq. (4.3) the right-hand side of Eq. (4.10) is equal to 
--we D cos d cos 6 sin( H - h)( vo F v d ) / C .  Note that ( vo F v d )  is usually determined 
by one or more local oscillator frequencies. 

4.4 VISIBILITY FREQUENCIES 

As explained in Section 3.1, the phase of the complex visibility is measured with 
respect to that of a hypothetical point source at the phase reference position. The 
fringe-frequency variations do not appear in the visibility function, but slower 
variations occur that depend on the position of the radiating sources within the 
field. We now examine the maximum temporal frequency of the visibility vari- 
ations. Consider a point source represented by the delta function S(II ,  m l ) .  The 
visibility function is the Fourier transform of ~ ( I I ,  m l ) ,  which is 

e - j2n(u l l+urn l )  - - c0s27r(ull + uml)  - j sin2n(ull + uml) .  (4.1 1) 

Figure 4.6 The (u’ ,  u’) plane showing sinusoidal corrugations that represent the visibility of 
a point source. For simplicity only the real part of the visibility is included. The most rapid 
variation in the visibility is encountered at the point P where the direction of the spacing locus 
is normal to the ridges in the visibility. w, is the rotation velocity of the earth. 
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This expression represents two sets of sinusoidal corrugations, one real and one 
imaginary. The corrugations represented by the real part of Eq. (4.1 1 )  are shown 
in (u’, u’) coordinates in Fig. 4.6, where the arguments of the trigonometric func- 
tions in Eq. (4.1 1) become 27r(u’11 + u’m1 sin S o ) .  The frequency of the corru- 
gations in terms of cycles per unit distance in the (u’, u’ )  plane is 11  in the u’ 
direction, m l  sin SO in the u’ direction, and 

in the direction of most rapid variations. Expression (4.12) is maximized at the 
pole and then becomes equal to rl, which is the angular distance of the source 
from the (1, rn) origin. For any antenna pair the spatial frequency locus in the 
(u’ ,  u’) plane is a circle of radius q’ generated by a vector rotating with angular 
velocity we, where q’ is as defined in Eq. (4.8). From Fig. 4.6 it is clear that the 
temporal variation of the measured visibility is greatest at the point P and is equal 
to wer;q’. This is a useful result, since if rl  represents a position at the edge of the 
field to be mapped, it indicates that to follow the most rapid variations the visibil- 
ity must be sampled at time intervals sufficiently small compared with (weriq’)-’. 
Also, we may wish to alternate between two frequencies or polarizations during 
an observation, and these changes must be made on a similarly short timescale. 
Note that this requirement is also covered by the sampling theorem in Section 5.2. 

4.5 CALIBRATION OF THE BASELINE 

The position parameters (X, Y, Z )  for each antenna relative to a common refer- 
ence point can usually be established to a few centimeters or millimeters by a 
conventional engineering survey. Except at long wavelengths, the accuracy re- 
quired is greater than this. We must be able to compute the phase at any hour 
angle for a point source at the phase reference position to an accuracy of, say, 1” 
and subtract it from the observed phase. This reference phase is represented by 
the factor eJ2nw in Eq. (3.7), and it is therefore necessary to calculate w to 1/360 
of the observing wavelength. The baseline parameters can be obtained to the re- 
quired accuracy from observations of calibration sources for which the positions 
are accurately known. The phase of such a calibrator observed at the phase refer- 
ence position ( Ho, S o )  should ideally be zero. However, if practical uncertainties 
are taken into account, the measured phase is, from Eq. (4. I ) ,  

2nAw + = 2n(cos So cos HOAXA - cos So sin HoAYA + sin SoAZA) + &, 

(4.13) 

where the prefix A indicates the uncertainty in the associated quantity, and 4 i n  
is an instrumental phase term for the two antennas involved. If a calibrator is 
observed over a wide range of hour angle, AXA and AYA can be obtained from 
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the even and odd components, respectively, of the phase variation with Ho. To 
measure AZi  calibrators at more than one declination must be included. A possi- 
ble procedure is to observe several calibrators at different declinations, repeating 
a cycle of observations for several hours. For the kth observation we can write, 
from JZq. (4.13), 

where ak, bk, and Ck are known source parameters and #k is the measured phase. 
The calibrator source position need not be accurately known since the phase mea- 
surements can be used to estimate both the source positions and the baselines. 
Techniques for this analysis are discussed in Section 12.2. In practice, the instru- 
mental phase q$,, will vary slowly with time: instrumental stability is discussed in 
Chapter 7. Also there will be atmospheric phase variations, which are discussed 
in Chapter 13. These effects set the final limit on the attainable accuracy in ob- 
serving both calibrators and sources under investigation. 

Measurement of baseline parameters to an accuracy of order 1 part in lo7 (e.g., 
3 mm in 30 km) implies timing accuracy of order lO-’w;’ 2: 1 ms. Timekeeping 
is discussed in Sections 9.5 under Time Synchronization and 12.3 under Universal 
Time. 

4.6 ANTENNA MOUNTS 

In discussing the dependence of the measured phase on the baseline components, 
we have ignored any effects introduced by the antennas, which is tantamount to 
assuming that the antennas are identical and their effects on the signals cancel out. 
This, however, is only approximately true. In most synthesis arrays the antennas 
must have collecting areas of tens or hundreds of square meters for reasons of 
sensitivity. These large structures must be capable of accurately tracking a radio 
source across the sky. Tracking antennas are almost always constructed either on 
equatorial mounts (also called polar mounts) or on altazimuth mounts, as illus- 
trated in Fig. 4.7. In an equatorial mount the polar axis is parallel to the earth’s 
axis of rotation, and to track a source requires only that the antenna be turned 
about the polar axis at the sidereal rate. Equatorial mounts are mechanically more 
difficult to construct than altazimuth ones and are found mainly on antennas built 
prior to the introduction of computers for control and coordinate conversion. 

In most tracking arrays used in radio astronomy the antennas are circularly 
symmetrical reflectors. A desirable feature is that the axis of symmetry of the re- 
flecting surface intersect both the rotation axes of the mount. If this is not the case, 
pointing motions will cause the antenna to have a component of motion along the 
direction of the beam. It is then necessary to take account of phase changes as- 
sociated with small pointing corrections, which may differ from one antenna to 
another. In most antenna mounts, however, whether of equatorial or altazimuth 
type, the reflector axis intersects the rotation axes with sufficient precision that 
phase errors of this type are negligible. 
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(a) (b) 

Figure 4.7 Schematic diagrams of antennas on (a) equatorial (polar) and (b) altazimuth 
mounts. In the positions shown the declination and elevation axes are normal to the plane 
of the page. In the equatorial mount there is a distance D, between the two rotational axes, 
but in the altazimuth mount the axes often intersect, as shown. 

It is convenient but not essential that the two rotation axes of the mount in- 
tersect. The intersection point then provides an appropriate reference point for 
defining the baseline between antennas, since whatever direction in which the 
antenna points, its aperture plane is always the same distance from that point as 
measured along the axis of the beam. In most large, equatorially mounted an- 
tennas the polar and declination axes do not intersect. In many cases there is an 
offset of several meters between the polar and declination axes. Wade (1  970) has 
considered the implication of this offset for high-accuracy phase measurements 
and shown that it is necessary to take account of variations in the offset distance 
and in the accuracy of alignment of the polar axis. These results can be obtained 
as follows. Let i and s be unit vectors in the direction of the polar axis and the 
direction of the source under observation, respectively, and let D, be the spac- 
ing vector between the two axes measured perpendicular to i (see Fig. 4.7a). The 
quantity that we need to compute is the projection of D, in the direction of obser- 
vation, D, s. Since D, is perpendicular to i, the cosine of the angle between D, 
and s is d m .  Thus 

(4.15) 

where D, is the magnitude of D,. In the (X, Y, Z) coordinate system in which 
the baseline components are measured, i has direction cosines (ix, iy ,  iz) and s 
has direction cosines given by the transformation matrix on the right-hand side of 
Eq. (4.2), but with h and d replaced by H and 6,  which refer to the direction of 
observation. If the polar axis is correctly aligned to within about 1 arcmin, ix and 



% GEOMETRIC RELATIONSHIPS AND POLARIMETRY 

i y  are of order 
Eq. (4.15), and ignoring second-order terms in ix and i y  we obtain 

and iz E 1. Thus we can use the direction cosines to evaluate 

Do * s = D, (COS 6 - ix sin 6 cos H + i y  sin 6 sin H). (4.16) 

If the magnitude of D, is expressed in wavelengths, the difference in the values of 
D, 9s for the two antennas must be added to the w component of the baseline given 
by Eq. (4.1) when calculating the reference phase at the field center. To do this it 
is first necessary to determine the unknown constants in Eq. (4.16), which can be 
done by adding a term of the form 2n (a cos 60 +B sin 60 cos Ho+ y sin 60 sin Ho) 
to the right-hand side of Eq. (4.13) and extending the solution to include a, B, 
and y .  The result then represents the differences in the corresponding mechanical 
dimensions of the two antennas. Note that the terms in ix and i y  in Eq. (4.16) are 
important only when D, is large. If D, is no more than one wavelength, it should 
be possible to ignore them. 

The preceding analysis can be extended to the case of an altazimuth mount by 
letting i represent the direction of the azimuth axis as in Fig. 4.7b. Then ix = 
cos($ + E ) ,  i y  = sin&’, and iz = sin(d: + E ) ,  where d: is the latitude and E and 
E’ are, respectively, the tilt errors in the X Z plane and in the plane containing the 
Y axis and the local vertical. The errors again should be quantities of order 
In many altazimuth mounts the axes are designed to intersect, and D, represents 
only a structural tolerance. Thus we assume that D, is small enough to allow 
terms in i D, and E D, to be ignored, and evaluation of EIq. (4.15) gives 

D , - s =  D a [ l  - ( s ind:s inS+cosd:c~sScosH)~]= D,cos&, (4.17) 

where G is the elevation of direction s: see Eq. (A4.1) of Appendix 4.1. Correction 
terms of this form can be added to the expressions for the baseline calibration and 
for w .  

4.7 BEAMWIDTH AND BEAM-SHAPE EFFECTS 

The interpretation of data taken with arrays containing antennas with nonidentical 
beamwidths is not always a straightforward matter. Each antenna pair responds 
to an effective intensity distribution that is the product of the actual intensity 
of the sky and the geometric mean of the normalized beam profiles. If different 
pairs of antennas respond to different effective distributions, then, in principle, the 
Fourier transform relationship between I ( 1 ,  rn) and Y ( u ,  v )  cannot be applied to 
the ensemble of observations. Mixed arrays are frequently used in VLBI when 
it is necessary to make use of antennas that have different designs. However, in 
VLBI studies the source structure under investigation is very small compared 
with the widths of the antenna beams, so the differences in the beams can usually 
be ignored. If cases arise where different beams are used and the source is not 
small compared with beamwidths, it is possible to restrict the measurements to 
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the field defined by the narrowest beam by convolution of the visibility data with 
an appropriate function in the ( u ,  v) plane. 

A problem similar to that of unmatched beams occurs if the antennas have 
altazimuth mounts and the beam contours are not circularly symmetrical about 
the nominal beam axis. As a point in the sky is tracked using an altazimuth mount, 
the beam rotates with respect to the sky about this nominal axis. This rotation 
does not occur for equatorial mounts. The angle between the vertical at the an- 
tenna and the direction of north at the point being observed (defined by the great 
circle through the point and the north pole) is the parallactic angle +,, in Fig. 4.3. 
Application of the sine rule to the spherical triangle ZPS gives 

-sinlfip -sin H sin& 
cos .€ cos& c o s s ’  

- -- - (4.18) 

which can be combined with Eq. (A4.1) or (A4.2) to express pkP as a function of 
(A, E )  or (H, 6). If the beam has elongated contours and width comparable to 
the source under observation, rotation of the beam causes the effective intensity 
distribution to vary with hour angle. However, in most tracking arrays the antenna 
beams are sufficiently circularly symmetrical that this problem is rarely serious. 

4.8 POLARIMETRY 

Parameters Defining Polarization 

Polarization measurements are very important in radio astronomy. For example, 
most synchrotron radiation shows a small degree of polarization which indicates 
the distribution of the magnetic fields within the source. As noted in Chapter I ,  
this polarization is generally linear (plane) and can vary in magnitude and posi- 
tion angle over the source. As frequency is increased, the percentage polarization 
often increases because the depolarizing action of Faraday rotation is reduced. 
Polarization of radio emission also results from the Zeeman effect in atoms and 
molecules, cyclotron radiation and plasma oscillations in the solar atmosphere, 
and Brewster angle effects at planetary surfaces. The measure of polarization that 
is almost universally used in astronomy is the set of four parameters introduced 
by Sir George Stokes in 1852. We assume here that readers have some familiarity 
with the concept of Stokes parameters or can refer to one of numerous texts that 
describe them [e.g., Born and Wolf (1999), Kraus and Carver (1973), Rohlfs and 
Wilson (1996)]. 

Stokes parameters are related to the amplitudes of the components of the elec- 
tric field, E,x and E,, resolved in two perpendicular directions normal to the direc- 
tion of  propagation^. Thus if E,  and E ,  are represented by &, ( t )  cos[21r ut + 6, ( r ) ]  
and &,.(I) cos[2n uc + 6 , ( t ) ] ,  respectively, Stokes parameters are defined as fol- 
lows: 
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where the angular brackets denote the expectation or time average. This averag- 
ing is necessary because in radio astronomy we are dealing with fields that vary 
with time in random manner. Of the four parameters, I is a measure of the total 
intensity of the wave, Q and U represent the linearly polarized component, and 
V represents the circularly polarized component. Stokes parameters can be con- 
verted to a measure of polarization with a more direct physical interpretation as 
follows: 

V 
111, = - 

I 

JQ2+ U 2  + V 2  
I 

m, = 

1 
2 

e = - tan-' (%) , o 5 e 5 n, 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

where me, m,, and m, are the degrees of linear, circular, and total polarization, 
respectively, and 8 is the position angle of the plane of linear polarization. For 
monochromatic signals, m, = 1 and the polarization can be fully specified by just 
three parameters. For random signals such as those of cosmic origin, m, I 1 and 
all four parameters are required. The Stokes parameters all have the dimensions 
of flux density or intensity, and they propagate in the same manner as the electro- 
magnetic fieId. Thus they can be determined by measurement or calculation at any 
point along a wave path, and their relative magnitudes define the state of polariza- 
tion at that point. Stokes parameters combine additively for independent waves. 
When they are used to specify the total radiation from any point on a source, I, 
which measures the total intensity, is always positive, but Q, U ,  and V can take 
both positive and negative values depending on the position angle or sense of ro- 
tation of the polarization. The corresponding visibility values measured with an 
interferometer are complex quantities, as will be discussed later. 

In considering the response of interferometers and arrays up to this point we 
have ignored the question of polarization. This simplification can be justified by 
the assumption that we have been dealing with completely unpolarized radiation 
for which only the parameter I is nonzero. In that case the response of an interfer- 
ometer with identically polarized antennas is proportional to the total flux density 
of the radiation. As will be shown below, in the more general case the response 
is proportional to a linear combination of two or more Stokes parameters, where 
the combination is determined by the polarizations of the antennas. By observ- 
ing with different states of polarization of the antennas it is possible to separate 
the responses to the four parameters and determine the corresponding compo- 
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nents of the visibility. The variation of each parameter over the source can thus 
be mapped individually, and the polarization of the radiation emitted at any point 
can be determined. There are alternative methods of describing the polarization 
state of a wave, of which the coherency matrix is perhaps the most important (KO 
1967a,b). However, the classical treatment in terms of Stokes parameters has re- 
mained essentially universal in its usage by astronomers, and we therefore follow 
it here. 

Antenna Polarization EIIipse 

The polarization of an antenna in either transmission or reception can be de- 
scribed in general by stating that the electric vector of a transmitted signal traces 
out an elliptical locus in the wavefront plane. Most antennas are designed so that 
the ellipse approximates a line or circle, corresponding to linear or circular po- 
larization, in the central part of the main beam. However, exact linear or circular 
responses are never achieved in practice. As shown in Fig. 4.8a, the essential 
characteristics of the polarization ellipse are given by the position angle $ of the 

North 

A 

f 
sin 
x 

(a) ib) 

Figure 4.8 (a) Description of the general state of polarization of an antenna in terms of the 
characteristics of the ellipse generated by the electric vector in the transmission of a sinusoidal 
signal. The position angle + of the major axis is measured with respect to the x axis, which 
points toward the direction of north on the sky. A wave approaching from the sky is traveling 
toward the reader, in the direction of the positive z axis. For such a wave the arrow on the 
ellipse indicates the direction of right-handed polarization. (b) Model antenna that radiates the 
electric field represented by the ellipse in (a) when a signal is applied to the terminal A. Cos x 
and sin x indicate the voltage responses of the units shown, and ~ / 2  indicates a phase lag. 
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major axis, and by the axial ratio, which it is convenient to express as the tangent 
of an angle x. where -7rt/4 5 x 5 ~ 1 4 .  

An antenna of arbitrary polarization can be modeled in terms of two idealized 
dipoles as shown in Fig. 4.8b. Consider transmitting with this antenna by apply- 
ing a signal waveform to the terminal A. The signals to the dipoles pass through 
networks with voltage responses proportional to cos x and sin x ,  and the signal to 
the y‘ dipole also passes through a network that introduces a n/2 phase lag. Thus 
the antenna produces field components of amplitude S,t and 8,,! in phase quadra- 
ture along the directions of the major and minor axes of the ellipse. If the antenna 
input is a radio frequency sine wave VO cos 27r u t ,  then the field components are 

GXl cos27rvt rx Vocosx cos(2nUt) 

G y p  sin 2n ut a VO sin x sin(27r ut ) .  
(4.24) 

In these equations the y’ component lags the x‘ component by ~ / 2 .  If x = 7r/4, 
the radiated electric vector traces a circular locus with the sense of rotation from 
the x’ axis to the y’ axis (i-e., counterclockwise in Fig. 4.8a). This is consistent 
with the quarter-cycle delay in the signal to the y’ dipole. Then a wave propagat- 
ing in the positive z’ direction of a right-handed coordinate system (i.e., toward 
the reader in Fig. 4.8a) is right circularly polarized in the IEEE (1977) definition. 
(This definition is now widely adopted, but in some of the older literature such 
a wave would be defined as left circularly polarized.) The International Astro- 
nomical Union (IAU 1973) has adopted the IEEE definition and states that the 
position angle of the electric vector on the sky should be measured from north 
through east with reference to the system of right ascension and declination. The 
IAU also states that “the polarization of incoming radiation, for which the posi- 
tion angle, 0, of the electric vector, measured at a fixed point in space, increases 
with time, is described as right-handed and positive.” Note that Stokes parameters 
in Eqs. (4.19) specify only the field in the (x, y)  plane, and to determine whether 
a circularly polarized wave is left- or right-handed, the direction of propagation 
must be given. From Eqs. (4.19). and the definitions of E, and E ,  that precede 
them, a wave traveling in the positive z direction in right-handed coordinates is 
right circularly polarized for positive V. 

In reception an electric vector that rotates in a clockwise direction in Fig. 4.8 
produces a voltage in the y’ dipole that leads the voltage in the x’ dipole by n/2 in 
phase, and the two signals therefore combine in phase at A. For counterclockwise 
rotation the signals at A are in antiphase and cancel one another. Thus the antenna 
in Fig. 4.8 receives right-handed waves incident from the positive z direction (that 
is, traveling toward negative z), and it transmits right-handed polarization in the 
direction toward positive z. To receive a right-handed wave propagating down 
from the sky (in the positive z direction), the polarity of one of the dipoles must 
be reversed, which requires that x = -n/4. 

To determine the interferometer response, we begin by considering the output 
of the antenna modeled in Fig. 4.8b. We define the field components in complex 
form: 

E ( t )  = G,(t)eJl?nl’f+s,(f)l, E , ( t )  = Ev(t)el12n”’+S~(’)1 (4.25) 
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The signal voltage received at A in Fig. 4.8b, expressed in complex form, is 

where the factor - j  represents the n/2 phase lag applied to the y' signal, for 
the fields represented by Eqs. (4.25). Now we need to specify the polarization of 
the incident wave in terms of Stokes parameters. In accordance with IAU (1 973) 
the axes used are in the directions of north and east on the sky, which are repre- 
sented by x and y in Fig. 4.8a. In terms of the field in the x and y directions the 
components of the field in the x' and y' directions are 

Derivation of the response at the output of the correlator for antennas rn and n 
of an array involves straightforward manipulation of some rather lengthy expres- 
sions that are not reproduced here. The steps are as follows: 

1. Substitute E.r~  and E,! from Eqs. (4.27) into Eq. (4.26) to obtain the output 
of each antenna. 

2. Indicate values of $, x,  and V' for the two antennas by subscripts rn and n 
and calculate the correlator output, R,,, = G,, (VA Vi* ) ,  where G,,, is an 
instrumental gain factor. 

3. Substitute Stokes parameters for &.,, &,., A,, A ,  using Eqs. (4.19) as follows: 

The result is 

In this equation a subscript u has been added to Stokes parameter symbols to 
indicate that they represent the complex visibility for the distribution of the cor- 
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responding parameter over the source, not simply the intensity or brightness of 
the radiation. Equation (4.29) is a general and very useful formula that applies 
to all cases. It was originally derived by Morris, Radhakrishnan, and Seielstad 
(1964) and later by Weiler (1973). In the derivation by Moms et al. the sign of 
V, is opposite to that given by Weiler and in Eq. (4.29). This difference results 
from the convention for the sense of rotation for circular polarization. In the con- 
vention we have followed in Fig. 4.8, two identical antennas both adjusted to 
receive right circularly polarized radiation would have parameters $,,, = $,, and 
xm = xn = -a/4.  In Eq. (4.29) these values correspond to a positive sign for V,. 
Thus in Eq. (4.29) positive V, represents right circular polarization incident from 
the sky, which is in agreement with the IAU definition. The derivation by Moms 
et al. predates the IAU definition and follows an earlier convention. 

Note that in what follows the factor 1 /2 in Eq. (4.29) is omitted and considered 
to be subsumed within the overall gain factor. 

Stokes Visibilities 

As noted above, the symbols I,, Q,,, U,, and V, in Eq. (4.29) refer to the corre- 
sponding visibility values as measured by the spaced antennas. We shall there- 
fore refer to these quantities as Stokes visibilities, following the nomenclature 
of Hamaker, Bregman, and Sault (1996). Stokes visibilities are the quantities re- 
quired in mapping polarized emission, and they can be derived from the correlator 
output values by using Eq. (4.29). This equation is considerably simplified when 
the nominal polarization characteristics of practical antennas are inserted. First 
consider the case where both antennas are identically polarized. Then xm = xn, 
@m = $,,, and Eq. (4.29) becomes 

In considering linearly polarized antennas it is convenient to use subscripts x and 
y to indicate two orthogonal planes of polarization. For example, Rxy represents 
the correlator output for antenna m with polarization x and antenna n with polar- 
ization y. For linearly polarized antennas xm = xn = 0. Consider two antennas, 
each with separate outputs for linear polarizations x and y. Then for parallel po- 
larizations, omitting gain constants, we obtain from Eq. (4.30) 

Rx, = + Q,cos~$~ + I/, sin2$,,,. (4.3 1) 

Here +,,, is the position angle of the antenna polarization measured from celestial 
north in the direction of east. The y polarization angle is equal to the x polar- 
ization angle plus ~ / 2 .  For $,,, equal to O", 45", 90", and 135" the output R,, 
is proportional to (I, + Q,) ,  ( I ,  + U"), (I, - Q,) ,  and (I, - Uv), respectively. 
By using antennas with these polarization angles, I,, Q", and U,, but not V,, can 
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be measured. In many cases, circular polarization is negligibly small and the in- 
ability to measure V,, is not a serious problem. However, Q, and U,, are often 
only a few percent of I,,, and in attempting to measure them with identical feeds 
one faces the usual problems of measuring a small difference in two much larger 
quantities. The same is true if one attempts to measure V,, using identical circular 
feeds for which x = f n / 4  and the response is proportional to ( I ,  V,,). These 
problems are reduced by using oppositely polarized feeds to measure Q,. U,, or 
V,, . For an example of measurement of V,,  see Weiler and Raimond (1 976). 

With oppositely polarized feeds we insert in Eq. (4.29) qn = +,,, + n/2, and 
xm = -xn. For linear polarization the x terms are zero and the planes of polariza- 
tion orthogonal. The antennas are then described as cross-polarized, as typified by 
crossed dipoles. Omitting constant gain factors and using the x and y subscripts 
defined above, we obtain for the correlator output 

where +m refers to the angle of the plane of polarization in the direction (x 
or y )  indicated by the first subscript of the R term in the same equation. Then 
for +m equal to 0" and 45" the Rx, response is proportional to ( U ,  + j V , ) )  and 
(- Q,, + j V,,). If V,, is assumed to be zero, this suffices to measure the polarized 
component. If both antennas provide outputs for cross-polarized signals, the out- 
puts of which go to two separate receiving channels at each antenna, four correla- 
tors can be used for each antenna pair. These provide responses for both crossed 
and parallel pairs as follows: 

Position Angles 

m n Stokes Visibilities Measured 

0" 0" 

0" 90" 

90" 0" 

90" 90" 

45" 45" 

45" 135" 

135" 45" 

135" 135" 

Position angle I 
If 

11 

I ,  

Position angle I1 
I ,  

I ,  

,, 

(4.33) 

Thus if the planes of polarization can be periodically rotated through 45" as in- 
dicated by position angles I and 11 above, for example, by rotating antenna feeds, 
then Q,,, U,. .  and V,. can be measured without taking differences between re- 
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sponses involving I,. The use of rotating feeds has, however, proved to be of 
limited practicality. Rotating the feed relative to the main reflector is likely to 
have a small but significant effect on the beam shape and polarization properties. 
This is because the rotation will cause deviations from circular symmetry in the 
radiation pattern of the feeds to interact differently with the shadowing effects 
of the focal support structure and any departures from circular symmetry in the 
main reflector. Furthermore, in radio astronomy systems designed for the greatest 
sensitivity, the feed together with the low-noise amplifiers and a cryogenically 
refrigerated Dewar are often built as one monolithic unit that cannot easily be 
rotated. However, for antennas on altazimuth mounts, the variation of the paral- 
lactic angle with hour angle causes the antenna response pattern to rotate on the 
sky as a source is tracked in hour angle. Conway and Kronberg (1969) pointed 
out this advantage of altazimuth mounts, which enables instrumental effects to be 
distinguished from the true polarization of the source if observations continue for 
a period of several hours. 

In the case of the Westerbork Synthesis Radio Telescope the antennas are equa- 
torially mounted and the parallactic angle of the polarization remains fixed as 
a source is tracked. Crossed, linearly polarized feeds are used, as described by 
Weiler (1973). The outputs of a series of antennas that are movable on rail track 
are correlated with those from a series of antennas in fixed locations. The posi- 
tion angles of the planes of polarization for the movable antennas are 45" and 135" 
and those of the fixed antennas 0" and 90". These angles result in the following 
responses: 

Position Angle 

m n Stokes Visibilities Measured 

90" 45" 

90" 135" 

Although the responses are reduced by a factor of f i  relative to those in (4.33), 
there is no loss in sensitivity since each Stokes visibility appears at all four corre- 
lator outputs. Note, however, that since only signals from antennas with different 
polarization configurations are correlated, this scheme does not make use of all 
possible antenna pairs. 

Opposite circularly polarized feeds offer certain advantages for measurements 
of linear polarization. In determining the responses we retain an arbitrary position 
angle $,,, for antenna m to show the effect of rotation caused, for example, by 
an altazimuth antenna mount. If the antennas provide simultaneous outputs for 
opposite senses of rotation (denoted by r and L )  and four correlators are used for 
each antenna pair, the outputs are proportional to 
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Sense of Rotation 

m n Stokes Visibilities Measured 

r r I, ,  + v, 
r e ( - j  Q ,  + U,,)e-j2*nz 

e r (- j Q,, - Uu)ej2*m 

e e 1" - v, 

(4.35) 

Here we have made +l = +,. +lr/2, and x = -x/4 for right circular polarization 
and x = n/4 for left circular. The feeds need not be rotated during an observation, 
and the responses to Q, and U,,  are separated from those to I,. The expressions 
in (4.35) can be simplified by choosing values of +,. such as n/2, x/4, or 0. 
For example, if @,. = 0, the sum of the re and l r  responses is a measure of 
Stokes visibility U, .  Again, the effects of the rotation of the position angle with 
altazimuth mounts must be taken into account. Conway and Kronberg (1969) 
appear to have been the first to use an interferometer with circularly polarized 
antennas to measure linear polarization in weakly polarized sources. Circularly 
polarized antennas have since become widely used in radio astronomy. 

Instrumental Polarization 

The responses with the various combinations of linearly and circularly polarized 
antennas discussed above are derived on the assumption that the polarization is 
exactly linear or circular and that the position angles of the linear feeds are exactly 
determined. This is not the case in practice, and the polarization ellipse can never 
be maintained as a perfect circle or straight line. The nonideal characteristics of 
the antennas cause an unpolarized source to appear polarized and are therefore 
referred to as instrumental polarization. The effect of these deviations from ideal 
behavior can be calculated from Eq. (4.29) if the deviations are known. In the 
expressions in (4.33), (4.34), and (4.35) the responses given are only the major 
terms, and if the instrumental terms are included, all four Stokes visibilities are, 
in general, involved. For example, consider the case of crossed linear feeds with 
nominal position angles 0" and 90". Let the actual values of I) and x be such that 
(+x++y) =n/2+A+',  (+x-+J,) = -x/Z+A+-, xr+xy = AX', xx-xY 
A x - .  Then from Eq. (4.29), 

Generally, antennas can be adjusted so that the A terms are no more than - l o ,  
and here we have assumed that they are small enough that their cosines can be 
approximated by unity, their sines by the angles, and products of two sines by 
zero. Instrumental polarization is often different for each antenna even if they are 
structurally similar, and corrections must be made to the visibility data before 
they are combined into a map. 
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Although we have derived expressions for deviations of the antenna polariza- 
tions from the ideal in terms of the ellipticity and orientation of the polarization 
ellipse in Eq. (4.29), it is not necessary to know these parameters for the antennas 
so long as it is possible to remove the instrumental effects from the measurements, 
so that they do not appear in the final map or image. In calibrating the antenna 
responses, an approach that is widely preferred is to specify the instrumental po- 
larization in terms of the response of the antenna to a wave of polarization that 
is orthogonal or opposite-handed with respect to the nominal antenna response. 
Thus, for linearly polarized antennas, following the analysis of Sault, Killeen, and 
Kesteven (1991), we can write 

where subscripts x and y indicate two orthogonal planes of polarization, u' in- 
dicates the signal received, v indicates the signal that would be received with 
an ideally polarized antenna, and the D terms indicate the response of the real 
antenna to the polarization orthogonal to the nominal polarization. The D terms 
are often described as the leakage of the orthogonal polarization into the antenna 
(Bignell 1982) and represent the instrumental polarization. For each polarization 
state the leakage is specified by one complex number, that is, the same number of 
terms as the two real numbers required to specify the ellipticity and orientation of 
the polarization ellipse. In Appendix 4.2 expressions for D, and D ,  are derived 
in terms of the parameters of the polarization ellipse: 

OX 2 qx - j x . r ,  and D ,  2: -+? + j x y ,  (4.38) 

where the approximations are valid for small values of the x and Ilr parameters. 
Note that in Eq. (4.38) $,, is measured with respect to the y direction. For an 
ideal linearly polarized antenna, x x  and x r  are both zero, and the polarization in 
the x and y planes is precisely aligned with, and orthogonal to, the x direction 
with respect to the antenna. Thus for an ideal antenna, +.r and @,, are also zero. 
For a practical antenna, the terms in Eqs. (4.38) represent limits.of accuracy in 
the hardware, and we see that the real and imaginary parts of the leakage terms 
can be related to the misalignment and ellipticity, respectively. 

For a pair of antennas, m and n ,  the leakage terms allow us to express the mea- 
sured correlator outputs R.i,r, Ri.,,, R.iy, and R:..,. in terms of the unprimed quanti- 
ties that represent the corresponding correlations as they would be measured with 
ideally polarized antennas: 
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The g terms represent the voltage gains of the corresponding signal channels. 
They are complex quantities representing amplitude and phase, and the equations 
can be normalized so that the values of the individual g terms do not differ greatly 
from unity. Note that Eqs. (4.39) contain no small-term approximations. However, 
the leakage terms are typically no more than a few percent, and products of two 
such terms will be omitted at this point. Then from Eqs. (4.31) and (4.32) the 
responses can be written in terms of the Stokes visibilities as follows: 

(4.40) 

Note that +m refers to the polarization (x or y )  indicated by the first of the two 
subscripts of the R' term in the same equation. Sault, Killeen, and Kesteven 
(1991) describe Eqs. (4.40) as representing the strongly polarized case. In de- 
riving them no restriction was placed on the magnitudes of the Stokes visibility 
terms, but the leakage terms of the antennas are assumed to be small. In the case 
where the source is only weakly polarized, the products of Q,,  U , ,  and V,  with 
leakage terms can be omitted. Equations (4.40) then become 

If the antennas are operating well within the upper frequency limit of their per- 
formance, the polarization terms can be expected to remain largely constant with 
time since gravitational deflections that vary with pointing should be small. The 
instrumental gain terms can contain components due to the atmosphere, which 
may vary on timescales of seconds or minutes, and they also include the effect of 
the electronics. 

In the case of circularly polarized antennas, leakage terms can also be defined 
and similar expressions for the instrumental response derived. The leakage terms 
are given by the following equations: 
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where, as before, the v' terms are the measured signal voltages, the unprimed v 
terms are the signals that would be observed with an ideally polarized antenna, 
and the D terms are the leakages. The subscripts r and t indicate the right and 
left senses of rotation. Again, the relationship between the leakage terms and the 
orientation and ellipticity of the antenna responses is derived in Appendix 4.2. 
The results, which in this case require no small-angle approximations, are 

D,. = ej2@,. tan Axr, De = e-j2@e tan Axe, (4.43) 

where the A terms are defined by xr = -45" + AXr and Xe = 45" + Axe. 
To derive expressions for the outputs of an interferometer in terms of the leakage 
terms and Stokes visibilities, the four measured correlator outputs are represented 
by R;r, RLt, Rie, and Ri r .  These are related to the corresponding (unprimed) 
quantities that would be observed with ideally polarized antennas as follows: 

Now from the expressions in (4.35) the outputs in terms of the Stokes visibilities 
are 

Rir/(grnzg:;,) = + DrniD:n) - jQo(Drme'2*nz + D,*lie-J2*m) 

) + Vu( 1 - Drm DZl1) - U , ( D  rm ri i  
eJ2@nr - D* e-J2#1n 

R:pl(griiig;n) = lu(Drn1 + DZ,,) - jQv(e-J2*m + DrmD;,,eJ2*n1) 
+ uu(e-J2@~~~ - D D* eJ'@n# 

rni y I l  ) - Vu(Drm - Dzn) 

) + VU(&l - qn) 
R;r l (gemg~r l )  = lu(Dtm + D:,,) - jQr(eJ21/r,1t + DelnD~lle-J2@m ) 

- Uu(eJ2@~1~ - D D* e-J2@nr 
r i i  

Rit/(gtmg;,,) = ],(I + DemD;),) - jQl~(De,ne-J2@1,pt + D* e l l  eJ2JIm ) 

+ (Iv(Derne-JZ@t,8 - D* el l  e J 2 @ m  ) - Vu( 1 - Dtm D&). (4.45) 

Here again, 7,bm refers to the polarization ( r  or l )  indicated by the first of the 
two subscripts of the R' term in the same equation. The angle $m represents the 
parallactic angle plus any instrumental offset. We have made no approximations 
in deriving Eqs. (4.45) [in the similar Eqs. (4.40), products of two D terms were 
omitted]. If the leakage terms are small, then any product of two of them can 
be omitted, as in the strongly polarized case for linearly polarized antennas in 
Eqs. (4.40). The weakly polarized case is derived from the strongly polarized 
case by further omitting products of Q,,, U, , ,  and V, with the leakage terms, and 
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is as follows: 

Similar expressions* are given by Fomalont and Perley (1 989). To make use of 
the expressions that have been derived for the response in terms of the leakage 
and gain factors, we need to consider how such quantities can be calibrated, and 
this is discussed later. 

Matrix Formulation 

The description of polarimetry given above, using the ellipticity and orientation of 
the antenna response, is based on a physical model of the antenna and the electro- 
magnetic wave. Historically, studies of optical polarization have developed over 
a much longer period. A description of radio polarimetry following an approach 
originally developed in optics is given by Hamaker, Bregman, and Sault in four 
papers (Hamaker, Bregman, and Sault 1996; Sault, Hamaker, and Bregman 1996; 
Hamaker and Bregman 1996; Hamaker 2000), and also described in Hamaker 
(1996). The mathematical analysis is largely in terms of matrix algebra, and in 
particular it allows the responses of different elements of the signal path such as 
the atmosphere, the antennas, and the electronic system, to be represented inde- 
pendently and then combined in the final solution. 

In the matrix formulation the electric fields of the polarized wave are repre- 
sented by a two-component column vector. The effect of any linear system on 
the wave, or on the voltage waveforms of the signal after reception, can be repre- 
sented by a 2 x 2 matrix of the form shown below: 

(4.47) 

where E ,  and E,  represent the input polarization state (orthogonal linear or oppo- 
site circular) and EL and Eb represent the outputs. The 2 x 2 matrix in Eq. (4.47) 
is referred to as a Jones matrix (Jones 1941), and any simple linear operation on 
the wave can be represented by such a matrix. Jones matrices can represent a ro- 
tation of the wave relative to the antenna; the response of the antenna, including 
polarization leakage effects; or the amplification of the signals in the receiving 
system up to the correlator input. The combined effect of these operations is rep- 

*Note that in comparing expressions for polarimetry by different authors, differences of signs or of the 
factor j can result from differences in the way the parallactic angle is defined with respect to the antenna, 
and similar arbitrary factors. 
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resented by the product of the corresponding Jones matrices, just as the effect on a 
scalar voltage can be represented by the product of gains and response factors for 
different stages of the receiving system. For a wave specified in terms of opposite 
circularly polarized components, Jones matrices for these operations can take the 
following forms: 

Jrotation = [ exp(JO) 0 
exp(-j0) O I  

(4.48) 

(4.49) 

(4.50) 

Here 8 represents a rotation, and the cross polarization in the antenna is repre- 
sented by the off-diagonal leakage terms D, and De. For a nonideal antenna the 
diagonal terms will be slightly different from unity, but in this case the differ- 
ence is subsumed into the gain matrix of the two channels. The gain of both the 
antenna and the electronics can be represented by a single matrix, and since any 
cross-coupling of the signals in the amplifiers can be made negligibly small, only 
the diagonal terms are nonzero in the gain matrix. 

Let Jm represent the product of the Jones matrices required to represent the 
linear operations on the signal of antenna m up to the point where it reaches the 
correlator input. Let J, be the same matrix for antenna n. The signals at the inputs 
to the correlator are JmEm and J,E,, where Em and E,, are the vectors representing 
the signals at the antenna. The correlator output is the ourerproducr (also known 
as the Kronecker, or tensor, product) of the signals at the input: 

where 8 represents the outer product. The outer product A 8 B is formed by 
replacing each element a;k of A by a;kB. Thus the outer product of two n x n 
matrices is a matrix of order n2 x n2 .  It is also a property of the outer product that 

(A;&) €3 (AkBk) = (A; 8 Ak)(B; €3 Bk). (4.52) 

Thus we can write Eq. (4.5 1) as 

The time average of Eq. (4.53) represents the correlator output, which is 

(4.54) 
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where p and q indicate opposite polarization states. The column vector in 
Eq. (4.54) is known as the coherency vector and represents the four cross- 
products from the correlator outputs for antennas in and n. From Eq. (4.53) it is 
evident that the measured coherency vector Rkn. which includes the effects of 
instrumental responses, and the true coherency vector R,,,,, which is free from 
such effects, are related by the outer product of the Jones matrices that represent 
the instrumental effects: 

To determine the response of an interferometer in term of the Stokes visibilities 
of the input radiation, which are complex quantities, we introduce the Stokes 
visibility vector 

(4.56) 

The Stokes visibilities can be regarded as an alternate coordinate system for the 
coherency vector. Let S be a 4 x 4 transformation matrix from Stokes parameters 
to the polarization coordinates of the antennas. Then we have 

For ideal antennas with crossed (orthogonal) linear polarization, the response in 
terms of Stokes visibilities is given by the expressions in (4.33). We can write this 
result in matrix form as 

(4.58) 

where the subscripts x and y here refer to polarization position angles 0" and 90" 
respectively. Similarly for opposite-hand circular polarization, we can write the 
expressions in (4.35) as 

[$;I = 
(4.59) 

The 4 x 4 matrices in Eqs. (4.58) and (4.59) provide transformation matrices from 
Stokes visibilities to the coherency vector for crossed linear and opposite circu- 
lar polarizations, respectively. Note that these matrices depend on the particular 
formulation we have used to specify the angles and x ,  and other factors in 
Fig. 4.8, which may not be identical to corresponding parameters used by other 
authors. 
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The expression S-'(Jm 8 J:)S is a matrix that relates the input and output co- 
herency vectors of a system where these quantities are in Stokes coordinate form. 
In optics this type of matrix is known as a Mueller matrix (Mueller 1948). Further 
explanations of Jones and Mueller matrices can be found in some textbooks on 
optics [e.g., O'Neill(1963)l. 

As an example of the matrix usage, let us derive the effect of the leakage and 
gain factors in the case of opposite circular polarizations. For antenna m, the Jones 
matrix J, is the product of the Jones matrices for leakage and gain as follows: 

Here the g terms represent voltage gain, the D terms represent leakage, and the 
subscripts r and C indicate polarization. A corresponding matrix Jn is required 
for antenna n. Then if we use primes to indicate the components of the coherency 
vector (i.e., the correlator outputs) for antennas m and n ,  we can write 

where the 4 x 4 matrix is the one relating Stokes visibilities to the coherency 
vector in Eq. (4.59). Also we have 

Insertion of Eq. (4.62) into Eq. (4.61) and reduction of the matrix products results 
in Eqs. (4.45) for the response with circularly polarized feeds. 

Calibration of Instrumental Polarizationt 

The fractional polarization of almost all astronomical sources is of magnitude 
comparable to that of the leakage and gain terms that are used above to define the 

+A general description of calibration is given in Chapter 10, in particular Section 10. I .  which it may be 
helpful to read before embarking on the more complicated considerations of polarization calibration. The 
discussion of polarization calibration is placed in this chapter for ease of reference to the development of 
polarimetry given here. 
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instrumental polarization. Thus to obtain an accurate measure of the polarization 
of a source the leakage and gain terms must be accurately calibrated. It is usually 
necessary to determine the calibration independently for each set of observations 
since the gain terms are likely to be functions of the temperature and state of 
adjustment of the electronics, and cannot be assumed to remain constant from one 
observing session to another. Making observations (i.e., measuring the coherency 
vector) of sources for which the polarization parameters are already known is 
clearly a way of determining the leakage and gain terms. The number of unknown 
parameters to be calibrated is proportional to the number of antennas, no,  but the 
number of measurements is proportional to the number of baselines, n o @ ,  - 
1 )/2. The unknown parameters are therefore usually overdetermined, and a least- 
squares solution is usually the preferred procedure. 

For any antenna with orthogonally polarized receiving channels there are seven 
degrees of freedom, that is, seven unknown quantities, that must be calibrated to 
allow full interpretation of the measured Stokes visibilities. This applies to the 
general case, and the number can be reduced if approximations are made for 
weak polarization or small instrumental polarization. In terms of the polarization 
ellipses, these unknowns can be regarded as the orientations and ellipticities of 
the two orthogonal feeds and the complex gains (amplitudes and phases) of the 
two receiving channels. When the outputs of two antennas are combined, only 
the differences in the instrumental phases are required, leaving seven degrees 
of freedom per antenna. Sault, Hamaker, and Bregman (1996) make the same 
point from the consideration of the Jones matrix of an antenna, which contains 
four complex quantities. They also give a general result that illustrates the seven 
degrees of freedom or unknown terms. This expresses the relationship between 
the uncorrected (measured) Stokes visibilities (indicated by primes) and the true 
values of the Stokes visibilities, in terms of seven y and 6 terms: 

The seven y and 6 terms are defined as follows: 

(4.64) 
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Here it is assumed that Eqs. (4.39) are normalized so that the gain terms are close 
to unity, and the Ag terms are defined by gik = 1 + Agik. The D (leakage) 
terms and the Ag terms are small enough that products of two such terms can be 
neglected. The results, as shown in Eqs. (4.63) and (4.64), apply to antennas that 
are linearly polarized in directions x and y. The same results apply to circularly 
polarized antennas if the subscripts x and y are replaced by r and l ,  respectively, 
and, in the column matrix on the right-hand side of Eq. (4.63), Q,,, U,,, and V, 
are replaced by V,,, Q,,, and U ,  respectively. A similar result is given by Sault, 
Killeen, and Kesteven (1991). The seven y and 6 terms defined above are subject 
to errors in the calibration process, so there are seven degrees of freedom in the 
error mechanisms. 

An observation of a single calibration source for which the four Stokes parame- 
ters are known enables four of the degrees of freedom to be determined. However, 
because of the relationships of the quantities involved, it takes at least three cali- 
bration observations to solve for all seven unknown parameters (Sault, Hamaker, 
and Bregman 1996). In the calibration observations it is useful to observe one 
unpolarized source, but observing a second unpolarized one would add no further 
solutions. At least one observation of a linearly polarized source is required to 
determine the relative phases of the two oppositely polarized channels, that is, 
the relative phases of the complex gain terms g,,,,g:, and gyrng:,, or gr,,& and 
gt,,,g,',. Note that with antennas on altazimuth mounts, observations of a calibra- 
tor with linear polarization, taken at intervals between which large rotations of the 
parallactic angle occur, can essentially be regarded as observations of independent 
calibrators. Under these circumstances three observations of the same calibrator 
will suffice for the full solution. Furthermore, the polarization of the calibrator 
need not be known in advance but can be determined from the observations. 

In cases where only an unpolarized calibrator can be observed, it is possible 
to determine two more degrees of freedom by introducing the constraint that the 
sum of the leakage factors over all antennas should be zero. As shown by the 
expressions for the leakage terms in Appendix 4.2, this is a reasonable assumption 
for a homogeneous array, that is, one in which the antennas are of nominally 
identical design. However, the phase difference between the signal paths from 
the feeds to the correlator for the two orthogonal polarizations of each antenna 
remains unknown. This requires an observation of a calibrator with a component 
of linear polarization, or a scheme to measure the instrumental component of the 
phase. For example, on the compact array of the Australia Telescope (Frater and 
Brooks 1992), noise sources are provided at each antenna to inject a common 
signal into the two polarization channels (Sault, Hamaker, and Bregman 1996). 
With such a system it is necessary to provide an additional correlator for each 
antenna, or to be able to rearrange correlator inputs, to measure the relative phase 
of the injected signals in the two polarizations. 

In the case of the approximations for weak polarization, Eqs. (4.41) and (4.46) 
show that if the gain terms are known, the leakage terms can be calibrated by 
observing an unpolarized source. For opposite circular polarizations, Eq. (4.46) 
shows that if V,, is small, it is possible to obtain solutions for the gain terms 
from the outputs for the lL' and rr combinations only, provided also that the 
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number of baselines is several times larger than the number of antennas. The 
leakage terms can then be solved for separately. For crossed linear polarizations, 
Eq. (4.41) shows that this is only possible if the linear polarization ( Q ,  and U ,  
parameters) for the calibrator have been determined independently. 

Optimum strategies for calibration of polarization observations is a subject 
that leads to highly detailed discussions involving the characteristics of partic- 
ular synthesis arrays, the hour angle range of the observations, the availability 
of calibration sources (which can depend on the observing frequency), and other 
factors, especially if the solutions for strong polarization are used. Such discus- 
sions can be found, for example, in Conway and Kronberg ( 1  969), Weiler (1973), 
Bignell (1982), Sault, Killeen, and Kesteven (1991), Sault, Hamaker, and Breg- 
man (1996), and Smegal et al. (1997). Polarization measurements with VLBI in- 
volve some special considerations: see, for example, Roberts, Brown, and Wardle 
(1991), Cotton (1993), Roberts, Wardle, and Brown (1994), Kemball, Diamond, 
and Cotton (1995). 

For most large synthesis arrays, effective calibration techniques have been de- 
vised and the software to implement them has been developed. Thus a prospective 
observer need not be discouraged if the necessary calibration procedures appear 
complicated. Some general considerations relevant to observations of polarization 
are given below: 

Since the polarization of many sources varies on a timescale of months, it is 
usually advisable to regard the polarization of the calibration source as one 
of the variables to be solved for. 
Two sources with relatively strong linear polarization at position angles that 
do not appear to vary are 3C286 and 3Cl38. These are useful for checking 
the phase difference for oppositely polarized channels. 
For most sources the circular polarization parameter V,  is very small, -0.2% 
or less, and can be neglected. Measurements with circularly polarized an- 
tennas of the same sense therefore generally give an accurate measure of 
I,. However, circular polarization is important in measurement of mag- 
netic fields by Zeeman splitting. As an example of positive detection at a 
very low level, Fiebig and Giisten ( I  989) describe measurements for which 
V / I  ‘v 5 x Zeeman splitting of several components of the OH line at 
22.235 GHz were observed using a single antenna, the 100-m paraboloid of 
the Max Planck Institute for Radio Astronomy, with a receiving system that 
switched between opposite circular polarizations at 10 Hz. Rotation of the 
feed and receiver unit was used to identify spurious instrumental responses 
to linearly polarized radiation, and calibration of the relative pointing of the 
two beams to one arcsecond accuracy was required. 
Although the polarized emission from most sources is small compared with 
the total emission, it is possible for Stokes visibilities Q, and U, to be com- 
parable to I, in cases where there is a broad unpolarized component that 
is highly resolved and a narrower polarized component that is not resolved. 
In such cases errors may occur if the approximations for weak polarization 
[Eqs. (4.41) and (4.46)1 are used in the data analysis. 
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For most antennas the instrumental polarization varies over the main beam 
and increases toward the beam edges. Sidelobes that are cross polarized rel- 
ative to the main beam tend to peak near the beam edges. Thus polarization 
measurements are usually made for cases where the source is small com- 
pared with the width of the main beam, and for such measurements the beam 
should be centered on the source. 
Faraday rotation of the plane of polarization of incoming radiation occurs 
in the ionosphere, and becomes important for frequencies below a few gi- 
gahertz; see Table 13.6 in Chapter 13. During polarization measurements 
periodic observations of a strongly polarized source are useful for monitor- 
ing changes in the rotation, which varies with the total column density of 
electrons in the ionosphere. If not accounted for, Faraday rotation can cause 
errors in calibration; see, for example, Sakurai and Spangler (1994). 
In some antennas the feed is displaced from the axis of the main reflector, for 
example, when the Cassegrain focus is used and the feeds for different bands 
are located in a circle around the vertex. For circularly polarized feeds, this 
departure from circular symmetry results in pointing offsets of the beams for 
the two opposite hands. The pointing directions of the two beams are typi- 
cally separated by -0. I beamwidths, which makes measurements of circular 
polarization difficult or impractical because V, is proportional to (R,,  - R"). 
For linearly polarized feeds the corresponding effect is an increase in the 
cross polarized sidelobes near the beam edges. See also Section 5.1. 
In VLBI the large distances between antennas result in different parallactic 
angles at different sites, which must be taken into account. 
The quantities me and m,, of Eqs. (4.20) and (4.22), have Rice distributions 
of the form of Eq. (6.63a), and the position angle has a distribution of the 
form of Eq. (6.63b). The percentage polarization can be overestimated, and 
a correction should be applied (Wardle and Kronberg 1974). The discussion 
in Section 9.3, at the end of Noise in VLBZ Observations, is relevant to this 
problem. 

The following points concern choices in designing an array for polarization mea- 
surements: 

The rotation of an antenna on an altazimuth mount relative to the sky is 
in most cases a distinct advantage in polarimetry. The rotation could be a 
disadvantage in cases where polarization mapping over a large part of the 
antenna beam is being attempted. Correction for the variation of instrumental 
polarization over the beam could be more difficult if the beam rotates on the 
sky. 
With linearly polarized antennas, errors in calibration are likely to cause 
I, to corrupt the linear parameters Q, and U,, so for measurement of lin- 
ear polarization, circularly polarized antennas offer an advantage. Similarly, 
with circularly polarized antennas, calibration errors are likely to cause I, to 
corrupt V,, so for measurements of circular polarization, linearly polarized 
antennas are to be preferred. 
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Linearly polarized feeds for reflector antennas can be made with relative 
bandwidths of at least 2 : 1, whereas for circularly polarized feeds the maxi- 
mum relative bandwidth is commonly about 1.4 : 1. In many designs of cir- 
cularly polarized feeds, orthogonal linear components of the field are com- 
bined with f90" relative phase shifts, and the phase shifting element limits 
the bandwidth. For this reason linear polarization is the choice for some syn- 
thesis arrays such as the Australia Telescope (James 1992), and with careful 
calibration good polarization performance is obtainable. 
The stability of the instrumental polarization, which greatly facilitates ac- 
curate calibration over a wide range of hour angle, is perhaps the most im- 
portant feature to be desired. Caution should therefore be used if feeds are 
rotated relative to the main reflector, or if antennas are used near the high 
end of their frequency range. 

APPENDIX 4.1 CONVERSION BETWEEN HOUR 
ANGLE-DECLINATION AND 
AZIMUTH-ELEVATION COORDINATES 

Although the positions of cosmic sources are almost always specified in celestial 
coordinates, for purposes of observation it is generally necessary to convert to 
elevation and azimuth. The conversion formulas between hour angle and declina- 
tion (H, 6) and elevation and azimuth ( E ,  A) can be derived by applying the sine 
and cosine rules for spherical triangles to the system in Fig. 4.3. For an observer 
at latitude B they are, for (H, 6 )  to (A, &), 

sin& =sindlsinS+cosd:cosScosH 

cos & cos d = cos 63 sin 6 - sin L cos 6 cos H (A4.1) 

cos & sin A = - cos S sin H. 

Similarly for (A, &) to (H, 6 )  we obtain 

s ins  = s inBsinE +cosd:cos&cosA 

cosS cos H = cos B sin & - sin Lcos  8 cos A 

cos S sin H = - cos & sin A. 

(A4.2) 

Here azimuth is measured from north through east. 

APPENDIX 4.2 LEAKAGE PARAMETERS IN TERMS OF THE 
POLARIZATION ELLIPSE 

The polarization leakage terms used to express the instrumental polarization are 
related to the ellipticity and orientation of the polarization ellipses of each an- 
tenna, as shown below. 
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Linear Polarization 

Consider the antenna in Fig. 4.8, and suppose that it is nominally linearly polar- 
ized in the x direction, in which case x and $ are small angles that represent 
engineering tolerances. A field E aligned with the x axis in Fig. 4.8a produces 
components Ex? and E,t along the (x ’ ,  y’) axes with which the dipoles in Fig. 4.8b 
are aligned. Then from Eq. (4.26) we obtain the voltage at the output of the an- 
tenna (point A in Fig. 4.8b), which is 

V: = E(cos JI cos x + j sin JI sin x ) .  (A4.3) 

The response to the same field, but aligned with the y axis, is 

Vi = E(sin $ cos x - j cos 1// sin x ) .  (A4.4) 

V: represents the wanted response to the field along the x axis and V: represents 
the unwanted response to a cross-polarized field. The leakage term is equal to the 
cross-polarized response expressed as a fraction of the wanted x-polarization re- 
sponse, that is, 

where the subscript x indicates the x-polarization case. The corresponding term 
D, for the condition in which Fig. 4.8 represents the nominal y polarization of the 
antenna is obtained as Vi/ Vi by inverting Eq. (A4.51, replacing +x by 9, + n/2, 
and replacing x x  by x v .  Then JI, is measured from the y axis in the same sense as 
Jlx is measured from the x axis, that is, increasing in a counterclockwise direction 
in Fig, 4.8. Thus we obtain 

V: 
.” V; 

[cos ( I j ly  + 17/21 cos x ,  + j sin ($, + n/2) sin x v l  
[sin (Jf, + n/2) cos x\. - j cos (JIr + n/2) sin x,]  
(- sin JI, cos xv + j cos $, sin x,)  

2: -9, + j x , .  (cos JI,, cos xr + j sin @,, sin x y )  

D = - =  

(A4.6) 
- - 

Similar expressions for D, and D,, have also been derived by Sault, Killeen, and 
Kesteven (1991). Note that Ox and D, are of comparable magnitude and opposite 
sign, so one would expect the average of all the D terms for an array of antennas 
to be very small. As used earlier in this chapter, subscripts m and n are added to 
the D terms to indicate individual antennas. 
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Circular Polarization 

To receive right circular polarization from the sky, the antenna in Fig. 4.8b must 
respond to a field with counterclockwise rotation in the plane of the diagram, 
as explained earlier. This requires x = -45". In terms of fields in the x and y 
directions, counterclockwise rotation requires that Ex leads E ,  in phase by n/2; 
that is, Ex = j E ,  for the fields as defined in Eq. (4.25). For fields Ex and E,, we 
determine the components in the x' and y' directions, and then obtain expressions 
for the output of the antenna for both counterclockwise and clockwise rotation of 
the incident field. For counterclockwise rotation 

E.: = Ex cos $ + E, sin $ = Ex(cos $ - j sin $), 

El = -E,  sin $ + E, cos $ = - Ex(sin $ + j cos $). 

(A4.7) 

(A4.8) 

For nominal right-circular polarization, xr = -n/4 + Axr,  where Axr is a mea- 
sure of the departure of the polarization from circularity. Then from Eq. (4.26), 
we obtain 

vr' = Exe-J*r (cos X, - sin x r )  = h E x e - j * r  cos Axr. (A4.9) 

The next step is to repeat the procedure for left circular polarization from the sky, 
for which we have clockwise rotation of the electric vector and E ,  = j E x .  The 
result is 

The relative magnitude of the opposite-hand response of the nominally right- 
handed polarization state, that is, the leakage term, is 

For the nominal left-hand polarization the relative magnitude of the opposite-hand 
response is obtained by inverting the right-hand side of Eq. (A4.11) and also sub- 
stituting A x r  + d 2  for Ax,. and $( - ?rl2 for $,.. For the corresponding leakage term 
Dc, which represents the right circular leakage of the nominally left circularly po- 
larized antenna, we then obtain 

(A4.12) 
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Since -n/4 5 x 5 n/4, A x r  and Ax! take opposite signs. Thus, as in the 
case of the leakage terms for linear polarization, D, and De are of comparable 
magnitude and opposite sign. 
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5 Antennas and Arrays 

This chapter opens with a brief review of some basic considerations of antennas. 
The main part of the chapter is concerned with the configurations of antennas in 
interferometers and synthesis arrays. It is convenient to classify array designs as 
follows: 

1. Arrays with non-tracking antennas 
2. Interferometers and arrays with antennas that track the sidereal motion of a 

source: 
Linear arrays 
Arrays with open-ended arms (crosses, T-shaped arrays, and Y-shaped 

Arrays with closed configurations (circles, ellipses, and Reuleaux trian- 

VLBI arrays 
Planararrays 

arrays) 

gles) 

Examples of these types of arrays are described and their spatial transfer func- 
tions (i.e., spatial sensitivities) are compared. Other concerns include the size and 
number of antennas needed in an array. 

5.1 ANTENNAS 

The subject of antennas is well coverel in numerous books; see the bibliogra- 
phy at the end of this chapter. Here we mention only a few points concerning 
the special requirements of antennas for radio astronomy. As discussed in Chap- 
ter 1, early radio astronomy antennas operated mainly at meter wavelengths and 
often consisted of arrays of dipoles or parabolic-cylinder reflectors. These had 
large areas, but the operating wavelengths were long enough that beamwidths 
were usually of order 1" or more. For detection and cataloging of sources, satis- 
factory observations could be obtained during the passage of a source through a 
stationary beam. Thus it was not generally necessary for such antennas to track 
the sidereal motion of a source. For a more recent example of a fixed dipole array, 
see Koles, Frehlich, and Kojima (1994). With the narrower beams at centimeter 
and millimeter wavelengths, sidereal tracking is essential. Except for a few in- 
struments designed specifically for meter-wavelength operation, the majority of 
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synthesis arrays use tracking antennas that incorporate equatorial or altazimuth 
mounts as described in Section 4.6. 

The requirement for high sensitivity and high resolution in astronomical im- 
ages has resulted in the development of large arrays of antennas. To make the 
fullest use of such instruments, they are usually designed to cover a large range 
of frequencies. For centimeter-wavelength instruments the coverage typically in- 
cludes bands extending from a few hundred megahertz to some tens of gigahertz. 
As a result, the antennas are most often paraboloid or similar-type reflectors, with 
separate feeds for the different frequency bands. In addition to wide frequency 
coverage, another advantage of the paraboloid reflector is that all of the power 
collected is brought, essentially without loss, to a single focus, which allows full 
advantage to be taken of low-loss feeds and cryogenically cooled input stages to 
provide the maximum sensitivity. 

Figure 5.1 shows several focal arrangements for parabolic antennas, of which 
the Cassegrain is perhaps the most often used. The Cassegrain focus offers a 
number of advantages. A convex hyperbolic reflector intercepts the radiation just 
before it reaches the prime focus and directs it to the Cassegrain focus near the 
vertex of the main reflector. Sidelobes resulting from spillover of the beam of 
the feed around the edges of the subreflector point toward the sky, for which the 
noise temperature is generally low. With a prime-focus feed the sidelobes result- 
ing from spillover around the main reflector point toward the ground and thus 
result in a higher level of unwanted noise pickup. The Cassegrain focus also has 
the advantage that in all but the smallest antennas an enclosed room can be pro- 
vided just behind the main reflector to accommodate the low-noise input stages 
of the electronics. However, the aperture of the feed for a prime-focus location is 
less than that for a feed at the Cassegrain focus, and as a result the feeds for the 
longest wavelengths are often at the prime focus. 

The Cassegrain design also allows the possibility of improving the aperture 
efficiency by shaping the two reflectors of the antenna (Williams 1965). The prin- 
ciple involved can best be envisioned by considering the antenna in transmission. 

Figure 5.1 Focus arrangements of reflector antennas: (a) prime focus; (b) Cassegrain focus; 
(c) Naysmith focus; (d) offset Cassegrain. With the Naysmith focus the feed horn is mounted 
on the alidade structure below the elevation axis (indicated by the dashed line), and for a 
linearly polarized signal the angle of polarization relative to the feed varies with the elevation 
angle. In some other arrangements, for example, beam-waveguide antennas (not shown), there 
are several reflectors, including one on the azimuth axis, which allows the feed horn to remain 
fixed relative to the ground. The polarization then rotates relative to the feed for both azimuth 
and elevation motions. 
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With a conventional hyperboloid subreflector and paraboloid main reflector, the 
radiation from the feed is concentrated toward the center of the antenna aper- 
ture, whereas for maximum efficiency the electric field should be uniformly dis- 
tributed. If the profile of the subreflector is slightly adjusted, more power can be 
directed toward the outer part of the main reflector, thus improving the uniformity. 
The main reflector must then be shaped to depart slightly from the parabolic pro- 
file to regain uniform phase across the wavefront after it leaves the main reflector. 
This type of shaping is used, for example, in the antennas of the VLA in New 
Mexico, for which the main reflector is 25 m in diameter. For the VLA the rms 
difference between the reflector surfaces and the best-fit paraboloid is -1 cm, 
so the antennas can be used with prime-focus feeds for wavelengths longer than 
-16 cm. Shaping is not always to be preferred since it introduces some restriction 
in off-axis performance, which is detrimental for multi-beam applications. 

Although most antennas of synthesis arrays are tracking paraboloid reflectors, 
there are numerous differences in the detailed design. For example, when a num- 
ber of feeds for different frequency bands are required at the Cassegrain focus, 
these are sometimes mounted on a turntable structure, and the one that is in use 
is brought to a position on the axis of the main reflector. Alternatively, the feeds 
may be in fixed positions on a circle centered on the vertex, and by using a ro- 
tatable subreflector of slightly asymmetric design, the incoming radiation can be 
focused onto the required feed. 

Parabolic reflector antennas with asymmetrical feed geometry can exhibit un- 
desirable instrumental polarization effects that would largely cancel out in a cir- 
cularly symmetrical antenna. This may occur in an unblocked aperture design, 
as in Fig. 5.ld, or a design in which a cluster of feeds is used for operation on 
a number of frequency bands, where the feeds are close to, but not exactly on, 
the axis of the paraboloid. With crossed linearly polarized feeds the asymmetry 
results in strong cross-polarization sidelobes within the main beam. With oppo- 
site circularly polarized feeds the two beams are offset in opposite directions in a 
plane that is normal to the plane containing the axis of symmetry of the reflector 
and the center of the feed. This offset is a serious problem in measurements of 
circular polarization, since the result is obtained by taking the difference between 
measurements with opposite circularly polarized antennas [see Eqs. (4.331. For 
measurements of linear polarization the offset is less serious since this involves 
taking the product of two opposite-hand outputs, and the resulting response is 
symmetrical about the paraboloid axis. The effects can be largely canceled by in- 
serting a compensating offset in a secondary reflector. For further details, see Chu 
and Turrin (1973) and Rudge and Adatia (1 978). 

A basic point concerns the accuracy of the reflector surface. Deviations of the 
surface from the ideal profile result in variations in the phase of the electromag- 
netic field as it reaches the focus. We can think of the reflector surface as consist- 
ing of many small sections that deviate from the ideal surface by E ,  a Gaussian 
random variable with probability distribution 
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where ( E )  = 0, (r2) = a2, and ( ) indicates the expectation. An important relation 
that can be proved using Eq. (5.1) is 

00 

(e”)  = (COSE) + ( j  sine) = (COSE) = c o s ( ~ ) p ( ~ ) d r  = eP2I2. (5.2) 

A surface deviation E produces a deviation of approximately 26 in the path length 
of a reflected ray; this approximation improves as the focal ratio is increased. 
Thus a deviation E causes a phase shift r$ 2: 4nc/h,  where A is the wavelength. 
As a result, the electric field components at the focus have a Gaussian phase 
distribution with a@ = 4na/h .  If there are N independent sections of the surface, 
then the collecting area, which is proportional to the square of the electric field, 
is given by 

where Ao is the collecting area for a perfect surface, and it has been assumed 
that N is large enough that terms for which i = k can be ignored. Then from 
Eqs. (5.2) and (5.3) we obtain 

(5.4) 

This equation is known in radio engineering as the Ruze formula (Ruze 1966), 
and in some other branches of astronomy as the Strehl ratio. As an example, if 
a / h  = 1/20, the aperture efficiency, A / A o ,  is 0.67. In the case of antennas with 
multiple reflecting surfaces, the rms deviations can be combined in the usual root- 
sum-squared manner. Secondary reflectors, such as a Cassegrain subreflector, are 
smaller than the main reflector, and for smaller surfaces the rms deviation is usu- 
ally correspondingly smaller. 

Several techniques have been developed for improving the performance of 
paraboloid antennas. An example is the adjustment of the subreflector shape to 
compensate for errors in the main reflector [see, e.g., Ingalls et al. (1994), Mayer 
et al. (1994)l. Another improvement is in the design of the focal support structure 
to minimize blockage of the aperture and reduce sidelobes in the direction of the 
ground (Lawrence, Herbig, and Readhead 1994; Welch et al. 1996). The most 
common method of supporting equipment near the reflector focus is the use of a 
tripod or quadrupod structure. If the legs of the structure are connected to the edge 
of the main reflector rather than to points within the reflector aperture, they in- 
terrupt only the plane wave incident on the aperture, not the spherical wavefront 
between the reflector and the focus. Use of an offset-feed reflector avoids any 
blockage of incident wavefront in reaching the focus. However, both these meth- 
ods of reducing blockage increase the difficulty in obtaining mechanical stiffness 
in the structure. For this reason they are more commonly used on small-diameter 
antennas, such as those designed for use at millimeter wavelengths. 
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5.2 SAMPLING THE VISIBILITY FUNCTION 

Sampling Theorem 

The choice of configuration of the antennas of a synthesis array is based on op- 
timizing, in some manner, the sampling of the visibility function in ( u ,  v )  space. 
Thus in considering array design it is logical to start by examining the sampling 
requirements. These are governed by a sampling theorem of Fourier transforms 
(Bracewell 1958). Consider first the measurement of the one-dimensional inten- 
sity distribution of a source, Il(f). It is necessary to measure the complex visi- 
bility Y in the corresponding direction on the ground at a series of values of the 
projected antenna spacing. For example, to measure an east-west profile, a pos- 
sible method is to make observations near meridian transit of the source using an 
east-west baseline, and to vary the length of the baseline from day to day. 

Figure 5.2a-c illustrates the sampling of the one-dimensional visibility func- 
tion Y(u) .  The sampling operation can be represented as multiplication of Y(u)  
by the series of delta functions in Fig. 5.2b, which can be written 

Figure 5.2 Illustration of the sampling theorem: (a) visibility function Y(u),  real part only; 
(b) sampling function in which the arrows represent delta functions; (c) sampled visibility 
function; (d) intensity function 11 (I); (e) replication function; (f) replicated intensity function. 
Functions in (d), (e), and (f) are the Fourier transforms of those in (a), (b), and (c), respectively. 
(g) Replicated intensity function showing aliasing in shaded areas resulting from use of too 
large a sampling interval. 
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where the left-hand side is included to show how the series can be expressed in 
terms of the shahfunction, 111, introduced by Bracewell and Roberts (1954). The 
series extends to infinity in both directions, and the delta functions are uniformly 
spaced with an interval Au. The Fourier transform of Eq. (5.5) is the series of 
delta functions shown in Fig. 5.2e: 

l o "  P III(ZAu) = - 6 (I - -). 
Au p = - w  Au 

(5.6) 

In the 1 domain the Fourier transform of the sampled visibility is the convolution 
of the Fourier transform of Y(u) ,  which is the one-dimensional intensity I I  ( l ) ,  
with Eq. (5.6). The result is the replication of I , ( [ )  at intervals (Au)-' shown 
in Fig. 5.2f. If I ,  (1) represents a source of finite dimensions, the replications of 
11(1) will not overlap as long as I l ( 1 )  is nonzero only within a range of 1 that 
is no greater than (Au)-'. An example of overlapping replications is shown in 
Fig. 5.2g. The loss of information resulting from such overlapping is commonly 
referred to as aliasing, because the components of the function within the overlap- 
ping region lose their identity with respect to which end of the replicated function 
they properly belong. Avoidance of aliasing requires that the sampling interval 
Au be no greater than the reciprocal of the interval in 1 within which I l ( 1 )  is 
nonzero. To be precise, we should consider the width of the source as broadened 
by the finite resolution of the observations, rather than the true width of the source, 
but this is usually only a minor effect: see discussion of leakage* by Bracewell 
(2000). 

The requirement for the restoration of a function from a set of samples, for 
example, deriving the function in Fig. 5.2a from the samples in 5 . 2 ~  is easily 
understood by considering the Fourier transforms in Fig. 5.2d and f. Interpolation 
in the u domain corresponds to removing the replications in the 1 domain, which 
can be achieved by multiplication of the function in Fig. 5.2f by the rectangular 
function indicated by the broken line. In the u domain this multiplication corre- 
sponds to convolution of the sampled values with the Fourier transform of the 
rectangular function, which is the unit area sinc function 

sin nu/Au 
TTU 

(5.7) 

If aliasing is avoided, convolution with (5.7) provides exact interpolation of the 
original function from the samples. Thus we can state, as a sampling theorem for 
the visibility, that i f  the intensity distribution is nonzero only within an interval 
of width l , ,  I l ( 1 )  is f i l l y  specified by sampling the visibilityfunction at points 
spaced Au = 1;' in u. In two dimensions, it is simply necessary to apply the 
theorem separately to the source in the 1 and m directions. For further discussion 
of the sampling theorem, see, for example, Unser (2000). 

*Here the usage of the term ''leakage'' is different from that related to polarimetry. 
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Discrete Two-Dimensional Fourier 'Ikansform 

The derivation of a map or image from the visibility measurements is the subject 
of Chapter 10, but it is important at this point to understand the form in which 
the visibility data are required for this transformation. The discrete form of the 
Fourier transform is very widely used in synthesis mapping because of the com- 
putational advantages of the fast Fourier transform (FFT) algorithm [see, e.g., 
Brigham (1988)]. The fast Hartley transform (Bracewell 1984) can also be used. 
With the discrete transform the functions Y(u,  u )  and Z ( 1 ,  m )  are expressed as 
rectangular matrices of sampled values at uniform increments in the two variables 
involved. The rectangular grid points on which the intensity is obtained provide a 
convenient form for further data processing. 

The two-dimensional form of the discrete transform for a Fourier pair f and g 
is defined by 

and the inverse is 

See, for example, Oppenheim and Schafer (1975). The functions are periodic with 
periods of A4 samples in the i and p dimensions and N samples in the k and q 
dimensions. Evaluation of Eqs. (5.8) or (5.9) by direct computation requires ap- 
proximately ( M N ) 2  complex multiplications. In contrast, if M and N are powers 
of 2 the FFT algorithm requires only i M N  log2(MN) complex multiplications. 

The transformation between Y(u, u )  and Z ( 1 ,  m) ,  where Z is the source inten- 
sity in two dimensions, is obtained by substituting g ( i ,  k )  = I ( i A l ,  kAm) and 
f ( p ,  4 )  = Y ( p A u ,  4Au)  in Eqs. (5 .8)  and (5.9). The relationship between the 
integral and discrete forms of the Fourier transform is found in several texts; see, 
for example, Rabiner and Gold (1975) or Papoulis (1977). The dimensions of the 
(u ,  u )  plane that contain these data are MAu by NAu. In the ( 1 ,  m) plane the 
points are spaced A1 in 1 and Am in m ,  and the map dimensions are MA1 by 
NAm. The dimensions in the two domains are related by 

Au = ( M A l ) - ' ,  

A1 = (MAu) - ' ,  Am = ( N A u ) - ' .  (5.10) 

Au = (NAm)- l  

The spacing between points in one domain is the reciprocal of the total dimension 
in the other domain. Thus, if the size of the array in the intensity domain is chosen 
to be large enough that the intensity function is nonzero only within the area 
M h f  x NAm,  then the spacings Au and Au in Eq. (5.10) satisfy the sampling 
theorem. 
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- 
A u  

Figure 5.3 Points on a rectangular grid in the ( u ,  u )  plane at which the visibility is sampled 
for use with the discrete Fourier transform. As shown, the spacings Au and Au are equal. The 
division of the plane into grid cells of size A u  x Au is also shown. 

To apply the discrete transform to the synthesis mapping problem it is neces- 
sary to obtain values of Y ( u ,  u )  at points separated by Au in u and by A u  in u ,  as 
shown in Fig. 5.3. However, the measurements are generally not made at ( u ,  u )  
points on a grid since for tracking interferometers they fall on elliptical loci in the 
(u ,  u )  plane, as explained in Section 4.1. Thus it is necessary to obtain the values 
at the grid points by interpolation or similar processes. In Fig. 5.3 the plane is 
divided into cells of size Au x Au centered on the grid points. A very simple 
method of determining a visibility value to assign at each grid point is to take the 
mean of all values that fall within the same cell. This procedure has been termed 
cell uveraging (Thompson and Bracewell 1974). Better procedures are generally 
used; see Section 10.2 under Weighting ofrhe Visibility Data. However, the cell 
averaging concept helps one to visualize the required distribution of the measure- 
ments; ideally there should be at least one measurement, or a small number of 
measurements, within each cell. Thus the baselines should be chosen so that the 
spacings between the ( u ,  u )  loci are no greater than the cell size, to maximize 
the number of cells that are intersected by a locus. Cells that contain no measure- 
ments result in holes in the ( u ,  u )  coverage, and minimization of such holes is an 
important criterion in array design. 

5.3 INTRODUCTORY DISCUSSION OF ARRAYS 

Phased Arrays and Correlator Arrays 

An array of antennas can be interconnected to operate as a phased array or as a 
correlator array. Phased arrays were used for early solar observations, as in the 
system in Fig. I .  13a, and phased arrays of small antennas can be used as single 



130 ANTENNAS AND ARRAYS 

t POWER 
COMBINER 

Figure 5.4 Simple four-element linear array. la is the unit antenna spacing measured in wave- 
lengths, and f3 indicates the angle of incidence of a signal. (a) Connected as a phased array 
with an adjustable phase shifter in the output of each antenna, and the combined signal ap- 
plied to a square-law detector. The power combiner is a matching network in which the output 
is proportional to the sum of the radio-frequency input voltages. (b) The same antennas con- 
nected as a correlator array. (c) The ordinate is the response of the array: the scale at the left 
applies to the phased array, and at the right to the correlator array. The abscissa is proportional 
to 8 in units of t;' rad. The equal spacing between antennas in this simple grating array gives 
rise to sidelobes in the form of replications of the central beam. 

elements in correlator arrays. Figure 5.4a shows a simple schematic diagram of a 
phased array feeding a square-law detector, in which the number of antennas, nu, 
is equal to four. If the voltages at the antenna outputs are V, , V2, V3, and so on, 
the output of the square-law detector is proportional to 

(VI + v2 + v, + 3 . .  + v*,y. (5.1 I )  

Note that for n,  antennas there are n, , (n,  - 1) cross-product terms of form V,,, V,, 
involving different antennas rn and n, and nu self-product terms of form V,'. If 
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the signal path (including the phase shifter) from each antenna to the detector is 
of the same electrical length, the signals combine in phase when the direction of 
the incoming radiation is given by 

6 = sin-' (E) , (5.12) 

where N is an integer, including zero, and is the spacing interval measured 
in wavelengths. The position angles of the maxima, which represent the beam 
pattern of the array, can be varied by adjusting the phase shifters at the antenna 
outputs, and the beam pattern can be controlled and, for example, scanned to map 
an area of sky. 

In the correlator array in Fig. 5.4b, a correlator generates the cross-product of 
signal voltages V, V,, for every antenna pair. The correlator outputs are equal to 
the cross-product terms of the phased array. These outputs can be combined to 
produce maxima similar to those of the phased array. If a phase shift is intro- 
duced at the output of one of the correlator array antennas, the result appears as 
a corresponding change in the phase of the fringes measured with the correlators 
connected to that antenna. Conversely, the effect of an antenna phase shift can be 
simulated by changing the measured phases when combining the correlator out- 
puts. Thus a beam-scanning action can be accomplished by combining measured 
cross-correlations in a computer with appropriate variations in the phase. This is 
what happens in computing the Fourier transform of the visibility function, that 
is, the Fourier transform of the correlator outputs as a function of spacing. The 
loss of the self-product terms reduces the instantaneous sensitivity of the correla- 
tor array by a factor (n, - l)/n, in power, which is close to unity if n, is large. 
However, at any instant, the correlator array responds to the whole field of the 
individual antennas, whereas the response of the phased array is determined by 
the narrow beam that it forms, unless it is equipped with a more complex signal- 
combining network that allows many beams to be formed simultaneously. Thus 
in mapping, the correlator array gathers data more efficiently than the phased 
array. 

The response pattern of the correlator array to a point source is the same as 
that of the phased array, except for the self-product terms. The response of the 
phased array consists of one or more beams in the direction in which the an- 
tenna responses combine with equal phase. These are surrounded by sidelobes, 
the pattern and magnitude of which depend on the number and configuration of 
antennas. Between individual sidelobe peaks there will be nulls that can be as low 
as zero, but the response is never negative because the output of the square-law 
detector cannot go negative. Now consider subtracting the self-product terms, to 
simulate the response of the correlator array. Over a field of view small compared 
with the beamwidth of an individual antenna, each self-product term represents 
a constant level, and each cross-product represents a fringe oscillation. In the re- 
sponse to a point source, all of these terms are of equal magnitude. Subtracting the 
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self-products from the phased-array response causes the zero level to be shifted in 
the positive direction by an amount equal to I/n, of the peak level, as indicated 
by the broken line in Fig. 5 . 4 ~ .  The points that represent zeros in the phased-array 
response become the peaks of negative sidelobes. Thus in the response of the cor- 
relator array the positive values are decreased by a factor (n, - l ) / n ,  relative to 
those of the phased array. In the negative direction, the response extends to a level 
of - l/(n, - 1) of the positive peak, but no further since this level corresponds to 
the zero level of the phased array. Kogan (1999) has pointed out this limitation on 
the magnitude of the negative sidelobes of a correlator array, and has also noted 
that this limit does not depend on the configuration of the individual antennas, but 
only on their number. Neither of these conclusions apply to the positive sidelobes. 
This result is strictly true only for snapshot observations [i.e., those in which the 
(u, v )  coverage is not significantly increased by earth rotation], and for uniform 
weighting of the correlator outputs. 

Finally, consider some characteristics of a phased array as in Fig. 5.4a. The 
power combiner is a passive network, for example, the branched transmission line 
in Fig. 1.13a. If a correlated waveform of power P is applied to each combiner 
input, then the output power is n, P. In terms of the voltage V at each input, 
a fraction I /& of each voltage combines additively to produce an output of 
&V, or n,P in power. Now if the input waveforms are uncorrelated, again each 
contributes V / &  in voltage but the resultingpowers combine additively (i.e., as 
the sum of the squared voltages), so in this case the power at the output is equal to 
the power P at one input. Each input then contributes only I /n, of its power to the 
output, and the remaining power is dissipated in the terminating impedances of 
the combiner inputs (i.e.. radiated from the antennas if they are directly connected 
to the combiner). The signals from an unresolved source received in the main 
beam of the array are fully correlated, but the noise contributions from amplifiers 
at the antennas are uncorrelated. Thus, if there are no losses in the transmission 
lines or the combiner, the same signal-to-noise ratio at the detector is obtained 
by inserting an amplifier at the output of each antenna, or a single amplifier at 
the output of the combiner. However, such losses are often significant, and it is 
advantageous to use amplifiers at the antennas. Note that, if half the antennas in a 
phased array are pointed at a radio source and the others at blank sky, the signal 
power at the combiner output is one quarter of that with all antennas pointed at 
the source. 

Spatial Sensitivity and the Spatial Transfer Function 

We now consider the sensitivity of an antenna or array to the spatial frequencies 
on the sky. The angular response pattern of an antenna is the same in reception or 
transmission, and at this point it may be easier to consider the antenna in transmis- 
sion. Then power applied to the terminals produces a field at the antenna aperture. 
A function W ( u ,  u )  is equal to the autocorrelation function of E(xL ,  yA) ,  the dis- 
tribution of the electric field across the aperture, where x A ,  and yL are coordinates 
in the aperture plane of the antenna and are measured in wavelengths. Thus, 
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The double-pentagram symbol represents two-dimensional autocomelation. The 
integral in Eq. (5.13) is proportional to the number of ways, suitably weighted by 
the field intensity, in which a specific spacing vector (u ,  u )  can be found within 
the antenna aperture. In reception, W ( u ,  u )  is a measure of the sensitivity of the 
antenna to different spatial frequencies. In effect, the antenna or array acts as a 
spatial frequency filter, and W ( u ,  u )  is widely referred to as the transferfunction 
by analogy with the usage of this term in filter theory. W ( u ,  u )  has also been 
called the spectral sensitivity function (Bracewell 1961, 1962), which refers to 
the spectrum of spatial frequencies (not the radio frequencies) to which the array 
responds. We use the terms spatial transfer function and spatial sensitivity when 
discussing W ( u ,  u). The area of the (u, u )  plane over which measurements can 
be made [i.e., the support of W ( u ,  u) ,  defined as the closure of the domain within 
which W (u, u)  is nonzero] is referred to as the spufiuf frequency Coverage, or the 
(u  , u )  coverage. 

Consider the response of the antenna or array to a point source. Since the vis- 
ibility of a point source is constant over the (u ,  u )  plane, the measured spatial 
frequencies are proportional to W ( u ,  u ) .  Thus the point source response A(1, m )  
is the Fourier transform of W ( u ,  u ) .  This result is formally derived by Bracewell 
and Roberts ( 1954). [Recall from Eq. (2.15) that the point-source response is the 
mirror image of the antenna power pattern, A([, m )  = A(-/ ,  -m) ,  but this dis- 
tinction is seldom of practical importance since the functions concerned are usu- 
ally symmetrical.] The spatial transfer function W ( u ,  u )  is an important feature 
in this chapter, and Fig. 5.5 further illustrates its place in the interrelationships 
between functions involved in radio imaging. 

Figure 5.6a shows an interferometer in which the antennas do not track and 
are represented by two rectangular areas. We shall assume that &(xA, y ~ )  is uni- 
formly distributed over the apertures, such as in the case of arrays of uniformly 
excited dipoles. First suppose that the output voltages from the two apertures are 
summed and fed to a power-measuring receiver, as in some early instruments. 
The three rectangular areas in Fig. 5.6b represent the autocorrelation function of 
the aperture distributions, that is, the spatial transfer function. Note that the au- 
tocorrelation of the two apertures contains the autocorrelation of the individual 
apertures (the central rectangle in Fig. 5.6b) plus the cross-correlation of the two 
apertures (the shaded rectangles). If the two antennas are combined using a cor- 
relator instead of a receiver that responds to the total received power, the spatial 
sensitivity is represented only by the shaded rectangles since the correlator forms 
only the cross-products of signals from the two apertures. Thus the spatial trans- 
fer function W ( u ,  u )  may not include all parts of the autocorrelation function of 
the aperture, depending on the interconnection of the correlators andor detectors. 

The interpretation of the spatial transfer function as the Fourier transform of 
the point-source response can be applied to both the adding and correlator cases. 
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Figure 5.5 Relationships between functions involved in mapping a source. Starting at the 
top left, the autocorrelation of the aperture distribution of the electric field over an antenna 
~ ( x A ,  yA) gives the spatial transfer function W ( u ,  u ) .  The measured visibility in the observa- 
tion of a source is the product of the source visibility V ( u ,  u )  and the spatial transfer function. 
At the top right, the multiplication of the voltage reception pattern VA (I, m )  with its complex 
conjugate produces the power reception pattern, A(1, m ) .  Mapping of the source intensity dis- 
tribution I (I, m )  results in convolution of this function with the antenna power pattern. The 
Fourier transform relationships between the quantities in the (XA, Y A )  and (u. u )  domains, and 
those in the (I, m )  domain, are indicated. When the spatial sensitivity is built up by earth ro- 
tation, as in tracking arrays, it cannot, in general, be described as the autocorrelation function 
of any field distribution. Only the part of the diagram below the broken line applies in such 
cases. 

For example, for the correlator implementation of the interferometer in Fig. 5.6a, 
the response to a point source is the Fourier transform of the function represented 
by the shaded areas. This Fourier transform is 

(5.14) 

where xAI and yA1 are the aperture dimensions and DA is the aperture separation, 
all measured in wavelengths. The sinc-squared functions represent the power pat- 
tern of the uniformly illuminated rectangular apertures, and the cosine term repre- 
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Figure 5.6 The two apertures in (a) represent a two-element interferometer, the spatial trans- 
fer function of which is shown in (b). The shaded areas contain the spatial sensitivity compo- 
nents that result from the cross-correlation of the signals from the two antennas. If the field 
distribution is uniform over the apertures, the magnitude of the spatial sensitivity is linearly 
tapered. This is indicated by c and d, which represent cross sections of the spatial transfer 
function. 

sents the fringe pattern. In early instruments the relative magnitude of the spatial 
sensitivity was controlled only by the field distribution over the antennas, but 
image processing by computer enables the magnitude to be adjusted after an ob- 
servation has been made. 

Some commonly used configurations of antenna arrays, and the boundaries 
of their autocorrelation functions, are shown in Fig. 5.7. The autocorrelation 
functions indicate the instantaneous spatial sensitivity for a continuous aperture 
in the form of the corresponding figure. Equation (5.13) shows that the autocor- 
relation function is the integral of the product of the field distribution with its 
complex conjugate displaced by u and u.  By investigating the values of u and u 
for which the two aperture figures overlap, it is easy to determine the boundary 
within which the spatial transfer function is nonzero using graphical procedures 
described by Bracewell (1961, 1995). It is also possible to identify ridges of high 
autocorrelation that occur for displacements at which the arms of figures such 
as those in Fig. 5.7a, b, or c are aligned. In the case of the ring, Fig. 5.7g, the 
autocorrelation function is proportional to the area of overlap at the two points 
where the ring intersects with its displaced replication. This area is approxi- 
mately proportional to the reciprocal of the sine of the angle between the tangents 
to the rings at an intersection point, and is shown by the curve in Fig. 5.7J, in 
which the abscissa runs from the center to the edge of the autocorrelation circle. 
There is a broad minimum in the spatial sensitivity when the angle of the tan- 
gents is n/2, which, for a ring of unit radius, occurs at v'm = &. When 
the aperture is not completely filled, that is, when the figure represents an array of 
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Figure 5.7 Configurations for array apertures and the boundaries within which the corre- 
sponding autocorrelation functions are nonzero. The configurations represent the aperture 
(XA, y ~ )  plane and the autocorrelations. the spatial frequency ( u ,  u )  plane. (a) The cross and 
(b) its autocorrelation boundary. (c) The T-array and (d) its autocorrelation boundary. (e) The 
equiangular Y and (f) its autocorrelation boundary. The broken lines in (b). (d), and (f) indi- 
cate ridges of high autocorrelation value. (g) The ring and (h) its autocorrelation boundary. 
The autocorrelation function of the ring is circularly symmetrical and (j) shows the radial pro- 
file of the function from the center to the edge of the circle in (h). (i) The Reuleaux triangle. 
The broken lines indicate an equilateral triangle, and the circular arcs that form the Reuleaux 
triangle have radii centered on the vertices of the triangle. The autocorrelation of the Reuleaux 
triangle is bounded by the same circle shown in (h). 
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discrete antennas, the spatial sensitivity takes the form of samples of the auto- 
correlation function. For example, for a cross of uniformly spaced antennas, the 
square in Fig. 5.7b would be represented by a matrix pattern within the square 
boundary. The configurations shown in Fig. 5.7 are discussed in more detail later. 

Meter-Wavelength Cross and T Arrays 

A cross and its autocorrelation function are shown in Fig. 5.7a and b. It is as- 
sumed that the width of the arms is finite but small compared with the length of 
the arms. In the case of the Mills cross (Mills 1963) described briefly in Chapter 1, 
the outputs of the two arms go to a single cross-correlating receiver, so the spatial 
sensitivity is represented by the square in Fig. 5.7b. The narrow extensions on the 
centers of the sides of the square represent parts of the autocorrelation functions 
of the individual arms, which are not formed in the cross-correlation of the arms. 
However, they are formed if the arms consist of lines of individual antennas for 
which the cross-correlation is formed for pairs on the same arm as well as those on 
crossed arms. The case for a T-shaped array is similar and is shown in Fig. 5 . 7 ~  
and d. Again, if only the cross-correlation between the east-west arm and the 
half-length, north-south arm is formed, then the spatial frequency coverage is 
represented by the square component of the autocorrelation. The equivalence be- 
tween the spatial transfer function of such a cross and a T can be understood by 
noting that for any pair of points in the aperture of a cross, for example, one on 
the east arm and one on the north arm, there is a corresponding pair on the west 
and south arms for which the spacing vector is identical. Thus any one of the 
four half-length arms can be removed without reducing the ( u ,  u )  coverage of the 
spatial transfer function. 

If the sensitivity (i.e., the collecting area per unit length) is uniform along the 
arms for a cross or a corresponding T, then the weighting of the spatial sensitivity 
is uniform over the square (u ,  u )  area; note that it does not taper linearly from 
the center as in the example in Fig. 5.6. At the edge of the square area the spatial 
sensitivity falls to zero in a distance equal to the width of the arms. Such a sharp 
edge, resulting from the uniform sensitivity, results in strong sidelobes. Therefore 
an important feature of the Mills cross design was a Gaussian taper of the cou- 
pling of the elements along the arms to reduce the sensitivity to about 10% at the 
ends. This greatly reduced local maxima in the response resulting from sidelobes 
outside the main beam, at the expense of some broadening of the beam. 

Figure I .  12a shows an implementation of a T array that is an example of a 
non-tracking correlator interferometer in which a small antenna is moved in steps, 
with continuous coverage, to simulate a larger aperture; see Blythe (19571, Ryle, 
Hewish, and Shakeshaft (1959), and Ryle and Hewish (1960). The spatial fre- 
quency coverage is the same as would be obtained in a single observation with an 
antenna of aperture equal to that simulated by the movement of the small antenna, 
although the magnitude of the spatial sensitivity is not exactly the same. The term 
aperture synrhesis was introduced to describe such observations. 
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Figure 5.8 (a) The aperture of an east-west, two-element interferometer. The corresponding 
spatial frequency coverage for cross-correlated signals is shown by the shaded areas in (b). If 
the antennas track the source, the spacing vector traces out an elliptical locus (the solid line) 
in the ( u ,  u) plane. The area between the broken lines in (b) indicates the spatial frequencies 
that contribute to the measured values. The spacing between the broken lines is determined by 
the cross-correlation of the antenna apertures. 

5.4 SPATIAL TRANSFER FUNCTION OF A TRACKING ARRAY 

The range of spatial frequencies that contribute to the output of an interferometer 
with tracking antennas is illustrated in Fig. 5.8b. The two shaded areas represent 
the cross-correlation of the two apertures of an east-west interferometer for a 
source on the meridian. As the source moves in hour angle, the changing (u, u )  
coverage is represented by a band centered on the spacing locus of the two an- 
tennas. Recall from Section 4.1 that the locus for an earth-based interferometer 
is an arc of an ellipse, and that since Y(-u, -u) = Y * ( u ,  v), any pair of anten- 
nas measures visibility along two arcs symmetric about the (u, u )  origin, both of 
which are included in the spatial transfer function. 

Because the antennas track the source, the antenna beams remain centered on 
the same point in the source under investigation, and the array measures the prod- 
uct of the source intensity distribution and the antenna pattern. Another view of 
this effect is obtained by considering the radiation received by small areas of 
the apertures of two antennas, the centers of which are A1 and A2 in Fig. 5.9. 
The antenna apertures encompass a range of spacings from u - dA to u + dA 
wavelengths, where dA is the antenna diameter measured in wavelengths. If the 
antenna beams remain fixed in position as a source moves through them, then 
the correlator output is a combination of fringe components with frequencies 
from w,(u - dA)cosS to o,(u + dA)  COSS, where we is the angular velocity of 
the earth and 6 is the declination of the source. To examine the effect when 
the antennas track the source, consider the point B which, because of the track- 
ing, has a component of motion toward the source equal to w,Au cosS wave- 
lengths per second. This causes a corresponding Doppler shift in the signal re- 
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Figure 5.9 Illustration of the effect of tracking on the fringe frequency at the correlator output. 
The u component of the baseline is shown, and the u component is omitted since it does not 
affect the fringe frequency. The curved arrow indicates the tracking motion of the antennas. 

ceived at B. To obtain the fringe frequency for waves arriving at A ,  and B, 
we subtract the Doppler shift from the non-tracking fringe frequency and obtain 
[we@ + Au)  cos 61 - (weAu cos 6) = (w,u cosS). The fringe frequency when 
tracking is thus the same as for the central points A ,  and A2 of the apertures. 
(This is true for any pair of points; choosing one point at an antenna center in 
the example above slightly simplifies the discussion.) Thus if the antennas track, 
the contributions from all pairs of points within the apertures appear at the same 
fringe frequency at the correlator output. As a result, such contributions cannot be 
separated by Fourier analysis of the correlator output waveform and information 
on how the visibility varies over the range u - dA to u + dA is lost. However, 
if the antenna motion differs from a purely tracking one, the information is, in 
principle, recoverable. In imaging sources wider than the antenna beams, an ad- 
ditional scanning motion to cover the source is added to the tracking motion. In 
effect, this scanning allows the visibility to be sampled at intervals in u and u that 
are fine enough for the extended width of the source. This technique, known as 
mosaicking, is described in Section 1 1.6. 

To accommodate the effects that result when the antennas track the source 
position, the normalized antenna pattern is treated as a modification to the in- 
tensity distribution. The intensity distribution then becomes A N ( / ,  m ) l  (I, m ) ,  as 
explained in Section 3.1. The spatial transfer function W ( u ,  u )  for a pair of track- 
ing antennas is represented at any instant by a pair of two-dimensional delta func- 
tions *6(u, v )  and *S(-u, -u) .  For an array of antennas the resulting spatial trans- 
fer function is represented by a series of delta functions weighted in proportion 
to the magnitude of the instrumental response. As the earth rotates, these delta 
functions generate the ensemble of elliptical spacing loci. The loci represent the 
spatial transfer function of a tracking array. 
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Consider observation of a source f (I, m ) ,  for which the visibility function is 
Y ( u ,  u ) ,  with normalized antenna patterns A N ( / ,  m) .  Then if W ( u ,  u )  is the spa- 
tial transfer function, the measured visibility is 

(5.15) 

where the double asterisk indicates two-dimensional convolution and the bar de- 
notes the Fourier transform. The Fourier transform of (5.15) gives the measured 
intensity: 

tl(1, m)AN(I,  m)l * *WU, m ) .  (5.16) 

If we observe a point source at the (I, m) origin, where AN = 1, expression (5.16) 
becomes the point-source response bo(l, m ) .  We then obtain 

- 
boU, rn) = L 2 S ( l ,  m)A,v( I ,  m ) ]  * *w(I, m) = W(1, m ) ,  (5.17) 

where *6(1, rn) represents the point source. Here again, the point-source response 
is the Fourier transform of the spatial transfer function. In the tracking case 
the spatial frequencies that contribute to the measurement are represented by 
W ( u ,  u )  * *AN&, u ) .  Note that ~ N ( U ,  u )  is twice as wide as the corresponding 
antenna aperture in the (x , y)  domain. 

The term aperture synthesis is sometimes extended to include observations 
that involve hour-angle tracking. However, it is not possible to define an exactly 
equivalent antenna aperture for a tracking array. For example, consider the case 
of two antennas with an east-west baseline tracking a source for a period of 12 
h. The spatial transfer function is an ellipse centered on the origin of the (u ,  u )  
plane, with zero sensitivity within the ellipse (except for a point at the origin that 
could be supplied by a measurement of total power received in an antenna). The 
equivalent aperture would be a function, the autocorrelation of which is the same 
elliptical ring as the spatial transfer function. No such aperture function exists, 
and thus the term aperture synthesis can only loosely be applied to describe most 
observations that include hour-angle tracking. 

Desirable Characteristics of the Spatial Transfer Function 

As a first step in considering the layout of the antennas it is useful to consider 
the desired spatial (u, u )  coverage [see, e.g., Keto (1997)l. For any specific ob- 
servation, the optimum (u, u )  coverage clearly depends on the expected inten- 
sity distribution of the source under study, since one would prefer to concentrate 
the capacity of the instrument in ( u ,  u )  regions where the visibility is nonzero. 
However, most large arrays are used for a wide range of astronomical objects, so 
some compromise approach is required. Since, in general, astronomical objects 
are aligned at random in the sky, there is no preferred direction for the highest 
resolution. Thus it is logical to aim for visibility measurements that extend over a 
circular area centered on the ( u ,  u )  origin. 
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As described in Section 5.2, the visibility data are usually interpolated onto a 
rectangular grid for convenience in Fourier transformation, and if approximately 
equal numbers of measurements are used for each grid point, they can be given 
equal weights in the transformation. Uneven weighting results in loss of sensi- 
tivity, since some values then contain a larger component of noise than others. 
From this viewpoint one would like the natural weighting (i.e., the weighting of 
the measurements that results from the array configuration without further adjust- 
ment) to be as uniform as possible within the circular area. 

For a general-purpose array it is difficult to improve on the circularity of the 
measurement area. However, there are exceptions to the uniformity of the mea- 
surements within the circle. As mentioned above, in the Mills cross uniform cou- 
pling of the radiating elements along the arms would result in uniform spatial 
sensitivity. To reduce sidelobes, a Gaussian taper of the coupling was introduced, 
resulting in a similar taper in the spatial sensitivity. This was particularly impor- 
tant because at the frequencies for which this type of instrument was constructed, 
typically in the range 85-408 MHz, source confusion is a serious problem, as 
noted in Chapter 1. Sidelobe responses can be mistaken for sources and can also 
mask genuine sources. For a spatial sensitivity function of uniform rectangular 
character, the beam has a sinc function (sinnxlrrx) profile, for which the first 
sidelobe has a relative strength of 0.2 17. For a uniform, circular, spatial transfer 
function the beam has a profile of the form J ,  ( ~ x ) / n x  for which the first sidelobe 
has a relative strength of 0.132. Sidelobes for a uniform circular (u, u )  coverage 
are less than for a rectangular one, but would still be a problem in conditions of 
source confusion. Thus the uniform weighting may not be optimum for conditions 
of high source density, such as those found at low frequencies. 

Holes in the Spatial Frequency Coverage 

Consider a circular (u ,  u )  area of diameter uk wavelengths in which there are no 
holes in the data; that is, the visibility data interpolated onto a rectangular grid for 
Fourier transformation has no missing values. Then for uniform weighting, the 
synthesized beam, which is obtained from the Fourier transform of the gridded 
transfer function, has the form J I  (nuk8)/nak8, where 8 is the angle measured 
from the beam center. If centrally concentrated weighting is used, the beam is a 
smoothed form of this function. Let us refer to the ( u ,  u )  area described above 
as the complete (u, u )  coverage and the resulting beam as the complete response. 
Now if some data are missing, the actual ( u ,  u )  coverage is equal to the complete 
coverage minus the (u, u )  hole distribution. By the additive property of Fourier 
transforms, the corresponding synthesized beam is equal to the complete response 
minus the Fourier transform of the hole distribution. The holes add an unwanted 
component to the complete response, in effect adding sidelobes to the synthe- 
sized beam. From Parseval’s theorem the rms amplitude of the hole-induced side- 
lobes is proportional to the rms value of the missing spatial sensitivity repre- 
sented by the holes. Other sidelobes also occur as a result of the oscillations in 
the J ,  (naA8) /nak8 profile of the complete response, but there is clearly a contri- 
bution from the holes. 
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5.5 LINEAR TRACKING ARRAYS 

We now consider interferometers or arrays in which the locations of the antennas 
are confined to a straight line. We have seen that for pairs of antennas with east- 
west spacings, the tracking loci in the ( u ,  u )  plane are a series of ellipses centered 
on the ( u ,  u )  origin. To obtain complete ellipses it is necessary that the tracking 
covers a range of 12 h in hour angle. If the antenna spacings of an east-west 
array increase in uniform increments, the spatial sensitivity is represented by a 
series of concentric ellipses with uniform increments in their axes. The angular 
resolution obtained is inversely proportional to the width of the (u, u )  coverage 
in the corresponding direction; the width in the u direction is equal to that in the 
u direction times the sine of the declination, 6. East-west linear arrays containing 
spacings at multiples of a basic interval have found wide use in radio astronomy, 
particularly for observations at 161 greater than -30”. 

In the simplest type of linear array the antennas are spaced at uniform intervals 
.tA (see Fig. 1.13a). This type of array is sometimes known as a grating array, by 
analogy with an optical diffraction grating. If there are n, antennas, such an array 
output contains (n, - 1) combinations with the unit spacing, (n, - 2) with twice 
the unit spacing, and so on. Thus short spacings are highly redundant, and one 
is led to seek other ways to configure the antennas to provide larger numbers 
of different spacings for a given n,. Note, however, that redundant observations 
can be used as an aid in calibration of the instrumental response and effects of 
the atmosphere, so some degree of redundancy is arguably beneficial (Hamaker, 
O’Sullivan, and Noordam 1977). 

An antenna configuration with no redundant spacings that was used by Arsac 
(1955) is shown in Fig. 5.10a. The six possible pair combinations all have dif- 
ferent spacings. With more than four antennas there is always either some redun- 
dancy or some missing spacings. A five-element, minimum-redundancy configu- 
ration devised by Bracewell (1966) is shown in Fig. 5.10b. Moffet (1968) listed 
examples of minimum-redundancy arrays of up to 11 elements, and solutions for 
larger arrays are discussed by Ishiguro (1980). Moffet defined two classes. These 
are restricted arrays in which all spacings up to the maximum spacing, nmax.tA 
(that is, the total length of the array), are present, and general arrays in which 

* 0 . 1 1 1 . 1 1 .  

(b) 

Figure 5.10 Two linear array configurations in which the antennas are represented by filled 
circles. (a) Arsac’s (1955) configuration containing all spacings up to six times the unit spac- 
ing, with no redundancy. (b) Bracewell’s (1966) configuration containing a11 spacings up to 
nine times the unit spacing, with the unit spacing occurring twice. 
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Figure 5.11 Eight-element, minimum-redundancy, linear arrays: the numbers indicate spac- 
ings in multiples of the unit spacing. (a) Two arrays that uniformly cover the range of I to 23 
times the unit spacing. (b) An array that uniformly covers 1 to 24 times the unit spacing, but 
has a length of 39 times the unit spacing. The extra spacings are 8, 3 1 (twice), and 39 times 
the unit spacing. From Moffet (1968), 0 1 9 6 8  IEEE. 

all spacings up to some particular value are present, and also some longer ones. 
Examples for eight elements are shown in Fig. 5.11. A measure of redundancy 
for a linear array is given by the expression 

(5.18) 

which is the number of antenna pairs divided by the number of unit spacings in the 
longest spacing. This is equal to 1 .O and 1. I 1 for the configurations in Fig. 5.10a 
and 5.10b, respectively. A study in number theory by Leech (1956) indicates that 
for large numbers of elements this redundancy factor approaches 4/3. An example 
of a linear, minimum-redundancy array that uses the configuration in Fig. 5.10b 
is described by Bracewell et al. (1973). 

The ability to move a small number of elements adds greatly to the range of 
performance of an array. Figure 5.12 shows the arrangement of the three antennas 
of the Cambridge One-Mile Telescope (Ryle 1962). Antennas 1 and 2 are fixed, 
and their outputs are correlated with that from antenna 3 which can be moved on 
a rail track. In each position of antenna 3 the source under observation is tracked 
for 12 h, and visibility data are obtained over two elliptical loci in the (u ,  u )  plane. 

1 2 -2 -Rail track- 

Figure 5.12 The Cambridge One-Mile Radio Telescope. Antennas 1 and 2 are at fixed loca- 
tions, and the signals they receive are each correlated with the signal from antenna 3, which 
can be located at various positions along a rail track. The fixed antennas are 762 m apart and 
the rail track is a further 762 m long. The unit spacing is equal to the increment of the position 
of antenna 3, and all multiples up to 1524 m can be obtained. 
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Figure 5.13 Antenna configuration of he Westerbork Synthesis Radio Telescope. The 10 
filled circles represent antennas at fixed locations, and the 4 open circles represent antennas 
that are movable on rail tracks. Forty correlators are used to combine the signals from each 
of the fixed antennas with the signals from each of the movable ones. The diameter of the 
antennas is 25 m and the spacing of the fixed antennas is 144 m. As originally constructed, 
the array contained only the 12 western antennas, and the 2 at the east end were added later to 
double the range of spacings. 

The observation is repeated as antenna 3 is moved progressively along the track, 
and the increments in the position of this antenna determine the spacing of the 
elliptical loci in the (u, u )  plane. From the sampling theorem (Section 5.2), the 
required (u ,  u )  spacing is the reciprocal of the angular width, in radians, of the 
source under investigation. The ability to vary the incremental spacing adds versa- 
tility to the array and reduces the number of antennas required. The configuration 
of a larger instrument of this type, the Westerbork Synthesis Radio Telescope 
(Baars and Hooghoudt 1974, Hogbom and Brouw 1974, Raimond and Genee 
1996), is shown in Fig. 5.13. Here ten fixed antennas are combined with four 
movable ones, and the rate of gathering data is approximately 20 times greater 
than with the three-element array. 

The sampling of the visibility function at points on concentric, equispaced el- 
lipses results in the introduction of ringlobe responses. These may be understood 
by noting that for a linear array the instantaneous spacings are represented in one 
dimension by a series of S functions, as shown in Fig. 5.14a. If the array contains 
all multiples of the unit spacings up to N I A ,  and if the corresponding visibility 
measurements are combined with equal weights, the instantaneous response is a 

Figure 5.14 Part of a series of 6 functions representing the instantaneous distribution of spac- 
ings for a uniformly spaced linear array with equal weight for each spacing. (b) Part of the 
corresponding series of fan beams that constitute the instantaneous response. Parts (a) and (b) 
represent the left- and right-hand sides of Eq.(5.19), respectively. 
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series of fan beams, each with a profile of sinc-function form, as in Fig. 5.14b. 
This follows from the Fourier transform relationship for a truncated series of delta 
functions: 

Here + represents Fourier transformation, and the delta functions on the left- 
hand side represent the spacings in the u domain. The series on the left is trun- 
cated, and can be envisaged as selected from an infinite series by multiplication 
with a rectangular window function. The right-hand side represents the beam pat- 
tern in which the Fourier transform of the window function is replicated by con- 
volution with delta functions. As the earth’s rotation causes the spacing vectors 
to sweep out ellipses in the (u, u )  plane, the corresponding rotation of the array 
relative to the sky can be visualized as causing a central fan beam to rotate into 
a narrow pencil beam, while its neighbors give rise to lower-level, ring-shaped 
responses concentric with the central beam, as shown in Fig. 5.15. This general 
argument gives the correct spacing of the ringlobes, the profile of which is modi- 
fied from the sinc-function form. 

If the spatial sensitivity in the ( u ,  u )  plane is a series of circular delta functions 
of radius q ,  2q, . . . , N q ,  the profile of the kth ringlobe is of the form 

Figure 5.15 Example of ringlobes. The response of an array for which the spatial transfer 
function is a series of nine circles concentric with the ( u ,  u )  origin, resulting, for example, 
from observations with an east-west linear array with 12 h tracking at a high declination. 
The radii of these circles are consecutive integral multiples of the unit antenna spacing. The 
weighting corresponds to the principal response discussed in Section 10.2 under Weighting of 
rhe Visibility Data. From Bracewell and Thompson ( I  973). 
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sine'/* [2 (N + i) (qr - k)] , (5.20) 

where r = d m .  The function sinc'/2(X) is plotted in Fig. 5.16 and is the 
half-order derivative of sin nx /n x. It can be computed using Fresnel integrals 
(Bracewell and Thompson 1973). 

The application of the sampling theorem (Section 5.2) to the choice of incre- 
mental spacing requires that the latter be no greater than the reciprocal of the 
source width. In terms of ringlobes, this condition ensures that the minimum 
ringlobe spacing is no less than the source width. Thus, if the sampling theorem 
is followed, the main-beam response to a source just avoids being overlapped by 
a ringlobe response to the same source. In arrays such as those in Figs. 5.12 and 
5.13, ringlobes can be effectively suppressed if the movable antennas are posi- 
tioned in steps slightly less than the antenna diameter, in which case the ringlobe 
lies outside the primary antenna beam. Note, however, that the first spacing can- 
not be less than the antenna diameter, and the missing low-spacing measurements 
may have to be obtained by other means (see the discussion of mosaicking in Sec- 
tion 1 1.6). Ringlobes can also be greatly reduced by image-processing techniques 
such as the CLEAN algorithm which is described in Section 1 1.2. 

Although the elliptical loci in the (u ,  u )  plane are spaced at equal intervals, the 
natural weighting of the data for an east-west linear array is not uniform, because 
in any interval of time the antenna-spacing vectors move a distance proportional 
to their length. In the projection of the (u ,  u )  plane onto the equatorial plane 
of the earth, which is discussed in Section 4.2 as the (u' ,  v ' )  plane, the spacing 

Figure 5.16 Cross section of a ringlobe in the principal response to a point source of an east- 
west array with uniform increments in antenna spacing. The left-hand side is the inside of 
the ring and the right is the outside. The dotted line indicates a negative mean level of the 
oscillations on the inner side. From Bracewell and Thompson (1973). 
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vectors rotate at constant angular velocity, and the density of measured points is 
proportional to 

(5.21) 

In the (u ,  u )  plane the density of measurements, averaged over an area of dimen- 
sions corn arable to the unit spacing of the antennas, is inversely proportional to 
d h .  Along a strai ht line through the (u ,  u )  origin the density is 
inversely proportional to ~d. 
5.6 TWO-DIMENSIONAL TRACKING ARRAYS 

As noted previously, the spatial frequency coverage for an east-west linear array 
becomes severely foreshortened in the u dimension for observations near the ce- 
lestial equator. For such observations a configuration of antennas is required in 
which the Z component of the antenna spacing, as defined in Section 4.1, is com- 
parable to the X and Y components. This is achieved by including spacings with 
azimuths other than east-west. The configuration is then two-dimensional. An ar- 
ray located at an intermediate latitude and designed to operate at low declinations 
can cover the sky from the pole to declinations of about 30" into the opposite ce- 
lestial hemisphere. This range includes about 70% of the total sky, that is, almost 
three times as much as that of an east-west array. Since the 2 component is not 
zero, the elliptical ( u ,  u )  loci are broken into two parts as shown in Fig. 4.4. As 
a result, the pattern of the ( u ,  u )  coverage is more complex than is the case for 
an east-west linear array, and the ringlobes that result from uniform spacing of 
the loci are replaced by more complex sidelobe structure. In two dimensions the 
choice of a minimum-redundancy configuration of antennas is not as simple as 
for a linear array. A first step is to consider the desired spatial transfer function 
W ( u ,  u ) .  There is no known analytical way to go from W ( u ,  u )  to the antenna 
configuration, but iterative methods of finding an optimum, or near-optimum, so- 
lution are available. 

First consider the effect of tracking a source across the sky, and suppose that 
for a source near the zenith the instantaneous spatial frequency coverage results 
in approximately uniform sampling within a circle centered on the (u ,  u )  origin. 
At any time during the period of tracking of the source, the (u ,  u )  coverage is the 
zenith coverage projected onto the plane of the sky, with some degree of rotation 
that depends on the hour angle and declination of the source. The projection re- 
sults in foreshortening of the coverage from a circular to an elliptical area, still 
centered on the ( u ,  u )  origin, and this foreshortening is least at meridian transit. 
The effect of observing over a range of hour angle can be envisaged as averag- 
ing a range of elliptical (u ,  u )  areas that suffer some rotation of the major axis. 
At the center of the ( u ,  u )  plane there will be an area that remained within the 
foreshortened coverage over the whole observation, and if the instantaneous cov- 
erage is uniform, then it will remain uniform within this area. Outside the area, 
the foreshortening will cause the coverage to taper off smoothly. These effects 
depend on the declination of the source and the range of hour-angle tracking. 
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Practical experience indicates that some tapering of the visibility measurements 
is seldom a serious problem. Thus it can be expected that two-dimensional arrays 
in which the number of antennas is large enough to provide good instantaneous 
(u,  u )  coverage will also provide good performance when used with hour angle 
tracking. 

Open-Ended Configurations 

For configurations with open-ended arms such as the cross, T, and Y, the spa- 
tial frequency coverage is shown in Fig. 5.7. The spatial frequency coverage of 
the cross and T has four-fold symmetry in both cases; we ignore the effect of 
the missing small extensions on the top and bottom sides of the square for the 
T. The spatial frequency coverage of the equiangular Y array (1 20" between ad- 
jacent arms) has six-fold symmetry. (n-fold symmetry denotes a figure that is 
unchanged by rotation through 2n/n. For a circle, n becomes infinite, and other 
figures approach circular symmetry as n increases.) The autocorrelation function 
of the equiangular Y is closer to circular symmetry than that of a cross or T. In 
this respect a five-armed array, as suggested by Hjellming (1989), would be better 
still, but more expensive. 

As an example of the open-ended configuration, we examine some details of 
the design of the VLA (Thompson et al. 1980; Napier, Thompson, and Ekers 
1983). This instrument is located at latitude 34" N in New Mexico and is able to 
track objects as far south as -30" for almost 7 h without going below lo" in el- 
evation. Performance specifications called for mapping with full resolution down 
to at least -20" declination and for obtaining a map in no more than 8 h of ob- 
servation without moving antennas to new locations. In designing the array, com- 
parison of the performance of various antenna configurations was accomplished 
by computing the spatial transfer function with tracking over an hour angle range 
f4 h at various declinations. In judging the merit of any configuration the basic 
concern was to minimize sidelobes in the synthesized beam. It was found that 
the percentage of holes in the (u, u )  coverage was a consistent indication of the 
sidelobe levels of the synthesized beam, and to judge between different config- 
urations, it was not always necessary to calculate the detailed response (NRAO 
1967, 1969). For a given number of antennas, the equiangular Y was found to be 
superior to the cross and T; see Fig. 5.17. 

Inverting the Y has no effect on the beam, but if the antennas have the same 
radial disposition on each arm, the performance near zero declination is improved 
by rotating the may  so that the nominal north or south arm makes an angle of 
about 5" with the north-south direction. Without this rotation the baselines be- 
tween corresponding antennas on the other two arms are exactly east-west, and 
for 6 = 0" the spacing loci degenerate to straight lines that are coincident with 
the u axis and become highly redundant. The total number of antennas, 27, was 
chosen from a consideration of (u ,  u )  coverage and sidelobe levels, and resulted 
in peak sidelobes at least 16 dB below the main-beam response, except at 6 = 0" 
where earth rotation is least effective. The 27 antennas provide 351 pair combi- 
nations. 
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Figure 5.17 (a) Proposed antenna configuration for the VLA that resulted from Mathur’s 
(1969) computer-optimized design. (b) Power-law design (Chow 1972) adopted for the VLA. 
From Napier, Thompson, and Ekers (1983). 0 1 9 8 3  IEEE. 
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The positions of the antennas along the arms provide another set of variables 
that can be adjusted to optimize the spatial transfer function. Figure 5.17 shows 
two approaches to the problem. Configuration (a) was obtained by using a pseu- 
dodynamic computation technique (Mathur 1969), in which arbitrarily chosen 
initial conditions were adjusted by computer until a near-optimum (u ,  u )  cover- 
age was reached. Configuration (b) shows a power-law configuration derived by 
Chow (1972). This analysis led to the conclusion that a spacing in which the dis- 
tance of the n th antenna on an arm is proportional to nu would provide good (u ,  u )  
coverage. Comparison of the empirically optimized configuration with the power- 
law spacing with cr = 1.7 showed the two to be essentially equal in performance. 
The power-law result was chosen largely for reasons of economy. A requirement 
of the design was that four sets of antenna stations be provided to vary the scale 
of the spacings in four steps, to allow a choice of resolution and field of view for 
different astronomical objects. By making cr equal to the logarithm to the base 2 
of the scale factor between configurations, the location of the nth station for one 
configuration coincides with that of the 2n th station for the next-smaller config- 
uration. The total number of antenna stations required was thereby reduced from 
108 to 72. Plots of the spatial frequency coverage are shown in Fig. 5.18. The 
snapshot in Fig. 5.18d shows the instantaneous coverage, which is satisfactory 
for mapping simple structure in strong sources. 

Closed Configurations 

The discussion here will largely follow that of Keto (1997). Returning to the 
proposed criterion of uniform distribution of measurements within a circle in the 
(u ,  u )  plane, we note that a configuration of antennas around a circle (a ring array) 
provides a useful starting point since the distribution of antenna spacings cuts off 
sharply in all directions at the circle diameter. This is shown in Fig. 5.7g and h. We 
begin by considering the instantaneous (u ,  u )  coverage for a source at the zenith. 
This is shown in Fig. 5.19a for 21 equally spaced antenna locations indicated by 
triangles. There are 2 I antenna pairs at the unit spacing, uniformly distributed in 
azimuth, and each of these is represented by two points in the ( u ,  u )  plane. The 
same statement can be made for any other paired spacings around the circle. As a 
result, the spatial transfer function consists of points that lie on a pattern of circles 
and radial lines. Note also that as the spacings approach the full diameter of the 
circle the distance between antennas increases only very slowly. For example, 
the direct distance between antennas spaced 10 intervals around the circle is very 
little more than that for antennas at 9 intervals. Thus there is an increase in the 
density of measurements at the longest spacings (the points along any radial line 
become more closely spaced) as well as a marked increase toward the center. Note 
that the density of points closely follows the radial profile of the autocorrelation 
function in Fig. 5.7j, except close to the origin since Fig. 5.19 includes only cross- 
correlations between antennas. 

One way of obtaining a more uniform distribution is to randomize the spacings 
of the antennas around the circle. The ( u  , v) points are then no longer constrained 
to lie on the pattern of circles and lines, and Fig. 5.19b shows an example in which 
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Figure 5.18 Spatial frequency coverage for the VLA with the power-law configuration of 
Fig. 5.17b: (a) S = 45"; (b) S = 30"; (c) 6 = 0"; (d) snapshot at zenith. The range of 
hour angle is f4 h or as limited by a minimum pointing elevation of 9", and f5 min for the 
snapshot. The lengths of the ( u ,  u )  axes from the origin represent the maximum distance of 
an antenna from the array center, that is, 21 km for the largest configuration. From Napier, 
Thompson, and Ekers (1983), @ 1983 IEEE. 

a partial optimization has been obtained by computation using a neural-net algo- 
rithm. Keto (1997) discusses various algorithms for optimizing the uniformity 
of the spatial sensitivity. An earlier investigation of circular arrays by Cornwell 
(1988) also resulted in good uniformity within a circular (u ,  u )  area. In this case 
an optimizing program based on simulated annealing was used, and the spacing 
of the antennas around the circle shows various degrees of symmetry that result 
in patterns resembling crystalline structure in the ( u ,  u )  spacings. 

Optimizing the antenna configurations can also be considered more broadly, 
and Keto (1997) notes that the cutoff in spacings at the same value for all di- 
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Figure 5.19 (a) A circular m a y  with 21 uniformly spaced antennas indicated by the triangles, 
and the instantaneous spatial frequency coverage indicated by the points. The scale of the 
diagrams is the same for both the antenna positions and the spatial frequency coordinates u and 
u. (b) The array and spatial frequency coverage as in (a) but after adjustment of the antenna 
positions around the circle to improve the uniformity of the coverage. (c) An array of 24 
antennas equally spaced around a Reuleaux triangle, and the corresponding spatial frequency 
coverage. (d) The array and spatial sensitivity as in (c) with adjustment of the antenna spacing 
to optimize the uniformity of the coverage. From Keto (1997). 0 1 9 9 7  American Astron. SOC. 

rections is not unique to the circular configuration. There are other figures, such 
as the Reuleaux triangle, for which the width is constant in all directions. The 
Reuleaux triangle is shown in Fig. 5.7i, and consists of three equal circular arcs 
indicated by the solid lines. The total perimeter is equal to that of a circle of diam- 
eter equal to one of the sides of the equilateral triangle shown by the broken lines. 
Similar figures can be constructed for any regular polygon with an odd number of 
sides, and a circle represents such a figure for which the number tends to infinity. 
The Reuleaux triangle is the least symmetrical of this family of figures. Other 
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facts about the Reuleaux triangle and similar figures can be found in Rademacher 
and Toeplitz (1957). 

Since the optimization of the circular array in Fig. 5.19b results in a reduction 
in the symmetry, it may be expected that an array based on the Reuleaux trian- 
gle would provide better uniformity in the spatial frequency coverage than the 
circular array. This is indeed the case, as can be seen by comparing Fig. 5.19a 
and c for both of which the antenna spacing is uniform. The circular array with 
irregular antenna spacings in Fig. 5.19b was obtained by starting with a circular 
array and allowing antenna positions to be moved small distances. In this case the 
program was not allowed to reach a fully optimized solution. Allowing the op- 
timization to run to convergence results in antennas at irregular spacings around 
a Reuleaux triangle, as shown in Fig. 5.19d. This result does not depend on the 
starting configuration. Comparison of Figs. 5.19b and d shows that the difference 
between the circle and the Reuleaux triangle is much less marked when they have 
both been subjected to some randomization of the antenna positions around the 
figure, although a careful comparison shows the uniformity in Fig. 5.19d to be a 
little better than in b. 

Figure 5.20 shows the spatial frequency coverage for an array in an optimized 
Reuleaux triangle configuration. The tracking range is - f 3  h of hour angle, and 
the latitude is equal to that of the VLA. Comparison of these figures with corre- 
sponding ones for the VLA in Fig. 5. I 8 shows that the Reuleaux triangle produces 
spatial frequency coverage that is closer to the uniformly sampled circular area 
than does the equiangular Y configuration. As indicated in Fig. 5.7, the autocor- 
relation function of a figure with linear arms contains high values in directions 
where the arms of overlapping figures line up. This effect contributes to the lack 
of uniformity in the spatial sensitivity of the Y array. Curvature of the arms or 
quasirandom lateral deviations of the antennas from the arms helps to smear the 
sharp structure in the spatial transfer function. The high values along radial lines 
do not occur in the autocorrelation function of a circle or similar closed figure, 
which is one reason why configurations of this type provide more uniform spatial 
frequency coverage. 

Despite some less-than-ideal features of the equiangular Y, the VLA produces 
astronomical images of very high quality. Thus, although the circularity and uni- 
formity of the spatial frequency coverage is a useful criterion, this is not a highly 
critical factor. So long as the measurements cover the range of u and u for which 
the visibility is high enough to be measurable, and the source is strong enough that 
any loss in sensitivity resulting from nonuniform weighting can be tolerated, ex- 
cellent results can be obtained. The Y array has a number of practical advantages 
over a closed configuration. When several scaled configurations are required to 
allow for a range of angular resolution, the alternative locations lie along the same 
arms, whereas with the circle or Reuleaux triangle, separate scaled configurations 
are required. The flexibility of the Y array is particularly useful in VLA obser- 
vations at southern declinations for which the projected spacings are seriously 
foreshortened in the north-south direction. For such cases it is possible to move 
the antennas on the north arm onto the positions for the next-larger configuration, 
and thereby substantially compensate for the foreshortening. 
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Figure 5.20 Spatial frequency coverage for a closed configuration of 24 antennas optimized 
for uniformity of measurements in the snapshot mode: (a) snapshot at zenith; (b) S = f30"; 
(c) S = 0"; (d) S = -28". The triangles in (a) indicate the positions of the antennas. The track- 
ing is calculated for an array at 34" latitude to simplify comparison with the VLA (Fig. 5.18). 
For each declination shown the tracking range is the range of hour angle for which the source 
elevation is greater than 25". From Keto (1997), 01997 American Astron. SOC. 

Some further interesting examples of important configurations are given below. 

The compact array of the Australia Telescope is an east-west linear array of 
six antennas, all movable on rail track (Frater, Brooks, and Whiteoak 1992). 
The UTR-2 is a T-shaped array of large-diameter, broadband dipoles built 
by the Ukrainian Academy of Sciences near Grakovo, Ukraine (Braude et al. 
1978). The frequency range of operation is 10-25 MHz. Several smaller an- 
tennas of similar type have been constructed at distances up to approximately 
900 km from the Grakovo site, and are used for VLBI observations. 
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An array of 720 conical spiral antennas in a T-shaped configuration operat- 
ing in the frequency range 15-1 25 MHz was constructed at Borrego Springs, 
California (Erickson, Mahoney, and Erb 1982). 
The Mauritius Radio Telescope, near Bras d’eau, Mauritius, is a T-shaped 
array of helix antennas operating at 150 MHz. The east-west arm is 2 km 
long. The south arm is 880 m long and is synthesized by moving a group of 
antennas on trolleys. The array is similar in principle to the one in Fig. 1. I2a. 
It is intended to cover a large portion of the southern hemisphere. 
The GMRT (Giant Meter-wave Radio Telescope) near Pune, India, consists 
of 30 antennas, 16 of which are in a Y-shaped array with curved arms ap- 
proximately 15 km long. The remaining 14 are in a quasirandom cluster in 
the central 2 km (Swamp et al. 1991). The antennas are 45 m in diameter 
and are at fixed locations. The highest operating frequency is approximately 
1.6GHz. 
A circular array with 96 uniformly spaced antennas was constructed at Cul- 
goora, Australia, for observations of the sun (Wild 1967). This was a multi- 
beam, scanning, phased array rather than a correlator array, consisting of 
96 antennas uniformly spaced around a circle of diameter 3 km and op- 
erating at 80 and 160 MHz. To suppress unwanted sidelobes of the beam, 
Wild (1965) devised an ingenious phase-switching scheme termed 5’ syn- 
thesis. The spatial sensitivity of this ring array was analyzed by Swenson 
and Mathur (1967). 
The Submillimeter Array (SMA) of the Smithsonian Astrophysical Observa- 
tory and Academia Sinica of Taiwan, located on Mauna Kea, Hawaii, is the 
first array to be built using a Reuleaux triangle configuration (Moran 1998). 

VLBI Configurations 

In VLBI arrays the layout of antennas results from considerations of both (u ,  u )  
coverage and practical operating requirements. Important factors involve proxim- 
ity to existing observatories for technical support services, and access to trans- 
portation centers for return of tapes to the correlator facility. Ranges of hour an- 
gle and declination that are simultaneously observable from the widely spaced 
locations must also be considered. Although the locations of the widely spaced 
antennas of a VLBI array deviate significantly from a plane, the angular widths 
of the sources under observation are generally sufficiently small that the small- 
field approximation can be used in deriving the radio image, as discussed in Sec- 
tion 3.1. Similar considerations apply to long-baseline arrays which operate in a 
connected-element mode using radio links to transmit IF and reference signals. 
An example of this type is the Multielement Radio-linked Interferometer Net- 
work (MERLIN) of the Jodrell Bank Observatory, England, which consists of six 
antennas with baselines up to 233 km (Thomasson 1986). 

Any suitable radio telescope with an atomic frequency standard, phase-locked 
oscillators, and appropriate receiving and recording systems can be used in a 
VLBI experiment. Several organized networks have been set up to coordinate 
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joint experiments between different observatories. For the first two decades af- 
ter the inception of the VLBI technique, observations were mainly joint ventures 
between different institutions. Consideration of arrays dedicated solely to VLBI 
occurred as early as 1975 (Swenson and Kellermann 1975), but construction of 
such instruments did not begin for another decade. A study of antenna locations 
for a VLBI array has been described by Seielstad, Swenson, and Webber (1979). 
To obtain a single index as a measure of the performance of any configuration, the 
spatial transfer function was computed for a number of declinations. The fraction 
of appropriately sized (u, u )  cells containing measurements was then weighted 
in proportion to the area of sky at each declination and averaged. Maximizing 
the index, in effect, minimizes the number of holes (unfilled cells). Other studies 
have involved computing the response to a model source, synthesizing a map, and 
comparing the result with the model. 

The design of an array dedicated to VLBI, the Very-Long-Baseline Array 
(VLBA) of the United States, is described by Napier et al. (1994). The antenna lo- 
cations are listed in Table 5.1 and shown in Fig. 5.2 la. A discussion of the choice 
of sites is given by Walker (1984). Antennas in Hawaii and St. Croix provide 
long east-west baselines. Massachusetts to Saint Croix is the longest north-south 
spacing. A site in Alaska would be further north, but would be of limited benefit 
because it would provide only restricted accessibility for sources at southern de- 
clinations. An additional site within the southern hemisphere would enhance the 
(u. u )  coverage at southern declinations. The south-eastern region of the United 
States is avoided because of the higher levels of water vapor in the atmosphere. 
Intermediate north-south baselines are provided by the drier west coast area. The 
Iowa site fills in a gap between Massachusetts and the southwestern sites. The 
short spacings are centered on the VLA to allow the possibility of development 
of real-time linkage to it, and as a result the spatial frequency coverage shows a 
degree of central concentration. This enables the array to make measurements on 
a wider range of source sizes than would be possible with the same number of 

TABLE 5.1 Locations of Antennas in the VLBAa 

Location 
N. Latitude W. Longitude Elevation 

(deg rnin sec) (deg min sec) (m) 

St. Croix, VI 
Hancock, NH 
N. Liberty, IA 
Fort Davis, TX 
Los Alamos, NM 
Pie Town, NM 
Kitt Peak, AZ 
Owens Valley, CA 
Brewster, WA 
Mama Kea, HI 

17 45 
42 56 
41 46 
30 38 
35 46 
34 18 
31 57 
37 13 
48 07 
19 48 

30.57 
00.96 
17.03 
05.63 
30.33 
03.61 
22.39 
54.19 
52.80 
15.85 

64 35 
71 59 
91 34 

103 56 
106 14 
I08 07 
1 1 1  36 
118 16 
119 40 
155 27 

02.61 
11.69 
26.35 
39.13 
42.01 
07.24 
42.26 
33.98 
55.34 
28.95 

16 
309 
24 1 

1615 
1967 
237 I 
1916 
1207 
255 

3720 
~~ 

‘Data from Napier et al. (1994). @ 1994 IEEE. 



(b) 
Figure 5.21 Very-Long-Baseline Array in the United States: (a) locations of the 10 antennas, 
and (b) spatial frequency coverage (spacings in thousands of kilometers) for declinations of 
64", 30°, 6", and -18". in which the observing time at each antenna is determined by an 
elevation limit of 10". From Walker (1984). 
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antennas and more uniform coverage. However, this results in some sacrifice in 
capability for mapping complex sources. 

Orbiting VLBI Antennas 

A logical step in the development of VLBI from ground-based arrays is the ad- 
dition of antennas in space (Preston et al. 1983, Burke 1984). The combination 
of orbiting VLBI (OVLBI) and ground-based antennas has several obvious ad- 
vantages. Higher angular resolution can be achieved, and the ultimate limit may 
be set by interstellar scintillation (see Section 13.6). The orbital motion of the 
spacecraft helps to fill in the coverage in the (u ,  u )  plane, and thereby improves 
the detail and dynamic range in the resulting images. 

Figure 5.22 shows an example of the (u ,  u )  coverage for observations with 
the HALCA spacecraft (Hirabayashi et al. 1998) and a series of terrestrial anten- 
nas: one at Usuda, Japan, one at the VLA site, and the 10 VLBA antennas. The 

Figure 5.22 An example of spatial frequency coverage for the HALCA satellite with 12 
ground-based antennas. This is for an observation of the source 1622 + 633 at 5 GHz fre- 
quency. See text for further details. 
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Figure 5.23 Spatial frequency coverage for two antennas on satellites with circular orbits 
of radius approximately ten times the earth’s radius R E :  (a) source along X axis; (b) source 
along Y or Z axes; (c) source centered between X, Y, and Z axes. The orbits lie in the XY 
and X Z  planes of a rectangular coordinate system. The satellite periods differ by 10% and 
the observing period is approximately 20 days. From Preston et al., in Very Long Baseline 
Interferometry Techniques, F. Biraud, Ed., Cepadues, France, 1983. 

spacecraft orbit is inclined at an angle of 3 1 O to the earth’s equator, and the height 
above the earth’s surface is 21,400 km at apogee and 560 km at perigee. The 
spacings shown are for a frequency of 5 GHz, and the units of u and u are lo6 
wavelengths; the maximum spacing is 5 x lo* wavelengths which corresponds 
to a fringe width of 0.4 mas. The approximately circular loci at the center of the 
figure represent baselines between terrestrial antennas. The orbital period is 6.3 h 
and the data shown correspond to an observation of duration about four orbital 
periods. The spacecraft orbit precesses at a rate of order 1” per day, and over 
the course of one to two years, the coverage of any particular source can be im- 
proved by combining several observations. Figure 5.23 shows an example of the 
(u, u )  coverage that could be obtained between two spacecraft in circular orbits 
of radius about ten earth radii, with orthogonal planes that have periods differing 
by 10%. In practice there are likely to be restrictions on coverage resulting from 
the limited steerability of the astronomy and communication antennas relative to 
the spacecraft. It is necessary for the spacecraft to maintain an attitude in which 
the solar power panels remain illuminated and the communications antenna can 
be pointed toward the earth. A discussion of some technical points concerning 
orbiting VLBI is given in Section 9.10. 

Planar Arrays 

Studies of cosmic background radiation and the Sunyaev-Zel’dovich effect re- 
quire observations with very high brightness sensitivity at wavelengths of order 
1 cm and shorter: see also Section 10.4 under Cosmic Background Anisotropy. 
Unlike the sensitivity to point sources, the sensitivity to a broad feature that 
largely fills the antenna beam does not increase with increasing collecting area 
of the antenna. Thus, for cosmic background measurements large antennas are 
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not required. Extremely good stability is necessary to allow significant measure- 
ments at the level of a few tens of microkelvins per beam, that is, of order 
Jy arcmin-’. Special arrays have been designed for this purpose. A number of 
antennas are mounted on a platform, with their apertures in a common plane. The 
whole structure is then supported on an altazimuth mount so that the antennas can 
be pointed to track any position on the sky. An example of such an instrument, 
the Cosmic Background Imager (CBI), has been developed by A. C .  S. Readhead 
and colleagues at Caltech (Padin et al. 2001). It consists of thirteen Cassegrain 
focus paraboloids, each of diameter 90 cm, which are operated in the 2636-GHz 
range. In this instrument the antenna mounting frame has the shape of an irregular 
hexagon with three-fold symmetry and maximum dimensions of approximately 
6.5 m, as shown in Fig. 5.24. For the particular type of measurements required, the 
planar array has a number of desirable properties compared with a single antenna 
of similar aperture, or a number of individually mounted antennas, as outlined 
below: 

The use of a number of individual antennas allows the output to be measured 
in the form of cross-correlations between antenna pairs. Thus the output is 
not sensitive to the total power of the receiver noise but only to correlated 
signals entering the antennas. The effects of gain variations are much less 
severe than in the case of a total-power receiver. Thermal noise from ground 
pickup in the sidelobes is substantially resolved. 
The antennas can be mounted with the closest spacing physically possible. 
There are then no serious gaps in the spatial frequencies measured, and struc- 
ture can be mapped up to the width of the primary antenna beams. The 
apertures cannot block one another as the system tracks, as can occur for 
individually mounted antennas in close-spaced arrays. 
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Figure 5.24 (a) Face view of the antenna platform of the Cosmic Background Imager, show- 
ing a possible configuration of  the 13 antennas. (b) The corresponding antenna spacings in 
(u ,  u )  coordinates for a wavelength of approximately 1 cm. 
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In the array in Fig. 5.24, the whole antenna mounting platform can be ro- 
tated about an axis normal to the plane of the apertures. Thus rotation of the 
baselines can be controlled as desired and is independent of earth rotation. 
For a constant pointing direction and rotation angle relative to the sky, the 
pattern of (u ,  u )  coverage remains constant as the instrument tracks. Varia- 
tions in the correlator outputs with time can result from ground radiation in 
the sidelobes, which varies with azimuth and elevation as the array tracks. 
This variation can help to separate out the unwanted response. 
The close spacing of the antennas results in some cross-coupling by which 
spurious correlated noise is introduced into the receiving channels of ad- 
jacent antennas. However, because the antennas are rigidly mounted, the 
coupling does not vary constantly with time as is the case for individually 
mounted antennas, and it is therefore more easily calibrated out. In the CBI 
design the coupling is reduced to - I 10 to - 120 dB by the use of a cylindri- 
cal shield around each antenna, and by designing the subreflector supports 
to minimize scattering. 

