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ABSTRACT

In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the
analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional
interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables
compact and computationally efficient representations of the data and its statistics, which allow new ways of
approaching important problems like map-making and foreground removal. In particular, we show how it enables
the use of the Karhunen-Loève transform as a highly effective foreground filter, suppressing realistic foreground
residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated
regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with
frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power
spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-
world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism
allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic
experimental systematics with 21st century 21 cm science.
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radio continuum: general
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1. INTRODUCTION

Mapping the universe with the 21 cm line of neutral
hydrogen will revolutionize our view of the universe. It
holds the promise of unraveling the mysteries of dark en-
ergy (Chang et al. 2008; Loeb & Wyithe 2008), unveiling
the epoch of reionization (Furlanetto et al. 2006), and per-
haps even extending our view of the cosmos out far enough
to shine light on the primordial dark ages (Loeb & Zaldar-
riaga 2004). Rapidly probing large volumes of the universe
requires new large wide-field telescopes along with powerful
new digital processing hardware such as GMRT,4 LOFAR,5

MWA,6 MITEoR (Zheng et al. 2013), PAPER,7 BAOBAB,8

BAORadio,9 BINGO (Battye et al. 2013), CHIME,10

EMBRACE/EMMA (Kant et al. 2011), and Tianlai,11 In re-
cent years it has become increasingly clear that new methods
of interpreting and analyzing the data from these revolutionary
new instruments will be necessary to realize their scientific po-
tential (Myers et al. 2003; Tegmark & Zaldarriaga 2009; Parsons
& Backer 2009; Liu et al. 2010; Liu & Tegmark 2011; Parsons
et al. 2012; Dillon et al. 2013).

We describe here the spherical harmonic transit telescope,
a new paradigm for analyzing wide-field transit telescopes in
the spherical harmonic domain, which is naturally suited to
mapping the 21 cm universe. Any telescope with fixed pointing
observes the sky transit through its field of view. The periodic
rotation about the poles over the course of a sidereal day creates

4 http://gmrt.ncra.tifr.res.in/
5 http://www.lofar.org/
6 http://www.mwatelescope.org/
7 http://eor.berkeley.edu/
8 http://bao.berkeley.edu/
9 http://groups.lal.in2p3.fr/bao21cm/
10 http://chime.phas.ubc.ca/
11 http://tianlai.bao.ac.cn/

a linear correspondence between time, t, and azimuthal angle,
φ. We obtain a simple mapping between the observed data and
a linear combination of the spherical harmonic coefficients alm
of the sky at fixed angular wavenumber m, mediated by the
angular response of each element. In the following, we elaborate
and make precise this basic idea in the context of wide-field
interferometers, including the radial (frequency) direction.

This formalism diverges sharply from traditional characteri-
zations of radio interferometry, which are better suited to obser-
vations with a narrow field of view, often assuming tracking of a
particular source of interest, and exploit Fourier transform map-
ping between the sky and the uv-plane. What we describe here
is an all-sky formalism for describing interferometry that natu-
rally incorporates the observable modes on the sky—the spher-
ical harmonics. Previous work has described interferometry on
the full sky (Kim 2007; McEwen & Scaife 2008), however, in
the domain of transit telescopes there are many computational
advantages we can exploit.

The foremost challenge for any 21 cm mapping experiment is
separating the cosmological signal from astrophysical contam-
inants which are 103–105 times larger (Furlanetto et al. 2006;
Morales & Wyithe 2010). Conceptually this is simple—the pri-
mary foreground sources (diffuse synchrotron emission from
the Galaxy and emission from extragalactic point sources) are
smooth as a function of frequency, while the 21 cm signal decor-
relates quickly as each frequency corresponds to a different
radial slice of the universe. To remove foregrounds one just
needs to model and remove the smooth frequency component
from their observations. Unfortunately, in practice, the large dy-
namic range between the amplitude of the foregrounds and the
21 cm signal makes several real-world effects extremely prob-
lematic. While the properties of the cosmological 21 cm signal
are thought to be well understood, the astrophysical foregrounds
are poorly constrained at the small angular and frequency scales
that will be probed by forthcoming 21 cm experiments—a
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successful technique should be robust to uncertainties in fore-
ground modeling. Of course, these experiments will help char-
acterize the properties of real-world foregrounds. More trouble-
some is the phenomenon of angular-frequency mode-mixing: in
any real experiment the shape of the beam on the sky will vary
with the observed frequency (Liu et al. 2009). This mode-mixing
makes simple frequency-only foreground methods ineffective
in practice. We show below that the spherical harmonic transit
telescope formalism can naturally address the issues of model
uncertainty and mode-mixing, and enable efficient and effective
discrimination of the 21 cm signal from obscuring foregrounds.

Any foreground removal method aims to find a subset of the
data within which there is significantly more 21 cm signal than
astrophysical foregrounds. However, in the presence of mode-
mixing, it is not obvious how to select a basis which separates
the two components—what we would like is a method which can
automatically generate this. Just such a technique exists in the
form of the Karhunen-Loève (KL) transform. In this paper, we
show how the m-mode formalism, described below, makes the
use of the KL transform computationally feasible. The result
is a remarkably effective and robust filter for rejecting bright
foregrounds and we demonstrate its effectiveness using realistic
simulations of the radio sky and a simple fiducial interferometer
configuration.

