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An image from the Karl G. Jansky Very Large Array of the Galaxy Hercules
A (also known as 3C348) showing powerful synchrotron jets emerging from its
core, the site of a supermassive black hole of 10° solar masses. The field center
is RA = 16"51™8.147%, Dec. = 4° 59’ 33.32” (2000), and the field of view is 3.3
x 2.4 arcmin. The image has been rotated clockwise by 36 degrees. The data set
comprised 70 hours of observations acquired in 2010 and 2011 in bands from 4.2
to 9 GHz in all four array configurations with baselines from 36 m to 36 km. The
image resolution is 0.3”, corresponding to a linear scale of 800 pc at a distance
of 730 Mpc, and the image contains about 10.7 Mpixels. The dynamic range is
about 1200. The image has been reconstructed with a multiresolution CLEAN
algorithm and self-calibration procedures described in Chapter 11. Color coded by
intensity. Image from the NRAO, courtesy of B. Saxton, W. Cotton, and R. Perley
(NRAO/AUI/NSF). © NRAO.
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Preface to the Third Edition

The advances in radio astronomy, especially in instrumentation for interferometry,
over the past 15 years since the second edition have been remarkable. With the
commissioning of the Atacama Large Millimeter/submillimeter Array (ALMA),
high-resolution radio astronomy has reached the high-frequency limit of ground-
based observations of about 1 THz. There has been a revitalization of interest
at low frequencies, with multiple new instruments such as the LOw Frequency
ARray (LOFAR), the Long Wavelength Array (LWA), and the Murchison Widefield
Array (MWA). Tremendous advances in signal-processing capabilities have enabled
the first instruments with multiple fields of view, the Australian SKA Pathfinder
(ASKAP) and APERITIF on the Westerbork array. VLBI has reached submillimeter
wavelengths and is being used by the Event Horizon Telescope (EHT) to resolve
the structure of the emission surrounding the black hole in the center of our galaxy.
VLBI with the elements in Earth orbit, RadioAstron and VSOP, has greatly extended
the baselines available.

Much new material has been added to this edition. In Chap. 1, the historical
perspective has been brought up to date. An appendix has been added where the
radiometer equation, which gives the fundamental limitation in the sensitivity of a
radio telescope, has been derived from basic principles. In Chap. 2, a new appendix
gives an overview of the Fourier transform theory used throughout the book.
Chapter 4 includes a description of the so-called measurement equation, which
provides a unified framework for array calibration. Chapter 5 includes a description
of the new instruments available, including the fast Fourier Transform Telescope.
The discussion of system design has been substantially expanded in Chap. 7.
In Chap. 8, which deals with digital signal processing, the coverage of FX-type
correlators has been greatly expanded and the operation of polyphase filter banks
explained. The analysis of sensitivity loss due to quantization has been generalized.
An appendix describing the basic properties of the discrete Fourier transform has
been added. Chapter 9 on VLBI has been updated to reflect the conversion from
data storage on tape to data storage on disk media. With the prevalence of direct data
transmission to correlation facilities, the distinction between VLBI and connected-
element interferometry continues to diminish. In Chap. 10, the discussion of model

ix



X Preface to the Third Edition

fitting in the (u, v) plane has been greatly expanded to reflect a trend in the field
toward fitting the fundamental interferometric data even though image fidelity
continues to improve dramatically. The phase and amplitude closure conditions are
explored in greater depth because of their underlying importance in data calibration.
In Chap. 11, advances in image processing algorithms are described, including the
application of compressed sensing techniques. Chapter 12 describes the techniques
underlying the tremendous advance in astrometry. Precisions of 10 microarcseconds
are now routine as a result of progress in phase-referencing methods. In this edition,
discussion of the propagation of the neutral atmosphere and the ionized media from
the ionosphere to the interstellar medium has been separated into two chapters,
Chaps. 13 and 14, because of the growth in information in these areas. Over the last
15 years, enormous amounts of data have been acquired on site characterization,
which are described in Chap. 13. Because of the importance of both two- and three-
dimensional turbulence in the troposphere, a detailed analysis of the two regimes is
given. Chapter 17, on related techniques, includes new material on the use of radio
arrays to track satellites and space debris. It also describes the application of radio
interferometry to remote sensing of the Earth. Such application provides important
information on soil moisture and ocean salinity.

In the early days of radio interferometry, measurements of the distribution of
source intensity were usually referred to as “maps” and the associated technique
as “mapping.” With the maturity of the field, it seems more appropriate to refer to
the results as “images.” We have done so, except in a few cases where the term
“map” still seems appropriate, as in the determination of the distribution of maser
spot positions from fringe rate measurements.

Readers who are new to the field of radio astronomy are strongly encouraged to
study the basic principles of the field from other sources. Some of the numerous
textbooks are listed under Further Reading at the end of Chap. 1. Of particular
usefulness is the book The Fourer Transform and Its Applications by Ron Bracewell,
a radio astronomer and mathematician, because of its practical approach to the
subject. The intellectual roots of this approach can be traced to the lecture notes of
J. A. Ratcliffe of Cambridge University, which inspired the book Fourier Transforms
and Convolutions for the Experimentalist by Roger Jennison.

The authors would be grateful for any feedback from the readers of this book in
regard to pedogogical, technical, or grammatical issues or typographical errors.

We have benefited greatly from many of our colleagues who have helped in the
preparation of this edition. They include Betsey Adams, Kazunori Akiyama, Subra
Ananthakrishnan, Yoshiharu Asaki, Jaap Baars, Denis Barkats, Norbert Bartel, Leo
Benkevitch, Mark Birkinshaw, Katie Bouman, Geoff Bower, Michael Bremer, John
Bunton, Andrew Chael, Barry Clark, Tim Cornwell, Pierre Cox, Adam Deller,
Hélene Dickel, Phil Edwards, Ron Ekers, Pedro Elosegui, Phil Erickson, Hugh
Garsden, John Gibson, Lincoln Greenhill, Richard Hills, Mareki Honma, Chat
Hull, Michael Johnson, Ken Kellermann, Eric Keto, Robert Kimberk, Jonathon
Kocz, Vladimir Kostenko, Yuri Kovalev, Laurent Loinard, Colin Lonsdale, Ryan
Loomis, Chopo Ma, Dick Manchester, Satoki Matsushita, John McKean, Russ
McWhirter, Arnaud Mialon, George Miley, Eric Murphy, Tara Murphy, Ramesh
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Narayan, Scott Paine, Nimesh Patel, Michael Pearlman, Richard Plambeck, Danny
Price, Rurik Primiani, Simon Radford, Mark Reid, Maria Rioja, Luis Rodriguez,
Nemesio Rodriguez-Fernandez, Alan Rogers, Jon Romney, Katherine Rosenfeld,
Jean Riieger, Marion Schmitz, Fred Schwab, Mamoru Sekido, T. K. Sridharan,
Anjali Tripathi, Harish Vedantham, Jonathan Weintroub, Alan Whitney, David
Wilner, Robert Wilson, and Andre Young.

JM taught a graduate course in radio astronomy at Harvard University biannually
for 40 years. He thanks the hundreds of students who took this course for the
feedback, stimulation, and challenges they posed.

The publication of this edition under an Open Access license was made possible
by grants from the D. H. Menzel Fund at Harvard University and the National Radio
Astronomy Observatory. We are particularly grateful to Charles Alcock, director of
the Harvard—Smithsonian Center for Astrophysics, and Anthony Beasley, director of
the National Radio Astronomy Observatory, for their generous support of all aspects
of this project.

We thank John Lewis for much help with the graphics and other creative
contributions that improved the presentation of material in this book. We are
also grateful to Tania Burchell, Maureen Connors, Christopher Erdmann, Muriel
Hodges, Carolyn Hunsinger, Clinton Leite, Robert Reifsnyder, and Larry Selter for
their valuable support.

The publication of this edition would not have been possible without the tireless
and expert assistance of Carolann Barrett of Harvard University. An experienced
editor with a degree in mathematics, she completed both our sentences and our
equations. Her capacity to hold every detail of the book in her brain is truly amazing.

Charlottesville, VA, USA A. Richard Thompson
Cambridge, MA, USA James M. Moran
Urbana, IL, USA George W. Swenson Jr.

June 2016



Preface to the Second Edition

Half a century of remarkable scientific progress has resulted from the application of
radio interferometry to astronomy. Advances since 1986, when this book was first
published, have resulted in the VLBA (Very Long Baseline Array), the first array
fully dedicated to very-long-baseline interferometry (VLBI), the globalization of
VLBI networks with the inclusion of antennas in orbit, the increasing importance
of spectral line observations, and the improved instrumental performance at both
ends of the radio spectrum. At the highest frequencies, millimeter-wavelength
arrays of the Berkeley—Illinois—Maryland Association (BIMA), the Institut de Radio
Astronomie Millimétrique (IRAM), the Nobeyama Radio Observatory (NRO), and
the Owens Valley Radio Observatory (OVRO), which were in their infancy in 1986,
have been greatly expanded in their capabilities. The Submillimeter Array (SMA)
and the Atacama Large Millimeter/submillimeter Array (ALMA), a major interna-
tional project at millimeter and submillimeter wavelengths, are under development.
At low frequencies, with their special problems involving the ionosphere and wide-
field mapping, the frequency coverage of the Very Large Array (VLA) has been
extended down to 75 MHz, and the Giant Metrewave Radio Telescope (GMRT),
operating down to 38 MHz, has been commissioned. The Australia Telescope and
the expanded Multi-Element Radio Linked Interferometer Network (MERLIN) have
provided increased capability at centimeter wavelengths.

Such progress has led to this revised edition, the intent of which is not only
to bring the material up to date but also to expand its scope and improve its
comprehensibility and general usefulness. In a few cases, symbols used in the first
edition have been changed to follow the general usage that is becoming established
in radio astronomy. Every chapter contains new material, and there are new figures
and many new references. Material in the original Chap. 3 that was peripheral to the
basic discussion has been condensed and moved to a later chapter. Chapter 3 now
contains the essential analysis of the response of an interferometer. The section on
polarization in Chap. 4 has been substantially expanded, and a brief introduction to
antenna theory has been added to Chap. 5. Chapter 6 contains a discussion of the
sensitivity for a wide variety of instrumental configurations. A discussion of spectral
line observations is included in Chap. 10. Chapter 13 has been expanded to include

Xiii
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a description of the new techniques for atmospheric phase correction, and site-
testing data and techniques at millimeter wavelengths. Chapter 14 has been added
and contains an examination of the van Cittert—Zernike theorem and discussions of
spatial coherence and scattering, some of which is derived from the original Chap. 3.

Special thanks are due to a number of people for reviews or other help during the
course of the revision. These include D. C. Backer, J. W. Benson, M. Birkinshaw,
G. A. Blake, R. N. Bracewell, B. F. Burke, B. Butler, C. L. Carilli, B. G. Clark,
J. M. Cordes, T. J. Cornwell, L. R. D’Addario, T. M. Dame, J. Davis, J. L. Davis,
D. T. Emerson, R. P. Escoffier, E. B. Fomalont, L. J. Greenhill, M. A. Gurwell, C. R.
Gwinn, K. I. Kellermann, A. R. Kerr, E. R. Keto, S. R. Kulkarni, S. Matsushita, D.
Morris, R. Narayan, S.-K. Pan, S. J. E. Radford, R. Rao, M. J. Reid, A. Richichi,
A.E.E. Rogers, J. E. Salah, F. R. Schwab, S. R. Spangler, E. C. Sutton, B. E. Turner,
R. F. C. Vessot, W. J. Welch, M. C. Wiedner, and J.-H. Zhao. For major contributions
to the preparation of the text and diagrams, we thank J. Heidenreich, G. L. Kessler,
P. Smiley, S. Watkins, and P. Winn. For extensive help in preparation and editing,
we are especially indebted to P. L. Simmons. We are grateful to P. A. Vanden Bout,
director of the National Radio Astronomy Observatory, and to I. I. Shapiro, director
of the Harvard—Smithsonian Center for Astrophysics, for the encouragement and
support. The National Radio Astronomy Observatory is operated by Associated
Universities Inc. under contract with the National Science Foundation, and the
Harvard—Smithsonian Center for Astrophysics is operated by Harvard University
and the Smithsonian Institution.

Charlottesville, VA, USA A. Richard Thompson
Cambridge, MA, USA James M. Moran
Urbana, IL, USA George W. Swenson Jr.

November 2000



Preface to the First Edition

The techniques of radio interferometry as applied to astronomy and astrometry
have developed enormously in the past four decades, and the attainable angular
resolution has advanced from degrees to milliarcseconds, a range of more than six
orders of magnitude. As arrays for synthesis mapping' have developed, techniques
in the radio domain have overtaken those in optics in providing the finest angular
detail in astronomical images. The same general developments have introduced
new capabilities in astrometry and in the measurement of the Earth’s polar and
crustal motions. The theories and techniques that underlie these advances continue
to evolve but have reached by now a sufficient state of maturity that it is appropriate
to offer a detailed exposition.

The book is intended primarily for graduate students and professionals in
astronomy, electrical engineering, physics, or related fields who wish to use inter-
ferometric or synthesis-mapping techniques in astronomy, astrometry, or geodesy.
It is also written with radio systems engineers in mind and includes discussions of
important parameters and tolerances for the types of instruments involved. Our aim
is to explain the underlying principles of the relevant interferometric techniques but
to limit the discussion of details of implementation. Such details of the hardware and
the software are largely specific to particular instruments and are subject to change
with developments in electronic engineering and computing techniques. With an
understanding of the principles involved, the reader should be able to comprehend
the instructions and instrumental details that are encountered in the user-oriented
literature of most observatories.

The book does not stem from any course of lectures, but the material included
is suitable for a graduate-level course. A teacher with experience in the techniques
described should be able to interject easily any necessary guidance to emphasize
astronomy, engineering, or other aspects as required.

'We define synthesis mapping as the reconstruction of images from measurements of the Fourier
transforms of their brightness distributions. In this book, the terms map, image, and brightness
(intensity) distribution are largely interchangeable.

XV
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The first two chapters contain a brief review of radio astronomy basics, a short
history of the development of radio interferometry, and a basic discussion of the
operation of an interferometer. Chapter 3 discusses the underlying relationships
of interferometry from the viewpoint of the theory of partial coherence and may
be omitted from a first reading. Chapter 4 introduces coordinate systems and
parameters that are required to describe synthesis mapping. It is appropriate then
to examine configurations of antennas for multielement synthesis arrays in Chap. 5.
Chapters 6—8 deal with various aspects of the design and response of receiving
systems, including the effects of quantization in digital correlators. The special
requirements of very-long-baseline interferometry (VLBI) are discussed in Chap. 9.
The foregoing material covers in detail the measurement of complex visibility
and leads to the derivation of radio maps discussed in Chaps. 10 and 11. The
former presents the basic Fourier transformation method and the latter the more
powerful algorithms that incorporate both calibration and transformation. Precision
observations in astrometry and geodesy are the subject of Chap. 12. There follow
discussions of factors that can degrade the overall performance, namely, effects
of propagation in the atmosphere, the interplanetary medium, and the interstellar
medium in Chap. 13 and radio interference in Chap. 14. Propagation effects
are discussed at some length since they involve a wide range of complicated
phenomena that place fundamental limits on the measurement accuracy. The final
chapter describes related techniques including intensity interferometry, speckle
interferometry, and lunar occultation observations.

References are included to seminal papers and to many other publications and
reviews that are relevant to the topics of the book. Numerous descriptions of
instruments and observations are also referenced for purposes of illustration. Details
of early procedures are given wherever they are of help in elucidating the principles
or origin of current techniques, or because they are of interest in their own right.
Because of the diversity of the phenomena described, it has been necessary, in some
cases, to use the same mathematical symbol for different quantities. A glossary of
principal symbols and usage follows the final chapter.

The material in this book comes only in part from the published literature, and
much of it has been accumulated over many years from discussions, seminars,
and the unpublished reports and memoranda of various observatories. Thus, we
acknowledge our debt to colleagues too numerous to mention individually. Our
special thanks are due to a number of people for critical reviews of portions of
the book or for other support. These include D. C. Backer, D. S. Bagri, R. H. T.
Bates, M. Birkinshaw, R. N. Bracewell, B. G. Clark, J. M. Cordes, T. J. Cornwell,
L. R. D’Addario, J. L. Davis, R. D. Ekers, J. V. Evans, M. Faucherre, S. J. Franke,
J. Granlund, L. J. Greenhill, C. R. Gwinn, T. A. Herring, R. J. Hill, W. A. Jeffrey,
K. I. Kellermann, J. A. Klobuchar, R. S. Lawrence, J. M. Marcaide, N. C. Mathur,
L. A. Molnar, P. C. Myers, P. J. Napier, P. Nisenson, H. V. Poor, M. J. Reid, J. T.
Roberts, L. F. Rodriguez, A. E. E. Rogers, A. H. Rots, J. E. Salah, F. R. Schwab,
L. I. Shapiro, R. A. Sramek, R. Stachnik, J. L. Turner, R. F. C. Vessot, N. Wax, and
W. J. Welch. The reproduction of diagrams from other publications is acknowledged
in the captions, and we thank the authors and the publishers concerned for the



Preface to the First Edition XVvii

permission to use this material. For major contributions to the preparation of the
manuscript, we wish to thank C. C. Barrett, C. F. Burgess, N. J. Diamond, J. M.
Gillberg, J. G. Hamwey, E. L. Haynes, G. L. Kessler, K. I. Maldonis, A. Patrick,
V. J. Peterson, S. K. Rosenthal, A. W. Shepherd, J. F. Singarella, M. B. Weems,
and C. H. Williams. We are grateful to M. S. Roberts and P. A. Vanden Bout,
former director and present director of the National Radio Astronomy Observatory,
and to G. B. Field and I. I. Shapiro, former director and present director of the
Harvard—Smithsonian Center for Astrophysics, for the encouragement and support.
Much of the contribution by J. M. Moran was written while on sabbatical leave
at the Radio Astronomy Laboratory of the University of California, Berkeley,
and he is grateful to W. J. Welch for the hospitality during that period. G. W.
Swenson Jr. thanks the Guggenheim Foundation for a fellowship during 1984—1985.
Finally, we acknowledge the support of our home institutions: the National Radio
Astronomy Observatory, which is operated by Associated Universities Inc. under
contract with the National Science Foundation; the Harvard—Smithsonian Center
for Astrophysics, which is operated by Harvard University and the Smithsonian
Institution; and the University of Illinois.

Charlottesville, VA, USA A. Richard Thompson
Cambridge, MA, USA James M. Moran
Urbana, IL, USA George W. Swenson Jr.

January 1986
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UT-R2
VCR
VERA

VLA
VLBA
VLBI
VLSI
VSA
VSOP
WIDAR
WMAP
WVR
XF
Y-factor

Abbreviations and Acronyms

Root mean square

Smithsonian Astrophysical Observatory
System equivalent flux density

System International (modern MKS units)
Space Interferometry Mission
Superconductor—insulator—superconductor
Square Kilometre Array

Submillimeter Array

Soil Moisture and Ocean Salinity mission
Signal-to-noise ratio

Single sideband

Satellite tracking interferometer

Tracking and Data Relay Satellite System

Total electron content

Traveling ionospheric disturbance

Total variation

United States Naval Observatory

Union of Soviet Socialist Republics

Universal time

Modified UT

Coordinated universal time

Ukrainian Academy of Sciences T-shaped array
Video cassette recorder

VLBI Exploration of Radio Astronomy (Japanese-led
project)

Very Large Array

Very Long Baseline Array

Very-long-baseline interferometry
Very-large-scale integrated (circuits)

Very Small Array

VLBI Space Observatory Programme
Wideband Interferometric Digital ARchitecture
Wilkinson Microwave Anisotropy Probe

Water vapor radiometer

Cross-correlation before Fourier transformation
Ratio of receiver power outputs with hot and cold input loads



Principal Symbols

Listed below are the principal symbols used throughout the book. Locally defined
symbols with restricted usage are selectively included.

a

Model dimension, scale size, atmospheric model constant
(Sect. 13.1), scale size of ionospheric irregularities
(Sect. 14.2)

Antenna collecting area (reception pattern)
Antenna polarization matrix (Chap. 4)
One-dimensional reception pattern

Antenna collecting area on axis

Normalized reception pattern

Mirror-image reception pattern, azimuth

Galactic latitude (Sect. 14.4)

Synthesized beam pattern, point-source response
Normalized synthesized beam pattern

Magnetic field magnitude

Magnetic field vector

Velocity of light

Constant (Chap. 1), coherence function (Chap. 9),
convolving function (Chap. 10)

Turbulence strength parameters for refractive index
(Chap. 13)

Turbulence strength, electron density (Chap. 14)
Amplitude of a complex signal (Appendix 3.1)
Distance, antenna diameter, baseline declination, projected
baseline (Chap. 13)

Fried length (Chaps. 13, 17)

Inner scale of turbulence
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Principal Symbols

Outer scale of turbulence

Diffractive limit

Distance between ray paths to target and calibrator sources
in turbulent region

Distance over which rms phase deviation = 1 rad (Chap. 13)
Transition from 2-D to 3-D turbulence

Baseline (antenna spacing), polarization leakage (Chap. 4)
Baseline vector

Baseline measured in wavelengths

Interaxis distance of antenna mount (Chap. 4)

Equatorial component of baseline

Dispersion measure (Chap. 13)

Structure function of refractive index (spatial) (Chap. 13)
Delay resolution function [Eq. (9.181)]

Structure function of phase (temporal) (Chap. 13)
Structure function of phase (spatial) (Chaps. 12, 13)
Dispersion in optical fiber (Sect. 7.1, Appendix 7.2)
Magnitude of electronic charge (Chap. 14), emissivity
Electric field (usually in the measurement plane), spectral
components of electric field, energy

Components of electric field

Electric field at a source or aperture (Chaps. 3, 15, 17),
elevation angle

Frequency of Fourier components of power spectrum
(Chaps. 9, 13)

Oscillator strength at resonance i (Chap. 13)

Phase switching waveforms (Chap. 7)

Power flux density (W m~2), fringe function

Threshold of harmful interference (W m™2) (Chap. 16)
Faraday dispersion function (Chap. 13)

See Eq.(9.17)

Entropy measures (Chap. 11)

Bandwidth pattern (Chap. 2)

Sensitivity degradation factor (Chap. 7)

Quantized fringe-rotation functions (Chap. 9)

Voltage gain constant for an antenna, gravitational
acceleration (Chap. 13)

Gravitational constant

Power gain of receiver for one antenna (Chap. 7)

Gain factor for a correlated antenna pair



Principal Symbols XXX Vil

Gy Gain factor (Chap. 7)

G Occultation response function (Chap. 17)

h Planck’s constant, impulse response of a filter (Sect. 3.3),
hour angle of baseline, height, height above surface

ho Atmospheric scale height (Chap. 13)

H Hour angle, voltage—frequency response, Hadamard matrix
(Sect. 7.5)

H, Gain constant

i Electric current

i Unit vector in direction of polar or azimuth axes (Chap. 4),
current vector (Chap. 14)

1 Intensity, Stokes parameter

I’ Variance of fractional frequency deviation (Chap. 9)

I Speckle intensity (Chap. 17)

I, Stokes visibility

Iy Peak intensity of a point source, derived (synthesized)
intensity distribution, modified Bessel function of zero order
(Chaps. 6, 9)

I, One-dimensional intensity function, modified Bessel
function of first order (Chap. 9)

Im Imaginary part

J V-1

J Jones Matrix (Chap. 4)

Jv Volume emissivity of a source (Chap. 13)

J Mutual intensity (Chap. 15)

Jo Bessel function of first kind and zero order

Ji Bessel function of first kind and first order

k Boltzmann’s constant, propagation constant
27 /A (Chap. 13)

k Propagation vector with magnitude 277 /A (Chap. 9)

[ Direction cosine with respect to baseline component u, lapse
rate (Chap. 13)

L Length of a transmission line, loss factor in a transmission

line (Chap. 7), probability integral [Eq. (8.109)], path length,
likelihood function (Chap. 12), thickness of turbulent
atmospheric layer or screen (Chap. 13)

Linners Louter Scales of turbulence (Chap. 13)

14 Multipole moment (Chap. 10), length, galactic longitude
(Chap. 13)

15 Unit spacing (in wavelengths) in a grating array (Chaps. 1, 5)
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L
Lp, Ly

my, me, m;

M, MD’ MV

n=n, +jn,
ng
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ne, ni7 nm nm

np
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ny

no
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Ny

Np, Ny
Ny

N
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Pp
Pv
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P
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Principal Symbols

Latitude, excess path length (Chap. 13)

Excess path length of dry air, water vapor

Direction cosine with respect to baseline component v,
modulation index (Appendix 7.2), measured quantity
(Appendix 12.1), electron mass (Chap. 13)

Degree of linear, circular, and total polarization
Frequency multiplication factor (Chap. 9), model function
(Chap. 10), mass, complex degree of linear polarization
(Chap. 13)

Molecular weight; total, dry air, water vapor (Chap. 13)
Direction cosine with respect to baseline component w,
weighting factor in quantization (Chap. 8), noise component,
index of refraction (Chap. 13)

Complex refractive index

Number of antennas

Number of data points

Density of electrons, ions, neutral particles, and molecules
(Chap. 13)

Number of antenna pairs

Number of sources

Number of points in a rectangular array (grid points)
Refractive index at Earth’s surface (Chap. 13)

Number of samples (Chap. 8), total refractivity (Chap. 13)
Number of bits per sample (Chap. 8)

Refractivity of; dry air, water vapor (Chap. 13)

Number of Nyquist rate samples (Chap. 8)

2N and 2N + 1) are even and odd numbers of quantization
levels (Chap. 8)

Probability density or probability distribution [i.e. p(x) dx is
the probability that the random variable lies between x and
x + dx], bivariate normal probability function (Chap. 8),
number of model parameters (Chap. 10), partial pressure
(Sect. 13.1), impact parameter (Sects. 12.6, 14.3)

Partial pressure of dry air (Chap. 13)

Partial pressure of water vapor (Chap. 13)

Power, cumulative probability, total atmospheric pressure
(Chap. 13)

Atmospheric pressure at Earth’s surface (Chap. 13)
Dipole moment per unit volume

Triple product (bispectrum)

Instrumental polarization factor



Principal Symbols

Te

re

Ty
o

SEFD
Y

XXXiX

Spectrum of electron density fluctuations

Point-source response at Moon’s limb (Sect. 17.2), speckle
point-spread function (Sect. 17.6.4)

Distance in (u, v) plane

Distance in (¢, v’) plane

Components in the spatial frequency (cycles per meter)
plane (Chap. 13)

Stokes parameter, quality factor of a line or cavity

(Sect. 9.5), number of quantization levels (Sects. 8.3, 9.6)
Stokes visibility

Correlator output, distance in the (I, m) plane, radial distance
Position vector of antenna relative to center of Earth
Classical electron radius (Chap. 14)

Correlator output resulting from lower sideband
Pearson’s correlation coefficient

Correlator output resulting from upper sideband

Radius of the Earth

Autocorrelation function, correlator output, robustness
factor (Sect. 10.2.2.1), frequency ratio (Sect. 12.2.4),
distance, gas constant (Chap. 13)

Correlator output matrix (Chap. 4)

Response with visibility averaging (Chap. 6)

Response with finite bandwidth (Chap. 6)

Radius of electron orbit (Chap. 14)

Far-field distance (Chap. 15)

Rotation measure (Chap. 14)

Distance of the Moon’s limb (Chap. 17)

Autocorrelation for n-level quantization (Chap. 8)
Autocorrelation function of fractional frequency deviation
(Chap. 9)

Distance of Earth to Sun

Autocorrelation function of phase (Chaps. 9, 13)

Real part

Signal-to-noise ratio

Signal component, smoothness measure (Chap. 11)

Unit position vector (Chap. 3)

Unit position vector of field center (Chap. 3)

(spectral) power flux density (W m—2 Hz™!)

Flux density of a calibrator

System equivalent flux density

Threshold of harmful interference (W m~2 Hz™!) (Chap. 16)



x1 Principal Symbols

Sq Square wave functions (Sect. 7.5) (also known as
Rademacher functions)

S Cross power spectrum (Chap. 9)

S Power spectrum of intensity fluctuations (Chap. 14)

S,, S; Single-sided and double-sided power spectra of fractional
frequency deviation (single-sided power spectrum used only
in Sect. 9.4)

Sy, Sfp Single-sided and double-sided power spectra of phase
fluctuations (single-sided power spectrum used only in
Sect. 9.4)

S, Two-dimensional power spectrum of phase (Chap. 13)

t Time

t, Period of the Earth’s rotation (Chap. 12)

feye Cycle period for target and calibrator sources

T Temperature, time interval, transmission factor (Chap. 15)

Ty Atmospheric temperature (Chap. 13)

Ty Component of antenna temperature resulting from target
source

T, Total antenna temperature

Tp Brightness temperature

T. Noise temperature of calibration signal

T, Gas temperature (Chap. 9)

Tr Receiver temperature

Ts System temperature

T Time interval

u Antenna spacing coordinate in units of wavelength (spatial

frequency)

74 Projection of u coordinate onto the equatorial plane

U Stokes parameter

U, Stokes visibility (Chap. 4)

Uu Unwanted response (Sect. 7.5)

v Antenna spacing coordinate in units of wavelength (spatial
frequency), phase velocity in a transmission line (Chap. 8)

v’ Projection of v coordinate onto the equatorial plane

Vg Group velocity (Chap. 14)

Um Rate of angular motion of Moon’s limb (Chap. 16)

Vp Phase velocity (Chap. 13)

v, Radial velocity

Vg Velocity of scattering screen (parallel to baseline, if relevant)

(Chaps. 12, 13)
Vo Quantization level (Chap. 8), particle velocity (Chap. 9)



Principal Symbols xli

Vv Voltage, Stokes parameter

Va Voltage response of an antenna

Vy Stokes visibility (Chap. 4)

YV, v Complex visibility, vector visibility

Vi Measured complex visibility

Vu Michelson’s fringe visibility

Vn Normalized complex visibility

w Antenna spacing coordinate in units of wavelength (spatial

frequency), weighting function, column height of
precipitable water (Chap. 13)

w w coordinate measured in the polar direction

Wy Atmospheric weighting function (Chap. 13)

Winean Mean of weighting factors (Chap. 6)

Wrms Root-mean-square of weighting factors (Chap. 6)

wy Visibility tapering function (Chap. 10)

Wy Function that adjusts visibility amplitude for effective
uniform weighting (Chap. 10)

w Spectral sensitivity function (spatial transfer function);
propagator (Chap. 15)

X General position coordinate, coordinate in antenna aperture,
signal voltage

X, x coordinate measured in wavelengths

X Coordinate of antenna spacing [see Eq. (4.1)], signal

waveform measured in units of rms amplitude (Chap. 8),
coordinate within a source or an aperture (Chaps. 3, 15),
signal spectrum (Sect. 8.7)

X X coordinate measured in wavelengths

y General position coordinate, coordinate in antenna aperture,
signal voltage, distance along a ray path (Chap. 13)

Vk Fractional frequency deviation (Chap. 9)

i y coordinate measured in wavelengths

Y Coordinate of antenna spacing [Eq. (4.1)], Y-factor

(Chap. 7), coordinate within a source or aperture
(Chaps. 3, 15), signal waveform measured in units of rms
amplitude (Sect. 8.4), signal spectrum (Sect. 8.7)

Y, Y coordinate measured in wavelengths

z General position coordinate, signal voltage, zenith angle
(Chap. 13), redshift

2 z coordinate measured in wavelengths

V4 Coordinate of antenna spacing [Eq. (4.1)], visibility plus
noise in correlator output (Chaps. 6, 9)

Zp, Zv Compressibility factors for dry air and water vapor

(Chap. 13)
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Avrr
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Au, Av
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Principal Symbols

Visibility-plus-noise vector (Chaps. 6, 9)

Z coordinate measured in wavelengths

Right ascension, power attenuation coefficient, quantization
threshold in units of o (Chap. 8), spectral index (Chap. 11),
absorption coefficient and power-law exponent in Table 13.2
and related text (Sect. 13.1), exponent in electron density
fluctuation (Sect. 13.4)

Fractional length change in transmission line (Chap. 7),
oversampling factor (Chap. 8), exponent of distance in rms
phase fluctuation [Eq. (13.80a)] (Sects. 12.2, 13.1), exponent
in solar electron density (Sect. 14.3), Faraday depth

(Sect. 14.4)

Instrumental polarization factor (Sect. 4.8), maser relaxation
rate (Chap. 9), loop gain in CLEAN (Chap. 11),
post-Newtonian GR parameter (Chap. 12), source coherence
function (Chap. 15)

Damping factor (Chap. 13), mutual coherence function
(Chap. 15), gamma function

Mutual coherence function (Chap. 15)

Declination, increment prefix, (Dirac) delta function,
instrumental polarization factor (Sect. 4.8)

Delta function in two dimensions

Small length, increment prefix

Bandwidth, Doppler shift (Appendix 10.2)

Intermediate frequency bandwidth

Low frequency bandwidth

Frequency difference of local oscillators

Delay error

Increments in (u, v) plane

Increments in (/, m) plane

Solar elongation (Sect. 12.6)

Width of quantization level in units of o (Chap. 8), noise
component in IF signal (Chap. 9), permittivity (Chap. 13)
Amplitude error (Chap. 11)

Permittivity of free space (Chap. 13)

Noise component of correlator output (Chaps. 6, 9),
residual, error component, dielectric constant (Chap. 13,
Sect. 17.5), random surface deviation (Chap. 17)

Noise vector (Chap. 6)

Loss factor



Principal Symbols xliii

D Discrete delay step-loss factor

no Efficiency (loss) factor for Q-level quantization

NR Fringe rotation loss factor

ns Fringe sideband rejection loss factor

0 General angle, angle measured from a plane normal to the

baseline, instrumental phase angle, angle between baseline
and source direction vector (Chap. 12)

6o Angular position of source or field center

O Width of synthesized beam, bending angle (Chap. 13)

0 Width of synthesized field (field of view)

Or Width of first Fresnel zone

6Lo Local oscillator phase

O 6, Local oscillator phase at antennas m and n (Chap. 6)

0, Effective beamwidth resulting from atmospheric fluctuations

(Chap. 13), width of source (Chap. 16)
e Variation in Earth-rotation angle (UT1—-UTC) (Chap. 12)
A Wavelength
Aopt Wavelength of optical carrier (Appendix 7.2)
A Reflected amplitude in a transmission line (Chap. 7)
7 Power-law exponent in Allan variance (Chap. 9)
v Frequency
v Frequency measured with respect to center frequency or
local oscillator frequency (Chap. 9)

Vp Bit rate

VB Gyrofrequency (Chap. 13)

Ve Collision frequency (Chap. 13)

Ve Cavity frequency (Chap. 9)

Vd Intermediate frequency at which delay is inserted

Vs Delay step frequency (Chap. 9)

Vr Fringe frequency

Vin Instrumental component of fringe frequency (Chap. 12)
VIF Intermediate frequency

VLo Local oscillator frequency

Ve Frequency of a correlator channel (Chap. 9)

Vi Frequency of modulation on optical carrier (Chap. 7)
VRF Radio frequency

Vopt Frequency of optical carrier (Appendix 7.2)

vp Plasma frequency (Chap. 13)

Vo Center frequency of an IF or RF band, frequency of

absorption peak (Chap. 13)
7 Parallax angle (Chap. 12)
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Principal Symbols

Autocorrelation function, cross-correlation coefficient,
reflection coefficient (Chap. 7), gas density (Chap. 13)
Density: dry air, water vapor, total (Chap. 13)
Cross-correlation

Area density in the (u, v) plane (Chap. 10)

Reflection coefficients in transmission line (Chap. 7)
Density of water (Chap. 13)

Standard deviation, rms noise level; radar cross section
(Chap. 17)

Position vector on the unit sphere

Allan standard deviation (cry2 = Allan variance)
Root-mean-square uncertainty in delay (Chap. 9)
Root-mean-square deviation of phase

Time interval

Averaging (integration) time

Atmospheric delay error (Chap. 12)

Coherent integration time (Chap. 9)

Clock error

Geometric delay

Instrumental delay

Unit increment of instrumental delay, duration of an
observation (Chap. 6), zenith optical depth (opacity) of the
atmosphere (Chap. 13)

Sampling interval in time

Minimum period of orthogonality (Chap. 7)

Interval between switch transitions (Chap. 7)

Optical depth (opacity) (Chap. 13)

Phase angle

Phase of signal received by antenna m

Visibility phase

Instrumental phase for correlated antenna pair
Peak-to-peak phase error (Chap. 9)

Phase of a complex signal (Appendix 3.1), probability
integral [Eq. (8.44)] (Chap. 8), phase of a signal (Sect. 13.1)
Arctangent of axial ratio of polarization ellipse
Chi-squared statistical parameter

Position angle, phase angle

Parallactic angle

Angular rotation velocity of the Earth

Solid angle

Solid angle subtended by source

Solid angle of main lobe of synthesized beam



Principal Symbols

Frequently Used Subscripts

SEp~T R

(e

N

<= vw Y z3

Other Symbols

* ok

()

dot (7)
double dot (7)
overline ( )

circumflex ()
circumflex ()

Antenna

Delay, double sideband

Dry component (Chap. 13)

Imaginary part

Intermediate frequency

Left circular polarization, lower sideband
Local oscillator

Center of frequency band or angular field, Earth’s surface

(Chap. 13)

Antenna designation

Normalized, Nyquist rate (Sects. 8.2, 8.3)
Right circular polarization

Real part

System

Upper sideband

Water vapor (Chap. 13)

Measured in wavelengths

Unit rectangle function

Product symbol

Shah function in one dimension

Shah function in two dimensions

“is the Fourier transform of”

Convolution in one dimension

Convolution in two dimensions

Cross correlation in one dimension

Cross correlation in two dimensions

Expectation (or approximation by a finite average)
First derivative with respect to time

Second derivative with respect to time

Average (Chaps. 1, 9, Sect. 14.1); Fourier transform of
function (Chaps. 3, 5, 8, 10, 11, 13, Sect. 14.2)
Quantized variable (Chap. 8)

Function of frequency (Chap. 3)
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Angular Notation

o Degrees, minutes of arc, and seconds of arc
mas Milliarcseconds

nas Microarcseconds

Functions

For definitions and descriptions, see, e.g., Abramowitz, M., and Stegun, LA.,
Handbook of Mathematical Functions, National Bureau of Standards, Washington,
DC (1964), reprinted by Dover, New York, (1965).

erf  Error function [Eq. (6.63¢)]

Jo  Bessel function of first kind and zero order [Eq. (A2.55)]
Ji  Bessel function of first kind and first order

Iy  Modified Bessel function of zero order [Eq. (9.46)]

I Modified Bessel function of first order [Eq. (9.52)]

I'  Gamma function [note that '(x + 1) = x["(x)]

8 Dirac delta function [Eq. (A2.10)]

II  Unit rectangle function [Eq. (A2.12a)]

[l Modified unit rectangle function [Table 10.2]

sinc sinx/(mwx) [Eq. (2.4)]



Chapter 1
Introduction and Historical Review

The subject of this book can be broadly described as the principles of radio
interferometry applied to the measurement of natural radio signals from cosmic
sources. The uses of such measurements lie mainly within the domains of astro-
physics, astrometry, and geodesy. As an introduction, we consider in this chapter
the applications of the technique, some basic terms and concepts, and the historical
development of the instruments and their uses.

The fundamental concept of this book is that the image, or intensity distribution,
of a source has a Fourier transform that is the two-point correlation function of the
electric field, whose components can be directly measured by an interferometer.
This Fourier transform is normally called the fringe visibility function, which in
general is a complex quantity. The basic formulation of this principle is called the
van Cittert—Zernike theorem (see Chap. 15), derived in the 1930s in the context
of optics but not widely appreciated by radio astronomers until the publication
of the well-known textbook Principles of Optics by Born and Wolf (1959). The
techniques of radio interferometry developed from those of the Michelson stellar
interferometer without specific knowledge of the van Cittert—Zernike theorem.
Many of the principles of interferometry have counterparts in the field of X-ray
crystallography (see Beevers and Lipson 1985).

1.1 Applications of Radio Interferometry

Radio interferometers and synthesis arrays, which are basically ensembles of two-
element interferometers, are used to make measurements of the fine angular detail
in the radio emission from the sky. The angular resolution of a single radio
antenna is insufficient for many astronomical purposes. Practical considerations
limit the resolution to a few tens of arcseconds. For example, the beamwidth of
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2 1 Introduction and Historical Review

a 100-m-diameter antenna at 7-mm wavelength is approximately 17”. In the optical
range, the diffraction limit of large telescopes (diameter ~ 8 m) is about 0.015”, but
the angular resolution achievable from the ground by conventional techniques (i.e.,
without adaptive optics) is limited to about 0.5” by turbulence in the troposphere.
For progress in astronomy, it is particularly important to measure the positions of
radio sources with sufficient accuracy to allow identification with objects detected
in the optical and other parts of the electromagnetic spectrum [see, for example,
Kellermann (2013)]. It is also very important to be able to measure parameters such
as intensity, polarization, and frequency spectrum with similar angular resolution in
both the radio and optical domains. Radio interferometry enables such studies to be
made.

Precise measurement of the angular positions of stars and other cosmic objects
is the concern of astrometry. This includes the study of the small changes in
celestial positions attributable to the parallax introduced by the Earth’s orbital
motion, as well as those resulting from the intrinsic motions of the objects. Such
measurements are an essential step in the establishment of the distance scale of
the Universe. Astrometric measurements have also provided a means to test the
general theory of relativity and to establish the dynamical parameters of the solar
system. In making astrometric measurements, it is essential to establish a reference
frame for celestial positions. A frame based on extremely distant high-mass objects
as position references is close to ideal. Radio measurements of distant, compact,
extragalactic sources presently offer the best prospects for the establishment of such
a system. Radio techniques provide an accuracy of the order of 100 pas or less
for absolute positions and 10 pas or less for the relative positions of objects closely
spaced in angle. Optical measurements of stellar images, as seen through the Earth’s
atmosphere, allow the positions to be determined with a precision of about 50 mas.
However, positions of 10° stars have been measured to an accuracy of ~1 mas with
the Hipparcos satellite (Perryman et al. 1997). The Gaia' mission is expected to
provide the positions of 10? stars to an accuracy of ~10 pas (de Bruijne et al. 2014).

As part of the measurement process, astrometric observations include a deter-
mination of the orientation of the instrument relative to the celestial reference
frame. Ground-based observations therefore provide a measure of the variation of
the orientation parameters for the Earth. In addition to the well-known precession
and nutation of the direction of the axis of rotation, there are irregular shifts of
the Earth’s axis relative to the surface. These shifts, referred to as polar motion,
are attributed to the gravitational effects of the Sun and Moon on the equatorial
bulge of the Earth and to dynamic effects in the Earth’s mantle, crust, oceans, and
atmosphere. The same causes give rise to changes in the angular rotation velocity
of the Earth, which are manifest as corrections that must be applied to the system
of universal time. Measurements of the orientation parameters are important in the
study of the dynamics of the Earth. During the 1970s, it became clear that radio
techniques could provide an accurate measure of these effects, and in the late 1970s,

! An astrometric space observatory of the European Space Agency.
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the first radio programs devoted to the monitoring of universal time and polar motion
were set up jointly by the U.S. Naval Observatory and the U.S. Naval Research
Laboratory, and also by NASA and the National Geodetic Survey. Polar motion
can also be studied with satellites, in particular the Global Positioning System, but
distant radio sources provide the best standard for measurement of Earth rotation.

In addition to revealing angular changes in the motion and orientation of the
Earth, precise interferometer measurements entail an astronomical determination of
the vector spacing between the antennas, which for spacings of ~ 100 km or more
is usually more precise than can be obtained by conventional surveying techniques.
Very-long-baseline interferometry (VLBI) involves antenna spacings of hundreds
or thousands of kilometers, and the uncertainty with which these spacings can be
determined has decreased from a few meters in 1967, when VLBI measurements
were first made, to a few millimeters. Relative motions of widely spaced sites on
separate tectonic plates lie in the range 1-10 cm per year and have been tracked
extensively with VLBI networks. Interferometric techniques have also been applied
to the tracking of vehicles on the lunar surface and the determination of the positions
of spacecraft. In this book, however, we limit our concern mainly to measurements
of natural signals from astronomical objects.

The attainment of the highest angular resolution in the radio domain of the
electromagnetic spectrum results in part from the ease with which radio frequency
(RF) signals can be processed electronically with high precision. The use of the
heterodyne principle to convert received RF signals to a convenient baseband, by
mixing them with a signal from a local oscillator, is essential to this technology.
A block diagram of an idealized standard receiving system (also known as a
radiometer) is shown in Appendix 1.1. Another advantage in the radio domain is that
the phase variations induced by the Earth’s neutral atmosphere are less severe than
at shorter wavelengths. Future technology will provide even higher resolution at
infrared and optical wavelengths from observatories above the Earth’s atmosphere.
However, radio waves will remain of vital importance in astronomy since they reveal
objects that do not radiate in other parts of the spectrum, and they are able to pass
through galactic dust clouds that obscure the view in the optical range.

1.2 Basic Terms and Definitions

This section is written for readers who are unfamiliar with the basics of radio
astronomy. It presents a brief review of some background information that is useful
when approaching the subject of radio interferometry.



4 1 Introduction and Historical Review
1.2.1 Cosmic Signals

The voltages induced in antennas by radiation from cosmic radio sources are
generally referred to as signals, although they do not contain information in the
usual engineering sense. Such signals are generated by natural processes and almost
universally have the form of Gaussian random noise. That is to say, the voltage as a
function of time at the terminals of a receiving antenna can be described as a series of
very short pulses of random occurrence that combine as a waveform with Gaussian
amplitude distribution. In a bandwidth Av, the envelope of the radio frequency
waveform has the appearance of random variations with timescale of order 1/Av.
For most radio sources (except, for example, pulsars), the characteristics of the
signals are invariant with time, at least on the scale of minutes or hours, the duration
of a typical radio astronomy observation. Gaussian noise of this type is assumed to
be identical in character to the noise voltages generated in resistors and amplifiers
and is sometimes called Johnson noise. Such waveforms are usually assumed to be
stationary and ergodic, that is, ensemble averages and time averages converge to
equal values.

Most of the power is in the form of continuum radiation, the power spectrum
of which shows gradual variation with frequency. For some wideband instruments,
there may be significant variation within the receiver bandwidth. Figure 1.1 shows
continuum spectra of eight different types of radio sources. Radio emission from the
radio galaxy Cygnus A, the supernova remnant Cassiopeia A, and the quasar 3C48
is generated by the synchrotron mechanism [see, e.g., Rybicki and Lightman (1979),
Longair (1992)], in which high-energy electrons in magnetic fields radiate as a result
of their orbital motion. The radiating electrons are generally highly relativistic,
and under these conditions, the radiation emitted by each one is concentrated in
the direction of its instantaneous motion. An observer therefore sees pulses of
radiation from those electrons whose orbital motion lies in, or close to, a plane
containing the observer. The observed polarization of the radiation is mainly linear,
and any circularly polarized component is generally quite small. The overall linear
polarization from a source, however, is seldom large, since it is randomized by the
variation of the direction of the magnetic field within the source and by Faraday
rotation. The power in the electromagnetic pulses from the electrons is concentrated
at harmonics of the orbital frequency, and a continuous distribution of electron
energies results in a continuum radio spectrum. The individual pulses from the
electrons are too numerous to be separable, and the electric field appears as a
continuous Gaussian random process with zero mean. The variation of the spectrum
as a function of frequency is related to the energy distribution of the electrons.
At low frequencies, these spectra turn over due to the effect of self-absorption.
MS?2 is an example of a starburst galaxy. At low frequencies, synchrotron emission
dominates, but at high frequencies, emission from dust grains at a temperature
of about 45K and emissivity of 1.5 dominates. TW Hydrae is a star with a
protoplanetary disk whose emission at radio frequencies is dominated by dust at
a temperature of about 30K and emissivity of 0.5.
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Fig. 1.1 Examples of spectra of eight different types of discrete continuum sources: Cassiopeia A
[supernova remnant, Baars et al. (1977)], Cygnus A [radio galaxy, Baars et al. (1977)],
3C48 [quasar, Kellermann and Pauliny-Toth (1969)], M82 [starburst galaxy, Condon (1992)],
TW Hydrae [protoplanetary disk, Menu et al. (2014)], NGC7207 [planetary nebula, Thompson
(1974)], MWC349A [ionized stellar wind, Harvey et al. (1979)], and Venus [planet, at 9.6”
diameter (opposition), Gurwell et al. (1995)]. For practical purposes, we define the edges of the
radio portion of the electromagnetic spectrum to be set by the limits imposed by ionospheric
reflection at low frequencies (~ 10 MHz) and to atmospheric absorption at high frequencies
(~ 1000 GHz). Some of the data for this table were taken from NASA/IPAC Extragalactic
Database (2013) [One jansky (Jy) = 10726 W m—2 Hz'].

NGC7027, the spectrum of which is shown in Fig. 1.1, is a planetary nebula
within our Galaxy in which the gas is ionized by radiation from a central star. The
radio emission is a thermal process and results from free-free collisions between
unbound electrons and ions within the plasma. At the low-frequency end of the
spectral curve, the nebula is opaque to its own radiation and emits a blackbody
spectrum. As the frequency increases, the absorptivity, and hence the emissivity,
decrease approximately as v~ [see, e.g., Rybicki and Lightman (1979)], where v is
the frequency. This behavior counteracts the v> dependence of the Rayleigh—Jeans
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law, and thus the spectrum becomes nearly flat when the nebula is no longer opaque
to the radiation. Radiation of this type is randomly polarized. MWC349A is an
example of an inhomogeneous ionized gas expanding at constant velocity in a stellar
envelope, which gives rise to a spectral dependence of v%-°.

At millimeter wavelengths, opaque thermal sources such as planetary bodies
become very strong and often serve as calibrators. Venus has a brightness temper-
ature that varies from 700K (the surface temperature) at low frequencies to 250K
(the atmospheric temperature) at high frequencies.

In contrast with continuum radiation, spectral line radiation is generated at
specific frequencies by atomic and molecular processes. A fundamentally important
line is that of neutral atomic hydrogen at 1420.405 MHz, which results from the
transition between two energy levels of the atom, the separation of which is related
to the spin vector of the electron in the magnetic field of the nucleus. The natural
width of the hydrogen line is negligibly small (~ 10~'> Hz), but Doppler shifts
caused by thermal motion of the atoms and large-scale motion of gas clouds spread
the line radiation. The overall Doppler spread within our Galaxy covers several
hundred kilohertz. Information on galactic structure is obtained by comparison of
these velocities with those of models incorporating galactic rotation.

Our Galaxy and others like it also contain large molecular clouds at temperatures
of 10-100 K in which new stars are continually forming. These clouds give rise to
many atomic and molecular transitions in the radio and far-infrared ranges. More
than 4,500 molecular lines from approximately 180 molecular species have been
observed [see Herbst and van Dishoeck (2009)]. Lists of atomic and molecular
lines are given by Jet Propulsion Laboratory (2016), the University of Cologne
(2016), and Splatalogue (2016). For earlier lists, see Lovas et al. (1979) and Lovas
(1992). A few of the more important lines are given in Table 1.1. Note that this
table contains less than 1% of the known lines in the frequency range below 1 THz.
Figure 1.2 shows the spectrum of radiation of many molecular lines from the Orion
Nebula in the bands from 214 to 246 and from 328 to 360 GHz. Although the radio
window in the Earth’s atmosphere ends above ~ 1 THz, sensitive submillimeter-
and millimeter-wavelength arrays can detect such lines as the 2p, 2 = 2p, /2 line
of CII at 1.90054 THz (158 pm), which are Doppler shifted into the radio window
for redshifts (z) greater than ~ 2. Some of the lines, notably those of OH, H,O,
Si0O, and CH3OH, show very intense emission from sources of very small apparent
angular diameter. This emission is generated by a maser process [see, e.g., Reid and
Moran (1988), Elitzur (1992), and Gray (2012)].

The strength of the radio signal received from a discrete source is expressed as
the spectral flux density, or spectral power flux density, and is measured in watts
per square meter per hertz (W m~2 Hz™!). For brevity, astronomers often refer to
this quantity as flux density. The unit of flux density is the jansky (Jy); 1 Jy = 10726
W m™2 Hz™!. It is used for both spectral line and continuum radiation. The measure
of radiation integrated in frequency over a spectral band has units of W m™2 and
is referred to as power flux density. In the standard definition of the IEEE (1977),
power flux density is equal to the time average of the Poynting vector of the wave. In
producing an image of a radio source, the desired quantity is the power flux density
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Table 1.1 Some important radio lines

Chemical name
Deuterium
Hydrogen

Hydroxyl radical
Hydroxyl radical
Hydroxyl radical
Hydroxyl radical
Methyladyne
Hydroxyl radical
Formaldehyde
Hydroxyl radical
Methanol

Helium

Methanol
Formaldehyde
Cyclopropenylidene
Water

Ammonia
Ammonia
Ammonia

Methanol

Silicon monoxide
Silicon monoxide
Carbon monosulfide
Silicon monoxide
Hydrogen cyanide
Formylium
Diazenylium
Carbon monosulfide
Carbon monoxide
Carbon monoxide
Carbon monoxide
Carbon monoxide
Carbon monosulfide
Water

Carbon monoxide
Carbon monosulfide
Water

Carbon monosulfide
Carbon monoxide
Water

Carbon monoxide
Heavy water
Carbon

Water

Ammonia

Carbon monoxide
Carbon monoxide
Carbon

4Strong maser transition.
"High atmospheric opacity (see Fig. 13.14).

