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1. INTRODUCTION

Since its first application to astronomy in the late 1940s (67, 95, 98), radio
interferometry has developed into an imaging tool of unparalleled power.
The complex visibility measured by a radio interferometer is a single
Fourier component of the sky brightness distribution, so a map of the sky
can be made by using Fourier synthesis to combine measurements obtained
with different interferometer baselines. This technique, called aperture
synthesis (97), was the basis of a number of instruments designed in the
1950s, in which several fixed antennas or two or more movable antennas
were used to provide the necessary range of baselines. In the 1960s and
1970s, several telescopes were built that made use of the Earth’s rotation to
change the interferometer baselines, notably the One-Mile and Five-
Kilometre telescopes at Cambridge in England (96), and the Westerbork
Synthesis Radio Telescope (WSRT) in the Netherlands (3, 56). The most
powerful of these is the Very Large Array (VLA) of the National Radio
Astronomy Observatory of the United States (52, 54, 112). The VLA, witha
maximum baseline of 35 km, routinely makes maps that surpass the
resolution of the best optical telescopes. Also during the 1960s, baselines
were increased to hundreds of kilometers by using radio links to transmit
the signal from one antenna to the other (35, 80), and eventually to
thousands of kilometers by the technique of Very Long Baseline
Interferometry (VLBI), in which the signals are recorded on magnetic tape
at each antenna and later played back for cross-correlation (8, 16, 23, 24).

A common problem in aperture synthesis is that the phase of the complex
visibility is badly corrupted by instrumental and propagation effects. Over
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short baselines, these problems can generally be overcome by careful
calibration of the instrument using unresolved sources. For a variety of
reasons this solution cannot be applied to VLBI, and thus for some years it
was thought that VLBI could never become a true imaging technique. It
had been known since the early 1950s that part of the phase information
could be recovered from badly corrupted phases when three or more
antennas were used simultaneously (59), but methods of applying this
information in the construction of images were not explored until the 1970s.
The breakthrough came with the realization that this partial phase
information could be used, together with the constraint that the source
brightness distribution must be positive, to recover the full phase infor-
mation and hence to make reliable images (86). This knowledge has
stimulated the development of methods of mapping that can be used in the
presence of large systematic errors in both the amplitude and the phase of
the measured visibilities. These methods, now generally known as self-
calibration or hybrid mapping, make use of the fact that most of the errors
are associated with individual antennas, and that it is possible to form
combinations of the measured visibilities, called closure phases and closure
amplitudes, that are independent of such errors. Although the methods were
originally developed for VLBI, where the errors are so large as to prevent
conventional mapping, they are now also used in connected-element
interferometers such as the VLA and the WSRT, and in the Jodrell Bank
MERLIN array in England (33), to correct the much smaller errors that
occur in such instruments; their application to VLBI has shown that it is
possible to make reliable maps with submilliarcsecond resolution.

This review describes these self-calibration methods and their appli-
cation to both conventional and very long baseline arrays and includes
examples of the high-quality images that they produce. After first defining
closure phase and closure amplitude in Section 2, we review conventional
aperture synthesis methods in Sections 3 and 4. The new iterative self-
calibration algorithms are the subject of Section 5. In Section 6 we consider
the capabilities and limitations of these algorithms. Finally, in Section 7 we
mention some applications in optical and infrared astronomy and in new
radio instruments presently planned or under construction.

2. CLOSURE QUANTITIES

2.1 Interferometry

The theory of a radio interferometer has been described in a number of
papers(e.g. 17, 39,40, 89, 111, 114). In order to clarify the problems involved
in calibrating measurements made with an interferometer, we first briefly
summarize this theory.
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Let v,,(t) and v,(t) be the analytic signal representation of the voltages
received by two antennas m and n, expressed as functions of time ¢. The
interferometer measures the mutual coherence function (11) of the voltages
received by the two antennas,

Ln(7) = 0n(O03( + 1)), 1.

at some time delay 7 (which may be adjusted); the angular brackets
represent a time average. In continuum observing, the delay 7 is adjusted so
that |t| « 1/Av, where Av is the bandwidth of the antenna and associated
electronics. In this case the interferometer measures the mutual intensity or
complex visibility I',,,(0). The van Cittert—Zernike theorem (11, 111) shows
that I',,,(0) is proportional to a Fourier component of the sky brightness
distribution:

I,..(0) ¢ J JI (s) exp(—2mis* B,,,/4) dQ, 2.

where I(s) represents the strength of the signal received from direction s (a
unit vector), B,,, is the vector separation of the two antennas (baseline
vector), 4 is the wavelength at the center of the received band, and the
integration (dQ) is over the celestial sphere. In spectral line observing, the
delay dependence of I',,,(7) is measured, and then the Fourier transform of
I',..(t) with respect to © gives the frequency dependence of I(s). In the
technique of aperture synthesis (which we discuss further in Section 3), one
seeks to measure I',,, at a sufficient number of different antenna separations
B, to form an estimate of I(s) by inversion of Equation 2.

The quantity actually measured in a real interferometer is the complex
visibility I',,, multiplied by a complex gain factor G,,,:

Vian = Gunl mn + 1OISE. 3.

The gain factor G represents amplitude and phase errors introduced by the
interferometer itself and during the propagation of the signals through
space and through the Earth’s ionosphere and troposphere. If the
interferometer electronics are sufficiently stable and well understood, it is
possible in principle to calculate their contribution to G ; but as there are
always additional contributions that cannot be calculated, it is the usual
practice to determine the G,,, factors from observations of sources of known
structure, usually point sources. These calibration observations must be
made sufficiently frequently that any time dependence of the G factors can
be determined, and the calibration sources must be sufficiently close to the
object under study that the propagation effects are indistinguishable.

The phase errors due to refraction in the troposphere become significant
for frequencies higher than 2 GHz and baselines longer than 1 km, and they
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vary on time scales between minutes and hours, owing to changes in water-
vapor content of the atmosphere (e.g. 2, 50, 53, 66). As it is not practicable to
make calibration observations more frequently than once every few
minutes, conventional calibration can be almost impossible for baselines
longer than a few kilometers at frequencies higher than 10 GHz. At
frequencies below 1 GHz, the effects of tropospheric refraction are small
compared with ionospheric refraction, which also makes calibration
difficult on long baselines. In VLBI, there is the added problem of phase
fluctuations in the local oscillators, which can reduce the coherence time to
a minute or less. Amplitude errors are generally less important, and have
longer time scales, than the phase errors, but again at high frequencies
(>5 GHz) variable absorption by the atmosphere and mispointing of
the antennas can introduce large amplitude errors with a time scale of a
few minutes that cannot be calibrated.

If the complex gain errors G are varying faster than they can be measured,
it would appear that it is impossible to recover the complex visibility I" from
the measurements. Progress can be made, however, when more than two
antennas are used simultaneously. This is because the number of unknown
gain factors is then less than the total number of measurements. In many
cases, the gain factors can be associated with individual antennas:

Gon = Gm9r, 4.

where g,, is a complex gain factor for the individual antenna m. Most of the
errors that occur in real interferometers can be factorized in this way; we
discuss the origin and effects of errors that cannot be factorized in Section 6.
In an array of N antennas, up to N(N — 1)/2 simultaneous interferometer
baselines can be formed. If all the antenna pairs are cross-correlated, this
factorization reduces the number of unknown (complex) gain factors that
must be determined by calibration from N(N —1)/2 to N. When N is less
than N(N —1)/2, it is thus possible in principle to determine both the gain
factors themselves and some parameters of the complex visibility of the
source from the observations. This is the basis of the self-calibration
methods that are the subject of this review.

