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About This Book

If you want to learn the most fundamental things about plasma astrophysics
with the least amount of time – and who doesn’t? – this text is for you. This
book is addressed to young people, mainly to students, without a background
in plasma physics; it grew from the lectures given many times in the Faculty of
General and Applied Physics at the Moscow Institute of Physics and Technics
(the well known ‘fiz-tekh’) since 1977. A similar full-year course was also
offered to the students of the Astronomical Division of the Faculty of Physics
at the Moscow State University over the years after 1990. A considerable
amount of new material, related to modern astrophysics, has been added to
the lectures. So the contents of the book can hardly be presented during a
one-year lecture course, without additional seminars.

In fact, just the seminars with the topics ‘how to make a cake’ were
especially pleasant for the author and useful for students. In part, the text
of the book retains the imprint of the seminar form, implying a more lively
dialogue with the reader and more visual representation of individual notions
and statements. At the same time, the author’s desire was that these digres-
sions from the academic language of the monograph will not harm the rigour
of presentation of this textbook’s subject – the physical and mathematical
introduction to plasma astrophysics.

There is no unique simple model of a plasma, which encompasses all situ-
ations in space. We have to familiarize ourselves with many different models
applied to different situations. We need clear guidelines when a model works
and when it does not work. Hence the best strategy is to develop an intu-
ition about plasma physics, but how to develop it?

The idea of the book is not typical for the majority of textbooks on plasma
astrophysics. Its idea is

the consecutive consideration of physical principles, starting from
the most general ones, and of simplifying assumptions which give
us a simpler description of plasma under cosmic conditions.

Thus I would recommend the students to read the book straight through
each chapter to see the central line of the plasma astrophysics, its classic
fundamentals. In so doing, the boundaries of the domain of applicability
of the approximation at hand will be outlined from the viewpoint of physics
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rather than of many possible astronomical applications. After that, as an aid
to detailed understanding, please return with pencil and paper to work out
the missing steps (if any) in the formal mathematics.

On the basis of such an approach the student interested in modern astro-
physics, its current practice, will find the answers to two key questions:

(1) what approximation is the best one (the simplest but sufficient) for
description of a phenomenon in astrophysical plasma;

(2) how to build an adequate model for the phenomenon, for example, a
solar flare or a flare in the corona of an accretion disk.

Practice is really important for the theory of astrophysical plasma. Related
exercises (problems and answers supplemented to each chapter) to improve
skill do not thwart the theory but serve to better understanding of plasma
astrophysics.

As for the applications, preference evidently is given to physical processes
in the solar plasma. Why? – Much attention to solar plasma physics is con-
ditioned by the possibility of the all-round observational test of theoretical
models. This statement primarily relates to the processes in the solar atmo-
sphere. For instance, flares on the Sun, in contrast to those on other stars as
well as a lot of other analogous phenomena in the Universe, can be seen in
their development, i.e. we can obtain a sequence of images during the flare’s
evolution, not only in the optical and radio ranges but also in the ultraviolet,
soft and hard X-ray, gamma-ray ranges.

This book is mainly intended for students who have mastered a course of
general physics and have some initial knowledge of theoretical physics. For
beginning students, who may not know in which subfields of astrophysics they
wish to specialize,

it is better to cover a lot of fundamental theories thoroughly than
to dig deeply into any particular astrophysical subject or object,

even a very interesting one, for example black holes. Astronomers and astro-
physicists of the future will need tools that allow them to explore in many
different directions. Moreover astronomy of the future will be, more than
hitherto, precise science similar to mathematics and physics.

The beginning graduate students are usually confronted with a confusing
amount of work on plasma astrophysics published in a widely dispersed scien-
tific literature. Knowing this difficulty, the author has tried as far as possible
to represent the material in a self-contained form which does not require the
reading of additional literature. However there is an extensive bibliography in
the end of the book, allowing one to find the original works. In many cases,
particularly where a paper in Russian is involved, the author has aimed to
give the full bibliographic description of the work, including its title, etc.

Furthermore the book contains recommendations as to an introductory
(unavoidable) reading needed to refresh the memory about a particular fact,
as well as to additional (further) reading to refine one’s understanding of the
subject. Separate remarks of an historical character are included in many
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places. It is sometimes simpler to explain the interrelation of discoveries by
representing the subject in its development. It is the author’s opinion that
the outstanding discoveries in plasma astrophysics are by no means governed
by chance. With the same thought in mind, the author gives preference to
original papers on a topic under consideration; it happens in science, as in
art, that an original is better than nice-looking modernizations. Anyway,

knowledge of the history of science and especially of natural science
is of great significance for its understanding and development.

The majority of the book’s chapters begin from an ‘elementary account’
and illustrative simple examples but finish with the most modern results of
scientific importance. New problems determine the most interesting perspec-
tives of plasma astrophysics as a new developing science. The author hopes,
in this context, that professionals in the field of plasma astrophysics and ad-
jacent sciences will enjoy reading this book too. Open issues are the focus of
our attention in many places where they are. In this way, perspectives of
the plasma astrophysics with its many applications will be also of interest
for readers. The book can be used as a textbook but has higher potential of
modern scientific monograph.

The first volume of the book is unique in covering the basic principles
and main practical tools required for understanding and work in plasma as-
trophysics. The second volume ”Plasma Astrophysics. 2. Reconnection and
Flares” (referred in the text as vol. 2) represents the basic physics of the
magnetic reconnection phenomenon and the flares of electromagnetic origin
in space plasmas in the solar system, relativistic objects, accretion disks, their
coronae.
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Plasma Astrophysics
History and Neighbours

Plasma astrophysics studies electromagnetic processes and phenomena in
space, mainly the role of forces of an electromagnetic nature in the dynamics
of cosmic matter. Two factors are specific to the latter: its gaseous state
and high conductivity. Such a combination is unlikely to be found under
natural conditions on Earth; the matter is either a non-conducting gas (the
case of gas dynamics or hydrodynamics) or a liquid or a solid conductor. By
contrast, plasma is the main state of cosmic matter. It is precisely
the poor knowledge of cosmic phenomena and cosmic plasma properties that
explains the retarded development of plasma astrophysics. It has been distin-
guished as an independent branch of physics in the pioneering works of Alfvén
(see Alfvén, 1950).

Soon after that, the problem of thermonuclear reactions initiated a great
advance in plasma research (Simon, 1959; Glasstone and Loveberg, 1960;
Leontovich, 1960). This branch has been developing rather independently,
although being partly ‘fed’ by astrophysical ideas. They contributed to the
growth of plasma physics, for example, the idea of stelarators. Presently, the
reverse influence of laboratory plasma physics on astrophysics is also impor-
tant.

From the physical viewpoint,

plasma astrophysics is a part of plasma theory related in the first
place to the dynamics of a low-resistivity plasma in space.

However it is this part that is the most poorly studied one under laboratory
conditions. During the 1930s, scientists began to realize that the Sun and
other stars are powered by nuclear fusion and they began to think of re-
creating the process in the laboratory. The ideas of astro- and geophysics
dominate here, as before. At present time, they mainly come from many
space experiments and fine astronomical ground-based observations. From
this viewpoint, plasma astrophysics belongs to experimental science.

Electric currents and, therefore, magnetic fields are easily generated in the
astrophysical plasma owing to its low resistivity. The energy of magnetic fields
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2 Plasma Astrophysics

is accumulated in plasma, and the sudden release of this energy – an original
electrodynamical ‘burst’ or ‘explosion’ – takes place under definite but quite
general conditions. It is accompanied by fast directed plasma ejections (jets),
powerful flows of heat and radiation and impulsive acceleration of particles to
high energies.

This phenomenon is quite a widespread one. It can be observed in flares
on the Sun and other stars, in the Earth’s magnetosphere as magnetic storms
and substorms, in coronae of accretion disks of cosmic X-ray sources, in nuclei
of active galaxies and quasars. The second volume of this book is devouted to
the physics of magnetic reconnection and flares generated by reconnection in
plasma in the solar system, single and double stars, relativistic objects, and
other astrophysical objects.

The subject of the first volume of present book is the systematic descrip-
tion of the most important topics of plasma astrophysics. However the aim
of the book is not the strict substantiation of the main principals and basic
equations of plasma physics; this can be found in many wonderful monographs
(Klimontovich, 1986; Schram, 1991; Liboff, 2003). There are also many nice
textbooks (Goldston and Rutherford, 1995; Choudhuri, 1998; Parks, 2004) to
learn general plasma physics without or with some astrophysical applications.

The primary aim of the book in your hands is rather the solution of a
much more modest but still important problem, namely to help the students
of astrophysics to understand the interrelation and limits of applicability of
different approximations which are used in plasma astrophysics. If, on his/her
way, the reader will continously try, following the author, to reproduce all
mathematical transformation, he/she finally will soon find the pleasant feeling
of real knowledge of the subject and the real desire for constructive work in
plasma astrophysics.

The book will help the young reader to master the modern methods of
plasma astrophysics and will teach the application of these methods while
solving concrete problems in the physics of the Sun and many other astronom-
ical objects. A good working knowledge of plasma astrophysics is essential for
the modern astrophysicist.



Chapter 1

Particles and Fields: Exact
Self-Consistent Description

There exist two different ways to describe exactly the behaviour of a
system of charged particles in electromagnetic and gravitational fields.
The first description, the Newton set of motion equations, is conve-
nient for a small number of interacting particles. For systems of large
numbers of particles, it is more advantageous to deal with the single
Liouville equation for an exact distribution function.

1.1 Interacting particles and Liouville’s theo-
rem

1.1.1 Continuity in phase space

Let us consider a system of N interacting particle. Without much justification
(which will be given in Chapter 2), let us introduce the distribution function

f = f(r,v, t) (1.1)

for particles as follows. We consider the six-dimensional (6D) space called
phase space X = { r,v} . The number of particles present in a small volume
dX = d 3r d 3v at a point X (see Figure 1.1) at a moment of time t is defined
to be

dN(X, t) = f(X, t) dX. (1.2)

Accordingly, the total number of the particles at this moment is

N(t) =
∫

f(X, t) dX ≡
∫ ∫

f(r,v, t) d 3r d 3v . (1.3)

3
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Figure 1.1: The 6D phase space X.
A small volume dX at a point X.

If, for definiteness, we use the Cartesian coordinates, then

X = { x, y, z, vx, vy, vz }
is a point of the phase space (Figure 1.2) and

Ẋ = { vx, vy, vz, v̇x, v̇y, v̇z } (1.4)

is the velocity of this point in the phase space.
Let us suppose the coordinates and velocities of the particles are changing

continuously – ‘from point to point’. This corresponds to a continuous motion
of the particles in phase space and can be expressed by the continuity equation:

∂f

∂t
+ divX (Ẋf) = 0

(1.5)

or
∂f

∂t
+ divr (vf) + divv (v̇f) = 0 .

Equation (1.5) expresses the conservation law for the particles, since the in-
tegration of (1.5) over a volume U enclosed by the surface S in Figure 1.2
gives

∂

∂t

∫
U

f dX +
∫
U

divX (Ẋf) dX =

by virtue of definition (1.2) and the Ostrogradskii-Gauss theorem

=
∂

∂t
N(t)

∣∣∣∣
U

+
∫
S

(Ẋf) dS =
∂

∂t
N(t)

∣∣∣∣
U

+
∫
S

J · dS = 0 . (1.6)

Here a surface element dS, normal to the boundary S, is oriented towards
its outside, so that imports are counted as negative (e.g., Smirnov, 1965,
Section 126). J = Ẋf is the particle flux density in phase space. Thus
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Figure 1.2: The 6D phase
space X. The volume U is en-
closed by the surface S.

v

r0

X X

S

U
dS

. J

a change of the particle number in a given phase space volume U is
defined by the particle flux through the boundary surface S only.

The reason is clear. There are no sources or sinks for the particles inside the
volume. Otherwise the source and sink terms must be added to the right-hand
side of Equation (1.5).

1.1.2 The character of particle interactions

Let us rewrite Equation (1.5) in another form in order to understand the
meaning of divergent terms. The first of them is

divr (vf) = f divr v + (v · ∇r) f = 0 + (v · ∇r) f ,

since r and v are independent variables in phase space X. The second diver-
gent term is

divv (v̇f) = f divv v̇ + v̇ · ∇v f .

So far no assumption has been made as to the character of particle in-
teractions. It is worth doing here. Let us restrict our consideration to the
interactions with

divv v̇ = 0 ,
(1.7)

then Equation (1.5) can be rewritten in the equivalent form:

∂f

∂t
+ v · ∇r f +

F
m

· ∇v f = 0

or
∂f

∂t
+ Ẋ ∇X f = 0 , (1.8)



6 Chapter 1. Particles and Fields

where

Ẋ =
{

vx, vy, vz,
Fx

m
,

Fy

m
,

Fz

m

}
.

Having written that, we ‘trace’ the particle phase trajectories. Thus Liou-
ville’s theorem is found to have the following formulation:

∂f

∂t
+ v · ∇r f +

F
m

· ∇v f = 0 . (1.9)

Liouville’s theorem: The distribution function remains constant on
the particle phase trajectories if condition (1.7) is satisfied.

We shall call Equation (1.9) the Liouville equation. Let us define also the
Liouville operator

D

Dt
≡ ∂

∂t
+ Ẋ

∂

∂X
≡ ∂

∂t
+ v · ∇r +

F
m

· ∇v . (1.10)

This operator is just the total time derivative following a particle motion in
the phase space X. By using definition (1.10), we rewrite Liouville’s theorem
as follows:

Df

Dt
= 0 .

(1.11)

v

r0

J

v

r0

Jr

v

Jr

Jv

v

FdX dX

(a) (b)

Figure 1.3: Action of the two different terms of the Liouville operator in the
6D phase space X.

What factors lead to the changes in the distribution function?
Let dX be a small volume in the phase space X. The second term in

Equation (1.9), v ·∇r f , means that the particles go into and out of the phase
volume element considered, because their velocities are not zero (Figure 1.3a).
So this term describes a simple kinematic effect. The third term, (F/m)·∇v f ,
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means that the particles escape from the phase volume element dX or come
into this element due to their acceleration or deceleration under the influence
of forces (Figure 1.3b).

Some important properties of the Liouville equation are considered in Ex-
ercises 1.1–1.4.

1.1.3 The Lorentz force, gravity

Let us recall that the forces have to satisfy condition (1.7). We rewrite it as
follows:

∂ v̇α

∂ vα
=

1
m

∂Fα

∂ vα
= 0

or
∂Fα

∂ vα
= 0 , α = 1, 2, 3 . (1.12)

In other words,

the component Fα of the force vector F does not depend upon the
velocity component vα.

This is a sufficient condition.
The classical Lorentz force

Fα = e

[
Eα +

1
c

(v × B )α

]
(1.13)

obviously has that property. The gravitational force in the classical approxi-
mation is entirely independent of velocity.

Other forces may be considered, depending on the situation, for example
the forces resulting from the emission and/or absorption of radiation by astro-
physical plasma, which is electromagnetic in nature, though maybe quantum.
These forces when they are important should be considered with account
of their relative significance, conservative or dissipative character, and other
physical properties taken.

1.1.4 Collisional friction in plasma

As a contrary example we consider the friction force (cf. formula (8.66) for
the collisional drag force in plasma):

F = − k v , (1.14)

where the constant k > 0. In this case the right-hand side of Liouville’s
equation is not zero:

−f divv v̇ = −f divv
F
m

=
3k

m
f ,
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v

r0

F Figure 1.4: Particle density
increase in phase space as a
result of the action of the
friction force F.

because
∂ vα

∂ vα
= δαα = 3 .

Instead of Liouville’s equation we have

Df

Dt
=

3k

m
f > 0 . (1.15)

The distribution function (that is the particle density) does not remain con-
stant on particle trajectories but increases as the time elapses. Along the
phase trajectories, it increases exponentially:

f(t, r,v) ∼ f(0, r,v) exp
(

3k

m
t

)
. (1.16)

The physical sense of this phenomenon is obvious. As the particles are decel-
erated by the friction force, they move down in Figure 1.4. By so doing, they
are concentrated in the constantly diminishing region of phase space situated
in the vicinity of the axis v = 0.

There is a viewpoint that the Liouville theorem is valid for the forces
that do not disperse particle velocities (Shkarofsky et al., 1966, Chapter 2).
Why? It is usually implied that particle collisions enlarge such a dispersion:
divv v̇ > 0. So

Df

Dt
=
(

∂f

∂t

)
c

= −f divv v̇ < 0 . (1.17)

In this case the right-hand side of Equation (1.17) is called the collisional
integral (see Sections 2.1 and 2.2). In contrast to the right-hand side of (1.15),
that of Equation (1.17) is usually negative.

The above example of the friction force is instructive in that it shows how
the forces that are diminishing the velocity dispersion (divv v̇ < 0) lead to
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the violation of Liouville’s theorem; in other words, how they lead to a change
of the distribution function along the particle trajectories. For the validity of
Liouville’s theorem only the condition (1.7) is important; in the velocity space,
the divergence of the forces has to equal zero. The sign of this divergence is
unimportant.

1.1.5 The exact distribution function

Let us consider another property of the Liouville theorem. We introduce the
N -particle distribution function of the form

f̂(t, r,v) =
N∑

i=1

δ (r − ri(t)) δ (v − vi(t)) . (1.18)

We shall call such a distribution function the exact one. It is illustrated by
schematic Figure 1.5.

X

f

<

Figure 1.5: The one-dimensional analogy of the exact distribution function.

Let us substitute this expression for the distribution function in Equa-
tion (1.9). The resulting three terms are

∂f̂

∂t
=
∑

i

(−1) δ ′
α (r − ri(t)) ṙ i

α δ (v − vi(t)) +

+
∑

i

(−1) δ (r − ri(t)) δ ′
α (v − vi(t)) v̇ i

α , (1.19)

v · ∇r f̂ ≡ vα
∂f̂

∂rα
=
∑

i

vα δ ′
α (r − ri(t)) δ (v − vi(t)) , (1.20)

F
m

· ∇v f̂ ≡ Fα

m

∂f̂

∂vα
=
∑

i

Fα

mi
δ (r − ri(t)) δ ′

α (v − vi(t)) . (1.21)

Here the index α = 1, 2, 3 or (x, y, z). The prime denotes the derivative with
respect to the argument of a function; for the delta function, see definition
of the derivative in Vladimirov (1971). The overdot denotes differentiation
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with respect to time t. Summation over the repeated index α (contraction) is
implied:

δ ′
α ṙ i

α = δ ′
x ṙ i

x + δ ′
y ṙ i

y + δ ′
z ṙ i

z .