In Section 2, we introduce the all-sky formalism that is the
basis for this technique. In Section 3, we discuss the map-making
process in the spherical harmonic transit telescope paradigm. In
Section 4, we discuss how to best represent statistics of the
cosmological 21 cm signal and foregrounds in the measurement
basis, and in Section 5 we discuss how the KL transform can be
used to detect faint signals in the presence of bright foregrounds.
In Section 6, we quantify the information lost due to foreground
removal using Fisher Analysis, and estimate errors on power
spectra. We present our conclusions in Section 7. In Appendix A,
we discuss the signal and foreground models we employ. In
Appendix B, we describe how we create realistic simulations of
radio emission.

2. FORMALISM

In this section, we introduce the m-mode formalism,
a new description of the measurement process for transit
interferometers.

In radio interferometry, a visibility Vij is the instantaneous
correlation between two feeds Fi and Fj. We will assume that
we can take a linear combination of the signal from a dual
polarization antenna, with no cross-polarization or polarization
leakage, such that we are sensitive only to the total intensity
(Stokes I) part of the sky. The fully polarized extension to this
work is also a tractable problem, we address this in a subsequent
paper, J. R. Shaw et al. (in preparation; for a treatment for a non-
transit telescope, see Kim 2007). At any instant, a visibility is
given by

Vij = 〈
FiF

∗
j

〉
= 1

Ωij

∫
d2n̂ Ai(n̂)A∗

j (n̂)e2πin̂·uij T (n̂), (1)

where uij = (r i−rj )/λ is the spatial separation between the two
feeds divided by the observed wavelength (that is the separation
in the uv-plane), n̂ is the position on the celestial sphere, and
Ai(n̂) gives the primary beam of feed i. In the above we have
normalized our visibilities such that they are temperature-like,

and we have defined them in terms of the brightness temperature
T = λ2I/2kb instead of the total intensity I. The quantity
Ωij = √

ΩiΩj is the geometric mean of the individual beam
solid angles

Ωi =
∫

|Ai(n̂)|2d2n̂, (2)

which also gives the effective antenna area AeffΩ = λ2. This
ensures that for a sky with uniform brightness temperature T,
the auto-correlation of an antenna Vii = T with our definition.

As the Earth turns, both the primary beams and the baseline
separations rotate relative to the celestial sphere. This means that
the measured visibilities change periodically with the sidereal
day. We take this into account by explicitly including the
dependence on the azimuthal angle φ and by averaging over
each sidereal day.

The measured visibilities are also corrupted by instrumental
noise for which we add a noise term nij (φ). We assume the
noise is stationary such that its statistics are independent of φ.
Rewriting Equation (1) in terms of a transfer function Bij leaves
the measured visibility as

Vij (φ) =
∫

d2n̂ Bij (n̂;φ)T (n̂) + nij (φ), (3)

where the transfer function is

Bij (n̂;φ) = 1

Ωij

Ai(n̂;φ)A∗
j (n̂;φ)e2πin̂·uij (φ) . (4)

Taking advantage of the periodicity in φ, we Fourier transform
the system

V ij
m =

∫
dφ

2π
Vij (φ)e−imφ (5)

=
∑
lm′

∫
dφ

2π
B

ij

lm′ (φ)alm′e−imφ + nij
m, (6)

where to proceed to the second line we have inserted the
spherical harmonic expansions of both the sky and the beam
transfer function

T (n̂) =
∑
lm

almYlm(n̂) , (7)

Bij (n̂;φ) =
∑
lm

B
ij

lm(φ)Y ∗
lm(n̂) . (8)

Note that we have defined B
ij

lm relative to the conjugate spherical
harmonic in order to simplify later notation. As the φ depen-
dence simply rotates the functions about the Earth’s polar axis,
the transfer function at any φ is trivially B

ij

lm(φ) = B
ij

lm(φ =
0)eimφ . Combined with the exponential factor in the integral,
this simply generates the Kronecker delta δmm′ , and we find

V ij
m =

∑
l

B
ij

lmalm + nij
m . (9)

This gives a simple description of how the observed sky
maps into the measured data given a telescope design (which
is contained in the beam transfer matrices B

ij

lm). This transfor-
mation does not mix m-modes on the sky, and can therefore be
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performed on an m-by-m basis—for any particular m and fre-
quency ν, the measured visibilities are simply a projection of the
l-modes on the sky for the measured m. As the optical system is
of a finite size, this limits both the l and m to which the telescope
is sensitive, ensuring we only need to consider a finite number
of degrees of freedom, both measured (Vm) and on the sky (alm).