In Sections 2.2 and 2.3, we enumerate explicitly two sets of parameters,
the closure phases and closure amplitudes, that can be derived from
observations with an N-antenna array even if the antenna gain factors g,
are unknown. It is convenient for this purpose to express the terms in
Equation 3 as amplitudes and phases:

an = |anl exp(i¢mn)a
Gmn = |gm| |gn| exp(igm) CXp(—iOn), V 5.
rmn = |rmn| exp(iwmn)'
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Equation 5 defines the observed interferometer phase ¢,,,, the true visibility
phase ¥,.,,, and the phase errors 6,, and 6, associated with each antenna.

2.2 Closure Phase

From Equations 3 and 5, the visibility phase ¥,,, on baseline mn is related to
the observed phase ¢,,, by

¢mu = lpmn + em - 0,, + Emns 6.

where ¢, represerits the noise in the measurement. The closure phase ¥, is
formed by summing the observed phases around a triangle of baselines Im,
mn, and nl:

llen = ¢lm + ¢mn + ¢nl
= Yim+ Vmnt W+ Em~+ Emn+ Enr-

It can be seen that the ,, terms cancel completely. This is true for any closed
loop of baselines, not just a triangle. Thus the observed closure phase is
uncorrupted by phase errors that are associated with individual antennas.
These errors include those due to propagation effects along the line of sight,
oscillator drifts, and uncertainties in the source position and baseline
vectors. Certain residual errors that do not cancel remain, but these
“closure errors” are usually small ; we discuss them in Section 6. Figure 1
shows some measurements of phase on three baselines of the VLA, together
with the calculated closure phase : the cancellation of antenna-based errors
is dramatic.

The closure phase was first used by Jennison in triple-interferometer
experiments at Jodrell Bank in the early 1950s (59, 60). As later inter-
ferometers became more phase-stable, the technique was no longer needed,
until it was revived by Rogers and coworkers (92) for use in VLBI, where
propagation effects and oscillator errors make the direct measurement of
visibility phases impossible. The term “closure phase” is due to Rogers.

2.3  Closure Amplitude
With four antennas, k, I, m, n, it is possible to form ratios of the visibility
amplitudes that are independent of the antenna gain factors:
[Vl Vel _ [ Tial Tl
T Vil Vil 1Tkl Tl

Such ratios are called closure amplitudes. If all six interferometer pairs
formed by the four antennas are correlated, three different closure
amplitudes can be calculated (A mm Akinm Arnm)> DUt only two of these are
independent. Ratios of this type were first measured with a four-antenna
interferometer by Twiss et al. (116, 117). Their application to VLBI was first
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Figure I Illustration of the elimination of antenna-based phase errors by the calculation of
closure phase. The lower three frames show the visibility phases observed on three baselines of
the VLA in bad weather, after conventional calibration on a nearby point source. The upper
frame shows the closure phase formed by summing the three visibility phases. The scatter is
greatly reduced ; the deviations from zero are due to structure in the source (the quasar 3C 147).
Reproduced, with permission, from Readhead et al. (84).

discussed by Readhead et al. (85), who introduced the term “closure
amplitude” by analogy with “closure phase.” Note that at least four
antennas are required to measure a quantity that is independent of all the
antenna gain factors. With fewer antennas, though, it is still possible to
eliminate some of the gain factors; for example, Smith (110), using three
antennas and a single correlator, was able to eliminate the unknown gain of
one of the antennas. Jennison (59) used three antennas and three
correlators, and by monitoring the total power received by one antenna, he
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could eliminate all the antenna gains ; this method is equivalent to using the
closure amplitude with one baseline of zero length.

2.4 Interpretation of Closure Phase and Closure Amplitude

In an array of N antennas, with N(N — 1)/2 interferometer pairs, there are N
unknown complex antenna gain factors g,, that is, N unknown amplitude
factors and N unknown phases. As only phase differences are important,
however, one of the unknown phases can be set to zero, leaving a total of 2N
— 1 unknowns. The N(N — 1)/2 complex visibility measurements thus yield
N(N —1)—(2N —1) = N? —3N + 1 parameters of the true source visibility.
These may be divided into (N — 1) (N — 2)/2 independent closure phases and
N(N —3)/2 independent closure amplitudes. In an N-antenna array, the
fraction of the total visibility information available in the closure quantities
is (N—2)/N in the closure phases and (N —3)/(N—1) in the closure
amplitudes. These ratios show the rewards to be gained by increasing the
number of antennas in the array; with only 4 antennas, 509 of the phase
information and 33%, of the amplitude information is available, while for 10
antennas (a typical VLBI configuration), these ratios increase to 80%, and
789, respectively.

The interpretation of measurements of closure phase and closure
amplitude is difficult, as, unlike the visibilities, they are not related to the sky
brightness distribution by a simple Fourier transform relationship. If only
closure phases and closure amplitudes are measured, knowledge of both the
absolute strength and the absolute position of the source is lost. This can be
seen by (a) applying a scale factor to I(s) in Equation 2, which merely
introduces a scale factor in I' that cancels when the closure amplitude is
calculated; and by (b) shifting the function I(s), which introduces phase
factors in T that cancel when the closure phase is calculated.

In the early work with closure phase and closure amplitude (59, 116), the
antennas could be arranged in a redundant configuration, so that all the
interferometer baselines were parallel and multiples of a single minimum
baseline. In this case it is possible to solve the closure relations to compute
the visibilities on all the baselines in terms of that on the minimum baseline,
so that the only information that is lost is the absolute strength and position
of the source. Both the strength and the position of the source can be
recovered if it is possible to calibrate the visibility measurement on a single
baseline. Rogstad (93) has given an example of a redundant six-antenna
array with which it is possible to compute the phases on all multiples of the
minimum baseline up to ten, and Rhodes & Goodman (88) have indicated
how this technique can be extended to two-dimensional arrays. In VLBI
arrays, however, it is not usually possible to arrange the antennas in a
redundant configuration, and hence other methods must be used to derive
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the visibility phases. The methods used, nowadays called either hybrid
mapping or self-calibration, are the subject of Section 5; but we must first
digress to discuss the techniques of conventional aperture synthesis, of
which the self-calibration methods are an adaptation.

3. APERTURE SYNTHESIS
3.1 Basic Theory

Let us rewrite Equation 2 in a coordinate system in which B,,,/A = (u,v, w)
and s = (x, y,(1—x*—y*)'/?):

C(u,v,w) = JT I'(s) exp[ — 2mi(ux + vy + w(l — x2 — y?)*/2] dx dy, 9.

where we have written I'(u, v, w) for [,,,(0), and I'(s) = I(s)/(1 —x2 —y?)'/2.
The sky-coordinates x and y are direction cosines relative to the center of
the field of interest. In all the cases that we consider, it is possible to ignore
w, and thus Equation 9 reduces to a two-dimensional Fourier transform :

I'u,v) = J\f I'(s) exp[ —2mi(ux +vy)] dx dy. 10.

Equation 10 is the fundamental equation of aperture synthesis, and the
fundamental problem in aperture synthesis is, given a number of measure-
ments of I at different points in the uv-plane, to invert Equation 10 in order
to estimate the sky brightness I.