The sum of terms (1.19)–(1.21) equals zero. Let us rewrite it as follows

0 =
∑

i

(−ṙ i
α + v i

α

)
δ ′
α (r − ri(t)) δ (v − vi(t)) +

+
∑

i

(
−v̇ i

α +
Fα

mi

)
δ (r − ri(t)) δ ′

α (v − vi(t)) .

This can occur just then that all the coefficients of different combinations of
delta functions with their derivatives equal zero as well. Therefore we find

d r i
α

dt
= v i

α(t) ,
d v i

α

dt
=

1
mi

Fα (ri(t),vi(t)) . (1.22)

Thus

the Liouville equation for an exact distribution function is equivalent
to the Newton set of equations for a particle motion, both describing
a purely dynamic behaviour of the particles.

It is natural since this distribution function is exact. No statistical averaging
has been done so far. It is for this reason that both descriptions – namely,
the Newton set and the Liouville theorem for the exact distribution function
– are dynamic (as well as reversible, of course) and equivalent. Statistics will
appear in the next Chapter when, instead of the exact description of a system,
we begin to use some mean characteristics such as temperature, density etc.
This is the statistical description that is valid for systems containing a large
number of particles.

We have shown that finding a solution of the Liouville equation for an
exact distribution function

Df̂

Dt
= 0

(1.23)

is the same as the integration of the motion equations. Therefore

for systems of a large number of interacting particles, it is much
more advantageous to deal with the single Liouville equation for
the exact distribution function which describes the entire system.

Recommended Reading: Landau and Lifshitz, Mechanics (1976), Chap-
ters 2 and 7; Landau and Lifshitz, Statistical Physics (1959b), Chapter 1,
§ 1–3.
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1.2 Charged particles in the electromagnetic
field

1.2.1 General formulation of the problem

Let us start from recalling basic physics notations and establishing a common
basis. Maxwell’s equations for the electric field E and magnetic field B are
well known to have the form (see Landau and Lifshitz, Classical Theory of
Field , 1975, Chapter 4, § 26):

curl B =
4π

c
j +

1
c

∂ E
∂t

, (1.24)

curl E = −1
c

∂ B
∂t

, (1.25)

div B = 0 , (1.26)

div E = 4πρ q . (1.27)

The fields are completely determined by electric charges and electric currents.
Note that, in general, Maxwell’s equations imply the continuity equation for
electric charge (see Exercise 1.5) as well as the conservation law for electro-
magnetic field energy (Exercise 1.6).

Figure 1.6: A system
of N charged particles.

e1

0

ei

ri(t)
vi(t)

e
N�

�

�

�

���������� ����
�

�

�

�

Let there be N particles with charges e1, e2, . . . ei, . . . e
N

, coordinates
ri(t) and velocities vi(t), see Figure 1.6. By definition, the electric charge
density

ρ q (r, t) =
N∑

i=1

ei δ (r − ri(t)) (1.28)

and the density of electric current

j (r, t) =
N∑

i=1

ei vi(t) δ (r − ri(t)) . (1.29)

The delta function of the vector-argument is defined as usually:

δ (r − ri(t)) =
3∏

α=1

δα = δ
(
rx − r i

x(t)
)

δ
(
ry − r i

y(t)
)

δ
(
rz − r i

z(t)
)
. (1.30)
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The coordinates and velocities of particles can be found by integrating the
equations of motion – the Newton equations:

ṙi ≡ d ri

dt
= vi(t) , (1.31)

v̇i ≡ dvi

dt
=

1
mi

ei

[
E (ri(t)) +

1
c

vi × B (ri(t))
]

. (1.32)

Let us count the number of unknown quantities: the vectors B, E, ri, and
vi. We obtain: 3+3+3N +3N = 6 (N +1). The number of equations is equal
to 8 + 6N = 6 (N + 1) + 2. Therefore two equations seem to be unnecessary.
Why is this so?

1.2.2 The continuity equation for electric charge

Let us make sure that the definitions (1.28) and (1.29) conform to the con-
servation law for electric charge. Differentiating (1.28) with respect to time
gives (see Exercise 1.7)

∂ρ q

∂t
= −

∑
i

ei δ ′
α ṙ i

α . (1.33)

Here the index α = 1, 2, 3. The prime denotes the derivative with respect
to the argument of the delta function, see Vladimirov (1971). The overdot
denotes differentiation with respect to time t.

For the electric current density (1.29) we have the divergence

div j =
∂

∂rα
jα =

∑
i

ei v i
α δ ′

α . (1.34)

Comparing formula (1.33) with (1.34) we see that

∂ρ q

∂t
+ div j = 0 .

(1.35)

Therefore the definitions for ρ q and j conform to the continuity Equa-
tion (1.35).

As we shall see it in Exercise 1.5, conservation of electric charge follows
also directly from the Maxwell Equations (1.24) and (1.27). The difference is
that above we have not used Equation (1.27).

1.2.3 Initial equations and initial conditions

Operating with the divergence on Equation (1.24) and using the continuity
Equation (1.35), we obtain

0 =
4π

c

(
−∂ρ q

∂t

)
+

1
c

∂

∂t
div E .
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Thus, by postulating the definitions (1.28) and (1.29), by virtue of the con-
tinuity Equation (1.35) and without using the Maxwell Equation (1.27), we
find that

∂

∂t
( divE − 4πρ q ) = 0 . (1.36)

Hence Equation (1.27) will be valid at any moment of time, provided it is true
at the initial moment.

Let us operate with the divergence on Equation (1.25):

∂

∂t
div B = 0 . (1.37)

We come to the conclusion that the Equations (1.26) and (1.27) play the role
of initial conditions for the time-dependent equations

∂

∂t
B = − c curl E (1.38)

and
∂

∂t
E = + c curl B − 4π j . (1.39)

Equation (1.26) implies the absence of magnetic charges or, which is the same,
the solenoidal character of the magnetic field.

Thus, in order to describe the gas consisting of N charged particles, we
consider the time-dependent problem of N bodies with a given interaction
law.

The electromagnetic part of the interaction is described by Max-
well’s equations, the time-independent scalar equations playing the
role of initial conditions for the time-dependent problem.

Therefore the set consisting of eight Maxwell’s equations and 6N Newton’s
equations is neither over- nor underdetermined. It is closed with respect to
the time-dependent problem, i.e. it consists of 6 (N+1) equations for 6 (N+1)
variables, once the initial and boundary conditions are given.

1.2.4 Astrophysical plasma applications

The set of equations described above can be treated analytically in just three
cases:

1. N = 1 , the motion of a charged particle in a given electromagnetic
field, for example, drift motions and the so-called adiabatic invariants,
wave-particle interaction and the problem of particle acceleration in as-
trophysical plasma; e.g., Chapters 7 and 18.

2. N = 2 , Coulomb collisions of two charged particles. This is important
for the kinetic description of physical processes, for example, the kinetic
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effects under propagation of accelerated particles in plasma, collisional
heating of plasma by a beam of fast electrons or/and ions, see Chapters
4 and 8.

3. N → ∞ , a very large number of particles. This case is the frequently
considered one in plasma astrophysics, because it allows us to introduce
macroscopic descriptions of plasma, the widely-used magnetohydrody-
namic (MHD) approximation; Chapters 9, and 12.

Numerical integration of Equations (1.24)–(1.32) in the case of large but
finite N , like N ≈ 3 × 106, is possible by using powerful modern computers.
Such computations called ‘particle simulations’ have proved to be increasingly
useful for understanding properties of astrophysical plasma. One important
example of a simulation is magnetic reconnection in a collisionless plasma
(Horiuchi and Sato, 1994; Cai and Lee, 1997). This process often leads to fast
energy conversion from field energy to particle energy, flares in astrophysical
plasma (see vol. 2).

Note also that the set of equations described above can be generalized to
include consideration of neutral particles. This is necessary, for instance, in
the study of the generalized Ohm’s law (Chapter 9) which can be applied in
the investigation of physical processes in weakly-ionized plasmas, for example
in the solar photosphere and prominences.

Dusty and self-gravitational plasmas in space are interesting in view of
the diverse and often surprising facts about planetary rings and comet envi-
ronments, interstellar dark space (Bliokh et al., 1995; Kikuchi, 2001). Two
effects are often of basic importance, gravitational and electric, since charged
or polarized dust grains involved in such environments are much heavier than
electrons and ions. So a variety of electric rather than magnetic phenom-
ena are taking place predominantly; and gravitational forces acting on dust
particles can become appreciable.

1.3 Gravitational systems

Gravity plays a central role in the dynamics of many astrophysical systems
– from stars to the Universe as a whole (Lahav et al., 1996; Rose, 1998;
Bertin, 1999; Dadhich and Kembhavi, 2000). It is important for many astro-
physical applications that a gravitational force (as well as an electromagnetic
force) acts on the particles:

mi v̇i = −mi ∇φ . (1.40)

Here the gravitational potential

φ(t, r) = −
N∑

n=1

Gmn

| rn(t) − r | , n �= i , (1.41)
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G is the gravitational constant. We shall return to this subject many times,
for example, while studying the virial theorem in MHD (Chapter 19). This
theorem is widely used in astrophysics.

At first sight, it may seem that a gravitational system, like stars in a
galaxy, will be easier to study than a plasma, because there is gravitational
charge (i.e. mass) of only one sign compared to the electric charges of two
opposite signs. However the reality is the other way round. Though the
potential (1.41) of the gravitational interaction looks similar to the Coulomb
potential of charged particles (see formula (8.1)),

physical properties of gravitational systems differ so much from
properties of astrophysical plasma.

We shall see this fundamental difference, for example, in Section 3.3 and
many times in what follows. A deep unifying theme which underlies many
astrophysical results is that self-gravity is incompatible with thermodynamic
equilibrium (see Section 9.6).

1.4 Practice: Exercises and Answers

Exercise 1.1 [ Section 1.1.2 ] Show that any distribution function that is a
function of the constants of the motion – the invariants of motion – satisfies
Liouville’s equation (1.11).

Answer. A general solution of the equations of motion (1.22) depends on
2N constants Ci where i = 1, 2, ... 2N . If we assume that the distribution
function is a function of these constants of the motion

f = f ( C1, ... Ci, ... C2N ) , (1.42)

we can rewrite the left-hand side of Equation (1.11) as

Df

Dt
=

2N∑
i=1

(
DCi

Dt

)(
∂f

∂Ci

)
. (1.43)

Because Ci are constants of the motion, DCi/Dt = 0. Therefore the right-
hand side of Equation (1.43) is also zero, and the distribution function (1.42)
satisfies the Liouville equation. This is the so-called Jeans theorem. It will be
used, for example, in the theory of wave-particle interaction in astrophysical
plasma (Section 7.1).

Exercise 1.2 [ Section 1.1.2 ] Rewrite the Liouville theorem by using the
Hamilton equations instead of the Newton equations.

Answer. Rewrite the Newton set of the motion Equations (1.22) in the
Hamilton form (see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 40):

q̇α =
∂H

∂Pα
, Ṗα = − ∂H

∂qα
(α = 1, 2, 3) , (1.44)
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where H(P, q) is the Hamiltonian of the system under consideration, qα and
Pα are the generalized coordinates and momemta, respectively.

Let us substitute the variables r and v in the Liouville equation (1.9) by
the generalized variables q and P. By doing so and using Equations (1.44),
we obtain the following form of the Liouville equation

∂f

∂t
+ ∇P H · ∇q f − ∇q H · ∇P f = 0 . (1.45)

Because of symmetry of the last equation, it is convenient here to use the
Poisson brackets (see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 42).
Recall that the Poisson brackets for arbitrary quantities A and B are defined
to be

[ A , B ] =
3∑

α=1

(
∂A

∂qα

∂B

∂Pα
− ∂A

∂Pα

∂B

∂qα

)
. (1.46)

Appling definition (1.46) to Equation (1.45), we find the final form of the
Liouville theorem

∂f

∂t
+ [ f , H ] = 0 .

(1.47)

Q.e.d. Note that for a system in equilibrium

[ f , H ] = 0 . (1.48)

Exercise 1.3 [ Section 1.1.2 ] Discuss what to do with the Liouville theorem,
if it is impossible to disregard quantum indeterminacy and assume that the
classical description of a system is justified. Consider the case of dense fluids
inside stars, for example, white dwarfs.

Comment. Inside a white dwarf star the temperature T ∼ 105 K, but the
density is very high: n ∼ 1028 −1030 cm−3 (e.g., de Martino et al., 2003). The
electrons cannot be regarded as classical particles. We have to consider them
as a quantum system with a Fermi-Dirac distribution (see § 57 in Landau and
Lifshitz, Statistical Physics, 1959b; Kittel, 1995).

Exercise 1.4 [ Section 1.1.2 ] Recall the Liouville theorem in a course of
mechanics – the phase volume is independent of t, i.e. it is the invariant of
motion (e.g., Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 46). Show
that this formulation is equivalent to Equation (1.11).

Exercise 1.5 [ Section 1.2.1 ] Show that Maxwell’s equations imply the con-
tinuity equation for the electric charge.

Answer. Operating with the divergence on Equation (1.24), we have

0 =
4π

c
div j +

1
c

∂

∂t
div E .
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Substituting (1.27) in this equation gives us the continuity equation for the
electric charge

∂

∂t
ρ q + div j = 0 . (1.49)

Thus Maxwell’s equations conform to the charge continuity equation.

Exercise 1.6 [ Section 1.2.1 ] Starting from Maxwell’s equation, derive the
energy conservation law for an electromagnetic field.

Answer. Let us multiply Equation (1.24) by the electric field vector E
and add it to Equation (1.25) multiplied by the magnetic field vector B. The
result is

1
c
E

∂ E
∂t

+
1
c
B

∂ B
∂t

= −4π

c
j E − (B curl E − E curl B ) .

By using the known formula from vector analysis

div [a × b ] = b curl a − a curl b ,

we rewrite the last equation as follows

1
2c

∂

∂t

(
E2 + B2) = −4π

c
j E − div [E × B ]

or

∂

∂t
W = −j E − div G .

(1.50)

Here

W =
E2 + B2

8π
(1.51)

is the energy of electromagnetic field in a unit volume of space;

G =
c

4π
[E × B ] (1.52)

is the flux of electromagnetic field energy through a unit surface in space, i.e.
the energy flux density for electromagnetic field. This is called the Poynting
vector.

The first term on the right-hand side of Equation (1.50) is the power of
work done by the electric field on all the charged particles in the unit volume
of space. In the simplest approximation

evE =
d

dt
E , (1.53)

where E is the particle kinetic energy (see Equation (5.6)). Hence instead of
Equation (1.50) we write the following form of the energy conservation law:

∂

∂t

(
E2 + B2

8π
+

ρv2

2

)
+ div

( c

4π
[E × B ]

)
= 0 . (1.54)
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Compare this simple approach to the energy conservation law for charged par-
ticles and an electromagnetic field with the more general situation considered
in Section 12.1.3.

Exercise 1.7 [ Section 1.2.2 ] Clarify the meaning of the right-hand side of
Equation (1.33).

Answer. Substitute definition (1.30) of the delta-function in defini-
tion (1.28) of the electric charge density and differentiate the result over time t:

∂ρ q

∂t
=

N∑
i=1

ei

3∑
α=1

⎡⎣ ∂

∂ (rα − r i
α(t))

3∏
β=1

δ
(
rβ − r i

β(t)
)⎤⎦ ∂

∂t

(
rα − r i

α(t)
)

=

= −
N∑

i=1

ei

3∑
α=1

⎡⎣ ∂

∂ (rα − r i
α(t))

3∏
β=1

δ
(
rβ − r i

β(t)
)⎤⎦ dr i

α(t)
dt

. (1.55)

This is the right-hand side of Equation (1.33).



Chapter 2

Statistical Description of
Interacting Particle
Systems

In a system which consists of many interacting particles, the statistical
mechanism of ‘mixing’ in phase space works and makes the system’s
behaviour on average more simple.

2.1 The averaging of Liouville’s equation

2.1.1 Averaging over phase space

As was shown in the first Chapter, the exact state of a system consisting of
N interacting particles can be given by the exact distribution function (see
definition (1.18)) in six-dimensional (6D) phase space X = { r,v}. This is
defined as the sum of δ-functions in N points of phase space:

f̂(r,v, t) =
N∑

i=1

δ (r − ri(t)) δ (v − vi(t)) . (2.1)

Instead of the equations of motion, we use Liouville’s equation to describe the
change of the system state (Section 1.1.5):

∂f̂

∂t
+ v · ∇r f̂ +

F
m

· ∇v f̂ = 0 . (2.2)

Once the exact initial state of all the particles is known, it can be repre-
sented by N points in the phase space X (Figure 2.1). The motion of these

19
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v

r

X

1

2

N

Figure 2.1: Particle trajectories in the 6D phase space X.

points is described by Liouville’s equation (1.9) or by the 6N equations of
motion (1.22).

In fact we usually know only some average characteristics of the system’s
state, such as the temperature, density, etc. Moreover the behaviour of each
single particle is in general of no interest. For this reason, instead of the
exact distribution function (2.1), let us introduce the distribution function
averaged over a small volume ∆X of phase space, i.e. over a small interval of
coordinates ∆r and velocities ∆v centered at the point (r,v), at a moment
of time t:

〈 f̂(r,v, t) 〉X =
1

∆X

∫
∆X

f̂(X, t) dX =

=
1

∆r∆v

∫
∆r∆v

f̂(r,v, t) d 3r d 3v . (2.3)

Here d 3r = dx dy dz and d 3v = dvx dvy dvz, if use is made of Cartesian
coordinates.

To put the same in another way, the mean number of particles present at
a moment of time t in the element of phase volume ∆X is

〈 f̂(r,v, t) 〉X · ∆X =
∫

∆X

f̂(r,v, t) dX .

The total number N of particles in the system is the integral over the whole
phase space X.

Obviously the distribution function averaged over phase volume differs
from the exact one as shown in Figure 2.2.
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(a)

(b)

Figure 2.2: The one-dimensional analogy of the distribution function aver-
aging over phase space X: (a) the exact distribution function (2.1), (b) the
averaged function (2.3).

2.1.2 Two statistical postulates

Let us average the same exact distribution function (2.1) over a small time
interval ∆t centred at a moment of time t:

〈 f̂(r,v, t) 〉t =
1

∆t

∫
∆t

f̂(r,v, t) dt . (2.4)

Here ∆t is small in comparison with the characteristic time of the system’s
evolution:

∆t 
 τ ev . (2.5)

We assume that the following two statistical postulates concerning systems
containing a large number of particles are applicable to the system considered.