In fact, while the positive and negative m-modes may be
independent measurements, they are still observations of the
same sky—by transforming the conjugate V ∗

−m and using that
alm = a∗

l,−m for a real field we see that

V
ij∗
−m =

∑
l

(−1)mB
ij∗
l,−malm + n

ij∗
−m . (10)

In light of this, we will change our notation such that we are
considering only the actual degrees of freedom on the sky. Let
us separate out the positive and negative m parts by defining

B
ij,+
lm = B

ij

lm nij,+
m = nij

m (11)

B
ij,−
lm = (−1)mB

ij∗
l,−m nij,−

m = n
ij∗
−m (12)

which is valid for m � 0. Additionally, to prevent double
counting the m = 0 measurement, we need to set Bij−

l0 = n
ij−
0 =

0. This gives a modified version of Equation (14)

V ij,±
m =

∑
l

B
ij,±
lm alm + nij,±

m . (13)

For brevity of notation, we will introduce a label α which indexes
both the positive and negative m parts of all of the included feed
pairs ij , such that any particular α specifies exactly the values
of ij,± (exactly how α is packed is unimportant). This gives

V α
m =

∑
l

Bα
lmalm + nα

m. (14)

The beam transfer matrices above can be written in an explicit
matrix notation

(Bm)(αν)(lν ′) = B
α,ν
lm δνν ′ , (15)

where the row index labels all combinations of baseline (α) and
frequency (ν), whereas the column index is over all multipoles
(l) and frequencies (ν ′). Similarly we can define vectors for the
visibilities and harmonic coefficients

(vm)(αν) = V α,ν
m (am)(lν) = aν

lm. (16)

From here onward we will drop the subscript m denoting the
spherical harmonic order, all the equations below are valid for
any m. This allows us to rewrite Equation (14) as

v = B a + n. (17)

This simple linear description of the measurement process of
a transit telescope is extremely powerful. By reducing it down to
a linear mapping between a finite number of degrees of freedom,
it allows us to apply the standard tools of signal processing. In
the subsequent sections we apply it to solve two challenging
problems in 21 cm radio astronomy.

3. MAP-MAKING

In astronomy, being able to transform our measured signal
into an accurate map of the sky is essential. Whilst in this pa-
per we explicitly avoid this process for our analysis, preferring
to carry it out directly in the data space, maps are still needed
for visualization and cross-checking. Map-making with inter-
ferometric data is generally a complicated process performed
by algorithms such as CLEAN (Högbom 1974) and its deriva-
tives. This is especially true with wide fields of view where
mosaicking and w-projection are generally required. However,
the m-mode formalism makes the map-making process on the
full sky conceptually simple.

First, we assume that the instrumental noise n follows a com-
plex Gaussian distribution with covariance N = 〈nn†〉, and the
different frequency channels are independent.12 For stationary
noise, the m-modes are uncorrelated and the likelihood function
of the observed sky for a single m and frequency ν is

p(v|a) = 1

|πN| exp (− (v − Ba)† N−1 (v − Ba)), (18)

where the vector a contains all of the harmonic coefficients for
the given m.

To estimate the sky corresponding to a given set of visibilities,
we will look for a maximum likelihood solution dp/da = 0. In
particular, we want to find the value of a that minimizes

χ2 = |N− 1
2 v − (N− 1

2 B)a|2. (19)

The matrix N−1/2 represents any factorization such that
(N−1/2)†N−1/2 = N−1. Provided N contains no noiseless modes,
it is positive-definite and so this factorization must exist. The
maximum likelihood solution is given by the Moore–Penrose
pseudo-inverse13

â = (N− 1
2 B)+N− 1

2 v , (20)

where the superscript + denotes the pseudo-inverse.
Depending on the number of baselines measured and the

maximum l we are sensitive to, the problem may either be
over- or under-constrained. In either regime, the Moore–Penrose
pseudo-inverse gives a solution; in the former case this reduces
to the standard map-making equation â = (B†N−1B)−1B†N−1v,
and in the latter case selects the solution which also minimizes∣∣â∣∣2

, effectively setting the unconstrained degrees of freedom to
zero.

As both distinct frequencies and m-modes are independent,
map-making for a set of full sky observations is a case of
collating the estimates for each individual ν and m.

4. TWO-POINT STATISTICS

For intensity mapping experiments, our data has three com-
ponents: the 21 cm signal which we are ultimately trying to
extract, the foregrounds, and instrumental noise. Understanding
the two-point statistics of the data is of paramount importance to
our analysis—not only do the correlations of the signal encode
most of the cosmological information that we are interested
in (see Appendix A), but to efficiently extract this we require
knowledge of the two-point statistics of all three components.
Here we write the linear relationship between these two-point

12 Throughout this work † denotes the conjugate transpose.
13 For details, see http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse.
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statistics of the data, and how they are related to the underlying
physical correlations.

The statistics of instrumental noise live in the visibility space,
the basis of our measurements. However, the other components
are naturally represented on the sky, and must be projected into
this space using Equation (14). The lowest non-zero moment of
the visibilities is their covariance

C(ανm);(α′ν ′m′) = 〈
V m

ανV
m∗
α′ν ′

〉
=

∑
ll′

Bαν
lm

〈
a∗

lmνal′m′ν ′
〉
Bα′ν ′∗

l′m′ +
〈
n(ανm)n

∗
(α′ν ′m′)

〉
.