The treatment of w deserves a little discussion. In going from Equation 9
to Equation 10 we have removed a term — 2w from the phase, which is
usually applied as a phase correction to the measured visibilities, i.e.

I'(u,v) = I'(u,v, w) exp[27iw],

and we have ignored higher-order terms in w. When this is not a valid
approximation, Equation 9 does not reduce to a Fourier transform, and its
inversion is much more difficult (17, 114). Fortunately, w can be ignored in
all cases in which all the interferometer baselines lie in a single plane (in
which case w may be arranged to be zero by choice of coordinate system)
and in cases in which the field of view occupied by the source is sufficiently
small [2nw(x? + y?) « 1], which includes almost all VLBI observations.

The conventional method of inverting Equation 10 is based on the
inverse Fourier transform:

I'(x,y) = “' I'(u,v) exp[2ni(ux +vy)] du dv. 11.
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The measurements are made at a set of only M points (u;, v;) in the uv-plane,
and the Fourier transform must be approximated by the sum

M
I'(x,y) = Y. T(u;, v;)W; exp[2mi(u;x +v;y)], 12.
=1

i=
where W;is a “weight” associated with the jth point. This gives an estimate
I"(x, y) of the sky brightness, usually called the “dirty map,” which is the
convolution of the true sky-brightness I'(x, y) with a point-spread function
or “dirty beam”:

I'(x,y) = I'(x,y) ® P(x,y), 13.

where ® denotes two-dimensional convolution. The point-spread function
P(x,y) is given by the right-hand side of Equation 12, with all the I'(u;, v;)
terms replaced by 1. The weights may be chosen to adjust the shape of the
dirty beam.

In practice, a Fast Fourier Transform (FFT) algorithm is usually used to
compute Equation 12, which requires that the data be sampled on a regular
rectangular grid. The choice of weights W, the techniques for interpolating
the measured data onto a rectangular grid, and the distortions that this
procedure introduces into the map are described elsewhere (17, 32, 114).

3.2 Image Restoration

The estimate of the sky brightness distribution provided by Equation 12isa
linear combination of the measured quantities. It is a convolution of the sky
brightness distribution with a beam shape determined by the sampling of
the uv-plane and the weights assigned to the measured points. Although this
map will be sufficient to show many features of the source in cases where the
uv-plane coverage is good, it is not the best possible representation of the
sky, and it contains artifacts, most notably the positive and unphysical
negative sidelobes around bright peaks. If the sampling of the uv-plane is
irregular and uneven, the dirty beam will have large sidelobes that will
confuse and obscure the structure of interest in the map. These are due to
the erroneous assumption that the visibility is zero at spatial frequencies
where it was not measured. The choice of weights W, is necessarily a
compromise between high resolution, low sidelobe level, and good signal-
to-noise ratio (78).

A considerable improvement is possible by using nonlinear methods of
image restoration, and a number of such methods have been introduced
into radio astronomy in the last decade. These all attempt to estimate, or
“restore,” the unmeasured Fourier components in order to produce a more
physical map; some of them can actually estimate components at larger
spatial frequencies than any that were measured, and thus achieve an
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increase in resolution (superresolution). These methods also have the
advantage over the linear methods that they can take into account the
constraint that the map must be everywhere positive or zero (brightness is
never negative), and they can also make use of a priori knowledge about the
extent of the source and the statistics of the measurement process.
Nonlinear methods can always do a better job than any linear technique
(121), but the restoration is not unique, because in almost all cases the
number N of parameters defining the map (e.g. the brightness at N pixels on
a rectangular array) is greater than the number of constraints (2M if
complex visibility measurements are made at M points, but less if self-
calibration is required). Thus the image reconstruction method must select
one of the possible solutions, and the choice of reconstruction method is
tantamount to a choice of criteria for selecting the “best” solution. A large
number of nonlinear restoration methods have been suggested and
experimented with ; here, we confine our discussion to three of the most
popular: the Hogbom CLEAN method, the Gerchberg—Saxton method,
and the maximum entropy methods. These methods have matured
somewhat since they were last reviewed in this series (13).

CLEANING The most widely used technique of image reconstruction in
radio interferometry is the iterative beam-removing method called
CLEAN;; as this is a major part of current self-calibration algorithms, we
shall discuss it in some detail. CLEAN was developed by Hogbom in the
early 1970s (55, 94, 107). It starts with a dirty map made by the usual linear
Fourier inversion procedure and attempts to decompose this into a number
of components, each of which has the shape of the dirty beam. The
algorithm searches the dirty map for the pixel with largest absolute value
[ ..x] and subtracts a dirty beam pattern centered on this point with
amplitude yI ,,, (the factor y is called the loop gain). Then the residual map is
searched for the next largest pixel, and a second beam shape is subtracted,
and so on. The iteration is terminated when the maximum residual is
consistent with the expected noise level. The result of the iteration is a
residual map containing noise and low-level source contributions, plus a
list of the amplitudes and positions of the components removed. The list of
components, considered as an array of delta functions, is a model of the sky
brightness distribution that will reproduce the observed visibilities (within
the noise). As this is not convenient for display, the delta functions are
usually convolved with a “clean beam” and added back to the residuals to
produce a “clean map.” The clean beam can be chosen arbitrarily : usually a
truncated elliptical Gaussian of about the same size as the central lobe of
the dirty beam is used, thus producing a map with the same resolution as
the original dirty map but uncontaminated by sidelobes. The Fourier
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transform of the clean map does not reproduce the measured visibilities, but
rather the measured visibilities multiplied by a taper function that is the
Fourier transform of the clean beam.

It has been shown (105, 106) that CLEAN is equivalent to a least-squares
fit of sine functions to the visibility data. There is now considerable
experience with CLEAN in practice (e.g. 26). A fast algorithm based on the
FFT has been introduced by Clark (21), and a modification of CLEAN with
improved behavior has been suggested by Cornwell (28). Perhaps the least-
understood aspect of CLEAN is the convolution of the delta-function
components with the clean beam: there are no theoretical criteria for
choosing the clean beam. Although the normal practice is to use a clean
beam comparable to the central lobe of the dirty beam, it is sometimes
possible to achieve superresolution by using a smaller clean beam.
Experiments have shown, however, that such superresolution is un-
trustworthy, unless the signal-to-noise ratio is very high and the uv-plane
coverage is very good. In no case has superresolution by a factor >2 been
demonstrated.