The first postulate. The mean values 〈 f̂ 〉
X

and 〈 f̂ 〉t exist for suffi-
ciently small ∆X and ∆t and are independent of the averaging scales ∆X
and ∆t.

Clearly the first postulate implies that the number of particles should be
large. For a small number of particles the mean value depends upon the aver-
aging scale: if, for instance, N = 1 then the exact distribution function (2.1)
is simply a δ-function, and the average over the variable X is 〈 f̂ 〉

X
= 1/∆X.

For illustration, the case (∆X)1 > ∆X is shown in Figure 2.3.
The second postulate is

〈 f̂(X, t) 〉X = 〈 f̂(X, t) 〉t = f(X, t) . (2.6)
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Figure 2.3: Averaging of the
exact distribution function f̂
which is equal to a δ-function.
∆X is a small volume of
phase space X.

In other words, the averaging of the distribution function over phase space is
equivalent to the averaging over time.

While speaking of the small ∆X and ∆t, we assume that they are not
too small: ∆X must contain a reasonably large number of particles while ∆t
must be large in comparison with the duration of drastic changes of the exact
distribution function, such as the duration of the particle Coulomb collisions:

∆t � τc . (2.7)

It is in this case that the statistical mechanism of particle ‘mixing’ in phase
space is at work and

the averaging of the exact distribution function over the time ∆t is
equivalent to the averaging over the phase volume ∆X.

2.1.3 A statistical mechanism of mixing in phase space

Let us understand qualitatively how the mixing mechanism works in phase
space. We start from the dynamical description of the N -particle system in
6N -dimensional phase space in which

Γ = { ri, vi } , i = 1, 2, . . . N,

a point is determined (t = 0 in Figure 2.4) by the initial conditions of all the
particles. The motion of this point, that is the dynamical evolution of the
system, can be described by Liouville’s equation or equations of motion. The
point moves along a complicated dynamical trajectory because the interactions
in a many-particle system are extremely intricate and complicated.

The dynamical trajectory has a remarkable property which we shall il-
lustrate by the following example. Imagine a glass vessel containing a gas
consisting of a large number N of particles (molecules or charged particles).
The state of this gas at any moment of time is depicted by a single point in
the phase space Γ.
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t = 0

∆

Γ

Γ

Figure 2.4: The dynamical trajectory of a system of N particles in the 6N -
dimensional phase space Γ.

Let us imagine another vessel which is identical to the first one, with one
exception, being that at any moment of time the gas state in the second
vessel is different from that in the first one. These states are depicted by two
different points in the space Γ. For example, at t = 0, they are points 1 and
2 in Figure 2.5.

v

ri

i

t = 0

∆

Γ

Γ

1

2

Figure 2.5: The trajectories of two systems never cross each other.

With the passage of time, the gas states in both vessels change, whereas
the two points in the space Γ draw two different dynamical trajectories (Fig-
ure 2.5). These trajectories do not intersect. If they had intersected at just
one point, then the state of the first gas, determined by 6N numbers (ri,vi),
would have coincided with the state of the second gas. These numbers could
have been taken as the initial conditions which, in turn, would have uniquely
determined the motion. The two trajectories would have merged into one.
For the same reason the trajectory of a system cannot intersect itself. Thus
we come to the conclusion that
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only one dynamical trajectory of a many particle system passes
through each point of the phase space Γ.

Since the trajectories differ in initial conditions, we can introduce an infi-
nite ensemble of systems (glass vessels) corresponding to the different initial
conditions. In a finite time the ensemble of dynamical trajectories will closely
fill the phase space Γ, without intersections. By averaging over the ensemble
we can answer the question of what the probability is that, at a moment of
time t, the system will be found in an element ∆Γ = ∆ri ∆vi of the phase
space Γ:

dw = 〈 f̂(ri,vi) 〉Γ d Γ. (2.8)

Here 〈 f̂(ri,vi) 〉Γ is a function of all the coordinates and velocities. It plays
the role of the probability distribution density in the phase space Γ and is
called the statistical distribution function or simply the distribution function.
It is obtained by way of statistical averaging over the ensemble and evidently
corresponds to definition (2.3).

∗ ∗ ∗

It is rather obvious that the same probability density can be obtained in an-
other way – through the averaging over time. The dynamical trajectory of
a system, given a sufficient time ∆t, will closely cover phase space. There
will be no self-intersections; but since the trajectory is very intricate it will
repeatedly pass through the phase space element ∆Γ. Let (∆t) Γ be the time
during which the system locates in ∆Γ. For a sufficiently large ∆t, which is
formally restricted by the characteristic time of slow evolution of the system
as a whole, the ratio (∆t)Γ/∆t tends to the limit

lim
∆t→∞

( ∆t )Γ

∆t
=

dw

d Γ
= 〈 f̂(ri,vi, t) 〉t . (2.9)

By virtue of the role of the probability density, it is clear that

the statistical averaging over the ensemble (2.8) is equivalent to the
averaging over time (2.9) as well as to the definition (2.4).

2.1.4 The derivation of a general kinetic equation

Now we have everything what we need to average the exact Liouville Equa-
tion (2.2). Since the equation contains the derivatives with respect to time t
and phase-space coordinates (r,v) the procedure of averaging over the interval
∆X ∆t is defined as follows:

f(X, t) =
1

∆X ∆t

∫
∆X

∫
∆t

f̂(X, t) dX dt . (2.10)
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Averaging the first term of the Liouville equation gives

1
∆X ∆t

∫
∆X

∫
∆t

∂f̂

∂t
dX dt =

1
∆t

∫
∆t

∂

∂t

⎡⎣ 1
∆X

∫
∆X

f̂ dX

⎤⎦ dt =

=
1

∆t

∫
∆t

∂

∂t
f dt =

∂f

∂t
. (2.11)

In the last equality the use is made of the fact that, by virtue of the second
postulate of statistics (2.6), the averaging of the smooth averaged function
does not change it.

Let us average the second term in Equation (2.2):

1
∆X ∆t

∫
∆X

∫
∆t

vα
∂f̂

∂rα
dX dt =

1
∆X

∫
∆X

vα
∂

∂rα

⎡⎣ 1
∆t

∫
∆t

f̂ dt

⎤⎦ dX =

=
1

∆X

∫
∆X

vα
∂

∂rα
f dX = vα

∂f

∂rα
. (2.12)

Here the index α = 1, 2, 3.
In order to average the term containing the force F, let us represent it as a

sum of a mean force 〈F 〉 and the force due to the difference of the real force
field from the mean (smooth) one:

F = 〈F 〉 + F ′. (2.13)

Substituting definition (2.13) in the third term in Equation (2.2) and averaging
this term, we have

1
∆X ∆t

∫
∆X

∫
∆t

Fα

m

∂f̂

∂vα
dX dt =

=
〈Fα 〉

m

1
∆X

∫
∆X

∂

∂vα

⎡⎣ 1
∆t

∫
∆t

f̂ dt

⎤⎦ dX +
1

∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt =

=
〈Fα 〉

m

∂f

∂vα
+

1
∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt . (2.14)

Gathering all three terms together, we write the averaged Liouville equation
in the form

∂f

∂t
+ v · ∇r f +

〈F 〉
m

· ∇v f =

(
∂f̂

∂t

)
c

,

(2.15)
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where (
∂f̂

∂t

)
c

= − 1
∆X ∆t

∫
∆X

∫
∆t

F ′
α

m

∂f̂

∂vα
dX dt .

(2.16)

Equation (2.15) and its right-hand side (2.16) are called the kinetic equation
and the collisional integral (cf. definition (1.17)), respectively.

Therefore we have found the most general form of the kinetic equation
with a collisional integral, which is nice but cannot be directly used in plasma
astrophysics, without making some additional simplifying assumptions. The
main assumption, the binary character of collisions, will be taken into account
in the next Section, see also Section 3.3.

2.2 A collisional integral and correlation func-
tions

2.2.1 Binary interactions

We shall distinguish different kinds of particles, for example, electrons and
protons, because their behaviours differ. Let f̂k (r,v, t) be the exact distribu-
tion function (2.1) of particles of the kind k, i.e.

f̂k (r,v, t) =
Nk∑
i=1

δ (r − rki(t)) δ (v − vki(t)) , (2.17)

the index i denoting the ith particle of kind k, Nk being the number of particles
of kind k. The Liouville Equation (2.2) for the particles of kind k takes a view

∂f̂k

∂t
+ v · ∇r f̂k +

F̂k

mk
· ∇v f̂k = 0 , (2.18)

mk is the mass of a particle of kind k.
The force acting on a particle of kind k at a point (r,v) of the phase

space X at a moment of time t, F̂k,α (r,v, t), is the sum of forces acting on
this particle from all other particles:

F̂ k,α (r,v, t) =
∑

l

Nl∑
i=1

F̂
(i)
kl,α (r,v, rli(t),vli(t)) . (2.19)

So the total force F̂k,α (r,v, t) depends upon the instant positions and veloci-
ties (generally with the time delay taken into account) of all the particles and
can be written with the help of the exact distribution function as follows:

F̂ k,α (r,v, t) =
∑

l

∫
X1

F̂ kl,α (X, X1) f̂l (X1, t) dX1 . (2.20)
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Here

f̂l (X, t) =
Nl∑
i=1

δ (X − Xli(t))

is the exact distribution function of particles of kind l, the variable of inte-
gration is designated as X1 = { r1,v1 } and dX1 = d 3r1 d 3v1.

Formula (2.20) takes into account that the forces considered are binary
ones, i.e. they can be represented as a sum of interactions between two par-
ticles.

Making use of the representation (2.20), let us average the force term in
the Liouville equation (2.2), as this has been done in (2.14). We have

1
∆X ∆t

∫
∆X

∫
∆t

1
mk

F̂ k,α (r,v, t)
∂f̂k

∂vα
dX dt =

=
1

∆X ∆t

∫
∆X

∫
∆t

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1) f̂l (X1, t)
∂

∂vα
f̂k (X, t) dX dX1 dt =

=
1

∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1) ×

× ∂

∂vα

⎡⎣ 1
∆t

∫
∆t

f̂k (X, t) f̂l (X1, t) dt

⎤⎦ dX dX1 . (2.21)

Here we have taken into account that the exact distribution function f̂l (X1, t)
is independent of the velocity v, which is a part of the variable X = { r, v }
related to the particles of the kind k, and that the interaction law F̂kl,α (X, X1)
is explicitly independent of time t.

Formula (2.21) contains the pair products of exact distribution functions
of different particle kinds, as is natural for the case of binary interactions.

2.2.2 Binary correlation

Let us represent the exact distribution function f̂k as

f̂k (X, t) = fk (X, t) + ϕ̂k (X, t) , (2.22)

where fk (X, t) is the statistically averaged distribution function, ϕ̂k (X, t) is
the deviation of the exact distribution function from the averaged one. In
general the deviation is not small, of course. It is obvious that, according to
definition (2.22),

ϕ̂k (X, t) = f̂k (X, t) − fk (X, t) ;

hence
〈 ϕ̂k (X, t) 〉 = 0 . (2.23)
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Let us consider the integrals of pair products, appearing in the averaged
force term (2.21). In view of definition (2.22), they can be rewritten as

1
∆t

∫
∆t

f̂k (X, t) f̂l (X1, t) dt = fk (X, t) fl (X1, t) + fkl (X, X1, t) , (2.24)

where

fkl (X, X1, t) =
1

∆t

∫
∆t

ϕ̂k (X, t) ϕ̂l (X1, t) dt . (2.25)

The function fkl is referred to as the correlation function or, more exactly,
the binary correlation function.

The physical meaning of the correlation function is clear from (2.24). The
left-hand side of Equation (2.24) means the probability to find a particle of
kind k at a point X of the phase space at a moment of time t under condition
that a particle of kind l places at a point X1 at the same time. In the
right-hand side of (2.24) the distribution function fk (X, t) characterizes the
probability that a particle of kind k stays at a point X at a moment of time t.
The function fl (X1, t) plays the analogous role for the particles of kind l.

If the particles of kind k did not interact with those of kind l, then
their distributions would be independent, i.e. probability densities
would simply multiply:

〈 f̂k (X, t) f̂l (X1, t) 〉 = fk (X, t) fl (X1, t) . (2.26)

So in the right-hand side of Equation (2.24) there should be

fkl (X, X1, t) = 0 . (2.27)

In other words there would be no correlation in the particle distribution.
With the proviso that the parameter characterizing the binary interaction,

namely Coulomb collision considered below,

ζ i ≈ e2

〈 l 〉
/〈

mv2

2

〉
, (2.28)

is small under conditions in a wide range, the correlation function must be
relatively small :

if the interaction is weak, the second term in the right-hand side
of (2.24) must be small in comparison with the first one.

We shall come back to the discussion of this property in Section 3.1. This
fundamental property allows us to construct a theory of plasma in many cases
of astrophysical interest.
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2.2.3 The collisional integral and binary correlation

Now let us substitute (2.24) in formula (2.21) for the averaged force term:

1
∆X ∆t

∫
∆X

∫
∆t

1
mk

F̂ k,α (X, t)
∂f̂k

∂vα
dX dt =

=
1

∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1)
∂

∂vα
[ fk (X, t) fl (X1, t) +

+ fkl (X, X1, t) ] dX dX1 =

since fk (X, t) is a smooth fuction, its derivative over vα can be brought out
of the averaging procedure:

=
[

∂

∂vα
fk (X, t)

]⎧⎨⎩ 1
∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1) fl (X1, t) dX dX1

⎫⎬⎭+

+
1

∆X

∫
∆X

∑
l

∫
X1

1
mk

F̂ kl,α (X, X1)
∂

∂vα
fkl (X, X1, t) dX dX1 =

=
1

mk
F k,α (X, t)

∂fk (X, t)
∂vα

+

+
∑

l

∫
X1

1
mk

F kl,α (X, X1)
∂fkl (X, X1, t)

∂vα
dX1 . (2.29)

Here we have taken into account that the averaging of smooth functions does
not change them, and the following definition of the averaged force is used:

F k,α (X, t) =
1

∆X

∫
∆X

∑
l

∫
X1

F̂ kl,α (X, X1) fl (X1, t) dX dX1 =

=
∑

l

∫
X1

F kl,α (X, X1) fl (X1, t) dX1 . (2.30)

This definition coincides with the previous definition (2.14) of the average
force, since

all the deviations of the real force F̂k from the mean (smooth)
force Fk are taken care of in the deviations ϕ̂k and ϕ̂l of the real
distribution functions f̂k and f̂l from their mean values fk and fl.



30 Chapter 2. Statistical Description

Thus the collisional integral can be represented in the form(
∂f̂k

∂t

)
c

= −
∑

l

∫
X1

1
mk

F kl,α (X, X1)
∂fkl (X, X1, t)

∂vα
dX1 . (2.31)

Moreover, if in the last term of (2.29) the binary interactions can be repre-
sented by smooth functions of the type ekel (| rk − rl |)−2 with account of the
Debye shielding (Sections 3.2 and 8.2), then formally the velocity dependence
may be neglected.

Let us recall an important particular case considered in Section 1.1. For
the Lorentz force (1.13) as well as for the gravitational one (1.41), the condi-
tion (1.7) is satisfied. Let us require that in formula (2.31)

∂

∂vα
F kl,α (X, X1) = 0 . (2.32)

In fact this condition was tacitly assumed from the early beginning, from
Equation (2.2). Anyway, in the case (2.32), we obtain from formula (2.31) the
following expession(

∂f̂k

∂t

)
c

= − ∂

∂vα

∑
l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1, t) dX1 . (2.33)

Hence the collisional integral, at least, for the Coulomb and gravity forces can
be written in the divergent form in the velocity space v :

(
∂f̂k

∂t

)
c

= − ∂

∂vα
J k,α ,

(2.34)

where the flux of particles of kind k in the velocity space (cf. Figure 1.3b) is

J k,α (X, t) =
∑

l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1, t) dX1 . (2.35)

Therefore we arrive to conclusion that the averaged Liouville equation or
the kinetic equation for particles of kind k

∂fk (X, t)
∂t

+ vα
∂fk (X, t)

∂rα
+

F k,α (X, t)
mk

∂fk (X, t)
∂vα

=

= − ∂

∂vα

∑
l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1, t) dX1 (2.36)

contains the unknown function fkl. Hence the kinetic equation (2.36) for
distribution function fk is not closed. We have to find the equation for the
correlation function fkl . This will be done in the next Section.
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2.3 Equations for correlation functions

To derive the equations for correlation functions (in the first place for the
function of pair correlations fkl), it is not necessary to introduce any new
postulates or develop new formalisms. All the necessary equations and aver-
aging procedures are at hand.

Looking at definition (2.25), we see that we need an equation which will
describe the deviation of distribution function from its mean value, i.e. the
function ϕ̂k = f̂k − fk. In order to derive such equation, we simply have
to subtract the averaged representation (2.36) from the exact Liouville equa-
tion (2.2). The result is

∂ ϕ̂k (X, t)
∂t

+ vα
∂ ϕ̂k (X, t)

∂rα
+

F̂ k,α

mk

∂f̂k

∂vα
− F k,α

mk

∂fk

∂vα
=

=
∂

∂vα

∑
l

∫
X1

1
mk

F kl,α (X, X1) fkl (X, X1) dX1 . (2.37)

Here
F̂ k,α (X, t) =

∑
l

∫
X1

F kl,α (X, X1) f̂l (X1, t) dX1 (2.38)

is the exact force (2.20) acting on a particle of the kind k at the point X of
phase space, and

F k,α (X, t) =
∑

l

∫
X1

F kl,α (X, X1) fl (X1, t) dX1 (2.39)

is the statistically averaged force (2.30).
Thus the difference between the exact force and the averaged one is

F̂ k,α − F k,α =
∑

l

∫
X1

F kl,α (X, X1) ϕ̂l (X1, t) dX1 . (2.40)

We substitute it in Equation (2.37) where the difference of force terms can be
rewritten as follows:

F̂ k,α

mk

∂f̂k

∂vα
− F k,α

mk

∂fk

∂vα
=

F̂ k,α − F k,α

mk

∂fk

∂vα
+

F̂ k,α

mk

∂ ϕ̂k

∂vα
.