(21)

This is the covariance between all measured degrees of freedom:
baselines, frequencies, and m-modes. For the experiments listed
in Section 1, we expect �103, ∼102, and 103, respectively. This
gives matrices of dimension �108, too large to be tackled with
current technology, both in terms of computation and storage.

Instead, let us make an approximation that will dramatically
reduce this complexity. If we think of the sky as a statistically
isotropic random field, its two-point statistics become dramati-
cally simpler

〈almν ′a∗
l′m′ν ′ 〉 = Cl(ν, ν ′)δll′δmm′ , (22)

and importantly, they are automatically uncorrelated in the m
index. This means that the full signal covariance Equation (21)
is block diagonal and thus allows us to calculate all statistics on
an m-by-m basis. For a specific m-mode

C(αν);(α′ν ′) =
∑

l

Bαν
l Bα′ν ′∗

l′ Cl(ν, ν ′) + N(αν);(α′ν ′) , (23)

where we have dropped all the m-indices, and N is the power
spectrum on the instrumental noise. As the number of m-modes
we are sensitive to is usually �103, assuming statistical isotropy
saves at least a factor of a million in computation and a thousand
in storage. This ability to efficiently perform calculations
incorporating the full statistics opens up new avenues for the
data analysis of transit instruments. Synchrotron emission from
our Galaxy clearly violates this assumption of statistical isotropy
though, as we will demonstrate, this does not appear to affect
our analysis and in particular our ability to clean foregrounds.

In matrix notation

C = BCskyB† + N . (24)

where we will split Csky into independent 21 cm signal and
foreground parts Csky = C21 + Cf .

The statistical models used for each component are chosen to
be appropriate for the frequency ranges of interest. In the fiducial
example that follows this is 400–600 MHz, corresponding to
z ∼ 1–2 for the cosmological signal. These are described in
Appendix A.

5. FOREGROUND REMOVAL WITH THE
KARHUNEN-LOÈVE TRANSFORM

To clean our data we simply aim to find a subset within
which there is significantly more 21 cm signal than astrophysical
foregrounds. However, in the presence of mode-mixing there is
no immediately apparent representation in which to perform
this. This basis can be found using the KL transform (often
called the signal-to-noise eigendecomposition), which has a

long history in cosmology (e.g., Bond 1995; Vogeley & Szalay
1996; Tegmark et al. 1997) and has been used for the analogous
problem of E/B mode separation for polarization of the cosmic
microwave background (Lewis et al. 2002; Bunn et al. 2003).
This transform simultaneously diagonalizes both the signal and
foreground covariance matrices, generating a set of modes with
no foreground or signal correlations. This makes comparing the
amount of signal and foreground power in each mode trivial.

To reduce the risk of foreground uncertainties biasing our
analysis, we will prioritize the removal of foreground contami-
nated modes at the expense of cosmological signal. In contrast,
the instrumental noise is well understood, and we should be
able to dig deeper into this contaminant to extract useful cos-
mological information with little risk. In practice, this means we
will start with a filter which aggressively removes foregrounds
only; subsequently we will add the instrumental noise back in,
which will allow us to compress the data by completely remov-
ing noise-dominated modes, while retaining those with a small
fraction of signal.

This requires models for the statistics of both the signal and
the foregrounds. The signal is modeled as a simple Gaussian
random field for the 21 cm emission, whereas the foreground
model includes both the synchrotron emission from our Galaxy,
and the contribution from a background of extragalactic point
sources. The details of both are discussed in Appendix A.

The KL transform seeks to find a linear transformation of
the data v′ = Pv such that the 21 cm signal S = BC21B†

and foreground F = BCf B† covariance matrices are jointly
diagonalized. That is

S → S′ = PSP† = � , (25)

and
F → F′ = PFP† = I , (26)

where � is a diagonal matrix, and I is the identity. In this
diagonal basis we can simply compare the amount of power
expected in each mode by the ratio of the diagonal elements
(this is given by the corresponding entries of �), and identify
the regions of the space with low foreground contamination
(large entries in �).

This transformation can be found by solving the generalized
eigenvalue problem Sx = λFx (for our purposes the routine
ZHEGVD from LAPACK is sufficient). This gives a set of eigen-
vectors x, and corresponding eigenvalues λ. Writing the eigen-
vectors in a matrix P, row-wise, gives the transformation matrix
to diagonalize the covariances. The eigenvalues λ corresponding
to each eigenvector give the diagonal matrix �.

To isolate the 21 cm signal, we want to select modes with
eigenvalue (signal-to-foreground power; S/F) greater than some
threshold (see Figure 1). To project into this basis we define the
matrix Ps which contains only the rows from P corresponding
to eigenvalues greater than the threshold s.

For most of the analysis we can work directly in the eigen-
basis. However, for visualizing our results, we want to be able
to transform back to the sky (by way of the measured visibil-
ities). To project back into the higher dimensional space we
simply generate the full inverse P−1 and remove columns cor-
responding to the rejected modes (we denote this matrix P̄s).
This is equivalent to projecting into the full eigenbasis, zero-
ing the foreground contaminated modes, and then using the
full-inverse P−1.