THE GERCHBERG—SAXTON ALGORITHM The Gerchberg—Saxton or Fienup
algorithm was originally introduced for solving the phase problem in
electron microscopy (45) and has been adapted for reconstructing an image
from measurements of the visibility amplitudes only (37, 38). Although it
has not gained a large following in radio astronomyj, it is closely related to
the iterative self-calibration algorithms that are the subject of Section 5. It is
an iterative algorithm involving repeated Fourier transformation between
the map (or sky) plane and the uv-plane, imposing the known constraints in
each domain. In radio astronomy, the constraints are that the map should
nowhere be negative and that the uv-plane data should agree with the
measurements where available ; the map can also be constrained to be zero
outside one or more selected “windows.” Thus, starting with an estimate of
the visibilities in the uv-plane, as in the standard linear Fourier inversion,
we transform to the sky plane, set all negative regions and any regions
outside the window to zero, and transform back to the uv-plane. To start the
next iteration, we replace the visibilities thus derived by the measured
visibilities where they are known. The procedure, therefore, allows
arbitrary values for the visibility in unsampled regions of the uv-plane.
Gerchberg (44) has shown that this method is capable of superresolution.
Hogbom (55) has discussed the use of this method in radio astronomy and
pointed out its main drawback (which it shares with the maximum entropy
methods)—that the resolution achieved is data dependent and varies across
the map. Methods of this type may be regarded as special cases of more
general “constrained iterative restoration algorithms” (100).
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MAXIMUM ENTROPY AND RELATED METHODS The limited sampling of the uv-
plane means that there will be an infinite number of possible maps
consistent with the data within the accuracy of the measurements. Not all of
these possibilities will be everywhere positive. The maximum entropy
methods, which were introduced to radio astronomers by Ables (1), attempt
to choose the map that is in some sense the most “likely” or most
“reasonable” a priori, and that satisfies the positivity constraint. If we
represent the map by the vector b = (by,b,,...,by) formed from the
brightnesses of its N pixels and define an “entropy” function Q(b), the
methods involve choosing b to maximize Q(b) subject to the constraint

M
'21 T (uj, v;)— V(uj, v,)|*/o? < M, 14.
iz

where I'(u;, v;) is the complex visibility predicted by the map b, V(u;, v;) are
the visibility measurements, the sum is over the M sampled (u, v) points, and
o7 is the variance of the jth point. The left-hand side of Equation 14 is a 2
measure of the disagreement between the visibilities predicted by the map
and the measured visibilities, and the constraint ensures that the resulting
map will be consistent with the data, taking into account its noise statistics,
which are assumed to be Gaussian. Other models of the noise statistics, or
other constraints (19), can be incorporated in the maximum entropy
method, but this is the most usual. The solution of the constrained
maximization of Q(b) is not a trivial matter, but Wernecke (122) and Gull &
Daniell (48) have developed iterative numerical techniques that can solve
the problem in a reasonable amount of computer time by use of the FFT
algorithm.
For the entropy Q(b), two functions have been suggested :

Q, =) logb,, 15.
Q,= —> b,logbh,. 16.

There is still some controversy, which we do not enter into here, as to which
of these functions should be used and which, if either, deserves to be called
entropy. The Q, function, favored by Wernecke & D’Addario (122, 123),isa
measure of the entropy of the electromagnetic field sampled by the antenna,
while Q,, favored by Frieden (42) and Gull & Daniell (48, 49), is a measure of
the configurational entropy or information content of the map itself. In
practice, it appears that both functions give similar maps when there are
sufficient data. Other “entropy” functions with similar behavior have been
suggested (74), corresponding to different a priori assumptions about the
sky brightness. A radically different approach is the “maximum sharpness”
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criterion (4, 71):
Qs = “Z bf- 17.

The maximum entropy methods have not yet gained a strong following
among radio astronomers, probably because the behavior of these methods
is not yet fully understood. For example, they can superresolve, in some
cases by up to a factor of two, but the reliability of this superresolution has
not yet been demonstrated. Nor are all astronomers convinced that the
maximum entropy map is the best possible; for example, the maximum of
the entropy function may be very broad, and in such cases it is not really
appropriate to suggest that any single map is a good estimate of the sky
brightness. The maximum entropy methods do, however, have the
advantage that they can identify such cases.

4. INTERNAL CALIBRATION METHODS

The calibration problems described above can be overcome if there is a
suitable reference source in the same isoplanatic patch as the object. Ideally,
such a reference source should be unresolved, and it must be possible to
separate its contribution to the visibility measurements from that of the
source under study. Such a separation is possible if the reference source is
sufficiently far removed from the object, or if the reference source and the
object appear in different frequency channels. If the displacement between
the reference source and the object is large enough, the interferometer delay
(7 in Equation 1) and fringe rate (the rate of change of the visibility phase)
will be different for reference source and object, which allows their
contributions to the visibility to be separated (82). The power of this
technique is illustrated by the VLBI detection of a third compact radio
component in the gravitational lens 0957+ 561 (47). In one particular class
of object, the cosmic maser sources, it is possible to separate an internal
reference source by frequency. The cosmic masers (both OH and H,O)
generally consist of a number of well-separated components, some of which
are unresolved or have very simple structure ; the maser lines are narrow,
and the different velocities of the components cause them to appear in
different frequency channels. In some cases, one frequency channel is found
to contain a single unresolved source, which may be used as a reference for
calibrating the other channels. Such cases are rare, but if it is possible to
obtain the brightness distribution in a particular frequency channel without
using phase (e.g. by model-fitting using the amplitude measurements), or if a
single channel can be mapped by one of the hybrid-mapping methods of
Section 5(77), the data in that channel can be used as a phase reference. Two
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methods, “fringe rate mapping” and “phase mapping,” have been used to
map maser sources.

In fringe rate mapping (69, 70, 119), narrowband spectra of the object are
examined, and a reasonably strong unblended spectral feature is chosen as
the reference source. The most sensitive interferometer baseline is selected
for comparing the fringe rates of all the features. The interferometer phases
at each point in the spectrum are adjusted so that the reference source has
zero phase at all times, and hence zero fringe rate. The residual fringe rates
that remain for the other sources are due to position offsets from the
reference source, and the relative positions of the different spectral features
can thus be determined from the relative fringe rates. In principle, accuracy
of about 10~ * arcsec can be achieved by this method (43).

In the phase-mapping (or aperture synthesis) method (87, 120), a
reference source in one channel is used to calibrate the phases in all the
other channels, which can then be mapped by the usual aperture synthesis
methods. The drawback of this method for VLBI observations of masers is
that the maser components are spread over a field of view that may be
thousands of times larger than the beamwidth, so that the computation
involved in aperture synthesis is prohibitive. In some cases it is useful to
begin by making a fringe rate map of the entire masing region using the
most sensitive interferometer pair, followed by low-resolution phase maps,
and finally by phase maps at the full resolution of selected areas
encompassing the most interesting groups of masers. The reference features
are sometimes spatially resolved, in which case they must be modeled
before being used as a reference. The relative phases of the other features
depend on baseline vectors, station clocks, and propagation effects, as well
as on the positions and the frequencies of these features. The errors are
usually dominated by clock and baseline errors, and the positional
accuracy achieved is usually about 5 x 107> arcsec.

The internal calibration methods are restricted in scope because of the
requirement that there be a calibration source close to the object under
study. The hybrid-mapping methods, which are the subject of the next
section, circumvent this difficulty by using the object itself as the calibration
source.

5. HYBRID-MAPPING METHODS

When insufficient data are available to make a dirty map, the standard
mapping and image-restoration procedures cannot be used. The missing
data may be, for example, the visibility phases (in which case we want to
derive a map from the amplitudes only, and thus implicitly make an
estimate of the phases) or the complex antenna gains (in which case we want
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to estimate the antenna gains as well as the sky brightness distribution from
the available data). We might even be faced with the problem of mapping
with phase information but no amplitudes.

A number of iterative procedures have been introduced for tackling
problems of this type. Although they differ in detail, they all have a similar
structure, involving repeated Fourier transformation between the map
plane and the uv-plane, with adjustments in each domain. They could be
regarded as variants of the Gerchberg—Saxton algorithm: but in radio
astronomy they are generally termed “hybrid-mapping” methods, follow-
ing Baldwin & Warner (6) and Readhead & Wilkinson (86).