The result of the substitution is

F̂ k,α

mk

∂f̂k

∂vα
− F k,α

mk

∂fk

∂vα
=

=
∑

l

∫
X1

1
mk

F kl,α (X, X1) ϕ̂l (X1, t) dX1
∂fk

∂vα
+

F k,α

mk

∂ ϕ̂k

∂vα
+

+
∑

l

∫
X1

1
mk

F kl,α (X, X1) ϕ̂l (X1, t) dX1
∂ ϕ̂k

∂vα
. (2.41)
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On substituting (2.41) in Equation (2.37) we have the equation for the
deviation ϕ̂k of the exact distribution function f̂k from its mean value fk:

∂ ϕ̂k (X, t)
∂t

+ vα
∂ ϕ̂k (X, t)

∂rα
+ . . . = 0 . (2.42)

Considering that we have to derive the equation for the pair correlation func-
tion

fkl (X1, X2, t) = 〈 ϕ̂k (X1, t) ϕ̂l (X2, t) 〉 ,

let us take two equations:
one for ϕ̂k (X1, t)

∂ ϕ̂k (X1, t)
∂t

+ v1,α
∂ ϕ̂k (X1, t)

∂ r1,α
+

F k,α

mk

∂ ϕ̂k (X1, t)
∂ v1,α

+ . . . = 0 (2.43)

and another for ϕ̂l (X2, t)

∂ ϕ̂l (X2, t)
∂t

+ v2,α
∂ ϕ̂l (X2, t)

∂ r2,α
+

F l,α

ml

∂ ϕ̂l (X2, t)
∂ v2,α

+ . . . = 0 . (2.44)

Now we add the equations resulting from (2.43) multiplied by ϕ̂l and (2.44)
multiplied by ϕ̂k. We obtain

ϕ̂l
∂ ϕ̂k

∂t
+ ϕ̂k

∂ ϕ̂l

∂t
+ v1,α

∂ ϕ̂k

∂ r1,α
ϕ̂l + v2,α

∂ ϕ̂l

∂ r2,α
ϕ̂k + . . . = 0

or
∂ (ϕ̂k ϕ̂l)

∂t
+ v1,α

∂ (ϕ̂k ϕ̂l)
∂ r1,α

+ v2,α
∂ (ϕ̂k ϕ̂l)

∂ r2,α
+ . . . = 0 . (2.45)

On averaging Equation (2.45) we finally have the equation for the pair corre-
lation function in the following form:

∂fkl (X1, X2, t)
∂t

+ v1,α
∂fkl (X1, X2, t)

∂ r1,α
+ v2,α

∂fkl (X1, X2, t)
∂ r2,α

+

+
F k,α (X1, t)

mk

∂fkl (X1, X2, t)
∂ v1,α

+
F l,α (X2, t)

ml

∂fkl (X1, X2, t)
∂ v2,α

+

+
∂fk (X1, t)

∂ v1,α

∑
n

∫
X3

1
mk

F kn,α (X1, X3) fnl (X3, X2, t) dX3 +

+
∂fl (X2, t)

∂ v2,α

∑
n

∫
X3

1
ml

F ln,α (X2, X3) fnk (X3, X1, t) dX3 =

= − ∂

∂ v1,α

∑
n

∫
X3

1
mk

F kn,α (X1, X3) fkln (X1, X2, X3, t) dX3 −

− ∂

∂ v2,α

∑
n

∫
X3

1
ml

F ln,α (X2, X3) fkln (X1, X2, X3, t) dX3 . (2.46)
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Here

fkln (X1, X2, X3, t) =
1

∆t

∫
∆t

ϕ̂k (X1, t) ϕ̂l (X2, t) ϕ̂n (X3, t) dt (2.47)

is the function of triple correlations (see also Exercise 2.1).
Thus Equation (2.46) for the pair correlation function contains the un-

known function of triple correlations. In general,

the chain of equations for correlation functions can be shown to
be unclosed : the equation for the correlation function of sth order
contains the function of the order (s + 1).

2.4 Practice: Exercises and Answers

Exercise 2.1 [ Section 2.3 ] By analogy with formula (2.24), show that

〈 f̂k (X1, t) f̂l (X2, t) f̂n (X3, t) 〉 = (2.48)

= fk (X1, t) fl (X2, t) fn (X3, t) +

+ fk (X1, t) fln (X2, X3, t) + fl (X2, t) fkn (X1, X3, t) +

+ fn (X3, t) fkl (X1, X2, t) + fkln (X1, X2, X3, t) .

Exercise 2.2 Discuss a similarity and difference between the kinetic theory
presented in this Chapter and the famous BBGKY hierarchy theory devel-
oped by Bogoliubov (1946), Born and Green (1949), Kirkwood (1946), and
Yvon (1935).

Hint. Show that essential to both derivations is the weak-coupling as-
sumption, according to which

grazing encounters, involving small fractional energy and momen-
tum exchange between colliding particles, dominate the evolution
of the velocity distribution function.

The weak-coupling assumption provides justification of the widely appreci-
ated practice which leads to a very significant simplification of the original
collisional integral; for more detail see Klimontovich (1975, 1986).



Chapter 3

Weakly-Coupled Systems
with Binary Collisions

In a system which consists of many interacting particles, the weak-
coupling assumption allows us to introduce a well controlled approxi-
mation to consider the chain of the equations for correlation functions.
This leads to a very significant simplification of the original collisional
integral to describe collisional relaxation and transport in astrophysi-
cal plasma but not in self-gravitating systems.

3.1 Approximations for binary collisions

3.1.1 The small parameter of kinetic theory

The infinite chain of equations for the distribution function and correlation
functions does not contain more information in itself than the initial Liouville
equation for the exact distribution function. Actually, the statistical mixing
of trajectories in phase space with subsequent statistical smoothing over the
physically infinitesimal volume allows to lose ‘useless information’ – the infor-
mation about the exact motion of particles. Just for this reason, description
of the system’s behaviour becomes irreversible.

The value of the chain is also that the chain allows a direct introduction
of new physical assumptions which make it possible to break the chain off
at some term (Figure 3.1) and to estimate the resulting error. We call this
procedure a well controlled approximation.

There is no universal way of breaking the chain off. It is intimately related,
in particular, to the physical state of a plasma. Different states (as well
as different aims) require different approximations. In general, the physical
state of a plasma can be characterized, at least partially, by the ratio of
the mean energy of two particle interaction to their mean kinetic

35
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LT KE

fk fk fkl

< >
X

fkln

...BC

Figure 3.1: How to break the infinite chain of the equations for correlation
functions? LT is the Liouville theorem (1.11) or Equation (2.18) for an exact
distribution function f̂k. KE and BC are the kinetic Equation (2.36) for fk

and Equation (2.46) for the binary correlation function f kl.

energy (parameter (2.28)). If the last one can be reasonably characterized
by some temperature T (Section 9.1), then this ratio

ζ i ≈ e2

〈 l 〉 (kBT )−1
. (3.1)

As a mean distance between the particles we take 〈 l 〉 ≈ n−1/3. Hence the
ratio

ζ i =
e2

n−1/3 (kBT )−1 =
e2

kB

× n1/3

T
(3.2)

is termed the interaction parameter . It is small for a sufficiently hot and
rarefied plasma.

In many astrophysical plasmas, for example in the solar corona (see Exer-
cise 3.2), the interaction parameter is really very small. So the thermal kinetic
energy of plasma particles is much larger than their interaction energy. The
particles are almost free or moving on definite trajectories in the external
fields if the later are present.

We shall call this case the approximation of weak Coulomb interaction.
An existence of the small parameter allows us to have a complete description
of this interaction by using the perturbation procedure. Moreover such a
description is the simplest and the most exact one.

While constructing the kinetic theory, it is natural to use the perturbation
theory with respect to the small parameter ζ i. This means that

the distribution function fk must be taken to be of order unity,
the pair correlation function fkl of order ζ i, the triple correlation
function fkln of order ζ 2

i , etc.

We shall see in what follows that this principle has a deep physical sense in
kinetic theory. Such plasmas are said to be ‘weakly coupled’.

An opposite case, when the interaction parameter takes values larger than
unity, is very dense, relatively cold plasmas, for example in the interiors of
white dwarf stars (Exercise 3.3). These plasmas are ‘strongly coupled’.
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3.1.2 The Vlasov kinetic equation

In the zeroth order with respect to the small parameter ζ i, we obtain the
Vlasov equation with the self-consistent electromagnetic field (Vlasov, 1938,
1945):

∂fk (X, t)
∂t

+ vα
∂fk (X, t)

∂rα
+

+
ek

mk

(
E +

1
c

v × B
)

α

∂fk (X, t)
∂vα

= 0 . (3.3)

Here E and B are the electric and magnetic fields obeying Maxwell’s equa-
tions:

curl E = −1
c

∂ B
∂t

, div E = 4π ( ρ 0 + ρ q ) ,

(3.4)

curl B =
1
c

∂ E
∂t

+
4π

c
( j 0 + j q ) , div B = 0 .

ρ 0 and j 0 are the densities of external charges and currents; they describe the
external fields, for example, the uniform magnetic field B0. ρ q and j q are the
charge and current densities due to the plasma particles themselves:

ρ q (r, t) =
∑

k

ek

∫
v

fk (r,v, t) d 3v , (3.5)

j q (r, t) =
∑

k

ek

∫
v

v fk (r,v, t) d 3v . (3.6)

So, if we are considering processes which occur on a time scale much shorter
than the time scale of collisions,

τ ev 
 τc , (3.7)

we may use a description which includes the electric and magnetic fields aris-
ing from the plasma charge density and current density, but neglects the
microfields responsible for binary collisions. This means that F ′ = 0
in formula (2.13), therefore the collisional integral (2.16) is also equal to zero.

The Vlasov kinetic Equation (3.3) together with the definitions (3.5) and
(3.6), and with Maxwell’s Equations (3.4) serve as a classic basis for the
theory of oscillations and waves in a plasma (e.g., Silin, 1971; Schmidt, 1979;
Benz, 2002) with the small parameter ζ i and small correlational effects of
higher orders. The Vlasov equation is also a proper basis for kinetic theory
of wave-particle interactions in astrophysical plasma (Chapter 7) and shock
waves in collisionless plasma (Section 16.4). The Vlasov equation was strongly
criticized by Ginzburg et al. (1946).
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One of the natural limitations of the Vlasov equation is that it will not
make a plasma relax to a Maxwellian distribution (Section 9.5), since we effec-
tively neglect collisions by neglecting the binary correlation function. Vlasov
was the first to recognize that

the electromagnetic interaction among plasma particles is qualita-
tively different from the interaction in an ordinary gas.

3.1.3 The Landau collisional integral

Using the perturbation theory with respect to the small interaction parame-
ter ζ i in the first order, and, therefore, neglecting the close Coulomb collisions
(this will be justified in Section 8.1.5), we can find the kinetic equation with
the collisional integral given by Landau (1937)(

∂f̂k

∂t

)
c

= − ∂

∂vα
J k,α , (3.8)

where the flux of particles of kind k in the velocity space (cf. formula (2.35))
is

J k,α =
πe 2

k ln Λ
mk

∑
l

e 2
l

∫
vl

{
fk

∂fl

ml ∂ v l,β
− fl

∂fk

mk ∂ v k,β

}
×

× (u2 δαβ − uαuβ)
u3 d 3vl . (3.9)

Here u = v − vl is the relative velocity, d 3vl corresponds to the integra-
tion over the whole velocity space of ‘field’ particles l. ln Λ is the Coulomb
logarithm which takes into account divergence of the Coulomb-collision cross-
section (see Section 8.1.5). The full kinetic Equation (2.15) with the Landau
collisional integral is a nonlinear integro-differential equation for the distribu-
tion function fk (r,v, t) of particles of the kind k.

The date of publication of the Landau (1937) paper may be considered as
the date of birth of the kinetic theory of collisional fully-ionized plasma. The
theory of collisionless plasma begins with the classical paper of Vlasov (1938).
In fact, these two approaches correspond to different limiting cases.

The Landau integral takes into account the part of the particle
interaction which determines dissipation while the Vlasov equation
allows for the average field, and is thus reversible.

For example, in the Vlasov theory the question of the role of collisions in
the neighbourhood of resonances remains open. The famous paper by Lan-
dau (1946) was devoted to this problem. Landau used the reversible Vlasov
equation as the basis to study the dynamics of a small perturbation of the
Maxwell distribution function, f (1)(r,v, t). In order to solve the linearized
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Vlasov equation (Section 7.1.1), he made use of the Laplace transformation,
and defined the rule to avoid a pole in the divergent integral (see Section 7.1.2)
by the replacement ω → ω + i 0.

This technique for avoiding singularities may be formally replaced by a
different procedure. Namely it is possible to add a small dissipative term
−νf (1)(r,v, t) to the linearized Vlasov equation. In this way, the Fourier
transform of the kinetic equation involves the complex frequency ω = ω′ +i ν,
leading with ν → 0 to the same expression for the Landau damping . Note,
however, that

the Landau damping is not by randomizing collisions but by a trans-
fer of wave field energy into oscillations of resonant particles

(see Section 7.1.2).
Thus there are two different approaches to the description of plasma os-

cillation damping. The first is based on mathematical regularization of the
Cauchy integral divergence. In this approach the physical nature of the damp-
ing seems to be not considered since the initial equation remains reversible.
However the Landau method is really a beautiful example of complex analysis
leading to an important new physical result.

The second approach reduces the reversible Vlasov equation to an irre-
versible one. Although the dissipation is assumed to be negligibly small, one
cannot take the limit ν → 0 directly in the master equations: this can be done
only in the final formulae. This second method of introducing the collisional
damping is more natural. It shows that

even very rare collisions play the principal role in the physics of
collisionless plasma.

It is this approach that has been adopted in Klimontovich (1986). A more
comprehensive solution of this principal question, however, can only be ob-
tained on the basis of the dissipative kinetic equation.

The example of the Landau resonance and Landau damping demonstrates
that some fundamental problems still remain unsolved in the kinetic the-
ory of plasma. They arise from inconsistent descriptions of the transition
from the reversible equations of the mechanics of charge particles and fields
to the irreversible equations for statistically averaged distribution functions
(Klimontovich, 1998).

In the first approximation with respect to the small interaction parame-
ter ζ i we find the Maxwellian distribution function and the effect of Debye
shielding. This is the subject of the Section 3.2.

3.1.4 The Fokker-Planck equation

The smallness of the interaction parameter ζ i signifies that, in the Landau
collisional integral, the sufficiently distant Coulomb collisions are taken care
of as the interactions with a small momentum and energy transfer (see



40 Chapter 3. Weakly-Coupled Systems

Section 8.1). For this reason, it comes as no surprise that the Landau inte-
gral can be considered as a particular case of a different approach which is
the Fokker-Planck equation (Fokker, 1914; Planck, 1917). The latter gener-
ally describes systems of many particles that move under action of stochastic
forces producing small changes in particle velocities (for a review see Chan-
drasekhar, 1943a).

Let us consider a distribution function independent of space so that
f = f(v, t). The Fokker-Planck equation describes the distribution func-
tion evolution due to nonstop overlapping weak collisions resulting in
particle diffusion in velocity space:(

∂f̂

∂t

)
c

= − ∂

∂vα
[ aαf ] +

∂2

∂vα ∂vβ
[ bαβ f ] . (3.10)

The Fokker-Planck equation formally coincides with the diffusion-type
equation (which is irreversible of course) for some admixture with concentra-
tion f , for example Brownian particles (or test particles) in a gas, on which
stochastic forces are exerted by the molecules of the gas. The coefficient bαβ

plays the role of the diffusion coefficient and is equal to

bαβ =
1
2

(δvαβ) av , (3.11)

i.e. is expressed in terms of the averaged velocity changes in elementary acts
– collisions:

(δvαβ) av = 〈 δvα δvβ 〉 . (3.12)

The other coefficient is

aα = (δvα) av = 〈 δvα 〉 . (3.13)

It is known as the Fokker-Planck coefficient of dynamic friction. For example,
a Brownian particle moving with velocity v through the gas experiences a
drag opposing the motion (see Figure 1.4).

In order to find the mean values appearing in the Fokker-Planck equa-
tion, we have to make clear the physical and mathematical sense of expres-
sions (3.12) and (3.13), see Exercise 3.4.

The mean values of velocity changes are in fact statistically averaged
and determined by the forces acting between a test particle and
scatterers (field particles or waves).

Because of this, these averaged quantities have to be expressed by the colli-
sional integral with the corresponding cross-sections (Exercises 3.5 and 3.6).
The ‘standard’ derivation of the Fokker-Planck equation from the Boltzmann
integral, with discussion of its particular features, can be found for example
in Shoub (1987); however see Section 11.5 in Balescu (1975).
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For electrons and ions in a plasma, such calculations can be made and
give us the Landau integral; see Section 11.8 in Balescu (1975). The kinetic
equation found in this way will allow us to study the Coulomb interaction of
accelerated particle beams with astrophysical plasma (Chapter 4). The first
term in the Fokker-Planck equation is a friction which slows down the parti-
cles of the beam and move them toward the zero velocity in the velocity space
(Figure 3.2), the second term represents the three-dimensional diffusion of
the beam particles in the velocity space.

v

f

0 ||

( )v || t = 0

t >0

Figure 3.2: A beam of fast particles
in plasma can generate the Langmuir
waves due to the bump-on tail insta-
bility which will be shown in Chap-
ter 7. Here we illustrate only the sim-
plest effects of Coulomb collisions,
that will be considered in Chapter 4.

During the motion of a beam of accelerated particles in a plasma a reverse
current of thermal electrons is generated, which tends to compensate the
electric current of accelerated particles – the direct current.

The electric field driving the reverse current makes a great impact
on the particle beam kinetics.

That is why, in order to solve the problem of accelerated particle propagation
in, for example, the solar atmosphere, we inevitably have to apply a com-
bined approach, which takes into account both the electric field influence on
the accelerated particles (as in the Vlasov equation) and their scattering from
the thermal particles of a plasma (as in the Landau equation; see Section 4.5).

The Landau collisional integral is effectively used in many problems of
plasma astrophysics. It permits a considerable simplification of the calcula-
tions of many quantities determined by collisions of charged particles, such
as the viscosity coefficient, thermal conductivity, electric conductivity, etc.
(Section 9.5).