Chemical
formula
D

H

OH

OH

OH

OH

CH

OH
H,CO
OH
CH;0H
3Het
CH;0H
H,CO
C3 Hz
H,0
NH;
NH;
NH;
CH;0H
SiOo
SiO0

CS

SiO
HCN
HCO™
NHT
CS

12Cl 80
l3cl60
12Cl 70
IZCIGO
CS
H,0
12¢160
CS
H,0
CS
IZCIGO
H,0
IZCIGO
HDO

H,O
NH3
120160
120160
C

Transition

Sip F=3 =
2S1/2, F=1—0

2173/2, J=3/2, F=1—2
2173/2, J=3/2, F=1—1
2173/2, J=3/2, F=2—2
2173/2, J=3/2, F=2—1
Mp, J=1/2, F=1—1
Mp. J=1/2, F=1—0
110 — 1y, six F transitions
3. J=5/2, F=3—3
5, = 6pAT

2S1/2, F=1—0

20 >34 E
211 = 22, four F transitions
Lio = 1o

616 —> 523, five F transitions

1, 1 = 1, 1, eighteen F transitions
2, 2 — 2, 2, seven F transitions
3, 3 — 3, 3, seven F transitions
6, > 6, E

v=2,J=1—>0
v=1,J=1—>0

J=1—=>0

v=1J=2—1

J =1 — 0, three F transitions

J=1—=>0
J =1— 0, seven F transitions
J=2—->1
J=1—>0
J=1—>0
J =1 — 0, three F transitions
J=1—>0
J=3->2
313 = 2
J=2—>1
J=5—>4
515> 4»
J=7—>6
J=3—->2
414 = 3y
J=4—>3
Lo = Ooo
3P1—>3P0
Lio = 1o
1o = 0o
J=6—>5
J=7—>6
P, =3Py

Frequency
(GHz)
0.327
1.420
1.612%
1.665*
1.667*
1.721*
3.335
4.766*
4.830
6.035%
6.668%
8.665
12.179*
14.488
18.343
22.235%
23.694
23.723
23.870
25.018
42.821*
43.122*
48.991
86.243*
88.632
89.189
93.174
97.981
109.782
110.201
112.359
115.271
146.969
183.310*
230.538
244.936
325.153*
342.883
345.796
380.197°
461.041
464.925
492.162
556.936°
572.498
691.473
806.652
809.340
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Fig. 1.3 Elements of solid H
angle and surface area
illustrating the definition of
intensity. dA is normal to s. "
dQ

emitted per unit solid angle subtended by the radiating surface, which is measured
in units of W m~2 Hz~! sr~!. This quantity is variously referred to as the intensity,
specific intensity, or brightness of the radiation. In radio astronomical imaging, we
can measure the intensity in only two dimensions on the surface of the celestial
sphere, and the measured emission is the component normal to that surface, as seen
by the observer.

In radiation theory, the quantity intensity, or specific intensity, often represented
by I,, is the measure of radiated energy flow per unit area, per unit time, per
unit frequency bandwidth, and per unit solid angle. Thus, in Fig. 1.3, the power
flowing in direction s within solid angle dS2, frequency band dv, and area dA is
I,(s)dS2 dv dA. This can be applied to emission from the surface of a radiating
object, to propagation through a surface in space, or to reception on the surface of
a transducer or detector. The last case applies to reception in an antenna, and the
solid angle then denotes the area of the celestial sphere from which the radiation
emanates. Note that in optical astronomy, the specific intensity is usually defined as
the intensity per unit bandwidth I;, where I; = I,v?/c, and c is the speed of light
[see, e.g., Rybicki and Lightman (1979)].

For thermal radiation from a blackbody, the intensity is related to the physical
temperature T of the radiating matter by the Planck formula, for which

L 2kTv? "

v 2 | e _q | (.1

where k is Boltzmann’s constant, and 4 is Planck’s constant. When hv < kT, we
can use the Rayleigh—Jeans approximation, in which case the expression in the
square brackets is replaced by unity. The Rayleigh—Jeans approximation requires
v (GHz) <« 20 T (K) and is violated at high frequencies and low temperatures
in many situations of interest to radio astronomers. However, for any radiation
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mechanism, a brightness temperature 7 can be defined:

A1,

1 = .
B opp?

1.2)
In the Rayleigh—Jeans domain, the brightness temperature 7 is that of a blackbody
at physical temperature 7T = Tp. In the examples in Fig. 1.1, T is of the order of
10* K for NGC7027 and corresponds to the electron temperature. For Cygnus A and
3C48, Ty is of the order of 10 K or greater and is a measure of the energy density of
the electrons and the magnetic fields, not a physical temperature. As a spectral line
example, T3 for the carbon monoxide (CO) lines from molecular clouds is typically
10-100 K. In this case, Tz is proportional to the excitation temperature associated
with the energy levels of the transition and is related to the temperature and density
of the gas as well as to the temperature of the radiation field.

1.2.2  Source Positions and Nomenclature

The positions of radio sources are measured in the celestial coordinates right
ascension and declination. On the celestial sphere, these quantities are analogous,
respectively, to longitude and latitude on the Earth but tied to the plane of the
Earth’s orbit around the Sun. The zero of right ascension is arbitrarily chosen as the
point at which the Sun crosses the celestial equator (going from negative to positive
declination) on the vernal equinox at the first point of Aries at a given epoch. Posi-
tions of objects in celestial coordinates vary as a result of precession and nutation
of the Earth’s axis of rotation, aberration, and proper motion. These positions are
usually listed for the standard epoch of the year 2000. Former standard epochs were
1950 and 1900. Methods of naming sources have proceeded haphazardly over the
centuries. Important optical catalogs of sources were constructed as numerical lists,
often in order of right ascension. Examples include the Messier catalog of nonstellar
objects (Messier 1781; now containing 110 objects identified as galaxies, nebulae,
and star clusters), the New General Catalog of nonstellar sources (Dreyer 1888;
originally with 7,840 objects, mostly galaxies), and the Henry Draper catalog of
stars (Cannon and Pickering 1924; now with 359,083 entries). The earliest radio
sources were designated by their associated constellation. Hence, Cygnus A is the
strongest source in the constellation of Cygnus. As the radio sky was systematically
surveyed, catalogs appeared such as the third Cambridge catalog (3C), with 471
entries in the original list [Edge et al. (1959), extragalactic sources, e.g., 3C273] and
the Westerhout catalog of 81 sources along the galactic plane [Westerhout (1958);
mostly ionized nebula, e.g., W3].

In 1974, the International Astronomical Union adopted a resolution (Interna-
tional Astronomical Union 1974) to standardize the naming of sources based on
their coordinates in the epoch of 1950 called the 4 + 4 system, in which the first
four characters give the hour and minutes of right ascension (RA); the fifth, the
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sign of the declination (Dec.); and the remaining three, the degrees and tenths
of degrees of declination. For example, the source at RA 01M34m49.83%, Dec.
32°54’20.5” would be designated 0134+329. Note that coordinates were truncated,
not rounded. This system no longer has the accuracy needed to distinguish among
sources. The current recommendation of the IAU Task Group on Astronomical
Designations [International Astronomical Union (2008); see also NASA/IPAC
Extragalactic Database (2013)] recommends the following convention. The source
name begins with an identification acronym followed by a letter to identify the
type of coordinates, followed by the coordinates to requisite accuracy. Examples
of identification acronyms are QSO (quasi-stellar object), PSR (pulsar), and PKS
(Parkes Radio Source). Coordinate identifiers are usually limited to J for epoch
2000, B for epoch 1950, and G for galactic coordinates. Hence, the radio source at
the center of the galaxy M87, also known as NGC4486, contains an active galactic
nucleus (AGN) centered at RA = 12"30M49.42338%, Dec. = 12°23/28.0439”,
which might be designated AGN J1230494233+122328043. It is also well known
by the designations Virgo A and 3C274. Many catalogs of radio sources have
been made, and some of them are described in Sect. 1.3.8. An index of more than
50 catalogs made before 1970, identifying more than 30,000 extragalactic radio
sources, was compiled by Kesteven and Bridle (1971).

An example of a more recent survey is the NRAO VLA Sky Survey (NVSS)
conducted by Condon et al. (1998) using the Very Large Array (VLA) at 1.4 GHz,
which contains approximately 2 x 10° sources (about one source per 100 beam
solid angles). Another important catalog derived from VLBI observations is the
International Celestial Reference Frame (ICRF), which contains 295 sources with
positions accurate to about 40 microarcseconds (Ma et al. 1998; Fey et al. 2015).

1.2.3 Reception of Cosmic Signals

The antennas used most commonly in radio astronomy are of the reflector type
mounted to allow tracking over most of the sky. The exceptions are mainly
instruments designed for meter or longer wavelengths. The collecting area A of a
reflector antenna, for radiation incident in the center of the main beam, is equal to
the geometrical area multiplied by an aperture efficiency factor, which is typically
within the range 0.3-0.8. The received power P4 delivered by the antenna to a
matched load in a bandwidth Av, from a randomly polarized source of flux density
S, assumed to be small compared to the beamwidth, is given by

Py = )SAAv . (1.3)

Note that S is the intensity /, integrated over the solid angle of the source. The factor
; takes account of the fact that the antenna responds to only one-half the power in
the randomly polarized wave. It is often convenient to express random noise power,
P, in terms of an effective temperature 7', as

P=kTAv, (1.4)
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where k is Boltzmann’s constant. In the Rayleigh—Jeans domain, P is equal to the
noise power delivered to a matched load by a resistor at physical temperature T
(Nyquist 1928). In the general case, if we use the Planck formula [Eq. (1.1)], we can
write P = kTpjanck Av, where Tppunck 1s an effective radiation temperature, or noise
temperature, of a load at physical temperature 7, and is given by

hv
Toanck = T kT . 1.5
Planck |:ehv/kT _ 1:| ( )

The noise power in a receiving system (see Appendix 1.1) can be specified in
terms of the system temperature Ts associated with a matched resistive load that
would produce an equal power level in an equivalent noise-free receiver when
connected to the input terminals. Ty is defined as the power available from this
load divided by kAv. In terms of the Planck formula, the relation between Ty and
the physical temperature, T, of such a load is given by replacing Tpjanck by Ts in
Eq. (1.1).

The system temperature consists of two parts: Tk, the receiver temperature,
which represents the internal noise from the receiver components, plus the unwanted
noise incurred from connecting the receiver to the antenna and from the noise
components from the antenna produced by ground radiation, atmospheric emission,
ohmic losses, and other sources.

We reserve the term antenna temperature to refer to the component of the power
received by the antenna that results from a cosmic source under study. The power
received in an antenna from the source is [see Eq. (1.4)]

PAZkTAAl), (16)

and Ty is related to the flux density by Eqgs. (1.3) and (1.6). It is useful to express
this relation as Ty (K) = SA/2k = S (Jy) x A (m?)/2800. Astronomers sometimes
specify the performance of an antenna in terms of janskys per kelvin, that is, the flux
density (in units of 10726 W m™2 Hz™!), of a point source that increases T4 by one
kelvin. Thus, this measure is equal to 2800/A (m?) Jy K™

Another term that may be encountered is the system equivalent flux density,
SEFD, which is an indicator of the combined sensitivity of both an antenna and
receiving system. It is equal to the flux density of a point source in the main beam
of the antenna that would cause the noise power in the receiver to be twice that of
the system noise in the absence of a source. Equating P4 in Eq. (1.3) with kTsAv,
we obtain

2kTs
SEFD = . 1.7)
A
The ratio of the signal power from a source to the noise power in the receiving
amplifier is 74 /Ts. Because of the random nature of the signal and noise, mea-
surements of the power levels made at time intervals separated by (2Av)™! can be
considered independent. A measurement in which the signal level is averaged for
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a time t contains approximately 2Avt independent samples. The signal-to-noise
ratio (SNR), R;pn, at the output of a power-measuring device attached to the receiver
is increased in proportion to the square root of the number of independent samples
and is of the form

T
R = C. "V Avt, (1.8)
Ts

where C is a constant that is greater than or equal to one. This result (derived in
Appendix 1.1) appears to have been first obtained by Dicke (1946) for an analog
system. C = 1 for a simple power-law receiver with a rectangular passband and can
be larger by a factor of ~ 2 for more complicated systems. Typical values of Av
and t are of order 1 GHz and 6 h, which result in a value of 4 x 10° for the factor
(Avt)/2. As a result, it is possible to detect a signal for which the power level is
less than 107 times the system noise. A particularly effective use of long averaging
time is found in the observations with the Cosmic Background Explorer (COBE)
satellite, in which it was possible to measure structure at a brightness temperature
level less than 10~ of the system temperature (Smoot et al. 1990, 1992).

The following calculation may help to illustrate the low energies involved in radio
astronomy. Consider a large radio telescope with a total collecting area of 10* m?
pointed toward a radio source of flux density 1 mJy (= 1073 Jy) and accepting
signals over a bandwidth of 50 MHz. In 10° years, the total energy accepted is
about 107 J (1 erg), which is comparable to a few percent of the kinetic energy in a
single falling snowflake. To detect the source with the same telescope and a system
temperature of 50 K would require an observing time of about 5 min, during which
time the energy received would be about 1071° J.

1.3 Development of Radio Interferometry

1.3.1 Evolution of Synthesis Techniques

This section presents a brief history of interferometry in radio astronomy. As an
introduction, the following list indicates some of the more important steps in the
progress from the Michelson stellar interferometer to the development of multi-
element, synthesis imaging arrays and VLBI:

1. Michelson stellar interferometer. This optical instrument introduced the tech-
nique of using two spaced receiving apertures, and the measurement of fringe
amplitude to determine angular width (1890-1921).

2. First astronomical observations with a two-element radio interferometer. Ryle
and Vonberg (1946), solar observations.

3. Phase-switching interferometer. First implementation of the voltage-multiplying
action of a correlator, which is the device used to combine the signals from two
antennas (1952).
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11.

12.

13.

14.
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. Astronomical calibration. Gradual accumulation during the 1950s and 1960s of

accurate positions for small-diameter radio sources from optical identifications
and other means. Observations of such sources enabled accurate calibration of
interferometer baselines and instrumental phases.

. Early measurements of angular dimensions of sources. Use of variable-baseline

interferometers (~ 1952 onward).

. Solar arrays. Development of multiantenna arrays of centimeter-wavelength

tracking antennas that provided detailed maps and profiles of the solar disk (mid-
1950s onward).

. Arrays of tracking antennas. General movement from meter-wavelength, non-

tracking antennas to centimeter-wavelength, tracking antennas. Development of
multielement arrays with a separate correlator for each baseline (~ 1960s).

. Earth-rotation synthesis. Introduced by Ryle with some precedents from solar

imaging. The development of computers to control receiving systems and
perform Fourier transforms required in imaging was an essential component
(1962).

. Spectral line capability. Introduced into radio interferometry (~ 1962).
. Development of image-processing techniques. Based on phase and amplitude

closure, nonlinear deconvolution and other techniques, as described in Chaps. 10
and 11 (~ 1974 onward).

Very-long-baseline interferometry (VLBI). First observations (1967). Super-
luminal motion in active galactic nuclei discovered (1971). Contemporary
plate motion detected (1986). International Celestial Reference Frame adopted
(1998).

Millimeter-wavelength instruments (~ 100-300 GHz). Major developments
mid-1980s onward.

Orbiting VLBI (OVLBI). U.S. Tracking and Data Relay Satellite System
(TDRSS) experiment (1986—88). VLBI Space Observatory Programme (VSOP)
(1997). RadioAstron (2011).

Submillimeter-wavelength instruments (300 GHz-1 THz). James Clerk
Maxwell Telescope—Caltech Submillimeter Observatory interferometer (1992).
Submillimeter Array of the Smithsonian Astrophysical Observatory (SAO) and
Academia Sinica of Taiwan (2004). Atacama Large Millimeter/submillimeter
Array (ALMA) (2013).

1.3.2 Michelson Interferometer

Interferometric techniques in astronomy date back to the optical work of Michelson
(1890, 1920) and of Michelson and Pease (1921), who were able to obtain
sufficiently fine angular resolution to measure the diameters of some of the nearer
and larger stars such as Arcturus and Betelgeuse. The basic similarity of the theory
of radio and optical radiation fields was recognized early by radio astronomers,
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W g5 s by b2

E E\Telescope tube

(b) Image
brightness

Position across image

Fig. 1.4 (a) Schematic diagram of the Michelson—Pease stellar interferometer. The incoming rays
are guided into the telescope aperture by mirrors m; to my, of which the outer pair define the two
apertures of the interferometer. Rays a; and b; traverse equal paths to the eyepiece at which the
image is formed, but rays a, and b,, which approach at an angle 6 to the instrumental axis, traverse
paths that differ by a distance A. (b) The intensity of the image as a function of position angle in
a direction parallel to the spacing of the interferometer apertures. The solid line shows the fringe
profiles for an unresolved star (V3 = 1.0), and the broken line is for a partially resolved star for
which Vi = 0.5.

and optical experience has provided valuable precedents to the theory of radio
interferometry.

As shown in Fig. 1.4, beams of light from a star fall upon two apertures and are
combined in a telescope. The resulting stellar image has a finite width and is shaped
by effects that include atmospheric turbulence, diffraction at the mirrors, and the
bandwidth of the radiation. Maxima in the light intensity resulting from interference
occur at angles 6 for which the difference A in the path lengths from the star to the
point at which the light waves are combined is an integral number of wavelengths
at the effective center of the optical passband. If the angular width of the star is
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small compared with the spacing in 6 between adjacent maxima, the image of the
star is crossed by alternate dark and light bands, known as interference fringes. If,
however, the width of the star is comparable to the spacing between maxima, one
can visualize the resulting image as being formed by the superposition of images
from a series of points across the star. The maxima and minima of the fringes from
different points do not coincide, and the fringe amplitude is attenuated, as shown in
Fig. 1.4b. As a measure of the relative amplitude of the fringes, Michelson defined
the fringe visibility, Vi, as

intensity of maxima - intensity of minima (1.9)
intensity of maxima + intensity of minima

Note that with this definition, the visibility is normalized to unity when the intensity
at the minima is zero, that is, when the width of the star is small compared with
the fringe width. If the fringe visibility is measurably less than unity, the star
is said to be resolved by the interferometer. In their 1921 paper, Michelson and
Pease explained the apparent paradox that their instrument could be used to detect
structure smaller than the seeing limit imposed by atmospheric turbulence. The
fringe pattern, as depicted in Fig. 1.4, moves erratically on time scales of 10-100 ms.
Over long averaging time, the fringes are smoothed out. However, the “jittering”
fringes can be discerned by the human eye, which has a typical response time of
tens of milliseconds.

Let I(I, m) be the two-dimensional intensity of the star, or of a source in the case
of a radio interferometer. (I, m) are coordinates on the sky, with / measured parallel
to the aperture spacing vector and m normal to it. The fringes provide resolution
in a direction parallel to the aperture spacing only. In the orthogonal direction, the
response is simply proportional to the intensity integrated over solid angle. Thus,
the interferometer measures the intensity projected onto the / direction, that is, the
one-dimensional profile 7; (/) given by

L) = /I(l,m)dm. (1.10)

As will be shown in later chapters, the fringe visibility is proportional to the
modulus of the Fourier transform of 7; (/) with respect to the spacing of the apertures
measured in wavelengths. Figure 1.5 shows the integrated profile /; for three simple
models of a star or radio source and the corresponding fringe visibility as a function
of u, the spacing of the interferometer apertures in units of the wavelength. At the
top of the figure is a rectangular pillbox distribution, in the center a circular pillbox,
and at the bottom a circular Gaussian function. The rectangular pillbox represents
a uniformly bright rectangle on the sky with sides parallel to the / and m axes and
width a in the / direction. The circular pillbox represents a uniformly bright circular
disk of diameter a. When projected onto the / axis, the one-dimensional intensity
function /; has a semicircular profile. The Gaussian model is a circularly symmetric
source with Gaussian taper of the intensity from the maximum at the center. The
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Fig. 1.5 The one-dimensional intensity profiles /; (/) for three simple intensity models: (a) left,
a uniform rectangular source; (b) left, a uniform circular source; and (c) left, a circular Gaussian
distribution. The corresponding Michelson visibility functions V), are on the right. / is an angular
variable on the sky, u is the spacing of the receiving apertures measured in wavelengths, and a is the
characteristic angular width of the model. The solid lines in the curves of V), indicate the modulus
of the Fourier transform of 7 (/), and the broken lines indicate negative values of the transform.
See text for further explanation. Models are discussed in more detail in Sect. 10.4.



18 1 Introduction and Historical Review

intensity is proportional to exp [—4 In 2(1* + m?)/a?], resulting in circular contours
and a diameter a at the half-intensity level. Any slice through the model in a plane
perpendicular to the (/, m) plane has a Gaussian profile with the same half-height
width, a.

Michelson and Pease used mainly the circular disk model to interpret their
observations and determined the stellar diameter by varying the aperture spacing
of the interferometer to locate the first minimum in the visibility function. In the
age before electronic instrumentation, the adjustment of such an instrument and
the visual estimation of V), required great care, since, as described above, the
fringes were not stable but vibrated across the image in a random manner as a result
of atmospheric fluctuations. The published results on stellar diameters measured
with this method were never extended beyond the seven bright stars in Pease’s
(1931) list; for a detailed review see Hanbury Brown (1968). However, the use
of electro-optical techniques now offers much greater instrumental capabilities in
optical interferometry, as discussed in Sect. 17.4.

1.3.3 Early Two-Element Radio Interferometers

In 1946, Ryle and Vonberg constructed a radio interferometer to investigate cosmic
radio emission, which had been discovered and verified by earlier investigators
(Jansky 1933; Reber 1940; Appleton 1945; Southworth 1945). This interferometer
used dipole antenna arrays at 175 MHz, with a baseline (i.e., the spacing between
the antennas) that was variable between 10 and 140 wavelengths (17 and 240 m). A
diagram of such an instrument and the type of record obtained are shown in Fig. 1.6.
In this and most other meter-wavelength interferometers of the 1950s and 1960s, the
antenna beams were pointed in the meridian, and the rotation of the Earth provided
scanning in right ascension.

The receiver in Fig. 1.6 is sensitive to a narrow band of frequencies, and a
simplified analysis of the response of the interferometer can be obtained in terms
of monochromatic signals at the center frequency vg. We consider the signal from
a radio source of very small angular diameter that is sufficiently distant that the
incoming wavefront effectively lies in a plane. Let the signal voltage from the right
antenna in Fig. 1.6 be represented by V sin(27wvof). The longer path length to the
left antenna (as in Fig. 1.4) introduces a time delay t = (D/c)sin 6, where D is
the antenna spacing, 6 is the angular position of the source, and c is the velocity of
light. Thus, the signal from the left antenna is V sin[27wvy(z — 7)]. The detector of
the receiver generates a response proportional to the squared sum of the two signal
voltages:

{Vsin(2mvot) + Vsin[2mvo(r — 7)]}° . (1.11)

The output of the detector is averaged in time, i.e., it contains a lowpass filter
that removes any frequencies greater than a few hertz or tens of hertz, so in
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Fig. 1.6 (a) A simple interferometer, also called an adding interferometer, in which the signals are
combined additively. (b) Record from such an interferometer with east—west antenna spacing. The
ordinate is the total power received, since the voltage from the square-law detector is proportional
to power, and the abscissa is time. The source at the left is Cygnus A and the one at the
right Cassiopeia A. The increase in level near Cygnus A results from the galactic background
radiation, which is concentrated toward the plane of our Galaxy but is completely resolved by the
interferometer fringes. The record is from Ryle (1952). Reproduced with permission of the Royal
Society, London, and the Master and Fellows of Churchill College, Cambridge. © Royal Society.

expanding (1.11), we can ignore the term in the harmonic of 2w vyt. The detector
output,” in terms of the power P, generated by either of the antennas alone, is
therefore

P = Py[1 + cos(2mvg1)] . (1.12)

2For simplicity, in expression (1.11), we added the signal voltages from each antenna. In practice,
such signals must be combined in networks that obey the conservation of power. Thus, if the
signal from each antenna is represented as a voltage source V and characteristic impedance R, the
power available is V2/R. Combining two signals in series can be represented by a voltage 2V and
impedance 2R, giving a power of 2V2/R. In contrast, in free space, the addition of two coherent
electric fields of equal strength quadruples the power. This distinction is important in the discussion
of the sea interferometer (Sect. 1.3.4).
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Because 7 varies only slowly as the Earth rotates, the frequency represented by
cos(2mvy7) is not filtered out. In terms of the source position, 8, we have

2w voD sin 6
P=Py|1+ cos . (1.13)
C

Thus, as the source moves across the sky, P varies between 0 and 2P, as shown
by the sources in Fig. 1.6b. The response is modulated by the beam pattern of the
antennas, of which the maximum is pointed in the meridian. The cosine function in
Eq. (1.13) represents the Fourier component of the source brightness to which the
interferometer responds. The angular width of the fringes is less than the angular
width of the antenna beam by (approximately) the ratio of the width of an antenna
to the baseline D, which in this example is about 1/10. The use of an interferometer
instead of a single antenna results in a corresponding increase in precision in
determining the time of transit of the source. The form of the fringe pattern in
Eq. (1.13) also applies to the Michelson interferometer in Fig. 1.4. In the former case
(radio), the fringes develop as a function of time, while in the latter case (optical),
they appear as a function of position in the pupil plane of the telescope.

1.3.4 Sea Interferometer

A different implementation of interferometry, known as the sea interferometer,
or Lloyd’s mirror interferometer (Bolton and Slee 1953), was provided by a
number of horizon-pointing antennas near Sydney, Australia. These had been
installed for radar during World War II at several coastal locations, at elevations of
60-120 m above the sea. Radiation from sources rising over the eastern horizon
was received both directly and by reflection from the sea, as shown in Fig. 1.7. The
frequencies of the observations were in the range 40-400 MHz, the middle part of
the range being the most satisfactory because of the sensitivity of receivers there
and because of ionospheric effects at lower frequencies and sea roughness at higher
frequencies. The sudden appearance of a rising source was useful in separating
individual sources. Because of the reflected wave, the power received at the peak of
a fringe was four times that for direct reception with the single antenna, and twice
that of an adding interferometer with two of the same antennas (see footnote 2).
Observations of the Sun by McCready et al. (1947) using this system provided the
first published record of interference fringes in radio astronomy. They recognized
that they were measuring a Fourier component of the brightness distribution and
used the term “Fourier synthesis” to describe how an image could be produced
from fringe visibility measurements on many baselines. Observations of the source
Cygnus A by Bolton and Stanley (1948) provided the first positive evidence of the
existence of a discrete nonsolar radio source. Thus, the sea interferometer played
an important part in early radio astronomy, but the effects of the long atmospheric
paths, the roughness of the sea surface, and the difficulty of varying the physical
length of the baseline, which was set by the cliff height, precluded further useful
development.
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Fig. 1.7 (a) Schematic diagram of a sea interferometer. The fringe pattern is similar to that which
would be obtained with the actual receiving antenna and one at the position of its image in the
sea. The reflected ray undergoes a phase change of 180° on reflection and travels an extra distance
A in reaching the receiving antenna. (b) Sea interferometer record of the source Cygnus A at
100 MHz by Bolton and Stanley (1948). The source rose above the horizon at approximately
22"17™. The broken line was inserted to show that the record could be interpreted in terms of a
steady component and a fluctuating component of the source; the fluctuations were later shown to
be of ionospheric origin. The fringe width was approximately 1.0° and the source is unresolved,
that is, its angular width is small in comparison with the fringe width. Part (b) is reprinted by
permission from MacMillan Publishers Ltd.: Nature, 161, 312-313, © 1948.

1.3.5 Phase-Switching Interferometer

A problem with the interferometer systems in both Figs.1.6 and 1.7 is that
in addition to the signal from the source, the output of the receiver contains
components from other sources of noise power such as the galactic background
radiation, thermal noise from the ground picked up in the antenna sidelobes, and



22 1 Introduction and Historical Review

.
i 5

Receiver
with square-law
detector

——

Synchronous
detector

!

To recorder

Switch-
frequency
generator

Fig. 1.8 Phase-switching interferometer. The signal from one antenna is periodically reversed in
phase, indicated here by switching an additional half-wavelength of path into the transmission line.

the noise generated in the amplifiers of the receiver. For all except the few strongest
cosmic sources, the component from the source is several orders of magnitude less
than the total noise power in the receiver. Thus, a large offset has been removed
from the records shown in Figs. 1.6b and 1.7b. This offset is proportional to the
receiver gain, changes in which are difficult to eliminate entirely. The resulting drifts
in the output level degrade the detectability of weak sources and the accuracy of
measurement of the fringes. With the technology of the 1950s, the receiver output
was usually recorded on a paper chart and could be lost when baseline drifts caused
the recorder pen to go off scale.

The introduction of phase switching by Ryle (1952), which removed the
unwanted components of the receiver output, leaving only the fringe oscillations,
was the most important technical improvement in early radio interferometry. If V;
and V, represent the signal voltages from the two antennas, the output from the
simple adding interferometer is proportional to (V; + V,)?. In the phase-switching
system, shown in Fig. 1.8, the phase of one of the signals is periodically reversed,
so the output of the detector alternates between (Vi + V»)? and (V; — V,)2. The
frequency of the switching is a few tens of hertz, and a synchronous detector
takes the difference between the two output terms, which is proportional to V; V5.
Thus, the output of a phase-switching interferometer is the time average of the
product of the signal voltages; that is, it is proportional to the cross-correlation
of the two signals. The circuitry that performs the multiplication and averaging of
the signals in a modern interferometer is known as a correlator: a more general
definition of a correlator will be given later. Comparison with the output of the
system in Fig. 1.6 shows that if the signals from the antennas are multiplied instead
of added and squared, then the constant term within the square brackets in Eq. (1.13)
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Fig. 1.9 Output of a phase-switching interferometer as a function of time, showing the response
to a number of sources. From Ryle (1952). Reproduced with permission of the Royal Society,
London, and the Master and Fellows of Churchill College, Cambridge. © Royal Society.

disappears, and only the cosine term remains. The output consists of the fringe
oscillations only, as shown in Fig. 1.9. The removal of the constant term greatly
reduces the sensitivity to instrumental gain variation, and it becomes practicable
to install amplifiers at the antennas to overcome attenuation in the transmission
lines. This advance resulted in the use of longer antenna spacings and larger arrays.
Most interferometers from about 1950 onward incorporated phase switching, which
provided the earliest means of implementing the multiplying action of a correlator.
With more modern instruments, it is no longer necessary to use phase switching
to obtain the voltage-multiplying action, but it is often included to help eliminate
various instrumental imperfections, as described in Sect. 7.5.

1.3.6 Optical Identifications and Calibration Sources

Interferometer observations by Bolton and Stanley (1948), Ryle and Smith (1948),
Ryle et al. (1950), and others provided evidence of numerous discrete sources.
Identification of the optical counterparts of these required accurate measurement of
radio positions. The principal method then in use for position measurement with
interferometers was to determine the time of transit of the central fringe using
an east—west baseline, and also the frequency of the fringe oscillations, which is
proportional to the cosine of the declination (see Sect. 12.1 for more details). The
measurement of position is only as accurate as the knowledge of the interferometer
fringe pattern, which is determined by the relative locations of the electrical centers
of the antennas. In addition, any inequality in the electrical path lengths in the
cables and amplifiers from the antennas to the point where the signals are combined
introduces an instrumental phase term, which offsets the fringe pattern. Smith
(1952a) obtained positions for four sources with rms errors as small as £20" in right
ascension and +40” in declination and gave a detailed analysis of the accuracy that
was attainable. The optical identification of Cygnus A and Cassiopeia A by Baade
and Minkowski (1954a,b) was a direct result of improved radio positions by Smith
(1951) and Mills (1952). Cygnus A proved to be a distant galaxy and Cassiopeia A
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a supernova remnant, but the interpretation of the optical observations was not fully
understood at the time.

The need for absolute calibration of the antennas and receiving system rapidly
disappeared after a number of compact radio sources were identified with optical
objects. Optical positions accurate to ~ 1” could then be used, and observations of
such sources enabled calibration of interferometer baseline parameters and fringe
phases. Although it cannot be assumed that the radio and optical positions of a
source coincide exactly, the offsets for different sources are randomly oriented.
Thus, errors were reduced as more calibration sources became available. Another
important way of obtaining accurate radio positions during the 1960s and 1970s
was by observation of occultation of sources by the Moon, which is described in
Sect. 17.2.

1.3.7 Early Measurements of Angular Width

Comparison of the angular widths of radio sources with the corresponding dimen-
sions of their optical counterparts helped in some cases to confirm identifications
as well as to provide important data for physical understanding of the emission
processes. In the simplest procedure, measurements of the fringe amplitude are
interpreted in terms of intensity models such as those shown in Fig. 1.5. The peak-
to-peak fringe amplitude for a given spacing normalized to the same quantity when
the source is unresolved provides a measure of the fringe visibility equivalent to the
definition in Eq. (1.9).

Some of the earliest measurements were made by Mills (1953), who used an
interferometer operating at 101 MHz, in which a small transportable array of Yagi
elements could be located at distances up to 10 km from a larger antenna. The signal
from this remote antenna was transmitted back over a radio link, and fringes were
formed. Smith (1952b,c), at Cambridge, England, also measured the variation of
fringe amplitude with antenna spacing but used shorter baselines than Mills and
concentrated on precise measurements of small changes in the fringe amplitude.
Results by both investigators provided angular sizes of a number of the strongest
sources: Cassiopeia A, the Crab Nebula, NGC4486 (Virgo A), and NGC5128
(Centaurus A).

A third early group working on angular widths at the Jodrell Bank Experimental
Station,> England, used a different technique: intensity interferometry (Jennison
and Das Gupta 1953, 1956; Jennison 1994). Hanbury Brown and Twiss (1954)
had shown that if the signals received by two spaced antennas are passed through
square-law detectors, the fluctuations in the intensity that result from the Gaussian
fluctuations in the received field strength are correlated. The degree of correlation

3Later known as the Nuffield Radio Astronomy Laboratories, and since 1999 as the Jodrell Bank
Observatory.
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varies in proportion to the square of the visibility that would be obtained in a
conventional interferometer in which signals are combined before detection. The
intensity interferometer has the advantage that it is not necessary to preserve the
radio-frequency phase of the signals in bringing them to the location at which
they are combined. This simplifies the use of long baselines, which in this case
extended up to 10 km. A VHF radio link was used to transmit the detected signal
from the remote antenna, for measurement of the correlation. The disadvantage of
the intensity interferometer is that it requires a high SNR, and even for Cygnus A
and Cassiopeia A, the two highest flux-density sources in the sky, it was necessary
to construct large arrays of dipoles, which operated at 125 MHz. The intensity
interferometer is discussed further in Sect. 17.1, but it has been of only limited
use in radio astronomy because of its lack of sensitivity.

The most important result of these intensity interferometer measurements was
the discovery that for Cygnus A, the fringe visibility for the east-west intensity
profile falls close to zero and then increases to a secondary maximum as the
antenna spacing is increased. Two symmetric source models were consistent with
the visibility values derived from the measurements. These were a two-component
model in which the phase of the fringes changes by 180° in going through the
minimum, and a three-component model in which the phase does not change. The
intensity interferometer gives no information on the fringe phase, so a subsequent
experiment was made by Jennison and Latham (1959) using conventional interfer-
ometry. Because the instrumental phase of the equipment was not stable enough to
permit calibration, three antennas were used and three sets of fringes for the three
pair combinations were recorded simultaneously. If ¢,,, is the phase of the fringe
pattern for antennas m and n, it is easy to show that at any instant, the combination

123 = P12 + ¢z + P31 (1.14)

is independent of instrumental and atmospheric phase effects and is a measure of
the corresponding combination of fringe phases (Jennison 1958). By moving one
antenna at a time, it was found that the phase does indeed change by approximately
180° at the visibility minimum and therefore that the two-component model in
Fig. 1.10 is the appropriate one. The use of combinations of simultaneous visibility
measurements typified by Eq.(1.14), now referred to as closure relationships,
became important about 20 years later in image-processing techniques. Closure
relationships and the conditions under which they apply are discussed in Sect. 10.3.
They are now integral parts of the self-calibration used in image formation (see
Sect. 11.3).

The results on Cygnus A demonstrated that the simple models of Fig. 1.5 are
not generally satisfactory for representation of radio sources. To determine even the
most basic structure, it is necessary to measure the fringe visibility at spacings well
beyond the first minimum of the visibility function to detect multiple components,
and to make such measurements at a number of position angles across the source.

An early interferometer aimed at achieving high angular resolution with high
sensitivity was developed by Hanbury Brown et al. (1955) at the Jodrell Bank
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Fig. 1.10 Two-component model of Cygnus A derived by Jennison and Das Gupta (1953) using
the intensity interferometer. Reprinted by permission from MacMillan Publishers Ltd.: Nature,
172, 996-997, © 1953.

Experimental Station. This interferometer used an offset local oscillator technique
at one antenna that took the place of a phase switch and also enabled the frequency
of the fringe pattern to be slowed down to within the response time of the chart
recorder used to record the output. A radio link was used to bring the signal from
the distant antenna. Three sources were found to have diameters less than 12” using
spacings up to 20 km at 158 MHz observing frequency (Morris et al. 1957). During
the 1960s, this instrument was extended to baselines of up to 134 km to achieve
resolution of less than 1” and greater sensitivity (Elgaroy et al. 1962; Adgie et al.
1965). The program later led to the development of a multielement, radio-linked
interferometer known as the MERLIN array (Thomasson 1986).

1.3.8 Early Survey Interferometers and the Mills Cross

In the mid-1950s, the thrust of much work was toward cataloging larger numbers
of sources with positions of sufficient accuracy to allow optical identification. The
instruments operated mainly at meter wavelengths, where the spectrum was then
much less heavily crowded with manmade emissions. A large interferometer at
Cambridge used four antennas located at the corners of a rectangle 580 m east—
west by 49 m north—-south (Ryle and Hewish 1955). This arrangement provided
both east—west and north—south fringe patterns for measurement of right ascension
and declination.

A different type of survey instrument was developed by Mills et al. (1958) at
Fleurs, near Sydney, consisting of two long, narrow antenna arrays in the form of a
cross, as shown in Fig. 1.11. Each array produced a fan beam, that is, a beam that is
narrow in a plane containing the long axis of the array and wide in the orthogonal
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Fig. 1.11 Simplified diagram
of the Mills cross radio
telescope. The cross-shaped
area represents the apertures
of the two antennas.
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direction. The outputs of these two arrays were combined in a phase-switching
receiver, and the voltage-multiplying action produced a power-response pattern
equal to the product of the voltage responses of the two arrays. This combined
response had the form of a narrow pencil beam. The two arrays had a common
electrical center, so there were no interferometer fringes. The arrays were 457 m
long, and the cross produced a beam of width 49 arcmin and approximately circular
cross section at 85.5 MHz. The beam pointed in the meridian and could be steered
in elevation by adjusting the phase of the dipoles in the north—south arm. The sky
survey made with this instrument provided a list of more than 2,200 sources.

A comparison of the source catalogs from the Mills cross with those from the
Cambridge interferometer, which initially operated at §1.5 MHz (Shakeshaft et al.
1955), showed poor agreement between the source lists for a common area of
sky (Mills and Slee 1957). The discrepancy was found to result principally from
the occurrence of source confusion in the Cambridge observations. When two or
more sources are simultaneously present within the antenna beams, they produce
fringe oscillations with slightly different frequencies, resulting from differences in
the source declinations. Maxima in the fringe amplitude, which occur when the
fringe components happen to combine in phase, can mimic responses to sources.
This was a serious problem because the beams of the interferometer antennas were
too wide, a problem that did not arise in the Mills cross, which was designed to
provide the required resolution for accurate positions in the single pencil beam. The
frequency of the Cambridge interferometer was later increased to 159 MHz, thereby
reducing the solid angles of the beams by a factor of four, and a new list of 471
sources was rapidly compiled (Edge et al. 1959). This was the 3C survey (source
numbers, listed in order of right ascension, are preceded by 3C, indicating the
third Cambridge catalog). The revised version of this survey (Bennett 1962, the 3C
catalog) had 328 entries (some additions and deletions) and became a cornerstone of
radio astronomy for the following decade. To avoid confusion problems and errors
in flux-density distributions determined with these types of instruments as well as
single-element telescopes, some astronomers subsequently recommended that the
density of sources cataloged should not, on average, exceed 1 in roughly 20 times
the solid angle of the resolution element of the measurement instrument (Pawsey
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Fig. 1.12 Schematic diagrams of two instruments, in each of which a small antenna is moved
to different positions between successive observations to synthesize the response that would be
obtained with a full aperture corresponding to the rectangle shown by the broken line. The
arrangement of two signal-multiplying correlators producing real (R) and imaginary (/) outputs
is explained in Sect. 6.1.7. Instruments of both types, the T-shaped array (a), and the two-element
interferometer (b), were constructed at the Mullard Radio Astronomy Observatory, Cambridge,
England.

1958; Hazard and Walsh 1959). This criterion depends on the slope of a source
count vs. flux density distribution (Scheuer 1957). For a modern treatment of the
effects of source confusion, see Condon (1974) and Condon et al. (2012).

In the 1960s, a generation of new and larger survey instruments began to appear.
Two such instruments developed at Cambridge are shown in Fig. 1.12. One was
an interferometer with one antenna elongated in the east-west direction and the
other north—south, and the other was a large T-shaped array that had characteristics
similar to those of a cross, as explained in Sect. 5.3.3. In each of these instruments,
the north—south element was not constructed in full, but the response with such
an aperture was synthesized by using a small antenna that was moved in steps to
cover the required aperture; a different position was used for each 24-h scan in right
ascension (Ryle et al. 1959; Ryle and Hewish 1960). The records from the various
positions were combined by computer to synthesize the response with the complete
north—south aperture. An analysis of these instruments is given by Blythe (1957).
The large interferometer produced the 4C (Fourth Cambridge) catalog containing
over 4,800 sources (Gower et al. 1967). At Molonglo in Australia, a larger Mills
cross (Mills et al. 1963) was constructed with arrays 1 mile long, producing a beam
of 2.8-arcmin width at 408 MHz. The development of the Mills cross is described
in papers by Mills and Little (1953), Mills (1963), and Mills et al. (1958, 1963).
Crosses of comparable dimensions located in the Northern Hemisphere included
one at Bologna, Italy (Braccesi et al. 1969), and one at Serpukhov, near Moscow in
the former Soviet Union (Vitkevich and Kalachev 1966).

1.3.9 Centimeter-Wavelength Solar Imaging

A number of instruments have been designed specifically for imaging the Sun. The
antennas were usually parabolic reflectors mounted to track the Sun, but since the
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Fig. 1.13 (a) A linear array of eight equally spaced antennas connected by a branching network in
which the electrical path lengths from the antennas to the receiver input are equal. This arrangement
is sometimes referred to as a grating array, and in practice, there are usually 16 or more antennas.
(b) An eight-element grating array combined with a two-element array to enhance the angular
resolution. A phase-switching receiver, indicated by the multiplication symbol, is used to form the
product of the signal voltages from the two arrays. The receiver output contains the simultaneous
responses of antenna pairs with 16 different spacings. Systems of this general type were known as
compound interferometers.

Sun is a strong radio source, the apertures did not have to be very large. Figure 1.13a
shows an array of antennas from which the signals at the receiver input are aligned
in phase when the angle 6 between the direction of the source and a plane normal
to the line of the array is such that £, sin 6 is an integer, where £, is the unit antenna
spacing measured in wavelengths. This type of array is sometimes referred to as a
grating array, since it forms a series of fan-shaped beams, narrow in the 6 direction,
in a manner analogous to the response of an optical diffraction grating. It is useful
only for solar observations in which all but one of the beams falls on “quiet” sky.
Christiansen and Warburton (1955) obtained a two-dimensional image of the quiet
Sun at 21-cm wavelength using both east-west and north—south grating arrays.
These arrays consisted of 32 (east-west) and 16 (north—south) uniformly spaced,
parabolic antennas. As the Sun moved through the sky, it was scanned at different
angles by the different beams, and a two-dimensional map could be synthesized by
Fourier analysis of the scan profiles. To obtain a sufficient range of scan angles,
observations extending over eight months were used. In later instruments for solar
imaging, it was generally necessary to be able to make a complete image within a
day to study the variation of enhanced solar emission associated with active regions.
Several instruments used grating arrays, typically containing 16 or 32 antennas and
crossed in the manner of a Mills cross. Crossed grating arrays produce a rectangular
matrix pattern of beams on the sky, and the rotation of the Earth enables sufficient
scans to be obtained to provide daily maps of active regions and other features.
Instruments of this type included crosses at 21-cm wavelength at Fleurs, Australia
(Christiansen and Mullaly 1963), and at 10-cm wavelength at Stanford, California
(Bracewell and Swarup 1961), and a T-shaped array at 1.9-m wavelength at Nancay,
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France (Blum et al. 1957, 1961). These were the earliest imaging arrays with large
numbers (~ 16 or more) of antennas.

Figure 1.13b illustrates the principle of a configuration known as a compound
interferometer (Covington and Broten 1957), which was used to enhance the
performance of a grating array or other antenna with high angular resolution in one
dimension. The system shown consists of the combination of a grating array with
a two-element array. An examination of Fig. 1.13b shows that pairs of antennas,
chosen one from the grating array and one from the two-element array, can be
found for all spacings from 1 to 16 times the unit spacing £,. In comparison, the
grating array alone provides only one to seven times the unit spacing, so the number
of different spacings simultaneously contributing to the response is increased by a
factor of more than two by the addition of two more antennas. Arrangements of this
type were used to increase the angular resolution of one-dimensional scans of strong
sources (Picken and Swarup 1964; Thompson and Krishnan 1965). By combining a
grating array with a single larger antenna, it was also possible to reduce the number
of grating responses on the sky (Labrum et al. 1963). Both the crossed grating arrays
and the compound interferometers were originally operated with phase-switching
receivers to combine the outputs of the two subarrays. In later implementations
of similar systems, the signal from each antenna is converted to an intermediate
frequency (IF), and a separate voltage-multiplying correlator was used for each
spacing. This allows further possibilities in arranging the antennas to maximize the
number of different antenna spacings, as discussed in Sect. 5.5.

1.3.10 Measurements of Intensity Profiles

Continuing measurements of the structure of radio sources indicated that in general,
the intensity profiles are not symmetrical, so their Fourier transforms, and hence the
visibility functions, are complex. This will be explained in detail in later chapters,
but at this point, we note that it means that the phase of the fringe pattern (i.e., its
position in time with respect to a fiducial reference), as well as the amplitude, varies
with antenna spacing and must be measured to allow the intensity profiles to be
recovered. To accommodate both fringe amplitude and phase, visibility is expressed
as a complex quantity. Measurement of the fringe phase became possible in the
1960s and 1970s, by which time a number of compact sources with well-determined
positions, suitable for calibration of the fringe phase, were available. Electronic
phase stability had also improved, and computers were available for recording
and processing the output data. Improvements in antennas and receivers enabled
measurements to be made at wavelengths in the centimeter range (frequencies
greater than ~ 1 GHz), using tracking antennas.

An interferometer at the Owens Valley Radio Observatory, California (Read
1961), provides a good example of one of the earliest instruments used extensively
for determining radio structure. It consisted of two 27.5-m-diameter parabolic
antennas on equatorial mounts with a rail track system that allowed the spacing
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between them to be varied by up to 490 m in both the east-west and north—
south directions. It was used mainly at frequencies from 960 MHz to a few GHz.
Studies by Maltby and Moffet (1962) and Fomalont (1968) illustrate the use of
this instrument for measurement of intensity distributions, an example of which is
shown in Fig. 1.14. Lequeux (1962) studied the structure of about 40 extragalactic
sources at 1400 MHz on a reconfigurable two-element interferometer with baselines
up to 1460 m (east—west) and 380 m (north—south) at Nancay Observatory in
France. These are early examples of model fitting of visibility data, a technique
of continuing usefulness (see Sect. 10.4).

1.3.11 Spectral Line Interferometry

The earliest spectral line measurements were made with single narrowband filters.
By the early 1960s, the interferometer at Owens Valley and several others had
been fitted with spectral line receiving systems. The passband of each receiver was
divided into a number of channels by a filter bank, usually in the IF stages, and for
each channel, the signals from the two antennas went to a separate correlator. In
later systems, the IF signals were digitized and the filtering was performed digitally,
as described in Sect. 8.8. The width of the channels should ideally be less than
that of the line to be observed so that the line profile can be studied. Spectral line
interferometry allows the distribution of the line emission across a radio source to
be examined. Roger et al. (1973) describe an array in Canada built specifically for
observations in the 1420 MHz (21-cm wavelength) line of neutral hydrogen.
Spectral lines can also be observed in absorption, especially in the case of
the neutral hydrogen line. At the line frequency, the gas absorbs the continuum
radiation from any more distant source that is observed through it. Comparison of
the emission and absorption spectra of neutral hydrogen yields information on its
temperature and density. Measurement of absorption spectra of sources can be made
using single antennas, but in such cases, the antenna also responds to the broadly
distributed emitting gas within the antenna beam. The absorption spectra for weak
sources are difficult to separate from the line emission. With an interferometer, the
broad emission features on the sky are almost entirely resolved and the narrow
absorption spectrum can be observed directly. For early examples of hydrogen line
absorption measurements, see Clark et al. (1962) and Hughes et al. (1971).

1.3.12 Earth-Rotation Synthesis Imaging

A very important step in the development of synthesis imaging was the use of the
variation of the antenna baseline provided by the rotation of the Earth. Figure 1.15
illustrates this principle, as described by Ryle (1962). For a source at a high
declination, the position angle of the baseline projected onto a plane normal to the
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North Pole

Axis of Earth's
rotation

Fig. 1.15 Use of Earth rotation in synthesis imaging, as explained by Ryle (1962). The antennas
A and B are spaced on an east-west line. By varying the distance between the antennas from
one day to another, and observing for 12 h with each configuration, it is possible to encompass
all the spacings from the origin to the elliptical outer boundary of the lower diagram. Only 12 h
of observing at each spacing is required, since during the other 12 h, the spacings covered are
identical but the positions of the antennas are effectively interchanged. Reprinted by permission
from MacMillan Publishers Ltd.: Nature, 194, 517-518, © 1962.

direction of the source rotates through 180° in 12 h. Thus, if the source is tracked
across the sky for a series of 12-h periods, each one with a different antenna spacing,
the required two-dimensional visibility data can be collected while the antenna
spacing is varied in one dimension only. Calculation of two-dimensional Fourier
transforms was an arduous task at this time.

The Cambridge One-Mile Radio Telescope was the first instrument designed to
exploit fully the Earth-rotation technique and apply it to a large number of radio
sources. The use of Earth rotation was not a sudden development in radio astronomy
and had been used in solar studies for a number of years. O’Brien (1953) made two-
dimensional Fourier synthesis observations with a movable-element interferometer,
and, as noted earlier, Christiansen and Warburton (1955) had obtained a two-
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Fig. 1.16 Contour image of the source Cygnus A, which was one of the first results (Ryle
et al. 1965) from the Cambridge One-Mile Telescope using the Earth-rotation principle shown
in Fig. 1.15. The frequency is 1.4 GHz. The image has been scaled in declination so that the half-
power beam contour is circular, as shown by the shaded area in the lower right corner. The dotted
ellipse shows the outer boundary of the optical source, and its central structure is also indicated.
Reprinted by permission from MacMillan Publishers Ltd.: Nature, 205, 1259-1262, © 1965.

dimensional map of the Sun, using tracking antennas in two grating arrays. At
Jodrell Bank, Rowson (1963) had used a two-element interferometer with tracking
antennas to map strong nonsolar sources. Also, Ryle and Neville (1962) had imaged
the north polar region using Earth rotation to demonstrate the technique. However,
the first images published from the Cambridge One-Mile telescope, those of the
strong sources Cassiopeia A and Cygnus A (Ryle et al. 1965), exhibited a degree of
structural detail unprecedented in earlier studies and heralded the development of
synthesis imaging. The image of Cygnus A is shown in Fig. 1.16.