At a frequency of 30 GHz, a pointing error of 1 arcsec in a 6-m baseline pro- 
duces a visibility phase error of 1". Pointing accuracy is critical, and the CBI 
antenna is mounted in a retractable dome to shield it from wind, which can be 
strong at the 5000-m-elevation site at Llano de Chajnantor, Chile. 

5.7 CONCLUSIONS ON ANTENNA CONFIGURATIONS 

The most accurate prediction of the performance of an array is obtained by com- 
putation of the response of the particular design to models of sources to be ob- 
served. However, in this book we are more concerned with broad comparisons 
of various configurations to illustrate the general considerations in array design. 
Some conclusions are summarized below: 

A circle centered on the ( u ,  u )  origin can be considered an optimum bound- 
ary for the distribution of measurements of visibility. Uniformity of the dis- 
tribution within the circle is a further useful criterion in many circumstances. 
An exception is the condition where sidelobes of the synthesized beam are 
a serious problem, for example, in low-frequency arrays operating in con- 
ditions of source confusion, as mentioned in Chapter 1 .  In arrays where the 
scale of the configuration cannot be varied to accommodate a wide range 
of source dimensions, a centrally concentrated distribution allows a greater 
range of angular sizes to be measured with a limited number of antennas. If 
sensitivity to broad, low-brightness objects is important, it is preferable to 
have more antenna pairs with short spacings at which such sources are not 
highly resolved. Note that two of the largest arrays for which the antennas 
are not movable, the GMRT and the VLBA, each have a cluster of antennas 
at relatively short spacings as well as other antennas at longer spacings in 
order to cover a wide range of source dimensions. 



162 ANTENNAS AND ARRAYS 

Although the effect of sidelobes on the synthesized beam can be greatly 
reduced by CLEAN and other image processing algorithms to be described 
in Chapter 1 1, obtaining the highest dynamic range in radio images (that is, a 
range of reliable intensity measurements of order lo6 or more) requires both 
good spatial frequency coverage and effective image processing. Reducing 
holes (unsampled cells) in this coverage, which are found to be a consistent 
indicator of sidelobe levels, is a primary objective in array design. 
The linear array has been used for both large and small instruments and 
requires tracking over f6 h to obtain full two-dimensional coverage. It is 
most useful for regions of the sky within about 60" of the celestial poles and 
is the most economical configuration with respect to land use for road or rail 
track. A number of small arrays originally built as linear arrays have later 
been developed into crosses or T arrays. 
The equiangular Y gives the best spatial frequency coverage of the existing 
configurations with linear, open-ended arms. Autocomelation functions of 
configurations with odd numbers of arms have higher-order symmetry than 
those with even numbers in which opposite arms are aligned. Curvature of 
the arms or random displacement of the antennas helps to smooth out the 
linear ridges in the (u ,  u )  coverage (e.g., in the snapshot in Fig. 5.18). Such 
features are also smoothed out by hour-angle tracking and are most serious 
for snapshot observations. 
The circle and Reuleaux triangle provide the most uniform distributions of 
measurements. With uniformly spaced antennas the Reuleaux triangle pro- 
vides more uniform ( u ,  u )  coverage than the circle, but varying the spacing 
in a quasirandom manner greatly improves both cases and reduces the dif- 
ference between them; see Fig. 5.19. 
The circle can be elongated into an ellipse in the north-south direction to 
compensate for foreshortening toward the extremes of the declination cover- 
age, and other configurations can be similarly extended. 

5.8 OTHER CONSIDERATIONS 

Up to this point we have concentrated on the configuration of antennas. Other 
array considerations include sensitivity. atmospheric effects, and observation of 
sources wider than the antenna beam. Further details of array performance that 
impact the design are found in chapters that follow, and a broad discussion is 
given by Hjellming (1989). We now briefly outline some of the more important 
factors. 

Sensitivity 

The sensitivity to a point source is proportional to the effective collecting area of 
an antenna multiplied by the number of antennas, that is, proportional to n,d2, 
where n,  is the number of antennas and d is the antenna diameter. In the case of a 
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source that is larger than the beams of the individual antennas, a situation that oc- 
curs mostly at millimeter wavelengths; the source can be covered by mosaicking, 
in which a number of pointing directions are used, as discussed in Section 11.6. 
The number of pointing directions is inversely proportional to the solid angle of 
the beam; that is, it is proportional to d 2 .  The sensitivity for any one pointing 
direction is proportional to the square root of the time spent at that direction, so 
overall the sensitivity to an extended source is proportional to n,d. To maximize 
sensitivity for point sources one would maximize nad2, but to maximize the sen- 
sitivity to surface brightness, one would maximize n,d and also use a compact 
configuration. Other aspects of sensitivity including system noise are discussed 
in Section 6.2. 

A commonly used rule of thumb for the cost of an antenna is that it is propor- 
tional to d", where a! M 2.7 for values of d from a few meters to tens of meters. 
Thus, to obtain a large collecting area, it is cheaper to use a large number of small 
antennas, as long as the cost of electronics, most of which is proportional to the 
number of antennas, is relatively low. The cost of the correlator system is, in part, 
proportional to the number of antenna pairs, that is, to na2, and for a wideband, 
multichannel correlator for spectral line observing, this can also become a signif- 
icant cost item. Thus the choice of antenna size and number depends on the array 
parameters to be optimized and also on cost considerations. 

Long Wavelengths 

At low frequencies, by which we mean frequencies below a few hundred mega- 
hertz (wavelengths of - 1  m and longer), the ionosphere causes serious phase 
fluctuations in the signals passing through it, as discussed further in Section 13.3. 
Calibration of this effect is particularly difficult if the excess path length varies 
significantly over the beam of the antennas, which can occur if the angular width 
of the beam is greater than that of the ionospheric irregularities. Thus, for low- 
frequency observations, it is advantageous to keep the beam small by using large 
antennas. For example, the GMRT, which operates in the range 75-1600 MHz, 
uses antennas of diameter 45 m (Swarup et al. 1991 1. 

Millimeter Wavelengths 

At frequencies - I 0 0  GHz and greater, antenna sizes are often reduced to the 
10-20 m range to maintain surface accuracy. Nevertheless, the beamwidths are 
typically very narrow, for example, 25 arcsec for a 10 m antenna at 300 GHz. 
For observations of extended sources such as nebulae or molecular clouds under 
such conditions, the mosaicking technique mentioned above becomes important; 
see Section 11.6. Since sensitivity is then proportional to n,d, optimizing the 
performance points even more strongly toward reducing d and increasing n, than 
in the case of observing sources smaller than the beamwidth. With more antennas 
it is possible to obtain satisfactory (u ,  u )  coverage with less tracking time. This 
also helps by reducing the need for observations at low angles of elevation for 
which atmospheric effects are most severe. 
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An important requirement in mosaicking is measuring the visibility at values of 
u and u smaller than the antenna diameter. This is possible, but observations at the 
shortest practicable baselines are necessary. The closest spacing is usually deter- 
mined by the condition that neighboring antennas should be able to be pointed in 
different directions without danger of collision. Minimizing this spacing, which 
depends on the focal ratio and the design of the mount, is a consideration for 
millimeter-wavelength antennas. The minimum practical spacing for individually 
mounted antennas is about 1.25d (Welch et al. 1996). Some considerations of 
mosaicking requirements on array design are discussed by Cornwell, Holdaway, 
and Uson (1993). 
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6 Response of the Receiving System 

This chapter is concerned with the response of the receiving system that accepts 
the signals from the antennas, amplifies and filters them, and measures the cross- 
correlations for the various antenna pairs. We show how the basic parameters of 
the system affect the output. Some of the effects were introduced in earlier chap- 
ters, and here we present a more detailed development that leads to consideration 
of system design in Chapters 7 and 8. 

6.1 FREQUENCY CONVERSION, FIUNGE ROTATION, 
AND COMPLEX CORRELATORS 

Frequency Conversion 

In practically all receiving systems in radio astronomy the frequencies of the sig- 
nals received at the antennas are changed by mixing with a local oscillator signal. 
This feature, referred to as frequency conversion (or heterodyne frequency con- 
version), enables the major part of the signal processing to be performed at in- 
termediate frequencies that are most appropriate for amplification, transmission, 
filtering, delaying, recording, and similar processes. 

Frequency conversion takes place in a mixer, in which the signal to be con- 
verted plus a local oscillator waveform are applied to a circuit element with a 
nonlinear voltage-current response. This element may be a diode as shown in 
Fig. 6.la. The current i through the diode can be expressed as a power series in 
the applied voltage V: 

Now let V consist of the sum of a local oscillator voltage bl cos(2lr vLOt +O,) and 
a signal, of which one Fourier component is b2 cos(2n u,t +&). The second-order 
term in V then gives rise to a product in the mixer output of the form 
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Figure 6.1 Frequency conversion in a radio receiving system. (a) Simplified diagram of a 
mixer and a filter H that defines the intermediate-frequency (IF) band. The nonlinear element 
shown is a diode. (b) Signal spectrum showing upper and lower sidebands that are converted 
to the intermediate frequency. Frequency uo is the center of the IF band. 

Thus the current through the diode contains components at the sum and difference 
of us and uLo. Other terms in (6.1) lead to other components, such as 3uL0 f us, but 
the filter H shown in Fig. 6.1 passes only the wanted output spectrum, and with 
proper design unwanted combinations can be prevented from falling within the 
filter passband. Usually the signal voltage is much smaller than the local oscillator 
voltage, so harmonics and intermodulation products (i.e., spurious signak that 
arise as a result of cross-products of different frequency components within the 
input signal band) are small compared with the wanted terms containing q 0 .  

In most cases of frequency conversion the signal frequency is being reduced, 
and the second term on the right-hand side in Eq. (6.2) is the important one. The 
filter H then defines an intermediate-frequency (IF) band centered on UO, as shown 
in Fig. 6. lb. Signals from within the bands centered on vLo - uo and vLo + vo are 
converted and admitted by the filter. These bands are known as the lower and 
upper sidebands, as shown, and if only a single sideband is wanted, the other can 
often be removed by a suitable filter inserted before the mixer. In some cases both 
sidebands are accepted, resulting in a double-sideband response. 

Response of a Single-Sideband System 

Figure 6.2 shows a basic receiving system for two antennas, m and n, of a synthe- 
sis array. Here we are interested in the effects of frequency conversion that were 
omitted from the earlier discussions. The time difference rg between the arrival 
at the antennas of the signals from a radio source varies continuously as the earth 
rotates and the antennas track the source across the sky. An instrumental delay ti 
is continuously adjusted to compensate for the geometric delay rg, so that the sig- 
nals arrive simultaneously at the correlator. The receiving channels through which 
the signals pass contain amplifiers and filters, the overall amplitude (voltage) re- 
sponses of which are H ,  ( u )  and H ,  ( u )  for antennas rn and n. Here u represents 
a frequency at the correlator input; the corresponding frequency at the antenna is 
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Figure 6.2 Basic receiving system for two antennas of a synthesis array. The variable delay 
r, is continuously adjusted under computer control to compensate for the geometric path de- 
lay rg .  The frequency response functions & ( u )  and H,,(u) represent the overall bandpass 
characteristics of the amplifiers and filters in the signal channels. 

uLo f u. The voltage waveforms that are processed by the receiving system result 
from cosmic noise and system noise; we consider the usual case in which these 
processes are constant across the receiver passband. The spectra at the correlator 
inputs are thus determined mainly by the response of the receiving system. Let 
&, be the phase change in the signal path through antenna m resulting from r, 
and the local oscillator phase, and let #,, be the corresponding phase change in the 
signal for the path through antenna n, including T;. #m and #,,, together with the 
instrumental phase resulting from the amplifiers and filters, represent the phases 
of the cosmic signal at the correlator inputs. Negative values of these parameters 
indicate phase lag (signal delay). The response to a source for which the visibil- 
ity is Y ( u ,  u )  = (Y(eJ@'u is most easily obtained by returning to Eq. (3.5) and 
replacing the phase difference 2nDA - by the general term #,, - &,,. Then the 
response at the correlator output resulting from a frequency band of width du can 
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be written as 

and the response from the full system passband is 

r = Re AolYI H , , l ( u ) H , : ( u ) e " ~ ~ " - ~ ~ ' " - ~ l , ) d u  (6.4) { sp, 
where we have included both positive and negative frequencies in the integral 
and assumed that 'v does not vary significantly over the observing bandwidth. 
Equation (6.4) represents the real part of the complex cross-correlation, and we 
explain how to obtain both real and imaginary parts from the correlator later in 
this section. 

Upper-Sideband Reception 

For upper-sideband reception a filter or amplifier at the receiver input selects fre- 
quencies in a band defined by the correlator input spectrum (frequency u )  plus 
uLo. We now express the phases #,,, and 4, in terms of the phases encountered 
by the signals in Fig. 6.2. The signal entering antenna m traverses the geometric 
delay T, at a frequency uLo + u,  and thus suffers a phase shift 27r(uLO + u)r, .  At 
the mixer its phase is also decreased by the local oscillator phase 0,. Thus we 
obtain 

&(V) = -277(~Lo + ~ ) t p  - dni. (6.5) 

The phase of the signal entering antenna n is decreased by the local oscillator 
phase On, and the signal then traverses the instrumental delay T~ at a frequency u,  
thus suffering a shift 2nuq .  The total phase shift for antenna n is 

#,(U) = -27rUT; - o,,. (6.6) 

From Eqs. (6.4), (6.3,  and (6.6) the correlator output is 

w 

= se I v lei12n uL0rg+(@,,, -on ) - @ , # I  H,,, (,,) H,; (V )eJ2nu d u l  . (6.7) 

The real part of the integral in Eq. (6.7) is one-half the Fourier transform of the 
(hermitian) cross power spectrum H,, (u)H,'( u )  with respect to the delay compen- 
sation error, AT = s, - T ~ ,  which introduces a linear phase slope across the band*. 
We assume that 'V does not vary significantly over the observing bandwidth. For 
example, if the IF passbands are rectangular with center frequency vo, width AuVIF, 
and identical phase responses, then for positive frequencies, 

{ L 

*Here we assume that the source is sufficiently close to the center of the field being mapped that the 
condition As = 0 maintains zero delay error. The effect of the variation of the delay error across a wider 
field of view is considered in Section 6.3. 
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Using the equality in Eq. (A3.6) of Appendix 3.1 for the hermitian function 
H, H,, we can write 

cos 271 uo AT. (6.9) 1 sin(nAu,, Ar) 
71 AuIF Ar 

= 2H;AuIF 

In the general case we define an instrumental gain factor G,, = lGmnlej9c as 
follows: 

The variation of G,, with Ar causes the delay pattern effect discussed in earlier 
chapters. The phase q 5 ~  results from the difference in the phase responses of the 
amplifiers and filters. The local oscillator phases O,,, and 0, are not included within 
the general instrumental phase term q 5 ~  because they enter into the upper and 
lower sidebands with different signs. 

Substituting Eq. (6.10) into Eq. (6.7), we obtain for upper-sideband reception 

The term 271 uLorK in the cosine function results in a quasisinusoidal oscillation as 
the source moves through the fringe pattern. The phase of this oscillation depends 
on the delay error A t ,  the relative phases of the local oscillator signals, the phase 
responses of the signal channels, and the phase of the visibility function. The 
frequency of the output oscillation uL0 ds,/dr is often referred to as the natural 
fringefrequency. The oscillations result because the signals traverse the delays T, 

and ri at different frequencies, that is, at the input radio frequency for T, and at 
the intermediate frequency for T;, and these two frequencies differ by vLo. Thus, 
even if these two delays are identical they introduce different phase shifts, and 
they increase or decrease progressively as the earth rotates. 

Lower-Sideband Reception 

Consider now the situation where the frequencies accepted from the antenna are 
those in the lower sideband, at uI.o minus the correlator input frequencies. The 
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phases are 

4 m  = 2n(u, - u)rg + 0, (6.12) 

and 
On = -2nur; + 6,. (6.13) 

The signs of these terms and of 4" differ from those in the upper-sideband case 
because increasing the phase of the signal at the antenna here decreases the phase 
at the correlator. The expression for the correlator output is 

Proceeding as in the upper-sideband case, we obtain 

Multiple Frequency Conversions 

In an operational system the signals may undergo several frequency conversions 
between the antennas and the correlators. Operation with multiple frequency con- 
versions is essentially the same as with the systems considered above. A fre- 
quency conversion in which the output is at the lower sideband (i.e., the local 
oscillator frequency minus the input frequency) results in a reversal of the signal 
spectrum in which frequencies at the high end at the input appear at the low end 
at the output, and vice versa. If there is no net reversal (that is, an even number 
of lower-sideband conversions), Eq. (6.1 1 )  applies, except that uLo must be re- 
placed by a combination of local oscillator frequencies sometimes known as the 
signed-sum of the local oscillator frequencies because some frequencies enter it 
with positive signs and some with negative ones. Similarly, the oscillator phase 
terms 0, and 0, are replaced by corresponding combinations of oscillator phases. 
If there is a net reversal of the frequency band, Eq. (6.15) applies with similar 
modifications. 

Delay Tracking and Fringe Rotation 

Adjustment of the compensating delay ri of Fig. 6.2 is usually accomplished un- 
der computer control, the required delay being a function of the antenna positions 
and the position of the phase center of the field under observation. This can be 
achieved by designating one antenna of the array as the delay reference and ad- 
justing the instrumental delays of other antennas so that, for an incoming wave- 
front from the phase reference direction, the signals intercepted by the different 
antennas all arrive at the correlator simultaneously. 

To control the frequency of the sinusoidal fringe variations in the correlator 
output, a continuous phase change can be inserted into one of the local oscillator 
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r - Inputs for amplified - 
signals from two Multiplier --C Integrator 

antennas 

signals. Equations (6.11) and (6.15) show that the fringe frequency can be reduced 
to zero by causing O,,, - 6, to vary at a rate that maintains constant, modulo 217, 
the term [2n uLorg + (6, - O n ) ] .  This requires adding a frequency 27r uLo (dr , /d t )  
to 6, or subtracting it from 8,. Note that dr, /dt  can be evaluated from Eq. (4.9) 
in which w, the third component of the interferometer baseline, is equal to cr, 
measured in wavelengths; for example, for an east-west antenna spacing of 1 
km, the maximum value of dr,/dt is 2.42 x lo-'', so the fringe frequencies 
are generally small compared with the radio frequencies involved. Reduction of 
the output frequency reduces the quantity of data to be processed, since each 
correlator output must be sampled at least twice per cycle of the output frequency 
(the Nyquist rate) to preserve the information, as discussed in Section 8.2. With 
antenna spacings required for angular resolution of millarcsecond order, which 
occur in VLBI, the natural fringe frequency, uLo dr,/dr, can exceed 10 kHz. For 
an array with more than one antenna pair it is possible to reduce each output 
frequency to the same fraction of its natural frequency, or to zero. Reduction 
to zero frequency is generally the preferred practice and is often referred to as 
fringe stopping. Some special technique, such as the use of a complex correlator, 
described in the following subsection, is then required to extract the amplitude 
and phase of the output. 

output 
_t 

Simple and Complex Correlators 

A method of measuring the amplitude and phase of the correlator output signal 
when the fringe frequency at the correlator output is reduced to zero is shown in 
Fig. 6.3. Tko correlators are used: one that multiplies the signals in the manner 
considered above, and another that has a quadrature phase-shift network in one 
input. This network shifts the phase of each frequency component in the input 
band by 7r/2, and the output is thus the Hilbert transform of the input. For signals 
of finite bandwidth the phase shift is not equivalent to a delay. The phase shift can 
also be effected by feeding the signal into two separate mixers and converting it 
with two local oscillators in phase quadrature. The output of the second correlator 
can be obtained by replacing H,(u)  by H,,,(u)e-j"/2. From Eq. (6.10) the result 

Quadrature 

network 
- phase-shift Multiplier - Integrator 

output 
-C 
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is to add -7r/2 to $G, and thus in Eqs. (6.1 1) and (6.15) the cosine function 
is replaced by fs ine.  Another way of comparing the two correlator outputs in 
Fig. 6.3 is to note that the output of the real correlator, omitting constant factors, 
is 

00 

rreal = R e  (.s_, H , ( v ) H , * ( ~ ) d u  H , ( u ) H , * ( v ) d u ,  (6.16) 

where the integral is real since H,,,(u) and H,*(u) are hermitian (real part even, 
imaginary part odd), and thus Hm(u)H,* (u)  is hermitian. The output of the imag- 
inary correlator is proportional to 

Thus the two outputs respond to the real and imaginary parts of the visibility 'V. 
The combination of two correlators and the quadrature network is usually re- 

ferred to as a cornpiex correlator, and the two outputs as the cosine and sine, or 
real and imaginary, outputs. (When necessary to emphasize the distinction we can 
refer to a single multiplier and integrator as a simple or single-multiplier correlu- 
ror.) For continuum observations the compensating delay is adjusted so that Ar  = 
0 and the fringe rotation maintains the condition 2n uL0q + (0, - 0,) = 0. Thus 
the cosine and sine outputs represent the real and imaginary parts of Gm,Y(u,  u ) .  
With the use of the complex correlator, the rotation of the earth, which sweeps 
the fringe pattern across the source, is no longer a necessary feature in the mea- 
surement of visibility. An important feature of the complex correlator is that the 
noise fluctuations in the cosine and sine outputs are independent, as discussed in 
Section 6.2 [see text following Eq. (6.50)]. 

Spectral correiator systems, in which a number of correlators are used to mea- 
sure the correlation as a function of time offset or "lag" [i.e., T in Eq. (3.27)], 
are discussed in Section 8.7. The correlation as a function of '5 measured using 
correlators with a quadrature phase shift in one input is the Hilbert transform of 
the same quantity measured without the quadrature phase shifts (Lo et al. 1984). 
Thus, unlike the case where the correlation is measured for r = 0 only, here it 
is only necessary to use simple correlators since sine outputs would provide no 
additional information. See also case 8 in the text associated with Table 6.1. 

Response of a Double-Sideband System 

A double-sideband receiving system is one in which both the upper- and lower- 
sideband responses are accepted. From Eqs. (6.1 1) and (6.15) the output is 
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There is a significant difference from the single-sideband cases. The phase of the 
fringe-frequency term, which is the cosine function containing the term 217 vLOts, 
is no longer dependent on AT or &, but instead these quantities appear in the 
term that controls the fringe amplitude: 

If the delay q is held constant, AT varies continuously, resulting in cosinusoidal 
modulation of the fringe oscillations through the cosine term in (6.19). Also, as 
shown in Fig. 6.4, the cross-correlation (fringe amplitude) falls off more rapidly 
because of the cosine term in (6.19) than it does in the single-sideband case, 
in which it depends only on Gmn(Ar). The required precision in matching the 
geometric and instrumental delays is correspondingly increased. The lack of de- 
pendence of the fringe phase on the phase response of the signal channel occurs 
because the latter has equal and opposite effects on the signals from the two side- 
bands. 

The response of a double-sideband system with a complex correlator is given 
by Eq. (6.18) for the cosine output, and for the sine output it is obtained by re- 
placing 4~ by 4~ - n/2: 

(6.20) 

I 
I 

I 
/ I  
r\ \ 

Figure 6.4 Example of the variation of the fringe amplitude as a function of A7  for a double- 
sideband system (full line). In this case the centers of the two sidebands are separated by three 
times the IF bandwidth, that is, uo = 1 Shu,,, and the IF response is rectangular. The broken 
line shows the equivalent function for a single-sideband system with the same IF response. 
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If the term 2nuo AT+& is adjusted to maximize either the real output [Eq. (6.18)] 
or the imaginary output [Eq. (6.20)], the other will be zero. Thus for continuum 
observations in which the signal is of equal strength in both sidebands, the com- 
plex correlator offers no increase in sensitivity. However, it can be useful for 
observations in the sideband-separation mode described later. 

To help visualize the difference between single- and double-sideband interfer- 
ometer systems, Fig. 6.5 illustrates the correlator outputs in the complex plane. 
The single-sideband case is shown in Fig. 6.5a. The output of the complex cor- 
relator is represented by the vector r. If the fringes are not stopped, the vector r 
rotates through 27r each time the geometric delay tR changes by one wavelength. 
(That is, one wavelength at the local oscillator frequency if the instrumental delay 
is tracking the geometric delay.) The projections of the radial vector on the real 
and imaginary axes indicate the real and imaginary outputs of the complex corre- 
lator, which are two fringe-frequency sinusoids in phase quadrature. If the fringes 
are stopped, r remains fixed in position angle. Figure 6.5b represents the double- 
sideband case. Vectors ru and re represent the output components from the upper 
and lower sidebands. Here the variation of rR causes r,, and re to rotate in oppo- 
site directions. To verify this statement, note that the real parts of the correlator 
output are given in Eqs. (6.1 1) and (6.15), and the corresponding imaginary parts 
are obtained by replacing c#G by c#G - n/2. Then with (0, - 0,) = 0 (no fringe 
rotation), consider the effect of a small change in rg. 

The contrarotating vectors representing the two sidebands at the correlator out- 
put coincide at an angle determined by instrumental phase, which we represent 
by the line AB in Fig. 6.5b. Thus the vector sum oscillates along this line, and 
the fringe-frequency sinusoids at the real and imaginary outputs of the correla- 
tor are in phase. Now suppose that we adjust the phase term (2nuo AT + c # ~ )  in 
Eq. (6.1 8) to maximize the fringe amplitude at the real output. This action has the 

Im 

/I Re 

Figure 6.5 Representation in the complex plane of the output of a correlator with (a) a single- 
sideband and (b) a double-sideband receiving system. The point C in (b) represents the sum 
of the upper- and lower-sideband outputs of the correlator. 
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effect of rotating the line AB to coincide with the real axis. The imaginary output 
of the complex correlator then contains no signal, only noise. From Q. (6.18) it 
can be seen that the visibility phase 4" is represented by the phase of the vector 
that oscillates in amplitude along the real axis. The phase can be recovered by 
letting the fringes run and fitting a sinusoid to the waveform at the real output. If 
the fringes are stopped, it is possible to determine the amplitude and phase of the 
fringes by n/2 switching of the local oscillator phase at one antenna. In Q. (6.18) 
this phase switch action can be represented by On, -+ (6, - n/2), which results 
in a change of the second cosine function to a sine, thus enabling the argument in 
square brackets to be determined. However, in such a case the data representing 
the cosine and sine components of the output are not measured simultaneously, 
so the effective data-averaging time is half that for the single-sideband, complex- 
correlator case. In Fig. 6Sb, a n/2 switch of the local oscillator phase results in 
a rotation of ru and re by n/2  in opposite directions, so the vector sum of the 
two sideband outputs remains on the line AB. Relative sensitivities of different 
systems are discussed in Section 6.2; see Table 6.1 and associated text. 

Double-Sideband System with Multiple Frequency Conversions 

The response with multiple frequency conversions is more complicated for a 
double-sideband interferometer than for a single-sideband one and is illustrated 
by considering the system in Fig. 6.6. Note that for the case where the IF sig- 
nal undergoes a number of single-sideband frequency conversions after the first 
mixer, the second mixer of each antenna in Fig. 6.6 can be considered to repre- 
sent several mixers in series, and u2 to be equal to the sum of the local oscillator 
frequencies with appropriate signs to take account of upper- or lower-sideband 
conversions. The signal phase terms are determined by considerations similar to 
those described in the derivation of Eqs. (6.5) and (6.6). Thus we obtain 

where the upper signs correspond to upper-sideband conversion at both the first 
and second mixers for each antenna; and the lower signs, to lower-sideband con- 
version at the first mixer for each antenna and upper-sideband conversion at the 
second. We then proceed as in the previous examples; that is, use Eqs. (6.21) and 
(6.22) to substitute for & and #,, in Eq. (6.4), separate out the integral of H,, H,* 
with respect to frequency, u,  as in Eq. (6.7), and substitute for the integral using 
Eq. (6.10). The results are 

and 



6.1 FREQUENCY CONVERSION, FRINGE ROTATION, AND COMPLEX CORRELATORS 179 

Frequency at antenna: 

uency = v2 + Y 

Figure 6.6 Receiving system for two antennas that incorporates two frequency conversions, 
the first being double-sideband and the second upper-sideband. Two compensating delays, ri I 

and 5;2. are included so that in deriving the response for a double-sideband system the effect 
of the position of the delay relative to the first mixer can be investigated. In practice only one 
compensating delay is required. The overall frequency responses H,, and Hn are specified as 
functions of u, which is the corresponding frequency at the correlator input. 

The double-sideband response is 

where AT = rg - ril - 7;2. Note that the phase of the output fringe pattern, given 
by the second cosine term, depends only on the phase of the first local oscillator. 
Thus, in the implementation of fringe rotation, the phase shift must be applied to 
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this oscillator. The first cosine term in Eq. (6.25) affects the fringe amplitude and 
two cases must be considered, as follows: 

1. The delay T ; ~ ,  at the intermediate frequency immediately following the 
double-sideband mixer, is used as the compensating delay, and ri2 = 0. 
Then in the first cosine function in Eq. (6.25), sil - T~ 2: 0, and 4~ should 
be small if the frequency responses of the two channels are similar. It is nec- 
essary only to equalize Om2 and On, to maximize the amplitude of the fringe- 
frequency term. This is similar to the single conversion case in Eq. (6.18). 

2. The delay 9 2 ,  located after the last mixer, is used as the compensating delay, 
and T~~ = 0. (This is the case in any array in which the compensating 
delays are implemented digitally, which includes most large arrays.) Then 
a continuously varying phase shift is required in Om2 or On2 of Eq. (6.25) to 
keep the value of the first cosine function close to unity as rg varies. This 
phase shift does not affect the phase of the output fringe oscillations, only 
the amplitude [see, e.g., Wright et al. (1973)l. 

Fringe Stopping in a Double-Sideband System 

Consider two antennas of an array as shown in Fig. 6.6, and the case where the 
instrumental delay that compensates for T~ is the one immediately preceding the 
correlator, so that q I = 0. One can think of interferometer fringes as being caused 
by a Doppler shift in the signal at one antenna, which results in a beat frequency 
when the signals are combined in the correlator. Suppose that the geometric de- 
lay, rg, in the signal path to antenna m (on the left-hand side of the diagram) is 
increasing with time, that is, antenna m is moving away from the source relative 
to antenna n. Then a signal at frequency uRF at the wavefront from a source ap- 
pears at frequency uRF(l - dr , /d t )  when received at antenna m. If the signal is 
in the upper sideband, its frequency at the correlator input will be 

URF ( 1  - 2) - UI - u2. (6.26) 

To stop the fringes, we need to apply a corresponding decrease to the frequency 
of the signal from antenna n so that the signals arrive at the correlator at the same 
frequency. To do this we increase the frequencies of the two local oscillators 
for antenna n by the factor ( I  + dr,,dr). Note that this is equivalent to adding 
2n(dtg/dt)ul to O,,l and 2n(dr,/dt)u2 to On2, which are the rates of change of 
the oscillator phases required to maintain each of the two cosine functions in 
Eq. (6.25) at constant value. The corresponding signal from antenna n traverses 
the delay ri2 at a frequency uRF - (ul + uz) ( l  + dr , /d t ) ,  and since the delay is 
continuously adjusted to equal tg, the signal suffers a reduction in frequency by 
a factor (1  - drg/dr) .  Thus at the correlator input the frequency of the antenna-n 
signal is 
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(6.27) 

which is equal to (6.26) when second-order terms in dr,/dr are neglected. (Recall 
that for, e.g., a 1-km baseline the highest possible value of dr , /d t  is 2 . 4 2 ~  lo-".) 
For the lower sideband, (6.26) and (6.27) apply if the signs of both uRF and u1 
are reversed and again the frequencies at the correlator input are equal. Thus the 
overall effect is that the fringes are stopped for both sidebands. 

Relative Advantages of Double- and Single-Sideband Systems 

The principal reason for using double-sideband reception in interferometry is that 
in certain cases the lowest receiver noise temperatures are obtained by using in- 
put stages that are inherently double-sideband devices. At millimeter and shorter 
wavelengths (frequencies greater than -I00 GHz), it is difficult to make low- 
noise amplifiers, and receiving systems often use a mixer of the superconductor- 
insulator-superconductor (SIS) type [see, e.g., Tucker and Feldman (1985)l as 
the input stage followed by a low-noise IF amplifier. Both the mixer and the IF 
amplifier are cryogenically cooled to obtain superconductivity in the mixer and 
to minimize the amplifier noise. If a filter is placed between the antenna and the 
mixer to cut out one sideband, the received signal power is halved, but there is 
no reduction in rhe receiver noise generated in the mixer and IF stages. Thus the 
signal-to-noise ratio in the IF stages is reduced, and in this case the best contin- 
uum sensitivity may be obtained if both sidebands are retained. As a historical 
note, double-sideband systems were used at centimeter wavelengths during the 
1960s and early 1970s [see, e.g., Read (1961)], sometimes with a degenerate type 
of parametric amplifier as the low-noise input stage. These amplifiers were in- 
herently double-sideband devices and their use in interferometry is discussed by 
Vander Vorst and Colvin (1966). 

Double-sideband systems have a number of disadvantages. Increased accu- 
racy of delay setting is required, frequency and phase adjustment on more than 
one local oscillator is likely to be required, interpretation of spectral line data is 
complicated if there are lines in both sidebands, and the width of the required 
interference-free band of the radio spectrum is doubled. Also, the smearing effect 
of a finite bandwidth, to be discussed in Section 6.3, is increased. These problems 
have stimulated the development of schemes by which the responses for upper 
and lower sidebands can be separated. 

Sideband Separation 

To illustrate the method by which the responses for the two sidebands can be sep- 
arated at the correlator output of a double-sideband receiving system, we examine 
the sum of the upper- and lower-sideband responses from Eqs. (6.1 1) and (6.15). 
This is 

rd = ru  + rt = ~ ~ ~ ~ G m ~ ( A ~ ) ~ ( c O s [ 2 ~ ( ~ L o ~ R  + VoAr) 4- em, - 4" + 4 ~ 1  
+ cos [2n(uL0~g - VOAT)  + e m ,  - 4" - (6.28) 
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where em, = 6, - 0,. Equation (6.28) represents the real output of a complex 
correlator. We rewrite Eq. (6.28) as 

where Qu and \Ir, represent the corresponding expressions in square brackets in 
Eq. (6.28). The responses considered above represent the normal output of the 
interferometer, which we call condition 1 .  The expression for the imaginary out- 
put of the correlator is obtained by replacing c$G by c$G - n/2. Consider a second 
condition in which a n/2 phase shift is introduced into the first local oscillator 
signal of antenna m, so that Om, becomes Om, - n/2. The correlator outputs for 
the two conditions are obtained from Eqs. (6.28) and (6.29): 

(6.30) 

where rl and r3 represent the real outputs of the correlator, and r2 and r4 the imag- 
inary outputs. Thus the upper-sideband response, expressed in complex form, is 

Similarly, the lower-sideband response is 

If the n/2 phase shift is periodically switched into and out of the local oscillator 
signal, the upper- and lower-sideband responses can be obtained as indicated by 
Eqs. (6.32) and (6.33). 

A similar implementation of sideband separation that makes use of fringe fre- 
quencies is attributable to B. G. Clark. This method is based on the fact that a 
small frequency shift in the first local oscillator adds the same frequency shift to 
the fringes at the correlator for both sidebands, but a similar shift in a later lo- 
cal oscillator adds to the fringe frequency for one sideband but subtracts from it 
for the other. Consider two antennas of an array in which the fringes have been 
stopped as in the discussion associated with expressions (6.26) and (6.27). Now 
suppose that we increase the frequency of the first local oscillator at antenna n 
by a frequency 6 u ,  and decrease the frequency of the second local oscillator by 
the same amount. The fringe frequency for the upper-sideband signal will be 
unchanged; that is, the fringes will remain stopped. For the lower sideband the 
signal frequencies after the second mixer will be decreased by 2Su. The lower- 
sideband output will consist of fringes at frequency 2Su( 1 - ds,/dt)  M 2Sv, and 
will be averaged to a small residual if (2 6 u ) - '  is small compared with the integra- 
tion period at the correlator output, or if an integral number of fringe cycles fall 
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within such an integration period. If the frequency of the second local oscillator is 
increased by 6 u  instead of decreased, the lower sideband will be stopped and the 
upper one averaged out. To apply this scheme to an array of n, antennas, the off- 
set must be different for each antenna, and this can be achieved by using an offset 
n Su for antenna n ,  where n runs from 0 to n, - 1. An advantage of this sideband- 
separating scheme is that it can be implemented using the variable local oscilla- 
tors required for fringe stopping, and no other special hardware is needed. Unlike 
the rr/2 phase-switching scheme, one sideband is lost in this method. However, 
as mentioned above, sideband separation schemes of this type separate only the 
correlated component of the signal, and not the noise. To separate the noise, the 
SIS mixers at the receiver inputs can be mounted in a sideband-separating circuit 
of the type described in Appendix 7. I .  In such cases the isolation of the sidebands 
achieved in the mixer circuit may be only -15 dB, which is sufficient to remove 
most of the noise contributed by an unwanted sideband, but not sufficient to re- 
move strong spectral lines. The Clark technique described above is nicely suited 
to increasing the suppression of an unwanted sideband that has already suffered 
limited rejection at the mixer. 

Fringe-frequency effects can also be used for sideband separation in VLBI 
observations. In VLBI systems the fringe rotation is usually applied during the 
playback operation using a local oscillator later in the signal path than the first 
one. Fringe rotation then has the effect of reducing the fringe frequency for one 
sideband and increasing it for the other. If the fringe rotation is set to stop the 
fringes in one sideband, then since the baselines are so long, fringes resulting 
from the other sideband will generally have a sufficiently high frequency to be re- 
duced to a negligible level by the time averaging at the correlator output. The data 
are played back to the correlator twice, once for each sideband, with appropriate 
fringe rotation. 

6.2 RESPONSE TO THE NOISE 

The ultimate sensitivity of a receiving system is determined principally by the sys- 
tem noise. We now consider the response to the noise and the resulting threshold 
of sensitivity, beginning with the effect at the correlator output and the resulting 
uncertainty in the real and imaginary parts of the visibility, Y. This leads to cal- 
culation of the m s  noise level in a synthesized map in terms of the peak response 
to a source of given flux density. Finally, we consider the effect of noise in terms 
of the rms fluctuations in the amplitude and phase of 77. 

Signal and Noise Processing in the Correlator 

Consider an observation in which the field to be mapped contains only a point 
source located at the phase reference position. Let Vm(r) and V,,(r) be the wave- 
forms at the correlator input from the signal channels of antennas m and n .  The 
output is 

r = (Vm(t)Vn(r))r (6.34) 
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where all three functions are real, and the expectation denoted by the angular 
brackets is approximated in practice by a finite time average.+ To determine the 
relative power levels of the signal and noise components of r ,  we determine their 
power spectra by first calculating the autocorrelation functions. The autocorrela- 
tion of the signal product in Eq. (6.34) is 

This expression can be evaluated using the following fourth-order moment rela- 
tion:$ 

where zl, z2, z3, and z4 are joint Gaussian random variables with zero mean. Thus, 

(6.37) 

where pm and p,, are the unnormalized autocorrelation functions of the two signals 
V, and V,,, respectively, and p,,, is their cross-correlation function. Each V term 
is the sum of a signal component s and a noise component n ,  and to examine 
how these components contribute to the correlator output, we substitute them in 
Eq. (6.37). Products of uncorrelated terms, that is, products of signal and noise 
voltages, or noise voltages from different antennas, have an expectation of zero, 
and omitting them, we obtain 

where the three lines on the right-hand side correspond to the three terms on 
the last line of Eq. (6.37). To determine the effect of the frequency response of 
the receiving system on the various terms of p ( ~ ) ,  we need to convert them to 
power spectra. By the Wiener-Khinchin relation we should therefore examine 
the Fourier transforms of each term on the right-hand sides of Eqs. (6.37) and 
(6.38). 

+The result for a total-power (single antenna) system given in Eq. (1.7) can also be derived by starting 
from Eq. (6.34). in this case by putting V, = V,, and proceeding through the analysis that follows. 

$This relation is a special case of a more general expression for the expectation of the product of N 
such variables, which is zero if N is odd and a sum of pair products if N is even. A form of Eq. (6.36) can 
be found in Lawson and Uhlenbeck (1950), Middleton (1960). and Wozencraft and Jacobs (1965). 
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The first term from Eq. (6.37), pi,,(O), is a constant, and its Fourier transform 
is a delta function at the origin in the frequency domain, multiplied by P ; ~ ( O ) .  
From Eq. (6.38) we see that p;,(O) involves only the signal terms, which it is 
convenient to express as antenna temperatures. By the integral theorem of Fourier 
transforms, p,,(O) is the infinite integral of the Fourier transform of pmn(r ) ,  and 
thus the Fourier transform of p:,(O) is 

k 2 T A m T A n  [J, Hrn(v)H;(v)dv] s(v), (6.39) 

where k is Boltzmann’s constant, T A n l  and T A n  are the components of antenna 
temperature resulting from the source [see Eq. ( lS)] ,  and Hm(v) and H,(v) are 
the frequency responses of the signal channels. 

The Fourier transform of the second term of Eq. (6.37), p m ( r ) p n ( r ) ,  is the 
convolution of the transforms of p,n and p,,, that is 

00 2 

k 2 ( T S m  4- T A m ) ( T S n  4- T A n )  Hm(v)HG(v )Hn(v ’  - W)H,*(v’ - v ) d v ,  

(6.40) 

where Tsm and Tsn are the system temperatures. Note that the magnitude of this 
term is proportional to the product of the total noise temperatures. 

The Fourier transform of the third term of Eq. (6.37), pmn(r)p,nn(-r ) ,  is the 
convolution of the transforms of p,,(r) and pmn( - r ) ,  and the latter is the com- 
plex conjugate of the former, since pmn is real. Thus the Fourier transform of 

k2TAnlTAn [, H,(v)H~(v)H,~(u’ - v)H,,(v‘ - v )dv .  (6.41) 

In expression (6.39), as in (6.37), only the antenna temperatures appear, since 
the receiver noise for different antennas makes no contribution to the cross- 
correlation. 

Expression (6.39) represents the signal power in the correlator output, and 
(6.40) and (6.41) represent the noise. The effect of the time averaging at the cor- 
relator output can be modeled in terms of a filter that passes frequencies from 0 
to AwLF. The output bandwidth Aw,, is less than the correlator input bandwidth 
by several or many orders of magnitude. Therefore, the spectral density of the 
output noise can be assumed to be equal to its value at zero frequency, that is, for 
d = 0 in (6.40) and (6.41). From these considerations, and because H ,  ( u )  and 
H,(v )  are hermitian, the ratio of the signal voltage to the rms noise voltage after 
averaging at the correlator output is 

L 

P m n ( r ) P t n n  is 
00 

Rsn = 

I-”, H m ( v ) H , * ( V ) d v  

J ( G m  4- T S m ) ( T A n  f T S n )  f T A m T A n  J2hvLF j-”, IHm(V)\* \Hn(v) I2  dv  

(6.42) 
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where 2 Au,, is the equivalent bandwidth after averaging, with negative frequen- 
cies included. It is unusual for 9,". the estimate of the signal-to-noise ratio at the 
output of a simple correlator, to be required to an accuracy better than a few per- 
cent. Indeed, it is usually difficult to specify TS to any greater accuracy since the 
effects of ground radiation and atmospheric absorption on Ts vary as the antennas 
track. Thus, it is usually satisfactory to approximate Hm(u) and H , ( u )  by iden- 
tical rectangular functions of width Au,,. Also, in sensitivity calculations one is 
concerned most often with sources near the threshold of detectability, for which 
TA << Ts. With these simplifications Eq. (6.42) becomes 

(6.43) 

Figure 6.7 shows the signal and noise spectra for the rectangular bandpass approx- 
imation. Note that the input spectra IHm(u)I2 and IH,l(u)12 contain both positive 
and negative frequencies and are symmetric about the origin in u. Thus, the out- 

Power spectral 
density 

- vo 0 
Frequency 
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HO'~~TA~A v~ F' NO)  t Power spectral 
density 

Frequency 

(b) 

Figure 6.7 Spectra of (a) the input and (b) the output waveforms of a correlator. The input 
passbands are rectangular of width AuIF. Shown in (b) is the complete spectrum of signals 
generated in the multiplication process, including noise bands at twice the input frequency. 
Only frequencies very close to zero are passed by the averaging circuit at the correlator output. 
These inciude the wanted signal, the spectrum of which has the form of a delta function and 
is represented by the arrow. It is assumed that TA << Ts. 
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put noise spectrum can be described as proportional to either the convolution or 
the cross-correlation function of IHm(u)I2 and IH,,(u)l2. 

The output bandwidth is related to the data averaging time ru since the av- 
eraging can be described as convolution in the time domain with a rectangular 
function of unit area and width r,,. The power response of the averaging circuit as 
a function of frequency is the square of the Fourier transform of the rectangular 
function, that is, sin2(nr, u)/(nr ,  u)’. The equivalent bandwidth, including both 
positive and negative frequencies, is 

Then from Eq. (6.43) we obtain 

(6.45) 

Note that 2 Au,Fra is the number of independent samples of the signal in time r,, 
as mentioned in Section 1.2 under Reception of Cosmic Signals. 

If the source is unpolarized, each antenna responds to half the total flux density 
S, and the received power density is 

kTA = $ A S ,  - (6.46) 

where A is the effective collecting area of the antenna. For identical antennas and 
system temperatures we obtain, from Eqs. (6.45) and (6.46), 

(6.47) 

Similar derivations of this result can be found in the work of Blum (1 959), Colvin 
(1961), and Tiuri (1964). Usually the result in Eq. (6.47). in which we have as- 
sumed TS >> TA, is the one needed. At the other extreme, which may be encoun- 
tered in observations of very strong, unresolved sources for which TA >> Ts, we 
have R,, = JG. The signal-to-noise ratio is determined by the fluctuations 
in signal level, and is independent of the areas of the antennas. Anantharamaiah 
et al. (1989) give a discussion of noise levels in the observation of very bright 
sources. 

From Fig. 6.7 we can see how the factor JG in Eq. (6.47), which enables 
very high sensitivity to be achieved in radio astronomy, arises. The noise within 
the correlator results from beats between components in the two input bands and 
thus extends in frequency up to A uIF. The triangular noise spectrum in Fig. 6.7 is 
simply proportional to the number of beats per unit frequency interval. However, 
only the very small fraction of this noise that falls within the output bandwidth is 
retained after the averaging. Note that the signal bandwidth AwlF that is important 
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here is the bandwidth at the correlator input. In a double-sideband system this is 
only one-half of the total input bandwidth at the antenna. 

One other factor that affects the signal-to-noise ratio should be introduced at 
this point. If the signals are quantized and digitized before entering the corre- 
lators, an efficiency factor q~ related to the quantization must be included, and 
Eq. (6.47) becomes 

or in terms of antenna temperature, 

(6.48) 

(6.49) 

Values of qQ vary between 0.637 and 1 and are discussed in Chapter 8; see 
Table 8.1. In VLBI observing, other losses affect the signal-to-noise ratio, and QQ 

is replaced by a general loss factor q discussed in Section 9.7; see Eq. (9.156). 

Noise in the Measurement of Complex Visibility 

To understand precisely what Ssn represents, note that in deriving Eqs. (6.48) and 
(6.49) no delay was introduced between the signal components at the correlator, 
and the phase responses of the signal channels were assumed to be identical. Thus 
the source is in the central fringe of the interferometer pattern, and in this partic- 
ular case the response is the peak fringe amplitude, which represents the modulus 
of the visibility. To express the rms noise level at the correlator output in terms 
of the flux density a of an unresolved source for which the peak fringe amplitude 
produces an equal output, we put R,, = 1 in Eq. (6.48) and replace S by a: 

(6.50) 

where a is in units of W m-' Hz-' . Consider the case of an instrument with a 
complex correlator in which the output oscillations are slowed to zero frequency 
as described earlier. The noise fluctuations in the real and imaginary outputs are 
uncorrelated as we now show. Suppose that the antennas are pointed at blank 
sky so that the only inputs to the correlators in Fig. 6.3 are the noise waveforms 
n,, n,, and nz, where the last is the Hilbert transform of n, produced by the 
quadrature phase shift. The expectation of the product of the real and imaginary 
outputs is (n ,n ,n tn , ) ,  which can easily be shown to be zero by using Eq. (6.36) 
and noting that the expectations (n,n,), (n,n;), and (nEn,) must all be zero. 
Thus the noise from the real and imaginary outputs is ~ncorrelated.~ 

$The noise in the correlator outputs is composed of an ensemble of components of frequency 1 - u, 1. 
where urn and vn are frequency components of the correlator inputs n, and n,. Components of the 
imaginary output are shifted in frequency by f n / 2  relative to the corresponding components of the real 
output. Note that for any pair of input components, the sign of this shift in the imaginary output takes 
opposite values depending on whether u, > un or u, < u,. As a result, the noise waveforms at the 
correlator outputs are not a Hilbert transform pair. and one cannot be derived from the other. 
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Figure 6.8 Complex quantity Z, which is the sum of the modulus of the true complex visi- 
bility 1711 and the noise E. The noise has real and imaginary components of rms amplitude cr, 
and q5 is the phase deviation resulting from the noise. 

The signal and noise components in the measurement of the complex visibility 
are shown in Fig. 6.8 as vectors in the complex plane. Here "0 represents the visi- 
bility as it  would be measured in the absence of noise, and Z represents the sum of 
the visibility and noise, Y + E .  We consider Z and E to be vectors whose compo- 
nents correspond to the real and imaginary parts of the corresponding quantities. 
The noise in both components of Z has an rms amplitude 0 .  In practice, we must 
combine the real and imaginary outputs of the correlator to measure the visibility, 
and the resulting rms uncertainty in the measurement is 

Erms = J ( Z  ' Z) - (Z)2 = Jm = a*, (6.5 1) 

since ( E  - E )  = ( E : )  + ( E ; )  = 202, where E ,  and E~ are the components of E.  If 
the measurement is made using only a single-multiplier correlator, one can peri- 
odically introduce a quadrature phase shift at one input, thus obtaining real and 
imaginary outputs, each for half the observing time. Then the data are half those 
that would be obtained with a complex correlator, and the noise in the visibil- 
ity measurement is greater by &. The same result is obtained by recording the 
single-multiplier output with a nonzero fringe frequency and fitting a sine curve. 
If the position of an unresolved source is known, it is possible to stop the fringes 
to give the maximum output, and thus measure the visibility amplitude with the 
same sensitivity as when using a complex correlator. However, this does not mea- 
sure the complex visibility and is not generally useful. 

Signal-to-Noise Ratio in a Synthesized Map 

Having determined the noise-induced error in the visibility, the next step is to 
consider the signal-to-noise ratio in a map or image. Consider an array with n p  
antenna pairs and suppose that the visibility data are averaged for time tCl and that 
the whole observation covers a time interval to. The total number of independent 
data points in the (u, u )  plane is therefore 

TO 
n d  = n p - .  (6.52) 
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In mapping an unresolved source at the field center for which the visibility data 
combine in phase, we should thus expect the signal-to-noise ratio in the map to be 
greater than that in Eqs. (6.48) and (6.49) by a factor ,/-. This simple con- 
sideration gives the correct result for the case in which the data are combined with 
equal weights. We now derive the result for the more general case of arbitrarily 
weighted data. 

The ensemble of measured data can be represented by 

; = I  

where 2 S  is the two-dimensional delta function and E; is the complex noise con- 
tribution to the ith measurement. Each such data point appears at two (u ,  u )  lo- 
cations, reflected through the origin of the (u ,  u )  plane. Before taking the Fourier 
transform of the data in Eq. (6.53), each data point is assigned a weight w; (the 
choice of weighting factors is discussed in Section 10.2 under Weighting of the 
visibility Data). To simplify the calculation we assume that the source is unre- 
solved and located at the phase reference point of the map, and therefore produces 
a constant real visibility V equal to its flux density S. The intensity at the center 
of the map is then 

(6.54) 

where ER; is the real part of E ; .  Note that the imaginary part of E; vanishes at 
the map origin when the conjugate components are summed. For neighboring 
points in the map the same rms level of noise is distributed between the real and 
imaginary parts of E .  The expectation of Z, is 

( l o )  = 77 = s, (6.55) 

since ( E R ; )  = 0. The variance of the estimate of the intensity, a:, is 

(6.56) 

Equation (6.56) is derived directly from Eq. (6.54) using the fact that the noise 
terms from different (u ,  u )  locations are uncorrelated, that is, ( E R ; E ~ ~ )  = 0, for 
i # j. We define the mean weighting factor wmean and rms weighting factor w,, 
by the equations 

(6.57) 

and 

(6.58) 
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The noise contribution [see Eq. (6.51)] is the same for each ( u ,  u )  point and is 
equal to ( E ; ; )  = 02 ,  where o is given by Eq. (6.50). Thus, the signal-to-noise 
ratio can be calculated from Eqs. (6.55), (6.56), (6.57), and (6.58) as 

For an array with complex correlators we have, from Eq. (6.50), 

If combinations of all pairs of antennas are used, n p  = in , (n ,  - 
the number of antennas. Since nd = n,ro/r,,  we obtain 

(6.59) 

(6.60) 

l ) ,  where n, is 

(6.61) 

To express the rms noise level in terms of flux density we put lo/c7,,, = 1 in 
Eq. (6.61). S then represents the flux density of a point source for which the peak 
response is equal to the rms noise level, and we can write 

(6.62) 

If all the weighting factors wi are equal, wmean/wmS = 1, and this situation 
is referred to as the use of natural weighting. In such a case the signal-to-noise 
ratio given by Eq. (6.6 1 ) is equal to the corresponding sensitivity for a total-power 
receiver combined with an antenna of aperture ,/no (n ,  - 1 ) A, which approaches 
n,A as n,  becomes large. For an analysis of the sensitivity of single-antenna 
systems, see, for example, Tiuri (1 964), Tiuri and Raisanen (1986). 

We have considered the point-source sensitivity in Eq. (6.62). In the case of a 
source that is wider than the synthesized beam, it is useful to know the brightness 
sensitiviry. The flux density (in W m-2 Hz-I) received from a broad source of 
mean intensity l (W m-2 Hz-' sr-I) across the synthesized beam is la, where 
52 sr is the effective solid angle of the synthesized beam. Thus the intensity level 
that is equal to the nns  noise is Sms/ 52. Note that the brightness sensitivity de- 
creases as the synthesized beam becomes smaller, so compact arrays are best for 
detecting broad, faint sources. However, to measure the intensity of a uniform 
background, a measurement of the total power received in an antenna is required 
because a correlator interferometer does not respond to such a background. 

The ratio wmean/wms is less than unity except when the weighting is uniform. 
Although the signal-to-noise ratio depends on the choice of weighting, in practice 
this dependence is not highly critical. The use of natural weighting maximizes 
the sensitivity for detection of a point source in a largely blank field but can 
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also substantially broaden the synthesized beam. The advantage in sensitivity is 
usually small. For example, if the density of data points is inversely proportional 
to the distance from the (u, u )  origin, as is the case for an east-west array with 
uniform increments in antenna spacing, the weighting factors required to obtain 
effective uniform density of data result in W , , , ~ ~ ~ / W , . , , , ~  = 2&/3 = 0.94. In this 
case the natural weighting results in an undesirable beam profile in which the 
response remains positive for large angular distances from the beam axis and dies 
away only slowly. 

Various methods of Fourier transformation of visibility data are reviewed in 
Chapter 10, and the results derived in Eqs. (6.61) and (6.62) can be applied to 
these by using the appropriate values of ID,,,, and turns. Convolution of the vis- 
ibility data in the ( u ,  u )  plane to obtain values at points on a rectangular grid is 
a widely used process. In general, the data at adjacent grid points are then not 
independent, and a tapering of the signal and noise is introduced into the map. 
Aliasing can also cause the signal-to-noise ratio to vary across the map. (These 
effects are explained in Fig. 10.5 and the associated discussion.) In such cases the 
results derived here apply near the origin of the map, where the effects of tapering 
and aliasing are unimportant. The rms noise level over the map can be obtained 
by the application of Parseval’s theorem to the noise in the visibility data. 

In practice a number of factors that affect the signal-to-noise ratio are difficult 
to determine precisely. For example, TS varies somewhat with antenna elevation. 
There are also a number of effects that can reduce the response to a source with- 
out reducing the noise, but these are important only for sources not near the (I,  m )  
origin of a map. These include the smearing resulting from the receiving band- 
width and from visibility averaging, discussed later in this chapter, and the effect 
of non-coplanar baselines, discussed in Sections 3.1 and 1 1.8. 

Note also that in many instruments two oppositely polarized signals (with 
crossed linear or opposite circular polarizations) are received and processed using 
separate IF amplifiers and correlators. For unpolarized sources, the overall signal- 
to-noise ratio is then & greater than the values derived above, which include only 
one signal from each antenna. 

Noise in Visibility Amplitude and Phase 

In synthesis mapping we are usually concerned with data in the form of the real 
and imaginary parts of V ,  but sometimes it is necessary to work with the ampli- 
tude and phase. Given that the real and imaginary parts of V are accompanied 
by Gaussian noise of standard deviation D ,  what are the probability distributions 
of the amplitudes and phases? The answers are well known, and we do not de- 
rive them here. The sum of the visibility and noise is represented by Z = Zejs ,  
where we choose the real axis so that the phase 4 is measured with respect to the 
phase of Y ,  as in Fig. 6.8. Then for TA << Ts the probability distributions of the 
resulting amplitude and phase are 
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(6.63b) 

where [O is the modified Bessel function of zero order, erf is the error function, 
and u is as given by Eq. (6.50). The amplitude distribution is identical to that for 
a sine wave in noise, and the derivation is given by Rice (1944, 1954), Vinokur 
(1963, and Papoulis (1965), of which the last two also derive the result for the 
phase. p ( Z )  is sometimes referred to as the Rice distribution, and for Y = 0 it re- 
duces to the Rayleigh distribution. Curves of p ( Z )  and p(@)  are given in Fig. 6.9. 
Comparison of the curves for lYl/o = 0 and 1 indicates that the presence of a 
weak signal is more easily detected by examining the visibility phase than by 
examining the amplitude. 

Approximation for p(2) and p(@)  for the cases where IYl/cr << 1 and 
IV1/a >> 1 are given in Section 9.3 under Noise in VLBI Observations. Expres- 
sions for the moments of Z and 4 and their r m s  deviations are also given in that 
section. The rms phase deviation ob is a particularly useful quantity, especially 
for astrometric and diagnostic work. The expression for a+, valid for the case 
where I 'V(/U >> 1, is 06 2 a/lYI [Eq. (9.53)]. This result also follows intuitively 
from an examination of Fig. 6.8. By substituting Eq. (6.50) into the expression 
for q,, setting I'VI equal to the flux density S of the source, which is appropriate 
if the source is unresolved, and using Eq. (6.46) to relate the flux density and 
antenna temperature, we obtain 

(6.64) 

This equation is valid for the conditions T s / d -  << TA << Ts, which are the 
conditions most frequently encountered, and is useful for determining whether or 
not the noise in the phase measurements of an interferometer is due exclusively 
to receiver noise. Excess phase noise can be contributed by the atmosphere, by 
system instabilities, and in the case of VLBI by the frequency standards. 

Relative Sensitivities of Different Interferometer Systems 

Next we compare the sensitivity of several different interferometer systems, using 
as a measure of sensitivity the modulus of the signal divided by the rms noise, that 
is, V I E  in terms of the quantities at the correlator output in Fig. 6.8. Parameters 
such as averaging times and IF bandwidths are the same for all cases considered. 
To compare double- and single-sideband cases, it is convenient to introduce a 
factor 

double-sideband system temp. of double-sideband system 
system temperature of single-sideband system 

a =  . (6.65) 
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4 (rod)  

Figure 6.9 Probability distributions of (a) the amplitude, and (b) the phase, of the measured 
complex visibility as functions of the signal-to-noise ratio. IVI is the modulus of the signal 
component. After Moran (1976). 
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Recall that the system temperature of a receiver can be defined as the noise 
temperature of a thermal source at the input of a hypothetical noise-free (but 
otherwise identical) receiver that would produce the same noise level at the 
receiver output. [Equation (1.4) can be used for the equivalent noise tempera- 
ture at the source if the Rayleigh-Jeans approximation does not apply.] For a 
double-sideband receiver the system temperature is described as double-sideband 
or single-sideband depending on whether the thermal noise source emits noise 
in both sidebands or only one, respectively. With these definitions, the single- 
sideband noise temperature is twice the double-sideband noise temperature. 

For a single-sideband system the rrns noise from one output of a correlator 
(either the real or imaginary output in the case of a complex correlator) is u after 
averaging for a time r,, as given by Eq. (6.50). The corresponding noise power 
is 02.  For a double-sideband system the rms output noise at a correlator output 
is 2au.  In all cases the signal results from an unresolved source. For a single- 
sideband system we take the signal voltage from the correlator output to be V, as 
in Fig. 6.8. For a double-sideband system with the input signal in one sideband 
only, the signal at the correlator output is V, and for a double-sideband system 
with input in both sidebands, the correlator output is 277. 

Values of the relative sensitivity for various systems are discussed below and 
summarized in Table 6.1. Similar results are given by Rogers (1976). 

Single-sideband system with complex correlator: The output signal is V and 
the rms noise from each correlator output is u. As shown by Fig. 6.8 and 
Eq. (6.51), the ratio of the signal amplitude to rms noise is V/(&!a). We 
shall take this as the standard with respect to which the relative sensitivities 
of other systems are defined. 

Single-sideband system and simple correlator with fringe jitting. To mea- 
sure both the real and imaginary parts of the complex visibility, the fringes 
are not stopped but appear as a sinusoid of amplitude V at the fringe fre- 
quency u f. The signal is accompanied by noise of rms amplitude o . The 
amplitude and phase are measured by “fringe fitting,” that is, performing 
a least-squares fit of a sinusoid to the correlator output. This procedure 
involves multiplying the correlator output waveform by cos(2n u f t )  and 
sin(2n u f t )  and integrating over the period T ~ , .  The results represent the real 
and imaginary parts, respectively, of the cross-correlation. We calculate the 
effects of fringe fitting on the signal and noise separately, and assume, with 
no loss of generality, that the fringes are in  phase with the cosine component 
in the fringe fitting, in which case the sine component of the signal is zero. 
The correlator output has a bandwidth Av,. which is sufficient to pass the 
fringe-frequency waveform, and it is sampled at time intervals r.y = l/(2vc) 
and digitized. Within the period T, there are N = 2Au,.rt, samples. Thus 
for the cosine component of the signal the amplitude is 

(6.66) 
l N  v v N  
- C v C O S ~ ( ~ X ~ V , ~ ~ , ~ )  = - + ~ C c o s ( 4 n i u f r , ) .  
N .  r = I  2 2 N .  r = l  



1% RESPONSE OF THE RECEIVING SYSTEM 

TABLE 6.1 Relative Signal-to-Noise Ratios for Several npes of Systems 

System Type Relative SNR 

1. 
2.  
3. 

4. 

5. 

6a. 

6b. 

7a. 

7b. 

8. 

Single sideband with complex correlator 
Single sideband with simple correlator 
Single sideband, simple correlator, fringe stopping, n/2 
phase switching 

Double sideband, simple comelator: fringe fitting, 
continuum signal 
Double sideband, simple correlator, fringe stopping, n / 2  
phase switching, continuum signal 

Double sideband, fringe stopping, sideband separation 
[Eqs. (6.30) to (6.33)], signal in one sideband only 
As (6a) but for continuum signal and visibilities in both 
sidebands combined 

VLBI, double sideband, complex correlator, one sideband 
removed by averaging of fast fringes 
As (7a) but for continuum signal, correlated separately for 
each sideband and results combined 

Single sideband, digital spectral correlator with simple correlator 
elements and correlation measured as a function of time offsets 
(see Section 8.7) 

uFor double sideband with complex correlator, see text pertaining to Fig. 6.5. 

The second term on the right-hand side represents the end effects and is 
approximately zero if there are an integral number of half-cycles of the 
fringe frequency within the period q,. It also becomes relatively small as 
ufru increases, and we assume here that there are enough fringe cycles (say, 
ten or more) within time r,, that end effects can be neglected. To determine 
the effect of fringe fitting on the noise, we represent the sampled noise by 
n ( i q ) ,  multiply by the cosine function, and determine the variance (mean 
squared value). Averaged over time r,,, the result is 

I 
= - 

N 
C n ( i r , )  c o s ( 2 r i ~ ~ r . ~ ) n ( k r ~ )  cos(2~rku~r . , ) .  (6.67) 

I=I k=l 

We need to determine the expectation value of this expression, which we 
denote by angle brackets. Only terms for which i = k contribute to the 
expectation. Thus the noise variance becomes 



3. 

4. 

5 .  
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(6.68) 

This result shows that half of the noise power, a*, that is available at the 
correlator output appears in the cosine component of the fringe fitting. Sim- 
ilarly, the other half appears in the sine component. The combined rms noise 
of the two components is a, and the ratio of signal to noise after fringe fit- 
ting is Y/(2a). The relative sensitivity is 1 / &  

Single-sideband system with simple correlator and n /2  phase switching 
of LO. In this case the fringes have been stopped, and to determine the 
complex visibility, a phase change of 1r/2 is periodically inserted into one 
oscillator [e.g., 0, -+ 0, + 7r/2 in Eq. (6.11) or (6.15)] so that the correlator 
is effectively time-shared between the real and imaginary parts of the cross- 
correlation function, which are averaged separately. The visibility phase can 
thereby be determined. The signal in the two phase conditions is Y cos(#,,) 
and Vsin(c#~,), and the rms noise associated with each of these terms is 
f i a  (the f i  factor enters because the noise in each output is averaged 
over time s /2  only). Thus the modulus of the signal is 'V and the rms noise 
from the two components is 20.  The signal-to-noise ratio is Y/(2a)  and 
the relative sensitivity is 1 /A. 
Double-sideband system with simple correlator and fringe fitting. We con- 
sider the case of a continuum source with signal in both sidebands, and 
assume that the instrumental delay is adjusted so that the signal appears en- 
tirely in the (real) output of a simple correlator, as a fringe-frequency cosine 
wave of amplitude 'V. In terms of Eq. (6.18), the factor cos(27rug Ar', + # G )  

is unity. Then for the double-sideband system the signal amplitude is 21, 
and the rms noise is 2aa. The fringe-fitting procedure follows that of case 2, 
but in this case the signal amplitude is greater by a factor of two and is equal 
to Y. The rms noise is greater by a factor of 2a.  Thus the signal-to-noise 
ratio is 1,/(2aa) and the relative sensitivity is l / ( f i a ) .  
Double-sideband system with simple correlator and rr/2 phase switching 
of LO. Here the fringes have been stopped, and to determine the visibility 
phase, it is necessary to perform n/2 phase switching as in case 3 above. 
(For a double-sideband system the phase switching must be on the first local 
oscillator.) The amplitude of the signal is 2V because the system is double 
sideband, and the rms noise level from the correlator output is increased to 
2 A a a  because the averaging time for each component is reduced to ra /2  
by the time sharing of the correlator between the two phase conditions. 
This rms level is associated with both the cosine and sine components of 
the signal, so the signal-to-noise ratio is Y/(2aa). The relative sensitivity 
is ~ / ( J z a ) .  

6. One sideband of a double-sideband system with 3r/2 phase switching of the 
LO and sideband separation after correlation. A complex correlator is used 
and the procedure corresponding to Eqs. (6.30) to (6.33) is followed. We 
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consider the upper sideband, and ignore lower-sideband signal terms. The 
components rl ,r2, r3, r4 have amplitudes Y multiplied by the cosine or sine 
of qu. Thus from Eqs. (6.30) and (6.31), ignoring lower-sideband terms, 
the right-hand side of Eq. (6.32) becomes i(2Y cos Qu + j2'V sin Q"), the 
modulus of which is 'V. The rms noise associated with each term rl, r2, r3, 
and r4 is 2&aa  since the system is double sideband and, because of the 
LO switching, the effective averaging time is ~ , , / 2 .  Thus the rms noise as- 
sociated with the right-hand side of Eq. (6.32) is 2f iaa,  as in case 5 .  The 
signal-to-noise ratio is Y / ( 2 f i a a ) ,  and the relative sensitivity is 1 / (2a) .  
This applies to a signal in one sideband such as a spectral line. For a contin- 
uum source the cross-correlation can be measured for each of the two side- 
bands, and if the results are then averaged the relative sensitivity becomes 
I/(&a). The terms r2 and r4 are eliminated in averaging the right-hand 
sides of Eqs. (6.32) and (6.33), and the result is the same as for a simple 
correlator with LO phase switching described under case 5 above. 

I .  VLBI observations with a double-sideband system and complex correla- 
tor. In VLBI observations a double-sideband system is sometimes used and 
fringe rotation is inserted after playback of the recorded signal, as men- 
tioned in Section 6.1. For one sideband the fringes are stopped, but for 
the other they are lost in the averaging at the correlator output because the 
fringe frequencies are high. Thus, for one playback, we have the signal 
of a single-sideband system and the noise of a double-sideband system in 
each of the real and imaginary outputs, that is, a signal-to-noise ratio of 
'Vl(2fiaa) and a relative sensitivity of 1/(2a) for each individual side- 
band. 

8. Measurement of cross-correlation as a function of time delay. Digital spec- 
tral correlators that measure cross-correlation as a function of time delay 
are described in Section 8.7. In a lag-type correlator, the cross-correlation 
is measured as a function of time offset, implemented by introducing instru- 
mental delays. The Fourier transform of the cross-correlation as a function 
of relative time delay between the signals is the cross-correlation as a func- 
tion of frequency, as required in spectral line measurements. As mentioned 
in Section 6.1 under Simple and Complex Correlators, it is only necessary 
to use simple correlators for this measurement. The range of time offsets of 
the two signals covers both positive and negative values, and the resulting 
measurements of cross-correlation contain both even and odd components. 
Fourier transformation then provides both the real and imaginary compo- 
nents of the cross-correlation as a function of frequency. The full sensitiv- 
ity is obtained so long as the range of time offsets is comparable to the 
reciprocal signal bandwidth or greater; see Fringe sideband rejection loss 
in Table 9.6 of Chapter 9. Note that in Table 6.1 we have not included the 
quantization loss discussed in Section 8.3. A demonstration of the relative 
sensitivity using a simple correlator when the measurements are made as a 
function of time delay is given by Mickelson and Swenson (1991). 
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Of the cases included in Table 6.1, the single sideband with complex correlator 
is the one generally used where possible, because of the sensitivity and avoid- 
ance of the complications of double-sideband operation. Cases 2 and 3 in the 
table are included mainly for completeness of the discussion. For high frequen- 
cies at which low-noise amplifiers are not available (generally above -100 GHz), 
the most sensitive type of receiver input is an SIS mixer. This has an inherently 
double-sideband response, and although a sideband can be removed by filtering 
or using a sideband-separating arrangement (Appendix 7. I ) ,  double-sideband op- 
eration may be preferred to avoid any loss in sensitivity, or in flexibility of tuning, 
that results from the greater complexity required to remove one sideband. For 
double-sideband operation the most important cases in the table are 6a and 6b. 
The case where the unwanted sideband is only partially rejected is discussed in 
Appendix 6.1. 

System Temperature Parameter a 

As already noted, double-sideband systems are mainly used at millimeter and 
submillimeter wavelengths, at which the receiver input stage is commonly an SIS 
mixer. Such a system can be converted to single-sideband operation by filtering 
out the unwanted sideband and terminating the corresponding input in a cold 
load. If the atmospheric losses are high and the receiver temperature is low, most 
of the system noise will come from the antenna, and terminating one sideband 
in a cold load will approximately halve the level of noise within the receiver. 
The system temperature of the single-sideband system will then be approximately 
equal to the double-sideband system temperature of the double-sideband system, 
and the value of 01 [defined in Eq. (6.631 tends toward 1. On the other hand, 
if atmospheric and antenna losses are low and most of the system noise comes 
from the mixer and IF stages, then terminating one sideband input in a cold load 
rather than the cold sky makes little difference to the noise level in the receiver. 
The system temperature of the single-sideband system will be close to the single- 
sideband system temperature of the double-sideband system, which is twice the 
double-sideband value. The value of fy then tends toward 1 /2. To recapitulate, if 
the atmospheric noise dominates the receiver noise, then fy tends toward 1, but if 
the receiver noise dominates, then a! tends toward 1/2. Note, however, that a! is 
not confined to the range 1/2 < a < 1.  For example, if noise from the antenna 
is low but the termination of the image sideband in the single-sideband system is 
uncooled and injects a high noise level, then a! can be < 1/2. If the front end is 
tuned close to an atmospheric absorption line in such a way that the additional 
sideband of the double-sideband system falls in a frequency range of enhanced 
atmospheric noise, then a! can be > 1. 

6.3 EFFECT OF BANDWIDTH 

As seen in the preceding section, the sensitivity of a receiving system to a broad- 
band cosmic signal increases with the system bandwidth. Here we are concerned 
with the effect of bandwidth on the angular range over which fringes are detected, 
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and on the fringe amplitude. These effects result from the variation of fringe fre- 
quency, in cycles per radian on the sky, with the received radio frequency. If the 
monochromatic response is integrated over the bandwidth, the fringes are rein- 
forced for directions close to that for which the time delays from the source to 
the correlator inputs are equal, but for other directions the fringes vary in phase 
across the bandwidth. This effect, when measured in a plane containing the in- 
terferometer baseline, causes the fringe amplitude to decrease with angle in a 
manner similar to that caused by the antenna beams (Swenson and Mathur 1969), 
and is sometimes referred to as the delay beam. It can be used to confine the 
response of an interferometer to a limited area of the sky and thereby reduce 
the possibility of source confusion, which can occur when the fringe patterns of 
two or more sources are recorded simultaneously. Examples of such usage can 
be found in some early interferometers built for operation at frequencies below 
100 MHz (Goldstein 1959, Douglas et al. 1973). The technique is less useful for 
instruments in which the antennas track in hour angle because the width of the 
delay beam becomes larger as the projected baseline is foreshortened. 

Mapping in the Continuum Mode 

The effect of bandwidth on the fringe amplitude was discussed in Section 2.2. 
Equation (2.3) gives an expression for the fringes observed for a point source 
with an east-west baseline of length D, and a rectangular signal passband of 
width Au. The fringe amplitude is proportional to a factor 

sin(n DI A u / c )  
RL = 

nDlAu/c  ' 

(6.69) 

Consider an array for which D is typical of the longest baselines. The synthesized 
beamwidth of the array, Oh, is approximately equal to Ao/D = c/uoD, where uo is 
the observing frequency and A0 the corresponding wavelength. (Note that in this 
section uo is the center frequency of the RF input band, not an IF band.) Thus 
Eq. (6.69) becomes 

(6.70) 

The parameter Aul, /UO& is equal to the fractional bandwidth multiplied by the 
angular distance of the source from the (I,  m )  origin measured in beamwidths. If 
this parameter is equal to unity, R;, = 0 and the measured visibility is reduced 
to zero. To keep RL close to unity, we require Aul/uoOb << 1. Thus, to avoid 
underestimation of the visibility at long baselines, there is a limit on the angular 
size of the map that is inversely proportional to the fractional bandwidth. 

We now examine the same effect in more detail by considering the distortion 
in the synthesized map. First recall that the response of an array can be written as 
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where + represents Fourier transformation. The fringe visibility is multiplied 
by W ( u ,  u ) ,  the spatial sensitivity function of the array for a particular observa- 
tion. The Fourier transform of the left-hand side of Eq. (6.71) gives the intensity 
distribution I ( 1 ,  m )  convolved with the synthesized beam function bo(l, m). For 
simplicity we have omitted the primary antenna beam and minor effects related 
to use of the discrete Fourier transform. The synthesized beam is defined here as 
the Fourier transform of W ( u ,  u ) .  

In operation in the continuum mode, the visibility data measured with band- 
width Au are treated as though they were measured with a monochromatic re- 
ceiving system tuned to the center frequency v ~ .  Thus for all frequencies within 
the bandwidth, the assigned values of u and u are those appropriate to frequency 
VO. At another frequency v within the passband, the true spatial frequency coor- 
dinates uu and u, are related to the assigned values u and u by 

(u,  u )  = (""", -) uu uo . 
v u  

(6.72) 

The contribution to the measured visibility from a narrow band of frequencies 
centered on v is 

where we have used the similarity theorem of Fourier transforms [see, e.g., 
Bracewell (2000)l. Thus the contribution to the measured intensity is the true 
intensity distribution scaled in ( 1 ,  m) by a factor v/uo and in intensity by ( u / u o ) ~ .  
The derived intensity distribution is convolved with bo(l, m). the synthesized 
beam corresponding to frequency U O .  The beam does not vary with frequency 
since the same spacial sensitivity function W ( u ,  u )  is used to represent the whole 
frequency passband. The overall response is obtained by integrating over the 
passband with appropriate weighting and is 

Note that the integrals must be taken over the whole radio-frequency passband, 
denoted by the subscript RF, which includes both sidebands in the case of a 
double-sideband system. We assume that the passband function HRF(v) is identi- 
cal for all antennas. The values of 1 and rn in the intensity function in Eq. (6.74) 
are multiplied by the factor v / u ~ ,  which varies as we integrate over the passband, 
being equal to unity at the band center. Thus one can envisage the integrals in 
the square brackets in Eq. (6.74) as a process of averaging a large number of 
maps, each with a different scale factor. The scale factors are equal to v/uo,  and 
the range of values of v is determined by the observing passband. The maps are 
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aligned at the origin, and thus the effect of the integration over frequency is to 
produce a radial smearing of the intensity distribution before it is convolved with 
the beam. The response to a oint source at position (I, m) is radially elongated 
by a factor equal to J-4 l2  + m2 Au/uo. For distances from the origin at which the 
elongation is large compared to the synthesized beamwidth, features on the sky 
become attenuated by the smearing, so there is an effective limitation of the field 
of view. The measured intensity is the smeared distribution convolved with the 
synthesized beam. 

Details of the behavior of the derived intensity distribution can be deduced 
from Eq. (6.74). For example, suppose that the beam contains a circularly sym- 
metrical sidelobe at a large distance from the beam axis, and that in a map the 
response to a distant source causes the sidelobe to fall near the origin. Is the side- 
lobe broadened near the origin? Since the distant source is elongated, the sidelobe 
will be smeared in a direction parallel to that of a line joining the source and the 
origin, as shown in Fig. 6.10. It will be broadened near the origin, but not at a 
point 90" around the sidelobe as measured from the source. 

To estimate the magnitude of the suppression of distant sources, it is useful to 
calculate Rb, the peak response to a point source at a distance rl from the ori- 
gin of the (1 ,  m) plane, as a fraction of the response to the same source at the 
origin. Because the effect we are considering is a radial smearing, we need only 
consider the intensity along a radial line through the (f, m) origin as shown in 
Fig. 6.1 la. We use idealized parameters; the bandpass is represented by a rect- 
angular function of width Au and the synthesized beam by a circularly symmet- 
rical Gaussian function of standard deviation o b  = eb/J8ir;?, where 0, is the 
half-power beamwidth. For simplicity the factor ( U / U O ) ~  in the integral in the 
numerator of Eq. (6.74) is omitted, which is a reasonable approximation since 
the fractional bandwidth often does not exceed 5%. The convolution becomes 
a one-dimensional (radial) process, as shown in Fig. 6.1 lb. The radially elon- 

Main Beam 
Response d- Source 

Ringlobe 
Response , 

Figure 6.10 Radial smearing resulting from the bandwidth effect for a point source at 
( 1 1 ,  rn I). The effects on the responses of the main beam and a ringlobe (i.e.. a sidelobe of 
the form in Fig. 5.15) are shown. 
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(radial distance from 
field center) 

(b) 

Figure 6.11 Response of an array with a broadband receiving system to a point source at 
distance rl from the origin of the ( 1 ,  m )  plane. (a) The point source (delta function) at rl 
becomes radially broadened into a rectangular function of unit area indicated by the heavy 
line. (b) Cross section of the intensity distribution in the r direction. The synthesized beam 
is represented by the Gaussian function. The peak intensity of the response to the source is 
proportional to the shaded area. 

gated source is represented by a rectangular function from rl(1 - Au/2u0) to 
r l  ( 1  + A u / ~ u o ) ,  normalized to unit area. The beam is represented by the func- 
tion e-r2’2u; which is normalized to unity on the beam axis. When the beam is 
centered on the source, as shown in Fig. 6.1 I ,  R b  is given by 

8bvO erf ( 0.8326- ;btI) . 
= 1.0645- 

rl  Au 
(6.75) 

A curve of Rb as a function of the parameter rl Au/&uO, which is the distance of 
the source from the origin measured in beamwidths, multiplied by the fractional 
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Figure 6.12 Relative amplitude of the peak response to il point source as a function of the 
distance from the field center and either the fractional bandwidth or the averaging time. 

bandwidth, is shown in Fig. 6.12. Values of 0.2 and 0.5 for this parameter reduce 
the response by 0.9% and 5.5%, respectively. 

If the receiving bandpass is represented by a Gaussian function of equivalent 
width Au (i.e., standard deviation = Au/2.5066), the reduction factor becomes 

(6.76) 
1 

,/1 + (0.939rlAu/O~uo)’ 
Rb = 

A curve of this function is also included in Fig. 6.12. Comparison of the two 
curves indicates the dependence on the passband shape. 

Wide-Field Mapping with a Multichannel System 

Broadband maps can also be obtained by observing with a multichannel system 
(i-e., a spectral line system as described in  Section 8.7). In this case the pass- 
band is divided into a number of channels by using either a bank of narrowband 
filters or a digital spectral correlator. The visibility is measured independently 
for each channel, so the values of u and u can be scaled correctly and an in- 
dependent map obtained for each channel. This scaling causes the spatial sensi- 
tivity function to vary over the band, and at frequency u the synthesized beam 
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is ( v / v ~ ) 2 b o ( l u / v ~ ,  mvlvo), where bo(1, m )  is the monochromatic beam at fre- 
quency UO. The maps can be combined by summation, and if given equal weights, 
the result for N channels is represented by 

1(1, m )  * * [ 2 (;) 'bo (2,  )] . 
t = I  

(6.77) 

In this case there is no smearing of the intensity distribution, but the beam suffers 
a radial smearing that has the desirable effect of suppressing distant sidelobes. 
Therefore, this mode of observation is well suited for mapping wide fields. The 
improvement in the beam results from the increase in the number of (u, u )  points 
measured, an effect that is also used in multifrequency synthesis discussed in 
Section 11.7 

6.4 EFFECT OF VISIBILITY AVERAGING 

Visibility Averaging Time 

In most synthesis arrays the output of each correlator is averaged for consecutive 
time periods, r,, and thus consists of real or complex values spaced at intervals 
r, in time. It is advantageous to make r ,  long enough to keep the data rate from 
the correlator readout conveniently small. A limit on to results from a considera- 
tion of the sampling theorem discussed in Section 5.2, and is briefly explained as 
follows. In discrete Fourier transformation of the visibility to intensity, the data 
points are spaced at intervals Au and Au, as shown in Fig. 5.3. If the size of the 
field to be mapped is Or in the 1 and m directions, then Au = Au = 1/8f. In time 
so, the motion of a baseline vector within the (u ,  u )  plane should not be allowed to 
exceed Au; otherwise the visibility data will not represent independent measure- 
ments, and information will be lost. Consider the case where the longest baseline 
is east-west in orientation and the source under observation is at a high decli- 
nation, which results in the fastest motion of the baseline vector. If the baseline 
length is DA wavelengths, the vector in the ( u ,  u )  plane traces out an approxi- 
mately circular locus, the tip of which moves at a speed of weDA wavelengths 
per unit time, where o, is the angular velocity of rotation of the earth. Thus we 
require that 7,,wtDA C/(O~DAO,J) ,  
where C is a factor likely to be in the range 0.14.5. Note that DAOf is approxi- 
mately the number of synthesized beamwidths across the field, and thus ru must 
be somewhat smaller than the time taken for the earth to rotate through one ra- 
dian, divided by this number. Although shorter baselines could be averaged for 
longer times, in most synthesis arrays all correlator outputs are read at the same 
time, at a rate appropriate for the longest baselines. Another consideration is that 
sporadic interference and instrumental malfunctions can be edited out of the data 
with minimal information loss if q, is not too long. For large arrays ru is gen- 
erally in the range of tens of milliseconds to tens of seconds. Determining the 
visibility at the (ALI, Au) grid points from the sampled data on the (u ,  u )  loci 

l/Or, which results, in practice, in r, 
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is discussed in Section 10.2 under Mapping by Discrete Fourier Transformation, 
and this process may also influence the choice of r0. 

Effect of Time Averaging 

We now examine in more detail the effect of the averaging on the synthesized in- 
tensity distribution. In reducing the data, all visibility values within each interval 
r, are treated as though they applied to the time at the center of the averaging 
period. Thus, the measurements at the beginning of each averaging period, for 
example, enter into the visibility data with assigned values of u and u that apply 
to times r,/2 later than the true values. In effect, the resulting map consists of 
the average of a large number of maps, each with a different timing offset dis- 
tributed progressively throughout the range -ra /2 to ra/2. These timing offsets 
apply only to the assignment of (u, u )  values and do not resemble a clock error 
that affects the whole receiving system. 

Consider an unresolved source, represented by a delta function. To simplify 
the situation, we consider observations with east-west baselines, and examine 
the effects in the (u’ ,  u ’ )  plane and the corresponding ( l ’ ,  m‘) sky plane (see Sec- 
tion 4.2). The spacing loci are circular arcs generated by vectors rotating at angu- 
lar velocity we, as shown in Fig. 6.13a. Consider first the case of an east-west lin- 
ear array; then, of the antenna spacing components (X, Y, Z) defined in Fig. 4.1, 
only Y is nonzero. The circular arcs of the spacing loci are centered on the (u’, u’ )  
origin as in Fig. 6.13b, and a timing offset St is the equivalent to a rotation of the 
(u’ ,  u’)  axes through an angle we 6 r .  The visibility of the source is the sum of two 
sets of sinusoidal corrugations, one real and one imaginary: 

I u’ 

3. 
U 1  

u‘ 

(a) (b) 

Figure 6.13 Spacing loci in the (u’ .  LJ’) plane, (a) for the general case and (b) for an east- 
west baseline. The angle W,T, over which the averaging takes place is enlarged for clarity: for 
example, with an averaging time of 30 sec the angle would be 7.5 arcmin. 
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(a) (b) 

Figure 6.14 (a) Point source at (I;, m’,) and (b) the real part of the corresponding visibility 
function. The ridges of the sinusoidal corrugations that represent the visibility in the (u’ ,  u’ )  
plane are orthogonal to the radius vector r ;  at the position of the source in the (f’, m ’ )  plane. 

The angle of the corrugations is related to the position angle +’ = tan-’ (mi / l i )  
of the point source, as shown in Fig. 6.14. A change in +‘ causes an equivalent 
rotation of the corrugations, and vice versa. For an east-west array, time off- 
sets therefore correspond to proportional rotations of the intensity in the ([’, m’) 
plane. It follows that the effect of the time averaging is to produce a circum- 
ferential smearing similar to that resulting from the receiving bandwidth but 
orthogonal to it. If we express positions in the ( V ,  m’) plane in terms of the radial 
coordinates (r’ ,  $’) shown in Fig. 6.14a. the map obtained from the averaged 
data can be expressed in terms of the sky brightness I (r’ ,  $’) by 

where bo is the synthesized beam. 
The fractional decrease in the peak response to the point source is most easily 

considered in the (l’, m’)  plane. With an east-west baseline the contours of the 
synthesized beam are approximately circular in the ( l ’ ,  m’) plane, as long as the 
observing time is approximately I2 h, which results in spacing loci in the form of 
complete circles in the (u’ ,  u ’ )  plane. If we assume that the synthesized beam can 
be represented by a Gaussian function, as in  the calculations for the bandwidth 
effect, the curve for the rectangular bandwidth in Fig. 6.12 can also be used for 
the averaging effect. In one case the spreading function is radial and of width 
rlAu/uo, and in the other it is circumferential and of width r i ~ ~ 7 ~ , .  Thus, for 
the averaging effect, we can replace rlAw/@,u~ in Eq. (6.75) and Fig. 6.12 (solid 

curve) by riwera/€& noting that r; = 4- and 19:, the synthesized 



208 RESPONSE OF THE RECEIVING SYSTEM 

beamwidth in the ( l ’ ,  rn’) plane, is equal to the east-west beamwidth in the (i, rn) 
plane. Hence, for the decrease in the response to a point source resulting from 
averaging, we can write 

(6.80) 

Generally, one chooses r, so that R, is only slightly less than unity at any point 
in the map, in which case we can approximate the error function by the integral 
of the first two terms in the power series for a Gaussian function: 

(6.81) 

This is a useful formula for checking that T,, is not too large. 
Two aspects of the behavior predicted by Eq. (6.8 I )  should be mentioned. First, 

if the source is near the rn’ axis and at a low declination, the averaging has very lit- 
tle effect. This is because the ridges of the sinusoidal corrugations of the visibility 
function then run approximately parallel to the u’ axis, and in the transformation 
u’ = u cosec& the period of the variations in the u direction is expanded by a 
large factor. In comparison, the arc through which any baseline vector moves in 
time T, is small, and hence the averaging has only a small effect on the visibility 
amplitude. Second, for a source on the 1‘ axis, R,, is independent of 80. In this case 
the ridges of the corrugations run parallel to the u axis, and the expansion of the 
scale in the u direction has no effect on the sinusoidal period. 

For arrays that contain baselines other than east-west, the centers of the cor- 
responding loci in the (u ’ ,  d) plane are offset from the origin, as in Fig. 6.13a, 
and a time offset is no longer equivalent to a simple rotation of axes. However, 
this may not increase the smearing of the visibility, so the effect is likely to be no 
worse than for an east-west array with baselines of similar lengths. 

APPENDIX 6.1 PARTIAL REJECTION OF A SIDEBAND 

In a single-sideband system using a mixer as the input stage, the unwanted (im- 
age) sideband may be rejected by one of several schemes. These include use of 
a waveguide filter, a Martin-Puplett interferometer [Martin and Puplett (l969), 
Payne (1989)], a tuned backshort, or a sideband-separating configuration of two 
mixers (as in Appendix 7.1). Practical considerations, particularly at millimeter 
wavelengths, can limit the rejection of the image sideband. Let the response to 
the image sideband, in terms of the power gain of the receiver, be p times the 
response to the wanted (signal) sideband, where 0 < p < 1. 

In the case of spectral line observation, where the wanted line occurs only in 
the signal sideband, the effect of the noise introduced by the image sideband is 
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to increase the rms noise at the correlator output by a factor ( I  + p ) .  Thus the 
sensitivity is reduced by a factor ( I  + p ) - ' .  

In the case of continuum observation, the image sideband also introduces a 
component of signal at the correlator. Assume that the visibility is the same in 
both sidebands, the fringes are stopped, and n/2 phase switching of the first local 
oscillator alIows measurement of the complex visibility. A complex correlator is 
used, and for simplicity we consider that the instrumental phase is adjusted so 
that the line AB in Fig. 6.5b is coincident with the real axis. We can represent the 
complex correlator output with zero phase shift of the local oscillator as 

and with the 1r/2 phase switch as 

Here G,,,, is the gain in the signal sideband, so pG,,,, is the gain in the image 
sideband. Note that in the expression for CnlZ the j factors have opposite signs for 
the two sidebands, because the 1r/2 phase shift causes the corresponding vectors 
in the complex plane to rotate through 7r/2 in opposite directions, as in Fig. A6.1. 
The optimum estimate of the visibility is then found to be 

The first term within square brackets represents the response of the signal side- 
band and the second the image. The total noise power delivered to the correlator 
input is proportional to (1 + p),  so the rms noise associated with the first term in 

Figure A6.1 Vectors in the complex plane representing the parameters in Eqs. (A6. I )  and 
(A6.2). The constant gain factor G,, is omitted. If p is known and CO and Cn/2 are measured, 
Eq. (A6.3) gives the optimum estimate of Y .  
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the square brackets is proportional to ( 1  + p ) / (  I + p 2 ) ,  and for the second term 
the equivalent expression is p(  1 + p ) / (  1 + p2).  Thus the rms noise in the estimate 
of ‘V from (A6.3) is proportional to ( I  + p ) / d m .  The sensitivity is pro- 
portional to Jm/( I + p ) .  For p % 1 / 10 or less, the p2 term is very small 
and the sensitivity degradation factor is approximately (1 + p ) - ’  (Thompson and 
D’Addario 2000). 
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7 Design of the Analog 
Receiving System 

The basic functions of the receiving system have been outlined in earlier chapters. 
Here we consider certain aspects of the system design in more detail. These con- 
cern mainly the equipment between the antennas and the correlators and, in par- 
ticular, those characteristics of it that are critical to the accuracy and sensitivity of 
the visibility measurements. They include system noise temperature, phase stabil- 
ity, frequency responses, spurious signals, and automatic level control. The anal- 
ysis leads to specification of tolerances on system parameters that are consistent 
with the goals of sensitivity and accuracy. Analog systems only are included, and 
digital sampling, delaying, and correlating of signals are the subject of Chapter 8. 

7.1 PRINCIPAL SUBSYSTEMS OF THE RECEIVING ELECTRONICS 

We give only a brief description of the main features of a receiving system. Opti- 
mum techniques and components for implementation of the electronic hardware 
vary continuously as the state of the art advances, and descriptions in the liter- 
ature provide examples of the practical techniques current at various times; see, 
for example, Read (1961), Elsmore, Kenderdine, and Ryle (1966), Baars et al. 
(1973), Bracewell et al. (1973), Wright et a]. (1973), Welch et al. (1977, 1996), 
Thompson et al. (1980), Batty et al. (1982), Erickson, Mahoney, and Erb (1982), 
Napier, Thompson, and Ekers (1983), Sinclair et al. (1992), Young et al. (1992), 
and Napier et al. (1994). The earlier papers in this list are mainly of interest from 
the viewpoint of the historical development of the technology. 

Figure 7.1 shows a simplified schematic diagram of the receiving system of a 
large array of the linked-element type. For engineering convenience it is useful to 
divide the overall system into various subsystems that are outlined below. 

Low-Noise Input Stages 

In radio astronomy receivers, minimizing the noise temperature usually involves 
cryogenic cooling of the amplifier or mixer stages from the input up to a point at 
which noise from succeeding stages is unimportant. The low-noise input stages 
are often packaged with a cooling system, and sometimes also a feed horn, in 
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oscillator 1 
To other units 
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control 

To other units 

Monitor 

control 

From other 
antennas 

Correlators 

To data 

Control It- computer - 
Figure 7.1 Simplified schematic diagram of the receiving system of a typical synthesis array. 
All the blocks indicate subsystems described in the text, except for the monitor and control 
blocks, which constitute the digital communication system through which the computer moni- 
tors critical voltages, sets local oscillator frequencies, etc. Except for the master local oscillator 
and the computer, one of each block is required per antenna. The heavy line shows the path 
of the received signal. In some systems the baseband and sampler units are located at the 
antennas, and the signals are transmitted in digital form. 

a single package variously referred to as a receiver or a front end. The active 
components are usually transistor amplifiers or, for millimeter wavelengths, SIS 
(superconductor-insulator-superconductor) mixers followed by transistor ampli- 
fiers. For descriptions see, for example, Reid et al. (1973). Weinreb et al. (1977a), 
Weinreb, Fenstermacher, and Harris ( 1982), Casse, Woestenburg, and Visser 
(1982), Phillips and Woody (1982), Tiuri and Raisanen (1986). Payne (1989), 
Phillips (1994), Payne et al. (1994), Pospieszalski et al. (1997), and Webber et al. 
( 1998). 

In discussing the level of noise associated with a receiver, we begin by con- 
sidering the case where the Rayleigh-Jeans approximation suffices. This is the 
domain in which hu/kT << 1, where h is Planck’s constant and T is the temper- 
ature of the thermal noise source involved. As noted in the discussion following 
Eq. (1 . l ) ,  this condition can be written as u (GHz) << 20T (K). It is convenient to 
specify noise power in terms of the temperature of a resistive load matched to the 
receiver input. In the Rayleigh-Jeans approximation, noise power available at the 
terminals of a resistor at temperature T is kTAu, where k is Boltzmann’s con- 
stant and Au is the bandwidth within which the noise is measured (Nyquist 1928). 
One kelvin of temperature represents a power spectral density of (1 / k) W Hz-’ . 
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The receiver temperature TR is a measure of the internally generated noise power 
within the system and is equal to the temperature of a matched resistor at the input 
of a hypothetical noise-free (but otherwise identical) receiver that would produce 
the same noise power at the output. The system temperature, Ts, is a measure 
of the total noise level and includes, in addition to TR, the noise power from the 
antenna and any lossy components between the antenna and the receiver: 

Ts = TL + ( L  - ~ ) T L  + LTR, (7.1) 

where TA is the antenna temperature resulting from the atmosphere and other 
unwanted sources of noise, L is the power loss factor of the transmission line 
from the antenna to the receiver [defined as (power in)/(power out)], and TL is 
the temperature of the line. In defining the noise temperature of the receiver we 
should note that in practice a receiver is always used with the input attached to 
some source impedance which is itself a source of noise. The noise at the receiver 
output thus consists of two components, the noise from the source at the input, 
which is the antenna and transmission line in Eq. (7.1), and the noise generated 
within the receiver. 

Noise Temperature Measurement 

The noise temperature of a receiver is often measured by the Y-factor method. The 
thermal noise sources used in this measurement are usually impedance-matched 
resistive loads connected to the receiver input by waveguide or coaxial line. The 
receiver input is connected sequentially to two loads at temperatures That and Tco,d. 
The measured ratio of the receiver output powers in these two conditions is the 
factor Y :  

and thus 

(7.3) 

Commonly used values are Thot = 290 K (ambient temperature) and Tcold = 77 K 
(liquid nitrogen temperature). 

The receiver temperature can be expressed in terms of the noise temperatures 
of successive stages through which the signal flows [see, e.g., Kraus (1966)l: 

TR = TRI + T R ~ G F '  + TR3(GIG2)- '  +.  . . . (7.4) 

Here TR; is the noise temperature of the i th receiver stage and G i  is its power gain. 
If the first stage is a mixer instead of an amplifier, G I  may be less than unity, and 
the second stage noise temperature then becomes very important. 
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For cryogenically cooled receivers for millimeter and shorter wavelengths, the 
Rayleigh-Jeans approximation can introduce significant errors. The power spec- 
tral density (power per unit bandwidth) of the noise is no longer linearly pro- 
portional to the temperature of the radiator or source. The ratio h/k is equal to 
0.048 K per GHz, so if, for example, T = 4 K (liquid helium temperature), then 
hu/kT = 1 for u = 83 GHz. Thus quantum effects become important as fre- 
quency is increased and temperature decreased. Under these conditions the noise 
power per unit bandwidth divided by k provides an effective noise temperature 
that can be used in noise calculations, instead of the physical temperature. Two 
formulas are in use that give the effective temperature for a thermal source when 
quantum effects become important. One is the Planck formula and the other the 
Callen and Welton formula (Callen and Welton 1951). The effective noise tem- 
peratures for a waveguide carrying a single mode and terminated in a thermal 
load, or for a transmission line terminated in a resistive load, given by the two 
formulas are as follows: 

where T is the physical temperature. From Eqs. (7.5) and (7.6), we obtain 

The Callen and Welton formula is equal to the Planck formula with an additional 
term, hv/2k, which represents an additional half photon. This half photon is the 
noise level from a body at absolute zero temperature and is referred to as the 
zero-point fluctuation noise. Figure 7.2 shows the relationships between physical 
temperature and noise temperature corresponding to the Rayleigh-Jeans, Planck, 
and Callen and Welton formulas, for a frequency of 230 GHz. Note that for the 
caseofhu/kT << 1 wecanputexp(hu/kr)-1 2: (hu/kr)+i(hu/kr)2,in which 
case the Callen and Welton formula reduces to the Rayleigh-Jeans formula, but 
the result from the Planck formula is lower by hu/2k. 

When using Eq. (7.3) to derive the noise temperature of a receiver, the values 
of Thol and Tcold should be the noise temperatures derived from the Planck or 
Callen and Welton formulas, not the physical temperatures of the loads (except in 
the Rayleigh-Jeans domain). Thus for the Planck formula we can write 

(7.8) 
Thot(Planck) - Tcold(Planck) 

TR(Planck) = Y - 1  

and a similar equation for the Callen and Welton formula. From Eqs. (7.4), ( 7 3 ,  
and (7.6) we obtain 
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Figure 7.2 Noise temperature versus physical temperature for blackbody radiators at 
230 GHz, according to the Rayleigh-Jeans, Planck, and Callen and Welton formulas. Also 
shown (broken lines) are the differences between the three radiation curves. The Rayleigh- 
Jeans curve converges with the Callen and Welton curve at high temperature, while the Planck 
curve is always hu/2k  below the Callen and Welton curve. From Kerr et al. (1997). 

h v  
2k TR(Planck) = TR(C&W) -k -- (7.9) 

In using any measurement of receiver noise temperature it is important to know 
whether, in deriving it, the Planck formula, the Callen and Welton formula, or the 
physical temperature of the loads (i.e., the Rayleigh-Jeans approximation) was 
used. If the noise temperatures of the individual components are derived from 
the physical temperatures using the Callen and Welton formula, the temperature 
sum will be greater by hv /2k  than if the Planck formula were used; see Eq. (7.7). 
However, if the Callen and Welton formula is used to derive the receiver noise 
temperature, the result will be less by h/2k  than if the Planck formula were used; 
see Eq. (7.9). Thus the system temperature, which is the sum of the input tempera- 
ture and the receiver temperature, will be the same whichever of the two formulas 
is used. However, to avoid confusion, it is important to use one formula or the 
other consistently throughout the derivation of the noise temperatures. 

Differing opinions have been expressed on  the nature of the zero-point fluctu- 
ation noise, and whether it should be considered as originating in the load con- 
nected to the receiver or in the receiver input stages; see, for example, Tucker and 
Feldman ( I  983, Zorin ( 1985), and Wengler and Woody (1 987). At frequencies 
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at which quantum effects become most important, the usual type of input stage in 
radio astronomy receivers is the SIS (superconductor-insulator-superconductor) 
mixer, for which the quantum theory of operation is given by Tucker (1979). For a 
summary of some conclusions from various authors relevant to noise temperature 
considerations, see Kerr, Feldman, and Pan (1997) and Kerr (1999). 

To recapitulate-the radiation level predicted by the Callen and Welton for- 
mula is equal to the Planck radiation level plus the zero-point fluctuation com- 
ponent hu/2 .  The latter component is attributable to the power from a blackbody 
or matched resistive load at absolute zero temperature. An amplifier noise tem- 
perature derived using the Callen and Welton formula to interpret the measured 
Y factor is lower than that derived using the Planck formula by hu/2k .  However, 
an antenna temperature obtained using the Callen and Welton formula is higher 
by h u/2k than the corresponding Planck formula value. The system temperature, 
which is the sum of the noise temperature and the antenna temperature is the same 
in either case. Since it is the system temperature that determines the sensitivity of 
a radio telescope, these details may seem unimportant. However, in procuring an 
amplifier or mixer for a receiver input stage it is important to know how the noise 
temperature is specified. 

In addition to the noise generated in the electronics, the noise in a receiving 
system contains components that enter from the antenna. These components arise 
from cosmic sources, the cosmic background radiation, the earth’s atmosphere, 
the ground, and other objects in the sidelobes of the antenna. The opacity of the 
atmosphere, from which the atmospheric contribution to the system noise arises, 
is discussed in Chapter 13. 

Local Oscillator 

As explained in the previous chapter, local oscillator signals are required at the 
antennas and often at other points along the signal paths to the correlators. The 
corresponding oscillator frequencies for different antennas must be maintained in 
phase synchronism to preserve the coherence of the signals. The phases of the 
oscillators at corresponding points on different antennas need not be identical, 
but the differences should be stable enough to permit calibration. Maintaining 
synchronism at different antennas requires transmitting one or more reference 
frequencies from a central master oscillator to the required points, where they may 
be used to phase-lock other oscillators. The frequencies required at the mixers can 
then be synthesized. 

Special phase shifts are required at certain mixers to implement fringe rotation 
(fringe stopping), as described in Section 6.1 under Delay Tracking and Fringe 
Rotation, and phase switching, described in Section 7.5. Often these can best 
be implemented by digital synthesis techniques, such as the use of an integrated 
circuit device known as a number-controlled oscillator. This can provide a signal 
at a frequency of, say, a few megahertz that contains the required frequency offsets 
and phase changes. The phase changes can be transferred to the local oscillator 
frequency by using the synthesized signal as a reference frequency in a phase- 
locked loop. 
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IF and Signal Transmission Subsystems 

After amplification in the low-noise front-end stages, the signals pass through 
various IF amplifiers and a transmission system before reaching the correlators. 
Transmission between the antennas and a central location can be effected by 
means of coaxial or parallel-wire lines, waveguide, optical fibers, or direct ra- 
diation by microwave radio link. Cables are often used for small distances, but 
for long distances the cable attenuation may require the use of too many line am- 
plifiers, and optical fiber, for which the transmission loss is much lower, is gen- 
erally preferred. Low-loss T b l  mode  waveguide (Weinreb et al. 1977b; Archer, 
Caloccia, and Sema 1980) was used in the construction of the VLA, which pre- 
ceeded the development of optical fiber by a few years. Cable or optical fiber 
can be buried at depths of 1-2 m to reduce temperature variations. Bandwidths 
of signals transmitted by cables are usually limited to some tens or hundreds 
of megahertz by attenuation, and radio links are similarly limited by available 
frequency allocations. For very wide bandwidths optical fibers offer the greatest 
possibilities. 

After arriving at the correlator location, the received signals are usually con- 
verted to a final intermediate frequency where bandwidth selection filters and 
compensating time delays are inserted. Phase errors, resulting from temperature 
effects in filters, and delay-setting errors can be minimized by using the lowest 
possible intermediate frequency at this point. Accordingly, the final IF amplifiers 
often have a baseband response defined by a lowpass filter. The response at the 
low-frequency end falls off at a frequency that is a few percent of the upper cutoff 
frequency. In instruments that use a digital correlator for spectral line observa- 
tions, a series of filters with bandwidths varying in steps of a factor of two are 
commonly provided, just preceding the digital samplers. These bandwidths are 
chosen to match the characteristics of a digital correlator as described in Sec- 
tion 8.7. In some cases an image-rejection mixer (see Appendix 7.1) is used for 
the conversion to baseband, but the suppression of the unwanted sideband is then 
generally no greater than 20-30 dB. 

Optical Fiber Transmission 

The introduction of optical fiber systems provided a very great advance in trans- 
mission capability for broadband signals over long distances. Signals are mod- 
ulated onto optical carriers, commonly in the wavelength range 1300-1550 nm, 
and transmitted along glass fiber. The fiber attenuation is a minimum of approxi- 
mately 0.2 dB km-' near 1550 nm, and is about 0.4 dB km-' at 1300 nm. These 
values are much lower than can be obtained in radio frequency transmission lines. 
In the fiber, a glass core is surrounded by a glass cladding of lower refractive in- 
dex, so light waves launched into the core at a small enough angle with respect 
to the axis of the fiber can propagate by total internal reflection. If the inner-core 
diameter is approximately 50 pm, a number of different modes can be supported. 
These modes travel with slightly different velocities, which results in a limitation 
in performance of this multimode fiber. If the core is reduced to approximately 
10 p m  in diameter, only the HEll mode propagates. Single-mode fiber of this 
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type is required for the longest distances and/or the highest frequencies and band- 
widths. At 1550 nm an interval of 1 nm in wavelength corresponds to a bandwidth 
of approximately 125 GHz. The low attenuation and the bandwidth capacity fa- 
cilitate the use of wide bandwidths and long baselines in linked-element arrays. 
Signals can be transmitted in analog form or digitized (as described in Chapter 8) 
and transmitted as pulse trains. Since fiber transmission involves the characteris- 
tics of the lasers that generate the optical carriers and the detectors that recover the 
modulation, as well as the characteristics of the fiber, the design of fiber transmis- 
sion systems is rather more complicated than that of systems using cable. Here we 
briefly review a few basic features of fiber transmission. For further information, 
see, for example, Agrawal (1992) or Borella et al. (1997). 

In practice the bandwidth and distance of the transmission are limited by the 
noise in the laser that generates the optical signal at the transmitting end of the 
fiber and the noise in the diode demodulator and the amplifier at the receiving end. 
To avoid degradation of the sensitivity in analog transmission, the power spectral 
density of the signal (measured in W Hz-') must be greater than the power spec- 
tral density of the noise generated in the transmission system by -20 dB for 
most radio astronomy applications. However, the total signal power is limited by 
the need to avoid nonlinearity of the response of the modulator or demodulator. 
The result is a limit on the bandwidth of the signal, since for signals with a flat 
spectrum the power is proportional to the bandwidth. In practice, the limit for a 
single transmitter and receiver pair is a bandwidth of 10-20 GHz for transmission 
distances of some tens of kilometers. Optical amplifiers, which most commonly 
operate at wavelengths near 1550 nm, can be used to increase the range of trans- 
mission. 

In the modulation process, the power of the carrier is varied in proportion to the 
voltage of the signal. Because of this, the effect of small unwanted components 
in fiber transmission systems are greatly reduced. Consider, for example, a small 
component of the optical signal resulting from a reflection within the fiber. If the 
optical power of the reflected component is x dB less than that of the main com- 
ponent, then after demodulation at the photodetector the signal power contributed 
by the reflected component is 2x dB less than that from the main optical com- 
ponent. This also applies to small unwanted effects resulting from finite isolation 
of couplers, isolators, and other elements. Variations in the frequency response 
resulting from standing waves in microwave transmission lines are significantly 
less in optical fiber than in cable. 

A feature that must be taken into account in  applications of optical fiber is the 
dispersion in velocity, 33, usually specified in ps(nm . km)-'. The difference in 
the time of propagation for two optical wavelengths that differ by AA traveling a 
distance C in the fiber is 33 AAe. Figure 7.3 shows the dispersion for two types 
of fiber. Curve 1 is for a type of fiber widely used in early applications, and 
curve 2 represents a design in which the zero-dispersion wavelength is shifted to 
coincide approximately with the minimum-attenuation wavelength of 1550 nm. 
This optimization of the performance at 1550 nm is achieved by designing the 
fiber so that the dispersion of the cylindrical waveguide formed by the core of the 
fiber cancels the intrinsic dispersion of the glass at that wavelength. 
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Figure 7.3 Dispersion 2) in single-mode optical fiber of two different designs, as a function 
of the optical wavelength. 

Consider a spectral component, at frequency u,, of a broadband signal that is 
modulated onto an optical carrier. Amplitude modulation of the signal results in 
sidebands spaced fu,,, in frequency on each side of the carrier. Because of the 
velocity dispersion, the two sidebands and the carrier each propagate down the 
fiber with slightly different velocities, and thus exhibit relative offsets in time at 
the receiving end. Such time offsets result in attenuation of the amplitude of the 
high-frequency components of analog signals, and broadening of the pulses used 
to represent digital data. Thus, for both analog and digital transmission, dispersion 
as well as noise can limit the bandwidth x distance product. An analysis of the 
effect of dispersion on analog signals is given in Appendix 7.2. 

Delay and Correlator Subsystems 

The compensating delays and correlators can be implemented by either analog or 
digital techniques. An analog delay system may consist of a series of switchable 
delay units with a binary sequence of values in which the delay of the nth unit is 
2"-'ro, where ro is the delay of the smallest unit. Such an arrangement, with N 
units, provides a range of delay from zero to (2N - I)ro in steps of ro. For delays 
up to about Ips, lengths of coaxial cable or optical fiber can be used. For longer 
delays, cables become unwieldy and acoustic-wave devices can provide larger 
increments. Systems with analog delays usually have analog correlators. The de- 
sign of analog multiplying circuits has been discussed by Allen and Frater (1970). 
An example of a broadband analog correlator is described by Padin (1994). In 
spectral-line correlator systems of the analog type the final IF amplifier contains 
a bank of filters, the center frequencies of which are spaced at intervals equal to 
the filter bandwidth. Each filter defines a signal channel, and a separate correlator 
is required for each channel of every antenna pair. 

The development of digital circuitry capable of operating at high clock fre- 
quencies has led to the practice of digitizing the final IF signal, so that the delay 
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and correlators can be implemented digitally. These digital systems are discussed 
in Chapter 8. Their advantage is that greater precision can be achieved in the 
visibility measurements, since with analog delays it is very difficult to keep the 
bandpass response from varying as different units are switched into and out of the 
signal channels. It is also difficult to maintain accurate calibration of the delay of 
long analog units unless they are kept at a constant temperature. 

7.2 LOCAL OSCILLATOR AND GENERAL CONSIDERATIONS 
OF PHASE STABILITY 

Round-Trip Phase Measuring Schemes 

Synchronizing of the oscillators at the antennas can be accomplished by phase 
locking them to a reference frequency that is transmitted out from a central master 
oscillator. Buried cables or fibers offer the advantage of the greatest stability of the 
transmission path. At a depth of 1-2 m the diurnal temperature variation is almost 
entirely eliminated, but the annual variation is typically attenuated by a factor of 
2-10 only. For a discussion of temperature variation in soil as a function of depth, 
see the Handbook of Geophysics and Spuce Environments (USAF 1965). As an 
example, a 10-km-long buried cable with a temperature coefficient of length of 

K-' might suffer a diurnal temperature variation of 0.1 K, resulting in a 
change of 1 cm in electrical length. This change would cause a variation of 12" in 
the phase of a I-GHz signal traversing the cable. An equal variation would occur 
in a 50-m length of cable running from the ground to the receiver enclosure on an 
antenna and subjected to a diurnal temperature variation of 20 K. Rotating joints 
and flexible cables can also contribute to phase variations. 

Path length variations can be determined by monitoring the phase of a signal 
of known frequency that traverses the path. It is necessary for the signal to travel 
in two directions, that is, out from the master oscillator and back again, since the 
master provides the reference against which the phase must be measured. This 
technique is described as round-trip phase meusurement. Correction for the mea- 
sured phase changes can be implemented in hardware by using a phase shifter 
driven by the measurement system, or in software by inserting corrections in the 
data from the correlator, either in real time or during the later stages of data anal- 
ysis. It is also possible to generate a signal in which the phase changes are greatly 
reduced by combining signals that travel in opposite directions in the transmis- 
sion line. As an illustration of the last procedure, consider a signal applied to the 
near end of a loss-free transmission line that results in a voltage VO cos(2n u f )  at 
the far end. At a distance E ,  measured back from the far end, the outgoing signal is 
V I  = VO cos 2nu(r  + L / u ) ,  where u is the phase velocity along the line. Suppose 
that the signal is reflected from the far end without change in phase. At the same 
point, distant L from the far end, the returned signal is V2 = VO cos 2nv(t - L / u ) ,  
and the total signal voltage is 

VI + v, = 2vo cos(27Tut) cos (2nuue) - . (7.10) 
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The first cosine function in Eq. (7.10) represents the radio frequency signal, the 
phase of which (modulo n) is independent of t and of line length variations. 
The second cosine function is a standing-wave amplitude term. Such a system 
cannot easily be implemented in practice because of attenuation and unwanted 
reflections, and thus more complicated schemes have evolved. In what follows we 
consider cable transmission, although the basic principles are applicable to other 
systems. Some general considerations, including the use of microwave links, are 
given by Thompson et al. (1968). 

Swarup and Yang System 

Several different round-trip schemes have been devised as instruments have de- 
veloped, and one of the earliest of these was by Swarup and Yang (1961). A 
system based on this scheme is shown in Fig. 7.4. Part of the outgoing signal is 
reflected from a known reflection point at an antenna, and variation in the path 
length to the reflector is monitored by measuring the relative phase of the reflected 
component at the detector. The phase of the reflected signal is compared with that 
of a reference signal. The phase of the latter is variable by means of a movable 
probe that samples the outgoing signal. Since many other reflections may occur in 
the transmission line, it is necessary to identify the desired component. To do this 
a modulated reflector, for example a diode loosely coupled to the line, is used. 
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Figure 7.4 System for measuring variations in the electrical path length in a transmission 
line, based on the technique of Swarup and Yang (1961). The output of the synchronous de- 
tector is a sinusoidal function of the difference between the phases of the reference (outgoing) 
and reflected components at the detector. A null output is obtained when these signal phases 
are in quadrature, and the position of the probe for a null is thus a measure of the phase of 
the reflected signal. Because of the isolator in the line, the probe samples only the outgoing 
component of the signal. 
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This is switched between conducting and nonconducting states by a square wave 
voltage, and a synchronous detector is used to separate the modulated component 
of the reflected signal. 

An increase At? in the length of the transmission line is detected as a corre- 
sponding movement of 2At? in the probe position for the null. It results in an 
increase of 2nACul/u in the phase of the frequency U I  at the antenna, where u 
is the phase velocity in the line. The corresponding changes in local oscillator 
phases and IF phases transmitted over the same path can be calculated and ap- 
plied as a correction to the visibility phases. Alternatively, the correction can be 
applied directly to the signals through a phase shifter or a mechanical line exten- 
der. In the original application by Swarup and Yang, the transmission line was 
part of a branching feeder network to an array of antennas. 

Frequency-Offset Round-Trip System 

A second scheme, shown in Fig. 7.5, is one in which the round-trip phase is 
measured directly. The signals traveling in opposite directions are at frequencies 
uI and u2 that differ by only a small amount, but enough to enable them to be 
separated easily. This type of system is widely used, and we examine its perfor- 
mance in some detail. Note that although directional couplers or circulators allow 
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Figure 7.5 Phase-lock scheme for the oscillator u2 at the antenna. Frequencies U I  and U I  - 
u2 are transmitted to the antenna station where they provide the phase reference to lock the 
oscillator. U I  and u2 are almost equal, so U I  - u2 is small. A signal at frequency u2 is returned 
to the central station for the round-trip phase measurement. 
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the signals at the same frequency but going in opposite directions in the line to 
be separated, the signal from the unwanted direction is suppressed by only 20- 
30 dB relative to the wanted one. An unwanted component at a level of -30 dB 
can cause a phase error of 1.8". However, the frequency offset enables the signals 
to be separated with much higher isolation. 

An oscillator at frequency u2 at an antenna is phase locked to the difference 
frequency of signals at U I  and u1 - UZ, which travel to the antenna via a transmis- 
sion line. The difference frequency (u1 - y) is small compared with u1 and UZ. 
The frequency y is returned to the master oscillator location for the round-trip 
phase comparison. 

At the antenna, the phases of the signals at frequencies uI and uI - u2 rel- 
ative to their phases at the central location are 2nul  L / u  and 2n(ul - uz)L/u ,  
where L is the length of the cable. The phase of the uz oscillator at the antenna 
is constrained by a phase-locked loop to equal the difference of these phases, 
that is, 2 n u ~ L / u .  The phase change in the y signal in traveling back to the cen- 
tral location is 2rruzL/u, and thus the measured round-trip phase (modulo 2 n )  is 
4nuzLlu. Now suppose that the length of the line changes by a small fraction, 
p.  The phase of the oscillator uz at the antenna relative to the master oscillator 
changes to 2nuzL(1 + j3)/u. The required correction to the uz oscillator is just 
half the change in the measured round-trip phase. The problem that arises is that 
several effects, including reflections and velocity dispersion in the transmission 
line, can cause an error in the round-trip phase. Such an error results in a phase 
offset of the oscillator at the antenna, which is not serious if it remains constant. 
However, in practice it is likely to vary with ambient temperature. The largest er- 
ror usually results from reflections, and control of this error places an upper limit 
on the frequency difference U I  - u2. We now examine this limit. 

Consider what happens if reflections occur at points A and B separated by a 
distance C along the line as in Fig. 7.5. The complex voltage reflection coefficients 
at these points are pA and p ~ ,  and their values will be assumed to be the same 
at frequencies U I  and u2. Signals U I  and u2, after traversing the cable, include 
components that have been reflected once at A and once at B. The coefficients pA 
and p~ are sufficiently small that components suffering more than one reflection 
at each point can be neglected. For the frequency uI arriving at the antenna, the 
amplitude (voltage) of the reflected component relative to the unreflected one is 

(7.1 1 )  

where (Y is the (power) attenuation coefficient of the cable in decibels per unit 
length. Note that the attenuation in voltage is equal to the square root of the atten- 
uation in power. The phase of the reflected component relative to the unreflected 
one is, modulo 2n, 

(7.12) 

where # A  and $B are the phase angles of P A  and PB (that is, PA = (p~le'@A, 
etc.), and u is the phase velocity in the line. Figure 7.6 shows a phasor representa- 
tion of the reflected and unreflected components and their phase 01. The reflected 
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Figure 7.6 Phasor diagram of components at frequency UI transmitted by the cable. 

component causes the resultant phase to be deflected through an angle el given 
by 

A sin el 4I 2: = 
1 + A C O S 8 1 '  

(7.13) 

Similarly, the phase of the frequency u2 is deflected through an angle r$z, given 
by equations equivalent to Eqs. (7.12) and (7.13) with subscript 1 replaced by 2. 

With the reflection effects represented by 41 and 4z, the round-trip phase for a 
line of length L is 

If the line length increases uniformly to L(1 + /3), the angles 4I and 42 vary in 
a nonlinear manner with .t and become @ I  + 641 and & + 6&, respectively. The 
round-trip phase then becomes 

4nu2Lu-l(l + B ,  + 41 + W I  + 42 + 6 4 2 .  (7.15) 

(The effect of the reflection on the phase of the signal at frequency uI - u2 has 
been omitted since uI - u2 is much smaller than uI or V Z ,  and reflections for the 
relatively low frequency may be very small. Also, the rate of change of phase of 
uI - u2 with line length is correspondingly small.) The applied correction for the 
increase in line length is half the measured change in round-trip phase: 

2sru28Lu-' + ; (&+I  +a&). (7.16) 

However, the exact correction would be equal to the change in the phase of u~ at 
the antenna, which is 

2A u*fl Lv-l + A&. (7.17) 
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Consequently, the phase correction is in error by 

?(841 I + 6422) - 842 = ;(a41 - 8422). (7.18) 

If U I  and u2 were equal, the phase error would be zero. It is possible therefore 
to specify a maximum allowable frequency difference in terms of the maximum 
tolerable error. 

The difference between the phase angles Cpl and C#J~ is obtained from Eq. (7.13) 
as follows: 

(7.19) 

The reflected amplitude A must be much less than unity if phase errors are to be 
tolerable, so terms in A2 can be omitted from the numerator in Eq. (7.19), and the 
denominator is approximately unity. Thus, 

+I - & 2: ~ ~ L U - ~ A ( U ~  - u ~ ) c o s ~ ~ .  (7.20) 

The variation of 41 - & with line length is given by 

a 
641 - 842 = BLZ(4I - 42) 

= 47ru-'A[cosel - O.lCa(ln 10)cosel - 4nu-'Lul sinO1] (7.21) 

x (VI - v2)B.e. 

The maximum values of the terms in square brackets in Eq. (7.21) are dominated 
by the third term, which is of the order of the number of wavelengths in the line. 
If the two smaller terms are neglected, we obtain the magnitude of the phase error 
as follows: 

- 842) 2: 8~2~-21p,Ilp~I~C210-"e'10 uI  ( uI - u2) sin e l .  (7.22) 

The factor C2 10-"'/Io has a maximum value at 

This maximum occurs because for small values of C the change in the angle 0 
with frequency or cable expansion is small, and for large values of L the reflected 
component is greatly attenuated. The maximum value is equal to 

[C2 10-a~/lo],ax = 10.21a-2. (7.24) 
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Figure 7.7 The function t? lO-"p~ 'O plotted against t? for four values of the transmission- 
line attenuation, CY dB m-'. This function is a factor in the round-trip phase error given by 
Eq. (7.22). 

Curves of l2  10-ue/l" are plotted in Fig. 7.7 for various values of (Y that corre- 
spond to good-quality cables. It is evident that reducing the attenuation in a cable 
increases the error in the round-trip phase correction in Eq. (7.22). 

The type of reflections that may be encountered depends on the type of trans- 
mission line and how it is used. For example, consider a buried coaxial cable that 
runs along a set of stations used for a movable antenna. The principal cause of re- 
flections in such a cable is the connectors that are inserted at the antenna stations. 
Unless the antenna is at the closest station, there are one or more interconnecting 
loops, where unused stations are bypassed, between the antenna and the master 
oscillator. If there are n connectors in the cable, there are N = n(n - 1)/2 pairs 
between which reflections can occur. Also, if the phasors of the corresponding 
reflected components combine randomly, the overall rms error in the phase cor- 
rection is, from Eq. (7.22), 

where 
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the rms value has been used for sin el, and the reflection coefficients are all ap- 
proximated by an average magnitude ( P I .  

As an example, suppose that an interferometer is designed for observations 
near 100 GHz, and that it incorporates 10 antenna stations in a linear configu- 
ration at approximately equal increments in distance up to 1 km from the mas- 
ter oscillator. The interconnecting oscillator cable carries a reference signal at 
w1 = 2 GHz, and for this cable ] P I  = 0.1, a = 0.06 dB m-', u = 2.4 x lo8 ms-', 
and the temperature coefficient of electrical length is K-'. From Eq. (7.26) 
we find that F ( a ,  t?) = 1.1 x 104. For a temperature variation of 0.1 K in the 
cable, B = lop6. If phase errors at 100 GHz are required to be less than lo, Sc#+,, 
must not exceed 0.02", and from Eq. (7.25) W I  and u2 must not differ by more 
than 1.6 MHz. 

Automatically Correcting System 

An interesting variation on the round-trip scheme, shown in Fig. 7.8, was sug- 
gested by J. Granlund (NRAO 1967). It is particularly suitable for providing a 
stable reference frequency at a number of points along a linear array of anten- 
nas. Frequencies u1 and u2 are generated by stable oscillators and are injected at 
opposite ends of the transmission line. The frequency difference uI - u2 is again 
very small. At an intermediate station the two signals are extracted by directional 
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Figure 7.8 Scheme proposed by J .  Granlund (NRAO 1967) for establishing a reference signal 
at frequency VI  + v2 at various stations along a transmission line. One such antenna station is 
shown. 
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couplers and multiplied to form the sum frequency. The phase of this sum at the 
antenna station in Fig. 7.8 is 

2 n u l l , u - 1  + 2nu2(L - e ,>v - '  = 2nLqLu-' - 2Jr(Ul - u2)(L - e1)u-l. 

(7.27) 

For two points at positions 41 and .C2 on the line, the difference in the sum- 
frequency phases is 

This difference would be zero if u I  and u2 were equal, but it is necessary to main- 
tain a finite frequency difference because the directivity of the couplers alone is 
seldom sufficient to separate the two signals adequately. The effect of the line 
length variation is not measured explicitly in this case, but the correction occurs 
automatically, except for the small term in Eq. (7.28). Reflections in the cable 
can produce errors, as described for the previous scheme, and may be the limiting 
consideration for the frequency offset. A practical implementation of the scheme 
of Fig. 7.8 is described by Little (1969). 

Fiberoptic 'hansmission of LO Signals 

Optical fiber can replace cables and transmission lines in most of the LO (local 
oscillator) schemes discussed above. Some features of optical fiber transmission 
that should be taken into account are outlined below. 

Different optical wavelengths can be used in the two directions of a round- 
trip system to help separate the signals. At the antenna, the frequency of the 
laser signal from the master LO can be offset by a few tens of megahertz 
by using a special modulating device, and injected into the line in the return 
direction. Alternatively, a different laser can be used for the return signal. 
It is important to take into account the effects of the fiber dispersion and 
temperature-induced changes in the laser wavelengths, particularly in the 
case where two different lasers are used. However, if the laser wavelengths 
are chosen to be very close to the zero-dispersion wavelength of the fiber, 
the resulting errors can be minimized. 
As mentioned in Section 7.1, the performance of optical components such as 
isolators and directional couplers is much better than that of corresponding 
microwave components. With careful design, it is possible to use such com- 
ponents to separate signals at the same laser wavelength traveling in opposite 
directions in a fiber. Round-trip phase systems have been made in which a 
radio frequency signal is transmitted on an optical carrier, and at the receiv- 
ing end a half-silvered mirror is used to return a component of the signal 
back along the fiber for a round-trip measurement. It may be necessary to 
use an optical isolator at the transmitting end to ensure that any of the re- 
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turned signal that reaches the laser is very small. Reflection of a laser signal 
back into the output can disturb the operation of the laser. 
In general, when a multi-fiber cable is flexed, the effective lengths of the 
individual fibers vary smoothly and remain matched to a much greater degree 
than is the case for bundled coaxial cables. As a result, it may be possible 
to use two separate fibers for the two different directions in a round-trip 
scheme, depending on the accuracy required. 
Twisting of a straight fiber that is held under constant tension has been found 
to cause less change in the electrical length than bending of a fiber. Twisting, 
however, can result in small changes in the amplitude of the transmitted 
signal, resulting from the residual sensitivity of the optical receiver to the 
angle of the linear polarization of the light. 
It is possible to stabilize the length of the path through a fiber by use of 
round-trip phase measurement at the optical wavelength. In practice this re- 
quires the use of an automatic correction loop in which a length adjustment 
device is controlled by the round-trip phase, since length variations compa- 
rable to the optical wavelength can occur on timescales of much less than 
one second. 
A local oscillator frequency can be transmitted as the frequency difference of 
two optical laser signals which travel in the same fiber. The radio frequency 
is generated by combining the optical signals in a photo-optic diode. Radio 
power of several microwatts can be obtained, which is sufficient to provide 
local oscillator power for an SIS mixer. This scheme is particularly attrac- 
tive for receivers at millimeter and submillimeter wavelengths (Payne et al. 
1998). 
For standard optical fiber, the temperature coefficient of length is approxi- 
mately 7 x K-'. High-stability fiber, developed by Sumitomo for spe- 
cial applications, has a temperature coefficient that is about an order of mag- 
nitude less. 

Phase-Locked Loops and Reference Frequencies 

Some practical points in the implementation of local oscillator systems should be 
briefly mentioned. In two of the schemes described above, an oscillator at the an- 
tenna is controlled by a phase-locked loop. Details of the design of phase-locked 
loops are given, for example, by Gardner (19791, and here we mention only the 
choice of the natural frequency of the loop. Unless the natural frequency is about 
an order of magnitude less than the frequency at the inputs of the phase detector, 
the loop response may be fast enough to introduce undesirable phase modulation 
at the phase detector frequency. In the system in Fig. 7.5, the frequency of the 
input signals to the phase detector is the offset frequency u1 - u2, an upper limit 
on which has been placed by consideration of the reflections in the line. Also, the 
bandwidth of the noise to which the loop responds is proportional to the natural 
frequency. These considerations place an upper limit on the natural frequency of 
the loop, which in turn limits the choice of the oscillator to be locked. An oscil- 
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lator with inherently poor phase stability (when unlocked) requires a loop with a 
higher natural frequency than does a more stable oscillator. Crystal-controlled os- 
cillators are highly stable and require loop natural frequencies of only a few hertz. 
They are especially suitable for long transmission lines because the noise band- 
width of the loop is correspondingly small. With crystal-controlled oscillators at 
the antennas, it is possible to send out the reference frequency in bursts, rather 
than continuously. Signals traveling in opposite directions can then be separated 
by time multiplexing and no frequency offset is required. However, the change in 
impedance of the circuits at the ends of the cable when the direction of the signal 
is reversed could become a limiting factor in the accuracy of the round-trip phase 
measurement. Systems of this type have been designed for several large arrays 
(Thompson et al. 1980; Davies, Anderson, and Morison 1980). 

In addition to the establishment of a phase-locked oscillator at each antenna at 
a reference frequency (equal to u in Fig. 7.4, u2 in Fig. 7.5, and uI +y in Fig. 7.8), 
it is necessary to generate the multiples or submultiples of this frequency that are 
required for frequency conversions of the received signal. In frequency multipli- 
cation, phase variations increase in proportion to the frequency. Within the mul- 
tiplier chain from the frequency standard to the first LO frequency, the choice of 
frequency that is transmitted from the central location to the antenna is generally 
not critical. However, if significant noise is added in the transmission process, it 
may be better to transmit a high frequency to minimize multiplication of phase 
errors resulting from the added noise. 

Minimization of phase variations in the frequency-multiplication circuit is 
largely a matter of reducing temperature-related effects, and in this regard the 
scheme depicted in Fig. 7.9 is worthy of mention. It may be useful to generate a 
“comb” spectrum consisting of many harmonics that can be used, for example, 
for tuning in discrete frequency intervals. This can be done by applying the fun- 
damental frequency to a varactor diode, but the voltage at which the varactor goes 
into conduction varies with temperature, so the phase of the waveform at which it 
starts to conduct during each cycle varies. This causes variation in the phases of 
the harmonics that are generated. In the circuit in Fig. 7.9, the effect of this varia- 
tion is eliminated. The input fundamental waveform at frequency u is not applied 
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Figure 7.9 Scheme for generating a comb spectrum of harmonics of a frequency u, in which 
phase changes in the harmonic generator are eliminated by enclosing it within a phase-locked 
loop. The filter passes two harmonics that combine in the mixer diode to generate a signal at 
frequency u. 
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directly to the harmonic generator but is used to lock an oscillator at frequency 
u. This oscillator drives the harmonic generator. The waveform at the oscillator 
frequency that is compared with the input frequency is taken after the varactor 
by selecting two adjacent harmonics and combining them in a mixer diode. The 
phase-locked loop holds constant the phase of this output waveform relative to 
the input frequency v, and adjusts the phase of the oscillator to compensate for a 
change in time of switch-on of the varactor. 

In the case of a connected-element array, low-frequency components of the 
phase noise of the master oscillator cause similar effects in the local oscillator 
phase at each antenna, and therefore their contributions to the relative phase of the 
signals at the correlator input tend to cancel. However, the frequency components 
of the phase noise suffer phase changes as a result of the time delay in the path 
of the reference signal from the master oscillator to each antenna, and also as 
a result of the time delay of the IF signal from the corresponding mixer to the 
correlator input (including the variable delay that compensates for the geometric 
delay). Thus the cancelation is important only for frequency components of the 
phase noise that are low enough that differences in these phase changes, from one 
antenna to another, are small. The bandwidths of phase-locked loops in the local 
oscillator signals can also limit the frequency range over which phase noise in 
the master oscillator is canceled. In practice, cancellation of phase noise from the 
master oscillator is likely to be effective up to a frequency in the range of some 
tens of hertz to a few hundred kilohertz, depending upon the parameters of the 
particular system. 

Phase Stability of Filters 

Tuned filters used for selecting local oscillator frequencies are also a source of 
temperature-related phase variations. The phase response q5 of a filter changes by 
approximately n r / 2  across the 3-dB bandwidth Au, where n is the number of 
sections (poles). Thus, the rate of change of phase with frequency, measured at 
the center frequency UO, is 

(7.29) 

where k ,  is a constant of order unity that depends on the design of the filter. The 
center frequency varies with physical temperature T by 

(7.30) 

where kl is a constant related to the coefficients of expansion and variation of the 
dielectric constant of the filter. Thus the rate of variation of phase with tempera- 
ture is given by 

(7.3 1) 
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The factor uo/Au is the Q factor of the filter. The combined constant k l k z  can be 
determined empirically and is typically of order K-' for tubular bandpass 
filters with center frequencies in the range 1 MHz to 1 GHz. Thus, for example, if 
one allows a 1-K temperature variation for such a filter and places an upper limit 
of 0.1" on its contribution to the phase variation, the fractional bandwidth must 
not be less than n /  100, or 5.4% for a six-pole filter. Filters of narrow fractional 
bandwidth should be used with caution. To pick out a particular frequency from 
a series of closely spaced harmonics it may be preferable to use a phase-locked 
oscillator rather than a filter. 

Effect of Phase Errors 

Rapidly varying phase errors, such as those resulting from noise in local oscillator 
circuits, cause a loss in signal amplitude and, hence, in sensitivity. They may also 
cause errors in the visibility phase, but the effect is small, since fast variations 
in the visibility phase are substantially reduced by the visibility averaging. To 
determine the loss in sensitivity, the signals from two antennas can be represented 
by V,, ,e@m(')  and Vne@n(') at the correlator inputs, where the + terms are the phase 
errors for antennas m and n. The correlator output is 

where the angle brackets represent the expectation. Then if A+ = [& ( t )  - & ( t ) ]  
is the phase error, we have 

r = V,  V;[ (cos A+) + j(sin A+)]. (7.33) 

If the probability distribution of A+ is an even function with zero mean, which is 
frequently the case, the time average of the sine term has an expectation of zero. 
Then, by using the first two terms of the series expression for a cosine, we obtain 
a result in terms of the rms phase error, A+rms: 

r * [ I  - ;A+&]. (7.34) 

The cosine approximation is accurate to 1 % for values of A&,,, less than - 37". 
A reduction in sensitivity of 1% occurs for A+,,, = 8.1". 

7.3 FREQUENCY RESPONSES OF THE SIGNAL CHANNELS 

Optimum Response 

The signals in a synthesis array usually pass through a number of amplifiers, fil- 
ters, mixers, and transmission lines from the outputs of the antennas to the inputs 
of the correlators. The characteristics of these components are impressed on the 
signals, and therefore we should consider their effect on the sensitivity and accu- 
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racy of the visibility measurements. These characteristics can be specified largely 
in terms of the overall frequency response of the receiving channel. The impor- 
tant considerations are the optimum frequency response and the tolerances on the 
deviations of the channels of different antennas from this optimum response. The 
following discussion is based on an analysis by Thompson and D' Addario (1982). 