The Landau collisional integral does not take into account the close colli-
sions since they are responsible for large exchange of the particle momentum
(see Section 8.1). So the interaction parameter is not small, and the pertur-
bation theory is not applicable (Exercise 3.6). The close Coulomb collisions of
charged particles can play an important role in collective plasma phenomena
(Klimontovich, 1986).
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3.2 Correlation function and Debye shielding

We are going to understand the most fundamental property of the binary
correlation function. With this aim in mind, we shall solve the second equation
in the chain illustrated by Figure 3.1. To solve this equation we have to know
two functions: the distribution function fk from the first link in the chain and
the triple correlation function fkln from the third link.

3.2.1 The Maxwellian distribution function

Let us consider the stationary (∂/∂t = 0) solution to the equations for corre-
lation functions, assuming the interaction parameter ζ i to be small and using
the method of successive approximations in the following form. First,
we set fkl = 0 in the averaged Liouville equation (2.36) for the distribution
function fk, then we assume that the triple correlation function fkln is zero
in Equation (2.46) for the correlation function fkl etc.

The plasma is supposed to be stationary, uniform and in the thermody-
namic equilibrium state, i.e. the particle velocity distribution is assumed to
be a Maxwellian function

fk (X) = fk (v2) = ck exp
(

− mk v2

2kBTk

)
. (3.14)

The constant ck is determined by the normalizing condition and equals

ck = nk

(
mk

2π kBTk

)3/2

.

It is obvious that the Maxwellian function (3.14) satisfies the kinetic equa-
tion (2.36) under assumption made above if the average force is equal to zero:

F k,α(X, t) = F k,α(X) = 0 . (3.15)

Since we will need the same assumption in the next Section, we shall justify
it there.

3.2.2 The averaged force and electric neutrality

To a first approximation, i.e. with account of fkl �= 0, the distribution func-
tion is also uniform with respect to its space variables. Let us substitute
the Maxwellian distribution function (3.14) in the pair-correlation function
Equation (2.46), neglecting all the interactions except the Coulomb ones. For
the latter, in circumstances where the averaged distribution functions for the
components are uniform, we obtain the following expression for the averaged
force (2.30):

F k,α (X1) =
∑

l

∫
X2

F kl,α (X1, X2) fl (X2) dX2 =
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since plasma is uniform, fl does not depend of r2

=
∑

l

∫
r2

F kl,α (r1, r2) d 3r2 ·
∫
v2

fl (v2) d 3v2 =

= −
∫
r2

∑
l

∂

∂r1,α

(
ek el

| r1 − r2 |
)

d 3r2 · nl =

= −
∫
r2

∂

∂r1,α

(
ek

| r1 − r2 |
)

d 3r2 ·
∑

l

nl el . (3.16)

Therefore
F k,α = 0 , (3.17)

if the plasma is assumed to be electrically neutral :

∑
l

nl el = 0 ,

(3.18)

or quasi-neutral (see Section 8.2).
Balanced charges of ions and electrons determine the name plasma

according Langmuir (1928). So the average force (2.30) is equal to zero in
the electrically neutral plasma but is not equal to zero in a system of charged
particles of the same charge sign: positive or negative, it does not matter.
Such a system tends to expand.

There is no neutrality in gravitational systems. The large-scale gravi-
tational field makes an overall thermodynamic equilibrium impossible (Sec-
tion 9.6). Moreover, on the contrary to plasma, they tend to contract and
collapse.

3.2.3 Pair correlations and the Debye radius

As a first approximation, on putting the triple correlation function fkln = 0,
we obtain from Equation (2.46), in view of condition (3.17), the following
equation for the binary or pair correlation function fkl:

v1,α
∂fkl

∂r1,α
+ v2,α

∂fkl

∂r2,α
=

= −
∑

n

∫
X3

{
1

mk
F kn,α (X1, X3) fnl (X3, X2)

∂fk

∂v 1,α
+

+
1

ml
F ln,α (X2, X3) fnk (X3, X1)

∂fl

∂v 2,α

}
dX3 . (3.19)
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Let us consider the particles of two kinds – electrons and ions, assuming the
ions to be motionless and homogeneously distributed. Then the ions do not
take part in any kinetic processes; hence ϕ̂ i ≡ 0 for ions and the correlation
functions associated with ϕ̂ i equal zero as well:

f ii = 0 , fei = 0 etc. (3.20)

Among the pair correlation functions, only one has a non-zero magnitude

fee (X1, X2) = f (X1, X2) . (3.21)

Taking into account (3.20), (3.21), and (3.14), rewrite Equation (3.19) as
follows

v1
∂f

∂ r1
+ v2

∂f

∂ r2
=

=
1

kBT

∫
X3

[v1 · F (X1, X3) f (X3, X2) fe (v1) +

+ v2 · F (X2, X3) f (X1, X3) fe (v2) ] dX3 . (3.22)

Since v1 and v2 are arbitrary and refer to the same kind of particles (elec-
trons), Equation (3.22) takes the form

∂f

∂ r1
=

1
kBT

∫
X3

F (X1, X3) f (X3, X2) fe (v1) dX3 . (3.23)

Taking into account the character of Coulomb force in the same approxi-
mation as in formula (3.17) and assuming the correlation to exist only between
the positions of the particles in space (rather than between velocities), let us
integrate both sides of Equation (3.23) over d 3v1 d 3v2. The result is

∂g (r1, r2)
∂ r1

= − ne2

kBT

∫
r3

∇r1

1
| r1 − r3 | g (r2, r3) d 3r3 . (3.24)

Here the function

g (r1, r2) =
∫
v1

∫
v2

f (X1, X2) d 3v1 d 3v2 . (3.25)

We integrate Equation (3.24) over r1 and designate the function

g (r1, r2) = g (r 2
12) ,

where r12 = | r1 − r2 |. So we obtain the equation

g (r 2
12) = − ne2

kBT

∫
r3

g (r 2
23)

r13
d 3r3 .
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Its solution is

g (r) =
c 0

r
exp

(
− r

rD

)
, (3.26)

where

rD =
(

kBT

4πne2

)1/2

(3.27)

is the Debye radius. It will be defined in just this way (see formula (8.33))
for the case when the shielding is due to the particles of one kind – due to
electrons. A more general formula for the Debye radius will be derived in
Section 8.2.

The constant of integration

c 0 = − 1
4π r 2

D
n

(3.28)

(see Exercise 3.8). Substituting (3.28) in solution (3.26) gives the sought-after
pair correlation function, i.e. the velocity-integrated correlation function

g (r) = − 1
4π r 2

D
n

1
r

exp
(

− r

rD

)
= − e2

kBT

1
r

exp
(

− r

rD

)
. (3.29)

Formula (3.29) shows that

the Debye radius is a characteristic length scale of pair correlations
in a fully-ionized equilibrium plasma:

g (r) ∼ 1
r

exp
(

− r

rD

)
.

(3.30)

This result proves to be fair in the context of Section 8.2 where the De-
bye shielding will be considered in another approach. Comparison of for-
mula (3.30) with (8.32) shows that, as one might have anticipated,

the binary correlation function reproduces the shape of the actual
potential of interaction, i.e. the shielded Coulomb potential.

It is known that cosmic plasma can exhibit collective phenomena arising
out of mutual interactions of many charged particles. Since the Debye radius
rD is a characteristic length scale of pair correlations, the number n r3

D
gives

us a measure of the number of particles which can interact simultaneously.
The inverse of this number is the so-called plasma parameter

ζ p =
(
n r 3

D

)−1
. (3.31)
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This is a small quantity as well as it can be expressed in terms of the small
interaction parameter ζ i (Exercise 3.1). The fact that ζ p 
 1 implies a large
number of plasma particles in a volume enclosed by the sphere of
the Debye radius. In many astrophysical applications the plasma parame-
ter (3.31) is really small (e.g., Exercise 3.2). So the collective phenomena can
be really important in cosmic plasma.

3.3 Gravitational systems

There is a fundamental difference between plasma and the gravitational sys-
tems with potential (1.41), for example, the stars in a galaxy. This difference
lies in the nature of the gravitational force: there is no shielding to vitiate
this long-range 1/r2 force. The collisional integral formally equals infinity
because the binary correlation function g(r) ∼ 1/r.

The conventional wisdom of such system dynamics (see Binney and
Tremaine, 1987) asserts that the structure and evolution of a collection of
N self-gravitating point masses can be described by the collisionless kinetic
equation, the gravitational analog of the Vlasov equation (Exercises 3.9 and
16.7). On the basis of what we have seen above,

the collisionless appoach in gravitational systems, i.e. the entire
neglect of particle pair correlations, constitutes an uncontrolled
approximation.

Unlike the case of plasma, we cannot derive the next order correction to
the collisionless kinetic equation in the context of a systematic perturbation
expansion.

Physically, this is manifested by the fact that the 1/r potential yields
an infinite cross-section, so that, when evaluating the effects of collisions in
the usual way (Section 8.1.5) for an infinite homogeneous system, we en-
counter logarithmic divergences in the limit of large impact parameter (for-
mula (8.18)), see however Exercise 3.9. We may hope to circumvent this
difficulty, the problematic Coulomb logarithm of gravitational dynamics, by
first identifying the bulk mean field force 〈F 〉 in definition (2.13), acting at
any given point in space and then treating fluctuations F ′ away from the mean
field force. This splitting into a mean field plus fluctuations can be introduced
formally (Kandrup, 1998) and allows one to write down the collisional integral
of the type (2.16). However, this is difficult to implement concretely because
of the apparent absence of a clean separation of time scales.

For the N -body problem with N � 1 we might expect that these fluctua-
tions are small, so that their effects do in fact constitute a small perturbation.
So it is assumed that, on long time scales, one must allow for discreteness
effects, described by the Fokker-Plank equation (3.10) or the kinetic equation
with the Landau collisional integral (3.8); see Exercise 3.10.

Given that theoretical analyses have as yet proven inconclusive, one might
instead seek resource to numerical experiments. This, however, is also difficult
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for gravitational systems not characterized by a high degree of symmetry.
There is in fact only one concrete setting where detailed computations have
been done, namely the toy model of one-dimensional gravity.

In summary, even though a mean gravitational field theory based on
the Vlasov equation may seem well motivated physically, there is as yet no
rigorous proof of its validity and, in particular, no rigorous estimate as to the
time scale on which it might be expected to fail.

Hydrodynamic description of gravitational systems has a difficulty of the
same origin. The gravitational attraction cannot be screened (Section 9.6).

3.4 Comments on numerical simulations

At present, astrophysical plasma processes are typically investigated in well
developed and distinct approaches. One approach, described by the Vlasov
equation, is the collisionless limit used when collective effects dominate. In
cases where the plasma dynamics is determined by collisional processes in ex-
ternal fields and where the self-consistent fields can be neglected, the Fokker-
Planck approach is used. At the same time, it is known that

both collective kinetic effects and Coulomb collisions can play an
essential role in a great variety of astrophysical phenomena

starting from the most simple one – propagation of fast particles in plasma
(Chapter 4). Besides, as was mentioned in Section 3.1.3, collisions play the
principal role in the physics of collisionless plasma. Taking collisions
into account may lead not only to quantitative but also qualitative changes
in the plasma behaviour, even if the collision frequency ν is much less than
the electron plasma frequency.

It is known that, even in the collisionless limit, the kinetic equation is still
too difficult for numerical simulations, and the ‘macroparticle’ methods are the
most widely used algorithms. In these methods, instead of direct numerical
solution of the kinetic equation, a set of ordinary differential equations for
every macroparticle is solved. These equations are the characteristics of the
Vlasov equation.

In the case of a collisional plasma, the position of a macroparticle satisfies
the usual equation of the collisionless case

ṙ ≡ d r
dt

= v(t) , (3.32)

but the momentum equation is modified owing to the Coulomb collisions.
They are described by the Fokker-Planck operator (3.10) which introduces
a friction (the coefficient aα) and diffusion (the coefficient bαβ) in velocity
space. Thus it is necessary to find the effective collisional force Fc which acts
on the macroparticles:

v̇ ≡ dv
dt

=
1
m

(FL + Fc) . (3.33)
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The collisional force can be introduced phenomenologically (see Jones et
al., 1996) but a more mathematically correct approach can be constructed
using the stochastic equivalence of the Fokker-Planck and Langevin equations
(see Cadjan and Ivanov, 1999). So stochastic differential equations can
be regarded as an alternative to the description of astrophysical plasma in
terms of distribution function.

The Langevin approach allows one to overcome some difficulties
related to the Fokker-Planck equation and to simulate actual plasma
processes, taking account of both collective effects and Coulomb
collisions.

Generally, if we want to construct an effective method for the simulation
of complex nonlinear processes in astrophysical plasma, we have to satisfy the
following obvious but conflicting conditions.

First, the method should be adequate for the task in hand. For a number
of problems the application of simplified models of the collisional integral
can provide a correct description and ensure good accuracy. The constructed
model should describe collisional effects with the desired accuracy.

Second, the method should be computationally efficient. The algorithm
should not be extremely time-consuming. In practice, some compromise be-
tween accuracy and complexity of the method should be achieved. Otherwise,
we restrict ourselves either to a relatively simple setup of the problem or to a
too-rough description of the phenomena.

A ‘recipe’: the choice of a particular collisional model (or a model of the
collisional integral) is determined by the importance and particular features
of the collisional processes in a given astrophysical problem.

3.5 Practice: Exercises and Answers

Exercise 3.1 [ Section 3.1.1 ] Show that the interaction parameter

ζ i =
1
4π

ζ 2/3
p , (3.34)

if the Debye radius is given by formula (3.27). Discuss the difference between
ζ i and ζ p.

Exercise 3.2 [ Section 3.1.1 ] How many particles are inside the Debye sphere
in the solar corona?

Answer. From formula (8.31) for the Debye radius in two-component
equilibrium plasma (see also formula (8.77) in Exercise 8.3) it follows that for
electron-proton plasma with T ≈ 2 × 106 K and n ≈ 2 × 108 cm−3 the Debye
radius

rD =
(

kT

8π e2 n

)1/2

≈ 4.9
(

T

n

)1/2

≈ 0.5 cm . (3.35)
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The number of particles inside the Debye sphere

ND = n
4
3

πr3
D

∼ 108. (3.36)

Hence the typical value of plasma parameter (3.31) in the corona is really
small: ζ p ∼ 10−8. The interaction parameter (3.2) is also small: ζ i ∼ 10−6

(see formula (3.34)).

Exercise 3.3 [ Section 3.1.1 ] Estimate the interaction parameter (3.2) in the
interior of white dwarf stars (de Martino et al., 2003; see also Exercise 1.3).

Comment. It may seem at first sight that the mutual interactions be-
tween electrons would be very important inside a white dwarf star. However,
in a system of fermions with most states filled up to the Fermi energy,

collisions among nearby electrons are suppressed due to the fact
that the electrons may not have free state available for occupation
after the collision

(see Kittel, 1995). Hence electrons inside a white dwarf star are often ap-
proximated as a perfect gas made up of non-interacting fermions (see § 57 in
Landau and Lifshitz, Statistical Physics, 1959b). For this reason, some results
of plasma astrophysics are applicable to the electron gas inside white dwarfs.

Exercise 3.4 [ Section 3.1.4 ] Let w = w (v, δv) be the probability that a
test particle changes its velocity v to v + δv in the time interval δt. The
velocity distribution at the time t can be written as

f(v, t) =
∫

f(v − δv, t − δt) w (v − δv, δv) d 3δv . (3.37)

Bearing in mind that the interaction parameter (3.1) is small and, therefore,
| δv | 
 |v |, expand the product fw under the integral into a Taylor series.

Take the first three terms in the series and show that, in formulae (3.13)
and (3.12), the average velocity change per time interval δt:

〈 δvα 〉 =
∫

δvα w d 3δv , (3.38)

〈 δvα δvβ 〉 =
∫

δvα δvβ w d 3δv . (3.39)

Show that the Fokker-Planck equation (3.10) follows from the Taylor series
expansion of the function f(v, t) given by formula (3.37).

Exercise 3.5 [ Section 3.1.4 ] Express the collisional integral in terms of the
differential cross-sections of interaction between particles (Smirnov, 1981).

Discussion. Boltzmann (1872) considered a delute neutral gas. Since the
particles in a neutral gas do not have long-range interactions like the charged
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particles in a plasma, they are assumed to interact only when they collide,
i.e. when the separation between two particles is not much larger than 2a,
where a is the ‘radius of a particle’. A particle moves freely in a straight line
between two collisions.

In a binary collision, let vk and vl be the velocities of particles k and l
before the collision, v ′

k and v ′
l be the velocities of the same particles after the

collision. There are two types of collisions: (a) one that increases the density
of the particles at a given point of phase space by bringing in particles from
other phase space locations, (b) the other that reduces the density of particles
by taking particles away from this point to other phase space locations; these
are the collisions vk + vl → v ′

k + v ′
l .

By using notations taken into account that k and l can be different kinds
of particles, we write the Boltzmann collisional integral in the form (cf. Boltz-
mann, 1956): (

∂f̂k

∂t

)
c

=
∑

l

∫
vl

∫
Ω

( f ′
k f ′

l − fk fl ) vkl dσkl d
3vl . (3.40)

Here vkl = vk − vl is the relative velocity, d 3vl corresponds to the integra-
tion over the whole velocity space of ‘field’ particles l. fk = fk (t, r,vk) is
the distribution function of particles of the kind k, f ′

k = fk (t, r,v ′
k). The

product f ′
k f ′

l corresponds to the collisions v ′
k + v ′

l → vk + vl which inhance
the particle density.

The precollision velocities vk and vl are related to the postcollision ve-
locities v ′

k and v ′
l through the conservation laws of momentum and energy.

These relations give us four scalar equations. However we need six equations
to find two vectors v ′

k and v ′
l .

A fifth condition comes from the fact the vectors v ′
k and v ′

l will have to lie
in the plane of the vectors vk and vl. This follows from the momentum con-
servation law and means that collisions are coplanar if the force of interaction
between two particles is radial.

We need one more condition. We do not expect, of course, that the out-
come of a collision is independent of the nature of interaction. If the impact
parameter of the collision is given, we can calculate the defection produced by
the collision from the interaction potential. The case of the Coulomb potential
is considered in Chapter 8.

Since we are interested here in a statistical treatment, it is enough for us
to know the probability of deflection in different direction or a differential
scattering cross-section

dσkl =
dσkl (vkl, χ)

d Ω
d Ω , (3.41)

where d Ω = 2π sin χ dχ is a solid angle. If the particles are modelled as
hard spheres undergoing two-body elastic collisions, the differential scattering
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cross-section is a function of the scattering angle χ alone. The Boltzmann gas
model can be used for low-density neutral particles as well as for interactions
of charged particles with neutral particles.