1.3.13 Development of Synthesis Arrays

Following the success of the Cambridge One-Mile Telescope, interferometers such
as the NRAO instrument at Green Bank, West Virginia (Hogg et al. 1969), were
rapidly adapted for synthesis imaging. Several large arrays designed to provide
increased imaging speed, sensitivity, and angular resolution were brought into
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Fig. 1.17 Contour image of the source Cygnus A using the Cambridge Five-Kilometre Radio
Telescope at 5 GHz. This showed for the first time the radio nucleus associated with the central
galaxy and the high intensity at the outer edges of the radio lobes. From Hargrave and Ryle (1974).
© Royal Astronomical Society, used with permission.

operation during the 1970s. Prominent among these were the Five-Kilometre Radio
Telescope at Cambridge, England (Ryle 1972), the Westerbork Synthesis Radio
Telescope in the Netherlands (Baars et al. 1973), and the Very Large Array (VLA)
in New Mexico (Thompson et al. 1980; Napier et al. 1983). With these instruments,
imaging of radio sources with a resolution of less than 1” at centimeter wavelengths
was possible. By using n, antennas, as many as n,(n,— 1)/2 simultaneous baselines
can be obtained. If the array is designed to avoid redundancy in the antenna
spacings, the speed with which the visibility function is measured is approximately
proportional to n2. Images of Cygnus A obtained with two of the arrays mentioned
above are shown in Figs.1.17 and 1.18. Resolution of the central source was
first achieved with very-long-baseline interferometry (VLBI, see Sect. 1.3.14)
(Linfield 1981). A more recent VLBI image is shown in Fig. 1.19. A review of the
development of synthesis instruments at Cambridge is given in the Nobel lecture
by Ryle (1975). An array with large collecting area, the Giant Metrewave Radio
Telescope (GMRT), which operates at frequencies from 38 to 1420 MHz, was
completed in 1998 near Pune, India (Swarup et al. 1991). More recently, advances
in broadband antenna technology and large-scale integrated circuits have enabled
further large increases in performance. For example, the capability of the VLA was
greatly improved with an updated electronic system (Perley et al. 2009).*

4The upgraded VLA was formally rededicated as the Karl G. Jansky Very Large Array and is
sometimes referred to as the JVLA.
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Fig. 1.18 Image of Cygnus A made with the VLA at 4.9 GHz. Observations with four configu-
rations of the array were combined, and the resolution is 0.4”. The display of the image shown
here involves a nonlinear process to enhance the contrast of the fine structure. This emphasizes
the jet from the central galaxy to the northwestern lobe (top right) and the filamentary structure in
the main lobes. Comparison with other records of Cygnus A in this chapter illustrates the technical
advances made during three decades. Reproduced by permission of NRAO/AUI. From Perley et al.
(1984). © AAS. Reproduced with permission.
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Fig. 1.19 VLBI image of the central part of Cygnus A at 5 GHz, imaged with a ten-station global
VLBI array. The resolution is 2 mas, and the rms noise level is 0.4 mJy/beam. The coordinates are
centered on the core components. The knots in the jet have apparent expansion speeds of ~ 0.4 c.
The counter jet to the left of the core is clearly visible. The jet structure is more clearly defined
in an image at 43 GHz with a resolution of 0.15 mas by Boccardi et al. (2016). From Carilli et al.
(1994). © AAS. Reproduced with permission.
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During the 1980s and 1990s, synthesis arrays operating at short millimeter
wavelengths (frequencies of 100 GHz or greater) were developed. Spectral lines are
particularly numerous at these frequencies (see Fig. 1.2). Several considerations are
more important at millimeter wavelengths than at centimeter wavelengths. Because
the wavelengths are much shorter, any irregularity in the atmospheric path length
results in a proportionately greater effect on the signal phase. Attenuation in the neu-
tral atmosphere is much more serious at millimeter wavelengths. Also, the beams of
the individual antennas become narrower at shorter wavelengths, and maintenance
of a sufficiently wide field of view is one reason why the antenna diameter tends
to decrease with increasing frequency. Thus, to obtain the necessary sensitivity,
larger numbers of antennas are required than at centimeter wavelengths. Arrays for
millimeter wavelengths have included those at Hat Creek, California (Welch 1994);
Owens Valley, California (Scoville et al. 1994)3; Nobeyama, Japan (Morita 1994);
the Plateau de Bure, France (Guilloteau 1994); and Mauna Kea, Hawaii (Ho et al.
2004). The largest such array, the Atacama Large Millimeter/submillimeter Array
(ALMA) consists of 50 12-m-diameter antennas in one array and 12 7-m-diameter
antennas in another. Located in the Atacama Desert of Chile, a dry site at ~ 5, 000-
m elevation, its operating frequency range is 31-950 GHz, and antenna spacings
range up to 14 km. The field of view, defined by the beamwidths of the antennas,
is only about 8” at 345 GHz in the primary array. It is an international facility and
came into operation in 2013 (Wootten and Thompson 2009).

1.3.14 Very-Long-Baseline Interferometry

Investigation of the angular diameters of quasars and other objects that appear nearly
pointlike in structure presented an important challenge throughout the early years
of radio astronomy. An advance that led to an immediate increase of an order of
magnitude in resolution, and subsequently to several orders more, was the use of
independent local oscillators and signal recorders. By using local oscillators at each
antenna that are controlled by high-precision frequency standards, it is possible to
preserve the coherence of the signals for time intervals long enough to measure
interference fringes. In the early years, the received signals were converted to an
intermediate frequency low enough that they could be recorded directly on magnetic
tape and then brought together and played into a correlator. This technique became
known as very-long-baseline interferometry (VLBI), and the early history of its
development is discussed by Broten (1988), Kellermann and Cohen (1988), Moran
(1998), and Kellermann and Moran (2001). The technical requirements for VLBI
were discussed in the USSR in the early 1960s (see, e.g., Matveenko et al. 1965).
A successful early experiment was performed in January 1967 by a group at the
University of Florida, who detected fringes from the burst radiation of Jupiter at

5The arrays at Hat Creek and Owens Valley were combined at Cedar Flats, a high site east of
Owens Valley, to form the CARMA array, which operated from 2005 to 2015.
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18 MHz (Brown et al. 1968). Because of the strong signals and low frequency, the
required recording bandwidth was only 2 kHz and the frequency standards were
crystal oscillators. Much more sensitive and precise VLBI systems, which used
wider bandwidths and atomic frequency standards, were developed by three other
groups. In Canada, an analog recording system was developed with a bandwidth
of 1 MHz based on television tape recorders (Broten et al. 1967). Fringes were
obtained at a frequency of 448 MHz on baselines of 183 and 3074 km on several
quasars in April 1967. In the United States, another group from the National Radio
Astronomy Observatory and Cornell University developed a computer-compatible
digital recording system with a bandwidth of 360 kHz (Bare et al. 1967). They
obtained fringes at 610 MHz on a baseline of 220 km on several quasars in May
1967. A third group from MIT joined in the development of the NRAO-Cornell
system in early 1967 and obtained fringes at a frequency of 1665 MHz on a baseline
of 845 km on several OH-line masers, with spectroscopic analysis, in June 1967
(Moran et al. 1967).

The initial experiments used signal bandwidths of less than a megahertz, but
by the 1980s, systems capable of recording signals with bandwidths greater than
100 MHz were available, with corresponding improvements in sensitivity. Real-time
linking of the signals from remote telescopes to the correlator via a geostationary
satellite was demonstrated (Yen et al. 1977). Also, experiments were performed in
which the local oscillator signal was distributed over a satellite link (Knowles et al.
1982). Neither of these satellite-supported techniques have been used significantly
for practical and economic reasons. Most importantly, the accessibility of the world-
wide network of fiberoptic transmission lines, which have since become available,
allows real-time transmission of the data to the correlator. These developments,
as well as the advent of sophisticated data analysis techniques, have lessened
the distinction between VLBI and more conventional forms of interferometry. A
detailed technical description of issues specific to the VLBI technique is given in
Chap. 9.

An early example of the extremely high angular resolution that can be achieved
with VLBI is provided by a measurement by Burke et al. (1972), who obtained a
resolution of 200 pas using antennas in Westford, Massachusetts, and near Yalta
in the Crimea, operating at a wavelength of 1.3 cm. Early measurements, obtained
using a few baselines only, were generally interpreted in terms of the simple models
in Fig. 1.5. Important results were the discovery and investigation of superluminal
(apparently faster-than-light) motions in quasars (Whitney et al. 1971; Cohen et al.
1971), as shown in Fig. 1.20, and the measurement of proper motion in H,O line
masers (Genzel et al. 1981). During the mid-1970s, several groups of astronomers
began to combine their facilities to obtain measurements over ten or more baselines
simultaneously. In the United States, the Network Users’ Group, later called the U.S.
VLBI Consortium, included the following observatories: Haystack Observatory in
Massachusetts (NEROC); Green Bank, West Virginia (NRAO); Vermilion River
Observatory in Illinois (Univ. of Illinois); North Liberty in Iowa (Univ. of Iowa);
Fort Davis, Texas (Harvard College Observatory); Hat Creek Observatory, Califor-
nia (Univ. of California); and Owens Valley Radio Observatory, California. Other
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Fig. 1.20 VLBI images of
the quasar 3C273 at five
epochs, showing the relative
positions of two components.
From the distance of the
object, deduced from the
optical redshift, the apparent
relative velocity of the
components exceeds the
velocity of light, but this can
be explained by relativistic
and geometric effects. The
observing frequency is

10.65 GHz. An angular scale
of 2 mas is shown in the lower
right corner. From Pearson
et al. (1981). Reprinted by
permission from MacMillan
Publishers Ltd.: Nature, 290,
365-368, © 1981.
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arrays, such as the European VLBI Network (EVN) soon developed. Observations
on such networks led to more complex models [see, e.g., Cohen et al. (1975)].

A problem in VLBI observations is that the use of nonsynchronized local
oscillators complicates the calibration of the phase of the fringes. It became evident
early on that VLBI represented an intermediate form of interferometer between
the intensity interferometer and the perfectly stable coherent interferometer (Clark
1968). Techniques were developed to combine coherent averaging on timescales up
to a defined coherence time, followed by incoherent averaging. These techniques
remain useful in VLBI at very high frequencies. To overcome the problem of
calibration of phase for coherently averaged data, the phase closure relationship
of Eq. (1.14) was first applied to VLBI data by Rogers et al. (1974). The technique
rapidly developed into a method to obtain images known as hybrid mapping. For
examples of hybrid mapping, see Figs. 1.19 and 1.20. This method was subsumed
into the more general approach called self-calibration (see Chap. 11). For some
spectral line observations in which the source consists of spatially isolated masers,
the signals from which can be separated by their individual Doppler shifts, phase
referencing techniques can be used (e.g., Reid et al. 1980).

The first array of antennas built specifically for astronomical measurements
by VLBI, the Very Long Baseline Array (VLBA) of the U.S. National Radio
Astronomy Observatory (NRAO), was brought into operation in 1994. It consists of
ten 25-m-diameter antennas, one in the U.S. Virgin Islands, eight in the continental
United States, and one in Hawaii (Napier et al. 1994). The VLBA is often linked
with additional antennas to further improve the baseline coverage and sensitivity.
Figure 1.21 presents a result from the combined VLBA and EVN array.

The great potential of VLBI in astrometry and geodesy was immediately
recognized after the initial experiments in 1967 [see, e.g., Gold (1967)]. A seminal
meeting defining the role of VLBI in Earth dynamics programs was held in
Williamstown, Massachusetts, in 1969 (Kaula 1970). The use of VLBI in these
applications developed rapidly during the 1970s and 1980s; see, for example,
Whitney et al. (1976) and Clark et al. (1985). In the United States, NASA and several
other federal agencies set up a cooperative program of geodetic measurements in the
mid-1970s. This work evolved in part from the use of the Jet Propulsion Laboratory
deep-space communications facilities for VLBI observations. It has expanded into
an enormous worldwide effort carried out under the aegis of the International VLBI
Service (IVS) and a network of more than 40 antennas. An important result of this
effort has been the establishment of the International Celestial Reference Frame
adopted by the IAU, which is based on 295 “defining” sources whose positions are
known to an accuracy of about 40 pas (Fey et al. 2015). Another striking result of
the geodetic VLBI work has been the detection of contemporary plate motions in
the Earth’s mantle, first measured as a change in the Westford—Onsala baseline at
a rate of 17 £ 2 mm/yr (Herring et al. 1986). The VLBI measurements of plate
motions is shown in Fig. 1.22. Astrometry with submilliarcsecond accuracy has
opened up new possibilities in astronomy, for example, the detection of the motion
of the Sun around the Galactic center from the proper motion of Sagittarius A*
(Backer and Sramek 1999; Reid and Brunthaler 2004) and measurements of the
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Fig. 1.21 Image of the gravitational lens source MG J0751+2716 made with a 14-h observation
on a 21-element global VLBI Array (VLBA and the EVN plus the Green Bank telescope) at a
frequency of 1.7 GHz. The rms noise level is 12 uJy, and the resolution is 2.2 X 5.6 mas. This
image of an extended background source at redshift 3.2 is highly distorted by an unseen foreground
radio-quiet galaxy at a redshift of 0.35 into extended arcs. Image courtesy of and © John McKean.

annual parallaxes of galactic radio sources (Reid and Honma 2014). Astrometric
and geodetic methods are described in Chap. 12.

The combination of VLBI with spectral line processing is particularly effective
in the study of problems that involve both astrometry and dynamical analysis of
astronomical systems. The galaxy NGC4258, which exhibits an active galactic
nucleus, has been found to contain a number of small regions that emit strongly in
the 22.235-GHz water line as a result of maser processes. VLBI observations have
provided an angular resolution of 200 pas, an accuracy of a few microarcseconds
in the relative positions of the masers, and measurements of Doppler shifts to an
accuracy of 0.1 km s~! in radial velocity (see Fig. 1.23). NGC4258 is fortuitously
aligned so that the disk is almost edge-on as viewed from the Earth. The orbital
velocities of the masers, which obey Kepler’s law, are accurately determined as a
function of radius from the center of motion. Hence, the distance can be found by
comparing the linear and angular motions. The angular motions are about 30 pas
per year. These results provide a value for the central mass of 3.9 x 107 times
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Fig. 1.22 Tectonic plate motions measured with VLBI. A VLBI station is located at the foot of
each vector and labeled by the station name. The sum of the motion vectors is constrained to
be zero. The largest motion is for the Kokee site in Hawaii, about 8 cm yr_l. Plate boundaries,
established by other techniques, are shown by the jagged lines. From Whitney et al. (2014).
Reprinted with permission courtesy of and © MIT Lincoln Laboratory, Lexington, MA.

the mass of the Sun, presumably a supermassive black hole (Miyoshi et al. 1995;
Herrnstein et al. 1999), and 7.6 £ 0.2 Mpc for the distance (Humphreys et al. 2013).
The uncertainty of 3% in the distance of an extragalactic object, measured directly,
set a precedent.

1.3.15 VLBI Using Orbiting Antennas

The use of spaceborne antennas in VLBI observations is referred to as the OVLBI
(orbiting VLBI) technique. The first observations of this type were made in 1986
using a satellite of the U.S. Tracking and Data Relay Satellite System (TDRSS).
These satellites were in geostationary orbit at a height of approximately 36,000 km
and were used to relay data from low-Earth-orbit spacecraft to Earth. They carried
two 4.9-m antennas used to communicate with other satellites at 2.3 and 15 GHz
and a smaller antenna for the space-to-Earth link. In this experiment, one of the 4.9-
m antennas was used to observe a radio source, and the other received a reference
signal from a hydrogen maser on the ground (Levy et al. 1989). The received signals
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Fig. 1.23 Image of the water vapor maser disk in the core of the galaxy NGC4258 at 1.35 cm
made with the VLBA. The spots mark the positions of the unresolved maser components. The
elliptical grid lines denote the thin, slightly warped disk that the masers trace. The position of the
gravitational center is shown by the black square. The contour plot shows the continuum emission
from the central active galactic nucleus. Each maser spot corresponds to a feature in the spectrum
in the lower panel. The strongest feature, at 470 km s™', serves as a phase reference. The inset
shows the radial velocity of the masers vs. radial distance from the black hole in milliarcseconds.
From Herrnstein et al. (2005). © AAS. Reproduced with permission.

were transmitted to the ground and recorded on a VLBI tape system for correlation
with signals from ground-based antennas. The numbers of sources detected were
23 and 11 at 2.3 and 15 GHz, respectively (Linfield et al. 1989, 1990). At 15 GHz,
the fringe width was of order 0.3 mas, and interpretation of the results in terms of
circular Gaussian models indicated brightness temperatures as high as 2 x 10'2 K.

VLBI observations using a satellite in a non-geostationary orbit were first made
in 1997 by the VLBI Space Observatory Programme (VSOP) (Hirabayashi et al.
1998), designed specifically for VLBI observations. It was equipped with an antenna
of 8-m diameter, and observations were made at 1.6 and 5 GHz. The orbital period
was approximately 6.6 h and the apogee height, 21,000 km. VSOP was followed
by the RadioAstron satellite, which was launched in 2011 into an orbit with an
apogee height of about 300,000 km and a period of 8.3 days (Kardashev et al.
2013). It is equipped with an antenna of 10-m diameter and receivers at 18, 6, and
1.35 cm. Operating with ground-based telescopes, it can attain a resolution of 8 pas
at 1.35 cm. More information about satellite VLBI can be found in Sect. 9.10.
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The possibility of achieving very long baselines by reflection from the Moon has
been discussed by Hagfors et al. (1990). Reflection from the surface of the Moon
could provide baselines up to a length approaching the radius of the lunar orbit. An
antenna of 100-m aperture, or larger, would be used to track the Moon and receive
the reflected signal from the source under study, and a smaller antenna could be
used for the direct signal. It is estimated that the sensitivity would be about three
orders of magnitude less than would be obtained by observing the source directly
with both antennas. Further complications result from the roughness of the lunar
surface and from libration. The technique could be useful for special observations
requiring very high angular resolution of strong sources, for example, for the burst
radiation from Jupiter. However, RadioAstron provides baselines almost as long.

1.4 Quantum Effect

The development of VLBI introduced a new facet into the apparent paradox in
the quantum-mechanical description of interferometry (Burke 1969). The radio
interferometer is the analog of Young’s two-slit interference experiment. It is well
known (Loudon 1973) that a single photon creates an interference pattern but that
any attempt to determine which slit the photon entered will destroy the interference
pattern; otherwise, the uncertainty principle would be violated. Consideration of
VLBI suggests that it might be possible to determine at which antenna a particular
photon arrived, since its signature is captured in the medium used for transmission to
the correlator as well as in the fringe pattern generated during correlation. However,
in the radio frequency range, the input stages of receivers used as the measurement
devices consist of amplifiers or mixers that conserve the received phase in their
outputs. This allows formation of the fringes in subsequent stages. The response
of such devices must be consistent with the uncertainty principle, AEAt >~ h/2x,
where AE and At are the uncertainties in signal energy and measurement time. This
principle can be written in terms of uncertainty in photon number, AN,, and phase,
Ag, as

AN, Ap >~ 1, (1.15)

where AN, = AE/hv and A¢ = 2mvAt. To preserve phase, A¢ must be small,
so AN, must be correspondingly large, and there must be an uncertainty of at least
one photon per unit bandwidth per unit time in the output of the receiving amplifier.
Hence, the SNR is less than unity in the single-photon limit, and it is impossible to
determine at which antenna a single photon entered. An alternative but equivalent
statement is that the output of any receiving system must contain a noise component
that is not less than an equivalent input power approximately equal to sv per unit
bandwidth.

The individual photons that constitute a radio signal arrive at antennas at random
times but with an average rate that is proportional to the signal strength. For
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phenomena of this type, the number of events that occur in a given time interval
T varies statistically in accordance with the Poisson distribution. For a signal power
P, the average number of photons that arrive within time t is N, = Py, t/hv. The
rms deviation of the number arriving during a series of intervals t is, for Poisson

statistics, given by AN, = \/ N,. From Eq. (1.15), the resulting uncertainty in the
signal phase is

1 hv
AP ~ = P (1.16)
\/Np sig

We can also express the uncertainty in the measurement of the signal phase in terms
of the noise that is present in the receiving system. The minimum noise power,
Phroise, 18 approximately equal to the thermal noise from a matched resistive load at
temperature hv/k, that is, P ;e = hvAv. The uncertainty in the phase, as measured
with an averaging time t, becomes

Pnoise
AP = . 1.17
¢ \/PsigrAv ( )

Note that A¢ is the accuracy with which the phase of the amplified signal received
from one antenna can be measured: for example, in Doppler tracking of a spacecraft
(Cannon 1990). This is not to be confused with the accuracy of measurement of
the fringe phase of an interferometer. For a frequency v = 1 GHz, the effective
noise temperature hv/k is equal to 0.048 K. Thus, for frequencies up to some
tens of gigahertz, the quantum effect noise makes only a small contribution to
the receiver noise. At 900 GHz, which is generally considered to be about the
high frequency limit for ground-based radio astronomy, hv/k = 43 K, and the
contribution to the system noise is becoming important. In the optical region,
v & 500 THz, hv/k =~ 30, 000 K, and heterodyne systems are of limited practicality,
as discussed in Sect. 17.6.2. However, in the optical region, it is possible to build
“direct detection” devices that detect power without conserving phase, so A¢ in
Eq. (1.17) effectively tends to infinity, and there is no constraint on the measurement
accuracy of the number of photons. Thus, most optical interferometers form fringes
directly from the light received and measure the resulting patterns of light intensity
to determine the fringe parameters.

For further reading on the general subject of thermal and quantum noise, see,
for example, Oliver (1965) and Kerr et al. (1997). Nityananda (1994) compares
quantum issues in the radio and optical domains, and a discussion of basic concepts
is given by Radhakrishnan (1999).
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Appendix 1.1 Sensitivity of Radio Astronomical Receivers
(the Radiometer Equation)

An idealized block diagram of the basic receiver configuration widely used in
radio astronomy is shown in Fig. Al.1. We describe its function and analyze its
performance in this appendix. The signal from an antenna is first passed through
an amplifier. The amplifier is characterized by its power gain factor, G; receiver
temperature; and the bandwidth, Av. The gain factor is assumed to be constant. If
the gain is sufficiently high, this amplifier sets the noise performance of the entire
system, which we denote as T to include the contributions from atmosphere, ground
pickup, and ohmic losses. We assume that the passband has a rectangular shape that
is flat between a lower cutoff frequency, vy, and the upper cutoff frequency, vo+ Av.
The signal then passes through a mixer, where it is multiplied by a sinusoidal local
oscillator signal at frequency vy and is converted to a baseband from 0 to Av.
In the next stage, the signal is converted to a digital data stream sampled at the
Nyquist rate. According to the Nyquist sampling theorem, a bandlimited signal
can be represented by samples taken at intervals of 1/2Av. We assume there is
no quantization error in this sampling process. In this case, the original signal can
be exactly reconstructed from the sampled sequence by convolution with a sinc
function. The sampled signal has the same statistical properties as the corresponding
analog signal. The next step is a square-law detector, which squares the amplitudes
of the signal samples. This is followed by an averager, which simply averages N
samples in a running mean fashion. A system with these features is known as
a single-sideband superheterodyne receiver (Armstrong 1921) or, simply, a total-
power radiometer. Early interferometer receivers were a variation on this basic
design (see Fig. 1.6): Signals from two antennas were added after the mixing stage
before entering the square-law detector, and there was no signal digitization.

Amplifier

- Digitizer/ Square Law (Em[éll:’%w .
'-X‘ Sampler Deteclor i z

Calibration
Source
Te

Local
Oscillator Vi Vis vz V3, VT

v=1p

Fig. A1.1 A block diagram of an idealized radiometer used in most radio astronomical systems
for measuring total power. The system temperature 7 includes the receiver temperature Ty plus
all unwanted additive contributions (e.g., ohmic loses, atmospheric effects, ground pickup). In
practice, at very low frequencies (< 100 MHz), downconversion may be omitted, while at high
frequencies (more than a few gigahertz), multiple stages of frequency downconversion are required.
At very high frequencies (> 100 GHz), where low noise amplifiers are not available, the first stage
is usually the mixer. In this case, its losses and those of the amplifiers following it contribute to T.
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The statistical performance of the idealized system in Fig. Al.1 can be readily
evaluated. The power level at any point in the system can be characterized by a
temperature 7 according to the Nyquist relation [e.g., Eq. (1.4)]

P=kTAvG, (Al.1)

where we have included the effect of power amplification by the gain factor G. The
voltage v; is a combination of antenna input, characterized by T4, and the additive
system noise, Ts. We assume the cosmic input signal has a flat spectrum over the
baseband frequency range. Hence, v; is a zero-mean Gaussian random process with
a flat spectrum, i.e., a white noise spectrum. Such a process, described by p(v),
has only one parameter, the variance, o>. The odd moments of the probability
distribution are zero, and the even moments are

()y=@1-3-5-...-n)o". (A1.2)
The expectations of v; and vf (the power) are therefore

(vi) =0, (A1.3)
(V) = k(Ts + Ta)Av G . (Al.4)

The statistics of the sampled signal, vys, and the analog signal v; are the same, i.e.,
Vis = V1, vlzs = vlz, etc. The characteristics of v, are

(v2) = (v}) . (A1.5)
(v7) = (v}) = 3(v})*, (A1.6)
07 = (v3) — (v2)? = 2(v})?. (A1.7)

The averager averages N = 2Avt samples together, where t is the integration time.
Hence,

(v3) = (v]) = K(Ts + T4)Av G, (A1.8)
2 20k(Ts + Ty)Av G)?

032:02: [k(Ts + Tx)Av G] ' (A1.9)
N 2AvT

v3 is converted from a power scale to a temperature scale by inserting a thermal
noise signal of known temperature 7, in order to remove or calibrate the kAv G
factor. Formally, the calibrated version of v is

U3

= , A1.10
Jv3 /0T (AL10)

vr
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where (dv3/0T4)~! is the conversion factor from power to temperature written as a
partial derivative. The mean and rms of the output in temperature units are therefore

(vr) =Ts+ Ta, (A1.11)
Ts+ T,

op = STIA (A1.12)
JAvt

It is important to note that the factor of two in the expression for a:,% in Eq. (AL.8)
cancels the factor of two in the number of samples averaged. The signal-to-noise
ratio (SNR) is therefore

Ty
Ry = VAvr . Al.13
Sn TS + TA ( )

Equation (A1.13) shows that T4 contributes to the fluctuations, and in the limit
T4 > Ts, longer integration does increase the SNR. For Ty < Ty, the usual case,
Eq. (A1.13) becomes Eq. (1.8). Because of the fundamental limitation imposed by
the Nyquist sampling theorem, no receiver system can perform better than specified
by Eq. (A1.13). The performance of any other system can be written as

Ts+ T
op=c ST (A1.14)
JAvT

where C is a factor equal to, or greater than, one. The square-law detector could be
replaced by another type of detector. For a linear detector, i.e., v, = |v;], a similar
analysis to the one for the square-law detector yields C = /7 —2 = 1.07 when
T4 < Ts. In this calculation, it is necessary to linearize the output by calculation of
dvs/0Ty4 in Eq. (A1.10). For a fourth-order detector, v, = vf, C = \/4/3 = 1.15.
More details can be found in Davenport and Root (1958).

G may not be a constant but can vary randomly due to electronic instabilities. In
that case, a synchronous detector is added and receiver input is switched between the
antenna and a reference signal. This system is known as a Dicke (1946) radiometer.
(Note that the phase-switching interferometer [see Fig. 1.8] uses the synchronous
detection principle.) The noise performance of a Dicke radiometer is worse by
a factor of two, but the effects of gain fluctuations are mitigated. An alternative
receiver that reduces the effects of gain fluctuations is called the correlation receiver,
in which the signal from the antenna is divided in half and passed through separate
amplifiers before being multiplied, where the multiplier replaces the square-law
detector.

In older receivers, there was usually no digitization before the final averaging
stage. The performance of a comparable analog system is identical to that described
above. For analog analysis of radiometers, see Tiuri (1964) or Kraus (1986). A
summary of the performance of various receiver types is given in Table Al.1.
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Table A1.1 Sensitivity characteristics of
various types of receivers

Receiver type Cc?
Total power (v, = vlz) 1
Linear detector (v, = [v}]) 1.07°
Fourth-order detector (v, = v‘l‘) 1.15°
Dicke-switched receiver 2b
Correlation receiver \/ 2b

2 C is defined in Eq. (A1.14).
b For Ty < Ts.

There are two major differences between radio and optical systems. Radio
systems are characterized by Gaussian noise characteristics of both the signal and
the additive receiver noise, whereas optical detectors are limited by Poisson statistics
appropriate for counting photons and the SNR, Ry, is 1/ \/Np, where N, is the
number of photons. In terms of quantum mechanics, the Gaussian noise corresponds
to photo bunching noise [see Radhakrishnan (1999)].
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Chapter 2
Introductory Theory of Interferometry
and Synthesis Imaging

In this chapter, we provide a simplified analysis of interferometry and introduce
several important concepts. We first consider an interferometer in one dimension
and discuss the effect of finite bandwidth and show how the interferometer response
can be interpreted as a convolution. We extend the analysis to two dimensions
and discuss circumstances in which three-dimensional imaging can be undertaken.
This chapter is intended to provide a broad introduction to the principles of
synthesis imaging to facilitate the understanding of more detailed development in
later chapters. A brief introduction to the theory of Fourier transforms is given in
Appendix 2.1.

2.1 Planar Analysis

The instantaneous response of a radio interferometer to a point source can most sim-
ply be analyzed by considering the signal paths in the plane containing the electrical
centers of the two interferometer antennas and the source under observation. For an
extended observation, it is necessary to take account of the rotation of the Earth and
consider the geometric situation in three dimensions, as can be seen from Fig. 1.15.
However, the two-dimensional geometry is a good approximation for short-duration
observations, and the simplified approach facilitates visualization of the response
pattern.

Consider the geometric situation shown in Fig. 2.1, where the antenna spacing
is east—west. The two antennas are separated by a distance D, the baseline, and
observe the same cosmic source, which is in the far field of the interferometer;
that is, it is sufficiently distant that the incident wavefront can be considered to be
a plane over the distance D. The source will be assumed for the moment to have
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-—————— - =D —— E—

Fig. 2.1 Geometry of an elementary interferometer. D is the interferometer baseline.

infinitesimal angular dimensions. For this discussion, the receivers will be assumed
to have narrow bandpass filters that pass only signal components very close to v.

As explained for the phase-switching interferometer in Chap. 1, the signal
voltages are multiplied and then time-averaged, which has the effect of filtering
out high frequencies. The wavefront from the source in direction 8 reaches the right
antenna at a time

D
= sin 0 (2.1)

before it reaches the left one. 7, is called the geometric delay, and c is the velocity of
light. Thus, in terms of the frequency v, the output of the multiplier is proportional to

F = 2sin(2mvt) sin 2w v(t — 1)
= 2sin’*(27vr) cos(2mvT,) — 2 sin(2mwve) cos(2mwvet) sin(2wvy) . (2.2)

The center frequency of the receivers is generally in the range of tens of megahertz
to hundreds of gigahertz. As the Earth rotates, the most rapid rate of variation of
6 is equal to the Earth’s rotational velocity, which is of the order of 10~* rad s™'.
Also, because D cannot be more than, say, 107 m for terrestrial baselines, the rate of
variation of v, is smaller than that of vz by at least six orders of magnitude. For an
averaging period T >> 1/v, the average value of sin’>(2rvt) = é and the average
value of sin(2zv?) cos(2mwve) = 0, leaving the fringe function

2nDI
F = cos2mvt, = cos 5 , 2.3)

where [ = sin 0; the definition of the variable [ is discussed further in Sect. 2.4.
For sidereal sources, the variation of 6 with time as the Earth rotates generates
quasisinusoidal fringes at the correlator, which are the output of the interferometer.
Figure 2.2 shows an example of this function, which can be envisaged as the
directional power reception pattern of the interferometer for the case in which the
antennas either track the source or have isotropic responses and thus do not affect
the shape of the pattern.
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Fig. 2.2 Polar plot to illustrate the fringe function F = cos(2wDI/A). The radial component is
equal to |F|, and 6 is measured with respect to the vertical axis. Alternate lobes correspond to
positive and negative half-cycles of the quasi-sinusoidal fringe pattern, as indicated by the plus and
minus signs. To simplify the diagram, a very low value of 3 is used for D/A. The increase in fringe

width due to foreshortening of the baseline as |6| increases is clearly shown. The maxima in the
horizontal direction ( = £90°) are a result of the arbitrary choice of an integer value for D/A.

An alternate and equivalent way of envisaging the formation of the sinusoidal
fringes is to note that because of the rotation of the Earth, the two antennas have
different components of velocity in the direction of the source. The signals reaching
the antennas thus suffer different Doppler shifts. When the signals are combined in
the multiplying action of the receiving system, the sinusoidal output arises from the
beats between the Doppler-shifted signals.

A development of the simple analysis can be made if we consider two Fourier
components of the received signal at frequencies v; and v,. These frequency
components are statistically independent so that the interferometer output is the
linear sum of the responses to each component. Hence, the output has components
F1 and F,, as in Eq. (2.3). For frequency vy, the coefficient 2rD/A = 2D vy /c will
be different from that for v, so F, will have a different period from F at any given
angle 6. This difference in period gives rise to interference between F; and F3, so
that the fringe maxima have superimposed on them a modulation function that also
depends on 6. Similar effects occur in the case of a continuous band of frequencies.
For example, if the signals at the correlator are of uniform power spectral density
over a band of width Av and center frequency vy, the output becomes

1 [rota/2  (2nDIy
F() = / cos ( ) dv

Av Jy—avy2 c

— cos (ZnDlvo) sin(zDIAv/c) 2.4)

c wDIAv/c

Thus, the fringe pattern has an envelope in the form of a sinc function [sinc(x) =
(sinzx)/mx]. This is an example of the general result, to be discussed in the
following section, that in the case of uniform power spectral density at the antennas,
the envelope of the fringe pattern is the Fourier transform of the instrumental
frequency response.



62 2 Introductory Theory of Interferometry and Synthesis Imaging
2.2 Effect of Bandwidth

Figure 2.3 shows an interferometer of the same general type as in Fig. 2.1 but with
the amplifiers H; and H,, the multiplier, and an integrator (with respect to time)
shown explicitly. An instrumental time delay 7; is inserted into one arm. Assume
that for a point source, each antenna delivers the same signal voltage V(f) to the
correlator, and that one voltage lags the other by a time delay t = 1, — 7;, as
determined by the baseline D and the source direction 6. The integrator within the
correlator has a time constant 27'; that is, it sums the output from the multiplier
for 2T seconds and then resets to zero after the sum is recorded. The output of the
correlator may be a voltage, a current, or a coded set of logic levels, but in any case,
it represents a physical quantity with the dimensions of voltage squared.

|
Mutipler (H——e——1

1

| Correlator

|
|
|
I |
I___i___J

QOutput

Integrator

Fig. 2.3 Elementary interferometer showing bandpass amplifiers H; and H,, the geometric time
delay 7, the instrumental time delay 7;, and the correlator consisting of a multiplier and an
integrator.
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The output from the correlator resulting from a point source' is

1 T
= Vo)Vt —r)dt. 2.5
r= | vove=o @3
We have ignored system noise and assumed that the two amplifiers have identical
bandpass characteristics, including finite bandwidths Av outside which no frequen-
cies are admitted. The integration time 27 is typically milliseconds to seconds, that
is, very much larger than Av~!. Thus, Eq. (2.5) can be written as

. 1
r(@ = lim /

T
V)Vt —r1)dt, (2.6)
T

which is an (unnormalized) autocorrelation function. The condition 7 — o0 is
satisfied if a large number of variations of the signal amplitude, which have a
duration ~ Av~!, occur in time 27. The integration time used in practice must
clearly be finite and much less than the fringe period.

As described in Chap. 1, the signal from a natural cosmic source can be
considered as a continuous random process that results in a broad spectrum, of
which the phases are a random function of frequency. It will be assumed for our
immediate purpose that the time-averaged amplitude of the cosmic signal in any
finite band is constant with frequency over the passband of the receiver.

The squared amplitude of a frequency spectrum is known as the power density
spectrum, or power spectrum. The power spectrum of a signal is the Fourier
transform of the autocorrelation function of that signal. This statement is known
as the Wiener—Khinchin relation (see Appendix A2.1.5) and is discussed further in
Sect. 3.2. It applies to signals that are either deterministic or statistical in nature and
can be written

o0
IHW)[* = / r(v)e 2 2.7)
and

r(t) = /00 ’H(u)|2d2””d\) , (2.8)

where H(v) is the amplitude (voltage) response, and hence |H(v)|? is the power
spectrum of the signal input to the correlator. In this case, because the cosmic
signal is assumed to have a spectrum of constant amplitude, the spectrum H(v)
is determined solely by the passband characteristics (frequency response) of the
receiving system from the outputs of the antennas to the output of the integrator.
Thus, the output of the interferometer as a function of the time delay t is the

!For simplicity, we consider only the signals from a point source, which are identical except for
a time delay. In practical systems, the input waveforms at the correlator may contain the partially
correlated signals from a partially resolved source as well as instrumental noise.
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Fourier transform of the power spectrum of the cosmic signal as bandlimited by the
receiving system. Assume, as a simple example, a Gaussian passband centered at vy:

T Kty R

202 202

where o is the bandwidth factor (the full bandwidth at half-maximum level is
V8 In20). Note that to perform the Fourier transforms in Eqgs.(2.7) and (2.8),
we include a negative frequency response centered on —vy. The spectrum is then
symmetrical with respect to zero frequency, which is consistent with the fact that
the autocorrelation function (which is the Fourier transform of the power spectrum)
is real. The negative frequencies have no physical meaning but arise mathematically
from the use of the exponential function. The interferometer response is

—2727%0

r(t) =e ’ cos(2mvgt) , (2.10)

which is illustrated in Fig. 2.4a. Note that r(t) is a cosinusoidal function multiplied
by an envelope function, in this case a Gaussian, whose shape and width depend on
the amplifier passband. This envelope function is referred to as the delay pattern or
bandwidth pattern.

By setting the instrumental delay t; to zero and substituting for the geometric
delay t, = (D/c) sin 0 in Eq. (2.10), we obtain the response

D ? 2mvoD
r(tg) = exp |:—2 (ﬂ ? sin 9) :| cos ( T Gin 9) . (2.11)
C C

The period of the fringes (the cosine term) varies inversely as the quantity
voD/c = D/A and does not depend on the bandwidth parameter o. The width
of the bandwidth pattern (the exponential term), however, is a function of both
o and D; wide bandwidths and long baselines result in narrow fringe envelopes.
This result is quite general. For example, a rectangular amplifier passband of
width Av, as considered in Eq.(2.4), results in an envelope pattern of the form
[sin(rAvt)]/ (7w Avt), as shown in Fig. 2.4b.

In imaging applications, it is usually desirable to observe the fringes in the
vicinity of the maximum of the pattern, where the fringe amplitude is greatest. This
condition can be achieved by changing the instrumental delay t; continuously or
periodically so as to keep T = 1, — 7; suitably small. If 7; is adjusted in steps of
the reciprocal of the center frequency” vy, the response remains cosinusoidal with
7,. Note that for wide bandwidths, as Av approaches v, the width of the envelope
function becomes so narrow that only the central fringe remains. This occurs mainly
in optics, where a central fringe of this type is often called the “white light” fringe.

2This adjustment method is useful to consider here, but more commonly used methods are
described in Sects. 7.3.5 and 7.3.6.
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Fig. 2.4 Point-source
response of an interferometer
with (a) Gaussian and (b)
rectangular passbands. The
abscissa is the geometric
delay t,. The bandwidth
pattern determines the
envelope of the fringe term.

(a)
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2.3 One-Dimensional Source Synthesis

In the analysis of an interferometer in which the antennas and the instrumental delay
track the position of the source, as is the norm for frequencies above ~ 1 GHz, it is
convenient to specify angles of the antenna beam and other variables with respect to
a reference position on the sky, usually the center or nominal position of the source
under observation. This is commonly referred to as the phase reference position.
Since the range of angles required to specify the source intensity distribution relative
to this point is generally no more than a few degrees, small-angle approximations
can be used to advantage. The instrumental delay is constantly adjusted to equal the
geometric delay for radiation from the phase reference position. If we designate this
reference position as the direction 6, then 7; = (D/c) sin 6. For radiation from a
direction (6y — A8), where A6 is a small angle, the fringe response term is

cos(2mvpt) = cos {2711)0 [D sin(6y — A6) — r{|}
c

1

cos[2mvo(D/c) sin Af cos 6] (2.12)

for cos A6 ~ 1. When observing a source at any position in the sky, the angular
resolution of the fringes is determined by the length of the baseline projected onto
a plane normal to the direction of the source. In Fig. 2.1, for example, this is the
distance designated D cos 6. We therefore introduce a quantity u that is equal to the
component of the antenna spacing normal to the direction of the reference position
0. u is measured in wavelengths, A, at the center frequency vy, that is,

D cos 6, D cos 0
- o_ " o (2.13)
A c
Since A6 in Eq.(2.12) is small, we can assume that the bandwidth pattern is near
maximum (unity) in the direction 6y — Af. Then, from Egs. (2.12) and (2.13), the
response to radiation from that direction is proportional to

F(l) = cos(2mvgt) = cos(mul) , (2.14)

where [ = sin Af. This is the response to a point source at § = 6y, — A6 of an
interferometer whose net delay 7, — 7; is zero at 6 = 6. As we shall show, the
quantity u is interpreted as spatial frequency. It can be measured in cycles per radian,
since the spatial variable /, being small, can be expressed in radians.

2.3.1 Interferometer Response as a Convolution

The response of a single antenna or an interferometer to a source can be expressed
in terms of a convolution. Consider first the response of a single antenna and a
receiver that measures the power received. Figure 2.5 shows the power reception
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Fig. 2.5 The power pattern
A(0) of an antenna pointed in
the direction OC, and the
intensity profile of a source
1,(0"), used to illustrate the
convolution relationship. The
angle 0 is measured with
respect to the beam center
OC. The profile of the source
is a function of #’, measured
with respect to the direction
of the nominal position of the
source OB.

pattern of the antenna A(6), which is a polar plot of the effective area of the antenna
as a function of angle from the center of the antenna beam. Also shown is the one-
dimensional intensity profile of a source I;(8’), as defined in Eq. (1.9), in which
0’ is measured with respect to the center, or nominal position, of the source. The
component of the output power in bandwidth Av contributed by each element d6’
of the source is éAvA(H’ — 0)I1(0)d®’, where the factor é takes account of the
ability of the antenna to respond to only one component of randomly polarized
radiation. The total output power from the antenna, omitting the constant factor
;Av, is proportional to

/ A0 — 0)1,(0))de’ . 2.15)

This integral is equal to the cross-correlation of the antenna reception pattern and
the intensity distribution of the source. It is convenient to define A(0) = A(—0),
where A is the mirror image of A with respect to 6. Then expression (2.14) becomes

AB — 6 (0")do" . (2.16)

source

The integral in expression (2.15) is an example of the convolution integral;
see Appendix 2.1, Eq. (A2.33). We can say that the output power of the antenna is
given by the convolution of the source with the mirror image of the power reception
pattern of the antenna. The mirror-image® reception pattern can be described as the
response of the antenna to a point source.

3In many cases, the beam is symmetrical, and the mirror image is identical to the beam.
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In the case of an interferometer, we can express the response as a convolution
by replacing the antenna power pattern in Eq. (2.16) by the overall power pattern of
the interferometer. From the results presented earlier, we find that the response of
an interferometer is determined by three functions:

¢ The reception pattern of the antennas, which we represent as A(/),

e The fringe pattern, F(/), as in the example of Fig.2.2 and given by Eq.(2.14).
Note that the fringe term in the interferometer output, being the product of two
voltages, is proportional to power.

e The bandwidth pattern, for example, as given by the sinc-function factor in
Eq. (2.4). In the general case, we can represent this by Fg(/).

Note that the antenna beam is often symmetrical, in which case, if the interferometer
fringes are aligned with the beam center, we can disregard the distinction between
the interferometer power pattern and its mirror image in using the convolution
relationship.

Next, consider an interferometer with tracking antennas and an instrumental
delay that is adjusted so the bandwidth pattern also tracks the source across the
sky. In effect, the intensity distribution is modified by the antenna and bandwidth
patterns. We can therefore envisage the output of the interferometer as the convolu-
tion of (the mirror image of) the fringe pattern with the modified intensity. In terms
of the convolution integral, the response can be written as

R() = / cos [Znu(l — l/)]A(l/)FB(l/)Il Hdl' . 2.17)
or, more concisely,

R() = cos2rul) = [A()Fp()L ()] , (2.18)

where the in-line asterisk symbol () denotes convolution. The intensity distribution
measured with the interferometer is modified by A(/) and Fy(/), but since these
are measurable instrumental characteristics, /; (/) can generally be recovered from
the product A({)Fp(l)I;(/). In many cases, the angular size of the source is small
compared with the antenna beams and the bandwidth pattern, so these two functions
introduce only a constant in the expression for the response. To simplify the
discussion, we shall consider this case, and omitting constant factors, we can write
the essential response of the interferometer as

R(l) = cos 2mul) = I, () . (2.19)

In the case of the early interferometer shown in Fig. 1.6, in which the antennas are
fixed in the meridian and do not track the source, the delays in the signal paths
between the antennas and the point at which the signals are multiplied are equal,
and there is no variable instrumental delay. Thus, the three functions that determine
the interferometer power pattern are all fixed with respect to the interferometer
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baseline. The interferometer power pattern is of the form A(/) cos 2w ul)Fg(l), and
the response of the interferometer to the source is [A(l) cos 2 ul)Fg(1)] * I ().

Most interferometers for operation at meter wavelengths, that is, at frequencies
below about 300 MHz, use antennas that are arrays of fixed dipoles. At such long
wavelengths, it is possible to obtain large collecting areas and still have wide enough
beams that some minutes of observing time are obtained as a source passes through
in sidereal motion. Often the bandwidth of such low-frequency instruments is small,
so that the bandwidth pattern, F(/), is wide and this factor can be omitted. Also, the
antenna beams are usually wider than the source and sufficiently wide that several
cycles of the fringe pattern can be measured as the source transits the beam. So
in the nontracking case, the essential form of the response is also represented by
Eq. (2.19). However, fixed antennas with nontracking beams are mainly a feature of
the early years of radio astronomy, and in more recent meter-wavelength arrays, the
phases of individual dipoles, or small clusters of dipoles, can be adjusted to provide
steerable beams.

2.3.2 Convolution Theorem and Spatial Frequency

We now examine the interferometer response, as given in Eq.(2.19), using the
convolution theorem of Fourier transforms (see the derivation in Appendix A2.1.2),
which can be expressed as:

fxg<«— FG, (2.20)

where f «<— F, g <— G, and <— indicates Fourier transformation. Consider the
Fourier transforms with respect to / and u of the three functions in Eq. (2.19). For
the interferometer response, we have r(u) <— R([). For a particular value u = u,
the Fourier transform of the fringe term is given by [see Fourier transform example
in Eq. (A2.15)]

cos(2muol) «—> 5 [8(u+ uo) + 8(u — up)] . (2.21)

where § is the delta function defined in Appendix 2.1. The Fourier transform of 7; (/)
is the visibility function V(u). Thus, from Egs. (2.19), (2.20), and (2.21), we obtain
r(u) = 5 [6(u+ uo) + 8(u — uo)] V(u)

[V(—uo)8(u + uo) + V(uo)d(u — uo)] - (2.22)

1
2
1
2

This result shows that the instantaneous output of the interferometer as a function
of spatial frequency consists of two delta functions situated at plus and minus x on
the u axis. Now, V(u), the Fourier transform of 7 (/), represents the amplitude and
phase of the sinusoidal component of the intensity profile with spatial frequency u
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cycles per radian. The interferometer acts as a filter that responds only to spatial
frequencies *uy. The negative spatial frequency —uy has no physical meaning.
It arises from the use, for mathematical convenience, of the exponential Fourier
transform rather than the sine and cosine transforms, which correspond more
directly to the physical situation. As a result, the spatial frequency spectra are
symmetrical about the origin in the Hermitian sense, that is, with even real parts and
odd imaginary parts, which is appropriate since the intensity is a real, not complex,
quantity.

Fringe visibility, as originally defined by Michelson [V}, see Eq. (1.9)], is a real
quantity and is normalized to unity for an unresolved source. Complex visibility
(Bracewell 1958) was defined to take account of the phase of the visibility, measured
as the fringe phase, to allow imaging of asymmetric and complicated sources. The
normalization is convenient when comparing measurements with simple models,
as shown in Fig. 1.5. However, in images, it is desirable to display the magnitude
of the intensity or brightness temperature, so the general practice is to retain the
measured value of visibility, without normalization, since this incorporates the
required information. Thus, visibility V as used here is an unnormalized complex
quantity with units of flux density (W m™2 Hz™!). The quantity u, which was
introduced as the projected baseline in wavelengths, is seen also to represent the
spatial frequency of the Fourier components of the intensity. The concepts of spatial
frequency and spatial frequency spectra are fundamental to the Fourier synthesis of
astronomical images, and this general subject is discussed in a seminal paper by
Bracewell and Roberts (1954).

2.3.3 Example of One-Dimensional Synthesis

To illustrate the observing process outlined in this chapter, we present a rudimentary
simulation of measurements of the complex visibility of a source using arbitrary
parameters. The source consists of two components separated by 0.34° of angle,
the flux densities of which are in the ratio 2 : 1. The measurements are made with
pairs of antennas placed along a line parallel to the direction of separation of the
two components. Measurements are made for antenna spacings that are integral
multiples of a unit spacing of 30 wavelengths. All spacings from 1 to 23 times the
unit spacing are measured. These results could be obtained using two antennas and
a single correlator, observing the source as it transits the meridian on 23 different
days and moving the antennas to provide a new spacing each day. Alternately, the 23
measurements could be made simultaneously using 23 correlators and a number of
antennas that could be as small as 8 (if they were set out with minimum redundancy
in the spacings, as discussed in Sect. 5.5). The angular sizes of the two components
of the source are too small to be resolved by the interferometer, so they can be
regarded as point radiators. The two components radiate noise, and their two outputs
are uncorrelated. The source is at a sufficient distance that incoming wavefronts can
be considered to be plane over the measurement baselines.
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Figure 2.6a and b show, respectively, the amplitude* and phase of the visibility
function as it would be measured. Since the data are derived from a model, there
are no measurement errors, so the points indicate samples of the Fourier transform
of the source intensity distribution, which can be represented by two delta functions
with strengths in the ratio 1 : 2. Taking the inverse transform of the visibility yields
the synthesized image of the source in Fig. 2.6¢c. The two components of the source
are clearly represented. The extraneous oscillations arise from the finite extent of
the visibility measurements, which are uniformly weighted out to a cutoff at 23
times the unit spacing. This effect is further illustrated in Fig.2.6d, which shows
the response of the measurement procedure to a single point source; equivalently,
it is the synthesized beam. The profile of this response is the sinc function that
is the Fourier transform of the rectangular window function, which represents the
cutoff of the measurements at the longest spacing. In the image domain, the double-
source profile can be viewed as the convolution of the source with the point-source
response. The point-source nature of the model components maximizes the sidelobe
oscillations, which would be partially smoothed out if the width of the components
were comparable to that of the sidelobes.

As is clear from the convolution relationship, information on the structure of
the source is contained in the whole response pattern in Fig.2.6c, that is, in the
sidelobe oscillations as well as the main-beam peaks. A way to extract the maximum
information on the source structure would be to fit scaled versions of the response
in Fig.2.6d to the two peaks in Fig.2.6¢ and then subtract them from the profile.
In an actual observation, this would leave the noise and any structure that might
be present in addition to the point sources but would remove all or most of the
sidelobes. The fitting of the point-source responses could be adjusted to minimize
some measure of the residual fluctuations, and further components could be fitted
to any remaining peaks and subtracted. This technique would clearly be a good
way to estimate the strengths and positions of the two components and to look
for evidence of any low-level structure that could be hidden by the sidelobes in
Fig.2.6c. The CLEAN algorithm, which is discussed in Chap. 11, uses this principle
but also replaces the components that are removed by model beam responses that
are free of sidelobes. Removal of the sidelobes allows any lower-level structure to
be investigated, down to the level of the noise. Most synthesis images are processed
by nonlinear algorithms of this type, and the range of intensity levels achieved in
some two-dimensional images exceeds 10° to 1.

“It is arguable that the modulus of the complex visibility should be referred to as magnitude rather
than amplitude since the dimensions of visibility include power rather than voltage. However,
the term visibility amplitude is widely used in radio astronomy, probably resulting from the early
practice of recording the fringe pattern as a quasi-sinusoidal waveform, and subsequently analyzing
the amplitude and phase of the oscillations.
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2.4 Two-Dimensional Synthesis

Synthesis of an image of a source in two dimensions on the sky requires measure-
ment of the two-dimensional spatial frequency spectrum in the (u, v) plane, where
v is the north—south component as shown in Fig. 2.7a. Similarly, it is necessary to
define a two-dimensional coordinate system (/, m) on the sky. The (I, m) origin is
the reference position, or phase reference position, introduced in the last section.
In considering functions in one dimension in the earlier part of this chapter, it was
possible to define / in Eq. (2.3) as the sine of an angle. In two-dimensional analysis,
[ and m are defined as the cosines of the angles between the direction (/, m) and the
u and v axes, respectively, as shown in Fig. 2.7c. If the angle between the direction
(I, m) and the w axis is small, / and m can be considered as the components of this
angle measured in radians in the east—west and north—south directions, respectively.

For a source near the celestial equator, measuring the visibility as a function of
u and v requires observing with a two-dimensional array of interferometers, that is,
an array in which the baselines between pairs of antennas contain components in the
north—south as well as the east—west directions. Although we have considered only
east—west baselines, the results derived in terms of angles measured with respect to
a plane that is normal to the baseline hold for any baseline direction.

A source at a high declination (near the celestial pole) can be imaged in two
dimensions with either one- or two-dimensional arrays, as shown in Fig. 1.15 and
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Fig. 2.7 (a) The (u, v) plane in which the arrow point indicates the spatial frequency, g cycles per
radian, of one Fourier component of an image of the intensity of a radio source. The components u
and v of the spatial frequency are measured along axes in the east—west and north—south directions,
respectively. (b) The (I, m) plane in which a single component of spatial frequency in the intensity
domain has the form of sinusoidal corrugations on the sky. The figure shows corrugations that
represent one such component. The diagonal lines indicate the ridges of maximum intensity. The
dots indicate the positions of these maxima along lines in three directions. In a direction normal to
the ridges, the frequency of the oscillations is g cycles per radian, and in directions parallel to the u
and v axes, it is u and v cycles per radian, respectively. (¢) The u and v coordinates define a plane,
and the w coordinate is perpendicular to it. The coordinates (/,m) are used to specify a direction
on the sky in two dimensions. / and m are defined as the cosines of the angles made with the u and
v axes, respectively.
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Fig. 2.8 Illustration of the projection-slice theorem, which explains the relationships between one-
dimensional projections and cross sections of intensity and visibility functions. One-dimensional
Fourier transforms are organized horizontally and projections vertically. The symbols F and 2F
indicate one-dimensional and two-dimensional Fourier transforms, respectively. See the text for
further explanation. From Bracewell (1956). © CSIRO 1956. Published by CSIRO Publishing,
Melbourne, Victoria, Australia. Reproduced with permission.

further explained in Sect. 4.1. As the Earth rotates, the baseline projection on the
celestial sphere rotates and foreshortens. A plot of the variation of the length and
direction of the projected baseline as the antennas track the source across the sky is
an arc of an ellipse in the (u, v) plane. The parameters of the ellipse depend on the
declination of the source, the length and orientation of the baseline, and the latitude
of the center of the baseline. In the design of a synthesis array, the relative positions
of the antennas are chosen to provide a distribution of measurements in « and v
consistent with the angular resolution, field of view, declination range, and sidelobe
level required, as discussed in Chap. 5. The two-dimensional intensity distribution
is then obtained by taking a two-dimensional Fourier transform of the observed
visibility, V(u, v).