For further analysis, we must include all noise terms,
both foregrounds and instrumental. Writing the total noise
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Figure 1. S/F spectrum for all m-modes. We have plotted log10 λim, where for
each m the eigenvalues have been sorted in ascending order (thus there is no
physical interpretation to the vertical direction). The contours are drawn at −4,
−2, 0, 2, and 4.

(A color version of this figure is available in the online journal.)

contribution as Nall = F + N, the matrix in the truncated
basis is

Nall → Nall
s = Ps (F + N) P†

s (27)

= I + PsNP†
s . (28)

As the transformed instrumental noise matrix will not remain
diagonal, this gives a correlated component between all our
modes. However, as it is useful if our modes are uncorrelated,
we make a further KL transformation on the foreground removed
signal Ss = �s , and total noise Nall

s covariance matrices. For
computational and storage efficiency we apply a further cut-off
to include only modes with a signal-to-total-noise ratio greater
than the cut-off value t. We denote this as projection matrix Q̃.
For notational convenience we will write the total transformation
in terms of a single matrix R = QtPs , having chosen suitable
values for the two cut-offs s and t. As above, we will define an
inverse R̄ = P̄sQ̄t , which remains orthogonal to the removed
space. Quantities in this final basis we denote with tildes, for
example a visibility mapped into this basis is ṽ = Rv, and a
covariance is C̃ = RCR†.

5.1. Cylinder Example

While this method works with any transit telescope, to
illustrate the foreground removal process we will simulate a
cylinder telescope, such as CHIME or the Pittsburgh Cylinder
Telescope (Bandura 2011). These are transit interferometers
composed of multiple parabolic cylinders where each only
focuses in the East–West direction. This gives a long and thin
primary beam on the sky, extending nearly from horizon to
horizon in the North–South direction but which is only around
1◦wide East–West.

Feeds are spaced along the axis of each cylinder—when corre-
lated these provide resolution in the N–S direction. Correlations
between cylinders enhance the E–W resolution. The telescope
operates as a transit telescope such that the entire visible sky is
observed once per sidereal day.

For a cylinder uniformly illuminated by a particular feed, near
the axis the beam pattern is a sinc function in the E–W direction,
and uniform in the N–S direction (Wilson et al. 2009, chapter

6). To extend this off-axis, we modulate by projected area of the
telescope giving

A2(n̂) = sinc2

(
π n̂ · û

W

λ

)
Θ (n̂ · ẑ) n̂ · ẑ (29)

where W is the cylinder width and ẑ is a unit vector pointing
to the zenith and û is a unit vector pointing East in the ground-
plane. The step function Θ masks out the regions where the sky
is below the horizon, and the final factor n̂ · ẑ accounts for the
projected area of the telescope.

We model a two cylinder telescope observing the sky with
64 frequency channels from 400–600 MHz. Each cylinder is
15 m wide and has 60 feeds regularly spaced by 0.25 m (with
the feeds lining up E–W between cylinders). The telescope is
located at a latitude of 45◦. These specifications correspond
to a slightly smaller half-bandwidth version of the CHIME
pathfinder telescope being constructed at the Dominion Radio
Astrophysical Observatory.

The noise covariance is diagonal for all m, frequencies, and
baselines. For small m-modes with m 
 1/ (2πΔφ) (where Δφ
is the angular integration time), the noise variance is

Nij
m = Tsys,i(ν)Tsys,j (ν)

4πNdaytsidΔν
, (30)

where Tsys,i is the system temperature of a single polarization of
feed i, Nday is the number of sidereal days observed, tsid is the
length of a sidereal day, and Δν is the width of the frequency
channel. As we combine the two polarizations into a single
unpolarized signal, this reduces the noise power spectrum by a
factor of two. For this example Tsys = 50 K, and we assume two
full years of observation (that is, 730 complete sidereal days).

In Figure 1 we show the spectrum of S/F eigenvalues for the
telescope. The KL mode distribution of S/F has an extremely
rapidly rising spectrum so that the information retained (ap-
proximately the number of modes) is quite insensitive to the cut
threshold s for values between 10−2 and 102.

To demonstrate the foreground removal process, we simu-
late time-streams from separate realizations of the signal and
foregrounds using Equation (17), and project them through the
filtering process to make maps. The visibilities are filtered using
vclean = R̄Rv, and then are turned into a three-dimensional (3D)
map using Equation (20). In Figure 2 we show the original sim-
ulation, the map made from the unfiltered visibilities, and the
map made from the foreground filtered visibilities. The simu-
lated signal and foreground maps are described in Appendix B.
Note that the foreground maps are not simply realizations of the
model used to generate the foreground filter—unlike the input
model they are both non-Gaussian and anisotropic. Figure 2
clearly illustrates how the foreground amplitude is dramatically
reduced by the process, whilst the signal retains its overall char-
acter. Though the foreground residuals are clearly highest in
the Galactic center, even these are significantly lower than the
filtered signal.