In plasma astrophysics, the Rutherford formula (8.8) is used to character-
ize the Coulomb collisions of charged particles. A general case is considered,
for example, in Kogan (1967), Silin (1971), Lifshitz and Pitaevskii (1981).

Exercise 3.6 [ Section 3.1.4 ] Show that the Fokker-Planck collisional model
can be derived from the Boltzmann collisional integral (3.40) under the as-
sumption that the change in the velocity of a particle due to a collision is
rather small.

Exercise 3.7 [ Section 3.1.4 ] The Landau collisional integral is generally
thought to approximate the Boltzmann integral (3.40) for the 1/r potentials
to ‘dominant order’, i.e. to within terms of order 1/lnΛ, where lnΛ is the
Coulomb logarithm (see formula (8.23)). However this is not the whole truth.
Show that the Landau integral approximates the Boltzmann integral to the
dominant order only in parts of the velocity space.

Hint. This can be established by carring the Taylor series expansion of
the Boltzmann integral to the fourth order. The first term in the series will
be the familiar Landau-type collisional integral. The conclusion, drawn from
the higher-order terms (Shoub, 1987), is that the large-angle scattering pro-
cesses can play a more significant role in the evolution of the distribution
function than currently believed. The normally ‘nondominant’ part of the
diffusion tensor can make a contribution to the collisional term that decays
more slowly with increasing velocity than do terms that are retained. In gen-
eral, the approximations made are not uniformly valid in the velocity space,
if the particle distribution functions are not sufficiently close to equilibrium
distributions (Cercignani, 1969).

Exercise 3.8 [ Section 3.2.3 ] Find the constant of integration c 0 in for-
mula (3.26).

Answer. Let us solve the Poisson equation for the potential ϕ (more
justification will be given in Section 8.2):

∆ϕ = − 4π en

{
1 −

[
1 +

c 0

r
exp

(
− r

rD

)]}
=

= n
4πe c 0

r
exp

(
− r

rD

)
. (3.42)

Here it is taken into account that∫
v1

∫
v2

〈 f̂k (X1) f̂l (X2) 〉 d 3v1 d 3v2 = nk (r1) nl (r2) + gkl (r1, r2) .
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The general solution of Equation (3.42) in the spherically symmetric case, i.e.
the solution of equation

1
r

d 2

dr2 (rϕ) =
4πe c 0

r
exp

(
− r

rD

)
n ,

is of the form

ϕ (r) = n
4πe r 2

D
c 0

r
exp

(
− r

rD

)
+ c 1 +

c 2

r
.

Since, as r → 0, the potential ϕ takes the form (−e)/r, c 1 = c 2 = 0, and the
only non-zero constant is

c 0 = − 1
4π r 2

D
n

. (3.43)

Q.e.d.

Exercise 3.9 [ Section 3.3 ] Following Section 3.1.2, write and discuss the
gravitational analog of the Vlasov equation.

Answer. The basic assumption underlying the Vlasov equation is that
the gravitational N -body system can be described probabilistically in terms
of a statistically smooth distribution function f (X, t). The Vlasov equation
manifests the idea that this function will stream freely in the self-consistent
gravitational potential φ (r, t) (cf. (1.41)) associated with f (X, t), so that

∂f (X, t)
∂t

+ vα
∂f (X, t)

∂rα
− ∂φ

∂rα

∂f (X, t)
∂vα

= 0 . (3.44)

Here
∆φ = − 4π Gρ (r, t) (3.45)

and
ρ (r, t) =

∫
f (r,v, t) d 3v . (3.46)

Note that, in the context of the mean field theory, a distribution of particles
over their masses has no effect.

Applying for example to the system of stars in a galaxy, Equation (3.44)
implies that the net gravitational force acting on a star is determined by the
large-scale structure of the galaxy rather than by whether the star happens to
lie close to some other star. The force on any star does not vary rapidly, and
each star is supposed to accelerate smoothly through the force field generated
by the galaxy as a whole.

In fact, encounters between stars may cause the acceleration v̇ to differ
from the smoothed gravitational force −∇φ and therefore invalidate Equa-
tion (3.44). Gravitational encounters are not screened, they can be
thought of as leading to an additional collisional term on the right side of the
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equation – a collisional integral. However very little is known mathematically
about such possibility as we can see in Section 3.3.

Exercise 3.10 [ Section 3.3 ] Following Section 3.1.3, discuss a gravitational
analog of the Landau integral in the following form (e.g., Lancellotti and
Kiessling, 2001):(

∂f̂

∂t

)
c

= σ
∂

∂ v

∫
v ′

∂2 |v − v ′ |
∂ v ∂ v ′ ·

(
∂

∂ v
− ∂

∂ v ′

)
[ f(r, v, t) f(r, v ′, t) ] d 3v ′ .

(3.47)
Here σ is a constant determined by the effective collision rate.



Chapter 4

Propagation of Fast
Particles in Plasma

Among a variety of kinetic phenomena related to fast particles in as-
trophysical plasma, the simplest effect is Coulomb collisions under
propagation of the particles in a plasma. An important role of the
reverse-current electric field in this situation is demonstrated.

4.1 Derivation of the basic kinetic equation

4.1.1 Basic approximations

Among a rich variety of kinetic phenomena related to accelerated fast electrons
and ions in astrophysical plasma (Kivelson and Russell, 1995) let us consider
the simplest effect – Coulomb collisions under propagation of fast particle
beams in a fully-ionized thermal plasma. We shall assume that there
exists some external (background) magnetic field B0 which determines a way
of fast particle propagation and which can be locally considered as a uniform
one.

Electric and magnetic fields, E and B, related to a beam of fast particles
will be discussed in Section 4.5. Heating of plasma will be considered, for
example, in Section 8.3. So, untill this will be necessary,

accelerated particles will be considered as ‘test’ particles that do
not influence the background plasma and magnetic field B0.

Let f = f (t, r, v) be an unknown distribution function of test particles.
In what follows, q = Ze and m = Amp are electric charge and mass of a test
particle, respectively.

We restrict a problem by consideration of fast but non-relativistic particles
interacting with background plasma which consists of thermal electrons (m1 =

55
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me and e1 = −e) and thermal protons (m2 = mp and e2 = +e). Both
components of a plasma are in thermodynamic equilibrium. Using the kinetic
equation with the Landau collisional integral (3.8) we obtain

∂f

∂t
+ vα

∂f

∂rα
+

q

m

{
Eα +

1
c

[v × (B + B0) ]α

}
∂f

∂vα
= − ∂

∂vα
Jα , (4.1)

with E = 0 and B = 0,

Jα =
πq 2 ln Λ

m

2∑
l=1

e 2
l

∫
vl

{
f

∂fl

ml ∂ v l,β
− fl

∂f

m ∂ v β

}
×

× (u2 δαβ − uαuβ)
u3 d 3vl . (4.2)

Here u = v − vl is the relative velocity, d 3vl corresponds to the integration
over the whole velocity space of the plasma particles l = 1, 2. They are
distributed by the Maxwellian function (3.14):

fe (v) = ne

(
me

2π kBTe

)3/2

exp
(

− me v2

2kBTe

)
(4.3)

and

fp (v) = np

(
mp

2π kBTp

)3/2

exp
(

− mp v2

2kBTp

)
. (4.4)

For the sake of simplicity we assume Te = Tp = T (see, however, Sec-
tion 8.3.2) as well as ne = np = n. Also for the sake of simplicity we shall
consider the stationary situation (∂/∂t = 0).

Moreover we shall assume that the distribution function f depends on one
spatial variable – the coordinate z measured along the field B0, on the value
of velocity v and the angle θ between the velocity vector v and the axis z.
Therefore

f = f (z, v, θ) . (4.5)

In this case of the axial symmetry, the term containing the Lorentz force,
related to the external field B0, in Equation (4.1) is equal to zero because the
vector v × B0 is perpendicular to the plane (v, B0) but the vector ∂f/∂v is
placed in this plane.

Under ussumptions made above, Equation (4.1) takes the following form:

v cos θ
∂f

∂z
= − 1

v2

∂

∂v

(
v2Jv

)− 1
v

1
sin θ

∂

∂θ
( sin θ Jθ) . (4.6)

The distribution function f is not an isotropic one. So the angular compo-
nent Jθ of the particle flux is not equal to zero.
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4.1.2 Dimensionless kinetic equation in energy space

Let us introduce the dimensionless non-relativistic energy of the fast particles

x =
mv2

2kBT

(me

m

)
(4.7)

and the dimensionless column depth along the magnetic field

ζ = ξ/ξ̃ . (4.8)

Here

ξ =

z∫
0

n(z) dz , cm−2, (4.9)

is the dimensional column depth passed by the fast particles along the z axis;
the unit of its measurement is

ξ̃ =
k2

B
T 2

πe2q2 ln Λ

(
m

me

)2

, cm−2. (4.10)

Equation (4.6) in the dimensionless variables (4.7) and (4.8) takes the
following form (Somov, 1982):

√
x cos θ

∂f

∂ζ
=

1√
x

∂

∂x

{√
x Dγ(x)

[
∂f

∂x
+
(

m

me

)
f

]}
+ Dθ(x) ∆θf. (4.11)

Here

Dγ(x) =
[

erf (
√

x)√
x

− 2√
π

exp (−x)
]

+

+
(

me

mp

)1/2
[

erf (
√X )√X − 2√

π
exp (−X )

]
(4.12)

with
X =

mp

me
x

and

erf (w) =
2√
π

w∫
0

exp (−t2) dt ,

which is the error function. The diffusion coefficient over the angle θ

Dθ(x) =
1

8x2

{[
erf (

√
x)√

x
(2x − 1) +

2√
π

exp (−x)
]

+

+
(

me

mp

)1/2
[

erf (
√X )√X (2X − 1) +

2√
π

exp (−X )

]}
, (4.13)
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and

∆θ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
is the θ-dependent part of the Laplace operator.

To point out the similarity of the equation obtained with the Fokker-Planck
equation (3.10), let us rewrite Equation (4.11) as follows:

√
x cos θ

∂f

∂ζ
= − ∂

∂x
[ F (x)f ] +

∂2

∂x2 [ D(x)f ] + Dθ(x) ∆θf. (4.14)

Here the first coefficient

F (x) =
dDγ

dx
−
(

m

me
+

1
2x

)
Dγ(x) (4.15)

characterized the regular losses of energy when accelerated particles pass
through the plasma. The second coefficient

D(x) = Dγ(x) (4.16)

describes the energy diffusion. The third coefficient Dθ(x) corresponds to the
fast particle diffusion over the angle θ.

Kudriavtsev (1958) derived the time-dependent equation which has the
right-hand side similar to the one in our Equation (4.11) but for the isotropic
distribution function f = f(t, x) for fast ions in a thermal plasma. By using
the Laplace transformation, Kudriavtsev solved the problem of maxweliza-
tion of fast ions that initially had the mono-energetic distribution f(0, x) ∼
δ(x − x0). The same problem has been solved numerically by MacDonald et
al. (1957). (Note that in formula (8) by Kudriavtsev for the ‘radial’ compo-
nent jv of the fast ion flow in the velocity space, the factor

√
π must be in

the nominator but not in the denominator.) Both solutions (analytical and
numerical) show, of course, that the higher the ion energy, the longer the
maxwellization process.

In the particular case when all the particles are the same (m = me =
mp), the right-hand side of Equation (4.11) can be found, for example, by
using the formulae for the Fokker-Planck coefficients (3.13) and (3.11) from
Balesku (1963).

4.2 A kinetic equation at high speeds

Bearing in mind particles accelerated to high speeds in astrophysical plasma,
let us consider some approximations and some solutions of the kinetic Equa-
tion (4.11) that correspond to these approximations. First of all, we shall
assume that the dimensionless energy (4.7) of the fast particles

x � 1 . (4.17)
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This means that speeds of the particles are much higher than the mean thermal
velocity of plasma electrons (8.15). However, for the sake of simplicity, we
restrict the problem by consideration of the fast but non-relativistic particles.

Under condition (4.17), we obtain from (4.12) and (4.13) the following
simple formulae for the coefficients in the kinetic Equation (4.11):

Dγ(x) =
1√
x

(
1 +

me

mp

)
, (4.18)

Dθ(x) =
1

2x
√

x
. (4.19)

It is not taken into account here yet that me 
 mp. The first term on
the right-hand side of formula for Dγ (see the unit inside the brackets) is a
contribution of collisions with the thermal electrons of a plasma, the second
term (see the ratio me/mp) comes from collisions with the thermal protons.
However the electrons and protons give equal contributions to the angular
diffusion coefficient Dθ. This is important to see when we derive formula
(4.19) from (4.13).

Under the same assumption, the Fokker-Planck type equation (4.14) has
the following coefficients:

D(x) =
1√
x

(
1 +

me

mp

)
, (4.20)

F (x) = − m

me

1√
x

(
1 +

me

m

1
x

)
, (4.21)

and the same coefficient of angular diffusion Dθ(x) of course.
Formulae (4.18) and (4.20) demonstrate that

energy diffusion due to collisions with thermal electrons is faster in
mp/me times than that due to collisions with thermal protons.

However the angular diffusion rate is equally determined by both electrons
and protons in a plasma.

The second term on the right-hand side of the formula for F (x) describes
the regular losses of fast particle energy by collisions with thermal protons of
plasma. Since x � 1 and m ≥ me, this term is always smaller than the first
one. Taking into account that me 
 mp we also neglect the second term in
formula for D(x). Hence, in approximation under consideration,

F (x) = − m

me

1√
x

, D(x) =
1√
x

, Dθ(x) =
1

2x
√

x
. (4.22)

Let us estimate a relative role of the first and second terms on the right-
hand side of Equation (4.14). Dividing the former by the last with account of
(4.22) taken gives the ratio

xF (x)
D(x)

=
m

me
x , (4.23)
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which is always much greater than unity. So, for fast particles with speeds
much greater than the thermal velocity of plasma electrons,

the regular losses of energy due to Coulomb collisions always domi-
nate the energy diffusion.

However the energy diffusion may appear significant near the lower energy
boundary E1 of the fast particle spectrum if E1 ≈ kBT . This seems to be the
case of electron acceleration in high-temperature turbulent-current layers in
solar flares (see vol. 2, Sections 6.3 and 7.1). This simply means that, near
the lower energy E1 ≈ 10 keV, the initial assumption (4.17) becomes invalid.
Instead of (4.17), x → 1; so we have to solve exactly Equation (4.11).

Let us compare the first and third terms on the right-hand side of Equa-
tion (4.14). Dividing the former by the last with account of (4.22) taken gives
the ratio

F (x)
xDθ(x)

= 2
m

me
. (4.24)

For fast protons and heavier ions, we can neglect angular scattering in com-
parison with the regular losses of energy.

Formula (4.24) shows, however, that

for fast electons, it is impossible to neglect the angular diffusion in
comparison with the regular losses of energy.

Since the case of fast electrons will be considered later on in more detail, let us
rewrite the non-relativistic kinetic equation in the high-speed approximation
as follows:

cos θ
∂f

∂ζ
=

1
x

∂f

∂x
+

1
2x2 ∆θf.

(4.25)

Recall that the energy diffusion is neglected in (4.25) according to (4.23).

4.3 The classical thick-target model

We have just seen that, in the fast electron kinetic Equation (4.25), it is not
reasonable to neglect the angular diffusion. Let us, however, consider the
well-known and widely-used model of a thick target . From Equation (4.25),
by neglecting the angular diffusion, we obtain the following equation

cos θ
∂f

∂ζ
=

1
x

∂f

∂x
. (4.26)

With a new variable y = ζ/µ, where µ = cos θ, this equation becomes espe-
cially simple:

1
x

∂f

∂x
− ∂f

∂y
= 0 . (4.27)
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General solution of this equation can be written as

f(x, y) = F
(

x2

2
+ y

)
, (4.28)

where F is an arbitrary function of its argument. Recall that µ = const,
because we have neglected the angular diffusion; so the fast electrons move
along straight lines θ = const without any scattering.

Let us consider the initial (y = 0) energy distribution of fast electrons –
the injection spectrum – as a power law:

f(x, 0) = c0 x−γ0 Θ(x − x1) Θ(x2 − x) p0(µ) . (4.29)

Here Θ(x) is the teta-function; p0(µ) is the angular distribution of fast elec-
trons, for example, for a beam of electrons injected parallel to the z axis

p0(µ) =
1

(1 − µ2)1/2 δ (µ − 1) . (4.30)

According to (4.28) the general solution of the kinetic equation for the fast
electrons at the column depth y has the following form:

f(x, y) = c0 2−γ0/2
(

x2

2
+ y

)−γ0/2

Θ(x − x ′
1) Θ(x ′

2 − x) p0(µ) , (4.31)

where
x ′

1,2 = Re
(
x 2

1,2 − 2y
)1/2

.

Let us consider the normalization condition for the distribution function,
first, in the dimensional variables z, v, and θ (see definition (4.5)). If nb(z)
is the density of electrons in the beam at distance z from the injection
plane z = 0, then

nb(z) =

∞∫
0

π∫
0

f (z, v, θ) v2dv 2π sin θ dθ, cm−3. (4.32)

It is taken into account here that we consider the case of a beam with the
axial symmetry in velocity space.

Now we rewrite the same normalization condition in the dimensionless
variable ζ, x, and µ:

nb(ζ) = π

(
2kBT

me

)3/2 ∞∫
0

1∫
−1

f (ζ, x, µ)
√

x dx dµ , cm−3. (4.33)

For initial energy distribution (4.29) and initial angular distribution (4.30),
formula (4.33) gives

nb(0) = π

(
2kBT

me

)3/2

c0

x2∫
x1

x−γ0+1/2 dx ≡
x2∫

x1

N(0, x) dx , cm−3. (4.34)
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Here

N(0, x) = π

(
2kBT

me

)3/2

c0 x−γ0+1/2 Θ(x − x1) Θ(x2 − x) (4.35)

is the differential spectrum of the fast electron density at the boundary ζ = 0
where they are injected.

Let E be the kinetic energy of a fast electron measured in keV. Then we
rewrite (4.35) as

N(0, E) = K E−(γ+1/2) Θ(E − E1) Θ(E2 − E) , cm−3 keV−1, (4.36)

where the coefficient

K = π

(
2kBT

me

)3/2

c0

(
kBT

keV

)γ+1/2

, cm−3 keV γ−1/2 , (4.37)

and the spectral index
γ = γ0 − 1 . (4.38)

Hence the injection spectrum of fast electrons is determined by parame-
ters (4.37) and (4.38).