2.4.1 Projection-Slice Theorem

Some important relationships between one-dimensional and two-dimensional func-
tions of intensity and visibility are summarized in Fig.2.8, which illustrates the



2.4 Two-Dimensional Synthesis 75

projection-slice theorem of Fourier transforms (Bracewell 1956, 1995, 2000). At the
top left is the two-dimensional intensity distribution of a source I(I, m), and at the
bottom right is the corresponding visibility function V(u, v). These two functions
are related by a two-dimensional Fourier transform, as indicated on the arrows
shown between them. Note the general property of Fourier transforms that the width
in one domain is inversely related to the width in the other domain. At the lower
left is the projection of I(I, m) on the [ axis, which is equal to the one-dimensional
intensity distribution /; (/). This projection is obtained by line integration along lines
parallel to the m axis, as defined in Eq. (1.10). /; is related by a one-dimensional
Fourier transform to the visibility measured along the u axis at the lower right, that
is, the profile of a slice V(u, 0) through the visibility function V(u, v), indicated
by the shaded area in the diagram. V(u,0) could be measured, for example, by
observations of a source made at meridian transit with a series of interferometer
baselines in an east—west direction. This relationship was encountered in Chap. 1
in the description of the Michelson interferometer, and examples of such pairs of
functions are shown in Fig. 1.5. At the upper right is a projection of V(u, v) on
the u axis, Vi (u) = [ V(u,v)dv, and this is related by a one-dimensional Fourier
transform to a slice profile of the source intensity /(/, 0) along the [ axis at the upper
left, indicated by the shaded area. The relationships between the projections and
slices are not confined to the u and / axes but apply to any sets of axes that are
parallel in the two domains. For example, integration of /(I, m) along lines parallel
to OP results in a curve, the Fourier transform of which is the profile of a slice
through V(u, v) along the line QR.

The relationships in Fig. 2.8 apply to Fourier transforms in general, and their
application to radio astronomy was recognized during the early development of the
subject. For example, in determining the two-dimensional intensity of a source from
a series of fan-beam scans at different angles, one can perform one-dimensional
transforms of the scans to obtain values of V along a series of lines through the
origin of the (u,v) plane, thus obtaining the two-dimensional visibility V(u, v).
Then, I(I,m) can be obtained by two-dimensional Fourier transformation. In the
early years of radio astronomy, before computers were widely available, such
computation was a very laborious task, and various alternative procedures for
image formation from fan-beam scans were devised (Bracewell 1956; Bracewell
and Riddle 1967).

As this introductory chapter has shown, much of the theory of interferometry
is concerned with data in two forms or domains. Within the literature, there is
some variation in the associated terminology. The observations provide data in
the visibility domain, also variously referred to as the spatial frequency, (u, v), or
correlation domain. The astronomical results are shown in the image domain, also
variously referred to as the brightness, intensity, sky, or map domain. “Map” was
appropriate in earlier years when the image was sometimes in the form of contours
of intensity.
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2.4.2 Three-Dimensional Imaging

Three-dimensional images can be made of objects that are optically thin and
rotating. An image taken at a particular time is the projected image along the line
of sight. A series of images taken at different projection angles can be combined to
obtained an estimate of the three-dimensional distribution of emitters in the source.
This can be done in a straightforward fashion by use of the three-dimensional
generalization of the projection-slice theorem, described in Sect. 2.4.1, to build up a
three-dimensional visibility function. Such a technique was developed and first used
to image the radiation belts of Jupiter by Sault et al. (1997). A somewhat different
tomographic technique was developed by de Pater et al. (1997). The techniques
were compared by de Pater and Sault (1998). These techniques might be applicable
to extended stellar atmospheres observed with VLBI arrays.

Appendix 2.1 A Practical Fourier Transform Primer

This appendix is intended to provide a brief introduction to the principles of Fourier

transform theory most relevant to radio interferometry. For more comprehensive

treatment, see Bracewell (1995, 2000), Champeney (1973), and Papoulis (1962).
The Fourier transform of a function f(x) can be written as

o0
F(s) = / f(x) e 72 % dx . (A2.1)
—00
The inverse transform is
oo .
fx) = / F(s) e/¥™ds . (A2.2)
—00

The transform pair is written symbolically as
f(x) «<— F(s) . (A2.3)
If x has units of meters, then s has units of cycles/meter; if x has units of time, then s

has units of cycles/second, i.e., hertz. The Fourier transform pair can also be written
in the form normally used in the time-frequency domains as

F(w) = / ” f(t) e 7™dr , (A2.4)
f@) = ! / - F(w)e™'dw . (A2.5)
21 J oo
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In this case, the frequency is an angular frequency in radians/sec. We use the
formulation in Eqs. (A2.1) and (A2.2) for three reasons: It is widely used in image
analysis, it allows for easier tracking of 2sr factors, and it provides a more natural
segue to the discussion of the discrete Fourier transform (see Appendix 8.4).

We can check that f(x) can be recovered from F(s) by the substitution of
Eq.(A2.1) into Eq. (A2.2),

fe) = / N [ / ") e_ﬂ””/dx’:| "N ds (A2.6)

where we switched the variable x to X’ to allow us to interchange the order of
integration, thereby obtaining

o0 o0 i ,
fx) = / F&) [ / e 2t "‘)ds} dx’ . (A2.7)
—00 —00
The integral in brackets can be evaluated by a limit process, i.e.,
[ee] 50
/ e—j27rs(x'—x) ds = lim ej27rs(x’—x) ds
—0o0

so—~>00 J_
0 =50

= lim 2s9
50—> 00

[ sin 27 so(x" — x) i| (A2.8)

27 so(x' — x)

The function in the brackets is a sinc function (see Fig. A2.1) centered at X' = x,
having a width between first nulls of 2/s¢ and an integral, which happens to equal
the area of the triangle formed by the peak and the first nulls, of unity. The limit of
this function can be used as a definition of the Dirac delta function (often called the
impulse function in much of engineering literature),

) sin 27 so(x" — x)
§( —x) = lim 2 , A29
(x x) s01—I>noo 50 [ 271’.8‘()()6/ - x) ( )
which is undefined at x’ = x and has the properties
§(X—x) =0, X #x (A2.10a)
and
o0
/ SO —x)dxX' =1. (A2.10b)
—00

Substitution of Egs. (A2.9) and (A2.8) into Eq. (A2.7) gives

fx) = /_oof(x’) SO —x)dx . (A2.11)
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Fig. A2.1 The sinc function in Eq. (A2.9), whose limiting form is a delta function, §(x' — x).
Since §(x' — x) is nonzero only at X' = x, it is clear from Eq.(A2.10b) that we
can factor f(x) out of the integral in Eq.(A2.11), which gives the desired result,

f(x) = f(x), and proves that f(x) can be recovered from its transform, F(s).
Equation (A2.11) is called the sifting property of §(x).

A2.1.1 Useful Fourier Transform Pairs

We mention five Fourier transform pairs of particular interest to readers of this book.
The first pair is

X0
f) =1, |X|§2,
=0, otherwise, (A2.12a)
Fls) = x0T yosine(sxo) - (A2.12b)
T SX0

f(x) is called a boxcar or unit rectangular function and denoted as [ [(x).
The second Fourier transform is of a Gaussian function

fx) = oo . (A2.13a)

2,22

F(s) = V2mae 2 . (A2.13b)
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F(s) can be calculated by a procedure called “completing the square™:
o0 Xz p
F(s) = / e 22 e ATy (A2.14)
—00

The term in the exponent is (x* + j4ma®sx)/2a®> = [(x — j2wa’s)? + 4n’a*s?] /24>,
The term involving 472a*s> can be factored out of the integral, which leads to
Eq. (A2.13b).

The third useful Fourier transform pair is

f(x) = cos2msopx, (A2.15a)
F(s) = ; [8(s — s0) + 8(s + s0)] - (A2.15b)

F(s) is calculated by writing f(x) in terms of exponentials and by use of the same
limiting process used in deriving Eq. (A2.9).

The fourth Fourier transform pair is for an infinite train of delta functions, which
is also an infinite train of delta functions, i.e.,

3 k) Y S(S—)’Z) . (A2.16)

k=—00 m=—00

This relation can be proved by starting with a finite train of impulses and applying
the shift property [Eq. (A2.22)]. The Fourier transform is an infinite series of sinc
functions at intervals of xj !. Then, by the same process used in Eq. (A2.9), the sinc
functions become Dirac delta functions in the limit as k — oo.

The fifth Fourier transform pair is for the Heaviside step function

f) =1, x>0,
fx) =0, x<0, (A2.17a)
1 1
F(s) = _48(s) + . . (A2.17b)
2 J2ms
The calculation of F(s) requires some care. Decompose f(x) into f,(x) = é and

folx) = ;sgn(x) = é for x > 0 and —é for x < 0. The Fourier transform of f,(x) is
F.(s) = ;8(s). We replace f,(x) with the functions ;e_“", x>0, and —;e‘”‘, x <0,
and evaluate F,(s) in a limit as @ — 0. Hence

0 00

F,(s) = ,}ER) [_/ e I2TSE + /0 e—axe—j2nsxdxi|
—00
Jj2ms 1

= lim — = . A2.18
20 a? 4 2ns)?  2mjs ( )

Combining these results gives F(s) = F,(s) + F,(s), which proves Eq. (A2.17b).
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A2.1.2 Basic Fourier Transform Properties

We list several important properties that are readily provable.

e Integral property

F(0) = /_ ” f(x) dx (A2.19a)
£(0) = /_ ” F(s)ds . (A2.19b)

The application of Eq.(A2.19) to example five above [Eq.(A2.17)] gives the
interesting result that f(0) = é [see Bracewell (2000) for a discussion of this
point].

« Linearity property. If £(x) and g(x) have transforms F(s) and G(s), then
af (x) «<— aF(s) , (A2.20)
and
F() + g(x) «— F(s) + G(s) . (A2.21)

Equation (A2.21) is fundamental and particularly useful. In terms of interferom-
etry, it means that the visibility function is the sum of the visibility functions of
all the components in the image.

» Shift property
fx — x0) <—> e FTE(s) | (A2.22a)
and

F(s — 50) <—> e2™0f(x) . (A2.22b)

* Modulation property. From the shift property, it follows that
f(x) cos sox <—> J [F(s — s0) + F(s + 50)] . (A2.23)

* Similarity property

1
flax) «— |a|F(Z) . (A2.24)

This important relation shows that if a function f(x) narrows, then F(s) broadens
proportionally and vice versa, so that the product of the widths of functions in
the x and s domains, Ax and As, respectively, satisfies the relation

AxAs ~ 1. (A2.25)
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This result is the basis of the uncertainty principle in quantum mechanics, a wave
theory. It is called the time-bandwidth product in signal-processing applications
and the ambiguity function in radar astronomy. If Ax and As are defined as the
full width at half-maximum (FWHM), then for the boxcar—sinc function pair
[Eq. (A2.12)], AxAs = 1.21, and for the Gaussian function pair [Eq. (A2.13)],
AxAs = 41In2/mw = 0.88.

¢ Derivative property

@f <« (j27s)"F(s) , (A2.26)
dx"
and
ng ] .
e «—> (—27x)"f(x) . (A2.27)

e Symmetry properties. Symmetry properties are very useful in calculating and
visualizing Fourier transforms. Any function can be divided into even and odd
components, f,(x) and f,(x), respectively, which are defined as

fe@) = 5 [fG) +f(=0)] , (A2.28a)
fo@) = [0 —f(=)] . (A2.28b)
Hence, if f(x) is real and even, then F(s) is also real and even. If f(x) is real and

odd, then F(s) is imaginary and odd. The Fourier transform pair in Eq. (A2.17)
is a nice example of these symmetry properties.

* Moment property. The moments of f(x) are

o0
m, = / X'f(x) dx . (A2.29)
—00
Hence, from the derivative and the integral properties,
d"F(0
p ©) <« (—27)'m, . (A2.30)
Sn

If these moments exist, then the Taylor expansion of F(s) is
o0 .
—)"
Fi=Y =2y o (A2.31)
et n!

Hence, if f(x) is an even function and its moments exist, the lead terms of F(s)
are

F(s) = mo — 2°mys” . (A2.32)
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Convolution property. The convolution of two functions, f(x) and g(x), which
have Fourier transforms F(s) and G(s), respectively, is defined as

o0
h0) = [ gt —0 as. (A2.33)
—00
which can be written with the convolution operator, *, as

h(y) = f(y) * g(y) . (A2.34)

Note that f x g = g * f. The convolution property is

fO) *g(y) «<— F(s5)G(s) . (A2.35)

This property can be demonstrated as follows. The Fourier transform of A(y) is

o0 o0
H(s) = / / f(x)g(y —x)dx | ey , (A2.36)
—00 —00
or, interchanging the order of integration,
o0 o0 .
H(s) = / f(x) / gy —x) e Vdy |dx . (A2.37)
—00 —00
‘We make the variable substitution, z = y — x, to obtain
o0 o0 . .
H(s) = / f(x) / g(z) ez | e PN dx (A2.38)
—00 —00

The term in brackets is G(s), which can be factored out of the remaining integral,
which is F(s), so

H(s) = F(s) G(s) . (A2.39)

Hence, the Fourier transform of the convolution of two functions is the product
of their Fourier transforms. This relationship, known as the convolution theorem,
is shown diagrammatically in Fig. A2.2. It follows that the convolution of two
functions in the frequency domain corresponds to multiplication in the time
domain.

Correlation property. The correlation function is defined as

o) = /_ F0) gl — ) d (A2.40)
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f(x) . FT R F(s)
g(x) G(s)
convolution product
() %9() f———T——f F(s) G(s)

83

Fig. A2.2 Relationships involving Fourier transforms and convolution. As elsewhere in this book,

the in-line asterisk indicates convolution.

which can be written with the correlation operator, *, as

r(y) =f(x) x g(x) .

The correlation property is

F(x) * g(x) < F(s)G*(s) .

The Fourier transform of Eq. (A2.40) is

ko) = [ : [ [ Zf(X) ¢(i—) dx} Py

(A2.41)

(A2.42)

(A2.43)

Interchanging the order of integration and making the substitution z = x—y gives

o0 o0 i §
R(s) = / [ [ / 8(2) eﬂ”dz} e dx
—00 —00
which results in

R(s) = F(s) G*(s) .

(A2.44)

(A2.45)

This relationship is shown in Fig. 8.1. An example where f(x) = g(x) = boxcar
is shown in Fig. A2.3. Since f(x) is an even function, convolution and correlation
are the same, both producing even functions. Hence, F(s) is real and even, and

F(s)F(s) = F(s)F*(s).
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f(x) F(s)

So S X V ~ s

F(s) F¥(s)

Fig. A2.3 Example of the correlation and convolution theorems for an even function f(x). The
vertical arrow on the left indicates f * f for the case of convolution and f « f for correlation. The
vertical arrow on the right indicates F(s)F(s) for convolution and F(s)F* (s) for correlation.

* Parseval’s theorem. The relationship

/_ h |f@)dx = / h |F(s)|*ds (A2.46)

—0o0
is known generally as Parseval’s theorem.® To prove it, we write

/_ Zf ()f* (x) dx = / ” /_ Y F (5)e¥™*ds / = e 545’ | d

—0o0 o0 —0o0

(A2.47)

or

/_:f(x)f*(x) dx = /_ Z /_ : F()F*(s)) / s

—00
(A2.48)
The integral in brackets is §(s — s), so that

/_OO FOf*(x)dx = /_00 F(s)F*(s)ds . (A2.49)

SParseval’s theorem originally applied to Fourier series (see Appendix A2.1.4). Rayleigh gener-
alized it for application to Fourier transforms. Mathematicians often refer to it as Plancherel’s
theorem. As is common practice, we use only the name “Parseval’s theorem” in this book.
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A useful theorem in interferometry is the projection—slice theorem, which is
proved in Sect. 2.4.1.

A2.1.3 Two-Dimensional Fourier Transform

The two-dimensional Fourier transform between f(x, y) and F(u, v) can be written

o0 o0 .
F(u,v) = / / flx,y) e 2Pt gy gy |
T (A2.50)

o0 o0 .
fl,y) = / / F(u,v) ey dy
—00 —00

If x and y are in radians, then u# and v are in units of cycles/radian. We write
symbolically

fl,y) <— F(u,v) . (A2.51)

All of the properties in Appendix A2.1.2 have analogs in the two-dimensional
Fourier transform. For example, the shift theorem is

Fx — X0,y — yo) <—> e F2T@WOTWOI By g (A2.52)

The two-dimensional Fourier transform can be converted to polar coordinates by
defining x = rcos @,y = rsin 6, u = gcos ¢, and v = g sin ¢, which leads to

2 o]
Fao)= [ [ ooy raras. (A2.53)
0 0
Iff(r,0) = f(r), i.e., f is azimuthally symmetric, then
(o] 21 )
Fla.d)= [ oyrar [ emm-va. (A2.54)
0 0
Since the zeroth-order Bessel function is defined as
1 A
Jo(z) = / eest g (A2.55)
27 0
F(q,¢) = F(q) and

F(g) =2n /Ooof(r)Jo(27tqr)rdr . (A2.56a)
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By symmetry,
o0
f(r)y=2m / F(q)Jo(2mqr)qdq . (A2.56b)
0

Equations (A2.56a) and (A2.56b) are called the Hankel transform pair.

A2.1.4 Fourier Series

The Fourier series is a special case of the Fourier transform. A periodic function
f(x), which repeats over the interval —xy/2, xo/2, has the complex Fourier series
representation

00 jemke
f@ =) e n | (A2.57)
—00
where
E) _jamkx
o =/ f)e x dx. (A2.58)
_%0
2

If we define fy(x) as f(x) over the interval —xo/2,x0/2, then its Fourier transform,
F(s), is given by

F(s) =) Fo(kso) 8(s — kso) . (A2.59)
k=0

where 5o = 1/xo and Fy(ksg) = o4. This is called a line spectrum: F(s) consists
of delta functions spaced at intervals s = 1/xp with amplitudes corresponding to
the Fourier coefficients. Parseval’s theorem for the Fourier series can be found by
substituting Eqs. (A2.57) and (A2.59) into Eq. (A2.49), yielding

Sai= [ swrwa (A2.60)

A2.1.5 Truncated Functions

The Fourier transform theory described above can be applied to functions that
are random processes. If an ergodic random process has an associated temporal
function f(x), that function generally extends to infinity, and [ | f(x)|? = oo, which
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presents certain theoretical difficulties. These difficulties are mitigated by choosing
a truncated version of the function

Jr(x) = f()I(x/x0) , (A2.61)

where IT(x) is the boxcar function defined after Eq.(A2.12). By the convolution
property [Eq. (A2.35)],

Fr(s) = F(s) * sinc(sxp) . (A2.62)

Truncation has the effect of smoothing, or limiting the resolution of, F(s).
The power spectrum of a truncated function is usually defined as

Pr(s) = ;F(s) F*(s), (A2.63)

which has units of power and does not depend on 7. Note that the Fourier
transform as defined for deterministic functions in previous sections is actually an
energy density spectrum. The conditions under which the Fourier transform of an
autocorrelation function and its power spectrum exist for random processes were
first explored and clarified by Wiener and Khinchin. Hence, the Fourier transform
between the autocorrelation function of a random process and its power spectrum is
formally called the Wiener—Khinchin theorem (or relation).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 3
Analysis of the Interferometer Response

In this chapter, we introduce the full two-dimensional analysis of the interferometer
response, without small-angle assumptions, and then investigate the small-field
approximations that simplify the transformation from the measured visibility to the
intensity distribution. There is a discussion of the relationship between the cross-
correlation of the received signals and the cross power spectrum, which results from
the Wiener—Khinchin relation and is fundamental to spectral line interferometry. An
analysis of the basic response of the receiving system is also given. The appendix
considers some approaches to the representation of noiselike signals, including the
analytic signal, and truncation of the range of integration.

3.1 Fourier Transform Relationship Between Intensity
and Visibility

3.1.1 General Case

We begin by deriving the relationship between intensity and visibility in a
coordinate-free form and then show how the choice of a coordinate system results
in an expression in the familiar form of the Fourier transform. Suppose that the
antennas track the source under observation, which is the most common situation,
and let the unit vector sy in Fig. 3.1 indicate the phase reference position introduced
in Sect. 2.3. This position, sometimes also known as the phase-tracking center,
becomes the center of the field to be imaged. For one polarization, an element of
the source of solid angle d§2 at position s = sy + o contributes a component of
power éA(a)I (0)AvdS2 at each of the two antennas. Here, A(0) is the effective
collecting area of each antenna, /(o) is the source intensity distribution as observed
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Fig. 3.1 Baseline and
position vectors that specify
the interferometer and the
source. The source is
represented by the outline on
the celestial sphere.

from the distance of the antennas, and Av is the bandwidth of the receiving system.
It is easily seen that this expression has the dimensions of power since the units
of I are W m™2 Hz™! sr™!. From the considerations outlined in the derivation of
Egs. (2.1) and (2.2), including the far-field condition for the source, the resulting
component of the correlator output is proportional to the received power and to the
fringe term cos(2mwvt,), where 7, is the geometric delay. The vector Dy will specify
the baseline measured in wavelengths, and then v, = D;+-s = D, - (sp + o). Thus,
the output from the correlator is represented by

r(Dy,s0) = Av/ A(o)I(o)cos[2n Dy« (so + 0)]dS2

4

= Avcos(2nD, -sy) | A(0)I(c)cosnD, -0)dS2
4

— Avsin(2zD; - sp) / A(0)l(0)sin(2nDy -0)ds2 . 3.
47

Note that the integration of the response to the element df2 over the source in
Eq. (3.1) requires the assumption that the source is spatially incoherent, that is,
that the radiated waveforms from different elements d§2 are uncorrelated. This
assumption is justified for essentially all cosmic radio sources. Spatial coherence is
discussed further in Sect. 15.2. Let Ay be the antenna collecting area in direction
sp in which the beam is pointed. We introduce a normalized reception pattern
An(0) = A(0) /Ay and consider the modified intensity distribution Ay(0)I(0). Now
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we define the complex visibility' as

V= |V]e/t = / An(0)(a) e 2P0 g0 (3.2)

4

Then by separating the real and imaginary parts, we obtain
/ An(0)I(0) cos(2nDy +a)dS2 = |V|cos ¢y, , 3.3)
4
/ An(0)I (o) sin(2nDy -0)d2 = —|V|sing, , (3.4
47

and from Eq. (3.1)
r(Dy,s0) = AgAv|V|cos(2rDy +so — ) . 3.5)

Thus, the output of the correlator can be expressed in terms of a fringe pattern
corresponding to that for a hypothetical point source in the direction sy, which is
the phase reference position. As noted earlier, this is usually the center or nominal
position of the source to be imaged. The modulus and phase of V are equal to the
amplitude and phase of the fringes; the phase is measured relative to the fringe phase
for the hypothetical source. As defined above, V has the dimensions of flux density
(W m~2 Hz™"), which is consistent with its Fourier transform relationship with 1.
Some authors have defined visibility as a normalized, dimensionless quantity, in
which case it is necessary to reintroduce the intensity scale in the resulting image.
Note that the bandwidth has been assumed to be small compared with the center
frequency in deriving Eq. (3.5).

In introducing a coordinate system, the geometry we now consider is illustrated
in Fig.3.2. The two antennas track the center of the field to be imaged. They
are assumed to be identical, but if they differ, Ay(o) is the geometric mean of
the beam patterns of the two antennas. The magnitude of the baseline vector is
measured in wavelengths at the center frequency of the observing band, and the
baseline has components (u, v, w) in a right-handed coordinate system, where u and
v are measured in a plane normal to the direction of the phase reference position.
The spacing component v is measured toward the north as defined by the plane
through the origin, the source, and the pole, and u is measured toward the east.

'In formulating the fundamental Fourier transform relationship in synthesis imaging, which
follows from Eq.(3.2), we use the negative exponent to derive the complex visibility function
(or mutual coherence function) from the intensity distribution, and the positive exponent for the
inverse operation. From a physical viewpoint, the choice is purely arbitrary, and the literature
contains examples of both this and the reverse convention. Our choice follows Born and Wolf
(1999) and Bracewell (1958).
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Fig. 3.2 Geometric
relationship between a source
under observation /(I, m) and
an interferometer or one
antenna pair of an array. The
antenna baseline vector,
measured in wavelengths, has
length D, and components
(u,v,w).

The component w is measured in the direction sy, which is the phase reference
position. On Fourier transformation, the phase reference position becomes the origin
of the derived intensity distribution I(I, m), where [ and m are direction cosines
measured with respect to the axes u and v. In terms of these coordinates, we find

DA-SOZW
Dl-s:(ul—i—vm—i—w«/l—lz—mz)

ao =~ ddm (3.6)
V1i—P2—m?
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where v/1 — 2 — m? is equal to the third direction cosine n measured with respect
to the w axis.> Note also that Dy -0 = Dy -s — D, -so. Thus, from Eq.(3.2):

V(u,v,w) :/ / An(l,m)I(l, m)
dldm
Vi—p2—m?’
(3.7)

xexp{—jZn [ul+vm+w(\/l - —m?— 1)]}

A factor ¢/2™ on the right side in Eq. (3.7) results from the measurement of angular
position with respect to the w axis. For a source on the w axis, | = m = 0, and
the argument of the exponential term in Eq. (3.7) is zero. For any other source, the
fringe phase is measured relative to that for a source on the w axis, which is the
phase reference position, sy in Fig.3.2. The function Ayl in Eq.(3.7) is zero for
2+m?>1,and in practice, it usually falls to very low values for directions outside
the field to be imaged, as a result of the antenna beam pattern, the bandwidth pattern,
or the finite size of the source. Thus, we can extend the limits of integration to +o0.
Note, however, that Eq. (3.7) requires no small-angle assumptions. The reason why
we use direction cosines rather than a linear measure of angle in interferometer
theory is that they occur in the exponential term of this relationship.

The coordinate system (I/,m) defined above is a convenient one in which to
present an intensity distribution. It corresponds to the projection of the celestial
sphere onto a plane that is a tangent at the field center, as shown in Fig.3.3. The
distance of any point in the image from the (I, m) origin is proportional to the sine
of the corresponding angle on the sky, so for small fields, distances on the image
are closely proportional to the corresponding angles. The same relationship usually
applies to the field of an optical telescope. For a detailed discussion of relationships
on the celestial sphere and tangent planes, see Konig (1962).

If all the measurements could be made with the antennas in a plane normal to
the w direction so that w = 0, Eq.(3.7) would reduce to an exact two-dimensional
Fourier transform. In general, this is not possible, and we now consider ways in
which the transform relationship can be applied. Recall first that the basis of the

>The expression for d2 is obtained by considering the unit sphere centered on the (i, v, w)
origin. A point P on the sphere with coordinates (u, v,w) is projected onto the (u, v) plane at
u = l,v = m, and the increments dl, dm define a column of square cross section running
through (u, v, 0) parallel to the w axis. The column makes an angle cos™! n with the normal to
the spherical surface at P, and dS2 is equal to the surface area intersected by the column, which is
dldm/n, ordldm/ V1= —m Alternately, the solid angle can be expressed in polar coordinates
as d§2 = sin 0 df d¢, where 6 and ¢ are the polar and azimuthal angles in the («, v, w) plane, that
is, 8 = sin~! /2 + m? and ¢ = tan~! m/I. Calculation of the Jacobian of the transformation
from (6, ¢) coordinates to (I, m) coordinates gives the result d§2 = dl dm/~/1 — 2 — m? (Apostol
1962).
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Fig. 3.3 Mapping of the
celestial sphere onto an image
plane, shown in one
dimension. The position of
the point P is measured in
terms of the direction cosine
m with respect to the v axis.
When projected onto a plane
surface with a scale linear in

m, P appears at P’ at a
distance from the field center /
C proportional to sin .

synthesis imaging process is the measurement of V over a wide range of u and v. For
a ground-based array, this can be achieved by varying the length and direction of the
antenna spacing and also by tracking the field-center position as the Earth rotates.
The rotation causes the projection of D, to move across the (u, v) plane, and an
observation may last for 6-12 h. As the Earth’s rotation carries the antennas through
space, the baseline vector remains in a plane only if D, has no component parallel
to the rotation axis, that is, the baseline is an east—west line on the Earth’s surface.
In the general case, there is a three-dimensional distribution of the measurements of
V. The simplest form of the transform relationship that can then be used is based
on an approximation that is valid so long as the synthesized field is not too large. If
I/ and m are small enough that the term

sing = m

(\/(1 P —m)— 1)w ~ NP+ m)w (3.8)

can be neglected, Eq. (3.7) becomes

0o 00 AL (L m)I(lm) _,
V(u, v, w) :V(u,v,0)=/ / VI prtom gy gy (39)
—0 =00 V1 =P —m?

Thus, for a restricted range of / and m, V(u, v, w) is approximately independent of
w, and for the inverse transform, we can write

An(, m)I(, Rl e ;
— - —m —00 J —00

With this approximation, it is usual to omit the w dependence and write the visibility
as the two-dimensional function V(u, v). Note that the factor ~/1 — 2 —m? in
Eqgs. (3.9) and (3.10) can be subsumed into the function Ay(l, m). Equation (3.10)
is a form of the van Cittert—Zernike theorem, which originated in optics and is
discussed in Sect. 15.1.1.

The approximation in Eq. (3.9) introduces a phase error equal to 27 times the
neglected term, that is, 7t(l2 + mz)w. Limitation of this error to some tolerable value
places a restriction on the size of the synthesized field, which can be estimated
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Fig. 3.4 When observations
are made at a low angle of

elevation and at an azimuth

close to that of the baseline,

the spacing component w =
becomes comparable to the

baseline length D,, which is rQ;

measured in wavelengths.

approximately as follows. If the antennas track the source under observation down to
low elevation angles, the values of w can approach the maximum spacings (Dj)max
in the array, as shown in Fig.3.4. Also, if the spatial frequencies measured are
evenly distributed out to the maximum spacing, the synthesized beamwidth 6, is
approximately equal to (D;)! . Thus, the maximum phase error is approximately

0\,
(7)) e 3.11)

where 6y is the width of the synthesized field. The condition that no phase errors can
exceed, say, 0.1 rad then requires that

O < V6, (3.12)

where the angles are measured in radians. For example, if 6, = 17, 0 < 2.5 arcmin.
Much synthesis imaging in astronomy is performed within this restriction, and ways
of imaging larger fields will be discussed later.

3.1.2 East—West Linear Arrays

We now turn to the case of arrays with east—west spacings only and discuss further
the conditions for which we can put w = 0, and the resulting effects. Let us first
rotate the (u, v, w) coordinate system about the u axis until the w axis points toward
the pole, as shown in Fig. 3.5. We indicate by primes the quantities measured in the
rotated system. The («', v") axes lie in a plane parallel to the Earth’s equator. The
east-west antenna spacings contain components in this plane only (i.e., w' = 0),
and as the Earth rotates, the spacing vectors sweep out circles concentric with the
(', v") origin. From Eq. (3.7), we can write

dl'dm’

Sy G

o o0
(V(M/, U/) — / / AN(l/,m/)I(l/,m/) e—j2n(u/l/+v’m’)
—00 J —00



96 3 Analysis of the Interferometer Response

Pole

‘Ii
(0, 60)

Antenna spacing

u loci Equatorial
plane

Fig. 3.5 The (u',v’,w’) coordinate system for an east-west array. The («/,v’) plane is the
equatorial plane and the antenna spacing vectors trace out arcs of concentric circles as the Earth
rotates. Note that the directions of the u’ and v’ axes are chosen so that the v axis lies in the
plane containing the pole, the observer, and the point under observation (c,8o). In Fourier
transformation from the («’,v’) to the (I/,m’) planes, the celestial hemisphere is imaged as a
projection onto the tangent plane at the pole. The (u,v,w) coordinates for observation in the
direction («, §¢) are also shown.

where (I, m') are direction cosines measured with respect to (¢, v"). Equation (3.13)
holds for the whole hemisphere above the equatorial plane. The inverse transforma-
tion yields

An(l I, m') /oo /OO V@l 0"y 27 gy (3.14)
\/1—1/2—1’11/2 —00 J—00

In this imaging, the hemisphere is projected onto the tangent plane at the pole, as
shown in Fig.3.5. In practice, however, an image may be confined to a small area
within the antenna beams. In the vicinity of such an area, centered at right ascension
and declination (@ ¢, 8 ), angular distances in the image are compressed by a factor
sin § ¢ in the m’ dimension. Also, in imaging the (¢, o) vicinity, it is convenient if
the origin of the angular position variables is shifted to (¢, d¢). Expansion of the
scale and shift of the origin can be accomplished by the coordinate transformation

=17, m" = (m — cos8) cosec Sy . (3.15)
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If we write F(I', m') for the left side of Eq. (3.14), then
F(l',m) «— VW' V), (3.16)
and
F [l’, (m' — cos o) cosec 80] <« |sindo| V(/, v’ sin SO)e_jZ””/ cosdo (3.17)

where <— indicates Fourier transformation. Equation (3.17) follows from the
behavior of Fourier pairs with change of variable and involves the shift and
similarity properties of Fourier transforms (see Appendix 2.1). The coordinates
(t/,v" sin § ) on the right side of Eq. (3.17) represent the projection of the equatorial
plane onto the (u, v) plane, which is normal to the direction (¢, §¢). In the (u, v, w)
system, u = u’ and v = v’sin§y. The coordinate w shown in Fig. 3.5 is equal to
—v’ cos § . Thus, e 727V cosdo jp Eq. (3.17) is the same factor that occurs in Eq. (3.7)
as a result of the measurement of visibility phase relative to that for a point source
in the w direction. Equation (3.14) now becomes

An(L,m"MI(1,m")

o0 o0 . , P
= V@', v sindg) [sin § o e /27 cosdo
i = [ [ v smso s

% ejZﬂ(u/l/+v/m’)du/dv/
o0 o0 § ”
= / / V(u, v) e @D gy gy | (3.18)
—o0 J —00

A similar analysis is given by Brouw (1971).

The derivation of Eq.(3.18) from Eq.(3.14) involves a redefinition of the m
coordinate but no approximations. Equation (3.18) is of the same form as Eq. (3.10),
in which the term in Eq. (3.8) was neglected. Thus, if we apply the imaging scheme
of Eq.(3.10), which is based on omitting this term, to observations made with
an east—west array, the phase errors introduced distort the image in a way that
corresponds exactly to the change of definition of the m variable to m”. Since m” is
derived from a direction cosine measured from the v’ axis in the equatorial plane,
there is a progressive change in the north—south angular scale over the image. The
factor cosec §¢ in Eq.(3.15) establishes the correct angular scale at the center of
the image, but this simple correction is acceptable only for small fields. The crucial
point to note here is that when visibility data measured in a plane are projected into
(u, v, w) coordinates, w is a linear function of # and v (and a linear function of v
alone for east-west baselines). Hence, the phase error 7(I> + m?)w is linear in u
and v. Phase errors of this kind have the effect of introducing position shifts in the
resulting image, but there remains a one-to-one correspondence between points in
the image and on the sky. The effect is simply to produce a predictable, and hence
correctable, distortion of the coordinates.
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It is clear from Fig.3.5 that if all the measurements lie in the (i, v) plane,
then the values of v in the (u,v) plane become seriously foreshortened for
directions close to the celestial equator. Obtaining two-dimensional resolution in
such directions requires components of antenna spacing parallel to the Earth’s axis.
The design of such arrays is discussed in Chap. 5. The effect of the Earth’s rotation
is then to distribute the measurements in (u, v, w) space so that they no longer
lie in a plane, unless the observation is of short time duration. In some cases, the
restriction of the synthesized field in Eq.(3.12) is acceptable. In other cases, it
may be necessary to image the entire beam to avoid source confusion, and several
techniques are possible based on the following approaches:

1. Equation (3.7) can be written in the form of a three-dimensional Fourier
transform. The resulting intensity distribution is then taken from the surface of a
unit sphere in (I, m, n) space.

2. Large images can be constructed as mosaics of smaller ones that individually
comply with the field restriction for two-dimensional transformation. The centers
of the individual images must be taken at tangent points on the same unit sphere
referred to in 1.

3. Since in most terrestrial arrays the antennas are mounted on an approximately
plane area of ground, measurements taken over a short time interval lie close
to a plane in (1, v, w) space. It is therefore possible to analyze an observation
lasting several hours as a series of short duration images, which are subsequently
combined after adjustment of the coordinate scales.

Practical implementation of the three approaches outlined above requires the
nonlinear deconvolution techniques described in Chap. 11. A more detailed dis-
cussion of the resulting methods is given in Sect. 11.7.

3.2 Cross-Correlation and the Wiener—Khinchin Relation

The Fourier transform relationship between the power spectrum of a waveform and
its autocorrelation function, the Wiener—Khinchin relation, is expressed in Egs. (2.6)
and (2.7). It is also useful to examine the corresponding relation for the cross-
correlation function of two different waveforms. The response of a correlator, as
used in a radio interferometer, can be written as

1 T
r(t) = TILH;O 2T/TVI(t)V;‘(t— T)dt, (3.19)

where the superscript asterisk indicates the complex conjugate. In practice, the
correlation is measured for a finite time period 27, which is usually a few
seconds or minutes but is long compared with both the period and the reciprocal
bandwidth of the waveforms. The factor 1/27 is sometimes omitted, but for the
waveforms considered here, it is required to obtain convergence. Cross-correlation
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is represented by the pentagram symbol (*):

T
mm*wnggﬂ;/Tmm@a—ﬂm. (3.20)

This integral can be expressed as a convolution in the following way:

o

Vi@t) x Va(t) = Tli)n;o 21T/ Vi(Vi_(t —1)dt = Vi(t) * Vi_(1) , (3.21)

where V,_(t) = V,(—t). Now the v, ¢ Fourier transforms are as follows®: V; (f) «—>
Vi(v), Va(t) «<— V1(v), and V5 _(f) <— V5 (v). Then from the convolution
theorem,

Vit) * Va(t) «— Vi) Vi) . (3.22)

The right side of Eq.(3.22) is known as the cross power spectrum of V;(f) and
V,(t). The cross power spectrum is a function of frequency, and we see that it is
the Fourier transform of the cross-correlation, which is a function of 7. This is a
useful result, and in the case where V; = V,, it becomes the Wiener—Khinchin
relation. The relationship expressed in Eq.(3.22) is the basis of cross-correlation
spectrometry, described in Sect. 8.8.2.

3.3 Basic Response of the Receiving System

From a mathematical viewpoint, the basic components of the interferometer receiv-
ing system are the antennas that transform the incident electric fields into voltage
waveforms, the filters that select the frequency components to be processed, and
the correlator that forms the averaged product of the signals. In the filter and the
correlator, the signals may be in either analog or digital form. These components
are shown in Fig. 3.6. Most other effects can be represented by multiplicative gain
constants, which we shall ignore here, or as variations of the frequency response
that can be subsumed into the expressions for the filters. Thus, we assume that
the frequency response of the antennas and the strength of the received signal are
effectively constant over the filter passband, which is realistic for many continuum
observations.

3n this chapter, in cases where the same letter is used for functions of both time and frequency,
the circumflex (hat) accent is used to indicate functions of frequency.
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Fig. 3.6 Basic components
of the receiving system of a
two-element interferometer.

Vi) Valt)
Filter Filter
Hi(v) Hj(v)

Y Va® Y Vel
Correlator
Output, r

3.3.1 Antennas

In order to consider the responses of the two antennas independently, we should
introduce their voltage reception patterns, since the correlator responds to the
product of the signal voltages. The voltage reception pattern of an antenna V4 (I, m)
has the dimension length and responds to the electric field specified in volts per
meter. V4(l,m) is the Fourier transform of the field distribution in the aperture
&(X,Y), as shown in Sect. 15.1.2. X and Y are coordinates of position within the
antenna aperture. Omitting constant factors, we can write

o0
Va(l,m) / / E(X,Y) XD Mml gy gy (3.23)
—00

where A is the wavelength. In applying Eq. (3.23), X and Y are measured from the
center of each antenna aperture. The power reception pattern is proportional to the
squared modulus of the voltage reception pattern. V4 (I, m) is a complex quantity,
and it represents the phase of the radio frequency voltage at the antenna terminals as
well as the amplitude. For an interferometer (with antennas denoted by subscripts 1
and 2), the response is proportional to V4, V3, which is purely real if the antennas
are identical. For each antenna, the collecting area A(/,m) is a real quantity. In
practice, it is usual to specify the antenna response in terms of A(/, m) and to replace
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Va(l, m) by \/A(l, m), which is proportional to the modulus of V4 (I, m). Any phase
introduced by differences between the antennas is ignored in this analysis but in
effect is combined with the phase responses of the amplifiers, filters, transmission
lines, and other elements that make up the signal path to the correlator input. The
overall instrumental response of the interferometer in both phase and amplitude is
calibrated by observing an unresolved source of known position and flux density.
For the case in which the antennas track the source, both the antenna beam center
and the center of the source are at the (/, m) origin. If E(I, m) is the incident field,
the output voltage of an antenna can be written (omitting constant gain factors) as

V= / / ” E(I, m)/A(I, m) dldm . (3.24)

If the antennas do not track the source, a convolution relationship of the form shown
in Eq. (2.15) applies.

3.3.2 Filters

The filters in Fig.3.6 will be regarded as a representation of the overall effect
of components that determine the frequency response of the receiving channels,
including amplifiers, cables, filters, and other components. The frequency response
of a filter will be representedby H(v), which can also be called the bandpass
function. The output of the filter /Vc(v) is related to the input /\7(\1) by

V.(v) = H)V(O) . (3.25)

The Fourier transform of H(v) with respect to time and frequency is the impulse
response of the filter (), which is the response to a voltage impulse §(f) at the
input. Thus, in the time domain, the corresponding expression to Eq. (3.25) is

V() = /_ - hOWV(E—1)dl = ht) * V(1) (3.26)

where the centerline asterisk represents convolution. In specifying filters, it is usual
to use the frequency response rather than the impulse response because the former is
more directly related to the properties of interest in a receiving system and is usually
easier to measure.
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3.3.3 Correlator

The correlator* produces the cross-correlation of the two voltages fed to it. If V()
and V,(7) are the input voltages, the correlator output is

. I "
(@) = Jim /_ v OVt —1)dt (3.27)

where 7 is the time by which voltage V, is delayed with respect to voltage V.
For continuum observations, T is maintained small or zero. The functions V; and
V, that represent the signals may be complex. The output of a single multiplying
device is a real voltage or number. To obtain the complex cross-correlation, which
represents both the amplitude and the phase of the visibility, one can record the
fringe oscillations and measure their phase, or use a complex correlator that contains
two multiplying circuits, as described in Sect. 6.1.7. As follows from Eqgs. (3.20)
and (3.22), the Fourier transform of r(t) is the cross power spectrum, which is
required in observations of spectral lines. This can be obtained by inserting a series
of instrumental delays in the signal to determine the cross-correlation as a function
of 7, as described in Sect. 8.8.3.

3.3.4 Response to the Incident Radiation

We use subscripts 1 and 2 to indicate the two antennas and receiving channels as
in Fig. 3.6. The response of antenna 1 to the signal field E(/, m) given by Eq. (3.24)
is the voltage spectrum /\7(1)). We multiply this by H(v) to obtain the signal at the
output of the filter, and then take the Fourier transform to go from the frequency to
the time domain. Thus

Vo (t) = / - / - / - E(I, m) /A, (I, m)H,(v)e”>™" dl dm dv . (3.28)

A similar expression can be written for the signal V,(7) from antenna 2, and the
output of the correlator is obtained from Eq. (3.27). Note also that if the radiation
were to have some degree of spatial coherence, we should integrate over (I, m)
independently for each antenna (Swenson and Mathur 1968), but here we make

4The term correlator basically refers to a device that measures the complex cross-correlation
function r(7), as given in Eq. (3.27). It is also used to denote simpler systems in which the time
delay 7 is zero or where both signals are represented by real functions. Large systems that cross-
correlate the signal pairs of multielement arrays may contain 107 or more correlator circuits to
accommodate many antennas and many spectral channels. Complete systems of this type are also
commonly referred to as correlators.
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the usual assumption of incoherence. Thus, the correlator output is

i@ =im [ B Vas@mam

T—oo 2T

x Hy(v)Hj(v)e™V 2700 d] dm dt dv

:/00 /oo /°° 1(1, m) /A1 (I m)As (1, myHy (v) HE (v) €™ dl dm dv .
—00 J—00 J—o0 o)

Here, we have replaced the squared field amplitude by the intensity /. The result is a
very general one since the use of separate response functions A; and A, for the two
antennas can accommodate different antenna designs, or different pointing offset
errors, or both. Also, different frequency responses H; and H, are used. In the case
in which the antennas and filters are identical, Eq. (3.29) becomes

r(t) = / - / ” / ” I(I,m)A(L, m)|H(v) e/ didm dv . (3.30)

The result is a function of the delay t of the signal V,(f) with respect to V. (t).
The geometric component of the delay is generally compensated by an adjustable
instrumental delay (discussed in Chaps. 6 and 7), so that ¢ = 0 for radiation from the
direction of the (I, m) origin. For a wavefront incident from the direction (/, m), the
difference in propagation times through the two antennas to the correlator results
from a difference in path lengths of (u/ + vm) wavelengths, for the conditions
indicated in Egs. (3.8) and (3.9). The corresponding time difference is (u/ 4+ vm)/v.
If we take as V; the signal from the antenna for which the path length is the greater
(for positive [ and m), then from Eq. (3.30), the correlator output becomes

o o0 o i
r= / / / I(L,m)A(L, m)|H(v) |*e 72" Wm0) gl dm dv . (3.31)
—00 ¥ —00 J —00

Equation (3.31) indicates that the correlator output measures the Fourier transform
of the intensity distribution modified by the antenna pattern. Let us assume that, as
is often the case, the intensity and the antenna pattern are constant over the bandpass
range of the filters, and the width of the source is small compared with the antenna
beam. The correlator output then becomes

o o i o
r :/ / I(l, m)A(l, m)e_fz”(l“+’"”)dldm/ |H(v)|*dv
—00 v —0O0

—0o0

= AoV(u,v) / - |[H(v)|*dv , (3.32)
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where Ay is the collecting area of the antennas in the direction of the maximum
beam response and V is the visibility as in Eq. (3.2). The filter response H(v) is
a dimensionless (gain) quantity. If the filter response is essentially constant over a
bandwidth Av, Eq. (3.32) becomes

r=AyV(u,v)Av . (3.33)

V(u,v) has units of W m~2 Hz™', A has units of m2, and Av has units of Hz.
This is consistent with r, the output of the correlator, which is proportional to the
correlated component of the received power.

Appendix 3.1 Mathematical Representation of Noiselike
Signals

Electromagnetic fields and voltage waveforms that result from the emissions of
astronomical objects are generally characterized by variations of a random nature.
The received waveforms are usually described as ergodic (time averages and
ensemble averages converge to equal values), which implies strict stationarity. For
a detailed discussion, see, for example, Goodman (1985). Although such fields and
voltages are entirely real, it is often convenient to represent them mathematically
as complex functions. These complex functions can be manipulated in exponential
form, and it is then necessary to take the real part as a final step in a calculation.

A3.1.1 Analytic Signal

A formulation that is often used in optical and radio signal analysis to represent a
function of time is known as the analytic signal, which was introduced by Gabor
(1946): see, for example, Born and Wolf (1999), Bracewell (2000), or Goodman
(1985). Let Vg () represent a real function of which the Fourier (voltage) spectrum is

o0
V(v) = / Vr(1) e 727V . (A3.1)
—00
The inverse transform is
0 o~ P
Vr(t) = / V() e dy . (A3.2)
—00

To form the analytic signal, the imaginary part that is added to produce a complex
function is the Hilbert transform [see, e.g., Bracewell (2000)] of Vz(f). One way
of forming the Hilbert transform is to multiply the Fourier spectrum of the original
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function by j sgn(v).> In forming the Hilbert transform of a function, the amplitudes
of the Fourier spectral components are unchanged, but the phases are shifted by
7/2, with the sign of the shift reversed for negative and positive frequencies. The
Hilbert transform of Vg(f), which becomes the imaginary part V;(¢), is obtained as
the inverse Fourier transform of the modified spectrum, as follows:

o
Vi(t) = —j/ sgn(v)V(v) e?™Vdvy
—00
O o~ o 0o o~ o
=j / V(v) e Vidy —j / V() e Vdy . (A3.3)
—0o0 0

The analytic signal is the complex function that represents V(z), and is
V() = Vr(1) +jVi(1)
0 R ' . ~ |
= / 1+ A V() e™ady + / (1—P2)V(v)e™dv
oo A
o0 -~ .
=2 / V(v) e dv . (A3.4)
0

It can be seen that the analytic signal contains no negative-frequency components.
From Eq. (A3.4), another way of obtaining the analytic signal for a real function
Vk(?) is to suppress the negative-frequency components of the spectrum and double
the amplitudes of the positive ones. It can also be shown [see, e.g., Born and Wolf
(1999)] that

([VrOP) = ([Vi(OP) = J{(VO)V* () , (A3.5)

where angle brackets ( ) indicate the expectation. The analytic signal is so called
because, considered as a function of a complex variable, it is analytic in the lower
half of the complex plane.

From Egs. (A3.2) and (A3.4), we obtain

0 o~ P 00 o~ o
/ V(v)e?™Vidt = 2 Re [ / V(v) eﬂ””dt} ) (A3.6)

—00 0

This is a useful equality that can be used with any Hermitian® function and its
conjugate variable.

3The function sgn(v) is equal to 1 for v > 0 and —1 for v < 0. The Fourier transform of sgn(v) is
—j/mt (see Appendix 2.1).

%A Hermitian function is one in which the real part of the Fourier transform is an even function
and the imaginary part is an odd function.
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In many cases of interest in radio astronomy and optics, the bandwidth of a
signal is small compared with the mean frequency vy, which in many instrumental
situations is the center frequency of a filter. Such a waveform resembles a sinusoid
with amplitude and phase that vary with time on a scale that is slow compared with
the period 1/vy. The analytic signal can then be written as

V(1) = C(1) /Zrror=*0l (A3.7)

where C and @ are real. The spectral components of the function under considera-
tion are appreciable only for small values of |v — vg|. Thus, C(¢) and @(¢) consist
of low-frequency components, and the period of the time variation of C and @ is
characteristically the reciprocal of the bandwidth. The real and imaginary parts of
the analytic signal can be written as

Vr(t) = C(1) cos[2mvot — D(1)] , (A3.8)
Vi(t) = C(¥) sin[2vot — @(1)] . (A3.9)

The modulus C(7) of the complex analytic signal can be regarded as a modulation
envelope, and @ (7) represents the phase. In cases where the width of the signal band
and the effect of the modulation are not important, it is clearly possible to consider C
and @ as constants, that is, to represent the signals as monochromatic waveforms of
frequency vy, as in the introductory discussion. The case in which the bandwidth is
small compared with the center frequency, as represented by Eq. (A3.7), is referred
to as the quasi-monochromatic case.

As a simple example, /""" is the analytic signal corresponding to the real
function of time cos(2wvf). The Fourier spectrum of ¢/>"V has a component at
frequency v only, but the Fourier spectrum of cos(2wvf) has components at the
two frequencies +v. In general, it is necessary to consider the negative-frequency
components in the analysis of waveforms, unless they are represented by the
analytic signal formulation, for which negative-frequency components are zero.
For example, in Eq. (2.8), we included negative-frequency components. If we had
omitted the negative frequencies and doubled the amplitude of the positive ones, the
cosine term in Eq. (2.9) would have been replaced by e/27*0%. We would then have
taken the real part to arrive at the correct result. In the approach used in Chap. 2, it
is necessary to include the negative frequencies since the autocorrelation function
is purely real, and thus its Fourier transform is Hermitian. In this book, we have
generally included the negative frequencies rather than using the analytic signal and
have made use of the relationship in Eq. (A3.6) when it is advantageous to do so.

It is interesting to note another property of functions of which the real and
imaginary parts are a Hilbert transform pair. If the real and imaginary parts of a
waveform (i.e., a function of time) are a Hilbert transform pair, then its spectral
components are zero for negative frequencies. If we consider the inverse Fourier
transforms, it is seen that if the waveform amplitude is zero for # < 0, the real and
imaginary parts of the spectrum are a Hilbert transform pair. The response of any
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electrical system to an impulse function applied at time ¢+ = 0 is zero for t < 0,
since an effect cannot precede its cause. A function representing such a response is
referred to as a causal function, and the Hilbert transform relationship applies to its
spectrum.

A3.1.2 Truncated Function

Another consideration in the representation of waveforms concerns the existence
of the Fourier transform. A condition of the existence of the transform is that the
Fourier integral over the range oo be finite. Although this is not always the case,
it is possible to form a function for which the Fourier transform exists and that
approaches the original function as the value of some parameter tends toward a
limit. For example, the original function can be multiplied by a Gaussian so that the
product falls to zero at large values, and the Fourier integral exists. The Fourier
transform of the product approaches that of the original function as the width
of the Gaussian tends to infinity. Such transforms in the limit are applicable to
periodic functions such as cos(2zvf), as shown by Bracewell (2000). In the case
of noiselike waveforms, the frequency spectrum of a time function can always be
determined with satisfactory accuracy by analyzing a sufficiently long (but finite)
time interval. In practice, the time interval needs to be long compared with the
physically significant timescales that are associated with the waveform, such as the
reciprocals of the mean frequency and of the bandwidth. Thus, if the function V' (¢)
is truncated at £7', the Fourier transform with respect to frequency becomes

~ 1 7 ,
— 1i —j2mvt
V() = lim /_ TV(t) ey (A3.10)

It is sometimes useful to define the truncated function as Vr(f), where

Vr(t) = V() , [t < T,
Vr(®) =0, lt| > T, (A3.11)

and to write the Fourier transform as

o0

~ 1 .
— 1 —j2mvt
V() = lim ZT/_OOVT(I) eT2mvigy (A3.12)

In the case of the analytic signal, truncation of the real part does not necessarily
result in truncation of its Hilbert transform. It may therefore be necessary that the
limits of the integral over time be 400, as in Eq. (A3.12), rather than £7.
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Chapter 4
Geometrical Relationships, Polarimetry,
and the Interferometer Measurement Equation

In this chapter, we start to examine some of the practical aspects of interferometry.
These include baselines, antenna mounts and beam shapes, and the response to
polarized radiation, all of which involve geometric considerations and coordinate
systems. The discussion is concentrated on Earth-based arrays with tracking
antennas, which illustrate the principles involved, although the same principles
apply to other systems such as those that include one or more antennas in Earth
orbit.