We assume that the astronomical signal and the receiver noise both have flat 
spectra over the width of an IF band or spectral channel. Then the spectrum of the 
signal delivered to the correlators from a given antenna is determined by the fre- 
quency response of the associated receiving equipment. If H ( u )  = lH(u)leJ4(") 
is the voltage-frequency response function, the output from the correlator for an- 
tennas m and n, resulting from cosmic signals, is proportional to 

03 

1 J_, ~ , , , ( u ) ~ , * ( u )  d u  = Re [/I H.,(u)H,'(v)du] 
(7.35) 

= R e  [lm IH,,(u)llH,I(u)lej(Ct-kl)du , 1 
where we have used the relation in Eq. (A3.6). H,,,H: being hermitian, and the 
subscripts denote the antennas. We are concerned here with the dependence of the 
signal-to-noise ratio of an observation on the frequency responses of the signal 
channels. In practice, the frequency responses are nonzero only within a limited 
frequency band of width Av. From Eq. (6.42) we can define a factor a> equal 
to the signal-to-noise ratio relative to that with identical rectangular responses of 
width Au: 

(7.36) 
R e  [I; K O ) H , * ( v ) d v ]  a =  

J A v I H,,, ( v )  1 * I H" ( u )  I * d u 

This equation has a maximum value if I H ,  ( u )  I and I H,  ( u )  I are constant across 
the band Au, that is, if the amplitude response is a rectangular function. If, in ad- 
dition, # ( u )  is identical for both antennas, is equal to unity. Thus, a rectangular 
passband yields the greatest sensitivity within a limited bandwidth. Note that the 
same integral of H,,, H i  applies to both the real and imaginary parts of a complex 
correlator, and hence it also applies to the modulus of the visibility. 

Of the other ways in which the receiving passband modifies the response of 
a synthesis array, the most important is the smearing of detail in the synthesized 
response, which limits the field of view that can be usefully mapped. This effect 
has been described in Section 6.3. For a given sensitivity, a rectangular passband 
results in the least smearing, since it is the most compact in the frequency dimen- 
sion. 

An exact rectangular passband, of course, is only an ideal concept. In practice, 
the steepness of the sides of the passband must be determined by the particular 
design and the number of poles in the response. The response can be made to 
approximate a rectangular shape more closely as the number of poles increases, 
with a proportionate increase in a @ / d T  as shown by Eq. (7.31 j. To examine the 
tolerable deviations of the actual passband responses, two effects must be consid- 
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ered: ( 1 )  the decrease in the signal-to-noise ratio and (2) the introduction of errors 
in determining gain factors for individual antennas, as will be described. 

Tolerances on Variation of the Frequency Response: Degradation of 
Sensitivity 

We first consider the effects on the sensitivity. Equation (7.36) provides a degrada- 
tion factor D ,  which is the signal-to-noise ratio with frequency responses HI, ( u )  
and H , , ( u ) ,  expressed as a fraction of that which would be obtained with rect- 
angular passbands of width A(u).  In constructing a receiving system, the usual 
goal is to keep the passband flat with steep edges, but, in practice, effects such 
as differential attenuation and reflections in cables introduce slopes and ripples 
in the frequency response that are nut identical from one antenna to another. To 
examine these effects, D can be calculated for an initially rectangular passband 
with various distortions imposed. The distortions considered are the following: 

I .  Amplitude slope across the passband, with the logarithm of the amplitude 

2. Sinusoidal amplitude ripple; this could result from a reflection in a trans- 

3. Displacement of the center frequency of the passband. 
4. Variation in phase response as a function of frequency. 
5. Delay-setting error, which introduces a component of phase linear with fre- 

varying linearly with frequency. 

mission line. 

quency. 

Expressions for the frequency response involving the above effects are given 
in the first column of Table 7. I .  The second column of the table gives the signal- 
to-noise degradation factor D ,  and subscripts nr and 12 indicate parameter values 
for particular antennas. The expressions in Tablc 7. I have been used to derive thc 
maximum tolerable passband distortion for each of the effects, allowing a loss 
in sensitivity of no more than 2.5% (D = 0.975). The resulting limits on the 
passband distortion are shown in Table 7.2. 

Tolerances on Variation of the Frequency Response: Gain Errors 

A second effect that sets limits on the deviations of the frequency responses re- 
sults from errors that can be introduced i n  the calibration procedure. If we omit 
the noise terms, the output of the correlator for an antenna pair can be expressed 
as 

(7.37) 

where Y,,,,, is the source-dependent complex visibility from which the inten- 
sity map can be computed, and G,,,,, is  a gain factor related to the frequency 
responscs of the signal channels. We suppose that these responses incorpo- 
rate the characteristics of the antennas and electronics in such a way that G,,,,, 
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TABLE 7.2 Examples of Frequency Response Tolerances 

Criterion 

Type of Variation 
2.5% Degradation in 
Signal-to-Noise Ratio Gain Error 

1 % Maximum 

Amplitude slope 3.5 dB edge-to-edge 2.7 dB edge-to-edge 
Sinusoidal ripple 2.9 dB peak-to-peak 2.0 dB peak-to-peak 
Center-frequency displacement 0.05Av 0.007Av 
Phase variation 
Delay-setting error 0.12IAv O.O5/Av 

&,, = 12.8” rms &,,,,, = 9. lo rms 

is proportional to the correlator output for antenna pair (m, n) when a point source 
of unit flux density at the field center is observed. In practice, the G,,,,, values may 
be determined from observations of calibration sources for which the visibilities 
are known. The measured antenna-pair gains can be used to correct the corre- 
lator output data directly, but there are advantages if, instead, they are used to 
determine (voltage) gain factors g = (gle‘4 for the individual antennas such that 

(7.38) 

Since, in a large array, there are many more correlated antenna pairs than antennas 
[up to nu (n(,  - 1)/2 pairs for n,  antennas], not all the calibration data need be used. 
This adds important flexibility to the calibration procedure; for example, a source 
resolved at the longest spacings of an array can be used to determine the antenna 
gains from measurements made only at the shorter spacings. The same principle 
leads to adaptive calibration described in Section 1 1.4. 

In gcncral, the factoring in Eq. (7.38) requires that the frequency responses be 
identical for all antennas, or differ only by constant multiplicative factors. If this 
requirement is fulfilled, we can assign gain factors 

g = /lW , H ( ” ) , ? d ” .  (7.39) 

In practice, the frequency responses differ, and an approximate solution to 
Eq. (7.38) can be obtained by choosing the g values to minimize 

c IG,,,,, - 

where the summation is taken over all antenna pairs (m,  n )  for which G,,,,, can 
be measured by observation of a calibration source. In calibrating subsequent 
observations of unknown sources, g,,,g,f is used in place of G,,,,, in Eq. (7.37) for 
all antenna pairs, whether they are directly calibrated or not. To avoid introducing 
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errors with this scheme, the residuals 

(7.41) 

must be small, which requires that the frequency responses be sufficiently similar. 
Thus, we are concerned here with the deviations of the frequency responses from 
one another rather than from an ideal response. 

By using model responses for groups of antennas, calculating the pair gains, 
the best-fit antenna gains, and the residuals, tolerances on the bandpass distor- 
tion can be assigned. Pair gains for the various distortions discussed earlier are 
given in the third column of Table 7.1. Table 7.2 shows examples of tolerances. 
The results depend to some extent on the distribution of distortions in the model 
responses, which for the results shown were chosen with the intention of maxi- 
mizing the residuals. The criteria of 2.5% loss in sensitivity and 1% maximum 
gain error shown in Table 7.2 were used during the early operation of the VLA 
(Thompson and D’ Addario 1982), and are not necessarily generally applicable. 
More stringent criteria may be appropriate depending on the sensitivity and dy- 
namic range to be achieved. The acceptable level of gain error for any instrument 
can be determined by making calculations of the response to source models with 
simulated errors of various levels introduced into the model visibility data. Bagri 
and Thompson (1991) give a discussion of the sources and effects of gain errors 
in the VLA. 

Delay-Setting Tolerances 

Inaccuracies in adjustment of the compensating time delays in an array can re- 
sult from either of two effects. There are errors in calculating the correct setting, 
which result from errors in calibration of antenna positions or of the delay de- 
vices. These errors can be reduced by using a calibration source that is close in 
position to the source being mapped. Tolerances on such errors are determined 
by the effects summarized in Table 7.2. There are also errors that result from the 
discretely adjustable nature of the delays. In analog systems, delay elements pro- 
viding a binary sequence of values are switched in and out of the signal path. In 
digital systems the delay can be adjusted in steps governed by a train of timing 
pulses, as described in Section 8.5. In either case there is a minimum delay in- 
crement ro. If the delay for each antenna is readjusted whenever the magnitude 
of the error is equal to ~ ~ / 2 ,  the probability distribution of the error is uniform 
from - q / 2  to ~ / 2 .  The rms delay error for a single antenna is then r o l ( 2 d ) .  
For any pair of antennas in an array, the errors for two antennas can generally be 
assumed to vary independently. Thus the differential delay error for any pair has 
a probability distribution equal to the convolution of the distributions for the in- 
dividual antennas. This distribution is a triangular function with maximum errors 
f r o  and an rms value of TO/&. For single-sideband receiving systems the delay 
errors introduce an error in the phase of the visibility, the rms value of which is 
equal to 2rr u , ,  times the rms delay error, where u,,, is the rms frequency of the 
IF band in which the delay is inserted. 
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One method of eliminating the delay-step phase error is to make ro equal to 
the reciprocal of the mean frequency at which the delay is inserted. Adjustments 
of the delay then involve phase changes that are integral numbers of complete 
rotations of the phase. This technique requires that the IF bandwidth be small 
compared with the center frequency, so that TO is not a large fraction of the re- 
ciprocal bandwidth. The technique has therefore been most useful in some of 
the earlier arrays that had narrow receiving bandwidths. For instruments with 
wider bandwidths the phase errors can be made tolerable by using small enough 
values for both TO and the intermediate frequency at which the delay is intro- 
duced. If a baseband IF response is used, that is, one in which the passband is 
defined by a lowpass filter, u,,, is equal to Au/&. This scheme is well suited 
for use with a digital delay system. It is used, for example, in the VLA, for which 
ro = 1/(32Au), and taking the rms delay error as TO/&, the resulting phase 
error is n l (48f i )  rad = 2.65". From Eq. (7.34) the resulting loss in sensitivity 
is 0.1 I % .  

In addition to causing a loss in sensitivity, delay-induced phase errors con- 
tribute to errors in the phase of the measured visibility. In this case it is the values 
after time averaging, not the instantaneous values, that are critical. The effective 
averaging time is of the order of the time taken for the baseline vector to cross a 
cell in the simple case of cell averaging discussed in Section 5.2. In a synthesis 
array the compensating delay for each antenna is adjusted to equalize the delay 
relative to some reference point as the source moves across the sky. If the antenna 
spacings are large, the delay may change by several increments during most cell 
crossings, and the resulting phase errors are reduced by the data averaging. How- 
ever, for any pair of antennas, the rate of change of the geometric delay, which is 
proportional to u ,  goes through zero when the baseline vector crosses the u axis 
(see Section 4.3). The rate of change of the instrumental delays at that point de- 
pends on the location of the antennas relative to the chosen delay reference point, 
but may be small for some antennas in an array. Depending on the details of the 
array, it may be expected that for some (possibly small) fraction of the visibility 
data the phase errors will not be significantly reduced by the averaging. 

Implementation of Bandpass Tolerances 

The tolerances summarized in Table 7.2 apply to the overall system from the 
antennas to the correlator inputs. In practice, the frequency response is deter- 
mined mainly by filters in the late stages, immediately preceding the correlators 
or digital samplers. Specifications on such filters should provide for the required 
matching of responses and should include consideration of the temperature effects 
discussed in Section 7.2 under Phase Stcibility of Filters. The frequency selectiv- 
ity of elements in  the earlier stages can then be held to the minimum required 
for rejection of interfering signals, thus minimizing the effect on the overall re- 
sponse. It is also possible to implement the filtering digitally after the sampling, 
instead of in the analog IF stages. The digital sampling is then performed on the 
full IF bandwidth. Digital filtering is briefly discussed in Section 8.7, and has the 
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advantage that the resulting passband does not depend on the tuning of individual 
filters and is relatively insensitive to temperature variations. 

7.4 POLARIZATION MISMATCH ERRORS 

The response of two antennas to an unpolarized source is greatest when the an- 
tennas are identically polarized. Small variations in the polarization characteris- 
tics of one antenna relative to another occur as a result of mechanical tolerances. 
These variations lead to errors in the assignment of antenna gains in a manner 
similar to the variations in frequency responses. To examine this effect, we cal- 
culate the response of two arbitrarily polarized antennas to a randomly polarized 
source, which is given by the term for the Stokes parameter I, in Eq. (4.29). Defi- 
nitions of symbols are in terms of the polarization ellipse (see Fig. 4.8 and related 
text). The position angle of the major axis is $, the axial ratio is tan x ,  and sub- 
scripts m and n indicate two antennas of an array. As an example, we consider 
antennas with nominally identical circular polarization for which we can write 
x,,, = 17/4 + Axm and x,, = 1r/4 + Ax,,, where the A terms represent the devia- 
tions of the corresponding parameter from the ideal value. The required response 
is 

Gni,, = Go[cos($,,, - $,I) cos(Ax,it - AX,,) 
(7.42) 

Now $,,, - $,, and the A terms represent construction tolerances and are all small. 
Thus we can expand the trigonometric functions and retain only the first- and 
second-order terms. Equation (7.42) then becomes 

+ j - $,,) cos(Ax,,, + Axt1)l. 

An analysis similar to the procedure for frequency responses in Section 7.3 can be 
made by assigning polarization characteristics to a model group of antennas and 
determining pair gains, best-fit antenna gains, and gain residuals. For simplicity, 
it is assumed that the spread of values is of similar magnitude for the parameters 
x and $. A 1% maximum gain residual then results from a spread of f3.6" in 
x and $. A value of A x  = 3.6" corresponds to an axial ratio of 1.13 for the 
polarization ellipse, and it is not difficult to obtain feeds for which the deviation 
from circularity is within this value near the beam center. A similar analysis for 
linearly polarized antennas gives tolerances of the same order (Thompson 1984). 

7.5 PHASE SWITCHING 

Reduction of Response to Spurious Signals 

The technique of phase switching for a two-element interferometer has been de- 
scribed in Chapter 1,  where it was explained as an early method of obtaining ana- 
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log multiplication of signals. The principle is as indicated in Fig. 1.8. However, 
in later instruments the power-law detector is replaced by a correlator. Although 
more direct methods of signal multiplication are now used, phase switching is 
still useful to eliminate small offsets in correlator outputs that can result from im- 
perfections in circuit operation or from spurious signals. The latter are difficult 
to eliminate entirely in any complicated receiving system, since combinations of 
harmonics of oscillator frequencies that fall within the observing frequency band 
or any intermediate frequency band may infiltrate the electronics. Such signals, at 
levels too low to detect by common test procedures, can be strong enough to pro- 
duce unwanted Components in the output. For an array of n,, antennas, a receiving 
bandwidth Au, and an observing duration r ,  signals at the limit of detectability 
are at a power level of order (n, = ) - I  relative to the noise; for example, 75 dB 
below the noise for no = 27, Au = 50 MHz, and r = 8 h. Similar effects can 
be produced by cross coupling of small amounts of noise from one IF system to 
another. 

Since spurious signals produce components of the visibility that change only 
slowly with time, they show up as spurious detail near the origin of the map. If 
they enter the signal channel at a point that comes after the phase switch, so that 
they produce a component with no switch-frequency variation at the synchronous 
detector, they can generally be reduced by several orders of magnitude by phase 
switching. 

Implementation of Phase Switching 

Consider the problem of phase switching a multielement array in which the prod- 
ucts of the signals from all possible pairs of antennas are formed. Phase switching 
can be represented by multiplication of the received signals by periodic functions 
that alternate in time between values of + I  and - 1.  For the mth and nth antennas 
let these functions be J n ( t )  and J l ( l ) .  Synchronous detection of the correlator 
output for these two antennas requires a reference waveform fm ( r ) J l ( r ) ,  and any 
nonvarying, unswitched components from the multiplier are reduced by a factor 

(7.44) ST f i l l  (I , f i l  ( t  1 dt  . 
5 0  

after averaging for a time r .  For the periodic waveforms we are concerned with, 
this factor will be zero if r is a multiple of the minimum period of orthogonality 
r,, for J t l ( r )  and f i l ( r ) .  In fact, the unwanted output components may not be 
exactly constant, because the tracking of the compensating delays introduces slow 
changes in the phases with which the spurious signals are combined. However, 
the unwanted outputs will be strongly reduced by the synchronous detection as 
long as their variation is small over the period rOr. If the orthogonality of the 
phase-switching functions depends on the relative timing of transitions, the timing 
should be adjusted so that the functions are orthogonal at the correlator inputs. 
Thus, it may be necessary to adjust the timing of the switching waveforms at the 
antennas to compensate for the varying instrumental delay inserted as a source 
moves across the sky. 
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Implementation of phase switching on an array of nc, antennas calls for n,, mu- 
tually orthogonal, two-state waveforms. Sets of square waves whose frequencies 
are proportional to integral powers of two (Rademacher functions) are orthogonal 
with r,, equal to the period of the lowest nonzero frequency. In phase switching, 
r,, is equal to the data averaging time, which is typically a few seconds but for 
special cases may be as low as 10 ms. The shortest interval between switching 
transitions r,, is equal to the half period of the fastest square wave. Technically, 
it is convenient if ror/rsw does not greatly exceed about two orders of magni- 
tude. If one antenna remains unswitched, then rOr/r,, = 2'In-' .  Square waves of 
the same frequency are orthogonal if their phases differ by a quarter of a cycle 
in time. When this condition for orthogonality is also included, roor/rsw = 2"+', 
where n is the smallest integer greater than or equal to (n, - 3)/2. This reduces 
the value of ror/rsw, but the orthogonality then depends on the relative timing of 
the transitions at the correlator, which is not the case for square waves of different 
frequencies. In either case ro,/rsw is inconveniently large for a large array and, for 
example, for n,, = 27 it is of order 10* in the first case and lo4 in the second. 

I t  is useful to note that a condition for a pair of square waves of different frequen- 
cy to be orthogonal, for arbitrary time shifts. is that they do not contain Fourier com- 
ponents of the same frequency. A property of square waves is that all even numbered 
Fourier components (i.e. even harmonics of the fundamental frequency) have zero co- 
efficients, but odd numbered components have nonzero coefficients. Thus, although 
sinusoids with frequencies proportional to I, 2 . 3 ,  . . . are mutually orthogonal, square 
waves with such frequencies. in general. are not. For example, square waves of fre- 
quencies 1.2, and 4 have no common Fourier components. and are mutually orthogo- 
nal, but I ,  3, and 5 have common components and are not mutually orthogonal. 
D'Addario (2001 ) shows by generalization of this analysis that the lowest frequency 
sets of N mutually orthogonal square waves consist of those with frequencies propor- 
tional to 2" for 17 = 0, I .  . . . , ( N  - I ) .  that is, the Rademacher sets discussed above. 
Since the different square waves of a Rademacher set contain no common Fourier 
components, their orthogonality is not affected by the relative time shifts. Note, also, 
that strict orthogonality is not essential for phase switching. Unwanted responses can 
be reduced by a factor of I0 -I or less by using square waves with k cycles per averag- 
ing period for values of k that are prinie numbers greater than 100. 

The beneficial effects of phase switching can also be obtained by sinusoidal phase 
modulation of the signals. that is, by introducing a set of orthogonal sinusoids as fre- 
quency offsets at the antennas. The wanted outputs then appear at the correlator out- 
put shifted in frequency from the response to unwanted components that do not suffer 
the frequency offsets. Unless fringe rotation is performed in the correlator, removing 
the frequency shift from the wanted components is more complicated than the equiv- 
alent operation in a phase switching system. In the case of VLBI, the frequency offsets 
at the antennas that result naturally from the sidereal motion of a source are generally 
sufficiently large that phase switching is not necessary. 

An alternative set of two-state orthogonal functions that can be used to implement 
phase switching are the Walsh functions, which are rectangular waveforms in which 
the time interval between transitions between + I  and - 1 is a varying but integral mul- 
tiple of a basic interval, as in Fig. 7.10. For a description of Walsh functions (Walsh 
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Figure 7.10 Four examples of Walsh functions, each of which repeats after the one cycle of 
the time base interval plotted above. Within this interval the sal functions are odd, and the cal 
functions are even. The value of each function alternates between 1 and - 1 .  The first number 
in parentheses in the name of each function is the sequency. which is equal to half the number 
of zero crossings in the time base interval. Time t is measured as a fraction of the time base. 

1923) see, for example, Harmuth (1969, 1972) or Beauchamp (1975). Various sys- 
tems of designating and ordering Watsh functions are in use. In one system (Harmuth 
1972) those with even symmetry are designated as cal(k. t) and those with odd sym- 
metry as sal(k, t). Here t is time expressed as a fraction ofthe time base 7: which is the 
interval at which the waveform repeats, and k is the sequency. which is equal to half 
the number ofzero crossings within the time base. Walsh functions with different se- 
quencies are orthogonal. and cal and sal functions of the same sequency are othogonal 
but differ only by a time offset. The orthogonality requires that the time bases of the 
individual Walsh functions be aligned in time, so time offsets are not permitted. Walsh 
functions with sequencies that are integral powers of two are square waves. If one an- 
tenna i s  unswitched, and if only the cal or only the sal functions are used. the highcst 
sequency is (n, ,  - 1 ). Then rc,r/rs,b = 2ri. where 17 is the smallest power-of-two integer 
greater than or equal to (17,1 - I ) .  If both cal and sal functions are used, then n is the 
smallest power-of-two integer greater than or equal to (rill - l)/2. For example, for 
I ? , ,  = 64, T,,,./T~,, is 128 in the first case and 64 in the second. 

Another designation for Walsh functions, wal(n, r ) ,  includes both cal and sal 
functions, cal ( n ,  t )  = wal(2n, r )  and sal ( n ,  t )  = wal(2n - 1 ,  r ) .  One method of 
generating Walsh functions makes use of Hadamard matrices, of which the one 
of lowest order is 

(7.45) 

Higher-order matrices can be obtained by replacing each element of H2 by the 
matrix H2 multiplied by the element replaced [which is equivalent to forming an 
outer product: see Eq. (4.51)]. If this is performed twice, for example, we obtain 
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1 1 1 1 1 1 1 1  
I - I  1 -1 1 - I  I - 1  
1 1 - I  -1 I 1 - I  - 1  
1 - I  - 1  1 I - 1  - I  1 
1 1 1 1 -1 - 1  - I  -1 
1 -1 I - 1  - I  I - I  1 
1 1 - 1  -1 - I  - 1  I 1 
I -1 - I  1 - I  1 1 - 1  

The rows of the matrices correspond to the Walsh functions indicated, the signs 
being reversed for odd sequencies in this particular generation process. The wave- 
form required at the phase detector is the product of the phase-switching functions 
at the two antennas involved. The product of two such Walsh functions is a Walsh 
function, the sequency of which is greater than, or equal to, the difference be- 
tween the sequencies of the two original functions. 

Walsh functions can also be generated as products of Rademacher functions. 
Rademacher functions are designated R ( n ,  t),  where n is an integer and the half 
period of the square wave is T/2"; that is, there are 2'l-l complete cycles within 
the time base, T. The function R(0, t )  has a constant value of unity. In the ex- 
amples in Fig. 7.10, sal( I ,  t )  is a Rademacher function, and cal(3, t )  and sal(9, t )  
are each products of sal( I ,  t )  and one other Rademacher function. When consid- 
ering Walsh functions as products of Rademacher functions it is convenient to use 
the Paley designation, pal(n, r )  (Paley 1932). The integer n is called the natural 
order of the Walsh function. A Walsh function pal(n, r ) ,  which is the product of 
Rademacher functions R(i, t), R( j ,  t ) ,  . . . , R(m, t) ,  has a natural-order number 

= 21-1 + 2j-'+, . . . , +2"'-' . The product of two Walsh functions is another 
Walsh function, of which the natural-order number is given by modulo-2 addition 
(that is, no-carry addition) of the binary natural-order numbers of the component 
Walsh functions. 

Table 7.3 shows the relationship between the natural-order numbers for a series 
of Walsh functions, and the Rademacher functions of which they are composed. 
The product of two Walsh functions can be expressed as the product of the com- 
ponent Rademacher functions, for example, 

pal(7, t )  x pal(l0, t )  = (R(1, I )  x R(2, t )  x R(3, t ) ]  x [R(2. r )  x R(4, r ) ]  

= R(1, I )  x R(2, t )  x R(2, t )  x R(3. t )  x R(4, t )  

= R( I ,  t )  x R(3, t )  x R(4, t )  

= pal( 13, t ) .  (7.47) 

where we have used the fact that the product of a Walsh or Rademacher function 
with itself is equal to unity. The natural orders of the two Walsh functions, 7 and 
10, in binary form are 01 11 and 1010. The modulo-2 addition of these binary 
numbers is 1101, which is equal to 13, the natural order of the Walsh function 
product . 
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TABLE 7.3 Hademacher Components of Some Walsh Functions 

Natural Order Sequency 
Designation R(0.  f )  R(  I f )  R ( 2 .  t )  R ( 3 ,  t )  R(4, t )  Designation 

Rademacher Components 

1 
1 

I 

1 

1 

I 

1 

cal(0. t )  
sal( I ,  t )  
sal(2, t )  
cal(1, f )  

saI(4, f )  

caI(3, f )  

cal(2, I) 
saI(3, t )  

sal(8, t )  
cal(7, t )  
caI(6, t )  
sal(7, t )  

cal(4,r)  
sal(5, t )  
sal(6, t )  
cal(5. f )  

The examination of Walsh functions as products of Rademacher functions 
leads to a useful insight into the efficiency of Walsh function phase switching 
in eliminating unwanted components (Emerson 1983). Let U ( t )  be an unwanted 
response within the receiving system, for example, resulting from crosstalk in 
IF signals or from an error in the sampling level of a digitizer. U(r)  arises af- 
ter the initial phase switching, so when synchronous detection with the phase- 
switching waveform is performed at a later stage, U ( t )  becomes U(r)pal(n, r ) ,  
and this product is significantly reduced in the subsequent averaging. Suppose that 
pal(n, t )  is the product of m Rademacher functions, R ( i ,  t) ,  R( j, t), . . . , R ( l ,  t ) .  
We can consider multiplying U ( t )  by pal(n, t )  as equivalent to multiplying by 
each of the Rademacher components in turn. Also, we assume that the period of 
the Radernacher functions is small compared with the timescale of variations of 
U(r).  Then, after the first multiplication and averaging, the mean residual spuri- 
ous voltage is 

where 6r  is equal to the half period of the Rademacher function, T/2 ' .  UI is 
calculated for one cycle of R ( i .  t ) ,  but within the assumption that U ( t )  is slowly 
varying, U ,  can be taken as equal to the average over the Walsh time base T. 
Multiplication by the second Rademacher function is obtained by replacing U in 
Eq. (7.48) by U , ,  which yields 
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For the rn Rademacher components, we obtain 

(7.49) 

(7.50) 

so only the higher derivatives of U remain. 
Walsh functions pal(n, t )  for which n is an integral power of two are the least 

effective in eliminating unwanted responses, since they are each just a single 
Rademacher function. As shown by examination of Table 7.3, those for which 
n = 2k - 1, where k is an integer, contain the largest number of Rademacher 
components. In arrays with a small number of antennas, for which a large num- 
ber of different switching functions is not required, it is possible to select Walsh 
functions that are the most effective in reducing unwanted components. Similarly, 
Walsh functions can be more effective than square waves in some applications to 
single antennas, such as beam switching between a source and a reference po- 
sition on the sky (Emerson 1983). An early application of Walsh functions to 
transmission lines is discussed by Fowle ( 1904). 

Another set of possible phase-switching functions are m-sequences, consid- 
ered by Keto (2000) for cases where both 90" and 180" phase changes are re- 
quired. 

Interaction of Phase Switching with Fringe Rotation and Delay Adjustment 

The effectiveness of phase switching in reducing the response to spurious signals 
depends on the point in the signal channel at which these unwanted signals are 
introduced. The three following cases illustrate the most important possibilities. 

1. The unwanted signal enters the antennas or some point in the signal chan- 
nels that is ahead of the phase switching, the fringe rotation, and the com- 
pensating delays. The unwanted signal then suffers phase switching like 
the wanted signals and is not suppressed in the synchronous detection (al- 
though it may be reduced by the fringe rotation if the fringe frequency is 
high, as in the case of VLBI). Externally generated interference behaves in 
this manner, and its effect is discussed in Chapter 15. 

2.  The unwanted signal enters after the phase switching but before the fringe 
rotation and delay compensation. The fringe-rotation phase shifts, designed 
to reduce to zero the fringe frequencies of the desired signals at the correla- 
tor output, act on the spurious signal and cause it to appear at the correlator 
output as a component at the natural fringe frequency for a point source at 
the phase reference position. This component then undergoes synchronous 
detection with a Walsh function. If the natural fringe frequency transiently 
matches the frequency of a Fourier component of this Walsh function, a 
spurious response can occur. 
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3. The spurious signal enters after the phase switching and the fringe rota- 
tion but before the delay compensation. The signal then suffers phase shifts 
resulting from the changing of the compensating delay. The resulting com- 
ponent at the correlator output has a frequency equal to the natural fringe 
frequency that would occur if the observing frequency were equal to the 
intermediate frequency at which the compensating delays are introduced. 
Thus the oscillations are one to three orders of magnitude lower in fre- 
quency than the natural fringe frequency, and it is consequently easier to 
avoid coincidence with the frequency of a component of the Walsh func- 
tion. 

Local 
Oscii iotor 

From these considerations, it is usually advantageous to perform both the phase 
switching and the fringe rotation as early in the signal channel as possible. Figure 
7.1 I shows, as an example, the phase-switching scheme used in the VLA from 

Transmission Buffer 

Final 

Digitizing Buffer 
Sam p I e r FI Compensating 

To Digit01 
Corrclotors 

Figure 7.11 Simplified schematic diagram of the receiving channel for one antenna of the 
VLA. Walsh functions generated by the cornputcr are periodically fed to digital buffers, from 
which they are clocked out to the phase switch and to sign-reversal circuitry at the sampler. 
From Granlund, Thompson, and Clark ( 1978); 01978 IEEE. 
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a description by Granlund, Thompson, and Clark (1 978). The phase switching at 
the antenna is performed on a local oscillator, rather than on the full signal band, 
so that a broadband phase switch is not needed. The signals are digitized at the 
output of the final IF amplifier and thereafter are delayed and multiplied digitally. 
Since digital circuits do not suffer from unwanted drifts and offsets as analog 
circuits may do, there is no need to include them between the phase switching 
and the synchronous detection. Thus, the latter can be performed by reversing the 
sign bit in the digitized signal data, and need be applied only to nu signal channels 
rather than n,(n, - 1)/2 correlator outputs. 

7.6 AUTOMATIC LEVEL CONTROL AND GAIN CALIBRATION 

In most synthesis arrays automatic level control (ALC) circuits are used to hold 
constant the level of the total signal, that is, the cosmic signal plus the system 
noise, at certain critical points. A fraction of the total signal level is detected, and 
the resulting voltage is compared with a preset value, to generate a control signal 
that is fed back to some variable-gain element of the signal chain. Points at which 
the signal level is critical include modulators for transmission of IF signals on 
optical or microwave carriers and inputs to analog correlators or digital samplers. 
For a discussion of level tolerances in samplers, see Section 8.4. 

The effect of an ALC loop is to hold constant the quantity lgI2(Ts + TA)Au, 
where g is the voltage gain from the antenna output to the point of control, Ts is 
the system temperature, and TA is the component of antenna temperature due to 
the source under observation. Thus JgI2 is made to vary inversely as (Ts + TA) ,  
which can change substantially with the antenna pointing angle as a result of 
ground radiation in the sidelobes and atmospheric attenuation. To measure such 
gain changes, a signal from a broadband noise source can be injected at the input 
of the receiving electronics. This noise source is switched on and off, usually at a 
frequency of a few hertz to a few hundred hertz, and the resulting component is 
sampled and monitored using a synchronous detector. When the noise source is 
on, it adds a calibrating component Tc to the overall system temperature, which 
should not be more than a few percent of Ts to avoid degradation of sensitivity. 
The amplitude of the switched component is a direct measure of the system gain, 
and for TS >> TA the ratio of the signal levels with the noise source on and off 
is equal to 1 + Tc/Ts ,  which provides a continuous measure of Ts. This scheme 
does not measure changes in antenna gain resulting from mechanical deformation, 
which must be calibrated separately by periodic observation of a radio source. 

APPENDIX 7.1 SIDEBAND-SEPARATING MIXER 

The principle of the sideband-separating mixer, or image-rejection mixer, is 
shown in Fig. A7.1. The terms cos(27~14,t) and cos(271upt) represent frequency 
components of the input waveform at the upper- and lower-sideband frequencies, 
respectively. The input is applied to two mixers, for which the local oscillator 
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L P h a s  lag 2 
[cos 2 * ( V ,  - PLO)t 

waveforms at frequency uLo are in phase quadrature. The mixers generate prod- 
ucts of the signal and local oscillator waveforms, and the filters pass only the 
terms of frequency equal to the difference of u , . ~  and u,, or uy.  The output from 
the lower mixer also passes through a n/2 phase lag network. From the resulting 
terms at points A and B one can see that by applying the waveforms at these 
points to a summing network, the upper-sideband response is obtained. Similarly, 
by using a differencing network, the lower-sideband response is obtained. In 
either case the accuracy of the suppression of the response to the unwanted side- 
band depends on the accuracy of the quadrature phase relationships, the matching 
of the frequency responses of the mixers and filters, and the insertion loss of the 
phase lag network. In practice, for conversion from a few gigahertz to baseband, 
suppression to a level of -20 dB is routinely achievable. With careful design, 
suppression to a level approaching -30 dB can be obtained (Archer, Granlund, 
and Mauzy 198 1). For conversion from millimeter wavelengths, suppression of 
the unwanted sideband may be less effective. 

APPENDIX 7.2 DISPERSION IN OPTICAL FIBER 

For a frequency component, u,,~, of a signal modulated onto an optical carrier, 
A sin(2n uOpt + 4), and transmitted down a fiber, the resulting signal at the output 
of the fiber can be represented by 
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where m is the modulation index. This equation resembles the usual represen- 
tation for amplitude modulation in communications, except that here the carrier 
power varies linearly with the modulation. Thus, on the left-hand side, the square 
of the carrier expression is used. For the terms of frequency u,,, f u,,,, the time 
has been offset by f A r  to represent the effects of the variation of propagation 
velocity with frequency. Af can take both positive and negative values depend- 
ing on the sign of the dispersion a> shown in Fig. 7.3. Each term in Eq. (A7.1) 
is proportional to optical power and, thus, also to the modulation amplitude. By 
applying the identity for the product of two sines to each term on the right-hand 
side of Eq. (A7. I) ,  and ignoring DC and optical frequency terms, we obtain forthe 
amplitude at the output of the optical receiver, 

A’m 
- (cos[2nu,,,(f + Ar) - 2nu,~,,Ar] + cos[2nuf,,(r - Ar) - 2 n ~ , ~ ~ A r ] )  
4 

A2m 

2 
-- - {cos[2n(u,,,t - ~,~ ,At) ]c0~(2nu, , ,Ar)}  . (A7.2) 

The free-space wavelength corresponding to frequency u,,, is Aopl, and the wave- 
length difference between frequencies and u,,, + u,,, is A&lu,,l/c. If a> is the 
dispersion and L! is the length of the fiber, Af = DeA~,,urll/c, and u,,At = 
a)L!AoPlu,,,. Thus the recovered modulation can be written as 

A’ rn 
- { COS[2rr u,,, (t  - .mA,,, )I cos(2rr u,;, DPgp,/c) 1 . 

2 
(A7.3) 

The phase change induced by At at the carrier frequency u, ,~  appears in the 
phase of the modulation frequency in the first cosine function in Eq. (A7.2). At 
frequency u, this phase term is equivalent to a time delay .3XAOpl,  as seen in 
Eq. (A7.3). This delay is much larger than At, and represents the difference be- 
tween the phase and group the velocities in the fiber. The second cosine modifies 
the amplitude of the modulation component u,,, . For example, with dispersion 
33 = 2 ps(nm . km)-’ (note that this is equal to 2 x s m-?), e = 50 km, 
)Copt = 1550 nm, and u,,, = 10 GHz, we obtain At = 8 ps, D&,pr = 155 ns, and 
the response at frequency u,,, is reduced by I .  1 dB relative to the low-frequency 
end of the modulation spectrum. Note that we have assumed above that the fre- 
quency spread of the laser results entirely from the modulation spectrum, which 
is justifiable for a high-quality laser with an external modulator. Modulation of 
a diode laser by varying the voltage across it can result in unwanted frequency 
modulation, further spreading the optical spectrum. 
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8 Digital Signal Processing 

The use of digital rather than analog instrumentation offers important practical 
advantages in the implementation of compensating time delays and the measure- 
ment of cross-correlation of signals. In digital delay circuits the accuracy of the 
delay depends on the accuracy of the timing pulses in the system, and long delays 
accurate to tens or hundreds of picoseconds are more easily achieved digitally 
than by using analog delay lines. Furthermore, there is no distortion of the signal 
by the digital units other than the calculable effects of quantization. On the other 
hand, with an analog system it is difficult to keep the shape of the frequency re- 
sponse within tolerances as delay elements are switched into and out of the signal 
channels. Correlators* with wide dynamic range are readily implemented digi- 
tally, including those with multichannel output, as required for spectral line obser- 
vations. Analog implementation of multichannel correlators requires filter banks 
to divide the signal passband into many narrow channels. Such filters, when sub- 
ject to temperature variations, can be a source of phase instability. Finally, except 
at the highest bit rates (frequencies), digital circuits require less adjustment than 
analog ones and are better suited to replication in large numbers for large arrays. 

Digitization of the signal waveforms requires sampling of the voltages at peri- 
odic intervals and quantizing the sampled values so that each can be represented 
by a finite number of bits. The number of bits per sample is usually small, and 
may be as low as one. As a result, the digital data rate does not become unman- 
ageably high. However, the coarse quantization that is necessary results in a loss 
in sensitivity, since modification of the signal levels to the quantized values effec- 
tively results in the addition of a component of “quantization noise.” In most cases 
this loss is outweighed by the other advantages. In designing digital correlators 
there are compromises to be made between sensitivity and complexity, and the 
number of quantization levels to use is an important consideration in this chapter. 
Digital processing of radio astronomical signals was first used in the construction 
of aufocorreiators, which measure the autocorrelation of a signal from a single 
antenna as a function of time offset. Then by Fourier transformation the power 
spectrum is obtained, for use in studies of spectral lines and other applications. 
The first such system in radio astronomy was constructed by Weinreb (1963). 
Another early digital autocorrelator was used by Goldstein (1962) to detect radar 
echoes from Venus. 

*For explanation of the usage of the term correlator. see Section 3.3 under Currelator. 
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8.1 BIVARIATE GAUSSIAN PROBABILITY DISTRIBUTION 

Before proceeding further it is appropriate to introduce the bivariate Gaussian 
probability function [see, e.g., Abramowitz and Stegun (1964), p. 9361, which is 
central to what follows. If x and y are joint Gaussian random variables with zero 
mean and variance a2, the probability that one variable is between x and x + dx 
and, simultaneously, the other is between y and y + dy is p ( x ,  y) dx dy, where 

The form of this function is shown in Fig. 8.1. Here p is the cross-correlation 
coefficient equal to ( x y ) / / m ,  where ( ) denotes the expectation, which, 
with the usual assumption of ergodicity, is approximated by the average over 
many samples. Note that -1 5 p I 1. For p << 1, the exponential can be 
expanded, giving 

p ( x , y ) "  [-exp(+)] 1 [ - e x p ( _ y 2 ) l ( l + F ) .  1 (8.2) 
a 6  2 a 2  a& 202 

For p = 0, the expression is simply the product of two Gaussian functions. Equa- 
tion (8.1) can also be written 

Figure 8.1 Contours of equal probability density from the bivariate Gaussian distribution in 
Eq. (8.1). The contours are given by xz + y 2  - 2pxy = const. For p = 0 they become circles, 
for p = 1 they merge into the line x = y, and for p = - 1 they merge into x = -y. 
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If this expression is integrated with respect to y from --oo to +m, it reduces to 
a Gaussian function in x. As p approaches unity, Eq. (8.3) becomes the product 
of a Gaussian in x and a Gaussian in y - x; the latter has a standard deviation 
a,/-, which approaches zero. Equations (8.1) and (8.2) will be used in ex- 
amining the response of various types of samplers and correlators. For autocorre- 
lators used with single antennas the quantity to be measured is the autocorrelation 
function (u( t )u( t  - t)), where u is the received signal. This case can be treated 
withx = u ( t )  and y = v(r - T). 

8.2 PERIODIC SAMPLING 

We first consider the process of sampling, but without quantization, in which case 
the full accuracy of the signal amplitude is retained. 

Nyquist Rate 

If the signal is bandlimited, that is, its power spectrum is nonzero only within a 
finite band of frequencies, no information is lost in the sampling process as long 
as the sampling rate is high enough. This follows from the sampling theorem dis- 
cussed in Section 5.2. Here we sample a function of time and must avoid aliasing 
in the frequency domain. For a baseband (lowpass) rectangular spectrum with an 
upper cutoff frequency Au, the width of the frequency spectrum, including neg- 
ative frequencies, is 2Au. The function is fully specified by samples spaced in 
time with an interval no greater than 1/(2Au), that is, a sampling frequency of 
2Au or greater. This critical sampling frequency, 2Au, is called the N.Yyuist m e p  
(or Nyquist frequency) for the waveform. For further discussion see, for example, 
Bracewell (2000) or Oppenheim and Schafer (1975). In many digital systems in 
radio astronomy the final IF waveform has a baseband spectrum and is sampled 
at the Nyquist rate. For a rectangular passband of this type, the autocorrelation 
function, which by the Wiener-Khinchin relation is the Fourier transform of the 
power spcctrum, is 

(8.4) 

where the subscript 00 indicates unquantized sampling (that is, the accuracy is 
not limited by a finite number of quantization levels). Nyquist sampling can also 
be applied to bandpass spectra, and if the spectrum is nonzero only within a range 
of n A u  to ( n  + I)Au. where n is an integer, the Nyquist rate is again 2Aw. Thus, 

tShannon ( 1949) cites several references relevant 10 the developmenl ofthis result. of which [he earliest 
is Nyquist ( 1928). 
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for sampling at the Nyquist rate, the lower and upper bounds of the spectral band 
must be integral multiples of the bandwidth. The autocorrelation function of a 
signal that has a flat spectrum over such a band is 

sin(nAur) 

n A V T  
Rm(T) = cos [2n (n + f) A u r ]  . 

Zeros in this function occur at time intervals r that are integral multiples of 
I /(2Au). Therefore, for a rectangular passband, successive samples at the 
Nyquist rate are uncorrelated. Sampling at frequencies greater or less than the 
Nyquist rate is referred to as oversampling or undersampling, respectively. 

For any signal, adjusting the center frequency so that the spectrum conforms 
to the bandpass sampling requirement described above minimizes the sampling 
rate required to avoid aliasing. If the spectrum does not conform, it is necessary 
to define a wider frequency band that both conforms to the sampling requirement 
and encompasses the required signal band. Sampling can then be performed at 
the Nyquist rate appropriate for the wider band. 

Correlation of Sampled but Unquantized Waveforms 

We now investigate the response of a hypothetical correlator for which the input 
signals are sampled at the Nyquist rate, but are not quantized. It is necessary 
to consider only single-multiplier correlators since complex correlators can be 
implemented as combinations of them, as indicated in Fig. 6.3. The system under 
discussion can be visualized as one in which the samples either remain as analog 
voltages, or are encoded with a sufficiently large number of bits that quantization 
errors are negligible. Since no information is lost in sampling or quantization, the 
signal-to-noise ratio of the correlation measurement may be expected to be the 
same as would be obtained by applying the waveforms without sampling to an 
analog correlator. There is probably no reason, in practice, to build a correlator 
for inputs with unquantized sampling. However, by comparing the results with 
those for quantized sampling. which we discuss later, the effects of quantization 
are more easily understood. 

Two bandlimited waveforms, . r ( t )  and , y ( t ) ,  are sampled at the Nyquist rate, 
and for each pair of samples the multiplier within the correlator produces an out- 
put proportional to the product of the input amplitudes. The integrator allows 
the output to be averaged for any required time interval. Now the (normalized) 
cross-correlation coefficient of x ( t )  and y ( t )  for zero time delay between the two 
Waveforms is 

(The cross-correlation coefficient p should not be confused with the autocorrela- 
tion function of x or y ,  R%.) Since A- and \ have equal variance c2. 
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The left-hand side is the averaged product of the two waveforms and thus repre- 
sents the correlator output. The output of the digital correlator after NN samples 
is 

N hl 

where the subscript N denotes the Nyquist rate. Since the samples xi and yi obey 
the same Gaussian statistics as the continuous waveforms x ( t )  and y ( t ) ,  we can 
clearly write 

(r,) = p a ? .  (8.9) 

Thus, the output of the correlator is a linear measure of the correlation p.  The 
variance of the correlator output is 

a i  = ( r ; )  - (r& (8.10) 

and 

where we have separated the terms for which i = k and i # k. The first sum- 
mation on the right-hand side of Eq. (8.1 I )  has a value of 04( I + 2p')Ni': from 
Eq. (8.3) it can be shown that 

The second summation term in Eq. (8.1 I )  is readily evaluated by using the 
fourth-order moment relation in Eq. (6.36). Because successive samples of each 
signal are uncorrelated (a rectangular passband is assumed), (x i  y; xk yk) = 
(x i  y i ) ( x k y k ) ,  and the second summation term has a value of ( I  - N , ' ) p 2 a 4 .  
Returning to Eq. (8. lo), we can write 

0; = ( I  + 2p2)aJN,' + ( I  - N i l )  p'aJ - p'a4 
(8.13) 

= a 4 N , ' (  I + p ? ) .  

The signal-to-noise ratio with unquantized sampling is 
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(8.14) 

where the approximation applies for p << 1.  Note that the condition p << I is 
satisfactory for most practical purposes. [The signal-to-noise ratio at the correla- 
tor output, which we are calculating here, is of interest mainly for weak signals. 
For a measurement period T ,  N N  = ~ A u T ,  which is commonly 106-10”. From 
Eq. (8.14) the threshold of detectability of a signal is given by p a  2: I ,  that 
is, p 2 10 In terms of the signal bandwidth and measurement dura- 
tion, R,,, = p d E .  Now for observations of a point source with identical 
antennas and receivers, p is equal to the ratio of the resulting antenna tempera- 
ture to the system temperature, T A / T 5 .  Thus the present result is identical to that 
given by Eq. (6.45) for an analog correlator with continuous unsampled inputs 
and TA << T5.  

Before leaving the subject of unquantized sampling, we should consider the 
effect of sampling at rates other than the Nyquist rate. Successive sample values 
from any one signal are then no longer independent. We consider a sampling 
frequency that is f i  times the Nyquist rate, and a number of samples N = f i ” .  
The sample interval is T, = (2PAu1-I. Samples spaced by qr, ,  where 4 is an 
integer, have a correlation coefficient which, from Eq. (8.4), is equal to 

(8.15) 

for a rectangular baseband response. Since the samples are not independent, we 
must reconsider the evaluation of the second summation term on the right-hand 
side of Eq. (8.1 I ) .  For those terms for which y = Ii - kl is small enough that 
R,(qr, ,)  is significant, there will be additional contribution given by 

Now R L  is very small for all but a very small fraction of the N ( N  - 1 )  terms in 
the second summation in Eq. (8.1 I ) .  From Eq. (8.15), R L ,  at its maxima, is equal 
to (B/nq)’ and for y = lo3 is of order However, as shown above, N is 
likely to be as high as 106-10’2. Thus, in the second summation in Eq. (8.1 1) the 
contribution made by the terms for which the i and k samples are effectively inde- 
pendent remains essentially unchanged. The products for which R L  is significant 
make an additional contribution equal to 
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The variance of the conelator output now becomes 

and the signal-to-noise ratio of the correlation measurement is 

(8.18) 

(8.19) 

Compare this result with Eq. (8.14) for Nyquist sampling. For values of p of i, 4, 
4, and so on, which correspond to undersampling, R, = 0 and the denominator 
in Eq. (8.19) is unity, The sensitivity thus drops as one would expect from the 
decrease in the data. For oversampling, b > 1 and the summation of R’ (qrs )  in 
Eq. (8.19) is shown in Appendix 8.1 to be equal to (P - l)/2. The denominator in 
Eq. (8.19) is then equal to a, so the sensitivity is the same as that for sampling 
at the Nyquist rate. This is as expected, since in Nyquist sampling no information 
is lost. The result is different for quantized sampling, as will be explained in the 
following sections. 

04 

8.3 SAMPLING WITH QUANTIZATION 

In some sampling schemes the signal is first quantized and then sampled, and in 
others it is sampled and then quantized. Ideally, the end result is the same in either 
case, and in analyzing the process we can choose the order that is most conve- 
nient. 
Suppose that a bandlimited signal is first quantized and then sampled. Quan- 
tization generates new frequency components in the signal waveform, so i t  is 
no longer bandlimited. If it is sampled at the Nyquist rate corresponding to the 
unquantized waveform, as is the usual practice, some information will be lost, 
and the sensitivity will be less than for unquantized sampling. Also, because 
quantization is a nonlinear operation, we cannot assume that the measured corre- 
lation of the quantized waveforms will be a linear function of p, which is what 
we want to measure. Thus, to utilize digital signal processing there are three main 
points that should be investigated: ( I )  the relation between p and the measured 
correlation, (2) the loss in sensitivity, and (3) the extent to which oversampling 
can restorc the lost sensitivity. Investigations of these points can be found in the 
work of Weinreb (1963), Cole (1968), Bums and Yao (l969), Cooper (1970). 
Hagen and Farley ( 1973), Bowers and Klingler ( 1974), and Jenet and Anderson 
(1998). The discussions given here follow most closely the approach of Hagen 
and Farley. 

Note that in discussing sampling with quantization it is common practice to 
refer to Nyquist sampling when what is meant is sampling at thc Nyquist rate for 
the unyuurtrized waveform. We also follow this usage. 
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I' 

Figure 8.2 Characteristic curve for two-level quantization. The abscissa is the input voltage 
I and the ordinate is the quantized output 2 .  

Two-Level Quantization 

The quantization characteristic for two-level (one-bit) sampling is shown in 
Fig. 8.2. The quantizing action senses only the sign of the instantaneous sig- 
nal voltage. In many samplers the signal voltage is first amplified and strongly 
clipped. The zero crossings are more sharply defined in the resulting waveform, 
and errors that might occur if the sampling time coincides with a sign reversal are 
thereby minimized. 

The correlator for two-level signals consists of a multiplying circuit followed 
by a counter that averages the products of the input samples. The input signals are 
assigned values of + l  or -1 to indicate positive or negative signal voltages, and 
the products at the muitiplier output thus take values of + 1 or - 1 for identical 
or different input values, respectively. We consider sampling both at the Nyquist 
rate and at multiples of it, and represent by N the number of samples fed to the 
correlator. The average two-level correlation coefficient is 

where N I I  is the average number of products for which both samples have the 
value + 1 ,  N, i is the average number of products in  which the x sample has the 
value + 1 and the y sample - 1, and so on. The denominator in Eq. (8.20) is equal 
to the output that would occur if all pairs of input samples were identical. p2 can 
be related to the correlation coefficient p of the unquantized signals through the 
bivariate probability distribution Eq. (8.1 ), from which 

(8.21) 
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where PIl is the probability of the two unquantized signals being simultaneously 
greater than zero. The other required probabilities are obtained by changing the 
limits of the integrals in Eq. (8.21) as follows: j”!w f05 for Pii; s_”, j”: for pil; 

and s: f, for PI i. Note that Pi I = Pii and P, i = Pi 1 .  Thus, 

The integral in Eq. (8.21 ) is evaluated in Appendix 8.2, from which we obtain 

I 1  
PI1 = - + -sin-’ p .  

4 2lT 

Similarly, 

(8.23) 

(8.24) 

so 

2 
p2 = -sin-’ Yr p .  (8.25) 

Equation (8.25), known as the Van Vleck relationship,* allows p to be obtained 
from the measured correlation pr. For small values, p is proportional to p2. 

To determine the signal-to-noise ratio of the correlation measurement, we now 
calculate a:, the variance of the correlator output 1-2: 

o2 2 = (rf) - (rz)’ ,  (8.26) 

where 

N 

r? = N - ’  Ciiji. (8.27) 
i = l  

Note that in this chapter the circumflex ( * )  is used to denote quantized signal 
waveforms. Since p2 = (? j ) ,  then from Eq. (8.27) (r2) = p2. Note that r2 is thus 
an unbiased estimator of p2. The expression for (r:) is equivalent to Eq. (8.11) 
for unquantized waveforms: 

$This result was first derived by J .  H. Van Vleck during World War 11, when studying the power 
spectrum of strongly clipped noise which was used for electromagnetic jamming. The work was later 
declassified and was published by Van Vleck and Middleton ( 1966). 
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The first summation term on the right-hand side of Eq. (8.28) is equal to N - '  
since the products take values of & I for two-level sampling. In evaluating the 
second summation term, the situation is similar to that for unquantized sampling. 
The factor o4 in Eq. (8 .17)  is here replaced by the square of the variance of the 
quantized waveform, which is unity for two-level quantization. For all except a 
small fraction of the terms, q = ( i  - kl is large enough that samples i and k 
from the same waveform are uncorrelated. These terms make a total contribution 
closely equal to p;. Those terms for which samples i and k are correlated make 
an additional contribution closely equal to 

where R ~ ( T )  is the autocorrelation coefficient for a signal after two-level quanti- 
zation. Thus, 

where we have assumed that p2 << 1 and therefore neglected the term - N - l p 2 .  
The signal-to-noise ratio is 

(8.31) 

This ratio, relative to that for unquantized sampling at the Nyquist rate given by 
Eq. (8.14), detines an efficiency factor for the quantized correlation process: 

(8 .32)  

Here we have used N = B N N ,  so we are considering the same observing time as 
in the Nyquist-sampled case, but sampling B times as rapidly. 

Equation (8.25) gives the relationship between the correlation coefficients for 
a pair of signals before and after two-level quantization. This result includes the 
case of autocorrelation where the two signals differ only because of a delay. Thus, 
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we may write 

Equation (8.15) gives R,(qs.$) for a rectangular baseband 
pled at ,!l times the Nyquist rate, and Eq. (8.33) becomes 

(8.33) 

signal spectrum sam- 

(8.34) 

R 2 ( q t s )  thus has zeros at the same values of qs, that R,(qr,) does (the principal 
value is taken for the inverse sine function), and for /I = 1, i, 4, and so on, we 
obtain 

(8.35) 

In these cases the signal-to-noise ratio is 2/n(= 0.637) times that for unquantized 
sampling at the same rate. For oversampling with P = 2 and /I = 3, the signal-to- 
noise ratios from Eqs. (8.32) and (8.34) are 0.744 and 0.773. respectively. Similar 
results have been obtained by Bums and Yao (1969) and others. Note that in the 
calculations given above there is an implicit dependence on the bandpass shape 
of the signal through the assumption that p2 << 1 for samples for which i is not 
equal to k in Eq. (8.28). For 2 2, a further dependence on the bandpass shape 
enters through the autocorrelation function Rj(qs. ,) .  

It has been mentioned that quantization generates additional spectral compo- 
nents. We can now compare the power spectra of a signal before and after quan- 
tization since these spectra are the Fourier transforms of autocorrelation func- 
tions that are related by Eq. (8.25). Figure 8.3 shows the spectrum, after two-level 
quantization, of noise with an originally rectangular spectrum. A fraction of the 
original bandlimited spectrum is converted into a broad, low-level skirt that dies 
away very slowly with frequency. 

Four-Level Quantization 

The use of two digital bits to represent the amplitude of each sample results in less 
degradation of the signal-to-noise ratio than is obtained with one-bit quantization. 
Consideration of two-bit sampling leads naturally to four-level quantization, the 
performance of which has been investigated by several authors, notably Cooper 
(1970) and Hagen and Farley ( 1973). The quantization characteristic is shown in 
Fig. 8.4, where the quantization thresholds are - u ( ~ .  0, and ug. The four quanti- 
zation states have designated values - 1 1 .  - 1, + I ,  and +n, where n,  which is not 
necessarily an integer, can be chosen to optimize the performance. Products of 
two samples can take the value f I ,  fn, or f n ' .  The four-level correlation coef- 
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Figure 8.3 Spectra of rectangular bandpass noise before and after two-level quantization. The 
unquantized spectrum is of lowpass form, as shown by the broken line. The spectrum after 
quantization is shown by the solid curve. The power levels of the two waveforms (represented 
by the areas under the curves) are equal, and the Fourier transforms of their spectra are related 
by Eq. (8.25). 
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Figure 8.4 Characteristic curve for four-level quantization. The abscissa is thc unquantized 
voltage x and the ordinate is the quantized output .i. ug is the threshold voltage. 
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ficient p4 can be specified by an expression similar to Eq. (8.20) for the two-level 
case, that is, 

where a bar on the subscript indicates a negative sign. The numerator is propor- 
tional to the correlator output, and reduces to the form in the denominator for 
p = I ,  that is, when the two input waveforms are identical. The numbers of the 
various level combinations can be derived from the corresponding joint probabil- 
ities. Thus, for example, 

and, as in the two-level case, the other probabilities are obtained by using the 
appropriate limits for the integrals. For the case of p << I ,  the approximate form 
of the probability distribution in Eq. (8.2) simplifies the calculation. 

Although p4 can be evaluated from Eq. (8.36) in the above manner, an al- 
ternative derivation that provides a more rapid approach to the desired result is 
used here. This approach follows the treatment of Hagen and Farley ( I  973) and 
is based on a theorem by Price ( I  958). The form of the theorem that we require is 

(8.38) 

where rd is the unnormalized correlator output, and 2 and j are again the quan- 
tized versions of the input signals. For four-level sampling, 

a; 
ax 
- = (n - I)S(x + ull)  + 2S(x) + (n - I)S(x - UO). (8.39) 

where 6 is the delta function, and a similar expression can be written for aj /ay .  
Equation (8.39) is the derivative of the function in Fig. 8.4. To determine the ex- 
pectation of the product of the two derivatives on the right-hand side of Eq. (8.38), 
the magnitudes of each of the nine terms in the product of the derivatives must 
be multiplied by the probability of occurrence. Thus, for example, the term (n - 
1 )’6(x + v0)6(y  + UO) has a magnitude of ( n  - I )’ and probability 

(8.40) 

By consolidating terms with equal probabilities we obtain 
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+ 4(n - I)exp ( 20’(l! p 2 ) )  + 2)  (8.41) 

and 

(8.42) 

where 6 is a dummy variable of integration. To obtain the correlation coefficient 
p4, (r4) must be divided by the expectation of the correlator output when the 
inputs are identical four-level waveforms, as in Eq. (8.36): 

(8.43) 

where @ is the probability that the unquantized level lies between ~ L J , , ,  that is 

(8.44) 

Equations (8.42)-(8.44) provide a relationship between p4 and p that is equivalent 
to the Van Vleck relationship for two-level quantization. 

The choice of values for n and uo is usually made to maximize the signal-to- 
noise ratio for weak 
(8.43) reduce to 

signals, which we now derive. For p << I ,  Eqs. (8.42) and 

(8.45) 

where E = exp(-u;/2a2). The variance in the measurement of r4 is 

The factor [@ + n2(1 - a)] is the variance of the quantized waveform and here 
takes the place of 0’ in the corresponding equations for unquantized sampling. 
Again we follow the procedure explained for the unquantized case, and write 
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To evaluate the first summation, note that ( i ; j ; ) *  can take values of I ,  n 2 ,  or n4, 
and the sum of these values multiplied by their probabilities is equal to [@ + 
n2(  1 - @)I2.  The contribution of the second summation is 

where the second term represents the effect of oversampling and is similar to 
Eq. (8.17), and R4 is the autocorrelation function after four-level quantization. 
Thus from Eq. (8.46) we have 

Since we have assumed p << 1 the pj' term can be neglected, and the signal-to- 
noise ratio for the four-level correlation measurement is 

7r [@ + n'( I - @)I 1 + 2 c Ri(qrJ  4 4=' 

The signal-to-noise ratio relative to that for unquantized Nyquist sampling is ob- 
tained from Eq. (8.14) for N = ~ N N ,  and is 

For sampling at the Nyquist rate, = I and 

(8.52) 

Values of q4 very close to optimum sensitivity are obtained for I I  = 3 with ug = 
0.9960, and for n = 4, with uo = 0.9420: see Table A8. 1 in Appendix 8.3. Note 
that the choice of an integer for the value of it simplifies the correlator. For these 
two cases, 04, the signal-to-noise ratio relative to that for unquantized sampling, 
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Figure 8.5 Signal-to-noise ratio relative to that for unquantized correlation for the four-level 
system and several modifications of it. The abscissa is the quantization threshold LQ in units 
of the rms level of the waveforms at the quantizer input. The ordinate is sensitivity (signal- 
to-noise ratio) relative to an unquantized system. The curves are for ( 1 )  full four-level system 
with I I  = 2; (2) full four-level system with I I  = 3: (3) full four-level system with I I  = 4: 
(4) four-level system with n = 3 and low-level products omitted; ( 5 )  three-level system. From 
Cooper ( 1  970). 

is equal to 0.881 and 0.880, respectively. Curves of the relative sensitivity as a 
function of vo/a  for 11 = 2, 3, and 4 are shown in Fig. 8.5. Similar conclusions 
are derived by Hagen and Farley ( 1973) and Bowers and Klingler ( 1974). 

Having chosen values for n and v0, we can now return to Eqs. (8.42) and (8.43) 
to examine the relationship of p and p4. Curve 1 of Fig. 8.6 shows a plot of p and 
p4. Extrapolation of a linear relationship with slope chosen to fit low values of p 
results in errors of 1% at p = 0.5, 2% at p = 0.7, and 2.8% at p = 0.8, where 
the error is a percentage of the true value of p. Thus for many purposes a linear 
approximation is satisfactory for values of p up to -0.6. This linearity assumption 
simplifies the final step that we require in discussing four-level sampling, namely, 
calculation of the improvement in sensitivity resulting from oversampling. 

The relationship between the autocorrelation function for unquantized noise 
R, and that for the same waveform after four-level quantization is the same as 
for the corresponding cross-correlation functions in Eq. (8.45), so we can write 

(8.53) 



270 DIGITAL SIGNAL PROCESSING 
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Correlation of quantized signals 

Figure 8.6 Correlation coefficient p for unquantized signals plotted as a function of the corre- 
lation that would be measured after quantization. The curves are for: (1) full four-level system 
with 11 = 3 and uo = O, or n = 4 and vo = 0.950; (2) four-level system with low-level 
products omitted, n = 4 and uo = 0.90; (3) three-level system with uo = 0.60. From Cooper 
(1970). 

provided that R,  < -0.6. Now R ,  as given by Eq. (8.15) fulfills this condition 
for q = 1 with an oversampling factor B = 2. For n = 3 and the corresponding 
optimum value of uo, E = 0.6091, 0 = 0.6806, and R4 = 0.881 R,. For b = 2, 
we use Eqs. (8.15) and (8.53) and Eq. (A8.5) of Appendix 8.1 to evaluate the 
summation in the denominator of Eq. (8.51), and obtain r74 = 0.935, which is a 
factor of I .06 greater than for = 1. Bowers and Klingler ( 1974) have pointed 
out that the optimum value of the quantization level uo changes slightly with the 
oversampling factor. However, the optimum values are rather broad (see Fig. 8.5), 
and the effect on the sensitivity is very small. 

In a discussion of two-bit quantization, Cooper (1970) considered the effect 
of omitting certain products in the multiplication process. For example, if all 
products of the two low-level bits are counted as zero instead of f l ,  the loss 
in signal-to-noise ratio is approximately 1% as shown in curve 4 of Fig. 8.5. 
The products to be accumulated are then only those counted as f n  and f n 2  in 
the full four-level system described above, and in the modified system they can 
be assigned values of f l  and f n ,  respectively, thereby simplifying the counter 
circuitry of the integrator. An even greater simplification can be accomplished 
by omitting the intermediate-level products also and assigning values f 1 to the 
high-level products. This last type of modification yields 92% of the sensitivity 
of a full four-level correlator. We shall not analyze the case where only the low- 
level products are omitted, but we note that to derive the correlation coefficient 
as a function of p ,  one can express the action of the correlator in terms of two 
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different quantization characteristics (Hagen and Farley 1973) or else return to 
Eq. (8.36) and omit the appropriate terms. If both the low- and intermediate-level 
products are omitted, however, the action can be described more simply in terms 
of a new quantization characteristic, known as three-level quantization, without 
arbitrary omission of product terms. 

Three-Level Quantization 

Three-level quantization has proved to be an important practical technique, and 
the quantization characteristic is shown in Fig. 8.7. In this case the approach using 
Price’s theorem will again be followed. 

The expressions for the operating characteristics of a three-level correlator can 
be obtained from those in the preceding section by omitting the terms that refer 
to low- and intermediate-level products and adjusting the weighting factors as 
appropriate. Thus, the equivalent derivative needed in Price’s theorem is 

(8.54) 

and the expectation of the correlator output ( r 3 )  is, from Price’s theorem, 

where ( is a dummy variable of integration. The normalized correlation coeffi- 
cient is 

Figure 8.7 Characteristic curve for three-level quantization. The abscissa is the unquantized 
voltage x and the ordinate is the quantized output ,?. ug is the threshold voltage. Since the 
magnitude of .i takes only one nonzero value, it  i s  perfectly general to set this value to unity. 
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P3 

where 0 is given by Eq. (8.44). For, p << I ,  Eqs. (8.55) and (8.56) yield 

(8.56) 

(8.57) 

where E is defined following Eq. (8.45). The variance of r3 is 

where R3 is the autocorrelation coefficient after three-level quantization. If pf in 
Eq. (8.58) can be neglected, the signal-to-noise ratio relative to a nonquantizing 
correlator is 

For Nyquist sampling the maximum sensitivity relative to the nonquantizing case 
is obtained with uo = 0.61200, for which ql is equal to 0.810 (see curve 5 of 
Fig. 8.5). With this optimized threshold value, 0 = 0.4595, E = 0.8292, and 
we can write R3(qr. ,)  = O.SIOR,(qr,), assuming that p is an approximately 
linear function of r3. Then from Eqs. (8.15), (8.59), and (A8.5), we find that for a 
rectangular baseband spectrum with the oversampling factor B = 2, q3 becomes 
0.890, which is a factor of 1.10 greater than for /3 = I .  Table 8.1 summarizes the 
results for two-, three-, and four-level quantization. 

TABLE 8.1 Efficiency Factor QQ for Various 
Quantization Schemes 

I I Q .  Sensitivity Relative 
to Unquantized Case 

Number of 
Quantization Levels (0 )  = 1 p = 2  

2 0.637 0.744 
3 0.8 I0 0.890 
4 0.88 I u  0.935 

"See also Table A8. I (Appendix 8.3). 
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Quantization with Eight or More Levels 

For eight or more quantization levels, the loss in efficiency resulting from the 
quantization is small, and a simpler, approximate method of calculating the loss 
can be used (Thompson 1998). The principle of the method is to calculate the 
fractional increase in the variance of a signal that results from the quantization. 
The signal-to-noise ratio at the correlator output is inversely proportional to this 
variance. This approach is of particular interest because it shows how the loss of 
sensitivity is related to the errors introduced by the quantization process. 

Figure 8.8 shows a piecewise linear approximation of the Gaussian probability 
distribution of a signal from one antenna. This approximation simplifies the anal- 
ysis. The intersections with the vertical lines indicate exact values of the Gaus- 
sian. For eight-level sampling, the quantization thresholds are indicated by the 
positions of the vertical lines between the numbers f3.5 on the abscissa. The 
widths of the levels are €0 in voltage, that is, E in units of cr where d is the 
unquantized variance. We consider first the case where the number of levels is 
even, as in  Fig. 8.8. The probability that any one sample will fall between the two 
consecutive thresholds at m c a  and ( m  + I ) C ( T .  where m is an integer, is 

(8.60) 

Any sample within this interval would be assigned the magnitude (ni + iw). 
For example, any voltage that falls within the level from 2 to 3 is encoded as 
amplitude 2.5, in units of w. The mean increase in the variance resulting from 
this representation is 

Figure 8.8 Piecewise linear representation of the Gaussian probability distribution of the am- 
plitude of an IF signal. The intersections of the curve with the vertical lines denote exact 
values of the Gaussian. The abscissa is the signal amplitude (voltage) in units of E U ,  and the 
numbers indicate the values assigned to the levels after quantization. For eight-level sampling 
the quantization thresholds are indicated by the seven vertical lines that lie between - 3 . 5 6 ~  
and 3.560 on the abscissa. For signal levels outside the range f 4 c a .  indicated by the shaded 
areas, the assigned values are f3 .5co .  
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I C U  ’ 
3 2  

x ’ d x  = - (-) (8.61) 

This is exact for the piecewise linear probability curve in Fig. 8.8. The same 
increase in variance resulting from quantization applies to the range of signal 
levels from -4617 to 4 ~ a  in Fig. 8.8. The fraction of the area under the Gaussian 
probability curve that lies between these levels is 

(8.62) 

Thus the variance resulting from quantization of the signal samples with ampli- 
tudes in the range f 4 ~ o  is 

1 (3). 
3 2  

(8.63) 

We shall assume that the quantization error is essentially uncorrelated with the un- 
quantized signal. In the extreme case of two-level sampling the quantization error 
is highly correlated with the unquantized signal, so the treatment used here would 
not apply. Consider, however, the case of multilevel quantization as in Fig. 8.8. 
If the signal voltage is increased steadily, the quantization error decreases from 
a maximum at each quantization threshold to zero when the voltage is equal to 
the mid-point of two thresholds. At each threshold the quantization error changes 
sign and the cycle repeats. This behavior greatly reduces any correlation between 
the quantization error and the signal waveform. 

It is also necessary to take account of the effect of counting all signals below 
-4617 as level -3.5~17, and those above + 4 ~ a  as +3.5~17. To make an approxi- 
mate estimate of this effect, we divide the range of signal level outside of f 4 ~ a  
into intervals of width €17. Consider, for example, the interval centered on 6.5~17.  
The probability of the signal falling within this level is equal to the corresponding 
area under the curve, which for the piecewise linear approximation is 

(8.64) 

The square of the mean error resulting from quantization of the signal within this 
range is closely approximated by l(6.5 - 3 . 5 ) ~ 1 7 ] ’ ,  so the total variance of the 
quantization error for signals outside the range f 4 ~ a  is 

(8.65) 

The upper limit of the summation in (8.65) is chosen to be large enough that 
increasing it does not significantly change the result. The quantization error re- 
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sulting from the truncation of the signal values outside the range f4ca  clearly 
has some degree of correlation with the unquantized signal level. However, this 
is a small effect because the fraction of samples for which the signal lies outside 
f 4 c a  is less than 1.6% for eight-level quantization, with 6 optimized for sensi- 
tivity. The percentage decreases as the number of quantization levels increases. 
We shall therefore treat the quantization error resulting from the truncation of the 
signal peaks as uncorrelated with the signal, but bear in mind that this assumption 
may introduce a small uncertainty into the calculation. 

The variance of the quantized signal is equal to the variance of the unquantized 
signal (o?) plus the variance of the quantization errors in (8.63) and (8.65), that 
is, 

(8.66) 

If the variance is the same for both signals at the correlator input, and if the 
correlation of the signals is small (i.e., p << I as assumed for the two-, three-, and 
four-level cases), then the signal-to-noise ratio at the correlator output is inversely 
proportional to the variance. Thus the quantization efficiency is 

Jvc 
V ( 2 . N )  = 1 1  + ; ( ;)* erf ( z) 

Here the equation has been generalized for 2X levels. For an odd number of 
levels, 2X + 1 ,  one of which is centered on zero signal level, the equivalent 
equation for the quantization efficiency is 

(8.68) 

Results from Eqs. (8.67) and (8.68) are given in Table 8.2. 
The second column of Table 8.2 gives the value of X, and the third column 

gives E .  The values of t have been chosen to minimize, approximately, the values 
of VQ, and are by no means critical because the minimum is broad. The fourth 
column of the table gives P ,  which is the fraction of samples for which the signal 
amplitude is greater than fXtu for an even number of levels or greater than 
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TABLE 8.2 Quantization Efficiency and Other Factors for Eight or More Levels 

Number of Levels ( Q )  & c P Bn 

8 4 0.60 0.0 16 0.960 
9 4 0.55 0.013 0.968 

16 8 0.34 0.006 0.988 
32 16 0.19 0.002 0.996 

&(a + ;)en for an odd number of levels. For eight levels, P is the fraction of 
signal samples that contribute to the variance in (8.65). 

The result for nine-level quantization can be compared with a corresponding 
result computed by F. R. Schwab using the more precise methods described for 
three and four levels. Schwab obtained q9 = 0.969 for t = 0.534. The quantiza- 
tion efficiency varies only slowly with t, and the value of q9  from Eq. (8.68) 
agrees with the value obtained by Schwab to within -O.I%, or -3% in the 
degradation factor ( I  - qg) .  This agreement verifies the present method within 
these limits of accuracy. Schwab also found that the quantization efficiency can 
be slightly improved by allowing the weights and level widths to increase with 
increasing signal amplitude, rather than using constant increments in weights and 
constant level widths. By optimizing in this manner, he obtained a value of 0.9655 
for eight levels, which is about 0.5% higher than the value in Table 8.2. The values 
of qQ in Table 8.2 are in similar agreement with results by Jenet and Anderson 
(1998), who give detailed calculations of performance for two- to eight-bit quan- 
tization, for both uniform and nonuniform threshold spacing. For cases with more 
than four levels, they use a Monte Carlo analysis. With values of quantization ef- 
ficiency approaching unity, other effects, such as the departure of the bandpass 
responses from the ideal rectangular shape, become limiting factors. 

Quantization Correction 

As a result of quantization, the output of the correlator is only an approximately 
linear function of the cross-correlation, p .  In particular, for two-level quantiza- 
tion, the correlation is proportional to a sine function of the correlator output, as 
in Eq. (8.25). For weak signals for which p << I ,  the nonlinearity can be ne- 
glected, but for some observations a correction, sometimes referred to as the Van 
Vleck correction, is required. The corresponding precise relationship for four- 
level quantization can be obtained from Eqs. (8.42)-(8.44), and the linear ap- 
proximation for the case p << 1 is given by Eq. (8.45). Similarly, for three-level 
quantization the precise relationship between the correlation and the correlator 
output is obtainable from Eqs. (8.44), (8.55), and (8.56), and the linear approxi- 
mation is given by Eq. (8.57). As shown in Fig. 8.6, the relationships for three- 
and four-level quantization are substantially linear for values of p up to -0.6. 
The linear approximation is therefore usually satisfactory for cross-correlation 
of signals from two antennas for which the uncorrelated noise on the signals, 
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and possible resolution of the source, limit the magnitude of the correlation. For 
very strong sources, or for measurement of autocorrelation of the signal from one 
antenna, the quantization correction is necessary. For each correlator output the 
correction must be applied once for each averaging period, which is likely to be 
in the range 10 ms to 10 s. For ease of computation the correlation can be ex- 
pressed as a rational function, or similar approximation, of the correlator output; 
see Appendix 8.3 for four-level quantization. For three-level quantization, proce- 
dures for determination of p from the correlator output are given by Kulkarni and 
Heiles ( 1980) and D’ Addario et al. ( 1984). 

Comparison of Quantization Schemes 

At this point it is useful to put into perspective the characteristics of quantization 
schemes, which are summarized in Tables 8.1 and 8.2. It should be remembered 
that the assumption p << 1 was used in determining these values. In considering 
the relative advantages of different quantization schemes, we note first that both 
the efficiency factor V Q  and the receiving bandwidth Au may be limited by the 
size and speed of the correlator system. The overall sensitivity is proportional to 
V Q ~ .  Consider two conditions. In the first, the observing bandwidth is limited 
by factors other than the capacity of the digital system. This can occur in spectral 
line observing or when the interference-free band is of limited width. The sensi- 
tivity limitation imposed by the correlator system then involves only the efficiency 
factor V Q  in Table 8. I ,  and the choice of quantization scheme is one between sim- 
plicity and sensitivity. In the second case, the observing bandwidth is set by the 
maximum bit rate that the digital system can handle, as may occur in continuum 
observation in the higher-frequency bands. For a fixed bit rate ub the sample rate 
is u ~ / N b ,  where N h  is the number of bits per sample, and the maximum signal 
bandwidth Au is ubI(2BNb). Thus the sensitivity is proportional to V Q / ~ ,  

and this factor is listed for various systems in Table 8.3, in which Nb = I for 
Q = 2 and Nb = 2 for Q = 3 or 4. Note that oversampling always reduces the 
performance under these conditions. For those situations in which the capacity 
of the data processing is limited by the correlator system, the value of 0.64 for 
Nyquist sampling with two-level quantization results in the highest overall per- 
formance. Four-level sampling is almost as good, and four or more levels would 
be preferred if the bandwidth is limited as in spectral line observations. Encoding 
schemes involving nonintegral values of N,, are also of interest, for example, in 

TABLE 8.3 Sensitivity Factor Q Q / ~  for a 
Correlator-Limited System 

V a I m  
Number of 

Quantization Levels ( Q )  p = 1  p = 2  

2 0.64 0.52 
3 0.57 0.45 
4 0.62 0.47 
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tape recording of data. In that case the amount of information stored per bit is a 
prime consideration as discussed in Section 9.6. 

A three-level x five-level correlator, for which the quantization efficiency fac- 
tor qQ is 0.86, has been constructed by Bowers et al. (1973) for spectral line 
mapping with a two-element interferometer. The use of different numbers of bits 
at the correlator inputs offers some simplification for a two-antenna system if the 
instrumental delay is applied to the signal with fewer quantization levels. 

System Sensitivity 

The relative sensitivity of different interferometer schemes resulting from char- 
acteristics of the analog processing is discussed in Section 6.2 (see Table 6.1). In 
systems with digital processing the quantization noise introduces further consid- 
erations. For example, with an analog correlator the sinex sine and cosine xcosine 
products for signals from two antennas provide, in principle, exactly the same in- 
formation. However, with a digital correlator the quantization noise is largely 
uncorrelated between the sine and cosine components of the signal, so the quan- 
tization loss can be reduced by generating both products and averaging them. 

8.4 ACCURACY IN DIGITAL SAMPLING 

Principal Causes of Error 

Deviations from ideal performance in practical samplers result in errors that, if 
not corrected for, can limit the accuracy of maps synthesized from the data. Once 
the signal is in digital form, however, the rate at which errors are introduced is 
usually negligibly small. 

Two-level samplers, which sense only the sign of the signal voltages, are the 
simplest samplers to construct. The most serious error that is likely to occur is in 
the definition of the zero level, in which a small voltage offset may occur. The 
effect of offsets in the samplers is to produce small offsets of positive or nega- 
tive polarity in the correlator outputs, which can be largely eliminated by phase 
switching, as described in Section 7.5. Alternatively, the offsets in the samplers 
can be measured by incorporating counters to compare the numbers of positive 
and negative samples produced. Correction for the offsets can then be applied to 
the correlator output data [see, e.g., Davis (1974)l. 

In samplers with three or more quantization levels, the performance depends 
on the specification of the levels with respect to the rms signal level, cr. An au- 
tomatic level control (ALC) circuit is therefore sometimes used at the sampler 
input. Errors resulting from incorrect signal amplitude become less important as 
the number of quantization levels is increased: with many levels the signal am- 
plitude becomes simply a linear factor in the correlator output. In systems using 
complex correlators, two samplers are usually required for each signal, one at 
each output of a quadrature network. The accuracy of the quadrature network, 
and the possible errors in the relative timing of the two sample pulses, can also 
introduce errors in the data. 
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Tolerances in Three-Level Sampling 

The results in this section are based largely on a study of accuracy requirements 
in three-level sampling by D' Addario et al. (1984). We start by considering the 
diagram in Fig. 8.9, which shows the sampling thresholds for a pair of signals to 
be correlated. Thresholds u1 and -u2 apply to the signal waveform x ( t )  and u3 

and -u4 to y ( t ) .  The probability distribution of x and y is given by Eq. (8.1), and 
the correlator output is proportional to this probability integrated over the (x, y )  
plane with the weighting factors f l  and zero indicated in the figure. This ap- 
proach enables us  to investigate the effect of deviations of the sampler thresholds 
from the optimum, ug = 0.6120. For three-level sampling the correlator output 
can be written 

where cii = v i / a ,  and 

] d X d Y  
C Q ' X  1 - ( X 2  + Y 2  - 2 p X Y )  

L(a;, a&, P) = I, I, 2nJi-7 [ ( 1  - p 2 )  

(8.70) 

Here X = x / a ,  Y = y/a, and the integrand in  Eq. (8.70) is the right-hand side 
of Eq. (8.1) with the variables measured in units of a. 

U l  x I I 
- u.2 

I 

Figure 8.9 Threshold diagram for a correlator, the inputs of which are three-level quantized 
signals. x and y represent the unquantized signals, and the shaded areas show the combinations 
of input levels for which the output is nonzero. 
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D’Addario et al. (1984) point out that since less than 5% loss in signal-to- 
noise ratio occurs for threshold departures of f40% from optimum, the required 
accuracy of the threshold settings, in practice, depends mainly on the correction 
algorithm. Suppose that the thresholds are kept close to, but not exactly equal to, 
the optimum value. For the x sampler in Fig. 8.9 the deviations from the ideal 
threshold value (YO can be expressed in terms of an even part 

andanoddpart 

(8.72) 

For the y sampler A,?. and Aoy are similarly defined. The Ag terms produce gain 
errors. They are equivalent to an error in the level of the signal at the sampler, and 
they have the effect of introducing a multiplicative error in the measured cross- 
correlation. The A. terms produce offset errors in the correlator output and are 
potentially more damaging since such errors can be large compared with the low 
levels of cross-correlation resulting from weak sources. The offset errors, how- 
ever, can be removed with high precision by phase switching. The cancellation of 
the offset results from the sign reversal of the digital samples, or of the correla- 
tor output, as described in Section 7.5. The correlator output of a phase-switched 
system is of the form 

If all LY values are within *lo% of ao, the output is always within (relative 
error) of the output of a correlator with the same gain errors, but no offset errors, 
in the samplers. Note also from Fig. 8.5 that 10% errors in the threshold settings 
result in less than 1% loss in signal-to-noise ratio. Thus, with phase switching, 
10% errors are tolerable in the thresholds, and the effects of the gain errors can 
be corrected for if the actual threshold levels are known. Since the probability 
density distribution of the signal amplitudes can be assumed to be Gaussian, the 
threshold levels can be determined by counting the relative numbers of + 1, 0, 
and - 1  outputs from each sampler. When p is small (a few percent), a simple 
correction for the gain error can be obtained by dividing the correlator output 
by the arithmetic mean of the numbers of high-level ( f l )  samples for the two 
signals. Then 10% errors in the threshold settings result in errors of less than I %  
in p.  

Another nonideal aspect of the behavior of the sampler and quantizer is that 
the threshold level may not be precisely defined but may be influenced by the 
direction and rate of change of the signal voltage, the previous sample value (hys- 
teresis), and other effects. The result can be modeled by including an indecision 
region in the sampler response extending from uk - A to C Y ~  + A. It is assumed 
that a signal that falls within this region results in an output that takes either of 
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I I  

Figure 8.10 Threshold diagram for a three-level correlator showing indecision regions and 
the shaded areas within them for which the response is nontero. The figures fl. *+, and z t ;  

indicate the correlator response. The diagram shows the (X ,  Y )  plane in which the signals are 
normalized to the rms value u. 

the two values associated with the threshold randomly and with equal probability. 
The threshold diagram with indecision regions included is shown in Fig. 8.10. 

The weighting in the indecision regions depends on the probability of the ran- 
dom sample values and is 1/4 when both signals fall within indecision regions, 
and 1 /2 when one signal is within an indecision region and the other produces 
a nonzero output. As before, the correlator output can be obtained by integrating 
the weighted probability of the signal values over the (X, Y )  plane. Figure 8.1 1 
shows the decrease in the correlator output as a function of A for several val- 
ues of p. computed by expressing the output decrease as a Maclaurin series in 
A (D'Addario et al. 1984). For all cases except those where p approaches unity, 
the relatively small decrease in output results from the fact that when one input 
waveform falls within an indecision region, the other generally does not. For the 
particular case of p = 1, the input waveforms are identical and fall within these 
regions simultaneously. The output decrease is then proportional to A as shown 
by the broken line in Fig. 8.1 1:  however, this case is not of much practical im- 
portance. For a 1 % maximum error, A must not exceed 0. I la, so the indecision 
region can be as large as dz 18% of the threshold value. For a maximum error of 
0.1 % the above limits must be divided by m. Thus the indecision regions have 
large enough tolerances that their effect can often be neglected. 
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Figure 8.11 Effect of indecision regions on the output of a three-level correlator. The thresh- 
olds are assumed to be set to the optimum value 0.6120, and the widths of the indecision 
regions are 2uA. The output is given as a fraction of the output for A = 0. 

8.5 DIGITAL DELAY CIRCUITS 

Time delays that are multiples of the sample interval can be applied to streams of 
digital bits by passing them through shift registers that are clocked at the sampling 
frequency. Shift registers with different numbers of stages thus provide different 
fixed delays. A method of using two shift registers to obtain a delay that is variable 
in increments of the clock pulse interval is described by Napier, Thompson, and 
Ekers (1983). However, integrated circuits for random access memory (RAM), 
developed for computer applications, provide the most economical solution for 
large digital delays. 

Another useful technique is serial-to-parallel conversion, that is, the division 
of a bit stream at frequency u into n parallel streams at frequency u / n ,  where n is 
a power-of-two integer. This allows the use of slower and more economical types 
of digital circuits for delay, correlation, and other processes. 

The precision required in setting a delay has been discussed in Section 7.3 
under Delay-Setring Tolerances, and is usually some fraction of the reciprocal 
analog bandwidth. In any form of delay that operates at the frequency of the sam- 
pler clock, the basic delay increment is the reciprocal of the sampling frequency. 
A finer delay step can be obtained digitally by varying the timing of the sample 
pulse in a number of steps, for example, 16, between the basic timing pulses. 
Thus, if an extra delay of, say, 5/16 of a clock interval is required, the sampler is 
activated 1 1 / 16 of a clock interval after the previous clock pulse, and the data are 
held for 51 16 of an interval to bring them into phase with the clock-pulse timing. 
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Correction for delay steps equal to the sampling interval can also be made after 
the signals have been cross-correlated by applying a phase correction to the cross 
power spectrum, as described in Section 9.7 under Discrete Delay Step Lass. 

8.6 QUADRATURE PHASE SHIFT OF A DIGITAL SIGNAL 

We have mentioned that complex correlators for digital signals can be imple- 
mented by introducing the quadrature phase shift in the analog signal, as in 
Fig. 6.3, and then using separate samplers for the signal and its phase-shifted 
version. The Hilbert transformation that the phase shift represents can also be 
performed on the digital signal, thus eliminating the quadrature network and sav- 
ing samplers and delay lines, but the accuracy is limited. Hilbert transformation 
is mathematically equivalent to convolution with the function (-n T)-', which 
extends to infinity in both directions [see, e.g., Bracewell (2000) p. 3641. A trun- 
cated sequence of the same form, for example, i, 0, 1,0, - l , O ,  - f, provides a 
convolving function for the digital data that introduces the required phase shift. 
However, the truncation results in convolution of the resulting signal spectrum 
with the Fourier transform of the truncation function, that is, a sinc function. This 
introduces ripples and degrades the signal-to-noise ratio by a few percent. Also, 
the summation process in the digital convolution increases the number of bits in 
the data samples, but the low-order bits can be discarded to avoid a major increase 
in the complexity of the correlator. This results in a further quantization loss. The 
overall result is that the imaginary output of the correlator suffers spectral distor- 
tion and some loss in signal-to-noise ratio relative to the real output. These effects 
are most serious i n  broad bandwidth systems, in which the high data rate permits 
only simple processing. Lo et al. (1984) have described a system in  which the 
real part of the correlation is measured as a function of time offset, as described 
below for the spectral correlator, and the imaginary part is then computed by 
Hi lbert transform ation. 

8.7 DIGITAL CORRELATORS 

Correlators for Continuum Observations 

In continuum observations the average correlation over the signal bandwidth is 
measured, and data on a finer frequency scale may not be required. In such cases 
the correlation of the signals is measured only for zero time-delay offset. Digital 
correlators can be designed to run at the sampling frequency of the signals, or at a 
submultiple resulting from dividing the bit stream from the sampler into a number 
of parallel streams. In the latter case the number of correlator units must be pro- 
portionally increased, and their outputs can subsequently be additively combined. 
Two-level and three-level correlators, for which the products are represented by 
values of -1, 0, and + I ,  are the simplest to construct. Correlators in which one 
of the inputs is a two-level or three-level signal and the other input is more highly 
quantized also have a degree of simplicity. In this case, the correlator is essentially 
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an accumulating register into which the higher-quantization value is entered. The 
two-level or three-level value is used to specify whether the other number is to 
be added, subtracted, or ignored. In correlators in which both inputs have more 
than three levels of quantization, the multiplier output for any single product can 
be one of a range of numbers. One method of implementing such a multiplier is 
to use a read-only memory unit as a lookup table in  which the possible product 
values are stored. The input bits to be multiplied are used to specify the address 
of the required product in the memory. 

The output of a multiplier can take both positive and negative values, and, 
ideally, an up-down counter is required as an integrator. Since such counters are 
usually slower than simple adding counters, two of the latter are sometimes used 
to accumulate the positive and negative counts independently. Another technique 
is to count, for example, - 1,0, and + 1 as 0, 1, or 2, and then subtract the excess 
values, in this case equal to the number of products, in the subsequent processing. 

Spectral line correlators are also often used for continuum observations. They 
offer advantages such as the ability to reject narrowband interfering signals, or to 
subdivide the band into narrower sub-bands to reduce the smearing effect result- 
ing from wide bandwidth, as discussed in Section 6.3. 

Principles of Digital Spectral Measurements 

In spectral line observations, measurements at different frequencies across the 
signal band are required. These measurements can be obtained by digital tech- 
niques using a spectral correlator system, which is most commonly implemented 
by measuring the correlation of the signals as a function of time offset (also 
referred to as time lag). The Fourier transform of this quantity is the cross power 
spectrum, which can be regarded as the complex visibility as a function of 
frequency. This Fourier transform relationship, which is related to the Wiener- 
Khinchin relation, is discussed in Section 3.2. In the case of an autocorrelator (for 
use with a single antenna), the two input signals are the same waveform with a 
time offset. Thus the autocorrelation function is symmetric, and the power spec- 
trum is entirely real and even. However, the cross power spectrum of the signals 
from two different antennas is complex, and the cross-correlation function has 
odd as well as even parts. 

The output of a spectral correlator system provides values of the visibility at N 
frequency intervals across the signal band. These intervals are sometimes spoken 
of as frequency channels, and their spacing as the channel bandwidth, by analogy 
with the analog type of spectral correlator in which the signal band is broken up 
into channels by a bank of N analog filters with separate corre!ators for each fil- 
ter channel. To explain the action of ;I digital spectral correlator, we consider the 
cross power spectrum 8 ( u )  of the signals from two antennas, as shown in ideal- 
ized form in Fig. 8.12. Here it is assumed that the source under observation has a 
flat spectrum with no line features, and the final IF amplifier before the sampler 
has a rectangular baseband response. In Fig. 8. I2 we have included the negative 
frequencies since they are necessary in the Fourier transform relationships. For 
-Au 5 u 5 Au, the real and imaginary parts of 8 ( u )  have magnitudes a and 
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Figure 8.12 Cross power spectrum 8 ( u )  of two signals for which [he power spectra are rect- 
angular bands extending in frequency from zero to Au.  Negative frequencies are included. 
The full line represents the real part of d(v) and the hroken line the imaginary part. The cor- 
responding correlation function is derived in Eq. (8.74). 

6, respectively, and the corresponding visibility phase is tan-' (bla).  The cross- 
correlation function p ( t )  is the Fourier transform of 8 ( u ) ,  where t is the time 
offset: 

0 Ail 

p ( r )  = (a  - j b )  eJ2n''r du + (a + j b )  1 eJ2n"r dv LA" (8.74) 

1.  s in(2rAur)  I - cos(2nAur) 
= ~ A u  - b  [ 27r Aur 2n Avr 

Thus p ( r )  has an even component of the form sin x/x, which is related to the 
real part of 8 ( v ) ,  and an odd component of the form ( 1  - cosx)/x, which is 
related to the imaginary part. The spectral correlator measures p ( r )  for integral 
values of the sampling interval t,. We consider the case of Nyquist sampling, 
for which t, = 1/(2Au). The measured cross-correlation refers to the quantized 
waveforms, and the results in Section 8.3 show how this is related to the cross- 
correlation of the unquantized waveforms. For correlation levels that are not too 
large, the two quantities are closely proportional, so for simplicity we assumc 
that Eq. (8.74) represents the behavior of the measured cross-correlation. The 
measurements are made with 2N time offsets from - N r ,  to ( N -  I)r,v between the 
signals, and Fourier transformation of these discrete values yields the cross power 
spectrum at frequency intervals of (2Nr,)-' = Au/N for Nyquist sampling. The 
N complex values of the positive frequency spectrum are the data required. Of 
these, the imaginary part comes from the odd component of r ( r ) .  Thus, in the 
correlation measurement it  suffices to use single-multiplier correlators to measure 
2 N  real values of r ( r )  over both positive and negative values of r for one antenna 
with respect to the other. As an alternative to measuring only the real part of 
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the correlation, complex correlators could be used to measure both the real and 
imaginary parts, as in Fig. 6.3, for a range of time offsets from zero to (N - 
1 )7s. From a practical viewpoint, it is generally preferable to use single-multiplier 
correlators to avoid the broadband quadrature networks required in most complex 
correlators. Errors in the frequency responses of such networks can be a limiting 
factor in array performance. 

Measurement of the cross-correlation over the limited time offset range is 
equivalent to measuring r ( s )  multiplied by a rectangular function of width 2Ns,. 
The cross power spectrum derived from the limited measurements is therefore 
equal to the true cross power spectrum convolved with the Fourier transform of 
the rectangular function, that is, with the sinc function 

sin( n vhr/ A v )  

Jrv 
(8.75) 

which is normalized to unit area with respect to u.  Any line feature within the 
spectrum is broadened by the sinc function (8.75) and, depending on its fre- 
quency profile, may show the characteristic oscillating skirts. The width of the 
sinc function at the half-maximum level is 1.2 Au/ N, that is, 1.2 times the chan- 
nel separation, and this width defines the effective frequency resolution. 

The oscillations of the sinc function introduce structure in the frequency spec- 
trum similar to the sidelobe responses of an antenna beam. They result from the 
sharp edges of the rectangular function that multiplies the correlation function. 
Such sidelobes are undesirable and can be reduced by choosing weighting func- 
tions, other than rectangular truncation, that are constrained to be zero outside the 
measurement range. Weighting functions are generally chosen to taper smoothly 
to zero at 151 = Ns,, thereby reducing unwanted ripples in the smoothing (con- 
volving) function, but also to be as wide as possible in order to keep the width 
of the smoothing function as narrow as possible. These requirements are not gen- 
erally compatible, so weighting functions that produce smoothing functions with 
very low sidelobes have poor frequency resolution. Some commonly used weight- 
ing functions are listed in Table 8.4. Hanning weighting, also known as raised 
cosine weighting, reduces the first sidelobe by a factor of 9, but degrades the res- 
olution by 1.67, compared to uniform weighting. The Fourier transform of the 

TABLE 8.4 Commonly Used Smoothing Functions 

Weighting Half-Amplitude Width Peak 
Function w ( r )  [w(r)  = 0. [ T I  > rI = N r , ]  (Unit = Au/N) Sidelobe 

Uniform W ( T )  = I 1.21 0.22 
Bartlett w ( r )  = 1 - (irl/rl) 1.77 0.047 
Hanning w ( r )  = 0.5 +OScos(jrr/rl)  2.00 0.027 
Hamming W ( S )  = 0.54 + 0.46coS(jrT/T1) 1.82 0.0073 
Blackman w ( r )  = 0.42 + OSOcos(nr/rl)  

+ 0.08cos(2nr/r1 ) 2.30 0.0012 
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Hanning weighting function is the sum of three sinc functions of relative ampli- 
tudes 0.25, 0.5, and 0.25. This is the smoothing function in the spectral domain, 
shown in Fig. 8.13b, which corresponds to the Hanning weighting. For the usual 
case where the number of points in the discretely sampled spectrum equals the 
number of points in the correlation function (i.e., no zero padding: see FX Corre- 
lator), the smoothing or convolution can be implemented as a three point running 
mean with relative weights of 0.25,0.5, and 0.25. Thus the smoothed value of the 
cross power spectrum at frequency channel n is given by, 

- s ' ( N ) = f B [ (  nAu n - 1)Au ] + 4 8 ( % ) + f 8 [ (  n + 1)Au 1. (8.76) 

The Hamming weighting function is very similar to the Hanning function and 
would appear to be superior because it produces a better resolution and a lower 
peak sidelobe level. However, the sidelobes of the Hamming smoothing function 
do not decrease in amplitude as rapidly as those of the Hanning smoothing func- 
tion. Weighting functions are discussed in detail by Blackman and Tukey (1959) 
and Harris (1978). 

A further effect of the finite time offset range complicates the calibration of 
the instrumental frequency response in the following way (Willis and Bregman 
198 1 ). The frequency responses of the amplifiers associated with the different an- 
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Figure 8.13 (a) The ordinate is the sinc function s i n ( n u N / A u ) / ( ~ u N / A v ) ,  which repre- 
sents the frequency response of a spectral correlator with channels of width Au/ N to a narrow 
line at u = 0. The abscissa is frequency IJ measured with respect to the center of the received 
signal band. (b) The same curve after the application of Hanning smoothing as in Eq. (8.76). 
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tennas are seldom identical, as discussed in Section 7.3. To calibrate the response 
of each antenna pair over the spectral channels, it is usual to measure the cross 
power spectrum of an unresolved source for which the actual radiated spectrum 
is known to be flat across the receiving passband. We can consider the result in 
terms of the idealized power spectra in Fig. 8.12. If no special weighting function 
is used, the real and imaginary parts are both convolved with the sinc function 
(8.75). When a function with a sharp edge is convolved with a sinc function, the 
result is the appearance of oscillations (the Gibbs phenomenon) near the edge, as 
shown in Fig. 8.14. The point here is that the real component of 8 ( u )  in Fig. 8.12 
is continuous through zero frequency, but the imaginary part shows a sharp sign 
reversal. Thus, near zero frequency the observed imaginary part of 8 ( u )  will show 
oscillations that may be as high as 18% in peak amplitude, whereas the real com- 
ponent will show relatively small oscillations at that point (see also Fig. 10.6b 
and associated text). As a result, the magnitude and phase measured for 8 ( u )  will 
show oscillations or ripples, the amplitude of which will depend on the relative 
amplitudes of the real and imaginary parts, that is, on the phase of the uncal- 
ibrated visibility. The uncalibrated phase measured for any source depends on 
instrumental factors such as the lengths of cables as well as the source position, 
which may not be known. In general, the phase will not be the same for the source 
under investigation and the calibrator. Hence, near zero frequency some precau- 
tions must be taken in applying the calibration. Possible solutions to the problem 
include (1) calibrating the real and imaginary parts separately, (2) observing over 
a wide enough band that the end channels in which the ripples are strongest can 
be discarded, or (3) applying smoothing in frequency to reduce the ripples. 

Another problem encountered when observing a spectral line in the presence of 
a continuum background is caused by reflections in the antenna structure. These 
reflections cause a sinusoidal gain variation across the passband, the period of 
which is equal to the reciprocal of the delay of the signal caused by the reflec- 
tion. In a correlation interferometer the magnitude of the ripple is a nearly con- 
stant fraction of the correlated continuum flux density, and the ripple is removed 
when the spectrum of the source under investigation is divided by the spectrum of 
the calibration source. 

Figure 8.14 Convolution of a step function at the origin (broken line) with the sinc function 
s i n ( n x ) / n x .  Here x = uN/Au and the half-cycle period of the ripple is approximately equal 
to the width of a spectral channel. 
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Figure 8.15 Simplified schematic diagram of a lag (XF) spectral correlator for two sampled 
signals. T~ indicates a time delay equal to the sample interval and C indicates a correlator. 
The correlation is measured for zero delay, for the .? input delayed with respect to the input 
(left-hand correlator bank), and for 9 delayed with respect to .? (right-hand correlator bank). 
The delays are integral multiples of 5 , .  

Lag (XF) Correlator 

A simplified schematic diagram of a lag correlator that measures the cross- 
correlation of two signals is shown in Fig. 8.15. Practical systems are often 
more complicated and are designed to take full advantage of the flexibility of 
digital processing techniques. The bandwidths of channels required for spectral 
line studies vary greatly, from a few hundred hertz to tens of megahertz. This 
versatility is necessary because the widths of spectral features are influenced 
by Doppler shifts, which are proportional to the rest frequencies of the lines 
and the velocities of the emitting atoms and molecules. Effects such as pressure 
broadening are also important. For this reason many digital spectral line systems 
incorporate a series of filters in the IF amplifiers so that the overall signal band- 
width can be reduced by factors $. 4, :, and so on. When the signal bandwidth 
is halved, the Nyquist frequency -is halved, and the samplers can be run at half 
the maximum frequency (or else every other sample can be deleted). However, 
if the correlators are run at the frequency used for the maximum bandwidth, the 
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data samples can be processed by the correlators twice, and the range of time 
offsets can thereby be doubled. As a result, the number of channels is doubled 
and the channel bandwidth decreased by a factor of 4. The use of this principle 
allows the signal bandwidths to be further decreased, and the number of channels 
increased, as required. Usually the number of channels is an integral power of 2, 
and the signal bandwidths are decreased by powers of 2 to be compatible with 
digital computing techniques. To implement the above scheme, recirculator units 
are required, which are basically memories that store blocks of input samples and 
allow them to be read out at the correlator input rate. These memory units are 
required in pairs, so that one is filled with data at the Nyquist rate appropriate 
to the chosen signal bandwidth, while the other is being read at the maximum 
data rate. One memory becomes filled in the time that the other is read for the 
required number of times, and the two are then interchanged. Correlators that 
incorporate the above principles are described as recirculating correlators (Ball 
1973). An example of a recirculating lag correlator for a millimeter wavelength 
array is described by Okumura et al. (2000). 

FX Correlator 

The designation FX indicates a correlator in which Fourier transformation to the 
frequency domain is performed before cross multiplication of data from different 
antennas. In such a correlator the input bit stream from each antenna is converted 
to a frequency spectrum by a real-time FFT, and then for each antenna pair the 
complex amplitudes for each frequency are multiplied to produce the cross power 
spectrum. A major part of the computation occurs in the Fourier transformation, 
for which the total number of operations is proportional to the number of anten- 
nas. In comparison, in a lag correlator (also sometimes called an XF correlator), 
the total computation is largely proportional to the number of antenna pairs. Thus 
the FX scheme offers some economy in hardware, especially if the number of 
antennas is large. The principle of the FX correlator, based on the use of a special 
FFT computer, was discussed by Yen (1974) and first used in a large practical 
system by Chikada et al. (1984, 1987). A description of a system designed for a 
VLBI array is given by Benson ( 1995). 

Two slightly different implementations of the FX correlator have been used. 
In one, both in-phase and quadrature components of the signal are sampled to 
provide a sequence of N complex samples, which is then Fourier-transformed to 
provide N values of complex amplitude, distributed in frequency. In the other, 2N 
real samples are transformed to provide N values of complex amplitude. In either 
case, N is the number of frequency channels (or points across the spectrum). 
Considerations are almost identical in the two cases, and we follow the second 
scheme in the discussion below. 

Figure 8. I6 is a schematic diagram of the basic operations of an FX correlator. 
The input sample stream from an antenna is Fourier transformed in contiguous 
sequences of length-2N samples, where N is usually a power-of-two integer for 
efficiency in the FFT algorithm. The output of each transformation is a series of 
N complex signal amplitudes as a function of frequency. The frequency spacing 
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Figure 8.16 Simplified schematic diagram of an FX correlator for two antennas. The digi- 
tized signals are read into the shift registers and an FFT performed at intervals of 2 N  sample 
periods. The correlator elements, indicated by C, form products of one signal with the com- 
plex conjugate of the other. In an array with I I , ,  antennas, the outputs of each FFT are split 
(ti,, - I )  ways for combination with the complex amplitudes from all other antennas. 

of the data after transformation is 1 /(2Nr,) ,  where T , ~  is the time interval between 
samples of the signals. In the cross-multiplication process that follows the FFT 
stage, the complex amplitude from one antenna of each pair is multiplied by the 
complex conjugate of the amplitude of the other. These multiplications occur in 
the correlator elements in Fig. 8.16. Note that the data in any one input sequence 
are combined only with data from other antennas for the same time sequence, 
and this restriction results in some loss of information. This loss can best be i l -  
lustrated by considering the cross-correlation measurements (as they would be 
obtained in a lag correlator) that result from one 2N-sample sequence for two 
antennas. Measurements of the correlation at the longest lags of f ( 2 N  - I ) T ,  are 
obtained only once each, the next longest, f ( 2 N  - 2)r,r, twice each, and so on to 
the unit lag interval for which there are 2N - 1 measurements. There is thus a tri- 
angular weighting of the correlation measurements as a function of lag, as shown 
in Fig. 8.17. The data for the longer lags are poorly represented. The situation 
can be improved by allowing contiguous sequences to overlap. With an overlap 
of 50%. which is one of the more common implementations, the data at the cen- 
ter of one sequence become those at the edge of a neighboring one. Weighting 
of the data across each sequence may also be introduced to reduce sidelobes in 
the frequency response, and the overlapping allows data that receive low weight 
in one sequence to be more highly weighted in the next. This type of procedure, 
known as weighted overlapping segment averaging, was originally described by 
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Figure 8.17 Number of effective cross-correlations for an FX correlator as a function of time 
delay between samples. N is the number of frequency channels (spectral points) across the 
signal band. For illustration we use N = 8. but in practice, values in the range 128 to 1024 are 
more typical. 

Welch (1967) as a technique in general spectral analysis; for a detailed analysis, 
see Percival and Walden (1993). 

It is interesting to show how the FX and lag methods can be made to give 
the same cross-correlation in the discrete signal case (Moran 1976). In the FX 
correlator, the Fourier transforms of the 2N-point signals i ( i )  and i(i) are: 

where the circumflex accent denotes a quantized variable. Let f i  = i/2Au and 
t k  = k / 2 A v ,  where A u  is the bandwidth. and let u = l A u / N .  Then the cross 
power spectrum, 3 ( u )  = X ( u ) Y * ( u ) ,  is 

The cross-correlation function is 

(8.79) 

Substituting Eq. (8.78) into Eq. (8.79). interchanging the order of summation, and 
noting that 
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2N- l  c e j J r t ( i - k - f f ) / N  0 f o r i - k - n # 0 ,  
2N for i - k - n = 0, 

K =O 

(8.80) 

we obtain 

for 11 ranging between -(2N - 1)  and (2N - I ) .  Thus from the response of the FX 
correlator we obtain the cross-correlation in the form in which it is measured by 
a lag correlator, except for the triangular weighting of the FX system, discussed 
with respect to Fig. 8.17. 

The triangular weighting of the correlation data results in the convolution of 
the cross power spectrum with the function sinc2(2Nr,u). In comparison, i n  the 
lag correlator the cross-correlation measurements are uniformly weighted as a 
function of lag, and the cross power spectrum is convolved with a sinc function as 
in (8.75). The range of lags over which the cross-correlation is measured is 4Nr,, 
which is the width of the triangle in Fig. (8.17), so according to the sampling 
theorem, the cross power spectrum should be represented by samples at intervals 
l /(4Nr3) in frequency. The spectrum obtained as described above for the FX 
correlator is, by this criterion, undersampled by a factor of two. Thus if one wishes 
to obtain the cross-correlation function by Fourier transformation of the cross 
power spectrum values (e.g., to apply quantization correction), the undersampling 
results in aliasing and hence erroneous results. This situation can be avoided by 
using a Fourier transform of length 4N for the length-2N input sequences, putting 
the data in positions 0 to 2N and zeros in positions 12N + 1) to 4N (O’Sullivan 
1982, Granlund 1986). This practice is often referred to as zeru padding. 

With an FFT of length 2N, equal to the length of the input data sequence, 
the response to a narrow spectral line that falls midway between two frequencies 
of the output spectrum is reduced by a factor sinc2(i) = 0.41. With an FFT of 
length 4N and half the input sequence padded with zeros, a line that falls midway 
between two output points is reduced by sine'($) = 0.81. If the amplitude loss 
resulting from the coarser sampling in frequency is acceptable, and if it is not 
necessary to transform back to cross-correlation for quantization correction, then 
the use of a length-2N FFT is satisfactory. Otherwise the length-4N FFT with 
zero padding of half the input range is advantageous. 

Comparison of Lag and FX Correlators 

Number ofOperatiuns. In a lag correlator the number of operations per second in 
the cross-correlation is equal to the product of the sample rate, 2Au, the number 
of different lags per baseline, 2N, and the number of antenna pairs, n, , (n, ,  - 1)/2, 
where N is the number of spectral points in the IF bandwidth Au and I?, ,  is the 
number of antennas. The Fourier transformation to the frequency domain occurs 
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after integration of the cross-correlation data for a large number of cycles (typ- 
ically > lo4), and so its contribution to the total computation can be neglected. 
Thus as an estimate of the number of operations per second we have, for the lag 
correlator. 

(8.82) 

where each operation involves one real-number multiplication and one addition. 
In the FX correlator the Fourier transformation occurs once for each antenna ev- 
ery 2N samples, so the total rate of transformations is Avn,/N per second. Each 
transform requires N log, N complex multiplications. Also, for the FX correlator 
there are Nn,(n, - 1)/2 products of the complex amplitude every 2N samples. 
We count each complex operation as four real-number operations, so the total 
number of equivalent real-number operations is 

(8.83) 

Equations (8.82) and (8.83) are regarded as approximations since, in practice, 
parameters depending on the details of implementation of the various operations 
may differ. However, the ratio nLAG/nFX zx Nn,/(2 log, N + n,) indicates the 
major effects, in which the factor N usually dominates. For example, if N = 
lo00 and n, = 10, nLAG/nFX M 330. Note also that in the lag correlator the 
operations mainly involve numbers as they are generated by the sampler, that is, 
usually consisting of only one or two bits each. In the FX correlator the numbers 
are rapidly transformed in the FFT to values represented by many more bits, for 
example, 16 (six each for the real and imaginary parts and four for the mantissa). 
The advantage of the FX correlator is thus substantially less than indicated by the 
nLAG/nFx ratio. 

Integrated Circuit Implementation. Large correlators, that is, those for which the 
numbers of antennas and spectral channels are large, are practical because very 
large-scale integrated circuits (VLSI chips) can be designed specifically for a par- 
ticular correlator design. These allow large numbers of parallel operations to be 
performed. For example, VLSI chips have been designed with 1024 lags of one 
input relative to the other. Two such chips would be required to implement a sys- 
tem of the form shown in Fig. 8.15, one for each of the correlator banks at the 
left- and right-hand sides of the diagram. The architecture of the lag correlator 
is somewhat more easily adapted to VLSI implementation than is that of the FX 
correlator. In particular, the number of bits per data point in the lag correlator is 
small compared with the multibit data representation required in the FX corre- 
lator, as explained in the previous paragraph. The smaller number of bits in the 
lag correlator greatly simplifies data input to the VLSI chip and interconnections 
between the circuits within it. 

Digital Fringe Rotation. Although fringe rotation is often applied to the signal 
as an analog process, in some cases it is advantageous to implement it after dig- 
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itization. For example, in VLBI observations in which the data are recorded as 
digital samples, it is useful to be able to repeat the analysis with different fringe 
rates if the position of the source on the sky is not known with sufficient accu- 
racy before the observation. Digital fringe rotation is applied to the digitized IF 
waveform just before it goes to the correlator, and involves multiplication with a 
digitized fringe rotation waveform as described in Section 9.7 under Fringe Ro- 
tation Loss. It is desirable to use a multibit representation for the rotated data to 
maintain the required accuracy, and thus the number of bits in the input data to 
the correlator is increased. As mentioned above, increasing the number of bits per 
sample in a lag correlator results in a proportional increase in complexity, and is 
not easily accommodated. Thus it may be necessary to truncate the data before 
input to the correlator, which effectively introduces the quantization loss a second 
time. In contrast, in the FX design multibit data representation is required in the 
FFT processing, so the bit increase that fringe rotation presents is more easily 
accommodated. 

Fractional Sample Delay Correcriurt. In digital implementation of the compen- 
sating delays, one way of adjusting the delay in steps smaller than the sampling 
interval is to adjust the timing of the sampler pulses, as described in Section 8.5. 
Another way of introducing a fractional sample period delay is done after trans- 
formation to the frequency domain by incrementing the phase values by an 
amount that varies in proportion to the frequency across the IF band. In the FX 
correlator this is easily done because the signals appear as an amplitude spectrum 
every FFT cycle, and the correction can be applied as required for each antenna, 
before the data are combined in antenna pairs. With a lag correlator there are 
two problems in this process. First, the transformation to a spectrum occurs after 
the data are combined for antenna pairs, so many more values require correction. 
Second, for long baselines the corrections required may occur more rapidly than 
the rate at which it is otherwise necessary for the cross-correlation values to be 
transformed to cross power spectra. Thus it may be possible to apply only a 
statistical correction rather than an exact one. See also Section 9.7 under Discrete 
Delay Step Loss. 

Quanrizution Correction. The nonlinearity of the amplitude of the cross-cor- 
relation measured using coarsely quantized samples is seen in the Van Vleck 
relationship (Eq. 8.25) and the curves in Fig. 8.6. The true cross-correlation can 
be derived from the measured values by using these relationships. In the lag cor- 
relator this is a straightforward process because the cross-correlation values are 
directly calculated. To obtain the cross-correlation values in the FX correlator, the 
cross power spectrum data at the correlator output must be Fourier transformed 
from the frequency domain to the lag domain. After applying the correction, the 
data must then be transformed back to a frequency spectrum. Note that the correc- 
tion is necessary only if the correlation of the total waveform (signal plus noise) is 
large for any pair of antennas. This condition implies observation of a source that 
is largely unresolved and sufficiently strong that the signal power in the receiver 
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is comparable to the noise, or greater. In the case of a spectral line observation, it 
is the power averaged over the receiver bandwidth that is important. 

Ediring of Invalid Data. Data editing to remove interference or other transient 
errors can be a serious problem in the FX correlator since bad or missing samples 
in a 2N-sample sequence that is Fourier transformed may invalidate the whole 
sequence. The problem is more amenable to data editing in the case of the lag 
correlator since there is no particular length of input sequence that must be free 
from errors. 

Adaptability. The FX design is somewhat more easily expanded or adapted to 
special requirements because more of the system is modularized per antenna 
rather than per baseline as in the lag correlator. Addition of an extra antenna 
to an FX correlator does not require such a complete restructuring as it does with 
a lag correlator. 

Pulsar Observations. For pulsar observation, a gating system at the correlator 
output is required to separate data received during the pulsar-on period, so that 
the sensitivity is not degraded by noise received when the pulsar is off. For most 
pulsars, which have periods LO. 1 s, time resolution of order 1 ms is adequate in 
the gating.’ In the original lag correlator of the VLA, for example, a basic tim- 
ing cycle requires that data readouts from the correlator occur at time intervals of 
92.8 ps, which must be accommodated by the gating (Hankins 1999). This could 
be a limiting factor for very fast pulsars. With an FX correlator it is necessary 
to collect data in complete sequences of 2 N samples, so the gating process has 
to accommodate data that arrive at time intervals of - ~ N T . ~ .  For example, with 
N = lo00 and a total bandwidth of 10 MHz, ~ N T , ~  = 100 ps. Again, this might 
restrict flexibility for the fastest pulsars. A nice feature of the FX correlator is that 
complete spectra are obtained during each ~ N T ,  interval in time. In the subse- 
quent time averaging it is possible to process the frequency channels individually, 
and to vary the time of the gating pulse for each one so as to match the variation 
in pulse timing that results from dispersion in the interstellar medium. 

Choice of Correlator Design. Because the relative advantages of the lag and FX 
schemes discussed above involve a number of different features, the best choice 
of architecture for any particular application may not be immediately obvious. 
Detailed design studies for different approaches, taking account of the precise re- 
quirements and the implementation of the VLSI circuits, are usually required. For 
further discussions of lag and FX correlators see D’Addario (1989) and Romney 
( 1995). 

BMany arrayb can also be used in a phased-array mode. which provides one signal output per polar- 
ization. A specially designed pulsar processor can then provide measurements with high time resolution 
for study of the pulse protile and timing. In such cases the array is used only to provide a large collecting 
area for high sensitivity: see Section 9.9. 
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Hybrid Correlator 

In designing a broadband correlator it may be advantageous to divide the analog 
signal from each antenna into n contiguous narrow sub-bands, where n is typi- 
cally of order 10 or greater. A separate digital sampler is used for each such sub- 
band, and the correlator is designed as n sections operating in parallel to cover 
the full signal band. A system of this type that incorporates both analog filtering 
and digital frequency analysis is referred to as a hybrid correlator. If the digital 
part uses a lag design, then the rate of digital operations is reduced by a factor n 
relative to the rate for a lag correlator that processes the whole bandwidth with- 
out subdivision. This can be seen from Eq. (8.82), where for one sub-band the 
bandwidth is A v / n ,  the number of channels required is N / n ,  but n such sections 
of digital processing are required. A hybrid correlator of this type is described 
by Weinreb (1984). However, if an FX implementation is used for the digital sec- 
tion, the hybrid scheme results in very little reduction in the number of operations, 
since in Eq. (8.83), N enters logarithmically. A general disadvantage of the hy- 
brid correlator is that very careful calibration of the frequency responses of the 
sub-bands is required to avoid discontinuities in gain at the sub-band edges. In 
millimeter wavelength arrays IF bandwidths of order 10 GHz or more are practi- 
cable, and some analog filtering is necessary to subdivide such bandwidths down 
to a value for which Nyquist sampling is possible. In general it is advantageous 
to use the fastest samplers to minimize the analog filtering required. 

Demultiplexing in Broadband Correlators 

The bit rate for the very large scale (VLSI) integrated circuits used in large corre- 
lator systems is generally a few hundred Mbit s- ’ , which is more than an order of 
magnitude slower than the digital samplers that are used with broadband corre- 
lators. Serial-to-parallel conversion at the sampler output, that is, demultiplexing 
in the time domain, allows use of optimum bit rates for the correlator. Consider a 
system in which each sampler output is demultiplexed into n streams, and assume 
for simplicity that there is one bit per sample; parallel architecture accommodates 
multiple bits. Any n contiguous samples all go to different streams. To obtain all 
the products required in a lag correlator for a pair of IF signals with this config- 
uration of the data, it would be necessary to include cross-correlations between 
each stream of one signal with every stream of the other signal. To simplify the 
system, Escoffier (1997) has developed a scheme in which the n demultiplex bit 
streams from each signal are fed into a large random-access memory (RAM), and 
read out in reordered form. Each demultiplexed stream then contains a series of 
discontinuous blocks of - l o 5  samples. Each block contains data contiguous in 
time, as sampled. Cross-correlations are performed between data in correspond- 
ing blocks only. Thus for any pair of input signals, n cross-correlators running at 
the demultiplexed rate are required for each value of lag. Also each signal requires 
two RAM units so that one is filled as the other is read out. In Escoffier’s system 
the sample rate is 4 Gbit s-’, n = 32, and the length of a block of the demulti- 
plexed data is approximately I ms. Since cross-correlations do not extend across 
the boundaries of any given block, there is a very small loss of efficiency which in 
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this case is about 0.2%. Another possible approach is based on demultiplexing in 
the frequency domain, as in the case of the hybrid correlator. It is then necessary 
only to cross-correlate corresponding frequency channels between each antenna, 
so the number of cross-correlators per signal pair is again equal to n for each 
lag. Carlson and Dewdney (2000) have described an all-digital development of 
the frequency demultiplexing principle used in the hybrid correlator. Broadband 
signals are digitized at full bandwidth, divided into frequency channels using dig- 
ital filters, and resampled at the appropriate lower rate before cross-correlation. 
Thus the effect of small differences in the responses of analog filters is avoided. 
Both Escoffier’s reordering scheme and demultiplexing in frequency provide ap- 
proaches to the design of large broadband correlators. The latter requires fewer 
lags because the digital filters provide part of the spectral resolution. 

For filtering sampled signals, digital filters of the FIR (finite impulse response) 
type can be used, in  which the incoming sample stream is convolved with series of 
numbers, referred to as tap weights, the Fourier transform of which represents the 
filter response (Escoffier et al. 2000). The tap weights can be stored in a random- 
access memory and be readily changed as required. An advantage of digital filters 
is the high stability of the characteristics. However, it may be necessary to trun- 
cate the output data samples to match the number of bits per sample that can be 
handled by the correlator, and thus a further quantization loss may be incurred. 

The periodic function f ( r )  can be expressed as a Fourier series as follows: 

(A8.1) 
2nqr f ( 1 )  = 7 + 2 [a,, cos (p) + b,, sin ( y  )] , 

q= I 

where p is the period and 

Parseval’s theorem for Eq. (A8.1) takes the form 

(A8.2) 

(A8.3) 

Now let f ( r )  be a series of rectangular functions of unit height and width, one 
centered on r = 0 and the others centered on integral multiples of kp. Then one 
obtains 

2 2 sin(xqllY) 

(A8.4) 
= S’ = jii Tlq/p ‘ 

b ,  = 0. 1” f h i t  = I .  

From Eqs. (A8.3) and (A8.4), 
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(A8.5) 

which is the summation needed to evaluate Eq. (8.19). 

APPENDIX 8.2 PROBABILlTY INTEGRAL FOR TWO-LEVEL 
QUANTIZATION 

The probability integration required in Eq. (8 .21)  can be performed as follows. 
The integral is 

d x d y .  (A8.6) 1 - ( x *  + y 2  - 2 p x y )  
PI1 = 

Restore circular symmetry in the integral by the substitutions 

(A8.7) 

Then 

-(x’ + z 2  
P I I  = -!--Im 23ra’ d x S W  -x exp[ 2a’ ’1 d z .  (A8.8) 

JT7 

Next substitute .r = r cos 8 and z = r sin 6, .  The lower limit of the z integral in 
Eq. (A8.8) represents the line z = - p x / , / i p ? ,  which makes an angle 6, with 
the x axis given by 8 = - sin-’ p .  The integral covers an area of the ( x ,  z )  plane 
between this line and the z axis (6, = 7 ~ / 2 ) .  Thus 

Finally, substitute u = r’/2a2: 

Equation (A8.10) can be integrated directly to give 

1 ’  I P I I  = - + - sin- p .  4 2rr 

(A8.10) 

(A8.1 I )  
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TABLE A8.1 Optimal Thresholds and Efficiencies for 
Four-Level Quantization 

3 0.99568668 0.88 1 I539496 
3.3358750 0.98 I59883 0.8825181522 
4 0.94232840 0.8795 104597 

APPENDIX 8.3 CORRECTION FOR FOUR-LEVEL 
QUANTIZATION 

Schwab (1986) has investigated various aspects of the performance of correla- 
tors with four-level quantization. These include precise values for optimal thresh- 
olds and quantization efficiencies, and expressions for computation of the cross- 
correlation as a function of the correlator output. The threshold values and effi- 
ciencies are given Table A8.1. 

The values of quantization efficiency VJ for n = 3 and 4 are within 0.3% of the 
highest value, and are useful because nonintegral values of the weighting factor n 
would require more complicated implementation in a lag-type correlator. 

Rational approximations for the cross-correlation 6 are minimax solutions; 
that is, they minimize the maximum relative error. The variable rN is the normal- 
ized correlator output, that is, the measured output divided by the corresponding 
output for p = 1. The first three approximations given below are valid for all 

For n = 3 and the corresponding value of u o / ~  in Table A8. I ,  the following 
approximation yields a maximum relative error of 1.5 1 x lop4: 

l r N l  5 1 .  

I .  1347043 - 3.097 I3 12ri + 2.9 163894rk - 0.89047693ri 

1 - 2.68921041-i + 2.4736683r-; - 0.72098190r$ 
6 ( r N )  = T N .  

(A8.12) 

For n x 3.3359 and the corresponding value of u o / a  in Table A8. I ,  the following 
approximation yields a maximum relative error of 1.46 x lop4: 

I .  I329552 - 3.1056902t-i + 2.92969941-i - 0.90122460ri 

1 - 2.7056559t-i + 2.5012473rh - 0.73985978t-i 
c ( r N )  = TN. 

(A8.13) 

For n = 4 and the corresponding value of q)/a in Table A8.1, the following 
approximation yields a maximum relative error of 1 S O  x lo-': 



t

1. I368256 - 3.05339731-i + 2.8 I7 I5 1 2 4  - 0.85 148929ri 

1 - 2.65291 14ri + 2.4027335; - 0.70073934r: 
ArN) = rN . 

(AS. 1 4) 

The following approximation also applies for n = 4 and the  corresponding value 
of u ~ / a  in Table A8.1, but is valid for only I r N  1 5 0.95. It yields a maximum 
relative error of 2.77 x lo-': 

1.1369813 - 1.2487891r-i +4.5380174 x 10-2rA -9.1448344 x lOP3ri 
1 - 1.06179751-i 

TN. 

(A8.15) 
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9 Very-Long-Baseline 
Interferometry 

In 1967 a new technique of interferometry was developed in which the receiv- 
ing elements were separated by such a large distance that it was expedient to 
operate them independently with no real-time communication link. This was ac- 
complished by recording the data on magnetic tape for later cross-correlation at 
a central processing station. The technique was called very-long-baseline inter- 
ferometry (VLBI), a term recalling the earlier long-baseline interferometers at 
Jodrell Bank Observatory, in which the elements were connected by microwave 
links that had reached 127 km in length. The principles involved in VLBI are 
fundamentally the same as those involved in interferometers with connected ele- 
ments. The tape recorder can be considered as an IF delay line of limited capacity 
with an unusually long propagation time, weeks instead of microseconds. The use 
of tape recorders is motivated entirely by economics and places substantial limi- 
tations upon the system. Satellite links have been demonstrated (Yen et al. 1977), 
but their high cost discourages their use. 

9.1 EARLY DEVELOPMENT 

The motivation to develop VLBI came from the realization that many radio 
sources have structures that cannot be resolved by interferometers with baselines 
of a few hundred kilometers. By the mid-1960s it was well known that scintilla- 
tion (discussed in Chapter 13) and time variability of the radiation from quasars 
implied angular sizes of < 0.01 arcsec. Maser emission from OH molecules at 
18-cm wavelength was unresolved at 0.1 arcsec. Low-frequency burst radiation 
from Jupiter was believed to emanate from regions of small angular size. The 
aim of the first VLBI experiments was to measure the angular sizes of these radio 
sources. It is instructive to consider the operation of these early VLBI experiments 
in their most primitive form. Consider two telescopes with system temperatures 
Tsl and TSZ, which are pointed at a compact source giving antenna temperatures 
TAI and T A ~ .  Each station records N data samples within the coherence rime, that 
is, the interval during which the independent oscillators remain sufficiently stable 
that fringes can be averaged. In the subsequent processing these data streams are 
aligned, cross-correlated. and time-averaged after removing the quasisinusoidal 
fringes. The expected correlation for a point source is 
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where q is a factor of value -0.5 to account for losses due to quantization and 
processing (see Section 9.7). Here i t  is convenient to consider a normalized form 
of the visibility: 

where p is the measured correlation, and we assume TA << Ts. The rms noise 
level is 

where Au is the IF bandwidth and r, is the coherent integration time. Hence from 
Eqs. (9.1)-(9.3) the signal-to-noise ratio is 

If the minimum useful signal-to-noise ratio is 4, the smallest detectable flux den- 
sity is as follows, from Eqs. (1.3), ( I S) ,  and (9.4): 

where k is Boltzmann's constant, and A I and A2 are the antenna collecting areas. 
Typical parameters in 1967 were A 2 250 m2 (25-m-diameter telescope), TS 2: 
100 K, q 2: 0.5, and N = I .4x lo8 bits (one bit per sample), the capacity of a tape 
at a standard density of 800 bpi (bits per inch) used in the NRAO Mark I system. 
For an unresolved source, S,i, E 2 Jy. The development after three decades 
is indicated by the following parameter values: A 2 1600 m2 (64-m-diameter 
telescope), Ts 2 30 K, and N = 5 x 10l2 bits, the capacity of an instrumentation 
tape operated at 64 MHz bandwidth. For V N  = 1, Eq. (9.5) gives S,,, 2 0.6 mJy. 
In both examples, the coherence time is assumed to be greater than the running 
time of the tape. The source size can be estimated from a single measurement of 
V N  by comparison with the visibility expected for a symmetric Gaussian model. 
Hence, as in Fig. 1.5, the full width at half maximum, 0 ,  is given by 

a = -  2Jr;;zJz7K 
X U  

where u is the projected baseline (in wavelengths). 

(9.6) 
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VLBI can be used only to study objects of exceedingly high intensity. Thus, 
the emission processes must normally be of nonthermal origin. To be detected on 
a baseline of length D ,  the source must be smaller than the fringe spacing. Since 
the flux density S is 2kT~C2/Al ,  where TB is the brightness temperature, A is the 
wavelength, and S2 is the source solid angle, the minimum detectable brightness 
temperature is 

2 
nk ( T B ) , , , , ,  2 -DD?Smin, (9.7) 

since 52 2: n()C/2D)'. If D = 10' km and &in = 2 mJy, then (Ts),,,in 2 lo6 K. 
Therefore, observations of thermal phenomena occurring in molecular clouds, 
compact HI1 regions, and most stars are not possible. On the other hand, syn- 
chrotron sources such as supernova remnants, radio galaxies, and quasars, which 
are limited to lo'* K by Compton losses; masers in which TB 2 10'' K; and 
pulsars can be readily studied. 

Three things were accomplished by early VLBI measurements: 

1 .  Simple intensity distributions were derived by comparing measured visibil- 

2.  Masers were mapped by comparing fringe frequencies for different spectral 

3. Source positions were measured to an accuracy of - I  arcsec, and baselines 

ities with source models. 

features. 

to an accuracy of a few meters. 

For a review of early techniques see Klemperer (1972). Since then the technique 
has moved steadily toward the mainstream of interferometry in terms of being 
able to produce reliable images of complex radio sources. The principal reason 
for this is the use of phase closure (see Section 10.3), which provides most of the 
phase information when a large enough number of antennas is available in the 
VLBI network. 

9.2 DIFFERENCES BETWEEN VLBI AND 
CONVENTIONAL INTERFEROMETRY 

In this section we briefly discuss the differences between VLBI and connected- 
element interferometry. Later sections in this chapter elaborate on these differ- 
ences. Before beginning. we emphasize the theoretical unity of interferometry. 
The fundamental aim of all interferometry is to measure the coherence properties 
of the electromagnetic field. Thus the principles of connected-element interferom- 
etry and VLBI are basically identical. However, certain special techniques used in 
VLBI are needed because of the particular observational constraints. As the con- 
tinuity of (u, u )  coverage is improved. from a few meters to more than los km, 
with the largest spacing achieved by elements on distant satellites, and fiberop- 
tic or other advanced communication systems make recording unnecessary, the 
concept of VLBI as a distinct technique will become a matter of history. Here 



9.2 DIFFERENCES BETWEEN VLBl AND CONVENTIONAL INTERFEROMETRY 307 

we deal with certain limitations that make classical VLBI practices somewhat 
distinct from those of connected-element interferometry. 

Early VLBI experiments were conducted by organizing a diverse group of 
observatories that had been constructed for general radio astronomical research. 
Each telescope had its own limitations, calibration procedures, and management 
personnel. Various networks were formed to standardize procedures and automate 
the execution of VLBI experiments. Such ad hoc VLBI networks operate on an in- 
termittent basis, and during observations the communication between elements to 
verify proper operation is limited. Small amounts of data from strong sources can 
be transmitted from the antennas to the correlator over telephone lines, and cross 
correlated to determine the instrumental delays and to check that the equipment 
is working properly. Later, arrays dedicated to VLBl were brought into operation 
[see, e g ,  Napier et al. ( 1994)]. 

In VLBI one has less control over the system stability because independent 
frequency standards are used at each element. Frequency offsets in the standards 
can cause instrumental timing errors. These errors usually include an epoch er- 
ror of a few microseconds and a drift of a few tenths of a microsecond per day 
(Section 9.5). Therefore, the correlation function of the received signals [with 
respect to time offset, T, as defined in Eq. (3.27)] must be measured to deter- 
mine and track the instrumental delay. In contrast, delay errors in connected- 
element interferometers, due mainly to baseline errors and atmospheric propaga- 
tion delays, are usually less than 30 ps, corresponding to 1 cm of path length. 
These errors are negligible for bandwidths less than 1 GHz. Thus, the response 
in connected-element, delay-tracking interferometers is always centered on the 
white light fringe. Delay becomes important only when the field of view becomes 
too large for the bandwidth (see Sections 2.2 and 6.3) or when spectral line mea- 
surements are made by introducing time offsets. In VLBI it is necessary to search 
a range of delay values to find the correct time relationship that maximizes the 
correlation. Correlations for a number of delay offsets are usually formed simulta- 
neously, so a VLBI correlator may resemble a digital spectral correlator, although 
the number of frequency channels may be less than generally used for spectral 
line observations. The frequency offsets in the standards, which cause drifts with 
time in the instrumental delay, also introduce offsets in the fringe frequency. Thus 
analysis of a VLBI experiment must begin with a two-dimensional search in de- 
lay and fringe frequency (delay rate) to find the peak of the correlation function. 
This process is referred to as fringe fitting. 

The concept of coherence has different implications in VLBI and connected- 
element interferometry. In connected-element interferometry there is generally 
a suitable calibration source within a few degrees of the source of interest that 
can be observed every few minutes. Even if the instrumental phase drifts, there 
is no fundamental limit on integration time, and the concept of coherence time 
is replaced by that of the interval between calibrations. In VLBI, the short-term 
phase stability ( t  < 10’ s) is worse. Atmospheric fluctuations above the stations 
are generally completely uncorrelated, and the frequency standards and frequency 
multipliers introduce phase noise in the fringes. Furthermore, a fundamental dif- 
ference between connected-element interferometry and VLBI comes from the fact 
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that there are many fewer sources that are unresolved at VLBI spacings and can 
be used as calibrators. It is not always possible to find a calibrator close enough 
to the source under investigation to use as a phase reference. The time required 
to repoint the antennas and the decorrelation introduced by the atmosphere both 
increase with angular spacing. Thus, VLBI is subject to a fundamental coherence 
time that limits its sensitivity. For integration beyond the coherence time, it is 
necessary to average the fringe ainplirudes, for which sensitivity improves only as 
the fourth root of the integration time (Section 9.3 under Coherent and Incoherent 
Averaging). It is also more difficult to calibrate phase in VLBI systems, although 
the situation improved during the late 1990s as enhanced sensitivity increased the 
number of sources that can be used as calibrators. Improved instrumental phase 
stability and more accurate modeling of the baselines, atmosphere, and similar 
factors have allowed the phase to be related to that of a calibrator several de- 
grees away. Phase referencing in this manner is discussed in Section 12.2, and 
an example is shown in Fig. 12.2. Phase information can also be used in phase 
closure analysis. In measuring positions, fringe frequency and group delay (the 
delay pattern effect discussed in Sections 2.2 and 6.3) have also proved useful as 
measurement quantities. 

Storage of the undetected signals before correlation presents VLBI with sev- 
eral problems. The average IF bandwidth is limited by the recording medium, 
which therefore limits the sensitivity of VLBI. The data must be stored as ef- 
ficiently as possible, which requires a coarsely quantized representation of the 
signal, sampled at the Nyquist rate. With such a representation the basic opera- 
tions of fringe rotation and delay tracking, when performed on the recorded data, 
introduce significant effects that must be allowed for in deriving the visibility 
(Section 9.7). 

9.3 BASIC PERFORMANCE OF A VLBI SYSTEM 

Time and Frequency Errors 

A block diagram of a basic VLBI system and a possible processor configuration 
is shown in Fig. 9.1. The atomic frequency standards control the phases of the 
local oscillators and the sampling time for the tape recorders. In many VLBI ap- 
plications, such as spectral line observations or astrometric programs, frequency- 
dependent effects must be accounted for precisely. To obtain a spectral analysis of 
the system, we consider the phase shifts encountered by a single frequency com- 
ponent. The signals received from a plane wave are eJZnc‘ at antenna I ,  which 
we designate as the time-reference antenna, and ej2n”(‘-rh.’ at antenna 2, where 
rg is the geometric delay. The local oscillators have phases 2nw,,r + el and 
23rwL0t + 02, where uLo is the local oscillator frequency, and and 02  are the 
slowly varying terms that represent the phase noise due to the frequency stan- 
dards. To start, we consider the upper-sideband response in Fig. 9.1, for which 
the local oscillator frequency is below the signal frequency. Thus, the phases af- 
ter mixing are 
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Figure 9.1 Block diagram of the essential elements of a VLBI system including data acqui- 
sition and processing. The system may pass the upper, lower, or both sidebands at the mixer 
inputs, depending on the passband of the amplifiers. For millimeter-wavelength observations 
the receiver input is often an SIS mixer, in which case both sidebands may be accepted. Quan- 
tization and sampling of the signals occur in the format units. The processor system shown 
illustrates the configuration described analytically by Eqs. (9.16)-(9.21). Major variations in 
the processing system relate to the position of the fringe rotator, which can also be located 
before the correlator (see Fig. 9.17). 
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(9.8) 

The recorded signals each have clock errors rI and r2. so the phases of the 
recorded signals are 

During processing, the time series of signal samples from antenna 2 is advanced 
by ri,  the estimate of T,, so 

(9.10) 

The output of the multidelay correlator and Fourier transform processor is the 
cross power spectrum. The phase at the output of the processor for the signal 
component at frequency u is 

(3)  42 = 2n(u - uLo)(t  - r2 + r,;) - 2 n u 5  - 02. 