6. FISHER ANALYSIS

In the previous section, we have demonstrated that the KL
transform gives an effective method for removing foregrounds.
Though a visual inspection of Figure 2 suggests that the 21 cm
signal is largely untouched, we would like to be able to quantify
how much useful information remains. In this section, we will
make use of the Fisher Information matrix, a measure of the
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Figure 2. This plot illustrates the foreground removal process in action on simulations of the foregrounds-only (top row) and signal-only (bottom row). Each plot has
two elements, an image of the 400 MHz frequency slice on top, and beneath, a cut through the celestial equator (from 270◦ to 300◦) showing the frequency axis. The
leftmost column shows the original simulations on the sky. The band appearing in the foreground frequency slice is the Galactic plane. The middle column shows the
maximum likelihood map that we would produce from the measured visibilities without subtracting the low S/F modes. The maps are blank below δ = −45◦ because
this area is always below the horizon for the telescope at a latitude of 45◦. The final column shows the maps produced after the foreground removal process (in this
case we have discarded modes with S/F < 10). This leaves a clear correspondence between the original signal simulation and the foreground subtracted signal, whilst
leaving the foreground residuals over 20 times smaller in amplitude.

(A color version of this figure is available in the online journal.)

information contributed to our knowledge of a set of parameters
for a given observation, by telling us how much the covariance
of those parameters is improved (see Dodelson 2003, chapter 11
for an overview). We will use this to forecast power spectrum
errors, for the same telescope, with and without foreground
removal.

After projection into the reduced eigenbasis, let us assume
that the remaining modes follow a complex Gaussian distribu-
tion with zero mean. This assumption should be reasonable pro-
vided we have successfully removed the modes containing any
significant foreground contribution. In this case the contribution
of the mth mode to the ab-element of the Fisher Information
matrix for a set of parameters pa is

F
(m)

ab = tr(C̃aC̃−1C̃bC̃−1) . (31)

where C̃a = ∂C̃/∂pa , and the common factor of 1/2 does not
appear as we are dealing with a complex Gaussian distribution.
Though in the constructed eigenbasis C̃ = �̃+ I is diagonal, C̃a

can have off-diagonal elements. Again this process is performed

on a per-m basis. As there is no coupling between them, the total
Fisher information is simply the sum over all m-modes

Fab =
∑
m

F
(m)

ab . (32)

For a set of parameters pa that we are trying to determine, the
inverse of the Fisher matrix is the lowest order approximation
to their covariance.

In this work, we will focus on forecasting the errors on the
shape of the matter power spectrum P (k) whilst keeping all
other cosmological parameters fixed. Such forecasting has been
performed using the uv-plane in Seo et al. (2010) and Ansari
et al. (2012).

We parameterize the power spectrum in terms of a linear
summation of different basis functions

P (k) =
∑

a

paPa(k) . (33)

In Appendix A, we describe how to project this quantity into
the angular power spectrum of 21 cm fluctuations that we use

6
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Figure 3. 21 cm intensity mapping provides a powerful technique for measuring
the shape of the matter power spectrum. In the plots above we illustrate the power
spectrum constraints that could be achieved with the large cylinder telescope.
The top plot shows the constraints on the whole power spectrum, the lower plot
zooms in on the region with BAO, dividing with a smoothed spectrum to remove
the general trend. The dark shaded bands are the errors we would find without
foregrounds, where the only noise is instrumental, the light bands include both
contributions.

(A color version of this figure is available in the online journal.)

to calculate the visibility correlations. For simplicity, each of
our bands is simply equal to the input power spectrum within a
fixed k-band, and zero outside, such that the fiducial model is
pa = 1.

For the band-powers pa that we are trying to estimate, the
matrices C̃a are simply the projection of the basis functions
Pa(k) into the eigenbasis. Starting from the angular power
spectra Ca;l(ν, ν ′), corresponding to each of the basis functions
Pa(k) (using Equation (A2))

C̃a = RBC21,aB†R† . (34)

In practice, explicitly calculating the C̃a in this way is compu-
tationally expensive, we instead use a Monte Carlo technique.
We can form the estimator q̂a = x̃†C̃−1C̃aC̃−1 x̃, which has
the property that its covariance 〈q̂a q̂b〉 − 〈

q̂a

〉 〈
q̂b

〉 = Fab (Pad-
manabhan et al. 2003). This means we can estimate the Fab by
averaging over realizations of x̃. For details, see Dillon et al.
(2013).

In Figure 3 we plot the power spectrum errors for two
cases: in the presence of foregrounds that have been cleaned
using our method and without foregrounds at all. In the case

without foregrounds, F = 0 and we only perform the final
KL transform to diagonalize the signal and instrumental noise.
For the foregrounds we have cleaned modes with S/F < 10
and additionally have removed modes with a small ratio of
signal-to-total-power. This corresponds to setting s = 10 and
t = 0.01. This is a clear demonstration of the effectiveness of
the technique—it reduces our sensitivity on large scales as we
would expect (as the removed foreground are smooth on large
scales), while only slightly reducing our ability to constrain the
small scale power spectrum.