4.1 Antenna Spacing Coordinates and (u, v) Loci

Various coordinate systems are used to specify the relative positions of the antennas
in an array, and of these, one of the more convenient for terrestrial arrays is shown
in Fig.4.1. A right-handed Cartesian coordinate system is used, where X and Y
are measured in a plane parallel to the Earth’s equator, X in the meridian plane'
(defined as the plane through the poles of the Earth and the reference point in the
array), Y toward the east, and Z toward the north pole. In terms of hour angle H
and declination §, coordinates (X, Y, Z) are measured toward (H = 0,5 = 0),
(H = —6"8 = 0), and (§ = 90°), respectively. If (X;, Y, Z;) are the components

'In VLBI observations, it is customary to set the X axis in the Greenwich meridian, in which case
H is measured with respect to that meridian rather than a local one.
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Fig. 4.1 The (X,Y,Z) Z
coordinate system for J
specification of relative
positions of antennas.
Directions of the axes
specified are in terms of hour
angle H and declination §.

(6 = 90°)

(H=20,6 =0

X —=
(H=-6"6=0
Y
of D) in the (X, Y, Z) system, the components (u, v, w) are given by

u sin H cosH 0 X

v|=|—-sindcosH sindsinH cosé Y, | . 4.1)

cosdcosH —cosésinH siné V)

Here (H,§) are usually the hour angle and declination of the phase reference
position. The elements of the transformation matrix given above are the direction
cosines of the (u, v, w) axes with respect to the (X, Y, Z) axes and can easily be
derived from the relationships in Fig. 4.2. Another method of specifying the baseline
vector is in terms of its length, D, and the hour angle and declination, (k, d), of the
intersection of the baseline direction with the Northern Celestial Hemisphere. The
coordinates in the (X, Y, Z) system are then given by

X cosdcosh
Y| =D|—cosdsinh| . “4.2)
V4 sind

The coordinates in the («, v, w) system are, from Eqs. 4.1 and 4.2,

u cosdsin(H — h)
v | =Dy |sindcosé —cosdsinécos(H—h) | . 4.3)
w sind sin § 4 cosd cos § cos(H — h)
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Celestial
Pole

Local meridian

-
~7 5
-~
rd
7
/
3 H
i u
Y

Celestial
equator

Fig. 4.2 Relationships between the (X, Y, Z) and (u, v, w) coordinate systems. The (u, v, w) sys-
tem is defined for observation in the direction of the point S, which has hour angle and declination
H and §. As shown, S is in the eastern half of the hemisphere and H is therefore negative. The
direction cosines in the transformation matrix in Eq. (4.1) follow from the relationships in this
diagram. The relationship in Eq. (4.2) can also be derived if we let S represent the direction of the
baseline and put the baseline coordinates (4, d) for (H, §).

The (D, h, d) system was used more widely in the earlier literature, particularly for
instruments involving only two antennas; see, for example, Rowson (1963).

When the (X, Y, Z) components of a new baseline are first established, the usual
practice is to determine the elevation &, azimuth (A, and length of the baseline by
field surveying techniques. Figure 4.3 shows the relationship between (&, A) and
other coordinate systems; see also Appendix 4.1. For latitude £, using Eqs. (4.2)
and (A4.2), we obtain

X cos Lsin & — sin L cosEcos A
Y| =D cosEsin A . “4.4)
Z sin Lsin& + cos LcosEcos A

Examination of Eq.(4.1) or (4.3) shows that the locus of the projected antenna
spacing components # and v defines an ellipse with hour angle as the variable. Let
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o~ & . 180° +H
90 _H "‘-
Z o
90°
Local meridian
o Observer's horizon
e — m— ’L
P =~ e Celestial equator
.
yra
/ 0
/.

Fig. 4.3 Relationship between the celestial coordinates (H, ) and the elevation and azimuth
(&, A) of apoint S as seen by an observer at latitude L. P is the celestial pole and Z the observer’s
zenith. The parallactic angle v, is the position angle of the observer’s vertical on the sky measured
from north toward east. The lengths of the arcs measured in terms of angles subtended at the center
of the sphere O are as follows:

ZP =90° — L PO =L SR=6& RO=A
SZ=90°—& SP=90°—§ SQ = cos~!(cos&EcosA).

The required relationships can be obtained by application of the sine and cosine rules for spherical
triangles to ZPS and PQS and are given in Appendix 4.1. Note that with S in the eastern half of the
observer’s sky, as shown, H and v, are negative.

(Ho, 80) be the phase reference position. Then from Eq. (4.1), we have

v—2Z,cosé
u2+( A 0

2
=X 472, 4.5
sind ) RS 4.5

In the (u,v) plane, Eq. (4.5) defines an ellipse’ with the semimajor axis equal to

X2 + Y3, and the semiminor axis equal to sin 50\/ X2 + Y3, as in Fig.4.4a. The

ellipse is centered on the v axis at (u, v) = (0, Z) cos §¢). The arc of the ellipse that
is traced out during any observation depends on the azimuth, elevation, and latitude
of the baseline; the declination of the source; and the range of hour angle covered,

2The first mention of elliptical loci appears to have been by Rowson (1963).
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(a) v (b) v'

/‘- q
1 XE+Y§
Z) cot ép
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Fig. 4.4 (a) Spacing vector locus in the (u, v) plane from Eq. (4.5). (b) Spacing vector locus in
the (, v’) plane from Eq. (4.8). The lower arc in each diagram represents the locus of conjugate
values of visibility. Unless the source is circumpolar, the cutoff at the horizon limits the lengths of
the arcs.

as illustrated in Fig.4.5. Since V(—u, —v) = V*(u, v), any observation supplies
simultaneous measurements on two arcs, which are part of the same ellipse only if
Z, = 0.

4.2 (u’,v")Plane

The («/, v’) plane, which was introduced in Sect. 3.1.2 with regard to east—west
baselines, is also useful in discussing certain aspects of the behavior of arrays in
general. This plane is normal to the direction of the pole and can be envisaged as the
equatorial plane of the Earth. For non-east—west baselines, we can also consider the
projection of the spacing vectors onto the (¢, v’) plane. All such projected vectors
sweep out circular loci as the Earth rotates. The spacing components in the (i, v')
plane are derived from those in the (u, v) plane by the transformation v’ = u, v’ =
v cosec §¢. In terms of the components of the baseline (X3, Y, , Zy) for two antennas,
we obtain from Eq. (4.1)

' =X, sinHy + Y; cosHy (4.6)
v = =X, cosHy + Yy sinHy + Z; cot§ . 4.7
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Fig. 4.5 Examples of (u, v) loci to show the variation with baseline azimuth A and observing
declination § (the baseline elevation & is zero). The baseline length in all cases is equal to the
length of the axes measured from the origin. The tracking range is —4 to +4 h for § = —30°,
and —6 to +6 h in all other cases. Marks along the loci indicate 1-h intervals in tracking. Note the
change in ellipticity for east-west baselines (A = 90°) with § = 30° and with § = 70°. The loci
are calculated for latitude 40°.

The loci are circles centered on (0, Z; cot§y), with radii ¢’ given by
q* =u?+ (W —Zycotdp)’ = X; + Y7, (4.8)

as shown in Fig. 4.4b. The projected spacing vectors that generate the loci rotate
with constant angular velocity w,, the rotation velocity of the Earth, which is easier
to visualize than the elliptic motion in the (u,v) plane. In particular, problems
involving the effect of time, such as the averaging of visibility data, are conveniently
dealt with in the (¢, v") plane. Examples of its use will be found in Sects. 4.4, 6.4.2,
and 16.3.2. In Fourier transformation, the conjugate variables of («’, v") are (', m'),
where I' = [ and m" = msin{, that is, the image plane is compressed by a factor
sin § ¢ in the m direction.
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4.3 Fringe Frequency

The component w of the baseline represents the path difference to the two antennas
for a plane wave incident from the phase reference position. The corresponding time
delay is w/ vy, where vy is the center frequency of the observing band. The relative
phase of the signals at the two antennas changes by 27 radians when w changes
by unity. Thus, the frequency of the oscillations at the output of the correlator that
combines the signals is

dw _ dw dH

P —w, [X) cosdsinH + Y, cos§ cos H] = —w, ucosé , (4.9)

where w, = dH/dt = 7.29115 x 1071 rad s™! = w, is the rotation velocity
of the Earth with respect to the fixed stars: for greater accuracy, see Seidelmann
(1992). The sign of dw/dt indicates whether the phase is increasing or decreasing
with time. The result shown above applies to the case in which the signals suffer no
time-varying instrumental phase changes between the antennas and the correlator
inputs. In an array in which the antennas track a source, time delays to compensate
for the space path differences w are applied to maintain correlation of the signals.
If an exact compensating delay were introduced in the radio frequency section of
the receivers, the relative phases of the signals at the correlator input would remain
constant, and the correlator output would show no fringes. However, except in some
low-frequency systems like LOFAR (de Vos et al. 2009), the compensating delays
are usually introduced at an intermediate frequency, of which the band center v,
is much less than the observing frequency vg. The adjustment of the compensating

delay introduces a rate of phase change 2w v, (dw/dt) /vy = —w.u(cos §)v,/vo. The
resulting fringe frequency at the correlator output is
dw Vg Va
VF = 1F = —weucosé|1F , (4.10)
’ dt Vo Vo

where the negative sign refers to upper-sideband reception and the positive sign
to lower-sideband reception; these distinctions and the double-sideband case are
explained in Sect. 6.1.8. From Eq. (4.3), the right side of Eq.(4.10) is equal to
—w,Dcosdcos§sin(H — h)(vo F vyg)/c. Note that (vy F vy) is usually determined
by one or more local oscillator frequencies.

4.4 Visibility Frequencies

As explained in Sect. 3.1, the phase of the complex visibility is measured with
respect to that of a hypothetical point source at the phase reference position. The
fringe-frequency variations do not appear in the visibility function, but slower
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Fig. 4.6 The («/, v’) plane showing sinusoidal corrugations that represent the visibility of a point
source. For simplicity, only the real part of the visibility is included. The most rapid variation in
the visibility is encountered at the point P, where the direction of the spacing locus is normal to
the ridges in the visibility. w, is the rotation velocity of the Earth.

variations occur that depend on the position of the radiating sources within the
field. We now examine the maximum temporal frequency of the visibility variations.
Consider a point source represented by the delta function §(/;, m;). The visibility
function is the Fourier transform of §(/;, m;), which is

eI Tvm) — cog 2 (ul; + vmy) — jsin 27 (ul; + vmy) . (4.11)

This expression represents two sets of sinusoidal corrugations, one real and one
imaginary. The corrugations represented by the real part of Eq. (4.11) are shown in
(', v") coordinates in Fig. 4.6, where the arguments of the trigonometric functions
in Eq. (4.11) become 27 (u'l; + v'm; sin§g). The frequency of the corrugations in
terms of cycles per unit distance in the (¢, v’) plane is /; in the ' direction, m sin 8
in the v’ direction, and

= \/lf + m?sin* 8 (4.12)

in the direction of most rapid variations. Expression (4.12) is maximized at the pole
and then becomes equal to r;, which is the angular distance of the source from the
(1, m) origin. For any antenna pair, the spatial frequency locus in the (¢, v") plane is
a circle of radius ¢’ generated by a vector rotating with angular velocity w,, where
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¢’ is as defined in Eq. (4.8). From Fig. 4.6, it is clear that the temporal variation of
the measured visibility is greatest at the point P and is equal to w,r}q’. This is a
useful result, since if r| represents a position at the edge of the field to be imaged,
it indicates that to follow the most rapid variations, the visibility must be sampled
at time intervals sufficiently small compared with (w,7;¢’)~". Also, we may wish to
alternate between two frequencies or polarizations during an observation, and these
changes must be made on a similarly short timescale. Note that this requirement is
also covered by the sampling theorem in Sect. 5.2.1.

4.5 Calibration of the Baseline

The position parameters (X, Y, Z) for each antenna relative to a common reference
point can usually be established to a few centimeters or millimeters by a conven-
tional engineering survey. Except at long wavelengths, the accuracy required is
greater than this. We must be able to compute the phase at any hour angle for a
point source at the phase reference position to an accuracy of, say, 1° and subtract
it from the observed phase. This reference phase is represented by the factor ¢/>™"
in Eq.(3.7), and it is therefore necessary to calculate w to 1/360 of the observing
wavelength. The baseline parameters can be obtained to the required accuracy from
observations of calibration sources for which the positions are accurately known.
The phase of such a calibrator observed at the phase reference position (Ho, 8 ¢)
should ideally be zero. However, if practical uncertainties are taken into account,
the measured phase is, from Eq. (4.1),

2 Aw + i = 27 (cos8gcos HyAX) — cos ¢ sin HyAY), + sindgAZy) + ¢in ,
(4.13)

where the prefix A indicates the uncertainty in the associated quantity, and ¢,
is an instrumental phase term for the two antennas involved. If a calibrator is
observed over a wide range of hour angle, AX; and AY) can be obtained from
the even and odd components, respectively, of the phase variation with Hy. To
measure AZ,, calibrators at more than one declination must be included. A possible
procedure is to observe several calibrators at different declinations, repeating a
cycle of observations for several hours. For the kth observation, we can write, from
Eq. (4.13),

aAX), + DAYy + e AZy + i = Pr s (4.14)

where ay, by, and c; are known source parameters, and ¢ is the measured phase.
The calibrator source position need not be accurately known since the phase
measurements can be used to estimate both the source positions and the baselines.
Techniques for this analysis are discussed in Sect. 12.2. In practice, the instrumental
phase ¢i, will vary slowly with time: instrumental stability is discussed in Chap. 7.
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Also, there will be atmospheric phase variations, which are discussed in Chap. 13.
These effects set the final limit on the attainable accuracy in observing both
calibrators and sources under investigation.

Measurement of baseline parameters to an accuracy of order 1 part in 107 (e.g.,
3 mm in 30 km) implies timing accuracy of order 10~’w;! ~ 1 ms. Timekeeping
is discussed in Sects. 9.5.8 and 12.3.3.

4.6 Antennas

4.6.1 Antenna Mounts

In discussing the dependence of the measured phase on the baseline components,
we have ignored any effects introduced by the antennas, which is tantamount to
assuming that the antennas are identical and their effects on the signals cancel out.
This, however, is only approximately true. In most synthesis arrays, the antennas
must have collecting areas of tens or hundreds of square meters for reasons of
sensitivity. Except for dipole arrays at meter wavelengths, the antennas required are
large structures that must be capable of accurately tracking a radio source across the
sky. Tracking antennas are almost always constructed either on equatorial mounts
(also called polar mounts) or on altazimuth mounts, as illustrated in Fig.4.7. In
an equatorial mount, the polar axis is parallel to the Earth’s axis of rotation, and
tracking a source requires only that the antenna be turned about the polar axis at the

(a) q (b)

Declination

axis Elevation

axis
Azimuth axis
(vertical)

Fig. 4.7 Schematic diagrams of antennas on (a) equatorial (polar) and (b) altazimuth mounts. In
the positions shown, the declination and elevation axes are normal to the plane of the page. In
the equatorial mount, there is a distance D, between the two rotational axes, but in the altazimuth
mount, the axes often intersect, as shown.
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sidereal rate. Equatorial mounts are mechanically more difficult to construct than
altazimuth ones and are found mainly on antennas built prior to the introduction of
computers for control and coordinate conversion.

In most tracking arrays used in radio astronomy, the antennas are circularly
symmetrical reflectors. A desirable feature is that the axis of symmetry of the
reflecting surface intersect both the rotation axes of the mount. If this is not the
case, pointing motions will cause the antenna to have a component of motion along
the direction of the beam. It is then necessary to take account of phase changes
associated with small pointing corrections, which may differ from one antenna to
another. In most antenna mounts, however, whether of equatorial or altazimuth type,
the reflector axis intersects the rotation axes with sufficient precision that phase
errors of this type are negligible.

It is convenient but not essential that the two rotation axes of the mount intersect.
The intersection point then provides an appropriate reference point for defining the
baseline between antennas, since whatever direction in which the antenna points,
its aperture plane is always the same distance from that point as measured along
the axis of the beam. In most large equatorially mounted antennas, the polar and
declination axes do not intersect. In many cases, there is an offset of several meters
between the polar and declination axes. Wade (1970) considered the implication of
this offset for high-accuracy phase measurements and showed that it is necessary to
take account of variations in the offset distance and in the accuracy of alignment
of the polar axis. These results can be obtained as follows. Let i and s be unit
vectors in the direction of the polar axis and the direction of the source under
observation, respectively, and let D, be the spacing vector between the two axes
measured perpendicular to i (see Fig. 4.7a). The quantity that we need to compute is
the projection of D, in the direction of observation, D, - s. Since D, is perpendicular
to i, the cosine of the angle between D, and s is \/ 1 — (i-s)2. Thus,

D,-s=D,J/1—(i-5)?, (4.15)

where D, is the magnitude of D,. In the (X, Y, Z) coordinate system in which the
baseline components are measured, i has direction cosines (ix, iy, iz), and s has
direction cosines given by the transformation matrix on the right side of Eq. (4.2),
but with 4 and d replaced by H and §, which refer to the direction of observation.
If the polar axis is correctly aligned to within about 1 arcmin, ix and iy are of order
1073 and i ~ 1. Thus, we can use the direction cosines to evaluate Eq. (4.15), and
ignoring second-order terms in iy and iy, we obtain

D,-s = D,(cos§ —ix sind cos H + iy sind sin H) . (4.16)

If the magnitude of D, is expressed in wavelengths, the difference in the values of
D, - s for the two antennas must be added to the w component of the baseline given
by Eq. (4.1) when calculating the reference phase at the field center. To do this, it is
first necessary to determine the unknown constants in Eq. (4.16), which can be done
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by adding a term of the form 27 (o cos §¢ + B sin 6 cos Hy + y sin ¢ sin Hy) to the
right side of Eq. (4.13) and extending the solution to include «, B, and y. The result
then represents the differences in the corresponding mechanical dimensions of the
two antennas. Note that the terms in ix and iy in Eq. (4.16) are important only when
D, is large. If D, is no more than one wavelength, it should be possible to ignore
them.

The preceding analysis can be extended to the case of an altazimuth mount
by letting i represent the direction of the azimuth axis, as in Fig.4.7b. Then
ix = cos(L + ¢), iy = sin &, and iz = sin(L + ¢), where L is the latitude and ¢
and &’ are, respectively, the tilt errors in the XZ plane and in the plane containing the
Y axis and the local vertical. The errors again should be quantities of order 1073, In
many altazimuth mounts, the axes are designed to intersect, and D, represents only
a structural tolerance. Thus, we assume that D, is small enough to allow terms in
iyD, and €D, to be ignored, and evaluation of Eq. (4.15) gives

D,-s=D, [1 — (sinLsind + cochos8cosH)2] =D,cos &, 4.17)

where & is the elevation of direction s: see Eq. (A4.1) of Appendix 4.1. Correction
terms of this form can be added to the expressions for the baseline calibration and
forw.

4.6.2 Beamwidth and Beam-Shape Effects

The interpretation of data taken with arrays containing antennas with nonidentical
beamwidths is not always a straightforward matter. Each antenna pair responds
to an effective intensity distribution that is the product of the actual intensity
of the sky and the geometric mean of the normalized beam profiles. If different
pairs of antennas respond to different effective distributions, then, in principle, the
Fourier transform relationship between (I, m) and V(u, v) cannot be applied to the
ensemble of observations. Mixed arrays are sometimes used in VLBI when it is
necessary to make use of antennas that have different designs. However, in VLBI
studies, the source structure under investigation is very small compared with the
widths of the antenna beams, so the differences in the beams can usually be ignored.
If cases arise in which different beams are used and the source is not small compared
with beamwidths, it is possible to restrict the measurements to the field defined by
the narrowest beam by convolution of the visibility data with an appropriate function
in the (u, v) plane.

A problem similar to that of unmatched beams occurs if the antennas have alt-
azimuth mounts and the beam contours are not circularly symmetrical about the
nominal beam axis. As a point in the sky is tracked using an altazimuth mount, the
beam rotates with respect to the sky about this nominal axis. This rotation does not
occur for equatorial mounts. The angle between the vertical at the antenna and the
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direction of north at the point being observed (defined by the great circle through
the point and the North Pole) is the parallactic angle v, in Fig. 4.3. Application of
the sine rule to the spherical triangle ZPS gives

—siny, _ —sinH _ sin A ’ 4.18)
cos L cos& cosd

which can be combined with Eq. (A4.1) or (A4.2) to express ¥, as a function of
(A,E) or (H,§). If the beam has elongated contours and width comparable to
the source under observation, rotation of the beam causes the effective intensity
distribution to vary with hour angle. This is particularly serious in the case
of observations to reveal the structure of the most distant Universe, for which
foreground sources need to be accurately removed. For the Australia Pathfinder
Array (DeBoer et al. 2009), the 12-m-diameter antennas have altazimuth mounts,
with a third axis that allows the reflector, feed supports, and feeds to be rotated
about the reflector axis so the beam pattern and the angle of polarization remain
fixed relative to the sky.

4.7 Polarimetry

Polarization measurements are very important in radio astronomy. Most synchrotron
radiation shows a small degree of polarization that indicates the distribution of the
magnetic fields within the source. As noted in Chap. 1, this polarization is generally
linear (plane) and can vary in magnitude and position angle over the source. As
frequency is increased, the percentage polarization often increases because the
depolarizing action of Faraday rotation is reduced. Polarization of radio emission
also results from the Zeeman effect in atoms and molecules, cyclotron radiation and
plasma oscillations in the solar atmosphere, and Brewster angle effects at planetary
surfaces. The measure of polarization that is almost universally used in astronomy
is the set of four parameters introduced by Sir George Stokes in 1852. It is assumed
here that readers have some familiarity with the concept of Stokes parameters or
can refer to one of numerous texts that describe them [e.g., Born and Wolf (1999);
Kraus and Carver (1973); Wilson et al. (2013)].

Stokes parameters are related to the amplitudes of the components of the electric
field, E, and E,, resolved in two perpendicular directions normal to the direction
of propagation. Thus, if E, and E, are represented by &,() cos[2mvt + §,(¢)] and
&, (1) cos[2mvt + 8,(1)], respectively, Stokes parameters are defined as follows:

1= (&) + (& W)

0 = (&)~ (&)

U = 2{&:(1) &,(1) cos [8.(r) — 8,(1)])

V = 2(8:(1) &,(1) sin [c(1) — 8,(n)]) . (4.19)
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where the angular brackets denote the expectation or time average. This averaging is
necessary because in radio astronomy, we are dealing with fields that vary with time
in a random manner. Of the four parameters, / is a measure of the total intensity of
the wave, Q and U represent the linearly polarized component, and V represents the
circularly polarized component. Stokes parameters can be converted to a measure
of polarization with a more direct physical interpretation as follows:

2 UZ
my = Vo 1+ (4.20)
\%
me= 421)
2 2 2
m, = Ve +IU v (4.22)
intan_l(g) , 0<6<m, (4.23)

where my, m., and m, are the degrees of linear, circular, and total polarization,
respectively, and 6 is the position angle of the plane of linear polarization. For
monochromatic signals, m; = 1 and the polarization can be fully specified by just
three parameters. For random signals such as those of cosmic origin, m, < 1, and all
four parameters are required. The Stokes parameters all have the dimensions of flux
density or intensity, and they propagate in the same manner as the electromagnetic
field. Thus, they can be determined by measurement or calculation at any point along
a wave path, and their relative magnitudes define the state of polarization at that
point. Stokes parameters combine additively for independent waves. When they are
used to specify the total radiation from any point on a source, I, which measures the
total intensity, is always positive, but O, U, and V can take both positive and negative
values depending on the position angle or sense of rotation of the polarization.
The corresponding visibility values measured with an interferometer are complex
quantities, as will be discussed later.

In considering the response of interferometers and arrays, up to this point we
have ignored the question of polarization. This simplification can be justified by
the assumption that we have been dealing with completely unpolarized radiation for
which only the parameter / is nonzero. In that case, the response of an interferometer
with identically polarized antennas is proportional to the total flux density of the
radiation. As will be shown below, in the more general case, the response is
proportional to a linear combination of two or more Stokes parameters, where
the combination is determined by the polarizations of the antennas. By observing
with different states of polarization of the antennas, it is possible to separate the
responses to the four parameters and determine the corresponding components of
the visibility. The variation of each parameter over the source can thus be imaged
individually, and the polarization of the radiation emitted at any point can be
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determined. There are alternative methods of describing the polarization state of
a wave, of which the coherency matrix is perhaps the most important (Ko 1967a,b).
However, the classical treatment in terms of Stokes parameters remains widely used
by astronomers, and we therefore follow it here.

4.7.1 Antenna Polarization Ellipse

The polarization of an antenna in either transmission or reception can be described
in general by stating that the electric vector of a transmitted signal traces out an
elliptical locus in the wavefront plane. Most antennas are designed so that the ellipse
approximates a line or circle, corresponding to linear or circular polarization, in the
central part of the main beam. However, precisely linear or circular responses are
hardly achievable in practice. As shown in Fig. 4.8, the essential characteristics of
the polarization ellipse are given by the position angle i of the major axis, and by

(b}

sin cos

w2

Fig. 4.8 (a) Description of the general state of polarization of an antenna in terms of the
characteristics of the ellipse generated by the electric vector in the transmission of a sinusoidal
signal. The position angle ¥ of the major axis is measured with respect to the x axis, which
points toward the direction of north on the sky. A wave approaching from the sky is traveling
toward the reader, in the direction of the positive z axis. For such a wave, the arrow on the ellipse
indicates the direction of right-handed polarization. (b) Model antenna that radiates the electric
field represented by the ellipse in (a) when a signal is applied to the terminal A. Cos y and sin y
indicate the amplitudes of the voltage responses of the units shown, and 77/2 indicates a phase lag.
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the axial ratio, which it is convenient to express as the tangent of an angle y, where
—n/4 <y <m/4.

An antenna of arbitrary polarization can be modeled in terms of two idealized
dipoles as shown in Fig. 4.8b. Consider transmitting with this antenna by applying a
signal waveform to the terminal A. The signals to the dipoles pass through networks
with voltage responses proportional to cos y and sin y, and the signal to the y’ dipole
also passes through a network that introduces a 7/2 phase lag. Thus, the antenna
produces field components of amplitude &y and &, in phase quadrature along the
directions of the major and minor axes of the ellipse. If the antenna input is a radio
frequency sine wave Vj cos 2 vt, then the field components are

Ey cos(2mvt) o Vycos y cos(2mvr)
(4.24)
&y sin(2wvt) o« Vypsin ysin(2wvi) .

In these equations, the y’ component lags the X' component by /2. If y = 7 /4,
the radiated electric vector traces a circular locus with the sense of rotation from the
X' axis to the y’ axis (i.e., counterclockwise in Fig. 4.8a). This is consistent with the
quarter-cycle delay in the signal to the y’ dipole. Then a wave propagating in the
positive 7’ direction of a right-handed coordinate system (i.e., toward the reader in
Fig.4.8a) is right circularly polarized in the IEEE (1977) definition. (This definition
is now widely adopted, but in some of the older literature, such a wave would be
defined as left circularly polarized.) The International Astronomical Union (IAU
1974) has adopted the IEEE definition and states that the position angle of the
electric vector on the sky should be measured from north through east with reference
to the system of right ascension and declination. The IAU also states that “the
polarization of incoming radiation, for which the position angle, 6, of the electric
vector, measured at a fixed point in space, increases with time, is described as right-
handed and positive.” Note that Stokes parameters in Eq. (4.19) specify only the
field in the (x, y) plane, and to determine whether a circularly polarized wave is left-
or right-handed, the direction of propagation must be given. From Eq. (4.19) and
the definitions of E, and E, that precede them, a wave traveling in the positive z
direction in right-handed coordinates is right circularly polarized for positive V.

In reception, an electric vector that rotates in a clockwise direction in Fig. 4.8
produces a voltage in the y’ dipole that leads the voltage in the x’ dipole by 7/2 in
phase, and the two signals therefore combine in phase at A. For counterclockwise
rotation, the signals at A are in antiphase and cancel one another. Thus, the antenna
in Fig. 4.8 receives right-handed waves incident from the positive z direction (that
is, traveling toward negative z), and it transmits right-handed polarization in the
direction toward positive z. To receive a right-handed wave propagating down from
the sky (in the positive z direction), the polarity of one of the dipoles must be
reversed, which requires that y = —x /4.
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To determine the interferometer response, we begin by considering the output of
the antenna modeled in Fig. 4.8b. We define the field components in complex form:

E(t) = &(1) P01

_ (4.25)
Ey([) — Sy(t) e][var+5y(r)] )
The signal voltage received at A in Fig. 4.8b, expressed in complex form, is
V' = Eycosy—jEysiny , (4.26)

where the factor —j represents the 7/2 phase lag applied to the y signal, for the
fields represented by Eq.(4.25). Now we need to specify the polarization of the
incident wave in terms of Stokes parameters. In accordance with TAU (1974), the
axes used are in the directions of north and east on the sky, which are represented
by x and y in Fig. 4.8a. In terms of the field in the x and y directions, the components
of the field in the x’ and y’ directions are

Ev(t) = [6x(1) D cosyr + &y(t) e sin ] 2™

' ' ' (4.27)
Ey (1) = [~&:(1) D sinyr + &,(1) e cos y] e .
Derivation of the response at the output of the correlator for antennas m and n of an
array involves straightforward manipulation of some rather lengthy expressions that
are not reproduced here. The steps are as follows:

1. Substitute Ey and Ey from Eq. (4.27) into Eq. (4.26) to obtain the output of each
antenna.

2. Indicate values of ¥, y, and V' for the two antennas by subscripts m and n and
calculate the correlator output, Ry, = G (V,,V,*), where G, is an instrumental
gain factor.

3. Substitute Stokes parameters for &, &y, dy, 8, using Eq. (4.19) as follows:

((Ere?)(Ere™)*)
(Eye™)(Eye™)*)
( )*)
( )=

—_ = —

&)=11+0
&)=,0-0)

(4.28)
&8,/ = [(U +jV)

(Exe?™) (Eye’™)
(Ere™)* (Eyel)

E&ye 1O = LU —jV)
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The result is

Rmn = éGmn {Iv [Cos(wm - %) COS(Xm - Xn) +JSIH(WVV1 - Wn) Sin(Xm + Xn)]
+ Oy [cos(Ym + V) cOS(Ym + Xn) +j SN + V) SIN(xm — xn)]
+ Uy [sin(¥m + ¥a) coS(Ym + xn) —Jj€OS(Vim + V) Sin(Ym — xn)]

— Vi [cos(¥m — ¥n) SIn(xm + xn) +Jsin(Wm — V) cos(rm — xn)l} -
4.29)

In this equation, a subscript v has been added to Stokes parameter symbols
to indicate that they represent the complex visibility for the distribution of the
corresponding parameter over the source, not simply the intensity or brightness of
the radiation. Equation (4.29) is a useful general formula that applies to all cases.
It was originally derived by Morris et al. (1964) and later by Weiler (1973). In the
derivation by Morris et al., the sign of V,, is opposite to that given by Weiler and in
Eq. (4.29). This difference results from the convention for the sense of rotation for
circular polarization. In the convention we have followed in Fig. 4.8, two identical
antennas both adjusted to receive right circularly polarized radiation would have
parameters ¥,, = ¥, and y,, = y, = —n/4. In Eq.(4.29), these values correspond
to a positive sign for V,. Thus, in Eq. (4.29), positive V,, represents right circular
polarization incident from the sky, which is in agreement with the IAU definition
in 1973 (IAU 1974). The derivation by Morris et al. predates the IAU definition
and follows the commonly used convention at that time, in which the sign for
V was the reverse of that in the IAU definition. Note that in what follows, the
factor 1/2 in Eq. (4.29) is omitted and considered to be subsumed within the overall
gain factor. Equation (4.29) was the main basis for polarization measurements in
radio interferometry for at least three decades until an alternative formulation was
developed by Hamaker et al. (1996). This later formulation is introduced in Sect. 4.8.

4.7.2 Stokes Visibilities

As noted above, the symbols I,,, Q,, U,, and V,, in Eq. (4.29) refer to the correspond-
ing visibility values as measured by the spaced antennas. We shall therefore refer to
these quantities as Stokes visibilities, following the nomenclature of Hamaker et al.
(1996). Stokes visibilities are the quantities required in imaging polarized emission,
and they can be derived from the correlator output values by using Eq. (4.29). This
equation is considerably simplified when the nominal polarization characteristics of
practical antennas are inserted. First, consider the case in which both antennas are
identically polarized. Then y,, = xu, ¥m = ¥, and Eq. (4.29) becomes

Ry = Guully +Qy 08 24, cos 2y, + Uy sin 24, cos 2y, —Vy sin 2y, ] . (4.30)
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In considering linearly polarized antennas, it is convenient to use subscripts x and
y to indicate two orthogonal planes of polarization. For example, R,, represents the
correlator output for antenna m with polarization x and antenna n with polarization
y. For linearly polarized antennas, y,, = y, = 0. Consider two antennas, each with
separate outputs for linear polarizations x and y. Then for parallel polarizations,
omitting gain constants, we obtain from Eq. (4.30)

Ry =1, + Oy cos 2y, + U, sin 2y, . 4.31)

Here, v, is the position angle of the antenna polarization measured from celestial
north in the direction of east. The y polarization angle is equal to the x polarization
angle plus 7z /2. For ¥, equal to 0°, 45°, 90°, and 135°, the output R, is proportional
to (I, + Qy), (I, + U,), (I, — Qy), and (I, — U,), respectively. By using antennas
with these polarization angles, I,,, Q,, and U,, but not V,, can be measured. In
many cases, circular polarization is negligibly small, and the inability to measure
V, is not a serious problem. However, Q, and U, are often only a few percent
of I,,, and in attempting to measure them with identical feeds, one faces the usual
problems of measuring a small difference in two much larger quantities. The same
is true if one attempts to measure V, using identical circular feeds for which y =
£7/4 and the response is proportional to (I, F V). These problems are reduced
by using oppositely polarized feeds to measure Q,, U,, or V,. For an example of
measurement of V,,, see Weiler and Raimond (1976).

With oppositely polarized feeds, we insert in Eq.(4.29) ¥, = ¥, + 7/2,
and y,, = —jyn. For linear polarization, the y terms are zero and the planes of
polarization orthogonal. The antennas are then described as cross-polarized, as
typified by crossed dipoles. Omitting constant gain factors and using the x and y
subscripts defined above, we obtain for the correlator output

= —Q, sin 2y, + U, cos 2y, + jV,,

Ry,
(4.32)
Ry, = —Q, sin 2v,, + U, cos 24, — jV,, ,

where V,, refers to the angle of the plane of polarization in the direction (x or y)
indicated by the first subscript of the R term in the same equation. Then for v,
equal to 0° and 45°, the R,, response is proportional to (U, +jV,) and (—=Q, +jV5).
If V,, is assumed to be zero, this suffices to measure the polarized component. If both
antennas provide outputs for cross-polarized signals, the outputs of which go to two
separate receiving channels at each antenna, four correlators can be used for each
antenna pair. These provide responses for both crossed and parallel pairs, as listed in
Table 4.1. Thus, if the planes of polarization can be periodically rotated through 45°
as indicated by position angles I and II in Table 4.1, for example, by rotating antenna
feeds, then Q,, U,, and V,, can be measured without taking differences between
responses involving I,. The use of rotating feeds has, however, proved to be of
limited practicality. Rotating the feed relative to the main reflector is likely to have
a small but significant effect on the beam shape and polarization properties. This is
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Table 4.1 Stokes visibilities vs. position angles

Position angles
Stokes visibilities

m n measured

0° 0° I, + 0, Position angle I
0° 90° U, +jV, ”

90° 0° U, —jV, ”

90°  90° I, — 0, ”

45°  45° I, + U, Position angle 11
45° 135° -0y +jVy ”

135°  45° -0y, —jVy ”

135°  135° I, — U, ?

because the rotation will cause deviations from circular symmetry in the radiation
pattern of the feeds to interact differently with the shadowing effects of the focal
support structure and any departures from circular symmetry in the main reflector.
Furthermore, in radio astronomy systems designed for the greatest sensitivity, the
feed together with the low-noise amplifiers and a cryogenically refrigerated Dewar
are often built as one monolithic unit that cannot easily be rotated. However, for
antennas on altazimuth mounts, the variation of the parallactic angle with hour
angle causes the antenna response pattern to rotate on the sky as a source is
tracked in hour angle. Conway and Kronberg (1969) pointed out this advantage
of altazimuth mounts, which enables instrumental effects to be distinguished from
the true polarization of the source if observations continue for a period of several
hours.

An example of a different arrangement of linearly polarized feeds, which has
been used at the Westerbork Synthesis Radio Telescope, is described by Weiler
(1973). The antennas are equatorially mounted and the parallactic angle of the
polarization remains fixed as a source is tracked. The outputs of the antennas that
are movable on rail track are correlated with those from the antennas in fixed
locations. Table 4.2 shows the measurements when the position angles of the planes
of polarization for the movable antennas are 45° and 135° and those of the fixed
antennas 0° and 90°. Although the responses are reduced by a factor of /2 relative
to those in Table 4.1, there is no loss in sensitivity since each Stokes visibility
appears at all four correlator outputs. Note that since only signals from antennas
with different polarization configurations are cross-correlated, this scheme does not
make use of all possible polarization products.

Opposite circularly polarized feeds offer certain advantages for measurements of
linear polarization. In determining the responses, an arbitrary position angle ¥, for
antenna m is included to represent the effect of rotation caused, for example, by an
altazimuth antenna mount. If the antennas provide simultaneous outputs for opposite
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Table 4.2 Stokes visibilities vs. position angles

Position angles

m n Stokes visibilities measured
0°  45° (I, + 0, + U, +jV) /2
0° 135° (=1, — Qy + U, +jV,) /2
90° 45° (I, — 0y + Uy, —jV,)/ /2

90° 135° (I, — Q, — U, +jV,)/ /2

senses of rotation (denoted by r and £) and four correlation products are generated
for each antenna pair, the outputs are proportional to the quantities in Table 4.3.

Here, we have made ¥, = ¥, + n/2, and y = —n/4 for right circular
polarization and y = /4 for left circular. The feeds need not be rotated during
an observation, and the responses to Q,, and U, are separated from those to I,. The
expressions in Table 4.3 can be simplified by choosing values of ¥, such as 7/2,
7 /4, or 0. For example, if ¥, = 0, the sum of the ¢ and £r responses is a measure
of Stokes visibility U,. Again, the effects of the rotation of the position angle with
altazimuth mounts must be taken into account. Conway and Kronberg (1969) appear
to have been the first to use an interferometer with circularly polarized antennas
to measure linear polarization in weakly polarized sources. Circularly polarized
antennas have since been commonly used in radio astronomy.

4.7.3 Instrumental Polarization

The responses with the various combinations of linearly and circularly polarized
antennas discussed above are derived on the assumption that the polarization is
exactly linear or circular and that the position angles of the linear feeds are exactly
determined. This is not the case in practice, and the polarization ellipse can never
be maintained as a perfect circle or straight line. The nonideal characteristics of the
antennas cause an unpolarized source to appear polarized and are therefore referred
to as instrumental polarization. The effect of these deviations from ideal behavior

Table 4.3 Stokes visibilities vs. sense of rotation

Sense of rotation

Stokes visibilities measured
I, +V,

(=jQu + Uy)e 72¥m

(=jQy — Uy)eVm

I, =V,

S S Y Y3
S N & Y O3
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can be calculated from Eq. (4.29) if the deviations are known. In the expressions in
Tables 4.1-4.3, the responses given are only the major terms, and if the instrumental
terms are included, all four Stokes visibilities are, in general, involved. For example,
consider the case of crossed linear feeds with nominal position angles 0° and
90°. Let the actual values of ¥ and x be such that (Y + ¥y) = /2 + Ay ™,
W —V¥y) = —7/2+ AV, yu + 1y = AxT, and y, — xy = Ay~ Then from
Eq. (4.29),

Ry = L,(AY™ —jAxT) — Qu(AY T —jAx) + U, +jV, . (4.33)

Generally, antennas can be adjusted so that the A terms are no more than ~ 1°,
and here we have assumed that they are small enough that their cosines can be
approximated by unity, their sines by the angles, and products of two sines by
zero. Instrumental polarization is often different for the antennas even if they are
structurally similar, and corrections must be made to the visibility data before they
are combined into an image.

Although we have derived expressions for deviations of the antenna polarizations
from the ideal in terms of the ellipticity and orientation of the polarization ellipse in
Eq. (4.29), it is not necessary to know these parameters for the antennas so long as
it is possible to remove the instrumental effects from the measurements, so that they
do not appear in the final image. In calibrating the antenna responses, an approach
that is widely preferred is to specify the instrumental polarization in terms of the
response of the antenna to a wave of polarization that is orthogonal or opposite-
handed with respect to the nominal antenna response. Thus, for linearly polarized
antennas, following the analysis of Sault et al. (1991), we can write

vy = Uy + Dyvy and v) = v, + Dyv, , (4.34)

where subscripts x and y indicate two orthogonal planes of polarization, the v’ terms
indicate the signal received, the v terms indicate the signal that would be received
with an ideally polarized antenna, and the D terms indicate the response of the real
antenna to the polarization orthogonal to the nominal polarization. The D terms
are often described as the leakage of the orthogonal polarization into the antenna
(Bignell 1982) and represent the instrumental polarization. For each polarization
state, the leakage is specified by one complex number, that is, the same number of
terms as the two real numbers required to specify the ellipticity and orientation of
the polarization ellipse. In Appendix 4.2, expressions for D, and D, are derived in
terms of the parameters of the polarization ellipse:

Dy >~y —jx. and Dy >~ —y, +jyx, , (4.35)

where the approximations are valid for small values of the y and ¥ parameters.
Note that in Eq. (4.35), v, is measured with respect to the y direction. For an ideal
linearly polarized antenna, y, and y, are both zero, and the polarization in the x and
y planes is precisely aligned with, and orthogonal to, the x direction with respect
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to the antenna. Thus, for an ideal antenna, ¥, and v, are also zero. For a practical
antenna, the terms in Eq. (4.35) represent limits of accuracy in the hardware, and
we see that the real and imaginary parts of the leakage terms can be related to the
misalignment and ellipticity, respectively.

For a pair of antennas m and n, the leakage terms allow us to express the measured
correlator outputs R}, R|,,R,,, and R, in terms of the unprimed quantities that
represent the corresponding correlations as they would be measured with ideally
polarized antennas:

R/ (8m&r) = Rex + DunRyx + D3Ry + DxnD3 Ry,
R,/ (8m&ym) = Ry + DumRyy + D}, Rix + DinDy, Ry
R;x/ (8m&r) = Ryx + DynRyx + D3Ry + DyuDy Ry
R,/ (8mg) = Ry + DynRyy + DE\Ryx + Dy R .

(4.36)

The g terms represent the voltage gains of the corresponding signal channels. They
are complex quantities representing amplitude and phase, and the equations can
be normalized so that the values of the individual g terms do not differ greatly
from unity. Note that Eq. (4.36) contain no small-term approximations. However,
the leakage terms are typically no more than a few percent, and products of two such
terms will be omitted at this point. Then, from Egs. (4.31) and (4.32), the responses
can be written in terms of the Stokes visibilities as follows:

R/ (gm&y,) = Iy + Qu[c0s 2y, — (D + D3,) sin 24,
+ Uy [sin 2 + (Dxm + D5,) €08 2Y1] — jVy (Daw — D,,)

R,/ (&m&n) = Io(Dum + D}y — Qu[sin 295, + (D — D) €05 29,]
+ Uy[cos 2V, — (Dym — D;‘n) sin 2y,,] + jVy

R}, /(8m8&y) = Io(Dym + D3,) — Qylsin 2, — (Dyw — D};,) €08 2¢,]
+ Uy[cos 2, + (Dym — D) sin 24,,] — jV,

R,/ (gym&y) = Iy — Qu[c0s 29, + (Dyy + D},) sin 24,

- Uv [Sil’l 2wm - (Dym + D;kn) cos 2wm] +va(Dym - D;n) :
(4.37)

Note that ¥, refers to the polarization (x or y) indicated by the first of the two
subscripts of the R’ term in the same equation. Sault et al. (1991) describe Eq. (4.37)
as representing the strongly polarized case. In deriving them, no restriction was
placed on the magnitudes of the Stokes visibility terms, but the leakage terms
of the antennas are assumed to be small. In the case where the source is only
weakly polarized, the products of Q,, U,, and V,, with leakage terms can be omitted.
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Equation (4.37) then become

R, /(8mgs) = Iy + Qy 082, + U, sin 24,
R,/ (gm&y) = Ly(Dn + Dy,) — Qy sin 241, + Uy cos 2, + jV,y
R,/ (8ym&y) = Io(Dym + D},) — Qy sin 24, + Uy €08 2, — jVsy
R,/ (gym&y) = Iy — Qy €08 21, — Uy Sin 24, .

(4.38)

If the antennas are operating well within the upper frequency limit of their
performance, the polarization terms can be expected to remain largely constant with
time since gravitational deflections that vary with pointing should be small. The
instrumental gain terms can contain components due to the atmosphere, which may
vary on time scales of seconds or minutes, and they also include any effects of the
receiver electronics.

In the case of circularly polarized antennas, leakage terms can also be defined
and similar expressions for the instrumental response derived. The leakage terms
are given by the following equations:

v, = v, + D,v; and v, = vy + Dyv, , (4.39)

where, as before, the v’ terms are the measured signal voltages, the unprimed v
terms are the signals that would be observed with an ideally polarized antenna, and
the D terms are the leakages. The subscripts r and £ indicate the right and left senses
of rotation. Again, the relationship between the leakage terms and the orientation
and ellipticity of the antenna responses is derived in Appendix 4.2. The results,
which in this case require no small-angle approximations, are

D, = ¢/* tan Ay, and Dy = eV tan Ay, (4.40)

where the A terms are defined by y, = —45° + Ay, and y, = 45° + Ayy.
To derive expressions for the outputs of an interferometer in terms of the leakage
terms and Stokes visibilities, the four measured correlator outputs are represented by
R,..R,,, R, and R),. These are related to the corresponding (unprimed) quantities

rr?

that would be observed with ideally polarized antennas as follows:

R../(8m&") = Rer + DumRir + D Ryt + DD Ry
Riz/(grmg?n) = Ryt + DR + D;nRrr + Drsz(anr
R},/(8mg&}) = Rir + DewRyr + D} Ret 4 DenD}, Ry
R}/ (8emg},) = Ree + DemRr¢ + D}, Rer + DD} R, .

4.41)
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Now, from the expressions in Table 4.3, the outputs in terms of the Stokes visibilities
are

R),/(8mgh) = I,(1 + DpuD},) — jO, (Dpe’™" + D}se2Vm)

- Uv (Drmejzwm - D:ne_jzwm) + Vv(l - DrmD:(n)
R’rl/(grmg’[n) =1,(D, + D’Zn) —j0, (e—j21//m + DrmDZneﬂW)

+ Uy(e 7" — D,,,D} e/*V") — V(Dyy — DJ,)
R,/ (8emgr,) = Ly(Dewm + D) — jOu(e”V" + DD}k e 72Vm)

— Uy(e”*'" — Dy, D},e ') + V, (Dy — D})
R}/ (gemg},) = Iy(1 + DenuDj,) — jQu(Dee >V + Djj,e?Vm)

+ Uy(Dgpe ™7V — D} e”Vm) — V(1 — Dy,,D},) .

(4.42)

Here again, v, refers to the polarization (r or £) indicated by the first of the
two subscripts of the R’ term in the same equation. The angle v, represents the
parallactic angle plus any instrumental offset. We have made no approximations in
deriving Eq. (4.42) [in the similar Eq. (4.37), products of two D terms were omitted].
If the leakage terms are small, then any product of two of them can be omitted,
as in the strongly polarized case for linearly polarized antennas in Eq. (4.37). The
weakly polarized case is derived from the strongly polarized case by further omitting
products of Q,, U,, and V,, with the leakage terms and is as follows:

R,/ (8mgm) =Iv + Vy

R/ (@mgly) = I(Dm + D) — (jQu — Uy )e 72
R),/(8img™) = I, (Dow + DY) — (jO, + Uy)eVn
Riy/(gemgt) = 1o = Vo .

(4.43)

Similar expressions® are given by Fomalont and Perley (1989). To make use of the

expressions that have been derived for the response in terms of the leakage and
gain factors, we need to consider how such quantities can be calibrated, and this is
discussed later.

3In comparing expressions for polarimetry by different authors, note that differences of signs or of
the factor j can result from differences in the way the parallactic angle is defined with respect to
the antenna, and similar arbitrary factors.
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4.7.4 Matrix Formulation

The description of polarimetry given above, using the ellipticity and orientation
of the antenna response, is based on a physical model of the antenna and the
electromagnetic wave, as in Eq. (4.29). Historically, studies of optical polarization
have developed over a much longer period. A description of radio polarimetry
following an approach originally developed in optics is given in Hamaker et al.
(1996) and in more detail in four papers: Hamaker et al. (1996), Sault et al. (1996),
Hamaker (2000), and Hamaker (2006). The mathematical analysis is largely in terms
of matrix algebra, and in particular, it allows the responses of different elements of
the signal path such as the atmosphere, the antennas, and the electronic system to be
represented independently and then combined in the final solution. This approach
is convenient for detailed analysis including effects of the atmosphere, ionosphere,
etc.

In the matrix formulation, the electric fields of the polarized wave are represented
by a two-component column vector. The effect of any linear system on the wave, or
on the voltage waveforms of the signal after reception, can be represented by a 2 x 2
matrix of the form shown below:

EE e
E; as da Eq ’

where E, and E, represent the input polarization state (orthogonal linear or opposite
circular) and E; and E; represent the outputs. The 2 x 2 matrix in Eq. (4.44) is
referred to as a Jones matrix (Jones 1941), and any simple linear operation on the
wave can be represented by such a matrix. Jones matrices can represent a rotation of
the wave relative to the antenna; the response of the antenna, including polarization
leakage effects; or the amplification of the signals in the receiving system up to
the correlator input. The combined effect of these operations is represented by the
product of the corresponding Jones matrices, just as the effect on a scalar voltage can
be represented by the product of gains and response factors for different stages of
the receiving system. For a wave specified in terms of opposite circularly polarized
components, Jones matrices for these operations can take the following forms:

~_ [exp(jo) 0
Jrotation = 0 exp(—19)i| (4.45)
(1 D,
Jleakage = D, 1 :| (4.46)
(G, 0
Jgain - i 0 G[i| . (4‘47)




4.7 Polarimetry 135

Here, 6 represents a rotation relative to the antenna, and the cross polarization in the
antenna is represented by the off-diagonal* leakage terms D, and D;. For a nonideal
antenna, the diagonal terms will be slightly different from unity, but in this case, the
difference is subsumed into the gain matrix of the two channels. The gain of both
the antenna and the electronics can be represented by a single matrix, and since any
cross coupling of the signals in the amplifiers can be made negligibly small, only
the diagonal terms are significant in the gain matrix.

Let J,, represent the product of the Jones matrices required to represent the linear
operations on the signal of antenna m up to the point where it reaches the correlator
input. Let J, be the same matrix for antenna xn. The signals at the inputs to the
correlator are J,,E,, and J,E,, where E,, and E, are the vectors representing the
signals at the antenna. The correlator output is the outer product (also known as the
Kronecker, or tensor, product) of the signals at the input:

E,®E* = (J,E,) ® J'E}), (4.48)

where ® represents the outer product. The outer product A ® B is formed by
replacing each element a;; of A by a;B. Thus, the outer product of two nxn matrices
is a matrix of order n> x n?. It is also a property of the outer product that

(AB) ® (AiBr) = (Ai ® A)(B; ® By) . (4.49)
Thus, we can write Eq. (4.48) as
E, ®E" = (1, ®J)(E, E) . (4.50)
The time average of Eq. (4.50) represents the correlator output, which is

RpP

mn

R,, = (E, @ E*) = | X @51)
mn — m nl = RP s .

mn
q99
Rmn

where p and ¢ indicate opposite polarization states. The column vector in Eq. (4.51)
is known as the coherency vector and represents the four cross products from
the correlator outputs for antennas m and n. From Eq.(4.50), it is evident that
the measured coherency vector R/ . which includes the effects of instrumental
responses, and the true coherency vector R,,,, which is free from such effects, are
related by the outer product of the Jones matrices that represent the instrumental

effects:

R, = Jn® IRy . (4.52)

4The diagonal terms are those that move downward from left to right, and the off-diagonal terms
slope in the opposite direction.
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To determine the response of an interferometer in terms of the Stokes visibilities of
the input radiation, which are complex quantities, we introduce the Stokes visibility
vector

I,
Oy

Vs U, (4.53)
Vy

The Stokes visibilities can be regarded as an alternate coordinate system for the
coherency vector. Let S be a 4 x 4 transformation matrix from Stokes parameters to
the polarization coordinates of the antennas. Then we have

R, = Jn ® ISV - (4.54)
For ideal antennas with crossed (orthogonal) linear polarization, the response in

terms of Stokes visibilities is given by the expressions in Table 4.1. We can write
this result in matrix form as

R 110071
Ry 001,

= : 4.55
Ry 00 1|0, (£9)
Ry 1-10 0] L,

where the subscripts x and y here refer to polarization position angles 0° and 90°,
respectively. Similarly for opposite-hand circular polarization, we can write the
expressions in Table 4.3 as

R, 1 0 0 1 I,
—ip I 2Vm  oi2¥m
A I e R i T (4.56)
Ry, 0 —jelVm —ei2¥m U,
Rye 1 0 0 -1 Vu

The 4 x 4 matrices in Eqs. (4.55) and (4.56) are transformation matrices from
Stokes visibilities to the coherency vector for crossed linear and opposite circular
polarizations, respectively. These 4 x 4 matrices are known as Mueller matrices
following the terminology established in optics.’ Note that these matrices depend
on the particular formulation we have used to specify the angles ¥ and y, and other
factors in Fig. 4.8, which may not be identical to corresponding parameters used by
other authors.