Substituting c0 and γ0 from (4.37) and (4.38) in (4.31) allows us to obtain
the differential spectrum of the number density of fast electrons passed the
coulomn depth ξ measured in cm−2 (see definition (4.9)):

N(ξ, E) = K
(E2 + E 2

0
)−(γ+1/2)/2 × (4.39)

× Θ (E − E ′
1) Θ (E ′

2 − E) , cm−3 keV−1.

Here
E0 = (2a0ξ)

1/2 (4.40)

is the minimal energy of electrons that can pass the depth ξ, the ‘constant’
a0 (a slow function of energy E) originates from the Coulomb logarithm and
equals

a0 = 2πe4 ln Λ ≈ (4.41)

≈ 1.3 × 10−19 ×
[

ln
( E

mc2

)
− 1

2
lnn + 38.7

]
, keV2 cm2.

In formula (4.39)
E ′
1,2(ξ) =

(E 2
1,2 − E 2

0 (ξ)
)1/2

(4.42)

are the new boundaries of energetic spectrum, when the fast electrons have
passed the column depth ξ.

Solution (4.39) shows that

the regular losses of energy due to Coulomb collisions shift the spec-
trum of fast electrons to lower energies and make it harder
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ξ = 0

ε ε ε ε ε
1 1 2 2

//

ξ > 0N

Figure 4.1: An injection spectrum (ξ = 0) and the spectrum of fast electrons
that have passed the column depth ξ.

as illustrated by schematic Figure 4.1. Both effects follow from the fact that,
in Equation (4.26), we have taken into account only the regular losses of
energy (4.22). For non-relativistic electrons F (x) = −1/

√
x.

In the solar system, the Sun is the most energetic particle accelerator,
producing electrons of up to tens of MeV and ions of up tens of Gev. The
accelerated 20-100 keV electrons appear to contain a significant part of the
total energy of a large solar flare (Lin and Hudson, 1971; Syrovatskii and
Shmeleva, 1972), indicating that the particle acceleration and energy release
processes are intimately linked. Flare accelerated electrons colliding with the
ambient solar atmosphere produce the bremsstrahlung hard X-ray (HXR)
emission.

Syrovatskii and Shmeleva (1972) used the solution (4.39) to calculate the
HXR bremsstrahlung which arises during inelastic collisions of accelerated
electrons with thermal ions in the solar atmosphere during flares (e.g., Strong
et al., 1999). Brown (1971), in the same approximation but using a different
method, has found a similar formula for HXR intensity but with the different
numerical coefficient by factor π in Section 5 (see formulae (14) and (15)).
Anyway, since that time,

the simplest thick-target model is widely accepted as a likely mecha-
nism and an appropriate mathematical tool to explain and describe
the HXR emission observed during flares

on the Sun and other stars or generally in cosmic plasma (see, however, Sec-
tions 4.4 and 4.5). In the classical formulation of the thick-target model,
beams of accelerated electrons stream along the magnetic field lines and loose
their energy by Coulomb collisions in denser layers of the solar atmosphere,
mainly in the chromosphere.
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4.4 The role of angular diffusion

4.4.1 An approximate account of scattering

As we have seen in Section 4.2, for fast electrons, we cannot neglect the
angular scattering in comparison with the regular losses of energy in kinetic
Equation (4.14). Hence, in the classical thich-target model, we have to take
the angular scattering into account at least approximately.

If, for example, the beam of fast electrons penetrates a plane parallel the
stratified plasma such as the solar chromosphere, the scattering of an aver-
age beam of electrons may conveniently be described by the Chandrasekhar-
Spitzer formulae (8.51) and (8.52) in terms of a coordinate z normal to the
atmospheric strata and directed into the plasma. Then the mean electron
energy E may be expressed as a function of z while the scattering is measured
in terms of the angle θ(z) which the mean electron velocity v makes with the
z axis at that point. So

v ‖ ≡ vz = vµ , where µ = cos θ. (4.43)

The dimensional column depth passed by electrons along the z axis is

ξ =

z∫
0

n(z) dz , cm−2. (4.44)

In terms of ξ, the Chandrasekhar-Spitzer formulae (8.51) and (8.52) are:

dE
dξ

= −a0

E
v

vz
(4.45)

and
dvz

dξ
= −3

2
a0

E2 v , (4.46)

where a0 = 2πe4 ln Λ (see definition (4.41)). Thus we have an ordinary dif-
ferential equation

3
2

1
E

dE
dξ

=
1
vz

dvz

dξ

with solution ( E
E0

)3/2

=
vz

vz0
, (4.47)

where the suffix 0 refers to values at ξ = 0. Since vz/µ = v and v2/v2
0 = E/E0,

we find that
vz

vz0
=

µ

µ0

( E
E0

)1/2

.
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Therefore it follows from (4.47) that

µ

µ0
=

E
E0

.

(4.48)

This nice formula (Brown, 1972) shows that on average when an electron has
suffered a 60◦ deflection its energy has been reduced by 50 %.

Resubstituting (4.48) in (4.45) and (4.46) gives the solutions for µ and E :

µ

µ0
=

E
E0

=
(

1 − 3 a0ξ

µ0 E 2
0

)1/3

. (4.49)

For small depth ξ
µ

µ0
=

E
E0

≈ 1 − a0

µ0 E 2
0

ξ . (4.50)

Let us compare these results with the general solution (4.28) obtained
without account taken of scattering in the classical thick-target model.

4.4.2 The thick-target model

According to (4.28)
x2

2
+ y =

x 2
0

2
, (4.51)

where x0 is an initial energy of an electron. Hence

x

x 2
0

= (1 − 2y)1/2
, (4.52)

where y = ζ/µ and µ = const = µ0. Therefore for electrons with initial
energy E0 solution (4.28) gives us:

E
E0

=
(

1 − 2a0

µ0 E 2
0

ξ

)1/2

. (4.53)

If

ξ 
 ξ0 =
E 2
0

2a0
,

then E
E0

≈ 1 − a0

µ0 E 2
0

ξ . (4.54)

Formula (4.54) coincides with (4.50). The fast electrons in the thick-target
model have the same behaviour at small depth ξ as that one predicted by the
approximate Chandrasekhar-Spitzer formulae.
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However, with increase of the column depth ξ, the approximate for-
mula (4.49) predicts much faster losses of energy in comparison with the
classical thick-target model which does not take collisional scattering into
account.

In Figure 4.2, the dashed straight line (a) corresponds to the asymptotic
formula (4.50) which is valid for small column depth ξ. Moreover here µ0 = 0,
so

E
E0

≈ 1 − 1
2

ξ

ξ0
. (4.55)

The solid curve (b) represents the classical thick-target model; it takes
only the collisional losses of energy into account. With µ0 = 0, formula (4.53)
is

E
E0

=
(

1 − ξ

ξ0

)1/2

. (4.56)

An approximate scattering model described above is presented by the curve (c)
which corresponds to formula (4.49) with µ0 = 0, so

E
E0

=
(

1 − 3
2

ξ

ξ0

)1/3

. (4.57)

ε

ξ

ε

ξ

0

0

1

0 1

a

b
c

Figure 4.2: The mean energy E of fast electrons that have passed the column
depth ξ (from Somov, 1982).

Figure 4.2 shows that
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the collisional scattering and energy losses become very great in
comparison with the classical thick-target model if the column
depth ξ is not very small.

Brown (1972) used the approximate formula (4.49) to develop an approx-
imate thick-target model in which accelerated electrons penetrate downward
into the solar chromosphere during a flare. Here the electron distribution is
greatly modified by collisions – not only by energy losses but also by scat-
tering. Directivity and polarization of the hard X-ray bremsstrahlung
emission have been calculated in such oversimplified thick-target model in
which the guiding field B0 is vertical. The model predicted that the degree
of polarization should rise from zero to around 30 % near the solar limb.

Unfortunately the accuracy of the model decreases when the collisional
scattering and energy losses become not small. The reason is that the mean
rates (4.45) and (4.46) represent well the modification of the electron velocity
distribution only at small depth ξ. A more accurate formulation of the kinetic
problem will be given in the next Section with account taken of the collisional
scattering and one more mechanism of the electron beam anisotropization.
Generally, it seems true that the total absorption of the accelerated electrons
in a thick target might result in negligible directivity and polarization of the
hard X-ray emission.

4.5 The reverse-current electric-field effect

4.5.1 The necessity for a beam-neutralizing current

We assume that some external magnetic field B0 channels a fast particle prop-
agation and can be locally considered as uniform. The electric and magnetic
fields E and B related to a beam of fast electrons are superposed on this
field. In this way, the beam will be considered as a real electric current J
which influences the background plasma and magnetic field B0. In order not
to obscure the essential physical points related to the electromagnetic field of
the beam, we shall neglect all other processes like the radiative and hydro-
dynamic response of the background plasma to a fast heating by the electron
beam (Section 8.3.2).

In the classical thick-target model for hard X-ray bremsstrahlung emission
during solar flares, if the fast electrons are supposed to have about the parallel
velocities, then the number of injected beam particles per unit time has to
be very large – in the order of >∼ 1036 electrons s−1 above 25 keV during
the impulsive phase of a flare (Hoyng et al., 1976). Given the large electron
fluxes implied by the hard X-ray observations, various authors realized that
the beam electric current must be enormous – J >∼ 1017 Ampere.

This would imply the magnetic field of the beam B >∼ 105 G. So the
magnetic energy contents of the coronal volume should be more than six or-
ders of magnitude larger than the pre-flare contents for an average coronal
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field B0 ≈ 100 G. Such situation is not likely to occur because the electron
beams are thought to be created by conversion of the magnetic energy avail-
able in the corona into kinetic energy.

Apart from this energy problem there is another difficulty related to beams
of ∼ 1036 electrons s−1; they create an enormous charge displacement. For a
typical coronal volume of 1028 cm3 and an electron density 109 cm−3, the total
number of electrons is 1037. A stream of 1036 electrons s−1 would evacuate
all the electrons out of the volume in about 10 s. As a result an enormous
charge difference between the corona and the chromosphere would be build
up.

In reality the above mentioned problems will not occur, because the beam
propagates in a background well-conducting plasma. The charge displace-
ment by the beam will quickly create an electric field E 1 which causes the
plasma electrons to redistribute in such a way as to neutralize the local charge
built:

div E 1 = 4πρ q . (4.58)

Because this electric field is caused by charge separation, it is frequently re-
ferred to as an electrostatic field.

The second effect is related to the inductive properties of a plasma. In a
plasma the magnetic field will not vary considerably on a timescale shorter
than the magnetic diffusion time. For beams with radii comparable to the
radii of coronal flaring loops this scale is much longer than the duration of
the impulsive phase. When the current varies in magnitude, immediately an
inductive electric field E 2 will be created. It drives a current j 2 of plasma
electrons in such a way to prevent magnetic field variations on a time scale
shorter than the magnetic diffusion time. As a result the magnetic field will
not vary much during the impulsive phase:

curl B ≈ const ≈ 0 ≈ 4π

c
j 2 +

1
c

∂

∂t
E 2 . (4.59)

So the electrostatic effect allows the plasma to ‘absorb’ the excess charge
imposed by the beam of fast electrons; and the inductive effect prevents the
magnetic field from changing faster than the allowed diffusion time.

Both the electrostatic and the inductive electric field will effectively
result in an electron plasma current which is in opposite direction
of the beam current J.

This electron plasma current is commonly referred to as the reverse or return
current Jrc.

Van den Oord (1990) has analyzed the electrostatic and inductive response
of a plasma to a prescribed electron beam. By using the Maxwell equations
together with the time-dependent Ohm’s law (Section 11.2) and with the
equation of motion for the plasma electrons in the hydrodynamic approxima-
tion (Section 9.4), he has shown that the non-linear terms are responsible for
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a coupling between the electrostatic (irrotational) and inductive (solenoidal)
vector fields generated by the beam in a plasma. In order to obtain analytical
solutions, van den Oord has decoupled the electrostatic and inductive fields,
by ignoring the non-linear terms in the equation of motion, and has found
solutions for a mono-energetic blunt beam.

An application of the model in conditions of the solar corona leads to the
following results. Charge neutralization is accompanied by plasma oscillations
(see formula (8.35)), that are present behind the beam front, and occurs on a
time-scale of a few electron-ion collision times. This is also the time scale on
which the plasma waves damp out. The net current in the system quickly be-
comes too low and therefore also the resulting magnetic field strength remains
low (B 
 B0).

Although the electric field near the beam front is locally strong, the oscilla-
tory character prevents strong acceleration of the plasma electrons. According
to the van den Oord model, all the beam energy is used initially to accelerate
the plasma electrons from rest and later on to drive the reverse current against
collisional losses. In what follows, we shall use these results and shall formu-
late an opposite problem in the kinetic approximation. We shall not consider
the beam as prescribed. On the contrary, we shall consider an influence of
the electric field, which drives the reverse current, on the distribution
function of fast electrons in the thick-target plasma.

4.5.2 Formulation of a realistic kinetic problem

The direct electric current carried by the fast electrons is equal to

jdc(z) = e

∫
v

f(v, θ, z) v cos θ d 3v . (4.60)

We shall consider this current to be fully balanced by the reverse current of
the thermal electrons in the ambient plasma,

jdc(z) = jrc(z) ≡ j(z) . (4.61)

This means that here we do not consider a very fast process of the reverse
current generation. The time-dependent process of current neutralization,
with account of both electrostatic and inductive effects taken (Section 4.5.1),
has been investigated in linear approximation by van den Oord (1990). Instead
of that we shall construct a self-consistent approach for solving the pure kinetic
problem with a steady electric field E = E(z) which drives the reverse current.

So, using Ohm’s law, we determine the reverse-current electric field to be
equal to

E(z) =
j(z)
σ

. (4.62)

Here σ is conductivity of the plasma; we can assume that the conductivity
is determined by, for example, Coulomb collisions (Section 11.1). This is the
case of a cold dense astrophysical plasma.
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On the other hand, the plasma turbulence effects are also important, for
example, in the heat conductive front between the high-temperature source
of energy and cold plasma of the thick-target. Anyway, even though we ex-
pect the wave-particle interactions to have some effects on the fast electrons
(Chapter 7), it is unlikely that such effects can change significantly the dis-
tribution function of fast electrons with energies far exceeding the energies of
the particles in a background cold plasma.

What is really important is the reverse-current electric field, it results
in an essential change of the fast electron behaviour in the plasma. That
is why, to solve the thick-target problem, we develop a combined approach
which takes into account the electric field (4.62) as in the Vlasov equation and
Coulomb collisions as in the Landau equation. So the distribution function
for the fast electrons in the target is described by the following equation
(Diakonov and Somov, 1988):

v cos θ
∂f

∂z
− eE(z)

me
cos θ

∂f

∂v
− eE(z)

mev
sin2 θ

∂f

∂ cos θ
=
(

∂f

∂t

)
c
. (4.63)

Here the second and the third terms are the expression of the term

ee

me
E (r)

∂f

∂v

in the dimensional variables v and θ. On the right-hand side of Equation (4.63)(
∂f

∂t

)
c

=
1
v2

∂

∂v

[
v2 ν(v)

(
kBTe

me

∂f

∂v
+ vf

)]
+

+ ν(v)
∂

∂ cos θ

(
sin2 θ

∂f

∂ cos θ

)
(4.64)

is the linearized collisional integral; ν(v) is the collisional rate for fast electrons
in the cold plasma.

To set the mathematical problem in the simplest form (see Figure 4.3),
we assume that ‘superhot’ (Te,0 = T0

>∼ 108 K) and ‘cold’ (Te,1 = T1 ∼
104 −106 K 
 T0) plasmas occupy the two half-spaces separated by the plane
turbulent front (z = 0). The superhot region represents the source of energy,
for example, the high-temperature reconnecting current layer (RCL) in a solar
flare. Let

fs = fs(v, θ) (4.65)

be the electron distribution function in the source. fs is, for example, the
Maxwellian function for the case of thermal electron runaway (Diakonov and
Somov, 1988) or a superposition of thermal and nonthermal functions in the
general case. To study the effect of the reverse-current electric field in the
classical thick-target model, Litvinenko and Somov (1991b) considered only
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Figure 4.3: The fast electron propagation in a thick-target cold plasma. TF
is the turbulent front between the superhot source of fast electrons and the
cold plasma.

accelerated electrons with an energetic power-law spectrum. Anyway, the
function fs is normalized to the electron number density n0 in the source:∫

fs(v, θ) d 3v = n0 . (4.66)

Because the electron runaway in a turbulent plasma (Gurevich and Zhiv-
lyuk, 1966) is similar to the ordinary collisional runaway effect (Section 8.4.3),
the electrons with velocities

ve > vcr , (4.67)

where vcr is some critical velocity, can freely penetrate through the turbulent
front into the cold plasma. Electrons with lower velocities remain trapped in
the source. In this Section, we are going to consider the distribution function
for the fast electrons escaping into the cold plasma and propagating there.
The boundary condition for the forward-flying (the suffix ff) fast electrons
may be taken as

f
ff

(v, θ, 0) = fs(v, θ) Θ(v − vcr) , 0 ≤ θ ≤ π/2 , (4.68)

where Θ is the theta-function.
The distribution function for the back-flying electrons is determined from

the solution of Equation (4.63) everywhere, including the boundary z = 0.
Therefore the problem has been formulated. Note the obvious but important
thing; Equation (4.63) contains two unknown functions: the fast electron
distribution function f(v, θ, z) and the electric field E(z). So the kinetic
Equation (4.63) must be solved together with Equations (4.60)–(4.62). This
is the complete set of equations to be solved self-consistently.
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4.5.3 Dimensionless parameters of the problem

In the dimensionless variables (4.7), (4.8) and µ = cos θ, Equation (4.63) takes
the form

µx2 ∂f

∂ζ
− 2εµx2 ∂f

∂x
− εx (1 − µ2)

∂f

∂ µ
= x

∂f

∂x
+ τx

∂2f

∂x2 +
1
2

∆µf. (4.69)

Here the dimensionless electron energy

x =
mev

2

2kBT0
(4.70)

is normalized with the temperature T0 of the superhot plasma; for exam-
ple, T0 = Te,cl ≈ 100 MK is an effective electron temperature of the high-
temperature (super-hot) turbulent-current layer (see vol. 2, Section 6.3) The
ratio of the cold-to-superhot plasma temperature

τ =
T1

T0
≈ 10−4, (4.71)

if we consider as example the injection of fast electrons into the solar chro-
mosphere. The dimensionless column depth ζ (see definition (4.8)) equals the
dimensional column depth passed by fast electrons

ξ =

z∫
0

n(z) dz , cm−2, (4.72)

divided by the unit of its measurement

ξ̃ =
k2

B
T 2

0

πe4 ln Λ
, cm−2. (4.73)

The dimensionless electric field

ε =
E

ED,1

2
τ

, (4.74)

where

ED,1 =
4πe3 ln Λ

kB

n1

T1
(4.75)

is the Dreicer field in the cold plasma of the target (cf. definition (8.70)).
The parameter ε can be found from the self-consistent solution of the com-

plete set of equations and the boundary conditions as desribed in Section 4.5.2.
The parameter ε is not small in a general case and, in particular, in the so-
lar flare problem ε ≈ 2 − 20 (see Figure 4 in Diakonov and Somov, 1988).
Therefore, from (4.74)

E = ε
τ

2
ED,1 ≈ (10−4 − 10−3)ED,1 , (4.76)
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so Ohm’s law (4.62) is well applicable in this case.
Let us set the specific form of the boundary distribution function (4.68).