7. CONCLUSION

In this paper, we have introduced a powerful formalism
for describing the measurement process of transit telescopes
(either interferometric or otherwise). It is a natural formalism
to describe interferometry on the full sky—sidestepping the
standard complications that arise when dealing with wide-field
interferometric data such as mosaicking and w-projection. A
spherical harmonic transit telescope allows for compact and
computationally efficient representations of the data and its
statistics, which enable new ways of approaching important
problems like map-making and foreground removal.

Using the m-mode formalism and approximating the fore-
grounds as statistically isotropic, allows the powerful KL trans-
formation to be used, automatically finding the basis in which
the astrophysical foregrounds and 21 cm signal are maximally
separated. The KL approach would be computationally impossi-
ble otherwise and is a key advantage of the m-mode formalism.
Using this technique we can take the full 3D data set into ac-
count and overcome the mode-mixing problem. The filters we
construct are highly effective and robust, a fact we have demon-
strated by propagating through realistically simulated 21 cm
and foreground timestreams. In our fiducial example, shown in
Figure 2, peak-to-peak foreground amplitude was reduce by
a factor of ∼2 × 107 leaving the peak-to-peak amplitude of
the 21 cm signal around 20 times brighter that the foreground
residuals.

We have also used this formalism to produce realistic fore-
casts for the power spectrum constraints from a fiducial 21 cm
cylinder interferometer. We have demonstrated that foreground
cleaning does not significantly degrade 21 cm power spectrum
estimates on baryon acoustic oscillation (BAO) scales and be-
low compared to a hypothetical foreground-free measurement.
We anticipate that the spherical harmonic transit telescope for-
malism will be a powerful tool that can be applied to inform
experimental design and test the interplay between real-world
systematics and design constraints on 21st century 21 cm sci-
ence. We will explore this further in J. R. Shaw et al. (2013, in
preparation).

We thank the CHIME team for stimulating discussions,
and Matt Dobbs and Keith Vanderlinde for comments on an
earlier version of this manuscript. K.S., U.P., and M.S. are
supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada. The work of A.S.
was supported by the DOE at Fermilab under Contract No.
DE-AC02-07CH11359. K.S. thanks the Perimeter Institute for
Theoretical Physics for its hospitality. Some of the results in
this paper have been derived using the HEALPix14 package
(Górski et al. 2005). Computations were performed on the GPC
supercomputer at the SciNet HPC Consortium. SciNet is funded

14 http://healpix.sourceforge.net/
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Table 1
Power Spectrum Model Parameters

Component A (K2) α β ζ

Galaxy 6.6 × 10−3 2.80 2.8 4.0
Point sources 3.55 × 10−4 2.10 1.1 1.0

Note. Our model for the angular power spectrum Cl (ν, ν′) is adapted from
Santos et al. (2005) to better suit the full-sky intensity mapping regime.

by the Canada Foundation for Innovation under the auspices of
Compute Canada, the Government of Ontario, Ontario Research
Fund–Research Excellence, and the University of Toronto.

APPENDIX A

SIGNAL AND FOREGROUND MODELS

We model the 21 cm signal and foregrounds as isotropic
fields described by an angular power spectrum Cl(ν, ν ′). We
base our models on Santos et al. (2005), although we will only
include the Galactic synchrotron and extragalactic point source
contributions. Both these contributions are assumed to take the
form

Cl(ν, ν ′) = A

(
l

100

)−α(
νν ′

ν2
0

)−β

e
− 1

2ξ2
l

ln2 (ν/ν ′)
. (A1)

As the models are calibrated for observations of the reion-
ization epoch, we need to transform them into the higher fre-
quencies we are concerned with. We list the parameters for both
these models in Table 1.

For the point source model, which is based on the results of
Di Matteo et al. (2002), we change the pivot frequency ν0 from
150 MHz to 408 MHz and also rescale the amplitude in order to
raise the maximum flux of unsubtracted sources from 0.1 mJy
to 0.1 Jy.

The galactic synchrotron model we use is not only calibrated
for low frequencies, but also high Galactic latitudes. As we will
measure large fractions of the sky, we take this into account by
changing the A and angular power law index β to be consistent
with the angular power spectrum of the 408 MHz Haslam map
for Galactic latitudes |b| > 5◦ from La Porta et al. (2008).

We model the 21 cm brightness temperature as being a
biased tracer of the underlying matter fluctuations. These
fluctuations are naturally characterized by the angular power
spectrum (Lewis & Challinor 2007; Datta et al. 2007). However
exact calculation of this quantity requires double-integration
over highly oscillatory functions, instead we use the flat-sky
approximation from Datta et al. (2007)

Cl(z, z
′) = 1

πχχ ′

∫ ∞

0
dk‖ cos

(
k‖Δχ

)
PTb

(k; z, z′), (A2)

where χ and χ ′ are the comoving distances to redshift z and
z′. Their difference is denoted by Δχ = χ − χ ′. The vector k
has the components k‖ and l/χ̄ in the directions parallel and
perpendicular to the line of sight (χ̄ is the mean of χ and χ ′).
This approximation is accurate to the 1% level for l > 10 (Datta
et al. 2007).