SFurther explanation of Jones and Mueller matrices can be found in textbooks on optics [e.g.,
O’Neill (1963)].
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The expression S™'(J,, ® J*)S is a matrix that relates the input and output
coherency vectors of a system where these quantities are in Stokes coordinate form.
As an example of the matrix usage, we can derive the effect of the leakage and gain
factors in the case of opposite circular polarizations. For antenna m, the Jones matrix
J is the product of the Jones matrices for leakage and gain as follows:

Jm — [grm 0 i| [ 1 Drmi| — |: 8rm grmDrmi| ) (457)

0 8tm Dlm 1 glmDém 8tm
Here, the g terms represent voltage gain, the D terms represent leakage, and the
subscripts 7 and £ indicate polarization. A corresponding matrix J,, is required for

antenna n. Then if we use primes to indicate the components of the coherency vector
(i.e., the correlator outputs) for antennas m and n, we can write

R, 10 0 17
R;[ _ * 0 _je_jzwm e_jzwm 0 QU
R/Zr - Jm ® Jn 0 _Jelz.wm _ejzwm 0 UU ) (458)
R), 10 0o —1]Lw,

where the 4 x 4 matrix is the one relating Stokes visibilities to the coherency vector
in Eq. (4.56). Also, we have

8rm&m 8rm&mDr gm&mDrm  8rm&DmDy,
gm85Dh  8m8h,  8m8,DmDf, 8m&L,Drm | (4.59)
glmg:nDlm gimg;knDlmD:n glmg:n glmg:nD;kn

gem&r,DemDy,  gem&r,Dem  8em&r,Dy, 8tm&h,

Insertion of Eq. (4.59) into Eq. (4.58) and reduction of the matrix products results
in Eq. (4.42) for the response with circularly polarized feeds. The use of matrices is
convenient since they provide a format for expressions representing different effects,
which can then be combined as required.

4.7.5 Calibration of Instrumental Polarization

The fractional polarization of many astronomical sources is of magnitude com-
parable to that of the leakage and gain terms that are used above to define the
instrumental polarization. Thus, to obtain an accurate measure of the polarization
of a source, the leakage and gain terms must be accurately calibrated. It may be
necessary to determine the calibration independently for each set of observations
since the gain terms may be functions of the temperature and state of adjustment
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of the electronics and cannot be assumed to remain constant from one observing
session to another. Making observations (i.e., measuring the coherency vector)
of sources for which the polarization parameters are already known is clearly
a way of determining the leakage and gain terms. The number of unknown
parameters to be calibrated is proportional to the number of antennas, n,, but the
number of measurements is proportional to the number of baselines, n,(n, — 1)/2.
The unknown parameters are therefore usually overdetermined, and a least-mean-
squares solution may be the best procedure.

For any antenna with orthogonally polarized receiving channels, there are seven
degrees of freedom, that is, seven unknown quantities, that must be calibrated to
allow full interpretation of the measured Stokes visibilities. This applies to the
general case, and the number can be reduced if approximations are made for
weak polarization or small instrumental polarization. In terms of the polarization
ellipses, these unknowns can be regarded as the orientations and ellipticities of
the two orthogonal feeds and the complex gains (amplitudes and phases) of the
two receiving channels. When the outputs of two antennas are combined, only
the differences in the instrumental phases are required, leaving seven degrees of
freedom per antenna. Sault et al. (1996) make the same point from the consideration
of the Jones matrix of an antenna, which contains four complex quantities. They
also give a general result that illustrates the seven degrees of freedom or unknown
terms. This expresses the relationship between the uncorrected (measured) Stokes
visibilities (indicated by primes) and the true values of the Stokes visibilities, in
terms of seven y and § terms:

I—1, Vet Vi S =04 [ D
Qf; Q| _ | vi— ver Sy | (4.60)
U, - U, 2| 4= =4y v+ Jv— || U
Vi=Vo -t —j6— jy— y++ 1LV

The seven y and § terms are defined as follows:

Y4+ = (Agum + Agym) + (Agy, + Agy,)

V- = (Agum — Agym) + (Ag, — Ag),)

V—— = (Agum — Agym) — (A8, — Ag),)

844 = (Dam + Dyw) + (D, + D) (4.61)
84— = (Dun — Dyn) + (DY, — DY)

8_s = (Dun + Dy) — (D%, + D7)

6—— = (Dxm — Dyn) — (Dy, = Dy,) .

Here, it is assumed that Egs. (4.36) are normalized so that the gain terms are close
to unity, and the Ag terms are defined by gix = 1 + Agi. The D (leakage) terms
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and the Ag terms are often small enough that products of two such terms can be
neglected. The results, as shown in Egs. (4.60) and (4.61), apply to antennas that
are linearly polarized in directions x and y. The same results apply to circularly
polarized antennas if the subscripts x and y are replaced by r and £, respectively, and,
in the column matrices on the left and right sides of Eq. (4.60), terms in Q,, U,, and
V, are replaced by corresponding terms in V,, Q,, and U,, respectively. A similar
result is given by Sault et al. (1991). The seven y and § terms defined above are
subject to errors in the calibration process, so there are seven degrees of freedom in
the error mechanisms.

An observation of a single calibration source for which the four Stokes parame-
ters are known enables four of the degrees of freedom to be determined. However,
because of the relationships of the quantities involved, it takes at least three
calibration observations to solve for all seven unknown parameters (Sault et al.
1996). In the calibration observations, it is useful to observe one unpolarized
source, but observing a second unpolarized one would add no further solutions.
At least one observation of a linearly polarized source is required to determine
the relative phases of the two oppositely polarized channels, that is, the relative
phases of the complex gain terms gu.g,, and gymgy,» or gmgy, and gumg,,- Note
that with antennas on altazimuth mounts, observations of a calibrator with linear
polarization, taken at intervals between which large rotations of the parallactic angle
occur, can essentially be regarded as observations of independent calibrators. Under
these circumstances, three observations of the same calibrator will suffice for the
full solution. Furthermore, the polarization of the calibrator need not be known in
advance but can be determined from the observations.

In cases in which only an unpolarized calibrator can be observed, it may be
possible to estimate two more degrees of freedom by introducing the constraint
that the sum of the leakage factors over all antennas should be small. As shown
by the expressions for the leakage terms in Appendix 4.2, this is a reasonable
assumption for a homogeneous array, that is, one in which the antennas are of
nominally identical design. However, the phase difference between the signal paths
from the feeds to the correlator for the two orthogonal polarizations of each antenna
remains unknown. This requires an observation of a calibrator with a component
of linear polarization, or a scheme to measure the instrumental component of the
phase. For example, on the compact array of the Australia Telescope (Frater and
Brooks 1992), noise sources are provided at each antenna to inject a common signal
into the two polarization channels (Sault et al. 1996). With such a system, it is
necessary to provide an additional correlator for each antenna, or to be able to
rearrange correlator inputs, to measure the relative phase of the injected signals in
the two polarizations.

In the case of the approximations for weak polarization, Eqs. (4.38) and (4.43)
show that if the gain terms are known, the leakage terms can be calibrated by
observing an unpolarized source. For opposite circular polarizations, Eq.(4.43)
shows that if V, is small, it is possible to obtain solutions for the gain terms from
the outputs for the ££ and rr combinations only, provided also that the number of
baselines is several times larger than the number of antennas. The leakage terms
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can then be solved for separately. For crossed linear polarizations, Eq. (4.38) shows
that this is possible only if the linear polarization (Q, and U, parameters) for the
calibrator have been determined independently.

Optimum strategies for calibration of polarization observations is a subject
that leads to highly detailed discussions involving the characteristics of particular
synthesis arrays, the hour angle range of the observations, the availability of
calibration sources (which can depend on the observing frequency), and other
factors, especially if the solutions for strong polarization are used. Such discussions
can be found, for example, in Conway and Kronberg (1969), Weiler (1973), Bignell
(1982), Sault et al. (1991), Sault et al. (1996), and Smegal et al. (1997). Polarization
measurements with VLBI involve some special considerations: see, for example,
Roberts et al. (1991), Cotton (1993), Roberts et al. (1994), and Kemball et al. (1995).

For most large synthesis arrays, effective calibration techniques have been
devised and the software to implement them has been developed. Thus, a prospective
observer need not be discouraged if the necessary calibration procedures appear
complicated. Some general considerations relevant to observations of polarization
are given below.

* Since the polarization of many sources varies on a timescale of months, it is
usually advisable to regard the polarization of the calibration source as one of the
variables to be solved for.

» Two sources with relatively strong linear polarization at position angles that do
not appear to vary are 3C286 and 3C138. These are useful for checking the phase
difference for oppositely polarized channels.

* For most sources, the circular polarization parameter V, is very small, ~ 0.2%
or less, and can be neglected. Measurements with circularly polarized antennas
of the same sense therefore generally give an accurate measure of /,. However,
circular polarization is important in the measurement of magnetic fields by
Zeeman splitting. As an example of positive detection at a very low level, Fiebig
and Giisten (1989) describe measurements for which V/I ~ 5 x 107>, Zeeman
splitting of several components of the OH line at 22.235 GHz was observed using
a single antenna, the 100-m paraboloid of the Max Planck Institute for Radio
Astronomy, with a receiving system that switched between opposite circular
polarizations at 10 Hz. Rotation of the feed and receiver unit was used to identify
spurious instrumental responses to linearly polarized radiation, and calibration of
the relative pointing of the two beams to 1” accuracy was required.

* Although the polarized emission from most sources is small compared with the
total emission, it is possible for Stokes visibilities O, and U, to be comparable
to I, in cases in which there is a broad unpolarized component that is highly
resolved and a narrower polarized component that is not resolved. In such
cases, errors may occur if the approximations for weak polarization [Egs. (4.38)
and (4.43)] are used in the data analysis.

* For most antennas, the instrumental polarization varies over the main beam and
increases toward the beam edges. Sidelobes that are cross polarized relative to the
main beam tend to peak near the beam edges. Thus, polarization measurements
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are usually made for cases in which the source is small compared with the width
of the main beam, and for such measurements, the beam should be centered on
the source.

» Faraday rotation of the plane of polarization of incoming radiation occurs in
the ionosphere and becomes important for frequencies below a few gigahertz;
see Table 14.1. During polarization measurements, periodic observations of a
strongly polarized source are useful for monitoring changes in the rotation,
which varies with the total column density of electrons in the ionosphere. If not
accounted for, Faraday rotation can cause errors in calibration; see, for example,
Sakurai and Spangler (1994).

* In some antennas, the feed is displaced from the axis of the main reflector, for
example, when the Cassegrain focus is used and the feeds for different bands are
located in a circle around the vertex. For circularly polarized feeds, this departure
from circular symmetry results in pointing offsets of the beams for the two
opposite hands. The pointing directions of the two beams are typically separated
by ~ 0.1 beamwidths, which makes measurements of circular polarization
difficult because V, is proportional to (R,, — Ry¢). For linearly polarized feeds,
the corresponding effect is an increase in the cross-polarized sidelobes near the
beam edges.

e In VLBI, the large distances between antennas result in different parallactic
angles at different sites, which must be taken into account.

e The quantities m, and m,, of Eqs. (4.20) and (4.22), have Rice distributions of
the form of Eq. (6.63a), and the position angle has a distribution of the form of
Eq. (6.63b). The percentage polarization can be overestimated, and a correction
should be applied (Wardle and Kronberg 1974).

The following points concern choices in designing an array for polarization
measurements.

e The rotation of an antenna on an altazimuth mount, relative to the sky, can
sometimes be used to advantage in polarimetry. However, the rotation could be
a disadvantage in cases in which polarization imaging over a large part of the
antenna beam is being attempted. Correction for the variation of instrumental
polarization over the beam may be more complicated if the beam rotates on the
sky.

e With linearly polarized antennas, errors in calibration are likely to cause [,
to corrupt the linear parameters Q, and U,, so for measurements of linear
polarization, circularly polarized antennas offer an advantage. Similarly, with
circularly polarized antennas, calibration errors are likely to cause I, to corrupt
Vy, so for measurements of circular polarization, linearly polarized antennas may
be preferred.

e Linearly polarized feeds for reflector antennas can be made with relative
bandwidths of at least 2 : 1, whereas for circularly polarized feeds, the maximum
relative bandwidth is commonly about 1.4:1. In many designs of circularly
polarized feeds, orthogonal linear components of the field are combined with
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490° relative phase shifts, and the phase-shifting element limits the bandwidth.
For this reason, linear polarization is sometimes the choice for synthesis arrays
[see, e.g., James (1992)], and with careful calibration, good polarization perfor-
mance is obtainable.

» The stability of the instrumental polarization, which greatly facilitates accurate
calibration over a wide range of hour angle, is perhaps the most important feature
to be desired. Caution should therefore be used if feeds are rotated relative to the
main reflector or if antennas are used near the high end of their frequency range.

4.8 The Interferometer Measurement Equation

The set of equations for the visibility values that would be measured for a
given brightness distribution—taking account of all details of the locations and
characteristics of the individual antennas, the path of the incoming radiation through
the Earth’s atmosphere including the ionosphere, the atmospheric transmission,
etc.—is commonly referred to as the measurement equation or the interferometer
measurement equation. For any specified brightness distribution and any system
of antennas, the measurement equation provides accurate values of the visibility
that would be observed. The reverse operation, i.e., the calculation of the optimum
estimate of the brightness distribution from the measured visibility values, is more
complicated. Taking the Fourier transform of the observed visibility function usually
produces a brightness function with physically distorted features such as negative
brightness values in some places. However, starting with a physically realistic
model for the brightness, the measurement equation can accurately provide the
corresponding visibility values that would be observed. This provides a basis for
derivation of realistic brightness distributions that represent the observed visibilities,
using an iterative procedure.

The formulation of the interferometer measurement equation is based on the anal-
ysis of Hamaker et al. (1996) and further developed by Rau et al. (2009), Smirnov
(2011a,b,c,d), and others. It traces the variations of the signals from a source to the
output of the receiving system. Direction-dependent effects include the direction of
propagation of the signals, the primary beams of the antennas, polarization effects
that vary with the alignment of the polarization of the source relative to that of
the antennas, and also the effects of the ionosphere and troposphere. Direction-
independent effects include the gains of the signal paths from the outputs of the
antennas to the correlator. It is necessary to take account of all these various effects
to calculate accurately the visibility values corresponding to the source model.
Several of these effects are dependent upon the types of the interferometer antennas
and the observing frequencies, so the details of the measurement equation are to
some extent specific to each particular instrument to which it is applied.
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The variations in the signal characteristics can generally be expressed as
the effects of Faraday rotation, parallactic rotation, tilting of the wavefront by
propagation effects, and variations in feed responses. These are linear effects on
the signal and, as noted in Sect. 4.7.4, each of them can be represented by a 2 x 2
(Jones) matrix. Their effect on the signal matrix is given by a series of outer products
as explained with respect to Eq. (4.48). If the original signal is represented by the
vector I and the series of effects along the signal path by Jones matrices J; to J, for
antenna p and J; to J,, for antenna g, then the voltage at the correlator output from
the pair of antennas m and n is represented by

V=T B2 DI - W (4.62)

where the superscript H indicates the Hermitian (complex) conjugate. Each of the J,
terms represents a 2 x 2 (Jones) matrix. This analysis is from Smirnov (2011a,b,c,d).
The combination of the various corrections into a single equation is helpful in
ensuring that no significant effects have been overlooked.

An alternative formulation takes each product J,, ® ng, which resultsina 4 x 4
(Mueller) matrix for each of the effects to be corrected along the signal path. If the
resulting matrices are represented by [J,, ®J ;In], where n indicates the physical order
in which the effects are encountered in the propagation path, then the correction for

the effects is obtained as a series of products:

V=[Um®I]... 2 ® I]Ip1 @ JHISI . (4.63)
where § is a Fourier transform matrix that converts the Stokes visibility to
brightness. Each of the J, ® J;I terms represents a 4 x 4 matrix. This is basically
the form used by Rau et al. (2009). The details of the interferometer equation will
vary for different instruments, depending upon which factors need to be included.
Here, the intention is to give a general outline of how the calibration factors can be
applied. Further details can be found in papers by Hamaker et al. (1996), Hamaker
(2000), Rau et al. (2009), and Smirnov (2011a,b,c,d).

4.8.1 Multibaseline Formulation

In this chapter thus far, we have mainly considered the response of a single pair
of antennas. The data gathered from a multielement array can conveniently be
expressed in the form of a covariance matrix. The discussion here largely follows
Leshem et al. (2000) and Boonstra and van der Veen (2003). We start from the
expression for the two-element interferometer response and, for simplicity, consider
the small-angle case in which the w component can be omitted, as in Eq. (3.9),

o0 o0
V(u,v) = / / A, m) eIV gt dm (4.64)
—0o0 J —00 \/1 — 12 — m2
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Here, V is the complex visibility, and u and v represent the projected baseline
coordinates measured in wavelengths in a plane normal to the phase reference
direction. We make four adjustments to the equation. (1) We assume that both the
astronomical brightness function and the visibility function can each be represented
by a point-source model with a number of points p. For a point &, the direction is
specified by direction cosines (I, m;). We replace the integrals in Eq.(4.64) with
summations over the points. (2) We replace Ay by the product of the corresponding
complex voltage gain factors g;(, m)g;.k (I,m), where i and j indicate antennas.
Constants representing conversion of aperture to gain, etc., can be ignored since,
in practice, the intensity scale is determined by calibration. (3) We allow the factor
V1 =P —m?) to be subsumed within the intensity function I(/, m). (4) For each
antenna, we specify the components in the (u, v) plane relative to a reference point
that can be chosen, for example, to be the center of the array. The (u, v) values for
a pair of antennas i and j then become (#; — u;, v; — vj). The second and fourth
modifications allow the parameters involved to be specified in terms of individual
antennas rather than antenna pairs. Equation (4.64) can now be written as:

P

V(u; — uj, v; — vj) = ZI" gi(le, my) e_jZH(Milk+Ui’"k)g; (I, my) g2 jletvmi)

k=1
(4.65)

where I; = I(l;, m;). Note that u and v do not vary with the source positions within
the field of view but are defined for the phase reference position (field center).
Equations (4.64) and (4.65) represent the visibility as measured by a single pair
of antennas.

It is useful to put Eq. (4.65) in matrix form. For an array of n antennas, we
define an n x p matrix containing terms corresponding to the first antenna gain and
exponential terms of Eq. (4.65) (i.e., the terms associated with antenna i):

A=
a1l ml)e—ﬂﬂ(ulll-i—vlml) g1, mz)e—j2ﬂ(lt112+v1m2) . g1(lp, mp)e_jzﬂ(ulllz"’vlm/))
—j2r (uz2ly +vamy)
g2(ly, mp)e™

gn(ly, ml)e_ﬂﬂ(u"ll—i—v”ml) - o &y, mp)e_ﬂ”(”"[ﬁ"'vnmp)

(4.66)

The antenna index increases downward across the n rows, and the point-source index
increases toward the right across the p columns.
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To generate the covariance matrix, we first define a p x p diagonal matrix
containing the intensity values of the p source-model points:

B= ‘ . (4.67)

Then we can write
R = ABA” | (4.68)

where the superscript H indicates the Hermitian transpose (transposition of the
matrix plus complex conjugation). R is the covariance matrix, which is Hermitian
with dimensions nxn. Each element of R is of the form of the right side of Eq. (4.65),
that is, the sum of responses to the p intensity points for a specific pair of antennas.
For row i and column j, the element is r;;, which is equal to the right side of
Eq. (4.65). The elements r;; represent the cross-correlation of signals from antennas
i and j. When the gain factors g are equal to unity, the elements represent the source
visibility V. The diagonal elements are the n self-products (i = j), which represent
the total power responses of the antennas. Note that R is Hermitian: r;; = r};.
R contains the full set of correlator output terms for an array of n antennas for a
single averaging period and a single frequency channel. These data, when calibrated
as visibility, can provide a snapshot image. In cases in which the w component is
important, a term of the form w(v/1 =1 —m2—1) [asin Eq. (3.7)] with appropriate
subscripts, can be included within each exponent. If the response patterns of the
antennas are identical, i.e., g; = g; for all (i, j), then g,-g}k = |g|?, and this (real) gain
factor can be taken outside the matrix R. Thus, to determine the angle of incidence
(I, m) of a signal from the covariance measurements [the (u, v) values being known],
the gain factors need not be known if they are identical from one antenna to another
but otherwise must be known.

The covariance matrix can also be formulated in terms of the complex signal
voltages from the antennas of an array. Let the signal from antenna k be x;, which is
a function of time. For the array, the signals can be represented by a (column) vector
x of dimensions n X 1, each term of which corresponds to the sum of the terms in
the corresponding row of the matrix in Eq. (4.66). The outer (or Kronecker) product
x ® x! leads to a covariance matrix:

X1 xixf xixy oxx

X xox}

R=| | . .xx=|"" . . . |. (4.69)

Xy, XnXT oL XnX,
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The elements 7;; of the matrix R represent the correlator outputs, which involve a
time average of the signal products. If the signal products in the elements of R’ are
similarly understood to represent time-averaged products, then R’ is equivalent to
the covariance matrix R.

An example of the application of matrix formulation in radio astronomy is
provided by the discussion of gain calibration by Boonstra and van der Veen (2003).
Also, the eigenvectors of the matrix can be used to identify interfering signals that
are strong enough to be distinguished in the presence of the noise. Such signals can
then be removed from the data, as discussed, for example, by Leshem et al. (2000).

Appendix 4.1 Hour Angle-Declination and
Elevation—Azimuth Relationships

Although the positions of cosmic sources are almost always specified in celestial
coordinates, for purposes of observation, it is generally necessary to convert to
elevation and azimuth. The conversion formulas between hour angle and declination
(H,d) and elevation and azimuth (&, A) can be derived by applying the sine and
cosine rules for spherical triangles to the system in Fig.4.3. For an observer at
latitude £, they are, for (H, §) to (A, &),
sin & = sin Lsin§ + cos Lcosd cos H
cos Ecos A = cos Lsin§ — sin L cos § cos H (A4.1)

cosEsin A = —cosdsinH
Similarly, for (A, &) to (H,$),

sind = sin Lsin & + cos L cos Ecos A
cos 6 cos H = cos Lsin& — sin L cos Ecos A (A4.2)

cosdsinH = —cos&Esin A .

Here, azimuth is measured from north through east.

Appendix 4.2 Leakage Parameters in Terms of the
Polarization Ellipse

The polarization leakage terms used to express the instrumental polarization are
related to the ellipticity and orientation of the polarization ellipses of each antenna,
as shown below.
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A4.2.1 Linear Polarization

Consider the antenna in Fig. 4.8, and suppose that it is nominally linearly polarized
in the x direction, in which case y and ¥ are small angles that represent engineering
tolerances. A field E aligned with the x axis in Fig.4.8a produces components E
and Eys along the (x’,) axes with which the dipoles in Fig. 4.8b are aligned. Then
from Eq.(4.26), we obtain the voltage at the output of the antenna (point A in
Fig.4.8b), which is

VI = E(cosy cos y + jsiny sin y) . (A4.3)
The response to the same field, but aligned with the y axis, is
V) = E(sin y cos y —jcos yr sin x) . (A4.4)

V! represents the wanted response to the field along the x axis, and V;. represents the
unwanted response to a cross-polarized field. The leakage term is equal to the cross-
polarized response expressed as a fraction of the wanted x-polarization response,
that is,

B V;. . (sin ¥y cos yy —j cOSs Yy sin yy) ~

D,= ~ = . . -
VI (cos ¥y cos xx + jsin iy, sin xx)

% _ij ’ (A45)

where the subscript x indicates the x-polarization case. The corresponding term
Dy, for the condition in which Fig. 4.8 represents the nominal y polarization of the
antenna, is obtained as V// V}’, by inverting Eq. (A4.5), replacing ¥, by ¥y, + /2,
and replacing . by yx,. Then v, is measured from the y axis in the same sense as
V¥, is measured from the x axis, that is, increasing in a counterclockwise direction
in Fig. 4.8. Thus, we obtain

Vi cos (Y + 7/2) cos yxy + jsin (Y, + 7/2) sin x,]
Vi [sin (¥ + 7/2) cos xy —jeos (Y, + 7/2) sin y,]
_ (=sinyy cos xy + jcos ¥y sin yy)

- = Xy - A4.6
(cos ¥y cos xy + jsin ¥y sin yy) Yy + Xy ( )

D,

Similar expressions for D, and D, have also been derived by Sault et al. (1991).
Note that D, and D, are of comparable magnitude and opposite sign, so one would
expect the average of all the D terms for an array of antennas to be very small. As
used earlier in this chapter, subscripts m and n are added to the D terms to indicate
individual antennas.
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A4.2.2 Circular Polarization

To receive right circular polarization from the sky, the antenna in Fig.4.8b must
respond to a field with counterclockwise rotation in the plane of the diagram,
as explained earlier. This requires y = —45°. In terms of fields in the x and y
directions, counterclockwise rotation requires that E, leads E, in phase by 7/2; that
is, E, = jE, for the fields as defined in Eq. (4.25). For fields E, and E,, we determine
the components in the x” and y’ directions and then obtain expressions for the output
of the antenna for both counterclockwise and clockwise rotation of the incident field.
For counterclockwise rotation:

E. = E,cosy + E,sinyy = E,(cosy —jsiny) , (A4.7)
E, = —E.sinyy + Eycosyy = —E,(sinyy +jcosy) . (A4.3)
For nominal right-circular polarization, y, = —m/4+ Ay,, where Ay, is a measure

of the departure of the polarization from circularity. Then from Eq. (4.26), we obtain
V= EceVr(cos y, —sin y,) = V2E eV cos Ay, . (A4.9)

The next step is to repeat the procedure for left circular polarization from the sky,
for which we have clockwise rotation of the electric vector and E, = jE,. The result
is

V, = E,eV"(cos y, + sin y,) = v2E.eV sin Ay, . (A4.10)

The relative magnitude of the opposite-hand response of the nominally right-handed
polarization state, that is, the leakage term, is

_V

== eVrtan Ay, ~ eV Ay, . (A4.11)

D,

For nominal left-handed polarization, the relative magnitude of the opposite-hand
response is obtained by inverting the right side of Eq. (A4.11) and also substituting
Ax¢ + m/2 for Ay, and vy — 7/2 for ... For the corresponding leakage term Dy,
which represents the right circular leakage of the nominally left circularly polarized
antenna, we then obtain

Dy =e ™ itan Ay, ~ eV Ay, . (A4.12)
Since —n/4 < x < m/4, Ay, and Ay, take opposite signs. Thus, as in the case of

the leakage terms for linear polarization, D, and D, are of comparable magnitude
and opposite sign.
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Chapter 5
Antennas and Arrays

This chapter opens with a brief review of some basic considerations of antennas.
The main part of the chapter is concerned with the configurations of antennas in
interferometers and synthesis arrays. It is convenient to classify array designs as
follows:

1. Arrays with nontracking antennas
2. Interferometers and arrays with antennas that track the sidereal motion of a
source:

* Linear arrays

* Arrays with open-ended arms (crosses, T-shaped arrays, and Y-shaped arrays)
» Arrays with closed configurations (circles, ellipses, and Reuleaux triangles)

e VLBI arrays

* Planar arrays.

Examples of these types of arrays are described, and their spatial transfer functions
(i.e., spatial sensitivities) are compared. Other concerns include the size and number
of antennas needed in an array. Also discussed is the technique of forming images
from direct Fourier transformation of the electric field on an aperture.

5.1 Antennas

The subject of antennas is well covered in numerous books; see Further Reading at
the end of this chapter. Baars (2007) gives an informative review of parabolic anten-
nas, including details of testing and surface adjustment. Here, we are concerned with
the special requirements of antennas for radio astronomy. As discussed in Chap. 1,
early radio astronomy antennas operated mainly at meter wavelengths and often
consisted of arrays of dipoles or parabolic-cylinder reflectors. These had large areas,
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but the operating wavelengths were long enough that beamwidths were usually of
order 1° or more. For detection and cataloging of sources, satisfactory observations
could be obtained during the passage of a source through a stationary beam or
interferometer fringe pattern. Thus, it was not always necessary for such antennas
to track the sidereal motion of a source. More recent meter-wavelength systems use
dipole arrays with computer-controlled phasing to provide tracking beams [see, e.g.,
Koles et al. (1994) and Lonsdale et al. (2009)]. For higher frequencies, synthesis
arrays use tracking antennas that incorporate equatorial or altazimuth mounts.

The requirement for high sensitivity and angular resolution has resulted in the
development of large arrays of antennas. Such instruments are usually designed to
cover a range of frequencies. For centimeter-wavelength instruments, the coverage
typically includes bands extending from a few hundred megahertz to some tens
of gigahertz. For such frequency ranges, the antennas are most often parabolic or
similar-type reflectors, with separate feeds for the different frequency bands. In
addition to wide frequency coverage, another advantage of the parabolic reflector
is that all of the power collected is brought, essentially without loss, to a single
focus, which allows full advantage to be taken of low-loss feeds and cryogenically
cooled input stages to provide the maximum sensitivity.

Figure 5.1 shows several focal arrangements for parabolic antennas, of which the
Cassegrain is perhaps the most often used. The Cassegrain focus offers a number
of advantages. A convex hyperbolic reflector intercepts the radiation just before it
reaches the prime focus and directs it to the Cassegrain focus near the vertex of the
main reflector. Sidelobes resulting from spillover of the beam of the feed around
the edges of the subreflector point toward the sky, for which the noise temperature
is generally low. With a prime-focus feed, the sidelobes resulting from spillover
around the main reflector point toward the ground and thus result in a higher level
of unwanted noise pickup. The Cassegrain focus also has the advantage that in all
but the smallest antennas, an enclosure can be provided behind the main reflector to

() (b) (©) (d)

Fig. 5.1 Focus arrangements of reflector antennas: (a) prime focus; (b) Cassegrain focus; (c)
Naysmith focus; (d) offset Cassegrain. With the Naysmith focus, the feed horn is mounted on
the alidade structure below the elevation axis (indicated by the dashed line), and for a linearly
polarized signal, the angle of polarization relative to the feed varies with the elevation angle. In
some other arrangements, for example, beam-waveguide antennas (not shown), there are several
reflectors, including one on the azimuth axis, which allows the feed horn to remain fixed relative
to the ground. The polarization then rotates relative to the feed for both azimuth and elevation
motions.
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accommodate the low-noise input stages of the electronics. However, the aperture
of the feed for a prime-focus location is less than that for a feed at the Cassegrain
focus, and as a result, the feeds for the longer wavelengths are often at the prime
focus.

The Cassegrain design also allows the possibility of improving the aperture effi-
ciency by shaping the two reflectors of the antenna (Williams 1965). The principle
involved can best be envisioned by considering the antenna in transmission. With
a conventional hyperboloid subreflector and parabolic main reflector, the radiation
from the feed is concentrated toward the center of the antenna aperture, whereas
for maximum efficiency, the electric field should be uniformly distributed. If the
profile of the subreflector is slightly adjusted, more power can be directed toward the
outer part of the main reflector, thus improving the uniformity. The main reflector
must then be shaped to depart slightly from the parabolic profile to regain uniform
phase across the wavefront after it leaves the main reflector. This type of shaping
is used, for example, in the antennas of the VLA in New Mexico, for which the
main reflector is 25 m in diameter. For the VLA, the rms difference between the
reflector surfaces and the best fit paraboloid is ~ 1 cm, so the antennas can be used
with prime-focus feeds for wavelengths longer than ~ 16 cm. Shaping is not always
to be preferred since it introduces some restriction in off-axis performance, which
is detrimental for multibeam applications. Multiple beams for a large parabolic
antenna can greatly increase sky coverage, which is particularly useful for survey
observations. A beamformer feed system in which beams are formed using phased
arrays of feed elements is described by Elmer et al. (2012), who consider various
designs (see discussion in Sect. 5.7.2.1).

For tracking parabolic reflectors, there are numerous differences in the detailed
design. For example, when a number of feeds for different frequency bands are
required at the Cassegrain focus, these are sometimes mounted on a turntable
structure, and the feed that is in use is brought to a position on the axis of the
main reflector. Alternately, the feeds may be in fixed positions on a circle centered
on the vertex, and by using a rotatable subreflector of slightly asymmetric design,
the incoming radiation can be focused onto the required feed.

Parabolic reflector antennas with asymmetrical feed geometry can exhibit unde-
sirable instrumental polarization effects that would largely cancel out in a circularly
symmetrical antenna. This may occur in an unblocked aperture design, as in
Fig.5.1d, or in a design in which a cluster of feeds is used for operation on a number
of frequency bands, where the feeds are close to, but not exactly on, the axis of the
paraboloid. With crossed linearly polarized feeds, the asymmetry results in cross-
polarization sidelobes within the main beam. With opposite circularly polarized
feeds, the two beams are offset in opposite directions in a plane that is normal to
the plane containing the axis of symmetry of the reflector and the center of the
feed. This offset can be a serious problem in measurements of circular polarization,
since the result is obtained by taking the difference between measurements with
opposite circularly polarized responses (see Table 4.3). For measurements of linear
polarization, the offset is less serious since this involves taking the product of two
opposite-hand outputs, and the resulting response is symmetrical about the axis of
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the parabola. The effects can be largely canceled by inserting a compensating offset
in a secondary reflector. For further details, see Chu and Turrin (1973) and Rudge
and Adatia (1978).

A basic point concerns the accuracy of the reflector surface. Deviations of the
surface from the ideal profile result in variations in the phase of the electromagnetic
field as it reaches the focus. We can think of the reflector surface as consisting of
many small sections that deviate from the ideal surface by €, a Gaussian random
variable with probability distribution

1 —62/202
€) = e , 6.1
p(e) Jaro

where (€) = 0, (€2) = o2, and () indicates the expectation. A relation of general
importance in probabilistic calculations is {e/¢), which is

. o0 . 1 © 2. 2
(') = / p(e)e“de = / e 2w de =2, (5.2)
—00 V2710 J-oo
The rightmost integral is accomplished by the method of completing the square in
the argument of the exponential, i.e., — (2;22 + je) =— ) (e+ joz)2 - ”22. The

¢~"/2 factor can be moved outside the integral, the rest of which is unity.

A surface deviation € produces a deviation of approximately 2¢ in the path length
of a reflected ray; this approximation improves as the focal ratio is increased. Thus, a
deviation € causes a phase shift ¢ ~ 4we/A, where A is the wavelength. As a result,
the electric field components at the focus have a Gaussian phase distribution with
04 = 4mo/A. If there are N independent sections of the surface, then the collecting
area, which is proportional to the square of the electric field, is given by

A:A0<

where A is the collecting area for a perfect surface, and it has been assumed that
N is large enough that terms for which i = k can be ignored. The /2 factor comes
from differencing two random variables. Then from Egs. (5.2) and (5.3), we obtain
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. - \/U
> _ ]f\‘]g 3 () ~ Age ( 22¢) , (5.3)

ik

117 ZL: eIt

A = Age—4mo/D? (5.4)

This equation is known in radio engineering as the Ruze formula (Ruze 1966)
and in some other branches of astronomy as the Strehl ratio. As an example, if
o/A = 1/20, the aperture efficiency, A/Ay, is 0.67. In the case of antennas with
multiple reflecting surfaces, the rms deviations can be combined in the usual root-
sum-squared manner. Secondary reflectors, such as a Cassegrain subreflector, are
smaller than the main reflector, and for smaller surfaces, the rms deviation is usually
correspondingly smaller. The surface adjustment of the 12-m-diameter antennas
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of the Atacama Large Millimeter/submillimeter Array (ALMA) array, which are
capable of operation up to ~ 900 GHz, is a good example of the accuracy that can
be achieved (Mangum et al. 2006). A study of the dynamics of the surface of the
antennas is described by Snel et al. (2007).

Several techniques have been developed for improving the performance of
parabolic antennas. An example is the adjustment of the subreflector shape to
compensate for errors in the main reflector [see, e.g., Ingalls et al. (1994), Mayer
et al. (1994)]. Another improvement is in the design of the focal support structure
to minimize blockage of the aperture and reduce sidelobes in the direction of the
ground (Lawrence et al. 1994; Welch et al. 1996). A common method of supporting
equipment near the reflector focus is the use of a tripod or quadrupod structure. If
the legs of the structure are connected to the edge of the main reflector rather than
to points within the reflector aperture, they interrupt only the plane wave incident
on the aperture, not the spherical wavefront between the reflector and the focus.
Use of an offset-feed reflector avoids any blockage of the incident wavefront in
reaching the focus. However, both of these methods of reducing blockage increase
the complexity and cost of the structure.

5.2 Sampling the Visibility Function

5.2.1 Sampling Theorem

The choice of configuration of the antennas of a synthesis array is largely based on
optimizing the sampling of the visibility function in (u, v) space. Thus, in consid-
ering array design, it is logical to start by examining the sampling requirements.
These are governed by the sampling theorem of Fourier transforms (Bracewell
1958). Consider first the measurement of the one-dimensional intensity distribution
of a source, /;(/). It is necessary to measure the complex visibility V in the
corresponding direction on the ground at a series of values of the projected antenna
spacing. For example, to measure an east—west profile, a possible method is to make
observations near meridian transit of the source using an east—west baseline and to
vary the length of the baseline from day to day.

Figure 5.2a—c illustrates the sampling of the one-dimensional visibility function
V(u). The sampling operation can be represented as multiplication of V() by the
series of delta functions in Fig. 5.2b, which can be written

|:Alu:| m (Xu) = ’Z 8(u—idu) (5.5)

1=—0Q

where the left side is included to show how the series can be expressed in terms
of the shah function, 111, introduced by Bracewell and Roberts (1954). The series
extends to infinity in both positive and negative directions, and the delta functions
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Fig. 5.2 Tllustration of the sampling theorem: (a) visibility function V(u), real part only; (b)
sampling function in which the arrows represent delta functions; (¢) sampled visibility function;
(d) intensity function I, (/); (e) replication function; (f) replicated intensity function. Functions in
(d), (e), and (f) are the Fourier transforms of those in (a), (b), and (c), respectively. (g) is the
replicated intensity function showing aliasing in the shaded areas resulting from using too large a
sampling interval.

are uniformly spaced with an interval Au. The Fourier transform of Eq. (5.5) is the
series of delta functions shown in Fig. 5.2e:

o0

1 p
meAw = 378 (1 - Au) . (5.6)
p=—00

In the / domain, the Fourier transform of the sampled visibility is the convolution
of the Fourier transform of V(u), which is the one-dimensional intensity function
I, (), with Eq. (5.6). The result is the replication of I (I) at intervals (Au)~! shown
in Fig. 5.2f. If I; (/) represents a source of finite dimensions, the replications of 7; (/)
will not overlap as long as 7 (/) is nonzero only within a range of / that is no greater
than (Au)~'. Hence, if I,, is the range over which I; (I) is nonzero or, more generally,
the field of view of an observation, then the avoidance of aliasing requires Au <
1/1,. An example of overlapping replications is shown in Fig.5.2g. The loss of
information resulting from such overlapping is commonly referred to as aliasing,
because the components of the function within the overlapping region lose their
identity with respect to which end of the replicated function they properly belong.
The distortion in the replicated intensity function is said to be caused by “leakage”
[see Bracewell (2000)].
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The requirement for the restoration of a function from a set of samples, for
example, deriving the function in Fig.5.2a from the samples in Fig.5.2c, is easily
understood by considering the Fourier transforms in Fig.5.2d and f. Interpolation
in the # domain corresponds to removing the replications in the / domain, which
can be achieved by multiplying the function in Fig. 5.2f by the rectangular function
indicated by the broken line. In the # domain, this multiplication corresponds to
convolution of the sampled values with the Fourier transform of the rectangular
function, which is the unit area sinc function,

sinwu/Au . 5.7)

Tu

If aliasing is avoided, convolution with (5.7) provides exact interpolation of the
original function from the samples. Note that perfect restoration requires a sum
over all samples except when the sinc function is centered on a specific sample.
Thus, we can state, as the sampling theorem for the visibility, that if the intensity
distribution is nonzero only within an interval of width 1., I,(l) is fully specified
by sampling the visibility function at points spaced Au = I,' in u. The interval
Au = ;! is called the critical sampling interval. Sampling at a finer interval in u
is called oversampling and usually does no harm nor does it provide any benefit.
Sampling at a coarser interval is called undersampling, which leads to aliasing.

Aliasing can lead to serious misinterpretation of source structure. For example,
suppose the intensity function /;(/) consists of a number of compact separated
components. A component that lies outside the proper sampling window, i.e.,
|l > 1,/2, at negative [ will be aliased to a position on the positive side of the
replicated intensity function. Thus, its appears at the wrong position. This error can
be discovered by regridding the data at a finer interval Au. An aliased component
will move in an unexpected way in the image plane.

The spatial sampling theorem described here is just a formulation of the standard
Shannon—Nyquist theorem normally written in the time (¢)-frequency (v) domain.
Here, the critical sampling frequency for a temporal waveform of bandwidth Av is
1/(2Av). The factor of two appears because the spectrum in Fourier space extends
from —Av to +Av.

In two dimensions, it is simply necessary to apply the theorem separately to the
source in the / and m directions. A compact source that is just beyond the sampling
limit at the lower left of the image will be aliased into the sampling interval in the
upper right. For further discussion of the sampling theorem, see, for example, Unser
(2000).

5.2.2 Discrete Two-Dimensional Fourier Transform

The derivation of an image (or map) from the visibility measurements is the
subject of Chap. 10, but it is important at this point to understand the form
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in which the visibility data are required for this transformation. The discrete
Fourier transform (DFT) is very widely used in synthesis imaging because of the
computational advantages of the fast Fourier transform (FFT) algorithm [see, e.g.,
Brigham (1988)]. The basic properties of the DFT in one dimension are described in
Appendix 8.4. In two dimensions, the functions V(u, v) and I (I, m) are expressed as
rectangular matrices of sampled values at uniform increments in the two variables
involved. The rectangular grid points on which the intensity is obtained provide a
convenient form for further data processing.

The two-dimensional form of the discrete transform for a Fourier pair f and g is
defined by

M—1N-1

f(pg) =Y glik) e min/Meimka/N (5.8)

i=0 k=0
and the inverse is

M—1N-1

gik) =) f(p.q)ePmr/Mermtalt, (5.9)

p=0 ¢=0

The functions are periodic with periods of M samples in the i and p dimensions
and N samples in the k and g dimensions. Evaluation of Egs. (5.8) or (5.9) by direct
computation requires approximately (MN)? complex multiplications. In contrast, if
M and N are powers of 2, the FFT algorithm requires only éMN log,(MN) complex
multiplications.

The transformation between V(u, v) and I(/, m), where [ is the source intensity
in two dimensions, is obtained by substituting g(i, k) = I(iAl,kAm) and f(p, q) =
V(pAu,qAv) in Eqgs.(5.8) and (5.9). The relationship between the integral and
discrete forms of the Fourier transform is found in several texts; see, for example,
Rabiner and Gold (1975) or Papoulis (1977). The dimensions of the (i, v) plane that
contain these data are M Au by N Av. In the (/, m) plane, the points are spaced A/ in
[ and Am in m, and the image dimensions are M Al by N Am. The dimensions in the
two domains are related by

Au= MAD™",  Av=((NAm)™",
(5.10)
Al= MAw)™'",  Am= NAv)™".

The spacing between points in one domain is the reciprocal of the total dimension in
the other domain. Thus, if the size of the array in the intensity domain is chosen to be
large enough that the intensity function is nonzero only within the area M AIxN Am,
then the spacings Au and Av in Eq. (5.10) satisfy the sampling theorem.
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Fig. 5.3 Points on a rectangular grid in the (u, v) plane at which the visibility is sampled for use
with the discrete Fourier transform. As shown, the spacings Au and Av are equal. The division of
the plane into grid cells of size Au X Av is also shown.

To apply the discrete transform to synthesis imaging, it is necessary to obtain
values of V(u,v) at points separated by Au in u and by Av in v, as shown in
Fig.5.3. However, the measurements are generally not made at (u,v) points on
a grid since for tracking interferometers, they fall on elliptical loci in the (u,v)
plane, as explained in Sect. 4.1. Thus, it is necessary to obtain the values at the
grid points by interpolation or similar processes. In Fig.5.3, the plane is divided
into cells of size Au x Av centered on the grid points. A very simple method
of determining a visibility value to assign at each grid point is to take the mean
of all values that fall within the same cell. This procedure has been termed cell
averaging (Thompson and Bracewell 1974). Better procedures are generally used;
see Sect. 10.2.2. However, the cell averaging concept helps one to visualize the
required distribution of the measurements; ideally there should be at least one
measurement, or a small number of measurements, within each cell. Thus, the
baselines should be chosen so that the spacings between the (u,v) loci are no
greater than the cell size, to maximize the number of cells that are intersected by
a locus. Cells that contain no measurements result in holes in the (u, v) coverage,
and minimization of such holes is an important criterion in array design. Lobanov
(2003) and Lal et al. (2009) discuss the performance of arrays based on uniformity
of (u, v) coverage (see Sect. 5.4.2).
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5.3 Introductory Discussion of Arrays

5.3.1 Phased Arrays and Correlator Arrays

An array of antennas can be interconnected to operate as a phased array or as a
correlator array. Figure 5.4a shows a simple schematic diagram of a phased array
connected to a square-law detector, in which the number of antennas, n,, is equal to
four. If the voltages at the antenna outputs are V;, V,, V3, and so on, the output of
the square-law detector is proportional to

Vi+ Vot Vst 4 V)7 (5.11)

Note that for n, antennas, there are n,(n, — 1) cross-product terms of form V,,V,
involving different antennas m and n, and n, self-product terms of form Vi. If the

Fig. 5.4 Simple (a)

four-element linear array. £,
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measured in wavelengths, and -y —
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aptenna, aqd the combined COMBINER
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voltages. (b) The same
antennas connected as a
correlator array. (¢) The
ordinate is the response of the
array: the scale at the left
applies to the phased array,
and at the right to the
correlator array. The abscissa
is proportional to € in units of
(;1 rad. The equal spacing
between antennas in this
simple grating array gives rise
to sidelobes in the form of
replications of the central
beam.
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signal path (including the phase shifter) from each antenna to the detector is of
the same electrical length, the signals combine in phase when the direction of the
incoming radiation is given by

0 = sin™! (N) , (5.12)
15

where N is an integer, including zero, and £, is the spacing interval measured in
wavelengths. The position angles of the maxima, which represent the beam pattern
of the array, can be varied by adjusting the phase shifters at the antenna outputs.
Thus, the beam pattern can be controlled and, for example, scanned to form an
image of an area of sky.

In correlator arrays, a correlator generates the cross product of the signal voltages
VinVn for every antenna pair, as in Fig.5.4b. These outputs take the form of
fringe patterns and can be combined to produce maxima similar to those of the
phased array. If a phase shift is introduced at the output of one of the correlator
array antennas, the result appears as a corresponding change in the phase of
the fringes measured with the correlator connected to that antenna. Conversely,
the effect of an antenna phase shift can be simulated by changing the measured
phases when combining the correlator outputs. Thus, a beam-scanning action can
be accomplished by combining measured cross-correlations in a computer with
appropriate variations in the phase. This is what happens in computing the Fourier
transform of the visibility function, that is, the Fourier transform of the correlator
outputs as a function of spacing. The loss of the self-product terms reduces the
instantaneous sensitivity of the correlator array by a factor (n, — 1)/n, in power,
which is close to unity if n, is large. However, at any instant, the correlator array
responds to the whole field of the individual antennas, whereas the response of the
phased array is determined by the narrow beam that it forms, unless it is equipped
with a more complex signal-combining network that allows many beams to be
formed simultaneously. Thus, in imaging, the correlator array gathers data more
efficiently than the phased array.

The response pattern of the correlator array to a point source is the same as
that of the phased array, except for the self-product terms. The response of the
phased array consists of one or more beams in the direction in which the antenna
responses combine with equal phase. These are surrounded by sidelobes, the pattern
and magnitude of which depend on the number and configuration of antennas.
Between individual sidelobe peaks, there will be nulls that can be as low as zero,
but the response is positive because the output of the square-law detector cannot go
negative. Now consider subtracting the self-product terms, to simulate the response
of the correlator array. Over a field of view small compared with the beamwidth
of an individual antenna, each self-product term represents a constant level, and
each cross product represents a fringe oscillation. In the response to a point source,
all of these terms are of equal magnitude. Subtracting the self-products from the
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phased-array response causes the zero level to be shifted in the positive direction
by an amount equal to 1/n, of the peak level, as indicated by the broken line in
Fig.5.4c. The points that represent zeros in the phased-array response become the
peaks of negative sidelobes. Thus, in the response of the correlator array, the positive
values are decreased by a factor (n, — 1)/n, relative to those of the phased array.
In the negative direction, the response extends to a level of —1/(n, — 1) of the
positive peak but no further since this level corresponds to the zero level of the
phased array. Kogan (1999) pointed out this limitation on the magnitude of the
negative sidelobes of a correlator array and also noted that this limit depends not
on the configuration of the individual antennas but only on their number. Neither of
these conclusions applies to the positive sidelobes. This result is strictly true only
for snapshot observations [i.e., those in which the (u, v) coverage is not significantly
increased by Earth rotation] and for uniform weighting of the correlator outputs.
Finally, consider some characteristics of a phased array as in Fig.5.4a. The
power combiner is a passive network, for example, the branched transmission line in
Fig. 1.13a. If a correlated waveform of power P is applied to each combiner input,
then the output power is n,P. In terms of the voltage V at each input, a fraction
1/4/nq of each voltage combines additively to produce an output of ,/n,V, or
n,P in power. Now if the input waveforms are uncorrelated, again each contributes
V/./na in voltage but the resulting powers combine additively (i.e., as the sum
of the squared voltages), so in this case, the power at the output is equal to the
power P at one input. Each input then contributes only 1/n, of its power to the
output, and the remaining power is dissipated in the terminating impedances of the
combiner inputs (i.e., radiated from the antennas if they are directly connected to
the combiner). The signals from an unresolved source received in the main beam
of the array are fully correlated, but the noise contributions from amplifiers at the
antennas are uncorrelated. Thus, if there are no losses in the transmission lines or
the combiner, the same signal-to-noise ratio at the detector is obtained by inserting
an amplifier at the output of each antenna, or a single amplifier at the output of the
combiner. However, such losses are often significant, so generally it is advantageous
to use amplifiers at the antennas. Note that if half of the antennas in a phased array
are pointed at a radio source and the others at blank sky, the signal power at the
combiner output is one-quarter of that with all antennas pointed at the source.

5.3.2 Spatial Sensitivity and the Spatial Transfer Function

We now consider the sensitivity of an antenna or array to the spatial frequencies
on the sky. The angular response pattern of an antenna is the same in reception or
transmission, and at this point it may be easier to consider the antenna in transmis-
sion. Then power applied to the terminals produces a field at the antenna aperture.
A function W (u, v) is equal to the autocorrelation function of the distribution of the
electric field across the aperture, &E(x;,yy). Here x) and y, are coordinates in the
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aperture plane of the antenna and are measured in wavelengths. Thus,
W(u,v) = E(xp,y2) * *E*(x1.y1)

o0 o0
= / / E(xa, y2) E* (x —u,yp —v) dxy dy; . (5.13)
—00 —0o0

The double-pentagram symbol represents two-dimensional autocorrelation. The
integral in Eq. (5.13) is proportional to the number of ways, suitably weighted by
the field intensity, in which a specific spacing vector (i, v) can be found within
the antenna aperture. In reception, W(u, v) is a measure of the sensitivity of the
antenna to different spatial frequencies. In effect, the antenna or array acts as a
spatial frequency filter, and W (u, v) is widely referred to as the transfer function by
analogy with the usage of this term in filter theory. W(u, v) has also been called the
spectral sensitivity function (Bracewell 1961, 1962), which refers to the spectrum of
spatial frequencies (not the radio frequencies) to which the array responds. We use
the terms spatial transfer function and spatial sensitivity when discussing W (u, v).
The area of the (u, v) plane over which measurements can be made [i.e., the support
of W(u, v), defined as the closure of the domain within which W(u, v) is nonzero]
is referred to as the spatial frequency coverage, or the (u, v) coverage.

Consider the response of the antenna or array to a point source. Since the
visibility of a point source is constant over the (u, v) plane, the measured spatial
frequencies are proportional to W(u, v). Thus, the point-source response A(/, m)
is the Fourier transform of W(u, v). This result is formally derived by Bracewell
and Roberts (1954). [Recall from the discussion preceding Eq. (2.15) that the point-
source response is the mirror image of the antenna power pattern: A(l,m) =
A(—I,—m).] The spatial transfer function W(u, v) is an important feature in this
chapter, and Fig.5.5 further illustrates its place in the interrelationships between
functions involved in radio imaging.

Figure 5.6a shows an interferometer in which the antennas do not track and are
represented by two rectangular areas. We shall assume that E(x;, yy) is uniformly
distributed over the apertures, such as in the case of arrays of uniformly excited
dipoles. First suppose that the output voltages from the two apertures are summed
and fed to a power-measuring receiver, as in some early instruments. The three
rectangular areas in Fig. 5.6b represent the autocorrelation function of the aperture
distributions, that is, the spatial transfer function. Note that the autocorrelation of the
two apertures contains the autocorrelation of the individual apertures (the central
rectangle in Fig. 5.6b) plus the cross-correlation of the two apertures (the shaded
rectangles). If the two antennas are combined using a correlator instead of a receiver
that responds to the total received power, the spatial sensitivity is represented by
only the shaded rectangles since the correlator forms only the cross products of
signals from the two apertures.