= 2n(u  - uLo)(r2 - T I )  + 2n(uAr, + uLOsi )  + 021 
= 2n(u - uLo)(re + 

(9.11) 

+ 2 n u L 0 ~ ,  + 61, 

where AT, = r, - ri is the delay error, T, = r2 - rI is the clock error, and 
821 = 62 -81. Equation (9.1 1) applies to the upper-sideband frequency conversion 
in the mixers in Fig. 9.1, for which the intermediate frequency (IF) (u  - uLo) is 
positive. For generality we also give the lower-sideband response, for which the 
IF is (uLo - u) .  For the lower sideband 

412 = 2j7(vL, - U ) ( T ~  + Ar,) - 2rr~,,r,~ - 821. (9.12) 

Note that in the ideal case where rI = r2, O1 = 82, and rg = ti, a s .  (9.1 1)  and 
(9.12) reduce to 412 = 2n uLorK for the upper sideband, and 412 = -2j7vL0rK for 
the lower sideband. 

The correlation function at the correlator output is real, but not even; thus, the 
cross power spectrum 812 for a source of continuum radiation has the property 

812(u’)  = 8 ; 2 ( - u ‘ ) ,  (9.13) 

where u‘ is the intermediate frequency ( u  - uLo). We assume that the filters in the 
electronics have identical responses and therefore do not introduce any net phase 
shifts. The power response function of the instrumental filters is therefore real, 
and in terms of the voltage response, H(v) ,  of the filters for the two antennas, 
8 ( v ’ )  = HI (u’)H,*(u’). By combining the phase from Eq. (9.1 I )  and the magni- 
tude of the power response, the cross power spectrum for the upper sideband can 
be written 

8 d v ’ )  = &v’)exp ( j  [2nv‘(r, + Ar,s) + 2j7uLorx +021]}. (9.14) 
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The corresponding equation for the lower sideband can be obtained from Eq. 
(9.12). For the upper sideband the cross-correlation function can be calculated 
from Eqs. (9.13) and (9.14) as 

For either sideband, integration includes both positive and negative frequencies, 
and since dI2 is hermitian and 8 is purely real, we obtain 

where T’ = T + T~ + Ar, and 

F l ( T )  = I” B(u’)cos(2nu’T)dv’, 

a. 

Fz(r) = 1 8(u’)sin(2nv’r)du’. 

If .,P( v’) is a rectangular lowpass spectrum with bandwidth 

These functions are shown in Fig. 9.2. By substituting Eq. 
the cross-correlation function can be written 

(9.17) 

Av, then 

(9.18) 

(9.18) into Eq. (9.16), 

sin n Avr’ 

7f AVT’ 
p d r )  = 2hucos(2rru,,r, + 62, +xAur ’ )  (9.19) 

A similar analysis is given by Rogers (1976). 
The variation of T, with time results in fringe oscillations at the correlator out- 

put. The fringe frequency, ( 1  /2n)dd12/dt ,  is constant across the receiver band- 
width because the (instrumental) delay tracking removes the (geometric) delay- 
induced phase variation across the band. For the upper and lower sidebands, the 
rate of change of phase has opposite signs; note the term 2nv,,r, in Eqs. (9.1 1) 
and (9.12). See also Fig. 6.5 and the related discussion. In VLBI the natural fringe 
frequency is fast enough that the fringes would be lost in the final averaging of the 
correlated data, so rotation of the phase to stop the fringes is applied at the corre- 
lator output in Fig. 9. I .  In a double-sideband system, if the fringes are stopped for 
one sideband, the fringe frequency is doubled for the other sideband. However, 
it is possible to obtain the data from each sideband by processing the data twice 
with appropriate fringe offsets each time. In VLBI the source position and other 
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Figure 9.2 Functions F l ( s )  and F2(5), defined in fQ. (9.18). and the quantity Jm. 

parameters are not always known with sufficient accuracy when the observation 
is made, so in Fig. 9.1 the fringes are stopped after playback of the tapes to permit 
trial of different fringe rotation rates. This involves applying a phase shift to the 
quantized signals at the correlator input or output (see Section 9.7 under Fringe 
Rotation Loss). The effect on the cross-correlation function or the cross power 
spectrum can be described as multiplication by e - J z n w L O r ;  for the upper sideband 
and filtering to select the low-frequency term. This process results in a complex 
correlation function: 
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Note that the principal fringe term, 217 uL0t,, has been eliminated, but residual 
fringes can result from terms in As, and Au. The resulting cross power spectrum 
is 

8i2(v’ )  = 8 ( u ‘ )  exp j [2?ru’(t, + As,) + 2nu,.,Arg + 621]) . (9.21) 

This applies to the upper sideband, for which the fringes have been stopped, and 
the correlator output for the other sideband averages to zero. 

An example of p ; * ( ~ )  for eight values of r is shown in Fig. 9.3. The waveforms 
represent the correlator output as a function of time for eight different delay off- 
sets (lags) that differ sequentially by one Nyquist sample interval. Note that there 
is a phase shift of n /2  between adjacent delay steps. The fringe phase can be 
recovered by a proper interpolation (see Section 9.7 under Discrete Delay Step 
Loss) to the peak of the correlation function or from the phase of the cross power 

TIME 

Figure 9.3 Each sinusoid represents the correlation function [the real part of Eq. (9.20)] ver- 
sus time for a particular delay offset (from the top: 3, z ,  3, $, - i, - t ,  - z ,  - 3 times the 
Nyquist interval). The oscillations result from the residual fringe frequency, which includes 
any offsets in the frequency standards at the two antennas. Note the progressive phase shift of 
90” between values of the correlation function at successive delay offsets. 
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spectrum at u’ = 0. The group delay can be derived from the position of the 
correlation peak or the slope of the phase of the cross power spectrum. Note that 
the measured delay is ( I  / 2 ~ r ) d @ ~ ~ / d u  and is therefore a group delay, not a phase 
delay. 

The actual local oscillator frequencies may differ from the nominal value uLo 
due to an intentional offset from the nominal frequency or due to an offset error in 
the frequency standard. We can expand the phase terms 61 and 02 to include these 
frequency offsets, Avl and Av2, and zero-mean phase components, 0; and 0;: 

Ql = 2nAult +a; ,  
e2 = 2nAv2r + e;. 

(9.22) 

Thus the fringe phase from Eq. (9.2 1 ) becomes 

where Au, = A u2 - A u I  , the difference in the local oscillator frequencies, and 
Oi l  = 6; - 6;. The fringe frequency (1/271.)d#q~/dr contains this local oscillator 
difference term. If Aul is due to an offset in a frequency standard and is not zero, 
the measured fringe phase is actuafly more complicated than shown in Eq. (9.23). 
The clock error changes with time because of the frequency standard offset and is 

T~ = (TI ) ,=o  + - r .  (9.24) 
VLO 

The recovered time in the processor, based on the time of station 1, is related to 
the “true” time t by 

(9.25) 

so that there is a slight shift in all measured frequencies and phases. Thus there 
is a fundamental asymmetry in the processing between the reference station from 
which time is derived and the other stations (Whitney et al. 1976). 

For spectral line observations the quantity 8 ( u ’ )  in Eq. (9.21) is the (tempo- 
ral frequency) spectrum of the visibility of the source multiplied by the bandpass 
response of the interferometer. The bandpass response can be obtained by obser- 
vation of the cross power spectrum of a continuum source with a flat spectrum. 
Alternatively, if the phase responses of the interferometer elements are identical, 
the bandpass response can be obtained from the geometric mean of the power 
spectra from the individual elements. These power spectra are obtained by ob- 
serving a continuum source or blank sky, and measuring the autocorrelation of 
the waveform from each individual antenna. The frequency spectrum of the nor- 
malized visibility can be obtained by dividing the visibility spectrum by the ge- 
ometric mean of the power spectra of the source as measured with each antenna. 
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Details of calibration procedures in VLBI spectral line observations are given by 
Moran ( !973), Reid et al. ( 1980), Moran and Dhawan ( 1999, and Reid ( 1  995, 
1999). 

Retarded Baselines 

The estimate of delay T,: must be accurate enough to ensure that the signal is 
within the delay and fringe-frequency ranges of the processor. The simplest ap- 
proximation is 

(9.26) 

where D = r l  - r2, rl and r2 are vectors from the center of the earth to each 
station, and is the unit vector to the center of the field. Account must be taken 
of the fact that the earth moves in the time between the arrival of a wave crest at 
one station and at another, since the earth is not an inertial reference. Therefore, 
in calculating the delay we should use not the instantaneous baseline, but the 
“retarded” baseline (Cohen and Shaffer 1971). A plane wave reaches the first 
station at time r 1  and the second station at a time 1 2 ,  which satisties the equation 

where k = (2sr/)i)%. Now rz - tl = T,:, so 

Expansion of r2 in a Taylor series gives 

and 

2nur,: 2: k - [D(r,) + r2(fl)r,:] . 

Solving for rX yields 

(9.29) 

(9.30) 

(9.31) 

where all quantities are evaluated at t l .  Since r = we xr, where 0, is the angular 
velocity vector of the earth and x indicates the vector cross product, we can 
rewrite Eq. (9.3 1 )  as 

(9.32) 
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or 

(9.33) 

where I + A is the term in brackets on the right-hand side of Eq. (9.32). From the 
w term in  Eq. (4.3), 

(9.34) 
D 

rxa = - [sin d sin 6 + cos d cos S COS( H - h ) ]  . 
C 

Here (H, 6) and (h, d) are the hour angle and declination coordinates of the 
source and baseline, respectively, the hour angles usually being specified with 
respect to the Greenwich meridian in VLBI practice. Also, we have 

we r? A = - cos d 1 2  cos 6 sin(h2 - H), 
C 

(9.35) 

where 632, h2, and r2 are the latitude, hour angle, and magnitude of r2. The func- 
tion A has a maximum value of 1.5 x and ‘tK can differ from rgO by a 
maximum of about 0.05 ps. Note that the appropriate coordinates in Eq. (9.34) 
are those that are uncorrected for refraction or diurnal aberration. An equivalent 
way of accounting for the retarded baseline is to use Eq. (9.26) for the delay 
but correct h and 6 for the diurnal aberration at the remote site. The concept of 
retarded baselines does not apply if a heliocentric reference frame is used. 

There are different ways to formulate VLBI observables. One system that may 
be described as station-oriented is to refer the measurements to the center of the 
earth, so that if tapes from two antennas are processed once and then interchanged 
and reprocessed, the phase obtained on the second pass will be the negative of 
that obtained on the first pass. This method presupposes an earth model, since 
the radius vectors must be known. For applications to astrometry or geodesy, a 
baseline-oriented system is usually preferred, in which the observables have no 
dependence on a priori values of earth parameters. A more precise discussion of 
VLBI observables can be found in Shapiro ( 1976) and Cannon (1978). For a full 
barycentric formulation, see Sovers, Fanselow, and Jacobs ( 1998). 

Noise in VLBI Observations 

We begin the discussion of noise by reviewing the statistical properties of fringe 
amplitude and phase, which were introduced in Section 6.2 [see also Moran 
(1976)l. The measured visibility is represented by a vector Z = Y + E,  where Y 
and E represent the true visibility (the signal) and noise components, respectively. 
We then select coordinates with x (real) and y (imaginary) so that Y lies along the 
x axis, as shown in Fig. 6.8. The phase of the measured visibility resulting from 
the noise is a random variable denoted by 4. The components of E have indepen- 
dent zero-mean Gaussian probability distributions in the x and y coordinates with 
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an rms deviation a given by Eq. (6.50). In polar coordinates the amplitude of E 

has a Rayleigh probability distribution, and the phase of E has a uniform prob- 
ability distribution [see, e.g., Papoulis (1965)l. Z is therefore a random variable 
whose x and y components, Z., and Z), ,  have a probability distribution given by 

It is often necessary to deal with the amplitude and phase of the visibility, 
denoted by Z and 4, respectively, whose probability distributions [Eqs. (6.63a) 
and (6.63b)l are 

(9.37) p(Z)=,exp(- Z z2 2a2 + lVl* ) I " ( . f F ) , Z > O  ZITI 
a 

where Z = JZ: + Z:, and 

where 10 is the modified Bessel function of order zero, and erf is the error func- 
tion. p ( Z )  is known as the Rice distribution. Note that ($I) = 0, as expected, 
since the phase of 7, was set to zero. These probability distributions are plotted in 
Fig. 6.9. The expectations of Z, Z',  and Z4 are 

(9.39) 

(9.40) (Z ' )  = IVl2 + 2a2, 

and 

where I ,  is the modified Bessel function of order one. Higher even-order mo- 
ments of Z can be readily calculated using the moment theorem for a Gaussian 
random distribution. When no signal is present, I o ( 0 )  = 1, and the probability 
distributions of Z and 4 are those of the noise, which are Rayleigh and uniform 
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distributions, respectively: 

p ( Z ) = , e x p  -- , Z > O  
a ( f )  (9.42) 

and 

1 

2 K  
p(4) = -, 0 5 4 < 2n. (9.43) 

For the no-signal case, ( Z )  = m a ,  DZ = d m  = a,/-, and 
a+ = R / a .  

For the weak-signal case, defined as IVI << a, the probability distributions of 
Z and 4 are 

and 

to first order in IV(/a .  Thus, 

and 

(9.45) 

(9.46) 

(9.47) 

(9.48) 

For the strong-signal case, IVl >> a, the probability functions for Z and 4 are 
approximately Gaussian distributions and are given by 

and 

(9.49) 

(9.50) 
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For this case, 

and 

(9.5 1 )  

(9.52) 

(9.53) 

Hence, in the strong-signal case, the statistics of Z are approximately Gaussian 
(see Fig. 6.9) and (2)  approaches JYI. In this case, N samples of Z can be aver- 
aged and the signal-to-noise ratio improves with a. In the weak-signal case the 
perturbation of the Rayleigh noise distribution by the signal is small and, as we 
shall discuss later in this section, it is difficult to improve the signal-to-noise ratio 
by averaging beyond the coherence time of the system. 

Equations (9.46) and (9.51) show that (Z )  is a biased estimate of IYI. If only 
one measurement of Z is available, the most likely value of IVI is the one that 
maximizes p ( Z ) ,  given by Eq. (9.37). This maximum is closely approximated 
by the equation Z,,, = Jm, which is accurate to better than 8% for all 
values of IYJ and to better than 1 % for IYl/a > 2. Hence when one measurement 
of Z is available, the most likely value of I YI is approximately Jm. 

Probability of Error in the Signal Search 

When starting a new session of VLBI observations with an ad hoc array, the 
first task in the processing is to search for fringes. This is necessary because of 
the uncertainties in the station clocks and their drift rates, and means that the 
instrumental delay and fringe frequency must be found. This step is frequently 
unnecessary with a dedicated VLBl array, for which the values of fringe rate and 
delay are continuously updated from successive observations. A fringe search 
must be carried out on a large two-dimensional grid, as shown in Fig. 9.4. For 
example, consider an experiment where A v  = 50 MHz at an observing frequency 
of 10" Hz. The delay increments are equal to the sampling interval of 0.01 p s .  An 
instrumental delay uncertainty of f 1 p s  requires a search of 200 delay intervals. 
If the coherent integration time is 200 s and the frequency standards are only 
set to a fractional accuracy of lo-", then f l  Hz must be searched, which at an 
interval size of 0.005 Hz, is 400 discrete frequencies. The total number of cells 
to be searched is 80,000. If there is no signal present, then p ( Z )  will be given by 
Eq. (9.42). The cumulative probability distribution (that is, the probability that Z 
is less than Z O )  in this case is the integral of Eq. (9.42) from zero to Z O ,  or 

(9.54) 
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Figure 9.4 Fringe amplitude as a function of residual fringe frequency and delay. The one- 
dimensional plots are the peak fringe amplitude versus delay and fringe frequency. The prob- 
ability distribution of the noise in these plots is given by Eq. (9.57) and the bias level by 
Eq. (9.58). 

The cumulative probability distribution for the maximum of n independent sam- 
ples Z,,, = max(Z1, Z2, . . . , Z, , )  is 

(9.55) 

Thus, the probability of one or more samples exceeding Z,,,, which we call the 
probability of error, p u ,  is 

pp = I - [ 1 - exp (-S)]". (9.56) 
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z, /a 

Figure 9.5 Probability that one or more samples of the fringe amplitude will exceed the value 
Zllr /u in the absence of a signal, as given by Eq. (9.56). The curves are labeled by the number 
of samples measured. 

This function is shown in Fig. 9.5. The probability distribution of Z,, is obtained 
by differentiating Eq. (9.53, 

(9.57) 

For large n, this probability distribution is nearly Gaussian with mean value and 
standard deviation given by 

(z,l#) 2 a G ,  (9.58) 

0.770 
a111 = - &' 

(9.59) 

Examples of p(Z , , , )  for various values of 11 are shown in Fig. 9.6. It is frequently 
useful to reduce a two-dimensional function, such as the one shown in Fig. 9.4 of 
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PROBABILITY DISTRIBUTION OF THE 
MAXIMUM OF n RAYLEIGH 
DISTRIBUTED SAMPLES 10' 

r/ 
I 2 3 4 5 6 

2 ,  /u 

Figure 9.6 Probability distribution of the maximum of n random variables that have Rayleigh 
distributions, as given Eq. (9.57). 

fringe amplitude versus fringe frequency and delay, to a one-dimensional function 
by searching for the maximum value of the function over one variable. This search 
process introduces a bias, equal to (Z,,,), into the one-dimensional function. This 
bias increases with the number of samples and obscures weak signals. 

We can also calculate the probability of misidentifying a signal. Suppose that 
we have measurements of fringe amplitude at two values of delay or fringe fre- 
quency with the signal present at one value. The probability that the amplitude in 
the channel with the signal (ZI )  is larger than the amplitude in the channel with 
only the noise ( Z , )  is 

p ( Z , )  is given by Eq. (9.37), and p ( Z 2 )  is given by Eq. (9.42). We can generalize 
this result for a search over n channels where the signal channel amplitude is Z., . 
The probability that Z ,  will exceed the values of Z in the other channels is, from 
Eqs. (9.54) and (9.60), 
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p ( Z ,  > Z I ,  . . . , Z , , )  = 1% p ( Z )  [ I - exp ( --? :)]"-' d Z ,  (9.61) 

where p ( 2 )  is given by Eq. (9.37). Thus, the probability of one or more samples 
exceeding the amplitude of the signal is 

P: = 1 - p(Z )  [ 1 - exp (-g)]"' d Z .  (9.62) 

p:, is plotted in Fig. 9.7. For example, if the search is over 100 channels, a proba- 
bility of misidentification of less than 0.1% requires IY{/a > 6.5. 

Coherent and Incoherent Averaging 

We wish to estimate the amplitude of a barely detectable signal. We examine a 
time series of correlator output values in which the phase, @ ( t ) ,  represents the 

I I I I I 1 I I 1 

I - 

- 

'0' 
- PROBABILITY THAT ONE 

OR MORE SAMPLES WILL 
EXCEED I'Vl/u - 

-4 - 
10 

- 

I d 6  

0 2 4 6 8 10 

SIGNAL AMPLITUDE IVl/cr 

Figure 9.7 Probability that one or more samples of fringe amplitude among the samples with 
no signal will exceed the fringe amplitude of the sample with the signal. versus the signal 
amplitude. IY(, as given in Eq. (9.62). The curves are labeled according to the total number of 
samples 1 1 .  The asymptotic value of p: as ( 'V( /n goes to zero is  I - I /ti. 
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Figure 9.8 Fringe phase versus time from an observation of a strong source [the water vapor 
maser in W3 (OH)] on a three-baseline VLBI experiment at 22 GHz. Two of the stations, 
Haystack Observatory and the Naval Research Laboratory (Maryland Point Observatory), 
were equipped with hydrogen maser frequency standards, while the National Radio Astron- 
omy Observatory used a rubidium vapor frequency standard. The phase noise in the top plot 
is dominated by contributions from the receivers and the atmosphere, while the phase noise 
in the bottom two plots is dominated by the phase noise in the rubidium frequency standard. 
These data were obtained in 1971 with the Mark I VLBI system. 

effects of receiver noise, fluctuations in the frequency standards, or fluctuations 
in the atmospheric path. An example of phase versus time from a VLBI measure- 
ment is shown in Fig. 9.8. The correlator output is 

r ( t )  = Z ( r ) P " ' ) .  (9.63) 

How do we estimate ('VJ when the time range of the data exceeds the coherence 
time?There are two useful procedures. First, note that r ( r )  has a Fourier transform 
R(u) for a time segment of length T. Using Parsevil's theorem, 

x 1' r ( r ) r * ( t )  dr = R ( u ) R * ( u )  du, (9.64) L 
and Eq. (9.40), we obtain an estimate IVl, of the amplitude: 

(9.65) 
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Equation (9.65) shows that one can take a time series of duration greater than q. 
and estimate the visibility amplitude from the fringe-frequency spectrum, IR( u)12. 
This procedure is a form of incoherent averaging because squares of spectral com- 
ponents in the fringe frequency domain are summed. 

Another method of incoherent averaging involves the averaging of the squares 
of the time series samples. An unbiased estimate of the amplitude is 

where 

(9.66) 

(9.67) 

From Eqs. (9.40), (9.41), and (9.66) we have (Ivlf) = lV12 and (IVl;) = IV14 + 
4 ~ r ~ ( ( V ( ~  + n 2 ) / N .  so that the signal-to-noise ratio is 

IV(/o is equal to the signal-to-noise ratio at the output of a single-multiplier cor- 
relator, as given by Eqs. (6.48) and (6.49). For VLBl observations the quantization 
loss described in Section 8.3, q Q ,  is replaced by the general loss factor q described 
in Section 9.7, and from Eq. (6.64) we obtain IV l /a  = ( T A i 7 / T s ) , / m .  Equa- 
tion (9.68) then becomes 

(9.69) 

where r = Nr,. is the total integrating time. The two limiting cases of Eq. (9.69) 
are 

(9.70) TS 
JZ' TA >> ~ 

R,, 21 -- r7 TAG. 
A Ts 

(9.71) 

Note that in the strong-signal case incoherent averaging is not needed. When 
incoherent averaging is used, the coherent averaging time should be as long as 
possible without decreasing the fringe amplitude. If we assume that R,, = 4 for 
detection, and recall that r = Ns,., then for the weak-signal case the minimum 
detectable antenna temperature can be found from Eq. (9.7 1 )  to be 

(9.72) 
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Thus, because of the N'I4 dependence in Eq. (9.72), incoherent averaging is ef- 
fective only if N is very large. If the coherence time is of the order of l /Au,  then 
the observing system reduces to a form of incoherent, or intensity, interferometer 
[see Section 16.1 and Clark (1968)l. For the weak-signal case, Eq. (9.71) then 
becomes 

(9.73) 

9.4 FRINGE FITTING FOR A MULTIELEMENT ARRAY 

Global Fringe Fitting 

In Section 9.3 we considered the problem of searching for fringes in the output 
from a single baseline. For VLBI, the basic requirement in fringe fitting is to de- 
termine the fringe phase (i.e., the phase of the visibility) and the rate of change 
of the fringe phase, with time and with frequency or delay. Fringe rate offsets 
result from errors in the positions of the source or antennas as well as antenna- 
related effects such as frequency offsets in local oscillators. Most of these can 
be specified as factors that relate to individual antennas, rather than to baselines. 
Because of this, data from all baselines can be used simultaneously to determine 
the fringe rate parameters. By simultaneously using all of the data from a multi- 
element VLBI array, it is possible to detect fringes that are too weak to be seen 
on a single baseline. This is particularly important for VLBI arrays with similar 
antennas and receivers; with an ad hoc array, a possible alternative is to use the 
data from the two most sensitive antennas to find the fringes and let this result 
constrain the solutions for other baselines. 

A method of analysis that is based on simultaneous use of the complete data set 
from a multi-antenna observation was developed by Schwab and Cotton ( 1983) 
and is referred to as global fringejrring. Let Z,,,,r(r) be the correlator output, that 
is, the measured visibility, from the baseline for antennas rn and n. The complex 
(voltage) gain for antenna n and the associated receiving system is g,,(tk, Q), 
where fk represents a (coherently) time-integrated sample of the correlator output 
for frequency channel vr . Thus, 

where Y,,, is the true visibility for baseline inn and E,,,,,ky represents the obser- 
vational errors which result principally from noise. It should be remembered that 
the noise terms are present in all the measurements, but beyond this point they 
will usually be omitted from the equations. The gain terms can be written as 

g,,(tk, uU) = lg , , le j~~l ( 'A ."~ ' .  (9.75) 

To simplify the situation in Eq. (9.75), we assume that the gain terms and the am- 
plitude of the source visibility are constant over the range of ( r ,  v) space covered 
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by the observation. To first order we can then write 

zmJJ(rk9 ue) = I~ml lgnl l~ lexp[ j ($ l l l  - Ilm)(to9 vo)l 

where qj,,,, is the phase of the (true) visibility Y,,,,,. The rates of change of the 
phase of the measured visibility with respect to time and frequency are the fringe 
rate 

and the delay 

(9.77) 

(9.78) 

for the baseline mn at time and frequency (to, UO). In terms of these quantities 
we can relate the measured visibility (correlator output) to the true visibility as 
follows: 

z i n t z ( s ,  up) = I ~ ~ ~ ~ I I ~ ~ I ~ ~ ~ ~ ~ ~ ~ ,  Vr)exp ( j  [(~CI,~~ - +lz)~ ,=tI ,  
(9.79) + (rill - r l l ) (h  - t o )  + (T,,, - rlf)(vr - u o ) l l .  

For each antenna there are four unknown parameters: the modulus of the gain, 
the phase of the gain, the fringe rate, and the delay. Since all of the data are in the 
form of relative phases of two antennas, it is necessary to designate one antenna 
as the reference. For this antenna the phase, fringe rate, and delay are usually 
taken to be zero, leaving 4n, - 3 parameters to be determined. However, it is 
possible to simplify further and consider only the phase terms in the fringe fitting. 
The amplitudes of the antenna gains are subsequently calibrated separately. The 
number of parameters to be determined is thereby reduced to 3(n, - I ) .  Then 
to obtain the global fringe solution, the source visibility Y,,,,, is represented by 
a model of the source, and a least-squares fit of the parameters in Eq. (9.79) 
to the visibility measurements is made. For details on a method for the least- 
squares solution, see Schwab and Cotton (1983). The source model, which is a 
“first guess” of the true structure, could in some cases be as simple as a point 
source. 

Another method of using the data for several baselines simultaneously in fringe 
fitting is an extension of the method described earlier for single baselines. The 
measured visibility data are required to be specified in terms of fringe frequency 
and delay, which can be obtained, for example, by a time-to-frequency Fourier 
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transformation of the data from a lag correlator. Then for each antenna pair there 
is a matrix of values of the interferometer response at incremental steps in the 
delay and fringe rate. The maximum amplitude indicates the solution for delay 
and fringe rate for the corresponding baseline, as illustrated in Fig. 9.4. However, 
the method can be extended to include the responses from a number of baselines 
by using the closure phase principle, which is discussed in more detail in Sec- 
tion 10.3. Because we are considering fringe fitting in phase only, the measured 
data are represented by #,,,,,. Since $11111,  the instrumental phase for baseline mn, 
is equal to the difference between the measured and true visibility phases, we can 
write 

- 
$l l l l l  = $11, - $11 = #,,,,, - #,,,,, , (9.80) 

where the $ terms represent the instrumental phases, the # terms represent the 
visibility phases, and the tilde ( - )  indicates measured visibility phases. Now con- 
sider including a third antenna, designated p. For this combination we can write 

Thus $ll,pll provides another measured value of $11111,  equal to 

(9.82) 

Similarly, for four antennas 

Thus estimated values of can be obtained from the measurements from loops 
of antenna pairs starting with antenna m and ending with antenna n .  Combinations 
of more than three baselines (four antennas) can be expressed as combinations of 
smaller numbers of antennas, and the noise in such larger combinations is not 
independent. Loops of three and four antennas provide additional information 
that contributes to the sensitivity and accuracy of the fringe fitting for antennas m 
and n. Note, however, that the model visibilities are also required. 

Of the two techniques, the least-squares fitting is better with respect to uniform 
combination of the data, but it requires a good starting estimate if it is to converge 
efficiently. Schwab and Cotton ( 1983) used the second of the two methods to 
provide a starting point for the full least-squares solution. This procedure has 
subsequently become the basis of standard reduction programs for VLBI data 
(Walker 1989a,b). 

Although global fringe fitting provides sensitivity superior to that of baseline- 
based fitting, in practice some experience is needed to determine when use of the 
global method is appropriate. If the source under study has complicated struc- 
ture, with large variations in the visibility amplitude, it will probably not be well 
represented by the model visibility required in the global fitting method. In such 
a case it may be better to start with a smaller number of antennas in the fringe 
fitting or. if the source is sufficiently strong. to consider baselines separately. On 
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the other hand, if the source contains a strong unresolved component, it may be 
adequate to consider smaller groups of antennas separately and thus reduce the 
overall computing load. 

Relative Performance of Fringe Detection Methods 

In the regime where the phase noise limits the sensitivity, careful investigation of 
detection techniques is warranted. The most important of these have been exam- 
ined by Rogers, Doeleman, and Moran ( 1995) to determine their relative perfor- 
mance. We assume in all cases that the visibility data from the correlator outputs 
have been averaged for a time equal to the coherence time, q, discussed earlier. 
We have seen in Eq. (9.72) that incoherent averaging of N time segments of data 
reduces the level at which a signal is detectable by an amount proportional to 
N-'/4. Rogers et al. show that for a detection threshold for which the probability 
of a false detection is t0.01% in a search of lo6 values, the threshold of detec- 
tion is lower than that without incoherent averaging (in effect, N = 1 )  by a factor 
0.53N-'I4. This result is accurate only for large N, and they find empirically that 
for smaller N the detection threshold decreases in proportion to N-n.'6; that is, 
the improvement with increasing N is greater when N is small. Table 9.1 includes 
the improvement factor 0.53 N-'/4, together with other results that are discussed 
below. The fourth column of Table 9. I gives numerical examples of relative sen- 
sitivity for N = 200 time segments and n,, = 10 antennas. Note that for lines 1-5 
of Table 9.1, the criterion for detection is a probability of error of less than I % in 
a search of lo6 values of delay and fringe rate for each of n,, - I elements of the 
array, the values for the reference antenna being taken to be zero. For line 6 the 
search spans only the two dimensions of right ascension and declination. 

TABLE 9.1" Relative Thresholds for Various Detectionb Methods 

Method Threshold (Relative Flux Density) 

I One baseline, coherent I I 

2 One baseline, incoherent 0.53N-'/" 0.14 ( N  = 200) 

3 3-baseline triple product ($)I16 0.52 ( N  = 200) 

averaging 

averaging 

4 Array of nC1 elements, coherent (5) 
global search 

0.45 ( 1 1 , ~  = 10) 

- 

5 Global search with incoherent 0.53 (A) 0.05 (N = 200, 

6 Incoherent averaging over (&) 

Nil<,- 

averaging I f ' ,  = 10) 

time segments and baselines Il , ,  = 10) 

I /J 
0.05 ( N  = 200, 

"From Rogers. Doeleman. and Moran ( 1995). 
'See text Ibr detection criterion. 
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Triple Product, or Bispectrum 

Another form of the output of a multielement array that can be considered is the 
triple product, or bispectrum, which is the product of the complex outputs for 
three baselines that form a triangle. The triple product is given by the product of 
measured visibilities 

= 1 z12 1 1  2 2 3  1 1  ~ 3 ~ l e J ' i l l + i ? 3 + i 3 l '  = 1 2 1 2  I 1 2 2 3  I I ~ 3 ,  lejd , (9.84) 

where & represents the closure phase (Section 10.3), which is zero if the source 
is unresolved. We assume here that the amplitude of the measured visibility, Z, is 
calibrated separately, so that the moduli of the gain factors g,,, and g,, in Eq. (9.74) 
are unity. Each of the measured visibility terms includes noise of power 2a2, that 
is, the noise power in the output of a complex correlator. For the low-signal case, 
the noise determines the variance of the triple product, which is 

(If'31') = ( I Z I ~ J ' ~ Z ~ ~ I ' ) Z ~ I ~ ' )  = 80'. (9.85) 

For a point source the signal is real and is equal to ( (  XeP3)2)  = (I P3 12)/2,  where 
X e  indicates the real part. The ratio of this triple product signal term to the noise 
in the real output of the correlator is V3/2n3.  Rogers, Doeleman, and Moran 
(1995) also give an expression for the signal-to-noise ratio that is not restricted to 
the small-signal case, and Kulkarni ( 1989) gives a general expression in a detailed 
analysis of the subject. 

Now consider the incoherent average of N values of the triple product for 
three antennas, each of which represents an average of the correlator output over 
the coherence interval, rc. We represent this average of triple products by 

(9.86) 

If the signal amplitudes are equal, the expectation of the real part of P3 is 

(Re&) = v3, (9.87) 

and the second moment of ReF3 is 

(9.88) 

In the small-signal case, in which the value of ( 1  P3 1') results mainly from noise, 
the expectation of the second moment is, from Eq. (9.85), 4 a 6 / N .  The signal- 
to-noise ratio is equal to the expectation of F3 divided by the square root of the 
expectation of the second moment 

(9.89) 
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from which 

(9.90) 

Line 3 of Table 9.1 gives the signal strength for a value of 3Zsn that allows detec- 
tion at a level corresponding to the specified error criterion. 

Fringe Searching with a Multielement Array 

With an array of n,, VLBI antennas the amount of information gathered in a given 
time is greater than that with a single antenna pair by a factor rzf,(n,, - 1)/2. 
One might thus expect that the array would offer an increase in sensitivity 2 
[n,,(nf, - l)/2]lj2. However, the larger number of antennas also introduces a very 
large increase in the parameter space to be searched. Thus, the probability of en- 
countering high-noise amplitudes within this parameter space is correspondingly 
greater. It is therefore necessary to increase the signal level used as a detection 
threshold in order to avoid increasing the probability of false detection. 

Consider a two-element array in which the number of data points to be 
searched in the parameter space (frequency x delay) is n,/ .  If a third antenna 
is then introduced, and correlation is measured for all baselines, the number of 
data points to be searched becomes 11:. For n,, antennas, it becomes n;;’”-’’. The 
probability distribution of the maximum of n Rayleigh-distributed values of the 
signal plus noise. Z,, , ,  is given in Eq. (9.57) and for large n has a mean value of 
o(2 In @)‘’I; see Eq. (9.58). Thus for a given probability of occurrence, increasing 
the number of points to be searched from IT,/ to n;;‘”-’’ increases the level Z,,, from 
a(2Inrz,/)”’ to (r[2(rzf, - I )  Inn,/]’”: that is, the probability of finding a level 
(nCl  - l)’/*Z,,, in a search of n:p-’) points is the same as that of finding a level Z,,, 
in a search of nd points. By increasing the number of antennas from 2 to n<,, the 
overall rms uncertainty in the signal level is reduced by a factor [n,,(n, - l) /2J1l2,  
but since the detection threshold has increased by ( 1 1 , ~  - I)”’, the effective gain in 
sensitivity for detection of sources is increased by only (nf,/2)”’. Rogers (1991) 
and Rogers, Doeleman, and Moran (1995) consider other factors in deriving this 
result and show that the sensitivity increase (t1,,/2)’/’ should be multiplied by a 
factor which lies between 0.94 and I .  This factor is not included in Table 9. I. 

Multielement Array with Incoherent Averaging 

In Table 9.1 the last two lines are concerned with incoherent averaging of data 
taken with a multielement array. The method on line 5 involves data that have 
been averaged over the coherence time and subsequently averaged incoherently 
before the application of a global fringe search. The relative threshold value is 
the product of the threshold on line 4 for a multielement global search with that 
on line 2 for incoherent averaging over a single baseline. The method in line 6 
involves incoherent averaging over both time segments (equal to the coherence 
time) and baselines. The relative threshold is obtained from that in line 2 by in- 
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creasing the number of data from N (the number of time segments per baseline) 
to N multiplied by the number of baselines. 

9.5 PHASE STABILITY AND ATOMIC FREQUENCY STANDARDS 

Precision oscillators have been steadily improved since the 1920s, when the in- 
vention of the crystal-controlled (quartz) oscillator had immediate application to 
the problem of precise timekeeping. In the early 1950s cesium-beam clocks al- 
lowed better timekeeping than could be obtained from astronomical observations. 
This development led to an atomic definition of time that differs from the aqtro- 
nomical one, and to the establishment of the definition of the second of time based 
on a particular transition frequency of cesium. 

The mathematical theory of the interpretation of measurements of oscillator 
phase was systematized by an IEEE committee (Barnes et al. 1971). This pa- 
per helped standardize the approach to handling low-frequency divergence in the 
noise of oscillators. The physical theory of noise in oscillators was treated by Ed- 
son ( 1  960). In this section we develop relevant aspects of the theory. and describe 
the operation of atomic frequency standards with particular emphasis on the hy- 
drogen maser. The theory and analysis of phase fluctuations are discussed in more 
detail by Blair (1974) and Rutman ( 1978). 

Analysis of Phase Fluctuations 

The desired signal from an oscillator is a pure sine wave: 

V ( t )  = V ~ C O S ~ X U ~ ~ .  (9.91) 

This is unobtainable since all devices have some phase noise. A more realistic 
model is given by 

V ( t )  = Vocos[2nuot + $ ( r ) ] ,  (9.92) 

where $( t )  is a random process characterizing the phase departure from a pure 
sine wave. We ignore amplitude fluctuations since they do not directly affect per- 
formance in VLBI applications. The instantaneous frequency u ( t )  is the derivative 
of the argument of Eq. (9.92) divided by 2n.  that is. 

where 

The instantaneous fractional frequency deviation is defined as 

S u ( t )  1 d$ 
U ( )  27f u,, dt . 

-- y ( t )  = - - - 

(9.94) 

(9.95) 
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This definition allows the performance of oscillators at different frequencies to be 
compared. 

We assume that the random processes + ( t )  and y(r) are statistically stationary, 
so that correlation functions can be defined. This assumption is not always valid 
and can cause difficulty (Rutman 1978). The autocorrelation function of y ( t )  is 

R, ( r )  is a real and even function, so 4: (f), the power spectrum of y ( t ) ,  is a real 
and even function of frequency f .  In order to prevent confusion between u ( r )  
and its frequency components, we use the symbol f for the frequency variable in 
the following spectral analysis. Following the somewhat nonstandard convention 
that is used in most of the literature on phase stability (Barnes et al. 197 1 ), we 
replace the double-sided spectrum 8:  (f) with a single-sided spectrum 4 ,  ( f ) ,  
where 4,  ( f )  = 28: ( . f )  for f 2 0, and 8,(f) = 0 for f < 0. Since 8:(f)  is 
even, no information is lost in this procedure. Thus, the Fourier transform relation 
R ,  ( t)  =+ 4 ' ,  ( f ) .  can also be written as 

(9.97) 

Similarly, the autocorrelation function of the phase is 

&(f), the power spectrum of (6, and R+(r) are related by a Fourier transform. 
From the derivative property of Fourier transforms, the relationship between 
8 ,  (f) and 8+(f) can be shown to be 

(9.99) 

8 , ( f )  and 8 + ( f )  serve as primary measures of frequency stability. They both 
have the dimensions of Hz-' . Another commonly used specification of oscillator 
performance is S ( f ) ,  which is defined as the power in I Hz bandwidth at fre- 
quency f i n  one sideband of a double-sided spectrum, expressed as a fraction of 
the total power of the oscillator. When the phase deviation is small compared with 
one radian, L ( f )  2: 8 + ( f ) / 2 .  

A second approach to frequency stability is based on time domain measure- 
ments. The average fractional frequency deviation is 

(9.100) 
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which, from Eq. (9.93, becomes 

(9.101) 

where the measurements of yk are made with a repetition interval T (T 2 r) such 
that fk+l = f k  + T (see Fig. 9.9a). Measurements of yk are directly obtainable with 
conventional frequency counters. The measure of frequency stability is the sample 
variance of Jk,  given by 

where N is the number of samples in a single estimate of 0:. In the limit as 
N + 03 the quantity presented above is the true variance, which we represent as 
I 2 ( r ) .  However, in many cases Eq. (9.102) does not converge because of the low- 
frequency behavior of 8,. ( j), and I'( r )  is then not defined. To avoid some of the 
convergence problems, a particular case of Eq. (9.102), the two-sample or Allan 
variance, o,!(r), has gained wide acceptance (Allan 1966). The Allan variance, 
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Figure 9.9 (a) Time intervals involved in the measurement of Tk as defined in 4. (9.101). 
(b) Plot of a series of phase samples versus time. The Allan variance, defined in Eq. (9.103), 
is the average of the square of the deviation. (64)'. of each sample from the mean of its two 
adjacent samples. 
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for which T = r (no dead time between measurements) and N = 2,  is defined as 
follows: 

or, from Eq. (9.101): 

(9.103) 

(9.104) 

The procedure for estimating the Allan variance can be understood as follows. 
Take a series of phase measurements at interval T, as shown in Fig. 9.9b. For 
each set of three independent points, draw a straight line between the outer two 
and determine the deviation of the center point from the line. With m samples of 
y, the average of the squared deviations divided by ( 2 n ~ ~ r ) ~  is an estimate of 
a;(r), denoted a,2,(r), where 

- 

m-1 

The accuracy of this estimate is (Lesage and Audoin 1979) 

(9.105) 

(9.106) 

where K is a constant of order unity, whose exact value depends on the power 
spectrum of y. 

We can now relate the true variance and the Allan variance to the power spec- 
trum of y or +. From Eq. (9.101) the true variance is t 2 ( r )  = @), given by 

which, from Eq. (9.98), is 

(9.108) 

Then, since R 6 ( r )  is the Fourier transform of .So( f ) ,  by using Eq. (9.99). we 
obtain from Eq. (9.108) the result 

(9.109) 
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Similarly, from Eq. (9.104), we obtain 

and therefore, 

(9.1 10) 

(9.11 1) 

Z2(r) and ~J;(T) are dimensionless quantities, measured in rad2, but we can think 
of them as the power obtained after filtering y ( r )  with two different frequency 
responses, H:(f) and H i  (f), respectively. These are 

and 
2 sin4 n f  r 

= ( n f T ) 2  * 

(9.1 12) 

(9.113) 

The functions H,? (f) and H j  (f) and the corresponding impulse responses h,  ( r )  
and h A ( r )  are shown in Fig. 9.10. Note that Z2(r) can be estimated from a series 
of measurements j j k  as the average of the square of h,(rk)  * Y k ,  where the asterisk 
indicates convolution. Similarly, aj(r) can be estimated as the average of the 
square of h A ( t k )  * j j k .  Other transfer functions could be chosen. In time-domain 
measurements, additional filtering with high- and low-frequency cutoffs can be 
performed. For example, removing a long-term trend from the frequency data is 
a form of highpass filtering. Clearly, measurements of 8, (f) are preferable to 
those of at(r), because cry' can be calculated from 8, using Eq. (9.1 1 l), but 8, 
cannot be calculated from ay'. However, in many cases of interest, as in the power- 
law spectra discussed below, the form of a; is indicative of the behavior of 8,. 
Traditionally, it has been easier to make time-domain measurements, and most 
published results are given in terms of the Allan variance a:. 

The effect of local oscillator noise on the measured coherence of signals re- 
ceived at two antennas is given by Eq. (7.34) in terms of the rms deviation of 
the phase of the oscillator at one antenna relative to that at the other. For VLBI 
this rms deviation is equal to the square root of the sum of the true variances of 
the local oscillators at the two antennas. In the case of a connected-element ar- 
ray, low-frequency components of the phase noise of the master oscillator cause 
similar effects in the local oscillator phase at each antenna, and therefore their 
contributions to the relative phase at different antennas tend to cancel. For exact 
cancellation the time delay in the path of the reference signal from the master 
oscillator to each antenna, plus the time delay of the IF signal from the corre- 
sponding mixer to the correlator input (including the variable delay that compen- 
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Figure 9.10 (Top) The impulse function h l ( t )  and the square of its Fourier transform, 
I H / ( f ) 1 2 ,  given by Eq. (9.1 12), which is used to relate the power spectrum 8,,(f) to the 
true variance I2 ( r ) .  as defined in Eq. (9.109). (Bottom) The impulse response h A ( t )  and the 
square of its Fourier transform, l H ~ ( f ) l ~ .  given by Eq. (9.1 13). which is used to relate the 
power spectrum 8 , ( f )  to the Allan variance ui(s), as defined in Eq. (9.1 11). Note that the 
sensitivity of the Allan variance decreases rapidly with decreasing frequency for f < 0.3 /s .  

sates for the geometric delay), should be equal for each antenna. It is generally 
impractical to preserve this equality. The bandwidths of phase-locked loops in 
the local oscillator signals at the antennas can also limit the frequency range over 
which phase noise in the master oscillator is canceled. In practice, cancellation of 
phase noise resulting from the master oscillator should generally be effective up 
to a frequency f in the range of a few hundred hertz to a few hundred kilohertz, 
depending on the parameters of the particular system. 

Laboratory measurements show that dy ( f )  is often a combination of power- 
law components. A useful model, shown in Fig. 9.1 I ,  is 

a=-2 

(9.114) 

where 01 is a power-law exponent with integer values between -2 and 2, and fh 
is the cutoff frequency of a lowpass filter. An equation similar to Eq. (9.1 14) can 
be written for d@(f) using Eq. (9.99). Each term in Eq. (9.1 14) or the equivalent 
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Figure 9.11 (a) The idealized power spectrum a,(f) of the fractional frequency deviation 
y ( r )  [see Eq. (9.114)]. The various spectral regimes are marked by Roman numerals, and 
the power-law coefficients are given in parentheses. The regimes are I, white-phase noise; 11, 
flicker-phase noise; 111, white-frequency noise; lV, flicker-frequency noise; and V, random- 
walk-of-frequency noise. (b) Two-point rms deviation, or Allan standard deviation, versus the 
time between samples. The spectral regimes are marked by the Roman numerals, and the 
power-law coefficients are given in parentheses. 

equation for 8 # ( f )  has a name based on traditional terminology (see Table 9.2). 
Noise with a power-law dependence fo, independent of frequency, is called 
“white noise”; f-‘ is called “flicker noise,” or colloquially, “one-over-f noise”; 
and f-’ is called “random-walk noise.” There are well-known origins for some of 
these processes, which we discuss briefly [see also Vessot (1976)j. The frequency 
dependence given in parentheses below is for 8,. 
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TABLE 9.2 Characteristics of Noise in Oscillator8 

Noise Type 8,(f) &(f) +) Pb l2(r) 

White phase‘ h2f ’ vih2 

Flicker phase hl f 

h2fh 

2H2r2 
-2 - 

- - -2 

ho h0 
2r 2s 

- - 1  
White frequency 

or random walk ho v i h o j - ’  - 

of phase 
- Flicker frequency h-1 f-’ wih-1 f -3 ( 2  In 2 ) k l  0 

277% 
h-2 f -’ vih-z  f -4 3 h - 2  

Random walk 
of frequency 

- 1 

“Adapted from Bameset a]. (1971). 
’Power-law exponent of Allan variance: a , f ( r )  c( r’’. 

‘Foro;(r).2nfhr >> 1 .  

1 .  White-phase noise (f 2, is usually due to additive noise outside the oscilla- 
tor, for example, noise introduced by amplifiers. This process dominates at 
large values o f f ,  corresponding to short averaging times. 

2. Flicker-phase noise (f’) is seen in transistors and may be due to diffusion 
processes across junctions. 

3. White-frequency or random-walk-of-phase noise (f ’) is due to internal ad- 
ditive noise within the oscillator, such as the thermal noise inside the reso- 
nant cavity. Shot noise also has this spectral dependence. 

4. Flicker-frequency noise (f -’) and random-walk-of-frequency noise (f -2) 

are the processes that limit the long-term stability of oscillators. They are 
due to random changes in temperature, pressure, and magnetic field in the 
oscillator environment. This noise is associated with long-term drift. There 
is a large body of literature on flicker-frequency noise, which is encountered 
in many situations [see Keshner (1982) for a general discussion, Dutta and 
Horn (1981) for applications in solid-state physics, and Press (1978) for 
applications in astrophysics]. 

The variances Z2(t) and a;(r)  can be calculated for the various types of noise de- 
scribed above. For CY = 1 and 2, the variances converge only if a high-frequency 
cutoff fh is specified. With this restriction, a; converges for all cases. Z2(r)  con- 
verges only for CY 2 0. These functions are listed in Table 9.2. Except for the 
logarithmic dependence in flicker-phase noise, each noise component maps into 
a component of Allan variance of the form T@. From Table 9.2 we can write the 
total Allan variance as 

a:(r) = [Ki + K ~ l n ( 2 ~ f h t ) ] r - ~  + Kit-’ + K ! ,  + K ! , t ,  (9.1 15) 
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where the K values are constants. The subscripts correspond to the subscripts of 
h (see Table 9.2). White-phase and flicker-phase noise both result in p 2 -2, 
but these two processes can be distinguished by varying fh. Note that for white- 
phase and white-frequency noise the following relations hold [see Eqs. (9.109) 
and (9.1 1 l)]: 

In general, when 1 2 ( t )  is defined, we see from Eqs. (9.108) and (9.110) that 

Oscillator Coherence Time 

A quantity of special interest in VLBI is the coherence time. The approximate 
coherence time is that time tr for which the rms phase error is 1 radian: 

Rogers and Moran (1981) calculated a more exact expression for the coherence 
time that they defined in terms of the coherence function 

(9.120) 

where # ( I )  is the component of fringe phase of instrumental origin and T is an 
arbitrary integration time. # ( t )  includes effects that cause the fringe phase to 
wander, such as atmospheric irregularities and noise in frequency standards. The 
rms value of C ( T )  is a monotonically decreasing function of time with the range 
1-0. The coherence time is defined as the value of T for which ( C 2 ( T ) )  drops to 
some specified value, say, 0.5. The mean-square value of C is 

(9.121) 

If # is a Gaussian random variable, then 

d ( t ,  2 ’ )  
( C 2 ( T ) )  = 1 T2 Jd’ Jd’exp [-?I dtdt ’ ,  (9.122) 

where a2(t, t‘) is the variance ( [ # ( t )  - # ( r ’ ) ] * ) ,  which we assume depends only 
on t = t’ - t. Then from Eq. (9.98), 
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Note that a2(r) is the structure function of phase and is related to Z 2 ( t  
Eq. (9.108): 

(9.124) 2 2 2 2  a’(?) = 41r r U,Z ( T I .  

The integral in Eq. (9.122) can be simplified by noting that the integrand is con- 
stant along diagonal lines in ( r ,  t ’ )  space for which t’ - t = 5 .  These lines have 
length &(T - T) so that 

(9.125) a 2 W  T 

( C 2 ( T ) )  = f 1 (1 - k) exp [ -?] d r .  

Thus, from Eqs. (9.109) and (9.124), 

where H : ( f )  is defined in Eq. (9.1 12). Since 8 , ( f )  is often not available, it is 
useful to relate ( C 2 ( T ) )  to a;(?). We can solve’Eq. (9.118) for Z 2 ( t )  by series 
expansion, obtaining 

provided that the series converges. Therefore, from Eqs. (9.124), (9.123, and 
(9.127), 

This integral is readily calculable for the cases where Z * ( T )  is defined. 
We now consider white-phase noise and white-frequency noise, which are im- 

portant processes in frequency standards on short time scales. For the case of 
white-phase noise, a: = K;r-’, where K ;  = 3h2 fh/4X2 is the Allan variance 
in 1 s (Table 9.2), and the coherence function can be evaluated from Eq. (9.126) 
or Eq. (9.128): 

(9.129) 
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For white-frequency noise, a: = K i r - ' ,  where K i  = ho/2, and we obtain 

(9.130) 

Here, a = 2n2v,2 Ki = n2hov,2. The limiting cases for white-frequency noise are 

2n2v i  K i T  

3 
, 2 ~ r ~ v i K i T  << 1, 

1 (9.131) 

( C 2 ( T ) )  = 1 - 

1 
2 n 2 v i K i T  >> 1. 

The approximate relation for coherence time in Eq. (9.1 19) corresponds to rms 
values of the coherence function of 0.85 and 0.92 for white-phase noise and 
white-frequency noise, respectively. These calculations assume that one station 
has a perfect frequency standard. In practice, the effective Allan variance is the 
sum of the Allan variances of the two oscillators: 

Thus, if two stations have similar standards, the coherence loss is doubled if the 
loss is small. If the short-term stability is dominated by white-phase noise, which 
is usually the case for hydrogen masers, the coherence function is independent 
of time. This means that there is a maximum frequency above which a particular 
standard will not be usable for VLBI, regardless of the integration time. This 
frequency is approximately 1 / ( 2 n  K2) Hz, which for a hydrogen maser is about 
loo0 GHz. 

In practice, the coherence C( T )  is measured at the peak amplitude of the cor- 
relator output, which varies as a function of fringe frequency. This operation is 
equivalent to removing a constant frequency drift from the phase data and can 
be considered as highpass filtering of the data with a cutoff frequency of 1 / T .  
Modeling this operation as the response of a single-pole, highpass filter, one can 
show that it ensures the convergence of Eq. (9.128) for all processes for which the 
Allan variance exponent p < 1. To compare the various representations of fre- 
quency stability, we show in Figs. 9.12 and 9.13 an example of the performance 
of a hydrogen maser given by the functions u,?, 8,(f), and ( C 2 ( T ) ) 1 / 2 .  

Precise Frequency Standards 

Precise frequency standards of interest for VLBI include crystal oscillators and 
atomic frequency standards such as rubidium vapor cells, cesium-beam res- 
onators, and hydrogen masers (Lewis 199 1). Atomic frequency standards incor- 
porate crystal oscillators that are phase-locked or frequency-locked to the atomic 
process, using loops with time constants in the range 0.1-1 s, so that short-term 
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Figure 9.12 (a) Power spectrum of the fractional frequency deviation 8,(f) for a hydrogen 
maser frequency standard, and (b) the normalized power spectrum of the phase noise u i 8 + ( f ) .  
8 , . ( f )  and 8+(f) are related by Q. (9.99). For frequencies above 10 Hz, 8+(f) approaches 
the spectrum of the crystal oscillator to which the maser is locked, which declines as f - 3 .  The 
data were adapted from the measurements of Vessot (1979). 

performance becomes that of the crystal oscillator. Details of how these loops are 
implemented are given by Vanier, TCtu, and Bemier (1979). The performance of 
the crystal oscillator is very important because unless it has high spectral purity, 
the phase-locked loops involved in generating the local oscillator signal from the 
frequency standard will not operate properly (Vessot 1976). 

We first consider a frequency standard as a “black box” that puts out a stable 
sinusoid at a convenient frequency such as 5 MHz, or some higher frequency, at 
which the crystal oscillator is locked to the atomic process. The performance of 
various devices is shown in Fig. 9.14. These somewhat idealized plots show that 
the Allan variances of the standards have three regions: short-term noise dom- 
inated by either white-phase or white-frequency noise; flicker-frequency noise, 
which gives the lowest value of Allan variance and is therefore referred to as 
the “flicker floor”; and finally, for long periods, random-walk-of-frequency noise. 
Two other parameters can be specified, a drift rate and an accuracy. The drift rate 
is the linear change in frequency per unit time interval. Note that if the standard 
drives a clock, then a constant drift rate results in a clock error that accumulates 
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Figure 9.13 (a) Allan standard deviation versus sample time for a hydrogen maser frequency 
standard. Data from Vessot (1979). (b) Coherence d m ) ,  defined by Q. (9.125). for 
various radio frequencies based on two frequency standards with Allan standard deviations 
given in (a). (c) Signal-to-noise ratio, normalized to unity at one second, of the measured 
visibility versus integration time for various frequencies. In a VLBI system the coherence and 
signal-to-noise ratios will be further reduced by atmospheric fluctuations. 

as time squared. The accuracy refers to how well the standard can be set to its 
nominal frequency. The performance parameters are summarized in Table 9.3. 

Atomic frequency standards are based on the detection of an atomic or molec- 
ular resonance. There are three parts to any frequency standard [e.g., Kartashoff 
and Barnes (1972)l. These are (1) particle preparation, (2) particle confinement, 
and (3) particle interrogation. Particle preparation involves enhancing the popu- 
lation difference in the desired transition. This is necessary for radio transitions 
in a gas with temperature TR for which hu/  kT, << I ,  so that the level populations 
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Figure 9.14 Idealized performance of various frequency standards and other systems. Pulsar 
data are from Davis et ai. (1985). VLBI data, which show the effect of path length stability 
through the atmosphere in approximately average conditions, are from Rogers and Moran 
(1981). 

TABLE 9.3 'Qpical PerfonnancP Data on Available Frequency Standards 

K2 KO K-I K-2 Drift Fractional 
(10-12 (lo-'' RateC Accuracy 

TY Pe (10-12 s) Sl'*) (10-l~)  s-Il2) (10-I5) (10-l~) 

H(active) 0.1 0.03 0.4 0.1 < I  1 
cs - 50 100 3 1 5 
Csd - 7 40 3 1 2 
Rb - 7 500 300 1 02 1 02 
Crystal 1 - 500 300 103 - 

~~ ~~ -~ ~ ~ ~~ ~~ 

a'lko-point Allan standard deviation: coefficient defined by Eq. (9. I 15). 
%pdated from Hellwig (1979). 
'Fractional frequency change per day. 
dHigh performance Cs. 
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are nearly equal. Preparation is usually done either by state selection in a beam 
passing through a magnetic or electric field, or by optical pumping. Particle con- 
finement makes it possible to obtain narrow resonance lines from long interaction 
times, since according to the Heisenberg uncertainty principle, the linewidth is 
equal to the reciprocal of the interaction time. Particles can be confined in beams 
or storage cells. Storage cells either contain a buffer gas or have specially coated 
walls so that particle collisions do not result in phase changes. Finally, particle 
interrogation is the process of sensing the interaction of particles and radiation 
fields. Frequency standards can be either active or passive. An example of an ac- 
tive standard is a maser oscillator. Passive standards require an external radiation 
field, and transitions are observed by ( I )  absorption, (2) re-emission, (3) detection 
of particles having made the transition, or (4) indirectly by detection of a quantity 
such as a variation in the rate of optical pumping. To show how some principles 
are implemented in practice, we give brief descriptions of the operation of several 
types of standards. Other types of frequency standards are under development 
[Drullinger, Rolston, and Itano (1996), Berkeland et al. (1998)l. 

Rubidium and Cesium Standards 

Rubidium is an alkali metal with a single valence electron and thus a hydrogen- 
like spectrum. The electronic ground state is split into two levels, with a transi- 
tion frequency of 6835 MHz. These levels correspond to the spin of the unpaired 
electron being parallel or antiparallel to the nuclear spin vector. A schematic dia- 
gram of the oscillator system is shown in Fig. 9.15. An RF plasma discharge in a 
tube containing 87Rb excites the gas to an electronic level about 0.8 pm above the 
ground state. The light from this discharge passes through a filter that removes the 
components involving the F = 2 level and passes the light at 0.7948 Fm. This 
filter consists of a cell of 85Rb atoms whose energy levels are slightly shifted from 
those of the 87Rb atoms, such that both gases have transitions near 0.7800 pm. 
The filtered light passes through another cell of 87Rb gas inside a microwave cav- 
ity resonant at the transition frequency between the F = 2 and F = 1 levels. 
With no RF signal applied to the cavity, the gas is nearly transparent and the dis- 
charge beam is unattenuated as it reaches the photodetector. The application of 
an RF signal at 6835 MHz stimulates transitions from the F = 2 to F = 1 level. 
The atoms reaching the lower level are then pumped to the excited state by the 
light from the filtered "Rb lamp. The 87Rb light therefore suffers absorption. A 
buffer gas, consisting of inert atoms that collide elastically with the 87Rb atoms 
in the resonance cell, extends the interaction time to about s, the mean colli- 
sion time with the cell walls, and gives an absorption resonance with a linewidth 
of about lo2 Hz. The cavity is magnetically shielded to minimize external fields. 
A weak homogeneous field is applied so that only A M F  = 0 transitions, which 
have zero first-order Doppler shift, are obtained. The absorption resonance has 
a width of 102-103 Hz. The shot noise of individual arriving photons leads to 
white-frequency noise. 

The radio frequency signal is frequency- or phase-modulated so that the reso- 
nance line is continuously scanned. A control voltage is generated by comparing 
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Figure 9.15 (a) Schematic diagram of a rubidium gas-cell frequency standard; (b) pump and 
microwave transitions; (c) magnetic sublevels of microwave transition versus magnetic field; 
(d) absorption of 87Rb light versus microwave frequency. Adapted from Vessot (1976). 

the modulation signal and the detector signal, and is fed back to the slave oscilla- 
tor driving the cavity to correct its frequency to the peak of the resonance. 

Rubidium standards have the advantage of being small, inexpensive, and read- 
ily transportable. They are sometimes used in VLBI below 1 GHz, where the 
ionosphere dominates system stability. At higher frequencies the use of rubid- 
ium standards results in degraded performance. They are useful as a backup for a 
primary standard, and can also be used in OVLBI spacecraft to reduce the uncer- 
tainty in the timing when the radio link from the ground station is interrupted. 

Cesium, like rubidium, is an alkali metal with a single valence electron. 
The cesium standard is important because it is used to define the standard of 
atomic time. The frequency of the ground-state, spin-flip transition is exactly 
9 192.63 1770 MHz, by definition of the second of atomic time. A ribbon-shaped 
beam of cesium gas is passed through a state-selector magnet that passes the 
atoms in the F = 3 level into a resonator. Cesium frequency standards are larger 
and substantially more expensive than rubidium standards. Because of their low 
signal-to-noise ratio, their short-term stability is poor. Thus, they are not used 
in VLBI for controlling local oscillators. However, they provide excellent long- 
term stability and are used to monitor time. They have also been used to verify 
the capability of transferring time via VLBI (Clark et al. 1979). The historical 
development of the cesium-beam resonator is described by Forman (1985). 
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Hydrogen Maser Frequency Standard 

The hydrogen maser is the usual VLBI standard, and we discuss its operating 
principles in some detail. The quantum mechanical analysis of the hydrogen 
maser is presented in a classic paper by Kleppner, Goldenberg, and Ramsey 
(1962). Fundamental principles of masers are given by Shimoda, Wang, and 
Townes (1956), and details of maser construction are given by Kleppner et al. 
( 1965) and Vessot et al. (1976). 

The hydrogen maser oscillator uses the ground-state, spin-flip transition at 
1420.405 MHz, the well-known 2 1-cm line in radio astronomy. A schematic di- 
agram of the oscillator is shown in Fig. 9.16. The hydrogen for the maser comes 
from a tank of molecular hydrogen gas that is dissociated in an RF discharge. The 
gas in the discharge is ionized and emits the reddish glow of the Balmer lines 
as the hydrogen atoms recombine and cascade to the ground state. The atomic 
gas flows out of the dissociator through a hexapole-magnet state selector. The 
inhomogeneous magnetic field separates the two upper states, F = 1, M F  = 1 
and F = 1, M F  = 0, from the lower states, F = 1, M F  = - 1  and F = 0, 
M F  = 0. The beam of atoms in the two upper states is directed into the storage 
bulb that is located inside a microwave cavity resonant in the l& 1 or TEI I I mode 
at 1420.405 MHz. The atoms bounce around the inside of the bulb about lo5 times 
before escaping through the entrance hole. The spent atoms are evacuated from 
the system, which operates at low pressure, by an ion pump. The cavity is sur- 
rounded by several layers of material with high magnetic permeability that shield 
it from ambient magnetic fields. Inside the shield is a solenoid that creates a weak 
homogenous field. This field allows the (F = I ,  MF = 0)-to-( F = 0, M F  = 0) 
transition to radiate and minimizes transitions from the F = I ,  MF = I level. 
There is no first-order Zeeman effect for the A M F  = 0 transition (see Fig. 9.16). 
The maser will oscillate if the cavity is tuned close to the transition frequency and 
the losses are small enough. In the active maser, the 1420-MHz signal is picked 
up by a cavity probe and used to phase-lock a crystal oscillator from which a 
signal at the hydrogen line frequency has been synthesized. 

The interaction lifetime of an atom in the bulb can be described by an expo- 
nential probability function 

f ( r )  = y e p Y ' ,  (9.133) 

where y is the total relaxation rate. The line has an approximately Lorentzian 
profile with a linewidth (full width at half maximum) Avo of y/n. The most 
important contribution to y is the rate at which atoms escape through the entrance 
hole. This rate is 

V O A h  
ye = - 

6V ' 
(9.134) 

where uo = ,/- is the average particle speed, Tg is the gas temperature, 
rn is the mass of a hydrogen atom, Ah is the area of the entrance hole, and V is 
the volume of the bulb. ye is about I s-'. The atoms lose coherence after many 
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Figure 9.16 (a) Schematic diagram of a hydrogen maser frequency standard. The line fre- 
quency shown is the rest frequency of the transition in free space from Hellwig et al. (1970). 
The actual frequency will differ typically by -0.1 Hz because of cavity pulling, second-order 
Doppler, and the wall shift. (b) Energies of magnetic sublevels versus magnetic field for the 
21-cm transition. Adapted from Vessot (1976). (c) Curves of resonance frequency uo versus 
cavity frequency uc for two values of linewidth [see Eq. (9.138)]. The intersection of the 
curves, which can be found empirically, gives the best operating frequency. 

wall collisions, and this leads to a loss rate yw 2 lop4 s-l. Collisions between 
hydrogen atoms cause spin-exchange relaxation at a rate yse that is proportional 
to the gas density and to UO. The net relaxation rate is approximately the sum of 
the three most important terms: 

All three terms are proportional to uo and thus also to A. Note that the random 
thermal motions of the atoms do not give rise to a first-order Doppler broadening 
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of the line, because the interaction between the atoms and the RF field takes place 
in a resonant cavity [see Kleppner, Goldenberg, and Ramsey (1962)l. 

The maser oscillator has two resonant frequencies, the line frequency UL and 
the electromagnetic cavity resonance frequency uc, defined by the cavity’s dimen- 
sions. In classical oscillators the frequency is the mean of these two, weighted by 
the respective Q factors, Q L  for the line and Qc for the cavity: 

V L Q L  + VcQc 

Q L  + Qc 
uo = (9.136) 

The Q factor is defined as n times the reciprocal of the fractional loss in energy 
per cycle of the resonant frequency. Hence, from Eq. (9.133), Q L  is given by [see, 
e.g., Siegman (1971)l 

(9.137) 

A typical value of QL is about lo9. The practical value of QC for a silver-plated 
cavity is about 5x104. Since QL >> Qc, the resonance frequency is approxi- 
mately 

Qc 
uo 2 UL + -(uc - UL). 

Q L  
(9.138) 

Equation (9.138) describes the effect of “cavity pulling” on the resonance fre- 
quency. Temperature changes cause the size, and thus the resonant frequency, of 
the cavity to change. Hence, a fractional frequency stability of lo-” for the maser 
requires a fractional mechanical stability of about 5 x for the cavity. The 
cavity dimensions therefore must be stable to about lo-’ cm. The cavity must be 
made from material with a small thermal expansion coefficient or the tempera- 
ture must be carefully controlled. Extreme mechanical stability is also required 
so that atmospheric pressure changes do not affect the frequency. The TE,,] I cav- 
ity is a cylinder about 27 cm in length and diameter, appreciably larger than the 
free space wavelength because of the loading by the storage bulb. Coarse tuning 
is accomplished by moving the end plate of the cavity and fine tuning by a var- 
actor diode. From Eq. (9.138) it is clear that the maser frequency is most stable 
when uc is set to uL so that ug equals uL regardless of the values of Qc and Q L .  

This optimal tuning point of the maser can be found by making a plot of uo ver- 
sus UC, which is a straight line with slope Qc-QL. according to Fq. (9.138). By 
varying QL (for example, by varying the gas pressure and thereby changing y ) ,  
a family of straight lines can be generated that intersect at the desired frequency 
ug = UL = uc (see Fig. 9.16~). Servomechanisms are used in some systems to 
keep the maser cavity continuously tuned. 

The performance of hydrogen masers is shown in Figs. 9.13 and 9.14. For 
periods less than lo3 s the performance is limited by two fundamental processes: 
(1) white-frequency noise due to thermal noise generated inside the cavity and 
(2) white-phase noise due to thermal noise in the external amplifier. The thermal 
noise generated inside the cavity produces a fractional frequency variance (Allan 
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variance) of 

(9.139) 

where PO is the power delivered by the atoms (Edson 1960; Kleppner, Golden- 
berg, and Ramsey 1962). There is also shot noise in the cavity due to the discrete 
radiation of photons. However, this process, described by the Allan variance o;~,  

is smaller than by the ratio hu/kT, ,  which is 2 x lop4 at room temperature. 
Spontaneous emission also contributes a small amount of noise, equivalent to in- 
creasing TR by h u l k  2 0.07 K. Finally, the maser receiver adds a noise power 
kTRAu to the signal coupled out of the cavity, where TR is the receiver noise tem- 
perature and Au is the receiver bandwidth. This noise causes an Allan variance 
of (Cutler and Searle 1966) 

(9.140) 

These two processes are independent, so the net Allan variance is oy’ = O$ 

The effects of both processes are clearly evident in the data in Fig. 9.14. Note that 
a flicker floor is not reached because of long-term drifts. The short-term perfor- 
mance can be improved by increasing the atomic flux level, which increases PO. 
However, increasing the flux increases the spin-exchange rate, which decreases 
Q L ,  thereby making the oscillator more susceptible to the long-term effects of 
cavity pulling. 

The frequency of a maser is not exactly equal to the atomic transition frequency 
because of several effects. These effects limit the accuracy to which the frequency 
can be set, and because most of them are temperature dependent, they proba- 
bly contribute to flicker-frequency and random-walk-of-frequency noise. Cavity 
pulling, which has been described already, is an important effect, and to minimize 
it the cavity must be tuned carefully. The collision-induced spin-exchange process 
gives a frequency shift that varies with Q L  in the same way as the cavity pulling. 
Thus, the cavity-tuning procedure also eliminates this shift. Collisions with the 
cavity walls produce an effect called the “wall shift,” which is difficult to predict 
and may be the ultimate limiting factor in the absolute precision of the maser fre- 
quency (Vessot and Levine 1970). This shift depends on the temperature and wall 
coating material. Its fractional value is about lo-’ I .  The first-order Doppler effect 
cancels, but the second-order Doppler effect does not, because of its u2/c2 depen- 
dence [see Kleppner, Goldenberg, and Ramsey ( 1  962)]. The fractional frequency 
shift is about equal to - 1.4 x 10-’3T,. Finally, there is no first-order Zeeman 
effect in the (F = I ,  M F  = 0)-to-(F = 0, M F  = 0) transition. However, the 
second-order Zeeman fractional-frequency shift is 2.0 x 102B2, where B is the 
magnetic field in tesla. 

Local Oscillator Stability 

Local oscillator signals are generated by multiplying a signal from the locked os- 
cillator of the frequency standard. The multipliers must have exceptional stability, 
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as discussed in Section 7.2, to avoid the introduction of additional noise and drift. 
Imperfect multipliers are sensitive to vibration and temperature and may have 
modulation at harmonics of the power line frequency. In an ideal multiplier, a 
signal of the form of Eq. (9.92) is converted to 

V( r )  = cos[2nMLJot + M # ( f ) ] ,  (9.141) 

where M is the multiplication factor, uo is the fundamental frequency, and 4 is 
the random phase noise of the frequency standard. If the phase noise is small, 
M # ( t )  << 1, then the single-sided power spectrum of V(r) is given by 

where S is a delta function representing the desired signal and 8, is the power 
spectrum of the phase noise. Thus, the noise power increases as the square of the 
multiplication factor. In the general case, 8, can be written (Lindsey and Chie 
1978) 

where the term in brackets contains n replications of the same function convolved 
together. When only the leading term in the summation is retained Eq. (9.143) 
reduces to Eq. (9.142). The higher-order terms in Eq. (9.143) represent a series of 
approximately Gaussian components because of the repeated convolutions. The 
rms phase deviation of the multiplier output frequency Mu0 is proportional to 
the rms voltage of the noise in the output bandwidth, that is, to the square root 
of the noise power. Thus for the case represented by Eq. (9.142), the rms phase 
fluctuation is proportional to M. 

Phase Calibration System 

One way to check the integrity of an entire VLBI system is to inject into the front 
end of the receiver an RF signal that is independently derived from the frequency 
standard. The RF test signal can be derived by driving a step-recovery diode with, 
say, a I-MHz signal from the frequency standard so as to generate a pulse train 
with 1-ps period. Such a signal has harmonics at 1-MHz intervals throughout the 
microwave region, all of which have the same phase at the reference intervals. 
When the RF band is mixed down to baseband, one of the injected harmonics 
can be made to appear at a convenient frequency of order 10 kHz. This is then 
compared with a reference signal from the frequency standard. The phase cali- 
bration signal can be continuously injected during VLBI recording since a low 
enough level can be used that it can only be detected by very narrowband filtering 
in the processor (- 10-Hz bandwidth). The calibration allows one to compensate 
for variations such as those caused by thermal effects in cables (Whitney et al. 
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1976, Thompson and Bagri 1991, Thompson 1995). Similar methods are used in 
some linked-element interferometers. 

Time Synchronization 

The clocks at VLBI stations must be synchronized accurately enough to avoid 
time-consuming searches for interference fringes. Until around 1980, Loran C 
was widely used to monitor time at VLBI stations. Loran, an acronym for Long 
Range Navigation, is a system originally developed during World War I1 for ocean 
navigation (Pierce, McKenzie, and Woodward 1948). The transmission frequency 
is 100 kHz. The relative time of arrival of signals from three stations defines the 
observer’s location on the earth’s surface. For a detailed discussion of Loran C, 
see Frank (1983). Accuracies from a few hundred nanoseconds to a few tens 
of microseconds are possible, depending upon the accuracy of the estimate of 
propagation time. 

The Global Positioning System (GPS) provides higher accuracy than Loran 
and has been used in almost all VLBI systems since the early 1980s. In the GPS 
system the user receives signals at 1.23 or 1.57 GHz from a number of satellites 
whose positions are known and whose clocks are synchronized to Coordinated 
Universal Time (UTC; see Section 12.3). If timing measurements from four satel- 
lites are made, and corrected for propagation effects in the atmosphere, users can 
determine their positions in three coordinates and their clock errors. The accura- 
cies available to civilian users have improved over about a decade from 100 ns 
in time (Parkinson and Gilbert 1983, Lewandowski and Thomas 1991) to -7 ns, 
and further improvement is expected (Lewandowski, Azoubib, and Klepczynski 
1999). An analysis of the time transfer problem, including relativistic effects, is 
given by Ashby and Allan (1979). For general information on GPS usage see, for 
example, Leick (1995). 

For time scales of a year, the accuracy of timing from pulsar observations 
approaches 1 part in 1014 (Davis et al. 1985). Ultimately, the best time transfer 
may be obtainable from the processed VLBI data (Clark et al. 1979). 

9.6 RECORDING SYSTEMS 

The basic consideration for any recording system is the representation of the sig- 
nal and the method of incorporating the time information. Recording can be either 
analog or digital, and various data storage technologies are available. Here we dis- 
cuss only digital recording on magnetic tape since the technologies involved are 
well suited to VLBI and are widely used. 

A basic parameter of a recording system is its data rate, vb (bits s-’). This 
parameter limits the number of bits that can be recorded in a given time, and thus 
also the sensitivity of continuum observations in which the potential IF bandwidth 
is larger than v b / 2 N b ,  where Nb is the number of bits per sample. The signal is 
represented by samples having Q quantization levels taken at B times the Nyquist 
rate. For N samples there are QN possible data configurations, which require a 
minimum of N log, Q bits. Therefore, as noted in Section 8.3 under Comparison 
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of Quantization Schemes, the maximum RF bandwidth is 

(9.144) 

The signal-to-noise ratio obtained in time t is proportional to q Q G ,  where 
q Q  is the quantization efficiency introduced in Section 8.3. From Eq. (9.144), 

(9.145) 

If r is the recording time for the tape, vb? is equal to the number of recorded 
bits on the tape. The quantity q Q / m  thus provides an indication of the per- 
formance per bit, which it is desirable to maximize. For two- and four-level sarn- 
pling, the obvious encoding schemes are one bit and two bits per sample, respec- 
tively. For three-level sampling a problem arises since encoding one sample (one 
of three possible states) in two data bits (representing four possible states) is in- 
efficient. Putting three samples into five bits or five samples into eight bits gives 
data rates of 1.67 and 1.60 bits per sample, respectively, compared to the theo- 
retical optimum value of log, 3 = 1.585. The values of V Q / ~  for various 
values of Q and p, and several encoding schemes, are listed in Table 9.4. The 

TABLE 9.4 Performance of Various Signal Representations as a Function of Number of 
Quantization Levels, Sampling Rate, and Encoding Format“ 

Signal Representation ‘7Q Nb 

Sampling at Nyquist Rate ( p  = I )  
Two-level 0.637 I .o 
Three-level “Ideal” encodingb 0.810 1 S85 

3 samples/5 bit 0.810 I .667 
5 samples /8 bit 0.810 1.60 

1 sample/2 bit 0.810 2.0 
Four-level All products 0.88 1 2.0 

Low-level omitted 0.87 2.0 

Sampling at 2 x Nyquist Rate ( p  = 2) 
Two-level 0.74 1 .o 
Three-level “Ideal” encodingb 0.89 1.585 

5 sampled8 bit 0.89 1.60 
3 sampled5 bit 0.89 1.667 
1 sample/2 bit 0.89 2.0 

Four-level All products 0.94 2.0 

‘7Q 
m 

0.637 
0.643 
0.640 
0.627 
0.573 
0.623 
0.61 

0.52 
0.50 
0.50 
0.49 
0.45 
0.47 

~~ 

a SQ = quantization efficiency; N b  = number of bits per sample; 6 = oversampling factor 
samples encoded in N log23 bits. 
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highest signal-to-noise ratio is achieved with three-level sampling at the Nyquist 
rate, although two- and four-level sampling give almost the same performance. 

In addition to the encoding schemes discussed above, in which the number of 
bits required for a given number of samples is constant, one can also envisage 
a scheme in which the number of bits depends on the sample values, that is, a 
variable-length code. For example, D’ Addario ( 1984) has suggested encoding the 
+1, 0, and -1 values in three-level quantization as the binary numbers 11, 0, 
and 10, respectively. It is possible to decode such a data string uniquely, since 
all one-bit representations begin with 0 and all two-bit representations with 1. 
The average number of bits per sample depends on the amplitude probability 
distribution of the signal waveform and the threshold level settings. For a given 
number of bits, the threshold settings that maximize the signal-to-noise ratio are 
generally not the same as those derived in Section 8.3, which are optimum for a 
given number of bits per sample. With D’Addario’s encoding scheme, the best 
performance is achieved with the threshold set such that qQ = 0.769 and Nb = 
1.370 bits per sample, giving a performance factor q p / m  equal to 0.657. 
Thus, an increase in sensitivity of about 3% compared with the use of the scheme 
with 1.6 bits per sample could be achieved. However, the effects of bit errors or 
interfering signals that change the amplitude distribution could be more serious. 
Finally, the data could be encoded statistically in large blocks that would allow 
a theoretically optimal value of Nh of I .3 17 bits per sample, which, with Q Q  of 
0.769, would give a performance factor of 0.670 (D’ Addario 1984). 

In practice, the desirability of a simple encoding scheme and other design con- 
siderations have usually resulted in the choice of two-level quantization. All five 
VLBI systems developed in the United States during the period 1968-1997 (Mark 
I, Mark 11, Mark 111, VLBA, and Mark IV) use two-level sampling, but for the last 
two of these four-level sampling is also an option. For spectral line observations, 
where the bandwidth of the signal is small with respect to the bandwidth of the 
recording system, multilevel sampling is advantageous. Note that multilevel sam- 
pling i s  a more effective way of using recording capacity than sampling faster 
than the Nyquist rate (Table 9.4). 

Each data sample must have either an implicit or explicit time tag. Although an 
error rate of in decoding the data bits is acceptable, a one-bit shift in the time 
axis can be a serious defect and is not acceptable. In virtually all recording sys- 
tems the data are blocked into records. Each new record begins at a precise time so 
that the temporal registration of the data stream can be recovered if it is lost during 
the previous record. These record lengths are: Mark I, 0.2 s (144,OOO bits); Mark 
11, 16.7 ms (66,600 bits); and Mark 111, 5 ms (20,000 bits). In the Mark I system, 
which used standard computer tape format, the accuracy of recording was very 
high, and the time of any bit was obtained by counting bits from the beginning 
of the record and counting records from the beginning of the tape. In the Mark I1 
system, which uses video cassette recorders (VCRs), the data are recorded with 
a self-clocking code, while in the Mark I11 system, which uses instrumentation 
recorders, the data transitions themselves serve as the clock. The characteristics 
of several systems are given in Table 9.5. In all of these the recording is in digi- 
tal form, except for the Canadian system used during 1971-1883. Wietfeldt and 
D’Addario (1991) discuss the compatibility of some of these systems. 
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9.7 PROCESSING SYSTEMS AND ALGORITHMS 

A VLBI processor has two main functions: (1)  reproduction of smooth data 
streams and (2) cross-correlation analysis of the data streams. The data stream 
from a tape recorder can be expected to have time-base irregularities of up to 
100 ps, caused by jitter in the mechanical playback system, and to be subject 
to dropouts because of tape imperfections. The processor must derive the true 
time base either from the encoded clock transitions in the case of a self-clocking 
code, or from the data transitions themselves when a bit synchronizer is used. 
There must be enough buffer storage to handle at least the mechanical jitter. 
The geometric delay can be corrected with minimal buffer space by shifting the 
playback time, thereby retaining the data on the tape until they are needed by the 
correlator. If the data are read in synchronism from the tapes, a buffer memory 
of sample capacity about 5 x lo4 times the clock rate in megahertz is needed for 
geometric delay compensation. 

The major differences between the design of the correlation part of the proces- 
sor for VLBI and for a conventional interferometer are related to the fact that in 
VLBI, fringe rotation and delay compensation are usually performed on the quan- 
tized and sampled signal. This leads to special problems, which we discuss here. 
Digitization of the signals introduces several signal-to-noise loss factors: qp, the 
loss factor associated with amplitude quantization of the recorded signals. dis- 
cussed in Section 8.3; q R ,  the loss factor incurred by quantizing the phase of the 
fringe rotation waveform; qs, the loss factor incurred by inadequate sideband re- 
jection as a result of the limited number of delays in the correlator; and q ~ ,  the 
loss caused by compensating the geometric delay in discrete steps. 

Fringe rotation and delay compensation can be done on the analog signals at 
the telescope before recording. For example, the fringe rotation can be done at the 
telescopes by offsetting the local oscillators as described in Section 6.1 under De- 
lay Tracking and Fringe Rotation for a connected-element array. The advantage 
of this arrangement is that only a real correlation function (with both positive and 
negative delays) needs to be calculated (see Sections 8.7 and 9.1). Hence only 
half the correlator circuits are required. Also, the sensitivity loss from a digital 
fringe rotator is not incurred. A disadvantage is that the output of the correla- 
tor must be averaged over a short enough interval to accommodate the residual 
fringe frequency of a source anywhere in the primary beams of the antennas. The 
maximum residual fringe frequency of a source at the half-power point of the pri- 
mary beam is Avf 2: Dw,/d [see Eq. (12.21)], where D is the baseline length, 
d is the antenna diameter, and w, is the angular velocity of the earth in radians 
per second. Hence, the averaging time of the correlator output must be less than 
1/(2Auf); for example, it should not exceed 30 ms for a baseline equal to the 
earth’s diameter and d = 25 m. The correlation functions can be averaged further 
after they have been passed through a fringe rotator, which removes the residual 
fringe frequency. Also, the unit at the telescope that continually changes the local 
oscillator frequency must be carefully designed so that full phase accountabil- 
ity is provided for astrometric work. Further information on VLBI systems and 
processing algorithms can be found in Thomas (1981) and Herring (1983). 
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Fringe Rotation Loss ( 7 7 ~ )  

Fringe rotation is used to reduce to near zero the frequency of the fringe compo- 
nent of the correlated signals (see Section 6.1 under Delay Tracking and Fringe 
Rotation). Here we consider the fringe frequency to include the effect of offsets 
in the frequency standards. Fringe rotation in the processor can be implemented 
in a number of ways, as shown in Fig. 9.17. If the fringe rotator is placed after 
the correlator (Fig. 9.17a), then the correlation function from the correlator must 
be averaged over an interval short with respect to the fringe period. If the local 
oscillators at the antennas are offset to slow the fringes, so that only a little further 
adjustment is required after the correlator, then this scheme is convenient. Other- 
wise the short averaging time required and the resulting high data rate from the 
correlator make this arrangement unattractive. Alternatively, before correlation, 
one of the data streams can be passed through a digital single-sideband mixer that 
shifts the Fourier components of the signal by the appropriate fringe frequency 
as shown in Fig. 9.17b. The 90" phase shift in this mixer is difficult to implement 
without introducing spectral distortion, so this type of fringe rotator is rarely used 
(see also Section 8.6). The fringe rotation scheme shown in Fig. 9 . 1 7 ~  is com- 
monly used, but application of fringe rotation to the quantized signal introduces 
two complications. First, the fringe function with which the signal is multiplied 
must be coarsely quantized so as not to increase the number of bits per sample go- 
ing to the correlator-this also applies to scheme (b). Second, the multiplication 
introduces an unwanted noise sideband, which is described below under Fringe 
Sideband Rejection Loss. We now consider the first of these effects. 

The data stream is multiplied by a complex function 9 whose real and imagi- 
nary parts, FR and F,, approximate cos 4 and sin 4, where 4 is the desired phase 
function. In the simplest approximation these functions are square waves with 
the appropriate frequency and phases. Thus, as shown in Fig. 9.18, the quantized 
signal is multiplied by a fringe rotation function whose amplitude is constant but 
whose phase steps by 90" every quarter cycle instead of smoothly progressing. 
The resulting visibility function then has a phase component with a 90" sawtooth 
modulation at the fringe frequency. This resembles phase noise in which the phase 
is uniformly distributed between f45". Therefore, the average signal amplitude is 
degraded by sin(17/4)/(17/4) = 0.900. Another approach to calculating the loss 
in signal-to-noise ratio is to calculate the harmonics in the fringe rotation func- 
tion. The first harmonic of FR or F, has an amplitude of 4/17 = 1.273. Only the 
signal mixed with the first harmonic appears in the processor output, since the 
other harmonics are removed by time averaging. Thus part of the signal is scat- 
tered out of the fringe passband. The fraction retained is the square root of the 
ratio of the power in the first harmonic to the total power of the fringe rotation 
function, which is &/17 = 0.900. This represents the loss in signal-to-noise ra- 
tio. There is also a scale-factor change since the fringe amplitudes are increased 
by the action of the fringe rotator. Thus the fringe amplitudes must be divided by 
4/17, the relative amplitude of the first harmonic of FR. 

A better fringe rotation function is the three-level approximation of a sine wave 
(Clark, Weimer, and Weinreb 1972) shown in Fig. 9.18b. When the fringe rotation 



9.7 PROCESSING SYSTEMS AND ALGORITHMS 359 

( 0 )  

CORRELATOR 

Figure 9.17 Various processor configurations showing possible locations of fringe rotator. FR 
and F, are cosine and sine representations of the fringe function. See text for discussion of 
relative merits. 

function is zero, the correlator is inhibited. Since the real and imaginary parts of 
9 are never zero simultaneously, all data bits are used at least once. This fringe 
rotation function can be thought of as a phasor whose tip traces out a square such 
that it has phase jumps in 45" increments and its amplitude alternates between 
& and 1. The resulting jitter in phase is uniformly distributed between f22.5" 
and results in a loss of signal amplitude of sin(lr/8)/(n/8) = 0.974. Also, the 
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Figure 9.18 (a) Mathematical model of two-level fringe rotator showing FR and F, , functions 
that approximate cos 4 and sin 4 (left), the amplitude and phase representation of 9 (center), 
and the phasor plot of 3 (right). (b) Same plots for a three-level fringe rotator. 

variation in the amplitude of the phasor introduces a nonuniform weighting of 
the signal samples. This reduces the signal-to-noise ratio by a further factor equal 
to (1 + A)/& = 0.986. The net loss in signal-to-noise ratio is 0.960. The 
reduction in signal-to-noise ratio is also equal to the square root of the ratio of the 
power in the first harmonic to the total power in SR. The first harmonic of FR is 
(4/n) cos(rc/8) = 1.18, which is the scale factor correction for the visibility. The 
three-level fringe function considered here is used in many VLBI processors. The 
fringe period is divided into 16 parts to generate F. The transitions in 3, which 
then occur at integral multiples of 1/16 of the fringe period, are not optimally 
located, but this approximation results in no more than 0.1 ?h additional loss. Note 
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that an FX correlator can be made to accept input data with more than one or two 
bits per sample rather more easily than a lag correlator. With more data bits per 
signal sample, more accurate representations of sine and cosine functions can be 
used. 

Fringe Sideband Rejection Loss (71s) 

The digital fringe rotator shown in Fig. 9 . 1 7 ~  is not a single-sideband mixer. Thus, 
as well as the wanted output, shifted in frequency by the fringe frequency, an 
unwanted component of noise corresponding to the image response of a mixer 
also appears. To understand the effect of this noise, consider the cross power 
spectrum of the correlator output. Recall that u‘ is the intermediate frequency 
defined following Eq. (9.13), and note that in the output of a spectral correlator 
v‘ > 0 and u’ < 0 refer to the upper and lower sidebands, respectively. For upper- 
sideband operation, the cross power spectrum of the signal is given by Eq. (9.21), 
which is nonzero only for the upper sideband. However, there will be noise at 
both positive and negative frequencies. Thus, the cross power spectrum of the 
correlator output is 

where .S(u’) is the instrumental response defined in Eq. (9.14), j Q ( u ’ )  is the ex- 
ponent in Eq. (9.21), and nu and ne are the noise spectra for the upper- and lower- 
sideband responses. For observations in which a spectral line correlator is used, 
.S;,(u’) is computed and the noise at u‘ < 0 is simply ignored. For continuum 
observations using a correlator with only a small number of channels (lags), the 
noise at u’ < 0 contributes excess noise in the correlation function and must be 
removed. A straightforward way to remove the noise at u’ < 0 is to compute 
8 i 2 ( u ’ )  and multiply it by the filtering function 

I ,  O < u ‘ < A u  
0, elsewhere. HF(u‘)  = (9.147) 

The resulting function, 8 i2 (u’ )HF(u’ ) ,  can be Fourier transformed back into a 
correlation function. Alternatively, the filtering can be applied by convolving the 
correlation function at the output of the correlator with the Fourier transform of 
H F ( u ’ ) ,  which is 

~ , T ( T )  = AueJnAuT (si;;,Av) 
(9.148) 

(9.149) 

where FI and F2 are as defined in Eq. (9.18). The convolution leaves the de- 
sired signal unchanged but removes the negative (lower) sideband noise. Thus, 
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the resulting correlation function still has the form of Eq. (9.20). plus the positive 
(upper) sideband noise that cannot be removed. 

The role of h F  ( 5 )  can be understood in a different way. The correlation func- 
tion at the output of the correlator is computed at discrete delays at intervals 
of (2Au)-’. Therefore the correlation function in Eq. (9.20) has a full width 
at half maximum of about three delay steps. In order to estimate the amplitude 
and phase of the correlation function, one would like to do more than just take 
these values from the peak of &(T). Rather, one would like to use all the in- 
formation provided by the correlation function at various delays. hF(r )  is the 
appropriate interpolation function that properly weights the correlation function, 
gathering up the power at different delays to provide an optimal estimate of the 
fringe amplitude, phase, and delay. Note that h (t) and &(r)  are identical forms 
except for the unknown amplitude, phase, and delay. These unknown quantities 
can be estimated by the usual procedure of matched filtering or, equivalently, 
least-mean-squares analysis in which the correlation function is convolved with 
h F ( r ) .  However, pi2(?) is measured only over a finite number of delay steps, and 
some information is lost, so the signal-to-noise ratio is reduced. Assume that the 
system lowpass response is rectangular and the delay errors Atg and re are zero, 
so that the correlation function is centered in the delay range of the correlator. 
Let M be the number of delay steps (lags) in the correlator. The loss factor qs is 
the signal-to-noise ratio when M values of the correlation function are available, 
divided by the signal-to noise ratio when the entire function is available: 

(9.1 50) 

where t k  = k/2Au, M‘ = (M  - 1)/2, and M is an odd integer. The denominator 
in Eq. (9.150) equals 2Au2 [e.g., see Eq. (A8.5)], so 

2 

k = l  

(9.151) 

For M = 1, qs = I/&,  which corresponds to the case of no image rejection. 
M must be at least 3 to ensure that the peak of the correlation function can be de- 
termined; M 2: 7, for which qs = 0.975, is adequate for most purposes. Note that 
because we assumed the correlation function was exactly centered, its value will 
be zero at delay steps 2 ,4 ,6 ,8 ,  . . . , and so on. This suggests, for example, that 
a 9-delay correlator (M’ = 4) is no better than a 7-delay correlator (M’ = 3). In 
practice, the 9-delay correlator is better because the correlation function is rarely 
aligned perfectly in the correlator. In general, qs is slightly smaller than given in 
Eq. (9.15 1) if the correlation function is not perfectly aligned (Herring 1983). 
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Discrete Delay Step Loss ( q ~ )  

The delay introduced to align the bit streams is quantized at the sampling rate, 
which we assume to be the Nyquist rate. Thus there is a periodic sawtooth delay 
error with a peak-to-peak amplitude equal to the sampling period. This effect is 
also known as thefractional bit-shifr error. The delay error gives rise to a periodic 
phase shift that is a function of the baseband frequency, as shown in Fig. 9.19. The 
phase error has a peak-to-peak value of 

7r VI 
9 --, ''- A v  

(9.152) 

0 AV 
BASEBAND FREQUENCY 

0 Au 
BASEBAND FREOUENCY 

0 Av 
BASEBAND FREOUENCY 

0.5 t 
0 , Au 

BASEBAND FREQUENCY 

Figure 9.19 Discrete delay step effect. Case (a) applies when the fringe rotator corrects the 
phase for zero baseband frequency, and case (b) applies when the fringe rotator also inserts a 
rr/2 phase shift when the delay changes by one Nyquist sample. The top plots show the phase 
versus time at baseband frequency u'.  The middle plots show the phase across the baseband 
at three different times denoted by 1, 2, and 3. The bottom plots show the average amplitude 
across the baseband. 
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and the sawtooth frequency is proportional to the fringe frequency and has a max- 
imum value of 

2AvDwe 
Vds(max) = (delay steps per second), 

c 
(9.153) 

where D is the baseline length and we is the angular velocity of the earth’s rotation 
in radians per second. If nothing is done to correct for this effect and the fringe 
amplitude is averaged over many times 1 /Vds, then the phase at any frequency v’ 
is uniformly distributed over @pp. The amplitude loss as a function of baseband 
frequency is 

and the net signal-to-noise reduction over a baseband response of width Au is, 
using Eqs. (9.152) and (9.154), 

1 ’” sin(nv’/2Av) 
V D  = - d v‘ = 0.873. 

Av 7tv‘/2Av 
( 9 . 1 5 5 )  

Unless the fringe amplitude averaging is done over an integral number of fringe 
periods there is also a residual phase error, the amplitude of which decreases with 
the number of periods. When the fringe frequency is near zero this phase error 
can be significant. 

The effect of the discrete delay step can be compensated, and no sensitivity 
loss need occur. The delay error caused by delay quantization is a known quantity 
that introduces a phase slope in the cross power spectrum. Therefore, if the cross 
power spectra are calculated on a period short with respect to 1/vds, which can be 
as small as 20 ms on a 5000-km baseline with Av = 20 MHz [see Eq. (9.153)], 
then the effect of the discrete delay step can be removed by adjusting the slope of 
the phase of the cross power spectrum. This correction is easily done in spectral 
line work where spectra are calculated anyway. Note that if this correction is not 
made, the sensitivity loss factor is 0.64 at the high-frequency edge of the band, as 
given by Eq. (9.154). In this case, the amplitude response should be compensated 
by dividing the cross power spectra by L( u’). In continuum work, the correction 
is sometimes omitted because of the need to Fourier transform to the frequency 
domain and then back to cross-correlation. 

A way to compensate partially for the effect of discrete delay steps is to move 
the frequency at which the phase is unperturbed from zero to Au/2, the baseband 
center. The phase of the fringe rotator is increased by 7tAvArs, where As, is 
the delay error. Thus, when the delay changes by one sampling interval, a phase 
jump of n /2  is inserted in the fringe rotator. The resulting loss at the band edges 
is then only 0.90. The average loss over the band is given by an equation simi- 
lar to Eq. (9.153, but with the upper limit of integration changed to Au/2, and 
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equals 0.966. Also, for a symmetrical bandpass response, the residual phase error 
is zero because the net phase shift over the band at any instant is zero. 

Summary of Processing Losses 

The loss factors that we have considered are all multiplicative, so the total loss is 
given by the equation 

rl = r l ~ r l ~ r l ~ r l ~ ,  (9.156) 

where QQ = quantization loss, V R  = fringe rotation loss, qs = fringe sideband 
rejection loss, and V D  = discrete delay step loss. 

If there are fringe rotators in each signal path to the correlator, the fringe ro- 
tation loss will be & because the fringe rotator phases will be uncorrelated. A 
summary of the loss factors is given in Table 9.6. As an example, a processor 
might have two-level sampling (qQ = 0.637), three-level fringe rotators in each 
signal path ( q R  = 0.922), I I-channel correlation function (qs = 0.983), and 
band-center delay compensation ( q D  = 0.966). giving a net loss of 0.558. Thus 
the sensitivity is worse than that of an ideal analog system with the same band- 
width by a factor of about 2. 

There are other loss factors that we have not discussed here. The passband will 
not in reality be perfectly flat, or the response zero for frequencies above half the 
Nyquist sampling frequency. These imperfections introduce loss, which for an 
ideal nine-pole Butterworth filter amounts to 2% (Rogers 1980). The frequency 

TABLE 9.6 Signal-to-Noise Loss Factors 

1. Quantization Loss ('la)" 
(a) Two-level 
(b) Three-level 
(c) Four-level, all products 

2. Fringe Rotation Loss ( V R )  

(a) Two-level, one path 
(b) Three-level, one path 
(c) Two-level, both paths 
(d) Three-level, both paths 

(a) 1 channel 
(b) 3 channels 
(c) 7 channels 
(d) 1 I channels 

3. Fringe Sideband Rejection Loss ( q s )  

0.637 
0.810 
0.881 

0.900 
0.960 
0.8 10 
0.922 

0.707 
0.952 
0.975 
0.983 

4. Discrete Delay Step Loss ( 1 7 0 )  
(a) Spectral correction 1.000 
(b) Baseband center correction 0.966 
(c) No correction 0.873 

"See Section 8.3. 
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TABLE 9.7 Normalization Factors' 

1, Quantizationb 
(a) Two-level 1.57 
(b) Three-level 1.23 
(c) Four-level 1.13 

(a) Two-level, one path 0.786 
(b) Three-level, one path 0.850 
(c) Two-level, both paths 0.6 17 
(d) Three-level, both paths 0.723 

aMultiply correlator output by listed value to obtain normalized cor- 
relation function. 
bSee Section 8.3. 

2. Fringe Rotation 

responses will not be perfectly matched for different antennas (see Section 7.3). 
The phase settings of the fringe rotator may be calculated exactly at convenient 
intervals and extrapolated by Taylor series; this approximation will introduce pe- 
riodic phase jumps. The local oscillators may have power-line harmonic and noise 
sidebands that put some fringe power outside the usual fringe filter passband. Em- 
pirical values of q typical of the first decade of VLBI development were about 0.4 
(Cohen 1973). 

The q values refer to loss in signal-to-noise ratio. The fringe amplitudes must 
also be corrected for scale changes due to signal quantization and fringe rotation. 
We summarize the multiplicative normalization factors to be applied to the fringe 
amplitudes in Table 9.7. 

9.8 BANDWIDTH SYNTHESIS 

For geodetic and astrometric purposes it is useful to measure the geometric group 
delay 

(9.157) 

as accurately as possible. With a single RF band, the delay can be found by fitting 
a straight line to the phase versus frequency of the cross power spectrum. The un- 
certainty in this delay, from the usual application of least-mean-squares analysis, 
is 

(9.158) 

where cr4 is the rms phase noise for a bandwidth Au and Aums is the rms band- 
width, which for a single band of width Au is equal to A u l ( 2 f i )  (see Appendix 
12.1). u4 can be obtained from Eq. (6.64), and if processing losses are neglected, 
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Eq. (9.158) becomes 

(9.159) 

where 5‘ is a constant equal to ~ ( 7 6 8 ) ” ~  Y 16.5 [see derivation of Elq. (A12.33)], 
and TS and TA are the geometric mean system and antenna temperatures. A much 
higher value of A u,,, can be realized by observing at several different radio fre- 
quencies. This can be accomplished by switching the local oscillator of a signal- 
band system sequentially in time among N frequencies, or by dividing up the 
recorded signal into N simultaneous RF bands (channels), which are spread over 
a wide frequency interval. The temporal switching method has the disadvantage 
that phase changes during the switching cycle degrade or bias the delay estimate. 
These methods are commonly referred to as bandwidth synthesis (Rogers 1970, 
1976). 

In a practical system, signals from a small number of RF bands (-10) are 
recorded. The problem of determining the optimum distribution of these bands in 
frequency is similar to the problem of finding a minimum-redundancy distribution 
of antenna spacings in a linear array, as discussed in Section 5.5. However, here 
we do not need to have all multiples of the unit (frequency) spacing up to the 
maximum value, and some gaps are not necessarily detrimental. From the spectral 
point of view, we wish to have the bands placed in some geometric sequence of 
increasing separation so that phase can be extrapolated from one band to the next, 
as shown in Fig. 9.20, without having any 2n ambiguities in the phase connection 
process. The rms bandwidth depends critically on the unit spacing, which depends 
on the minimum signal-to-noise ratio. The delay accuracy for a multiband system 
is obtained from Eq. (9.158) in the same way as for Eq. (9.159) but without the 
condition hums = Au/(2&. Thus we obtain 

a, = (9.160) 

where Aums for a typical bandwidth synthesis system is approximately 40% of 
the total frequency interval spanned, Au is the total bandwidth, and r is the in- 
tegration time for each band. To avoid explicitly the problem of phase connec- 
tion, we can form an equivalent delay function from the cross power spectra [see 
Eq. (9.21)] of the various bands observed: 

2 f i n T A ~ A v , , ’  

(9.161) 

where the u; are the local oscillator frequencies relative to the lowest one, and 
u - u; is the baseband frequency. The maximum of I D R ( z )  I gives the maximum- 
likelihood estimate of the interferometer delay (Rogers 1970). The a priori nor- 
malized delay resolution function, obtained from Eq. (9.161) by setting 812 = 1 
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Figure 9.20 Fringe phase versus frequency for a bandwidth synthesis system. The phase is 
measured over discrete bands (crosshatched) spaced at multiples of the fundamental band 
separation frequency v,. The turn ambiguities give rise to sidelobes in the delay resolution 
function defined in Q. (9.161) and shown in Fig. 9.21. 

at frequencies where it is measured and JI2 = 0 otherwise, is 

(9.162) 

The sinc-function envelope is the delay resolution function for a single channel. 
The frequencies vi should be chosen to minimize the width of D R ( T )  while not 
allowing any subsidiary maximum to rise above a level such that it could be con- 
fused with the principal peak. In situations with low signal-to-noise ratio, the min- 
imum unit spacing should be about four times the bandwidth of a single channel. 
The delay resolution function for a five-channel system is shown in Fig. 9.21. 

Burst Mode Observing 

For certain observations there are advantages in limiting the observing time to 
short bursts during which the bit rate can be much higher than the mean data ac- 
quisition rate as limited by the tape recorder [see, e.g., Wietfeldt and Frail (1991)l. 
In pulsar observations the duration of the pulsed emission is typically -3% of the 
total time, so by recording data taken only during pulsar-on time the bandwidth 
can be increased by a factor of -33 over the maximum bandwidth for continuous 
observation. This technique requires the use of a high-speed sampler, high-speed 
memory, and pulse-timing circuitry at each antenna. During the pulse the data are 
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A U  T 

Figure 9.21 Delay resolution function for five-channel system with a unit spacing u, = 4Au 
and spacing of 0, 1,  3,7, and 1 5 ~ ~ .  as shown in part in Fig. 9.20. The “grating” lobe at r Au = 
0.25 need only be reduced sufficiently below unity to avoid delay ambiguity. 

then read out continuously at a lower rate. If the ratio of these two rates is a factor 
w, then the bandwidth can be increased by the same factor over constant-rate 
observing. For pulsars this results in an increase in sensitivity by a factor w ,  of 
which f i  can be attributed to the increased bandwidth, and f i  to the fact that 
noise is not being recorded during the pulse-off time. The second of these f i  
factors can be obtained without an increase in the data rate by simply deleting data 
during the pulse-off periods. Burst mode observing is also useful for astrometry 
and geodesy because it increases the accuracy of measurement of the geometric 
delay, and it has been used for this purpose in observations of continuum sources 
at millimeter wavelengths. 

9.9 PHASED ARRAYS AS VLBI ELEMENTS 

A phased array is a series of antennas for which the received signals are com- 
bined, as indicated in Fig. 5.4. The phase and delay of the signal from each an- 
tenna can be adjusted so that the signals from a particular direction in the sky 
combine in phase, thereby maximizing the sensitivity. It is important to consider 
the use of phased arrays as VLBI elements for two reasons. First, the elements 
of a connected-element synthesis array can be combined to form a phased array, 
thus improving the signal-to-noise ratio of a very-long-baseline interferometer in 
which they participate as a single station. Second, if elements with very large col- 
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lecting area are desired to achieve a high signal-to-noise ratio on each baseline, 
it may be advantageous to build phased arrays rather than monolithic antennas 
because the cost of a parabolic reflector antenna increases approximately as the 
diameter to the power 2.7 (Meinel 1979). 

Synthesis arrays such as the Westerbork Array, the VLA, and several others are 
also used as phased arrays to provide a large collecting area for one element in a 
VLBI system. Phasing the array consists of adjusting the phase and delay of the 
signal from each antenna so as to compensate for the different geometric paths 
for a wavefront from the desired direction. These corrections are easily made 
through the delay and fringe rotation systems that are used for synthesis imaging. 
The signals are then summed and go to a VLBI recorder. 

We can analyze the performance of a phased array that is used to simulate a 
single large antenna. Consider an array of no identical antennas for which the 
system temperature is Ts and the antenna temperature for a given source that is 
unresolved by the longest spacings in the array is TA. The output of the summing 
port is 

(9.163) 

where s, and e; represent the random signal and random noise voltages, respec- 
tively, from antenna i. Now (s;) = (6;) = 0 and, omitting constant gain factors, 
we can write (s:) = TA and (c,?) = Ts. The power level of the combined signals 
is represented as the average squared value of Eq. (9.163), 

(9.164) 
i .  j 

If the array is accurately phased, si = s j .  Also, since we are considering an 
unresolved source, (sisj) = TA. If the array is unphased, that is, if the signal 
phases at the combination point are random, then ( s i s j )  = TA only for i = j and 
is otherwise zero. In either case (s ic i )  = 0 and ( e i e j )  = 0. Thus Eq. (9.164) can 
be reduced to 

( V,',,) = ni  TA + n, Ts (9.165) 

(V,',,) = no TA + n, Ts (array unphased), (9.166) 

where the first term on the right-hand side represents the signal and the second 
term represents the noise. When the array is phased the signal-to-noise (power) 
ratio is n,TA/ Ts, and when it is unphased it is TA/ Ts. Thus the collecting area of 
the phased array is equal to the sum of the collecting areas of the individual an- 
tennas, but when it is unphased it is, on average, equal to that of a single antenna. 

A question of interest concerns the case where the antennas have different sen- 
sitivities resulting from different effective collecting areas andor system temper- 
atures. This is a matter of practical importance even for nominally uniform arrays, 
since maintenance or upgrading programs can result in differences in sensitivity. 
Consider a phased array in which the individual system temperatures and antenna 

(array phased) 
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temperatures are represented by Tsi and T A j ,  respectively. Here TA; is defined as 
the signal from a point source of unit flux density*, so TAi is a characteristic of 
the antenna alone, and is proportional to the collecting area. We consider only 
the small-signal case for which TA << Ts. For antenna i the output voltage from 
a source of flux density S is V; = s; + ci and we can write (s,?) = STA; and 

It is convenient to think of the output of each antenna as providing a measure 
of the flux density of the source which is equal to V : / T A ~ .  The expectation of 
the measured value of S should be the same for each antenna. The corresponding 
voltages are f i  = V ; / a  for the signal and E;/- for the noise. In the cross- 
correlation of the array output with another VLBI antenna, the signal-to-noise 
ratio at the correlator output is proportional to the signal-to-noise voltage ratio 
of the signal from the array. Thus, in combining the signal voltages in the array, 
we are, in effect, interested in maximizing the signal-to-noise ratio in an estimate 
of a. Because the array antennas are not identical, we should use weighting 
factors wi in combining their signals. The weights should be chosen to maximize 
the signal-to-noise ratio of the combined array signals which, in voltage, is 

(6;) = Ts;. 

(9.167) 

Note that we add the signal voltages and the squares of the rms noise voltages. Se- 
lecting the weights to provide the best signal-to-noise ratio for V i / G  is math- 
ematically equivalent to the general problem of obtaining the best estimate of a 
measured quantity from a series of measurements for which the rms error levels 
are different, but are known. The optimum procedure is to take a mean in which 
the weight of each measurement is inversely proportional to the variance of the 
error of that measurement [see Eq. (A12.6)]. The variance of V, is proportional to 
Tsj ,  and thus the variance of V, is Tsi / TA;. Thus we insert w; = TA;/ Ts; in 
Eq. (9.167) and obtain 

(9.168) 

Note that in the numerator V; is multiplied by &/ Tsi,  which is therefore the 
(voltage) weighting factor for optimum sensitivity in the signal combination. This 
conclusion is in agreement with an analysis by Dewey (1994). (Note that the 

*Since it is only the relative values of the weighting factors that matter. TA; could be defined with 
respect to any source that is common to a11 antennas, but consideration of unit flux density simplifies the 
explanation. 
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weighting factors for the signal voltages at the combination point are not wi but 
wi /&.) The corresponding weighting of the signal power at the combination 
point is proportional to T A ~  / T i .  

In synthesis arrays such as the VLA, the IF signals from the antennas are each 
delivered to a digital sampler at the same power level (of signal plus noise), and 
the signals are combined after that point so that the time delays required can 
be inserted digitally. Thus, to avoid modifying the receiving system (which is 
designed for synthesis mapping), the signals are combined with equal powers 
when the array is used in the phased mode. For the case of TA << Ts that we 
are considering, the corresponding weighting is wi = 1 /a, and the signal-to- 
noise ratio becomes 

(9.169) 

Equal-power weighting usually provides sensitivity within a few percent of opti- 
mum weighting. 

With optimum weighting in the signal combination, all antennas make some 
contribution to increasing the signal-to-noise ratio. With other weighting, the 
overall sensitivity may be improved by omitting antennas with poor performance. 
Moran (1 989) has investigated this effect for equal-power weighting. To sim- 
plify the situation it was assumed that TA is the same for all antennas and only 
Ts varies. Consider an array undergoing an upgrade of the receiver input stages, 
in which a fraction n l / n ,  have been refitted with new input stages that reduce 
the system temperature from Ts to T s / ( .  After a certain fraction of the antennas 
have been refitted, the array sensitivity is improved by omitting the unimproved 
antennas because their input stages are noisier. When TA does not vary, we can 
represent the signal voltage received by each antenna by V, and Eq. (9.169) for 
equal-power weighting becomes 

(9.170) 

Thus we can write 

XZsn2(n I refits only) 
sZsn2( all n, antennas) 

(9.171) 
The unimproved antennas should be omitted if the expression above is greater 
than unity, which occurs for 

(9.172) 

Figure 9.22 shows n l / n ,  as a function of 6 .  Thus, for example, if the refitting 
reduces Ts by a factor of six, then when about half the antennas have been refitted 



9.10 ORBITING VLBI (OVLBI) 373 

a n  -7 
-.- t 

0.4 - 

0.2 - 

0 ~ ~ ~ I ~ ~ ~ 1 ~ ~ ~ 1 ~ I ~ I I 1 ~ I r ~ ~ l ~ ~ ~ l ~ l ~ l ~ ~ ~ l ~ ~ I  
0 2 4 6 8 10 12 14 I6 I8 20 

5 
Figure 9.22 The fraction of antennas, n l / n , ,  in a phased array with equal-power weighting, 
far which the system temperature must be reduced by a factor 6 before the remaining antennas 
should be omitted. From Moran (1989), 01989 by Kluwer Academic Publishers, reproduced 
with permission. 

the others should be omitted. However, unless 6 > 4 all antennas should be 
retained. In practice, a factor of four would be an unusually big improvement, 
so it can be concluded that omitting antennas is rarely useful. A similar analysis 
based on Eq. (9.168) shows that with optimum weighting the sensitivity is never 
improved by omitting antennas. 

For tape recording in VLBI, the output of a phased array is usually requantized 
to reduce the number of bits. The first quantization of the signals, before they are 
combined, introduces quantization noise which, after combination, has a proba- 
bility distribution that tends to Gaussian as the number of antennas becomes large. 
Thus for such arrays, the additional loss in sensitivity in requantizing is close to 
the values of T]Q derived in Chapter 8, for which Gaussian noise is assumed. For 
other cases, see Kokkeler, Fridman, and van Ardenne (2001). 

9.10 ORBITING VLBI (OVLBI) 

The basic requirements for a VLBI station, whether orbiting or terrestrial, in- 
clude a timing system so that the time associated with each digital sample of the 
received signal is recoverable, and a position for the antenna known with suffi- 
cient accuracy that the fringe frequency (but not necessarily the fringe phase) can 
be determined. The timing system must be stable to a fraction of the period of the 
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I 

received signal frequency over a coherence time of tens or hundreds of seconds. 
If it is not possible to put a precise frequency standard on a satellite, then a timing 
link of equivalent stability must be implemented. Establishing this timing system, 
which provides the local oscillators and the sampling clock at the satellite, is a 
major technical challenge in OVLBI. The radial motion of the satellite introduces 
Doppler shifts and the tangential motion causes the link path to move relative to 
the atmospheric irregularities. One or more reference frequencies are transmitted 
to the satellite over a radio link. The position of the satellite at any time is known 
from standard orbit-tracking procedures to an accuracy of some tens of meters. 
This is sufficient to determine the ( u ,  v )  coordinates of the baseline, but not suf- 
ficient for the timing accuracy required. To solve the timing problem a round-trip 
phase system implemented by radio link is required. This is identical in principle 
to the round-trip systems for cables discussed in Section 7.2. A discussion of the 
basic requirements of the timing system is given by D' Addario (199 1). 

Figure 9.23 shows a simplified example of a system at the satellite and earth 
station, which illustrates the essential functions. In this case a frequency standard 
is not included in the satellite. A frequency standard in the earth station provides 
a reference frequency to synthesizer SX from which a signal is transmitted to 
the satellite. This signal provides a reference for synthesizers S,, SL, and S, that 
produce signals for the round-trip phase measurement, the local oscillator (LO) 

n SYNTHESIZERS 

SL 

AT 
D 
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of the radio astronomy receiver, and the sampling clock, respectively. The signal 
from S, is radiated to the earth station, where its phase is compared in a correlator 
with a locally generated signal at the same frequency. The correlator output is a 
measure of Ar,  the change in the time delay of the round-trip path. The signal 
from the radio telescope on the spacecraft goes to a low-noise amplifier (LNA), a 
filter, and a mixer in which it is converted to intermediate frequency (IF) by the 
LO signal from SL. The IF signal then goes to an IF amplifier, a sampler (repre- 
sented by a switch), and a quantizer, Q(x). The counter n is driven by the sampler 
clock signal from synthesizer S, and provides timing signals. These provide a 
record of when each data point was taken, information for formatting the data, 
and other timing functions required on the satellite. The counter ng provides tim- 
ing at the ground location. Some complications with the operation of the scheme 
just outlined are 

1. The round-trip phase measures the length of the round-trip path with an 
ambiguity of an integral number of wavelengths. It provides a measure of 
changes in path length that are continuous. 

2. Unless the frequencies generated by the three synthesizers at the satellite 
are harmonics of one or more reference frequencies supplied (so that no 
frequency division is necessary in the synthesizers), then the phases of the 
frequencies will be ambiguous. 

3. The transmission times for the reference frequencies and the data may differ 
because of dispersion in the path or differences in the electronics. 

These limitations cause problems when there are discontinuities in the link con- 
tact between the satellite and the earth station. If there is continuous contact dur- 
ing an observing period, then once fringes are found the combined effect of the 
ambiguities is determined. The continuous monitoring of the variation of the path 
enables the solution to be extended throughout the observing period. However, if 
signal contact is lost due to interference, atmospheric effects, or equipment prob- 
lems, phase-locked loops in the synthesizers lose lock and a phase discontinuity 
will result when the signals are regained. If the round-trip tracking is intermpted 
for a long period, another fringe search of the data may be required. 

The first satellite designed specifically for use as an orbiting element in a 
VLBI array, the HALCA satellite of Japan came into operation during 1997 
(Hirabayashi et al. 1998). As an example, some of the frequencies that were cho- 
sen for HALCA are listed as follows: 

1. Observing frequencies: 1.7, 5 ,  22 GHz 

2. Total observing bandwidth: 64 MHz (maximum) 

3. Reference frequency, earth-to-space: 15.3 GHz 

4. Reference frequency, space-to-earth: 14.2 GHz 

5. Frequency of data downlink camer: 14.2 GHz 
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6. Data rates: 128 Mbits s-' (maximum) 

7. Data modulation scheme, QPSK (quadri-phase-shift keying) 

In QPSK data modulation the carrier phase takes one of four different values 
at multiples of 90", thus representing two bits. The phase is switched between 
consecutive values at a rate of 64 MHz, or either 32 or 16 MHz if narrower band- 
widths are used. Since the data values are essentially random, the carrier phasor 
averages to zero over many cycles. At the earth station a carrier-frequency oscilla- 
tor is phase-locked to the received sidebands, and both the digital data streams and 
the carrier are recovered. In the HALCA satellite the recovered carrier acts as the 
reference frequency downlink. In phase locking the camer to the data sidebands 
a four-phase Costas loop or similar circuit is used [see, e.g., Gardner (1979)l. 
There is a 90" ambiguity in the phase of the carrier recovered from a QPSK- 
modulated signal. This ambiguity did not prove to be a serious problem in the 
HALCA project, but use of a separate downlink reference would eliminate one 
source of phase discontinuities induced by link dropouts. Since the uplink and 
downlink frequencies differ, the one-way path cannot be assumed to be exactly 
equal to half the measured round-trip path. A model of the ionization along the 
path is required to correct for differences at the two frequencies. 

D'Addario (1991) has pointed out that there are ways of designing a system in 
which the ambiguities could be eliminated. The orbital parameters of the satellite 
provide an estimate of the round-trip delay within an uncertainty Br, of order 
lo-' s, and if one were to include a round-trip measurement at a frequency no 
greater than 6r-I Hz, the ambiguity could be resolved. Round-trip measurements 
at higher frequencies would still be required to provide sufficient accuracy in the 
phase of the local oscillator on the satellite, which would be at a frequency similar 
to that of the radio astronomy signal, that is, possibly tens of gighertz or more. 
Thus a system in which the ambiguities are eliminated would require round-trip 
phase measurements at two or more frequencies. For any round-trip measurement, 
use of the same frequency in both directions would simplify the determination of 
the one-way propagation time, since the effects of dispersion would be largely 
eliminated. This would be technically feasible with time sharing or a very small 
frequency offset to allow signals in the two directions to be separated. However, 
the international radio regulations usually allocate different frequency bands for 
the two directions of transmission. Measurement of the round-trip path at two 
frequencies is therefore important in determining the relative contributions of the 
neutral and ionized media to the propagation time. If a high-stability frequency 
standard is included on a satellite it could serve as the primary clock, or as a 
backup to a radio-link timing system to help keep time at the satellite during link 
dropouts. Relativistic effects are a complication in the use of an on-board clock, 
causing its time to vary with respect to earth-station clocks as the satellite moves 
through regions of differing strength of the earth's gravitational field (Ashby and 
Allan 1979, Vessot 199 1 ). 

A correlator used in OVLBI measurements is in principle the same as one used 
in terrestrial VLBI, but it must be capable of handling the large Doppler shifts, 
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time delays, and rates of change of these quantities associated with the space 
station. A description of a lag-type correlator designed specifically to include 
OVLBI stations is given by Carlson et al. (1999). 
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10 Calibration and Fourier 
Transformation of 
Visibility Data 

This chapter is concerned with details of the calibration and Fourier transforma- 
tion of visibility data, mainly as applied to earth-rotation synthesis. The use of the 
fast algorithm for the discrete Fourier transform (FFT) and methods for evalua- 
tion of the visibility at rectangular grid points are included. Special considerations 
for certain observing modes, including spectral line, are described. Some practi- 
cal hints on the recognition and avoidance of errors in maps and the planning of 
observations are also discussed. The chapter is concerned principally with linear 
methods, and nonlinear image processing is discussed in Chapter 1 1. 

10.1 CALIBRATION OF THE VISIBILITY 

The purpose of calibration is to remove, insofar as possible, the effects of instru- 
mental and atmospheric factors in the measurements. Such factors depend largely 
on the individual antennas or antenna pairs and their associated electronics, so 
correction must be applied to the visibility data before they arexombined into an 
image. Editing the visibility data to delete any that show evidence of radio in- 
terference or equipment malfunction is usually performed before the calibration 
proper. This mainly entails examining samples of data for unexpected levels or 
phase variations. Data taken on calibration sources are particularly useful here, 
since the response to such a source is predictable and should vary only slowly 
and smoothly with time. 

In the calibration procedure we first consider instrumental factors that are sta- 
ble with time over periods of weeks or more. These include the following: 

1. Antenna position coordinates that specify the baselines. 

2. Antenna pointing corrections resulting from axis misalignments or other me- 

3. Zero-point settings of the instrumental delays, that is, the settings for which 

chanical tolerances. 

the delays from the antennas to the correlator inputs are equal. 
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These parameters vary only as a result of major changes such as the relocation of 
an antenna. They can be calibrated by observing unresolved sources with known 
positions. We assume here that they have been determined in advance of the map- 
ping observations. We also assume that correction for the nonlinearity of signal 
quantization, which is discussed in Section 8.3 under Quantization Correction, is 
applied automatically if required. 

Corrections for Calculable or Directly Monitored Effects 

Calibration of the visibility measurements for effects that vary during an obser- 
vation principally involves correction of the complex gains of the antenna pairs. 
Such factors can be divided into those for which the behavior can be predicted 
or directly measured and those for which it must be determined by observing a 
calibration source during the observation period. Examples of effects that can be 
corrected for by calculation of their effects include the following: 

1. The constant component of atmospheric attenuation as a function of zenith 

2. Variation of antenna gain as a function of elevation caused by elastic defor- 

3. Shadowing of one antenna by another at close spacings and low elevation 

angle (see Section 13.1 under Absorption). 

mation of the structure under gravity. 

angles. 

In the case of shadowing, where one antenna partially blocks the aperture of an- 
other, correction is generally difficult. The effect of the geometrical blockage is 
complicated by diffraction, the shape of the primary beam is modified, and the 
position of the phase center of the aperture is shifted, thus affecting the baseline. 
Data from shadowed antennas are frequently discarded. 

Effects within the receiving system or external to it that can be continuously 
monitored during an observation include: 

1. Variation of system noise temperature, which can result from changes in the 
ground radiation picked up in the sidelobes as the antenna tracks. This effect 
may also cause variation in the gain as a result of ALC (automatic level 
control) action that is used in some instruments to adjust the signal levels 
at the sampler or correiator (see Section 7.6). Monitoring can be performed 
by injection of a low-level, switched noise signal at the receiver input and 
detection of it later in the system. 

2. Phase variations in the local oscillator system monitored by round-trip 
phase measurement (see Section 7.2). 

3. The variable component of atmospheric delay monitored by using water 
vapor radiometers mounted at the antennas (see Section 13.1 under Water 
Vapor Radiometry). 
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Corrections for these effects are usually performed at an early stage of the cali- 
bration procedure. 

Use of Calibration Sources 

Further steps in the calibration involve parameters that may vary on timescales of 
minutes or hours and require the observation of one or more calibration sources. 
Note that the source that is the subject of the astronomical investigation will be 
referred to as the targef source to distinguish it from the calibration source, or 
calibrator. From Eq. (3.9) we can write the expression for the interferometer 
response as follows: 

where [ V ( u ,  u)luncal is the uncalibrated visibility and Z ( 1 ,  rn) is the source inten- 
sity. The complex gain factor G,,(f) is a function of the antenna pair (m, n) 
and, as a result of unwanted effects, may vary with time. A N  is the antenna 
aperture normalized to unity for the direction of the main beam. It can be re- 
moved from the source image as a final step in the image processing. The factor 
A N ( / ,  m)/JI - l2 - m2 in the intensity-visibility relationship is close to unity, 
and from here on we generally omit it, except in the case of wide-field mapping 
discussed in Section 11.8. To calibrate Gm,,(r), an unresolved calibrator can be 
observed, for which the measured response is 

where the subscript c indicates the calibrator, and S, is the flux density of the 
calibrator. In calibrating the gain it is best to consider the amplitude and phase 
separately, since the errors in these two quantities generally arise through dif- 
ferent mechanisms. For example, at short centimeter wavelengths atmospheric 
fluctuations cause phase fluctuations but have little effect on the amplitudes. To 
calibrate the visibility of the target source, we can write 

To observe the calibration source i t  is placed at the phase center of its field. Then 
assuming that the calibrator is unresolved, the phase is a direct measure of the 
instrumental phase. Thus phase calibration for the target source simply requires 
subtracting the calibrator phase from the observed phase. The visibility ampli- 
tude can be calibrated by using the moduli of the visibility terms in Eq. (10.3). 
The response to the calibrator should be corrected for the calculable andor di- 
rectly monitored effects before the gain calibration is performed. Where there 
are separate receiving channels for two opposite polarizations at each antenna, 
the calibration must be performed separately for each one. For measurements of 
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source polarization further calibration procedures are necessary, as described in 
Section 4.8 under Calibration of Instrumental Polarization. 

Calibration observations require periodic interruption of observations of the 
target source. At centimeter wavelengths the interval between calibration obser- 
vations depends on the stability of the instrument, and typically falls within the 
range of 15 min to 1 h. At meter and millimeter wavelengths the ionosphere and 
the neutral atmosphere introduce gain and phase changes, and elimination of these 
may require observation of a calibrator at time intervals as short as one or two 
minutes. 

As indicated by Eq. (7.38), G,, = g,g,*, so the measured gains for antenna 
pairs can be used to determine gain factors for the individual antennas. Using the 
antenna gain factors rather than the baseline gain factors reduces the calibration 
data to be stored, and helps in monitoring the performance of individual anten- 
nas. Also, with this technique, some of the spacings can be omitted from the 
calibration observation so long as each of the antennas is included. In practice, 
gain tables including both amplitude and phase are generated for the antennas 
as a function of time, and the values are interpolated to the times at which data 
from the target source were taken. The interpolation should be done separately 
for the amplitude and phase, not for the real and imaginary parts of the gain; oth- 
erwise the phase errors can degrade the amplitude, and vice versa. The desirable 
characteristics of a calibration source are the following. 

Flux density. The calibrator should be strong, so that a good signal-to-noise 
ratio is obtained in a short time, to reduce the (u, u) coverage lost from the 
target source. The gaps in the (u,  u) coverage are more serious for a linear 
array, in which complete sectors are lost, than for a two-dimensional array, 
in which the instantaneous coverage is more widely distributed in u and u. 

Angular width. The calibrator should, if possible, be unresolved so that precise 
details of its visibility are not required. 

Position. The position of the calibrator should be close to that of the target 
source. Effects in the atmosphere or antennas that cause the gain to vary 
with pointing angle are then more effectively removed, and time lost in 
driving the antennas between the target source and calibrator positions is 
kept small. At millimeter wavelengths, where the atmospheric phase path is 
the main factor being calibrated, the calibrator distance must be within the 
angular scale of the irregularities. This usually means a distance of no more 
than a few degrees on  the sky. 

It is not always possible to find a calibrator that satisfies all of the above require- 
ments. In such cases it may be necessary to find a source that is largely unresolved 
and close to the target source, and then calibrate it against one of the more com- 
monly used flux density references such as 3C48,3(3147,3C286, and 3C295. The 
last of these is the most reliable with regard to non-variability. Thermal sources 
such as the compact planetary nebula NGC 7027 may be useful as amplitude cali- 
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brators for short baselines. At millimeter wavelengths it is particularly difficult to 
find a source that provides a strong signal for test purposes or calibration. Disks 
of planets become resolved at rather short baselines, but the limb of the moon or 
a planet can be useful; see Appendix 10. I .  

For VLBI observations with milliarcsecond resolution, there are few suitable 
calibrators. Angular structure on this scale is sometimes variable over periods of 
months, and caution is necessary if a previously measured and partially resolved 
source is to be used as a calibrator. An alternative approach to amplitude calibra- 
tion of VLBI data involves use of the system temperatures and collecting areas 
of the individual antennas, as follows. The cross-correlation data should first be 
normalized to unity for the case where the two input data streams are fully corre- 
lated. To obtain this normalization, the data are divided by the product of the rms 
values of the data streams at the two correlator inputs. (For two-level sampling 
this rms value is unity, and for other types of sampling the rms depends on the 
setting of the sampler thresholds with respect to the level of the analog signal.) 
Then, to convert the normalized correlation to visibility '0 with units of flux den- 
sity (janskys), the amplitude is multiplied by the geometric mean of the system 
equivalent flux density values for the two antennas involved. The system equiv- 
alent flux density, S E  = 2kTs /A ,  is defined in Eq. (1.6). Determination of the 
system temperature Ts and the collecting area A usually requires measurements 
in total-power mode with each antenna. If the value of Ts corresponds to a signal 
plane above the atmosphere, then the resulting visibility values will be corrected 
for atmospheric losses. For VLBI data in which the phase is not calibrated, the 
closure relationships in Section 10.3 allow maps to be formed if absolute position 
is not required. 

10.2 DERIVATION OF INTENSITY FROM VISIBILITY 

Mapping by Direct Fourier Transformation 

The most straightforward method of obtaining an intensity distribution from mea- 
sured visibility data is by direct Fourier transformation, that is, by performing the 
transformation without putting the visibility into any special form such as that for 
the fast algorithm described in Section 5.2.  The measured visibility Ymeas(u, u )  
can be written 

where W ( u ,  u )  is the transfer function or spatial sensitivity function introduced in 
Section 5.3, and w ( u ,  v )  represents any applied weighting. The Fourier transform 
of Eq. (10.4) is the measured intensity distribution, which is 

Imeas( l ,  m) = 1(1, m) * * W ,  m). (10.5) 

Here the double asterisk indicates two-dimensional convolution and bo is the syn- 
thesized beam, which is the Fourier transform of the weighted transfer function: 
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bo(l, m) + W ( u ,  u)w(u,  u ) ,  (10.6) 

where + indicates the Fourier transform relationship. Effects such as those of 
non-coplanar baselines, signal bandwidth, and visibility averaging are unimpor- 
tant in many observations and are not included here. 

The visibility is measured at an ensemble of n d  pairs of points symmetric about 
the (u ,  u )  origin, and the direct Fourier transform of these data is represented by 

The weighting factor wi is introduced to control the form of the synthesized beam. 
Since the visibility at (-ui, - u i )  is the complex conjugate of the visibility at 
(u ; ,  u ; ) ,  the derived intensity is real. (Here we are considering the case where 
the antennas are identically polarized; for other cases, see the general analysis in 
Section 4.8.) In the Fourier transformation of the visibility, the intensity is usually 
computed at points in a rectangular grid with uniform increments in 1 and m, since 
this is a very convenient form for subsequent processing. 

Weighting of the Visibility Data 

To obtain the best signal-to-noise ratio in the summation of measurements that 
contain Gaussian noise, the individual data values should be weighted inversely 
as their variances. The same is true for the combination of sinusoidal components 
of a source map, the amplitudes of which are proportional to the correspond- 
ing visibility points. Thus, for best signal-to-noise ratio, the weights w, in (10.7) 
should be inversely proportional to the variances. If the data are obtained with a 
uniform array of antennas and receivers, and the averaging time is the same for 
all data, then the variances should all be the same and maximum signal-to-noise 
ratio is obtained by including all measurements with the same weight. This is 
known as naturat weighting. For most arrays natural weighting results in a poor 
beam shape with wide skirts because the shorter spacings are overemphasized. 
Thus the usual approach is to include in the weighting a factor that is inversely 
related to the area density of the data in the ( u ,  u )  plane. The area density po (u ,  u )  
can be defined such that the number of points in the range u f du,  u f du is 
p,(u. u )  du du (Thompson and Bracewell 1974). Although pu at any given point 
depends on the size of the increments du and du ,  it is usually possible to specify 
the variation of relative density and correct for it satisfactorily. As a simple ex- 
ample, in the observation of a high-declination source with an east-west array in 
which the antenna spacings are nonredundant integral multiples of a unit value, 
the visibility points lie on concentric circles as in Fig. 10.1. Then, if the visibil- 
ity is measured at uniform increments in hour angle, the area density at any ring 
is inversely proportional to the radius of the ring. With w ( u ,  u )  proportional to 
l / p , ( u ,  u) ,  the effective density of the data is uniform within a circle of radius 
umax determined by the maximum spacing. The beam then closely approximates 
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Figure 10.1 Transfer function (spacing loci) in  the (u, u )  plane for observations of a high- 
declination source using an east-west array with uniform increments in antenna spacing. The 
points indicate visibility measurements, and their (u,  u) positions reflected through the origin, 
for uniform intervals of time. The angle 4 indicates data for a specific hour angle. If the 
visibility values are weighted in proportion to the radii of the loci, the density of the visibility 
data is effectively uniform out to a radius urnax. 

the Fourier transform of a circular disk function which, normalized to unity at the 
maximum, is given by 

( 10.8) 

where J1 is the Bessel function of the first kind and first order. The full width of 
the beam at half maximum is 0 . 7 0 5 ~ ; ~ ~ .  and the first sidelobe response is 13.2% 
of the main beam.* Similarly, if the effective density of measurements is uniform 
within a rectangular area of dimensions 2umaX x 2umax, the synthesized beam is 

‘This synthesized response should not be confused with the power pattern of a uniformly illuminated 
antenna with circular aperture of radius r ,  which is proportional to [ J t  (2nrl/A)/(nrl/A)]’ and has a full 
width at half maximum of 0.514A/r, first null at 0.6101/r, and first sidelobe of 1.7%. The antenna pattern 
is proportional to the Fourier transform of the autocorrelation function of a uniform circular aperture. 
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closely approximated by 

sin(2xum,l) sin(2num,m) 
X 

2num,l 2xvm,m * 

(10.9) 

This beam is not circularly symmetrical, and the first sidelobe has a maximum 
value of 22% in the east-west and north-south directions through the beam center. 

With uniform weighting the strong, near-in sidelobes (close to the main beam) 
in Fig. 10.2 obscure low-level detail and thereby reduce the range of intensity 
levels that can be reliably measured. The near-in sidelobes of the functions in 
expressions (10.8) and (10.9) can be reduced at the expense of some increase in 
the width of the synthesized beam by introducing a Gaussian or similar taper into 
the weighting function. The effect of such tapering of the visibility is shown in 
Fig. 10.2. The taper can be specified in terms of the amplitude of the tapering 

1.0 
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0.3 

No taper 
Gaussian 
Gaussian 

taper to 30% 
taper to 10% 

1 .o 
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Figure 10.2 Examples of synthesized beam profiles. Curves for no taper correspond to a 
visibility distribution that is uniform within (a) a rectangular area of width 2umax. and (b) a 
circular area of diameter 2um,, . For no taper the responses correspond to expression (10.9) for 
(a) and (10.8) for (b). The effects of Gaussian tapers that reduce the visibility at the edge of 
the distribution to 30% and to 10% are also shown. Note the difference in the ordinate scales. 
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function at a distance u,,, from the (u, v) origin; a taper to -13 dB of the 
central value is commonly used. With such a taper the weighting w(u ,  u )  is the 
product of two functions: w, (u ,  u ) ,  the weighting required to obtain uniform ef- 
fective density, and w r ( u ,  u ) ,  the tapering function. Thus, the synthesized beam 
is the Fourier transform of W ( u .  u)w,(u ,  u)w,(u,  u ) :  

(10.10) 

where the bar denotes a Fourier transform. The Fourier transform of W ( u ,  u)w,  
(u, u )  is simply the beam obtained with uniform effective density, for example, 
as in (10.8) or (10.9). If w f ( u ,  u )  is a two-dimensional Gaussian function, its 
Fourier transform is also a Gaussian. Thus the sidelobe reduction results from 
convolution with a Gaussian in the (I, m) domain. The variances of functions are 
additive under convolution [see, e.g., Bracewell (2000)], so the beam obtained 
by convolution with 5, is broader than that with no tapering, as is evident in 
Fig. 10.2. 