A single iteration consists of the following steps (Figure 2): (a) Starting
with a model of the sky-brightness distribution, called a trial map, obtain
trial visibilities by Fourier transformation. (b) Combine the (incomplete)
visibility measurements with sufficient information from the trial visibilities
to complete the sampling of the uv-plane. (¢} Compute a hybrid map by
Fourier inversion of these estimated visibilities. Baldwin & Warner (6)
defined a hybrid map to be a map made using amplitudes that are
appropriate to one sky brightness distribution and phases that are
appropriate to a different one. It seems reasonable to generalize the
definition to include maps made from any mixture of measurements and
guesses from the trial map. (d) Examine the hybrid map and use it to derive a
better trial map for the next iteration.

The procedure should be iterated until the hybrid map is indis-

MAP PLANE uv-PLANE
Initial Measured
Model Visibility data
Trial Fourier Trial
Map transform Visibilities
?
CLEAN or

Other Adjustment Adjust for

consistency

Hybrid Inverse Fourier
Map transform

Final Map

Figure 2 The iterative hybrid-mapping algorithm.
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tinguishable from the trial map. There is no guarantee that the procedure
will converge—this depends principally on step (d)—but if it does, the final
hybrid map is the best estimate of the correct map.

The various hybrid-mapping algorithms in the literature differ in how
they combine measured data with trial-map data [step (b)] and in the
procedure for deriving the trial map [step (d)]. They all require an initial
trial map to start the iteration, which may be obtained in a number of ways.
In Sections 5.1, 5.2, and 5.3 we describe first the method of Baldwin &
Warner for phaseless aperture synthesis and then discuss two methods for
mapping in the presence of large antenna gain and phase errors: the
original method of Readhead & Wilkinson, and the more general self-
calibration method of Schwab and Cornwell & Wilkinson. Following this
discussion, we examine the adaptation of maximum entropy for self-
calibration (Section 5.4), as well as two related iterative calibration
procedures : the use of redundancy (Section 5.5) and global fringe-fitting in
VLBI (Section 5.6).

5.1 Method of Baldwin & Warner

Baldwin & Warner (5-7) were concerned with the problem of phaseless
aperture synthesis. The hybrid map in this case is made from the measured
amplitudes and trial phases. They considered sky brightness distributions
consisting of a number of point sources in an otherwise empty field, and
they showed that it is fairly easy in this case to obtain an initial trial map from
the map of amplitude squared (the autocorrelation function of the true
map) and to identify features that are missing from the trial map by
inspection of the hybrid map.

5.2 Method of Readhead & Wilkinson

If we have measurements of amplitude and closure phase only in an array of
N antennas, there are (N — 1) unknown phase errors that must be estimated
by hybrid mapping. Readhead & Wilkinson (86, 125), inspired by the work
of Fort & Yee (41), chose to use phases computed from the trial map on
(N —1) of the N(N —1)/2 baselines, and to use the measured closure phases
to deduce phases for the remaining baselines. This requires the observer to
specify which visibility phases should be obtained from the trial map; this
choice affects the speed of convergence of the algorithm, but it should not
change the ultimate solution. Cotton (31) suggested that it would be
preferable to choose the (N —1) unknown phase errors to minimize the
differences between the hybrid and trial visibilities. Both Readhead &
Wilkinson and Cotton used CLEAN on the hybrid map to generate a delta-
function model to be used as the next trial map. This has to be done with
care, since if CLEAN is allowed to converge, the delta-function trial map
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would give identical visibilities to the hybrid map, and the iteration would
not advance. The solution to this is to not clean too deeply, to omit large
negative CLEAN components from the trial map, and to restrict CLEAN
to a small “window” (30).

Readhead & Wilkinson made “blind tests” of their method that showed
that the procedure usually does converge quite quickly to the correct
solution. It has been used widely in VLBI since its first application to
observations of the quasar 3C 147 (126) and has been applied to VLA
observations made in conditions of poor phase stability (84): Figure 3
shows the great improvement in the map obtained for 3C 147. Readhead et
al. (85) extended the method to observations with poor amplitude
calibration by utilizing the closure amplitudes in a similar way to the
closure phases, using amplitudes from the trial map on some baselines and
deducing the remainder from the closure amplitudes. This method has
successfully corrected amplitude errors of a factor of 20 (83).

Fort & Yee (41) and Rogers (90) suggested variants of the Readhead-
Wilkinson method in which instead of using CLEAN, they obtained a trial
map by setting to zero (a) regions of low or negative brightness in the hybrid
map, and (b) regions outside an a priori window.

3C 147 (15035 MHz)

Figure 3 Comparison of maps made with and without self-calibration. (¢) VLA map of 3C
147 made with conventionally calibrated phases, some of which are shown in Figure 1. The
calibrated phases are severely corrupted owing to bad weather during the observations. All of
the extended features in this map are spurious; note the large negative sidelobes. Contour
levels: —20, —10, 10, 20, 30,...% of the peak value. (b) Hybrid map made from the same
observations, using the closure phases. The extensions seen here have been confirmed by
subsequent observations. Contour levels: 4, 12, 20,...% of the peak value. Reproduced, with
permission, from Readhead et al. (84).
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5.3 Method of Schwab and Cornwell & Wilkinson

In the Readhead—Wilkinson method, the closure phases and closure
amplitudes are computed explicitly, and the closure relations are solved on
a baseline-by-baseline basis. Both Schwab (102) and Cornwell & Wilkinson
(29) showed that it was preferable to solve for the unknown antenna gains
directly, without explicit calculation of the closure quantities, as this allows
a correct treatment of noise in the measurements and is more economical of
computer resources. This procedure involves adjusting the estimates of the
N complex antenna gain errors to minimize the mean square difference
between the measured visibilities and the true visibilities :

z Wmn|an_gmg:rmn|25 18.
where w,,, are weighting factors that can be chosen on the basis of the
observed signal-to-noise ratio. This is a nonlinear least-squares problem
that must be solved iteratively. When used in hybrid mapping, an estimate
of I,,, is obtained from the trial map, and the estimates of the gain-factors
g.. are used with the measured visibilities V,,, to form a hybrid map for the
next iteration. Both Schwab and Cornwell & Wilkinson used CLEAN to
derive a new trial map from the hybrid map. Cornwell & Wilkinson
improved on Schwab’s method by showing how to take account of prior
information about the signal-to-noise ratio of the data and the expected
variances and time scales of the gain errors. Least-squares (Equation 18) is
not necessarily the best way of choosing the g-factors. An alternative that is
less sensitive to occasional large, non-Gaussian errors in the measurements
is to minimize the sum of the absolute values of the differences (the L; norm)
instead of the sum of their squares (the L, norm) (14, 103).

Maps made from VLA data (by Schwab’s method) and from MERLIN
data (by the Cornwell-Wilkinson method) are shown in Figures 4 and 5.

Other examples can be found in the article by Bridle & Perley in this volume
(15).