The interpretation of the spatial transfer function as the Fourier transform of the
point-source response can be applied to both the adding and correlator cases. For
example, for the correlator implementation of the interferometer in Fig.5.6a, the
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Fig. 5.5 Relationships between functions involved in imaging a source. Starting at the top left,
the autocorrelation of the aperture distribution of the electric field over an antenna E(x;, y») gives
the spatial transfer function W(u, v). The measured visibility in the observation of a source is
the product of the source visibility V(u, v) and the spatial transfer function. At the top right,
the multiplication of the voltage reception pattern V, (I, m) with its complex conjugate produces
the power reception pattern A(/, m). Imaging of the source intensity distribution /(/, m) results in
convolution of this function with the antenna power pattern. The Fourier transform relationships
between the quantities in the (x;,y,) and (u,v) domains, and those in the (I, m) domain, are
indicated by the bidirectional arrows. When the spatial sensitivity is built up by Earth rotation,
as in tracking arrays, it cannot, in general, be described as the autocorrelation function of any field
distribution. Only the part of the diagram below the broken line applies in such cases.

response to a point source is the Fourier transform of the function represented by
the shaded areas. This Fourier transform is

|:sin X1 l:|2 |:sin Tym

2
:| cos2mD,l, (5.14)
wxpl TYm

where x;; and y,; are the aperture dimensions, and D, is the aperture separation,
all measured in wavelengths. The sinc-squared functions in (5.14) represent the
power pattern of the uniformly illuminated rectangular apertures, and the cosine
term represents the fringe pattern. In early instruments, the relative magnitude of
the spatial sensitivity was controlled only by the field distribution over the antennas,
but image processing by computer enables the magnitude to be adjusted after an
observation has been made.
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Fig. 5.6 The two apertures in (a) represent a two-element interferometer, the spatial transfer
function of which is shown in (b). The shaded areas contain the spatial sensitivity components
that result from the cross-correlation of the signals from the two antennas. If the field distribution
is uniform over the apertures, the magnitude of the spatial sensitivity is linearly tapered. This is
indicated by ¢ and d, which represent cross sections of the spatial transfer function.

Some commonly used configurations of antenna arrays, and the boundaries of
their autocorrelation functions, are shown in Fig. 5.7. The autocorrelation functions
indicate the instantaneous spatial sensitivity for a continuous aperture in the form
of the corresponding figure. Equation (5.13) shows that the autocorrelation function
is the integral of the product of the field distribution with its complex conjugate
displaced by u and v. By investigating the values of u and v for which the
two aperture figures overlap, it is easy to determine the boundary within which
the spatial transfer function is nonzero, using graphical procedures described by
Bracewell (1961, 1995). It is also possible to identify ridges of high autocorrelation
that occur for displacements at which the arms of figures such as those in Fig.5.7a,
b, or c are aligned. In the case of the ring, Fig.5.7g, the autocorrelation function
is proportional to the area of overlap at the two points where the ring intersects
with its displaced replication. This area decreases monotonically for a ring of unit
diameter until ¢ = +/u? + v = 1/+/2, where the tangents to the two rings at the
intersection points are 77/2. For ¢ > 1/+/2, the autocorrelation function increases
as the tangents realign. The analytic form of the autocorrelation function, shown
in Fig. 5.7j, is the Fourier transform of a Jé Bessel function, which is proportional
to 1/ (q\/ 1 —¢?), for 0 < g < 1. Another interesting aperture is a filled circle,
for which the autocorrelation function decreases monotonically from ¢ = 0 to 1
with the form cos™!(g) — q\/ 1 — g2, which Bracewell (2000) calls the Chinese
hat function. When the aperture is not completely filled, that is, when the figure
represents an array of discrete antennas, the spatial sensitivity takes the form of
samples of the autocorrelation function. For example, for a cross of uniformly
spaced antennas, the square in Fig. 5.7b would be represented by a matrix pattern
within the square boundary.



168 5 Antennas and Arrays
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5.3.3 Meter-Wavelength Cross and T-Shaped Arrays

A cross and its autocorrelation function are shown in Fig. 5.7a and b. It is assumed
that the width of the arms is finite but small compared with the length of the arms.
In the case of the Mills cross (Mills 1963) described briefly in Chap. 1, the outputs
of the two arms go to a single cross-correlating receiver, so the spatial sensitivity is
represented by the square in Fig. 5.7b. The narrow extensions on the centers of the
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sides of the square represent parts of the autocorrelation functions of the individual
arms, which are not formed in the cross-correlation of the arms. However, they
are formed if the arms consist of lines of individual antennas, for which the cross-
correlation is formed for pairs on the same arm as well as those on crossed arms.
The case for a T-shaped array is similar and is shown in Fig. 5.7c and d.

If the sensitivity (i.e., the collecting area per unit length) is uniform along the
arms for a cross or a corresponding T, then the weighting of the spatial sensitivity is
uniform over the square (u,v) area; note that it does not taper linearly from the
center as in the situation in Fig.5.6. At the edge of the square area, the spatial
sensitivity falls to zero in a distance equal to the width of the arms. Such a sharp
edge, resulting from the uniform sensitivity, results in strong sidelobes. Therefore,
an important feature of the Mills cross design was a Gaussian taper of the coupling
of the elements along the arms to reduce the sensitivity to about 10% at the ends.
This greatly reduced local maxima in the response resulting from sidelobes outside
the main beam, at the expense of some broadening of the beam.

Figure 1.12a shows an implementation of a T-shaped array that is an example
of a nontracking correlator interferometer. Here, a small antenna is moved in steps,
with continuous coverage, to simulate a larger aperture; see Blythe (1957), Ryle
et al. (1959), and Ryle and Hewish (1960). The spatial frequency coverage is the
same as would be obtained in a single observation with an antenna of aperture equal
to that simulated by the movement of the small antenna, although the magnitude
of the spatial sensitivity is not exactly the same. The term aperture synthesis was
introduced to describe such observations, but to be precise, it is the autocorrelation
of the aperture that is synthesized (see Sect. 5.4).

5.4 Spatial Transfer Function of a Tracking Array

The range of spatial frequencies that contribute to the output of an interferometer
with tracking antennas is illustrated in Fig. 5.8b. The two shaded areas represent the
cross-correlation of the two apertures of an east—west interferometer for a source
on the meridian. As the source moves in hour angle, the changing (u, v) coverage is
represented by a band centered on the spacing locus of the two antennas. Recall from
Sect. 4.1 that the locus for an Earth-based interferometer is an arc of an ellipse, and
that since V(—u, —v) = V*(u, v), any pair of antennas measures visibility along
two arcs symmetric about the (u, v) origin, both of which are included in the spatial
transfer function.

Because the antennas track the source, the antenna beams remain centered on the
same point in the source under investigation, and the array measures the product of
the source intensity distribution and the antenna pattern. Another view of this effect
is obtained by considering the radiation received by small areas of the apertures of
two antennas, the centers of which are A; and A, in Fig. 5.9. The antenna apertures
encompass a range of spacings from u — d, to u + d, wavelengths, where d,
is the antenna diameter measured in wavelengths. If the antenna beams remain
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(a) (b)

Fig. 5.8 (a) The aperture of an east—west, two-element interferometer. The corresponding spatial
frequency coverage for cross-correlated signals is shown by the shaded areas in (b). If the antennas
track the source, the spacing vector traces out an elliptical locus (the solid line) in the (u, v) plane.
The area between the broken lines in (b) indicates the spatial frequencies that contribute to the
measured values. The spacing between the broken lines is determined by the cross-correlation of
the antenna aperture.

Fig. 5.9 Illustration of the effect of tracking on the fringe frequency at the correlator output. The
u component of the baseline is shown, and the v component is omitted since it does not affect the
fringe frequency. The curved arrow indicates the tracking motion of the antennas.

fixed in position as a source moves through them, then the correlator output is
a combination of fringe components with frequencies from w,(u — d;)cosé to
w.(u+dy) cos §, where w, is the angular velocity of the Earth and § is the declination
of the source. To examine the effect when the antennas track the source, consider
the point B, which, because of the tracking, has a component of motion toward the
source equal to w,Aucos§ wavelengths per second. This causes a corresponding
Doppler shift in the signal received at B. To obtain the fringe frequency for waves
arriving at A; and B, we subtract the Doppler shift from the nontracking fringe
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frequency and obtain [w,(u + Au) cos§] — (w.Aucos§) = (w.ucos ). The fringe
frequency when tracking is thus the same as for the central points A; and A, of
the apertures. (This is true for any pair of points; choosing one point at an antenna
center in the example above slightly simplifies the discussion.) Thus, if the antennas
track, the contributions from all pairs of points within the apertures appear at the
same fringe frequency at the correlator output. As a result, such contributions
cannot be separated by Fourier analysis of the correlator output waveform, and
information on how the visibility varies over the range u — d) to u + d, is lost.
However, if the antenna motion differs from a purely tracking one, the information
is, in principle, recoverable. In imaging sources wider than the antenna beams, an
additional scanning motion to cover the source is added to the tracking motion. In
effect, this scanning allows the visibility to be sampled at intervals in # and v that
are fine enough for the extended width of the source. This technique, known as
mosaicking, is described in Sect. 11.5.

To accommodate the effects that result when the antennas track the source
position, the normalized antenna pattern is treated as a modification to the intensity
distribution, which then becomes Ay(l, m)I({,m). The spatial transfer function
W (u,v) for a pair of tracking antennas is represented at any instant by a pair of
two-dimensional delta functions 28 (u, v) and 28(—u, —v). For an array of antennas,
the resulting spatial transfer function is represented by a series of delta functions
weighted in proportion to the magnitude of the instrumental response. As the Earth
rotates, these delta functions generate the ensemble of elliptical spacing loci. The
loci represent the spatial transfer function of a tracking array.

Consider observation of a source (I, m), for which the visibility function is
V(u, v), with normalized antenna patterns Ay (/, m). Then if W(u, v) is the spatial
transfer function, the measured visibility is

[V(u,v) % * Ay (u, v)| W(u, v) , (5.15)

where the double asterisk indicates two-dimensional convolution and the bar
denotes the Fourier transform. The Fourier transform of (5.15) gives the measured
intensity:

[1(1, m)An (L, m)] % * W(l, m) . (5.16)

If we observe a point source at the (I, m) origin, where Ay = 1, expression (5.16)
becomes the point-source response by(l, m). We then obtain

bo(l,m) = [28(1,m)An(L.m)]| * * W(l,m) = W(l,m) , (5.17)

where the two-dimensional delta function, 2§(/, m), represents the point source.
Here again, the point-source response is the Fourier transform of the spatial
transfer function. In the tracking case, the spatial frequencies that contribute to the
measurement are represented by W(u, v) * *Ay(u, v). Note that Ay (i, v) is twice as
wide as the corresponding antenna aperture in the (x, y) domain.
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The term aperture synthesis is sometimes extended to include observations
that involve hour-angle tracking. However, it is not possible to define an exactly
equivalent antenna aperture for a tracking array. For example, consider the case of
two antennas with an east—west baseline tracking a source for a period of 12 h.
The spatial transfer function is an ellipse centered on the origin of the (u, v) plane,
with zero sensitivity within the ellipse (except for a point at the origin that could be
supplied by a measurement of total power received in the antennas). The equivalent
aperture would be a function, the autocorrelation of which is the same elliptical ring
as the spatial transfer function. No such aperture function exists, and thus the term
“aperture synthesis” can only loosely be applied to describe most observations that
include hour-angle tracking.

5.4.1 Desirable Characteristics of the Spatial Transfer
Function

As a first step in considering the layout of the antennas, it is useful to consider the
desired spatial (u, v) coverage [see, e.g., Keto (1997)]. For any specific observation,
the optimum (u, v) coverage clearly depends on the expected intensity distribution
of the source under study, since one would prefer to concentrate the capacity of the
instrument in (u, v) regions where the visibility is nonzero. However, most large
arrays are used for a wide range of astronomical objects, so some compromise
approach is required. Since, in general, astronomical objects are aligned at random
in the sky, there is no preferred direction for the highest resolution. Thus, it is logical
to aim for visibility measurements that extend over a circular area centered on the
(u, v) origin.

As described in Sect. 5.2.2, the visibility data may be interpolated onto a
rectangular grid for convenience in Fourier transformation, and if approximately
equal numbers of measurements are used for each grid point, they can be given
equal weights in the transformation. Uneven weighting results in loss of sensitivity,
since some values then contain a larger component of noise than others. From
this viewpoint, one would like the natural weighting (i.e., the weighting of the
measurements that results from the array configuration without further adjustment)
to be as uniform as possible within the circular area.

For a general-purpose array, it is difficult to improve on the circularity of
the measurement area. However, there are exceptions to the uniformity of the
measurements within the circle. As mentioned above, in the Mills cross, uniform
coupling of the radiating elements along the arms would result in uniform spatial
sensitivity. To reduce sidelobes, a Gaussian taper of the coupling was introduced,
resulting in a similar taper in the spatial sensitivity. This was particularly important
because at the frequencies for which this type of instrument was constructed,
typically in the range 85-408 MHz, source confusion can be a serious problem.
Sidelobe responses can be mistaken for sources and can also mask genuine sources.
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For a spatial sensitivity function of uniform rectangular character, the beam has a
sinc function (sin wx/mx) profile, for which the first sidelobe has a relative strength
of 0.217. For a uniform, circular, spatial transfer function, the beam has a profile
of the form J; (7rx)/mx for which the first sidelobe has a relative strength of 0.132.
Sidelobes for a uniform circular (u, v) coverage are less than for a rectangular one
but would still be a problem in conditions of source confusion. Tapering of the
antenna illumination reduces the sidelobe responses. Thus, the uniform weighting
may not be optimum for conditions of high source density.

5.4.2 Holes in the Spatial Frequency Coverage

Consider a circular (u, v) area of diameter a, wavelengths in which there are no
holes in the data; that is, the visibility data interpolated onto a rectangular grid
for Fourier transformation has no missing values. Then for uniform weighting, the
synthesized beam, which is obtained from the Fourier transform of the gridded
transfer function, has the form Jy(way0)/ma) 6, where 0 is the angle measured
from the beam center. If centrally concentrated weighting is used, the beam is a
smoothed form of this function. Let us refer to the (u, v) area described above as the
complete (u, v) coverage and the resulting beam as the complete response. Now if
some data are missing, the actual (u, v) coverage is equal to the complete coverage
minus the (u, v) hole distribution. By the additive property of Fourier transforms, the
corresponding synthesized beam is equal to the complete response minus the Fourier
transform of the hole distribution. The holes result in an unwanted component to
the complete response, in effect adding sidelobes to the synthesized beam. From
Parseval’s theorem, the rms amplitude of the hole-induced sidelobes is proportional
to the rms value of the missing spatial sensitivity represented by the holes. Other
sidelobes also occur as a result of the oscillations in the J; (;ra, 0)/mwa)0 profile of
the complete response, but there is clearly a sidelobe component from the holes.

5.5 Linear Tracking Arrays

We now consider interferometers or arrays in which the locations of the antennas are
confined to a straight line. We have seen that for pairs of antennas with east—west
spacings, the tracking loci in the (u, v) plane are a series of ellipses centered on the
(u, v) origin. To obtain complete ellipses, it is necessary that the tracking covers a
range of 12 h in hour angle. If the antenna spacings of an east—west array increase
in uniform increments, the spatial sensitivity is represented by a series of concentric
ellipses with uniform increments in their axes. The angular resolution obtained
is inversely proportional to the width of the (u, v) coverage in the corresponding
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Fig. 5.10 Two linear array configurations in which the antennas are represented by filled circles.
(a) Arsac’s (1955) configuration containing all spacings up to six times the unit spacing, with no
redundancy. (b) Bracewell’s (1966) configuration containing all spacings up to nine times the unit
spacing, with the unit spacing occurring twice.

direction; the width in the v direction is equal to that in the u direction times the
sine of the declination, §. East—west linear arrays containing spacings at multiples
of a basic interval have found wide use, especially in earlier radio astronomy, for
observations at |§| greater than ~ 30°.

In the simplest type of linear array, the antennas are spaced at uniform intervals
£ (see Fig. 1.13a). This type of array is sometimes known as a grating array, by
analogy with an optical diffraction grating. If there are n, antennas, such an array
output contains (n, — 1) combinations with the unit spacing, (n, — 2) with twice the
unit spacing, and so on. Thus, short spacings are highly redundant, and one is led
to seek other ways to configure the antennas to provide larger numbers of different
spacings for a given n,. Note, however, that redundant observations can be used as
an aid in calibration of the instrumental response and atmospheric effects, so some
degree of redundancy is arguably beneficial (Hamaker et al. 1977).

Early examples of antenna configurations include one in Fig.5.10a, used by
Arsac (1955), with no redundant spacings. The six possible pair combinations
all have different spacings. With more than four antennas, there is always either
some redundancy or some missing spacings. A five-element, minimum-redundancy'
configuration devised by Bracewell (1966) is shown in Fig.5.10b. Moffet (1968)
listed examples of minimum-redundancy arrays of up to 11 elements, and solutions
for larger arrays are discussed by Ishiguro (1980). Moffet defined two classes. These
are restricted arrays in which all spacings up to the maximum spacing, nyaxf, (that
is, the total length of the array), are present; general arrays in which all spacings up
to some particular value are present; and also some longer ones. Examples for eight
elements are shown in Fig. 5.11. A measure of redundancy for a linear array is given
by the expression

1
Zna(na - 1)/”max s (5.18)

which is the number of antenna pairs divided by the number of unit spacings in the
longest spacing. This is equal to 1.0 and 1.11 for the configurations in Fig.5.10a

'The mathematical theory of minimum redundancy is known as the optimal Golomb ruler (Golomb
1972), which has roots in the mathematical literature going back to the 1930s.
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Fig. 5.11 Eight-element, minimum-redundancy, linear arrays: the numbers indicate spacings in
multiples of the unit spacing. (a) Two arrays that uniformly cover the range of 1 to 23 times the
unit spacing. (b) An array that uniformly covers 1 to 24 times the unit spacing but has a length of
39 times the unit spacing. The extra spacings are 8, 31 (twice), and 39 times the unit spacing. ©
1968 IEEE. Reprinted with permission, from A. T. Moffet (1968).

and 5.10b, respectively. A study in number theory by Leech (1956) indicates that
for large numbers of elements, this redundancy factor approaches 4/3. A linear
minimum-redundancy array that uses the configuration in Fig. 5.10b is described by
Bracewell et al. (1973). For arrays with such small numbers of antennas, the choice
of the configuration is particularly important.

The ability to move a small number of elements adds greatly to the range of
performance of an array. Figure 5.12 shows the arrangement of three antennas
in an early synthesis instrument, the Cambridge One-Mile Radio Telescope (Ryle
1962). Antennas 1 and 2 are fixed, and their outputs are correlated with that from
antenna 3, which can be moved on a rail track. In each position of antenna 3, the
source under observation is tracked for 12 h, and visibility data are obtained over
two elliptical loci in the (u, v) plane. The observation is repeated as antenna 3 is
moved progressively along the track, and the increments in the position of this
antenna determine the spacing of the elliptical loci in the (u, v) plane. From the
sampling theorem (Sect. 5.2.1), the required (u, v) spacing is the reciprocal of the
angular width (in radians) of the source under investigation. The ability to vary the
incremental spacing adds versatility to the array and reduces the number of antennas
required. The configuration of a larger instrument of this type, the Westerbork
Synthesis Radio Telescope (Baars and Hooghoudt 1974; Hogbom and Brouw 1974;
Raimond and Genee 1996), is shown in Fig.5.13. Here, ten fixed antennas are

1 2 3

\W \5?

—-«—— Rail track ———

Fig. 5.12 The Cambridge One-Mile Radio Telescope. Antennas 1 and 2 are at fixed locations, and
the signals they receive are each correlated with the signal from antenna 3, which can be located
at various positions along a rail track. The fixed antennas are 762 m apart, and the rail track is a
further 762 m long. The unit spacing is equal to the increment of the position of antenna 3, and all
multiples up to 1524 m can be obtained.
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Fig. 5.13 Antenna configuration of the Westerbork Synthesis Radio Telescope. The ten filled
circles represent antennas at fixed locations, and the four open circles represent antennas that are
movable on rail tracks. The signals from each of the fixed antennas are combined with the signals
from each of the movable ones. The diameter of the antennas is 25 m, and the spacing of the fixed
antennas is 144 m.

combined with four movable ones, and the rate of gathering data is approximately
20 times greater than with the three-element array.

The sampling of the visibility function at points on concentric, equally spaced
ellipses results in the introduction of ringlobe responses. These may be understood
by noting that for a linear array, the instantaneous spacings are represented in one
dimension by a series of § functions, as shown in Fig.5.14a. If the array contains
all multiples of the unit spacings up to N¢,, and if the corresponding visibility
measurements are combined with equal weights, the instantaneous response is a
series of fan beams, each with a profile of sinc-function form, as in Fig.5.14b.
This follows from the Fourier transform relationship for a truncated series of delta
functions (see Appendix 2.1):

N sin[2N + Dbyl S k
S(u—it s(1— . 5.19
Y Su—ity) «— *k;oo ( el) (5.19)

Py ﬂell

The delta functions on the left side represent the spacings in the # domain. The series
on the left is truncated and can be envisaged as selected from an infinite series by
multiplication with a rectangular window function. The right side represents the
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Fig. 5.14 Part of a series of § functions representing the instantaneous distribution of spacings for
a uniformly spaced linear array with equal weight for each spacing. (b) Part of the corresponding
series of fan beams that constitute the instantaneous response. Parts (a) and (b) represent the left
and right sides of Eq. (5.19), respectively.
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Fig. 5.15 Example of ringlobes. The response of an array for which the spatial transfer function is
a series of nine circles concentric with the (u, v) origin, resulting, for example, from observations
with an east—west linear array with 12-h tracking at a high declination. The radii of these circles
are consecutive integral multiples of the unit antenna spacing. The weighting corresponds to
the principal response discussed in Sect. 10.2. From Bracewell and Thompson (1973). © AAS.
Reproduced with permission.

beam pattern in which the Fourier transform of the window function is replicated by
convolution with delta functions. As the Earth’s rotation causes the spacing vectors
to sweep out ellipses in the (u, v) plane, the corresponding rotation of the array
relative to the sky can be visualized as causing a central fan beam to rotate into
a narrow pencil beam, while its neighbors give rise to lower-level, ring-shaped
responses concentric with the central beam, as shown in Fig.5.15. This general
argument gives the correct spacing of the ringlobes, the profile of which is modified
from the sinc-function form.

If the spatial sensitivity in the («, v) plane is a series of circular delta functions
of radius ¢, 2q, . . ., Ng, the profile of the kth ringlobe is of the form

sinc!/? [Z(N + ;)(qr — k)] , (5.20)

where r = +/I> + m?2. The function sinc'/?(y) is plotted in Fig.5.16 and is the
half-order derivative of (sinzy)/my. It can be computed using Fresnel integrals
(Bracewell and Thompson 1973).

The application of the sampling theorem (Sect. 5.2.1) to the choice of incremental
spacing requires that the increment be no greater than the reciprocal of the source
width. In terms of ringlobes, this condition ensures that the minimum ringlobe
spacing is no less than the source width. Thus, if the sampling theorem is followed,
the main-beam response to a source just avoids being overlapped by a ringlobe
response to the same source. In arrays such as those in Figs. 5.12 and 5.13, ringlobes
can be effectively suppressed if the movable antennas are positioned in steps slightly
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Fig. 5.16 Cross section of a ringlobe in the principal response to a point source of an east—west
array with uniform increments in antenna spacing. The left side is the inside of the ring, and the
right is the outside. The dotted line indicates a negative mean level of the oscillations on the inner
side. From Bracewell and Thompson (1973). © AAS. Reproduced with permission.

less than the antenna diameter, in which case the ringlobe lies outside the primary
antenna beam. Note, however, that the first spacing cannot be less than the antenna
diameter, and the missing low-spacing measurements may have to be obtained by
other means (see the discussion of mosaicking in Sect. 11.5). Ringlobes can also
be greatly reduced by image-processing techniques such as the CLEAN algorithm,
which is described in Sect. 11.1.

Although the elliptical loci in the (u, v) plane are spaced at equal intervals, the
natural weighting of the data for an east—west linear array is not uniform, because
in any interval of time, the antenna-spacing vectors move a distance proportional
to their length. In the projection of the (u, v) plane onto the equatorial plane of the
Earth, which is discussed in Sect. 4.2 as the (/, v’) plane, the spacing vectors rotate
at constant angular velocity, and the density of measured points is proportional to

q/—l — (M/Z + v/Z)—l/Z — (M2 + UZCOS6028)_1/2 . (521)

In the (u, v) plane, the density of measurements, averaged over an area of dimen-
sions comparable to the unit spacing of the antennas, is inversely proportional to
Vu? 4 v2cosec2§. Along a straight line through the (u,v) origin, the density is
inversely proportional to ~/u2 + v2.
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5.6 Two-Dimensional Tracking Arrays

As noted previously, the spatial frequency coverage for an east—west linear array
becomes severely foreshortened in the v dimension for observations near the
celestial equator. For such observations, a configuration of antennas is required in
which the Z component of the antenna spacing, as defined in Sect. 4.1, is comparable
to the X and Y components. This is achieved by including spacings with azimuths
other than east—west. The configuration is then two-dimensional. An array located
at an intermediate latitude and designed to operate at low declinations can cover the
sky from the pole to declinations of about 30° into the opposite celestial hemisphere.
This range includes about 70% of the total sky, that is, almost three times as much
as that of an east—west array. Since the Z component is not zero, the elliptical
(u, v) loci are broken into two parts, as shown in Fig.4.4. As a result, the pattern
of the (u,v) coverage is more complex than is the case for an east-west linear
array, and the ringlobes that result from uniform spacing of the loci are replaced
by more complex sidelobe structure. In two dimensions, the choice of a minimum-
redundancy configuration of antennas is not as simple as for a linear array. A first
step is to consider the desired spatial transfer function W(u, v). There is no direct
analytical way to go from W (u, v) to the antenna configuration, but iterative methods
of finding an optimum, or near-optimum, solution can be used.

First, consider the effect of tracking a source across the sky, and suppose that
for a source near the zenith, the instantaneous spatial frequency coverage results
in approximately uniform sampling within a circle centered on the (u, v) origin.
At any time during the period of tracking of the source, the (u, v) coverage is the
zenith coverage projected onto the plane of the sky, with some degree of rotation
that depends on the hour angle and declination of the source. The projection results
in foreshortening of the coverage from a circular to an elliptical area, still centered
on the (u, v) origin, and this foreshortening is least at meridian transit. The effect
of observing over a range of hour angle can be envisaged as averaging a range of
elliptical (u, v) areas that suffer some rotation of the major axis. At the center of
the (u, v) plane will be an area that remained within the foreshortened coverage
over the whole observation, and if the instantaneous coverage is uniform, then it
will remain uniform within this area. Outside the area, the foreshortening will cause
the coverage to taper off smoothly. These effects depend on the declination of the
source and the range of hour-angle tracking. Practical experience indicates that some
tapering of the visibility measurements is seldom a serious problem. Thus, it can
generally be expected that two-dimensional arrays in which the number of antennas
is large enough to provide good instantaneous (u, v) coverage will also provide good
performance when used with hour-angle tracking.
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5.6.1 Open-Ended Configurations

For configurations with open-ended arms such as the cross, T, and Y, the spatial
frequency coverage is shown in Fig. 5.7. The spatial frequency coverage of the cross
and T has fourfold symmetry in both cases; we ignore the effect of the missing small
extensions on the top and bottom sides of the square for the T. The spatial frequency
coverage of the equiangular Y-shaped array (120° between adjacent arms) has
sixfold symmetry. (n-fold symmetry denotes a figure that is unchanged by rotation
through 277 /n. For a circle, n becomes infinite, and other figures approach circular
symmetry as n increases.) The autocorrelation function of the equiangular Y-shaped
array is closer to circular symmetry than that of a cross or T-shaped array. In this
respect, a five-armed array, as suggested by Hjellming (1989), would be better still,
but more expensive.

As an example of the open-ended configuration, we examine some details of
the design of the VLA (Thompson et al. 1980; Napier et al. 1983; Perley et al.
2009). This array is located at latitude 34° N in New Mexico and is able to track
objects as far south as —30° for almost 7 h without going below 10° in elevation.
Performance specifications called for imaging with full resolution down to at least
—20° declination and for obtaining an image in no more than 8 h of observation
without moving antennas to new locations. In designing the array, comparison of
the performance of various antenna configurations was accomplished by computing
the spatial transfer function with tracking over an hour-angle range 44 h at various
declinations. In judging the merit of any configuration, the basic concern was to
minimize sidelobes in the synthesized beam. It was found that the percentage of
holes in the (1, v) coverage was a consistent indication of the sidelobe levels of
the synthesized beam, and to judge between different configurations, it was not
always necessary to calculate the detailed response (National Radio Astronomy
Observatory 1967, 1969). For a given number of antennas, the equiangular Y-shaped
array was found to be superior to the cross and T-shaped array; see Fig.5.17.

Inverting the Y has no effect on the beam, but if the antennas have the same
radial disposition on each arm, the performance near zero declination is improved
by rotating the array so that the nominal north or south arm makes an angle of
about 5° with the north—south direction. Without this rotation, the baselines between
corresponding antennas on the other two arms are exactly east-west, and for § = 0°,
the spacing loci degenerate to straight lines that are coincident with the u axis and
become highly redundant. The total number of antennas, 27, was chosen from a
consideration of (u, v) coverage and sidelobe levels and resulted in peak sidelobes
at least 16 dB below the main-beam response, except at § = 0°, where Earth rotation
is least effective. The 27 antennas provide 351 pair combinations.

The positions of the antennas along the arms provide another set of variables
that can be adjusted to optimize the spatial transfer function. Figure 5.17 shows
two approaches to the problem. Configuration (a) was obtained by using a pseudo-
dynamic computation technique (Mathur 1969), in which arbitrarily chosen initial
conditions were adjusted by computer until a near-optimum (u, v) coverage was
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(a)

Fig. 5.17 (a) Proposed antenna configuration for the VLA that resulted from Mathur’s (1969)
computer-optimized design. (b) Power-law design (Chow 1972) adopted for the VLA. © 1983
IEEE. Reprinted, with permission, from P. J. Napier et al. (1983).

reached. Configuration (b) shows a power-law configuration derived by Chow
(1972). This analysis led to the conclusion that a spacing in which the distance of
the nth antenna on an arm is proportional to n* would provide good (u, v) coverage.
Comparison of the empirically optimized configuration with the power-law spacing
with o ~ 1.7 showed the two to be essentially equal in performance. The power-
law result was chosen largely for reasons of economy. A requirement of the design
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was that four sets of antenna stations be provided to vary the scale of the spacings in
four steps, to allow a choice of resolution and field of view for different astronomical
objects. By making o equal to the logarithm to the base 2 of the scale factor between
configurations, the location of the nth station for one configuration coincides with
that of the 2nth station for the next-smaller configuration. The total number of
antenna stations required was thereby reduced from 108 to 72. Plots of the spatial
frequency coverage are shown in Fig.5.18. The snapshot in Fig.5.18d shows the
instantaneous coverage, which is satisfactory for imaging simple structure in strong
sources.

Fig. 5.18 Spatial frequency coverage for the VLA with the power-law configuration of Fig. 5.17b:
(a) § = 45°; (b) § = 30°; (¢) § = 0°; (d) snapshot at zenith. The range of hour angle is £4 h or
as limited by a minimum pointing elevation of 9°, and 45 min for the snapshot. The lengths of the
(u,v) axes from the origin represent the maximum distance of an antenna from the array center,
that is, 21 km for the largest configuration. © 1983 IEEE. Reprinted, with permission, from P. J.
Napier et al. (1983).
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5.6.2 Closed Configurations

The discussion here largely follows that of Keto (1997). Returning to the proposed
criterion of uniform distribution of measurements within a circle in the (u, v) plane,
we note that a configuration of antennas around a circle (a ring array) provides a
useful starting point since the distribution of antenna spacings cuts off sharply in
all directions at the circle diameter. This is shown in Fig.5.7g and h. We begin
by considering the instantaneous (u, v) coverage for a source at the zenith. This is
shown in Fig. 5.19a for 21 equally spaced antenna locations indicated by triangles.
There are 21 antenna pairs at the unit spacing, uniformly distributed in azimuth, and
each of these is represented by two points in the (u, v) plane. The same statement
can be made for any other paired spacings around the circle. As a result, the spatial
transfer function consists of points that lie on a pattern of circles and radial lines.
Note also that as the spacings approach the full diameter of the circle, the distance
between antennas increases only very slowly. For example, the direct distance
between antennas spaced 10 intervals around the circle is very little more than that
for antennas at 9 intervals. Thus, there is an increase in the density of measurements
at the longest spacings (the points along any radial line become more closely spaced)
as well as a marked increase toward the center. Note that the density of points closely
follows the radial profile of the autocorrelation function in Fig. 5.7, except close to
the origin, since Fig. 5.19 includes only cross-correlations between antennas.

One way of obtaining a more uniform distribution is to randomize the spacings
of the antennas around the circle. The (u, v) points are then no longer constrained
to lie on the pattern of circles and lines, and Fig.5.19b shows an example in
which a partial optimization has been obtained by computation using a neural-net
algorithm. Keto (1997) discussed various algorithms for optimizing the uniformity
of the spatial sensitivity. An earlier investigation of circular arrays by Cornwell
(1988) also resulted in good uniformity within a circular (u, v) area. In this case,
an optimizing program based on simulated annealing was used, and the spacing of
the antennas around the circle shows various degrees of symmetry that result in
patterns resembling crystalline structure in the (u, v) spacings.

Optimizing the antenna configurations can also be considered more broadly, and
Keto (1997) noted that the cutoff in spacings at the same value for all directions
is not unique to the circular configuration. There are other figures, such as the
Reuleaux triangle, for which the width is constant in all directions. The Reuleaux
triangle is shown in Fig. 5.7i and consists of three equal circular arcs indicated by
the solid lines. The total perimeter is equal to that of a circle with diameter equal
to one of the sides of the equilateral triangle shown by the broken lines. Similar
figures can be constructed for any regular polygon with an odd number of sides,
and a circle represents such a figure for which the number tends to infinity. The
Reuleaux triangle is the least symmetrical of this family of figures. Other facts about
the Reuleaux triangle and similar figures can be found in Rademacher and Toeplitz
(1957).
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Fig. 5.19 (a) A circular array with 21 uniformly spaced antennas indicated by the triangles, and
the instantaneous spatial frequency coverage indicated by the points. The scale of the diagrams
is the same for both the antenna positions and the spatial frequency coordinates u and v. (b) The
array and spatial frequency coverage as in (a) but after adjustment of the antenna positions around
the circle to improve the uniformity of the coverage. (¢) An array of 24 antennas equally spaced
around a Reuleaux triangle, and the corresponding spatial frequency coverage. (d) The array and
spatial sensitivity as in (c¢) with adjustment of the antenna spacing to optimize the uniformity of
the coverage. From Keto (1997). © AAS. Reproduced with permission.

Since the optimization of the circular array in Fig.5.19b results in a reduction
in the symmetry, it may be expected that an array based on the Reuleaux triangle
would provide better uniformity in the spatial frequency coverage than the circular
array. This is indeed the case, as can be seen by comparing Figs. 5.19a and c, where
the spacing between adjacent antennas for both is uniform. The circular array with
irregular antenna spacings in Fig.5.19b was obtained by starting with a circular
array and allowing antenna positions to be moved small distances. In this case,
the program was not allowed to reach a fully optimized solution. Allowing the
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optimization to run to convergence results in antennas at irregular spacings around
a Reuleaux triangle, as shown in Fig.5.19d. This result does not depend on the
starting configuration. Comparison of Figs.5.19b and d shows that the difference
between the circle and the Reuleaux triangle is much less marked when they have
both been subjected to some randomization of the antenna positions around the
figure, although a careful comparison shows the uniformity in Fig.5.19d to be a
little better than in b.

Figure 5.20 shows the spatial frequency coverage for an array in an optimized
Reuleaux triangle configuration. The tracking range is ~ %3 h of hour angle, and the
latitude is equal to that of the VLA. Comparison of these figures with corresponding
ones for the VLA in Fig.5.18 shows that the Reuleaux triangle produces spatial
frequency coverage that is closer to the uniformly sampled circular area than
does the equiangular Y configuration. As indicated in Fig.5.7, the autocorrelation
function of a figure with linear arms contains high values in directions where the
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Fig. 5.20 Spatial frequency coverage for a closed configuration of 24 antennas optimized for
uniformity of measurements in the snapshot mode: (a) snapshot at zenith; (b) § = +30°; (¢)
§ = 0°; (b) § = —28°. The triangles in (a) indicate the positions of the antennas. The tracking is
calculated for an array at 34° latitude to simplify comparison with the VLA (Fig. 5.18). For each
declination shown, the tracking range is the range of hour angle for which the source elevation is
greater than 25°. From Keto (1997). © AAS. Reproduced with permission.
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arms of overlapping figures line up. This effect contributes to the lack of uniformity
in the spatial sensitivity of the Y-shaped array. Curvature of the arms or quasi-
random lateral deviations of the antennas from the arms helps to smear the sharp
structure in the spatial transfer function. The high values along radial lines do not
occur in the autocorrelation function of a circle or similar closed figure, which is
one reason why configurations of this type provide more uniform spatial frequency
coverage.

Despite some less-than-ideal features of the equiangular Y-shaped array, the
VLA produces astronomical images of very high quality. Thus, although the
circularity and uniformity of the spatial frequency coverage are useful criteria,
they are not highly critical factors. As long as the measurements cover the range
of u and v for which the visibility is high enough to be measurable, and the
source is strong enough that any loss in sensitivity resulting from nonuniform
weighting can be tolerated, excellent results can be obtained. The Y-shaped array
has a number of practical advantages over a closed configuration. When several
scaled configurations are required to allow for a range of angular resolution, the
alternative locations lie along the same arms, whereas with the circle or Reuleaux
triangle, separate scaled configurations are required. The flexibility of the Y-shaped
array is particularly useful in VLA observations at southern declinations for which
the projected spacings are seriously foreshortened in the north—south direction.
For such cases, it is possible to move the antennas on the north arm onto the
positions for the next-larger configuration and thereby substantially compensate for
the foreshortening.

Some further interesting examples of configurations are given below.

* The compact array of the Australia Telescope is an east—west linear array of six
antennas, all movable on a rail track (Frater et al. 1992).

e The UTR-2 is a T-shaped array of large-diameter, broadband dipoles built by the
Ukrainian Academy of Sciences near Grakovo, Ukraine (Braude et al. 1978). The
frequency range of operation is 10-25 MHz. Several smaller antennas of similar
type have been constructed at distances up to approximately 900 km from the
Grakovo site and are used for VLBI observations.

e An array of 720 conical spiral antennas in a T-shaped configuration operating in
the frequency range 15—125 MHz was constructed at Borrego Springs, California
(Erickson et al. 1982).

¢ The Mauritius Radio Telescope, near Bras d’eau, Mauritius, is a T-shaped array
of helix antennas operating at 150 MHz. The east—west arm is 2 km long. The
south arm is 880 m long and is synthesized by moving a group of antennas on
trolleys. The array is similar in principle to the one in Fig. 1.12a. It is intended to
cover a large portion of the Southern Hemisphere.

e The GMRT (Giant Metrewave Radio Telescope) near Pune, India, consists of 30
antennas, 16 of which are in a Y-shaped array with curved arms approximately
15 km long. The remaining 14 are in a quasi-random cluster in the central 2 km
(Swarup et al. 1991). The antennas are 45 m in diameter and are at fixed locations.
The highest operating frequency is approximately 1.6 GHz.
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* A circular array with 96 uniformly spaced antennas was constructed at Culgoora,
Australia, for observations of the Sun (Wild 1967). This was a multibeam,
scanning, phased array rather than a correlator array, consisting of 96 antennas
uniformly spaced around a circle of diameter 3 km and operating at 80 and
160 MHz. To suppress unwanted sidelobes of the beam, Wild (1965) devised
an ingenious phase-switching scheme called J? synthesis. The spatial sensitivity
of this ring array was analyzed by Swenson and Mathur (1967).

¢ The Multielement Radio-Linked Interferometer Network (MERLIN) of the
Jodrell Bank Observatory, England, consists of six antennas with baselines up
to 233 km (Thomasson 1986).

e The Submillimeter Array (SMA) of the Smithsonian Astrophysical Observatory
and Academia Sinica of Taiwan, located on Mauna Kea, Hawaii, is the first array
to be built using a Reuleaux triangle configuration (Ho et al. 2004).

e In large arrays in which the antennas cover areas extending over several
kilometers, there is usually a central area with relatively dense antenna coverage,
surrounded by extensive areas with sparser coverage. These outer parts may be
in the form of extended arms, but the placement of the individual antennas is
often irregular as a result of details of the landscape. Examples include ALMA
(Wootten and Thompson 2009), the Murchison Widefield Array (Lonsdale et al.
2009), the Australian SKA Pathfinder (DeBoer et al. 2009), and the Low-
Frequency Array (LOFAR) (de Vos et al. 2009). For discussion of projects for
large arrays, see Carilli and Rawlings (2004).

5.6.3 VLBI Configurations

In VLBI (very-long-baseline interferometry) arrays, which are discussed in more
detail in Chap. 9, the layout of antennas results from considerations of both (u, v)
coverage and practical operating requirements. During the early years of VLBI,
the signals were recorded on magnetic tapes that were then sent to the correlator
location for playback. The use of tape has been superseded by magnetic disks and in
some cases by direct transmission of the signals to the correlator using fiberoptic or
other transmission media. Observing periods are limited by the ranges of hour angle
and declination that are simultaneously observable from widely spaced locations.
Although these locations usually deviate significantly from a plane, the angular
widths of the sources under observation are generally sufficiently small that the
small-field approximation (i.e., / and m small) can be used in deriving the radio
image, as in Eq. (3.9).

For the first two decades after the inception of the VLBI technique, observations
were mainly joint ventures among different observatories. Consideration of arrays
dedicated solely to VLBI occurred as early as 1975 (Swenson and Kellermann
1975), but construction of such arrays did not begin for another decade. A study
of antenna locations for a VLBI array has been discussed by Seielstad et al. (1979).
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To obtain a single index as a measure of the performance of any configuration, the
spatial transfer function was computed for a number of declinations. The fraction
of appropriately sized (u, v) cells containing measurements was then weighted in
proportion to the area of sky at each declination and averaged. Maximizing the
index, in effect, minimizes the number of holes (unfilled cells). Other studies have
involved computing the response to a model source, synthesizing an image, and
improving the model as necessary.

The design of an array dedicated to VLBI, the Very Long Baseline Array (VLBA)
of the United States, is described by Napier et al. (1994). The antenna locations [and
associated (u, v) loci] are shown in Fig.5.21 and listed in Table 5.1. A discussion
of the choice of sites is given by Walker (1984). Antennas in Hawaii and St. Croix
provide long east—west baselines. New Hampshire to St. Croix is the longest north—
south spacing. A site in Alaska would be farther north but would be of limited
benefit because it would provide only restricted accessibility for sources at southern
declinations. An additional site within the Southern Hemisphere would enhance
the (u, v) coverage at southern declinations. The southeastern region of the United
States is avoided because of the higher levels of water vapor in the atmosphere.
Intermediate north—south baselines are provided by the drier West Coast area. The
Towa site fills in a gap between New Hampshire and the southwestern sites. The
short spacings are centered on the VLA, and as a result, the spatial frequency
coverage shows a degree of central concentration. This enables the array to make
measurements on a wider range of source sizes than would be possible with the
same number of antennas and more uniform coverage. However, this results in some
sacrifice in capability for imaging complex sources.

5.6.4 Orbiting VLBI Antennas

The discussion of placing a VLBI station in Earth orbit to work with ground-based
arrays started as early as 1969 (Preston et al. 1983; Burke 1984; Kardashev et al.
2013). The combination of orbiting VLBI (OVLBI) and ground-based antennas has
several obvious advantages. Higher angular resolution can be achieved, and the
ultimate limit may be set by interstellar scintillation (see Sect. 14.4). The orbital
motion of the spacecraft helps to fill in the coverage in the (u,v) plane and has
the potential to improve the detail and dynamic range in the resulting images.
Furthermore, a satellite in low Earth orbit provides rapid (u, v) plane variation,
which can be valuable for obtaining information on time variability of source
structure.

Figure 5.22 shows an example of the (u, v) coverage for observations with the
VSOP project spacecraft known as HALCA (Hirabayashi et al. 1998) and a series
of terrestrial antennas: one at Usuda, Japan, one at the VLA site, and the ten VLBA
antennas. The spacecraft orbit is inclined at an angle of 31° to the Earth’s equator,
and the height above the Earth’s surface is 21,400 km at apogee and 560 km at
perigee. The mission of this spacecraft was to extend the resolution by a factor of
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(a) I

(b)

Fig. 5.21 Very Long Baseline Array in the United States: (a) locations of the ten antennas, and
(b) spatial frequency coverage (spacings in thousands of kilometers) for declinations of 64°, 30°,
6°, and —18°, in which the observing time at each antenna is determined by an elevation limit of
10°. From Walker (1984). Reprinted with the permission of and © Cambridge University Press.
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Table 5.1 Locations of antennas in the VLBA?

N. Latitude W. Longitude Elevation
Location (deg min sec) (deg min sec) (m)
St. Croix, VI 17 45 30.57 64 35 02.61 16
Hancock, NH 42 56 00.96 71 59 11.69 309
N. Liberty, IA 41 46 17.03 91 34 26.35 241
Fort Davis, TX 30 38 05.63 103 56 39.13 1615
Los Alamos, NM 35 46 30.33 106 14 42.01 1967
Pie Town, NM 34 18 03.61 108 07 07.24 2371
Kitt Peak, AZ 31 57 22.39 111 36 42.26 1916
Owens Valley, CA 37 13 54.19 118 16 33.98 1207
Brewster, WA 48 07 52.80 119 40 55.34 255
Mauna Kea, HI 19 48 15.85 155 27 28.95 3720

2© 1994 IEEE. Reprinted, with permission, from P. J. Napier et al. (1994).
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Fig. 5.22 (u, v) plane tracks for arrays with a satellite station for the source 1622+633 at 5 GHz.
(left) Coverage with VSOP and 12 ground-based antennas. The roughly circular tracks within 2 x
10°1 are the baselines among the ground-based antennas. Produced with the FAKESAT software
developed by D. W. Murphy, D. L. Meier, and T. J. Pearson. (right) Coverage with RadioAstron
and six ground-based antennas. The gaps in the coverage correspond to actual satellite constraints
for hypothetical observations in February 2016. The satellite period is 8.3 days, and the “wobbly”
appearance of the tracks is caused by the Earth’s diurnal motion. Produced with the FAKERAT
software, a derivative of FAKESAT (http://www.asc.rssi.ru/radioastron/software/fakerat).

three over ground-based arrays and to retain good imaging capability. The spacings
shown are for a frequency of 5 GHz, and the units of u and v are 10° wavelengths;
the maximum spacing is 5 x 10® wavelengths, which corresponds to a fringe width
of 0.4 mas. The approximately circular loci at the center of the figure represent
baselines between terrestrial antennas. The orbital period is 6.3 h, and the data
shown correspond to an observation of duration about four orbital periods. The
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spacecraft orbit precesses at a rate of order 1° per day, and over the course of one
to two years, the coverage of any particular source can be improved by combining
observations.

Figure 5.22 also shows examples of the (u, v) coverage for observations with the
RadioAstron project spacecraft known as Spektr-R (Kardashev et al. 2013) and a set
of ground-based antennas. The spacecraft orbit is inclined at an angle of 80° to the
Earth’s equator, and, for the case shown here, the ellipticity is 0.86, and the height
above the Earth’s surface is 289,000 km at apogee and 47,000 km at perigee (orbit
on April 14, 2012). The mission of RadioAstron is to provide ultrahigh resolution
to explore new astrophysical phenomena while sacrificing imaging quality because
of the gap between satellite—Earth and Earth-only baselines. The orbital period is
8.3 days. The orbit evolves substantially with time because of the influences of the
Sun and Moon. Occasions when the orbit eccentricity reaches its maximum of 0.95
offer opportunities for better imaging capability.

Figure 5.23 shows an example of the (1, v) coverage that could be obtained
between two spacecraft in circular orbits of radius about ten Earth radii, with
orthogonal planes that have periods differing by 10%. Multispacecraft operation
offers satellite-to-satellite baselines, which are free from the effects of atmospheric
delay. In practice, there are likely to be restrictions on coverage resulting from the
limited steerability of the astronomy and communication antennas relative to the
spacecraft. It is necessary for the spacecraft to maintain an attitude in which the solar
power panels remain illuminated and the communications antenna can be pointed
toward the Earth. Further discussion of orbiting VLBI is given in Sect. 9.10.
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Fig. 5.23 Spatial frequency coverage for two antennas on satellites with circular orbits of radius
approximately ten times the Earth’s radius Rg: (a) source along the X axis; (b) source along Y or
Z axes; (c) source centered between X, Y, and Z axes. The orbits lie in the XY and XZ planes of
a rectangular coordinate system. The satellite periods differ by 10%, and the observing period is
approximately 20 days. From R. A. Preston et al. (1983), © Cépadues Editions, 1983.
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5.6.5 Planar Arrays

Studies of cosmic background radiation and the Sunyaev—Zel’dovich effect require
observations with very high brightness sensitivity at wavelengths of order 1 cm and
shorter: see also Sect. 10.7. Unlike the sensitivity to point sources, the sensitivity to
a broad feature that largely fills the antenna beam does not increase with increasing
collecting area of the antenna. Thus, for cosmic background measurements, large
antennas are not required. Extremely good stability is necessary to allow significant
measurements at the level of a few tens of microkelvins per beam, that is, of order
10 wJy arcmin™2. Special arrays have been designed for this purpose. A number of
antennas are mounted on a platform, with their apertures in a common plane. The
whole structure is then supported on an altazimuth mount so the antennas can be
pointed to track any position on the sky. An example of such an instrument, the
Cosmic Background Imager (CBI), was developed by Readhead and colleagues at
Caltech (Padin et al. 2001). Thirteen Cassegrain focus paraboloids, each of diameter
90 cm, were operated in the 26- to 36-GHz range. In this instrument, the antenna
mounting frame had the shape of an irregular hexagon with threefold symmetry
and maximum dimensions of approximately 6.5 m, as shown in Fig.5.24. For the
particular type of measurements required, the planar array has a number of desirable
properties compared with a single antenna of similar aperture, or a number of
individually mounted antennas, as outlined below:

* The use of a number of individual antennas allows the output to be measured
in the form of cross-correlations between antenna pairs. Thus, the output is not
sensitive to the total power of the receiver noise but only to correlated signals
entering the antennas. The effects of gain variations are much less severe than
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Fig. 5.24 (a) Face view of the antenna platform of the Cosmic Background Imager, showing a
configuration of the 13 antennas. (b) The corresponding antenna spacings in (u, v) coordinates for
a wavelength of approximately 1 cm.



5.6 Two-Dimensional Tracking Arrays 193

in the case of a total-power receiver. Thermal noise from ground pickup in the
sidelobes is substantially resolved.

* The antennas can be mounted with the closest spacing physically possible. There
are then no serious gaps in the spatial frequencies measured, and structure can be
imaged over the width of the primary antenna beams. The apertures cannot block
one another because the antenna platform tracks, as can occur for individually
mounted antennas in closely spaced arrays.

e In the array in Fig.5.24, the whole antenna mounting platform can be rotated
about an axis normal to the plane of the apertures. Thus, rotation of the baselines
can be controlled as desired and is independent of Earth rotation. For a constant
pointing direction and rotation angle relative to the sky, the pattern of (u, v)
coverage remains constant as the instrument tracks. Variations in the correlator
outputs with time can result from ground radiation in the sidelobes, which varies
with azimuth and elevation as the array tracks. This variation can help to separate
out the unwanted response.

e The close spacing of the antennas results in some cross coupling by which
spurious correlated noise is introduced into the receiving channels of adjacent
antennas. However, because the antennas are rigidly mounted, the coupling
does not vary as the system tracks a point on the sky, as is the case for
individually mounted antennas. The effects of the coupling are therefore more
easily calibrated out. In the CBI design, the coupling is reduced to —110 to
—120 dB by the use of a cylindrical shield around each antenna and by designing
the subreflector supports to minimize scattering.

At a frequency of 30 GHz, a pointing error of 1”7 in a 6-m baseline produces
a visibility phase error of 1°. Pointing accuracy is critical, and the CBI antenna is
mounted in a retractable dome to shield it from wind, which can be strong at the
5000-m-elevation site at Llano de Chajnantor, Chile. Observations of the cosmic
microwave background with this system are briefly described in Sect. 10.7.

5.6.6 Some Conclusions on Antenna Configurations

The most accurate prediction of the performance of an array is obtained by
computation of the response of the particular design to models of sources to
be observed. However, here we are more concerned with broad comparisons of
various configurations to illustrate the general considerations in array design. Some
conclusions are summarized below.

e A circle centered on the (u, v) origin can be considered an optimum boundary
for the distribution of measurements of visibility. Uniformity of the distribution
within the circle is a further useful criterion in many circumstances. An exception
is the condition in which sidelobes of the synthesized beam are a serious problem,
for example, in low-frequency arrays operating in conditions of source confusion.
In arrays in which the scale of the configuration cannot be varied to accommodate
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a wide range of source dimensions, a centrally concentrated distribution allows a
greater range of angular sizes to be measured with a limited number of antennas.
If sensitivity to broad, low-brightness objects is important, it is preferable to
have more antenna pairs with short spacings at which such sources are not
highly resolved. Note that two of the largest arrays in which the antennas are
not movable, the GMRT (in India) and the VLBA (North America), each have a
cluster of antennas at relatively short spacings, as well as other antennas at longer
spacings, in order to cover a wide range of source dimensions.

» Although the effect of sidelobes on the synthesized beam can be greatly reduced
by CLEAN and other image-processing algorithms described in Chap. 11,
obtaining the highest dynamic range in radio images (that is, a range of
reliable intensity measurements of order 10° or more) requires both good spatial
frequency coverage and effective image processing. Reducing holes (unsampled
cells), which are found to be a consistent indicator of sidelobe levels in this
coverage, is a primary objective in array design.