An interesting property of the uniform weighting is that it minimizes the mean- 
squared deviation of the resulting intensity from the true intensity, within the con- 
straint that unmeasured visibility values remain zero. This can be understood as 
follows. Since the true intensity distribution I (I, rn) and the true visibility func- 
tion V ( u ,  u )  are a Fourier pair, and the weighted measured visibility and the de- 
rived intensity l o ( l ,  rn) are a Fourier pair, it follows that the differences between 
these quantities in the two domains are also a Fourier pair, to which we can apply 
Parseval's theorem. Recall that W ( u ,  u )  is the transfer function, wu(u, u )  is the 
weighting required to obtain effective uniform density of data inthe (u, u )  plane, 
and wf ( u ,  u )  is an applied taper. Thus, we can write 

(10.1 1) 

The first and second lines of Eq. ( 10.1 1 ) represent the measured and unmeasured 
areas of the (u, u )  plane, respectively. In the measured area, W ( u ,  u)w, , (u ,  u )  = 
1. For the case of uniform weighting, w r  = I ,  so the integral on the first line is 
zero. This condition minimizes the squared difference between the true and ob- 
served intensity distributions on the third line. If l(1, n i )  is an unresolved point 
source, then I o ( l ,  rn)  is equal to the synthesized beam. The uniform weighting 
minimizes the squared difference, over 4 ~ r  sr, between the synthesized beam and 
the response to a point source as it would be observed with unlimited ( 1 4 ,  u )  cov- 
erage. In this sense it is sometimes said that uniform weighting minimizes the 
sidelobes of the synthesized beam. However, as shown in Fig. 10.2, a Gaussian 
taper reduces the sidelobes outside of the main beam at the expense of widening 
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the beam. Seemingly contradictory statements about “minimizing the sidelobes” 
can occur if it is not clear exactly what is meant. Maps derived from visibility 
data that are uniformly weighted within the measured area of the ( u ,  u )  plane 
have been referred to as the principal solution or principal response (Bracewell 
and Roberts 1954). 

Briggs (1995) has developed a procedure known as robust weighting in re- 
sponse to a problem that is encountered in the use of uniform weighting,. Visi- 
bility measurements that are isolated in (u ,  u )  space can occur, for example, as 
a result of loss of neighboring measurements by malfunction or sporadic inter- 
ference. With uniform weighting such points are assigned high weights. If they 
occur at ( u ,  u )  points where the visibility is low, such data may consist mainly 
of noise. The Fourier transform of an erroneous ( u ,  u )  point and its conjugate 
introduce a cosine ripple component into the intensity background that limits 
the dynamic range of the image. Robust weighting introduces an algorithm that 
takes account of the signal-to-noise ratio of individual points in the assignment 
of weights, and reduces the weighting of noisy points. More generally, robust 
weighting can be viewed as optimizing the combined effect of noise and extended 
sidelobes, by varying the weighting of individual points between the extremes of 
natural weighting, which optimizes sensitivity, and uniform weighting, which im- 
proves the poor beam shape of natural weighting (Briggs, Sramek, and Schwab 
1999). A similar approach is useful in the case of an array with different sizes 
of antennas, or quality of receivers, since, to obtain the maximum signal-to-noise 
ratio, it is then necessary to weight the data in inverse proportion to their variance. 
The related process of reducing the sidelobe reponse in optical imaging is called 
apodization, for which there is an extensive literature; see, for example, Jacquinot 
and Roizen-Dossier (1 964), Slepian ( 1965). 

Mapping by Discrete Fourier Transformation 

The speed of the fast algorithm for the discrete Fourier transform (FFT), briefly 
discussed in Section 5.2, is a major advantage in computing large maps. However, 
the use of the FFT introduces two complications in addition to those discussed for 
the direct transform: (1) the necessity to evaluate the visibility at points on a rect- 
angular grid and (2) the resulting possibility of aliasing of parts of the image from 
outside the synthesized field. The evaluation at the grid points is often referred to 
as gridding. The output of such a process can be represented by the following 
expression: 

(C(U, u )  * * [ W ( u ,  u)V(u, u ) ] } .  (10.12) 
Au Au 

Here the visibility V ( u ,  u ) ,  measured at the points denoted by the transfer func- 
tion W ( u ,  u ) ,  is convolved with a function C(u,  u )  to produce a continuous vis- 
ibility distribution. This is then resampled at points in a rectangular grid with 
incremental spacings Au and Au. This process is often referred to as convolu- 
rional gridding. The resampling is here represented by the two-dimensional shah 
function 2111 (Bracewell 1956a), defined by 
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W C U  

= AuAu ' S ( U  - iAu,  u - ~Au), (10.13) 
i=-m k=-m 

where ' 6  is the two-dimensional delta function. The weighting to optimize the 
beam is applied to the resampled data. Although this process is described math- 
ematically in terms of convolution and resampling, in practice the convolution is 
evaluated only at the grid points. The Fourier transform of (10.12) represents the 
measured intensity: 

I,,,,(f, m )  = 'III(lAu, m A u )  * * W(f, m )  * * {c(l, rn) [w(/, m )  * * I ( / ,  m ) ] }  . 

(10.14) 

As a result of the Fourier transformation, the intensity function I (1, m )  is con- 
volved with the Fourier transform of the transfer function, multiplied by c(1, m) 
which is the Fourier transform of the convolving function, and then convolved 
with the Fourier transforms of the weighting and resampling functions. This last 
convolution causes the whole map to be replicated at intervals Au-I in 1 and 
Au-' in m .  These intervals are equal to the dimensions of the map in the (I, m )  
plane; that is, Au-' = M A f  and Au-' = N A m ,  for an M x N point array. The 
function c(l, m )  takes the form of a taper applied to the map, and if this function 
does not vary greatly on the scale of the width of XI,  m ) ,  which is usually the 
- case for large maps, then W(f, m )  in Eq. (10.14) can be convolved directly with 
W (1, m )  * * I (I, m), and Eq. (1 0.14) becomes 

I, , , , (f ,  m )  2: *III(I Au,  m Au) * * {p(f, m )  [ I ( / ,  m )  * *bo(f ,  m ) ] )  , (10.15) 

where the synthesized beam bo(l, m )  enters through the relationship in Eq. (10.6). 
Comparison with Eq. ( 1  0.5) shows that the effect of the gridding and resampling 
is to multiply the map by c(1, m )  and replicate it. This replication introduces the 
aliasing. 

Returning to the estimation of the visibility at the grid points, we might per- 
haps expect the best technique to be some form of exact interpolation so that 
the resulting values are equal to those that would be obtained by measurement 
at the grid points. A method of this type has been described by Thompson and 
Bracewell (1974). However, the.problem of aliasing remains, and the most ef- 
fective way to deal with this is to convolve the data in the ( u ,  u )  plane with the 
Fourier transform of a function that, in the (1 .  m )  plane, varies very little over the 
map and then falls off rapidly at the map edges. We therefore look for a convolv- 
ing function C(u,  u )  for which the Fourier transform z(1, m )  has these properties. 
An ideal function with infinitely sharp cutoff at the field edges would completely 
eliminate the aliasing since there would be no overlap of the replicated maps. Un- 
fortunately, this ideal is not practical because the required convolving function is 
not bounded in the (u ,  u )  plane. Nevertheless, a very worthwhile degree of sup- 
pression of the aliasing is possible with a careful choice of functions. A common 
and convenient practice is to combine both the gridding and the convolution to 
minimize aliasing into a single operation. Note, however, that at the (u ,  u )  points 
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at which the measurements are made the function C ( u ,  u )  * * [W(u ,  u)V(u,  u ) ] ,  
in general, is not equal to the measured visibility V(u,  u) .  Thus the gridding pro- 
cess cannot be described as interpolation. Also, because of the convolution, the 
sampled points represent averages of the visibility local to the grid points, rather 
than samples of the visibility function. Finally, note also that although convolu- 
tion is effective in suppressing artifacts that result from gridding of the data, it 
does not reduce sidelobe or ringlobe responses to sources located outside the area 
of the map. 

Convolving Functions and Aliasing 

From the foregoing discussion we can conclude that the point of principal concern 
in the use of the FFT is the choice of convolving function. A detailed discussion 
of convolving functions is given by Schwab (1984). It is convenient to consider 
those that are separable into one-dimensional functions of the same form for u 
and u,  that is, 

We therefore discuss some examples of the function CI . 

Rectangular Function. This function is the one used in cell averaging discussed 
in Section 5.2. It can be written 

U 
Cl(u) = (Au)-'n(-), Au 

where ll is the unit rectangle function defined by 

The Fourier transform of CI (u) is 

( I  0.17) 

(10.18) 

(10.19) 

At the edge of the synthesized field, 1 = (2Au)-' and cl(1/2Au) = 2 / ~ .  The 
map is tapered by a sinc-function profile in the I and m directions and a sinc- 
squared profile along the diagonals. Equation (10.19) is plotted in Fig. 10.3, and 
the value at the first maximum outside the edge of the map is 0.22 of the value at 
the map center. The effect of aliasing is shown more directly in Fig. 10.4a, which 
is a plot of cl(I)/cl[f(I)], where f ( I )  is the value of I within the map [i.e., 
I f ( l ) l  < (2Au)-' 1 at which the alias of a feature of 1 would appear. This quantity 
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Figure 10.3 Three examples of the tapering function cl ( I ) ,  which is the Fourier transform 
of the convolving function CI ( u ) .  For the Gaussian convolving function, (Y = 0.75. For the 
Gaussian-sinc convolving function, (YI = 1.55, ( ~ 2  = 2.52, and beyond the fourth subsidiary 
maximum only the envelope of the maxima is shown. On the abscissa scale the center of the 
map is at zero and the edge at 1 .O. The data for the Gaussian-sinc function were computed by 
F. R. Schwab. 

gives the relative response to an aliased feature in a map that has been corrected 
for the taper imposed by cl ( 1 ) .  It is clear that simple averaging of points within 
a rectangular cell performs poorly in suppressing aliasing. 

Gaussian Function. Here we have 

(10.20) 
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(10.21) 

The value of the constant a can be chosen to vary the widths of the functions 
as desired. If a is too small Cl(u) will be too narrow, and only visibility mea- 
surements that are close to grid points will be used effectively in the mapping. If 
a is too large the function cl (u) will taper the resulting map too severely. The 
Gaussian convolving function was used in the early years of the Westerbork array 
with a = 2 m / n  = 0.750 (Brouw 1971). The value of the factor e-('/crAu)2 in 
CI (u) is then equal to 0.41 for a point on a diagonal in the (u, u )  plane midway 
between two grid points. Thus, all measured points enter into the map with sig- 
nificant weights, and at the edge of the map the tapering factor El = i. A curve 
for the Gaussian function is shown in Fig. 10.3. 

Gaussian-Sinc Function. The ideal form for the map tapering function cl(i) 
would be a rectangle, which corresponds to convolution with a sinc function as 
in Eq. (10.19). However, the envelope of a sinc function falls to zero slowly as its 
argument increases, and the computation required for the convolution becomes 
large. Truncation of the sinc function is undesirable because in the 1 domain the 
desired rectangular function is convolved with the Fourier transform of the trun- 
cation function, and this destroys the sharp cutoff at the map edges. A better 
procedure is to multiply the sinc function with a Gaussian, which gives 

(10.22) 

and 

Good performance is obtained with a!  = 1.55 and 012 = 2.52, with the convolu- 
tion extending over an area about 6Au in width. Corresponding curves for ?I (I) 
and the resulting aliasing are given in Figs. 10.3 and 10.4b. This convolving func- 
tion is much better than either of the two previous examples. 

Spheroidal Functions. Various other functions can be found that have the features 
desirable for convolution. As a measure of the effectiveness of the suppression of 
aliasing, Brouw (1975) has suggested the following quantity: 

( 10.24) 

which shows the fraction of the integrated squared amplitude of the tapering 
function that falls within the map. Maximization of (10.24) provides a criterion 
for choosing a convolving function. This approach led to consideration of the 



10.2 DERIVATION OF INTENSITY FROM VISIBILITY 397 

1 2 3 4 5 6 7 8 9 
2Au1 

(b) 

Figure 10.4 Logarithmic plot of the factor by which the amplitudes of structures outside the 
map are multiplied when aliased into the map. On the abscissa scale 1.0 is the edge of the map 
and 2 ,4 ,6 ,  . . . are the centers of the adjacent replications. (a) Aliasing factor for a rectangular 
convolving function of width equal to Au (cell averaging). (b) Aliasing factor for a Gaussian- 
sinc convolving function with the optimized parameters given in the text. The broken line 
indicates the envelope of the maxima. Data computed by F. R. Schwab. 

prolate spheroidal wave functions [see, e.g., Slepian and Pollak (1961)l and the 
spheroidal functions (Modes 1970). Schwab (1984) found that among functions 
investigated, the latter provide the best approach to an optimum convolving func- 
tion. The spheroidal functions are solutions to certain differential equations and 
are not expressible in simple analytic form. In applying such functions for convo- 
lution of visibility data, they are computed in advance to provide a lookup table. 
Comparison of some functions of this type with the Gaussian-sinc function shows 
that the aliasing factor c, (l)/cl [ f ( l ) ]  falls off about as rapidly from the center 
to the edge of the map, but as 1 increases beyond the edge of the map, it reaches 
values an order of magnitude or more lower than those for the Gaussian-sinc 
function (Briggs, Sramek, and Schwab 1999). Computational capacity compli- 
cates the choice of the optimal function, since it limits the area of the (u ,  u )  plane 
over which the convolution can be performed. Commonly this area is six to eight 
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grid cells wide and centered on the point to be interpolated. Roundoff errors in 
the Fourier transform are amplified in the removal of the tapering function and 
may limit the allowable taper at the map edges. 

Aliasing and the Signal-to-Noise Ratio 

Features aliased into a map from outside the boundary include not only the images 
of features on the sky but also the random variations resulting from the system 
noise. If we consider a direct Fourier transform of the noise component of the 
measured visibility, it is clear from expression (10.7) that for any point (1 ,  rn) the 
visibility data are weighted by complex exponential factors, all of which have 
the same modulus. Since the noise is independent at each data point in the (u, u) 
plane, the variance of the noise in the (I, rn) plane is statistically constant in all 
parts of the map. If the FFT is used, however, the rms noise level across the map 
is multiplied by the function E ( / ,  m), and details beyond the map edge are aliased 
into the map. Note that the noise contributions combine additively in the variance. 
Thus, in one dimension the noise variance as a function of I is proportional to 

III(lAu) * lC1(1)12. (10.25) 

The replication resulting from the FFT can also be written in terms of a summa- 
tion, and the variance of the noise at a point 1 within the map is then proportional 
to 

M 

(10.26) 

Usually (1 )  decreases sufficiently with 1 that only the noise from the adjacent 
replication of the map makes a serious contribution through aliasing. This con- 
tribution is greatest near the edge of the map, as shown in Fig. 10.5 (Crane and 
Napier 1989). 

If the convolving function is the Gaussian-sinc type, we see from Fig. 10.4b 
that, except for values of 2Au1 between 1 .O and 1.1, aliased features are reduced 
in amplitude by a factor < and in the square of the amplitude by < lo-'. 
Thus, there is no significant increase in the noise level as a result of aliasing, 
except in a narrow zone at the edge of the map. 

At the other extreme, the aliasing is most serious in the case of cell averaging, 
for which CI (u) is the sinc function given by Eq. (10.19). Expression (10.26) then 
becomes 

(10.27) 

which indicates that the aliasing exactly cancels the taper, and the variance of the 
noise is constant with I, that is, before any correction for tapering of the astro- 
nomical features in the image is applied. (This result could also be deduced from 
the fact that in cell averaging each visibility measurement contributes to one grid 
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Figure 10.5 Effect of aliasing on the variance of the noise across a map. The abscissa in each 
case is 1 in units of half the map width; the map center is at 0, the edge at 1.0, and the center 
of the adjacent replication at 2.0. (a) Solid curve shows the taper for a Gaussian convolving 
function Cl ,  and broken curves show the effect of aliasing. (b) Variance of the noise including 
aliased component after correction for taper CI . After Napier and Crane (I 982). 

point only, and the noise components of the visibility at the grid points are there- 
fore independent.) However, the intensity distribution of the sky within the field 
being mappd i s  tapered by the function c, ( l ) ,  and correction for this taper then 
causes the noise to increase toward the map edges. For the sinc-function taper the 
noise is increased by a factor of n/2 at the edge of the map on the 1 and m axes and 
by (n/2)’ at the corners. At the center of the map the aliased contribution origi- 
nates at points for which 2Aul is an even integer in the plots in Fig. 10.4, and in 
both cases shown the aliasing factor cl(l)/c, [f(1)] drops to a very low value. 
With any of the convolving functions that we have considered, there is no signif- 
icant increase in the noise at the center of the map, and the signal-to-noise ratio 
for a source at that point is determined by the factors discussed in Section 6.2. 

10.3 CLOSURE RELATIONSHIPS 

Closure effects are relationships between visibility values for baselines that form 
a closed figure, for example, a triangle or quadrilateral with the antennas at the 
vertices. As shown by Eqs. (7.37) and (7.38), the correlator output for antenna 
pair (m, n) can be written as 

( 10.28) 

where G,,, is the complex gain for the antenna pair, and g, and g,, are gain factors 
for the individual antennas. We ignore any gain terms that do not factor into the 
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terms for individual antennas (see Section 7.3 under Tolerances on Variation of 
the Frequency Response: Gain Errors). Considering first the phase relationships, 
we represent the arguments of the exponential terms of r,,, gfn, g, ,  and Vmn by 
#rmn 4 g m  4 g n ,  and @"mn respectively. Thus we can write 

Now for three antennas m ,  n, and p the phase closure relationship is 

The antenna gain terms, g ,  and so on, contain the effects of the atmospheric 
paths to the antennas as well as instrumental effects, and since these terms do 
not appear in Eq. (10.30), it is evident that the combination of the three correlator 
output phases constitutes an observable quantity that depends only on the phase of 
the visibility. This property of the phase closure relationships was first recognized 
and used by Jennison (1958) in the experiments mentioned in Section 1.3 under 
Early Measurements of Angular Width. 

If we have n, antennas and we measure the correlation of all pairs, the number 
of independent phase closure relationships is equal to the number of correlator 
output phases less the number of unknown instrumental phases, one of which 
can be arbitrarily chosen. If there are no redundant spacings, then each closure 
relationship provides different information on the source structure. The number 
of phase closure relationships is 

(10.31) I I Tn,(n, - 1) - (n,  - 1) = ?(no - l ) (n ,  - 2). 

This number can also be obtained by taking one antenna and considering the 
number of different groups of three that can be formed that include it. Each of 
these groups must contain one baseline that is not in any other group so that the 
relationships are independent. 

An amplitude closure relationship involves four antenna pairs, for which four 
antennas m , n ,  p ,  and q are required: 

(10.32) 

The proof of Eq. (10.32) is obtained by substituting terms of the form g,g,*V,,,, 
into the left-hand side of Eq. (10.32), using Eq. (10.28). The moduli of the g terms 
then cancel out. There are two independent closure relationships for the four an- 
tennas; a second one may be obtained by replacing the subscripts in the numerator 
(or denominator) of Eq. (10.32) by mq and np. The number of independent am- 
plitude closure relationships for n, antennas with no redundant baselines is equal 
to the number of measured amplitudes, $n,(n, - I ) ,  less the number of unknown 
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antenna gain factors nu, that is, 

zno(nu 1 - I )  - nu = ;n,(n, - 3). (10.33) 

For early usage of the principle of taking ratios of observed visibility amplitudes 
to eliminate instrumental gains, see Smith (1952) and Twiss, Carter, and Little 
(1960). 

Note that a fundamental requirement for the validity of the closure relation- 
ships is that at any instant it should be possible to represent the effect of any signal 
path from the source to the conelator by a single complex gain factor. Thus the 
effects of the atmosphere must be constant over the source under observation, that 
is, the angular width of the source should be no greater than the isoplanatic patch 
size for the atmosphere. The isoplanatic patch is the area of sky within which the 
path length for an incident wave remains constant to within a small fraction of 
a wavelength; see also Section 11.9 under Low-Frequency Mapping. The size of 
the isoplanatic patch varies with frequency. At a few hundred megahertz or less 
it is common to have more than one source within an antenna beam, and these 
may be separated sufficiently in angle that ionospheric conditions may be differ- 
ent for each one. The closure conditions will then be different for each source, 
and use of the closure principle then becomes much more complicated than in the 
single-source case discussed above. 

The closure relationships have proved to be very important in synthesis map- 
ping. When applied to unresolved point sources, the phase closure should be zero 
and the amplitude closure unity. Thus they are useful in checking the accuracy 
of calibration and examining instrumental effects. For resolved sources they can 
be used as observables in situations where direct calibration by observation of 
a calibration source is not practicable, as is sometimes the case in VLBI. Most 
importantly, they can be used to improve calibration accuracy for observations 
where high dynamic range is required, as discussed in Section 11.5. The ampli- 
tude closure relationships are less frequently used because it is generally easier to 
calibrate the visibility amplitudes than the phases. However, they provide a useful 
check in cases where the amplitude is required with especially high accuracy. 

10.4 MODEL FITTING 

The fitting of intensity models to visibility data was practiced extensively in early 
radio interferometry, especially when the visibility phase was poorly calibrated 
or the data were not sufficiently complete to allow Fourier transformation. Ex- 
amples of simple models are shown in Figs. 1.5, 1.10, and 1.14. In the absence of 
phase information there is an ambiguity of 180" in position angle of the model. 
However, there are a number of circumstances in which model fitting offers ad- 
vantages in the interpretation of interferometer data, as follows: 

Interpretation of VLBI observations with extreme angular resolution, for ex- 
ample, those made between the earth and deep space in which the (u,  u )  
plane may not be well sampled. 
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For certain types of sources the radio emission can be specified with reason- 
able accuracy in terms of a physical model that involves only a small number 
of parameters. In such cases, when the source is only partly resolved, the pa- 
rameters of the physical model can best be determined by fitting the model 
visibility function directly to the observed values. An example is radiation 
from the extended atmosphere of a star, related to the stellar wind. Measure- 
ments by White and Becker (1982) of P Cygni, for which the relative visi- 
bility amplitude was not less than -0.35 at their longest baseline, provide a 
good example. 
Determination of change in a parameter of a source in which time-separated 
observations may not have identical (u ,  u )  coverage. Fitting the same model 
(allowing the parameters of interest to vary) to both data sets is likely to give 
the best evidence of change. An interesting example is provided by Massun 
(1986) in a measurement of angular expansion of a compact planetary neb- 
ula. From several data sets obtained at different epochs, the image from the 
one with the best (u, u )  coverage was used as a model to fit to the others, 
thereby avoiding direct comparison of images made with different synthe- 
sized beams. 
Determination of probable error in a measured parameter. Processing by 
nonlinear algorithms, in particular CLEAN (see Section 11.2), which are 
usually necessary to maximize dynamic range, may result in image-plane 
noise for which the characteristics are not well understood. However, in 
model fitting in the (u ,  u )  plane the noise is generally Gaussian. 
Provision of a starting point for maximum entropy deconvolution and self- 
calibration described in Chapter 11. A simplified model is often all that is 
necessary. 

Basic Considerations for Models 

Gaussian functions are convenient model components for source intensity. They 
are always positive and vary smoothly with angle, as do many of the structures in 
nebulae and radio alaxies. A circularly symmetrical Gaussian function of half- 
amplitude width J- 8 In20, centered at (11, m i ) ,  is represented by 

1-  - ( I  - 1 1 ) 2  - (rn - m1)2 
2 0 2  

I G ( l r m )  = Ioexp (1 0.34) 

The corresponding visibility function is 

2 2  2 
~ G ( U ,  U) = G a ~ o e x p  (- [27~ 0 ( U  + u 2 )  + j27r(u11 + urnl)]}.  (10.35) 

The visibility has real and imaginary components that are sinusoidal cormga- 
tions, the ridges of which are normal to the radius vector to the point (ti, r n l )  in 
the image domain. These visibility components are modulated in amplitude by 
a Gaussian function centered on the (u ,  u )  origin and of width inversely propor- 
tional to 0. Examination of the visibility distribution can thus indicate the form 
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and position of the main intensity components. For discussions and examples of 
this type of model fitting, see, for example, Maltby and Moffet (1962), Fomalont 
(1968), and Fomalont and Wright (1974). 

A relationship between the visibility function and the moments of the intensity 
distribution provides some further insight into model fitting. In one dimension, 
for simplicity, the visibility function can be expressed as a Taylor series: 

U 2  U" 
V ( U )  =Y(O)+UY'(O)+ - ' V ' ' ( O ) + ~ ~ ~ + - - Y ' " ' ( O ) + ~ ~ ~ .  (10.36) 

2! n! 

The derivatives of the visibility are related to the moments of the intensity distri- 
bution as follows: 

M 

, W ( O )  = (--j2TT)" ( I  0.37) 

Equation ( 10.37) follows from a general relationship between the derivatives 
of a function at the origin and the moments of its Fourier transform [see, e.g., 
Bracewell (2000)]. 

The zero-order moment is equal to the flux density S, the odd-order moments 
contribute to the imaginary components of the visibility, and the even-order mo- 
ments contribute to the real part. If the source is symmetrical in 1,  the odd-order 
terms are zero. If, in addition, the source is only slightly resolved, the decrease 
in V results mainly from the second-moment term. Then the source can be rep- 
resented by any symmetrical model with an appropriate second moment (Moffet 
1962). Examination of the visibility functions of simple symmetrical models, as 
shown in Fig. 1.5, indicates that it is not practical to differentiate between them 
unless the function is measured down to a visibility amplitude of -0.25. Differ- 
ences are best revealed by the rate at which the function dies away with increasing 
baseline length and by the amplitude of the oscillations as it does so. 

A review of methods of model fitting is given by Pearson (1999). After a model 
is chosen, the next step is to choose a function that will provide a measure of the 
quality of the fit. Assuming Gaussian errors (noise) in the ( u ,  u )  plane, we express 
the likelihood of the model as a product of Gaussian terms: 

where nd is the number of independent visibility data, M is the Fourier transform 
of the model, which has p parameters ul to up, and ai is the standard deviation 
of Y(ui ,  u;) .  Maximizing the likelihood is equivalent to minimizing the negative 
log of (10.38), that is, minimizing 
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Here x 2  has the usual statistical definition [see, e.g., Taylor (1982)]. Thus, with 
Gaussian errors, the method becomes one of least squares. Note that this may not 
apply if interference is present. Methods for computing least-squares solutions 
are discussed in Appendix 12.1, and can also be found, for example, in Bev- 
ington and Robinson (1992). The expected minimum for x 2  is n d  - p, and the 
standard deviation of x 2  is ,/-. If the measured visibility is not satisfac- 
torily calibrated, closure values for the visibility phase andor amplitude, rather 
than individual visibility values, can be used in the model fitting. 

Cosmic Background Anisotropy 

In studies of the anisotropy of the cosmic microwave background radiation 
(CMB), for example, by using an array of the type shown in Fig. 5.24, the ob- 
jective is to determine the statistical properties of the angular variation of the 
brightness temperature. These can be obtained directly from the visibility values 
without generation of sky brightness images. The required statistics are com- 
pletely specified by the amplitudes of spherical harmonics, in terms of which 
the CMB variations can be represented. For a spherical harmonic of order C, the 
amplitude is proportional to the visibility V ( u ,  u ) ,  where C = 2 n d m ’ .  The 
( u ,  u )  coverage therefore determines the range of C that can be examined. Ex- 
tending the measurements over several contiguous areas of the primary-element 
beams, as in mosaicking (see Section 1 1.6), increases the spatial resolution in u 
and u,  and hence also the resolution of the harmonic amplitudes in l .  A major 
concern is the removal of brightness components resulting from “foreground” 
objects such as the Galaxy and discrete radio sources; see, for example, White 
et al. (1999). 

10.5 SPECTRAL LINE OBSERVATIONS 

General Considerations 

A spectral line correlator produces separate visibility measurements at many 
points across the receiver passband, and for each of these a different intensity 
distribution can be obtained. The data reduction involved is in principle the same 
as used in continuum mapping, but differs in some practical details. The number 
of channels into which the received signal is divided is typically 100-1000. The 
discussion in this section is largely based upon Ekers and van Gorkom (1 984) 
and van Gorkom and Ekers (1989). 

Calibration of the instrumental bandpass response is perhaps the most impor- 
tant step in obtaining accurate spectral line data. Generally the channel-to-channel 
differences are relatively stable with time and need not be calibrated as frequently 
as the time-variable effects of the overall receiver gain. The overall gain variations 
require periodic observation of a calibration source as described for continuum 
observations. For this purpose the summed response of the individual channels is 
often used, since a much longer observing time would be required to obtain a suf- 
ficient signal-to-noise ratio in each narrow channel. For the bandpass calibration 
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a longer observation of a calibrator can be made to determine the relative gains 
of the spectral channels. Since the relative gains of the different channels into 
which the bandpass is divided change very littke with time, the bandpass calibra- 
tion need only be performed once or twice during, say, an eight-hour observation. 
The bandpass calibration source should be unresolved, strong enough to provide 
good signal-to-noise ratio in the spectral channels, and have a sufficiently flat 
spectrum. However, it need not be close in position to the source being mapped. 

Bandpass ripples resulting from standing waves between the antenna feed and 
the reflector, which pose a serious problem for single-antenna total-power sys- 
tems, are much less important for interferometers. This is because the instru- 
mental noise, including thermal noise picked up in the antenna sidelobes, is not 
correlated between antennas. On the other hand, for digital correlators, the Gibbs- 
phenomenon ripples in the bandpass, which arise in Fourier transformation from 
the delay to the frequency domains, introduce a problem not found in autocorre- 
lators. Because the cross-correlation of the signals from two antennas is real but 
not symmetrical as a function of delay, the cross power spectrum as a function of 
frequency is complex. (The autocorrelation function of the signal from a single 
antenna is real and symmetrical, and the power spectrum is real.) As explained 
in Section 8.7 (see Fig. 8.12), the imaginary part of the cross power spectrum 
changes sign at the origin, but the real part does not. Because of this large dis- 
continuity at the frequency origin, ripples in the imaginary part of the frequency 
spectrum are of larger relative amplitude than those in the real part. The peak 
overshoot in the imaginary part is 18% (9% of the full step size); see also Bos 
(1984, 1985). Figure 10.6 shows a calculated example. The ratio of the real and 

( 0 1  ( b l  

Figure 10.6 (a) The cross power spectrum resulting from a continuum source in which the 
phase is arbitrarily chosen such that the amplitudes of the real and imaginary parts are equal. 
(b) Computed response of a cross-comelator with 16 channels to the spectrum in (a). Note the 
difference in amplitude of the ripples in the real and imaginary parts. From D’ Addario (1989), 
courtesy of the Astron. SOC. Pacific Conf. Ser. 
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imaginary parts depends on the instrumental phase (which is not calibrated out 
at this stage of the analysis), and on the position of the source of the radiation 
relative to the phase center of the field. 

Increasing the number of lags of a lag correlator, or the size of the FFT in an FX 
correlator, improves the spectral resolution and confines the Gibbs-phenomenon 
ripples more closely to the passband edges. The data from the channels at the 
band edges are often discarded because of the ripples and the roll-off of the fre- 
quency response. An effective way to reduce the amplitude of the ripples is to 
taper the cross-correlation function and thus introduce smoothing into the cross 
power spectrum. For this smoothing the Hanning function (see Table 8.4) is often 
used. Van Gorkom and Ekers (1  989) draw attention to the following examples: 

1. If the field contains a line source but no continuum, and the line is confined 
to the central part of the passband, then the spectrum has no discontinuity 
at the passband edges. This is the only case where it is advisable to use 
different tapering of the cross-correlation function for the source and the 
continuum calibrator. 

2. If in addition to the line source the field contains one continuum point 
source, and if both this source and the bandpass calibrator are at the cen- 
ters of their respective fields, then an accurate calibration of the bandpass 
ripples is possible. The same weighting must be used for the source and 
calibrator. 

3. In more complicated cases, for example, when there is both a line source 
and an extended continuum source within the field, the ripples will be 
different in the two cases and exact calibration is not possible. Hanning 
smoothing of the spectra of both the source and the calibrator is recom- 
mended. 

VLBI Observations of Spectral Lines 

Since VLBI observations are limited to sources of very high brightness tem- 
perature, spectral line measurements in VLBI are used mainly for the study of 
masers and absorption of emission from bright extragalactic sources by molecu- 
lar clouds. Frequently observed maser lines include those arising from OH, H20, 
CH30H, and SiO. For absorption studies, many atomic and molecular species 
can be observed since the brightness temperature requirement is fulfilled by the 
background source. The formalism of spectral line signal processing is described 
in Section 9.3. Special considerations for astrometric measurements are given 
in Section 12.5. Here we discuss several practical issues related to the handling 
of spectroscopic data. The use of independent frequency standards at the anten- 
nas results in time-dependent timing errors, which introduce linear phase slopes 
across the basebands. The difference in Doppler shifts among the antennas can be 
large, and hence the residual fringe rates can also be large, which may necessi- 
tate short integration times for calibration. For masers, the phase calibration can 
usually be obtained from the use of the phase of a particular spectral feature as 
a reference. The amplitude calibration can be obtained from the measurement of 
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the spectra derived from the data recorded at individual antennas. More details of 
procedures for handling spectral line data can be found in Reid (1995, 1999). 

In spectral line VLBI it is usual to observe a compact continuum calibrator 
several times an hour, preferably one strong enough to give an accurate fringe 
measurement in one or two minutes of integration. If a lag-type correlator is used 
to cross-correlate the signals, the output is a function of time and delay. Equation 
(9.16), in which Arg and e2, are functions of time, shows cross-correlation as a 
function of time and delay. By Fourier transformation, the arguments t and t can 
be changed to the corresponding conjugate variables, which are fringe frequency 
(or fringe rate) UJ and the frequency of the spectral feature u,  respectively. Thus 
the correlator output can be expressed as a function of (t, t), (ur,  t ) ,  (r, u) ,  or 
(uf, u) ,  and can be interchanged between these domains by Fourier transforma- 
tion. This is important because some steps in the calibration are best performed 
in particular domains. Note that the fringe frequency in VLBI observations re- 
sults mainly from the difference between the true fringe frequency and the model 
fringe frequency used to stop the fringes. Consider first the data from the contin- 
uum calibrator. In fringe fitting for a continuum source it is advantageous to use 
visibility data as a function of fringe frequency and delay, (uf, T), as shown in 
Fig. 9.4. In that domain the visibility data are most compactly concentrated and 
therefore most easily identified in the presence of the noise. In the absence of er- 
rors the visibility will be concentrated at the origin in the (uf, t) domain. A shift 
from the origin in the r coordinate indicates timing errors resulting from clock 
offsets or baseline errors. The shift A r  represents the difference in the errors for 
the two antennas. Values of A t  determined from the continuum calibrator are 
used to apply corrections to the spectral line data. Variation of the A r  values over 
time requires interpolation to the times of the spectral line data. The continuum 
data can also be used for bandpass calibration, to determine the relative amplitude 
and phase characteristics of the spectral channels. 

For fringe fitting the spectral line data, it is advantageous to transform to the 
(t , u )  domain since, in contrast to the continuum case, the spectral line data repre- 
sent features that are narrow in frequency. The cross-correlation function is there- 
fore correspondingly broad in the delay dimension, and generally more compact 
in frequency. Note that in the t-to-u transformation, u is not the frequency of the 
radiation as received at the antenna, since the frequency of a local oscillator (or a 
combination of more than one local oscillators) uLo has been subtracted. Thus u 
here represents the frequency within the IF band that is sampled and recorded for 
transmission to the correlator. The ( t  , u )  domain is also appropriate for inserting 
corrections for the timing errors A t  determined from the continuum data. These 
corrections are made by inserting phase offsets that are proportional to frequency. 
Thus the data as a function of (t, u )  are multiplied byf exp( j21rAru). If the van- 
ation in the A t  values over time results from a clock rate error at one or both 
of the antennas, correction should be made for the associated error in the fre- 
quency uLo at the antennas. The resulting phase error is corrected by multiplying 
the correlator output data by exp( j2n ATU,J. 

'Note that the required sign of the exponent in this and similar expressions used in this subsection may 
be positive or negative depending on other sign conventions used. 
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Since Doppler shift corrections (see Appendix 10.2) are rarely made as local 
oscillator offsets at the antennas, these corrections must be made at the correla- 
tor or subsequently in the post-processing analysis. The diurnal Doppler shift is 
normally removed at the station level in the precorrelation fringe rotation, where 
the signals are delayed and frequency-shifted to a reference point at the center of 
the earth. Correction for the Doppler shift due to the earth’s orbital motion and 
the local standard of rest, as well as any other frequency offset, can conveniently 
be made on the post-correlation data by use of the shift theorem, that is, mul- 
tiplication of the correlation functions by exp(j2nAur), where Au is the total 
frequency shift desired. 

The visibility spectra can be calibrated in units of flux density by multipli- 
cation of the normalized visibility spectra by the geometric mean of the system 
equivalent flux densities (SEFDs) of the two antennas concerned, as discussed in 
Section 10.1 under Use of Calibration Sources. The SEFD is defined in @. (1.6). 
It can be determined from occasional supplemental measurements at the anten- 
nas, and the results interpolated in time. A better method for strong sources is to 
calculate the total-power spectrum of the source from the autocorrelation func- 
tions of the data from each antenna. These must be corrected for the bandpass re- 
sponse, which can be obtained from the autocorrelation functions on a continuum 
fringe calibrator. The amplitude of a specific spectral feature is proportional to 
the reciprocal of the SEFD. If greater sensitivity is required, then each measured 
spectrum can be matched to a spectral template obtained from a global average of 
all the single-antenna data or from a spectrum taken with the most sensitive an- 
tenna in the array. The disadvantage of this method is that it is seldom convenient 
to acquire bandpass spectra often enough to ensure sufficiently accurate baseline 
subtraction on weak sources. 

If the total frequency bandwidth in the measurements is covered by using two 
or more IF bands of the receiving system, it is necessary to correct for differences 
in their instrumental phase responses. This can be done using the continuum cal- 
ibrator measurements, by averaging the phase values for the different channels in 
each IF band, and subtracting these averages from the corresponding spectral line 
visibility data. 

Finally, it is necessary to correct for remaining instrumental phases and for the 
different atmospheric and ionospheric phase shifts, which may be large for widely 
separated sites. In mapping strong continuum sources, this can be achieved by us- 
ing phase closure as described in Section 10.3. A similar approach can be used in 
mapping a distribution of maser point sources, by selecting a strong spectral com- 
ponent that is seen at all baselines and assuming that it represents a single point 
source. Then if the phase for this component at one arbitrarily chosen antenna 
is assumed to be zero, the relative phases for the other antennas can be deduced 
from the fringe phases. Since these phases are attributed to the atmosphere over 
each antenna, the correction can be applied to all frequency components within 
the measured spectrum. This method of using one maser component to provide a 
phase reference is discussed in more detail in Section 12.5, together with fringe 
frequency mapping, a technique that is useful in determining the positions of ma- 
jor components in a large field of masers. 
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Variation of Spatial Frequency over the Bandwidth 

The effect of using the center frequency of the receiver passband in calculating 
the values of u and u for all frequencies within the passband is discussed in Sec- 
tion 6.3. Consider, for example, a single discrete source for which the visibility 
function has a maximum centered on the (u,  u )  origin and decreases monotoni- 
cally for a range of increasing u and u. If we use the frequency at the band center 
uo to calculate u and u for a frequency at the high end of the band, that is, u > UO, 
then the values of u and u will be underestimated. The measured visibility will 
fall off too quickly with u and u and the central peak of the visibility function will 
be too narrow. Hence the width of the image in 1 and m will be too wide. Thus 
if the source radiates a spectral line at the blue-shifted side of the bandwidth the 
angular dimensions may be overestimated, and similarly underestimated at the 
red-shifted side. This effect can be described as chrornaric aberration. 

As discussed in Section 6.3, for observations with a spectral line (multichan- 
nel) correlator the visibility measured for each channel can be expressed as a 
function of the (u, u )  values appropriate for the frequency of the channel. This 
corrects the chromatic aberration, but causes the ( u ,  u )  range over which the vis- 
ibility is measured to increase over the bandwidth in proportion to the frequency. 
Thus the width of the synthesized beam (i.e., the angular resolution) and the angu- 
lar scale of the sidelobes vary over the bandwidth. The variation of the resolution 
can, if necessary, be corrected by truncation or tapering of the visibility data to 
reduce the resolution to that of the lowest frequency within the passband. 

Accuracy of Spectral Line Measurements 

The spectral dynamic range of an image after final calibration is an estimate of 
the accuracy of the measurement of spectral features expressed as a fraction of 
the maximum signal amplitude. It can be defined as the variation in the response 
of different channels to a continuum signal divided by the maximum response, 
the variation being a result of noise and instrumental errors. When the amplitude 
of a spectral line is only a few percent of the continuum that is present, as in the 
case of a recombination line or a weak absorption line, the accuracy of spectral 
line features depends on the accuracy with which the response to the continuum 
can be separated from that to the line. In such a case a dynamic range of order lo3 
is required to measure a line profile to an accuracy of 10%. Hence the importance 
of accurate bandpass calibration and of correction for chromatic aberration. 

Various techniques have been used to help subtract the continuum response 
from a map. It is necessary to choose the receiver bandwidth so as to include 
some channels that contain continuum only, at frequencies on either side of the 
line features. A straightforward method is to use an average of the line-free chan- 
nel data to make a continuum map, and subtract this map from each of the maps 
derived for a channel with line emission. Unless the receiver bandwidth is suffi- 
ciently small compared to the center frequency, it is likely that a correction for 
chromatic aberration should be used in making the continuum map. If the contin- 
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uum emanates from point sources, the positions and flux densities of the sources 
provide a convenient model. For the most precise subtraction, the continuum re- 
sponse should be calculated separately for each line channel, using the individual 
channel frequencies in determining the ( u ,  u )  values. The subtraction should be 
performed in the visibility data. Use of deconvolution algorithms in the contin- 
uum subtraction is briefly discussed in Section 1 1.9 under Use of CLEAN and 
Self-Calibration with Spectral Line Data. 

Presentation and Analysis of Spectral Line Observations 

Spectral line data can be presented as three-dimensional distributions of pixels in 
(I, m, u). For physical interpretation, the Doppler shift in the frequency dimension 
is often converted to radial velocity u, with respect to the rest frequency of the 
line. The relationship between frequency and velocity is given in Appendix 10.2. 
A model of such a three-dimensional distribution is shown in Fig. 10.7. Contin- 
uum sources are represented by cylindrical functions of constant cross section in 
1 and m. 

Figure 10.7 Three-dimensional representation of spectral line data in right ascension, declina- 
tion, and frequency. The frequency axis is calibrated in velocity corresponding to the Doppler 
shift of the rest frequency of the line. The flux density or intensity of the radiation is not shown 
but could be represented by color or shading. The indicated velocity has no physical meaning 
for continuum sources, which are represented by cylindrical forms of constant cross section 
normal to the velocity dimension. Spectral line emission is indicated by the variation of po- 
sition or intensity with velocity. From Roelfsema (1989). courtesy of the Astron. Soc. Pacific 
Conf. Ser. 
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The three-dimensional data cube that contains the maps for the individual 
channels can be thought of as representing a line profile for each pixel in two- 
dimensional (I, m) space. To simplify the ensemble of maps it is often useful to 
plot a single (I, m) map of some feature of the line profile. This feature might be 
the integrated intensity 

I 

where i indicates the spectral channels, which are spaced at intervals Au in fre- 
quency. For an optically thin radiating medium such as neutral hydrogen, this is 
proportional to the column density of radiating atoms or molecules. The intensity- 
weighted mean velocity is an indicator of large scale motion, 

The intensity-weighted velocity dispersion 

(10.41) 

( 10.42) 

is an indicator of random motions within the source. The summation in the veloc- 
ity dimension is performed separately for each (I, m) pixel of the maps. In each 
of the three quantities in (10.40) to (10.42) the intensity values correspond to the 
specific line of interest, continuum features having been separated out. In obtain- 
ing the best estimates for these three quantities, it should be noted that including 
ranges of (I, m ,  u,) that contain no discernable emission only add noise to the 
results. 

Exploring the relationships between three-dimensional images in (I, m ,  u,) 
and the three-dimensional distribution of the radiating material is an astronomical 
concern. As a simple example, consider a spherical shell of radiating material. If 
the material is at rest, it will appear in (I, m ,  u,) space as a circular disk in the 
plane of zero velocity, with brightening at the outer edge. If the shell is expand- 
ing with the same velocity in all directions, it will appear in (I, m, u,) space as 
a hollow ellipsoidal shell or, with appropriate adjustment of the velocity scale, a 
spherical shell. Interpretation of observations of rotating spiral galaxies are more 
complex. An example of a model galaxy is given by Roelfsema (1989) and a more 
extensive discussion can be found in Burton (1988). 

10.6 MISCELLANEOUS CONSIDERATIONS 

Interpretation of Measured Intensity 

The quantity measured in a synthesized map is the radio intensity, but Y is usu- 
ally calibrated in terms of the equivalent flux density of a point source, and the 
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intensity unit in the resulting map is in units of flux density per beam area Ro, 
which is given by 

(10.43) 

The response to an extended source is the convolution of the sky intensity I ( 1 ,  m) 
with the synthesized beam bo(l, m). Note that since there is often no measured 
visibility value at the (u ,  u )  origin, the integral of bo(1, m) over all angles is zero; 
that is to say, there is no response to a uniform level of intensity. At any point on 
the extended source where the intensity vanes slowly compared with the width 
of the synthesized beam, the convolution with bo(l, m) results in a flux density 
that is approximately I Ro. Thus the scale of the map can also be interpreted as 
intensity measured in units of flux density per beam area R0. For a discussion 
of mapping wide sources and measuring the intensity of extended components of 
low spatial frequency, see Section 1 1.6. 

Errors in Maps 

A very useful technique for investigating suspicious or unusual features in any 
synthesis image, continuum or spectral line, is to compute an inverse Fourier 
transform (i.e., from intensity to visibility) including only the feature in question. 
A distribution in the (u ,  u )  plane concentrated in a single baseline, or in a series 
of baselines with a common antenna, could indicate an instrumental problem. A 
distribution corresponding to a particular range of hour angle of the source could 
indicate the occurrence of sporadic interference. 

An aid in identifying erroneous features is a familiarity with the behavior of 
functions under Fourier transformation; see, for example, Bracewell (2000) and 
the discussion by Ekers (1 999). A persistent error in one antenna pair will, for an 
east-west spacing, be distributed along an elliptical ring centered on the (u,  u )  
origin, and in the ( 1 ,  m) plane will give rise to an elliptical feature with a radial 
profile in the form of the zero-order Bessel function. An error of short duration 
on one baseline introduces two delta functions representing the measurement and 
its conjugate. In the image these produce a sinusoidal corrugation over the (I, m) 
plane. The amplitude in the image plane may be only small, since in an M x 
N visibility matrix the effect of the two erroneous points is diluted by a factor 
of 2 ( M N ) - ' ,  which is usually of order 10-3-10-6. Thus a single short-duration 
error could be acceptable if, in the image plane, it is small compared with the 
noise. 

Errors of an additive nature combine by addition with the true visibility values. 
In the map the Fourier transform of the error distribution &add(U, u )  is added to the 
intensity distribution, and we have 
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Other types of additive errors result from interference, cross-coupling of system 
noise between antennas, and correlator offset errors. The sun is many orders of 
magnitude stronger than most radio sources and can produce interference of a dif- 
ferent character from that of terrestrial sources because of its diurnal motion. The 
response to the sun is governed mainly by the sidelobes of the primary beam, the 
difference in fringe frequencies for the sun and the target source, and the band- 
width and visibility averaging effects. Solar interference is most severe for low- 
resolution arrays with narrow bandwidths. Cross-coupling of noise (crosstalk) 
occurs only between closely spaced antennas and is most severe for low elevation 
angles when shadowing of antennas may occur. 

A second class of errors comprises those that combine with the visibility in a 
multiplicative manner, and for these we can write 

( 10.45) 

The Fourier transform of the error distribution is convolved with the intensity 
distribution, and the resulting distortion produces erroneous structure connected 
with the main features in the map. In contrast, the distribution of errors of the ad- 
ditive type is unrelated to the true intensity pattern. Multiplicative errors mainly 
involve the gain constants of the antennas, and result from calibration errors in- 
cluding antenna pointing and, in the case of VLBI systems, radio interference 
(see Section 15.3). 

Distortions that increase with distance from the center of the map constitute a 
third category of errors. These include the effects of non-coplanar baselines (see 
Sections 3.1 and 11.8), bandwidth (see Section 6.3), and visibility averaging (see 
Section 6.4), which are predictable and therefore somewhat different in nature 
from the other distortions mentioned above. 

Hints on Planning and Reduction of Observations 

Making the best use of synthesis arrays and similar instruments requires an em- 
pirical approach in some areas, and the best procedures for analyzing data are 
often gained by experience. Much helpful information exists in the handbooks on 
specific instruments, symposium proceedings, and so on; see, for example, Bridle 
( 1989). A few examples are discussed below. 

In choosing the observing bandwidth for continuum observations, the radial 
smearing effect should be considered, since the signal-to-noise ratio for a point 
source near the edge of the field is not necessarily maximized by maximizing the 
bandwidth. Then in choosing the data-averaging time the resulting circumferen- 
tial smearing can be about equal to the radial effect. The required condition is 
obtained from Eqs. (6.75) and (6.80) and for high declinations is 

( 1  0.46) 
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Here uo is the center frequency of the observing band, Au is the bandwidth, we 
is the earth’s rotation velocity, and r, is the averaging time. When attempting to 
detect a weak source of measurable angular diameter, or an extended emission, 
it is important not to choose an angular resolution that is too high. The signal- 
to-noise ratio for an extended source is approximately proportional to I Q o ,  as 
discussed in the previous section. The observing time required to obtain a given 
signal-to-noise ratio is proportional to a,’, or to 6L4, where 6, is the synthesized 
beamwidth. 

If the antenna beam contains a source that is much stronger than the features 
to be studied, the response to the strong source can be subtracted, provided it 
is a point source or one that can be accurately modeled. This is best done by 
subtracting the computed visibility before gridding the measurements for the FIT. 
The subtracted response will then accurately include the effect of the sidelobes of 
the synthesized beam. Nevertheless, the precision of the operation will be reduced 
if the source response is significantly affected by bandwidth, visibility averaging, 
and similar effects, so it may be best to place the source to be subtracted at the 
center of the field. 

When observing a very weak source, it may be advisable to place the source a 
few beamwidths away from the (2, rn) origin to avoid confusion with residual er- 
rors from correlator offsets. Experience with any particular instrument will show 
whether this is necessary. 

As part of the procedure in making any map it is useful also to make a low- 
resolution map covering the entire area of the primary antenna beam. For this 
map, the data can be heavily tapered in the (u, u )  plane to reduce the resolution 
and thus also the computation. Such a map will reveal any sources outside the field 
of the final map that may introduce aliased responses in the FlT. Aliasing of these 
sources can be suppressed by subtraction of their visibility or use of a suitable 
convolving function. The sidelobe or ringlobe responses to such a source are also 
eliminated by subtraction of the source, but not by convolution in the (u, u )  plane. 
The low-resolution map will also emphasize any extended low-intensity features 
that might otherwise be overlooked. 

APPENDIX 10.1 THE EDGE OF THE MOON AS A 
CALIBRATION SOURCE 

During the test phase of bringing an interferometer into operation, it is useful 
to observe sources that produce fringes with high signal-to-noise ratio. At fre- 
quencies above - 100 GHz there are not many such sources. The sun, moon, and 
planets, the disks of which are resolved by the interferometer fringes, can nev- 
ertheless provide significant correlated flux density because of their sharp edges. 
Consider the limb of the moon, and the case where the primary beam of the in- 
terferometer elements is much smaller than 30 arcmin, the lunar diameter. When 
the antenna beam tracks the moon’s limb, the apparent source distribution is the 
antenna pattern multiplied by a step function; it is assumed that the brightness 
temperature of the moon is constant within the beam. Approximating the antenna 



APPENDIX 10.1 THE EDGE OF THE MOON AS A CALIBRATION SOURCE 415 

pattern as a Gaussian function, assuming that the antenna is pointed at the west 
limb of the moon, and ignoring the curvature of the lunar limb, we can express 
the effective source distribution as 

where x and y are angular coordinates centered on the beam axis, 0, is the full 
width of the beam at the half-power level, and in the Rayleigh-Jeans regime l o  = 
2kT,/A2, where T, is the temperature of the moon. The visibility function is then 

The cosine integral is straightforward, and the sine integral can be written in terms 
of a degenerate hypergeometric function I FI (see Gradshteyn and Ryzhik 1994, 
Eq. 3.896.3). The result is 

(A10.3) 

where 

( A  10.4) 

is the flux density of the moon in the half-Gaussian beam. In the limit (u ,  u )  >> 
(0, 0), the imaginary part of the visibility is zero and Y ( u ,  u )  = SO, as expected. 
For T, = 200 K and 0, = 1.2A/d, where d is the diameter of the interferometer 
antennas in meters, SO 2: 460,000/d2 Jy. The integral over x in Eq. (A10.2) can 
also be written in terms of the error function. For the limit where u >> d / A ,  the 
asymptotic expansion of the error function leads to the convenient approximation 

( A  10.5) 
dD 

where D is the baseline length. Hence we have the interesting situation that the 
visibility for a given baseline length increases as the antenna diameter decreases, 
as long as 0, << 30 arcmin. The approximation in Eq. (A10.5) is accurate to 2% 
for D > 2d. The full visibility function as a function of projected baseline length 
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Figure A10.1 Normalized fringe visibility for an interferometer with an east-west baseline 
observing the west limb of the moon at transit ( u  = 0). versus eb u ,  where eb 2: 1.2A/d is the 
half-power beamwidth of the antenna, d is the antenna diameter, and u = D / A  is the baseline 
in wavelengths. On the horizontal axis e b  u is approximately equal to 1.2D/d. The dotted line 
is the imaginary component of visibility, the dashed line is the real part, and the solid line is 
the magnitude. Since the portion of the curve for D / d  < 1 is not accessible, the measured 
visibility is almost purely imaginary. Ford = 6 m and D / d  = 3, the zero-spacing flux density 
[see Eq. (A10.4)] is 12,700 Jy, and the visibility is about lo00 Jy [see Eq. (AlOS)]. Adapted 
from Gurwell(l998). 

is shown in Fig. A1O.l. Note that the visibility measured with an interferometer 
having an east-west baseline orientation and tracking the north or south limb 
of the moon will be essentially zero. In the general case the maximum fringe 
visibility is obtained by tracking the limb of the moon that is perpendicular to the 
baseline. 

Although the moon may produce strong fringes, it is not an ideal calibration 
source. First, libration may make it difficult to track the exact edge of the moon. 
Second, because the apparent source distribution is determined by the antennas, 
tracking errors introduce amplitude and phase fluctuations. Third, because the 
temperature of the moon depends upon solar illumination, variations around the 
mean temperature of 200 K are significant, especially at short wavelengths. For 
accurate results the lunar temperature variation should be incorporated into the 
brightness temperature model. 
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APPENDIX 10.2 DOPPLER SHIFT OF SPECTRAL LINES 

Doppler shifts of spectral lines result from the relative velocity between the source 
and the observer. Four important practical issues are discussed here. First, the 
use of a first-order expansion of the special relativistic Doppler formula leads 
to significant errors for large velocities. Second, there are several different ap- 
proximations in use for correcting measured velocities for the observer's motion. 
Third, special care must be taken to avoid the introduction of a velocity offset 
when converting from frequency to velocity. Finally, there are velocity shifts of 
non-Doppler origin that sometimes need to be considered. 

The Doppler shift [e.g., Rybicki and Lightman (1979)l is given by the relation 

(A10.6) 

where A0 and vo are the rest wavelength and frequency as measured in the ref- 
erence frame of the source, the corresponding unscripted variables are the wave- 
length and frequency in the observer's frame, v is the magnitude of the relative 
velocity between the source and the observer, and 8 is the angle between the ve- 
locity vector and the line-of-sight direction between source and observer in the 
observer's frame. The numerator in Eq. (A10.6) is the classical Doppler shift 
caused by the change in distance between the source and the observer. The de- 
nominator is the relativistic time dilation factor, which takes account of the dif- 
ference between the period of the radiated wave as measured in the rest frame of 
the source and the rest frame of the observer (0 < 90" for a receding source). 

Because of the time dilation effect, there will be a second-order Doppler shift 
even if the motion is transverse to the line of sight. For the rest of this discussion 
we consider only radial velocities; that is, 6 = 0 or 180". In this case the 
Doppler shift equation is 

(A 10.7) 

where ur is the radial velocity (positive for recession). Solving for velocity, 

(A10.8) 

or 

(A10.9) 
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Taylor expansions of Eqs. (A10.8) and (A10.9) yield 

and 

ur AA 1 Ah2 - -  .. .  - 
c A0 2 hi 

(A 10.10) 

(A1O.ll) 

where Au = v - vo and AA = A - ho. For negative Av, the velocity is positive, 
or “redshifted.” Since Au/vo 2: -AA/AO, the second-order terms have approxi- 
mately the same magnitude but opposite signs in Eqs. (A1O.lO) and (A1O.ll). 

Devices for spectroscopy at radio and optical frequencies usually produce data 
that are uniformly spaced in frequency and wavelength, respectively. Hence, to 
first order, the velocity axis can be calculated as a linear transformation of the 
frequency or wavelength axes. Unfortunately, this has led to two different ap- 
proximations of the velocity: 

(A1 0.12) 

(A 10.13) 

The difference between these two approximations can be appreciated by noting 
that Vrradio/C = -AA/A. Each velocity scale produces a second-order error in 
its estimation of the true velocity; that is, the radio definition underestimates the 
velocity, and the optical definition overestimates the velocity by the same amount. 
The difference in velocity between the scales as a function of velocity is 

(A 1 0.14) 

Hence, the identification of the velocity scale used is very important for extra- 
galactic sources. For example, if ur = 10, OOO km s-’, 6ur 2: 330 km s-’. Failure 
to recognize the difference between the velocity conventions can cause consider- 
able problems when observations are made with narrow bandwidth. 

To interpret the velocities of spectral lines it is necessary to refer them to an 
appropriate inertial frame. The rotation velocity of an observer at the equator 
about the earth’s center is about 0.5 km s-I; the velocity of the earth around the 
sun is about 30 km s-’; the velocity of the sun with respect to the nearby stars 
is about 20 km s-’ [this defines the local standard of rest (LSR)]; the velocity 
of the LSR around the center of the Galaxy is about 220 km s-I; the velocity of 
our Galaxy with respect to the local group is about 310 krn s-I; and the velocity 
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TABLE A1O.l Reference Frames for Spectroscopic Observations 

Motion Direction" 
Name Type of Motion (kms-I) Qo) No)  

- - Topocentric Rotation of earth 0.5 
Geocentric Rotation of earth around 

Heliocentric Rotation of earth around sun 30 

Barycentric Rotation of sun around 
solar system barycenter 

- - earthlmoon barycenter 0.0 13 
- - 

(planetary perturbations) 0.012 - - 

Local standard Solar motion with 

Galactocentric' LSR around center 

Local galactic Galactic center motion 
with respect to galaxies 

of restb respect to local stars 20 57 23 

of the Galaxy 220 90 0 

standard of restb 
of local group 310 I 46 -23 

C M B ~  Local group of galaxies 
with respect to CMB 630 276 30 

'Galactic longitude and latitude. 
htandard value adopted by the IAU in 1985 (Kerr and Lynden-Bell 1986). 
ccox (2000). 

of the local group with respect to the cosmic microwave background radiation 
(CMB) is about 630 km s-'. The most accurate reference frame beyond the solar 
system is defined with respect to the CMB. The velocity of the sun with respect 
to the cosmic microwave background has been determined from measurements 
of the dipole anisotropy of the CMB, which yields the remarkably precise result 
of 370.6 f 0.4 km s-' toward .t = 264.31' f 0.17" and b = 48.05' f 0.10" 
(Lineweaver et al. 1996). Information on these various reference frames is listed 
in Table A1O.l. Most observations are reported with respect to either the solar 
system barycenter or the local standard of rest. Velocities of stars and galaxies 
are usually given in the former frame, and observations of non-stellar Galactic 
objects (e.g.. molecular clouds) are usually given in the latter frame. Velocity 
corrections at many radio observatories are based on a program called DOP [Ball 
(1969); see also Gordon (1976)], which has an accuracy of -0.0 1 km s-I because 
it does not take planetary perturbations into account. Routines such as CVEL in 
AIPS are based on this code. Much higher accuracy can be obtained by more 
sophisticated programs such as the Planetary Ephemeris Program (Ash 1972) or 
the JPL Ephemeris (Standish and Newhall 1995). Interpretation of pulsar timing 
measurements also requires precise velocity correction. 

There is sometimes confusion in the conversion of baseband frequency to 
true observed frequency. In the calculation of the spectrum in the baseband by 
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Fourier transformation of either the data stream or the correlation function with 
the Fast Fourier Transformation algorithm, the first channel corresponds to zero 
frequency, the channel increment is Aw,,/N, where Aw,, is the bandwidth (half 
the Nyquist sampling rate) and N is the total number of frequency channels. The 
Nth channel corresponds to frequency Av,,(l - l /N) .  If N is an even number 
( N  is usually a power of 2), channel N /2 corresponds to the center frequency of 
the baseband. For a system with only upper-sideband conversions, the sky fre- 
quency of the first channel (zero frequency in the baseband) is the sum of the 
local oscillator frequencies. Note that the velocity axes run in opposite directions 
( u  cx -u and u a u )  for systems with net upper- and lower-sideband conversion, 
respectively. 

There are several velocity shifts of non-Doppler origin that sometimes need to 
be taken into account. For spectral lines originating in deep potential wells-for 
example, close to black holes-there is an additional time dilation term 

1 
(A10.15) 

where r is the distance from the center of the black hole and r, is its Schwarzschild 
radius (rs = 2 G M / c 2 ) ,  which is valid for r >> r,. The total frequency shift 
[obtained by generalizing l3q. (A10.6)] is therefore 

(A10.16) 

where yL = 1/,/- is the so-called Lorentz factor. For example, the 
radiation from the water masers in NGC4258 (see Fig. 1.21), which orbit a black 
hole at a radius of 40,000 r,, undergoes a velocity shift of about 4 km s-I. 

The most important non-Doppler frequency shift for sources at cosmological 
distances is due to the expansion of the universe. In the relatively nearby universe 
this velocity shift is 

(A 10.17) 

where HO is the Hubble constant and d is the distance. HO is thought to be about 
70 km s-' Mpc-' (Mould et al. 2000). For greater distances (z > l), the rela- 
tions between z and the distance and look-back time depend on the cosmological 
model used [e.g., Peebles (1993)l. However, given the definition of z ,  the correct 
frequency will always be related to it by 

vo v z -  
z +  1 '  

(A 10.1 8) 

Other issues regarding observations of cosmologically distant spectral line 
sources are discussed by Gordon, Baars, and Cocke (1992). An example of spec- 
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troscopic interferometric observations of a molecular cloud at a cosmological 
distance (z = 3.9) can be found in Downes et al. (1 999). 

APPENDIX 10.3 HISTORICAL NOTES 

Maps from One-Dimensional Profiles 

Early maps of the sun and a few other strong sources were made with linear ar- 
rays such as the grating array and compound interferometer shown in Fig. 1.13. 
The results were obtained in the form of fan beam scans. With such an instru- 
ment the visibility data sampled at any instant are located on a straight line 
through the origin in the (u ,  u )  plane, as shown in Fig. 10.1. Fourier transforma- 
tion of the visibility data sampled along such a line provides a cormgated surface 
with a profile given by the fan beam scan, as shown in Fig. A10.2. This can be 
regarded as one component of a two-dimensional map of the sun. As the earth 
rotates, the angle of the beam on the sky varies, so addition of these components 
builds up a two-dimensional map. However, in the fan beam scans from such ar- 
rays, each pair of antennas contributes with equal weight to the profile, so a map 
built up from profiles in such a manner exhibits the undesirable characteristics 
of natural weighting. During the 1950s, before digital computers were generally 
available, the combination of such data to provide two-dimensional maps with a 
desirable weighting was a laborious process. Christiansen and Warburton’s (1 955) 

Figure A10.2 A surface in the (I, m) domain that is the Fourier transform of visibility data in 
the ( u ,  u )  plane measured along a line making an angle + 71/2 with the u axis, as shown by 
the broken line in Fig. 10.1. 



422 CALIBRATION AND FOURIER TRANSFORMATION OF VISIBILITY DATA 

solar map involved Fourier transformation, weighting, and retransformation of 
the data by manual calculation. A method of combining fan-beam scans without 
Fourier transformation was later devised by Bracewell and Riddle (1  967) using 
convolution to adjust the visibility weighting. Basic relationships between one- 
and two-dimensional responses (Bracewell 1956b) are discussed in Section 2.4. 
The same concepts are applicable to image processing in other fields, for example, 
tomography (Bracewell and Wernecke 1975). 

Analog Fourier Wansformation 

An optical lens can be used as an analog device for Fourier transformation. Ana- 
log systems for data processing based on optical, acoustic, or electron-beam pro- 
cesses have been investigated, but generally have not proved successful for syn- 
thesis imaging. They lack flexibility, and a further problem is limitation of the 
dynamic range, which is the ratio of the highest intensity levels to the noise in the 
image. Maintaining image quality in any iterative process that involves succes- 
sive Fourier transformation and retransformation of the same data, as occurs in 
some deconvolution processes (see Chapter 1 1 ), requires high precision. Analog 
possibilities for Fourier transformation are discussed by Cole (1979). 
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1 1 Deconvolution, Adaptive 
Calibration, and Applications 

This chapter is concerned with techniques of processing that are largely nonlin- 
ear. These further improve the image as formed by the procedures described in 
Chapter 10. There are two principal deficiencies in the visibility data that limit 
the accuracy of synthesis images. These are (1) the limited distribution of spa- 
tial frequencies in u and u and (2) errors in the measurements themselves. The 
limited spatial frequency coverage can be improved by deconvolution processes 
that allow the unmeasured visibility to take nonzero values within some general 
constraints on the image. Calibration can be improved by adaptive techniques in 
which the antenna gains, as well as the required image, are derived from the vis- 
ibility data. Wide-field imaging, multifrequency imaging, and some other special 
applications are also described. 

11.1 LIMITATION OF SPATIAL FREQUENCY COVERAGE 

The intensity distribution Zo(f, rn) obtained in synthesis mapping can be regarded 
as the true intensity [ (I ,  rn)  convolved with the synthesized beam bo(f, m): 

ZO(f,  rn) = Z ( t ,  rn) * * bo(l, m). (11.1) 

Knowing Z o ( I ,  rn) and bo( f ,  m), can we solve for Z ( f ,  m)? An analytic procedure 
for deconvolving two functions is to take the Fourier transform of the convolu- 
tion, which is equal to the product of the Fourier transforms of the components, 
divide out the Fourier transform of the known function, and transform back. From 
Eq. (11.1) we have 

where + indicates Fourier transformation, Y ( u ,  u )  is the visibility function, 
W ( u ,  u )  is the spatial transfer function, wu(u,  u )  is the weighting required to 
obtain effective uniform density of data in the (u, u )  plane, and w,(u, u )  is an 
applied taper. However, the transfer function contains areas where it is zero, so 
we cannot divide it out to obtain Y ( u ,  v ) .  The unmeasured visibilities present 
a fundamental problem, and any procedure that improves the derived intensity 
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other than weighting of the visibility must involve placing nonzero visibility 
values in the unmeasured (u, u )  areas. 

Bracewell and Roberts (1954) pointed out that there are an infinite number of 
solutions to the convolution in Eq. ( 1  I. I ) ,  since one can add any arbitrary visi- 
bility values in the unsampled areas of the (u, u )  plane. The Fourier transform 
of these added values constitutes an invisible distribution that cannot be detected 
by any instrument with corresponding zero areas in the transfer function. It may 
be argued that in interpreting observations from any radio telescope, one should 
maintain only zeros in the unmeasured regions of spectral sensitivity, to avoid 
arbitrarily generating information. On the other hand, the zeros are themselves 
arbitrary values, some of which are certainly wrong. What is wanted is a proce- 
dure that allows the visibility at the unmeasured points to take values consistent 
with the most reasonable or likely intensity distribution, while minimizing the 
addition of arbitrary detail. Positivity of intensity and confinement of the angular 
structure of a source are expected characteristics that can be introduced into the 
imaging process. Negative intensity values and extensive sinusoidal structure are 
examples of instrumental artifacts to be removed. As suggested in the discussion 
of Fig. 2.6, procedures for the removal of the effects of sidelobes should be pos- 
sible. A revieb of processing algorithms is given by Sault and Oosterloo (1996). 

11.2 THE CLEAN DECONVOLUTION ALGORITHM 

CLEAN Algorithm 

One of the most successful deconvolution procedures is the algorithm CLEAN 
devised by Hogbom (1974). This is basically a numerical deconvolving process 
applied in the (I, m) domain. The procedure is to break down the intensity dis- 
tribution into point-source responses, and then replace each one with the cor- 
responding response to a “clean” beam, that is, a beam free of sidelobes. The 
principal steps are as follows. 

1. Compute the map and the response to a point source by Fourier transforma- 
tion of the visibility and the weighted transfer function. These functions, 
the synthesized intensity and the synthesized beam, are often referred to 
as the “dirty map” and the “dirty beam,” respectively. The spacing of the 
sample points in the (I, m) plane should not exceed about one-third of the 
synthesized beamwidth. 

2. Find the highest intensity point on the map and subtract the response to a 
point source, including the full sidelobe pattern, centered on that position. 
The peak amplitude of the subtracted point source is equal to y times the 
corresponding map amplitude. y is called the loop gain, by analogy with 
negative feedback in electrical systems, and commonly has a value of a 
few tenths. Record the position and amplitude of the component removed 
by inserting a delta-function component into a model that will become the 
cleaned map. 
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3. Return to step 2 and repeat the procedure iteratively until all significant 
source structure has been removed from the map. There are several possible 
indicators of this condition. For example, one can compare the highest peak 
with the rms level of the residual intensity, look for the first time that the rms 
level fails to decrease when a subtraction is made, or note when significant 
numbers of negative components start to be removed. 

4. Convolve the delta functions in the cleaned model with a clean-beam re- 
sponse, that is, replace each delta function with a clean-beam function of 
corresponding amplitude. The clean beam is often chosen to be a Gaussian 
with a half-amplitude width equal to that of the original synthesized (dirty) 
beam, or some similar function that is free from negative values. 

5 .  Add the residuals (the residual intensity from step 3) into the clean-beam 
map, which is the output of the process. 

It is assumed that each dirty-beam response subtracted represents the response 
to a point source. As discussed in Section 4.4, the visibility function of a point 
source is a pair of real and imaginary sinusoidal corrugations that extend to in- 
finity in the (u, u )  plane. Any intensity feature for which the visibility function is 
the same within the (u, u )  area sampled by the transfer function would produce 
a response in the map identical to the point source response. Hogbom (1974) has 
pointed out that much of the sky is a random distribution of point sources on an 
empty background, and CLEAN was initially developed for this situation. Never- 
theless, experience shows that CLEAN also works on extended and complicated 
sources. 

The result of the first three steps in the CLEAN procedure outlined above can 
be represented by a model intensity distribution that consists of a series of delta 
functions with magnitudes and positions representing the subtracted components. 
Since the modulus of the Fourier transform of each delta function extends uni- 
formly to infinity in the (u, u )  plane, the visibility is extrapolated as required 
beyond the cutoff of the transfer function. 

The delta-function components do not constitute a satisfactory model for astro- 
nomical purposes. Groups of delta functions with separations no greater than the 
beamwidth may actually represent extended structure. Convolution of the delta- 
function model by the clean beam, which occurs in step 4, removes the danger 
of over-interpretation. Thus CLEAN performs, in effect, an interpolation in the 
(u ,  u )  plane. Desirable characteristics of a clean beam are that it should be free 
from sidelobes, particularly negative ones, and that its Fourier transform should 
be constant inside the sampled region of the (u ,  u )  plane and rapidly fall to a low 
level outside it. These characteristics are essentially incompatible since a sharp 
cutoff in the (u, u )  plane results in oscillations in the (1 ,  rn) plane. The usual 
compromise is a Gaussian beam, which introduces a Gaussian taper in the (u. u )  
plane. Since this function tapers the measured data and the unmeasured data gen- 
erated by CLEAN, the resulting intensity distribution no longer agrees with the 
measured visibility data. However, the absence of large, near-in sidelobes im- 
proves the dynamic range of the image, that is, it increases the range of intensity 
over which the structure of the image can reliably be measured. 
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As discussed above, we cannot directly divide out the weighted transfer func- 
tion on the right-hand side of Eq. (1 1.2) because it is truncated to zero outside 
the areas of measurement. In CLEAN, this problem is solved by analyzing the 
measured visibility into sinusoidal visibility components and then removing the 
truncation so that they extend over the full ( u ,  u )  plane. Selecting the highest peak 
in the (I, m )  plane is equivalent to selecting the largest complex sinusoid in the 
(u ,  u )  plane. 

At the point that the component subtraction is stopped, it is generally assumed 
that the residual intensity distribution consists mainly of the noise. Retaining the 
residual distribution within the map is, like the convolution with the clean beam, 
a nonideal procedure that is necessary to prevent misinterpretation of the final 
result. Without the residuals added in step 5,  there would be an amplitude cut- 
off in the structure corresponding to the lowest subtracted component. Also, the 
presence of the background fluctuations provides an indication of the level of un- 
certainty in the intensity values. An example of the effect of processing with the 
CLEAN algorithm is shown in Fig. 1 1.1. 

Implementation and Performance of the CLEAN Algorithm 
As a procedure for removing sidelobe responses, CLEAN is easy to understand. 
Being highly nonlinear, however, CLEAN does not yield readily to a complete 
mathematical analysis. Some conclusions have been derived by Schwarz (1978, 
1979), who has shown that conditions for convergence of CLEAN are that the 
synthesized beam must be symmetrical and its Fourier transform, that is, the 
weighted transfer function, must be non-negative. These conditions are fulfilled 
in the usual synthesis procedure. Schwartz’s analysis also indicates that if the 
number of delta-function components in the CLEAN model does not exceed the 
number of independent visibility data, CLEAN converges to a solution that is the 
least-squares fit of the Fourier transforms of the delta-function components to the 
measured visibility. In enumerating the visibility data, either the real and imag- 
inary parts or the conjugate values (but not both) are counted independently. In 
maps made using the FFT algorithm there are equal numbers of grid points in the 
(u ,  u )  and (f, m) planes, but not all ( u ,  u )  grid points contain visibility measure- 
ments. To maintain the condition for convergence it is a common procedure to 
apply CLEAN only within a limited area, or “window,” of the original map. 

In order to clean a map of a given dimension, it is necessary to have a beam 
pattern of twice the map dimensions so that a point source can be subtracted 
from any location in the map. However, it is often convenient for the map and 
beam to be the same size. In this case only the central quarter of the map can be 
properly processed. Thus, it is commonly recommended that the map obtained 
from the initial Fourier transform should have twice the dimensions required for 
the final map. As mentioned above, the use of such a window also helps to ensure 
that the number of components removed does not exceed the number of visibility 
data and, in the absence of noise, allows the residuals within the window area to 
approach zero. 

Several arbitrary choices influence the result of the CLEAN process. These 
include the parameter y ,  the window area, and the criterion for termination. A 
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(c) (d ) 

Figure 11.1 Illustration of the CLEAN procedure using observations of 3C224.1 at 2695 
MHz made with the interferometer at Green Bank, and rather sparse ( u ,  u )  coverage. (a) The 
synthesized “dirty” map; (b) the map after one iteration with the loop gain y = 1; (c) after two 
iterations; (d) after six iterations. The components removed were restored with a clean beam 
in all cases. The contour levels are 5 ,  10, 15,20,30, etc. percent of the maximum value. From 
Hogbom (1974), courtesy of Astron. Astrophys. Suppl. 

value between 0.1 and 0.5 is usually assigned to y ,  and it is a matter of general 
experience that CLEAN responds better to extended structure if the loop gain 
is in the lower part of this range. The computation time for CLEAN increases 
rapidly as y is decreased, because of the increasing number of subtraction cycles 
required. If the signal-to-noise ratio is SSn, then the number of cycles required for 
one point source is - log SSn/ log( 1 - y ) .  Thus, for example, with R,, = 100 
and y = 0.2, a point source requires 2 1 cycles. 
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Figure 11.2 Subtraction of the point-source response (broken line) at the maximum of a broad 
feature, as in the process CLEAN. After Clark (1982). 

A well-known problem of CLEAN is the generation of spurious structure in the 
form of spots or ridges as modulation on broad features. A heuristic explanation 
of this effect is given by Clark (1982). The algorithm locates the maximum in the 
broad feature and removes a point-source component, as shown in Fig. 1 1.2. The 
negative sidelobes of the beam add new maxima, which are selected in subsequent 
cycles, and thus there is a tendency for the component subtraction points to be 
located at intervals equal to the spacing of the first sidelobe of the synthesized 
(dirty) beam. The resulting map contains a lumpy artifact introduced by CLEAN, 
but the map is consistent with the measured visibility data. Cornwell (1983) has 
introduced a modification of the CLEAN algorithm that is intended to reduce this 
unwanted modulation. The original CLEAN algorithm minimizes 

where V , F  is the measured visibility at ( u i ,  u ; ) ,  w; is the applied weighting, and 
Y,!"de' is the corresponding visibility of the CLEAN-derived model. The summa- 
tion is taken over the points with nonzero data in the input transformation for the 
dirty map. Cornwell's algorithm minimizes 

I 

where s is a measure of smoothness and K is an adjustable parameter. Cornwell 
finds that the mean-squared intensity of the model, taken with a negative sign, is 
an effective implementation of s. 

The effects of visibility tapering appear in both the original map and the 
beam, and thus the magnitudes and positions of the components subtracted in 
the CLEAN process should be largely independent of the taper. However, since 
tapering reduces the resolution, it is a common practice to use uniform visibility 
weighting for maps that are processed using CLEAN. Alternatively, in difficult 
cases such as those involving extended, smooth structure, reduction of sidelobes 
by tapering may improve the performance of CLEAN. 

An important reduction in the computation required for CLEAN was intro- 
duced by Clark (1 980). This is based on subtraction of the point-source responses 
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in the ( u ,  u )  plane and using the FFT for moving data between the (u ,  u )  and 
( 1 ,  m) domains. The procedure consists of minor and major cycles. A series of 
minor cycles is used to locate the components to be removed by performing ap- 
proximate subtractions using only a small patch of the synthesized dirty beam 
that includes the main beam and the major sidelobes. Then in a major cycle the 
identified point-source responses are subtracted, without approximation, in the 
(u, v) plane. That is, the convolution of the delta functions with the dirty beam 
is performed by multiplying their Fourier transforms. The series of minor and 
major cycles is then repeated until the required stop condition is reached. Clark 
devised this technique for use with data from the VLA and found that it reduced 
the computation by a factor of two to ten compared with the original CLEAN 
algorithm. 

Other variations on the CLEAN process have been devised; one of the more 
widely used is the Cotton-Schwab algorithm [Schwab (1984); see Sect. IV]. The 
subtractions in the major cycle are performed on the ungridded visibility data, 
which eliminates aliasing at this point. The algorithm is also designed to permit 
processing of adjacent fields, which are treated separately in the minor cycles but 
in the major cycles components are jointly removed from all fields. 

To summarize the characteristics of CLEAN, we note that it is simple to under- 
stand from a qualitative viewpoint and straightforward to implement, and that its 
usefulness is well proven. On the other hand, a full analysis of its response is diffi- 
cult. The response of CLEAN is not unique, and it can produce spurious artifacts. 
It is sometimes used in conjunction with model-fitting techniques; for example, a 
disk model can be removed from the image of a planet and the residual intensity 
processed by CLEAN. It is also used as part of more complex image construction 
techniques, which are described later in this chapter. For more details, including 
hints on usage, see Cornwell, Braun, and Briggs ( 1  999). 

11.3 MAXIMUM ENTROPY METHOD 

MEM Algorithm 

An important class of image restoration algorithms operates to produce a map that 
agrees with the measured visibility to within the noise level, while constraining 
the result to maximize some measure of image quality. Of these the maximum 
entropy method (MEM) has received particular attention in radio astronomy. If 
Z’ (1 ,  m )  is the intensity distribution derived by the maximum entropy method, a 
function F ( I ’ )  is defined, which is referred to as the entropy of the distribution. 
F ( I ’ )  is determined entirely by the distribution of I’ as a function of solid angle 
and takes no account of structural forms within the map. In constructing the map, 
F(Z’)  is maximized within the constraint that the Fourier transform of I’ should 
fit the observed visibility values. 

In astronomical image formation an early application of the maximum entropy 
method is that of Frieden (1972) to optical images. In radio astronomy the earliest 
discussions are by Ables (1974) and Ponsonby (1973). The aim of the technique, 
as described by Ables, is to obtain an intensity distribution consistent with all 
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relevant data but minimally committal with regard to missing data. Thus, F ( I ’ )  
must be chosen so that maximization introduces legitimate a priori information 
but allows the visibility in the unmeasured areas to assume values that minimize 
the detail introduced. 

Several forms of F (Z’) have been used, which include the following: 

FI = - $ log (;) (1 1 Sa)  

F2 = - C l o g  1: (1  1 Sb)  
I 

(1 1 Sc )  

where 1: = l ’ ( / ; ,  mi), I,’ = El I;,  M i  represents an a priori model, and the sums 
are taken over all pixels in the map. F3 can be described as relative entropy, since 
the intensity values are specified relative to a model. 

A number of papers discuss the derivation of the expressions for entropy from 
theoretical and philosophical considerations. Bayesian statistics are invoked: see 
Jaynes (1968, 1982). Gull and Daniel1 (1979) consider the distributions of inten- 
sity quanta scattered randomly on the sky, and they derive the form FI , which is 
also used by Frieden (1972). The entropy form F2 is obtained by Ables (1974) and 
Wernecke and D’ Addario (1977). Other investigators take a pragmatic approach 
to the maximum entropy method (Hogbom 1979, Subrahmanya 1979, Nityananda 
and Narayan 1982). They view the method as an effective algorithm, even though 
there may be no underlying physical or information-theoretic basis for the choice 
of constraints. Hogbom (1979) points out that both FI and F2 contain the required 
mathematical characteristics: the first derivatives tend to infinity as I’  approaches 
zero, so maximizing F, or F2 produces positivity in the image. The second deriva- 
tives are everywhere negative, which favors uniformity in the intensity. Narayan 
and Nityananda (1984) consider a general class of functions F that have the prop- 
erties d2 F / d Z f 2  < 0 and d3 F / d I ”  > 0. F, and F2, discussed above, are members 
of this class. 

In the maximization of the entropy expression F ( I f ) ,  the constraint that the 
resulting intensity model should be consistent with the measured visibility data is 
implemented through a x 2  statistic. x 2  is a measure of the mean squared differ- 
ence between the measured visibility values, Y y  = v(&, vk) ,  and the corre- 
sponding values for the model 77rde’: 

(11.6) 

where a: is the variance of the noise in Y y ,  and the summation is taken 
over the visibility data set. Obtaining a solution involves an iterative procedure; 
for descriptions, see Wernecke and D’ Addario (1977). Wernecke (1977), Gull 
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and Daniel1 (1978), Skilling and Bryan (1984), and a review by Narayan and 
Nityananda (1984). As an example, Cornwell and Evans (1985) maximize a 
parameter J given by 

J = F3 - ax 2 - BSrncxielt (11.7) 

where F3 is defined in Eq. (1 1 Sc). &,ode, is the total flux density of the model 
and is included because, in order for the process to converge to a satisfactory 
result, it was found necessary to include a constraint that the total flux density 
of the model be equal to the measured flux density. Lagrange multipliers ct and 
B are included, the values of which are adjusted as the model-fitting proceeds 
so that x2  and are equal to the expected values. Through the use of F3, a 
priori information can be introduced into the final image. The various algorithms 
that have been developed for implementing MEM generally use the gradients of 
the entropy and of x 2  to determine the adjustment of the model in each iteration 
cycle. 

A feature of maps derived by the maximum entropy method is that the point- 
source response varies with position, so the angular resolution is not constant over 
the map. Comparison of maximum entropy maps with those obtained using direct 
Fourier transformation often shows higher angular resolution in the former. The 
extrapolation of the visibility values can provide some increase in resolution over 
more conventional mapping techniques. 

Comparison of CLEAN and MEM 

CLEAN is defined in terms of a procedure, so the implementation is straightfor- 
ward, but because of the nonlinearity in the processing, a noise analysis of the re- 
sult is very difficult. In contrast, MEM is defined in terms of an image that fits the 
data to within the noise and is also constrained to maximize some parameter of the 
image. The noise in MEM is taken into account through the x 2  statistic, and the 
resulting effect on the noise is more easily analyzed for MEM; see, for example, 
Bryan and Skilling (1980). Some further points of comparison are as follows: 

Implementation of MEM requires an initial source model, which is not nec- 
essary in CLEAN. 
CLEAN is usually faster than MEM for small images, but MEM is faster for 
very large images. Cornwell, Braun, and Briggs (1999) give the break-even 
point as about lo6 pixels in typical VLA images. 
CLEAN images tend to show a small-scale roughness, attributable to the 
basic approach of CLEAN, which models all images as ensembles of point 
sources. In MEM the constraint in the solution emphasizes smoothness in 
the image. 
Broad, smooth features are better deconvolved using MEM, since CLEAN 
may introduce stripes and other erroneous detail. MEM does not perform 
well on point sources, particularly if they are superimposed on a smooth 
background that prevents negative sidelobes from appearing as negative in- 
tensity in the dirty map. 
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To illustrate the characteristics of the CLEAN and MEM procedures, Fig. 11.3 
shows examples of processing of a model jet structure from Cornwell (1995) and 
Cornwell, Braun, and Briggs (1999), using model calculations by Briggs. The 
jet model is based on similar structure in M87, and is virtually identical to the 
contour levels shown in part (e). The left-hand end of the jet is a point source 
smoothed to the resolution of the simulated observation. Visibility values for the 
model corresponding to the ( u ,  u )  coverage of the VLBA (Napier et al. 1994) 
were calculated for a frequency of 1.66 GHz and a declination of 50" with es- 
sentially full tracking range. Thermal noise was added, but the calibration was 
assumed to be fully accurate. Fourier transformation of the visibility data and 
the spatial transfer function provided the dirty image and dirty beam. The image 
showed the basic structure but fine details were swamped by sidelobes. Parts (a) 
to (c) of Fig. I 1.3 show the effects of processing by CLEAN. In the CLEAN de- 
convolution 20,000 components were subtracted with a loop gain of 0.1. Part (a) 
shows the result of application of CLEAN to the whole image, and part (b) shows 
the result when components are taken only within a tight support region surround- 
ing the source (the technique sometimes referred to as use of a box or window). 
Note the improvement obtained in (b), which is a result of adding the informa- 
tion that there is no emission outside the box region. The contours approximately 
indicate the intensity increasing in powers of two from a low value of 0.05%. 
Part (c) shows the same image as panel (b) but with contours starting a factor of 
10 lower in intensity. The roughness visible in the low-level contours is character- 
istic of CLEAN, in which each component is treated independently and there is no 
mechanism to relate the result for any one component to those for its neighbors, 
unlike the case of MEM, where a smoothness constraint is introduced. Parts (d) to 
(9 result from MEM processing. Part (d) shows the result of MEM dcconvolution 
using the same constraint region as in panel (b) and 80 iterations. The circular 
pattern of the background artifacts, centered on the point source, clearly shows 
that MEM does not handle such a feature well. In part (e) the point source was 
subtracted, using the CLEAN response to the feature, and then the MEM decon- 
volution performed with the same constraint region as in (d). The source was then 
replaced. Part (f) shows the same response as (e) with the lowest contours at the 
same level as panel (c). The low-level contours show the structure contributed by 
the observation and processing. The contours are smoother in the MEM image 
than in the CLEAN one. The images in (c) and (9 have comparablejidelity, that 
is, accuracy of reproduction of the initial model. Combinations of procedures, 
such as the use of CLEAN to remove point source responses from a map and then 
the use of MEM to process the broader background features, as illustrated above, 
can sometimes be used to advantage in complex images. 

Other Deconvolution Procedures 

Briggs ( 1995) has applied a non-negative, least-squares (NNLS) algorithm for de- 
convolution. The NNLS algorithm was developed by Lawson and Hanson (1974), 
and provides a solution to a matrix equation of the form AX = B, where, in the ra- 
dio astronomy application, A represents the dirty beam and B the dirty map. The 
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algorithm provides a least-mean-squares solution for the intensity X that is con- 
strained to contain no negative values. However, unlike the case for MEM, there 
is no smoothness criterion involved. The NNLS solution requires more computer 
capacity than CLEAN or MEM solutions, but Briggs’ investigation indicated that 
it is capable of superior performance, particularly in cases of compact objects of 
width only a few synthesized beamwidths. NNLS was found to reduce the resid- 
uals to a level close to the system noise in the observations. In certain cases it 
was found to work more effectively than CLEAN in hybrid mapping and self- 
calibration procedures (discussed below) and to allow higher dynamic range to 
be achieved. In MEM the residuals may not be entirely random but may be cor- 
related in the image plane, and this effect can introduce bias in the (u ,  u )  data 
that limits the achievable dynamic range. CLEAN appears to behave somewhat 
similarly unless it is allowed to run long enough to work down into the noise. See 
Briggs (1 995) and Cornwell, Braun, and Briggs (1 999) for further discussion. 

11.4 ADAPTIVE CALIBRATION AND MAPPING 
WITH AMPLITUDE DATA ONLY 

Calibration of the visibility amplitude is often accurate to a few percent, but phase 
errors expressed as a fraction of a radian may be much larger, as a result of vari- 
ations in the ionosphere or troposphere. Nevertheless, the relative values of the 
uncalibrated visibility measured simultaneously on a number of baselines con- 
tain information about the intensity distribution that can be extracted through the 
closure relationships described in Chapter 10, Eqs. (10.30) and (10.32). Following 
Schwab (1980), we use the term adaprive calibration for both the hybrid mapping 
and self-calibration techniques that make use of this information. Mapping with 
amplitude data only has also been investigated and is briefly described. 

Hybrid Mapping 

The rekindling of interest in closure techniques in the 1970s began with their 
rediscovery by Rogers et al. (1974), who used closure phases to derive model 
parameters for VLBI data. Fort and Yee ( I  976) and several later groups incorpo- 
rated closure data into iterative mapping techniques, of which we describe that by 
Readhead et al. (1980). The procedure is as follows: 

1. Obtain an initial trial map based on inspection of visibility amplitudes and 
any a priori data such as a map at a different wavelength or epoch. If the 
trial map is inaccurate, the convergence will be slow, but if necessary, an 
arbitrary trial map such as a single point source will often suffice. 

2. For each visibility integration period, determine a complete set of indepen- 
dent amplitude and/or phase closure equations. For each such set, compute a 
sufficient number of visibility values from the model such that when added 
to the closure relationships, the total number of independent equations is 
equal to the number of antenna spacings. 
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3. Solve for the complex visibility corresponding to each antenna spacing and 

4. Process the map from step 3 using CLEAN, but omitting the residuals. 
5. Apply constraints for positivity and confinement (delete components hav- 

ing negative intensity or lying outside the area that is judged to contain the 
source). 

6. Test for convergence and return to step 2 as necessary, using the map from 
step 5 as the new model. 

make a map from the visibility data by Fourier transformation. 

Note that the solution improves with iteration because of the constraints of con- 
finement and positivity introduced in step 5. These nonlinear processes can be 
envisioned as spreading the errors in the model-derived visibility values through- 
out the visibility data, so that they are diluted when combined with the observed 
values in the next iterative cycle. 

In the process described, and most variants of it, the map is formed by using 
some data from the model and some from direct measurements, and following 
Baldwin and Warner ( 1978) the name hybrid mapping is widely used as a generic 
description. With the use of phase closure, there is no absolute position measure- 
ment, but there is no ambiguity with respect to the position angle of the image. 
With the use of amplitude closure, only relative levels of intensity are determined, 
but it is usually not difficult to calibrate enough of the data to establish an inten- 
sity scale. In many cases the amplitude data are sufficiently accurate as observed, 
and only the phase closure relationships need be used; Readhead and Wilkinson 
(1978) have described a version of the above program using phase closure only. 
Other versions of this technique, which differ mainly in detail of implementation 
from that described, have been developed by Cotton (1 979) and Rogers ( 1980). 
If there is some redundancy in the baselines, the number of free parameters is 
reduced, which can be advantageous, as discussed by Rogers. 

The number of antennas n, is obviously an important factor in mapping by 
the closure relationships since it affects the efficiency with which the data are 
used. We can quantify this efficiency by considering the number of closure data 
as a fraction of the number of data that would be available if full calibration 
were possible, as a function of n o .  The numbers of independent closure data are 
given by Eqs. (10.31) and (10.33). The number of data with full calibration is 
equal to the number of baselines, which, if we assume there is no reduncancy, is 
:n,(n, - 1). For the phase data the fraction is 

For the amplitude data the fraction is 

I ~n,(n, - 3) n, - 3 -- - Tn,(n, 1 - I )  - 1 

(11.8) 

(11.9) 
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Figure 11.4 Visibility data that can be obtained through adaptive calibration techniques ex- 
pressed as a fraction of those available from a fully calibrated array. The curves correspond to 
Eqs. (1 1.8) and (1 1.9). 

These fractions are also equal to the ratios of observed data to observed plus 
model-derived data in each iteration of the hybrid mapping procedure. Equations 
( 1  1.8) and (1 1.9) are plotted in Fig. 11.4. For nu = 4, the closure relationships 
yield only 50% of the possible phase data and only 33% of the amplitude data. 
For n,  = 10, however, the corresponding figures are 80% and 78%. Thus, in 
any array in which the atmosphere or instrumental effects may limit the accuracy 
of calibration by a reference source, it is desirable that the number of antennas 
should be at least ten and preferably more. The number of iterations required 
to obtain a solution with the hybrid technique depends on the complexity of the 
source, the number of antennas, the accuracy of the initial model, and other factors 
including details of the algorithm used. 

Self-Cali bration 

Another group of image construction programs that basically performs the same 
function as hybrid mapping, but with a different approach, is described as selj- 
calibration. Here the complex antenna gains are regarded as free parameters to 
be explicitly derived together with the intensity. In certain cases the process is 
easily explained. For example, in mapping an extended source containing a com- 
pact component (as in many radio galaxies), the broad structure is resolved with 
the longer antenna spacings, leaving only the compact source. This can be used as 
a calibrator to provide the relative phases of the long-spacing antenna pairs, but 
not the absolute phase since the position is not known. Then, if there is a sufficient 
number of long spacings in the array, the relative gain factors of the antennas can 
be obtained using long spacings only. Such a special intensity distribution, how- 
ever, is not essential to the method, and with an iterative technique it is possible 
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to use almost any source as its own calibrator. Programs of this type were devel- 
oped by Schwab (1980) and by Cornwell and Wilkinson (1981). Reviews of the 
techniques are given by Pearson and Readhead (1  984) and Cornwell (1989). 

The procedure in self-calibration is to use a least-squares method to minimize 
the square of the modulus of the difference between the observed visibilities l):? 
and the corresponding values for the derived model, llmmndjel. The expression that 
is minimized is 

(11.10) 

where the weighting coefficient w,,, is usually chosen to be inversely proportional 
to the variance of 'V:?, and the quantities shown are all functions of time within 
the observing period. Expression (1 1.10) can be written 

where 

(11.11) 

( 1  1.12) 

If the model is accurate, the ratio X,, of the uncalibrated observed visibility to 
the visibility predicted by the model is independent of u and u but proportional 
to the antenna gains. Thus the values of X,, simulate the response to a calibrator 
and enable the gains to be determined. However, since the initial model is only 
approximate, the desired result must be approached by iteration. 

The self-calibration procedure is as follows: 

1. 

2 .  

3. 
4. 
5. 

6. 

Make an initial map as for hybrid mapping. 
Compute the X,, factors for each visibility integration period within the 
observation. 
Determine the antenna gain factors for each integration period. 
Use the gains to calibrate the observed visibility values and make a map. 
Use CLEAN and select components to provide positivity and confinement 
of the image; Cornwell (1982) recommends omitting all features for which 
1 I (I, m )  1 is less than that for the most negative feature. 
Test for convergence and return to step 2 as necessary. 

The numbers of independent data used in the procedure above are, as in the 
case of hybrid mapping, equal to the numbers of independent closure relation- 
ships given in Eqs. (10.31) and (10.33), that is, in,(n, - 3) for amplitude and 
!(nu - l)(n, - 2) for phase. The two procedures, hybrid mapping and self- 
calibration, are basically equivalent but differ in details of approach and imple- 
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Figure 11.5 Effect of self-calibration on a VLA radio image of the quasar 1548+ I 15. (a) Im- 
age obtained by normal calibration techniques, which has spurious detail at the level of 1% of 
the peak intensity. (b) Image obtained by the self-calibration technique, in which the level of 
spurious detail is reduced below the 0.2% level. In both (a) and (b) the lowest contour level is 
0.6%. From Napier, Thompson, and Ekers (1983); 0 1 9 8 3  IEEE. 

mentation. The efficiency as a function of the number of antennas (Fig. 11.4) 
applies to both. Examples of the performance of the self-calibration technique 
are shown in Figs. 1 1.5 and 1 1.6. 

Treating the gain factors, which are the fundamental unknown quantities, as 
free parameters as in self-calibration is a rather more direct approach than that of 
hybrid mapping. A global estimate of the instrumental factors is obtained using 
the entire data set. Cornwell (1982) points out that it is easier to deal correctly 



Figure 11.6 Three stages in the reduction of the observation of Cygnus A shown in Fig. 1 .I8 
(Perley, Dreher, and Cowan 1984). The top image is the result of transformation of the cali- 
brated visibility data using the FFT algorithm. The calibration source was approximately 3" 
from Cygnus A. The center image shows reduction using the maximum entropy algorithm. 
This compensates principally for the undersampling in the spatial frequencies and thereby re- 
moves sidelobes from the synthesized beam. The result is similar to that obtainable using the 
CLEAN algorithm. The bottom image shows the effect of the self-calibration technique, in 
which the maximum entropy image is used as the initial model. The final step improves the 
dynamic range by a factor of 3. In observations where the initial calibration is not as good as 
in this case, self-calibration usually provides a greater improvement. The long dimension of 
the field is 2.1 arcmin and contains approximately lo00 pixels. Reproduced by permission of 
NRAO/AUI. 
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with the noise when considering complex visibility as a vector quantity, as in 
self-calibration, than when considering amplitude and phase separately, as in hy- 
brid mapping. The noise combines additively in the vector components resulting 
in a Gaussian distribution, whereas in the amplitude and phase the more com- 
plicated Rice distributions of Eqs. (6.63) result. Cornwell and Wilkinson (1981) 
have developed a form of adaptive calibration that takes account of the different 
probability distributions of the amplitude and phase fluctuations, including sys- 
tem noise, for the different antennas. It has been used with the MERLM array, 
which incorporates antennas of different sizes and designs (Thomasson 1986). 
The probability distributions of the antenna-associated errors are legitimate a pri- 
ori information, which can be empirically determined for an array. 

Experience shows that adaptive calibration techniques in many cases converge 
to a satisfactory result using only a single point source as a starting model, al- 
though inaccuracy in the initial model increases the number of iterative cycles 
required. A point source is a good model for the phase of a symmetrical intensity 
distribution, but may be a poor model for the amplitude. It must also be remem- 
bered that the accuracy of the closure relationships depends on the accuracy of 
the matching of the frequency responses and polarization parameters from one 
antenna to another, as discussed in Sections 7.3 and 7.4. In general, any effect 
that cannot be represented by a single gain factor for each antenna, for example, 
anomalous behavior of a correlator, degrades the closure accuracy. 

In using adaptive calibration techniques, the integration period of the data must 
not be longer than the coherence time of the phase variations; otherwise the vis- 
ibility amplitude may be reduced. The coherence time may be governed by the 
atmosphere, for which the timescale is of the order of minutes. In order for the 
mapping procedure to work, the field under observation must contain structure 
fine enough to provide a phase reference, and bright enough to be detected with 
satisfactory signal-to-noise ratio within the coherence time. Thus adaptive cali- 
bration does not solve all problems, and cannot be used for the detection of a very 
weak source in an otherwise empty field. 

Mapping with Visibility Amplitude Data Only 

A number of studies have been made concerning the feasibility of producing im- 
ages using only the amplitude values of the visibility. The Fourier transform of the 
squared modulus of the visibility is equal to the autocorrelation of the intensity 
distribution, I * * I :  

(11.13) 

The right-hand side can also be written as a convolution: I (I, m )  * * I ( 4 ,  -m). 
The problem of mapping with lYl only is mainly one of interpreting a map of 
the autocorrelation of I. Without phase data the position of the center of the field 
cannot be determined, and there is a 180" rotational ambiguity in the position 
angle of the map. However, these restrictions are often acceptable. 
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Examples of studies relevant to mapping without phase data are found in Bates 
(1969, 1984), Napier (1972), and Fienup (1978). Napier and Bates (1974) re- 
view some of the results. The positivity requirement is generally found to be 
insufficient to provide unique solutions for one-dimensional profiles, but for two- 
dimensional maps uniqueness is obtained in some cases (Bruck and Sodin 1979). 
Baldwin and Warner (1978, 1979) considered the case of a two-dimensional dis- 
tribution of point sources, with some success in deducing a source map from the 
autocorrelation function. Although these approaches showed promise of provid- 
ing an advance in the interpretation of radio interferometer data, they have not 
proved to be of great importance in radio astronomy. No simple, reliable method 
of interpretation was realized, and, more importantly, the development of tech- 
niques that make use of closure relationships has allowed visibility phases to 
contribute useful data even when not well calibrated. 

11.5 MAPPING WITH HIGH DYNAMIC RANGE 

The dynamic range of an image is usually defined as the ratio of the maximum 
intensity to the rms level at some part of the field where the background is mainly 
blank sky. This rms level is assumed to indicate the lowest measurable intensity. 
The term image fidelity is used to indicate the degree to which an image is an 
accurate representation of a source on the sky. Image fidelity is not directly mea- 
surable on an actual source, but simulation of an observation of a model source 
and reduction of the visibility data allow comparison of the resulting image with 
the model. This is a way of investigating antenna configurations, processing meth- 
ods, and other details. The requirements and techniques are discussed in detail by 
Perley (1989, 1999a). 

High dynamic range requires high accuracy in calibration, removal of any er- 
roneous data, and careful deconvolution. That is, it requires high accuracy in the 
visibility measurements, and very good (u ,  u )  coverage. A phase error A@ can 
be regarded as introducing an erroneous component of relative amplitude sin A& 
into the visibility data, in phase quadrature to the true visibility. An amplitude 
error of E,% can be regarded as introducing an error component of relative am- 
plitude into the visibility. Thus, for example, a phase error of lo" introduces 
as large an error component as does an amplitude error of 17%. An amplitude 
error of 17% would be considered unusually large in most cases, except in con- 
ditions of strong atmospheric attenuation. However, a lo" phase error would be 
much more commonly encountered, especially at frequencies where ionospheric 
or tropospheric irregularities are important. A phase error A@ (rad) in a correla- 
tor output introduces an error component of rms relative amplitude A @ / A  in the 
resulting map. With similar errors in n,(n, - 1)/2 baselines, the dynamic range 
of a snapshot is limited to -n, /A@. 

Use of self-calibration is an essential step in minimizing gain errors. However, 
after calibration of the antenna-based gain factors, there remain small baseline- 
based terms which can also be calibrated. These result from variations, from one 
antenna to another, in the frequency bandpass or the polarization, as discussed 
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in Sections 7.3 and 7.4, and similar effects. Note that in arrays with very high 
sensitivity at the longer wavelengths, the requirement to observe down to the limit 
set by system noise, in the presence of background sources, places a lower limit 
on the required dynamic range. A large number of array elements is beneficial in 
such cases (Lonsdale et al. 2000). 

Obtaining the highest possible dynamic range requires attention to details that 
are specific to particular instruments. For the VLA, the following figures are 
quoted as a rough guideline for a good observation. Basic calibration results 
in dynamic range of order 1000 : 1. After self-calibration, dynamic range up to 
-20,000 : I is possible. After careful correction of baseline-based errors, it may 
be as high as -80,000 : 1. If the spectral correlator is used, which avoids errors in 
the quadrature networks of the continuum correlator and also relaxes the require- 
ment for delay accuracy, -200,000 : 1 is achievable, with much care, assuming 
that the signal-to-noise ratio is adequate. 

11.6 MOSAICKING 

Mosaicking is a technique that allows mapping of an area of sky that is larger 
than the beam of the array elements. It becomes very important in the millimeter- 
wavelength range, where antenna beams are relatively narrow. Although radio 
astronomy antennas for millimeter wavelengths are generally smaller in diameter 
than are antennas for centimeter wavelengths, their beamwidths are often nar- 
rower because the wavelengths are so much shorter. 

Consider mapping a square field whose sides are n times the width of the an- 
tenna primary beam. One can divide the required area into n2 subfields, each the 
size of a beam, and map each such area separately. The n2 beam-area maps can 
then be fitted together like mosaic pieces to cover the full field desired. One would 
anticipate that some difficulty might occur in obtaining uniform sensitivity, par- 
ticularly near the joins of the mosaic pieces, but clearly the idea is feasible. From 
the sampling theorem described in Section 5.2, the number of visibility sample 
points in u and u required in a map covering n2 beam areas is n2 times as many 
as would be required in a map that covers just one beam area. In mosaicking, the 
increased data are obtained by using n2 different pointing directions of the anten- 
nas. As a result, the sampling of the visibility in u and u must be at an interval 
l /n  of that for a field equal to the beam size, and this interval is usually less than 
the diameter of the antenna aperture. However, it is possible to determine how the 
visibility varies on a scale less than the diameter of an antenna, as we now discuss. 

Figure 5.9 of Chapter 5 shows two antennas that are tracking the position of a 
source. The antenna spacing projected normal to the direction of the source is u,  
and the antenna diameter is dA, both quantities being measured in wavelengths. In 
the u direction the interferometer responds to spatial frequencies from (u - d A )  
to ( u  + dA), since spacings within this range can be found within the antenna 
apertures. Measurement of the variation of the visibility over this range of base- 
lines can provide the fine sampling required in mosaicking. The difference in path 
lengths from the source to the two antenna apertures is w wavelengths, and as 
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the antennas track, the variation in w gives rise to fringes at the correlator output. 
Since the apertures of the antennas remain normal to the direction of the source, 
the path difference w, and its rate of change, are the same for any pair of points 
of which one is in each aperture plane, regardless of their spacing. Thus, because 
of the tracking motion, the signals received at any two such points produce a 
component of the correlator output with the same fringe frequency. Such compo- 
nents cannot, therefore, be separated by Fourier analysis, and information on the 
variation of the visibility within the spatial frequency range ( u  - dJ to (u + d i )  
is lost. However, in mosaicking, the antenna beams must be scanned across the 
field, either by moving periodically between different pointing centers or by con- 
tinuously scanning, for example, in a raster pattern. The scanning is in addition to 
the usual tracking motion to follow the source across the sky. In Fig. 5.9 it can be 
seen that if the antennas are suddenly turned through a small angle A8, then the 
position of the point B is changed by A u  A8 wavelengths in a direction parallel 
to that of the source. This results in a phase change of approximately 2n Au A8 in 
the fringe component corresponding to the spacing ( u  + Au), of which points A ,  
and B are an example. Since this phase change is linearly proportional to Au, the 
variation of the visibility within the range (u - d i )  to (u + dA)  can be obtained by 
Fourier transformation of the correlator output with respect to the pointing offset 
Af?. Thus the changes in pointing induce variations in the fringe phase that are 
dependent on the spacing of the incoming rays within the antenna apertures, and 
this effect allows the information on the variation of the visibility to be retained. 

The conclusion given above, that the scanning action of the antennas allows 
information on a range of visibility values to be retrieved, was first reached by 
Ekers and Rots (1979), using a mathematical analysis, as follows. Consider a pair 
of antennas with spacing (uo, uo) pointing in the direction ( l , ,  m,) .  As the point- 
ing angle is varied, the effective intensity distribution over the field of interest is 
represented by I ( f ,  m )  convolved with the normalized antenna beam A N ( I ,  m). 
The observed fringe visibility is the Fourier transform with respect to u and u of 
I ( 1 ,  m) multiplied by the antenna response for the particular pointing: 

V(u0, UO, I , ,  m,)  = AN(f - I , ,  m - m , ) Z ( f ,  m)e-i2K(Uot+uom)dl dm. 

(11.14) 

JS 
Assuming that the antenna beam is symmetrical, we can write Eq. (1 1.14) as 

~ ( u o ,  uo, I,, m,) = A,v(fp - I ,  m p  - m ) l ( l ,  m)e-J2n(uo~+vom)dl  dm,  JJ 
(1  1.15) 

which has the form of a two-dimensional convolution: 

'WO, UO, I , ,  m , )  = [ I ( / ,  m k  - P ( u o / + u o m ) ]  * * ~ ~ ( 1 ,  m). (11.16) 

Now we take the Fourier transform of 'V with respect to u and u, which represents 
the full-field visibility data obtained by means of the ensemble of pointing angles 
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used: 

= [ Y ( u ,  u )  * * * q u o  - u ,  uo - U ) ] X N ( U ,  u ) .  

Here A(u,  u )  is the Fourier transform of A N ( I ,  m ) ,  that is, the autocorrelation of 
the field distribution over the aperture of a single antenna, referred to as the trans- 
fer function or spatial sensitivity function of the antenna. The two-dimensional 
delta function 2 6 ( u ~  - u ,  uo - u )  is the Fourier transform of e-j2n(uo'+uom). As the 
final step, Eiq. (1 1.17) becomes 

(1 1.18) 

The conclusion from Eq. ( 1 1.18) is that if one observes a field of dimensions equal 
to several beamwidths, obtains the visibility for a number of pointing directions, 
and then for each antenna pair takes the Fourier transform of the visibility with 
respect to the pointing direction, the result will be values of the visibility extended 
over an area of the (u ,  u )  plane as large as the support of the function &(u,  u ) .  
For a circular reflector antenna of diameter d, X N ( u ,  u )  is nonzero within a circle 
of diameter 2d. Thus, if AN(u, u )  is known with sufficient accuracy, that is, the 
beam pattern is sufficiently well calibrated, the visibifity can be obtained at the 
intermediate points required to provide the full-field map. 

In the practical reduction of visibility data used in mosaicking, the Fourier 
transform with respect to pointing is usually not explicitly performed. The impor- 
tance of the discussion above is that it shows that the information at the required 
spacing is present in the data if the antenna pointing is scanned with respect to 
the source, either as a continuous motion or as a series of discrete pointings. The 
reduction to obtain the intensity distribution is generally based on the use of non- 
linear deconvolution algorithms. 

Cornwell (1988) has pointed out that the angular spacing required between the 
pointing centers on the sky can be deduced from the sampling theorem of Fourier 
transforms (Section 5.2). A more general form of the theorem can be stated as 
follows: if a function f ( x )  is nonzero only within an interval of width A in the 
x coordinate, then it is fully specified if its Fourier transform F ( s )  is sampled at 
intervals no greater than A-' in s. If the sampling is coarser than this, aliasing 
will occur and the original function will not be reproducible from the samples. 
Here we consider an antenna beam pointing toward a source that is wide enough 
to cover most of the reception pattern, that is, the main beam and major sidelobes. 
As we move the antenna beam to different pointing angles to cover the source, 
we are effectively sampling the convolution of the source and the antenna beam. 
The beam pattern is equal to the Fourier transform of the autocorrelation function 
of the field distribution over the antenna aperture. The field cuts off at the edges 
of the aperture, which is dA wavelengths wide. Thus the autocorrelation function 
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cuts off at a width 2dA. Recall that in the earlier usage of the sampling function 
(Section 5.2) it was the source width that had the sharp cutoff. In the present 
case the theorem indicates that the interval between pointings Afp should not 
exceed 1/(2dA) in order to fully sample the source convolved with the beam. In 
practice, the antenna illumination function is likely to be tapered at the edge, so 
the autocorrelation function falls to low levels before it reaches the cutoff width 
2dA. Thus if Alp slightly exceeds 1/(2dA), the error introduced may not be large. 

Methods of Producing the Mosaic Map 

The basic steps in the mosaicking method are as follows: 

1. Observe the visibility function for an appropriate series of pointing centers. 
2. Reduce the data for each pointing center independently to produce a series 

of maps, each covering approximately one antenna-beam area. 
3. Combine the beam-area maps into the required full-field map. 

In step 2 it is desirable also to deconvolve the synthesized beam response from 
each beam-area map to remove the effects of sidelobes in the response, and this 
can be done using, for example, CLEAN or MEM. Use of these nonlinear algo- 
rithms can fill in some of the frequency components of the intensity that were 
omitted from the coverage of the antenna array. Cornwell (1988) and Cornwell, 
Holdaway, and Uson (1993) describe two procedures for mosaic mapping. The 
first of these, which they refer to as linear mosaicking, is essentially the three steps 
above with a least-squares procedure for combination of the individual pointing 
maps in step 3. Although a nonlinear deconvolution is used individually on each 
beam-area map, the combination of the maps is linear process. The second pro- 
cedure, which differs in that the deconvolution is performed jointly, is referred 
to as nonlinear mosaicking and involves a nonlinear algorithm such as MEM. 
Unmeasured visibility data can best be estimated in the deconvolution process 
if the full field that is covered by the ensemble of pointing angles contributes 
simultaneously to the deconvolution, rather than by treating each primary beam 
area separately. The benefit of a joint deconvolution of the combined beam-area 
maps is illustrated by consideration of an unresolved component of the intensity 
distribution located at the edge of a beam area where it occurs in two or more 
individual beam maps. Being at the beam edge where the response is changing 
rapidly, the amplitude of the component is more likely to be inaccurately de- 
termined, but such errors will tend to average out in the combined data. In the 
application to mosaicking, maximum entropy can be envisaged as the formation 
of a map that is consistent with all the visibility data for the various pointings, 
within the uncertainty resulting from the noise. 

Cornwell (1988) discusses use of the maximum entropy algorithm of Corn- 
well and Evans (1985) in mosaicking. This algorithm is briefly described in Sec- 
tion 1 1.3 [see Eq. (1  1.7)]. The procedure is essentially the same as in the applica- 
tion to a single-pointing map, except for a few more steps in determining x and 
its gradient. As in Eq. ( 1  1.6), x 2  is the statistic that indicates the deviation of the 
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model from the measured visibility values and is here expressed as 

( 1 1.19) 
v ip  " 

where the subscripts i and p indicate the ith visibility value at the pth pointing 
position, and is the variance of the visibility. An initial model is required, and 
the procedure follows a series of steps described by Cornwell (1988). as follows: 

1. For the first pointing center, multiply the current trial model with the an- 
tenna beam as pointed during the observation, and take the Fourier trans- 
form with respect to (I, rn) to obtain the predicted visibility values. 

2. Subtract the measured visibilities from the model visibilities to obtain a set 
of residual visibilities. Insert the residual visibilities into the accumulating 
x 2  function of Eq. (1 1.19). 

3. By Fourier transformation, convert the residual visibilities, weighted in- 
versely as their variances, into an intensity distribution. Taper this distribu- 
tion by multiplying it by the antenna beam pattern, and store in a data array 
of dimensions equal to the full MEM model. 

4. Repeat steps 1-3 for each pointing. In step 2, add the value for x 2  to those 
for the other pointings in this cycle. In step 3, add the residual intensity 
values into the data array. The accumulated values in this data array are 
used to obtain the gradient of x 2  with respect to the MEM image. 

The reason for the additional multiplication of the residual distribution by the 
beam function in step 3 is that it reduces unwanted responses from sidelobes of 
the primary beam that fall on adjacent pointing areas. It also weights the data 
with respect to the signal-to-noise ratio. Completion of the MEM procedure may 
require several tens of cycles through the steps given above to obtain convergence 
to the final image. To complete the process, smoothing with a two-dimensional 
Gaussian beam of width equal to the array resolution is recommended, to reduce 
the effects of variable resolution across the map. 

A slightly different procedure for nonlinear mosaicking is described by Sault, 
Stavely-Smith, and Brouw (1996). In this case the beam-area maps are combined 
linearly without the individual deconvolution step, and then the final nonlinear 
deconvolution is applied to the combined map. In the linear combination each 
pixel in the combined map is a weighted sum of the corresponding pixels in the 
individual beam-area maps. As an example, Sault et al. show results for a mol 
saic of the Small Magellanic Cloud made with the compact configuration of the 
Australia Telescope using 320 pointings. They demonstrate that the joint decon- 
volution used in nonlinear mosaicking is superior to the linear combination of 
the subfield maps, even if these have been individually deconvolved. They also 
show the deconvolution using both their method and that described by Cornwell 
(1988), and conclude that the results are of comparable quality. 
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Some Requirements of Arrays for Mosaicking 
In mapping sources wider than the antenna beam it is important to obtain vis- 
ibility values at increments in u and u that are smaller than the diameter of an 
antenna. Data equivalent to an essentially continuous coverage in u and u can 
then be obtained by observing at various pointing positions as discussed above. 
The minimum spacing of two antennas is limited by mechanical considerations, 
and there is a gap or region of low sensitivity corresponding to a spacing of about 
half the minimum spacing between the centers of two antenna apertures. This 
minimum spacing depends on the antenna design, but in general, unless the range 
of zenith angles is restricted, two antennas of diameter d cannot be spaced much 
closer than about 1.4d, or perhaps 1.25d with special design. Otherwise, there is 
danger of mechanical collision, especially if there is a possibility that the antennas 
may not always be pointing in the same direction. Total-power observations with 
a single antenna will, in principle, provide spacings from zero to d/A, but with 
some antennas measurements at spatial frequencies greater than -OSd/A are un- 
reliable because the spatial sensitivity function of the antenna falls to low levels 
as a result of the tapered illumination of the reflector. Missing data at low ( u ,  v) 
values result in broad negative sidelobes of the synthesized beam, such that the 
beam appears to be situated in a shallow bowl-shaped depression. This effect is 
most noticeable when the field to be mapped is wide enough that there are several 
empty ( u ,  u )  cells within the central area. 

The transfer function AN(u) is the autocorrelation function of the field distri- 
bution over the antenna aperture, and depends on the particular design of the an- 
tenna, including the illumination pattern of the feed. The solid curve in Fig. 1 1.7 
shows for a uniformly illuminated circular aperture, which can be regarded as 
an ideal case. Since there is usually some tapering in the illumination of a reflector 
antenna, AN will generally fall off somewhat more rapidly than the curve shown. 
The function ZN in Fig. 1 1.7 is proportional to the common area of two overlap- 
ping circles of diameter d, and the abscissa is the distance between their centers. 
In three dimensions this function is sometimes referred to as chat ( ), and its prop- 
erties are discussed by Bracewell ( 1995). The dashed curves in Fig. 1 I .7 show the 
relative spatial sensitivity for an interferometer using two uniformly illuminated, 
circular apertures of diameter d. Curve 1 is for a spacing of 1.4d between the 
centers of the apertures; curve 2 for a spacing of 1.25d. If both total-power and 
interferometer data are obtained, it can be seen that the minimum sensitivity oc- 
curs for spacings of approximately half the antenna spacing. 

One solution to increasing the minimum sensitivity in the spatial frequency 
coverage is the addition of total-power measurements from a larger antenna, of 
diameter -2d or -3d; see, for example, Bajaja and van Albada (1979) or Welch 
and Thornton ( 1985). Total-power observations with a diameter-2d antenna will 
provide spacings from zero to about d and thus cover the gap. However, since the 
cost of an antenna scales approximately as d2.’, the expected cost of an antenna 
of diameter 2d is roughly 6.5 times that of an antenna of diameter d. Further- 
more, the large antenna may not achieve the accuracy of surface or pointing of 
the smaller antennas, so it may have a more restricted range of operating fre- 
quency. 
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Figure 11.7 The solid curve centered on the origin shows the spatial sensitivity function 
for a single antenna of diameter d. The curve corresponds to the case of uniform excitation 
over the aperture. This curve indicates the relative sensitivity to spatial frequencies for total- 
power observations with a single antenna. The dashed curves show the spatial sensitivity for 
two antennas of diameter d, with uniform aperture excitation, working as an interferometer. 
Curve 1 is for a spacing of 1.4d between the centers of the antennas, and curve 2 is for a 
spacing of 1.25d. If the aperture illumination is tapered the curves will fall off to low values 
more rapidly than is shown. 

Another possibility for covering the missing spatial frequencies is the use 
of one or more pairs of smaller antennas, say, d / 2  in diameter, with spac- 
ing about 0.7d. A pair of antennas of diameter d / 2  have 1/4 the area, and 
consequently 1/4 the sensitivity to fine structure, of a pair of the standard an- 
tennas. Since the beam of the smaller antenna has four times the solid angle 
of a standard antenna, it will require 1/4 the number of pointing directions, 
and the integration time for each one can be four times as long. Cornwell, 
Holdaway, and Uson (1993) present evidence that for mosaicking it is possi- 
ble to obtain satisfactory performance with a homogeneous array, that is, one 
in which all antennas are the same size. This requires total-power observation 
as well as interferometry with some antennas spaced as closely as possible. 
The deconvolution steps in the data reduction help to fill in remaining ( u ,  u )  

gaps. 
At frequencies of several hundred gigahertz, where antenna beams are of 

minute-of-arc order, maps of objects of order one degree in size require numbers 
of pointings in the range 1 02-1@. Any given pointing cannot be quickly repeated, 
so dependence on earth rotation to fill in small gaps in the (u, u )  coverage may 
not be practicable. Thus arrays designed for mosaicking of large objects require 
good instantaneous (u, u )  coverage. At such high frequencies it is also desirable 
to avoid high zenith angles to minimize atmospheric effects. 

An alternative to tracking discrete pointing centers is to sweep the beams over 
the area of sky under investigation in a raster scan motion. This technique has 
been referred to as “on-the-fly” mosaicking. It has several advantages, as fol- 
lows: 
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The uniformity of the ( u ,  u )  coverage for all points in the field is maximized, 
which results in uniformity of the synthesized beam across the resulting map 
and thereby simplifies the image processing. 
Each point in the field is observed many times in as rapid succession as 
possible, so some advantage can be taken of earth rotation to fill in the (u,  u )  
coverage. 
If total-power measurements are made, the scanning motion of the beam can 
be used to remove atmospheric effects in a similar way to the use of beam 
switching in large single-dish telescopes. 
Waste of observing time during moves of the antennas from one pointing 
center to another is eliminated. 

disadvantage of on-the-fly observing is that the real-time integration at the 
correlator output must be somewhat less than the time taken for the beam to scan 
over any point in the field, and thus a large number of visibility data, each with a 
separate pointing position, are generated. 

11.7 MULTIFREQUENCY SYNTHESIS 

Making observations at several different radio frequencies is an effective way 
of improving the sampling of the visibility in the (u,  u )  plane. This technique 
is referred to as multifrequency synthesis, or bandwidth synthesis. Generally the 
range of frequencies is about f 1 5 %  of the mid-range value. Such a range can 
be very effective in filling in gaps in the coverage, and since it is not too large, 
major changes in the source structure with frequency are avoided [see, e.g., Con- 
way, Cornwell, and Wilkinson (1990)l. However, the variation of structure with 
frequency may be large enough to limit the dynamic range unless some steps are 
taken to mitigate it, as discussed here. The principal cosmic radio emission mech- 
anisms produce radio spectra that vary smoothly in frequency, and the intensity 
usually follows a power-law variation with frequency: 

(1  1.20) 

where a! is the spectral index, which varies with ( 1 ,  m). If the spectrum does not 
conform to a power law, then, in effect, we can write 

( I  1.21) 

If the spectral index were a constant over the source, the spectral effects could 
be removed. Although this is not the case, the spectral effects are reduced by 
first correcting the data for a “mean” or “representative” spectral index for the 
overall structure to be imaged. Thus, from this point, a! will represent the spectral 
index of the deviation of the intensity distribution from this first-order correction. 
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Consider the case where the intensity variation can be approximated by a linear 
term: 

where the reference frequency uo is near the center of the range of frequen- 
cies used. Equation (1 1.22) is the sum of a single-frequency term and a spectral 
term. To determine the synthesized beam of an array working in the multifre- 
quency mode, consider the response to a point source with a spectrum given by 
Eq. (1 1.22). The response to the single-frequency term can be obtained by taking 
the Fourier transform of the spatial transfer function. The transfer function has a 
delta function of u and u for each visibility measurement. Each frequency used 
contributes a different set of delta functions. The response to the spectral term 
is obtained by multiplying the transfer function by (v - V O ) / U O  and taking the 
Fourier transform. If we call the single-frequency and spectral responses bb and 
b’, , respectively, the synthesized beam is equal to 

bo(1, rn) = bh(l, rn) +a(/, m)b;( l ,  m ) .  (1 1.23) 

The first component is a conventional synthesized beam, and the second one is 
an unwanted artifact. The measured intensity distribution obtained as the Fourier 
transform of the measured visibilities is 

l o ( [ ,  m )  = 1(1, m) * * bb(l, m) + U ( l , m ) Z ( f , m )  * * bi(I,rn), (11.24) 

where Z ( 1 ,  m) is the true intensity on the sky. Conway, Cornwell, and Wilkin- 
son (1990) and Sault and Wieringa (1994) have both developed deconvolution 
processes based on the CLEAN algorithm that deconvolve both bb and 6; .  In 
the method used by the first of these groups, components representing each one 
of the two beams were removed alternately. In the method used by the second 
group, each component removed represented both beams. These methods pro- 
vide the distribution of both the source intensity and the spectral index as func- 
tions of frequency. Conway et al. also consider a logarithmic rather than a linear 
form of the frequency offsets from UO. These analyses show that for a frequency 
spread of approximately f 15%, the magnitude of the response resulting from the 
b; component is typically 1% and can sometimes be ignored. Removing the b’, 
component reduces the spectral effects to -0.1 %. 

11.8 NON-COPLANAR BASELINES 

In Section 3.1 it was shown that, except in the case of east-west linear arrays, the 
baselines of a synthesis array do not remain in a plane as the earth rotates. It was 
also shown that for fields of view of small angular size [as given approximately 
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by Eq. (3.12)), the Fourier transform relationship between visibility and intensity 
can be expressed satisfactorily in two dimensions. This is the basis of a large 
part of all synthesis mapping. However, particularly for frequencies less than a 
few hundred megahertz, the small-field assumption does not always apply. At 
meter wavelengths the primary beams of the antennas are wide, for example, -6” 
for a 25-m diameter antenna at a wavelength of 2 m. Also, the high density of 
strong sources on the sky at meter wavelengths requires that the full beam be 
mapped to avoid confusion. We now consider the case where the condition in 
Eq. (3.12) is not valid, so the two-dimensional solution should not be used. The 
following treatment follows those of Sramek and Schwab (1989), Cornwell and 
Perley (1992), and Perley (1999b). We start with the exact result in Eq. (3.7), 
which is 

(1  1.25) 

Here V ( u ,  u ,  w )  is the visibility as a function of spatial frequency in three di- 
mensions, AN(1, m )  is the normalized primary beam pattern of an antenna, and 
I (I, m )  is the two-dimensional intensity distribution to be mapped. 

The next step is to rewrite Eq. ( 1  1.25) in the form of a three-dimensional 
Fourier transform, which involves the third direction cosine n defined with re- 
spect to the w axis. The phase of the visibility V ( u ,  u,  w )  is measured relative 
to the visibility of a (hypothetical) source at the phase reference position for the 
observation. This introduces a factor ejZnlu within the exponential term on the 
right-hand side of Eq. (1 1.25), as noted in the text following &. (3.7). The cor- 
responding phase shift is inserted by the fringe rotation discussed in Section 6.1 
under Delay Tracking and Fringe Rotation. As a result of this factor, we use 
n’ = n - 1 as the conjugate variable of w in order to obtain the three-dimensional 
Fourier transform. Functions of n‘ will be indicated by a prime. Thus we rewrite 
Eq. ( 1 1.25) as follows: 

x exp { - j2n (u l+  um + wn’)) d l  d m  dn‘.  (1 1.26) 

The delta function S(J1 - l 2  - m2 - n’ - 1) is introduced to maintain the con- 
dition n = 41 - f 2  - m2,  and thereby to allow n’ to be treated as an independent 
variable in the Fourier transformation. In a practical observation Y is measured 
only at points at which the sampling function W ( u ,  u ,  w )  is nonzero. The Fourier 
transform of the sampled visibility defines a three-dimensional intensity function 
Z; as follows: 
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Ii(1, m ,  n’) = 

This is the Fourier transform of the product of the two functions W ( u ,  u, w )  and 
V ( u ,  u, w ) ,  which by the convolution theorem is equal to the convolution of the 
Fourier transforms of the two functions. Thus 

* * * W’(1, m ,  n o .  1  AN(^, m ) I ( l ,  rn)s(Jl - l 2  - m2 - n’ - 1) 

J 1 - 1 2  -m2 
[ ; ( I ,  m ,  n’) = 

(1 1.28) 

Here w’(1, m ,  n’) is the Fourier transform of the three-dimensional sampling 
function W ( u ,  u, w) ,  and the triple asterisk denotes three-dimensional convolu- 
tion. Having determined the result of the Fourier transformation, we can now 
replace n’ by (n  - I ) ,  and Eq. ( 1  1.28) becomes 

( 1  1.29) 

The expression in the braces on the right-hand side of Eq. (1  I .29) is confined 
to the surface of the unit sphere n = Jl - l 2  - m2,  since the delta function is 
nonzero only on the sphere. The function w with which it is convolved is the 
Fourier transform of the sampling function and is, in effect, a three-dimensional 
dirty beam. The convolution has the effect of spreading the expression so that I3 

has finite extent in the radial direction of the sphere. Figure 1 1.8a shows the unit 
sphere centered on the origin of (1, m ,  n )  coordinates at R .  The (1, rn) plane in 
which the results of the conventional two-dimensional analysis lie is tangent to 
the unit sphere at 0, at which point n = 1 and n’ = 0. Note that since 1, m ,  and n 
are direction cosines, the unit sphere in (1, m, n) is a mathematical concept, not a 
sphere in real space. 

Several ways of obtaining an undistorted wide-field map are possible (Corn- 
well and Perley 1992), and are discussed as follows. 

1. Three Dimensional Transformation. 13(1, m,  n )  can be deconvolved by 
means of a three-dimensional extention of the CLEAN algorithm. This is com- 
plicated by the fact that the visibility is, in practice, not as well sampled in w 
as it is in u and u; from Fig. 3.4 the large values of w occur for large zenith 
angles of the target source. In Fig. 11.8b the width of the angular field is Of. 
The transform must be computed over the range of ( I ,  m)  within this field, and 
over the range PQ in n. Cornwell and Perley suggest using a direct (rather than 
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Figure 11.8 (a) One hemisphere of the unit sphere in ( I ,  m ,  n) coordinates. The point R is the 
origin of the ( 1 ,  m, n) coordinates. 0 is the origin of the (I, m ,  n’) coordinates, which is the 
phase reference point. (b) Section through the unit sphere in the (m, n) plane. The shaded area 
represents the extent of the function 13. A source at point A would not appear, or would be 
greatly attenuated, in a two-dimensional analysis in the (I, m )  plane. The width of the three- 
dimensional “beam” in the n direction should be comparable to that in 1 and m, since the range 
of the sampling function in w is comparable to that in u and u if the observations cover a large 
range in hour angle. (In the superficially similar case in Fig. 3.5, the intensity function is not 
confined to the surface of the sphere because the measurements are all made in the w’ = 0 
plane.) 

discrete) Fourier transform in the n to w transformation, since otherwise the poor 
sampling may result in serious sidelobes and aliasing. Thus, two-dimensional 
FFTs are performed in a series of planes normal to the n axis. The number of 
planes required is equal to PQ divided by the required sampling interval in the n 
direction. The range of measured visibility values has a width 21wI,,, in the w 
direction, so, by the sampling theorem, the intensity function is fully specified in 
the n coordinate if it is sampled at intervals of (21wlmax)-’. The distance PQ is ap- 
proximately equal to * i l l 2  + rn21mix [note that the angle POQ = 0//4, and 
(8,/2)2 = 112+rn21max]. Thus the number of planes in which the two-dimensional 
intensity must be calculated is 112 + m2JmaxIwlmax. [This result can also be ob- 
tained by taking the phase term in Eq. (3.8) that is omitted in going from three to 
two dimensions and sampling at the Nyquist interval of half a turn of phase.] The 
maximum possible value of w is Dm,.JA, where D,,, is the longest baseline in 
the array. If 8, is limited by the beamwidth of antennas of diameter d ,  for which 
the angular distance from the beam center to the first null is -A/d,  the required 
number of planes is - ( A / C I ) ~  x D,,,/A = AD,,,/d2. Examples of maps made 
using this method are given by Cornwell and Perley (1992). 

2 .  Polyhedron Mapping. The area of the unit sphere for which the map is re- 
quired can be divided into a number of subfields, which can be mapped individu- 
ally using the small-field approximation. Each one is mapped in two dimensions 
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onto a plane that is tangent to the unit sphere at a different point on the sphere. 
These tangent points are the phase centers for the individual subfields. For each 
subfield map it is necessary to adjust both the visibility phases and the ( u ,  u ,  w )  
coordinates of the whole database to the particular phase center. The subfields 
can be combined using methods similar to those used in mosaicking, including 
joint deconvolution. This approach has been referred to as polyhedron mapping 
because the various map planes form part of the surface of a polyhedron. Again 
examples are given by Cornwell and Perley ( 1992). 

3 .  Combination of Snapshots. In most synthesis arrays the antennas are 
mounted on an area of approximately level ground and thus lie close to a plane at 
any given instant. In such cases a long observation can be divided into a series of 
“snapshots,” for each of which the planar baseline condition applies individually. 
It should therefore be possible to make a map by combining a series of snap- 
shot responses. Each snapshot represents the true intensity distribution convolved 
with a different dirty beam, since the (u,  u )  coverage changes progressively as 
the source moves across the sky. Ideally, deconvolution would thus require opti- 
mization of the intensity distribution using the snapshot responses in a combined 
manner rather than individually. It should be noted that the plane in which the 
baselines lie for any snapshot is, in general, not normal to the direction of the tar- 
get source. As a result, the angle at which points on the unit sphere in Fig. 1 1.8a 
are projected onto the ( 1 ,  m )  plane is not parallel to the n axis, and varies with the 
position of the source on the sky. Positions of sources in the snapshot maps suffer 
an offset in ( 1 ,  rn) that is zero at the phase center but increases with distance from 
the phase center. Maps should be corrected for this effect before being combined. 
Since the required correction varies with the hour angle of the source, in long 
observations the effect can cause smearing of source images in the outer part 
of the map. Perley (1999b) discusses this effect and its correction. Bracewell 
(1984) has discussed a method similar to the combination of snapshots described 
above. 

4. Deconvolution with Variable Point-Source Response. In cases where the ef- 
fect of two-dimensional Fourier transformation is principally the distortion of the 
point-source response in the outer parts of the field, without serious attenuation 
of the response, then a possible procedure is deconvolution using a point source 
response (dirty beam) that is varied over the field to match the calculated response 
(McClean 1984). This approach was used by Waldram and McGilchrist (1990) in 
analysis of a survey using the Cambridge Low-Frequency Synthesis Telescope, 
which operates at 15 1 MHz using earth rotation and baselines that are offset from 
east-west by 3”. Point source responses were computed for a grid of positions 
within the field and the response for any particular position could then be obtained 
by interpolation. The principal requirement was to obtain accurate positions and 
flux densities for sources identified in maps obtained by two-dimensional trans- 
formation. Fitting the appropriate theoretical beam response for each source posi- 
tion allowed distortion of the beam, including any position offset, to be accounted 
for. The procedure is relatively inexpensive in computer time. 
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11.9 FURTHER SPECIAL CASES OF IMAGE ANALYSIS 

Use of CLEAN and Self-Calibration with Spectral Line Data 

A procedure that has been found to provide accurate separation of the contin- 
uum from the line features involves use of the deconvolving algorithm CLEAN 
(van Gorkom and Ekers 1989). However, if CLEAN is applied individually to the 
maps for the different channels, errors in the CLEAN process appear as differ- 
ences from channel to channel and may be confused with true spectral features. 
Such errors can be avoided by subtracting the continuum before applying CLEAN 
to the line data. First, CLEAN is applied to an average of the continuum-only 
channels, and the visibility components removed from these channels are also re- 
moved from the visibility data for the channels containing line features. When the 
CLEAN process is terminated, the residuals are also removed from the line data. 
The resulting line channel maps, which should then contain only line data, can 
be deconvolved individually. Note that since absorption of the continuum may 
occur in the line frequency channels, maps of line-minus-continuum may contain 
negative as well as positive intensity features. Thus algorithms such as maximum 
entropy that depend on positivity of the intensity may not be easily applicable in 
such cases. 

In applying self-calibration to eliminate phase errors in spectral line data, it 
can generally be assumed that phase and amplitude differences between channels 
vary only very little with time, and are removed by the bandpass calibration. This 
is true for both atmospheric and instrumental effects. Thus the strongest spec- 
tral feature in the field under investigation can be used to determine the phase- 
calibration solution, which is then applied to all channels. This feature might be 
the continuum emission represented by the average of the line-free channels, or a 
single channel with a strong maser line. 

Low-Frequency Mapping 

Synthesis mapping at wavelengths longer than about two meters, that is, at fre- 
quencies below about 150 MHz, usually involves wide fields of view because 
of the widths of the primary antenna beams. Synchrotron emission from radio 
sources generally becomes stronger as the frequency is reduced, and hence the 
density of strong sources on the sky increases with decreasing frequency. At low 
frequencies it is therefore often important to map the whole antenna beam to 
avoid source confusion resulting from aliasing. Also, the gain of the main beam 
of a refelector antenna decreases with decreasing frequency, and if phased arrays 
of dipoles are used, they have to be very large to maintain high gain. As a result, 
sources in the sidelobes are not so effectively suppressed relative to a source in 
the main beam as at higher frequencies. In the data analysis, unwanted responses 
from strong sources with known positions can be subtracted, but in practice the 
number of sources that can be removed in this way may be limited by the com- 
puting involved. 