5.4 Maximum Entropy Methods

The maximum entropy methods can be adapted to self-calibration by
changing the constraints on the maximization to ensure that the maximum
entropy map is consistent not with the visibilities but with the measured
closure quantities. The algorithms that have been used for solving the
maximum entropy problem all involve repeated transformation between
the sky and the uv-plane, so it is a fairly simple matter to incorporate the
closure constraints in the uv-plane in the same way as is done in the
Readhead—-Wilkinson or Schwab—Cornwell-Wilkinson methods. We have
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Figure6 Maps of the nucleus of NGC 1275 (3C 84) at 22 GHz, obtained with a VLBI array of
six antennas. (@) Map made by the maximum entropy method; (b) map made by the
Readhead-Wilkinson method. The contour levels are the same in both maps, and the lowest
contour is 4% of the peak in (b). The maximum entropy map has a higher peak owing to its
higher resolution.

had considerable experience with a program of this sort written by S. F.
Gull (private communication), and Sanroma & Estalella (99) have de-
scribed some tests of a similar program. An example of a map made from
VLBI data by the maximum entropy method is shown in Figure 6. The only
problem with these methods is that the final map is more difficult to
interpret than one with the same resolution at all points. It is clear, however,
that as maximum entropy methods become better understood in conven-
tional aperture synthesis, they will also be used for self-calibration.

5.5 Redundancy

As we mentioned in Section 2.4, if there is sufficient “redundancy” in the
interferometer arrayi, it is possible to recover almost all the visibility data
from measurements of the closure quantities. A redundant array is one in
which there are baselines of the same length and orientation between
different pairs of antennas. If there is enough redundancy, the number of
independent errors may be reduced to one gain and one phase error;, and
only the absolute intensity and position of the source are lost. For arrays
with few redundant baselines the errors in the relative gains accumulate and
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make the full relative gain solution unreliable, but these errors can be
reduced in heavily redundant arrays if all of the redundant information is
used. (This is not, however, a good argument for building a redundant
array : with a fixed number of antennas, it is usually best to arrange them to
optimize the sampling of the wuv-plane, rather than to maximize
redundancy.)

Noordam & de Bruyn (75, 76) have used this method on the WSRT,
which has many redundant spacings. The WSRT is a linear east-west array
that, at any instant, has a one-dimensional fan beam. The beam rotates with
time, and the brightness distribution is built up from successive scans, each
of duration «12 hr. For each scan, all spacings that carry redundant
information are used to obtain a weighted least-squares solution of the
relative antenna gains. This fixes the relative gains of all antennas within
one scan. lonospheric and tropospheric wedges cause phase gradients that
vary between scans, and there are a variety of effects that cause long-term
overall gain variations. Successive scans must therefore be corrected for
both phase gradients and overall gain variations. This is done by
comparing the one-dimensional brightness distribution produced from the
scan with a source model, and then correcting the level and position of the
brightness distribution. This is nearly the same as the self-calibration
procedures described above; the only difference is that the correction is
done on a number of one-dimensional scans sequentially instead of on the
whole source simultaneously.

When this method is used, the WSRT can achieve a very high dynamic
range. The dynamic range is the ratio of the strongest feature to the weakest
believable feature in the map. In their map of the active galaxy NGC 1275,
Noordam & de Bruyn obtained a dynamic range of 10,000: 1, which is the
highest that has yet been obtained. NGC 1275 is a very strong source ; with
weaker sources, the dynamic range will be limited by the noise in the
measurements. An example of a high dynamic range map produced by this
method is displayed in Figure 7, which shows the faint extended structure in
the quasar 3C 345. The lowest contour is a factor of 8000 below the peak
brightness of the core.

A similar method has been used to correct phase errors in an
interferometer at Toyokawa Observatory (58).

5.6 Global Fringe-Fitting in VLBI

In VLBI, as in other types of interferometry, one measures the amplitude
and phase of the complex visibility. Owing to uncertainties in the
propagation delay, the baseline parameters, and the oscillator phase, the
delay (r in Equation 1) and the fringe rate (the rate of change of the
measured visibility phase) cannot be predicted accurately, so the procedure
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RELATIVE DECLINATION

—2I0"

RELATIVE RIGHT ASCENSION
Figure 7 Map of the quasar 3C 345 at 5 GHz, made using the redundancy method on the
WSRT. A point source of 10.15 Jy and a jet of 0.35 Jy have been subtracted at the positions
indicated by black dots. The lowest contour level is 1/8000 of the peak brightness.
Reproduced, with permission, from Schilizzi & de Bruyn (101). Copyright © 1983 by
Macmillan Journals Limited.

adopted (70) is to cross-correlate the signals at several different trial delays
and to integrate with several trial fringe rates, and then to search for the
maximum amplitude as a function of delay and fringe rate. In the past, this
search was carried out independently for each baseline. This requires a high
signal-to-noise ratio on every baseline in order to obtain reliable detections.
A large part of the uncertainty in delay and fringe rates is due to errors that
cancel around triangles, like the closure phases. The number of unknown
delays or fringe rates is N (the number of antennas), rather than N(N —1)/2
(the number of baselines). This constraint can be used to advantage if the
data for all N(N — 1)/2 baselines are used simultaneously in a global search
instead of a baseline-by-baseline one. For example, if the source is
unresolved, the “closure delays” and “closure fringe rates” are exactly zero,
so that if fringes can be detected with good signal-to-noise ratio on two
baselines, the delay and fringe rate can be predicted exactly for the third
baseline of the triangle, which allows the third visibility to be measured even
if its signal-to-noise ratio is low.

If the source is resolved, however, the closure delays and closure fringe
rates are not zero, and a more complicated procedure must be used.
Schwab & Cotton (104) have devised and programmed such a method of
performing the global solution for a resolved source. As in the hybrid-
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BEAM 3C 147 - F

Figure 8 Ten-antenna VLBI map of the quasar 3C 147 at 1.7 GHz, made using the global
fringe-fitting technique to obtain high signal-to-noise ratio and high dynamic range. This is a
higher-resolution map of the object shown in Figure 3: the resolution is 07004. The lowest
contour level is 0.5% of the peak brightness. Reproduced, with permission, from Simon et al.
(109).

mapping methods, a source model is used to predict the structure effects in
delay and fringe rate, which are used in the global solution. The visibility
measurements obtained are then used to make a map by self-calibration
methods, and the map is in turn used as a model for another iteration of
global fringe-fitting. Global fringe-fitting is thus a doubly iterative pro-
cedure, with an iterative self-calibration nested within each iteration of the
fitting procedure. It is expensive in computer time, but the rewards it brings
are well worth this investment, as it permits the use of data on baselines that
are much too weak for single-baseline fitting and increases the overall
signal-to-noise ratio. An example of a map made from VLBI data using this
technique is shown in Figure 8.

6. CAPABILITIES AND LIMITATIONS

The various self-calibration algorithms attempt to estimate the sky
brightness distribution from measurements of the closure phases and

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1984ARA%26A..22...97P

FTI8AARAGA. ~227 . "97P

SELF-CALIBRATION 121

closure amplitudes. If we knew the sky brightness distribution, we could
calculate the closure quantities; thus self-calibration is a member of the
general class of inverse problems that occur in many fields (e.g. 10, 81). Many
techniques have been introduced for solving these problems, and some of
them are closely related to the self-calibration algorithms. For any
algorithm, we should consider the questions of uniqueness, construction,and
stability. Uniqueness is a mathematical matter : given perfect observations,
is there only one solution to the problem? If there is not, there certainly will
not be a unique solution with incomplete and noisy data. The question of
construction is, will the algorithm actually find the solution in a reasonable
number of iterations? Finally, the algorithm is unstable if a small change in
the measured quantities leads to a large change in the solution. None of
these questions has yet been answered for self-calibration, but in this section
we discuss the effects of incomplete uv-plane coverage and measurement
errors on the convergence of the algorithms used for self-calibration.