* The east—west linear array has been used for both large and small instruments
and requires tracking over 6 h to obtain full two-dimensional coverage. It is
most useful for regions of the sky within about 60° of the celestial poles and is
the most economical configuration with respect to land use for road or rail track.

¢ The equiangular Y-shaped array gives the best spatial frequency coverage of the
existing configurations with linear, open-ended arms. Autocorrelation functions
of configurations with odd numbers of arms have higher-order symmetry than
those with even numbers in which opposite arms are aligned. Curvature of the
arms or random displacement of the antennas helps to smooth out the linear
ridges in the (u, v) coverage (e.g., in the snapshot in Fig.5.18). Such features
are also smoothed out by hour-angle tracking and are most serious for snapshot
observations.

e The circle and Reuleaux triangle provide the most uniform distributions of
measurements. With uniformly spaced antennas, the Reuleaux triangle provides
more uniform (u, v) coverage than the circle, but varying the spacing in a quasi-
random manner greatly improves both cases and reduces the difference between
them; see Fig. 5.19. However, if higher resolution is needed, these configurations
are not so easily extended as ones with open-ended arms.

5.7 Implementation of Large Arrays

Of the large arrays that have contributed prominently to progress in radio astronomy,
those that developed first have largely been in the range of roughly 500 MHz to
30 GHz, i.e., approximately the wavelength range of 1-60 cm. Examples are the
VLA and the arrays at Westerbork (the Netherlands) and the Australia Telescope at
Narrabri (Australia). This wavelength range is most conducive for construction of
large parabolic reflectors with surface accuracy better than ~ 1/16 of a wavelength.
Arrays for millimeter-wavelength observations such as the SMA on Mauna Kea
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followed a decade or two later, as technology for more accurate surfaces developed,
leading to ALMA on the Atacama plateau in Chile, which came into operation in
2013 (Wootten and Thompson 2009). For the 12-m-diameter antennas of ALMA,
the specified surface accuracy is less than 25 pm, allowing useful operation up to a
frequency of almost 1 THz. For details of measuring and adjusting the surface, see
Mangum et al. (2006), Snel et al. (2007), and papers in Baars et al. (2009). The main
ALMA array consists of 50 12-m-diameter antennas movable between foundation
pads that allow a wide range of spacings up to ~ 15 km. A second, compact, array
uses 12 7-m-diameter antennas, and 4 other antennas are available for total power
measurements.

At the long-wavelength end of the spectrum, radio astronomy was, for the
first few decades, largely limited to measurements of relatively small numbers
of the stronger sources, for example, Erickson et al. (1982). A major problem is
presented by the ionosphere, calibration of the effects of which requires that the
antenna elements be arranged in phased clusters, or subarrays, the beams of which
are no wider than the aplanatic structure of the ionosphere. The outputs of these
clusters are cross-correlated to provide the visibility values. These long-wavelength
observations are important for the study of the most distant Universe including
redshifted neutral hydrogen just prior to the Epoch of Reionization. In LOFAR
[de Vos et al. (2009) and van Haarlem et al. (2013)], the clusters of dipoles have
diameters of ~ 81 m for 10-90 MHz and ~ 40 m for 115-240 MHz. LOFAR
is based in the Netherlands, and baselines between the clusters extend up to 1200
km in a generally eastward direction. The dipoles take the form of an inverted V
configuration, in which four conductors run outward and downward at an angle of
45° from a point roughly 2 m above the ground, forming two orthogonal dipoles over
a ground plane. Note that since the need to calibrate the effect of the ionosphere
places a lower limit on the size of the dipole clusters that are used, in this long-
wavelength range, large-scale arrays are generally the most successful.

5.7.1 Low-Frequency Range

At frequencies up to about 300 MHz, arrays of broadband dipoles mounted over a
ground-plane reflecting screen provide a very practical antenna system. Dipoles are
robust, and crossed dipoles provide full polarization coverage. Low-noise transistor
front ends can operate at ambient temperature at these frequencies, where the
system noise level is set largely by radiation from the sky. Signals from groups
of dipoles are combined and the phases adjusted to form beams that can be pointed
as required without the need for moving parts. If the spacing between the centers of
the dipoles is greater than A /2, the array is described as sparse. The collecting area
is maximized at A?/4 per element, but because of the spacing, the grating sidelobes
begin to be significant as /2 is exceeded. If the spacing is less than A /2, the array
is described as compact. The effective area is then less than A2/4 per element, but
grating lobes are avoided. The variation of the path length through the ionosphere is
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a serious problem in imaging at these low frequencies, but it is possible to calibrate
the ionosphere over a wide angular range by forming beams in the directions of
calibration sources for which the positions are accurately known. LOFAR and the
Murchison Widefield Array (Lonsdale et al. 2009) and the Allen Telescope Array
(Welch et al. 2009) are examples of this type.

Ellingson (2005) describes a system using dipoles below 100 MHz. To achieve
the maximum sensitivity, it is necessary only to match the antennas to the receivers
sufficiently well that the total noise is dominated by the background component
received by the antennas. This is an advantageous situation since it allows the
dipoles to be used over a much wider frequency range than is possible when the
impedance must be well matched. To investigate the performance of an inverted-
V dipole under these conditions, let y be the power ratio of the background noise
received from the sky to the noise contributed by the receiver. Then we have

Ty
y e (1=, (5.22)

rec

where e, (< 1) is an efficiency factor that results largely from the ohmic losses in
the ground and in the dipole, Ty is the noise brightness temperature of the sky, Trec
is the noise temperature of the receiver, and I is the voltage reflection coefficient at
the antenna looking toward the receiver. I is given by

Zrec - Zanl

= , 5.23
Z[CC + Zant ( )

where Z.. and Z,, are the impedances at the receiver and antenna terminals,
respectively. For dominance of the sky noise, one can take y greater than ~ 10.
Ty is related to the intensity of the background radiation 7, (W m™2 Hz ™! sr™1),
by Tay = c*1,/2kv?, where c is the speed of light and k is Boltzmann’s constant.
An expression for the sky background intensity /,, as a function of frequency is given
by Dulk et al. (2001) based on measurements by Cane (1979):

1 —e ™™
I, = Iy™"% t;}) F Ly 080eT0) (5.24)
where I, = 2.48 x 1072 W m™2 Hz™! sr™! is the galactic component of the

intensity, I, = 1.06 x 1072 W m~2 Hz~! sr™! is the extragalactic component, and
7(v) = 5.00721. This model applies broadly over the sky except near the galactic
plane where higher intensities are encountered. In the system described by Ellingson
(2005), a wide frequency response for the dipoles is obtained with Z. in the range
200-800 ohms. Computed responses indicate usable beamwidths in the range 120-
140°. Stewart et al. (2004) describe design of an inverted-V dipole in which the
effective width of the conducting arms is increased in one dimension, which reduces
the impedance variation with frequency compared with that of a dipole with single-
wire elements.
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5.7.2 Midfrequency and Higher Ranges

In the midfrequency range, approximately 0.3—2 GHz, there are two main possibil-
ities. For the frequencies up to about 1 GHz, aperture arrays (van Ardenne et al.
2009) can take the form of half-wave dipoles over a ground screen or, especially
at the shorter wavelengths, arrays of Vivaldi antennas (Schaubert and Chio 1999)
are used. The Vivaldi elements are formed on strips of aluminum or of copper-
clad insulating board. By using two sets of Vivaldi elements running in orthogonal
directions, full polarization is obtained. The approximate spacing between adjacent
Vivaldi elements is A/2, and approximately four amplifiers are required for each
square wavelength of collecting area, e.g., ~ 44 amplifiers per square meter at
1 GHz. Aperture arrays provide multiple beams with rapid and flexible pointing.

5.7.2.1 Phased-Array Feeds

For the range from ~ 700 MHz and above, parabolic dish-type antennas with single
or multiple beams become more practicable than aperture arrays since, for a given
collecting area, they do not require such large numbers of low-noise amplifiers and
phasing components. With feeds in the form of a focal-plane array, i.e., an array of
individual feed elements in the focal plane of an antenna, it is usually not possible
to get the feeds close enough together to avoid gaps between the individual beams.
Thus, it is often preferable to use phased-array feeds in which an array of closely
spaced receiving elements is arranged in the focal plane. Any one antenna beam is
formed as a phased combination of the signals from a number of the feed elements,
and such combinations can be designed to provide optimum beam spacings for
efficient sky coverage. It is the beamformer that distinguishes the phased-array feed
from the focal-plane array. The elements are individually terminated with matched
amplifiers, but mutual coupling between the elements cannot be avoided, so the
design and adjustment of phased-array feeds is generally more critical than for focal-
plane arrays. A general analysis of a phased-array feed can be found in van Ardenne
et al. (2009) and Roshi and Fisher (2016).

Designs of phased-array feeds include ones using the Vivaldi system mentioned
above and others using a “checkerboard” conductor pattern (Hay et al. 2007). The
checkerboard scheme can be envisaged as a series of conducting elements on a
circuit board that are arranged like the black squares of a checkerboard. At each
point where two corners of conducting squares meet, the corners do not touch,
but each feeds one input of a balanced amplifier. The patterns of conducting and
nonconducting surfaces are identical and thus self-complimentary. A screen of this
form in free space is well matched with load impedances of 377 ohms between
the corner pairs of conducting squares where the amplifiers are connected.? For use

2This follows from a formula by Booker: see, e.g., Antennas, J. D. Kraus (1950 or later edition).
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as a feed array, the checkerboard screen is mounted over a ground plane, which
introduces some frequency variation in the impedance. In this frequency range, the
input stages of amplifiers at the feeds may be cryogenically cooled to minimize the
system temperature.

The use of phased-array feeds in interferometric arrays presents a huge challenge
in signal processing because separate correlators are required for each beam. The
first interferometer to be designed specifically for phased-array feed technology is
ASKAP at the Murchison Radio Observatory. The system has 36 dual-polarized
beams operating in the 0.7—1.8 GHz band (Hay et al. 2007; Hotan et al. 2014). A 52-
element phased array called APERTIF at 21-cm wavelength has been implemented
on the Westerbork telescope (van Cappellen and Bakker 2010; van Cappellen et al.
2011; and Ivashina et al. 2011).

5.7.2.2 Optimum Antenna Size

An array with fixed collecting area can be built with a large number of small
antennas (called the “large N, small d solution”) or a small number of large antennas
(the “small n, large D solution”). Determining the right antenna size is a complex
problem. With smaller antennas, the field of view is larger, which enhances survey
speed, but with larger antennas, phase calibration sources can be found closer to the
target.

A cost analysis is an important element in the determination of antenna size. The
critical fact in cost optimization is that the cost of parabolic antenna elements of
diameter D scales approximately as D>7 (Meinel 1979). Because the exponent on D
is greater than two, the total cost of the antennas in an array increases with diameter
for a fixed array area. On the other hand, a larger array of smaller antennas requires
more receivers and a larger correlator. A crude cost model can be written

C + finaD*" + fon, + fsn2 (5.25)

where n, is the number of antennas, fj is the antenna cost factor, f> is the receiver
cost factor, and f3 is the correlator cost factor, where we assume the correlator cost
scales as nfl For a fixed array collecting area, A,

A
ng = (wnD2/4) ° (5.26)
where 7 is the aperture efficiency. We can substitute Eq. (5.26) into Eq. (5.25) and
find the value of D that minimizes C. These values of D are typically in the range of
4 to 20 m. The proposals for the antenna sizes for ALMA ranged in diameter from
6 to 15 m before the decision was made for 12-m-diameter elements, based on cost
and many other factors.
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5.7.3 Development of Extremely Large Arrays

The concept of an array with a collecting area of ~ 1 square kilometer arose
in the late 1990s after the Westerbork Synthesis Radio Telescope, the VLA, and
similar instruments had demonstrated the power of the synthesis technique in high-
resolution imaging and in cataloging and studying large numbers of sources. Such
an array would have a collecting area of about two orders of magnitude greater than
existing arrays at that time but would require significant technological development
to be financially feasible. An initial objective was to extend the redshift range at
which HI in galaxies can be studied by an order of magnitude to z ~ 2. The concept
has been developed into a plan to build multiple arrays spanning the frequency
interval of 70 MHz to greater than 25 GHz, with baselines up to about 5000 km.
This instrument, collectively called the Square Kilometre Array (SKA)? would
have an enormous impact on a broad range of astronomical problems from planet
formation to cosmology. The science case for the instrument has been presented
by Carilli and Rawlings (2004) and Bourke et al. (2015). Technical details are
given in Hall (2004) and Dewdney et al. (2009). The concept of such an array
has led to the development of several smaller arrays to test the practicality and
performance of possible technologies, including antenna and correlator designs.
These include ASKAP, with 12-m-diameter antennas with a checkerboard phased-
array feed system providing multiple beams (see Sect. 5.7.2.1), located in Western
Australia (DeBoer et al. 2009), and MeerKAT, an array of low-cost 12-m-diameter
dish antennas with single-pixel feeds to cover 0.7-10 GHz, located in the Karoo
region of South Africa (Jonas 2009).

5.7.4 The Direct Fourier Transform Telescope

The normal practice in radio astronomy is to measure the correlation function of
the incident electric field and then take its Fourier transform to obtain the image of
the source intensity distribution. An alternative approach is to measure the Fourier
transform of the incident electric field with a uniform array of antennas and take
its square modulus to obtain the image. Either the correlation function or the direct
Fourier transform approach must be implemented at the Nyquist rate appropriate for
the bandwidth. The latter approach is simply an implementation of the Fraunhofer
diffraction equation, which relates the aperture field distribution to the far field
distribution (see Chap. 15). For this reason, instruments based on this method are
sometimes called digital lenses. The Fraunhofer equation is also the basis of the
holographic method of measuring the surface accuracy of parabolic antennas, as
described in Sect. 17.3.

3The SKA Memo Series can be found at http://www.skatelescope.org/publications.
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Daishido et al. (1984) described the operation and prototype of a direct Fourier
transform telescope operating at 11 GHz. They called the instrument a “phased
array telescope” because its operation was equivalent to forming phased array beams
pointed at a grid of positions on the sky. The Fourier transform was affected though
the use of Butler matrices. A 64-element array (8 x 8 elements on a uniform grid)
was built at Waseda University and used for wide-field searches of transient sources
(Nakajima et al. 1992, 1993; Otobe et al. 1994). The signal processing was further
improved in another instrument aimed at pulsar observations (Daishido et al. 2000;
Takeuchi et al. 2005).

Interest has been renewed in the direct Fourier transform telescope because of the
advent of arrays with very large numbers of antennas. In this case, the direct Fourier
transform configuration can take advantage of the computational speed of the fast
Fourier transform, which scales as n, log, n,, where n, is the number of antennas.
A detailed analysis of the direct Fourier transform telescope was developed by
Tegmark and Zaldarriaga (2009, 2010). They were motived by the challenges of
measuring the wide-field distribution of redshifted HI emission, the signature of the
Epoch of Reionization (see Sect. 10.7.2), and called their instrument the Fast Fourier
Transform Telescope. Zheng et al. (2014) built a prototype 8 x 8 array at 150 MHz
to develop techniques for such measurements.

One characteristic of the direct Fourier transform telescope based on the FFT
with a uniform-grid antenna layout is the high redundancy of short baselines. The
situation is similar to that encountered in the design of the digital FFT spectrometers
described in Sect. 8.8.5, wherein the number of equivalent baselines at large
spacings is underrepresented. Methods of relaxing the requirement of uniform
spacings have been explored by Tegmark and Zaldarriaga (2010) and Morales
(2011).

A disadvantage of the direct Fourier transform telescope relates to calibration.
Since no baseline-based measurements are made, the traditional techniques of
self-calibration based on amplitude and phase closure cannot be directly applied.
There are several approaches to the calibration problem. The most straightforward
approach is to transform the images back to the visibility domain on the time scale
of instrumental and atmospheric variability, and apply the techniques described
in Chap. 11. Auxiliary measurements can also be made to supply calibration
information. More sophisticated methods are under development (e.g., Foster et al.
2014; Beardsley et al. 2016).
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Chapter 6
Response of the Receiving System

This chapter is concerned with the response of the receiving system that accepts
the signals from the antennas, amplifies and filters them, and measures the cross-
correlations for the various antenna pairs. We show how the basic parameters of
the system affect the output. Some of the effects were introduced in earlier chapters
and are here presented in a more detailed development that leads to consideration
of system design in Chaps. 7 and 8. At some point in the processing chain between
the antenna and the correlator output, the form of the signals is changed from an
analog voltage to a digital format, and the resulting data are thereafter processed
by computer-type hardware. This does not affect the mathematical analysis of the
processing and is not considered in this chapter. However, the digitization introduces
a component of quantization noise, which is analyzed in Chap. 8.

6.1 Frequency Conversion, Fringe Rotation, and Complex
Correlators

6.1.1 Frequency Conversion

With the exception of some systems operating below ~ 100 MHz, in most radio
astronomy instruments, the frequencies of the signals received at the antennas are
changed by mixing with a local oscillator (LO) signal. This feature, referred to
as frequency conversion or (heterodyne frequency conversion), enables the major
part of the signal processing to be performed at intermediate frequencies that are
most appropriate for amplification, transmission, filtering, delaying, recording, and
similar processes. For observations at frequencies up to roughly 50 GHz, the best
sensitivity is generally obtained by using a low-noise amplifying stage before the
frequency conversion.
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Fig. 6.1 Frequency conversion in a radio receiving system. (a) Simplified diagram of a mixer and a
filter H that defines the intermediate-frequency (IF) band. The nonlinear element shown is a diode.
(b) Signal spectrum showing upper and lower sidebands that are converted to the IF. Frequency v,
is the center of the IF band.

Frequency conversion takes place in a mixer in which the signal to be converted,
plus an LO waveform, are applied to a circuit element with a nonlinear voltage—
current response. This element may be a diode, as shown in Fig. 6.1a. The current i
through the diode can be expressed as a power series in the applied voltage V:

i=a0+a1V+a2V2+a3V3+--- . (6.1)

Now let V consist of the sum of an LO voltage b; cos(2m vy ot + 6L0) and a signal,
of which one Fourier component is b, cos(2w vt + ¢;). The second-order term in V
then gives rise to a product in the mixer output of the form

by cos(2rviot + OLo)

1
X by cos(2mvst + @) = 2b1b2 cos 2 (vy + vLo)t + ¢ + OLo] (6.2)
1
+ 2191192 cos [27 (vy — vro)t + ¢s — OLo] -

Thus, the current through the diode contains components at the sum and difference
of v and v . Other terms in Eq. (6.1) lead to other components, such as 3vy o % vy,
but the filter H shown in Fig. 6.1 passes only the wanted output components, and
with proper design, unwanted combinations can be prevented from falling within
the filter passband. Usually the signal voltage is much smaller than the LO voltage,
so harmonics and intermodulation products (i.e., spurious signals that arise as a
result of cross products of different frequency components within the input signal
band) are small compared with the wanted terms containing vy o.

In most cases of frequency conversion, the signal frequency is being reduced, and
the second term on the right side in Eq. (6.2) is the important one. The filter H then
defines an intermediate-frequency (IF) band centered on vy, as shown in Fig. 6.1b.
Signals from within the bands centered on v o — vy and v o + v are converted to the
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IF band and admitted by the filter. These bands are known as the lower and upper
sidebands, as shown, and if only a single sideband is wanted, the other can often be
removed by a suitable filter inserted before the mixer. In some cases, both sidebands
are accepted, resulting in a double-sideband response.

6.1.2 Response of a Single-Sideband System

Figure 6.2 shows a basic receiving system for two antennas, m and n, of a synthesis
array. Here, we are interested in further effects of frequency conversion. The time
difference 7, between the arrival at the antennas of the signals from a radio source
varies continuously as the Earth rotates and the antennas track the source across the
sky. A variable instrumental delay t; is continuously adjusted to compensate for the

N
N
5,9
~
~
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™
£t
~
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oscillator
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Fig. 6.2 Basic receiving system for two antennas of a synthesis array. The variable delay t; is
continuously adjusted under computer control to compensate for the geometric delay t,. The
frequency response functions H,,(v) and H,(v) represent the overall bandpass characteristics of
the amplifiers and filters in the signal channels.
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geometric delay 7, so that the signals arrive simultaneously at the correlator. The
receiving channels through which the signals pass contain amplifiers and filters, the
overall amplitude (voltage) responses of which are H,,(v) and H,(v) for antennas
m and n. Here, v represents a frequency at the correlator input; the corresponding
frequency at the antenna is vpo £ v. The voltage waveforms that are processed
by the receiving system result from cosmic noise and system noise; we consider
the usual case in which these processes are approximately constant across the
receiver passband. The spectra at the correlator inputs are thus determined mainly
by the response of the receiving system. Let ¢,, be the phase change in the signal
path through antenna m resulting from 7, and the LO phase, and let ¢, be the
corresponding phase change in the signal for the path through antenna n, including
;. ¢y and ¢, together with the instrumental phase resulting from the amplifiers and
filters, represent the phases of the cosmic signal at the correlator inputs. Negative
values of these parameters indicate phase lag (signal delay). The response to a
source for which the visibility is V(u,v) = |V|e/ is most easily obtained by
returning to Eq. (3.5) and replacing the phase difference 27D, - sy by the general
term ¢, — ¢,,,. Then the response at the correlator output resulting from a frequency
band of width dv can be written as

dr = Re {Ao|V|H,(v)H} (v) ej(¢”_¢”’_¢”)dv} , (6.3)

where ¢, is the visibility phase. The response from the full system passband is
o0 .
r=Re {A0|(V| / Hy(V)HE (v) e/ ==t gy b (6.4)
—00

where we have included both positive and negative frequencies' in the integral
and assumed that V' does not vary significantly over the observing bandwidth.
Equation (6.4) represents the real part of the complex cross-correlation, and the
way to obtain both the real and imaginary parts is explained later in this section.

6.1.3 Upper-Sideband Reception

For upper-sideband reception, a filter or amplifier at the receiver input selects
frequencies in a band defined by the correlator input spectrum (frequency v) plus
vro. In Fig. 6.2, the signal entering antenna m traverses the geometric delay 7, at a
frequency vi o + v and thus suffers a phase shift 27 (vo 4+ v)7,. At the mixer, its

'The negative frequencies have no physical meaning but arise as part of the mathematical
representation of the frequency conversion.
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phase is also decreased by the LO phase 8,,. Thus, we obtain
Om(v) = 27 (vio + V)T — O . (6.5)

The phase of the signal entering antenna n is decreased by the LO phase 6, and the
signal then traverses the instrumental delay t; at a frequency v, thus suffering a shift
2nvt;. The total phase shift for antenna n is

¢u(v) = 27vT; — 0, . (6.6)

From Egs. (6.4), (6.5), and (6.6), the correlator output is
ry, = Re Ao|(V|e/[z””wtg“@”’_e”)_‘p”]/ H,(V)H*(v) ™47 dvt (6.7)
—0o0

The real part of the integral in Eq.(6.7) is one-half the Fourier transform of
the (Hermitian) cross power spectrum H,,(v)H(v) with respect to the delay
compensation error, At = 1, — 7;, which introduces a linear phase slope across the
band.> We assume that V does not vary significantly over the observing bandwidth.
For example, if the IF passbands are rectangular with center frequency vy, width
Avir, and identical phase responses, then for positive frequencies,

AU[F
H() R |v — V()l < 2 s
|Hn (V)| = |Ha(v)| = A (6.8)
VIF
0, [v —vo| > 5

Using the equality in Eq. (A3.6) of Appendix 3.1 for the Hermitian® function H,,H,,
we can write

o0
/ H, (V)H*(v) e/*™47dy = 2Re
—00

vo+(Avig/2) )
/ HS e/ZﬂvAth
vo—(Avir/2)

sin(m Avig At)

=2H3A
0 UIFI: T AVEEAT

:| cos2mVo AT .
(6.9)

2Here, we assume that the source is sufficiently close to the center of the field being imaged that
the condition At = 0 maintains zero delay error. The effect of the variation of the delay error
across a wider field of view is considered in Sect. 6.3.

3The term “Hermitian” indicates a function in which the real part is even and the imaginary part is
odd.
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In the general case, we define an instrumental gain factor G, = |G,,m|ef¢0 as
follows:

o0
AO/ H, (V) H* (V) e/ 4% dv = G,y (A1) /27047
—00
= [G(AT) [/ FT0ATH00) (6.10)

where the At dependence in |G,,,(A7)]| is the sinc function in Eq. (6.9). The phase
¢¢ results from the difference in the phase responses of the amplifiers and filters
in the two channels. The LO phases 6,, and 6, are not included within the general
instrumental phase term ¢ because they enter into the upper and lower sidebands
with different signs.

Substituting Eq. (6.10) into Eq. (6.7), we obtain for upper-sideband reception

ru = |VI|Gun(AT)| cos [2 (vLoTe + v0AT) + (0w — 6,) — o + ¢6] . (6.11)

The term 27 v o7, in the cosine function results in a quasi-sinusoidal oscillation as
the source moves through the fringe pattern. The phase of this oscillation depends
on the delay error A, the relative phases of the LO signals, the phase responses
of the signal channels, and the phase of the visibility function. The frequency of
the output oscillation vy odt,/dt is often referred to as the natural fringe frequency.
The oscillations result because the signals traverse the delays 7, and 7; at different
frequencies, that is, at the input radio frequency for 7, and at the intermediate
frequency for t;, and these two frequencies differ by vio. Thus, even if these
two delays are identical, they introduce different phase shifts, and they increase
or decrease progressively as the Earth rotates.

6.1.4 Lower-Sideband Reception

Consider now the situation where the frequencies accepted from the antenna are
those in the lower sideband, at v o minus the correlator input frequencies. The
phases are

¢m = 2JT(VLO - V)Tg + O (6.12)
and
¢n = 27T + 0, . (6.13)

The signs of these terms and of ¢, differ from those in the upper-sideband case
because increasing the phase of the signal at the antenna here decreases the phase at
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the correlator. The expression for the correlator output is
oy oo P
re = Re { Ag|V]e 1ot t (000 =¢] / H,(V)H*(v) ™ dv{ . (6.14)
—00

Proceeding as in the upper-sideband case, we obtain

re = [V||Gun(AT)]| cos [Zﬂ(vLOfg —vAT) + (O — 6,) — ¢y — ¢G] . (6.15)

6.1.5 Multiple Frequency Conversions

In an operational system, the signals may undergo several frequency conversions
between the antennas and the correlators. A frequency conversion in which the
output is at the lower sideband (i.e., the LO frequency minus the input frequency)
results in a reversal of the signal spectrum in which frequencies at the high end at the
input appear at the low end at the output, and vice versa. If there is no net reversal
(that is, an even number of lower-sideband conversions), Eq. (6.11) applies, except
that v must be replaced by a corresponding combination of LO frequencies.
Similarly, the oscillator phase terms 6,, and 6, are replaced by corresponding
combinations of oscillator phases.

6.1.6 Delay Tracking and Fringe Rotation

Adjustment of the compensating delay t; of Fig. 6.2 is usually accomplished under
computer control, the required delay being a function of the antenna positions and
the position of the phase center of the field under observation. This can be achieved
by designating one antenna of the array as the delay reference and adjusting the
instrumental delays of other antennas so that, for an incoming wavefront from the
phase reference direction, the signals intercepted by the different antennas all arrive
at the correlator simultaneously.

To control the frequency of the sinusoidal fringe variations in the correlator
output, a continuous phase change can be inserted into one of the LO signals.
Equations (6.11) and (6.15) show that the fringe frequency can be reduced to zero
by causing 6,, — 6, to vary at a rate that maintains constant, modulo 27, the term
[27vioty + (6 — 6,)]. This requires adding a frequency 2w vy o(dt,/dt) to 6, or
subtracting it from 6,,. Note that dz,/dt can be evaluated from Eq. (4.9) in which
w, the third component of the interferometer baseline, is equal to ¢7, measured in
wavelengths; for example, for an east—west antenna spacing of 1 km, the maximum
value of dr,/dt is 2.42 x 10719, so the fringe frequencies are generally small
compared with the radio frequencies involved. Reduction of the output frequency
reduces the quantity of data to be processed, since each correlator output must
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be sampled at least twice per cycle of the output frequency (the Nyquist rate)
to preserve the information, as is discussed in Sect. 8.2.1. With antenna spacings
required for angular resolution of milliarcsecond order, which occur in VLBI, the
natural fringe frequency, v odt,/dt, can exceed 10 kHz. For an array with more
than one antenna pair, it is possible to reduce each output frequency to the same
fraction of its natural frequency, or to zero. Reduction to zero frequency (fringe
stopping) is generally the preferred practice. Some special technique, such as the
use of a complex correlator, described in the following section, is then required to
extract the amplitude and phase of the output.

6.1.7 Simple and Complex Correlators

A method of measuring the amplitude and phase of the correlator output signal when
the fringe frequency is reduced to zero is shown in Fig. 6.3. Two correlators are used,
one of which has a quadrature phase shift network in one input. For signals of finite
bandwidth, this phase shift is not equivalent to a delay. The phase shift can also be
effected by feeding the signal into two separate mixers and converting it with two
LOs in phase quadrature. The output of the second correlator can be represented
by replacing H,,(v) by H,,(v)e7"/2. From Eq. (6.10), the result is to add —/2 to
¢, and thus in Eq. (6.11) and Eq. (6.15), the cosine function is replaced by =*sine.
Another way of comparing the two correlator outputs in Fig. 6.3 is to note that the
real output of the complex correlator, omitting constant factors, is

Freal = Re {(V/oo H,(V)H}(v) dv} = Re{(V}/OO H,(WH:(v)dv, (6.16)

Real
(cosine)

Inputs for amplified == output

signals from two [ Multiplier - Integrator  p——a—
antennas

Imaginary
(sine)

Quadrature output

phase-shift Multiplier > Integrator >3
netwark L

Fig. 6.3 Use of two correlators to measure the real and imaginary parts of the visibility. This
system is called a complex correlator.
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where the integral is real since H,(v) and H,(v) are Hermitian and thus
H,,(v)H} (v) is Hermitian. The imaginary output of the correlator is proportional to

Timag = Re {"V/oo H,(v)H*(v)e7™/? dv} = Im{(V}/oo H,(WH;(v)dv .
- - 6.17)

Thus, the two outputs respond to the real and imaginary parts of the visibility V.

The combination of two correlators and the quadrature network is usually
referred to as a complex correlator, and the two outputs as the cosine and sine,
or real and imaginary, outputs. For continuum observations, the compensating
delay is adjusted so that At = 0 and the fringe rotation maintains the condition
2nvLot + (6 — 6,) = 0. Thus, the cosine and sine outputs represent the real
and imaginary parts of G,V (u, v). With the use of the complex correlator, the
rotation of the Earth, which sweeps the fringe pattern across the source, is no longer
a necessary feature in the measurement of visibility. An important feature of the
complex correlator is that the noise fluctuations in the cosine and sine outputs are
independent, as discussed in Sect. 6.2.2.

Spectral correlator systems, in which a number of correlators are used to measure
the correlation as a function of time offset or “lag” [i.e., T in Eq.(3.27)], are
discussed in Sect. 8.8. The correlation as a function of T measured using a correlator
with a quadrature phase shift in one input is the Hilbert transform of the same
quantity measured without the quadrature phase shift (Lo et al. 1984).

6.1.8 Response of a Double-Sideband System

A double-sideband (DSB) receiving system is one in which both the upper- and
lower-sideband responses are accepted. From Eqgs. (6.11) and (6.15), the output is

g =1y + 1= 2|(v||Gmn(At)| COS(Z”VOAT + ¢G)

X COS [ZﬂULng + (0, — 6,) — ¢U] . (6.18)
There is a significant difference from the single-sideband (SSB) cases. The phase
of the fringe-frequency term, which is the cosine function containing the term

2mVLoT,, is no longer dependent on At or ¢¢, but instead these quantities appear
in the term that controls the fringe amplitude:

|Gn(AT)| cosRrvoAT + Pg) . (6.19)

If the delay t; is held constant, At varies continuously, resulting in cosinusoidal
modulation of the fringe oscillations through the cosine term in (6.19). Also, as
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Fig. 6.4 Example of the variation of the fringe amplitude as a function of At for a DSB system
(solid line). In this case, the centers of the two sidebands are separated by three times the IF
bandwidth, that is, vo = 1.5Av, and the IF response is rectangular. The broken line shows the
equivalent function for an SSB system with the same IF response.

shown in Fig. 6.4, the cross-correlation (fringe amplitude) falls off more rapidly
because of the cosine term in (6.19) than it does in the SSB case, in which it
depends only on G, (At). The required precision in matching the geometric and
instrumental delays is correspondingly increased. The lack of dependence of the
fringe phase on the phase response of the signal channel occurs because the latter
has equal and opposite effects on the signals from the two sidebands.

The response of a DSB system with a complex correlator is given by Eq. (6.18)
for the cosine output, and the sine output is obtained by replacing ¢ by ¢ — 7/2:

(rd)sine = 2|(v||Gmn(Af)| Sin(znvoﬂf + ¢G)
X COS [ZJrvLorg + (6, —6,) — qbv] . (6.20)

If the term 2 vy At + ¢ is adjusted to maximize either the real output [Eq. (6.18)]
or the imaginary output [Eq. (6.20)], the other will be zero. Thus, for continuum
observations in which the signal is of equal strength in both sidebands, the complex
correlator offers no increase in sensitivity. However, it can be useful for observations
in the sideband-separation mode described later.

To help visualize the difference between SSB and DSB interferometer systems,
Fig. 6.5 illustrates the correlator outputs in the complex plane. The SSB case is
shown in Fig. 6.5a. The output of the complex correlator is represented by the vector
r. If the fringes are not stopped, the vector r rotates through 27 each time the
geometric delay 7, changes by one wavelength (that is, one wavelength at the LO
frequency if the instrumental delay is tracking the geometric delay). The projections
of the radial vector on the real and imaginary axes indicate the real and imaginary
outputs of the complex correlator, which are two fringe-frequency sinusoids in phase
quadrature. If the fringes are stopped, r remains fixed in position angle. Figure 6.5b
represents the DSB case. Vectors r, and r, represent the output components from
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(a) Im (b) Im »

T
Re I oy Re

Fig. 6.5 Representation in the complex plane of the output of a correlator with (a) an SSB and (b)
a DSB receiving system. The point C in (b) represents the sum of the upper- and lower-sideband
outputs of the correlator.

the upper and lower sidebands. Here the variation of 7, causes r, and r; to rotate in
opposite directions. To verify this statement, note that the real parts of the correlator
output are given in Eqs. (6.11) and (6.15), and the corresponding imaginary parts
are obtained by replacing ¢ by ¢¢ — 7/2. Then with (6,, — 6,) = 0 (no fringe
rotation), consider the effect of a small change in z,.

The contra-rotating vectors representing the two sidebands at the correlator
output coincide at an angle determined by instrumental phase, which we represent
by the line AB in Fig. 6.5b. Thus, the vector sum oscillates along this line, and the
fringe-frequency sinusoids at the real and imaginary outputs of the correlator are
in phase. Now suppose we adjust the phase term (2mvoAt + ¢g) in Eq.(6.18)
to maximize the fringe amplitude at the real output. This action has the effect of
rotating the line AB to coincide with the real axis. The imaginary output of the
complex correlator then contains no signal, only noise. From Eq. (6.18), it can
be seen that the visibility phase ¢, is represented by the phase of the vector that
oscillates in amplitude along the real axis. The phase can be recovered by letting the
fringes run and fitting a sinusoid to the waveform at the real output. If the fringes are
stopped, it is possible to determine the amplitude and phase of the fringes by /2
switching of the LO phase at one antenna. In Eq. (6.18), this phase switch action can
be represented by 6,, — (6,, — 7/2), which results in a change of the second cosine
function to a sine, thus enabling the argument in square brackets to be determined.
However, in such a case, the data representing the cosine and sine components of
the output are not measured simultaneously, so the effective data-averaging time is
half that for the SSB, complex-correlator case. In Fig. 6.5b, a 7r/2 switch of the LO
phase results in a rotation of r, and r; by /2 in opposite directions, so the vector
sum of the two sideband outputs remains on the line AB. Relative sensitivities of
different systems are discussed in Sect. 6.2.5.
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Frequency at antenna:
~ Upper sideband, ¥ + vz + ¥
~._  |lLower sideband, vy — (v2 + #)

Local oscillator
Hplv)

vl

Hplv)

Frequency = »2 + »

|

Local oscillator
vz

Frequency = »

Correlator

Fig. 6.6 Receiving system for two antennas that incorporates two frequency conversions, the first
being DSB and the second upper-sideband. Two compensating delays, 7;; and t;, are included
so that in deriving the response for a DSB system, the effect of the position of the delay relative
to the first mixer can be investigated. In practice, only one compensating delay is required. The
overall frequency responses H,, and H,, are specified as functions of v, which is the corresponding
frequency at the correlator input.

6.1.9 Double-Sideband System with Multiple Frequency
Conversions

The response with multiple frequency conversions is more complicated for a DSB
interferometer than for an SSB one and is illustrated by considering the system in
Fig. 6.6. Note that for the case in which the IF signal undergoes a number of SSB
frequency conversions after the first mixer, the second mixer of each antenna in
Fig. 6.6 can be considered to represent several mixers in series, and v, is equal to the
sum of the LO frequencies with appropriate signs to take account of upper- or lower-
sideband conversions. The signal phase terms are determined by considerations
similar to those described in the derivation of Egs. (6.5) and (6.6). Thus, we obtain

O = F2rw(vi £ v, £ V)T, F Ot — O (6.21)
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and
¢p = 21 (va + )Ty — 27vT F Oy — Onz (6.22)

where the upper signs correspond to upper-sideband conversion at both the first and
second mixers for each antenna, and the lower signs to lower-sideband conversion
at the first mixer for each antenna and upper-sideband conversion at the second.
We then proceed as in the previous examples; that is, use Eqgs. (6.21) and (6.22) to
substitute for ¢,, and ¢, in Eq. (6.4), separate out the integral of H,,H,, with respect
to frequency, v, as in Eq. (6.7), and substitute for the integral using Eq. (6.10). The
results are

ru = |V||Gun(AT)| cos[2mviT, 4+ 2mv2(1, — Ti1) + 2wV AT
+ (le - 9111) + (9m2 - 9112) - ¢v + ¢G] (623)

and

re = |VI|Gun(AT)| cos[2mv Ty — 2 va(Ty — Tit) — 2w AT
+ (Ot — On1) — (B2 — U2) — v — @] - (6.24)

The DSB response is

tg= ry+re
= 2|V||Gun(A7T)| cos {27 [v2(Tit — Tg) — VoAT] — (B2 — Ou2) — PG}
x 08 [ViTg 4+ (Ot — Ou1) — &) (6.25)

where At = 1, — 751 — 12. Note that the phase of the output fringe pattern, given
by the second cosine term, depends only on the phase of the first LO. Thus, in the
implementation of fringe rotation, the phase shift must be applied to this oscillator.
The first cosine term in Eq. (6.25) affects the fringe amplitude, and two cases should
be considered:

1. The delay t;;, at the IF immediately following the DSB mixer, is used as the
compensating delay, and t;; = 0. Then in the first cosine function in Eq. (6.25),
71 — 7, = 0, and ¢¢ should be small if the frequency responses of the two
channels are similar. It is necessary only to equalize ,,, and 6,, to maximize the
amplitude of the fringe-frequency term. This is similar to the single conversion
case in Eq. (6.18).

2. The delay 1,5, located after the last mixer, is used as the compensating delay, and
7,1 = 0. (This is the case in any array in which the compensating delays are
implemented digitally, which includes almost all currently operational systems.)
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Then a continuously varying phase shift is required in 8, or 6, of Eq. (6.25) to
keep the value of the first cosine function close to unity as t, varies. This phase
shift does not affect the phase of the output fringe oscillations, only the amplitude
[see, e.g., Wright et al. (1973)].

6.1.10 Fringe Stopping in a Double-Sideband System

Consider two antennas of an array as shown in Fig. 6.6 and the case in which the
instrumental delay that compensates for 7, is the one immediately preceding the
correlator, so that t;; = 0. One can think of interferometer fringes as being caused
by a Doppler shift in the signal at one antenna, which results in a beat frequency
when the signals are combined in the correlator. Suppose that the geometric delay,
74, in the signal path to antenna m (on the left side of the diagram) is increasing
with time, that is, antenna m is moving away from the source relative to antenna n.
Then a signal at frequency vgrp at the wavefront from a source appears at frequency
vre(1 — dt,/dt) when received at antenna m. If the signal is in the upper sideband,
its frequency at the correlator input will be

d
VRF (1 — ;g) — Vi — V. (626)

To stop the fringes, we need to apply a corresponding decrease to the frequency
of the signal from antenna n so that the signals arrive at the correlator at the same
frequency. To do this, we increase the frequencies of the two LOs for antenna n by
the factor (1+dt,/dt). Note that this is equivalent to adding 27 (dt,/dt)v; to 6, and
27 (dtg/dt)v; to 0,2, which are the rates of change of the oscillator phases required
to maintain each of the two cosine functions in Eq.(6.25) at constant value. The
corresponding signal from antenna »n traverses the delay 7;; at a frequency vgrr —
(vi + v2)(1 + dr,/dt), and since the delay is continuously adjusted to equal t,,
the signal suffers a reduction in frequency by a factor (1 — dt,/df). Thus, at the
correlator input, the frequency of the antenna-n signal is

d d
[VRF —(vi + ) (1 + L;;g):| (1 — [Zg) s (6.27)

which is equal to (6.26) when second-order terms in dt,/dt are neglected. (Recall
that for, e.g., a 1-km baseline, the highest possible value of dt,/dt is 2.42 x 10719))
For the lower sideband, (6.26) and (6.27) apply if the signs of both vgr and v; are
reversed, and again the frequencies at the correlator input are equal. Thus, the overall
effect is that the fringes are stopped for both sidebands.
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6.1.11 Relative Advantages of Double- and Single-Sideband
Systems

The principal reason for using DSB reception in interferometry is that in certain
cases, the lowest receiver noise temperatures are obtained by using input stages
that are inherently DSB devices. As frequency increases above ~ 100 GHz, it
becomes increasingly difficult to make low-noise amplifiers, and receiving systems
often use a mixer of the superconductor—insulator—superconductor (SIS) type [see,
e.g., Tucker and Feldman (1985)] as the input stage followed by a low-noise IF
amplifier. Both the mixer and the IF amplifier are cryogenically cooled to obtain
superconductivity in the mixer and to minimize the amplifier noise. If a filter is
placed between the antenna and the mixer to cut out one sideband, the received
signal power is halved, but there is no reduction in the receiver noise generated in
the mixer and IF stages. Thus, the signal-to-noise ratio (SNR) in the IF stages is
reduced, and in this case, the best continuum sensitivity may be obtained if both
sidebands are retained. As a historical note, DSB systems were used at centimeter
wavelengths during the 1960s and early 1970s [see, e.g., Read (1961)], sometimes
with a degenerate type of parametric amplifier as the low-noise input stage. These
amplifiers were inherently DSB devices, and their use in interferometry is discussed
by Vander Vorst and Colvin (1966).

DSB systems have a number of disadvantages. Increased accuracy of delay
setting is required, frequency and phase adjustment on more than one LO is likely
to be required, interpretation of spectral line data is complicated if there are lines in
both sidebands, and the width of the interference-free spectrum required is doubled.
Also, the smearing effect of a finite bandwidth, to be discussed in Sect. 6.3, is
increased. These problems have stimulated the development of schemes by which
the responses for upper and lower sidebands can be separated.

6.1.12 Sideband Separation

To illustrate the method by which the responses for the two sidebands can be
separated at the correlator output of a DSB receiving system, we examine the sum
of the upper- and lower-sideband responses from Eqgs. (6.11) and (6.15). This is

g =71, +1re= |(V||Gmn(Ar)| {COS [2N(VLOTg + VOA‘C) + emn - ¢v + ¢G:|
+ cos [Zn(vLorg — VoAT) + Opy — ¢y — ¢G]} , (6.28)

where 60, = 6, — 6,. Equation (6.28) represents the real output of a complex
correlator. We rewrite Eq. (6.28) as

ra = |V||Gun|(cos ¥, + cos¥y) , (6.29)
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where ¥, and ¥, represent the corresponding expressions in square brackets in
Eq. (6.28). The responses considered above represent the normal output of the
interferometer, which we call condition 1. The expression for the imaginary output
of the correlator is obtained by replacing ¢ by ¢ — /2. Consider a second
condition in which a 7r /2 phase shift is introduced into the first LO signal of antenna
m, so that 6,,, becomes 6,,, — /2. The correlator outputs for the two conditions are
obtained from Egs. (6.28) and (6.29):

condition 1 (6.30)
r1 = |V||Gpnl|(cos ¥, + cos )

r2 = |V||Gpn|(sin ¥, — sin )

condition2 (6 — Omn — 7/2) (6.31)
r3 = | V|G (sin ¥, + sin &)

r4 = |V||Gun|(— cos ¥, + cos )

where 7| and r3 represent the real outputs of the correlator and r, and r4 the imagi-
nary outputs. Thus, the upper-sideband response, expressed in complex form, is

1
[VI|Gn|(cos ¥, + jsin¥,) = 5 [(r1 —ra) +j(r2 +13)] . (6.32)

Similarly, the lower-sideband response is
L 1 .
|V||Gn|(cOs Wy + jsin ¥p) = 5 [(r1 4+ ra) —j(ra—r3)] . (6.33)

If the 7 /2 phase shift is periodically switched into and out of the LO signal, the
upper- and lower-sideband responses can be obtained as indicated by Egs. (6.32)
and (6.33).

A similar implementation of sideband separation that makes use of fringe
frequencies is attributable to B. G. Clark. This method is based on the fact that a
small frequency shift in the first LO adds the same frequency shift to the fringes at
the correlator for both sidebands, but a similar shift in a later LO adds to the fringe
frequency for one sideband but subtracts from it for the other. Consider two antennas
of an array in which the fringes have been stopped as in the discussion associated
with expressions (6.26) and (6.27). Now suppose that we increase the frequency
of the first LO at antenna n by a frequency §v and decrease the frequency of the
second LO by the same amount. The fringe frequency for the upper-sideband signal
will be unchanged; that is, the fringes will remain stopped. For the lower sideband,
the signal frequencies after the second mixer will be decreased by 26v. The lower-
sideband output will consist of fringes at frequency 28v(1 — dt,/df) ~ 28v and
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will be averaged to a small residual if (26v) ! is small compared with the integration
period at the correlator output, or if an integral number of fringe cycles fall within
such an integration period. If the frequency of the second LO is increased by §v
instead of decreased, the lower sideband will be stopped and the upper one averaged
out. To apply this scheme to an array of n, antennas, the offset must be different for
each antenna, and this can be achieved by using an offset ndv for antenna n, where n
runs from O to n, — 1. An advantage of this sideband-separating scheme is that it can
be implemented using the variable LOs required for fringe stopping, and no other
special hardware is needed. Unlike the 77/2 phase-switching scheme, one sideband
is lost in this method. However, as mentioned above, sideband separation schemes
of this type separate only the correlated component of the signal and not the noise.
To separate the noise, the SIS mixers at the receiver inputs can be mounted in a
sideband-separating circuit of the type described in Appendix 7.1. In such cases, the
isolation of the sidebands achieved in the mixer circuit may be only ~ 15 dB, which
is sufficient to remove most of the noise contributed by an unwanted sideband, but
not sufficient to remove strong spectral lines. The Clark technique described above is
nicely suited to increasing the suppression of an unwanted sideband that has already
suffered limited rejection at the mixer.

Fringe-frequency effects can also be used for sideband separation in VLBI
observations. In VLBI systems, the fringe rotation is usually applied during
playback. Fringe rotation then has the effect of reducing the fringe frequency for
one sideband and increasing it for the other. If the fringe rotation is set to stop the
fringes in one sideband, then since the baselines are so long, fringes resulting from
the other sideband will often have a sufficiently high frequency that they will be
reduced to a negligible level by the time averaging at the correlator output. The data
are played back to the correlator twice, once for each sideband, with appropriate
fringe rotation.

6.2 Response to the Noise

The ultimate sensitivity of a receiving system is determined principally by the
system noise. We now consider the response to the noise and the resulting threshold
of sensitivity, beginning with the effect at the correlator output and the resulting
uncertainty in the real and imaginary parts of the visibility, V. This leads to
calculation of the rms noise level in a synthesized image in terms of the peak
response to a source of given flux density. Finally, we consider the effect of noise in
terms of the rms fluctuations in the amplitude and phase of V.

6.2.1 Signal and Noise Processing in the Correlator

Consider an observation in which the field to be imaged contains only a point source
located at the phase reference position. Let V,,(¢) and V,,(¢) be the waveforms at the
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correlator input from the signal channels of antennas m and n. The output is

r = (Va(O)V,(0) , (6.34)
where all three functions are real, and the expectation denoted by the angular
brackets is approximated in practice by a finite time average. To determine the
relative power levels of the signal and noise components of r, we determine their

power spectra by first calculating the autocorrelation functions. The autocorrelation
of the signal product in Eq. (6.34) is

pr(t) = (VO V(O Vit — 1)Vt — 7)) . (6.35)
This expression can be evaluated using the following fourth-order moment relation®:
(z1222324) = (z122)(z324) + (2123)(2224) + (z124)(2223) , (6.36)

where 7, 22, 23, and z4 are joint Gaussian random variables with zero mean. Thus,

(V@ Va @) (Vin(t = D)Vt — 1))
+ (Vi@ Vit = D)) (Va () Vi (£ — 7))
+ (V@ Va(t = D)) (Vi (t = T) V() (6.37)

022(0) + 0 (T)Pu(T) + P (T) Prn(—T)

()

where p,, and p, are the unnormalized autocorrelation functions of the two signals
V.. and V,,, respectively, and p,,, is their cross-correlation function. Each V term is
the sum of a signal component s and a noise component 2, and to examine how these
components contribute to the correlator output, we substitute them in Eq. (6.37).
Products of uncorrelated terms, that is, products of signal and noise voltages, or
noise voltages from different antennas, have an expectation of zero, and omitting
them, we obtain

Pr(T) = () (1)) (s (t — T) 50 (t — T))
4+ (5 (D) (t — T) + iy (Ony (t — )Y (8,(0) s, (t — T) + ny(Hn, (¢ — 1))
+ (s (D)5, (t — ) (5 (t — T)$5,(2)) , (6.38)

where the three lines on the right side correspond to the three terms on the last line
of Eq.(6.37). To determine the effect of the frequency response of the receiving

“4This relation is a special case of a more general expression for the expectation of the product of
N such variables, which is zero if N is odd and a sum of pair products if N is even. A form of
Eq. (6.36) can be found in Lawson and Uhlenbeck (1950), Middleton (1960), and Wozencraft and
Jacobs (1965).
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system on the various terms of p(7), we need to convert them to power spectra. By
the Wiener—Khinchin relation, we should therefore examine the Fourier transforms
of each term on the right sides of Egs. (6.37) and (6.38).

The first term from Eq. (6.37), ,oyzym (0), is a constant, and its Fourier transform is
a delta function at the origin in the frequency domain, multiplied by przrm (0). From
Eq. (6.38), we see that ,oyzym (0) involves only the signal terms, which it is convenient
to express as antenna temperatures. By the integral theorem of Fourier transforms,
Pmn(0) is the infinite integral of the Fourier transform of p,,,(7), and thus the Fourier
transform of przrm (0) is

00 2
K2 TamTan [ / H,(V)H*(v) dv} A®) , (6.39)

where k is Boltzmann’s constant, T4, and T,, are the components of antenna
temperature resulting from the source, H,,(v) and H,(v) are the frequency responses
of the signal channels, and A(v) is the bandwidth.

The Fourier transform of the second term of Eq.(6.37), p.(t)p.(7), is the
convolution of the transforms of p,, and p,, that is

kz(TSm —+ TAm)(TSn —+ TAn) /OO Hm(v)H,:(U)Hn(l)/ _ ]))H:(])/ — ])) dv s (640)

where T, and T, are the system temperatures. Note that the magnitude of this term
is proportional to the product of the total noise temperatures.

The Fourier transform of the third term of Eq. (6.37), 0uun(t)pmn(—17), is the
convolution of the transforms of p,,,(7) and p,,(—7), and the latter is the com-
plex conjugate of the former, since p,,, is real. Thus, the Fourier transform of

,Omn(f)pmn (_T) iS
o0
KTynTan / H,(WH()H (' —v)H,(v —v)dv . (6.41)
—00

In expression (6.39), as in Eq. (6.37), only the antenna temperatures appear, because
the receiver noise for different antennas makes no contribution to the cross-
correlation.

Expression (6.39) represents the signal power in the correlator output, and (6.40)
and (6.41) represent the noise. The effect of the time averaging at the correlator
output can be modeled in terms of a filter that passes frequencies from 0 to Avpp.
The output bandwidth Avf is less than the correlator input bandwidth by several
or many orders of magnitude. Therefore, the spectral density of the output noise
can be assumed to be equal to its value at zero frequency, that is, for vV = 0
in (6.40) and (6.41). From these considerations, and because H,,(v) and H,(v) are
Hermitian, the ratio of the signal voltage to the rms noise voltage after averaging at
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the correlator output is

Rsn =

JTanTn / " Hn(W)H(v) dv

3

[ele)

\/(TAm + TSm)(TAn + TSn) + TAmTAn \/ZAVLF/ IHm(v)|2|Hn(v)|2dU
—00

(6.42)

where 2 Avy g is the equivalent bandwidth after averaging, with negative frequencies
included. It is unusual for Ry, the estimate of the SNR at the output of a simple
correlator, to be required to an accuracy better than a few percent. Indeed, it is
usually difficult to specify T to any greater accuracy since the effects of ground
radiation and atmospheric absorption on Tg vary as the antennas track. Thus, it
is usually satisfactory to approximate H,(v) and H,(v) by identical rectangular
functions of width Avp.