We model the 21 cm brightness temperature power spectrum
PTb

as

PTb
(k; z, z′) = T̄b(z)T̄b(z′)(b + f μ2)2Pm(k; z, z′), (A3)

where Pm(k; z, z′) = P (k)D+(z)D+(z′) is the real-space matter
power spectrum, D+(z) is the growth factor normalized such that
D+(0) = 1, b is the bias, and the growth rate f = d ln D+/d ln a,
the logarithmic derivative of the growth factor D+. We assume
that the bias b = 1 at all redshifts. The mean brightness
temperature is assumed to take the form

T̄b(z) = 0.3

(
ΩH i

10−3

)

×
(

Ωm + (1 + z)−3ΩΛ

0.29

)−1/2 (
1 + z

2.5

)1/2

mK (A4)

given in Chang et al. (2008). We assume that the neutral
hydrogen fraction takes a value ΩH i = 5 × 10−4 (Masui et al.
2013).

APPENDIX B

SIMULATING ALL-SKY RADIO EMISSION

B.1. Galactic Synchrotron

In order to test our methods we require simulated maps
of the Galactic emission from our own Galaxy in the range
400–1400 MHz with 1 MHz resolution. Though there are maps
at both 800 MHz and 1420 MHz, the only public all-sky radio
survey in this range is the 408 MHz Haslam map (Haslam et al.
1982). However, the Global Sky Model (de Oliveira-Costa et al.
2008) is based on a compilation of maps from 10 MHz to
94 GHz. We use the Global Sky Model to generate maps at
both 400 MHz and 1420 MHz, and use these to estimate an
effective spectral index at each location on the sky

α(n̂) = log T1420(n̂) − log T400(n̂)

log 1420 − log 400
. (B1)

By combining this with the Haslam map15 we can extrap-
olate to simulate a map of the sky at any desired set of
frequencies

Tbase(n̂, ν) = T408(n̂)
( ν

408 MHz

)α(n̂)
. (B2)

Unfortunately this map lacks both the small scale angular
fluctuations (because of the limited resolution of the Haslam
map) and any spectral variations (because of the power law
extrapolation) that would be present on the real sky. It is essential
to include these to accurately test any foreground removal
method.

To include these fluctuations we could add Gaussian realiza-
tions of Equation (A1) (with the galactic synchrotron param-
eters, see Table 1) to the base map, which contain frequency
and angular fluctuations at arbitrary resolutions. However the
Haslam map already constrains what the sky looks like on scales
�1◦, and the extrapolation with the spectral index map is a con-
straint on the sky at 1420 MHz (on scales larger than 5.◦1, the
resolution of the Global Sky Model). Therefore, we would like
the combined simulated map to be consistent with these obser-
vations. We can do this by constraining the realizations to ensure
there are no fluctuations on the scales constrained. In practice,

15 We use the map from the Legacy Archive for Microwave Background Data
Analysis (LAMBDA), which has been processed to remove bright point
sources and striping. See http://lambda.gsfc.nasa.gov/product/
foreground/haslam_408.cfm.
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we do this by manipulating the amplitudes of the two highest
valued eigenmodes of Cl(ν, ν ′) (from Equation A1) in each re-
alization, to ensure that the 408 MHz and 1420 MHz slices are
zero when smoothed on 1◦ and 5.◦1 scales, respectively.

A further problem is that we know the amplitude of small-
scale fluctuations varies over the sky, however our realizations
are statistically isotropic. This is clearly demonstrated in the
analysis of La Porta et al. (2008), which shows that the amplitude
of the angular power spectrum traces the galactic structure. To
reproduce this we use the rms amplitude of fluctuations across
the Haslam map in ∼4◦ patches (corresponding to Healpix
pixels with NSIDE = 16, giving 3072 pixels covering the
sky), to rescale the fluctuations. In particular this generates an
angular power spectrum on the whole sky which is consistent
with a single power-law even when crossing through the beam-
scale of the Haslam map into the simulated fluctuations. We do
not include variations of the power law index of the angular
power spectrum as there appears to be no structure to the small
variations found in La Porta et al. (2008).

B.2. Extra-galactic Point Sources

Our point source maps are constructed from two components,
a population of bright point sources (S > 0.1 Jy at 151 MHz)
is simulated directly, and a background of dimmer unresolved
point sources (S < 0.1 Jy) is modeled as a Gaussian random
field.

The former is constructed directly by drawing from the point
source distribution of Di Matteo et al. (2002), each sourced is
modeled as having pure power law emission with a random
spectral index. The sources are distributed randomly over the
sky. Very bright sources (S > 10 Jy) are assumed to have been
subtracted such that their residuals are less than this threshold.

The unresolved background is simulated by drawing a Gaus-
sian realization from Equation (A1) with the point source model
detailed in Table 1.

B.3. 21 cm Signal

Simulations of the cosmological 21 cm emission are per-
formed by drawing Gaussian realizations from the flat-sky
angular power spectrum (calculated using Equation (A2)).
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