6.1 Uniqueness and uv-Plane Coverage

One may naturally be worried that there might be several brightness
distributions compatible with the closure quantities, and that the final self-
calibrated map might not be unique, even if there were no errors in the
measurements. We have already seen that if only the closure quantities are
measured, we cannot determine the absolute strength and location of the
source ; that is, if I(s) is a brightness distribution consistent with the closure
quantities, then so is cI(s + §') for any factor c and displacement s’. Are these
the only distributions consistent with the closure quantities? The question
of uniqueness is tied up with that of the adequacy of the uv-plane sampling
for mapping the source, and we should distinguish the problems of uv-plane
coverage that are common to both conventional aperture synthesis and
self-calibration from those that occur only with self-calibration.

There are no general rules available for determining whether a given
sampling of the uv-plane is sufficient to map a source by aperture synthesis.
To map a source that is confined within a rectangle of size 0 radians, it is
sufficient to sample the uv-plane on a rectangular grid with spacing < 1/(20)
wavelengths (the Nyquist sampling rate); but unless this sampling is
extended indefinitely, there will be infinitely many brightness distributions
consistent with the measured visibilities (12). If the uv-plane coverage
extends to a maximum baseline of u_,,, the resolution of the map is
~1/u,.., which amounts to saying that all the possible brightness
distributions will look similar when convolved with a beam of this width. In
practice, particularly with VLBI arrays, the sampling of the uv-plane can be
sparse and irregular, and there are no clear-cut rules for what field of view
can be mapped, or with what resolution; it depends very much on the
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source structure and the signal-to-noise ratio. Because the total number of
measurements is less, it is clear that the number of picture elements that can
be mapped will be less when closure phases are measured in place of
visibility phases, or closure amplitudes in place of visibility amplitudes.

A case that has received considerable attention is that of mapping with
amplitudes but no phases. This “phase problem” occurs in X-ray diffrac-
tion, electron microscopy, speckle interferometry, and many other fields. In
general, the solution is ambiguous. Complete knowledge of the visibility
amplitudes is insufficient to define a unique brightness distribution, even
with the constraints that the brightness distribution must be positive and
confined to a finite solid angle; but it now appears that in most cases, the
brightness distribution can be reconstructed uniquely (ignoring the
“trivial” ambiguities: an arbitrary translation of the image or a rotation
through 180° does not change the visibility amplitudes). There is still some
controversy, however, as to the correct interpretation of the word “most”
(e.g.9,18,36,57). Itis likely that knowledge of the closure phases is sufficient
to resolve the ambiguities, but this has yet to be proved.

The converse problem of mapping with phase measurements but no
amplitude measurements has received less attention, as, in practice, phases
are usually much harder to measure than amplitudes. An interesting review
of phase-only mapping has been presented by Oppenheim & Lim (79), who
point out that the phase of the visibility function carries more information
about the brightness distribution than the amplitude does. They give
examples of hybrid images formed from the visibility amplitudes of one
image and the visibility phases of another. The hybrid image closely
resembles the original image with the same phase. This effect was also

~noticed by Baldwin & Warner (6) in one of their tests. A hybrid map made

with the correct phase but an amplitude of unity bears much more
resemblance to the true map than one made with the correct amplitude and
zero phase. As in the amplitude-only case, it appears that phase-only
mapping can produce a unique solution (apart from a scale factor), or
equivalently that the magnitude can be recovered from the phase, in many
practical situations in which the source is confined to a finite area.

The mathematical question of uniqueness in self-calibration is unsolved.
In real observations, the situation is confused by the incomplete uv-
coverage and the errors in the measurements. But in practice it appears that
the self-calibration algorithms do converge to a unique solution in cases
where the uv-coverage is adequate. This is supported by the results of “blind
tests” of the self-calibration methods (85, 86). As in normal aperture
synthesis, it is not clear what constitutes “adequate” sampling of the uv-
plane, but heuristically at least it appears that self-calibration requires more
complete sampling than normal aperture synthesis.
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6.2 Noise

In aperture synthesis with good wuv-plane coverage, the fundamental
limitation to the quality of the map is statistical noise in the measurements.
Noise is introduced by the receivers, the microwave background, galactic
background emission, atmospheric emission, pickup from the ground, and
other causes. To a good approximation it may be regarded as white,
Gaussian noise. When a linear image restoration procedure is used, it is
straightforward to compute the effect on the map of Gaussian noise in the
visibility measurements: it appears as Gaussian noise on the map with rms

(in order of magnitude) a/\/ﬁ per beam area, where ¢ is the rms noise in an
individual visibility measurement, and M is the number of independent
visibility measurements. The noise deflections on the map are correlated on
a scale of the synthesized beamwidth. A more complete discussion can be
found in the general reviews of aperture synthesis referred to earlier; a
particularly good treatment is that of Napier (72). The noise behavior of the
nonlinear image restoration methods is less well understood, and self-
calibration is inherently nonlinear, so a rigorous understanding of the effect
of noise on self-calibration is difficult. Self-calibration methods increase the
noise level on the map because of errors in the determination of the com-
plex antenna gain factors, which are themselves determined from the noisy
data. Cornwell (25, 27) has shown that the rms noise level on the map is

increased by a factor of \/ (N —1)/(N —2) if only phases are corrected, or

\/ (N —1)/(N —3) if both phases and amplitudes are corrected. These factors
are small when the number of antennas (N) is large. This, however, is only
true if each individual visibility measurement can be made with a good
signal-to-noise ratio in a time less than the time scale of variation of the
antenna gain factors. If the signal-to-noise ratio is too small, it is not
possible to make a reliable estimate of the antenna gain factors before they
change, and self-calibration is impossible.

6.3 Convergence

A robust self-calibration algorithm should converge uniformly toward a
unique solution and should be insensitive to the choice of starting model. In
general, an arbitrary starting model can be used, though in practice
convergence is greatly improved by starting with a sensible model; for
example, a point source is a good starting model for mapping a source that
is known to be barely resolved. When mapping with amplitudes only, the
starting phases can be chosen to be zero or can be entirely random ; when
mapping with phases only, the amplitudes can be chosen to be unity or,
even better, to decrease with increasing baseline in the manner of realistic
sources. In a partially phase-stable array, like the VLA, an adequate
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starting model can be obtained from a conventionally cleaned map; when
the visibility phases are completely unknown, as in VLBI, a starting model
must be obtained by least-squares model-fitting techniques. We have found
thatitisimportant to choose a model that fits the closure phases well ; the fit
to the amplitudes is less critical. This seems to be related to the observation
mentioned earlier that phase carries more information about the source
structure than does amplitude. It also helps to adjust only the phases in the
first few iterations of self-calibration, and to only adjust the amplitudes
when a good fit to the closure phases has been obtained. In a typical
observation with the VLA, two iterations of phase adjustment, followed by
two iterations of amplitude and phase adjustment, will be sufficient for the
self-calibration process to converge. In a VLBI experiment, with larger
initial errors, poorer uv-coverage, and a poorer starting model, 20 iterations
may be needed for a complex source. Perhaps the most critical requirement
for convergence is that the map-plane constraints be applied rigorously to
exclude negative features, and features outside as small a window as
possible, from the trial map (30). This is particularly important when the uv-
coverage is poor. The window can be chosen in a variety of ways (for
example, by inspection of maps made with other instruments or at other
frequencies, or from the known field of view of the instrument). An objective
method is to examine the autocorrelation function of the map, made by
Fourier transformation of the squares of the visibility amplitudes (6, 38).
Use of a small window in early iterations and a larger one in later iterations
has sometimes been found to be helpful. These and other practical
considerations have been discussed by Cornwell & Wilkinson (27, 30, 124).