A complication of the wide-field mapping that is required is the problem of 
non-coplanar baselines, considered in Section 1 1.8. Another problem is the varia- 
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tion of ionospheric effects over the beam (Baldwin 1990). The excess path length 
in the ionosphere is proportional to Y-* [see Section 13.3, Q. (13.138)], so the 
resulting phase change is proportional to u-' . The term isoplanatic patch is used 
to denote an area of the sky over which the variation in the path length for an 
incoming wave is small compared with the observing wavelength. At centimeter 
and shorter wavelengths, the beams of reflector antennas used in synthesis arrays 
are generally smaller than the isoplanatic patch. Thus the effect of an irregularity 
in the ionosphere (or troposphere) is constant over the beam and can be corrected 
by a single phase adjustment for each antenna, for example, by self-calibration. 
However, at meter wavelengths the size of the antenna beam may be several times 
that of the ionospheric isoplanatic patch. For example, in observations with the 
VLA in New Mexico, Erickson (1999) estimates that the size of the isoplanatic 
patch at 74 MHz is - 3 ' 4 ,  whereas the beamwidth of a 25-m antenna at the 
same frequency is - 13". 

Kassim et al. (1993) describe simuitaneous measurements of a number of 
strong sources at 74 and 330 MHz, using a phase reference procedure to calibrate 
the phases at the lower frequency. At 74 MHz the phase fluctuations are domi- 
nated by the ionosphere, and rates of phase change were found to be as high as 
one degree per second. These precluded calibration by the usual methods. How- 
ever, at 330 MHz the rates of phase change were slow enough to allow mapping of 
strong sources. The resulting 330-MHz phases were scaled to 74 MHz and used 
to remove the ionospheric component from the 74-MHz data that were recorded 
simultaneously. The procedure for obtaining maps at 74 MHz was essentially as 
follows: 

1. Simultaneous observations of a strong source were made at 74 and 330 
MHz, with periodic observations of a calibrator at 330 MHz. 

2. A map of the target source was made at 330 MHz using the standard tech- 
niques (i.e., use of a calibrator as at centimeter wavelengths). This was used 
as a starting model for self-calibration of the 330-MHz data. 

3. The self-calibration provided phase calibration for each antenna at 330 
MHz. These values were then scaled to 74 MHz, the ionospheric phase 
changes being inversely proportional to frequency, and used to remove the 
ionospheric variations from the 74 MHz data. 

4. The instrumental phases at 330 and 74 MHz are different at each antenna 
as a result of dissimilar cable lengths, etc. To calibrate these differences 
an unresolved calibrator was observed at both 330 and 74 MHz. The iono- 
spheric variations could be removed from the 74-MHz calibrator phases 
using the phase referencing scheme in step 3. The instrumental phase dif- 
ferences were thereby determined. 

5 .  The 74-MHz map of the target source was made from the calibrated phase 
data. Self-calibration of the 74-MHz data was used to remove residual phase 
drifts, and for this the 330-MHz image provided a suitable starting model. 

For the strongest sources, for which it was possible to obtain a good signal-to- 
noise ratio in an averaging time of no more than 10 s, self-calibration at 74 MHz 
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was sufficient in most cases. Although only eight VLA antennas were equipped 
for operation at 74 MHz, images with dynamic range of better than 20 dB were 
obtained for several sources. The problem of non-coplanar baselines did not 
arise in these measurements because the sources were compact enough for sat- 
isfactory two-dimensional mapping. The sources were also strong enough that 
other sources in the antenna beam and sidelobes could be ignored. For observ- 
ing weaker sources, where several sources of similar flux density are within the 
antenna beam, a more complex correction procedure to handle more than one 
isoplanatic patch would be necessary. 

Lensclean 

A number of cases are known in which the image of a quasar or radio galaxy 
is distorted by the gravitational field of a galaxy, following the discovery of this 
phenomenon by Walsh, Carswell, and Weymann (1979). The line of sight from 
the lens source intersects, or passes very close to, the galaxy. In some cases the 
gravitational lensing results in multiple images of a single point-source quasar, 
and in other cases extended structure is involved: see, for example, Narayan and 
Wallington (1992). In studies of gravitational lensing, the structure of the gravi- 
tational field is of major astrophysical importance. The term lensclean has been 
used to denote a method of analysis, including several variations of the original 
algorithm, that allow the lensing field to be determined by synthesis imaging. 
The basis of these methods is analogous to self-calibration, in which the image 
is sufficiently overdetermined by the visibility measurements that it is possible to 
determine also the complex gains of the antennas. In lensclean it is the pattern 
of the gravitational field that is to be determined. An additional constraint is that 
points in the source of the radiation can each contribute to more than one point in 
the synthesized image. 

The original lensclean procedure (Kochanek and Narayan, 1992) is based on 
an adaptation of the CLEAN algorithm. The basic principle can be described as 
follows. Consider the case where the source that is imaged by the lens contains 
extended structure. An initial model for the lens is chosen. Each point in the 
source contributes to multiple points in the image, and this mapping from the 
source to the image is defined by the lens model. For any point in the source, 
the intensity in the image should ideally be the same at each point at which it 
appears, since the imaging involves only geometric bending of the radiation from 
the source, as in an optical system. Suppose that the j th  source pixel is mapped 
into n image pixels. In practice, the intensity of these pixels in the image is 
not equal because of defects in the lens model and noise in the image. The best 
estimate of the intensity of the pixel in the source is the mean intensity of the 
corresponding pixels in the image. Thus one can subtract components from the 
image in the manner of CLEAN and build up a map of the source. For each 
source pixel for which nj 1, the mean squared deviation of the intensity of the 
corresponding image pixels from the mean intensity of the nj =- 1 image pixels, 
a,?, is calculated. For a good lens model the mean value of a)? over the pixels in 
the source map should be no greater than the variance of the noise in the image 
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oioise. If the number of degrees of freedom in the source map is taken to be equal 
to the number of pixels, then the statistical measure of the quality of the lens 
model is x 2  = ~ ( C T ~ / U ~ ~ ~ , ~ ) ,  where the sum is taken over the j source pixels. 
The lens parameters can thus be varied to minimize x 2 .  In practice the procedure 
is more complicated than indicated by the description above. Modifications are 
included to take account of the finite resolution of the image, which has the effect 
of spreading the mapping of each source pixel over a number of image pixels. 
Also, for any unresolved structure in the source, the intensity of the corresponding 
structure in the image depends on the magnification of the lens. 

Ellithorpe, Kochanek, and Hewitt ( 1996) introduced a visibility tensclean pro- 
cedure in which the CLEAN components are removed from the ungridded visi- 
bility values under the constraints of a lens model. The squared deviations of the 
measured visibility from a model are used to determine a x 2  statistic. The quality 
of the fit is judged from the variance of the measured visibility and the number of 
degrees of freedom is 2Nvi, - 3N,,  - N,,,,, where Nvis is the number of visibility 
measurements (which each have two degrees of freedom), N,, is the number of 
independent CLEAN components in the source model (three degrees of freedom, 
from position and amplitude), and Nlens is the number of parameters in the lens 
model. Ellithorpe et al. compared results of the original lensclean with visibility 
lensclean, and found the best results from the latter, with a further improvement if 
a self-calibration step is added. The use of the MEM algorithm as an alternative to 
CLEAN has also been investigated (Wallington, Narayan, and Kochanek 1994). 
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12 Interferometer Techniques for 
Astrometry and Geodesy 

The output fringe pattern of an interferometer provides a measure of the scalar 
product of the baseline and source-position vectors, D-s. Up to this point we have 
assumed that these factors are describable by constants that can be specified with 
high accuracy. However, the measurement of source positions to an accuracy of 
milliarcseconds (mas) requires that variation in the earth’s rotation vector be taken 
into account. The required baseline accuracy is comparable to that at which vari- 
ation in the antenna positions resulting from crustal motions of the earth can be 
detected. The calibration of the baseline and the measurement of source positions 
can be accomplished in a single observing period of one or more days. Geodetic* 
data are obtained from repetition of this procedure over intervals of months or 
years, which reveals the variation in the baseline and earth-rotation parameters. 

This chapter is concerned with the techniques by which angular positions can 
be measured with the greatest possible accuracy, and with the design of inter- 
ferometers for optimum determination of source-position, baseline, and geodetic 
parameters. 

The redefinition of the meter has an interesting implication for the units of 
baseline length derived from interferometric data. An interferometer measures 
the relative time of arrival of the signal wavefront at the two antennas, that is, the 
geometric delay. Baselines determined from interferometric data are therefore in 
units of light travel time. Conversion to meters formerly depended on the value 
chosen for c. However, in 1983 the Confkrence Gtntrale des Poids et Mesures 
adopted a new definition of the meter: “the meter is the length of the path trav- 
eled by light in vacuum during a time interval of 1/299,792,458 of a second.” 
The second and the speed of light are now primary quantities, and the meter is 
a derived quantity. Thus baseline lengths can be given unambiguously in meters. 
Issues related to fundamental units are discussed by Petley (1983). 

12.1 REQUIREMENTS FOR ASTROMETRY 

Position measurements of radio sources accurate to no better than a few tens of 
arcseconds are mainly of historical interest and have been mentioned in Chap- 

‘For simplicity we use the term geodetic to include geodynamic and static phenomena regarding the 
shape and orientation of the earth. 
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ter 1. In the earliest studies of this kind, the baseline vector was often established 
by surveying the antenna locations, the instrumental phase was estimated by cal- 
ibration of the transmission lines, and the positions of the fringe maxima on the 
sky were thereby deduced. An informative review of these techniques, including 
various procedures for minimizing instrumental errors, is given by Smith (1952). 
In this chapter, we are concerned with more recent procedures for which the preci- 
sion is of order one milliarcsecond, or better. We begin with a heuristic discussion 
of how baseline and source position parameters may be determined. A formal dis- 
cussion is given in Section 12.2. 

In the measurement of source declination with a tracking interferometer, it 
is possible to solve for both the source position and the baseline parameters in- 
dependently. This can be illustrated simply by the following consideration. The 
phase of the fringe pattern for an interferometer is 275 w ,  where w is the spacing 
component given by Eq. (4.3). The phase can be written 

4 = 275 DA [sin d sin 6 + cos d cos 6 cos( H - h ) ]  + &n (12.1) 

where DA is the length of the baseline in wavelengths, H and S are the hour 
angle and declination of the source, h and d are the hour angle and declination 
of the baseline, and ein is an instrumental phase term. For an east-west baseline, 
h = -7r/2 when measured from the local meridian, d = 0, and the phase reduces 
to 

4 = --27rDAcosSsin H +&. ( 1  2.2) 

Thus 4 is proportional to COSS, and by observing sources close to the celestial 
equator, where the dependence on S is small, DA can be established with high 
accuracy [e.g., Ryle and Elsmore (1973)l. Positions of sources at higher declina- 
tions can then be determined, and these can be used to calibrate a north-south 
baseline for more accurate measurement of low-declination sources. 

In the determination of right ascension, interferometer observations provide 
relative measurements, that is, the differences in right ascension among different 
sources. The zero of right ascension is defined as the great circle through the pole 
and through the intersection of the celestial equator and the ecliptic at the vernal 
equinox. The vernal equinox is the point at which the apparent position of the 
sun moves from the southern to the northern celestial hemisphere. This direction 
can be located in terms of the motions of the planets, which are well-defined 
objects for optical observations. It has been related to the positions of bright stars 
that provide a reference system for optical measurements of celestial position. 
Relating the radio measurements to the zero of right ascension is less easy, since 
solar system objects are generally weak or do not contain sharp enough features in 
their radio structure. In the 197Os, results were obtained from the lunar occultation 
of the source 3C273B (Hazard et al. 1971) and from measurements of the weak 
radio emission from nearby stars such as Algol (/I Persei) (Ryle and Elsmore 
1973, Elsmore and Ryle 1976). 

Techniques have been suggested for determining the direction of the vernal 
equinox directly from passive radio measurements. For example, radio interfer- 
ometric observations of the minor planets could be used to determine their posi- 
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tions in the reference frame of the extragalactic sources (Johnston, Seidelmann, 
and Wade 1982). Another method is based on a comparison of the positions of 
pulsars obtained from pulse timing measurements with positions obtained from 
radio interferometry using extragalactic sources as position calibrators (Fomalont 
et al. 1992, Taylor et al. 1984, Bartel et al. 1985). Since the timing measurements 
yield positions relative to the coordinate frame defined by the earth’s orbit, while 
the interferometer measurements refer to the reference frame of the extragalactic 
sources, the position of the vernal equinox and other dynamical parameters of the 
earth’s orbit can be related to the latter frame. 

In the reduction of interferometer measurements in astrometry, the visibility 
data are interpreted basically in terms of the positions of point sources. The data 
processing is equivalent, in effect, to model fitting using delta-function intensity 
components, the visibility function for which has been discussed in Section 4.4. 
The essential position data are determined from the calibrated visibility phase or, 
in some VLBI observations, from the geometric delay as measured by maximiza- 
tion of the cross-correlation of the signals (i.e., the use of the bandwidth pattern) 
and from the fringe frequency. Because the position information is contained in 
the visibility phase, measurements of closure phase discussed in Section 10.3 are 
of use in astrometry and geodesy only insofar as they can provide a means of cor- 
recting for the effects of source structure. Uniformity of ( u ,  v )  coverage is less 
important than in imaging because high dynamic range is generally not needed. 
Determination of the position of an unresolved source depends on interferome- 
try with precise phase calibration and a sufficient number of baselines to avoid 
ambiguity in the position. 

Reference Frames 

A reference frame based on the positions of distant extragalactic objects can be 
expected to show greater temporal stability than a frame based on stellar posi- 
tions, and to approach more closely the conditions of an inertial frame. An inertial 
frame is one that is at rest or in uniform motion with respect to absolute space, 
and not in a state of acceleration or rotation [see, e.g., Mueller (198l)l. Newton’s 
first law holds in such a frame. A detailed description of astronomical reference 
frames is given by Johnston and de Vegt (1999); see bibliography. The Interna- 
tional Celestial Reference System (ICRS) adopted by the IAU specifies the zero 
points and directions of the axes of the coordinate system for celestial positions. 
The measured positions of a set of reference objects in the coordinates of the ref- 
erence system provide the International Celestial Reference Frame (ICRF). Thus, 
the frame provides the reference points with respect to which positions of other 
objects are measured within the coordinate system. 

The most accurate measurements of celestial positions are those of selected ex- 
tragalactic sources observed by VLBI. Large data bases of such high-resolution 
observations exist as a result of measurements made for purposes of geodesy 
and astrometry. These measurements have been made mainly since 1979, using 
Mark 111 VLBI systems with dual frequencies of 2.3 and 8.4 GHz to allow calibra- 
tion of atmospheric effects. The positions are determined mainly by the 8.4 GHz 
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data. An analysis (Ma et al. 1998) used Mark 111 measurements through 1995, and 
included 1.6 x lo6 measurements of group delay and phase delay rate. Data for 
each of 618 sources were examined. Criteria for exclusion of a source included 
inconsistency in the position measurements, evidence of motion, or presence of 
extended structure. In this study, 212 sources were found that passed all tests, 294 
failed in one criterion, and 102 other sources, including 3C273, failed in several. 
The 212 sources in the best category were used to define the reference frame. 
Only 27% of these are in the southern hemisphere. A global solution provides the 
positions of the sources together with the antenna positions and various geode- 
tic and atmospheric parameters. Position errors of the 212 defining sources are 
mostly less than 0.5 mas in both right ascension and declination and less than 1 
mas in almost all cases. The measurements were adopted by the International As- 
tronomical Union (IAU) in 1998 as the ICRF. Earlier frames have all been based 
on optical positions of stars, most recently those of the FK5 catalog. 

About 50% of sources in the ICRF have redshifts greater than 1 .O. The use of 
such distant objects to define the reference frame provides a level of astrometric 
uncertainty at least an order of magnitude better than optical measurements of 
stars. The level of uncertainty in the connection between the radio and optical 
frames is essentially the uncertainty in optical positions, which will be greatly 
improved in the future through the use of optical interferometry in space-based 
programs. Radio measurements of the positions of some of the nearer stars will 
provide a comparison between the radio and optical frames. Lestrade et al. (1990, 
1995) have measured the positions of about 10 stars by VLBI, achieving accu- 
racy in the range 0.5-1.5 mas. These results provide a link between the ICRF and 
the star positions in the Hipparcos catalog. The visual magnitudes of the known 
optical counterparts of the reference frame sources are mostly within the range 
15-21, and precise positions of objects fainter than 18th magnitude are likely to 
be very difficult to obtain. Improvements in understanding the limits of accuracy 
of radio positions continue to be made. Fey and Charlot (1997) have studied cor- 
rections to positions for sources such as 3C273 that show resolvable structure, and 
have defined a structure index to estimate the quality of sources for astrometric 
measurements. 

12.2 SOLUTION FOR BASELINE AND SOURCE-POSITION 
VECTORS 

In determining an interferometer baseline, it is convenient to use calibrators 
whose angular positions are known with accuracy comparable to that required for 
the baseline. However, this is not essential, and it is often necessary to solve for 
source and baseline parameters simultaneously. 

Connected-Element Systems 

Consider an observation with a tracking interferometer of arbitrary baseline 
in which the source is unresolved. Let DA be the assumed baseline vector, 
in units of the wavelength, and (D, - AD,) be the true vector. Similarly, 
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let s be a unit vector indicating the assumed position of the source, and let 
(s - As) indicate the true position. Note that the convention used is A term = 
(approximate or assumed value) - (true value). The expected fringe phase, using 
the assumed positions, is 2nDA s. The observed phase, measured relative to the 
expected phase, is a function of the hour angle H of the source given by 

A second-order term involving ADA * As has been neglected since we assume that 
fractional errors in DA and s are small. 

The baseline vector can be written in terms of the coordinate system introduced 
in Section 4.1 : 

(1 2.4) 

where X, Y, and Z form a right-handed coordinate system with Z parallel to the 
earth's spin axis and X in the meridian plane of the interferometer. The source- 
position vector can be specified in the (X, Y, Z) system in terms of the hour angle 
H and declination 6 of the source by using Eq. (4.2): 

cosS cos H 
( 1  2.5) 

Taking the differential of Eq. ( 1 2 3 ,  we can write 

sin6sin H A6 + C O S ~ C O S  H Aa , ( 12.6) 
COSS A6 1 - sin6 cos H AS + cosS sin H A a  

A s 2  [ 
where Acr and A6 are the angular errors in right ascension and declination, and 
Act has the opposite sign to the corresponding error in hour angle. By substitut- 
ing Eqs. (12.4)-( 12.6) into (12.3), the expression for the measured phase can be 
written 

W ( H )  = 40 + 91sx - 42SY 
= $0 + Cp, cos 6 cos H + & cos 6 sin H ,  

where 

(12.7) 

( 12.8) 

(12.9) 
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and 
& == 2n(-hY1, + XI, ACr 4- YI, tan6 As). (12.10) 

From Eq. (12.7) it is seen that A$ (H) is a sinusoid in H with an offset &,. Thus 
the three parameters amplitude, phase, and offset can be measured for any source 
by observing periodically or continuously for approximately 12 h. If n,  sources 
are observed, 3n, quantities are obtained. The number of unknown parameters 
required to specify the n, positions, the baseline, and the instrumental phase (as- 
sumed to be constant) is 2n, + 3; the right ascension of one source is chosen 
arbitrarily. Thus, if n,  L 3, it is possible to solve for all the unknown quanti- 
ties. Note that the sources should have as wide a range in declination as possible 
in order to distinguish AZA from in Eq. ( I  2.8). Least-mean-squares analysis 
provides simultaneous solutions for the instrumental parameters and the source 
positions. Usually, many more than three sources are observed, so there is redun- 
dant information, and variation of the instrumental phase with time as well as 
other parameters can be included in the solution. A discussion of the method of 
least-mean-squares analysis can be found in the appendix to this chapter. 

Measurements with VLBI Systems 

The use of independent local oscillators at the antennas in VLBI systems does 
not easily permit calibration of the fringe phase, except in special circumstances. 
The earliest method used for obtaining positional information in VLBI was the 
analysis of the fringe frequency (fringe rate). The fringe frequency is the time rate 
of change of the interferometer phase. Thus, from Eq. (12.1) the fringe frequency 
is 

(12.1 1) 

where we is the angular velocity of rotation of the earth (dH/d t ) ,  and u in i S an 
instrumental term equal to d h n / d t .  The component qn largely results from resid- 
ual differences in the frequencies of the hydrogen masers which provide the local 
oscillator references at the antennas. 

The quantity DA cos d is the projection of the baseline in the equatorial plane, 
denoted DE.  Thus Eq. (12. I I )  can be rewritten 

(12.12) 

The polar component of the baseline (the projection of the baseline along the polar 
axis) does not appear in the equation for fringe frequency. An interferometer with 
a baseline parallel to the spin axis of the earth has lines of constant phase parallel 
to the celestial equator, and the interferometer phase does not change with hour 
angle. Therefore, the polar component of the baseline cannot be determined from 
the analysis of fringe frequency. 
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The usual practice in VLBI is to refer hour angles to the Greenwich merid- 
ian. We follow this convention and use a right-handed coordinate system with X 
through the Greenwich meridian and with Z toward the north celestial pole. Thus, 
in terms of the Cartesian coordinates for the baseline, Eq. ( 12.12) becomes 

u f  = -wecos6(XA sin H + YA cos H) + uin. (12.13) 

The residual fringe frequency A u f ,  that is, the difference between the observed 
and expected fringe frequencies, can be calculated by taking the derivatives of 
Eq. (12.13) with respect to 6, H ,  Xi, and YA,  and also including the unknown 
quantity qn. We thereby obtain 

Auf = uin + a1 cos H + a2 sin H, (12.14) 

where 
a1 = we(YA sin6 A6 + XA cos6 A a  - COSS AYA) 

a2 = we(X* sin 6 A6 - YA cos 6 A a  - cos 6 A X A ) .  

( 12.15) 

(12.16) 
and 

Note that Auf is a diurnal sinusoid and that the average value of Au, is the in- 
strumental term hn. Information about source positions and baselines must come 
from the two parameters al and u2. Therefore, unlike the case of fringe phase 
[Eq. (12.7)] where three parameters per source are available, it is not possible to 
solve for both source and baseline parameters with fringe-frequency data. For ex- 
ample, from observations of n, sources, 2n, + I quantities are obtained. The total 
number of unknowns (two baseline parameters, 212, source parameters, and qn) is 
2n, +3. If the position of one source is known, the rest of the source positions and 
X A ,  Y A ,  and uin can be determined. Note that the accuracy of the measurements of 
source declinations is reduced for sources close to the celestial equator because 
of the sin6 factor in Eqs. (12.15) and (12.16). 

As an illustration of the order of magnitude of the parameters involved in 
fringe-frequency observations, consider two antennas with an equatorial com- 
ponent of spacing equal to lo00 km and an observing wavelength of 3 cm. Then 
DE 2 3 x lo7 wavelengths, and the fringe frequency for a low-declination source 
is about 2 kHz. Assume that the coherence time of the independent frequency 
standards is about 10 min. In this period lo6 fringe cycles can be counted. If we 
suppose that the phase can be measured to 0.1 turn, u f  will be obtained to a pre- 
cision of 1 part in lo7. The corresponding errors in DE and angular position are 
10 cm and 0.02 arcsec, respectively. 

To overcome the limitations of fringe-frequency analysis, techniques for the 
precise measurement of the relative group delay of the signals at the antennas 
were developed. The use of bandwidth synthesis to improve the accuracy of de- 
lay measurements has been discussed in Section 9.8. The group delay is equal to 
the geometric delay tg except that, as measured, it also includes unwanted com- 
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ponents resulting from clock offsets at the antennas and atmospheric differences 
in the signal paths. The fringe phase measured with a connected-element interfer- 
ometer observing at frequency u is 2nur,, modulo 2n. Except for the dispersive 
ionosphere, the group delay therefore contains the same type of information as 
the fringe phase, without the ambiguity resulting from the modulo 2n restriction. 
Thus group delay measurements permit a solution for baselines and source posi- 
tions similar to that discussed above for connected-element systems, except that 
clock offset terms also must be included. 

In most astrometric experiments, measurements of the group delay and the 
fringe frequency (or, equivalently, the rate of change of phase delay) are ana- 
lyzed together. The intrinsic precision with which each of these quantities can be 
measured is derived in Appendix 12.1 [Eqs. (A 12.27) and (A1 2.34)] and can be 
written 

and 

(12.17) 

(12.18) 

where of and ur are the rms errors in fringe frequency and delay, Ts and TA are 
the system and antenna temperatures, Au is the IF bandwidth, r is the integra- 
tion time, and Au,, is the rms bandwidth introduced in Section 9.8 [see also 
Eq. (A12.32) and related text in Appendix 12.11. Aums is typically 40% of the 
spanned bandwidth. For a single rectangular RF band, Aums = Au/m. To 
express the measurement error as an angle, note that the geometric delay is 

D 
r, = - sin8, 

C 
(12.19) 

where 0 is the angle between the source vector and the plane perpendicular to the 
baseline. Thus, the sensitivity of the delay to angular changes is 

(12.20) 

where A0, is the increment in 8 corresponding to an increment As, in rE. Sim- 
ilarly, the sensitivity of the fringe frequency to angular changes [since uf = 
u(dr, /dt)]  is (for an east-west baseline) 

(12.21) 

where A0f is the increment in 0 corresponding to an increment Auf in us. Thus 
by setting AvS = as and Ar, = a, and ignoring geometric factors, we obtain 
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the equation 

( 1  2.22) 

where 1, = 2n/w, is the period of the earth's rotation. Equation (12.22) describes 
the relative precision of delay and fringe-frequency measurements. In practice, 
measurements of delay are generally more accurate because of the noise imposed 
by the atmosphere. Measurements of fringe frequency are sensitive to the time 
derivative of atmospheric path length, and in a turbulent atmosphere this deriva- 
tive can be large, while the average path length is relatively constant. Note that 
fringe-frequency and delay measurements are complementary. For example, with 
a VLBI system of known baseline and instrumental parameters, the position of 
a source can be found from a single observation using the delay and fringe fre- 
quency because these quantities constrain the source position in approximately 
orthogonal directions. The earliest analyses of fringe-frequency and delay mea- 
surements to determine source positions and baselines were made by Cohen and 
Shaffer ( I  97 1 ) and Hinteregger et al. (1 972). 

The accuracy with which group delay can be used to measure a source position 
is proportional to the reciprocal of the bandwidth l /Au.  Similarly, the accuracy 
with which phase can be used to measure a source position is proportional to the 
reciprocal of the observing frequency 1 / u .  Since the proportionality constants are 
approximately the same, the relative accuracy of these techniques is u/A u. This 
ratio of the observing frequency to the bandwidth, including effects of bandwidth 
synthesis, is commonly one to two orders of magnitude. On the other hand, the 
antenna spacings used in VLBI are one to two orders of magnitude greater than 
those used in connected-element systems. Thus the accuracy of source positions 
estimated from group delay measurements with VLBI systems is comparable to 
the accuracy of those estimated from fringe phase measurements on connected- 
element systems having much shorter baselines. VLBI position measurements us- 
ing phase referencing, as described below, are the most accurate of radio methods. 

The ultimate limitations on ground-based interferometry are imposed by the 
atmosphere. Dual-frequency-band measurements effectively remove ionospheric 
phase noise (see Section 13.3 under Calibration of Ionospheric Delay). The rms 
phase noise of the troposphere increases about as d5I6, where d is the projected 
baseline length, for baselines shorter than a few kilometers [see Eq. (13.101) 
and Table 13.31. In this regime, measurement accuracies of angles improve only 
slowly with increasing baseline length. For baselines greater than -100 km, the 
effects of the troposphere above the interferometer elements are uncorrelated, and 
the measurement accuracy might be expected to improve more rapidly with base- 
line length. However, for widely spaced elements, the zenith angle can be sig- 
nificantly different, and the atmospheric model becomes very important. The an- 
gular accuracy achievable with connected-element systems approaches 1 O-* arc- 
sec (Kaplan et al. 1982, Perley 1982), and with VLBI it exceeds arcsec 
(Fanselow et al. 1984; Herring, Gwinn, and Shapiro 1985; Lestrade 1991; Ma 
et al. 1998). As an example, the motion of the Sagittarius A* source at the Galac- 
tic center has been measured by Backer and Sramek (1999) over a period of 16 
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Figure 12.1 Apparent positions of the radio source in the Galactic center, Sgr A*, relative 
to the extragalactic callibrator J1745-283, measured over a two-year period at 43 GHz with 
VLBI. The shaded ellipses around the measurement points indicate the scatter-broadened size 
of Sgr A* (see Fig. 13.25). The one-sigma error bars in the measurements are also shown. 
The broken line is the variance-weighted least-squares fit to the data, and the solid line indi- 
cates the orientation of the Galactic plane. The motion is almost entirely in galactic longitude, 
attributable to the solar motion around the center of the Galaxy of 219 & 20 km s-', for a dis- 
tance between the sun and Galactic center of 8 kpc. The limit on the residual motion of Sgr A* 
is nearly two orders of magnitude less than that of the motions of stars lying within a projected 
distance of about 0.02 pc of Sgr A*. These stellar motions suggest that about 2.6 x lo6 Mo 
of matter are contained within 0.02 pc of Sgr A*, and the lack of detected motion of Sgr A* 
itself suggests that a mass of at least 10' Ma must be associated with the radio source Sgr A*. 
From Reid et al. (1999), 01999 American Astron. SOC. 

years using the VLA (connected-element array), and by Reid et al. (1999) over a 
two-year period using the VLBA (VLBI array). The change in position measured 
with the VLBA is shown in Fig. 12.1. 

Phase Referencing in VLBI 

In VLBI measurements of relative positions of closely spaced sources, it is possi- 
ble to measure the relative fringe phases and thus obtain positional accuracy cor- 
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responding to the very high angular resolution inherent in the long baselines. The 
most accurate measurements can be made when the sources are sufficiently close 
that both fall within the antenna beams [see, e.g., Marcaide and Shapiro (1983)], 
or when they are no more than a few degrees apart so that tropospheric and iono- 
spheric effects are closely matched (Shapiro et al. 1979, Bartel et al. 1984, Ros 
et al. 1999). In such cases one source can be used as a calibrator in a manner 
similar to that for phase calibration in connected-element arrays. In VLBI this 
procedure is referred to as phase referencing. It allows imaging of sources for 
which the flux densities are too low to permit satisfactory self-calibration. The 
description here follows reviews of phase referencing procedures by Alef ( 1989) 
and Beasley and Conway (1995). 

In phase referencing observations measurements are made alternately on the 
target source and on a nearby calibrator, with periods of a few minutes on each. 
(Note that the calibrator is also referred to as the phase reference source.) The rate 
of change of phase during these measurements must be slow enough that, from 
one calibrator measurement to the next, it is possible to interpolate the phase with- 
out ambiguity factors of 2~r .  It is therefore necessary to use careful modeling to 
remove geodetic and atmospheric effects, including tectonic plate motions, polar 
motion, earth tides, and ocean loading, and to make precise corrections for pre- 
cession and nutation on the source positions. More subtle effects may need to be 
taken into account; for example, gravitational distortions of antenna structures, 
which tend to cancel out in connected-element arrays, can affect VLBI baselines 
because of the difference in elevation angles at widely spaced locations. Phase 
referencing has become more useful as better models for these effects, together 
with increased sensitivity and phase stability of receiving systems, have been de- 
veloped. 

Consider the case where we observe the calibration source at time ti, then the 
target source at time t 2 ,  and then the calibrator again at time t3 .  For any one of 
these observations the measured phase is 

9meas = h i s  + Anst + 9pos + +ant + Atmas + hanos, (12.23) 

where the terms on the right-hand side are, respectively, the components of the 
phase due to the source visibility, instrumental effects (cables, clock errors, etc.), 
the error in the assumed source position, errors in assumed antenna positions, 
the effect of the neutral atmosphere, and the effect of the ionosphere. To correct 
the phase of the target source, we need to interpolate the measurements on the 
calibrator at tl and r3 to estimate what the calibrator phase would have been if 
measured at f 2 ,  and then subtract the interpolated phase from the measured phase 
for the target source. If the positions of the target source and the calibrator are 
sufficiently close on the sky (not more than a few degrees apart), lines of sight 
from any antenna to the two sources will pass through the same isoplanatic patch, 
so the differences in the atmospheric and ionospheric terms can be neglected. 
We can assume that the instrumental terms do not differ significantly with small 
position changes, and if the calibrator is unresolved, then its visibility phase is 
zero. If the calibrator is partially resolved, it should be strong enough to allow 
imaging by self-calibration, and correction can be made for its phase. Thus the 
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corrected phase of the target source reduces to 
- 

4' - Jc = 4;is + (4Ls - 4;J ( 1  2.24) 

where the superscripts r and c refer to the target source and calibrator, re- 
spectively, and the tilde indicates interpolated values. The right-hand side of 
Eq. (12.24) depends only on the structure and position of the target source and 
the position of the calibrator. Figure 12.2 shows an example of phase referencing 
in which fringe fitting was performed on the data for the reference source, that 
is, determination of baseline errors, offsets between time standards at the sites, 

Figure 12.2 An example of phase referencing with the VLBA. The data are from the 
Brewster-Pie Town baseline with an observing frequency of 8.4 GHz. The top figure shows the 
uncalibrated data for two sources: 1638+398 (the target source, open squares) and 1641 +399 
(the phase reference source, crosses). The bottom figure shows the data for 1641 + 399 after 
fringe fitting, and the data for 1638+ 398 after phase referencing, using 1641 + 399 as the ref- 
erence source. From Beasley and Conway (1995), courtesy of the Astron. Soc. Pacific Conf. 
Ser. 
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and instrumental phases. The results for the phase reference source (calibrator) 
are shown as crosses, and the resulting phase and phase rate corrections were 
interpolated to the times of the data points for the target source, shown as open 
squares. The corrected phases for the target source are shown in the lower di- 
agram. For fringe fitting it is desirable to have a source that is unresolved and 
provides a strong signal, so a phase reference source should be chosen for these 
characteristics when the target source is weak or resolved. 

Of the various effects in Eq. (1 2.23) that are removed by phase referencing, 
those that vary most rapidly with time are the atmospheric ones, and at frequen- 
cies above a few gigahertz they result from the troposphere rather than the iono- 
sphere. Thus at centimeter wavelengths the tropospheric variations limit the time 
that can be allowed for each cycle of observation of the target and calibrator 
sources. Variations resulting from a moving-screen model of the troposphere are 
described in Section 13.1 under Phase Fluctuations; the characteristics of the 
screen are based on turbulence theory (Tartarski 196 1 ). The relative rms variation 
in phase for the target and calibrator sources, the rays from which pass through 
the atmosphere a distance dr, apart, is proportional to d;L6: 

0 = 00dfC 516 , (12.25) 

where a. is the phase variation for 1 -km ray spacing, In order to be able to interpo- 
late the VLBI phase reference values from one calibrator observation to the next 
without ambiguity in the number of turns, the rms path length should not change 
by more than - k / 8  between successive calibrator scans. Then if the scattering 
screen moves horizontally with velocity us,  the criterion above results in a limit 
on the time for one cycle of the target source and calibrator, tcyc. To determine 
this limit we put d,, = ustcyc, and from Eq. (12.25) obtain 

(12.26) 

This result can be used to illustrate the time limit on the switching cycle. The 
empirical data in Table 13.3 (of Chapter 13) show that at k = 6 cm (5 GHz fre- 
quency), the typical rms delay path is about 1 mm ford,, = 1 km, at the VLA site. 
The corresponding value of a0 for 6-cm wavelength is 6“, which for us = 0.01 
km s - I  yields tcyc < 19 min. This result is for typical conditions at the VLA site. 
For the same location and 1-km ray spacing, but under conditions described as 
“very turbulent,” Sramek (1990) gives a value of 7.5 mm for the rms path devia- 
tion. The value of 00 for 6-cm wavelength is then 45”, resulting in rcyc < 1.7 min. 
The elevation angle of the source was not less 60” for this last observation, so 
even shorter switching times could apply at lower elevation angles. 

At frequencies below - 1 GHz the ionosphere becomes the limiting factor and 
medium-scale traveling ionospheric disturbances (MSTIDs), which have veloc- 
ities of 100-300 m s-’ and wavelengths up to several hundred kilometers, be- 
come important (Hocke and Schlegel 1996). Phase fluctuations resulting from the 
ionosphere or troposphere are minimized in the approximate range 5-1 5 GHz, in 
which good performance can be obtained by phase referencing in VLBI. 
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There are also limits on the angular range that should be used in switching 
to the phase reference source, since even with a static atmosphere phase errors 
are introduced that increase with switching angle. Phase referencing over 7" with 
0.1 mas precision has been demonstrated by Ros et al. (1999). An interesting 
application of phase referencing to measure the gravitational deflection of the ra- 
diation from the source 3C273B by the sun is described by Counselman et al. 
(1974). In this case the chosen comparison source, 3C279, was spaced approx- 
imately lo" from 3C273B, so as to be relatively unaffected by the sun. At each 
of two VLBI stations, two antennas working with a common frequency standard 
were used, one tracking each source, to provide a continuous phase comparison 
and allow precise removal of clock offset effects. Positional accuracy of order 3 
mas was achieved at an operating frequency of 8.1 GHz. Measurement of rela- 
tive position with respect to extragalactic sources has also been used to determine 
the parallax and proper motion of pulsar PSR B2021+51 (Campbell et al. 1996). 
The decreasing intensity of the pulsar with increasing frequency limited the ob- 
servations to a single observing frequency of 2.218 GHz, but use of two reference 
sources within 2.5" of the pulsar allowed positional accuracy of approximately 
0.3 mas to be achieved. As well as enabling imaging by Fourier transformation 
and deconvolution, phase referencing allows longer integration on sources that 
would otherwise be too weak to allow fringes to be detected within the coherence 
time. Self-calibration can then be used for flux densities lower than would other- 
wise be possible. Lists of sources suitable for phase calibrators can be found, for 
example, in Patnaik et al. (19921, Johnston et al. (1993, and Ma et al. (1998). 

12.3 TIME AND THE MOTION OF THE EARTH 

We now consider the effect of changes in the magnitude and direction of the 
earth's rotation vector on interferometric measurements. These changes cause 
variations in the apparent celestial coordinates of sources, the baseline vectors 
of the antennas, and universal time. The variations of the earth's rotation can be 
divided into three categories. 

1. There are variations in the direction of the rotation axis, resulting mainly 
from precession and nutation of the spinning body. Since the direction of 
the axis defines the location of the pole of the celestial coordinate system, 
the result is a variation in the right ascension and declination of celestial 
objects. 

2. The axis of rotation varies slightly with respect to the earth; that is, the 
positions on the earth at which this axis intersects the earth's surface vary. 
This effect is known as polar motion. Since the (X, Y ,  Z) coordinate system 
of baseline specification introduced in Section 4.1 takes the direction of the 
earth's axis as the Z axis, polar motion results in a variation of the measured 
baseline vectors (but not of the baseline length). It also results in a variation 
in universal time. 

3. The rate of rotation varies as a result of atmospheric and crustal effects, and 
this again results in variation in universal time. 
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We briefly discuss these effects. Detailed discussions from a geophysical view- 
point can be found in Lambeck (1980). 

Precession and Nutation 

The gravitational effects of the sun, moon, and planets on the nonspherical earth 
produce a variety of perturbations in its orbital and rotational motions. To take ac- 
count of these effects it is necessary to know the resulting variation of the ecliptic, 
which is defined by the plane of the earth’s orbit, as well as the variation of the 
celestial equator, which is defined by the rotational motion of the earth. The gravi- 
tational effects of the sun and moon on the equatorial bulge (quadrupole moment) 
of the earth result in a precessional motion of the earth’s axis around the pole of 
the ecliptic. 

The earth’s rotation vector is inclined at about 23.5” to the pole of its orbital 
plane, the ecliptic. The period of the resulting precession is approximately 26,000 
years, corresponding to a motion of the rotation vector of 20 arcsec per year 
[2n sin(23.5”)/26,000 radians per year]. The 23.5” obliquity is not constant, but 
is currently decreasing at a rate of 47 arcsec per century, due to the effect of the 
planets, which also cause a further component of precession. The luni-solar and 
planetary precessional effects, together with a smaller relativistic precession, are 
known as the general precession. Precession results in the motion of the line of 
intersection of the ecliptic and celestial equator. This line, called the line of nodes, 
defines the equinoxes and the zero of right ascension, which precess at a rate of 50 
arcsec per year. In addition, the time-varying lunisolar gravitation effects cause 
nutation of the earth’s axis with periods of up to 18.6 years and a total amplitude 
of about 9 arcsec. The principal variations of the ecliptic and equator are those just 
described, but other smaller effects also occur. The general accuracy within which 
positional variations can be calculated is better than 1 mas (Herring, Gwinn, and 
Shapiro 1985). Expressions for precession can be found in Lieske et al. (1977) 
and for nutation in Wahr (1981). The required procedures are discussed in texts 
on spherical astronomy, such as Woolard and Clemence (1966), Taff (1981), and 
Seidelmann (1992). 

Since precession and nutation result in variations in celestial coordinates that 
can be as large as 50 arcsec per year for objects at low declinations, these effects 
must be taken into account in almost all observational work, whether astromet- 
ric or not. Positions of objects in astronomical catalogs are therefore reduced to 
the coordinates of standard epochs, B1900.0, B1950.0, or J 2000.0. These dates 
denote the beginning of a Besselian year or Julian year, as indicated by the B or 
J .  The positions correspond to the mean equator and equinox for the specified 
epoch, where “mean” indicates the positions of the equator and equinox resulting 
from the general precession, but not including nutation. For further explanation 
and a discussion of a method of conversion between standard epochs, see Seidel- 
mann (1992). Correction is also required for aberration, that is, for the apparent 
shift in position resulting from the finite velocity of light and the motion of the ob- 
server. Two components are involved: annual aberration resulting from the earth’s 
orbital motions, which has a maximum value of about 20 arcsec; and diurnal aber- 
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ration resulting from the rotational motion, which has a maximum value of 0.3 
arcsec. The retarded baseline concept (Section 9.3) used in VLBI data reduction 
accounts for the diurnal aberration. For the nearer stars, corrections for proper 
motion (i.e., actual motion of the star through space) are required, and in some 
cases also for the parallax resulting from the changing position of the earth in its 
orbit. The impact of radio techniques, particularly VLBI, is resulting in refine- 
ment of the classical expressions and parameters. Effects such as the deflection 
of electromagnetic waves in the sun’s gravitational field must also be included in 
positional work of the highest accuracy (see Section 13.5 under Refraction). 

Polar Motion 

The term polar motion denotes the variation of the pole of rotation of the earth 
(the geographic pole) with respect to the earth’s crust. This results in a component 
of motion of the celestial pole that is distinct from precessional and other motions. 
Polar motion is largely, but not totally, of geophysical origin. The motion of the 
geographic pole around the pole of the earth’s figure is irregular, but over the last 
century the distance between these two poles wandered by up to 0.5 arcsec, or 
15 m on the earth’s surface. In a year’s time, the excursion of the figure axis is 
typically 6 m or less. The motion can be analyzed into several components, some 
regular and some highly irregular, and not all are understood. The two major com- 
ponents have periods of 12 and 14 months. The 12-month component is a forced 
motion due to the annual redistribution of water and of atmospheric angular mo- 
mentum, and is far from any resonance. The 14-month component, known as the 
Chandler wobble (Chandler 1891), is the motion at a resonance frequency whose 
driving force is unknown. For a more detailed description, see Wahr (1996). 

The motion of the pole of rotation is measured in angle or distance in the x and 
y directions as shown in Fig. 12.3. The ( x ,  y )  origin is the mean pole of 1900- 
1905, which is referred to as the conventional international origin (CIO), and the 
x axis is in the plane of the Greenwich meridian (Markowitz and Guinot 1968). 
Since polar motion is a small angular effect, it can often be ignored in mapping 
observations, especially if the visibility is measured with respect to a calibrator 
that is only a few degrees from the center of the field being mapped. 

Universal Time 

Like the motion of the earth, the system of timekeeping based on earth rotation is 
a complicated subject, and for a detailed discussion one can refer to Smith ( 1972) 
or to the texts mentioned in the discussion of precession and nutation above. We 
shall briefly review some essentials. Solar time is defined in terms of the rotation 
of the earth with respect to the sun. In practice, the stars present more convenient 
objects for measurement, so solar time is derived from measurement of the side- 
real rotation. The positions of stars or radio sources used for such measurements 
are adjusted for precession, nutation, and so on, and the resulting time measure- 
ments thus depend only on the angular velocity of the earth and on polar motion. 
When converted to the solar timescale, these measurements provide a form of 
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Figure 12.3 Coordinate system for the measurement of polar motion. The x coordinate is in 
the plane of the Greenwich meridian and the y axis is 90” to the west. CIO is the conventional 
international origin. 

universal time (UT) known as UTO; this is not truly “universal” since the effects 
of polar motion, which can amount to about 35 ms, depend on the location of the 
observatory. When UTO is corrected for polar motion, the result is known as UTI . 
Since it is a measure of the rotation of the earth relative to fixed celestial objects, 
UTI is the form of time required in astronomical observing, including the anal- 
ysis of interferometric observations, navigation, and surveying. However, UTl 
contains the effects of small variations in the earth’s rotation rate, attributable 
largely to geophysical effects such as the seasonal variations in the distribution of 
water between the surface and atmosphere. Fluctuations in the length of day over 
the period of a year are typically about 1 ms. To provide a more uniform measure 
of time, UT2 is derived from UTI by attempting to remove seasonal variations. 
UT2 is rarely used. UTI and UT2 include the effect of the gradual decrease of the 
rotation rate of the earth. This causes the length of the UTlAJT2 day to increase 
slightly when compared with International Atomic Time (IAT), which is based 
on the frequency of the cesium line (see Section 9.5 under Rubidium and Cesium 
Standards). The IAT second is the basis for another form of UT, Coordinated Uni- 
versal Time (UTC), which is offset from IAT so that JUT1 - UTCl < 1 s. This 
relationship is maintained by inserting one-second discontinuities (leap seconds) 
in UTC when required on specified days of the year. Most time services such as 
Loran C and GPS (see Section 9.5 under Time Synchronization) transmit UTC. 

The practice at many observatories is to maintain UTC or IAT using an atomic 
standard and then obtain UTI from the published values of AUT1 = UTl -UTC. 
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Since AUTl is measured rather than computed, in principle it can be determined 
only after the fact. However, it is possible to predict it by extrapolation with sat- 
isfactory accuracy for periods of 1 or 2 weeks, and thus to implement UTl in 
real time. Values of AUTl are available from the Bureau International de 1'Heure 
(BIH), which was established in 1912 at the Paris Observatory to coordinate in- 
ternational timekeeping, and from the U.S. Naval Observatory. Rapid service data 
are available from these institutions with a timeliness suitable for extrapolation. 

Measurement of Polar Motion and UT1 

The classical optical methods of measuring polar motion and UT1 are by timing 
the meridian transits of stars of known positions. Observations at different longi- 
tudes, using stars at more than one declination, are required to determine all three 
parameters ( x ,  y,  AUTI). During the 1970s it became evident that such astromet- 
ric tasks can also be performed by radio interferometry (McCarthy and Pilkington 
1979). 

To specify the baseline components of an interferometer for such measure- 
ments, we use the (X, Y, Z) system of Section 4.1, rotated so that the X axis lies 
in the Greenwich meridian instead of the local meridian. Let AX, AY, and AZ 
be the changes in the baseline components resulting from polar motion ( x ,  y) (in 
radians) and a time variation (UTl - UTC) corresponding to 0 radians. Then we 
may write 

AX 0 -0 x 
(12.27) 

where the square matrix is a three-dimensional rotational matrix valid for small 
angles of rotation. 0, x and y are the rotation angles about the Z, Y ,  and X axes, 
respectively. From Eq. (12.27) we obtain 

AX = -0Y +xZ,  

AY = OX - y Z ,  (12.28) 

AZ = -xX + Y Y .  

Thus, if one observes a series of sources at periodic intervals and determines the 
variation in baseline parameters, Eqs. ( 12.28) can be used to determine UTI and 
polar motion. For an interferometer with an east-west baseline ( Z  = 0), one can 
determine 0 but cannot separate the effects of x and y. An east-west interferom- 
eter located on the Greenwich meridian (X = Z = 0) would yield measures of 
0 and y but not of x .  If it had a north-south component of baseline (Z # 0), 
one could still measure y but would not be able to separate the effects of x and 
0. In general, one cannot measure all three quantities with a single baseline, 
since a single direction is specified by two parameters only. Systems suitable for 
a complete solution might be, for example, two east-west interferometers sepa- 
rated by about 90" in longitude or a three-element non-collinear interferometer. 
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An example of VLBl measurements of the pole position can be found in Carter, 
Robertson, and MacKay (1985). Development of the Global Positioning System 
has also provided a method of making pole-position measurements [see, e.g., 
Herring ( 1999)]. 

The methods just described are applicable to observations using connected- 
element interferometers in which the phase can be calibrated, and also to VLBI 
observations in which the bandwidth is sufficient to obtain accurate group de- 
lay measurements. If only the fringe frequency is measurable, as in narrow- 
bandwidth VLBI systems, the result is insensitive to the 2 component of the 
baseline. Then in Eqs. (12.28) one has measurements of AX and A Y  only, and in 
general it is not possible to separate the effects of polar motion and variation of 
UTl . However, if 2 = 0 (east-west baseline), UT1 can be derived. A comparison 
of determinations of UT1 and polar motion by VLBI, satellite laser ranging, and 
BIH analyses of standard astrometric data is given in Robertson et al. (1983) and 
Carter et al. (1984). 

12.4 GEODETIC MEASUREMENTS 

Certain geophysical phenomena, for example, earth tides (Melchior 1978) and 
movements of tectonic plates, can result in variations in the baseline vector of 
a VLBI system. Variations in the length of the baseline are clearly attributable 
to such phenomena, whereas variations in the direction can also result from po- 
lar motion and rotational variations. Magnitudes of the effects are of order 1- 
10 cm year-' for plate motions and 30 cm (diurnal) for earth tides. They are thus 
measurable using the most accurate techniques of VLBI. Earth tides were first 
detected by Shapiro et al. (1974), and refined measurements were reported by 
Herring et al. (1983). In addition to solid-earth tides, displacement of land masses 
resulting from tidal shifts of water masses, called ocean loading, is believed to be 
a measurable effect. Early evidence of contemporary motion of tectonic plates 
was reported by Herring et al. (1986). For reviews of geodetic applications of 
VLBI, see Shapiro (1976), Counselman (1976), Clark et al. (1985), Carter and 
Robertson (1993), and Sovers, Fanselow, and Jacobs (1998). 

12.5 MAPPING ASTRONOMICAL MASERS 

In the envelopes of many newly formed stars, and also those of highly evolved 
stars, radio emission from molecules such as H20 and OH is caused by a maser 
process. The frequency spectrum of the emission is often complicated, contain- 
ing many spectral features or components caused by clouds of gas moving at 
different line-of-sight velocities. Maps of strong maser sources reveal hundreds 
of compact components with brightness temperatures approaching 1 O i 5  K, an- 
gular sizes as small as lop4 arcsec, and flux densities as high as 10' Jy. The 
components are typically distributed over an area of several arcseconds diameter 
and a Doppler velocity range of 10-300 km s-' (0.7-20 MHz for the H 2 0  maser 
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transition at 22 GHz). Individual features have linewidths of about 1 km s-' or 
less (74 kHz at 22 GHz). The physics and phenomenology of masers are dis- 
cussed by Reid and Moran (1988) and Elitzur (1992). The processing and anal- 
ysis of maser data require large correlator systems because the ratio of required 
bandwidth to spectral resolution is large (102-1@). They also require prodigious 
amounts of image processing because the ratio of the field of view to the spatial 
resolution is large ( 102-104). As an extreme example, the H20 maser in W49 has 
hundreds of features distributed over 3 arcsec (Gwinn, Moran, and Reid 1992). 
The complete mapping of this source at a resolution of loT3 arcsec with 3 pixels 
per resolution interval would require the production of 600 maps, each with at 
least lo8 pixels. However, most of the map cells would contain no signal. Thus, 
the usual procedure is to measure the positions of the features crudely by fringe- 
frequency analysis, and then map small fields around these locations by Fourier 
synthesis techniques. Examples of maps made by fringe-frequency analysis can 
be found in Walker, Matsakis, and Garcia-Barreto (1982); by phase analysis in 
Genzel et al. (1981) and Norris and Booth (1981); and by Fourier synthesis in 
Reid et al. (1980), Noms, Booth, and Diamond (1982), and Boboltz, Diamond, 
and Kemball(l997). We shall briefly discuss some of the techniques used in map- 
ping masers and their accuracies. Note that geometric (group) delays cannot be 
measured accurately because of the narrow bandwidths of the maser lines. 

In mapping masers, we must explicitly consider the frequency dependence of 
the fringe visibility. We assume that a maser source consists of a number of point 
sources. Furthermore, we assume that the measurements are made with a VLBI 
system, and that the desired RF band is converted to a single baseband channel. 
Adapting Eq. (9.23), we can write the residual fringe phase of one maser compo- 
nent at frequency u as 

where re is the relative delay error due to clock offsets; rat is the differential at- 
mospheric delay; Ar,(u) is the difference between the true geometric delay of 
the source r , (v )  and the expected (reference) delay; uLo is the local oscillator 
frequency; &, is the instrumental phase, which includes the local oscillator fre- 
quency difference and can be a rapidly varying function of time; and 2x11 repre- 
sents the phase ambiguity. A frequency can usually be found that has only one 
unresolved maser component, and this component can then be used as a phase 
reference. The use of a phase reference feature is fundamental to all maser analy- 
sis procedures, and it allows maps of the relative positions of maser components 
to be made with high accuracy. The difference in residual fringe phase between a 
maser feature at frequency u and the reference feature at frequency vR is 

(1 2.30) 

which, with the use of Eq. (12.29), becomes 
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where T; ( U R )  is the expected delay of the reference feature, and rg ( v R )  is the true 
delay. The frequency-independent terms 4in and 2nn cancel in Eq. (1 2.3 I ) .  How- 
ever, there are residual terms in Eq. (12.3 l )  that are proportional to the difference 
in frequency between the feature of interest and the reference feature. These terms 
arise because phases at different frequencies are differenced in Eq. (12.30). Fol- 
lowing the notation of Eq. (12.3), which uses the convention A term = (assumed 
value) - (true value), we can write Eq. (12.3 1) as 

2n u 2n u 
A * ~ ( u )  = -D * A S ~ R  - - A D .  A S ~ R  

C c 

(1 2.32) 

where D is the assumed baseline, A D  is the baseline error, sR is the assumed 
position of the reference feature, and AsR is the corresponding position error. 
A S ~ R  is the separation vector from the feature at frequency u to the reference 
feature, and thus the true position of the feature at frequency u is SR - ASR + A s ~ R .  

The first term on the right-hand side of Eq. (12.32) is the desired quantity 
from which the position of the feature relative to the reference feature can be 
determined, and the remaining terms describe the phase errors introduced by un- 
certainty in baseline, source position, clock offset, and atmospheric delay. These 
phase error terms can be converted approximately to angular errors by dividing 
them by c/2n u D. Thus, for example, an error of 0.3 m in a baseline component 
would cause a delay error of about 1 ns in the term A D  * SR in Eq. (12.32) and a 
phase error of turns for features separated by 1 MHz. This phase error cor- 
responds to a nominal error of arcsec on a baseline of 2500 km at 22 GHz, 
which provides a fringe spacing of arcsec. Similarly, a clock or atmospheric 
error of 1 ns would cause the same positional error. The same baseline error also 
causes additional positional errors, through the A D  * AS”R term, of arcsec 
per arcsecond separation of the features. A detailed discussion of mapping errors 
caused by this calibration method can be found in Genzel et al. (1981). 

Another method of calibrating the fringe phase is to scale the phase of the 
reference feature to the frequency of the feature to be calibrated. That is, 

(I  2.33) 

This method of calibration is more accurate than the method of Eq. (12.30) be- 
cause error terms proportional to u - uR do not appear. However, there are addi- 
tional terms involving the phase ambiguity and the instrumental phase. Thus, this 
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calibration method is applicable only if the fringe phase can be followed carefully 
enough to avoid the introduction of phase ambiguities. 

Maps of lower accuracy and sensitivity than those obtainable from phase data 
can be made with fringe-frequency data. Suppose that the interferometer is well 
calibrated. The differential fringe frequency, that is, the difference in fringe fre- 
quency between the feature at frequency u and the reference feature, can then be 
written [using Eq. (12.14)] 

A2Vf(V) 2: LiA~r’(v) + 6 AS(U), (12.34) 

where Li and 6 are the time derivatives of the projected baseline components, 
Aa’(u) and As(u) are the coordinate offsets from the reference feature, and 
Aa‘(u) = Aar(u) cos 6.  The relative positions of the maser feature can then be 
found by fitting Eq. (12.34) to a series of fringe-frequency measurements at vari- 
ous hour angles. This technique was first employed by Moran et al. (1968) for the 
mapping of an OH maser. The errors in fringe-frequency measurements decrease 
as r3/’ [see Eq. (A12.27)], where r is the length of an observation, but for large 
values of r the differential fringe frequency A2uf is not constant, because ii and 
ij are not zero. Thus, there is a limited field of view available for accurate map- 
ping with fringe-frequency measurements. This field of view can be estimated by 
equating the rms fringe-frequency error in Eq. (A12.27) with T times the deriva- 
tive of the differential fringe frequency with respect to time. Therefore, for an 
east-west baseline, 

where A6 is the field of view. For d m  cos 8 2: 1, the field of view is 

m 

(12.35) 

(12.36) 

or 
1 

SSn D ~ W , ~ T ’  ’ 
A0 2 (12.37) 

where R,, is the signal-to-noise ratio. Let Rsn = 10 and T = 100 s. The field 
of view is then about equal to 2000 times the fringe spacing. This restriction is 
often important. Usually when a feature is found, the phase center of the field 
is moved to the estimated position of the feature, and the position is then re- 
determined. Only components that are detected in individual observations on 
each baseline can be mapped with the fringe-frequency mapping technique. Thus, 
fringe-frequency mapping is less sensitive than synthesis mapping, in which fully 
coherent sensitivity is achieved. 

The fringe-frequency analysis procedure can be extended to handle the case 
in which there are many point components in one frequency channel. From each 
observation (i.e., a measurement on one baseline lasting for a few minutes), the 
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Figure 12.4 Plot (b) is the fringe-frequency spectrum of the water vapor maser in W49N, at 
one particular hour angle and one frequency in the radio spectrum of the maser. The ordinate is 
flux density. There are four peaks, each corresponding to a separate feature on the sky. Plot (a) 
shows such lines from many scans. The peaks in the lower plot and their corresponding lines 
in the upper plot are labeled A-D. There are at least four separate features at the frequency 
of these data. Their positions are marked by the locations where many lines intersect. The 
feature corresponding to line D is sufficiently far from the phase center that its fringe frequency 
changes enough during the 20-min integration to degrade significantly the estimate of the 
feature position. The window in which accurate positions can be determined is 0.5 arcsec in 
right ascension and 2 arcsec in declination. The window can be moved by shifting the phase 
center of the data. Figure from Walker ( I  981). courtesy of The Astronomical Journal. 

fringe-frequency spectrum is calculated. Multiple components will appear as dis- 
tinct fringe-frequency features, as shown in Fig. 12.4. The fringe frequency of 
each feature defines a line in (ha',  Ah) space on which a maser component lies. 
The slope of the line is tan-'(G/i). As the projected baseline changes, the slopes 
of the lines change. The intersections of the lines define the source positions (see 
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Fig. 12.4). For this method to work, the components must be sufficiently separate 
to produce separate peaks in the fringe-frequency spectrum. The fringe-frequency 
resolution is about r - ' ,  which defines an effective beam of width 

1 
A8 - 

- DAwes cos 8 '  
(12.38) 

Fringe-frequency mapping is discussed in detail, for example, by Walker (1981). 

APPENDIX 12.1 LEAST-MEAN-SQUARES ANALYSIS 

The principles of least-mean-squares analysis play a fundamental role in astrom- 
etry, where the goal is to extract a number of parameters from a set of noisy 
measurements. We briefly discuss these principles in an elementary way, ignor- 
ing mathematical subtleties, and apply them to the problems encountered in in- 
terferometry. Detailed discussions of the statistical analysis of data can be found 
in books such as Bevington and Robinson (1992) and Hamilton (1964). Suppose 
that we wish to measure a quantity m .  We make a set of measurements y; that are 
the sum of the desired quantity m and a noise contribution n;: 

(A1 2.1) Yi = m + n i ,  

where n; is a Gaussian random variable with zero mean and variance of. The 
probability that the ith measurement will take any specific value of y; is given by 
the probability (density) function 

Phi) = ~ 1 e-(yi- ,n)*/2cT: (A 12.2) 

If all the measurements are independent, then the probability that an experiment 
wit1 yield a set of N measurements yl , y2, . . . , yN is 

f i  0; 

(A12.3) 

where the fl denotes the product of the p ( y ; )  terms. L, viewed as a function 
of m,  is called the likelihood function. The method of maximum likelihood is 
based on the assumption that the best estimate of m is the one that maximizes L. 
Maximizing L is the same as maximizing In L, where 

(A12.4) 

Since the first summation term on the right-hand side of Eq. (A12.4) is a constant 
and the second summation term is multiplied by -;, the maximization of L is 
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equivalent to the minimization of the second summation term in Eq. (A12.4) with 
respect to m.  Thus, we wish to minimize the quantity x 2  given by 

(A1 2.5) 

In the more general problem discussed later in this appendix, m is replaced by 
a function with one or more parameters describing the system model. With this 
generalization, Eq. (A1 2.5) becomes the fundamental equation of the method of 
weighted least squares. In this method the parameters of the model are determined 
by minimizing the sum of the squared differences between the measurements 
and the model, weighted by the variances of the measurements. The quantity 
x 2 ,  which indicates the goodness of fit, is a random variable whose mean value 
equals the number of data points less the number of parameters when the model 
adequately describes the measurements. The method of least squares, appropriate 
when the noise is a Gaussian random process, is a special case of the more gen- 
eral method of maximum likelihood. Gauss invented the method of least squares, 
perhaps as early as 1795, using arguments similar to those given here, for the 
purpose of estimating the orbital parameters of planets and comets (Gauss 1809). 
The method was independently developed by Legendre in 1806 (Hall 1970). 

Returning to Eq. (A12.5) we can estimate m by setting the derivative of x 2  
with respect to m equal to zero. The resulting estimate of m ,  denoted m,, is 

(A 12.6) 

where the summation goes from i = 1 to N. Using Eq. (A12.2), we note that 
(y;) = m and (y : )  = m2 + cr?. Therefore, by calculating the expectation of 
Eq. (A12.6), it is clear that (m, )  = (y;) = m ,  and it is easy to show that 

Hence the variance of the estimate of m, is 

(A 12.7) 

(A12.8) 

Equation (A 12.8) shows that when poor quality or noisy data are added to better 
data, the value of o , ~  may be reduced only slightly. If the statistical error a; of 
each of the measurements has the same value, u, then Eq. (A12.8) reduces to the 
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well-known result 

tY 

Om = 77' (A 1 2.9) 

and me is the average of the measurements. In many instances a is not known. 
An estimate of a is 

(A 1 2.10) 

However, m is not known, only its estimate, me. If m, were used in place of m 
in Eq. (A12.10), the value of a: would be an underestimate of o2 because of the 
manner in which me was determined in minimizing x2. The unbiased estimate of 
u2 is 

(A12.11) 

It is easy to show by substitution of Eq. (A12.6) into Eq. (A12.11) that (a:) = a'. 
The term N - 1, which is called the number of degrees of freedom, appears in 
Eq. (A12.11) because there are N data points and one free parameter. 

Consider a model described by the function f ( x ;  pI , . . . , p,,), where x is the 
independent variable, which takes values x i ,  where i = 1 to N,  at the sample 
points, and P I ,  . . . , pn are a set of parameters. We assume that the values of the 
independent variable are exactly known. If the function f correctly models the 
measurement system, the measurement set is given by 

where n; represents the measurement error. The general problem is to find the 
values of the parameters for which x2, given by the generalization of Eq. (A12.5), 

(A1 2.13) 

is a minimum. 

Let 
A simple example of this problem is the fitting of a straight line to a data set. 

f ( x ; a ,  b )  = a + bx,  (A 12.14) 

where a and b are the parameters to be found. Minimizing x is accomplished by 
solving the equations 

2(y1 - a - b x i )  
= 0, -=-c a x 2  

aa a; 
(A I 2.1 5a) 
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and 

a x 2  2(y, - u - bxi)xi 
-- - - = 0. (A 1 2.15b) 
ab 

In matrix notation we have 

ae 

be 

, (A 1 2.1 6) 

where we distinguish between the true values of the parameters and their esti- 
mates by the subscript e. The solution is 

and 

where A is the determinant of the square matrix in Eq. (A12.16), given by 

Estimates of the errors in the parameters a, and be can be calculated from Eqs. 
(A12.17) and (A12.18) and are given by 

and 

1 1 
A a:. 

0; = (bz) - (be)' = - 1 - 

(A 1 2.20) 

(A1 2.2 1) 

Note that a, and b, are random variables, and in general (a,b,) is not zero, so that 
the parameter estimates are correlated. The error estimates in Eqs. (A12.20) and 
(A 12.2 1) include the deleterious effects of the correlation between parameters. In 
this particular example, the correlation can be made equal to zero by adjusting 
the origin of the x axis so that C(x i /a ; )  = 0. 
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The above analysis can be used to estimate the accuracy of measurements of 
fringe frequency and delay made with an interferometer. Fringe frequency, the 
rate of change of fringe phase with time, 

1 a4 
" f = - -  21-t a t '  

(A12.22) 

can be estimated by fitting a straight line to a sequence of uniformly spaced mea- 
surements of phase with respect to time. The fringe frequency is proportional to 
the slope of this line. Assume that N measurements of phase 4;. each having the 
same rms error q,, are made at times t i ,  spaced by interval T, running from time 
- N T/2 to N T/2, such that the total time of the observation is r = NT. From 
Eq. (A12.21) and the above definitions, including Eq. (A12.22), the error in the 
fringe-frequency estimate is 

since C ti = 0. The term 1 ti' is approximately given by 

(A12.23) 

(A12.24) 

~ / m  can be thought of as the rms time span of the data. Thus, Eq. (A12.23) 
becomes 

1 2 4  

O3 = (2n)*Nt2 
(A1 2.25) 

The expression for a+, given in Q. (6.64) for the case when the source is unre- 
solved and there are no processing losses, is 

(A12.26) 

where Ts is the system temperature, TA is the antenna temperature due to the 
source, and Au is the bandwidth. Substitution of Eq. (A12.26) into Eq. (A12.25) 
yields 

(A 1 2.27) 

Note that this result does not depend on the details of the analysis procedure, 
such as the choice of N. Equivalently, one can estimate the fringe frequency by 
finding the peak of the fringe-frequency spectrum, that is, the peak of the Fourier 
transform of ej@i. 
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The delay is the rate of change of phase with frequency, 

(A12.28) 

Thus, the delay can be estimated by finding the slope of a straight line fitted to 
a sequence of phase measurements as a function of frequency. For a single band, 
such data can be obtained from the cross power spectrum, the Fourier transform of 
the cross-correlation function. Assume that N measurements of phase are made 
at frequencies ui, each with a bandwidth AvlN and with an error u4. In this 
calculation only the relative frequencies are important. It is convenient for the 
purpose of analysis to set the zero of the frequency axis such that C ui = 0. The 
error in delay [from Eqs. (A12.19), (A12.21), and (A12.28)] is 

(A1 2.29) 

Using a calculation for 
Eq. (A12.29) as 

v,? analogous to the one in Eq. (A12.24), we can write 

2 1 2 4  
u =  

(21r)~N Au2'  
(A 12.30) 

Thus, substitution of Eq. (A12.26) (with an integration time of r and bandwidth 
A u / N )  into Eq. (A12.30) yields 

We can define the rms bandwidth as 

(A1 2.3 I )  

(A 12.32) 

and obtain from Eqs. (A12.26) and (A12.29) the result quoted in Section 9.8 
[Eq. (9.15911, 

(A 12.33) 

where J' = ~ ( 7 6 8 ) " ~ .  (Note that in  Section 9.8, o4 applies to the full bandwidth 
Au.)Theexpressionsfora, inEqs. (A12.30), (A12.31), and (A12.33) incorporate 
the condition Au,,, = A v / m  and apply to a continuous passband of width Au. 

In bandwidth synthesis, which is described in Section 9.8, the measurement 
system consists of N channels of width AvlN, which are not in general contigu- 
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ous. The rms delay error is obtained by substituting Eqs. (A12.26) and (A12.32) 
into Eq. (A12.29), yielding 

where Au,, is given by Eq. (A12.32) and Au is the total bandwidth. AumS is 
generally equal to about 40% of the total frequency range spanned. 

A general formulation of the linear least-squares solution can be found when 
the model function f is a linear function of the parameters Pk, that is, when 

(A 12.35) 

where n is the number of parameters. For example, the model could be a cubic 
polynomial 

f ( x :  Po9 PI 9 p29 p3) = Po + PIX + p*x2 + p3x3, (A12.36) 

in which case af/apk = xk for k = 0, 1, 2, and 3. If the parameters appear as 
linear multiplicative factors, then the minimization of Eq. (A12.13) leads to a set 
of n equations of the form 

(A12.37) 

Substitution of Eq. (A 12.13) into Eq. (A 12.37) and use of Eq. (A 12.35) yield the 
set of n equations 

D k = x T k j p j ,  k = 1 , 2  ,..., n ,  (A12.38) 
n 

j = l  

where 

and 

(A 12.39) 

(A12.40) 

and the summations are carried out over the set of N independent measurements. 
In matrix notation, the equation set (A12.38) is 
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where [D] is a column matrix with elements Dk, [Pel is a column matrix con- 
taining the estimates of the parameters Pek ,  and (TI is a symmetric square matrix 
with elements T j k .  For obvious reasons, [TI is sometimes called the matrix of 
the normal equations. Note that Eq. (A12.41) is a generalization of Eq. (A12.16). 
The matrices [TI and [ D ]  are sometimes written as the product of other matrices 
(Hamilton 1964, Ch. 4). Let [MI be the variance matrix (size N x N) whose diag- 
onal elements are a,? and whose off-diagonal elements are zero; let [ F ]  be a col- 
umn matrix containing the data yi; and let [ A  I be the partial derivative matrix (size 
n x N) whose elements are af(Xi)/aPk. Then one can write [TI = [ A I T [ M ] - ' [ A ]  
and [Dl  = [ A ] T I M ] - l [ F ] ,  where [AIT is the transpose of [ A ]  and [MI-' is the 
inverse of [MI. The analysis can be generalized to include the situation where 
the errors between measurements are correlated. In this case, [MI is modified to 
include off-diagonal elements o;ajp,b, where p,; is the correlation coefficient for 
the ith and j th  measurements. 

The solution to Eq. (A12.41) is 

[Pel = ITl-"Dl, (A 12.42) 

where [ TI-I is the inverse matrix of [TI ,  and [Pel is the column matrix containing 
the parameter estimates. The elements of [TI-'  are denoted Tik. It can be shown 
by direct calculation that &he estimates of the errors of the parameters a:k are the 
diagonal elements of [ T I - ' ,  which is called the covariance matrix. Thus 

(A12.43) 

The probability that parameter P k  will be within f q  of its true value is 0.68, 
which is the integral under the one-dimensional Gaussian probability distribution 
between fak. The probability that all the n parameters will be within fa of their 
true values (i.e., within the error "box" in the n-dimensional space) is approxi- 
mately 0.68" when the correlations are moderate. 

The normalized correlation coefficients between parameters are proportional 
to the off-diagonal elements of [TI - ' :  

2 a,, = Tik . 

For any two parameters, there is a bivariate Gaussian probability distribution that 
describes the distribution of errors 

(A1 2.45) 

where ck = pek - pk and C j  = pej - p j ,  The Contour Of P(Ck, € j )  = p ( 0 ,  O)e-1'2 
defines an ellipse, shown in Fig. A 12.1, which is known as the error ellipse. The 
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Figure AI2.1 The error ellipse, or contour, defining the e-’ level of the joint probability 
function [Eq. (A12.45)] for the estimates of parameters pk and p , .  The quantities Pek - pk 
and pcj - p ,  are the parameter estimates minus their true values. The angle $jk is defined by 
Eq. (A12.46). 

probability that both parameters will lie within the error ellipse is the integral of 
Eq. (A12.45) over the area of the error ellipse, which equals 0.46. The orientation 
of the error ellipse is given by 

(A 12.46) 

The errors in the parameters Pk are completely determined by the matrix [TI-’ 
through Eqs. (A12.43)-(A12.45). The elements of [TI-’ depend only on the par- 
tial derivatives of the model function and the values of the measurement errors, 
which can usually be predicted in advance from the characteristics of the mea- 
surement apparatus. Therefore, once an experiment is planned, the errors in the 
parameters can be predicted from [TI-’ without reference to the data. For this rea- 
son, [TI is sometimes called the design matrix. Studies of the design matrix for a 
specific experiment might reveal a very high correlation between two parameters, 
leading to large errors in their estimated values. It is often possible to modify the 
experiment to obtain more data that will reduce the correlation. After the data 
are analyzed, the value of x 2  can be computed. If the model is a good fit to the 
data, x 2  should be approximately equal to N - n ,  the number of measurements 
minus the number of parameters. If it is not, the difficulty is often that the values 
of ai are estimated incorrectly or that the model does not describe adequately the 
measurement system, that is, the model has too few parameters or is not correct. 
Even if x 2  2 N - n, the derived errors in Eq. (A12.43) may not be realistic, and 
they are referred to as “formal errors.” The formal errors describe the precision 
of the parameter estimates. The accuracy of the parameter measurements is the 
deviation between the estimates of the parameters and the true values of the pa- 
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rameters. The accuracy of the measurements is often difficult to determine. For 
example, an unknown effect that closely mimics the functional dependence of one 
of the model parameters may be present in an experiment. The model may appear 
to be a good one, but the accuracy of the particular model parameter in question 
will be much poorer than expected because of the systematic error introduced by 
the unmodeled effect. 

The discussion of linear least-mean-squares analysis can be generalized to in- 
clude nonlinear functions in a straightforward manner. Assume that f ( x ;  p) has 
one nonlinear parameter p n .  For the purpose of discussion we can separate f into 
linear and nonlinear parts, f L ( x ;  p,, . . . , p,,-l) and ~NL(X;P,,). and approximate 
the nonlinear function by the first two terms in a Taylor expansion 

(A 1 2.47) 

where pon is the initial guess of parameter p,, and Ap,, = p,, - pan. We assume 
that the initial parameter guesses are accurate enough for Eq. (A 12.47) to be valid. 
We replace the data with yi - ~ N L  (x i  : pot,)  and then compute the elements of the 
matrices [D] and [TI from the partial derivatives, including afNL/ap,,. The nth 
parameter in the matrix [Pel in J2q. (A12.42) will be the differential parameter 
Ap,, defined in Eq. (A12.47). The solution must be iterated with a new Taylor 
expansion centered on the parameter PO,, + Ap,,. Thus, nonlinear functions can 
be accommodated in the analysis through linearization, but initial guesses of the 
nonlinear parameters and solution iteration are required. In some cases nonlin- 
ear estimation problems can cause difficulties [see, e.g., Lampton, Margon, and 
Bowyer (1976), Press et al. (1992)l. 

We can envision how the principles of least-mean-squares analysis are ap- 
plied to a large astrometric experiment. Consider a hypothetical VLBI experi- 
ment made on a three-station array. Suppose that I0 recordings are made of each 
of 20 sources during observations made over 1 day (an epoch). The observations 
are repeated 6 times a year for 5 years. The data set would consist of 18,OOO 
measurements (20 sources x 10 observations x 3 baselines x 30 epochs) of delay 
and fringe frequency, or 36,000 total measurements. The measurements of delay 
and fringe frequency can be combined in the analysis since, in the least-square 
method, the relevant quantities are the squares of the measurements divided by 
their variances, which are dimensionless as in Eq. (A12.13). Now we can count 
the number of parameters in the analysis model: 39 source coordinates (one right 
ascension fixed), 9 station coordinates, 90 atmospheric parameters (a zenith ex- 
cess path length at each station at each epoch), 120 clock parameters (a clock 
error and clock rate error at two of the stations per epoch), and 90 polar motion 
and UTI - UTC parameters, as well as several other parameters to model pre- 
cession, nutation, solid-earth tides, gravitational deflection by the sun, movement 
of stations, and other effects such as antenna axis offsets (see Section 4.6). The 
total number of parameters is about 360. The parameters within each observa- 
tion epoch are linked because of the common clock and atmosphere parameters. 
Parameters among epochs are linked because of baseline, precession, and nuta- 
tion parameters. Naturally, partial solutions from subsets of the data should be 
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obtained before a grand global solution is attempted. Procedures are available for 
obtaining global solutions that do not require the inversion of matrices as large as 
the total number of parameters [see, e.g., Morrison (1969)l. Experiments of the 
scale described here, and larger ones, have been carried out [e.g., Fanselow et al. 
(1984), Herring, Gwinn, and Shapiro (1985), Ma et al. (1998)l. 

One final topic concerns the estimation of the coordinates of a radio source 
with a well-calibrated interferometer, which has accurately known baselines and 
instrumental phases. In this case, the differential interferometer phase is, from 
Eq. (1 2. l), 

A~=2nDA{[s indcos6-cosds in6cos(H - h ) ]  A6 
(A 12.48) + cos d cos 6 sin( H - h) ha] . 

Expressing the geometric quantities in terms of projected baseline components, 
we can write Eq. (A12.48) as 

A 4  = 2n(u A d  + u Ad), (A 1 2.49) 

where A d  = ha cos 6. A set of phase measurements from one or more baselines 
can be analyzed by the method of least squares to determine A d  and AS. The 
partial derivatives are af/apI = 2nu and af/ap2 = 2nv, where p I  = A d  and 
p2 = A6. From Eqs. (A12.40) and (A12.49), the normal-equation matrix is 

[TI = ".:zi - [" c 2 
ui 

U ;  U; 
(A12.50) 

where all the measurements are assumed to have the same uncertainty q given 
by Eq. (A12.26). The inverse of [TI is 

where A is the determinant of the matrix in Eq. (A 12.50), 

3 (A12.5 1) 

The correlation coefficient defined by Eq. (A12.44) is 

(A12.52) 

(A1 2.53) 

The variances of the estimates of the parameters are given by the diagonal ele- 
ments of Eq. (A12.51), 
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u; c ui’ 
(A 1 2.54) 2 au, = 

and 

If the ( u ,  u )  loci are long (that is, the observations extend over a large fraction of 
the day), then C uiui will be small compared to C u’ and 1 u; so that 

and 

Furthermore, if only one baseline is used on a high-declination source, then ui  2: 

ui 2: DA and both en-ors reduce to the intuitive result 

(A 1 2.58) 

Alternatively, the source position can be found by Fourier transformation of the 
visibility data. This procedure can be thought of as mapping or as multiplying the 
visibility data by the exponential factors exp[2n(ui A d  + z); As)] and summing 
over the data. The resulting “function” is maximized with respect to A d  and A& 
In this latter view, it is easy to understand that (basic) mapping (i.e., no tapering or 
gridding of the data) is a maximum likelihood procedure for finding the position 
of a point source and therefore formally equivalent to the method of least squares. 
The synthesized beam bo for N measurements is 

(A 12.59) 
1 

N 
bO(Ad, A8) = - C cos [ 2 ~ ( ~ i  A d  + ui As)] . 

The shape of bo near its peak can be found by expanding Eq. (A12.59) to second 
order: 

2n2 
N 

ba(Acr’, As )  2 1 - - ( A d 2  u: + As2  v: - 2 A d  A6 u;u;) . 

(A12.60) 



502 INTERFEROMETER TECHNIQUES FOR ASTROMETRY AND GEODESY 

From Eq. (A12.60) it is easy to see that the contours of the synthesized beam 
are proportional to the error ellipse defined by Eqs. (A12.45), (A12.46), and 
(A12.53)-(A12.55). Note that the method of least squares can be applied only 
in the regime of high signal-to-noise ratio, where phase ambiguities can be re- 
solved. However, the Fourier synthesis method can be applied in any case. 
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13 Propagation Effects 

The neutral and ionized media lying between a radio source and the surface of 
the earth often have profound effects on the radiation fields traversing them. The 
most important of these media are the neutral lower atmosphere, or troposphere, 
the ionosphere, the ionized interplanetary medium, and the ionized interstellar 
medium. We are concerned with three types of effects of these media. First, the 
large-scale structures in the media give rise to refractive effects. These effects, 
which can be analyzed in terms of geometric optics and Fermat’s principle, are 
the deflection of the radio waves, the change of the propagation velocity, and 
the rotation of the plane of polarization. Second, radiation can be absorbed. Fi- 
nally, radiation can be scattered by the turbulent structure in the media. The phe- 
nomenon of scattering results in scintillation, or seeing. 

In the troposphere, water vapor plays a particularly important role in radio 
propagation. The refractivity of water vapor is about 20 times greater in the radio 
range than in the near-infrared or optical regimes. The phase fluctuations in ra- 
dio interferometers at centimeter, millimeter, and submillimeter wavelengths are 
caused predominantly by fluctuations in the distribution of water vapor. Water va- 
por is poorly mixed in the atmosphere, and the total column density of water vapor 
cannot be accurately sensed from surface meteorological measurements. Uncer- 
tainties in the water vapor content are a fundamental limitation to the accuracy of 
VLBI measurements. Small-scale (< 1 km) fluctuations in water vapor distribu- 
tion limit the angular resolution of connected-element interferometers. Further- 
more, spectral lines of water vapor cause substantial absorption at frequencies 
above 100 GHz and usually render the troposphere completely opaque at fre- 
quencies between 1 and 10 THz (300 and 30 pm). Thus, any discussion of the 
neutral atmosphere must be primarily concerned with the effects of water vapor. 
Propagation in the neutral atmosphere from the point of view of radio commu- 
nications is discussed by Crane (1981) and Bohlander, McMillan, and Gallagher 
( 1985). 

Above the neutral atmosphere, radiation encounters three morphologically dis- 
tinct plasmas: the ionosphere, the interplanetary medium, and the interstellar 
medium. Most plasma effects that concern us scale as u - ~ .  Therefore, detrimental 
effects can be mitigated by carrying out investigations at the highest frequency 
possible. However, the effects of the ionosphere can easily be detected in VLBI 
measurements at frequencies up to at least I0 GHz. Furthermore, because of as- 
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508 PROPAGATION EFFECTS 

trophysical requirements, many observations must be made at frequencies where 
plasma effects cause problems. 

Our interest in the propagation media arises because the media degrade inter- 
ferometric measurements of radio sources. Alternatively, observations of radio 
sources can be used to probe the characteristics of the propagation media. Radio 
interferometric measurements have been used widely for this purpose. 

13.1 NEUTRAL ATMOSPHERE 

In the lowest part of the atmosphere the temperature decreases monotonically 
from the surface at a rate of about 6.5 K km-' , except for an occasional low-level 
inversion, until it reaches about 218 K at an altitude of approximately 1 1 km. 
This lowermost layer is called the troposphere. Above 11 km the temperature is 
constant for a distance of about 10 km in the region called the tropopause. Above 
the tropopause the temperature begins to rise with altitude in the stratosphere. 
Within the neutral atmosphere, the propagation of radio waves is most affected 
by the troposphere. Before discussing the refraction, absorption, and scattering 
of radio waves in the troposphere in detail, we introduce some basic physical 
concepts. 

Basic Physics 

Consider a plane wave propagating along the y direction in a uniform dissipative 
dielectric medium, as represented by the equation 

(13.1) j (kny -2n V I )  E(y, t )  = Eoe 

where k is the propagation constant in free space and is equal to 2 n v / c ,  c is the 
velocity of light, and Eo is the electric field amplitude. n is the complex index of 
refraction, equal to n,  + jn,. If the imaginary part of the index of refraction is 
positive, the wave will decay exponentially. The power absorption coefficient is 
defined as 

4n v 
"I 

a=- 
c 

(13.2) 

The propagation constant in the atmosphere is k multiplied by the real part of the 
index of refraction, which can be written 

2nnv 2nv  

C UP 
(13.3) kn,  = - = -, 

where n = n ,  is the index of refraction when absorption is neglected, and up is 
the phase velocity. The phase velocity of the wave, c / n ,  is less than c by about 
0.03% in the lower atmosphere. The extra time required to traverse a medium 
with index of refraction n(y) compared with the time necessary to traverse the 
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same distance in free space is 

At = - (n  - I ) d y ,  ( 1  3.4) 
c 's 

where we assume that the effect of the difference in physical length between the 
actual ray path and the straight-line path is negligible. The excess path length is 
defined as c At, or 

63 = 10-6s N ( y ) d y ,  (13.5) 

where we have introduced the refractivity N, defined by N = 106(n - 1). Note 
that the concept of excess path length, which is used extensively in this chapter, 
does not represent an actual physical path. 

The refractivity of moist air in the radio range is given by the empirical formula 
(see discussion in this section under Smith-Weintruub Equation) 

( 13.6) 

where T is the temperature in kelvins, p D  is the partial pressure of the dry air, 
and p v  is the partial pressure of water vapor in millibars (1 mb = 100 newtons 
per square meter = 100 pascals; 1 atmosphere = 1013 mb). The first two terms 
on the right-hand side of Eq. (1 3.6) arise from the displacement polarizations of 
the gaseous constituents of the air. The third term is due to the permanent dipole 
moment of water vapor. Equation (13.6) is accurate to better than 1% for frequen- 
cies below 100 GHz. The contributions of dispersive components of refractivity 
associated with resonances are very small (see discussion in this section under 
Origin of Refraction). 

The refractivity can be expressed in terms of gas density, using the ideal gas 
law 

PRT 
M '  

p = -  (13.7) 

where p and p are the partial pressure and density of any constituent gas, R is 
the universal gas constant, equal to 8.314 J mol-' K-', and M is the molecular 
weight, which for dry air in the troposphere is MD = 28.96 g mol-' and for water 
vapor is M V  = 18.02 g mol-'. Thus, p D  = ~ D R T / M D  and p v  = p v R T / M v ,  
where p~ and pv  are the densities of dry air and water vapor, respectively. Since 
the total pressure P is the sum of the partial pressures, and the total density p~ is 
the sum of the constituent densities, Eq. (13.7) can be written P = ~ T R T / M T ,  
where 

( 1  3.8) 
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Substitution of the appropriate forms of Eq. (1 3.7) and the equation p~ = PT - pv  
into Eq. (13.6) yields 

where p~ and pv are in g mP3. Since the second term on the right-hand side of 
Eq. (1 3.9) is small with respect to the third term, it can be combined with the third 
term to give, for T = 280 K, 

(13.10) Pv 
T 

N 2: 0.2228~7 + 1763- = No + NV . 

Equation (13.10) defines the dry and wet refractivities, ND and Nv. respectively. 
These definitions are not universally followed in the literature. Note that ND is 
proportional to the total density and therefore has a contribution due to the in- 
duced dipole moment of water vapor. Graphs of mean values of Nv around the 
world are shown in Fig. 13.1. 

The atmosphere obeys the equation of hydrostatic equilibrium to a high degree 
of accuracy (Humphreys 1940). A parcel of gas in static equilibrium between 
pressure and gravity obeys the equation 

(13.11) 

where g is the acceleration due to gravity, approximately equal to 980 cm s-*, and 
h is the height above the earth’s surface. Using the ideal gas law, Eq. (13.7), we 
can integrate EQ. (1 3.1 1) assuming specific forms for the temperature profile and 
mixing ratio. If an isothermal atmosphere with constant mixing ratio is assumed, 
then pT is an exponential function with a scale height of R T / M g  2: 8.5 km for 
290 K, which is close to the observed scale height. Other models are described by 
Hess (1959). The excess path length caused by the dry component of refractivity 
does not depend on the height distribution of total density or temperature, but 
only on the surface pressure PO, under conditions of hydrostatic equilibrium. If 
g is assumed to be constant with height, the surface pressure can be obtained by 
integrating Eq. (13.1 I), 

( 1 3. I 2) 

From Eqs. (1 3.3,  (1 3. lo), and (1 3.12), the dry excess path length in the zenith 
direction is 



Figure 13.1 (a) Worldwide distribution of the mean sea-level value of the wet refractivity N v  
for February; (b) Nv for August. Note the seasonal variation in mean water vapor content. 
From Bean et al. (1  966). 
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where A = 77.6R/g&~ = 0.228 cm mb-'. Under standard conditions for which 
PO = 1013 mb, the value of L D  is 231 cm. 

Water vapor is not well mixed in the atmosphere and therefore is not well corre- 
lated with ground-based meteorological parameters (Reber and Swope 1972). On 
average, water vapor density has an exponential distribution with a scale height of 
2 km. The partial pressure and density of water vapor from Eq. (13.7) are related 
by 

217Pv (g m-3)* Pv = - 
T 

(13.14) 

The partial pressure of water vapor for saturated air, pvs, at temperature T, ob- 
tained from the Clausius-Clapeyron equation (Hess 1959), can be approximated 
to an accuracy of better than 1 % within the temperature range 240-3 10 K by the 
formula (Crane 1976) 

-5.3 

(mb). (13.15) PVS = 6.1 1 (A) e2s.2(T-273)/ r 

The relative humidity is pvlpvs.  The component of the path length resulting 
primarily from the permanent dipole moment of water vapor is 

(13.16) 

where the units of LV are the same as those of h. If we assume that the atmosphere 
is isothermal and that pv decreases exponentially with a scale height of 2 km, then 
from Eqs. (13.14) and (13.16) 

4 PVO d3v = 7.6 x 10 - (em), 
T2 

(13.17) 

where pvo is the partial pressure of water vapor at the surface of the earth. Hence, 
at ambient air temperature, Lv in centimeters is approximately equal to pvo in 
millibars. For an exponential distribution of density with a scale height of 2 km 
and temperature of 280 K, the path length is given by LV = 1.26pV0, where pvo 
is the water vapor density at the surface. 

The integrated water vapor density, or the height of the column of water con- 
densed from the atmosphere, is given by 

(13.18) 

where p,,, is the density of water, lo6 g m-3. Hence, from Eq. (13.16) for an 
isothermal atmosphere at 280 K 
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6" EZ 6 . 3 ~ .  (13.19) 

This formula, which is widely used in the literature, is an excellent approximation 
for frequencies below 100 GHz. In the windows above 100 GHz, the ratio LV/W 
can vary from 6.3 to about 8 (see Fig. 13.8 and associated discussion). The values 
of LV under extreme conditions for a temperate, sea-level site can be calculated 
from the equations above. With T = 303 K (30°C) and relative humidity = 0.8, 
we have pvo  = 34 mb, pvo  = 24 g mP3, w = 4.9 cm, and Lv = 28 cm. 
With T = 258 K (-lS0C) and relative humidity = 0.5, we have pvo = 1.0 mb, 
p v o  = 0.8 g m-3, w = 0.15 cm, and .LV = 1.1 cm. The total zenith excess path 
length through the atmosphere is d: 2: 630 + % v ,  which from Eqs. (13.13) and 
(13.19) is 

63 2 0.228P0 + 6 . 3 ~  (cm), (13.20) 

where Po is in millibars, and w is in centimeters. Equation (13.20) is reasonably 
accurate for estimation purposes because the fractional variation in the tempera- 
ture of the lower atmosphere, and in the scale height of water vapor, is usually less 
than 10%. However, it is usually not accurate enough to predict the path length to 
a small fraction of a wavelength at millimeter wavelengths. 

Refraction and Propagation Delay 

If the vertical distributions of temperature and water vapor pressure are known, 
then precise estimates of the angle of amval and excess propagation time for a 
ray impinging on the atmosphere at an arbitrary angle can be computed by ray 
tracing. Here we consider a few elementary cases in order to derive some simple 
analytic expressions. The simplest case is that of an interferometer in a uniform 
or plane-parallel atmosphere, as shown in Fig. 13.2. The refraction of the ray is 

Figure 13.2 Two-element interferometer with the atmosphere modeled as a uniform flat slab. 
The geometric delay is the same as it would be if the interferometer were in free space. 
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governed by Snell’s law, which is 

no sin zo  = sin z ,  (13.21) 

where z is the zenith angle at the top of the atmosphere (where n = l),  and zo 
is the zenith angle at the surface (where n = no). The geometric delay for an 
interferometer, as defined in Chapter 2, is 

(13.22) 

rg can be calculated from the angle of arrival zo and the velocity of light at the 
earth’s surface c/no,  or from z and the velocity of light in free space. Thus, if 
earth curvature is neglected and the atmosphere is uniform, then the resulting 
geometric delay is the same as the free-space value. The angle of refraction need 
only be calculated to ensure that the antennas track the source properly. The angle 
of refraction, Az = z - 20. can be written, using Eq. (13.21), as 

(13.23) 

This equation can be expanded in a Taylor series in no - 1 ,  which to first order 
gives 

AZ 2: (no - 1) tanz. (1 3.24) 

Since no - I Y 3 x lop4 at the surface of the earth, J3q. (13.24) can be written 

Az (arcmin) 2 tan z. (1 3.25) 

The angle of refraction can also be calculated for more realistic cases. Ignore 
the curvature of the earth and consider the atmosphere to consist of a large number 
of plane-parallel layers numbered 0 through m ,  as shown in Fig. 13.3. Let the 
index of refraction at the surface be no, and at the top layer, n, = 1. Applying 
Snell’s law to the various layers gives the following set of equations: 

where z = zm. From these equations, we see that no sin zo = sin z. This result is 
identical to that for the homogenous case. Thus, regardless of the vertical distri- 
bution of the index of refraction, the angle of refraction is given by Eq. (13.21), 
where no is the surface value of the index of refraction. This result can also be 
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Figure 13.3 The atmosphere modeled as a set of thin, uniform slabs. The angle of incidence 
on the topmost slab is zm. which is equal to the free-space zenith angle z, and the angle of 
incidence at the surface is zo.  The total bending is Az = z - ZO. 

obtained by an elementary application of Fermat’s principle. An interesting ap- 
plication of this result is that if no = 1, as would be the case if the measuring 
device were in a vacuum chamber at the surface of the earth, then there would be 
no net refraction; that is, zo = z. 

For an atmosphere consisting of spherical layers, the angle of refraction is 
given by the formula (Smart 1977) 

where r is the distance from the center of the earth to the layer where the index 
of refraction is n and ro is the radius of the earth. This result is derivable from 
Snell’s law in spherical coordinates: nr sin z = constant (Smart 1977). For small 
zenith angles, expansion of Eq. ( 1  3.27) gives 

az 2 (no - 1) tan20 - a2 tanzo sec 2 Zo? ( 1  3.28) 

where a2 is a constant. Equation (13.28) can also be written 
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where ul 2 56 arcsec and u2 2: 0.07 arcsec for a dry atmosphere under stan- 
dard conditions (COESA 1976). The refraction at the horizon is about 0.46" (see 
Fig. 13.5). See Saastamoinen (1972a) for a more detailed treatment. 

The differential delay induced in an interferometer by a horizontally stratified 
troposphere results from the difference in zenith angle of the source at the an- 
tennas. Consider two closely spaced antennas. If the excess path in the zenith 
direction is Lo, then the excess path in other directions is approximately dl0 sec z .  
This approximation becomes inaccurate at large zenith angles. The difference in 
excess paths, AX, is 

sin z 
A.€ 2 d f o  AZ- ( I  3.30) 

cos2 z ' 
where Az is the difference in zenith angles at the two antennas. 

If the antennas are on the equator and the source has a declination of zero, then 
Az is equal to the difference in longitudes of D/ro ,  where D is the separation 
between antennas. For this case, 

d:oD sinz 
ro cos2 z 

Ad: 2 --. (13.31) 

If D = 10 km, Lo = 230 cm, ro = 6370 km, and z = HO", then Ad: is 12 cm. 
The calculation of the difference in excess paths can be easily generalized as 
follows. Let rl and r2 be vectors from the center of the earth to each antenna. The 
geometric delay is (r, - s - r2 - s ) / c ,  where s is the unit vector in the direction of 
the source. Since coszI = (rl - s ) / r g  and cos 22 = (r2 * s ) / r o ,  where ZI and 22 are 
the zenith angles at the two antennas, the geometric delay can be written 

(13.32) 

Substitution of Az from Eq. (13.32) into Eq. (13.30) yields an expression for 
the difference in excess path lengths, valid for short-baseline interferometers and 
moderate values of zenith angle: 

r0 r0 r - -(coszI - C O S Z ~ )  2 -Azsinz. 
g -  c C 

cr 2" 
~ d :  2: -E- sec2 Z. 

ro 
(13.33) 

For very-long-baseline interferometers, the expression in Eq. (13.30) is not 
appropriate. The difference in excess path lengths is approximately Ad: = 
d f  I sec z I - .€2 sec 22,  where .€ I ,  L2, z I ,  and 22 are the excess zenith path lengths 
and the zenith angles at the two antennas. We now derive a more accurate expres- 
sion for the excess path length to each antenna. Assume the index of refraction 
to be exponentially distributed with a scale height ho. The geometry is shown in 
Fig. 13.4. The excess path length is 

( 1  3.34) 
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SOURCE 

Figure 13.4 Geometry for calculating the propagation delay, taking into account the spheric- 
ity of the earth. The ray path along the y coordinate is assumed to be straight. The angle z i  
is the zenith angle of the ray at height h.  This angle is needed in the calculation of the excess 
path length through the ionosphere [Eqs. (13.139) and (13.140)l. 

where NO is the refractivity at the earth’s surface, h is the height above the sur- 
face, and dy is the differential length along the ray path. Bending of the ray is 
neglected. From the geometry of Fig. 13.4, one can show that 

h 2: y cos z + - Y2 sin 2 z. (13.35) 
2r0 

Therefore 

The argument of the rightmost exponential function in Eq. (1 3.36) is small, and 
this exponential function can be expanded in a Taylor series so that 
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Do 

63 21 10-'NO exp (-t cos z )  x (1 - - y2 sin'z...) dy. (13.37) 
2roho 

Integration of Eq. (13.37) yields 

Equation (13.38) can also be written 

(13.38) 

(1  3.39) 

Thus, d: is a function of odd powers of sec z ,  whereas the bending angle, given in 
Eq. (13.29), is a function of odd powers of tan z. Equations (13.38) and (13.39) 
both diverge as z approaches 90". For z = 90°, Eq. (13.35) shows that h 2: y2/2r0. 
Hence, for Eq. (1 3.34), the excess path at the horizon is 

(13.40) 

for ro = 6370 km and ho = 2 km. A model incorporating both the dry atmosphere 
with a scale height h D  = 8 km and the wet atmosphere with a scale height hv = 
2 km can be obtained by applying Eq. (13.38) to both the dry and wet components 
using Eqs. (13.13) and (13.17). This result is 

d: 2: 0.228P0 sec z (1 - 0.0013 tan2 z) 

(13.41) 

More sophisticated models have been derived by Marini (1972), Saastamoinen 
(1972b), Davis et al. (1985), Niell (1996), and others. A comparison of the ap- 
proximate formula of Eq. (13.41) and a ray-tracing solution is given in Fig. 13.5. 

Absorption 

When the sky is clear, the principal sources of atmospheric attenuation are the 
molecular resonances of water vapor, oxygen, and ozone. The resonances of wa- 
ter vapor and oxygen are pressure broadened and cause attenuation far from the 
resonance frequencies. A plot of the absorption versus frequency is shown in 
Fig. 13.6. Below 30 GHz absorption is dominated by the weak 616-523 transition 
of H20 at 22.2 GHz (Liebe 1969). Absorption by this line rarely exceeds 20% 
in the zenith direction. The oxygen lines in the band 50-70 GHz are consider- 
ably stronger, and no astronomical observations can be made from the ground in 
this band. An isolated oxygen line at 1 18 GHz makes observations impossible in 
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Figure 13.5 (a) The bending angle versus 90" - z, where z is the zenith angle that the ray 
would have in the absence of refraction, calculated by a ray-tracing algorithm for a standard 
dry atmosphere (COESA 1976). (b) The excess path length versus 90" - z calculated by a 
ray-tracing algorithm. The zenith excess path is 2.31 m. (c) Deviation between the excess path 
length and (1 )  the dl0 secz model and (2) the model of Eq. (13.41); in both cases pvo = 0 and 
the zenith excess path is the same as in (b). 

the band 116-120 GHz. At higher frequencies there is a series of strong water 
vapor lines at 183, 325, 380, 448, 475, 557, 621, 752, 988, and 1097 GHz and 
higher (Liebe 1981). Observations can be made in the windows between these 
lines at dry locations, usually found at high altitudes. The physics of atmospheric 
absorption is discussed in detail by Waters ( I  976), and a model of absorption at 
frequencies below 1000 GHz is given by Liebe (1981, 1985, 1989). We are con- 
cerned here only with the phenomenology of absorption and its calibration. The 
absorption coefficient depends on the temperature, gas density, and total pressure. 
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Figure 13.6 Atmospheric zenith opacity. The absorption from narrow ozone lines has been 
omitted. Adapted from Waters (1976). For zenith opacity at frequencies above 300 GHz, see 
Liebe (1981, 1989). Note that 2 g cm-* of H 2 0  corresponds to w = 2 cm. 

For example, the absorption coefficient for the 22 GHz H2O line can be written 
(Staelin 1966) 

u 2 p p v  ( I  + 0.0147- 
P 

(Y = (3.24 T3.'25 

] (13.42) 
1 1 [ ( u  - 22.235)2 + Au2 ( u  + 22.23q2 + Au2 

2 Au 
7-312 

+ 2.55 x 10-8pvv - (crn-'). 

Here Au is approximately the half width at half maximum of the line in gigahertz, 
given by the equation 

P 
A U  = 2.58 x ( 1  3.43) 

where u is the frequency in gigahertz, T is the temperature in kelvins, P is the 
total pressure in millibars, and pv is the water vapor density in grams per cubic 
meter. The lineshape specified by Eq. (13.42), the Van Vleck-Weisskopf profile, 
appears to fit the empirical data better than other theoretical profiles (Hill 1986). 
Other line parameterizations of the line profile are available, for example, Pol, 
Ruf, and Keihm (1998). 



13. I NEUTRAL ATMOSPHERE 521 

The intensity of a ray passing through an absorbing medium obeys the radiative 
transfer equation. We assume that the medium is in local thermodynamic equilib- 
rium at temperature T and that scattering is negligible. In the domain where the 
Rayleigh-Jeans approximation to the Planck function is valid, so that the intensity 
is proportional to the brightness temperature, the equation of radiative transfer can 
be written (Rybicki and Lightman 1979) 

(13.44) 

where TB is the brightness temperature and a is the absorption coefficient defined 
in Eqs. (13.2) and (13.42). The solution to Eq. (13.44) for radiation propagating 
along the y axis is 

where TBo is the brightness temperature in the absence of absorption, including 
the cosmic background component, 

and 

( 1  3.47) 

Here y is the distance measured from the observer. T, is called the optical depth, 
or opacity. The first term on the right-hand side of Eq. (13.45) describes the 
absorption of the signal, and the second describes the emission contribution of 
the atmosphere. Equation ( I  3.45) illustrates the fundamental law that an absorb- 
ing medium must also radiate. If T ( y )  is constant throughout the medium, then 
Eq. (1 3.45) can be written 

The presence of absorption can have a very significant effect on system perfor- 
mance. If the receiver temperature is TR,  then the system temperature, which is 
the sum of TR and the atmospheric brightness temperature (the effects of ground 
radiation being neglected), is 

Ts = TR + Tat( I - e-"'). ( 1 3.49) 

where T,, is the temperature of the atmosphere. In the absence of a source, the 
antenna temperature is taken as equal to the brightness temperature of the sky. 
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Furthermore, if the brightness temperature scale is referenced to a point outside 
the atmosphere by multiplying the measurements of brightness temperature [see 
Eq. (13.48)] by e r u ,  then the effective system temperature is TSeTV, or 

Ti = TReT" 4- Tat(er" - 1). (13.50) 

In effect, the atmospheric loss is modeled by an equivalent attenuator at the re- 
ceiver input. Suppose that TR = 30 K, Tat = 290 K, and r, = 0.2; then the 
effective system temperature is 100 K. In such a situation the atmosphere would 
degrade the system sensitivity by a factor of more than 3. Note that the loss in 
sensitivity results primarily from the increase in system temperature rather than 
from the attenuation of the signal, which is only 20%. The emission from the at- 
mosphere induces signals in spaced antennas that are uncorrelated and thus con- 
tributes only to the noise in the output of an interferometer. 

The absorption can be estimated directly from measurements made with a ra- 
dio telescope. In one technique, called the tipping-scan method, the opacity is de- 
termined from the atmospheric emission. If the antenna is scanned from the zenith 
to the horizon, the observed brightness temperature, in the absence of background 
sources, will depend on the zenith angle, since the opacity is proportional to the 
path length through the atmosphere, which varies approximately as sec z. Thus, 
the atmospheric brightness temperature is 

(13.51) 

where ro is the zenith opacity. to is the negative of the slope of the curve of 
In( Tat - T B )  plotted against sec z, since 

In I - - = -5osecz. ( 3 (13.52) 

The accuracy of this method is affected by ground pickup through the sidelobes, 
which varies as a function of zenith angle. The opacity can also be estimated 
from measurements of the absorption suffered by a radio source over a range of 
zenith angles. The observed antenna temperature on-source minus the antenna 
temperature off-source at the same zenith angle is 

( 1  3.53) 

where Tso is the component of antenna temperature due to the source in the ab- 
sence of the atmosphere. From Eq. ( 1  3.53) 

In AT8 - In TSO = -to sec z. (1  3.54) 

Thus, ro can be found without knowledge of TSO if a sufficient range in secz 
is covered. This method is affected by changes in antenna gain as a function of 
zenith angle. 
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Another technique, called the chopper-wheel method, is commonly used at 
millimeter wavelengths. A wheel consisting of alternate open and absorbing sec- 
tions is placed in front of the feed horn. As the wheel rotates, the radiometer alter- 
nately views the sky and the absorbing sections, and synchronously measures the 
difference in temperature between the sky and the chopper wheel at temperature 
To. Thus, the on-source and off-source antenna temperatures are 

AT,, = TSOe-'I' + Ta,( 1 - e-'") - TO (1  3.55) 

and 

AT,, = Td,( 1 - e-'") - To. (13.56) 

These measurements can be combined to obtain TSo and thereby eliminate the 
effect of atmospheric absorption. In the case where TO = Tat, 

( I  3.57) 

When sensitivity is critical, the chopper wheel is used only to calibrate the output 
in the off-source position. AT,ff - ATon in the numerator of Eq. (13.57) is then 
replaced by T,ff- TO,,. Measurement of TSa provides the flux density of the source, 
which determines the visibility at the origin of the ( u ,  u )  plane. 

The opacity can be estimated also from surface meteorological measurements 
when other data are not available. This method is not as accurate as the direct 
radiometric measurement techniques described above, but has the advantage of 
not expending observing time. Waters ( 1  976) has analyzed data on absorption 
versus surface water vapor density for a sea-level site at various frequencies by 
fitting them to an equation of the form ro = 010 + ( Y I P Y O .  The coefficients (YO and 
m I  are listed in Table 13.1. 

TABLE 13.1 Empirical Coefficients for Estimating 
Opacity from Surface Absolute Humidity' 

V ffo UI 

(GHz) (nepers) (nepers m3 g-'1 

15 0.013 
22.2 0.026 
35 0.039 
90 0.039 

0.0009 
0.01 1 
0.0030 
0.0090 

Source: Waters (1976). 
nFrom the equation so = a0 + alpVO fitted to opacity data de- 
rived from radiosonde measurements and measurements of surface 
absolute humidity, pvo g m-3. 
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Origin of Refraction 

For practical reasons, we have discussed separately the effects of the propaga- 
tion delay and the absorption in the neutral atmosphere. However, the delay and 
the absorption are intimately related because they are derived from the real and 
imaginary parts of the dielectric constant of the gas in the atmosphere. The real 
and imaginary parts of the dielectric constant are not independent but are related 
by the Kramers-Kronig relation, which is similar to the Hilbert transform (Van 
Vleck, Purcell, and Goldstein 1951). We now discuss this relationship from the 
physical viewpoint of the classical theory of dispersion. From this analysis it will 
become clear why the atmospherically induced delay is essentially independent of 
frequency, even in the vicinity of spectral lines that cause significant absorption. 

A dilute gas of molecules can be modeled as bound oscillators. In each 
molecule an electron with mass m and charge -e is harmonically bound to 
the nucleus, and the electron's motion is characterized by a resonance frequency 
uo and damping constant 2nr. The equation of motion with a harmonic driving 
force -eEoe-j2n'" caused by the electric field of an electromagnetic wave is 

m,? + 27rmFi + 47r2mv;x = -eEoe-J2nV', (13.58) 

where x is the displacement of the bound electron, Eo and u are the amplitude 
and frequency of the applied electric field, and the dots denote time derivatives. 
The steady-state solution has the form x = xOe-j2n'", where 

(13.59) 

The magnitude of the dipole moment per unit volume, P, is equal to -n,exo, 
where n, is the density of gas molecules. The dielectric constant* E is equal to 
1 + P/(coE), so that 

n,,, e2 /47r 2mco 
& = l -  

V 2 - - ; + j Y r '  
(13.60) 

This classical model predicts neither the resonance frequency nor the absolute 
amplitude of the oscillation. A full treatment of the problem requires the appli- 
cation of quantum mechanics. The proper quantum-mechanical calculation for a 
system with many resonances yields a result that closely resembles Eq. (13.60) 
[e.g., Loudon (1983)l: 

*In this section and in Section 13.3 we use SI (System International) units, also known as rationalized 
MKS units. In this system the constitutive relation between the displacement vector D, the electric field 
vector E, and the polarization vector P is D = coE + P = (E, where co is the permittivity of free space 
and t is the permittivity of the medium. The dielectric constant E is c/co. A comparison of various systems 
of units and equations in electricity and magnetism can be found in Jackson (1999). 
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E = l - - Z  n ,  e2 fi 
4rr2mco u2 - u;; + juri ’ 

(13.61) 

where f, is the so-called oscillator strength of the ith resonance. The fi values 
obey the sum rule, C fi = 1. 

The dielectric constant ( E  = E,  + j ~ , )  and index of refraction (n  = nR + j n l )  
are connected by Maxwell’s relation: 

( 1  3.62) 2 n = E .  

Thus, E,  = n i  - n: and E, = 2n,n, .  Since for a dilute gas n ,  2: 1 and n,  << 1 ,  
we have n ,  2 6 and n,  2: E, /2. Therefore, for a gas with a single resonance 

and 

( I  3.63) 

( 1  3.64) 

The resonance is usually sharp, that is, r << UO, and the expressions for n R  and 
n,  can be simplified by considering their behavior in the vicinity of the resonance 
frequency uo, in which case 

u2 - u; = ( u  + uo)(u - uo) = 2UO(U - uo). ( 1  3.65) 

Thus 

2 b ( ~  - uO) 
n , z l -  

(V - u ~ ) ~  + r2/4’ 

and 

( 13.66) 

( 1  3.67) 

where b = n,,e2/32n2mcouo. 
Equation ( 1  3.67) defines an unnorrnalized Lorentzian profile for n, that is sym- 

metric about frequency uo and has a full width at half maximum of r and a peak 
amplitude of 4b/ r. The function nR - 1 is antisymmetric about frequency WO and 
has extreme values of f 2 b /  r at frequencies uO f r/2, respectively. The functions 
n, and n ,  are plotted in Fig. 13.7. Note that the peak deviation from unity in the 
real part of the index of refraction, An, is equal to one-half the peak value of n , ,  
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Figure 13.7 Real and imaginary parts of the index of refraction versus frequency for a single 
resonance given by Eqs. (13.63) and (13.64). The case shown is for the 616-523 transition in 
pure water vapor with pv = 7.5 g mW3. In the atmosphere at the standard sea-level pressure 
of 1013 mb, the line is broadened to about 2.6 GHz (Liebe 1969). For the curve nR - 1 the 
peak deviation is An [see Eq- (13.68)] and the change in level passing through the line is 6n 
[see Eq. (13.6911. 

denoted nImax. Thus, from Eq. (13.2) we see that the peak absorption coefficient, 
a, = ~ Z ~ I ~ ~ U O / C ,  is related to An by the formula 

a ,n  A0 An = - 
8n ' 

(13.68) 

where A0 is the wavelength of the resonance, c/uo. The magnitude of the real part 
of the index of refraction is equal to the peak absorption over a distance of A o / 8 ~ .  
In addition, Eq. (13.66) shows that the real part of the index of refraction is not 
exactly symmetric about UO; that is, n R  tends to unity as u tends to 00, and nR 
tends to 1 + 26/u0 = 1 + A n r / u o  = 1 + (Ao~,/8n)(r /~o)  as u tends to zero. 
Hence, the change 6n in the asymptotic value of the index of refraction on passing 
through a resonance is given by 

(13.69) 
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Thus, &/An = y/uo$ but unless the resonance is extremely strong, An and 6n 
are both negligible. Consider the 22-GHz water vapor line. The attenuation in the 
atmosphere when pv = 7.5 g mP3 is 0.15 dB km-', so a,,, = 3.5 x lo-' cm-I. 
Equation (13.68) then predicts that An = 1.9 x or AN = 0.019, which 
agrees with the value measured in the laboratory (Liebe 1969). For the same value 
of pv, the contribution of all transitions of water vapor to the value of the index of 
refraction at low frequencies (10-6Nv), from Eq. (13.10), is equal to 4.4 x lo? 
Thus, the fractional change in refractivity near the 22 GHz line is only 1 part in 
2500. The change in asymptotic level is even smaller. At sea level r = 2.6 GHz 
and 6n = 2.2 x The water vapor line at 557 GHz (the I l0-101 transition) has 
an absorption coefficient of 29,000 dB km-' , or 0.069 cm-' . The values of An 
and 6n are 1.44 x respectively. In the atmospheric windows 
above 400 GHz, where radio astronomical observations are possible only from 
very dry sites, the refractive index can be noticeably different from the value at 
lower frequencies. The normalized refractivity is shown in Fig. 13.8. 

Equation (13.68) is an important result of very general validity. We derived 
it from a specific model [Eq. (13.58)] that led to an approximately Lorentzian 
profile for the absorption spectrum. In practice, line profiles are found to differ 
slightly from the Lorentzian form, and more sophisticated models are needed to 
fit them exactly. However, Eqs. ( 1  3.68) and (13.69) could be derived from the 
Kramers-Kronig relation. 
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Figure 13.8 The predicted excess path length due to water vapor per unit column density ver- 
sus frequency, from formulas by Liebe (1989). From Sutton and Hueckstaedt (1996), courtesy 
of Asrron. Astrophys. Suppl. 
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The low-frequency value of the index of refraction, as given by the Smith- 
Weintraub equation [Eq. (13.9)], results from the contributions of all transitions 
at higher frequencies. Summing the contributions [see Eq. (13.69)] of many 
lines, each characterized by parameters Anl,  I'i, amir and UO;, we obtain the 
low-frequency value of the index of refraction: 

(13.70) 

The water vapor molecule has a large number of strong rotational transitions in 
the band from 30 p m  to 0.3 mm (from 10 THz to loo0 GHz). The atmosphere is 
opaque through most of this region because of these lines, which contribute about 
98% of the low-frequency refractivity. The remainder comes from the 557-GHz 
line. The refractivity due to water vapor is small in the optical region and is greater 
by a factor of 22 in the radio region. Therefore, whereas the effects of water vapor 
are small in the optical region, they are very important in the radio region. The 
dry -air refractivity, due primarily to resonances of oxygen and nitrogen in the 
ultraviolet, is nearly the same in the optical and radio regions. 

Smith-Weintraub Equation 

Detailed discussions of the radio refractivity equation can be found in Bean and 
Dutton (1966), Thayer (1974), and Hill, Lawrence, and Priestley (1982). From the 
classic work of Debye (1929), it can be shown that the refractivity of molecules 
with induced dipole transitions varies as pressure and T - ' ,  and the refractivity 
of molecules with permanent dipole moments varies as pressure and T - 2 .  The 
principal constituents of the atmosphere, oxygen molecules, 0 2 ,  and nitrogen 
molecules, N2, being hornonuclear, have no permanent electric dipole moments. 
However, molecules such as H20 and other minor trace constituents have perma- 
nent dipole moments. Thus, the general form of the refractivity equation is 

K I P D  K ~ P V  K ~ P V  
N = -  +-+-, 

T Z D  T Z v  T 2 Z v  
(13.71) 

where p~ and p v  are the partial pressures of the dry air and water vapor; K , ,  
K2. and K3 are constants; and Z D  and ZV are compressibility factors for dry-air 
gases and water vapor, which correct for non-ideal gas behavior and deviate from 
unity in atmospheric conditions by less than 1 part in lo3. These compressibility 
factors are given by the equations (Owens 1967) 

T2 
2,' = 1 + 57.90 x lo-* ( 1 + o;2) - - 9.4611 x [ 

(13.72a) 
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and 

Pv 
T3 

2,' = 1 + 1650-[I - 0.01317(T - 273) 

+ 1.75 x 10-4(T - 27312 + 1.44 x 10-6(T - 273)3], (13.72b) 

where pD and pv are in millibars. The first and second terms in Eq. (13.71) 
are due to ultraviolet electronic transitions of the induced dipole type for dry-air 
molecules and water vapor, respectively, and the third term is due to the perma- 
nent dipole infrared rotational transitions of water vapor. If we neglect terms other 
than unity in the 2 factors, Eq. ( 1  3.7 1 ) becomes 

PD Pv 
T T T2 

N = 77.6- + 64.8- + 3.776 x 1 0 5 e .  

We can rewrite Eq. (1  3.73) in terms of the total pressure as 

P 
T 

N = 77.6- - 
Pv 
T T2 

12.8- + 3.776 x 1 0 5 e .  

(1 3.73) 

( 1  3.74) 

For temperatures around 280 K, the last two terms on the right-hand side of 
Eq. (13.74) can be combined to give 

N 2: 77.6 (P  + 4 8 l O E ) ,  
T T 

( I  3.75) 

Equation ( I  3.75) is the well-known Smirh-Weinrruub equation (Smith and Wein- 
traub 1953). This equation is accurate to about 1%, or about flN-unit ,  at fre- 
quencies below 100 GHz. The accuracy of Eqs. (13.74) and (13.75) can be im- 
proved by adding a small term that increases monotonically with frequency to 
account for the effect of the wings of the infrared transitions (see Fig. 13.8). Hill 
and Clifford (1981) show that because of this effect the wet refractivity increases 
by about 0.5% at 100 GHz, and 2% at 200 GHz, over its value at low frequencies. 

To obtain the optical refractivity, we omit the permanent dipole term from 
Eq. (1 3.73) and obtain 

PD Pv Nopl 2: 77.6- + 64.8- 
T T 

(1 3.76) 

For precise work Cox (2000) provides more accurate values for Nop, that include 
small terms having wavelength dependence to account for the effects of the wings 
of ultraviolet transitions. The ratio of the wet refractivity in the radio and optical 
regions is obtained by omitting the dry-air terms from Eqs. (1 3.73) and (1 3.76): 
Nvrad/NVopt 2: 1 + 58301 T. For T 2: 280 K, this ratio is about equal to 22, as 
mentioned in connection with the discussion following Eq. (1  3.70). 
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Phase Fluctuations 

In the radio region, the most important nonuniformly distributed quantity in the 
troposphere is the water vapor density. Variations in water vapor distribution in 
the troposphere that move across an interferometer cause phase fluctuations that 
degrade the measurements. In the optical region, variations in temperature, rather 
than in water vapor content, are the principal cause of phase fluctuations. The 
situation is de icted in Fig. 13.9. A critical dimension is the size of the first Fres- 
nel zone, sp Ah, where h is the distance between the observer and the screen. For 
A = 1 cm and h = 1 km, the Fresnel scale is about 3 m. The atmospherically 
induced phase fluctuations on this scale are very small (<< 1 rad). In this case the 
phase fluctuation can cause image distortion but not amplitude fluctuation (i.e., 
scintillation). This is known as the regime of weak scattering. Plasma scattering 
in the interstellar medium belongs to the regime of strong scattering, where the 
phenomena are considerably more complex. 

The fluctuations along an initially plane wavefront that has traversed the atmo- 
sphere can be characterized by a so-called structure function of the phase. This 
function is defined as 

where @(x) is the phase at point x, @(x - d) is the phase at point x - d, and 
the angle brackets indicate an ensemble average. We assume that .D4 depends 

Figure 13.9 A cartoon of a two-element interferometer beneath a tropospheric screen of wa- 
ter vapor irregularities of various sizes. The screen moves over the interferometer at a velocity 
component u, parallel to the baseline. The distribution of these irregularities is important in 
designing the phase compensation schemes discussed in Section 13.2. Note that fluctuations 
with scale sizes larger than the baseline cover both antennas and do not affect the interfer- 
ometer phase significantly. From Masson (1994a). courtesy of the Astron. Soc. Pacific Conf. 
Ser. 
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only on the magnitude of the separation between the measurement points, that 
is, the projected baseline length d of the interferometer. The rms deviation in the 
interferometer phase is 

For the sake of illustration, we assume a simple functional form for o+ given by 

( 13.79a) 

and 
a@ = a,, d > d,, (1  3.79b) 

where a is constant, and a, = 27radi/h. The form of Eqs. (13.79) is shown in 
Fig. 13.10a. This form can be derived by assuming a multiple-scale power-law 

I O -  

09- 

08- 

07- 
cn 
v) 

0.6- 
I- 
I 
2 05- 
a 
m 

0.4 - 

0 3- 

02- 

dm 
log d 

GAUSSIAN (B.1)- 
KOLMOGOROV ( B  = 5/61 

0 0.5 1.0 15 

e / e ,  
Figure 13.10 (a) Simple model for the rms phase fluctuation induced by the troposphere in 
an interferometer of baseline length d given by Eqs. (13.79). (b) The point-source response 
function i&, (8) for various power-law models obtained by taking the Fourier transform of the 
visibility in the regime d i d,,,. The values of 8,. the full width at half maximum of Eo(8), 
for each model are: Gaussian ( B  = I ) ,  m a ;  modified Lorentzian (/I = 4). 1.53nh-'a2; 
Kolmogorov (a = ;), 2.75h-'/5a6/5. A is the wavelength and a is the constant defined in 
Eq. (13.79a). 
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model for the spectrum of the phase fluctuations. There must be a limiting dis- 
tance d, beyond which fluctuations do not increase noticeably; otherwise VLBI 
would not work. This limit, called the outer scale length of the fluctuations, is 
probably about a few kilometers. Beyond this dimension the fluctuations in the 
path lengths become uncorrelated. 

First, consider an interferometer that operates in the domain of baselines 
shorter than d,. The measured visibilities V,,, are related to the true visibilities 
by the equation 

V, = Ye’@, (13.80) 

where 6 = @(x)-@(x - d )  is a random variable describing the phase fluctuations 
introduced by the atmosphere. If we assume 4 is a Gaussian random variable with 
zero mean, then the expectation of the visibility is 

Consider the conceptually useful case where = 1. It would arise in an atmo- 
sphere consisting of inhomogeneous wedges of scale size larger than the baseline. 
In this case q, is proportional to d, and the constant a is dimensionless. Substi- 
tuting Eq. (13.79a) into Eq. (13.81) yields 

(1 3.82) 
2 2 2  (Y,) = a 4 , 

where q = d n  = d /A.  On average, therefore, the measured visibility is the 
true visibility multiplied by an atmospheric weighting function w, ( q )  given by 

(13.83) 
2 2 2  

w,(q) = e-2n 4 . 

In the image plane, the derived map is the convolution of the true source distribu- 
tion and the Fourier transform of w, (q) ,  which is 

where 6 is here the conjugate variable of q .  The full width at half maximum of 
w, ( 6 )  is O,, given by 
- 

6, = m a .  (1 3.85) 

Thus, the resolution is degraded because the derived map is convolved with a 
Gaussian beam of width 6, (in addition to the effects of any other weighting func- 
tions, as described in Section 10.2 under Weighting of the Visibility Data). 0, is 
the seeing angle. Images with finer resolution than 0, can sometimes be obtained 
by use of adaptive calibration procedures described in Section 11.4. Now, from 
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Eq. ( 13.79a), we obtain 

( 1  3.86) 

where a d  = a&/2n is the rms uncertainty in path length. Thus we obtain 

(1 3.87) 
a d  

0, = 2.35- (radians). 
d 

Since a d / d  is constant, & is independent of wavelength. This independence re- 
sults from the condition p = 1 in Eq. (13.79a). For the radio regime, a d  is about 
1 mm on a baseline of 1 km, so Q 2 and 0, 2: 0.5 arcsec. Let do be the 
baseline length for which a4 = 1 rad. From Eq. (13.86) we see that Eq. (13.85) 
can be written in the form 

(13.88) 

For the case where #? is arbitrary, we find Za(e) by substituting Eq. (13.79a) 
into Eq. (13.81) and writing the two-dimensional Fourier transform as a Hankel 
transform (Bracewell 2000). Thus 

( I  3.89) 

where Jo is the Bessel function of order zero and a has dimensions crn(I-8’. In 
general, W, (6) cannot be evaluated analytically. However, by making appropriate 
substitutions in Eq. (13.89), it is easy to show that 0, a U ” ~ A ( ~ - ’ ) ’ ~ .  A case that 
can be treated analytically is the one for which p = 1/2. In this case we obtain 
(Bracewell 2000, p. 338) 

(1  3.90) 

which represents a Lorentzian profile raised to the 3/2 power and has very broad 
skirts. The full width at half maximum of W(6) is 

1 .53xa2 e, = ~ 

A ’  
or 

0.77 A A 
6 - -_-  - 0.12-. 

2 ~ t  do d 0  
s -  

(13.91) 

(1  3.92) 

In the case of Kolmogorov turbulence, which is discussed later in this section, 
p = 5/6. Numerical integration of Eq. (13.89) yields 

A 
do 

@, 2: 2 . 7 5 ~ ~ ” ~ h - ” ~  ‘U 0.30-. (1 3.93) 
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Plots of W , ( O )  for various power-law models of phase fluctuations are shown in 
Fig. 13.10b. 

Now consider the case of an interferometer operating in the domain of base- 
lines greater than d,, where a# is a constant equal to a,. This case is most appli- 
cable to VLBI arrays or to large connected-element arrays. If the timescale of the 
fluctuation is short with respect to the measurement time, then, on average, all the 
visibility measurements are reduced by a constant factor e-'i /2. Thus, this type 
of atmospheric fluctuation does not reduce the resolution. However, on average 
the measured flux density is reduced from the true value by the factor e-.i/*. If 
the timescale of the fluctuations is long with respect to the measurement time, 
then each visibility measurement suffers a phase error eJ#. Assume that K visi- 
bility measurements are made of a point source of flux density S. The map of the 
source, considering only one dimension for simplicity, is 

(1 3.94) 

The expectation of &(O) at O = 0 is 

( ~ ~ ( 0 ) )  = Se-"i/2. ( 1  3.95) 

The measured Aux density is less than S. The missing flux density is scattered 
around the map. This is immediately evident from Parseval's theorem: 

(13.96) 

Thus, the total flux density could be obtained by integrating the square of the 
image-plane response. The rms deviation in the flux density, measured at the peak 

response for a source at O = 0, is ,/-, which we call as. This 
quantity can be calculated from Eq. (1 3.94) and is given by 

(13.97) 

which reduces to as 2 So,,,/* when a,, << 1. 

Kolmogorov 'Ihrbulence 

The theory of propagation through a turbulent neutral atmosphere has been treated 
in detail in the seminal publications of Tatarski (1961, 197 1). This theory has been 
developed and applied extensively to problems of optical seeing [e.g., Roddier 
(1981), Woolf (1982), Coulman (1985)] and to infrared interferometry (Sutton, 
Subramanian, and Townes 1982). We confine the discussion here to a few central 
ideas concerning the structure function of phase, and indicate how it is related to 
other functions that are used to characterize atmospheric turbulence. 
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When the Reynolds number (a dimensionless parameter that involves the vis- 
cosity, a characteristic scale size, and the velocity of a flow) exceeds a critical 
value, the flow becomes turbulent. In the atmosphere the Reynolds number is 
nearly always high enough that turbulence is fully developed. In the Kolmogorov 
model for turbulence, the kinetic energy associated with large-scale turbulent mo- 
tions is transferred to smaller and smaller scale sizes of turbulence until it is finally 
dissipated into heat by viscous friction. If the turbulence is fully developed and 
isotropic, then the two-dimensional power spectrum of the phase fluctuations (or 
the refractive index) varies as q,;1’/3, where qs (cycles per meter) is the spatial 
frequency (qS, the conjugate variable of d ,  is analogous to q,  the conjugate vari- 
able of 0). The structure function for the refractive index D,,(d) is defined in a 
fashion similar to the structure function of phase in Eq. ( 1  3.77); that is, D,, (d) is 
the mean-square deviation of the difference in the refractive index at two points 
a distance d apart, or B,,(d) = ( [ n ( x )  - n(x - 4 1 ’ ) .  For the conditions stated 
above, D, can be shown to be given by the equation 

(1 3.98) 

where L i n n e t  and L,,,, are called the inner and outer scales of turbulence, which 
may be less than a centimeter and a few kilometers, respectively. The parameter 
C,‘ characterizes the strength of the turbulence. Note that water vapor, which is 
the dominant cause of fluctuation in the index of refraction, is poorly mixed in the 
troposphere and therefore may be only an approximate tracer of the mechanical 
turbulence. 

The structure function of phase for an atmosphere where C,‘ varies with height 
from the surface to an overall height L is given by [Tatarski 1961, Eq. (6.65)] 

2 213 Q ( d )  = C,,d , L i n n e r  << d << Loutery 

(1 3.99) 

which is valid in the range < d < Lou,,. Note that the factor 2.91 is 
a dimensionless constant and C,’ has units of length-2/3. The lower limit on d 
is equivalent to the requirement that diffraction effects be negligible. If C,’ is 
constant with height, then Eq. (13.99) reduces to 

2 

Q ( d )  = 2.91 (F) C i L  d5I3 

Thus, from (1 3.78) the rms phase deviation is 

( 1 3.100) 

(13.101) 

We can calculate do, the baseline length for which o6 = 1 rad, by setting 
Eq. ( 13.100) equal to 1 rad2. The expression for do is then 

in 

do = 0.058A615(C,2L)-3’5. (13.102) 
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Another scale length that is proportional to 4 is the Fried length, rot (Fried 1966). 
This scale is particularly useful for discussion of the effects of turbulence in tele- 
scopes with circular apertures and is widely used in the the optical literature. The 
structure function of phase can be written D6 = 6 . 8 8 ( d / r 0 ) ~ / ~ ,  where the fac- 
tor 6.88 is an approximation of 2[(24/5)r(6/5)]'I6 (Fried 1967). Hence, from 
(13.100) and (13.102), ro = 3.184. The Fried length is defined such that the ef- 
fective collecting area of a large circular aperture with uniform illumination in the 
presence of Kolmogorov turbulence is 1rr;/4. Hence for an aperture of a diameter 
small with respect to ro the resolution is dominated by diffraction at the aperture. 
With an aperture large with respect to ro the resolution is set by the turbulence 
and is approximately A/ro. The exact resolution in this latter case can be derived 
from Eq. (13.93), with the result 0, = 0.97A/ro. In addition, the rms phase error 
over an aperture of diameter ro is 1.01 rad. The reason that ro is larger than do is 
related to the downweighting of long baselines in two-dimensional apertures [see 
Eq. (14.13) and related discussion]. For an aperture of diameter rot the ratio of the 
collecting area to the geometric area, which is called the Strehl ratio in the optical 
literature, is equal to 0.45 (Fried 1965). 

Equation (13.102) shows that do is proportional to A6/5, and thus the angular 
resolution or seeing limit (-A/do) is proportional to A-'l5 [see Fig. 13.10 and 
Eq. (13.93)]. This relationship may hold over broad wavelength ranges when C,' 
is constant. In the optical range C,' is related to temperature fluctuations, whereas 
in the radio range C,' is dominated by turbulence in the water vapor. It is an 
interesting coincidence that the seeing angle is about 1 arcsec at both optical and 
radio wavelengths, for good sites. The important difference is the timescale of 
fluctuations, rc. If the critical level of fluctuation is 1 radian, then rc 2: &/us ,  
where u , ~  is the velocity component of the screen parallel to the baseline. Any 
adaptive optics compensation must operate on a timescale short with respect to 
r,. From Eq. (13.93), r, can be expressed as 

(13.103) 

For us = 10 m s-l and O,v = 1 arcsec, r, = 3 ms at 0.5 p m  wavelength and 60 s 
at 1 cm wavelength. 

The two-dimensional power spectrum of phase, &(q,, qy) .  is the Fourier trans- 
form of the two-dimensional autocorrelation function of phase, R@(d,, d y ) .  If 
R6 is only a function of d ,  where d2  = d,' + d: ,  then 8 2  is a function of qs, 
where qf = q: + q i ,  and 82(qr) and R@(d) form a Hankel transform pair. Since 
Q ( d )  = 2[R4(0) - R@(d)] ,  we can write 

+In this paragraph we follow Fried's use of this symbol. Elsewhere in this chapter ro represents the 
radius of the earth. 
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where Jo is the Bessel function of order zero. When D#(d) is given by Eq. 
(13.100), 82(qs) is 

(13.105) 

It is often useful to study temporal variations caused by atmospheric turbu- 
lence. In order to relate the temporal and spatial variations, we invoke the frozen- 
screen hypothesis, sometimes attributed to Taylor (1938). In this approximation 
the turbulent eddies are assumed to remain fixed during the time it takes for the 
layer to move across the baseline d. The one-dimensional temporal spectrum of 
the phase fluctuations 8&( f) (the two-sided spectrum) can be calculated from 
82 (qs 1 by 

( 13.106) 

where us is in meters per second. Substitution of Eq. (13.105) into Eq. (13.106) 
yields 

8;( f )  = 0.016 - C , ~ L U ; / ~  f -'I3 (rad2 Hz-'). ( ?)2  
(1 3.107) 

Examples of the temporal spectra of water vapor fluctuations can be found in 
Hogg, Guiraud, and Sweezy (1981) and Masson (1994a) (see Fig. 13.15). The 
temporal structure function 33, (r) = ( [ @ ( t )  - @ ( r  - r ) ] * )  is related to the spatial 
structure function by a>,(?) = 33+(d = u,r). Hence, for Kolmogorov turbulence, 
we obtain from Eq. (13.100) 

(1 3.108) 

a),(r) and 86(f) are related by a Fourier transformation. The use of temporal 
structure functions to estimate the effects of fluctuations on interferometers is 
discussed by Treuhaft and Lanyi (1987) and by Lay (1997a). 

The Allan variance a;(r), or fractional frequency stability for time interval r ,  
associated with 8&( f) has been defined in Section 9.5 under Analysis of Phase 
Fluctuations. It can be calculated by substituting Eq. (9.99) into Eq. (9.1 I I ) ,  
which gives 

a,(r) 2 = ( f ) 2 ~ " 8 ; ( f ) s i n 4 ( n r f ) d f .  n vor ( 13.109) 

By substituting Eq. (1 3.107) into Eq. (1 3.109), and noting that 

~ 'y[s in4(nx)] /x8/3dx = 4.61, 
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TABLE 13.2 Power Law Relations for nrbulence 

Exponent 

3D 2D 
Turbulence Turbulence 

Quantity (a = 1113) (a = 813) 

2D, 3D power spectrum 8 2  (4s ), 8 (4s -a -1113 -813 

Structure function (3D) a&) a - 2  513 213 

Temporal phase spectrum 8;(f 1 1 - a  -813 -513 

Allan variance ai(T) a - 4  -113 -4/3 

Temporal structure function act ,  a - 2  513 213 

Adapted from Wright (1%. p. 526). with permission from the Astronomical Society of the Pacific. 

we obtain 

a,2(s) = 1.3 x 10-'7C,2Luj/3t-'/3. ( 1 3.1 10) 

Armstrong and Sramek (1982) give general expressions for the relations among 
a2, i$, S4, and a,, for an arbitrary power-law index. If 82 a q-a,  then B#(d)  o( 
da-2, 8; cx f'-". and c ~ y '  cx These relations are summarized in Table 13.2. 

A reasonable model for tropospheric turbulence can be made in the following 
way. For baselines less than some value dtms, the turbulence is three-dimensional 
and D+ cx d5l3.  d,,,, is small with respect to the scale height of the water vapor, 
-2 km. For d > dtmnS the turbulence is two-dimensional and D& cx d2l3. Be- 
yond some baseline douter, the atmospheric fluctuations become uncorrelated and 
33+ cx do, in other words, independent of baseline length. The value of do,ier is 
of the order of the size of clouds, a few kilometers (Hamaker 1978). These three 
regions are clearly evident in the data shown in Fig. 13.1 I.  For this particular data 
set, d,,, = 1.2 km, do,,,, = 6 km, and the slopes are close to the predictions 
of Kolmogorov turbulence. Table 13.3 gives a compilation of structure function 
data from many sources. The data include a variety of observations and atmo- 
spheric conditions and do not provide an accurate comparison of the quality of 
different sites. Nevertheless, they show that, as expected, the fluctuations in delay 
are independent of frequency and tend to decline with increasing site elevation. 
For Mauna Kea, the values indicate the night-to-day range of the 50% curve in the 
lower left panel of Fig. 13.13 in Section 13.2. The values for Chajnantor represent 
a similar diurnal range. Rogers and Moran (198 1) and Rogers et al. ( 1  984) discuss 
the effects of the troposphere on VLBI measurements, and their plot of the Allan 
variance of the atmosphere is shown as the curve for VLBI data in Fig. 9.14. A 
general comparison of the measured and theoretical results is given by Coulman 
(1990). Other site comparisons can be found in Masson (1994b). 
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Figure 13.11 The root phase structure function (rms phase) from observations with the VLA 
at 22 GHz. The open circles show the rrns phase variation versus baseline length measured on 
the source 0748+240 over a period of 90 min. The filled squares show the data after removal 
of a constant receiver-induced noise component of rms amplitude 10". The three regimes of 
the phase structure function are indicated by vertical lines (at 1.2 and 6 km). From Carilli and 
Holdaway (1999), 01 999 by the American Geophys. Union. 