6.4 Closure Errors

The self-calibration techniques discussed above are all based on the
assumption that the gain and phase errors can be factorized by antenna. In
practice there are instrumental errors that cannot be factorized. These
“closure errors” may be regarded as systematic errors in the measurements
of closure phase and closure amplitude. Unless the closure errors can
somehow be removed, they are the limiting factor in the quality of the maps
produced by self-calibration methods. A fractional error f in the estimated
gains will introduce sidelobes on the map at a level of about f /\/ﬁ , where
M is the number of independent errors. For example, with constant 19
errors on 10 baselines, the dynamic range of the map would be limited to
about 300: 1. Thus, to achieve a dynamic range of 1000:1 or 10,000: 1
(comparable to the best VLA maps), it is important to keep uncorrectable
closure errors well below a level of 19 in gain or 0.5° in phase.

We should distinguish errors that remain constant in time from those
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that vary. Constant errors can in principle be measured by observations of a
point source and then eliminated in the data processing. Alternatively, if the
additional number of unknowns is not large, they can be solved for in the
hybrid mapping in the same way as the station gains (29). But if the errors
are variable on a short time scale, they can be neither measured nor
corrected, and thus they can only be tackled by improving the quality of the
equipment.

A number of causes of closure errors in existing interferometer arrays
have been identified (22). Some errors may arise in the hardware of the
correlators themselves and in the subsequent electronics and software ; but
if these are identical for all the correlators in the array, they may be ignored.
Thompson & D’Addario (113) have shown that the factorization of gains by
antenna is, in general, not possible if the antenna transfer functions are
different functions of frequency, and they have investigated in detail the
effects of mismatched transfer functions. Usually, identical rectangular
bandpasses are used at each antenna ; as an example of the sort of error that
can occur, a shift of the center frequency by 0.79; of the bandwidth can
introduce a gain closure error of 19/. It is clear that when self-calibration
methods are to be used, the tolerances on bandpass distortions are very
stringent. In present VLBI systems, designed before the advent of self-
calibration, large bandpass mismatches are not uncommon and are
probably a limiting factor in image quality. Another serious problem in
present VLBI systems has been pointed out by Rogers (91): a phase closure
error results if the antennas differ in their polarization purity ; for example, a
0.59 error in polarization purity can cause a 1° phase closure error.

If the antenna gains are varying on a short time scale, one must be careful
not to average the data for too long a period, as this will introduce closure
errors (124). This can be a problem in VLBI, where the coherence time of the
atmosphere and oscillators is short and where there is a temptation to
average for as long as possible to improve the signal-to-noise ratio.

We have implicitly assumed that the complex antenna gains are the same
for all parts of the source being observed. In VLBI, the field of view is small,
and this is usually a good assumption, but it breaks down when mapping
large fields. For example, the atmosphere may not be homogeneous across
the source. It is usually assumed that the atmosphere is “isoplanatic” over
regions ~ 1° at radio wavelengths, but this is not true in bad-weather. Also,
if the antenna pointing is not constant, gain errors are introduced that vary
across the field of view, with the worst errors occurring where the slope of
the antenna pattern is greatest. These are difficult to correct by self-
calibration, though it may be possible to make some progress by self-
calibrating different isoplanatic patches independently.
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7. THE FUTURE

The development of self-calibration methods for radio astronomy has
already proved extremely valuable. By eliminating sidelobes due to
unavoidable amplitude and phase errors, it has enabled arrays such as the
VLA, the WSRT, and MERLIN to far surpass initial expectations of their
imaging quality; and it has been the single most important factor in
transforming VLBI into a true imaging technique.

In principle the techniques of self-calibration are not confined to radio
astronomy, and we can expect to see them applied at other frequencies in
the future. Michelson (68) demonstrated the feasibility of optical as-
tronomical interferometers in 1920, but the effects of atmospheric turbu-

- lence impose severe limitations on this technique. Problems arise because

both the time scale of atmospheric fluctuations is short (10 ms) and the
transverse coherence length of the wavefront is small (10 cm). If we assume
an aperture of diameter 10 cm, an integration time of 10 ms, and a
bandwidth of 10 nm, and if we allow for the imperfect photon efficiency of
even the best CCD detectors, the limiting magnitude of a ground-based
Michelson interferometer is 8. There are a number of projects in progress to
construct ground-based Michelson interferometers (e.g. 63, 108), but so far
these efforts have met with limited success due to the stringent rigidity
requirements and the difficulty of tracking fringes. It would clearly be of
great value to be able to use self-calibration methods with such instruments.
Although methods have been suggested for measuring closure phase with
optical arrays (46, 88, 93), they have not yet been applied in astronomy. The
application of self-calibration to heterodyne infrared interferometers (61,
115) will be more straightforward, since the techniques involved are similar
to those of radio interferometry.

In order to observe faint astronomical objects, apertures larger than
10 cm are needed ; transverse coherence then no longer obtains across the
aperture, and the image is spread out over an angle A/d, where d is the
transverse coherence length (about 10 cm). A short exposure yields a
“speckle pattern” image, which is caused by interference of rays from
different portions of the wavefront. Labeyrie (62) first pointed out that these
speckle patterns can be used to derive source structure down to the
resolution limit of the aperture. That this must be so can be seen from the
fact that the speckle pattern is formed in part by the interference of rays
from the extreme edges of the aperture, and these rays clearly contain
information about the transverse coherence due to the source over these
distances. If the instantaneous telescope response to a point source, the so-
called instantaneous “point-spread function,” were known, it would be
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possible to obtain an image of the object by deconvolution. However, only
the time-averaged point-spread function is known, which makes it difficult
to extract phase information, although it is easy to construct the
autocorrelation function of the image.

If two large apertures are operated as an interferometer, the speckles are
modulated by interference fringes. Thus it might at first sight seem possible
to use closure to extract phase information from these fringes. However,
there is a random phase relationship between the fringes in different
speckles. It might prove possible to remove this random component by the
techniques of adaptive optics (e.g. 20, 51, 71). These techniques are closely
related to the self-calibration methods used in radio astronomy (30): the
adjustment of the phase of small elements of the telescope pupil is
analogous to the adjustment of the complex antenna gains in a radio array.
Unfortunately, the adjustment must be made in the 10-ms time scale of the
atmospheric fluctuations, which limits the technique to bright objects.
Radio astronomers have the advantage that they can record the visibility
measurements and make the gain adjustments in a computer after all the
measurements have been accumulated.

In the next decade we may expect to see new instruments developed to
exploit the possibilities opened up by self-calibration in the radio and other
wavebands. In the United States, the Astronomy Survey Committee of the
National Research Council (73) has recommended the construction of a
Very Long Baseline Array (VLBA) of radio telescopes designed to produce
images with an angular resolution of 0.3 milliarcsec, and it is hoped that
construction of this instrument will begin in 1984. Similar projects are
under way in Canada (64) and Australia. The Astronomy Survey
Committee has also recommended placing a VLBI antenna in space to
increase the resolving power of ground-based arrays. We can also
anticipate the development of large millimeter-wavelength arrays and
infrared and optical interferometers on the ground or in space. All of these
projects will rely on the self-calibration methods developed for radio
astronomy to make high-quality images.
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