The strength of the phase fluctuations, characterized by the parameter ffd [de- 
tined in Eq. (13.86)], or CiL ,  is difficult to predict. Measurements at the VLA 
show that C i L  is not well correlated with surface absolute humidity. The dom- 
inant correlation is probably with solar-induced convection. The strong time-of- 
day dependence of phase stability is described in Section 13.2 (Fig. 13.13). The 
remarkably good stability of meter-wavelength interferometers under conditions 
of overcast skies has long been known [see, e.g., Hinder (1972)l. 

Anomalous Refraction 

The beamwidths of many millimeter radio telescopes are sufficiently small that 
the effects of atmospheric phase fluctuations can be detected. Typically, the ap- 
parent positions of unresolved sources have been observed to wander by about 
5 arcsec on timescales of a few seconds under certain meteorological conditions 
[see, e g ,  Altenhoff et al. (1987), Downes and Altenhoff (1990)]. The magnitudes 
of these effects are largely independent of wavelength, as expected, if they are 
caused by water vapor irregularities in the troposphere. These irregularities may 
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TABLE 13.3 Structure Function Measurements 

Baseline Altitude Frequency a:o Pb 1 0 7 m  

Location (km) (m) ( G W  (mm) Reference‘ 

Cambridge 1.6 
Green Bank 2.5 
Hat Creek 0.0060. 1 
Hat Creek 0.0060.85 
Hat Creek 0.01-0. I5 
Hat Creek 1-1200 
NRO 0.035 
NRO 0.03-0.54 
VLA Site 0.1-3 
VLA Site 0.1-35 
VLA Site 1-35 
VLA Site 0.05-35 
Plateau de Bure 0.02-0.3 

ChajnantoP 0.3 
Mauna Kead 0.1 

17 
840 

I043 
1043 
1043 
1043 
1350 
1350 
2124 
2124 
2124 
2124 
2552 
4070 
5000 

5 
2.7 
86 
86 
86 
100 
19 
22 
22 
22 
5 

5/15 
86 
12 
11 

0.7-2.6 1.3 
0.4-4 - 

0.7-1.0 1.1-1.4 
0.8-2.2 0.8-1.3 

1.2 1-2 
0.7 0.3-0.6 
1.9 1.2 

0.5-0.9 1.6 
0.6 0.72 
0.65 0.85 
1.0 1.4 

0.6-1.6 0.6-0.8 

0.4-2.7 0.75 
0.3-0.7 1.1-1.9 

0.3-1.5 - 

13-50 
7-70 
13-18 
15-41 

22 
13 
35 

9-17 
11 
12 
18 

1 1-30 
6-1 3 
7-49 
5-29 

1 
2 
3 
4 
5 
3 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Source: Adapted from Wright (1996, p. 524), with permision from the Astronomical Society of the 
Pacific. 
‘UdO = rms path length deviation on a 1@&m baseline. Hence, Ud = U d o ( d / 1 m  m)b. If measure- 
ments were not made at d = loo0 m, then p = 5 / 6  is assumed. 
bPower-law exponent for baseline dependence of ado. For 2D and 3D Kolmogorov turbulence, p = 0.33 
and 0.83, respectively. 
‘References: (1) Hinder (1970). Hinder and Ryle (1971). (2) Baars (1967), (3) Wright and Welch 
(1990), (4) Wright (1996). (5) Bieging et al. (1984). (6) Ishiguro, Kanzawa, and Kasuga (1990). 
(7) Kasuga, Ishigum, and Kawabe (1986). (8) Sramek (1983). (9) Carilli and Holdaway (1999), 
(10) Armstrong and Sramek (1982). (11)  Sramek (1990), (12) Olrni and Downes (1992). (13) Mas- 
son (1994a). (14) NRAO (1998). 
dThe minimum and maximum values represent the median rms phase fluctuations for all seasons for 
nighttime (-6 h local time) and daytime (-I5 h local time), respectively. (See Fig. 13.13 for diurnal 
and seasonal variations on Mauna Kea.) 

be part of, or closely related to, those produced by Kolmogorov turbulence, which 
affect interferometric observations (see Fig. 13.1 1). Hence the term “anomalous 
refraction” is not particularly appropriate. If these irregularities are assumed to be 
wedge-shaped, their dominant effect would be a tilting of the wavefront (linear 
change in phase with position) for a time corresponding to their passage through 
the antenna beam. A differential excess path length of 0.5 rnm for a scale size 
of 300 m would produce a wavefront tilt of 6 arcsec, and a timescale of 30 s for 
a wind speed of 10 m s-’. The apparent shift in position of the source is inde- 
pendent of wavelength. There is no effect on the signal amplitude because the 
scattering is weak (phase fluctuations are small on the Fresnel scale, which is 
typically a few meters) and no effect on the apparent angular size of the source 
because the dominant wavefront perturbation is a tilt. 
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Water Vapor Radiometry 

The excess propagation path in a particular direction due to water vapor can be 
estimated from measurements of the brightness temperature in the same direction 
at frequencies near water vapor resonances, or in the windows between them. 
This method was first investigated by Westwater (1967) and Schaper, Staelin, and 
Waters (1970). To appreciate the degree of correlation between wet path length 
and brightness temperature, we need to examine the dependence of these quan- 
tities on pressure, water vapor density, and temperature. We consider here the 
interpretation of measurements near the 22.2 GHz resonance. The absorption co- 
efficient given by a s .  (13.42) and (13.43) is complicated, but at line center it can 
be approximated by 

(13.11 1)  

where T is in kelvins, and we have neglected all except the leading terms in 
Eq. (13.42). We assume that the opacity given by Eq. (13.47) is small, so that the 
brightness temperature defined by Eq. (1  3.45) can be written 

(13.112) 

when we neglect the background temperature TB0 and any contributions from 
clouds. Recall that Eq. (13.16) shows that 

00 

%, 2: 0.001763 1 $ dh.  (13.113) 

Thus, if P and T were constant with height and equal to 1013 mb and 280 K, 
respectively, we could use Eq. (13.19), 0ev 2 6.3w, to obtain from Eq. (13.112) 
the relation TB rr 12.7w, where w is the column height of water vapor [see 
Eq. (1  3.18)]. Hence, to the degree of approximation used above, we obtain 

TB (22.2 GHz)(K) 2: 2 . 1 % ~  (cm). (13.114) 

Note that this approximation is valid at sea level. Since, because of pressure 
broadening, the brightness temperature scales inversely with total pressure [see 
Eq. (13.1 12)], the coefficient in Eq. (13.1 14) is increased to 3.9 for a site at 
5000 m elevation where the pressure is approximately 540 mb. Measurements of 
brightness temperature and path length estimated from radiosonde profiles show 
that m. (13.114) is a good approximation [see, e.g., Moran and Rosen (1981)l. 
Recall that pv is approximately exponentially distributed with a scale height of 
2 km. The temperature, on average, decreases by about 2% per kilometer. This 
change affects the proportionality between TB and %v only through the exponen- 
tial factor in Eq. (13.1 12) and the slight difference in the power law for temper- 
ature. Thus, temperature has a small effect. The pressure decreases by 10% per 
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kilometer, so that water vapor at higher altitudes contributes more heavily to TB 
than is desirable for estimation by radiometry. The sensitivity of TB to pressure 
is decreased by moving off the resonance frequency to a frequency near the half- 
power point of the transition. The reason for this is that as pressure increases, the 
line profile broadens while the integrated line profile is constant. Therefore, the 
absorption at line center decreases and the absorption in the line wings increases. 
Westwater (1967) showed that at 20.6 GHz the absorption is nearly invariant with 
pressure. This particular frequency is called the hinge point. The opacity at this 
frequency is less than at the line center, so the nonlinear relationship between TB 
and opacity is less important. 

The foregoing discussion assumes that measurements of TB are made in clear 
sky conditions. The water droplet content in clouds or fog causes substantial ab- 
sorption, but small change in the index of refraction compared to that of water 
vapor. Fortunately, the effect of clouds can be eliminated by combining mea- 
surements at two frequencies. In nonprecipitating clouds, the sizes of the water 
droplets are generally less than 100 pm, and at wavelengths greater than a few 
millimeters, the scattering is small and the attenuation is due primarily to absorp- 
tion. The absorption coefficient is given by the empirical formula (Staelin 1966) 

(m-' ), (13.115) 
pL 10 0.0122(291 - T )  

12 Uclouds 2I 

where pL is the density of liquid water droplets in grams per cubic meter, A is 
the wavelength in meters, and T is in kelvins. This formula is valid for 1 greater 
than -3 mm where the droplet sizes are small compared with 1/(27r). For shorter 
wavelengths the absorption is less than predicted by Eq. (1  3.1 15) (Freeman 1987, 
Ray 1972). A very wet cumulus cloud with a water density of 1 g m-3 and a size 
of 1 km will have an absorption coefficient of 7 x m-I and will therefore 
have a brightness temperature of about 20 K at 22 GHz. The index of refrac- 
tion of liquid water is about 5 at 22 GHz for T = 280 K (Goldstein 1951). The 
actual excess propagation path through the cloud due to liquid water would be 
about 4 mm, but the predicted excess path from Eq. (13.1 14) is 10 cm. Thus, 
the brightness temperature at a single frequency cannot be used reliably to esti- 
mate the excess path length when clouds are present. In order to eliminate the 
brightness temperature contribution of clouds, measurements must be made at 
two frequencies, vI  and v2. one near the water line and one well off the water line, 
respectively. The brightness temperature is 

where TBV; and T B C ~  are the brightness temperatures due to water vapor and 
clouds at frequency i . Here we neglect the effects of atmospheric 0 2 .  Since, from 
Eq. (13.1 15), TBC c( u2, we can form the observable 

(13.117) 
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which eliminates the effect of clouds. The correlation between Tsv l  - TBvz x 
U:/LJ~ and 63" can be estimated from model calculations based on Eqs. (13.45) 
and (13.16). The off-resonance frequency u2 is generally chosen to be about 
31 GHz. The problem of finding the two best frequencies and the appropriate 
correlation coefficients to use in predicting LV has been widely discussed (West- 
water 1978, Wu 1979, Westwater and Guiraud 1980). The liquid content of clouds 
can also be measured by dual-frequency techniques [see, e.g., Snider, Burdick, 
and Hogg ( 1980)]. 

The application of multi-frequency microwave radiometry to the calibration 
of wet path length has been described by Guiraud, Howard, and Hogg (1979), 
Elgered, Ronnang, and Askne (1982), Resch (1984), Elgered et al. (1991), and 
Tahmoush and Rogers (2000). The results show that LV can be estimated to an 
accuracy better than a few mm. This is useful for calibrating VLBI delay mea- 
surements and extending coherence times. Measurements of TB at the antennas of 
short-baseline interferometers can be useful in correcting the interferometer phase 
(see Section 13.2). More accurate predictions of Lv, or interferometer phase, 
can be obtained by including measurements in other bands. For example, mea- 
surements of the wings of the terrestrial oxygen line near 50 GHz can be used 
to probe the vertical temperature structure of the troposphere [see, e.g., Miner, 
Thornton, and Welch (1972), Snider (1972)l. The accuracy of these schemes has 
been analyzed by Solheim et al. (1 998). 

13.2 ATMOSPHERIC EFFECTS AT MILLIMETER WAVELENGTHS 

Site Testing by Opacity Measurement 

At millimeter and submillimeter wavelengths, absorption and path length fluc- 
tuations in the atmosphere limit performance in synthesis imaging. This section 
is concerned with monitoring of atmospheric parameters for optimum choice of 
sites, and with methods of calibrating the atmosphere to reduce phase errors. This 
subject has received much attention as a result of the development of several ma- 
jor instruments at millimeter and submillimeter wavelengths. 

For given atmospheric parameters, the zenith opacity (optical depth) TO can 
be calculated as a function of frequency using the propagation model of Liebe 
(1989). Figure 13.12 shows curves of transmission, exp(-ro), for 4 mm of pre- 
cipitable water at an elevation of 2 124 m and 1 mm at 5000 m, corresponding to 
the VLA and ALMA sites, respectively. For the purpose of choosing a suitable 
observatory site, detailed monitoring of the atmosphere covering both diurnal and 
annual variation is necessary. We assume that the zenith opacity has the form 

tv = A, + B,w, (13.118) 

where A, and B,  are empirical constants that depend on frequency, site eleva- 
tion, and meteorological conditions. Selected measurements of these constants 
are given in Table 13.4. 

The opacity can be monitored by measuring the total noise power received 
in a small antenna as a function of zenith angle (i.e., the tipping scan method 
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Figure 13.12 (a) The zenith atmospheric transmission at a 5000-111 site with 1 mm of pre- 
cipitable water vapor, calculated from the model of Liebe (1989) over the frequency range 
of 0-lo00 GHz. There are additional windows with transmissions of about 0.10 near 1100. 
1300, and 1500 GHz. (b) Transmission for a site at 2124 m with 4 mm of precipitable water. 
Note that the atmospheric transmission depends on the altitude because of the pressure broad- 
ening of the absorption lines. In general, the transmission at any frequency in an atmospheric 
window will be worse at lower sites with the same amount of precipitable water vapor. From 
Carilli and Holdaway (1999), 0 1 9 9 9  by the American Geophys. Union. 
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TABLE 13.4 Zenith Opacity as a Function of Column Height of Water Vapor 

v 
( G W  

15 
22.2 
35 
90 

225 
225 
225 
225 
493 

Location" 

Sea level 
Sea  level 
Sea  level 
Sea level 
South Pole 
Mauna Kea 
Chajnantor 
Chajnantor 
South Pole 

Altitude 

(m)  

0 
0 
0 
0 

2835 
4070 
5000 
5000 
2835 

A" 
(nepers) 

0.013 
0.026 
0.039 
0.039 
0.030 
0.01 
0.006 
0.007 
0.33 

B" 
(nepers mm-')  

0.002 
0.02 
0.006 
0.018 
0.069 
0.04 
0.033 
0.04 1 
I .49 

Methodb Ref.' 

1 1 
I 1 
1 I 
1 I 
2 2 
2 3 
2 4 
2 5 
2 6 

'Locations: South Pole = Amundsen-Scott Station; Mauna Kea = site of submillimeter telescopes on 
Mauna Kea; Chajnantor = Llano de Chajnantor, Atacama Desert, Chile. 
bMethods: ( I )  opacity derived from radiosonde data. water vapor estimated from surface humidity and 
scale height of 2 km; (2) opacity derived from tipping radiometer, water vapor column height derived 
from radiosonde data. 
'References: (1) Waters (1976); (2) Chamberlin and Bally (1995); (3) Masson (1994a); (4) Holdaway 
et al. (1996); (5) Delgado et al. (1998); (6) Chamberlin, Lane, and Stark (1997). 

described in Section 13.1 under Absorprion). A commonly used frequency for 
opacity monitoring is 225 GHz, which lies within the 200-310 GHz atmospheric 
window (see Figs. 13.6 and 13.12) in the vicinity of an important CO line. 

A typical site-test radiometer designed for opacity measurements uses a small 
parabolic primary reflector with a beamwidth of -3" at 225 MHz. A wheel with 
blades that act as plane reflectors is inserted at the beam waist between the pri- 
mary and secondary reflectors, and sequentially directs the input of the receiver to 
the output of the antenna, a reference load at 45"C, and a calibration load at 65°C. 
The amplified signals go to a power-linear detector, and then to a synchronous de- 
tector that produces voltages proportional to the difference between the antenna 
and the 45°C load, which is the required output, and the difference between the 
45 and 65°C loads, which provides a calibration. Measurements of the antenna 
temperature are made at a range of different zenith angles. When connected to 
the antenna, the measured noise temperature of such a system, Tmeas, consists of 
three components: 

Here T,,,,, represents the sum of noise components that remain constant as the an- 
tenna elevation is varied, that is, the receiver noise, thermal noise resulting from 
losses between the antenna and the receiver input, any offset in the radiometer 
detector, and so on. The second term in Eq. (13.1 19) represents the component 
of noise from the atmosphere: T,, is the temperature of the atmosphere, and z 
is the zenith angle. Tcb 2 2.7 K represents the cosmic background radiation. It 
will be assumed that T,, and Tcb represent brightness temperatures that are re- 
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Figure 13.13 (a) Diurnal and seasonal zenith opacity at 225 GHz measured at the CSO site 
on Mauna Kea (4070 m elevation) for a three-year period (August 1989-July 1992) computed 
from 14,900 measurements. The minimum value and the 25th, 50th, and 75th percentiles are 
shown. The increase in opacity during the day is caused by an inversion layer that rises above 
the mountain in the afternoons. (b) Diurnal and seasonal variation of the rms path length on 
Mauna Kea on a 100-m baseline, determined from observations of a geostationary satellite at 
1 1 GHz. From Masson (1994a). courtesy of the Astron. Soc. Pacific Conf. Ser. 
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lated to the physical temperatures by the Planck or Callen and Welton formulas 
(see Section 7.1 under Noise Temperature Measurement). If Tat is known, it is 
straightforward to determine ro from T,,,, as a function of z. The temperature of 
the atmosphere is assumed to fall off from the ambient temperature at the earth's 
surface Tamb, with a lapse rate 1 considered to be constant with height. Thus, at 
height h the temperature is Tamb - lh. We require the mean temperature weighted 
in proportion to the density of water vapor, which is exponentially distributed 
with scale height ho: 

( 13.120) 

The lapse rate resulting from adiabatic expansion of rising air, 9.8 K km-', can be 
used as an approximate value, but as indicated earlier, a typical measured value is 
-6.5 K km-' . The scale height of water vapor is approximately 2 km. Thus Tat is 
typically less than Tamb by -13-20 K. 

Figure 13.13 displays examples of data taken on Mauna Kea, which show the 
diurnal and seasonal effects at this site. The cumulative distribution of zenith 
opacity at 225 GHz as measured at Llano de Chajnantor in Chile, Mauna Kea, and 
the South Pole are shown in Fig. 13.14. Measurements of mean opacity provide a 
basis for calculating the loss in sensitivity due to absorption of the signal and the 
addition of noise from the atmosphere [see Eq. (13.50)]. The opacity varies both 
diurnally and annually, so measurements at hourly intervals over a year or more 
are required for reliable comparison of different sites. Long-term variability due 
to climatic effects ( e g ,  El NiAo) can be significant. Table 13.4 shows the effect 
of site altitude on opacity. Comparison of the measurements of A,, and B,, show 
that both parameters decrease with altitude because of the effects of pressure 
broadening. Comparisons of opacities at various frequencies can be made with 
broadband Fourier transform spectrometers (Hills et at. 1978; Matsushita et al. 
1999; Paine et al. 2000; Pardo, Serabyn. and Cemicharo 2001). 

Site Testing by Direct Measurement of Phase Stability 

Interferometer observations provide a direct method of determining atmospheric 
phase fluctuations. Signals from a geostationary satellite are usually used, since 
strong signals can be obtained using small, non-tracking antennas. This technique 
was developed by Ishiguro, Kanzawa, and Kasuga (1990); Masson (1994a); and 
Radford, Reiland, and Shillue (1 996). It was used in site testing for the SAO Sub- 
millimeter Array on Mauna Kea, Hawaii and Atacama Large Millimeter Array 
at Llano de Chajnantor. Several suitable geostationary-orbit satellites operate in 
bands allocated to the fixed and broadcasting services near 11 GHz. Two com- 
mercial satellite TV antennas of diameter 1.8 m provide signal-to-noise ratios 
close to 60 dB. For measurements of atmospheric phase, baselines of 100-300 m 
have been used. The residual motion of the satellite, as well as any temperature 
variations, can cause unwanted phase drifts. These are generally slow compared 
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Figure 13.14 Cumulative distributions of the zenith optical depth at 225 GHz on Llano de 
Chajnantor, Chile (5000-m elevation; solid line), the CSO site on Mauna Kea, Hawaii (4070- 
m elevation; dashed line). and at the South Pole (2835-111 elevation; dotted line) for the periods 
April 1995-April 1999, Jan. 1997-July 1999, and Jan. 1992-Dec. 1992, respectively. Note 
that the median opacity at the VLBA site on Mauna Kea (3720-m elevation) for the same time 
interval at the CSO site was 0.13. The median opacity for the VLA site (2124-111 elevation) 
for the period 1990-1998 was 0.3 (Butler 1998). Conditions at lower elevation sites are corre- 
spondingly worse. For example, at a sea-level site in Cambridge, Mass. the 225 GHz opacity, 
inferred from measurements at 115 GHz, was 0.5 for the 6-month winter observing seasons 
spanning 1994-1997. See also Radford and Chamberlin (2000). 

with the atmospheric effects and can be removed by subtracting a mean and slope 
from the output data. The variance of the fluctuations resulting from the system 
noise can also be determined and subtracted from the variance of the measured 
phases. The test interferometer provides a measure of the structure function of 
phase B @ ( d )  for one value of projected baseline d (see Fig. 13.13b). 

With the frozen-screen approximation, the power-law exponent can be deter- 
mined from the power spectrum of the fluctuations. An example is shown in 
Fig. 13.15. Thus, in extrapolating B & ( d )  from a single-spacing measurement, 
one does not have to depend on the theoretical values of the exponent of d, but 
can use the measurements of B # ( r )  to determine the range and variation [see 
Eq. ( 13.108) and Table 13.21. For the example shown in Fig. 13.15, the power- 
law slope for frequencies above 0.01 Hz is 2.5, slightly below the value of 2.67 
predicted for Kolmogorov turbulence. The spectrum flattens at frequencies below 
0.01 Hz because of the filtering effect of the interferometer. Fluctuations larger 
than the baseline, 100 m in this case, cause little phase effect (see Fig. 13.9). 
Hence the comer frequency fc is u,/d. In this case the wind speed along the 
baseline direction can be inferred to be about 1 m s-'. 
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Figure 13.15 The square root of the temporal power spectrum [i.e., Eq. (13.107)] measured 
on a 100-m baseline on Mauna Kea (CSO site). The tropospheric wind speed along the base- 
line can be computed from the break in the spectrum. From Masson (1994a). courtesy of the 
Astron. SOC. Pacific Conf. Ser. 

In calculating expected phase fluctuations it should be noted that the variation 
with zenith angle depends on the baseline length. For baselines short compared 
with the thickness of the water vapor layer, the (rms) phase variations are propor- 
tional to Jsecz, and for long baselines they are proportional to sec z .  This result 
can be visualized by noting that on short baselines the effects of large-scale irreg- 
ularities cancel out between the two antennas, and the variations result from small 
irregularities, the number of which is roughly proportional to the path length. For 
long baselines the effects of the largest irregularities, of size comparable to the 
layer thickness, predominate. 

Atmospheric phase errors can be treated like antenna-based phase errors in 
considering their effect on a map or an image. In Section 11.5 it is shown that the 
dynamic range of a snapshot image is approximately 

(13.121) 

where &,,,s is the rms of the phase error in radians measured with pairs of an- 
tennas, and n, is the number of antennas. For example, if &,,s is 1 rad and 
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n, = 30, the dynamic range is -30. As a rough guide, the range of &,,s from 
0.5 to 1 rad represents array performance from fair to marginal. The improve- 
ment in the image with longer integration depends on the spectrum of the phase 
fluctuations. 

Reduction of Atmospheric Phase Errors by Calibration 

For phase calibration at centimeter wavelengths, it is common to observe a phase 
calibrator at intervals of -20-30 min. At millimeter wavelengths this is gener- 
ally not satisfactory, because of the much greater phase fluctuations resulting 
from the atmosphere. Procedures that can be used at millimeter and submillimeter 
wavelengths to reduce the effect of atmospheric phase fluctuations are described 
below. 

Self-Calibration. The simplest way to remove the effects of atmospheric phase 
fluctuations is to use self-calibration, as described in Sections 10.3 and 11.4. This 
method depends on phase closure relationships in groups of three or more an- 
tennas. In applying this method it is necessary to integrate the correlator output 
data for a long enough time that the source can be detected; that is, the measured 
visibility phase must result mainly from the source, not the instrumental noise. 
However, the integration time is limited by the fluctuation rate, so self-calibration 
is not useful for sources that require long integration times to detect. 

Frequent Calibration (Fast Switching). Frequent phase calibration using an un- 
resolved source close to the target source (the source under study) can greatly 
reduce atmospheric phase enors (Holdaway et al. 1995, Lay 1997b). To ensure 
that the atmospheric phase measured on the calibrator is close to that for the target 
source, the angular distance between the two sources must be no more than a few 
degrees. The time difference must be less than -1 min, so fast position switching 
between the target source and the calibrator is required. In the layer in which most 
of the water vapor occurs, the lines of sight from the antennas to the target source 
and the calibrator pass within a distance d,, of one another. For a nominal screen 
height of 1 km, d,, 2: 178, where 8 is the angular separation in degrees and d,, 
is in meters. For one antenna, the rms phase difference between the two paths is Jw) at any instant. If tcyc is the time to complete one observing cycle of the 
target source and the calibrator, then the mean time difference between the mea- 
surements on these two sources is tcyc/2. In time tcyc/2 the atmosphere will have 
moved usrcyc/2. Thus, the phase difference between the measurements on the two 
paths is effectively B#(d,,  + ustcyc/2).  This is a worst-case estimate, since we 
have taken the scalar sum of vector quantities corresponding to d,, and us. For 
the difference in the paths to the two antennas as measured by the interferometer, 
the rms value will be fi  times that for one antenna, so the residual atmospheric 
phase error in the measured visibility is 

( 1 3.1 22) 
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Note that &,,,s is independent of the baseline, so the phase errors should not in- 
crease with baseline length. The total time for one cycle of observation of the two 
sources is the sum of the observing times on the target source and the calibrator, 
plus twice the antenna slew time between the sources and twice the setup time 
between ending the slew motion and starting to record data. The observing times 
required on each of the sources depend on the flux densities and the sensitivity of 
the instrument. For the calibrator there may be a choice between a weak source 
nearby and a stronger one that requires less observing time but more antenna slew 
time. In order to use calibration sources as a general solution to the atmospheric 
phase problem, suitable calibrators must be available within a few degrees of any 
point on the sky. Since calibrator flux densities generally decrease with increasing 
frequency, it may be necessary to observe the calibrator at a lower frequency than 
is used for the target source. The measured phase for the calibrator must then 
be multiplied by u,,,,,/ucal (since the troposphere is essentially nondispersive) 
before subtraction from the target source phases, so the accuracy required for 
the calibrator phase is increased. Thus, the observing frequency for the calibrator 
should not be too low; a frequency near 90 GHz may be a practical choice with 
observations of the target source up to a few hundred gigahertz. The effectiveness 
of the fast-switching technique is demonstrated by the data in Fig. 13.16. Note 
that the break in the curve for the 300 s averaging time at antenna spacing 1500 m 
indicates that the wind speed was about 2 x 1500/300 = 10 m s-' (Carilli and 
Holdaway 1999). 

Paired or Clustered Antennas. Location of antennas in closely spaced pairs is an 
alternative to fast movement between the target source and the calibrator. One an- 
tenna of each pair continuously observes the target source and the other observes 
the calibrator. With this scheme tcyc is zero in Eq. (13.1221, but the spacing of the 
paired antennas, d,, should be included. The rms residual atmospheric error in 
the visibility phase becomes 

As in Eq. ( 1  3.122), r#+ms is a worst-case estimate, since we have taken a scalar 
sum of vector quantities corresponding to d,, and d,. For a 2" position difference 
between the target source and the calibrator, and an effective height of 1 km for 
the water vapor, d,, = 35 m. For antennas of diameter -10 m, which is typical 
for antennas operating up to 300 GHz, d ,  should be about 15 m to avoid serious 
shadowing, and this is smaller than u,tcyc/2 for the fast-switching scheme, since 
us is typically 6-12 m s-l and rcyc is 10 s or more. Thus, with paired antennas the 
residual phase errors are somewhat less than with fast switching. Also, observing 
time is not wasted during antenna slewing and setup. However, with fast switching 
about half of the time is devoted to the target source, whereas with paired antennas 
half of the antennas are devoted to the target source, so in the latter case the 
sensitivity is less by a factor -A. If the antennas are grouped in clusters of 
three or four instead of in pairs, with one antenna in each cluster observing the 
calibrator, the loss in sensitivity is decreased. 
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Figure 13.16 The square root of the phase structure. that is, the rms phase deviation versus 
baseline length, for data taken at the VLA at 22 GHz for various averaging times. These data 
show the effectiveness of fast phase switching. In these measurements the target source and 
calibrator source were the same, 0748 + 240. The solid squares (integration time 540 s ) show 
the rms phase fluctuations with no switching (same data as in Fig. 13.1 1). The circles and the 
stars show the rms phase deviation for cycle times 300 s and 20 s, respectively. From Carilli 
and Holdaway (1999). 0 1 9 9 9  by the American Geophys. Union. 

Direct Measurement of Water Vapox A practical method of calibrating the phase 
fluctuations is to measure the integrated water vapor in the direction of each an- 
tenna beam. This usually requires an auxiliary water radiometer at each antenna 
to measure the sky brightness temperature, as described in Section 13.1 under 
Water Vapor Radiometry. Various techniques are discussed by Welch (1999). For 
correction of delay in VLBI systems it is usually sufficient to use an auxiliary 
antenna for the water vapor radiometer. For correction of phase in millimeter and 
submillimeter interferometers it is important to match the beam of the water ra- 
diometer system with that of the interferometer elements. Since the troposphere is 
in the near field of the beams, the two beams can be arranged to pass though nearly 
the same volume of the troposphere. Water vapor is the main cause of opacity at 
radio frequencies (except for the oxygen bands at 50-70 and 118 GHz), even at 
frequencies well away from the centers of water vapor lines, as can be seen in 
Fig. 13.6. Away from the centers of spectral lines, the opacity is due to the far 
line wings of infrared transitions. There is also an important continuum compo- 
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nent of the absorption caused by water vapor, which varies as u2 (Rosenkranz 
1998). This component includes various quantum mechanical effects involving 
water molecules such as dimers (Chylek and Geldart 1997). It is usually neces- 
sary to model this component with an empirical coefficient. In addition, as de- 
scribed in Section 13.1 under Water Vapor Radiometry, the water droplets in the 
form of clouds and fog, as well as ice crystals, contribute absorption that varies 
as u2. Hence, there are two distinct methods of calibration: those based on mea- 
surement of sky brightness in the bands between the lines and those based on 
measurements near a spectral line. The sensitivities of the brightness tempera- 
ture to the propagation delay are listed in Table 13.5 for selected frequencies and 
specific opacities. 

The method of measuring the continuum sky brightness at, say, 90 or 230 GHz 
has several advantages. The same radiometers used for the astronomical measure- 
ments can be used for the sky brightness measurements. At 230 GHz, if phase 
calibration to an accuracy of a twentieth of a wavelength is required, then, from 
the sensitivity listed in Table 13.5, the brightness temperature accuracy required 
is 0.1 K. For a system temperature of 200 K, this accuracy requires a gain stability 
of 5 x lop4. Such stability usually requires special attention to the temperature 
stabilization of the receiver cryogenics. In addition, the gain scales must be accu- 
rately calibrated. Changes in ground pickup can be misinterpreted as sky bright- 
ness temperatures changes. The presence of clouds defeats this method, because 
of the contribution of liquid water to the opacity. 

The observation of a spectral line provides a calibration technique that is not 
sensitive to gain variations and ground pickup. As described in Section 13.1 under 
Water Vapor Radiometry, multiple frequencies can be monitored to correct for 
clouds and the variable distribution of water vapor with height. For millimeter 
observations at moderately dry sites, the 22-GHz line may be the best choice. 
An example of phase correction based on this line is shown in Fig. 13.17. For 
submillimeter wavelength observations at very dry sites, the 183-GHz line may 

TABLE 13.5 Change in Brightness Temperatud 
Caused by a Change in Path Length of 1 mm 
(Aw = 0.16 mm) for a Site at 5000-m Elevation and 
w=lmm 

~~ 

22.2 Line center (616-523) 0.5 
90 Continuum 0.3 

185.5 Line wing 16.0 
230 Continuum 2.0 

183.3 Line center (313-220) 10.0h 

UCalculated from data in Carilli and Holdaway (1999). 
bLine is saturated for w = I rnm. 
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Figure 13.17 The interferometric phase (in units of delay) measured at 3-mm wavelength on 
one baseline of the interferometer at Owens Valley Radio Observatory (solid line), and the 
delay predicted by 22 GHz water vapor radiometer measurements (dotted line), versus time. 
The rms deviation of the difference is 160 pm. The source is 3C273. From Welch (1999); see 
also Woody, Carpenter, and Scoville (2000). 

give better results (Lay 1998, Wiedner and Hills 2000). The 183-GHz line is 
intrinsically about 40 times more sensitive than the 22-GHz line. However, the 
183-GHz line is much more easily saturated (i.e., its opacity exceeds unity) than 
is the 22-GHz line, which greatly reduces its usefulness. To avoid this problem, 
the 183-GHz line can be observed in its wings where the opacity is less than unity. 
Also, the absorption term that varies as u2 will be 70 times stronger at 183 GHz 
than at 22 GHz, which may prove to be a disadvantage for phase correction based 
on observations at the higher frequency because of the contributions of non-water- 
vapor components. 

13.3 IONOSPHERE 

The ionosphere has been studied extensively since the pioneering experiments of 
Appleton and Bamett (1925) and Breit and Tuve (1926). The literature on the sub- 
ject is vast. Magneto-ionic propagation theory relevant to the ionosphere is treated 
in depth by Ratcliffe (1962) and Budden (1961); the morphology of the iono- 
sphere is described by Rawer (1956); and an excellent general treatment of iono- 
spheric propagation is given by Davies ( 1  965). Reviews of particular relevance to 
radio astronomy can be found in Evans and Hagfors (1968) and Hagfors (1976). 
Beynon ( 1975) gives interesting historical anecdotes on the early development 
of ionospheric research. In this section, we treat only those aspects of the iono- 
sphere that have a deleterious effect on interferometric observations. Table 13.6 
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TABLE 13.6 Maximum Likely Values of Ionospheric Effects at 100 MHz for a Zenith 
Angle of 60"' 

Effect 

Faraday rotation 
Group delay 
Excess (phase) path length 
Phase change 
Phase stability 

Frequency stability (rms) 
Absorption 

(in D and F regions) 
Refraction (ambient) 
lsoplanatic patch 

(peak to peak) 

Maximumb 
(Daytime) 

MinimumC Frequency 
(Night) Dependence 

15 rotations 

3500 m 
7500 rad 

12 p s  
1.5 rotations 

350 m 
750 rad 

1.2 ps 
v - 2  

v - 2  

V - 2  

v - '  

f150rad  
f0.04 Hz 

0.1 dBJ 
0.05" 

f 1 5  rad 
f0.004 Hz 

0.01 dB 
0.005" 
-5" 

V - '  

v - I  

" -2 

v-2 

v 

Adapted from Evans and Hagfors (1968). 
"For values of parameters at the zenith, divide numbers (except refraction) by sec zi. which is approxi- 
mately 1.7 [see Eq. (13.140)]. For typical (rather than maximum) parameters, divide numbers by 2. 
bTotal electron content = 5 x lo" m-2. 
'Total electron content = 5 x loL6 mP2. 

I dB = 0.230 nepers. 

gives the magnitude of various propagation effects for the daytime and nighttime 
ionosphere. Most of these effects scale as u - ~ ,  and they can be minimized by 
observing at higher frequencies. The magnitude of the ionospheric excess path 
typically equals that of the neutral atmosphere at approximately 2 GHz, but the 
frequency of this equality can vary from about 1 to 5 GHz. Thus, at 20 GHz the 
ionospheric excess path length is typically only 1% of the tropospheric excess 
path length. 

Basic Physics 

The ionization of the upper atmosphere is caused by the ultraviolet radiation from 
the sun. Typical daytime and nighttime vertical profiles of the electron density are 
shown in Fig. 13.18. The electron distribution and the total electron content vary 
also with geomagnetic latitude, time of year, and sunspot cycle. There are also 
substantial winds, traveling disturbances, and irregularities in the ionosphere. The 
ionosphere is permeated by the quasi-dipole magnetic field of the earth. Propaga- 
tion is governed by the theory of waves in a magnetized plasma with collisions. 

We derive some of the fundamental properties of the ionosphere related to 
the propagation of electromagnetic waves by considering elementary cases. First, 
consider a plane monochromatic wave of linear polarization that propagates 
through a uniform plasma of electron density n,, where the magnetic field and 
collisions between particles can be neglected. The electrons oscillate with the 
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Figure 13.18 Idealized electron density distribution in the earth's ionosphere. The curves 
indicate the densities to be expected at sunspot maximum in temperate latitudes. Peak sunspot 
activity occurs at 1 I-year intervals, most recently in 1989 and 2000. From Evans and Hagfors 
(1  968). 

electric field, but the protons, because of their greater mass, remain relatively un- 
perturbed. The index of refraction can be found by calculating either the induced 
current or the dipole moment. Either method yields the same result. We use the 
latter method, as we did when considering the index of refraction of water vapor 
using the bound oscillator model in Section 13.1 under Origin ofRefruction. The 
equation of motion of a free electron in the plasma is 

where m, e, and x are the mass, charge magnitude, and displacement of the elec- 
tron, and Eo and u are the amplitude and frequency of the electric field E of the 
incident wave. The magnetic field of the plane wave has negligible influence on 
the electrons as long as the electron velocity is much less than c, and the elec- 
tric field has negligible influence on the motion of the protons. The steady-state 
solution to JZq. (1 3.124) is 
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(13.125) 

Note that the induced current density is i = n,ex, where x, the velocity of the 
particle, is 90" out of phase with the driving electric field. Thus, the work done by 
the wave on the particles, which is (i-E), is zero, and the wave propagates without 
loss, as expected, since Eq. (13.124) has no dissipative terms. The dipole moment 
per unit volume P is equal to nee%, where xo is the amplitude of oscillation. The 
dielectric constant E is 1 + (P/E,,)/q,, where €0 is the permittivity of free space, 
so that 

(13.126) 

The dielectric constant is real and less than unity because the induced dipole is 
180" out of phase with the driving field. The index of refraction n is equal to the 
square root of E ,  and in this case is real, so 

where 

(13.127) 

(13.128) 

and n ,  is in meters-3. v,, is known as the plasma.frequency, which is also the natur- 
al frequency of mechanical oscillations in the plasma [see, e.g., Holt and Haskell 
(1965)l. The plasma frequency of the ionosphere (see Fig. 13.18) is usually less 
than 12 MHz. Waves normally incident on a plasma with frequencies below v p  
are perfectly reflected. The phase velocity of a wave with v > v p  in the plasma is 
c/n, which is greater than c ,  and the group velocity of a wave packet is cn, which 
is less than c. 

Now consider a plasma with a static magnetic field B in the direction of prop- 
agation of the plane wave. The equation of motion of an electron is 

m i = - e [ E + v x B ] .  (13.129) 

Let the incident field be a circularly polarized wave. If B is zero, the particle 
will follow the tip of the electric field vector and move in a circular orbit. If B is 
nonzero, the sum of the v x B force term, which will be in the radial direction, 
and the electric force term must be balanced by centripetal acceleration. Thus, 
there is a basic anisotropy in the plasma depending on whether the wave is right 
or left circularly polarized, since the sign of the v x B term changes between the 
two cases. The radius Re of the circular orbit of the electron is derived from the 



558 PROPAGATION EFFECTS 

balance-of-forces equation eEo f evB = mv2/Re, where v = 2nvR,, B is the 
magnitude of the magnetic field, and the upper and lower signs refer to left and 
right circular polarization, respectively. Thus, we obtain 

(1 3.1 30) 

Following the same procedure as the one described below Eq. (1 3.125), we find 
that the index of refraction is given by the equation 

where vB is the gyrofrequency, or cyclotron frequency, given by 

eB 

2rrm 
V B  = -. 

(13.131) 

(13.132) 

The gyrofrequency is the frequency at which an electron would spiral around a 
magnetic field line in the absence of any electromagnetic radiation. In the absence 
of damping, Re would go to infinity if the applied electric field frequency were V B .  

The gyrofrequency of the earth’s magnetic field in the ionosphere (- 0.5 x 
tesla) is about 1.4 MHz. 

Equation (13.131) gives the index of refraction for the case of a longitudinal 
magnetic field, that is, where the field is parallel to the direction of wave prop- 
agation. The solution for the transverse case is different. The solution for the 
quasi-longitudinal case is obtained by replacing B with B cos8, where 8 is the 
angle between the propagation vector and the direction of the magnetic field. The 
quasi-longitudinal solution is applicable when the angle 8 is less than that speci- 
fied by the inequality (Ratcliffe 1962) 

v2 - v; 
+sin8 tan8 < -. ” V B  

(13.133) 

When v > 100 MHz, v p  2: 10 MHz, and vB 2 1.4 MHz, the quasi-longitudinal 
solution is valid for 181 < 89”, or virtually all cases of interest. Therefore, to a 
high accuracy, when u >> ( u p  and v B )  we can expand Eq. (13.13 1) to obtain 

( 1 3.134) 

where we neglect terms in v4 and higher order. For propagation in the direction 
of B, the index of refraction is lower for a left circularly polarized wave than for 
a right circularly polarized wave. 

The difference in the index of refraction for right and left circularly polarized 
waves leads to the important phenomenon of Faraday rotation, whereby a linearly 
polarized wave has its plane of polarization rotated as it propagates through the 
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plasma. A linearly polarized wave with position angle + can be decomposed into 
right and left circularly polarized waves of equal amplitude and phase difference 
2+. The phase of the two circular waves as they propagate in the y direction 
through a plasma is 217 un,y / c  and 217uney/c, where n, and ne are the indices of 
refraction for the right circular and left circular modes, respectively. The phase 
difference between the waves is 27ru(n, - n t ) y / c .  From Eq. (13.134), n, - nc = 
U ~ U ~ L J - ~  cos6, so it is clear that the plane of polarization is rotated by the angle 

( 13.135) 

where up .  u g ,  and 8 may be functions of y. 
For constant magnetic field and electron density, Eq. (1 3.135) can be written 

A+ = 2.6 x 10-'3n,Bh2Lcos8, ( 1 3.1 36) 

where A+ is in radians, n, is in metersp3, B is in tesla, and is positive when 
the field is pointed toward the observer, A is the wavelength in meters, and L is 
the path length in meters. A magnetic field pointed toward the observer causes 
the position angle to increase (i.e., a counterclockwise rotation of the plane of 
polarization of incident radiation as viewed from the surface of the earth). 

Refraction and Propagation Delay 

Refraction in the ionosphere decreases the zenith angle of signals arriving from 
outside the earth's atmosphere. This bending is caused by the curvature of the 
ionosphere. If the ionosphere were a plane-parallel layered structure, then from 
Eqs. (13.26) the bending angle would be zero. In a well-known approximation 
(Bailey 1948). the ionosphere is assumed to consist of a layer of thickness Ah, 
within which there is a parabolic distribution of electron density having a maxi- 
mum at height hi. The bending angle in this case is 

-312 
2 Ah sin z (%12 ( 1 + -  h i )  (c0s2 + 3) (13.137) 

U r0 r0 = 3ro 

where up is the plasma frequency at hi. If the constant Ahui is chosen properly, 
Az is accurate to better than 5% for all values of z. 

The excess path length in the zenith direction can be calculated using Eqs. 
(13.5), (13.128), and (13.134) with the assumption that u >> ( u p  and UB). The 
result is 

where u is in hertz and n,(h)  and u,(h) are the electron distribution (m-3) and 
plasma frequency as a function of height. The integral of electron density over 
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height in Eq. (13.138) is called the total electron content or column density. The 
excess path corresponds to a phase delay and is negative for the ionosphere. If 
we approximate the ionosphere by a thin layer at height h i ,  then the excess path 
length will vary as the secant of the zenith angle of the ray as it passes through 
the layer. Thus 

k = Lo sec zi , ( 13.139) 

where zi (see Fig. 13.4) is given by 

z i  = sin-' [ ("> sin z ]  . 
ro + hi 

(13.140) 

When z = 90", seczi is only -3 if hi = 400 km. The secant law provides 
a reasonable model for estimating the excess ionospheric path length. A more 
complex model can be found in Spoelstra (1983). Plots of Az and d: obtained 
from Eqs. (13.137) and (13.139) as well as from actual ray-tracing calculations 
are shown in Fig. 13.19. 

In some applications, it is necessary to correct the measurements of fringe 
frequency for the effects of ionospheric delay. The ionospherically induced 
frequency shift at an antenna is (u /c)dL/dr .  The time rate of change in ex- 
cess path length d k / d t  has two components: one caused by the time rate of 
change of zenith angle dz ld t ,  and the other caused by the time rate of change of 
Lo, d J o / d t .  At many times, especially near sunrise and sunset, the latter term 
may dominate (Mathur, Grossi, and Pearlman 1970). 

Calibration of Ionospheric Delay 

The excess ionospheric path length must be calibrated as accurately as possible 
in experiments involving precise determination of source positions or baselines. 
Three approaches are possible. Models of the ionosphere can be consuucted that 
depend on parameters such as geomagnetic latitude, solar time, season, and so- 
lar activity. Two such models are the International Reference Ionosphere (IRI) 
(Bilitza 1997) and the Parameterized Ionospheric Model (PLM) (Daniel1 et al. 
1995). Alternatively, estimates of the total electron content can be obtained from 
measurements of the dual-frequency transmissions from the Global Positioning 
System (GPS) (Ho et al. 1997, Mannucci et al. 1998). GPS is rapidly replacing 
the more traditional methods such as ionosondes, Faraday rotation of satellite sig- 
nals, and incoherent backscatter radar (Evans 1969). Finally, the differential path 
length effects can be virtually eliminated for unresolved sources by making as- 
tronomical observations simultaneously at two widely separated frequencies, U I  
and u2. If the interferometer phases are 4, and 42 at the two frequencies, then the 
quantity 

4 c  = 42 - ("4, Y (13.141) 
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Figure 13.19 (a) Ionospheric bending angle versus zenith angle at 1000 MHz from a ray- 
tracing calculation for the daytime electron density profile in Fig. 13.12. The bending predicted 
by Eq. (13.137), with parameters up = 12 MHz, h; = 350 km, Ah = 225 km, and ro = 
6370 km, differs from the curve shown by no more than 5%. (b) Normalized ionospheric 
excess path length versus zenith angle for the same electron density profile from a ray-tracing 
calculation (solid curve) and from Eq. (13.139) (dashed curve). The total electron content is 
6.03 x loi7 mP2, and the excess path length at the zenith is 24.3 m. The bending and excess 
path length scale as u-’. 

will preserve source position information and be substantially free of ionospheric 
delay effects. A small residual error remains because of higher-order frequency 
terms in the index of refraction and because the rays at the two frequencies tra- 
verse slightly different paths through the ionosphere. Dual-frequency observa- 
tions are widely used in astrometric radio interferometry where source struc- 
ture can be neglected [see, e.g., Fomalont and Sramek (1975), Kaplan et al. 
(1982), Shapiro (1976)l. Note that the difference in total electron content along 
the ray paths to the interferometer elements can be estimated from measurement 
of #2 - (u2/vI )#!. Similar dual-frequency systems can be employed for the trans- 
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fer of a local oscillator reference to a space-based VLBI station, see, for example, 
Moran (1 989) and Section 9.10. 

Absorption 

Absorption in the ionosphere is caused by collisions of electrons with ions and 
neutral particles. At frequencies much greater than up .  the power absorption co- 
efficient is 

where v, is the collision frequency and n, is in meteK3. The collision frequency 
in hertz is approximately 

where ni is the ion density and n,, is the neutral particle density, both in 
meters-3 (Evans and Hagfors 1968). Numerical values of absorption are listed in 
Table 13.6. 

Small- and Large-Scale Irregularities 

The small-scale irregularities in the electron density distribution introduce ran- 
dom changes in the wavefront of a passing electromagnetic wave. As a conse- 
quence, fluctuations in fringe amplitude and phase can be readily observed with 
an interferometer at frequencies below a few hundred megahertz. In the early 
days of radio astronomy, signals from Cygnus A and other compact sources were 
observed to fluctuate on timescales of 0.1-1 min. At first these fluctuations were 
thought to be intrinsic to the sources (Hey, Parsons, and Phillips 1946), but later 
observations with spaced receivers showed that the fluctuations were uncorrelated 
for receiver separations of more than a few kilometers (Smith, Little, and Lovell 
1950). This result led to the conclusion that irregularities in the ionosphere were 
perturbing the cosmic signals. The predominant scale sizes in the ionization ir- 
regularities were found to be a few kilometers or less. The timescale of the fluc- 
tuations indicates that ionospheric wind speeds are in the range of 50-300 m s-'. 
The effects of these fluctuations have been studied extensively at frequencies be- 
tween about 20 and 200 MHz, and have been observed at frequencies as high as 
7 GHz (Aarons et al. 1983). An early example of the fluctuations seen in interfer- 
ometer measurements is given in Fig. 13.20. Hewish (1952), Booker (1958), and 
Lawrence, Little, and Chivers (1964) reviewed the early results and techniques. 
A comprehensive review of theory and observations of ionospheric fluctuations 
can be found in Crane (1977), Fejer and Kelley (1980), and Yeh and Liu (1982), 
and summaries of global morphology can be found in Aarons ( 1982) and Aarons 
et al. (1999). Measurements with the GPS can be very useful in monitoring iono- 
spheric fluctuations [e.g., Ho et al. (1996), Pi et al. (1997)l. The effects of iono- 
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Figure 13.20 (Left) Typical records of the correlator output on three occasions from a phase- 
switching interferometer at Cambridge, England, having a I-km baseline and operating at a 
wavelength of 8 m. The irregular responses are caused by disturbances in the ionosphere. 
(Right) Probability distributions of the angle of arrival deduced from the zero crossings of the 
correlator response. From Hewish (1952). 

spheric scintillation on a synthesis telescope have been described by Spoelstra 
and Kelder (1984). In Section 13.4 we discuss a theory of scintillation, which can 
be applied to the ionosphere as well as to the interplanetary and interstellar media. 

Large-scale variations in the electron density integrated along the line of sight 
are caused by traveling ionospheric disturbances (TIDs). TIDs, which are mani- 
festations of acoustic-gravity waves in the upper atmosphere, are quasi-periodic, 
large-scale perturbations in electron density. The atmosphere has a natural buoy- 
ancy, so that a parcel of gas displaced vertically and released will oscillate at a 
frequency known as the Brunt-V2isaIa, or buoyancy, frequency. This frequency 
is about 0.5-2 mHz (periods of 10-20 min) at ionospheric heights. For waves 
with frequencies above the buoyancy frequency, the restoring force is pressure 
(acoustic wave), and for waves with frequencies below the buoyancy frequency, 
the restoring force is gravity (gravity wave). Hunsucker (1982) and Hocke and 
Schlegel ( 1996) have reviewed the literature on acoustic-gravity waves. There are 
many potential sources of TIDs, including auroral heating, severe weather fronts, 
earthquakes, and volcanic eruptions. Medium-scale TIDs have scale lengths of 
100-200 km, timescales of 10-20 min, and cause a variation in total electron 
content of 0.5-5%. Such TIDs are present for a substantial fraction of the time. 
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Large-scale TIDs, which are relatively uncommon, have scale lengths of 1 OOO km, 
timescales of hours, and can cause variations in total electron content of up to 
8%. One such disturbance, excited by a volcano, was observed by VLBI (Roberts 
et al. 1982). The effects of TIDs on radio interferometry, which are primarily slow 
phase variations, are described by Hinder and Ryle (1 97 1 ). The effects on satellite 
tracking are described by Evans, Holt, and Wand (1983). 

13.4 SCATTERING CAUSED BY PLASMA IRREGULARITIES 

Understanding the propagation of radiation in a random medium is an important 
problem in many fields. The signals from cosmic radio sources propagate through 
several random media, including the ionized interstellar gas of our Galaxy, the 
solar wind, and the ionosphere, as well as the neutral gas of the troposphere. In 
the observer’s plane there are two effects. First, the amplitude varies with the 
position of the observer, which leads to temporal amplitude variations if there 
are relative motions among the source, scattering medium, and observer. Second, 
the image of the source is also distorted. Much of the research in this area has 
been motivated by the attempt to understand the observational characteristics of 
pulsars [see, e.g., Gupta (2OOO)l. 

Gaussian Screen Model 

We begin the discussion by considering a simple model that serves to illustrate 
many features of the problem. This model was first developed by Booker, Rat- 
cliffe, and Shinn (1950) to explain ionospheric scintillation and was refined by 
Ratcliffe (1956). Scheuer (1968) applied it to pulsar observations. The model as- 
sumes that the irregular medium is confined to a thin screen and that the irregular- 
ities (blobs) have one characteristic scale size a. Diffraction effects are neglected 
within the irregular medium; only the phase change imposed by the medium is 
considered. Diffraction is taken into account in the free-space region between the 
irregular medium and the receivers. 

The geometric situation is shown in Fig. 13.2 1. The thin-screen assumption is 
not particularly restrictive. However, the assumption that the screen is filled with 
plasma blobs having one characteristic size is restrictive, and distinguishes this 
model from the power-law model where a range of scale sizes is present. From 
Eqs. (1 3.128) and (1 3.134), the index of refraction of the plasma can be written 

r,n,li2 
27T 

n = l - - ,  ( 1 3.144) 

where re is the classical electron radius, equal to e 2 / 4 ~ ~ ~ t n c 2  or 2.82 x lo-’’ m, 
and the term in v B  is neglected. Thus, the excess phase shift across one blob is 

A& = reAaAne, ( 1 3.145) 
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I I A  
Figure 13.21 Geometry of a thin-screen scintillation model. An initially plane wave is in- 
cident on a thin phase-changing screen. The emerging wavefront is irregular. As the wave 
propagates to the observer, amplitude fluctuations develop, as suggested by the crossing rays. 
Below the antenna is a plot of intensity versus position along the wavefront. If there is mo- 
tion between the screen and the observer, the spatial fluctuations will be observed as temporal 
fluctuations in the power received or the fringe visibility. 

where An, is the excess electron density in the blob over the ambient level. If the 
thickness of the screen is L, then the wave will encounter about L / a  blobs, and 
the rms phase deviation AI#J will be A& m, or 

AI#J = r,)c An,&. (13.146) 

The wave emerging from the screen is crinkled; that is, the amplitude is un- 
changed, but the phase is no longer constant and has random fluctuations with 
rms deviation A#. The wave can therefore be decomposed into an angular spec- 
trum of waves propagating with a variety of angles. The full width of the angular 
spectrum, O,, can be estimated by imagining that the random medium consists of 
refracting wedges that tilt the wavefront by the amount fA#A/2n  over a distance 
a. Thus 

- 
1 

( 13.147) 
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Figure 13.22 Path of a refracted ray in the thin phase screen model. The rms scattering angle 
0, is given by Eq. ( 1  3.147). 

If the source is not infinitely distant, then the incident wave will not be plane. In 
that case the observed scattering angle 6: depends on the location of the screen 
with respect to the source and the observer. Since 6, and 0; are small angles, it 
follows from the geometry in Fig. 13.22 that 

R' 
0; = - 

R + R"" 
(13.148) 

where R and R' are defined in Fig. 13.6. Therefore, the effectiveness of the scat- 
tering screen is diminished if the screen is moved toward the source. This lever 
effect is very important in astrophysical situations. It can be used to distinguish 
galactic and extragalactic sources whose radiation passes through the same scat- 
tering screen (Lazio and Cordes 1998). 

Amplitude fluctuations build up as the wave propagates away from the screen. 
If the phase fluctuations are large, A# > 1, then significant amplitude fluctuations 
occur when rays cross (see Fig. 13.21). The critical distance beyond which large- 
amplitude fluctuations are observed is 

a 
Rf -. 

0: 
( I  3.149) 

Note that if A# = 2n, then Rf is the distance for which the size of a blob is 
equal to the size of the first Fresnel zone. The random electric field distribution 
at the earth, in the plane perpendicular to the propagation direction, is called the 
diffraction pattern. It has a characteristic correlation length d, given by 

(13.150) 
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If the screen moves with relative velocity us in the direction perpendicular to the 
propagation direction, so that the diffraction pattern sweeps across the observer, 
then the timescale of variability is 

(13.15 1) 

The signal reaching the observer by traveling along the scattered ray path is de- 
layed by an amount 

R R’e,’ 
2 c ( R  + R’) 

r, 2: (13.152) 

with respect to the unscattered signal. The phase of the scattered wave is 2nvr, 
with respect to the direct (unscattered) wave, and interference between these two 
waves causes scintillation. The bandwidth over which the relative phase changes 
by 2 n  is called the correlation bandwidth, Avc. The correlation bandwidth is the 
reciprocal of r,, and for the case R = R’ is 

8c 
R,O: ’ 

Av, - (13.153) 

where R, is the distance between the source and the observer. If the observations 
are made with a receiver of bandwidth greater than Av,, the amplitude fluctu- 
ations will be greatly reduced. Note from Eqs. (1 3.153) and (1 3.147) that Au, 
varies as t4. 

Finally, if the source has two equal components separated by distance .f, then 
each component will produce the same diffraction pattern, but these patterns will 
be displaced at the earth by distance C R /  R’. If this distance is greater than d,, then 
the diffraction pattern will be smoothed and the amplitude fluctuations reduced. 
Thus, if the source size is greater than a critical size O,, amplitude fluctuations 
will be sharply reduced because the diffraction patterns from the component parts 
overlap and are smoothed out. From Eqs. ( 1  3.148) and (13. l50), 0, can be written 
as 

h e -- 
- Re, 

( 13.154) 

Hence, only sources of small angular diameter scintillate. In the optical regime, 
the analogous phenomenon is that stars twinkle, but usually planets do not. An 
elegant application of Eq. (13.154) was made by Frail et al. (1997) to determine 
the angular size of the expanding radio source associated with a y-ray burst. They 
determined that the amplitude fluctuations in the radio emission, assumed to be 
caused by interstellar scattering, ceased during the first weeks after the burst, 
indicating that the source diameter had increased beyond the critical size of 3 
parcsec at that time. 

A useful quantity is the ensemble average fringe visibility, V,, measured by 
an interferometer in the presence of scintillation. Assume that the phases 41 and 
42 at two points along the phase screen, separated by distance d ,  are random 
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variables with a joint Gaussian distribution with variance Aqi2 and normalized 
correlation p ( d ) .  p ( d )  is the correlation function of the phase, or of the variable 
component of the index of refraction. The joint probability density function of the 
phase along the wavefront is 

where p ( d )  = (t#q&)/AI#J*. The expectation of eJ(@l-h) is 

(13.156) 

which can be evaluated directly from Eq. (13.155) with the result 

For a point source of flux density S, the ensemble average of the fringe visibility 
is 

or 

If the source has an intrinsic visibility To, the ensemble average is 

This result was first derived by Ratcliffe ( 1  956) and Mercier (1962). In much of 
the early radio astronomical literature, p ( d )  is assumed to be a Gaussian function 

p ( d )  = e-  d 2  /2a2 (13.161) 

where the characteristic scale length a corresponds to the blob size in the discus- 
sion above. This model, called the Gaussian screen model, is probably unrealis- 
tically restrictive because there are undoubtedly many scale sizes present. In the 
case where A# >> 1, T, decreases rapidly as d increases, and we need consider 
only the case of d << a. In this case substitution of Eq. (13.161) into Eq. (13.160) 
yields 

( 13.162) -A#2d2 /2aZ 
( T m )  2 

Thus, the intensity distribution of a point source observed through a Gaussian 
screen is a Gaussian distribution with a diameter (full width at half maximum) of 
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(13.163) 

This formula for 6, is essentially equivalent to the one given in Eq. (13.147). In 
the case where A# << 1, the normalized visibility function drops from unity to 
cA@” when d >> a. Therefore, the resulting intensity distribution for a point 
source is an unresolved core surrounded by a halo. The ratio of the flux density 
in the halo to the flux density in the core is eA@2 - 1. 

Power-Law Model 

The spectrum of fluctuations in the electron density in ionized astrophysical plas- 
mas is normally modeled as a power law, 

where q is the three-dimensional spatial frequency, q2 = 4,’ + 4; + q:, and 
C2e characterizes the strength of the turbulence. The definition of Cje varies in 
the literature, depending on whether it is used as a constant in the spectrum or 
in the structure function. The two-dimensional power spectrum of phase [see 
Eq. (13.145) for the relation between # and n,] is 

P4(q) = ~ I T ~ , ~ A ~ L P , , .  (13.165) 

Hence, from Eq. (1 3.104), the structure function of phase is 

r m  

(1 3.166) 

For a power-law spectrum of the form of Eq. (13.164), the structure function is 

B $ ( d )  = 87r2r,2A2C,2,Lf(a) d“-2, ( 1  3.167) 

where f ( n )  is of order unity. The index a is often taken to be 11/3, which is its 
value for Kolmogorov turbulence, for which f ( a )  = 1.45 [see Cordes, Pidwer- 
betsky, and Lovelace (1986) for other values of f(a)].  The ensemble average of 
the interferometric visibility [see Eq. (13.81)] is 

or 

( V )  = Yoe -4n’rfA’Cf L f ((I) dU-’ (1 3.169) 
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The observed intensity distribution, the Fourier transform of Eq. (13.169), differs 
slightly from a Gaussian distribution, as can be seen in Fig. 13.10b. The scatter- 
ing angle (full width at half maximum) obtained from the width of the intensity 
distribution is 

0, = 4.1 x 10-13(C,2,~)3/5~11/5 (arcsec), ( 1 3.1 70) 

where A is in units of meters and Ci,L is in  meter^-'^'^. Thus, a difference be- 
tween the power-law model and the Gaussian screen model is that e,, measured 
by Fourier transformation of visibility data over a range of baselines, is propor- 
tional to A2.2 in the former model and to A2 in the latter. Note that if (Y) were 
measured on a single baseline, that is, with d fixed, and if 6, were estimated from 
comparison of the measured visibility with the visibility expected for a Gaussian 
intensity distribution, then 0, would appear to vary as A2 in both models. 

Measurements of visibility must be made over sufficiently long integration 
times to achieve an ensemble average if Eqs. ( 1  3.168), (13.169), and (13.170) are 
to be valid (Cohen and Cronyn 1974). A detailed discussion of the averaging time 
necessary to achieve an ensemble average is given by Narayan (1 992). 

For plasmas we can expect that the power law will hold from an inner scale 40 
to an outer scale 41; that is, there are no fluctuations on length scales smaller than 
1/41 or larger than l/qo. For the case where 4d << 1, that is, where the baseline 
is shorter than the inner length scale, the Bessel function in Eq. (1 3.166) becomes 
1 - q2r2/4 and the integration is straightforward, yielding 

(13.171) 

This result has two interesting consequences. First, the structure function varies 
as d2 regardless of a. Second, for a < 4, the structure function is dominated by 
the effect of the smallest irregularities, whereas for OL > 4, it is dominated by 
the effect of the largest-scale irregularities. This result also suggests an important 
demarcation in phenomena between plasmas with a < 4 and those with a > 4. 
The case where a < 4 is called Type A (shallow spectrum), and the case where 
a =- 4 is called 5 p e  B (steep spectrum) (Narayan 1988). 

Consider the situation where the spectrum has three regimes: 

(13.172) 

Substitution of Eq. ( I  3.172) into Eq. ( 13.166) gives 
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Figure 13.23 (a) A model spectrum of the electron density fluctuations with inner and outer 
scales of spatial frequency qo and 41. (b) The corresponding structure function of phase: see 
Eqs. (13.172) and (13.173). From Mordn (1989). 0 1 9 8 9  by Kluwer Academic Publishers, 
reproduced with permission. 

2n 
d < - B#(d) = (")'d2, 

41do 41 

2n 2n 
- < d  < - 
41 40 

= (s)'-2. d > -, 2n 
40 

(1 3.173) 

where we have introduced the normalization factor do, such that B6(do) = 1, as in 
the discussion of the troposphere in Section 13.2 under Kolmogorov Turbulence. 
We have also assumed that 2n/ql < do < 2n/qo. This spectrum and structure 
function for the model are shown in Fig. 13.23. 

13.5 INTERPLANETARY MEDIUM 

Refraction 

Radio waves passing near the sun are bent by the ionization of the solar corona 
and the solar wind. The general characteristics of the solar corona and the solar 
wind can be found in Winterhalter et aI. (1996). Calculation of the refraction in 
the extended solar atmosphere is important for the understanding of solar radio 
emission at low frequencies, where the bending angles are large (Kundu 1963, 
and for tests of the general relativistic bending of electromagnetic radiation pass- 
ing near the sun (Shapiro 1967, Fomalont and Sramek 1977). The accuracy of the 
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measurement of relativistic bending in the radio region is limited by the accuracy 
with which the bending by the ionized media can be accounted for. We now dis- 
cuss the refraction in the case relevant to relativistic bending experiments, that is, 
the microwave region where the bending is small. 

The electron density as a function of distance from the sun can be measured 
in a variety of ways. Optical observations of Thomson scattering during solar 
eclipses have been analyzed to give an electron density model 

n, = (1.55rP6 + 2.99r-I6) x 1014(m-3), (13.174) 

where r ,  the radial distance from the sun in units of the solar radius, is less than 
-4. Equation (13.174) is the well-known Allen-Baumbach formula (Allen 1947). 
Eclipse data have also been interpreted by a model of the form 

n, = ulr-6 + (1 3.175) 

for r > 3 (see references in Muhleman, Ekers, and Fomalont 1970). The coeffi- 
cients al and a2 depend on solar activity and can vary by a factor of 5 during an 
1 1-year cycle. Scintillation measurements of the occultation of the Crab Nebula 
at 26 MHz can be represented reasonably well by the model 

n, = 5 x 1 0 I l ~ - ~ ( m - ~ ) ,  (13.176) 

for 4 < r < 20 (Erickson 1964, Evans and Hagfors 1968). Dispersion mea- 
surements of pulsars during solar occultation give about the same result as 
Eq. (13.176) (Counselman and Rankin 1972, Counselman et al. 1974). The an- 
gle of refraction of a ray passing near the sun can be calculated readily for the 
case where this angle is small. A ray obeys Snell’s law in spherical coordinates, 
nr sin z = constant (Smart 1977), where n is the index of refraction and z is 
the angle between the ray and a line from the center of the sun, as shown in 
Fig. 13.24. From this relation, the bending angle is found to be 

(13.177) 

Figure 13.24 Path of a ray passing through the ionized gas surrounding the sun. p is the 
impact parameter and (Y is the solar elongation angle, that is, the angle between the sun and 
the source in the absence of solar bending. 
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where r,,, is the distance of closest approach of the ray to the sun and p is the 
impact parameter (see Fig. 13.24). Assume that the electron density has a power- 
law distribution given by 

n, = n,Or-@, ( 1 3.178) 

where ne0 is the electron density in meters3 at one solar radius and p is a constant. 
For a fully ionized solar wind, characterized by a constant mass loss rate and ve- 
locity, /3 is equal to 2. This case is applicable for r 2 10. 

The index of refraction is obtained by substituting Eqs. (1 3.178) and (1 3.128) 
into Eq. (1 3.134) and neglecting the term in UB. Graphical solutions of Eq. (1 3.177) 
for large bending angles are given by Jaeger and Westfold (1950). For small bend- 
ing angles, an approximate solution to Eq. (13.177) can be obtained by the use of 
the substitution n r / p  = sec0 [see also the discussion below Eq. (13.185)], 

( 13.179) 

where p is in units of the solar radius and r is the gamma function. Note that the 
rays are bent away from the sun. The bending angle associated with the model in 
Eq. (13.176) is 

0, 2 2.4A2p-* (arcmin), (1 3.180) 

where A is the wavelength in meters. For a multiple power-law model of electron 
density such as given in Eqs. (13.174) and (13.175), the bending angles for each 
component can be summed when the bending angles are small. 

Relativistic Bending. The general relativistic bending can be described classi- 
cally by an effective index of refraction given by 1 + 2GMO/rc2. where G is 
the gravitational constant, and Ma is the mass of the sun. The bending angle, for 
small values of p. is (Weinberg 1972) 

0,, = -1 .75~- '  (arcsec). (13.181) 

The negative sign indicates that the bending is toward the sun. The general rel- 
ativistic bending effect has been verified by VLBI observations to an accuracy 
of better than one part in a thousand (Lebach et al. 1995). In experiments to 
measure the relativistic bending, a model of the interferometer phase is formu- 
lated using Eq. (13.179) and a solar model with power-law components given by 
Eq. (13.178), with a separate density coefficient n,oi for each component. The 
relativistic bending and the coefficients can be estimated simultaneously from the 
interferometer data. If, however, the electron density distribution has a component 
with /3 = 1, the relativistic effect would be masked if measurements were made 
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at only one frequency. The solar wind is highly variable, and attempts to charac- 
terize it by a power-law model with constant coefficients may not be adequate for 
high precision experiments. 

At large angular distances from the sun, a more appropriate approximation for 
the general relativistic bending is (Misner, Thorne, and Wheeler 1973) 

1 +cosa! 
(arcsec), J 1 -cos(r 

$,, 2: -0.00407 (13.182) 

where CY is the solar elongation, that is, the angle between the sun and the source. 
This bending, which is about 4.1 mas at a! = 90", can be detected at almost 
all values of solar elongation with VLBI measurements (Robertson, Carter, and 
Dillinger 1991). Correction for the effect of relativistic bending must be made 
for many interferometric observations. Equation (1 3.182) is appropriate for a 
source at infinity. This equation must be modified if the source under investigation 
is within the solar system (Shapiro 1967). 

The excess phase path for a ray passing through the corona, for the case where 
the effect of ray bending can be neglected, is, from Eq. (13.138), 

( 13.1 83) 

where y is measured along the ray path as shown in Fig. 13.24. For a power-law 
model given by Eq. (13.178), the excess path is 

which can be integrated to give 

( 13.184) 

( 1 3.185) 

Note that the change in L with p describes the tilting of the wavefront and is the 
bending angle; hence dP/dp  (Bracewell, Eshleman, and Hollweg 1969). 
Differentiation of Eq. (13.185) with respect to p gives Eq. (13.179). 

Interplanetary Scintillation 

Detection of scintillation of extragalactic radio sources due to irregularities in the 
solar wind was reported by Clarke (1964) and Hewish, Scott, and Wills (1964). 
Interplanetary scintillation is readily distinguishable from ionospheric scintilla- 
tion, since the timescale [Eq. (13.151)] and critical source size [&. (13.154)] are 
approximately 1 s and 0.5 arcsec for interplanetary scintillation and 30 s and 10 
arcmin for ionospheric scintillation. Further observations of interplanetary scin- 
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tillation by Cohen et al. (1967) showed that the angular size of the radio source 
3C273B is smaller than 0.02 arcsec, based on the application of Eq. (13.154). 
This result and the long-baseline interferometric results stimulated the develop- 
ment of VLBI. A comprehensive discussion of the interpretation of interplanetary 
scintillation can be found in Salpeter (1967), Young (1971), and Scott, Coles, and 
Bourgois (1  983). For rough calculations, the scattering angle due to the interplan- 
etary medium may be approximated by (Erickson 1964) 

(13.186) 

where A is in meters and p .  the impact parameter, is in solar radii. This relation- 
ship is based on measurements taken in 1960-61 at 11 meters wavelength for 
impact parameters between 5 and 50 solar radii. Analysis of VLBI observations 
at 3.6 and 6 cm obtained in 1991 for a range of impact parameters of 10-50 solar 
radii led to a model for Cie of the form C:e = 1.5 x 1014(r/Rsun)-3~7 (Spangler 
and Sakurai 1995). Note that the power-law exponent is expected to be about -4 
from the elementary consideration that Cie is proportional to the variance of the 
electron density, which is proportional to the square of the density. For a constant 
wind speed the density is proportional to r -2  and hence C:e is proportional to 
r-4. Deviations from 4 are caused by the radial dependence of the magnetic field 
strength, which plays a role in driving the turbulence. Integrating C:, along the 
line of sight, and using Eq. (13.170), we derive an estimate for the scattering angle 
of 0, = 3 1 0 0 ( ~ / ) c ) - ~ . ~  arcsec, which is comparable to the result in Eq. (13.186). 

The concept that extended sources do not scintillate as much as point sources 
[see Eq. (13.154)] can be generalized to obtain more information about source 
structure. We assume that the scintillation is caused by a screen at a distance R 
from the earth as shown in Fig. 13.22, where R << R,, and that the intensity at the 
earth is I (x, y ) ,  where x and y are coordinates in a plane parallel to the screen in 
Fig. 13.21.Thefunction AZ(x, y)  isequal to Z(x, y ) - ( Z ( x ,  y)), where (Z(x, y)) 
is the mean intensity. It has a power spectrum 8&,, q y )  for a point source and 
JI (q,, q,,) for an extended source, where qx and qv are the spatial frequencies 
(cycles per meter). If the visibility of the source is %(q, R ,  qy R), then it can be 
shown (Cohen 1969) that 

where q, R and qy R correspond to the projected baseline coordinates u and u.  The 
scintillation index of the source m, is defined by 

In principle, 8,  (q l ,  q),) could be computed from the simultaneous measurements 
of AZ(x, y)  with a large number of spaced receivers. In practice, the motion of 
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the solar wind sweeps the diffraction pattern across a single telescope so that, 
from measurements of AZ(f), the temporal power spectrum S(f) can be calcu- 
lated. If the diffraction pattern moves with velocity us in the x direction, then 
8(  f) can be related to the spatial spectrum since qx = f/u,: 

( 13.189) 

In principle, I Y 1' can be recovered from Fiq. (13.187) by observing a source over 
a range of different orientations with respect to the solar wind vector. The situa- 
tion is entirely analogous to that of lunar occultation observations (Section 16.2) 
except that with lunar occultation observations the visibility phase can also be 
obtained. An estimate of the source diameter can be deduced from the width of 
the temporal power spectrum (Cohen, Gundermann, and Harris 1967) or from the 
scintillation index [Eq. (13.188)] (Little and Hewish 1966). 

Interplanetary scattering is generally weak, except in directions close to the 
sun. The effects of refractive scattering (discussed in the next section and in Sec- 
tion 14.3), which can be important in the strong scattering regime, have been 
studied by Narayan, Anantharamaiah, and Cornwell (1989). 

13.6 INTERSTELLAR MEDIUM 

Table 13.7 lists the typical magnitudes and scale sizes of various effects caused 
by the interstellar medium. These are discussed individually in the following sec- 
tions. 

Dispersion and Faraday Rotation 

The smooth, ionized component of the interstellar medium of our Galaxy affects 
propagation by introducing delay and Faraday rotation. The time of arrival of a 
pulse of radiation, such as that from a pulsar, is 

t, = lL :, ( 13.190) 

where L is the propagation path, us = cn is the group velocity, and n is given by 
Eq. (13.127). Differentiation of Eq. (13.190) gives 

The integral of n,  over the path length is called the dispersion measure, 

L 

Dm = 1 n , d y ,  

(13.191) 

(13.192) 
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TABLE 13.7 Typical ValuesP of the Effects of the Interstellar Medium on Radiation at 
100 MHz 

Effect 
Equation Frequency 
Number Magnitude Dependence 

Angular broadeningb 13.163 0.3 arcsec v-2 

Pulse broadeningb 13.152 10-4 v -4 

Scintillation bandwidthb 13.153 104 HZ v4 

Spectral broadeningb - 1 Hz v-' 
Scintillation timescaIeb 13.151 10 s v' 
Scintillation timescale' - 106 s v-' 
Free-free optical depth 13.142 0.01 v-2 

Faraday rotation 13.193 10 rad V -2 

Adapted from Cordes (ZOOO). 
aFor a source in the Galactic plane at a distance of I kpc. Actual values can differ by an order of magni- 
tude. 
bDiffractive scattering. 
Refractive scattering. 

which is the same quantity as the total electron content. dt , /du can be estimated 
by measuring the time of arrival of pulsar pulses at different frequencies, and the 
dispersion measure can then be found from Eq. ( 13.19 1). If the distance to the 
pulsar is known, then the average electron density can be calculated. A typical 
value of (n , )  in the plane of our Galaxy is 0.03 cmP3 (Weisberg, Rankin, and Bo- 
riakoff 1980). Alternatively, if a pulsar's distance is unknown, it can be estimated 
from Eq. (13.191) using an estimated average value of n, 

The magnetic field of &he Galaxy causes Faraday rotation of the polarization 
plane of radiation from extragalactic radio sources. Equation (13.135) can be 
rewritten 

A~ = A'R,, (1 3.193) 

where R,  is the rotation measure given by 

R,, = 8.1 x lo5 1 n,BII d y .  (13.194) 

Here R, is in radians per square meter, A is in meters, BII is the longitudinal 
component of magnetic field in gauss (1 gauss = tesla), n,  is crnp3, and 
d y  is in parsecs (pc) ( I  pc = 3.1 x m). The interstellar magnetic field can 
be estimated by dividing the rotation measure by the dispersion measure. Typical 
values of the magnetic field obtained in this way are 2 p G  (Heiles 1976). This 
procedure underestimates the magnetic field if the field reverses direction along 
the line of sight. A formula for roughly estimating the rotation measure due to the 
galactic magnetic field is (Spitzer 1978) 

R, = - 181 Cot bl C O S ( ~  - 94"), ( 13.195) 
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where .f and b are the galactic longitude and latitude. Extensive measurements of 
rotation measure as a function of direction can be found in Simard-Normandin 
and Kronberg (1980). 

Faraday rotation that occurs within a radio source depolarizes the emergent 
radiation. This depolarization happens because radiation emitted from different 
depths in the source suffers different amounts of Faraday rotation. Such a source 
might be a relativistic gas emitting polarized synchrotron radiation immersed in a 
thermal plasma that causes the Faraday rotation. The degree of polarization of the 
observed radiation can be succinctly described in a Fourier transform relationship 
when self-absorption is negligible. We first introduce the function M, the complex 
degree of linear polarization, defined by 

(13.196) 

where me is the degree of linear polarization, + is the position angle of the electric 
field, and Q, U, and I are the Stokes parameters as defined in Section 4.8 under 
Parameters Dejining Polarizarion. If y is the linear distance into the source, + ( y )  
is the intrinsic position angle of the radiation at depth y .  j , ( y )  is the volume 
emissivity of the source, and A2B(y) is the Faraday rotation suffered by radiation 
emitted at depth y, then the degree of polarization of the observed radiation can 
be written 

The denominator in Eq. (13.197) is the total intensity. B ( y )  is the Faraday depth, 
which increases monotonically into the source as long as the sign of the longitu- 
dinal magnetic field direction does not change. In any case, we can superpose all 
the radiation from the same Faraday depth and write the integrals in Eq. (13.197) 
as a function of B instead of y ,  yielding 

where 

(1 3.198) 

(13.199) 

Thus M ( X 2 )  and F ( @ )  form a Fourier transform pair. F ( B )  is sometimes called 
the Faraday dispersion function. Unfortunately, F ( B ) ,  in general, cannot be found 
since M cannot be measured for negative values of A’. Because of this difficulty 
with the Fourier transform, F ( B )  is usually estimated by model fitting. How- 
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ever, if +(y) is constant, then M ( - k 2 )  = M * ( k 2 ) ,  and F ( p )  can be obtained by 
Fourier transformation. 

Consider the result for a simple source model for which me, +, and j ,  are 
constant. From Eq. ( 1  3.198), we have 

(13.200) 

where R, is the Faraday rotation measure through the whole source. If the Fara- 
day rotation originates in front of the radiation source, the complex degree of 
polarization is 

M ( P )  = M(O)eJ2"RR". (13.201) 

In this case there is no depolarization, and the Faraday rotation is twice that of 
Eq. (1 3.200), in which the source is uniformly distributed throughout the rotation 
medium. For detailed treatment of intrinsic Faraday rotation, see Bum (1966) and 
Gardner and Whiteoak (1 966). 

Diffractive Scattering 

Diffractive interstellar scattering has been extensively investigated by observa- 
tion of pulsars and compact extragalactic radio sources. For pulsars, the tem- 
poral broadening of the pulses [Eq. (13. f 52)], the decorrelation bandwidth 
[Eq. (13.153)], and the angular broadening [Eq. (13.147)] can be measured. 
Interpretation of the measurements in terms of a thin-screen model suggests that 
An, /n ,  2: and that the scale size responsible for the scintillation is on the 
order of 10" cm. The temporal variations or scintillation of the signal from a 
pulsar are caused by the motions of the observer and the pulsar relative to the 
quasi-stationary interstellar medium. A measurement of the decorrelation band- 
width can be used to estimate the scattering angle [Eq. (13.153)]. This estimate of 
the scattering angle and the measurement of the timescale of fading ( 102-103 s at 
408 MHz) can be used to estimate the relative velocity of the scattering screen by 
Eq. (13.151). From the relative velocity of the screen, the transverse velocity of 
the pulsar can be found. Velocities, and thus proper motions, of pulsars estimated 
in this way ( L y e  and Smith 1982) agree with those measured directly with inter- 
ferometers [see, e.g., Campbell et al. ( I  996)]. The transverse component of the 
orbital velocity of a binary pulsar has also been measured (Lyne 1984). 

Observations show that the fluctuations in electron density can be described 
by a power-law spectrum with a power-law exponent of about 3.7 f 0.3, which 
is similar to the value of 1 1/3 for Kolmogorov turbulence (Rickett 1990; Cordes, 
Pidwerbetsky, and Lovelace 1986). The power-law spectrum appears to extend 
over a range of scale sizes from less than I O ' O  cm to more than lOI5 cm. The 
inner scale may be set by the proton gyrofrequency (-lo7 cm) and the outer 
scale by the scale height of the Galaxy (- lo2' crn). Observational evidence for 
the inner scale is given by Spangler and Gwinn (1990). 
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Extensive measurements of the angular sizes of extragalactic radio sources 
have been used to derive an approximate formula for 6, based on the Gaussian 
screen model, by Harris, Zeissig, and Lovelace (1970), Readhead and Hewish 
( 1972), Cohen and Cronyn (1 974), Duffett-Smith and Readhead (1 976), and oth- 
ers. This formula is 

(1 3.202) 

where b is the Galactic latitude and I is the wavelength in meters. The pulsar data 
have been interpreted by Cordes (1 984) in terms of the power-law model to arrive 
at approximate formulas for 8,: 

e, 2 7.51."/' (arcsec), 161 5 0.6" 
0.6" < lbl < 3"-5" 2: 0.51 ~ i n b ( - ~ / ~ I " / ~  (arcsec), 

2 131 ~ i n b ( - ~ / ~ I " / ~  ( 9  mas) IbJ 3 3"-5". (13.203) 

The accuracy of the representations in Eqs. (13.203) decreases with decreasing 
161. In particular, the scattering angle at low latitudes, Ibl < 1". can take on a 
wide range of values (Cordes, Ananthakrishnan, and Dennison 1984). A much 
more detailed model with 23 parameters characterizing the electron distribution 
in the Galaxy has been constructed by Taylor and Cordes (1993). From this model 
more accurate estimates of 6, can be computed. 

An example of a compact radio source that suffers a high degree of interstellar 
scattering is Sagittarius A* at the dynamical center of our Galaxy. This source 
has an angular size of about 15 mas at a wavelength of 3.6 cm [compared with 
7.7 mas predicted by Eq. (13.203)]. The angular size varies approximately as the 
wavelength squared over the entire measuring range -0.3-30 cm, as shown in 
Fig. 13.25. The data at I = 0.7 and 0.3 cm suggest that the structure of the source 
may be visible at I < 0.7 mm (Lo et al. 1998). 

Interstellar scattering probably places the ultimate limit on the angular size 
measurements that can be made with an interferometer. The apparent sizes of 
interstellar masers, which are mostly found in the Galaxy at low galactic latitudes, 
are sometimes set by interstellar scattering (Gwinn et al. 1988). 

Refractive Scattering 

The realization by Sieber (1982) that the characteristic period of amplitude scin- 
tillations of pulsars, on timescales of days to months, were correlated with their 
dispersion measures led Rickett, Coles, and Bourgois ( 1984) to the identification 
of another important scale length in the turbulent interstellar medium, the refrac- 
tive scale d,f. The refractive scale is the size of the diffractive scattering disk, 
which is the projection of the cone of scattered radiation on the scattering screen, 
located a distance R from the observer. The diameter of the diffractive scattering 
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Figure 13.25 The angular size of the compact source in the galactic center (Sgr A*) versus 
wavelength. The scattering is slightly anisotropic [e.g., Lo et al. (1998)], and each data point 
plotted is the geometric mean of the angular diameters in right ascension and declination. The 
line through the data has the form 8, = 1.04A2.0, where 8, is in milliarcseconds and A is in 
centimeters. The dependence suggests that the interferometer baselines ( lo6 m or less) 
are all shorter than the inner scale of the turbulence [see Eqs. (13.168) and (13.171)]. 

disk is Re,. The scattering diskrepresents the maximum extent on the screen from 
which radiation can reach the observer. With a power-law distribution of irregu- 
larities, it is the irregularities at the maximum allowed scale that have the largest 
amplitude and are the most influential. Thus, the refractive scale is d,f 2: Re,. 
Since 0, = h/do, where do is the diffractive scale size defined by a)+(do) = 1, we 
can write 

Rh 
dref = do 1 

or 

(13.204) 

(1 3.205) 

where ~ F ~ ~ ~ ~ ~ I  = & is the Fresnel scale. The scale lengths dref and do are 
widely separated. Hence, the timescale associated with scintillation scattering for 
a screen velocity of us ,  tref = dref/ur. is much longer than that associated with 
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diffractive scattering, tdif = &/us .  Suppose that a source is observed through a 
scattering screen located at a distance of 1 kpc, at b 2: 20”, and a wavelength of 
0.5 m. For this case the diffractive scale length is 2 x lo9 cm, the Fresnel scale 
is 4 x 10” cm, and the refractive scale is 8 x lOI3 cm. The typical velocity asso- 
ciated with the ISM is 100 km s-’ (Rickett, Coles, and Bourgois 1984). For this 
velocity the diffractive and refractive timescales for amplitude scintillation are 3 
min and 3 months, respectively. 

Refractive scattering is thought to be responsible for the slow amplitude varia- 
tions observed in some pulsars and quasars at meter and decimeter wavelengths. 
This realization solved the long-standing problem of understanding the behavior 
of “long-wavelength variables,” which could not be explained by intrinsic vari- 
ability models based on synchrotron emission. The identification of two scales 
in the interstellar scattering medium provides strong support for the power-law 
model. The two scales provide a way of estimating the power-law index, because 
the relative importance of refractive scattering increases as the power spectrum 
steepens. It is interesting to note that these two scales arise from a power-law 
phenomenon, which has no intrinsic scale. The scales are related to the propaga- 
tion and depend on the wavelength and distance of the screen. 

In addition to amplitude scintillation, refractive scattering causes the appar- 
ent position of the source to wander with time. The amplitude and timescale are 
about equal to 6, and rRf,  respectively. The character of this wander depends on 
the power-law index of the fluctuations, Limits on the power-law index have been 
established from the limits on the amplitude of image wander in the relative po- 
sitions among clusters of masers (Gwinn et al. 1988). 

Rare sudden changes in the intensity of several extragalactic sources, called 
Fiedler events, or extreme scattering events (Fiedler et al. 1987), are probably 
caused by refractive scattering in the interstellar medium. In the archetypal ex- 
ample, the flux density of the extragalactic source 0954+658 increased by 30% 
and then dropped by 50% over a period of a month, after which it recovered in 
symmetric fashion. A large-scale plasma cloud presumably drifted between the 
source and the earth, creating flux density changes due to focusing and refrac- 
tion. 

Because there are two timescales associated with strong scattering in the in- 
terstellar medium, three distinct data averaging regimes are important for con- 
structing images from interferometry data obtained on a timescale tint. These are: 
tint > t,f (ensemble average image), t,f > tinl > fdif (average image), and tint < 
f d j f  (snapshot image). The characteristics of these image regimes are described 
by Narayan (1992). Narayan and Goodman (1989), and Goodman and Narayan 
(1989). For ensemble averaging [see Eqs. (13.168) through (13.170)], the im- 
age is essentially convolved with the appropriate “seeing” function. The snapshot 
regime offers intriguing possibilities for image restoration. In this regime it should 
be possible to image the source with a resolution of A/dref. which can be very 
much smaller than that achievable with terrestrial interferometry. In this case the 
scattering screen functions as the aperture of the interferometer. Because of the 
multipath propagation provided by refractive scattering, which brings radiation 
from widely separated parts of the scattering screen to the observer, the effective 
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baselines can be very large. See Section 14.3 for further discussion, including an 
observation by Wolszczan and Cordes (1987). 
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14 Van Cittert-Zernike Theorem, 
Spatial Coherence, 
and Scattering 

This chapter is concerned with the van Cittert-Zernike theorem, including an 
examination of the assumptions involved in its derivation, the requirement of spa- 
tial incoherence of a source, and the interferometer response to a coherent source. 
There is also a brief discussion of some aspects of scattering by irregularities in 
the propagation medium. Much of the development of the theory of coherence 
and similar concepts of electromagnetic radiation is to be found in the literature 
of optics. The terminology is sometimes different from that which has evolved in 
radio interferometry, but many of the physical situations are similar or identical. 
In some of the analyses we use optical terminology and introduce the concept of 
rnurual coherence, which includes complex visibility. 

14.1 VAN CITTERT-ZERNIKE THEOREM 

We showed in Chapters 2 and 3 that the cross-correlation of the signals received in 
spaced antennas can be used to map the intensity distribution of a distant cosmic 
source through a Fourier transform relationship. This result is a form of the van 
Cittert-Zernike theorem, which originated in optics. The basis for the theorem is a 
study published by van Cittert in 1934, and followed a few years later by a simpler 
derivation by Zernike. A description of the result established by van Cittert and 
Zernike is given by Born and Wolf (1999, Ch. 10). The original form of the result 
does not specifically refer to the Fourier transform relationship between intensity 
and mutual coherence, but is essentially as follows. 

Consider an extended, quasi-monochromatic, incoherent source, and let the 
mutual coherence of the radiation be measured at two points PI and P2 in a plane 
normal to the direction of the source, as in Fig. 14.1. Then suppose that the source 
is replaced by an aperture of identical shape and size, and illuminated from behind 
by a spatially coherent wavefront. The distribution of the electric field amplitude 
over the aperture is proportional to the intensity distribution over the source. The 
Fraunhofer diffraction pattern of the aperture is observable in the plane containing 
PI  and Pz. The relative positions of the points PI and PI are the same in the two 
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Source / Aperture 

Figure 14.1 (a) Geometry of a distant spatially incoherent source and the points PI and P2 at 
which the mutual coherence of the radiation is measured. The source plane (X, Y )  is parallel 
to the measurement plane (x. y) but at a large distance from it. (b) Similar geometry for 
measurement of the radiation field from an aperture in the (X, Y )  plane that is illuminated from 
above by a coherent wavefront. The radiated field has a maximum at the point P2. Direction 
cosines (I, m) are defined with respect to the (x, y )  axes in the measurement plane, and ([’, m’) 
with respect to the (X, Y) axes in the plane of the aperture. 

cases, but for the aperture the geometric configuration is such that P2 lies on the 
maximum of the diffraction pattern. Then the mutual coherence measured for the 
incoherent source, normalized to unity for zero spacing between PI and P2, is 
equal to the complex amplitude of thc field of the aperture diffraction pattern at 
the position P I ,  normalized to the maximum value at P2. 

In this form the theorem results from the fact that the behavior of both the 
mutual coherence and the Fraunhofer diffraction can be represented by similar 
Fourier transform relationships. Derivation of the theorem provides an opportu- 
nity to examine the assumptions involved, and is given below. The analysis is 
similar to that given by Born and Wolf, but with some modifications to take ad- 
vantage of the simplified geometry when the source is at an astronomical distance. 
First we note that in optics the mutual coherencefunction for a field E ( t ) ,  mea- 
sured at points l and 2, is represented by 

(14.1) 
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where u and u are the coordinates of the spacing between the two measurement 
points, expressed in units of wavelength. r 1 2 ( u ,  u,  0), for zero time offset, is 
equivalent to the complex visibility V ( u ,  u )  used in the radio case. 

Mutual Coherence of an Incoherent Source 

The geometric situation for the incoherent source is shown in Fig. 14.la. Con- 
sider the source located in a distant plane, indicated by (X, k'). The radiated field 
is measured at two points, P,  and P2, in the ( x ,  y) plane that is parallel to the 
source plane. In the radio case these points are the locations of the interferometer 
antennas. It is convenient to specify the position of a point in the (X, Y) plane by 
the direction cosines ( I ,  rn) measured with respect to the (x, y)  axes. The source 
is sufficiently distant that the direction of any point within it measured from P I  
is the same as that measured from P2. The fields at PI and P2 resulting from a 
single element of the source at the point ( I ,  m) are given by 

exp[-j2nu(t - R I / c ) ]  

RI 
(14.2) 

and 

(14.3) 
exp [-j2lru(t - R 2 / c ) ]  

R2 

where & ( I ,  m, t )  is a phasor representation of the complex amplitude of the elec- 
tric field at the source for an element at position ( 1 ,  m ) .  RI  and RI are the distances 
from this element to PI and P2, respectively, and c is the velocity of light. The ex- 
ponential terms in Eqs. (14.2) and (14.3) represent the phase change in traversing 
the paths from the source to PI  and P2. 

The complex cross-correlation of the field voltages at PI and P2 due to the 
radiation from the element at (I, m) is, for zero time offset, 

exp[-j2nu(t - R1/c)]exp[j2nu(t - R ~ / c ) ]  

R I  R2 
X ( 14.4) 

where the asterisk denotes the complex conjugate, and the angle brackets ( ) rep- 
resent a time average. Note that the source is assumed to be spatially incoherent, 
which means that terms of the form ( E l ( l p ,  m p ,  t )E;( lq ,  m,, t)), where p and q 
denote different elements of the source, are zero. If the quantity (R2 - R l ) / c  is 
small compared with the reciprocal receiver bandwidth, we can neglect it within 
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the angle brackets of Eq. (14.4), where it occurs in the amplitude term for G. 
Equation ( 14.4) then becomes 

( € ( I ,  m ,  t ) G * ( l ,  m ,  t ) )  exp[j2nv(R1 - R ~ ) / c ]  
Rl R2 

( ~ l ( 1 ,  m ,  t ) E ; ( i ,  m,  r ) )  = 

(14.5) 

The quantity (E(1,  m,  t )&*(l ,  m, r ) )  is a measure of the time-averaged intensity 
1(1, m )  of the source. To obtain the mutual coherence function of the fields at 
points PI and P2, we integrate over the source, using ds  to represent an element 
of area within the (X, Y) plane: 

where u and u are the x and y components of the spacing between the points PI 
and P2 measured in wavelengths. Note that ( R 1  - R 2 )  is the differential distance in 
the path lengths from (I, m )  in the source to P I  and P2. The points PI and P2 have 
coordinates (xI,  y ~ )  and (x2, y2) respectively, so u = (XI - X ~ ) U / C  and u = (y1 - 
y2)u/c ,  where c / u  is the wavelength. Thus we obtain (R2 - R I )  = (ul + um)c/u. 
Because the distance of the source is very much greater than the distance between 
PI and P2, for the remaining R terms we can put R I  = R2 2: R, where R is the 
distance between the (X, Y) and (x, y)  origins. Then ds  = R2 di dm,  and from 
Eq. (14.6) 

I ( 1 ,  rn)e-i2x(u'+um)dl dm.  ( 1  4.7) 

Since the integrand in Eq. (14.7) is zero outside the source boundary, the limits of 
the integral effectively extend to infinity and the mutual coherence r12(u ,  u,  O ) ,  
which is equivalent to the complex visibility V ( u ,  u), is the Fourier transform of 
the intensity distribution / ( I ,  m) of the source. This result is generally referred 
to as the van Cittert-Zernike theorem. However, it is instructive to examine the 
definition of the theorem in terms of the diffraction pattern of an aperture given 
at the beginning of this section. 

s lo"rce rI2(u, u, 0) = 

Diffraction at an Aperture and the Response of an Antenna 

The Fraunhofer diffraction field of an aperture, as a function of angle, can be an- 
alyzed using the geometry shown in Fig. 14.lb. Here, an aperture is illuminated 
by an electromagnetic field of amplitude &(I, m, I ) ,  where again we use direction 
cosines with respect to the x and y axes to indicate points within the aperture 
as seen from PI and P2. The (x, y)  plane is in the far field of a wavefront from 
any point in the aperture, so such a wavefront can be considered plane over the 
distance PI P2. The aperture is centered on the point 0 and is normal to the direc- 
tion 0 Pz. The phase over the aperture is assumed to be uniform, and components 
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of the field therefore combine in phase at P2. Thus in the ( x ,  y) plane the max- 
imum field strength occurs at P2. Now consider the field at the point PI  which 
has coordinates ( x ,  y). The component of the field at PI due to radiation from an 
element of the aperture at position (I, m )  is given by Eq. (14.2). The path lengths 
from the point (I, m )  at the source to PI and P2 are R1 and R2, respectively, and 
R2 - R1 = l x  + m y .  Thus from Eq. (14.2) we can write 

Again, for the remaining R terms we put R ,  2: R2 2 R .  Integration over the 
aperture then gives the total field at PI, 

where li is the wavelength and the element of area ds is proportional to dl dm. 
The term on the right-hand side that is outside the integrals is a propagation factor 
that represents the variation in amplitude and phase over the path from the source 
to P2 in Fig. 14.1 b. In applying the result to the radiation pattern of an aperture, 
we replace the time-dependent functions E and & by the corresponding rms field 
amplitudes, which will be denoted by E and s, respectively: 

where the propagation factor in Eq. (14.9) has been omitted. A comparison of 
Eqs. (14.7) and (14.10) explains the van Cittert-Zernike theorem as described 
at the beginning of this section. With the specified proportionality between the 
incoherent intensity and the coherent field amplitude, it will be found that 

In Eqs. (14.7) and (14.10) the integrand is zero outside the source or aperture. 
Thus, in each case, the limits of integration can be extended to foo,  and the equa- 
tions are seen to be Fourier transforms. The calculations of the mutual coherence 
of the source and the radiation pattern of the aperture yield similar results because 
the geometry and the mathematical approximations are the same in each case. It 
should be emphasized, however, that the physical situations are different. In the 
first case considered the source is spatially incoherent over its surface, whereas in 
the second case the field across the aperture is fully coherent. 

The result in Eq. (14.10) also gives the angular radiation pattern for an antenna 
that has the form of an excited aperture. The application to an antenna is more 
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useful if the radiation pattern is specified in terms of an angular representation 
( l ’ ,  m’) of the direction of radiation from the antenna aperture instead of the po- 
sition of the point P I ,  and if the field distribution over the aperture is specified 
in terms of units of length rather than angle. ( l ’ ,  m’) are direction cosines with 
respect to the ( X ,  Y )  axes. Since the angles concerned are small, we can substi- 
tute into Eq. (14.10) x = Rl‘, y = Rm‘, 1 = X / R ,  m = Y / R ,  dl = d X / R ,  and 
dm = dY/R, and obtain 

& x y  ( x ,  y)e-j2n l W / U / ’ + ( ~ / V m ’ l  d x  d y. ( 1 4.1 2) 

This is the expression for the field distribution resulting from Fraunhofer diffrac- 
tion at an aperture [see, e.g., Silver (1949)]. It includes the case of a transmitting 
antenna in which the aperture of a parabolic reflector is illuminated by a radiator 
at the focus. If such an antenna is used in reception, the received voltage from a 
source in direction ( l ‘ ,  m’) is proportional to the right-hand side of Eq. (14.12). 
Thus the voltage reception pattern VA(f’, m’), introduced in Section 3.3 under 
Antennas, is proportional to the right-hand side of Eq. (14.12). 

To obtain the power radiation pattern for an antenna, we need the response in 
terms of lE’(lf, m1)I2. From an autocorrelation theorem of Fourier transforms the 
squared amplitude ofEf(l’, m’) is equal to the autocorrelation of the Fourier trans- 
form of Ef(f’ ,  m’) [see, e.g., Bracewell (2000), and note that this relationship is 
also a generalization of the Wiener-Khinchin relationship derived in Section 3.21. 
Thus the power radiated as a function of angle is given by 

-f 

E ( 1 1 ,  m’) \\- 
aperture 

~E’(I’ ,  m’)12 

(14.13) / / [ ~ x Y ( x .  Y> * *  B X ~ ( X ,  Y ) I ~ -  j 2 1 r [ ( X / A ) I ’ + ( Y / A ) m ’ l  d x  d y ,  

where E ( X ,  Y )  * e(X, Y )  is the two-dimensional autocorrelation function of 
the field distribution over the aperture. To obtain absolute values of the radiated 
field, the required constant of proportionality can be determined by integrating 
Eq. (14.13) over 477 sr to obtain the total radiated power, and equating this to 
the power applied to the antenna terminals. In reception, the power collected by 
an antenna is proportional to the power radiated in transmission, so the form of 
the beam is identical in the two cases. To illustrate the physical interpretation 
of Eq. (14.13), consider the simple case of a rectangular aperture with uniform 
excitation of the electric field. The function B x y ( X ,  Y )  is then the product of 
two one-dimensional functions of X and Y .  If d is the aperture width in the X 
direction, the autocorrelation function in X is triangular with a width 2d, and 
Fourier transformation gives 

i i p e r t U R  

(14.14) 

In the 1’ dimension the full width of this beam at the half-power level is 0.886A/d, 
for example, I ”  for d / A  = 50.8 wavelengths. For a uniformly illuminated circular 
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aperture of diameter d, the response pattern is circularly symmetrical and is given 
by 

(14.15) 

where the subscript r indicates a radial profile in which 1: is measured from the 
center of the beam. The full width of the beam at the half-power level is 1.03Ald. 

A more direct way of obtaining the Fraunhofer radiation pattern of an aperture 
antenna is to start by considering the field strength of the radiated wavefront as a 
function of direction, rather than the field strength at a single point P I ,  as above. 
However, the method used was chosen to provide a more direct comparison with 
the interferometer response to a spatially incoherent source. For a more detailed 
analysis of the response of an antenna, see, for example, Booker and Clemmow 
(1950), Bracewell (l962), or the textbooks on antennas in the bibliography of 
Chapter 5.  

Assumptions in the Derivation and Application of the 
Van Cittert-Zernike Theorem 

At this point it is convenient to collect and review the assumptions and limitations 
that are involved in the theory of the interferometer response. 

1 .  Polarization of rhe electric field. Although the electric fields are vector 
quantities with directions that depend on the polarization of the radiation, the 
components received by antennas from different elements of the source can be 
combined in the manner of scalar quantities. The fields are measured by anten- 
nas at PI and PI,  and each antenna responds to the component of the radiation 
for which the polarization matches that of the antenna. If the fields are randomly 
polarized and the antennas are identically polarized, then the signal product in 
Eq. (14.4) represents half the total power at each antenna. However, the antenna 
polarizations do not have to be identical since, in general, the interferometer sys- 
tem will respond to some combination of components of the source intensity 
determined by the antenna polarizations. The ways in which the antenna polar- 
izations can be chosen to examine all polarizations of the incident radiation are 
described in Section 4.8 under Srokes Visibilities. Thus the scalar treatment of the 
field involves no loss of generality. 

2. Spatial incoherence ofrhe source. The radiation from any point on the 
source is statistically independent from that from any other point. This applies al- 
most universally to astronomical sources, and permits the integration in Eq. (14.6) 
by allowing cross products representing different elements of the source to be 
omitted. The Fourier transform relationship provided by the van Cittert-Zernike 
theorem requires the source to be spatially incoherent. Spatial coherence and in- 
coherence are discussed in Section 14.2. Note that an incoherent source gives rise 
to a coherent or partially coherent wavefront as its radiation propagates through 
space. If this were not the case the mutual coherence (or visibility) of an incoher- 
ent source, measured by spaced antennas, would always be zero. 
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3. Bandwidth pattern. The assumption required in going from Eqs. (14.4) to 
(14.5), that (R2 - R l ) / c  is less than the reciprocal bandwidth (Av)-', can be 
written 

Av 1 
< -  - Av 1 

- < -; 
v 1dU v mdv'  

(14.16) 

where ld and m d  are the maximum angular dimensions of the source. This is the 
requirement that the source be within the limits imposed by the bandwidth pattern 
of the interferometer, which is discussed in Section 2.2. Conversely, the required 
field of view limits the maximum bandwidth that can be used. The distortion 
caused by the bandwidth effect is discussed further in Section 6.3 and, if not 
severe, can often be corrected. 

4. Distance ofthe source. For an array with maximum baseline D the depar- 
ture of the wavefront from a plane for a source of distance R is - D2/R. Thus the 
far-field distance R f f ,  defined as that for which the divergence is small compared 
with the wavelength A, is given by 

R j f  >> D 2 / i .  (14.17) 

The far-field condition implies that the antenna spacing subtends a small angle 
as seen from the source and results in the approximation for Fraunhofer diffrac- 
tion. If the source is at a known distance closer than the far-field distance, then 
the phase term can be compensated. This may sometimes be necessary in solar 
system studies. For example, for an antenna spacing of 35 km and a wavelength 
of 1 cm, the far-field distance is greater than I .2 x 10" m, or approximately the 
distance of the sun. Note that the requirement of the far-field distance means that 
no information concerning the structure of the object in the longitudinal direction 
is possible, only the intensity distribution as projected onto the celestial sphere. 

5 .  Use ofdirection cosines. In going from Eqs. (14.6) to (14.7), the path differ- 
ence R2 - R I  is specified in terms of the baseline coordinates (u ,  u )  and angular 
coordinates ( 1 ,  m ) .  The expression for the path difference is precise if 1 and m are 
specified as direction cosines. In integration over the source, the element of area 
bounded by increments d f  dm is e ual to dl dmln,  where n is the third direction 
cosine and is equal to + 1 - l 2  - m2. In optics, derivation of the van Cittert- 
Zernike theorem usually involves the assumption that the source subtends only 
smaIl angles at the measurement plane. Then I and m can be approximated by the 
corresponding small angles and n can be approximated by unity. As a result, the 
relationship between Y and I becomes a two-dimensional Fourier transform, as 
in the approximation for limited field size discussed in Section 3.1. In the radio 
case the less restrictive result in Eq. (3.7) is sometimes required; see Sections 3.1 
and 11.8. 

6. Three-dimensional distribution of the visibility measurements. As antennas 
track a source, the antenna-spacing vectors, designated above by (u ,  v) compo- 
nents, may not lie in a plane, and three coordinates, (u ,  u ,  w ) ,  are then required to 
specify them. The Fourier transform relationship is then more complicated, but a 



602 VAN CITTERT-ZERNIKE THEOREM, SPATIAL COHERENCE, AND SCAITERING 

simplifying approximation can be made if the field of view to be mapped is small. 
These effects are discussed in Sections 3.1 and 1 1.8. 

7. Refraction in space. It has been implicitly assumed in the analysis above 
that the space between the source and the antennas is empty, or at least that any 
medium within it has a uniform refractive index, so that there is no distortion 
of the incoming wavefront from the source, In practice, the interstellar and inter- 
planetary media, and the earth’s atmosphere and ionosphere, can introduce effects 
including rotation of the position angle of a linearly polarized component as dis- 
cussed in Section 13.3; see Eq. (13.135). 

14.2 SPATIAL COHERENCE 

In the derivation of the interferometer response in Chapters 2 and 3, and in 
Eq. (14.3, it is assumed that the source under discussion is spatially incoherent. 
This means that the waveforms received from different spatial elements of the 
source are not correlated, which enables us  to add the correlator output from the 
different angular increments in the integration over the source. We now examine 
this requirement in more detail. To illustrate the principles involved, it is suffi- 
cient to work in one dimension on the sky, for which the position is given by the 
direction cosine I .  

Incident Field 

Consider the electric field E(1, t) at the earth’s surface resulting from a wavefront 
incident from the direction 1 at time t. Figure 14.2 shows the geometry of the situ- 
ation, in which 1 = 0 in the direction 0 s  of the center, or nominal position, of the 
source under observation. 1 is a direction cosine measured from 0 B, the normal 

Figure 14.2 Diagram to illustrate the variation of phase along a line 0 B that is perpendicular 
to the direction of a source O S ,  where I is the direction cosine that specifies the direction 0 S’, 
and is defined with respect to O B .  The angle SOS’ is small and is thus approximately equal 
to I ,  as indicated. The line 0s‘ points toward another part of the same source, and OB’ is 
perpendicular to it. 
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to 0s. A path 0s' is shown that indicates the direction of another part of the 
source. Radiation from the direction 0s' produces a wavefront parallel to 0 B'. 
The wavefronts from points on the source are plane because we are considering a 
source in the far field of the interferometer. The line O A  represents the projection 
of the baseline normal to the direction of the source, and the distance O A  mea- 
sured in wavelengths is equal to u .  Now consider wavefronts from the directions 
S and S' that arrive at the same time at 0. To reach the point A, the wavefront 
from S' has to travel a further distance AA'.  With the usual small-angle approx- 
imation, we find that the distance AA' is equal to ulclu, that is, ul wavelengths. 
Thus the wave from direction S' is delayed at A by a time interval T = ul /u ,  
relative 10 the wave from S. If we represent the wave from direction S' by E ( f ,  t )  
at 0, at A it is E ( f ,  t - T). Now because the incident wavefronts are plane, the 
amplitude of the wave does not change over the distance AA'.  However, the phase 
changes by UT = ul ,  so for the wave from S' at A we have 

E(1, t - T )  = E(1,  t)e-j2nu'. (14.18) 

If e ( u ,  t )  is the field at A resulting from radiation from all parts of the source, 
then 

e(u,  t )  = E(1,  t)e-'2""'dl. J: (14.19) 

It will be assumed that the angular dimensions of the source are not large, so also 
we have 

E ( l ,  t )  = 0, 111 >_ 1. (1 4.20) 

The condition specified in Eq. (14.20) allows us to write the limits of the integral 
in Eq. (14.19) as foo.  Note that Eq. (14.19) has the form of a Fourier transform, 
and the inverse transform gives E(1,  t )  from e ( u ,  t). Equation (14.19) will be 
required in the following subsection. 

Source Coherence 

We now return to the spatial coherence of the source and follow part of a more 
extensive analysis by Swenson and Mathur (1968). As a measure of the spatial 
coherence we introduce the source coherence function y. This is defined in terms 
of the cross-correlation of signals received from two different directions, 11 and 
12 .  at two different times: 

= ( E ( l 1 ,  t ) E * ( l * ,  t - 5)). 
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Finite limits are used in the integral to ensure convergence. y ( l 1 , 1 2 ,  r) is similar 
to the coherence function of a source or object discussed by Drane and Parrent 
( 1962) and Beran and Parrent ( 1964). 

The complex degree of coherence of an extended source is the normalized 
source coherence function 

(14.22) 

where ~ ( 1 1 ,  r) is defined by putting 11 = 12 in Eq. (14.21), that is, ~ ( 1 1 ,  r )  = y 
( 1 1 , 1 1 ,  r). It can be shown by usingthe Schwarz inequality that 0 F I y ~ ( 1 1 , 1 2 ,  t)l 
5 1. The extreme values of 0 and 1 correspond to the cases of complete in- 
coherence and complete coherence, respectively. When dealing with extended 
sources of arbitrary spectral width, it is possible that, for a given pair of points, 
l1 and 12 ,  l y ~ ( I 1 , 1 2 ,  r)l is zero for one value of r and nonzero for another value. 
Therefore, more stringent definitions of complete coherence and incoherence are 
necessary. The following definitions are adapted from Parrent (1959): 

1. The emissions from the directions I i  and 12 are completely coherent (inco- 

2. An extended source is coherent (incoherent) if the emissions from all pairs 
herent) if IyN( f I ,  12 ,  r)]  = l(0) for all values of r .  

of directions 1 1 , 1 2  within the source are coherent (incoherent). 

In all other cases the extended source is described as partially coherent. 
Consider now the coherence function of the field e(xA,  t) of a distant source 

measured, say, at the earth's surface, xi being a linear coordinate measured in 
wavelengths in a direction normal to I = 0: 

This is a variation of the mutual coherence function rI2  in Eq. (14.1), in which 
the positions of the measurement points defined by xA1 and xA2 are retained, rather 
than just the relative positions given by the baseline components. By using the 
Fourier transform relationship between E(1,  t )  and e(u,  t )  derived in Eq. (14.19), 
and replacing u by xA, we obtain 

and the inverse transform, which is 
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The relationships in Eqs. (14.24) and ( 14.25) do not provide a means of measuring 
the intensity distribution of a source, except in the case of complete incoherence. 
For complete incoherence, the coherence function can be expressed as 

where 6 is the delta function. Using the relation in Eq. (14.26) in conjunction with 
Eqs. (14.24) and (14.23, we find that the self-coherence function of a completely 
incoherent source and its spatial frequency spectrum are Fourier transforms of 
each other: 

00 

r(u, t) = y ( l ,  t)e-i2nu'dI ( 14.27) 

y ( l ,  T )  = r ( u ,  T)ei2nu'du, (14.28) 

L 
1, 

00 

where u = xAl - xA2. It is clear that r ( u ,  T )  is independent of xil and xi2 and 
depends only on their difference. As explained in Section 2.3 under Convolution 
Theorem and Spatial Frequency, u can be interpreted as the spacing of two sample 
points between which the coherence of the field is measured, and also as the 
spatial frequency of the visibility measured over the same baseline. For T = 0, 
from Eqs. (14.21) and (14.26),we obtain 

y( l . 0 )  = ( IE( l ) l2) .  (14.29) 

which is the one-dimensional intensity distribution of the source, 11, introduced 
in Eq. (1.9). Then from Eqs. (14.27) and (14.29) 

(14.30) 

r(u, 0) is measured between points along a line normal to the direction 1 = 0. 
As measured with an interferometer, it is also the complex visibility Y .  Equa- 
tion (14.30) is the Fourier transform relationship between mutual coherence (vis- 
ibility) and intensity. 

When the incoherence condition in Eq. (14.26) is introduced into Eqs. (14.24) 
and (14.25), two results appear: the van Cittert-Zernike relation between mutual 
coherence and intensity, and the stationarity of the mutual coherence with respect 
to u. The physical reason underlying these results is seen in Fig. 14.2. When the 
wavefronts incident at different angles combine at any point, the relative phases 
of their (Fourier) frequency components vary linearly with the position of the 
point (e.g., the position of A along the line 0 B in Fig. 14.2), and for small 1 they 
also vary linearly with the angle on the sky. As a result, the phase differences 
of the Fourier components at two points depend only on the relative positions of 
the points, not their absolute positions. Interferometer measurements of mutual 
coherence incorporate the phase differences for a range of angles of incidence 



governed by the angular dimensions of the source and the width of the antenna 
beams. The linear relationship between phase and position angle allows us to 
recover the angular distribution of the incident wave intensity from the variation 
of the mutual coherence as a function of u ,  by Fourier analysis. If the angular 
width of the source is small enough that the distance AA' in Fig. 14.2 is always 
much less than the wavelength, then the form of the electric field remains constant 
along the line OA, and the source is not resolved. 

Completely Coherent Source 

Parrent (1959) has shown that an extended source can be completely coherent 
only if it is monochromatic. As examples of such a source one may visualize 
the aperture of a distant, large antenna, or an ensemble of radiating elements 
all driven by the same monochromatic signal. The aperture considered in Sec- 
tion 14.1 under Diffraction at an Aperture and the Response of an Antenna is a 
conceptual example of a coherent source. The difference between the responses 
of an interferometer to a fully coherent source and to a fully incoherent one can 
be explained by the following physical picture. The source can be envisioned as 
an ensemble of radiators distributed over a solid angle on the sky. In the case of a 
coherent source the signals from the radiators are monochromatic and coherent. 
The radiation in any direction combines into a single monochromatic wavefront 
and produces a monochromatic signal in each antenna of an interferometer. The 
output of the correlator is directly proportional to the product of the two (com- 
plex) signal amplitudes from the antennas. Thus if a coherent source is observed 
with n, antennas, the n,(n, - 1)/2 pairwise cross-correlations of the signals that 
are measured can be factored into n, values of complex signal amplitude. 

In contrast, for an incoherent source the outputs from radiating elements are 
uncorrelated and must be considered independently. Each one produces a com- 
ponent of the fringe pattern in the correlator output. But since the phases of these 
fringe components depend on the positions of the radiators within the source, the 
combined response is proportional not only to the signal amplitudes at the anten- 
nas but also to a factor that depends on the angular distribution of the radiators. 
This factor, of magnitude 5 1, is equal to the modulus of the visibility normalized 
to unity for an unresolved (point) source of flux density equal to that of the source 
under observation. Unless the source is unresolved, it is not possible to factor the 
measured cross-correlations into signal amplitude values at the antennas. Because 
the emissions of the radiating elements of a source are uncorrelated, the informa- 
tion on the source distribution is preserved in the ensemble of wavefronts they 
produce at the antennas. 

As shown by the derivation of the angular dependence of the radiation from a 
coherently illuminated aperture [Eq. (14.12)], and suggested by the analogy with 
a large antenna, the radiation from a coherent source is highly directional. Thus 
the signal strengths observed depend on the absolute positions of the two antennas 
of an interferometer, as in Eqs. (14.24) and (14.25), not only on their relative 
positions as is the case for an incoherent source. The ability to factor the signal 
outputs from a series of baselines, and the nonstationarity of the correlator output 
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measurements with the absolute positions of the antennas, are two characteristics 
that could allow a coherent source to be recognized (MacPhie 1964). From the 
analysis in Section 14.1, it is clear that a similar range of antenna spacings is 
required to resolve an incoherent source or to explore the radiation pattern of a 
coherent source of the same angular size. 

14.3 SCATTERING AND THE PROPAGATION OF COHERENCE 

It is well known that optical telescope images of single stars made with expo- 
sure times short compared with the timescale of atmospheric scintillation exhibit 
multiple stellar images (see Section 16.4 under Speckle Imaging). These images 
result from the scattering of light from the star by irregularities in the earth’s at- 
mosphere. Something closely analogous to this occurs in the case of imaging of 
an unresolved radio source through a medium with strong irregular scattering, 
such as the interplanetary medium within a few degrees of the sun, as described 
in Section 13.5 under Interplanetary Scintillation. Since each scattered image 
results from the emission of the same source, one is led to expect that such a situ- 
ation would simulate the effect of a distribution of coherent point sources. In this 
section we examine the effects of scattering by considering the propagation of 
coherence in space, following in part a discussion by Cornwell, Anantharamaiah, 
and Narayan (1989). This formalism suggests methods for the recovery of the 
unscattered image from the observed image. 

Given a radiating surface, we wish to know the mutual coherence function on 
another (possibly virtual) surface in space. In the typical radio astronomy situa- 
tion, a number of simplifying assumptions can be made about the geometry of 
the problem. Consider the situation illustrated in Fig. 14.3, in which narrowband 
radio waves propagate from surface S to surface Q. The mutual coherence of 
two points in space is the expectation of the product of the (copolarized) elec- 
tric fields at the two points. For signals correlated with arbitrary time delay, the 
mutual coherence is 

The mutual coherence function r is a function of the field at two points and the 
time difference r .  We consider the propagation of mutual intensity, that is, the 
mutual coherence evaluated for 7 = 0. Following common practice, we represent 
the mutual intensity by J (el, Q2) = r(QI, Q2,  0). J will be subscripted by S, 
Q, or B to indicate the corresponding plane (Fig. 14.3) of the mutual intensity 
value. We assume that the emitting surface is completely incoherent, as is usually 
the case for astronomical objects, and that the observed radiation is restricted to 
a narrow band of frequencies as dictated by the characteristics of the receiving 
system. From Eq. (14.3 1) and the Huygens-Fresnel formulation of radiation, it 
can be shown (Born and Wolf 1999, Goodman 1985), by a calculation similar to 
the one used in deriving Eq. (14.6), that the mutual intensity for points Ql and 
Q2 is 
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S 

Figure 14.3 Simplified geometry for examining the propagation of coherence. S represents 
an extended source, Q is the location of a scattering screen, and B is the measurement plane. 
Surfaces S, Q ,  and B are plane and parallel, and r l ,  r2, dl , and d2 are much greater than the 
wavelength. All rays are nearly (but not necessarily exactly) perpendicular to the surfaces. 

where dSI dS2 is a surface element of S, and A is the wavelength at the center of 
the observed frequency band. 

The condition of incoherence can be represented by the use of a delta function 
(Beran and Parrent 1964), as in Eq. (14.26). Here the mutual intensity is repre- 
sented by a delta function, and thus the intensity distribution on the surface Q is 
found by allowing points Ql and Q2 to merge: 

where the factor 1’ has been included to preserve the physical dimension of in- 
tensity. Equation ( 14.32) then becomes 

When the angular dimension of the source is infinitesimal, that is, when the source 
is unresolved, the integration over the source becomes trivial and the mutual in- 
tensity can be factored into terms depending, respectively, on rl and r2: 
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where r I  and r2 now originate at il single point S. In the more general case of 
a resolved source Eq. (14.34) cannot be factored. Equations (14.34) and (14.35) 
describe for their respective cases the propagation of mutual coherence in situa- 
tions subject to the constraints of Fig. 14.3, and thus can be used to determine the 
mutual intensity on surface Q resulting from incoherent radiation from surface S. 
Examination of Eq. (14.3 1) reveals that, for the extended source S, the mutual in- 
tensity on Q depends on both rl  and r2 for all pairs of points on Q .  Thus the field 
at Q is at least partially coherent for all sources, including those of finite extent. 
This is intuitively reasonable, as all points on Q are illuminated by all points on 
S. In fact, it can be demonstrated rigorously that an incoherent field cannot exist 
in free space (Parrent 1959). 

Suppose now that we have a situation in which the surface Q is actually a 
screen of irregularities in the transmission medium, such as plasma or dust, which 
scatters the radiation from S. The mutual intensity incident on the screen is mod- 
ified by a complex transmission factor T (  Q) to produce the transmitted mutual 
intensity 

(14.36) 

where subscripts i and t indicate the incident and transmitted mutual intensity, 
respectively. From Eq. (14.34) we now define a “propagator” (Cornwell, Anan- 
tharamaiah, and Narayan 1989) for mutual intensity: 

(14.37) 

where r and d are defined in Fig. 14.3. Then the mutual intensity on surface B is 
given, in terms of the mutual intensity of an extended source S, by 

For an incoherent extended source 

JB(B1, B2) = l ( S ) W ( S ,  BI)W*(S,  B2)dS,  ( 14.39) 

and for a point source of flux density F ,  the mutual intensity on B becomes 

J B ( B I ,  B2) = FA-2W(S,  B , ) W * ( S ,  B2). ( 14.40) 

Again, for the unresoIved source the mutual intensity on B consists of two factors, 
each depending only on one position on B.  For an extended incoherent source 
distribution on S, however, the mutual intensity depends on differences in position 
and therefore cannot be factored. 



610 VAN CITTERT-ZERNIKE THEOREM, SPATIAL COHERENCE, AND SCATTERING 

The existence of a scattering screen between a source and an observer with 
an instrument of limited aperture raises the possibility of greatly increased an- 
gular resolution resulting from the much larger extent of the scattering screen. 
The partial coherence of radiation from the screen requires that the intensity be 
measured at all points on the measurement plane B, spaced as dictated by the 
Nyquist criterion, rather than at all points in the spatial frequency spectrum as 
allowed by the van Cittert-Zernike theorem. The former observing mode results 
in very much more data than does the latter. In two spatial dimensions a large 
redundancy of data results, so that in principle not only can the scattering screen 
be characterized, but the source as well. In this respect the problem is similar to 
that of self-calibration (Section 1 I .4). Unfortunately, in the case of the scattering 
screen, the practical difficulties of such observations are enormous, and few sig- 
nificant attempts have been made to apply the principle. Cornwell and Narayan 
(1993) discuss the possibilities of statistical image synthesis using scattering to 
obtain ultrafine resolution in a manner somewhat analogous to speckle imaging 
(see Section 16.4). 

Emission from a radio source that undergoes strong scattering during prop- 
agation through space has been investigated by Anantharamaiah, Cornwell, and 
Narayan (l989), and Cornwell, Anantharamaiah, and Narayan (1989). To demon- 
strate the response of a radio telescope to such a spatially coherent source distri- 
bution, they observed the strong and essentially pointlike source 3C279, which 
passes close to the sun each year. Under these conditions the scattering is strong 
enough to cause amplitude scintillation of the received signals. Anantharamaiah 
and colleagues used the VLA in its most extended configuration for which the 
longest baselines are approximately 35 km. The velocity of the solar wind, of or- 
der 100400 km s-', causes irregularities to sweep across the array in -100 ms, 
so it was necessary to make snapshot observations of duration 10-40 ms to avoid 
smearing of the image by the movement of the scattering screen. Observations 
were made at wavelengths of 20, 6, and 2 cm, with the source at angular dis- 
tances of 0.9" to 5" from the sun. It was found that the correlator output values 
could be factored as expected for a coherent source. When correlated signals were 
averaged for about 6 s, an enlarged image of the source was obtained, and the 
enlargement increased as the distance from the sun decreased. It was also demon- 
strated that it would be possible to determine the characteristics of the scatter- 
ing screen by measuring the mutual intensity function on the ground, provided 
that the latter is measured completely in the two-dimensional spatial frequency 
domain. It is not possible to distinguish between a spatially coherent extended 
source and a scattering screen illuminated by a point source. 

A significant observation was made by Wolszczan and Cordes (1987), who 
were able to infer the dimensions of structure within pulsar PSR 1237 + 25 from 
an occurrence of interstellar scattering. The pulsar was observed with a single 
antenna, the 308-m spherical reflector at Arecibo, at a frequency of 430 MHz. 
Dynamic spectra of the received signal (i.e., the received power displayed as 
a function of both time and frequency) showed prominent band structure with 
maxima separated by -300-700 kHz in frequency. This was interpreted in terms 
of a thin-screen model of the interstellar medium, in which refraction of rays 



REFERENCES 611 

from the pulsar occurred at two separated points in the screen. The analysis of 
such a model is complicated by the Occurrence of both diffractive and refractive 
scattering, resulting from structure smaller and larger than the Fresnel scale, re- 
spectively (Cordes, Pidwerbetsky, and Lovelace 1986). The refraction gave rise 
to two images of the source at the radio telescope, resulting in fringes in the inten- 
sity of the received signal. The distance of the pulsar (0.33 kpc) and its transverse 
velocity (178 km s-') were known from other observations, and the distance of 
the screen was taken to be half the distance of the pulsar. It was deduced that 
the angular separation of the images was -3.3 mas, corresponding to a spacing 
of -I AU (astronomical unit) between the refracting structures. In effect the re- 
fracting structures constitute a two-element interferometer, with fringe spacing 
- I  parcsec. For comparison, the angular resolution of a baseline equal to the 
diameter of the earth at 430 MHz would be 44 mas. The particular conditions 
that resulted in this observation lasted for at least 19 days, and during that period 
observations of other pulsars did not show similar scattering. This strongly sug- 
gests that the observed phenomenon resulted from a fortuitous configuration of 
the interstellar medium in the direction of the pulsar. 

Apart from cases of scattering such as that described, there are essentially no 
clear cases of spatially coherent astronomical sources, although coherent mecha- 
nisms may occur in pulsars and masers (Verschuur and Kellermann 1988). Fully 
coherent sources are not amenable to synthesis mapping using the van Cittert- 
Zernike principle, and thus do not fall within the area of principal concern of this 
book. Further material on coherence and partial coherence can be found, for ex- 
ample, in Beran and Parrent (1964), Born and Wolf (1999), Drane and Parrent 
(1962), Mandel and Wolf (1965, 1995), MacPhie (1964), and Goodman (1985). 
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15 Radio Interference 

With the increasing use of the radio spectrum for communications, navigation, 
and other services, the avoidance of unwanted signals is an essential practical 
concern in radio astronomy. Interference poses particular problems to the radio 
astronomer because the signal levels from cosmic sources are much lower than 
the operating levels in active (transmitting) services, and wide bandwidths are 
required for adequate sensitivity. Although certain frequency bands are allocated 
solely to radio astronomy and passive (non-transmitting) sensing, some of those 
at meter and centimeter wavelengths are too narrow to allow the desired sensi- 
tivity to be obtained. Also, many cosmic spectral line frequencies fall outside the 
radio astronomy bands. Thus it is sometimes necessary for radio astronomers to 
observe within bands that are allocated to other services. Interference can then 
best be avoided by placing radio telescopes in locations remote from centers of 
industrial and similar activity and by taking advantage of shielding from trans- 
mitters by terrain features. A basic parameter in site selection and coordination 
with other spectrum users is the threshold of harmful interference, that is, the flux 
density above which an interfering signal falling within the passband of the radio 
telescope is detrimental to astronomical observations. The harmful threshold is 
a function of the type and operating parameters of the radio telescope, and this 
dependence is the principal concern of this chapter. The international system of 
regulation of the radio spectrum is briefly described in Appendix 15.1. 

15.1 GENERAL CONSIDERATIONS 

The ultimate limit on the sensitivity of a radio telescope is set by the system 
noise, and an interfering signal can generally be tolerated if its contribution to the 
output is small compared with the noise fluctuations. A response to interference 
of one-tenth the rms level of the noise in the measurements is a useful criterion 
in interference threshold calculations. The corresponding flux density of such a 
signal can be calculated if the effective collecting area of the antenna is known. 
Radio astronomy antennas usually have narrow beams, and the probability of the 
interfering signal being received in the main beam or nearby sidelobes is low, es- 
pecially if the interfering transmitter is ground-based. Thus it can be assumed that 
interference usually enters the far sidelobes of the antenna. Figure 15. I shows an 
empirical model curve for the maximum sidelobe gain as a function of angle from 
the main-beam axis. This curve is derived from the measured response patterns 
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Figure 15.1 Empirical sidelobe-envelope model for reflector antennas of diameter greater 
than 100 wavelengths. Measurements on actual antennas show that 90% of sidelobe peaks lie 
below the curve. Sidelobe levels can be reduced by 3 dB or more in designs in which aperture 
blockage by feed structure is eliminated or minimized. The model shown is representative of 
large antennas with tripod or quadrupod feed supports of the type commonly used in radio 
astronomy. From ITU-R (1997a). 

of a number of large reflector antennas. For the present calculations it is appropri- 
ate to use a gain of 0 dBi (i.e., 0 dB with respect to an isotropic radiator), which 
occurs at about 19" from the main beam. Zero dBi is also the mean gain of an an- 
tenna over 417 sr, and the effective collecting area for this gain is equal to 1*/417, 
where h is the wavelength. If Fh (W m-2) is the flux density of an interfering 
signal within the receiver passband, the interference-to-noise power ratio in the 
receiver is 

(15.1) 

where k is Boltzmann's constant, Ts is the system noise temperature, and Au is 
the receiver bandwidth. In this expression it is assumed that the polarization of 
the interfering signal matches that of the antenna. Since radio astronomy antennas 
commonly receive two polarizations, crossed linear or opposite circular, choice 
of antenna polarization is of little help in avoiding interference. In practice the 
received level of the interfering signal varies with time because of propagation 
effects and the tracking motion of the radio telescope, which sweeps the sidelobe 
pattern across the direction of the transmitter. 

For comparison with correlator systems, we first consider the simpler case of 
a receiver that measures the total power at the output of a single antenna. The 
interference-to-noise ratio of the output, after square-law detection and averaging 
for a time T,, is expression (15.1) multiplied by -. This result follows from 
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considerations similar to those discussed in Section 6.2 under Signal and Noise 
Processing in the Correlator. Then for an output interference-to-noise ratio of 
0. I ,  which we use as the criterion for the threshold of harmful interference, 

( 15.2) 

Note that the harmful threshold increases with frequency as v2 as a result of the 
dependence of the sidelobe collecting area. With increasing frequency the sys- 
tem temperature and the usable bandwidth also generally increase. Expressed in 
spectral power flux density, the corresponding threshold level, sh (W m-' Hz-' ), 
is 

(15.3) 

To determine the harmful interference level for continuum observations within 
a band allocated to radio astronomy, Au is usually taken to be the width of the 
allocated band. The total-power type of radio telescope is the most sensitive to in- 
terference. Thus, the results in Eqs. (15.2) and (15.3) provide a worst-case spec- 
ification for the harmful thresholds of interference for radio astronomy. Values 
of Fh and Sh computed for total-power systems using typical parameters for the 
various radio astronomy bands are given in ITU-R (1995) and ITU-R (1997b). 
For s h ,  the values are plotted as the bottom curve in Fig. 15.2. Since much of the 
interference to radio astronomy results from broadband spurious emissions, s h  is 
particularly useful. 

Low level interference, of amplitude comparable to the noise in the receiver 
output, degrades the sensitivity and impedes the ability to detect weak sources. 
For stronger sources such interference degrades the accuracy of measurements, 
and thus reduces the possibility of detecting fine details or variations in structure 
or intensity, which are often key to new discoveries in astronomy. Thus in obser- 
vations in which interference has occurred, it is necessary to delete any data that 
appear to be corrupted. 

The analysis that follows considers the response to interference resulting from 
basic methods of observation and data reduction, and does not include proce- 
dures designed specifically for mitigation of interference. Such procedures in- 
clude adaptive cancellation of interfering signals in the receiver, and adaptive 
nulling of the response of an array in the direction of incoming interference [see, 
e.g., Barnbaum and Bradley (1998)l. 

15.2 SHORT- AND INTERMEDIATE-BASELINE ARRAYS 

We now consider the interference response of a correlator array with antenna 
spacings up to a few tens of kilometers, typical of connected-element arrays. 
Two effects reduce the response to interference compared to that of a total-power 
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Frequency (GHz) 

Figure 15.2 Curves of the harmful threshold of interference s h ,  in decibel units of spectral 
power flux density dBW m-2 Hz-’, for continuum observations. These are computed us- 
ing typical instrumental characteristics for each frequency band and type of instrument. The 
curve for totai-power radiometers is based on Eq. (15.3) with values from ITU-R (1997b). 
Connected-element arrays are represented by the VLA, with curves for the most compact and 
the most extended configurations, and by the MERLIN array. Curves for connected-element 
arrays are derived from Eq. (15.15). The curve for VLBI systems is based on Eq. (15.25). Note 
that for arrays, at any given frequency, sh increases as the synthesized beamwidth is reduced. 

system. First, the source of interference does not move across the sky with the 
sidereal motion of the object under observation, and thus it produces fringe os- 
cillations of a different frequency from those of the wanted signal. Second, the 
instrumental delays are adjusted to equalize the signal paths for radiation incident 
from the direction under observation, and signals from another direction, if they 
are broadband, are to some extent decorrelated. The following analysis is based 
on Thompson (1982). 

Fringe-Frequency Averaging 

Consider first the fringe-frequency effect. Suppose that instrumental phase shifts 
are introduced, as described in Section 6.1 under Delay Tracking and Fringe Ro- 
ration, to slow the fringe oscillations of the wanted signal to zero frequency. The 
removal of the fringe-frequency phase shifts from the cosmic signals introduces 
corresponding shifts into the interfering signals. If the source of interference is 
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stationary with respect to the antennas, the interference at the correlator output 
has the form of oscillations at the natural fringe frequency for the source under 
observation, which from Eq. (4.9) (omitting the sign of dzoldr) is 

Vf  =weucos6. (15.4) 

Here w, is the angular rotation velocity of the earth, u is a component of antenna 
spacing, and 6 is the declination of the source under observation. Averaging of 
such a fringe-frequency waveform for a period T ,  is equivalent to convolution 
with a rectangular function of width T ~ .  The amplitude is thus decreased by a 
factor that follows from the Fourier transform of the convolving function. This 
factor is 

sin (n u,  q, ) 

=vfTu 
f l  = (15.5) 

In order to derive a harmful threshold of interference, we compute the ratio of the 
rms level of interference to the rms level of noise in a radio map and, as before, 
equate the result to 0.1. The first step is to determine the mean squared value of the 
modulus of the interference component in the visibility data. Figure 6.7b, which 
depicts the spectral components at the correlator output, shows that the output 
from the correlated signal component, in this case the interference, is represented 
by a delta function. Assuming, as before, that the interference enters sidelobes of 
gain 0 dBi, and that the polarization is matched, we substitute in the magnitude of 
the delta function kTA ALJ = Fhc2/4nv2.  Thus, the sum of the squared modulus 
of the interference over n, grid points in the (u ,  u )  plane is 

(15.6) 

Here r, is the correlator response to the interference, Ho is a voltage gain factor, 
and (ff) is the mean squared value of f l  as given in Eq. ( 1 5 3 ,  which represents 
the effect of the visibility averaging on the fringe-frequency oscillations. To deter- 
mine the mean squared value of f i  , a simple approach is to consider the variation 
of this factor in the (u’,  u’) plane in which the spacing vector rotates with constant 
angular velocity a,, and sweeps out a circular locus as described in Section 4.2. 
Also, suppose that to interpolate the values of visibility at the rectangular grid 
points in the (u ,  u )  plane, the measured values are averaged with uniform weight 
within rectangular cells centered on the grid points (see the description of cell 
averaging in Section 5.2 under Discrete Two-Dimensional Fourier Transform). 
Then the effective averaging time T for the interference is equal to the time taken 
by the baseline vector to cross a cell, as shown in Fig. 15.3. Note from Eq. (15.4) 
that the fringe frequency goes through zero at the u’ axis, and f 1  is then unity. For 
small values of +, as defined in Fig. 15.3, the path length through a cell is close1 
equal to Au, and the cell crossing time is T = Au/weq’,  where q’ = + uf2 + u’*. 
Also, uf T = Au sin + cos 6. Now Au is equal to the reciprocal of the width of 
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Figure 15.3 Derivation of the mean cell crossing time for the spatial frequency locus indicated 
by the broken line. The velocity of the spatial frequency vector in the (u', u') plane is w,q'. The 
mean path length through the cell in the direction of the broken line is the cell area A d  A d  
divided by the cell width projected normal to that direction. 

the synthesized field, which, except at long wavelengths, is unlikely to be more 
than 0.5". We therefore assume that Au is of order 100 or greater, which permits 
the following simplification. For Au = 100 and 6 < 70", f: goes from 1 to 
as $ goes from 0 to < 17". Thus, most of the contribution to f: occurs for small 
$, and we can substitute vfr = JI Au cos 6 in Eq. (15.5) and obtain 

1 (1 5.7) 
2 sin2(n$ Au cos 6) 

d* 2: (f;)=;l ( n $ A u c o ~ 6 ) ~  n Au cos 6 '  

Since Au is large, we have used an upper limit of 00 in evaluating the integral. 
For the noise we again refer to Fig. 6.7b. The power spectral density of the 

noise near zero frequency is H:k2T;Au, and an equivalent bandwidth r-', in- 
cluding negative frequencies, is passed by the averaging process; see Eq. (6.44). 
The mean-squared component of the noise over the n, grid points is thus 

(lrn1)2 = H:k2T:Aun, ( r - I ) ,  (15.8) 

where (5-') is the mean value of r- ' .  From Fig. 15.3 the mean cell crossing time 
is 

Au I cosec 6 I 
qrwe ( 1  sin $ I+  I cosec 61 1 cos $ 1 )  ' 

r =  (1  5.9) 
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where q‘ = ,/-, and where X A  and YA are the components of antenna 
spacing projected onto the equatorial plane, as defined in Section 4.1. We have 
assumed that AM’ = A d  sin 6 (i.e., Au = Au) and that, for all except a small 
number of cells, the path of the spatial frequency locus through a cell can be 
approximated by a straight line. The mean value of t - I  around a locus in the 
(u’, u’) plane (see Section 4.2) is, from m. (15.9), 

and the mean for the n, points in the (u, u )  plane is 

(15.10) 

(15.1 1) 

From Eqs. (15.6)-(15.8) and (15.1 1)  the interference-to-noise ratio is 

By Parseval’s theorem the ratio of the rms values of the interference and noise 
in the map is equal to the same ratio in the visibility domain, which is given by 
Eq. ( 1  5.12). To evaluate the harmful threshold Fh, we equate the right-hand side 
to 0.1 and obtain 

The factor Jcos S( I + J sin 81) has been replaced by unity, the resulting error be- 
ing less than 1 dB for 0 < 161 < 71”, and 2.3 dB for S = 80”. Note that with fixed 
antenna positions q’ is proportional to v ,  so Fh is proportional to Y ’ . ~ .  The number 
of points in the (u’, u’ )  plane to which an antenna pair contributes is proportional 
to q’, so in evaluating l3q. (15.13) it is convenient to write 

where n p  is the number of correlated antenna pairs in the array. 
The interference threshold sh, in units of dBW m-* Hz-I, is given by 

(15.14) 

(15.15) 
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Values of Sh for the VLA and the MERLIN array are shown in Fig. 15.2. Of the 
two curves for the VLA, the lower and the upper correspond to configurations in 
which the distance over which the antennas are distributed along each arm is 0.59 
and 21 km, respectively (see Fig. 5.17b). 

Since the averaging is ineffective in reducing the interference when u goes 
through zero, visibility values containing the greatest contributions from interfer- 
ence cluster around the u axis. Some degree of randomness in the occurrence of 
high values is to be expected, as a result of the varying sidelobe levels through 
which the interference enters. Because of the (u ,  u )  distribution, the interference 
in the (I, rn) domain takes the form of quasi-random structure that is elongated 
in the east-west direction; for an example see Thompson (1982). The clustering 
also suggests the possibility of reducing the interference response by deleting any 
suspect visibility data near the u axis. The resulting degradation of the (u ,  u )  cov- 
erage would increase the sidelobes of the synthesized beam. The effect of such 
sidelobes could be mitigated to some degree by the deconvolution procedures 
discussed in Chapter 11. 

The discussion above applies to cases where the observation is of sufficiently 
long duration that the (u .  u )  plane is well sampled, and where the strength of 
the interfering signal remains approximately constant during this time. If only 
a fraction a! of the ( u ,  u )  loci cross the u axis, then a factor of & should be 
introduced into the denominators of Eqs. (15.13) and (15.15). Strong, sporadic 
interference can produce different responses from that considered above. 

Decorrelation of Broadband Signals 

Since interfering signals are usually incident from directions other than that of 
the desired radiation, their time delays to the correlator inputs are generally not 
equal. Broadband interfering signals are thereby decorrelated, which further re- 
duces their response. The reduction is not amenable to a general-case analysis 
like that resulting from averaging of the fringe frequency, but it can be computed 
for each particular antenna configuration and position of the interfering source. 
For this reason, and the fact that only broadband signals are reduced, the effect 
has not been included in the threshold equations (15.13) and (15.15). 

At any instant during an observation, let 8, be the angle between a plane nor- 
mal to the baseline for a pair of antennas and the direction of the source under 
observation. 0, defines a circle on the celestial sphere for which the delays are 
equalized. Similarly, let Bi be the corresponding angle for the source of interfer- 
ence. The delay difference for the interfering signals at the correlator is 

( 1 5.16) 

where D is the baseline length. Expressions for 0, and 0; can be derived from 
Eq. (4.3), since sin 8, = w k / D ,  where w is the third spacing coordinate as shown 
in Fig. 3.2, and A is the wavelength. Suppose that the received interfering signal 
has an effectively rectangular spectrum of width Au and center frequency uo, 
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defined either by the signal itself or by the receiving passband. By the Wiener- 
Khinchin relation the autocorrelation function of the signal is equal to 

( 15.17) 

Expression (15.17) represents the real output of a complex correlator as a func- 
tion of the differential delay rd. The imaginary output is represented by a similar 
expression in which the cosine function is replaced by a sine. Thus, the decorre- 
lation of the modulus of the complex output for a delay rd is given by the factor 

(15.18) 

For a fixed transmitter location, Oi remains constant, but 0, varies as the antennas 
track. Thus rd  may go through zero, causing f 2  to peak, but unlike f,, a peak 
in f2 can occur at any point on the (u, u )  plane. Those antenna pairs for which 
the f ,  and f2 peaks overlap contribute most strongly to the interference in the 
map, and those for which the peaks are well separated contribute less. Therefore, 
for broadband signals, the fringe-frequency and decorrelation effects should be 
considered in combination. For example, in calculations for the response of the 
VLA to a geostationary satellite on the meridian, a factor 

( 1 5.19) 

was computed which represents the additional decrease in the rms interference 
resulting from decorrelation (Thompson 1982). The summations in (15.19) were 
taken over all antenna pairs for equal increments in hour angle, and the q' factors 
were inserted to compensate for the uneven density of points in the (u, u )  plane 
resulting from this method of sampling. The antenna spacings of the VLA for 
both the most compact and most extended configurations were considered, with 
observing frequencies from 1.4 to 23 GHz and bandwidths of 25 and 50 MHz. 
The results indicate that suppression of broadband interference by decorrelation 
varies from 4 to 34 dB, with strong dependence on the observing declination. 
The interference was assumed to extend uniformly across the bandwidth, which 
would tend to overestimate the suppression in a practical situation. 

15.3 VERY-LONG-BASELINE SYSTEMS 

In VLBI arrays, in which the antenna spacings are hundreds or thousands of kilo- 
meters, the output resulting from correlated components of an interfering signal 
at the correlator inputs is usually negligible. This is because the natural fringe 
frequencies are higher than those in arrays with baselines up to a few tens of kilo- 
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meters, and the delay inequalities for signals that do not come from the direction 
of observation are also much greater. Furthermore, unless the interfering signal 
originates in a satellite or spacecraft, it is unlikely to be present at two widely 
separated locations. 

Consider an interfering signal entering one antenna of a correlated pair. The in- 
terference reduces the measured correlation, and the overall effect is similar to an 
increase in the system noise for the antenna. In Fig. 15.4, x ( t )  and y(t) represent 
the signals plus system noise from two antennas in the absence of interference, 
and z(f) represents an interfering signal at one antenna. The three waveforms 
have zero means, and the standard deviations are 0 for x and y and a;. for z. In 
the absence of interference. the measured correlation coefficient is 

When the interference is present, the correlation becomes 

15.2 

(1 5.20) 

(15.21) 

The interference is uncorrelated with x and y, so (xz) = (yz) = 0. Also, at the 
)9 harmful threshold, CT: << 02. Thus, from Eqs. (15.20) and 

(15.22) 

The interference reduces the measured correlation. In a system with automatic 
level control (ALC), the reduction in correlation can be envisaged as resulting 

Figure 15.4 Components of the correlator input signals used in the discussion of the effects 
of interference on VLBI observations. 
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from a reduction in the system gain in response to the added power of the inter- 
ference. The error introduced in the correlation measurement therefore takes the 
form of a multiplicative factor, rather than an additive error component. Interfer- 
ence causes additive errors in single antennas or arrays that have short enough 
baselines that the detector or correlator responds directly to the interfering sig- 
nal. The different effects of these two types of error have been discussed in Sec- 
tion 10.6 under Errors in Maps. In principle, the change in the effective gain can 
be monitored by using a calibration signal, as discussed in Section 7.6. However, 
such a calibration process could be difficult if the strength of the interference 
varies rapidly. The harmful interference threshold should therefore be specified 
so that it is just small enough that the errors introduced do not significantly in- 
crease the level of uncertainty in the measurements. In general, a value of 1 % for 
variations in the visibility amplitude resulting from interference is a reasonable 
choice. If we include the possibility of simultaneous but uncorrelated interference 
in both antennas, the resulting condition is 

2 C) 5 0.01. (15.23) 

It follows from Parseval’s theorem, that a 1 % rms error in the visibility introduces 
into the intensity an error of which the rms over the map is 1 % of the correspond- 
ing rms of the true intensity distribution. The effect on the dynamic range of 
intensity within the map depends on the form of the intensity distribution and of 
the error distribution. For a map of a single point source, the rms intensity error 
would be about 1 0 - 2 m  times the peak intensity, where f is the fraction of 
the n ,  gridded visibility data that contain interference. Here it is assumed that the 
fluctuations in the received interfering signal are sufficiently fast that the values 
of the interference level are essentially independent for each gridded visibility 
point. If this is not the case the resulting error will be greater. 

To comply with the criterion in Eq. (15.23), the ratio of the powers of the 
interference to system noise as given by (15.1) must not exceed 0.01. Thus, for 
the harmful threshold, we have 

The interference threshold in units of W mP2 Hz-’ is 

(15.24) 

(1  5.25) 

Note that the interference-to-noise ratio of 0.01 here refers to the levels at the cor- 
relator input. In the case of total-power systems (single antennas) and the arrays 
considered in Section 15.2, for which the errors are additive, the criterion of an 
interference-to-noise ratio of 0.1 applies to the time-averaged output of the cor- 
relator or detector. This therefore results in lower (i.e., more stringent) thresholds 
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than those for VLBI in Eqs. (15.24) and (15.25). A curve for VLBI is shown in 
Fig. 15.2, using typical values for Ts. The harmful thresholds are approximately 
40 dB less stringent than those for total-power systems. 

15.4 INTERFERENCE FROM AIRBORNE 
AND SPACE TRANSMITTERS 

In application of the F h  and Sh values obtained above, it should be remembered 
that they are derived with interference from stationary, ground-based transmit- 
ters in mind. It is often possible to make observations at sufficiently high angles 
of elevation that the antenna is pointed no closer than 19” to any such trans- 
mitter: 19” is the angle from the main beam at which most sidelobes fall below 
the isotropic level in the model in Fig. 15.1. Airborne and satellite transmitters 
present a special problem. Radio astronomy cannot share bands with space-to- 
earth (downlink) transmissions of satellites. However, because of the pressure 
for more spectrum for communications, allocations have been made in bands ad- 
jacent or close to those allocated to radio astronomy. Spurious emissions from 
satellite transmitters that fall outside the allocated band of the satellite arguably 
pose the most serious threat to radio astronomy. Motion of the transmitter across 
the sky is most likely to increase the fringe frequency at the correlator outputs of 
a synthesis array and thereby reduce the response to interference. On the other 
hand, these signals may be received in high-level sidelobes near the main beam. 
Transmitters on geostationary-orbit (GEO) satellites represent a particular hazard 
to radio astronomy because of their fixed locations at high elevation angles near 
the celestial equator. Interfering signals from a series of such satellites distributed 
along the geostationary orbit could result in a band of sky centered on the orbit in 
which high-sensitivity observations would be severely restricted. 

Examples of spurious emissions that extend far outside the allocated band 
of the satellite system are described by Galt (1990) and Combrinck, West, and 
Gaylord (1994). In these cases the spurious emission resulted largely from the 
use of simple phase-shift keying for the modulation, and newer techniques [e.g.. 
Gaussian-filtered minimum shift keying (GMSK)] provide much sharper reduc- 
tion in spectral sidebands (Murota and Hirade 1981, Otter 1994). However, inter- 
modulation products resulting from the nonlinearity of amplifiers carrying many 
communication channels remain a problem. 

In some cases, operating requirements and limitations associated with space 
tend to make reduction of spurious emissions difficult. Some satellites use a large 
number of narrow beams to cover their area of operation, so that the same fre- 
quency channels can be used a corresponding number of times to accommodate 
a large number of customers. This requires phased-array antennas with many (of 
order one hundred or more) small radiating elements, each with its own power 
amplifier [see, e.g., Schuss et al. (1999)]. Because of power limitations from the 
solar cells, these amplifiers are operated at levels that maximize power efficiency 
but compromise linearity, resulting in spurious emissions from intermodulation 
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products. Filtering the individual outputs driving the radiating elements may be 
impractical because of weight limitations. 

The recommended limits on spurious emissions (ITU-R 1997c) in effect re- 
quire that, for space services, the power in spurious emissions measured in a 
4-kHz band at the transmitter output should be no more than -43 dBW. Thus, for 
example, spurious emission at this level from a low-earth-orbit (LEO) satellite at 
800 km height, and radiated from a sidelobe of 0 dBi gain, would produce a spu- 
rious spectral power flux density of -208 dBW rn-* Hz-' at the earth's surface. 
This figure may be compared with the harmful interference thresholds for radio 
astronomy of -239 and -255 dBW m-2 Hz-' for spectral line and continuum 
measurements, respectively, at 1.4 GHz. Although this very simple calculation 
considers only the worst-case situation, the differences of several tens of decibels 
show that the proposed limits do not protect radio astronomy. Thus radio astron- 
omy is essentially regarded as a special problem to be studied on a case-by-case 
basis as new allocations are made and systems developed. The responsibility to 
ensure that such coordination takes place rests with radio astronomers. 

APPENDIX 15.1 REGULATION OF THE RADIO SPECTRUM 

Regulation of the usage of the radio spectrum is organized through the Interna- 
tional Telecommunication Union (ITU), based in Geneva, which is a specialized 
agency of the United Nations Organization. Radio astronomy was first officially 
recognized as a radiocommunication service by the ITU in 1959. The Radiocom- 
munication Sector of the ITU (ITU-R) was created in March 1993 and replaced 
the International Radio Consultative Committee (CCIR), an earlier entity within 
the ITU. A system of study groups within the ITU-R is responsible for technical 
matters. Study Group 7, entitled Science Services, includes radio astronomy, vari- 
ous aspects of space research, and standards for time and frequency. Study groups 
are subdivided into working parties that deal with specific areas. Their primary 
function is to study problems of current importance in frequency coordination, for 
example, specific cases of sharing of frequency bands between different services, 
and to produce documented Recommendations on the solutions. Decisions within 
the ITU are made largely by consensus. Recommendations must be approved by 
all of the radiocommunication study groups, and then effectively become part of 
the ITU Radio Regulations. For Recommendations specific to radio astronomy, 
see ITU-R (1997b) and other Recommendations in the RA series. 

The ITU-R organizes meetings of study groups, working parties, and other 
groups required from time to time to deal with specific problems. It also orga- 
nizes World Radiocommunication Conferences (WRCs) at intervals of two to 
three years, at which new spectrum allocations are made and the ITU Radio Reg- 
ulations are revised as necessary. Administrations of many countries send dele- 
gations to WRCs, and the results of these conferences have the status of treaties. 
Participating countries can take exceptions to the international regulations so long 
as these do not impact spectrum usage in other countries. As a result, many ad- 
ministrations have their own system of radio regulations, based largely on the 
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ITU Radio Regulations, but with exceptions to accommodate their particular re- 
quirements. For further information see, for example, Pankonin and Price (1981), 
Thompson, Gergely, and Vanden Bout (1991), and ITU-R (1995). 
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16 Related Techniques 

Concepts and techniques similar to those used in radio interferometry and syn- 
thesis mapping occur in various areas of astronomy. Here we introduce a few of 
them, including optical techniques, to leave the reader with a broader view. All 
of these subjects are described in detail elsewhere, so here the aim is mainly to 
outline the principles involved, and to make connections between them and the 
detailed material developed in previous chapters. 

16.1 INTENSITY INTERFEROMETER 

In long-baseline interferometry the intensity interferometer offers some techni- 
cal simplifications that were mainly of importance in radio astronomy during 
the early development of the subject. As mentioned in Section 1.3 under Early 
Measurements of Angular Width, its practical applications in radio astronomy 
have been limited (Jennison and Das Gupta 1956, Carr et al. 1970, Dulk 1970) 
because, in comparison with a conventional interferometer, it requires a much 
larger signal-to-noise ratio in the receiving system, and only the modulus of the 
visibility function is measured. The intensity interferometer was devised by Han- 
bury Brown, who has described its development and application (Hanbury Brown 
1974). 

In the intensity interferometer, the signals from the antennas are amplified and 
then passed through square-law (power linear) detectors before being applied to a 
correlator, as shown in Fig. 16.1. As a result, the rms signal voltages at the correla- 
tor inputs are proportional to the powers delivered by the antennas, and therefore 
also proportional to the intensity of the signal. No fringes are formed because the 
phase of the radio frequency (RF) signals is lost in the detection, but the corre- 
lator output indicates the degree of correlation of the detected waveforms. Let 
the voltages at the detector inputs be VI and V2. The outputs of the detectors are 
V: and V; and each consists of a dc component, which is removed by a filter, 
and a time-varying component, which goes to an input of the correlator. From the 
fourth-order moment relation [Eq. (6.36)] the correlator output is 
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Figure 16.1 The intensity interferometer. The amplifier and filter block may also incorporate 
a local oscillator and mixer. The compensating delay equalizes the time delays of signals from 
the source to the correlator inputs. The post-detector filters remove dc and radio frequency 
components. 

The correlator output is proportional to the square of the correlator output of a 
conventional interferometer, and measures the squared modulus of the visibility 
of a source under observation. 

We now give an alternative derivation of the response, which provides a phys- 
ical picture of how the signals from different parts of the source combine within 
the instrument. The source is represented as a one-dimensional intensity distri- 
bution in Fig. 16.2. We suppose that it can be considered as a linear distribution 
of many small regions, each of which is large enough to emit a signal with the 
characteristics of stationary random noise, but of angular width small compared 
with I/u, which defines the angular resolution of the interferometer. The source 
is assumed to be spatially incoherent, so the signals from different regions are 
uncorrelated. Consider two regions of the source, k and l ,  at angular positions Ok 

and 0, and subtending angles do, and do,, as in Fig. 16.2. Each radiates a broad 
spectrum, but we first consider only the output resulting from a Fourier compo- 
nent at frequency Vk from region k and similarly a component at up from region 
e. Let A I ( 6 )  be the power reception pattern of the two antennas and ZI (0) the 
intensity distribution of the source, these two functions being one-dimensional 
representations. Then the detector output of the first receiver is equal to 

[VkCOS2JrUkt + VyCOS(2YrU,f + @ , ) I 2 ,  (1 6.2) 
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Figure 16.2 Distances and angles used in the discussion of the intensity interferometer. 

where $I is a phase term resulting from path-length differences, and the signal 
voltages Vk and V, are given by 

( 16.3) 

( 16.4) 

After expanding (16.2) and removing the dc and RF terms, we obtain for the 
detector output from receiver 1: 

v,v, cos [ 2 r r ( U k  - U e ) ?  - $ 1 1 .  (16.5) 

Similarly, the detector output from receiver 2 is 

v,v, cos [2Jr(Uk - U Y ) t  - 421. ( 16.6) 

The correlator output is proportional to the time-averaged product of ( 1  6.5) and 
(1 6.6), that is, to 

The change in the phase term with respect to frequency is small so long as the 
fractional bandwidth is much less than the ratio of the resolution to the field 
of view [see Eq. (6.69) and related discussion]. With this restriction expres- 
sion (16.7) is effectively independent of the frequencies uk and V e ,  so that if we 
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integrate it with respect to vk and Ve over a rectangular receiving passband of 
width A v ,  dvk dve is replaced by Av2. 

The phase angles 4I and & result from the path differences kk' and el' shown 
in Fig. 16.3. Note that 41 and c$2 have opposite signs since the excess path length 
to antenna 1 is from point .! and that to antenna 2 is from point k. If R, is the 
distance of the sources from the antennas, the distance kt in the source is approx- 
imately equal to R,(Ok - &). The angle ak + is approximately equal to uA/R,, 
since u represents the antenna spacing projected normal to the source and mea- 
sured in wavelengths. The preceding approximations are accurate if a&, at, and 
the angle subtended by the source are all small. Thus the difference of the phase 
angles is 

(16.8) 

To obtain the output from all pairs of regions within the source expression (16.9) 
can, with the assumption of spatial incoherence, be integrated with respect to 0, 
and 0, over the source, giving 

= A; AU' [Vi  + V:] = A: Av' IVI2, (16.10) 

where we assume that the antenna response A I (0) has a constant value A,-, over 
the source, and the subscripts R and I denote the real and imaginary parts of the 
visibility. This result follows from the definition of visibility that is given for a 

k I 

Source 

1 2 1 2 

Figure 16.3 Relative delay paths kk' and el' from regions k and t of the source for rays 
traveling in the directions of antennas I and 2. 
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two-dimensional source in Section 3. I .  Thus, the correlator output is proportional 
to the square of the modulus of the complex visibility. For a more detailed dis- 
cussion following the same approach, see Hanbury Brown and Twiss (1954). An 
analysis based on the mutual coherence of the radiation field is given by Bracewell 
(1958). 

Some characteristics of the intensity interferometer offer advantages over the 
conventional interferometer. The intensity interferometer is much less sensitive to 
atmospheric phase fluctuations, because each signal component at the correlator 
input is generated as the difference between two radio frequency components that 
have followed almost the same path through the atmosphere. The phase fluctua- 
tions in the difference-frequency components at the detectors are less than those 
in the radio frequency signals by the ratio of the difference frequency to the radio 
frequency, which may be of order lop5. In the conventional interferometer such 
phase fluctuations can make the amplitude, as well as the phase, of the visibility 
difficult to measure. Similarly, fluctuations in the phases of the local oscillators, in 
the two receivers do not contribute to the phases of the difference-frequency com- 
ponents. Thus, it is not necessary to synchronize the local oscillators, or even to 
use high-stability frequency standards as in VLBI. These advantages were help- 
ful, although by no means essential, in the early radio implementation of the in- 
tensity interferometer. Had the diameters of the sources under investigation then 
been of order of arcseconds, rather than arcminutes, the characteristics of the in- 
tensity interferometer would have played a more essential role. 

The serious disadvantage of the intensity interferometer is its relative lack of 
sensitivity. Because of the action of the detectors in the receivers, the ratio of 
the signal power to the noise power at the correlator inputs is proportional to the 
square of the corresponding ratio in the R F  (predetector) stages [see Eq. (9.73)], 
the exact value being dependent on the bandwidths of these and the postdetector 
stages (Hanbury Brown and Twiss 1954). In a conventional interferometer, it is 
possible to detect signals that are -60 dB below the noise at the correlator inputs. 
In the intensity interferometer, a similar signal-to-noise ratio at the correlator out- 
put would require signal-to-noise ratios greater by -30 dB in the RF stages. This 
effect, together with the lack of sensitivity to the visibility phase, has greatly re- 
stricted the radio usage of the intensity interferometer. Intensity interferometry 
played a similar role in the early days of optical interferometry (see Section 16.4 
under Optical Intensity Inter$emmeter), before the development of the modern 
Michelson interferometer. 

16.2 LUNAR OCCULTATION OBSERVATIONS 

Measurement of the light intensity from a star as a function of time during oc- 
cultation by the moon was suggested by MacMahon (1909) as a means of deter- 
mining the star’s size and position. His analysis, which was based on a simple 
consideration of geometric optics, was criticized by Eddington (1909) who stated 
that diffraction effects would mask the detail at the angular scale of the star. Ed- 
dington’s paper probably discouraged observations of lunar occultations for some 
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time. The first occultation measurements were reported 30 years later by Whit- 
ford (1939), who observed the stars Capricorni and u Aquarii and obtained 
clear diffraction patterns. 

What was not realized by Eddington and others at the time was that although 
the temporal response to an occultation is not a simple step function, as it would 
be for the case of geometrical optics and a point source, the Fourier transform 
of the point-source response, which represents the sensitivity to spatial frequency 
on the sky, has the same amplitude as that of a step function and differs only 
in the phase. Hence, the lunar occultation is sensitive to all Fourier components, 
and there is no intrinsic limit to the resolution that can be obtained, except for 
that imposed by the finite signal-to-noise ratio. This equality of the amplitudes 
was recognized by Scheuer (1962). who devised a method of deriving the one- 
dimensional intensity distribution f I  from the occultation curve. By that time, the 
concept of spatial frequency had become widely understood through application 
to radio interferometry. Since, in lunar occultations, the diffraction occurs outside 
the earth’s atmosphere, the high angular resolution is not corrupted significantly 
by atmospheric effects, as it is in the case of ground based interferometry. Fur- 
thermore, the only dependence of the obtainable resolution on the telescope size 
results from the signal-to-noise ratio. An early radio application of the technique 
was the measurement of the position and size of 3C273 by Hazard, Mackey, and 
Shimmins (1963), which led to the identification of quasars. As mentioned in 
Section 12. I under Requirements for Asfrometry, this position measurement was 
used for many years as the right ascension reference for VLBI position catalogs. 
Radio occultation measurements have been most important at meter wavelengths, 
since at shorter wavelengths the high thermal flux density from the moon presents 
a difficulty. Radio observations have been largely superseded by interferometry, 
but lunar occultations are still used at optical and infrared wavelengths. 

Figure 16.4 shows the geometrical situation and the form of an occultation 
record. The departure of the moon’s limb from a straight edge, as a result of cur- 
vature and roughness, is small compared with the size of the first Fresnel zone 
at radio frequencies. Thus the point-source response is the well known diffrac- 
tion pattern of a straight edge, which is derived in most texts on physical optics. 
The main change in the received power in Fig. I6.4b corresponds to the covering 
or uncovering of the first Fresnel zone by the moon, and the oscillations result 
from higher-order zones. The critical scale is the size of the first Fresnel zone, 
,/-), where R, 2 3.84 x lo5 km is the earth-moon distance. This corre- 
sponds to 4400 m at 10 cm wavelength and 10 m at 0.5 pm, or 2.3 arcsec and 
5 mas, respectively, in angle as seen from the earth. The maximum velocity of 
the occulting edge of the moon is approximately 1 km s-I, but the effective ve- 
locity depends on the position of the occultation on the moon’s limb, and we use 
0.6 km s - I  as a typical figure. Thus, the coverage time of the first Fresnel zone, 
which determines the characteristic fall time and oscillation period, is typically 
about 7 s at a wavelength of 10 cm and 16 ms at 0.5 pm. 

In the case of the hypothetical geometrical optics occultation, the observed 
curve would be the integral of f, as a function of 8 ,  the angle between the source 
and the moon’s limb as measured in Fig. 16.4a. Then II could be obtained by 
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Figure 16.4 Occultation of a radio source by the moon: (a) the geometrical situation, in which 
0 is measured clockwise from the direction of the source, and is negative as shown; (b) the 
occultation curve for a point source, which is proportional to P@). The units of 0 on the 
abscissa are equal to Jm, where A is the wavelength and R, the moon’s distance. 

differentiation. In the actual case the observed occultation curve $(6 )  is equal to 
convolution of I ,  (6) with the point-source diffraction pattern of the moon’s limb 
P(8). This convolution is I ,  (6) * P(8) .  Differentiation with respect to 8 yields 

%’(el = f,(6) * P’(6), (16.11) 

where the primes indicate derivatives. Fourier transformation of the two sides of 
Eq. (16.1 1) gives 

-I 

$ ( u )  = T ,  ( u )  F’(u), (16.12) 

where the bar indicates the Fourier transform, the prime indicates a derivative in 
the 6 domain, and u is the conjugate variable of 8. 
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Now in the geometrical-optics case P(@, would be a step function, and thus 
P’(0) would be a delta function for which the Fourier transform is a constant. 
For the diffraction-limited case the function P(u) (adapted from Cohen 1969) is 
given by 

(16.13) 

where OF is the angular size of the first Fresnel zone, ,/=, and sgn is the 
sign function, which takes values f l  to indicate the sign of u. It follows from 
the derivative theorem of Fourier transforms that p’(u) = j21ruF(u), which 
has a constant amplitude with no zeros and can be divided out from Eq. (16.12). 
Thus 11 (0) is equal to $’(@ convolved with a function whose Fourier transform is 
1 /F’(u). Scheuer (1962) shows that this last function is proportional to P ( - 0 ) ,  
which can be used as a restoring function as follows: 

(16.14) 

The second form on the right-hand side is more useful since it avoids the practical 
difficulty of differentiating a noisy occultation curve. In principle, this restoration 
provides II without limit on the angular resolution, in contrast to the performance 
of an array. Remember, however, that the amplitude of the spatial frequency sen- 
sitivity of the occultation curve, which is given by Eq. (16.13), is proportional to 
1 / u .  Thus in the restoration in Eq. (16.14) the amplitudes of the Fourier compo- 
nents, which also include the noise, are increased in proportion to u. The increase 
of the noise sets a limit to the useful resolution. This limit can be conveniently in- 
troduced by replacing P ’ ( 0 )  in Eq. (16.14) by P”(0)  convolved with a Gaussian 
function of 0 with a resolution A@. One then derives II as it would be observed 
with a beam of the same Gaussian shape. In practice, the introduction of the Gaus- 
sian function is essential to the method, since it ensures the convergence of the 
convolution integral in Eq. (16.14). The optimum choice of A0 depends on the 
signal-to-noise ratio. Examples of restoring functions for various resolutions can 
be found in von Hoerner (1964). 

The discussion above follows the classical approach to reduction of moon- 
occultation observations, which developed from the geometrical optics analogy. 
One can envisage the reduction more succinctly as taking the Fourier transform 
of the occultation curve, dividing by P(u) (with suitable weighting to control 
the increase of the noise), and retransforming to the 8 domain. This process is 
mathematically equivalent to that in Eq. (16.14). 

An estimate of the noise-imposed limit on the angular resolution can be ob- 
tained using the geometrical optics model, since the signal-to-noise ratio of the 
Fourier components is the same as for the actual point-source response. Consider 
the region of an occultation curve (see Fig. 16.4b) in which the main change in 
the received power occurs, and let 5 be a time interval in which the change in 
the record level is equal to the rms noise. Then if u, is the rate of angular mo- 
tion of the moon’s limb over the radio source, the obtainable angular resolution is 
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approximately 

A0 = U,T. (16.15) 

During the interval r ,  the flux density at the antenna changes by AS. Let 0, be the 
width of the main structure of the source in a direction normal to the moon’s limb, 
and let S be the total flux density of the source. Then for simple source structures 
the average intensity is approximately S/0,:, and the change in solid angle of the 
covered part of the source in time T is 0, At?. Thus we have 

(16.16) 

The signal-to-noise ratio at the receiver output for a component of flux density 
A S  is 

( 1 6.1 7) 
A A S ~  

2kTs ’ RS, = 

where A is the collecting area of the antenna, Au and Ts are the bandwidth 
and system temperature of the receiving system, and k is Boltzmann’s constant. 
Note that the thermal contribution from the moon can contribute substantially to 
Ts. The conditions that we are considering correspond to 3,” 2: 1 ,  and from 
Eqs. (16.15)--(16.17) we obtain 

A0 = (7) 2kTs0, 2/3 (Z)’I3. 
(16.18) 

Note that frequency (or wavelength) does not enter directly into Eq. (16.18), but 
the values of several parameters, for example, S, Au, and Ts, depend upon the 
observing frequency. As an example, consider an observation at a frequency in 
the 100-300 MHz range for which we use A = 2000 m2, Ts = 200 K, and Au = 
2 MHz. For a fairly weak radio source we take S = W m-’ Hz-’ ( 1  Jy) and 
0, = 5 arcsec. u, is typically 0.3 arcsec s-’ .  With these values, Eq. (16.18) gives 
A0 = 0.7 arcsec. Although Eq. (16.18) is derived using a geometrical optics 
approach, this does not limit its applicability. For an observed occultation curve, 
the equivalent curve for geometrical optics can be obtained by adjustment of the 
phases of the Fourier components, which does not affect the signal-to-noise ratio. 

The bandwidth of the receiving system has the effect of smearing out angu- 
lar detail in an occultation observation in a manner similar to that for an array. 
Thus, since the signal-to-noise ratio increases with bandwidth, for any observa- 
tion there exists a bandwidth with which the sensitivity to fine angular structure is 
maximized. This bandwidth is approximately u2A02 R,, /c ,  which can be derived 
from the requirement that the phase term in Eq. (16.13) not change significantly 
over the bandwidth. This result can be compared to the bandwidth limitation for 
an array [given by Eq. (6.70)] by noting that a measurement by lunar occultation 
with resolution A0 involves examination of the wavefront, at the distance of the 
moon, on a linear scale of A/AO. Such an interval subtends an angle A/AOR, 
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at the earth. Further discussion of such details, and of the practical implementa- 
tion of Scheuer’s restoration technique, is given by von Hoerner (1964), Cohen 
(1969), and Hazard (1976). Note that a source may undergo a number of oc- 
cultations within a period of a few months, with the moon’s limb traversing the 
source at different position angles. If a sufficient range of position angles is ob- 
served, the one-dimensional intensity distributions can be combined to obtain a 
two-dimensional image of the source [see, e.g., Taylor and De Jong (1968)l. 

The method of lunar occultation has been widely used in optical and infrared 
astronomy to measure the size and the limb darkening of stars, and the separation 
of close binary stars. Consistency of the results with those of optical interferom- 
etry proves that the lunar occultation method is not corrupted by variations in the 
lunar topography, which can be expected to become important when the size of 
the variations is comparable to the Fresnel scale. Angular sizes have been rou- 
tinely measured down to about 1 mas. The analysis of stellar occultation curves 
is usually done by fitting parameterized models, rather than the reconstruction 
methods used in radio observations described above. A review of special con- 
siderations for lunar occultation observations at optical and infrared wavelengths 
can be found in Richichi (1994). Extensive measurement of stellar diameters [see, 
e.g., White and Feierman (1987)l and binary star separations [see, e.g., Evans 
et al. (1985)] have been made. Other applications include the measurement of 
subarcsecond dust shells surrounding Wolf-Rayet stars [see, e.g., Ragland and 
Richichi (1999)l. 

16.3 MEASUREMENTS ON ANTENNAS 

Measurement of the electric field distribution over the aperture of an antenna is 
an important step in optimizing the aperture efficiency, especially in the case of 
a reflector antenna for which such results indicate the accuracy of the surface ad- 
justment. The Fourier transform relationship between the voltage response pattern 
of an antenna and the field distribution in the aperture has been derived in Sec- 
tion 14.1 under Diflraction at an Aperture and the Response of an Antenna. If x 
and y are axes in the aperture plane, the field distribution &(xA, y A )  is the Fourier 
transform of the far-field voltage radiation (reception) pattern V A ( l ,  m )  (see Sec- 
tion 3.3 under Antennas), where I and M are here the direction cosines measured 
with respect to the x and y axes and the subscript A indicates measurement in 
wavelengths. Thus 

XA dyA. ( 1 6.1 9) 

Direct measurement of & can be made by moving a probe across the aperture 
plane, but care must be taken to avoid disturbing the field, which may be diffi- 
cult. Such a technique is useful for characterizing horn antennas for millimeter 
wavelengths (Chen et al. 1998). However, in many applications, especially for 
large antennas on fully steerable mounts, it is easier to measure V A .  It is neces- 

J 2 n ( x ~ l + y ~ m )  d 
V A U ,  m) a &(xA, yA)e 
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sary to measure both the amplitude and phase of VA(l ,  rn)  in order to perform 
the Fourier transform for G ( x A ,  yA). To accomplish this, the beam of the antenna 
under test can be scanned over the direction of a distant transmitter, and a second, 
nonscanning antenna can be used to receive a phase reference signal. The func- 
tion VA(Z, rn) is obtained from the product of the signals from the two antennas. 
This technique resembles the use of a reference beam in optical holography, and 
antenna measurements of this type have been described as holographic (Napier 
and Bates 1973, Bennett et al. 1976). 

The holographic technique is readily implemented for measurements of anten- 
nas in interferometers and synthesis arrays. If the instrumental parameters (base- 
lines, etc.) and the source position are accurately known, and the phase fluctua- 
tions introduced by the atmosphere are negligible, then for an unresolved source, 
calibrated visibility values will have a real part corresponding to the flux density 
of the source and an imaginary part equal to zero (except for the noise). If one an- 
tenna of a correlated pair is scanned over the source, while the other antenna con- 
tinues to track the source, the corresponding visibility values will be proportional 
to the amplitude and phase of VA ( I ,  m) for the scanning antenna. Measurement of 
synthesis array antennas as outlined above was first described by Scott and Ryle 
(1977), whose analysis, and that of D’ Addario (l982), we largely follow below. 

It is convenient to visualise the data in the aperture plane &(xi,  y ~ )  and in the 
sky plane VA(l ,  m) as discrete measurements at grid points in two N x N arrays 
to be used in the discrete Fourier transformation. For simplicity, consider a square 
antenna aperture with dimensions di x dA. Since &(xi, yA) is zero outside a range 
kdA/2, the sampling theorem of Fourier transforms indicates that the response 
must be sampled at intervals in (1, m )  no greater than l/dA. [This interval is twice 
the sampling interval for the power beam because the power beam is the Fourier 
transform of the autocorrelationfunction of &(xi, yA).] If the V A ( f ,  m) samples 
are spaced at l / d A ,  the aperture data just fill the &(xi, yA) array. The spacing of 
the measurements in the aperture is d i / N .  Therefore N is usually chosen so that 
the sample interval provides several measurements on each surface panel. In the 
(I, m ) plane the range of angles over which the scanning takes place is N times the 
pointing interval, that is, N/dA.  This scan range is approximately N beamwidths. 
The procedure is to scan with the antenna under test in N 2  discrete pointing steps 
and thereby obtain the VA(I,  m) data to fill the sky-plane array. 

As a measure of the strength of the signal, let .R,, be the signal-to-noise ra- 
tio obtained in time ro with the beams of both antennas pointed directly at the 
source. Now suppose that the (xi, y i )  aperture plane is divided into square cells 
(as in Fig. 5.3) with sides d A / N  centered on the measurement points. Consider 
the contribution to the correlator output of the signal from one such aperture cell, 
of area ( d i / N ) * ,  in the antenna under test. The effective beamwidth of such an 
aperture cell is N times the antenna beamwidth, that is, approximately the total 
scan width required. Such an area contributes a fraction 1 / N 2  to the signal at the 
correlator output, so relative to the noise at the correlator output the component 
resulting from one aperture cell is R , , / N 2  in time r,, or % , / N  in time N2r,,  
which is the total measurement time. The accuracy of the phase measurement for 
the signal component from one aperture cell, 154, is the reciprocal of f i  times 
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the corresponding signal-to-noise ratio, that is, N / ( f i S , , ) .  The factor f i  is in- 
troduced because only the component of the system noise that is normal to the 
signal (visibility) vector introduces error in the phase measurement; see Fig. 6.8. 
Now a displacement E in the surface of the aperture cell causes a change of phase 
47r~/h in the reflected signal. Thus an uncertainty B# in the phase of this signal 
component results in an uncertainty in E of BE = ~ 4 / ( 4 n )  = ~~ / (41 /2n32 , , ) .  
From the accuracy 8~ desired for the surface measurement, we determine that the 
signal strength should be such that the signal-to-noise ratio in time to, with both 
beams on source, is 

N h  
2 -  

sn - 4JZnBs' 
( 1  6.20) 

Having determined XS,, we can use Eqs. (6.48) and (6.49) to obtain values of 
antenna temperature or flux density (W m-2 Hz-') for the signal. If the two an- 
tennas used are not of the same size, then in Eqs. (6.48) and (6.49) A ,  TA, and 
T' are replaced by the geometric means of the corresponding quantities. Sev- 
eral simplifying approximations have been made. The statement that one aperture 
cell contributes 1 /N2 of the antenna output implies the assumption that the field 
strength is uniform over the aperture. If the aperture illumination is tapered, a 
higher value of R,, will be required to maintain the accuracy at the outer edges. 
Consideration of a square antenna overestimates gS,, for a circular aperture of 
diameter dA by 4/n. The situation can be significantly different when the signal 
used in the holography measurement is a cw (continuous wave) tone, often from 
a satellite. The received signal power P can be large compared with the receiver 
noise kTR Av (D'Addario 1982). In that case the noise in the correlator output is 
dominated by the cross products formed by the signal and the receiver noise volt- 
ages. The resulting signal-to-noise ratio in time r is J P  Av t / (kTR Av) ,  which 
is independent of the receiver bandwidth. 

An example of holographic measurements on an antenna of a submillimeter- 
wavelength synthesis array is shown in Fig. 16.5. Some practical points are listed 
below. 

The source used in a holographic measurement is ideally strong enough to 
allow a high signal-to-noise ratio to be obtained. Usually either a signal 
from a transmitter on a satellite or a cosmic maser source is used. Morris 
et al. (1988) describe measurements on the 30-m antenna at Pic0 de Veleta 
in which a measurement accuracy (repeatability) of 25 pm was achieved 
using the 22.235 GHz water maser in Orion. For holography with interfer- 
ometer elements, sources that are partially resolved can be used (Serabyn, 
Phillips, and Masson 199 1 ). 
If the test antenna is on an altazimuth mount, the beam will rotate relative to 
the sky as the observation proceeds. In determining the pointing directions, 
the (1 ,  r n )  axes of the sky plane should remain aligned with the local hori- 
zontal and vertical directions. If the antenna is on an equatorial mount, the 
(I, rn) axes should be the directions of east and north on the sky plane [i.e., 
the usual (1 ,  rn)  definition]. 
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If the source is strongly linearly polarized and the antennas are on altazimuth 
mounts, it may be necessary to compensate for rotation of the beam. This is 
possible if the antennas receive on two orthogonal polarizations. 

When using two separate antennas, differences in the signal paths resulting 
from tropospheric irregularities can cause phase errors. It may be necessary 
to make periodic recordings with both beams centered on the source to deter- 
mine the magnitude of such effects. In the case of measurement on a single 
large antenna, a small antenna mounted on the feed support structure of the 
large one, and pointing in the same direction as the large antenna’s beam, 
is sometimes used to provide the on-source reference signal. Tropospheric 
effects on the phase should then cancel. 

An antenna may be rotated (through a limited angular range) about any axis 
through its phase center without varying the phase of the received signal. The 
phase center of a parabolic reflector lies on the axis of the paraboloid, and 
is roughly near the mid-point between the vertex and the aperture plane.* In 
the scanning, the maximum angle through which the antenna is turned from 
the on-source direction is N / ( 2 d A ) .  If the axis about which it is turned is a 
distance r from the phase center, the phase path length to the antenna will be 
increased by r [  1 - cos(N/2dA)]. If this distance is a significant fraction of a 
wavelength, a phase correction must be applied to the signal at the correlator 
output. 

For an antenna in a radome, structural members of which can cause scatter- 
ing of the incident radiation, corrections are necessary. Rogers et al. (1993) 
describe such corrections for measurements on the Haystack 37-m antenna. 

In measurements on the antennas of a correlator array in which the number 
of antennas nu is large, a possible procedure would be to use one antenna 
to track the source and provide the reference signal, and scan all the others 
over the source. However, a better procedure would be to use nu/2 antennas 
to track the source while the other n , / 2  antennas are scanned. The averag- 
ing time would be half that of the first procedure to allow the roies of the 
two sets of antennas to be interchanged at the midpoint of the observation. 
However, there would be n u / 2  different measurements for each antenna, so 
compared with the first procedure, the sensitivity would be increased by a 
factor 1/.a7. Also, cross-correlation of the signals from the tracking anten- 
nas would provide information about the phase stability of the atmosphere, 
which would be useful in interpreting the measurements. 

*Consider transmission from an antenna in which the parabolic surface is formed by rotation of the 
parabola x = ay2 around the I axis. Radiation from a ring-shaped element of the surface between the 
planes x = x’ and x = x’ + dx has an effective phase center on the x axis at x ’ .  The area of such an 
element projected onto the aperture plane (i.e., normal to the x axis) is independent of x’. If the aperture 
illumination is uniform, each surface element between planes normal to the x axis and separated by the 
same increment makes an equal contribution to the electric vector in the far field. Thus the effective phase 
center of the total radiation should be on the x axis, midway between the vertex and the aperture plane. 
Note that this is an approximate analysis based on geometrical optics. 
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A method that requires only measurement of the amplitude of the far-field pat- 
tern has been developed by Morris (1985). In such a procedure the reference an- 
tenna is not required. The method is based on the Misell algorithm (Misell 1973), 
and the procedure can be outlined as follows. Input requirements are an initial 
“first guess” model of the amplitude and phase of the field distribution across the 
antenna aperture, and two measurements of the far-field amplitude pattern, one 
with the antenna correctly focused, and the other with the antenna defocused suf- 
ficiently to produce phase errors of a few radians at the antenna edge. The model 
aperture distribution is used to calculate the in-focus far-field pattern in amplitude 
and phase, and the calculated in-focus amplitude is replaced by the measured am- 
plitude. The measured in-focus amplitude and the calculated phase are then used 
to calculate the corresponding aperture amplitude and phase, which then become 
the new aperture model. This new model is then used to calculate the defocused 
far-field pattern. In calculating the defocused pattern, it is assumed that, in the 
aperture, the defocusing affects only the phase, and that it introduces a compo- 
nent that varies in the aperture as the radius squared. The calculated defocused 
amplitude pattern is then replaced by the measured defocused pattern, and the 
corresponding in-focus aperture distribution is calculated and becomes the new 
model. In the continuing iterations, the in-phase and defocused amplitudes are 
calculated alternately. After each calculation the amplitude pattern is replaced by 
the corresponding measured pattern, and the result is used to upgrade the model. 
The required solution to which the procedure should converge is a model that 
fits both the in-focus and defocused responses. This technique requires a higher 
signal-to-noise ratio than when phase measurements are made. For measurements 
near nulls in the beam, the required signal-to-noise ratio is approximately equal 
to the square of that when the phase is measured (Morris 1985). 

A holographic method involving only one antenna, suitable for a large sub- 
millimeter wavelength telescope, is described by Serabyn, Phillips, and Masson 
(1991). Measurements are made in the focal plane using a shearing interferome- 
ter, an adaptation of a technique used for optical instruments. 

16.4 OPTICAL INTERFEROMETRY 

The principles of optical interferometry are essentially identical to those at radio 
frequencies, but accurate measurements are more difficult to make. One difficulty 
arises because irregularities in the atmosphere introduce variations in the effective 
path length that are large compared with the wavelength, and thus cause the phase 
to vary irregularly by many rotations. Also, obtaining the mechanical stability of 
an instrument required to obtain fringes at a wavelength of order 500 nm presents 
a formidable problem. Thus it is difficult to calibrate the instrumental phase re- 
sponse, and in many cases only the visibility amplitude is measured. However, 
the practicality of synthesis imaging in the optical spectrum has been demon- 
strated by Haniff et al. (1987) and Baldwin et al. (1996), using phase closure 
techniques; see Section 10.3. In the absence of visibility phase, the amplitude 
data can be interpreted in terms of models, or the autocorrelation of the intensity 
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distribution as explained in Section 1 I .4 under Mapping with Visibility Amplitude 
Data Only. Techniques for two-dimensional reconstruction without phase data 
[see, e.g., Bates (1984)l are also applicable. Optical interferometry is an active 
and growing field, and here we attempt only to give an overview of some basic 
principles. A general review is given by Shao and Colavita (1992) and a detailed 
review of the theory is given by Tango and Twiss (1980). A very useful collec- 
tion of some of the most important publications in optical interferometry has been 
compiled by Lawson (1997): see bibliography. 

Before discussing instruments, we briefly review some relevant atmospheric 
parameters. The irregularities in the atmosphere give rise to random variations 
in the refractive index over a large range of linear scales. For any particular 
wavelength, there exists a scale size over which portions of a wavefront remain 
substantially plane compared with the wavelength, that is, atmospheric phase 
variations are small compared with 23r. This scale size is represented by a param- 
eter, the Fried length ro (Fried 1966); see the discussion following Eq. (13.102). 
The Fried length is equal to 3.2d0, where do is the spacing between paths through 
the atmosphere for which the rms phase difference is one radian; see Eq. ( 1  3.102). 
Regions for which the uniformity of the phase path lies within this range are 
sometimes referred to as seeing cells. The scale size ro and the height at which 
the dominant irregularities occur define an isoplanatic angle (or isoplanatic patch 
size), that is, an angular range of the sky within which the incoming wavefronts 
from different points encounter similar phase shifts. Within an isoplanatic patch 
the point-spread function remains constant, so the convolution relationship be- 
tween source and image holds. ’Ijlpical figures for the 50th percentile value of 
ro, which scales as [see Eq. (13.102)], and the isoplanatic angle, are given 
in Table 16.1. Also included for comparison are the corresponding values of 
the diffraction-limited resolution of a telescope of 1-m aperture. Optical inter- 
ferometers provide a powerful means of studying the structure functions of the 
atmosphere at infrared and optical wavelengths; see, for example, Bester et al. 
(1992) and Davis et al. (1995). Note that techniques involving correction of at- 
mospheric distortion of the wavefront by means of the telescope hardware are 
referred to as adaptive optics [see, e.g., Roggemann, Welch, and Fugate (1997), 
Milonni ( 1999)]. 

TABLE 16.1 Atmospheric and Instrumental Parameters at Visible and 
Infrared Wavelengths 

Isoplanatic Resolution Atmospheric 
Angle at of 1-m Diameter Resolution 

Wavelength (pm)  ro (4 Zenith Aperture ( A l r o )  

0.5 (visible) 0.14 5.5” 0.13“ 0.70” 
2.2 (infrared) 0.83 33” 0.55” 0.55” 
20 (infrared) 11.7 8’ 5 .O” 0.35“ 

Source: Woolf (1982) 
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Modem Michelson Interferometer 

The original Michelson instrument was briefly discussed in Section 1.3, and it 
was pointed out that the instability of the fringes was a limiting factor in estima- 
tion of the visibility. The timescale of the atmospheric fluctuations is of the order 
of I0 ms, which can be accommodated by using an electronic system for control 
and measurement of the fringes. A simplified diagram illustrating the basic fea- 
tures of a modem Michelson type of interferometer is shown in Fig. 16.6. The two 
mirrors S are mounted as siderostats and track the optical source under study. The 
positions of the retroreflectors R are continuously adjusted to equalize the lengths 
of the paths from the source to the combination point B. This delay compensation 
is usually implemented in evacuated tubes because the geometric delay of the in- 
terferometer largely occurs above the atmosphere. If air delay lines were used, a 
separate mechanism would be needed to compensate for the dispersive compo- 
nent of the delay, which is difficult to implement in wide bandwidth systems [see, 
e.g., Benson et al. (1997)l. The siderostats are mounted on stable foundations, and 
the rest of the system is usually mounted on a system of optical benches within 
a controlled environment. The apertures of the interferometer, determined by the 
mirrors S, are made no larger than the scale size ro. Thus the wavefront across 
the mirror remains essentially plane, and the effect of the irregularities is to pro- 
duce a variation in the angle of arrival of the wavefront. The variation cannot be 
tolerated since the angles of the beams at the combination point B must be cor- 
rect to within 1 arcsec. To mitigate this effect, the polarizing beamsplitter cubes 
P reflect light to quadrant detectors Q, which produce a voltage proportional to 
any displacement of the angle of the light beam. These voltages are then used to 
control the tilt angles of the mirrors T, to compensate for the wavefront variation. 
A servo loop with bandwidth - 1 kHz is required to follow the fastest atmospheric 

1 
I I I I  

I I 1  I I  I 

'a 
I I  

I RA 
1 t +  + I  4 

S +-** p*-+s 

Figure 16.6 Basic features of a modem, dircct detection implementation of the Michelson 
interferometer. The broken line represents the light path from a star. From Davis and Tango, 
Pmc. Astmn. SOC. Australia, 634-38, 1985. 
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effects. The filters F define the operating wavelength. The two detectors D1 and 
D2 respond to points on the fringe pattern spaced by one-quarter of a fringe cycle, 
and their outputs provide a measure of the instantaneous amplitude and phase of 
the fringes. This method is described, for example, by Rogstad (1968), who has 
also pointed out that with a multielement system the phase information can be 
utilized by means of closure relationships as discussed in Section 10.3. 

Optical interferometers can be built with very wide bandwidths, that is, 
AA/h 2: 0.1 or possibly more, so the central, or white light, fringe is readily iden- 
tifiable. If such a system is made to operate at two such wide wavelength bands 
simultaneously, the effects of the atmosphere, which is slightly dispersive, can be 
removed. Ground-based optical astrometry with dual-wavelength phase-tracking 
interferometers can yield accurate positions of stars (Colavita, Shao, and Staelin 
1987). As examples of earlier interferometry, Currie, Knapp, and Liewer (1 974) 
made measurements using two apertures on a single large telescope, and Labeyrie 
(1 975) obtained the first successful measurements using two telescopes. For de- 
scriptions of later, more complex, instruments see, for example, Davis and Tango 
(1985). Shao et al. (1988), Baldwin et al. (1994), Mourard et al. (1994), Arm- 
strong et al. (1998), and Davis et al. (1999a,b). For use in space where the earth’s 
atmosphere is avoided, optical interferometry holds great promise. The Space In- 
terferometry Mission (Shao 1998, Allen and Boker 1998, Boker and Allen 1999) 
is a space-based interferometer for the wavelength band 0.4-1 .O pm with variable 
baseline up to 10 m, intended to provide synthesis imaging with a resolution of 
10 mas, and to measure fringe phases with sufficient accuracy to provide positions 
of stars to within 4 parcsec. An application of space interferometry to the detec- 
tion of planets around distant stars is discussed by Bracewell and MacPhie (1979). 
The ratio of the signal from the planet to that from the star is maximized by choos- 
ing an infrared wavelength on the long-wavelength side of 20 pm, and by placing 
a fringe-pattern null in the direction of the star. A demonstration of the nulling 
technique using ground-based telescopes is described by Hinz et al. (1998). 

In the systems mentioned above, the fringes are formed by combining the 
incoming radiation at the same wavelength as it is received, as in the classical 
Michelson stellar interferometer. They are therefore also referred to as direct de- 
recrion systems. An alternative to the direct detection system is the heterodyne 
system, in which the light from each aperture is mixed with coherent light from 
a central laser to produce an intermediate frequency. The IF waveforms are then 
amplified and correlated in an electronic system, in a manner basically identical 
to that used in radio interferometry. In comparison with a direct detection system, 
the sensitivity is greatly limited by the quantum effects mentioned in Section 1.4. 
It is also limited by the bandwidth that can be handled by the electronic amplifiers, 
unless the mixer outputs are split into many frequency channels, each of which 
is processed in parallel. A large bandwidth can then be processed using a corre- 
spondingly large number of amplifiers and correlators. The bandwidth division 
also has the effect of increasing the path length difference over which the signals 
remain coherent. The heterodyne technique has been used in infrared interferom- 
etry; see, for example, Johnson, Betz, and Townes (1974), Assus et al. (1979), 
and Bester, Danchi, and Townes (1990). Possible application to large multiele- 
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ment telescopes with multiband processing in the infrared and visible ranges has 
been discussed by Swenson, Gardner, and Bates (1 986). 

From the submillimeter radio range to the optical is a factor of - lo3 in wave- 
length, and a further factor of -lo3 takes one to the X-ray region. X-ray as- 
tronomy could benefit tremendously by the potentially high angular resolution 
obtainable through interferometry. The viability of X-ray interferometry, suitable 
for astronomical imaging, has been demonstrated in the laboratory by Cash et al. 
(2000). It holds promise of providing extremely high angular resolution in obser- 
vations above the atmosphere. At a wavelength of 2 nm, a baseline of 1 m provides 
a fringe spacing of 4 x lop4 arcsec. In the laboratory instrument, the apertures are 
defined by flat reflecting surfaces, which are used at grazing incidence to mini- 
mize the requirement for surface accuracy. Direct detection is the only available 
technique, and if the fringes are formed by simply allowing the reflected beams 
to converge on a detector surface, a long distance is required to obtain sufficient 
fringe spacing. With 4 x lop4 arcsec angular spacing of the fringes, adjacent max- 
ima would be separated by only 1 p at 500-m distance. Thus more complicated 
systems are likely to be required for practical astronomical interferometry. 

Sensitivity of Direct Detection and Heterodyne Systems 

Factors that determine the sensitivity of optical systems, such as losses due to 
scattering, partial reflection, and absorption, are different from corresponding ef- 
fects at radio wavelengths. However, in heterodyne systems the most important 
difference is the role of quantum effects. The energy of optical photons is five or 
more orders of magnitude greater than that of radio photons, and quantum effects 
are largely negligible in the radio domain at frequencies lower than -100 GHz. 
In the optical range (wavelength -500 pm) the frequency is of order 600 THz, 
and the bandwidth could be as high as 100 THz. In a typical heterodyne system in 
the infrared, the wavelength of 10 p m  corresponds to 30 THz, and the bandwidth 
is -3 GHz [see, e.g., Townes et al. (1998)l. 

In direct detection systems the detector or photon counter does not preserve 
the phase of the signal, and thus the noise resulting from the uncertainty prkiple, 
discussed in Section 1.4, does not occur. The noise is principally shot noise result- 
ing from the random arrival times of the signal photons. The number of photons 
received from a source of intensity I is 

. IQ,AAv 
N =  (photons s-I), 

hv 
(16.21) 

where Q.s is the solid angle of the source (with no atmospheric blurring), A is the 
collecting area of the telescope, Av is the bandwidth, LJ is the frequency, and h is 
Planck’s constant. If the source is a blackbody at temperature T, Planck’s formula 
gives 

(16.22) 
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Note that for direct detection we are considering the signal in both polarizations. 
Thus we have 

2Q2,Ahv 1 
N =  (photons s-'). 

)c2 ehvlkT - 1 (1 6.23) 

The received power is 

P = h v N .  (16.24) 

The fluctuations in the ower, A Po, are caused by photon shot noise and therefore 
are proportional to P N .  Thus 

A Po = h v J N .  (16.25) 

A Po is known as the noise equivalent power (NEP). The signal-to-noise ratio 
in one second is P/A Po = a, and therefore for an integration time T,, the 
signal-to-noise ratio for direct detection is 

(16.26) 

where the subscript D indicates direct detection. Note that R s n ~  is proportional to a, because of the shot noise, rather than to A as in the radio case. 
In a heterodyne system the noise is determined by the uncertainty principle, 

since the mixer is a linear device that preserves phase. The minimum noise is one 
photon per mode (one photon per hertz per second), as noted in the discussion 
following Eq. (1.14). This is equivalent to saying that the system temperature is 
h v / k  [see, e.g., Heffner (1962), Caves (1982)l. Hence, in a period of one second 
the uncertainty in power is 

AP" = hv&. (16.27) 

The heterodyne detector responds only to the component of the radiation to which 
its polarization i s  matched, and the received power is half of that in Eq. (16.24). 
The signal-to-noise ratio for a heterodyne system (indicated by subscript H) is 
therefore P/(2APH) in one second, and in time r, it is 

(16.28) 

Note that Eq. (16.28) reduces to the usual radio form in Eq. (1.7) when h v /  kT << 
1. In that case, TA = T S2, A l l 2  and the minimum value of h u/  k can be used for 
system temperature. The ratio of signal-to-noise ratios for the direct detection and 
heterodyne systems, when parameters other than the bandwidth are the same, is 
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1 

%"D 
(16.29) 

As indicated earlier, ,/- could be as low as - 4 x However, for 
direct detection, the propagation delays through the different siderostats to the 
fringe forming point must be maintained constant to -1/10 of the reciprocal 
bandwidth. This requirement restricts the bandwidths that can practicably be 
used, especially with baselines of hundreds of meters. The heterodyne system of- 
fers simpler hardware that provides useful sensitivity at 10 p m  wavelength, and 
possibly to the next atmospheric window at 5 pm. It also allows the amplified 
IF signals to be split without loss in sensitivity, to provide multiple simultaneous 
correlations in multielement arrays. Relative advantages of the heterodyne and di- 
rect detection systems are discussed by Townes and Sutton (1981) and de Graauw 
and van de Stadt (1981). 

Optical Intensity Interferometer 

The use of the intensity interferometer for optical measurements on stars was 
demonstrated by Hanbury Brown and Twiss (1956a), shortly after the success of 
the radio intensity interferometer described in Section 1.3 under Early Measure- 
ments ofAngufar Width and Section 16.1. At that time the possibility of coherence 
between photons in different light rays from the same source was questioned, and 
the physical basis and consistency with quantum mechanics is explained by Han- 
bury Brown and Twiss (1956~) and Purcell (1956). The laboratory demonstration 
of the correlation of intensity fluctuations of light by Hanbury Brown and Twiss 
(1956b) led to the broader development of quantum statistical studies, and their 
application to particle beams as well as electromagnetic radiation (Henny et al. 
1999). 

In the optical intensity interferometer, a photomultiplier tube at the focus of 
each telescope mirror replaces the RF and IF stages and the detectors of the ra- 
dio instrument. The photomultiplier outputs are amplified and fed to the inputs 
of the correlator. The optical intensity interferometer is largely insensitive to at- 
mospheric phase fluctuations, as explained for the radio case in Section 16.1. The 
size of the light-gathering apertures is therefore unrestricted by the scale size of 
the irregularities. Also, it is not necessary that the reflecting mirrors produce a 
diffraction-limited image, and their accuracy need only be sufficient to deliver all 
the light to the photomultiplier cathodes. This is fortunate since the low sensitivity 
mentioned earlier for the radio case necessitates the use of large light-gathering 
areas. Hanbury Brown (1974) has given an analysis of the response of the opti- 
cal instrument and has shown that it is proportional to the square of the visibility 
modulus as in the radio case. Either a correlator or a photon coincidence counter 
can be used to combine the photomultiplier outputs. 

The intensity interferometer constructed at Narrabri, Australia (Hanbury 
Brown, Davis, and Allen 1967; Hanbury Brown 1974), used two 6.5-m diam- 
eter reflectors and a bandwidth of 60 MHz for the signals at the correlator inputs. 
The resulting limiting magnitude of +2.5 enabled measurements of 32 stars 
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to be made. Davis (1976) has discussed the relative merits of the intensity in- 
terferometer and modem implementations of the Michelson interferometer for 
development of more sensitive instruments. 

Speckle Imaging 

The image of an unresolved point source observed with a telescope of which the 
width of the aperture is large compared with the Fried length ro depends on the 
exposure time over which the image is averaged. An exposure no longer than 10 
rns shows a group of bright speckles, each of which is of the approximate size 
of the Airy disk (Le., the diffraction-limited point-source image) of the telescope. 
If the exposure is much longer, the pattern is blurred into a single patch (the 
“seeing” disk) of typical diameter 1 arcsec, determined by the atmosphere. The 
characteristic fluctuation time of 10 ms in the optical range corresponds to the 
time taken for a cell of size ro N 0.14 m to move past any point in the telescope 
aperture at a typical wind speed of 10-20 m s-’. The use of sequences of short- 
exposure images to obtain information at the diffraction limit of a large telescope 
is known as speckle imaging. Speckle patterns reflect the random distribution of 
atmospheric irregularities over the aperture, and differ from one exposure to the 
next on the 10-ms timescale. Reduction of many exposures is required to observe 
faint objects by this technique. 

For the theory of the speckle response see, for example, Dainty (1973), Bates 
(1982), or Goodman (1985). Here we note that the high-resolution image repre- 
sented by a single speckle can be understood if one considers each speckle as 
resulting from several seeing cells of the wavefront, located at points distributed 
across the telescope aperture. These cells are the ones that present approximately 
equal phase shifts in the ray paths from the wavefront to the speckle image (Wor- 
den 1977). Then, by analogy with an array of antennas, the resolution corresponds 
to the maximum spacing of the cells, that is, it is of the order A/d,  where d is the 
telescope aperture. Aberrations in the reflector do not significantly degrade the 
speckle pattern as long as the dominant phase irregularities are those of the atmo- 
sphere. The area of the image over which the speckles are spread corresponds to 
A/ro  on the sky and becomes the seeing disk in a long exposure. The seeing cells 
can be regarded as subapertures within the main telescope aperture, the responses 
of which combine with random phases in the image. The number of speckles is 
of the order of the number of subapertures, that is, (d/rO)*. With a large telescope 
(d - 1 m) this number is of the order of 50 at optical wavelengths. Also, the 
size of the seeing cells increases with wavelength, and in the infrared only a few 
speckles appear in the image. 

A rather simple image restoration technique called the “shift-and-add” algo- 
rithm can be applied to speckle images (Christou 1991). It works best when there 
is a point source in the field, and at infrared wavelengths where there are rel- 
atively few speckles per frame and the isoplanatic patch is relatively large (see 
Table 16.1). The short exposure speckle frames are aligned on their brigthest 
speckles and summed. The point spread function (“dirty beam”), which can be 
obtained from the image of a point source within the field, will have a diffraction- 
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limited component and a much broader component composed of the fainter speck- 
les. This step can be followed by other restoration algorithms such as CLEAN (see 
Section 11.2) to improve the image quality further [see, e.g., Eckart et al. (1994)l. 

When the shift-and-add algorithm is not applicable, the modulus of the vis- 
ibility can be obtained by the technique of speckle interferometry, which origi- 
nated with Labeyrie (1970). This procedure can be understood from the following 
simplified discussion. On a single image of short exposure, a number of approxi- 
mately diffraction-limited speckles appear at random locations within the seeing 
disk. The speckle image l s ( l ,  m) can be described as the convolution of the ac- 
tual intensity distribution I ( / ,  m) with the speckle point spread function P(1, m). 
Thus 

Is(l, m) = [(I, m )  * * P(1, m). ( 1  6.30) 

The function P(Z, m) is a random function that cannot be specified exactly. As 
a first approximation, we will assume that P(1, m) is the point spread function 
of the telescope in the absence of atmospheric effects, bo(l, m), replicated at the 
position of each speckle. Thus we can write 

where li and m i  are the locations of the speckles, all of which are assumed to have 
the same intensity. From Eqs. (16.30) and (16.31), we obtain 

If the Fourier transform of bo(l, m) is bo(u, u ) ,  then the Fourier transform of 
bo(l - Ii, m - mi) is &(u,  u )  exp[ j27c(uli + urni) ] .  Hence, the Fourier transform 
of Eq. (16.32) can be written as 

where Y and 7 are the Fourier transforms of t and I , ,  respectively. The speckle 
transforms Is cannot be summed directly because of random phase factors in 
Eq. (16.33). To eliminate these phase factors, we calculate IT,(’ (i.e., TJ), which 
is 

where N is the number of speckles. Since the expectation of the summation term 
in the second line of Eq. (16.34) is zero, the expectation of Eq. (16.34) is 
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(IT,(u, u)12) = NolWU, V)l2l~o(U, U ) l 2 ,  (16.35) 

where No is the average number of speckles. Hence, the average of a series of 
measurements of IZs(u, u) I2 ,  estimated from short exposures, is proportional to 
the squared modulus of Y(u,  u )  times the squared modulus of &(u,  u) .  Since 
bo(u, u )  is nonzero for IuI, IuI < D/A, the function I'V(u, u) I2  can be determined 
over the same range of u and u,  if &(u, u) is known. In practice the speckles 
cannot be accurately modeled by Eq. (1  6.3 1). However, we can write 

(IT,(u. U)l2) = I W ,  v ) I 2 ( l W ,  u)I2)* (16.36) 

where F(u, u )  is the Fourier transform of F(1, m). From Eqs. (16.35) and 
(16.36), ( I F ( u ,  u)12) should be approximately proportional to I&,(u, u) I2 .  It can 
be estimated by observing a point source under the same conditions as those for 
the source under study. 

The phase information can be extracted from the speckle frames, but with con- 
siderably more computational effort. Most phase retrieval algorithms are vari- 
ations of two basic methods: the Knox-Thompson, or cross-spectral, method 
[Knox and Thompson (1974), Knox (1976)], and the bispectrum method (Loh- 
mann, Weigelt, and Wirnitzer 1983). These methods are described in detail by 
Roggeman, Welch, and Fugate ( 1997). 
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PRINCIPAL SYMBOLS 

Listed below are the principal symbols used throughout the book. Locally defined 
symbols with restricted usage are selectively included. 

a 

A 
A 

'41 
A0 
AN 
A 
b 

b0 
bN 
B 
B 

C 
C 

c 
d 

D 

Model dimension, scale size, atmospheric model con- 
stant (Section 13.1). scale size of ionospheric irregularities 
(Section 13.4) 
Antenna collecting area (reception pattern) 
Antenna polarization matrix (Chapter 4) 
One-dimensional reception pattern 
Antenna collecting area on axis 
Normalized reception pattern 
Mirror-image reception pattern, azimuth 
Galactic latitude (Section 13.6) 
Snythesized beam pattern, point-source response 
Normalized synthesized beam pattern 
Magnetic field magnitude 
magnetic field vector 
Velocity of light 
Coherence function (Chapter 9), convolving function 
(Chapter 10) 
Turbulence strength parameters for refractive index, elec- 
tron density (Chapter 13) 
Amplitude of a complex signal (Appendix 3.1) 
Distance, antenna diameter, baseline declination, projected 
baseline (Chapter 13) 
Distance between ray paths to target and calibrator sources 
in turbulent region 
Distance over which r m s  phase deviation = 1 rad (Chap- 
ter 13) 
Baseline (antenna spacing), polarization leakage (Chap- 
ter 4) 
Baseline vector 
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Baseline measured in wavelengths 
Interaxis distance of antenna mount (Chapter 4) 
Equatorial component of baseline 
Dispersion measure (Chapter 13) 
Delay resolution function [Eq. (9.161)] 
Dispersion in optical fiber (Section 7.1, Appendix 7.2), 
sensitivity degradation factor (Section 7.3) 
Structure function of phase (temporal) (Chapter 13) 
Structure function of phase (spatial) (Chapters 12, 13) 
Structure function of refractive index (spatial) (Chap- 
ter 13) 
Electronic charge = --e (Chapter 13) 
Electric field (usually in the measurement plane), spectral 
components of electric field, energy 
Components of electric field 
Electric field at a source or aperture (Chapters 3, 14, 16), 
elevation angle 
Frequency of Fourier components of power spectrum 
(Chapters 9, 13) 
Oscillator strength at resonance i (Chapter 13) 
Phase switching waveforms (Chapter 7) 
Power flux density (W m-*), fringe function 
Threshold of harmful interference (W mP2) (Chapter 15) 
Faraday dispersion function (Chapter 13) 
See Eqs. (9.17) 
Entropy measures (Chapter 11) 
Bandwidth pattern (Chapter 2) 
Quantized fringe-rotation functions (Chapter 9) 
Voltage gain constant for an antenna, gravitational accel- 
eration (Chapter 13) 
Gravitational constant 
Power gain of receiver for one antenna (Chapter 7) 
Gain factor for a correlated antenna pair 
Gain factor (Chapter 7) 
Occultation response function (Chapter 16) 
Planck’s constant, impulse response of a filter (Section 3.3), 
hour angle, height 
Atmospheric scale height (Chapter 13) 
Hour angle, voltage-frequency response, Hadamard ma- 
trix (Section 7.5) 
Gain constant 
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1 

i 

Im 
i 
J 
J,, 
J 

JO 

JI 

k 

k 
1 

L 

Electric current 
Unit vector in direction of polar or azimuth axes (Chap- 
ter 4), current vector (Chapter 13) 
Intensity, Stokes parameter 
Variance of fractional frequency deviation (Chapter 9) 
Speckle intensity (Chapter 16) 
Stokes visibility 
Peak intensity of a point-source map, derived (synthe- 
sized) intensity distribution, modified Bessel function of 
zero order (Chapters 6 ,9)  
One-dimensional intensity function, modified Bessel func- 
tion of first order (Chapter 9) 
Imaginary part 

Jones matrix (Chapter 4) 
Volume emissivity of a source (Chapter 13) 
Mutual intensity (Chapter 14) 
Bessel function of first kind and zero order 
Bessel function of first kind and first order 
Boltzmann’s constant, propagation constant 2n/A (Chap- 
ter 13) 
Propagation vector with magnitude 2 n / A  (Chapter 9) 
Direction cosine with respect to baseline component u,’ 
lapse rate (Chapter 13) 
Length of a transmission line, loss factor in a transmis- 
sion line (Chapter 7), probability integral [Eq. (8.70)], path 
length, likelihood function (Chapter 12), thickness of tur- 
bulent atmospheric layer or screen (Chapter 13) 
Scales of turulence (Chapter 13) 
Length, galactic longitude (Chapter 13) 
Unit spacing (in wavelengths) in a grating array (Chapters 
1,  5 )  
Latitude, excess path length (Chapter 13) 
Excess path length of dry air, water vapor 
Direction cosine with respect to baseline compoment u,  
modulation index (Appendix 7.2), measured quantity (Ap- 
pendix 12. I ) ,  electron mass (Chapter 13) 
Degree of linear, circular, and total polarization 
Frequency multiplication factor (Chapter 9), model func- 
tion (Chapter 10). mass, complex degree of linear polar- 
ization (Chapter 13) 
Molecular weight; total, dry air, water vapor (Chapter 13) 

J--r 

mt,  mcr m, 
M 

A, A D ,  A V  
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n 

P 

P D  

Pv 
P 

4 

4.r 9 4v 
4‘ 

Q 

Q” 

Direction cosine with respect to baseline component w, 
weighting factor in quantization (Chapter 8), noise com- 
ponent, index of refraction (Chapter 13) 
Complex refractive index 
Number of antennas 
Number of data points 
Density of electrons, ions, neutral particles, and molecules 
(Chapter 13) 
Number of antenna pairs 
Number of sources 
Number of points in a rectangular array (grid points) 
Refractive index at earth’s surface (Chapter 13) 
Number of samples (Chapter 8), total refractivity (Chap- 
ter 13) 
Number of bits per sample (Chapter 8) 
Refractivity of dry air, water vapor (Chapter 13) 
Number of Nyquist-rate samples (Chapter 8) 
2 X  and (2N + 1 ) Are even and odd numbers of quantiza- 
tion levels (Chapter 8) 
Probability density or probability distribution [i.e., p ( x )  dx 
is the probability that the random variable lies between x 
and x + d x ] ,  bivariate normal probability function (Chap- 
ter 8). number of model parameters (Chapter lo), partial 
pressure (Section 13. I ) ,  impact parameter (Section 13.5) 
Partial pressure of dry air (Chapter 13) 
Partial pressure of water vapor (Chapter 13) 
Power, cumulative probability, total atmospheric pressure 
(Chapter 13) 
Atmospheric pressure at earth’s surface (Chapter 13) 
Dipole moment per unit volume 
Triple product (bispectrum) 
Instrumental polarization factor 
Spectrum of electron density fluctuations 
Point-source response at moon’s limb (Section 16.2). 
speckle point-spread function (Section 16.4) 
Distance in (u ,  u )  plane 
Distance in (id, u’ )  plane 
Components in the spatial frequency (cycles per meter) 
plane (Chapter 13) 
Stokes parameter, quality factor of a line or cavity (Sec- 
tion 9 3 ,  number of quantization levels (Section 9.6) 
Stokes visibility 
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r Correlator output, distance in the ( 1 ,  m) plane, radial dis- 
tance 
Position vector of antenna relative to center of earth 
Classical electron radius (Chapter 13) 
Correlator output resulting from lower sideband 
Radius of the earth (Chapter 13), Fried length (Chapter 16) 
Correlator output resulting from upper sideband 
Autocorrelation function, correlator output, Rademacher 
function (Section 7.5), distance, gas constant (Chapter 13) 
Correlator output matrix (Chapter 4) 
Response with visibility averaging (Chapter 6) 
Response with finite bandwidth (Chapter 6) 
Radius of electron orbit (Chapter 13) 
Far-field distance 
Rotation measure (Chapter 13), distance of the moon's 
Iimb (Chapter 16) 
Autocorrelation for n-level quantizarion (Chapter 8) 
Autocorrelation function of fractional frequency deviation 
(Chapter 9) 
Autocorrelation function of phase (Chapters 9, 13) 
Real part 
Signal-to-noise ratio 
Signal component, smoothness measure (Chapter 1 1 ) 
Unit position vector (Chapter 3) 
Unit position vector of field center (Chapter 3) 
(Spectral) power flux density (W m-* Hz-') 
Flux density of a calibrator 
System equivalent flux density 
Threshold of harmful interference (W K 2 H z - ' )  (Chap- 
ter IS) 
Cross power spectrum (Chapter 9) 
Power spectrum of intensity fluctuations (Chapter 13) 
Single-sided and double-sided power spectra of fractional 
frequency deviation (single-sided power spectrum used 
only in Section 9.4) 
Single-sided and double-sided power spectra of phase fluc- 
tuations (single-sided power spectrum used only in Sec- 
tion 9.4) 
Two-dimensional power spectrum of phase (Chapter 13) 
Time 
Period of the earth's rotation (Chapter 12) 
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tcyc 

T 

U 

U’ 

U 

ULI 
PA 
V 

VO 

Cycle period for target and calibrator sources 
Temperature, time interval, transmission factor (Chap- 
ter 14) 
Atmospheric temperature (Chapter 13) 
Component of antenna temperature resulting from wanted 
signal 
Total antenna temperature 
Brightness temperature 
Noise temperature of calibration signal 
Gas temperature (Chapter 9) 
Receiver temperature 
System temperature 
Time interval 
Antenna spacing coordinate in units of wavelength (spatial 
frequency) 
Projection of u coordinate onto the equatorial plane 
Stokes parameter 
Stokes visibility 
Unwanted response (Section 7.5) 
Antenna spacing coordinate in units of wavelength (spatial 
frequency), phase velocity in a transmission line (Chap- 
ter 8) 
Projection of v coordinate onto the equatorial plane 
Group velocity (Chapter 13) 
Rate of angular motion of moon’s limb (Chapter 16) 
Phase velocity (Chapter 13) 
Radial velocity 
Velocity of scattering screen (parallel to baseline, if rele- 
vant) (Chapters. 12, 13) 
Quantization level (Chapter 8), particle velocity (Chap- 
ter 9) 
Voltage, Stokes parameter 
Voltage response of an antenna 
Stokes visibility (Chapter 4) 
Complex visibility, vector visibility 
Measured complex visibility 
Michelson’s fringe visibility 
Normalized complex visibility 
Antenna spacing coordinate in units of wavelength (spatial 
frequency), weighting function, column height of precip- 
itable water (Chapter 13) 
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W 

X 

XA 

X 

XA 
Y 

Yk 

Y b  

Y 

YA 
2 

Zb 

Z 

Z 

ZA 
a 

coordinate measured in the polar direction 
Atmospheric weighting function (Chapter 13) 
Mean of weighting factors (Chapter 6) 
Root-mean-square of weighting factors (Chapter 6) 
Visibility tapering function (Chapter 10) 
Function that adjusts visibility amplitude for effective uni- 
form weighting (Chapter 10) 
Spectral sensitivity function (spatial transfer function); 
propagator (Chapter 14) 
General position coordinate, coordinate in antenna aper- 
ture, signal voltage 
x coordinate measured in wavelengths 
Coordinate of antenna spacing [see Eq. (4. I)], signal wave- 
form measured in units of rms amplitude (Section 8.4), co- 
ordinate within a source or an aperture (Chapters 3, 14), 
signal spectrum (Section 8.7) 
X coordinate measured in wavelengths 
General position coordinate, coordinate in antenna aper- 
ture, signal voltage, distance along a ray path (Chapter 13) 
Fractional frequency deviation (Chapter 9) 

y coordinate measured in wavelengths 
Coordinate of antenna spacing [Eq. (4. l)], Y factor (Chap- 
ter 7), coordinate within a source or aperture (Chapters 3, 
14) signal waveform measured in units of rms amplitude 
(Section 8.4), signal spectrum (Section 8.7) 
Y coordinate measured in wavelengths 
General position coordinate, signal voltage, zenith angle 
(Chapter 13) 
z coordinate measured in wavelengths 
Coordinate of antenna spacing [Eq. (4.1)], visibility plus 
noise in correlator output (Chapters 6, 9) 
Compressibility factors for dry air and water vapor (Chap- 
ter 13) 
Visibility-plus-noise vector (Chapters 6,9) 
Z coordinate measured in wavelengths 
Right ascension, power attenuation coefficient, quantiza- 
lion threshold in units of ~7 (Chapter 8), spectral index 
I Chapter 1 1 ), absorption coefficient and power-law expo- 
nent in Table 13.2 and related text (Section l3.1), expo- 
nent in electron density fluctuation [Eq. (1 3.164)] (Sec- 
lion 13.4), solar elongation (Section 13.5) 
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B 

Y 

r 

r12 

6 

AM, Av 
Al, Am 
E 

€0 

€0 

& 

& 

V 
VD 

V Q  
V R  

V S  

e 

Fractional length change in transmission line (Chapter 7), 
oversampling factor (Chapter 8). exponent of distance in 
rms phase fluctuation [Eq. (1 3.79a)l (Sections 12.2, 13. l), 
exponent in solar electron density [Eq. (13.178)] (Sec- 
tion 13.5), Faraday depth (Section 13.6) 
Instrumental polarization factor (Section 4.8), maser relax- 
ation rate (Chapter 9), loop gain in CLEAN (Chapter 1 l), 
source coherence function (Chapter 14) 
Damping factor (Chapter 13), mutual coherence function 
(Chapter 14), gamma function 
Mutual coherence function (Chapter 14) 
Declination, increment prefix, (Dirac) delta function, in- 
strumental polarization factor (Section 4.8) 
Delta function in two dimensions 
Small length, increment prefix 
Bandwidth, Doppler shift (Appendix 10.2) 
Intermediate-frequency bandwidth 
Low-frequency bandwidth 
Frequency difference of local oscillators 
Delay error 
Increments in ( u ,  u )  plane 
Increments in ( I ,  rn) plane 
Width of quantization level in units of (T (Chapter 8), noise 
component in IF signal (Chapter 9), permittivity (Chap- 
ter 13) 
Amplitude error (Chapter 11) 
Permittivity of free space (Chapter 13) 
Noise component of correlator output (Chapters 6, 9), 
residual, error component, dielectric constant (Chapter 13) 
Noise vector (Chapter 6) 
Loss factor 
Discrete delay step loss factor 
Efficiency (loss) factor for Q-level quantization 
Fringe rotation loss factor 
Fringe sideband rejection loss factor 
General angle, angle measured from a plane normal to the 
baseline, instrumental phase angle 
Angular position of source or field center 
Width of synthesized beam, bending angle (Chapter 13) 
Width of synthesized field 
Width of first Fresnel zone 
Local oscillator phase 
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P 

Local oscillator phase at antennas m and n (Chapter 6) 
Effective beamwidth resulting from atmospheric fluctua- 
tions (Chapter 13), width of source (Chapter 16) 
Variation in earth-rotation angle (UT1-UTC) (Chapter 12) 
Wavelength 
Wavelength of optical carrier (Appendix 7.2) 
Reflected amplitude in a transmission line (Chapter 7) 
I'ower-law exponent in Allan variance (Chapter 9) 
Frequency 
Frequency measured with respect to center frequency or 
local oscillator frequency (Chapter 9) 
Bit rate 
Gyrofrequency (Chapter 13) 
Collision frequency (Chapter 13) 
Cavity frequency (Chapter 9) 
Intermediate frequency at which delay is inserted 
Delay step frequency (Chapter 9) 
Fringe frequency 
Instrumental component of fringe frequency (Chapter 12) 
Intermediate frequency 
Local oscillator frequency 
Frequency of a correlator channel (Chapter 9) 
Frequency of modulation on optical carrier (Chapter 7) 
Radio frequency 
Frequency of optical carrier (Appendix 7.2) 
Plasma frequency (Chapter 13) 
Center frequency of an IF or RF band, frequency of ab- 
sorption peak (Chapter 13) 
Autocorrelation function, cross-correlation coefficient, re- 
flection coefficient (Chapter 7), gas density (Chapter 13) 
Density: dry air, water vapor, total (Chapter 13) 
Cross-correlation 
Area density in the (u ,  u )  plane (Chapter 10) 
Reflection coefficients in transmission line (Chapter 7) 
Density of water (Chapter 13) 
Standard deviation, rms noise level 
Position vector on the unit sphere 
Allan standard deviation (a: = Allan variance) 
Root-mean-square uncertainty in delay (Chapter 9) 
Root-mean-square deviation of phase 
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Time interval 
Averaging (integration) time 
Atmospheric delay error (Chapter 12) 
Coherent integration time (Chapter 9) 
Clock error 
Geometric delay 
Instrumental delay 
Unit increment of instrumental delay, duration of an ob- 
servation (Chapter 6), zenith optical depth (opacity) of the 
atmosphere (Chapter 13) 
Sampling interval in time 
Minimum period of orthogonality (Chapter 7) 
Interval between switch transitions (Chapter 7) 
Optical depth (opacity) (Chapter 13) 
Phase angle 
Phase of signal received by antenna m 
Visibility phase 
Instrumental phase for correlated antenna pair 
Peak-to-peak phase error (Chapter 9) 
Phase of a complex signal (Appendix 3. I), probability in- 
tegral [Eq. (8.44)1 (Chapter 8), phase of a signal (Section 
13.1) 
Arctangent of axial ratio of polarization ellipse 
Statistical parameter 
Position angle, phase angle 
Parallactic angle 
Angular rotation velocity of the earth 
Solid angle 
Solid angle subtended by source 
Solid angle of main lobe of synthesized beam 

FREQUENTLY USED SUBSCRIPTS 

1 - 2  Antenna designation 
2 ,3 ,4 ,  00 

A Antenna 
d Delay, double sideband 
D Dry component (Chapter 13) 
I Imaginary part 
IF Intermediate frequency 

Quantization levels (Chapter 8) 
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e 
LO 
0 

m, n 
N 
r 
R 
S 
U 

V 
h 

OTHER SYMBOLS 

n 
rI 
111 
2111 
-1 T 

* 
** 
* 
** 
0 
Dot ( * ) 
Double dot (”) 
Overline (-), (-1 

Circumflex ( A ) 

Circumflex (-) 

Left circular polarization, lower sideband 
Local oscillator 
Center of frequency band or angular field, earth’s surface 
(Chapter 13) 
.Antenna designation 
Normalized, Nyquist rate (Sections 8.2, 8.3) 
Right circular polarization 
Real part 
System 
Upper sideband 
Water vapor (Chapter 13) 
Measured in wavelengths 

Unit rectangle function 
Product symbol 
Shah function in one dimension 
Shah function in two dimensions 
“Is the Fourier transform of’ 
Convolution in one dimension 
Convolution in two dimensions 
Cross-correlation in one dimension 
Cross-correlation in two dimensions 
Expectation (or approximation by a finite average) 
First derivative with respect to time 
Second derivative with respect to time 
Average (Chapters 1, 9, Section 14. I ); Fourier transform 
of function (Chapters 3,5,8, 10, 11, 13, Section 14.2) 
Quantized variable (Chapter 8) 
Function of frequency (Chapter 3) 

FUNCTIONS 

For definitions, see, foi- example, Abramowitz, M., and I. A. Stegun, Handbook of 
Mathematical Functions, National Bureau of Standards, Washington, DC, 1964, 
reprinted by Dover, Nt:w York, 1965. 

erf Error function 

Jo Bessel function of first kind and zero order 
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Bessel function of first kind and first order 
Modified Bessel function of zero order 
Modified Bessel function of first order 
Gamma function [Note that r(x + 1 )  = x r ( x ) ]  
Dirac delta function 
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VLBI, 472476 

cross 

planar, 159-1 6 I 

VLBI, 155-159 

Astrometry, I ,  3 16,467-506,561 

Atacama Large Millimeter Array, see ALMA 
Atmosphere, neutral. 507-554 

absorption, 518-528 
brightness temperature, 541-543 
calibration, see Calibration, atmosphere 
effects 

on astrometry, 475 
of clouds, 542 
on fringe frequency and delay, 475 
on visibility. 530-539 
on VLBI, 534-539 

excess path length, 5 16-5 I8 

Fried length in, 536,641 
opacity. 545-546. See also absorption 
oxygen, 5 18,520,542 
phase fluctuations, 530-540 
refraction, 513-518 
water vapor, see Water vapor 

Attenuation in cable, 227 
Attenuation in optical fiber, 218 
Australia telescope, 114, 117, 154,450 
Autocorrelation function, 54, 133-135, 136, 184, 

257,333,621 
definition, 54, I33 
of intensity distribution (map), 444,641 

Autocorrelator. 254 
Automatic level control (ALC), 248,278,384.622 
Automatic phase-correction, 228-229 
Azimuth, 88, 117 

Bandpass calibration, 404406 
Bandwidth 

correlation, 567 
effect in maps, 199-205.234 
Gaussian, 55 
output (postcomelator). 185 
pattern. 55.56.601 
rectangular, 55,234 
rms. 366,474,495 
synthesis, 366368.473 

Bartlett weighting (smoothing), 286 
Baseband response, 218,256,364 
Baseline 

calibration, 93-94.470-472.499 
coordinates, 86-88 
definition, 16.50 
equatorial component, 472 
reference point, 95 
retarded, 315-316 
surveying, 2.88.468 

Baselines, non-coplanar, 7677,454-458 
Beam 

clean. 427429 
fan, 24.26, 145,421 
fringe frequency, 490 
pencil, 24, 145 
synthesized (dirty), 148.201-202,378-392, 

412,501,620,648 
Beam-shape effects. 96-97.389-391 
Beamwidth effects, 96-97.389-391 
Besselian year, 481 
Bias 

in MEM, 438 
in polarization measurements (Rice 

in variance of mean, 492 
in visibility measurements, 319, 320, 322 

distribution), I16 
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Bispectrum, 33&33 1 
Bivariate Qoint) Gaussian probability distribution, 

Blackbody, see Planck formula 
Blackman weighting (smoothing), 286 
Bologna, Italy, 26 
Borrego Springs (California), 155 
Brewster angle. 97 
Brightness, 8. See also Intensity 

temperature, 9 
Brunt-Vaisala frequency, 563 
Bureau International de 1’Heure (BIH), 484 
Burst mode, VLBI, 368-369 
Burst radiation, Jupiter, 34,301 

255-256.497.568 

c2.535 
9 C,,,, 569 

Cables 
attenuation, 227 
reflections, 224,227,235 
velocity dispersion, 224 

Calibration, 383-387 
adaptive, 438-444 
of atmospheric 

delay, 56CL562 
phase, by fast switching, 550-55 1 
phase, by paired antennas. 55 1 
phase. by water vapor measurement, 

phase, in VLBI, 353 
bandpass, 404-406.409 
baseline, see Baseline calibmtion 
cables, 79,460 
gain. 386 
polarization, 112-1 16 
sources, 21,308,385-387 
spectral-line, 404409 

552-554 

Calibrator (source), 385-387. See also Calibration 

Callen and Welton formula, 2 15-217 
Cambridge (England), 24,54(1,563 

sources 

Five-Kilometer Radio Telescope, 32, 143 
fourth survey, 26 
Low-Frequency Synthesis l’elescope, 458 
One-Mile Radio Telescope, 30.3 I ,  143 
third survey, 9.25 

Canadian VLBI array, 34.35f 
Cassegrain focus, 123 
Causal function, 84 
Cavity pulling, 350, 35 1 
CCIR, 625 
Celestial 

coordinates, 88, I17 
equator, 87, 88. 147 
sphere, 69, 87 

Cell 
averaging, 129,239.398.61 7 
crossing time, 618 

Chajnantor, Chile, 33,540,545,546,548 
Chandler wobble, 482 
Chi-squared parameter ( x 2 ) ,  404,491493 
Chopper wheel method, 523 
Circular array, 150 
Circular polarization, I 15 

degree, 98 
IEEE definition, 100 

Circulator, 223 
Classical electron radius, 564 
Clausius-Clapeyron equation, 5 12 
CLEAN algorithm, 62, 146,402,427432 

application, 429432 
Clark’s algorithm, 431432 
comparison with MEM, 434-435 
extended sources, 43 I ,  434-435 
hybrid mapping, 439 
loop gain, 427,430 
self-calibration, 441 
speckle imaging, 649 
spectral line data, 459 

Clipping (clipped noise), 261,262. See also 

Closure relationships, 2 3 , 3 9 9 4 0 1 , 4 3 9 4 , 6 4 1  
Quantization 

amplitude, 400 
phase, 23,330,400 

Clouds, atmospheric 
absorption, 542 
index of refraction of, 542 

CMB, see Cosmic microwave background 
COESA (Committee on the Extension to the 

Standard Atmosphere), 516,519 
Coherence 

complex degree of, 604 
function 
source, 69,600,603407 

temporal, 34@-342. See also Autocorrelation 
function 

of hydrogen maser, 344 
mutual, 594-597,63 1 
of oscillator, 340-344 
partial, 604 
propagation of, 60741 I 
pulsars and masers. 61 1 
self, 605 
time, 304,308,3 19,324,340-344,473 

Coherency matrix (polarization), 99 
Coherent source, 606-607 
Collecting area, 10 
Comb spectrum, 23 1,352 
Compensating delay, see Delay, instrumental 
Complex correlator, see Correlator, complex 
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Complex degree of coherence, 604 
Complex visibility, 27.61.69 

definition, 69 
Compound interferometer, 27 
Compton loss, 306 
Confusion of radio sources, 24,141,455,459 
Connected-element array (definition), 35n 
Continuum radiation, 3 
Conventional International Origin (CIO), 482. See 

also Polar motion 
Conversion 

frequency, see Frequency conversion 
serial-to-parallel, 282. See also Demultiplexing 

Convolution, 59 
theorem, 60 

Convolving functions, 393-398. See also 
Smoothing functions 

Gaussian, 395 
Gaussian-sinc, 396 
rectangular, 394 
spheroidal, 396 

conversion, 1 17 
systems, 64,70,86-91 

Cornell University, 34 
Correlator, 80n 

analog, 220 
comparison, lag, and FX, 293-297 
complex, 174-175, 188 
digital, 283,289-296 
FX, 290-293 
hybrid, 297 
lag (XF), 289-290 
multiplexing in, 297 
output in the complex plane, 177. 189 
recirculating, 290 
simple (single-multiplier), 174-175, 198 
system, 80n 
voltage offset in, 241,278,413.414 

Coordinate 

Cosmic Background Explorer, I I 
Cosmic Background Imager, 160 
Cosmic microwave background (CMB), 159,404, 

419,521 

Costas loop, 376 
Covariance matrix, 497 
Cross, see Mills cross 
Cross-correlation, 77-78.80 

coefficient, 257 
Cross power spectrum, 77,284-287.361.495. See 

also Spectral line 
Cross-talk (cross-coupling), 161, 245,413 
Cryogenic cooling. I8 I ,  21 2 
Crystal-controlled (quartz) oscillator, 23 I ,  332, 

anisotropy of, 159,404, 521 

342,345,348 

Culgoora array (Australia), 155 
Cycle time, 479,550 
Cyclotron 

frequency, 558 
radiation, 97 

dBi. 614 
Declination, 9 

coordinate conversion, 117 
measurement of, 467468,470473,499 

comparison of CLEAN and MEM, 434-438 

adjustment, 55,238-239 
analog, 220 
circuits, digital, 282 
compensating, see Delay, instrumental 
errors, 238-239 
fractional sample correction, 295 
geometric, 50.68, 171,310,357,514,643 
group, 308,314,366.473.485.486.555 
instrumental, 53.91, 171,238-239,357 
measurement error, 366-367 
delay pattern, see Bandwidth, pattern 
reference, 173. 239 
subsystem, 220,282-283 
tracking, 173 

Deconvolution, 426438 

Delay 

Delay resolution function, 369. See also 

Delay-setting tolerances, 176. 238-239 
Delta function 

Bandwidth synthesis 

CLEAN components, 427-428 
Fourier transform of series of, 144-145 
LO frequency, 352 
point source, 92, 140,206,469 
Rice's theorem, 266.271 
Shah function, 126127,392-393 
visibility sampling, 60, 190 

Demultiplexing, 297 
Deplarization, 578-579 
Detector 

power-linear (square law), 20,614,627 
synchronous, 20,222,241,523 

Diameter, stellar. 13-16.647 
Dielectric constant, 524 

of plasma, 557 
Diffraction at an aperture, 597 
Diffraction pattern 

lunar occultation 632 
scintillation, 567,576 

Digital processing, 254-301 
multiplication, 284 
sampling, 256-282 

spectral measurements, 284-297 
accuracy, 278-282 
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Diode, 168-169,222,231,35C, 352 
Direct detection, optical, 40,614-615 
Directional coupler, 222-223 
Direction cosine, 64.71.601 
Dirty beam, see Beam, synthesized 
Dirty map. 427 
Discrete Fourier transform, 123-1 29,392-394 
Dispersion, classical theory, 5;:4-528 
Dispersion measure, 576 
Dispersion in optical fiber, 21s-220.249 
Diurnal aberration, see Aberra .ion, diurnal 
Doppler effect, 5 1, 138,289,346.349.35 1,485 

analysis and formulas, 417-121 
reference frames, 4 18-41 9 

Double sideband system. 175-183, 196-198 
Dynamic range, 4 2 2 , 4 4 5 4 6  469,623 

Earth, see also Geodetic measiirements; Polar 
motion 

atmosphere, 507-5 I3 
equatorial bulge, 481 
ionosphere, 554-564 
magnetic field, 558 
radius vector, 3 15.5 16 
tectonic plate motion, 2,48!i 
tides, 485 

scanning, 17 
synthesis, 30 

Earth rotation, see also Universal Time 

East-west array, 74, 142-147, 388-389 
East-west baseline, 50,206 
Ecliptic, 481 
Editing of data, 295,383 

for interference, 6 15 
Efficiency 

aperture, 10, 125,636 
quantization, 188,272,276 365 

Electron density 
galaxy, 577 
interplanetary medium, 572 
interstellar medium, 577 
ionosphere, 556 

historical development, 21 2 
subsystems, 212-2 14,217-221 

Electronics 

Elevation, 88, I17 
Entropy, 432433 
Equatorial mount, 94-96 
Equinox, 468,481 
Ergodic waveform, 3,82 
Error function (ern, 193,267,274 
Errors 

additive, 412413,623 
clock (VLBI), 310,314 
in maps, 412413 

( I ,  m )  origin, 414 
multiplicative, 413, 623 
phase, 233,445 
pointing, 383,413 

Evolution of synthesis techniques, 12 
Excess path length, 509 

interplanetary medium, 574 
ionosphere, 555,559-560 
troposphere, 516518,541-543 

Extended (broad) sources 
deconvolution, 428.431.434-435 
mosaicking, 446453 
response, 412 
signal-to-noise ratio, 191 

Fan beam, 24, 145 
Faraday depth, 578 
Faraday dispersion function, 578 
Faraday rotation, 3.97, 116,558 

dispersion function, 578-579 
interstellar, 576579 
ionospheric, 555.558-559 

Far-field assumption, 50.68.601 
Fast Fourier transform (FlT), 128-129,392-393 
Fast Hartley transform, 128 
Feeds, bandwidth, 1 17 
Fiber optics, see Optical fiber 
Fiedler events, 582 
Field 

far, requirement, 601 
near, observations in, 601 

bandwidth effect, 199-205 
fringe-frequency mapping, 488 
restrictions, 200-204,601 
visibility averaging effect, 205-208 

baseband, 2 18 
Butteworth, 365 
digital, 297 
effect on signal-to-noise ratio, 235 
narrow-band, 233 
number of poles, 232-233 
phase-locked oscillator, use of, 233 
phase stability, 232-233 
Q-factor. 233,350-351 
spectral-line, 290-297 

Fleurs, Australia, 24. 27 
Flux density, 6 
Fort Davis, Texas, 35, I56 
Fourier transform 

analog hardware, 422 
derivative property, 333.403.634 
direct, 387-388 
discrete, 128-129. 392-394 

Field of view 

Filters, 79, 169 
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mapping with, 488490 
measurement accuracy, 494 
natural. 172 
spectrum. 325,489,494 
in VLBI, 3 19-320 

Fringe rate, see Fringe frequency 
Fringes, first radio record, 18 
Front end, 2 13. See also Receiver 
Frozen screen approximation, 537,548 
FX spectral line processor, 290 

Fourier transform (Conrinued) 
fast, 128, 290-291 
integral theorem, 185 
projection-slice theorem, 65-66 
relationships, mapping, 134 
shift theorem, 408 
sign of exponent, 69n 
similarity theorem, 201 
three-dimensional, 76,455-457 

Fourth-order moment relation, 184,258, 627 
Fractional bit shift loss, see VLBI, discrete delay 

Fractional frequency deviation, 332 
Fraunhofer diffraction, 595,597. See also Field, 

Frequency 

step loss 

far, requirement 

channels, 284 
conversion, 168-169 

multiple, 173. 178 
optical, 646-647 

demultiplexing, 298 
multiplication, 231,352 
regulation, 625 
response, 233-238 

optimum, 233-234 
tolerances, 235-238 

Frequency standards, 332-346 
cesium beam, 347 
crystal oscillator, 23 I ,  332. 342, 345, 348 
hydrogen maser, 348-35 I 
phase noise processes, 337-340 
rubidium vapor, 346347 

Fresnel zone, 566,632 
Fried length, 536,642 
Fringe 

envelope, 52.55 
fitting, 195 

function (pattern), 17. 52. 59 
rotation, digital, 294, 358-361 
rotation (stopping), 173-174. 180-181,217, 

246-247 
search, see Signal search 
visibility, 13 
washing function, 55 
white light, 57, 307,644 

Fringe frequency, 9 1, 172 
in astrometry, 472474 
averaging, 6 I 6  
baseline solution, 472 
beam, effective, 490 
definition, 91-92 
effect of tracking, 91-92. 138-139 
interference suppression effect, 6 I M 2 0  
ionospheric effect on, 560 

global, 326-331 

Gain 
calibration, 248 
errors, 235-238.280 
factor, 172 

Gamma function, 573 
Gaussian convolving function, 395 
Gaussian random noise, 3 
Gaussian random variable, 3, 184, 316-319, 340. 

See also Bivariate Gaussian probability 
distribution 

Gaussian-sinc function, 396 
Gaussian taper, 137, 141,390-39 1,428 
Geodetic measurements, 35,467n. 485 
Geometric delay, 50.68, 171,310,357, 5 14, 643 
Gibbs phenomenon, 288,405 
Global fringe fitting, 326-329 
GMRT, 32, 155 
Goldstone, California, 35 
GPS (Global Positioning System), 2.353.483, 

Granlund system, 228-229 
Grating array, 26-27.421 
Gravitational deflection, see Relativity 
Green Bank, W. Virginia, 31,34,430,540 
Greenwich meridian, 86,316,473,482,484 
Gridding (convolutional), 392-394. See also Cell 

Group delay, 308,314,366,473,485,486,555 
Group velocity, 557,576 
Gyro frequency, 558 

485,560.562 

averaging 

Hadamard matrices, 243 
HALCA Satellite, 12,38, 158, 375-376 
Half-order derivative, I46 
Hamming weighting (smoothing). 286 
Hankel transform, 533 
Hanning weighting (smoothing), 286287 
Hartley transform, fast, 128 
Hat Creek Observatory, California, 33,35,540 
Haystack Observatory, Westford, Massachusetts, 

Heterodyne conversion, see Frequency 

Hilbert transform, 82.84, 174. 188n. 283 

34,324,640 

conversion 
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Hinge point. 542 
Hipparcos satellite, 2 

star catalog, 470 
Historical development, 12-35 

analog Fourier transformation. 422 
mapping from one-dimensicmal profiles, 

receivers, 18 I ,  2 I2 
42 1 4 2 2  

VLBI. 33-37.304-306 
Holes in spatial frequency covxage, 141 
Holography, see Antenna meaiurements, 

holographic 
Hour angle, 86-88, 1 17 
Hubble constant, 420 
Hybrid correlator, 297 
Hybrid mapping, 35.438439 
Hydrogen line. 5,28,348-345 
Hydrostatic equilibrium, 5 10 

IAU 
polarization standard, 100, I01 
radio-source nomenclature, 9 

ICRF, 9,35,469 
ICRS. 469 
IEEE 

committee on frequency stability, 332 
polarization standard, 100 
power flux density, 6 

IF, see Intermediate frequencj 
Illumination, aperture, see Antenna, aperture 

Image, 8n 
Image defects, see also Phase noise 

illumination 

correlator offset, 413 
distortion, 413 
errors in visibility data, 412413 

Incoherence assumption (spatial), 69,600, 628 
Incoherent averaging, 323-326,33 1-332 
Incoherent source, response to, 603-606 
Index of refraction, see Refraction, index of 
Inertial reference frame, 469 
Infrared interferometry 

detection of planets, 644 
heterodyne detection, 646 

Instrumental (compensating) delay. see Delay, 

Instrumental polarization, lO:i-109, 112-1 16 
degrees of freedom, I14 

Intensity, 8,411412 
derivation, 387-399 
interpretation, 41 1 
scale, 4 1 1,439 

optical, 647 
sensitivity of. 326, 631 

instrumental 

Intensity interferometer, 22. t'27-63 I 

Interference, radio, 61 3-626 
connected-element arrays, 6 15-62 1 
decorrelation effect, 62M21  
fringe-frequency averaging, 61 6-41 9 
harmful thresholds, 616 
ITU, 625 
satellites, 624-625 
single antenna, 615 
solar, 4 13 
(id, v )  plane distribution, 618-620 
VLBI, 621424 

adding (simple), 16. 18.20 
basic components, 78-80 
compound, 27 
correlator, 20 
infrared, see Infrared interferometer 
intensity, see Intensity interferometer 
Michelson, 13- I6 
optical (modem Michelson), 641-648 
sea, 18 
spectral-line. 28 

amplifier, 2 I8 
subsystem, 2 18 

Interferometer 

Intermediate frequency (IF), 169 

International Astronomical Union, see IAU 
International atomic time (IAT), 483 
International Celestial Reference Frame, 9, 35, 

Interplanetary medium, 57 1-574 
469 

electron density, 572 
excess path length, 574 
refraction, 57 1-574 
scintillation, 574-576 

Interpolation, 127,392-394. See also Gridding 
Interstellar medium, 576-583 

dispersion measure, 576 
electron density, 577 
Faraday rotation, 576578 
pulsar signals, effects on, 577 
scattering 

diffractive, 579-580 
Fiedler. 582 
refractive, 580-583 

Invisible distribution, 427 
Ionosphere 

absorption. 555-562 
acoustic-gravity waves, 563 
effects of irregularities, 562-564 
electron density distribution, 556 
Faraday rotation, 555,558-559 
Gaussian screen model, 564-569 
index of refraction, 557-559 
phase stability, 555 
power-law model, 569-571 
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Ionosphere (Continued) 
propagation delay, 559-569 
refraction, 559-560 
scintillation, 562-564 
total electron content, 555,560,563 
traveling ionospheric disturbances (TlDs), 563 

Isoplanatic 
angle, neutral atmosphere, 642 
patch 

ionosphere, 401,460,555 
neutral atmosphere, 642 

ITU, 625 

Jansky (unit), 6 
Jodrell Bank Observatory, England, 2211.23.31, 

155,304 
Jones matrix, 109 
J 2  synthesis (J-squared synthesis), 155 
Julian year, 481 
Jupiter, 34, 304 

Kolmogorov turbulence, 53 1,533-538,569-57 1, 

Kramers-Kronig relation, 524,527 

Leakage (polarization), 106.1 17- I20 
Leakage (sampling), 127 
Leap second, 483 
Least-mean-squares analysis, 490-502 

accuracy, 498 
CLEAN, 429 
correlated measurements, 497 
covariance matrix, 497 
design matrix, 498 
error ellipse, 497498,502 
estimation of delay, 495 
estimation of fringe frequency, 494 
large data base reduction, 499 
likelihood function, 490 
matrix formulation, 496-497 
nonlinear case, 499 
normal equation matrix, 497498.500 
partial derivative matrix, 497 
precision, 498 
self-calibration, 44 I 
sinusoid fitting, 195 
source position errors, 500-502 
variance matrix, 497 
weighted, 491 

579 

Lensclean, 461 
Light, speed (velocity) of, 50,467 
Likelihood function, 490 
Line of nodes, 48 1. See also Equinox 
Linear arrays, 142-147 
Lines, radio, see Spectral line 

Linked-element array, 3511 
Lloyd's minor, I8 
LO, see Local oscillator 
Local oscillator, 168-169.217. See also 

Frequency standards 
independent, 34. See also VLBl 
laser, 644 
multiplication, stability, 35 1-352 
nonsynchronized, 63 1 
phase switching of, 247 
signed-sum of frequencies, 173 
synchronization of, 221-232 

Local standard of rest, 418419 
Long baseline interferometer, 23. 304 
Long wavelength arrays, 163 
Loran, 353,483 
Lorentz factor, 420 
Lorentzian profile, 525,527,531,533 
Low frequency mapping, 45946 I 
Low-noise input stage, 181,212-214 
Lunar occultation 

optical, 63 I ,  636 
radio, 21,468,576,631-636 

Magellanic Cloud, small, 450 
Magnetic fields 

in frequency standards, 348,349.35 1 
interstellar, 577 
terrestrial, 558 

Magnetic tape recording, 34,353-356 
Magnitude of visibility, 62n 
Map, 8n 
Mapping 

synthesis, definition, xxin 
two-dimensional. 64-65 
wide field, 74-77.204-205, 44&450,454458 
visibility amplitude only, 444 

Maryland Point Observatory, Maryland, 35,324 
Maser frequency standard, 348-351 
Maser radio sources, 6.34,304,306, 324,580 

mapping procedures. 485490 
spatial coherence, 61 1 

Master oscillator, 217 
Mauna Kea, Hawaii, 33, 155,540.545-549 
Mauritius Radio Telescope, I55 
Maximum entropy method (MEM), 432434 
Maximum likelihood method, 367,490,501 
Maxwell's relation, 525 
Meridian, 86 

Greenwich, 86,316,473,482,484 
local, 87,88.468,484 
plane, 86,471 
transit (crossing), 484 

MERLIN, 24, 155,444,616,620 
Meter, definition of, 467 
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Michelson interferometer, 12, 13-16 
Microwave link. see Radio link 
Millibar, 509 
Millimeter wavelength arrays, 33, 163-164, 181, 

45 1 
Mills cross, 24.26, 137, 141 
Minimum redundancy, see Arrays, minimum 

redundancy; Bandwidth, ,synthesis 
Mirror-image reception patteni, 59 
Mixer, 168-169. See also Frequency conversion 

MKSA units, 524n 
Model 

sideband separating (image rejecting), 248-249 

adaptive calibration, 441 
circular disk, 15,432 
Cygnus A. 22-23 
delta function (CLEAN), 428 
fitting, 4 0 1 4 0 4  
Gaussian, I5,29,402 
moments of, 403 
rectangular, 15 
stellar envelope, 402 
without phase, 401 

Modern Michelson interferometer, 643-645 
Modulated reflector, 222 
Molonglo, Australia, 26 
Moon, see Lunar occultation; Precession 
Moon as a calibration source. 414-416 
Mosaicking (mosaic mapping I, 446453 

arrays for. 45 1-453 
linear, 449 
nonlinear, 4 4 9 4 5 0  

Mueller matrix. 112 
Mullard Radio Astronomy Observatory, see 

Multifrequency synthesis, 453454 
Multiplier (voltage), 20, 170. See also Correlator 
Mutual coherence function, 505-597 

Cambridge (England) 

NanCay, France, 27 
Narrabri, Australia, 647 
National Aeronautics and Space Administration 

National Geodetic Survey (NGS). 2 
National Radio Astronomy 0 xervatory (NRAO). 

31.34, 148,305,335,356,443. Seealso 
ALMA; Green Bank; Very Large Array 
(VLA); Very Long Baseline A m y  (VLBA) 

(NASA), 2,35,356 

Natural weighting, 191. 388. 392 
Naval Observatory, US. (USNO), 484 
Naval Research Laboratory (NRL), 2. 324 
NAVSTAR, see GPS 
Near field observations, 601 
Negative frequencies, 55, 61, 83, 84 
Network Users Group (U.S.), 34-35 

Neutral atmosphere 
opacity, 543-547 
phase stability, 547-550 

Nobel Lecture, Ryle, 32 
Nobeyama Radio Observatory (NRO), Japan, 33, 

Noise, see also Signal-to-noise ratio 
amplitude and phase, 192-193 
in complex visibility, 188-189, 196 
equivalent power (NEP), 645-646 
Gaussian, 3 
in map, 189-192 
in oscillators 

540 

flicker-frequency, 338-340 
flicker-phase, 338-340 
random-walk-of-frequency, 338-340 
white-frequency, 33tL340 
white-phase, 338-340 

photon shot noise, 346,35 1, 646 
power, 10,213 
quantum effect, 39-40 
response to, 183-1 89 
temperature measurement, 2 14-2 17 
in VLBI. 316319 

Non-coplanar baselines, 76-77.454-458 
polyhedron mapping, 457 
snapshot combination, 458 
3D Fourier transform, 456-457 
variable point-source response, 458 

Non-negative least squares. 435 
North Liberty, Iowa, 35 
NRAO, see National Radio Astronomy 

Observatory 
Nuffield Radio Astronomy Laboratories, see 

Jodrell Bank Observatory, England 
Nutation, 2.9.481482 
Nyquist rate (frequency), 256-257. See also 

Sampling theorem 

Observation, planning and reduction, 413414 
Occultation observations, see Lunar occultation 
Opacity, 518-521 

measurement of, 521-523 
Optical depth, see Opacity 
Optical fiber, 2 18-220.229-230 

dispersion, 220,249-250 
high stability, 230 

direct and heterodyne detection, 644-647 
Optical interferometry, 40,641-648 

Orbiting VLBI, see OVLBI 
Oscillator coherence time, 34G342 
Oscillator strength, 525 
Outer product. 110,243 
Oversampling. 257,259-260.263-264.270, 272, 

277 
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OVLBI, 37-39, 158,373-377 
data link, 375-376 
round-trip phase, 374 
timing link, 375-376 

29.33. 35,554 
Owens Valley Radio Observatory. California, 28, 

Parabolic-cylinder reflector, 122 
Paraboloid reflector, 123 
Parallactic angle, 88.97, 104, 114. 116 
Parallax, 482 
Parametric amplifier, degenerate, 18 1 
Parseval’stheorem, 192,298,324,391,534,619, 

623 
Partial coherence, 604 
Passband 

Gaussian, 55,204 
rectangular, 55,202,234 
tolerances, 235-238 

Pencil beam, 24. 145 
Permittivity, 524n 
Phase 

errors, effect on sensitivity, 233 
noise 

effects on maps, 445,487 
in frequency multipliers, 35 1-352 
in frequency standards, 324,332-340 
ionospheric, 562-564 
neutral atmospheric, 530-539.631 
in receivers, 192-193,316-319 

Phase closure, 22-23,35,306,387, 399401 
Phased array, 129-132. 155,296n. 369-373 

correlator m y ,  comparison with, 129-132 
randomly phased, 370 
as VLBI element, 369-373 

imaging without, 444 
uncalibrated, 438444 

Phase-locked oscillator, 224,230-232, 342 
loop natural frequency, 230-23 I 

Phase reference 
feature, 486 
position, 57.68, 86 

atmospheric effects, 550-55 I 
for masers. 486 

analysis of, 332-342 
of filters, 232-233 
of frequency standards, 342-35 I 
of local oscillators, 35 1-352 
in reference distribution, 221-230 

Phase switching, 240-248.278.280 
in early arrays, 26 
interaction with fringe rotation and delay, 246 

Phase data 

Phase referencing in VLBI, 476-480 

Phase stability 

in Mills Cross, 24 
in simple interferometer, 18-2 I 

Phase tracking center, 68. See,also Phase 
reference position 

Pic0 de Veleta. Spain, 638 
Planar arrays, 159-161 
Planck formula, 8, 10. 215-217.645 
Planetary nebula, 4,386,402 
Planets, 432,468,481. See also Burst radiation, 

Jupiter 
as calibration sources, 414-416 

Plasma, see also Interplanetary medium; 
Interstellar medium; Ionosphere 

absorption in, 562 
frequency, 557 
index of refraction, 558-559 
oscillations. 97 
propagation in, 555-583 
RF discharge, 346,348 
turbulence, 569-57 1 

Plateau de Bure, France, 33.540 
Pointing correction, 383 
Point-source response, 56, 133, 140,427.53 I .  See 

also Beam, synthesized (dirty) 
Point-spread function, 648. See also Point-source 

response 
Poisson distribution, 39 
Polarimetry, 97-1 20 
Polarization 

calibration, 112-1 16 
circular, 98, 100, 104-105, 115, 116 
complex degree of, 578-579 
degree of, 98 
design considerations, 115-1 17 
ellipse, 99-100 
emission processes, 3.97 
instrumental. 105-109.240 
linear, 98, 103-104, 116 
matrix formulation. 109-1 12 
mismatch tolerance, 240 
parallactic angle effect, 104 
position angle, 98,99. See also Faraday 

rotation 
Polar motion, 2.482 

Position measurements 
measurement of, 484-485 

early, 2 1 
methods, see Astrometry 

Power combiner, 130, 132 
Power (density) spectrum, 54.77 

atmospheric phase, 535-537 
correlator output, 186 
interplanetary scintillation, 575-576 
phase and frequency fluctuations, 332-342 

Power flux density, 6 
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Power-law antenna spacing, 1119-150 
Power-law turbulence relation:;, 538 
Power reception pattern, see Antenna, reception 

pattern 
Poynting vector, 8 
Precession, 2.9,481482 
Price's theorem, 266,271 
Principal response, 392 
Principal solution, see Princip.11 response 
Probability 

of error, 319-323 
of misidentification, 322-3213 

Probability distribution 
of angle of arrival, 563 
bivariate Gaussian, 255-256,497,568 
of delay-setting error, 238- 139 
Gaussian, 124, 184,255-256,273, 316,318, 

490.53 1 
Rayleigh, 193,317, 319.322 
Rice, 193,317 

Projection-Slice theorem, 65-66 
Prolate spheroidal wave funct ons, 397 
Propagation 

constant, 315,508 
interplanetary, 571-576 
interstellar, 576-583 
ionospheric, 554-564 
neutral atmospheric, 508-543 

Proper motion, 9,482 
Pulsar, 368-369 

astrometry. 469 
correlator gating, 296 
determination of vernal equinox, 469 
dispersion measure, 572,576-577 
proper motions, 579 
scintillation, 580 
spatial coherence, 61 I 
timing accuracy, 345,353 

Pulsars, see Radio source 
Pulse calibration (VLBI), 352 

Q-factor of 
cavity, 350-351 
filter, 233 

QPSK modulation, 376 
Quadrature 

network, 174,278, 286 
phase shift (7r/2), 182, 188,246,283 

Quadruple moment theorem, see Fourth-order 
moment relation 

Quadnipad, 125,639 
Quantization 

comparison of schemes, 27'7-278 
correction, 276277.295, .300-301 
efficiency factor, 188,272, 276,357,365 

eight (or more) levels, 273-276 
four-level, 264-271 
indecision regions, 280-282 
noise, 254. 273-276 
repeated (requantization), 298, 373 
three-level, 27 1-272 
thresholds. 261265,271,273 
two-level, 261-264 
in VLBI systems, 357,365 

Quantum noise, 39-40. 646 
Quantum paradox, 39 
Quasar, 3,35-36,306,442. See also Radio source 

Radamacher functions, 242,244-246 
Radial smearing, see Bandwidth, effect in maps 
Radiative transfer, equation of, 521 
Radio interference 

airborne and space transmitters, 624-625 
decorrelation, 620-62 I 
fringe-frequency averaging, 616-619 
threshold pfd and spfd 

short and intermediate baselines, 6 15-62 1 
total power systems, 614-615 
VLBI, 621624 

Radio lines, see Spectral lines 
Radio link, 22,23,24,35n, 218,375 
Radiosonde data, 523~1,541,545 
Radio source 

0134+329,9 
0748+240,539 
1548+115,442 
1622+633, 158 
1638+398,478 
1641+399,478 
Cassiopeia A, 17, 2 1, 22, 3 1 
Centaurus A, see NGC5 128 
Crab Nebula, 22, 572 
Cygnus A, 9. 18,21,22,562 

central component (VLBI), 37 
fringe pattern, 17, 19 
map or image, 23,31.32,33,443 

J1745-283.476 
Jupiter, 34.304 
M87. see NGC4486 
NGC4258.35.37 
NGC4486.22.435 
NGCS 128.22 
NGC7027.4.9.386 
Orion Nebula, 5,  7 
Orion water-line maser, 638 
P-Cygni, 402 
PSR 1237+25,610 
PSR 8202 1 +5 1,480 
Sagittarius A* (SgrA*), 35,475,580 
sun. 18.26-27. 155,421422. See also Sun 
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Radio source (Continued) 
Taurus A. see Crab Nebula 
3C33.1, 29 
3C48,3,4.9,386 
3C138, 115 
3C 147,386 
3C224.1.430 
3C273,36,468,480,575 
3C279,480,610 
3C286.115.386 
3C295,386 
Venus, 254 
Virgo A, see NGC4486 
W3(OH). 324 
W49.486 

Radio source nomenclature, 9 
Radio spectrum, regulation of, 625 
Raised cosine weighting, see Hanning 

Rayleigh distribution, 193.317 
Rayleigh-Jeans approximation, 8, 10.2 13.2 15, 

Receiver 

weighting 

216. See also Planck formula 

electronics, 212-221 
phase switching, 18-21,24,26,240-248. See 

also Phase switching 
temperature, 10,214-217 

for cascaded components, 2 I4 

Voltage reception pattern 
Reception pattern, see Antenna. reception pattern; 

Recording systems (VLBI), 353-356 
Redundancy measure, 143 
Reference frames, see ICRF; ICRS 
Reflections 

in cable, 224,227,235 
in optical fiber, 219 

Reflector, modulated, 222 
Refraction 

anomalous, 539-540 
interplanetary, 571-574 
ionospheric, 557,559-560 
in neutral atmosphere, 508.5 13-5 18 
origin of, 524-528 
in plane parallel atmosphere, 5 13-5 15 
optical, 507.528 
spherically symmetric, 5 I5,57 1-574 

optical, 529 
Smith-Weintraub equation, 528-529 

Relative sensitivity of systems, 193-199 
Relativistic effects 

general relativistic bending, 573-574 
gravity, 420 
Lorentz factor, 420 
time transfer effects. 353 

Refractivity, 509. See also Refraction, index of 

Resolution 
atmospheric limitation of, 530-540 
MEM, 434 

Restoration from samples, see Sampling theorem 
Retarded baseline, 315-316 
Reuleaux triangle, 152-153.155 
Reynolds number. 535 
Rice distribution. 193, 317 
Right ascension, 9 

measurement of, 468,470-472.499 
zero of, 468-469 

Ringlobes, 144-147 
RMS bandwidth, 366,474.495 
Robust weighting, 392 
Rotation measure, 577,579 
Round-trip phase, 221-228,375,384 
Ruze formula, 125 

Sampling, 256-278. See also Quantization 
of bandpass spectrum, 256-257 
digital, accuracy of, 278-282 

Sampling theorem, 126-127, 144, 146,256,448, 
637 

Satellite 
data link, 34.374-375 
interference from, 622.624 
signals, Faraday rotation, 560 
time transfer, 353 

Scintillation 
Scattering, 576,579-583.610. See also 

Schwarzschild radius, 420 
Scintillation 

angular spectrum of, 565,570 
correlation bandwidth, 567 
correlation length, 566 
critical source size, 567 
Gaussian screen model, 564-569 
index. 575 
interplanetary, 574576,610 
interstellar, 158. 579-583 
ionospheric, 562-564 
neutral atmosphere, 534539 
power-law model, 569-571 
scattering angle, 565. 570 
thin screen, 564-569 

Sea interferometer, 18-19 
Second, definition of, 347.467. See 4/sO Time 
Seeing, 507. See also Scintillation 

cell, 642 
disk, 648 

Self-absorption, 4 
Self-calibration, 44- 
Sequency. 243 
Serial-to-parallel conversion, 282 
Serpukhov. Russian Federation, 26 
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Shadowing, 384 
Shah function, 127 

Shift-and-add algorithm, 648 
Short-spacing data, 146, 164,451452 
Shot noise, photon, 346, 35 I ,  f& 
Sideband(s), 169 

double, 175-183.197-198 
fringe-frequency dependence, 9 1-92 
partial rejection of, 208-2 1 0  
relative advantages of singk:, double, 181 
separation, 18 1-1 83 
sideband-separating (image-rejection) mixer, 

single (upper, lower), 169, I7 1, 172 
unequal responses, 208-210 

two-dimensional, 293 

248-249 

Sidelobe, see also Ringlobes; ,Synthesized beam 
(dirty beam) 

bandwidth smearing of, 202 
envelope model, 613614 

Sidereal rate (earth rotation), 511 
Signals 

cosmic, 3-9 
ergodic, 3, 82 
spurious, 240-241.246-241. See also Errors 

Signal search (VLBI), 319-326 
Signal-to-noise ratio, see also Noise 

aliasing effect, 398-399 
basic analysis, 183-199 
coherent averaging, 323-326 

frequency response, effect of. 233-235 
fringe-frequency mapping, 188 
incoherent averaging, 323-326 
intensity interferometer, 3215.63 1 
in interference calculations. 61 3-624 
loss factors. VLBI, 357-3615 
in lunar occultations, 6344135 
in maps, 189-192 
optical, 645-647 
in  phased arrays, 369-373 
quantization, effect of. 260-278 
quantum effect, 646 
receiving system, 1 I 
systems, relative, 193-199 

Signal transmission, 21 8-220 
Simeiz, Russian Federation, 34 
Sinc function, 52 
Single sideband mixer, see Sideband separating 

mixer 
Site testing 

of frequency standard, 34.3-346 

opacity, 543-547 
phase stability, 547-550 

SKA (Square Kilometer Array), 32 
SMA (Submillimeter Array), 12, 155,639 

Smearing 
circumferential, see Visibility, averaging 
radial, see Bandwidth, effect in maps 

Smithsonian Astrophysical Observatory (SAO), 

Smith-Weintraub equation, 528-529 
Smoothing functions, 286 
Snapshot, 151, 154 
Snell’s law, 514-515 

Soil temperature, 221 
Solar mapping, 26-27,421422 
Solar system studies, 26-27.574.601 
Solar wind, 573-574 
Source, see Radio source 

calibration, 308, 383-387 
coherence, 603-607 
completely coherent, 606-607 
extended, see Extended sources 
far-field condition, 50,68,601 
incoherence requirement, 69.596-597.600 
model, see Model 
radio, see Radio source 
subtraction, 414. See also CLEAN algorithm 

South Pole, 545,546, 548 
Space Interferometry Mission (NASA), 2,644 
Space VLBI, see OVLBI 
Spatial frequency, 58,61, 132-135-387 

12, 155 

spherical coordinates, 515. 572 

coverage, 132-1 35.426-427 
filter. 133 

Spatial incoherence, see Source, incoherence 
requirement 

Spatially coherent source, 606.607 
Spatial sensitivity 

of aperture antenna, 45 1452  
of correlator array, 132-137 
support of, 133 

Spatial transfer function, see Transfer function 
Specific intensity, see Intensity 
Speckle imaging, 648-650 

shift-and-add, 648 
phase information, 650 

correlators, 283-298 
flux density, 6 
power flux density, 6 

absorption. 28 
accuracy, 4094 I0 
adaptive calibration, 459 
analog correlator, 220 
atmospheric absorption, 5 18-523.544 
bandpass calibration, 404406 
bandpass ripple, 284-288.405406 
baseline ripple, 288 

Spectral 

Spectral line(s) 
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Spectral line(s) (Continued) 
calibration procedures, 404-409 
chromatic aberration, 409 
CLEAN procedures, 459 
digital correlators, 283-298 
Doppler shifts, 417421 

reference frames, 418419 
double sideband observation, I8 I 
examples of 

c o ,  9,545 
hydrogen, 4,5,28. 348 
H20,6,35,324,485,489,553-554 
HzCO, 28 
OH, 6,304,485 
SiO, 6 

presentation, 410-41 1 
radiation. see Maser radio sources; Radio lines 
systems, 28,220,283-297 
table of important, 5-6 
velocity reference frames, 419 
VLBI procedures, 35-37.314,406409, 

485490 
Spheroidal wave functions. 396-397 
Square Kilometer Array (SKA), 32 
Stanford, California, 27 
Stars 

observation of, 13-16,468,63 I ,  636,644, 

proper motion, 482 
visibility model, 402 

Step recovery diode, 352 
Stokes parameters, 97-98 
Stokes visibilities, 102-105 
Strehl ratio, 125 
Structure function 

647 

phase (spatial), 530,535-538.569-570 
phase (temporal), 341,537 
refractive index (spatial), 535 

Structure function measurements, 540 
Submillimeter Array (SMA), 12, 155,639 
Sun 

coronal refraction, 571-573 
gravitational effects, 481 
interference from, 4 13 
ionosphere, 555 
observation of, 18.26-27, 155,421422 
relativistic deflection, 573-574 
solar time, 482 
solar wind, 57 1-573 

Superluminal motion, 35, 36 
Support of a function, 133 
Survey interferometers. 24-26 
Swamp and Yang system, 222-223 
Symmetry, n-fold, 148 
Synchronous detector, 20,222,24 1.523 

Synchrotron radiation, 3,97,306,578 
Synthesis mapping, xxin 

Synthesized beam, see Beam, synthesized 
System equivalent flux density (SEFD), 11, 387, 

System temperature, 10, 185-188, 199,384 

evolution of techniques, 12 

408 

correction for atmospheric absorption, 522 
measurement of, 248 

Tangent plane. 72.74.76.456 
Taper, see Gaussian taper; Weighting 
Target source, 385 
T-array, 25, 137, 148 
TDRSS experiment, 12,38 
Tectonic plates, 2,485 
Telephone signal transmission, 307 
Temperature 

antenna, 10 
receiver, 10.214-217 
system, see System temperature 

Temperature coefficient of length, 221 
Thomson scattering (incoherent backscatter), 560, 

3C Sources, see Radio source 
Time 

572 

averaging of visibility, 205-208 
definition of second, 347 
demultiplexing, 297 
International Atomic (IAT), 347,483 
multiplexing, 23 1 
solar, 482 
time synchronization, 353 
transfer methods, 353 
universal time, 353.482484 

Timing accuracy, 94,353 
Tipping-scan method, 522 
Tolerances in 

bandpass (frequency response), 235-239 
delay-setting, 238-239 
polarization, 240 
three-level sampling, 279-282 

Tomography, 422 
Total electron content, see Ionosphere, total 

Transfer function, 132-135, 138-140.387. 
electron content 

426-427. See alsu Spatial sensitivity 
OVLBI, 158-159 
VLA, 15 I 
VLBA, 157 

Transmission lines, see Cables; Local oscillator, 
synchronization; Optical fibers; Waveguide 

Traveling ionospheric disturbances (TIDs), 

Triple product, 330-33 1 
563-564 
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Tripod, 125 
Troposphere, see Atmosphere, neutral 
Truncated function, 84-85 
Turbulence 

Allan variance of, 537 
inner and outer scales of, 535, 570-57 1, 58 I 
Kolmogorov, 534-539 
in neutral atmosphere, 534-539 
power-law relations, 538 
spectrum of phase fluctuaticns, 537 
structure function of phase, 535-538 

7\vo-dimensional array. 64-65, 147-158 
Two-dimensional synthesis, 6L. 

(u. u )  plane (spatial frequency plane), 64, 
70-7 I 

in CLEAN algorithm, 432 
coordinates, 64,70 
coverage, see Spatial frequency coverage 
holes in coverage, 141 
in interference susceptibility. 617-619 
interpolation in, 127, 129, 393-398 
loci, 88-91, 151, 154,157-159 

(u’ ,  u’) plane, 74-76.90-91 
(u ,  1 1 ,  w )  components, 70-71, 73,455-458 

in fringe-frequency averaging, 617-618 
in visibility (time) averagin:;, 206-208 

Uncertainty principle, 39, 346,646 
Undersampling, 257,260 
Uniform weighting, 391-392 
Unit rectangle function, 236, 394 
Universal time. 482485 
Usuda, Japan, 158 
UTR-2, 154 

van Citten-Zernike theorem, ’73, 594-602 
assumptions, 600-602 
derivation. 594-597 

Van Vleck relationship, 262, ;!67 
Van Vleck-Weisskopf profile, 520 
Varactor diode, 23 I ,  350 
Variance matrix, 497 
Velocity standard, see Spectral lines 
Vermilion River Observatory, Illinois, 35 
Very Large Array (VLA), 9.32, 33, 218, 238,460. 

476,552,610 
antenna configuration. 148--150 
atmospheric phase noise, 479,539,540 
delay increments, 239 
dynamic range, 446 
images from. 33,442,443 
interference thresholds, 61tj.620 
opacity at site, 543 
phased-array mode (VLBI), 370 
phase switching, 247 

self-calibration, 442443 
(u. u)  spacing loci, 151 

Very Long Baseline Array (VLBA), 35, 156-158. 
356 

phase referencing, 478-479 
Very long baseline interferometry, see VLBI 
Visibility 

averaging, 205-208 
complex, 27.61 

defined, 69 
frequencies, 92-93 
fringe (Michelson), 13 
lensclean, 462 
at low spatial frequencies, 446449.45 1 4 5 3  
model fitting, 401-404 
most likely value, 3 19 
reduction due to phase noise, 233,530-534, 

Taylor expansion of, 403 
Visibility-intensity relationship, 68-7 I ,  594602 
VLA, see Very Large Array 
VLBA, see Very Long Baseline Array 
VLBI 

568-569 

antenna polarization (parallactic) angle, I 16 
antennas 

nonidentical, 96-97 
in space, 158-159.373-377 

arrays, 34-35. 155-158 
astrometry, 472480,499-500 
atmospheric limitations. 475,534 
bandwidth synthesis, 366-368 
burst mode, 368-369 
calibration sources, 308,387. See afso Phase 

clock errors. 310-3 14 
closure phase, 35, 328-329.4384 
coherence time, 305,340-342 
coherent and incoherent averaging, 323-326, 

data encoding, 353-355 
development of, 33-37,304-306,575 
discrete delay step loss, 363-365 
double sideband system, 183, 196 
fractional bit shift loss, see discrete delay step 

frequency standards, precise, 342-35 1 
fringe detection, 329 
fringe fitting 

referencing 

330-332 

loss 

two-element, 319-326 
global (multielement), 326332 

fringe rotation, 357-361, 366 
fringe rotation loss, 358-361 
fringe sideband rejection loss, 361-362 
in geodesy, 35,485 
group delay. 3 14,366 
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VLBl (Continued) 
hybrid mapping, 438440 
interference sensitivity, 62 1-624 
K-4 system, 356 
local oscillator stability, 35 1-352 
Mark I system, 305.324.355-356 
Mark 11, 111, and IV systems, 355-356 
masers, mapping, 485490 
networks, 34-35 
noise in, 316-319 
orbiting. see OVLBI 
phase calibration system, 352-353 
phased-array elements, 369-373 
phase noise, 192-193. See also atmospheric 

phase referencing, 476-480 
phase stability, oscillators, 332-342 
polar motion observations, 484485 
probability distributions, 3 16-323 
pulse calibration system, 352-353 
quantization loss, 305. 365 
recording systems, 353-356 
relativistic bending measurements, 573-574 
retarded baseline, 3 15-3 16 
satellite link, 34 
sideband separation, 183, 196 
signal-to-noise ratio, 305-306,325-326, 

358-366 
spectral line, 314,364,40&408 
S2 system, 356 
TID, observation of, 563-564 
time synchronization, 353 
triple product, 33 I 
water vapor radiometry, 54 1-543.553-554 

Voltage reception (response) pattern, 78-79, 134, 

limitations 

599 
measurement of. 636 

Walsh functions, 242-246 
natural order, 244 

orthogonality, period of, 241 
sequency, 243 

22-GHz line, 526-527 
absorption, 518-523 
compressibility factor, 528-529 
effect on phase, 530-534 
maser, 324.485490 
refractivity, 508-510, 528-529 
resonance model, 524-528 
turbulence, 534-539 
worldwide distribution, 51 1 

Water vapor 

Water vapor radiometry, 54 1-543,552-554 
Waveguide, 218 
w component, 70-7 1.73.9 I ,  455458,468,620 
Weighting 

antenna excitation. 137,451-452 
function 

atmospheric, 532 
spectral, 286-288,406 

natural, 191, 388,392 
of visibility, 190-191, 388-392 

Westerbork Synthesis Radio Telescope, 32, 104, 

Westford, Massachusetts, see Haystack 

White light fringe, 57,307,644 
Wide field mapping, 74-77.204-205.446453, 

Wiener-Khinchin relation, 54.77, 184, 256,284, 

144,370.396 

Observatory 

454458 

62 I 

X-ray interferometry, 645 

Young’s two-slit interferometer, 39 
Y-shaped array, 148-150 

hemaneffect, 97, 115,348,351, 
Zenith opacity, 520,543-547 
Zero padding, 293 
Zero spacing problem. see Short-spacing data 