The processes of electron acceleration in astrophysical plasma and their heat-
ing are always closely related. However, for the sake of contrast of them to
each other, we consider separately two different functions.

(a) We shall suppose that the electron distribution in the superhot plasma
is near to the Maxwellian one. So the distribution function

fs(x, µ) = n0 c0 exp (−x) h(µ) , µ ≥ 0 , (4.77)

with the constant

c0 =
(

me

2πkBT0

)3/2

.

(b) For accelerated electrons we shall use the power-law spectum as the
boundary distribution function for the forward-flying electrons

fff (x, µ) = fs(x, µ) Θ(µ − 1) = n0 c0 x−γ h(µ) , µ ≥ 0 , (4.78)

with another normalization constant c0. In principle, the function h(µ) is
indefinite but should satisfy some additional conditions; at least the func-
tion h(µ) should be maximally smooth (Diakonov and Somov, 1988).

4.5.4 Coulomb losses of energy

4.5.4 (a) Electric current in the thick target

In Equation (4.69), the term τx (∂2f/∂x2) describes the energy diffusion. As
we know from Section 4.2, for fast electrons with velocities much greater than
the thermal velocity of plasma electrons, the regular losses of energy due to
collisions always dominate the energy diffusion. So we neglect this term in
comparison with the term x (∂f/∂x).

However, as we also know from Section 4.2, we cannot neglect the term
with the µ-dependent part ∆µf of the differential operator Laplacian ∆. This
term is responsible for the angular diffusion of electrons and is not small in
comparison to the regular losses term x (∂f/∂x).

Therefore we can ignore only the term with small parameter τ in Equa-
tion (4.69). After that we have

µx2 ∂f

∂ζ
= 2ε µx2 ∂f

∂x
+εx (1−µ2)

∂f

∂ µ
+x

∂f

∂x
+

1
2

∂

∂µ

[(
1 − µ2) ∂f

∂µ

]
. (4.79)

By using this equation, we would like to obtain the equation which determines
the behaviour of the direct electric current carried by fast electrons in the
target. It follows from definition (4.60) that

jdc(ζ) = 2πe

(
2kBT0

me

)2 ∞∫
0

+1∫
−1

f(x, µ, ζ) xµ dx dµ . (4.80)
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So we have to divide Equation (4.79) by x and to integrate it as in for-
mula (4.80).

All terms on the right-hand side of Equation (4.79), except one, give zero
contributions. The only term x (∂f/∂x), describing the regular energy losses
due to Coulomb collisions, determines the changes of electric current

j(ζ) = jdc(ζ) = jrc(ζ) (4.81)

along the coulomn depth ζ into the target. It gives the right-hand side of the
equation:

dj

dζ
= − cj

+1∫
−1

f(x, µ, ζ) dµ (4.82)

with constant

cj = πe

(
2kBT0

me

)2

. (4.83)

The physical meaning of Equation (4.82) is that

fast electrons lose their energy and mix with thermal particles of
the ambient cold plasma due to Coulomb collisions.

Thus the self-consistent reverse-current problem demands to consider the
term x (∂f/∂x), describing the Coulomb energy losses.

4.5.4 (b) 2D versus 1D models for the thick target

Equation (4.82) shows that the electric current j(ζ) decreases along the
coulomn depth ζ into the target because of the ‘falling out’ of ‘completely’
stopped (x = 0) electrons from the distribution function owing to collisional
losses of energy. From the electric current continuity equation it follows that
a current change is possible only when there are electron ‘sources’ and/or
‘sinks’ in the thick target.

In the energy region where Equation (4.69) is valid (x � τ), the colli-
sional friction force (Section 8.4.1) is inversely proportional to x. For this
reason, the electrons with low energies quickly slow down to energies of the
order of τ and thus mix with the thermal electrons in the ambient plasma.
Since in Equation (4.79) formally τ = 0, the ‘falling out’ takes place under
x = 0 according to formula (4.82).

The models under consideration in this Chapter, except the classical thick-
target model in Section 4.3, are two-dimensional (2D) in the velocity space
(see definition (4.5)). This fact has an important consequence.

Some electrons after injection into the thick target make a curve
trajectory and cross the boundary in the reverse direction without
significant losses of energy.



4.5. Reverse-current Electric Field 75

These electrons come back to the source (the place of acceleration) without
being stopped in the target; they determine the boundary distribution func-
tion for back-flying electrons and constitute a significant part (possibly the
bulk) of all injected electrons.

Such a process is impossible in one-dimensional (1D) models, like the clas-
sical thick-target model, because an electron cannot change the initial direc-
tion to the opposite one without being stopped to zeroth velocity and acceler-
ated by the reverse-current electric field from the zeroth velocity in the reverse
direction. So collisional losses of energy are involved twice in the 1D dynamics
of all fast electrons stopped in the target. In general, the 1D kinetic models
taking Coulomb collisions into account are non-physical approximations.

The other group of injected electrons considered in 2D models is composed
of the fast electrons which, after moving in the target under electrostatic and
friction forces, do not come back in the particle source. With suitable values
of energy x and angle θ, they lose a lot of their initial energy and stop their
motion in the target not far from the boundary. There seem to be small
amounts of such particles. They determine the electric current change. Thus
the current j(ζ) and, hence, the electric field E(ζ) can change slowly near the
boundary.

Among the particles that determine the current, we may choose a small
subgroup of fast electrons which penetrate to such a depth into the target
where the electric field is very small (ε 
 1) and further on they are moving
affected only by collisions. Even for this small subgroup the 2D models are
certainly more realistic in comparison with the 1D models which do not take
into account the collisional scattering (Section 4.4).

4.5.5 New physical results

Usually to solve the 2D (in velocity space) kinetic equation one develops a
complicated numerical method. Diakonov and Somov (1988) have developed a
new technique to obtain an approximate analytical solution of Equation (4.63)
taking the Coulomb collisions and the reverse-current field into account. They
have applied this technique to the case of thermal runaway electrons in solar
flares. It appears that the reverse-current electric field leads to a significant
reduction of the convective heat flux carried by fast electrons escaping
from the high-temperature plasma to the cold one.

It is not justified to exclude the reverse-current electric-field effects
in studies of convective heat transport by fast thermal electrons in
astrophysical plasma, for example, in solar flares.

Litvinenko and Somov (1991b) have used the same technique to study
the behaviour of the electrons accelerated inside a reconnecting current layer
(RCL) in the solar atmosphere during flares. They have shown that the
reverse-current electric field results in an essential change of the fast electron
behaviour in the thick target.
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The reverse-current electric field leads to a quicker decrease of the
distribution function with the column depth in comparison with the
classical thick-target model.

It is worth mentioning here that both models (thermal and non-thermal) lead
to practically the same value of the field near the boundary, ε0, and this value
is large: ε0 � 1. So the effects of the reverse-current field are not small.

The distribution function appears to be an almost isotropic one. The
main part of the injected electrons returns into the source. As a result, the
hard X-ray polarization appears much smaller than in the collisional thick-
target model without taking account of the reverse current. In calculations
by Litvinenko and Somov (1991b), the maximum polarization was found to
be of about 4 % only. So a major conclusion of this section is that

in order to have a more precise insight into the problem of electron
acceleration in solar flares, we inevitably have to take into account
the reverse-current electric-field effects.

They make the accelerated electron distribution to be almost isotropic and
leads to a significant decrease of expected hard X-ray bremsstrahlung polar-
ization (Somov and Tindo, 1978).

4.5.6 To the future models

After all said above, it is rather surprising to conclude that the most of the
above mentioned 2D models, which have been developed after the classical
thick-target model (Section 4.3), are however not used to obtain a more re-
alistic quantitative informaton on fast electrons in solar flares. The simplest
classical thick-target model is still very popular. Up to now we do not have
a realistic time-dependent self-consistent thick-target model (which must be
simple enough to be easily used) to interpret and analyze the hard X-ray
emission so frequently detected in space.

Future models will incorporate such fine effects like a nonuniform initial
ionization of chromospheric plasma in the thick-target (Brown et al., 1998a;
2003), the time-of-flight effect (Aschwanden et al., 1998; Brown et al., 1998b;
Aschwanden, 2002), with account taken of the effect of the reverse-current
electric field as an effect of primary importance. Otherwise the accuracy of
a model is lower that the accuracy of modern hard X-ray data obtained by
RHESSI (Lin et al., 2002; 2003).

∗ ∗ ∗
Now let us clarify our plans. Before transition to the hydrodynamic descrip-
tion that is valid for systems containing a large number of colliding particles,
we have to study two particular but interesting cases.

First, N = 1, a particle in a given force field. This simplest approximation
gives us clear approach to several fundamental issues of collisionless plasma.
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In particular, it is necessary to outline the basis of kinetic theory for wave-
particle interactions in astrophysical plasma (Chapter 7).

Second, N = 2, binary collisions of particles with the Coulomb potential
of interaction. They are typical for collisional plasma. We have to know the
Coulomb collisions well to justify the hydrodynamic description of astrophys-
ical plasma (Chapter 9).

In the next Chapter we start from the former.

4.6 Practice: Exercises and Answers

Exercise 4.1. [ Section 4.3 ] How deep can the accelerated electrons with
the initial energy E0 ≈ 10 keV penetrate from the solar corona into the chro-
mosphere?

Answer. From formula (4.40) we find the simplest estimation for the
column depth

ξ =
E 2
0

2a0
, cm−2. (4.84)

Substituting E0 ≈ 10 keV and n ≈ 1012 cm−3 in formula (4.41) gives a0 ≈
3×10−18 keV2 cm2. With this value a0 we find ξ ≈ 1019 cm−2. At such depth
in the chromosphere, the density of the plasma n ≈ 1012 cm−3 indeed.

Accelerated electrons with energies E > 10 keV penetrate deeper and
contribute significantly to impulsive heating of the optical part of a solar flare
(see a temperature enhancement at ξ ≈ 1020 cm−2 in Figure 8.4).

Exercise 4.2. [ Section 4.5 ] How strong is the reverse-current electric field
in the chromosphere during a solar flare?

Answer. According to (4.76), the electric field

E = ε
τ

2
ED,1 ≈ (10−4 − 10−3)ED,1 . (4.85)

In the chromosphere (Exercise 8.4), the Dreicer field E
D

> 0.1 V cm−1. So,
under injection of accelerated electrons into the chromosphere during the im-
pulsive phase of a flare, the reverse-current field E > 10−5 − 10−4 V cm−1.
With the length scale l ∼ 103 km, this electric field gives rise to a poten-
tial φ ≈ E l ∼ 1 − 10 keV.

Exercise 4.3. [ Section 4.5.4 ] Discuss expected properties of a solution of
Equation (4.79) without the collisional energy losses term x (∂f/∂x).



Chapter 5

Motion of a Charged
Particle in Given Fields

Astrophysical plasma is often an extremely tenuous gas of charged par-
ticles, without net charge on average. If there are very few encounters
between particles, we need only to consider the responses of a particle
to the force fields in which it moves. The simplest situation, a single
particle in given fields, allows us to understand the drift motions of
different origin and electric currents in such collisionless plasma.

5.1 A particle in constant homogeneous fields

5.1.1 Relativistic equation of motion

In order to study the motion of a charged particle, let us consider the following
basic equation:

dp
dt

= eE +
e

c
v × B + mg . (5.1)

In relativistic mechanics (see Landau and Lifshitz, Classical Theory of Field ,
1975, Chapter 2, § 9) the particle momentum and energy are

p =
mv√

1 − v2/c2
and E =

mc2√
1 − v2/c2

, (5.2)

respectively. By using the Lorentz factor

γL =
1√

1 − v2/c2
, (5.3)

we rewrite formulae (5.2) as

p = γLmv and E = γLmc2. (5.4)

79
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Hence
p =

E
c2 v . (5.5)

By taking the scalar product of Equation (5.1) with the velocity vector v
we obtain

dE
dt

= F · v , (5.6)

where
F = eE + mg

is a non-magnetic force. The particle kinetic energy change during the time dt
is dE = v · dp. Therefore, according to Equation (5.6), the work on a
particle is done by the non-magnetic force only. In what follows we
shall remember that magnetic fields are ‘lazy’ and do not work.

Let us consider the particle motion in constant homogeneous fields.

5.1.2 Constant non-magnetic forces

Now let a non-magnetic force be parallel to the y axis, F = F ey , and let the
initial momentum of the particle be parallel to the x axis, p0 = p0 ex .

y

x0

F

y

x0

0 0p
e

Figure 5.1: The trajectory
of particle motion under the
action of a constant non-
magnetic force.

Then we integrate Equation (5.1) to find that the particle moves along the
catenary shown in Figure 5.1:

y − y0 =
E0

F

{
cosh

[
F

p0c
(x − x0)

]
− 1

}
. (5.7)

Here E0 is an initial energy of the particle.
Formula (5.7) in the non-relativistic limit is that of a parabola:

y − y0 =
F

2mv 2
0

(x − x0)2 .
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5.1.3 Constant homogeneous magnetic fields

Let the non-magnetic force F = 0. The magnetic force in a constant and
homogeneous field results in particle motions. Let us show that. From Equa-
tion (5.1) we have

dp
dt

=
e

c
v × B . (5.8)

We known by virtue of (5.6) that the particle kinetic energy E = const.
Therefore |v | = const, and from Equation (5.8)

v̇ = ωB v × n . (5.9)

Here the overdot denotes the derivative with respect to time t, n is the unit
vector along the field B = B n , and the constant

ωB =
ecB

E (5.10)

is the gyrofrequency or cyclotron frequency. We use sometimes, in what fol-
lows, the name Larmor frequency. The last is a slightly confusing terminology
in view of the fact that there is the frequency of the Larmor precession (see
§ 45 in Landau and Lifshitz, Classical Theory of Field , 1975), ωL , which turns
out to be half of the gyrofrequency ωB .

In the non-relativistic limit, the gyrofrequency

ωB =
eB

mc
.

(5.11)

By integrating Equation (5.9) we find the linear differential equation

ṙ = ωB r × n + C , (5.12)

where vector C = const.
By taking the scalar product of Equation (5.12) with the unit vector n we

have
n · ṙ = C ‖ ≡ v ‖ (t = 0) .

The constant C⊥ can be removed from consideration by an appropriate choice
of the moving reference system. C⊥ = 0 in the reference system where F = 0
(Section 5.1.4), and this choice is consistent with the initial Equation (5.8).
Therefore

ṙ⊥ = ωB r⊥ × n . (5.13)

The vector r⊥ is changing with the velocity v⊥ which is perpendicular to r⊥
itself. Hence the change of vector r⊥ is a rotation with the constant frequency
ω = ωB n . Thus we have

v⊥ = ωB r⊥ = const = v⊥(0) ,
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and

r⊥ =
v⊥(0)
ωB

=
E v⊥(0)

ecB
=

c p⊥
eB

,

since it follows from formula (5.5) that

E v⊥ = c2p⊥ .

We have obtained the expression for the gyroradius or the Larmor radius

rL =
c p⊥
eB

.

(5.14)

The term ‘rigidity’ is introduced in cosmic physics:

R =
cp
e

. (5.15)

The rigidity of a particle is measured in Volts:

[ R ] =
[ cp ]
[ e ]

=
eV
e

= V.

Rigidity is usually used together with the term ‘pitch-angle’

θ =
(
v̂0,B

)
. (5.16)

From (5.14) and (5.15) it follows that the particle’s gyroradius or Larmor
radius is

rL =
R⊥
B

. (5.17)

That is why

the particles with the same rigidity and pitch-angle move along the
same trajectories in a magnetic field.

This fact is used in the physics of the magnetospheres of the Earth and other
planets, as well as in general physics of “cosmic rays” (Ginzburg and Sy-
rovatskii, 1964; Schlickeiser, 2002).

The cosmic rays, high-energy (from 109 eV to somewhat above 1020 eV)
particles of cosmological origin, were discovered almost a century ago but they
are one of the very few means available to an Earth-based observer to study
astrophysical or cosmological phenomena. The knowledge of their incoming
direction and their energy spectrum are the bits and pieces of a complex
puzzle which can give us information on the mechanism that produced them
at the origin, unfortunately distorted by many effects they undergo during
their journey over huge distances.
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5.1.4 Non-magnetic force in a magnetic field

Let us consider the case when a non-magnetic force F is perpendicular to the
homogeneous magnetic field B (see Figure 5.2). For the sake of simplicity, we
shall consider the non-relativistic equation of motion:

m v̇ = F +
e

c
v × B . (5.18)

y

x0

F

y

x0

0

0p

vd

B

x0

F

y

vd

B

(a)

(b)

1

2

3

Figure 5.2: The trajectory of motion a positively charged particle in a uniform
magnetic field under the action of a non-magnetic force. Slow (a) and fast (b)
drifts.

Let us try to find the solution of this equation in the form

v = vd + u . (5.19)

Here vd is some constant velocity, so that substituting (5.19) in Equa-
tion (5.18) gives

m u̇ + 0 =
e

c
u × B + F +

e

c
vd × B .

We choose vd in such a way that the two last terms vanish:

F +
e

c
vd × B = 0 .
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This is the case if the following expression is chosen:

vd =
c

e

F × B
B 2 .

(5.20)

Actually, by using the known vector identity

a × (b × c) = b (a · c) − c (a · b) ,

we infer
e

c
vd × B = n (n · F) − F = −F ,

since F⊥n = B/B. So formula (5.20) is correct.
Thus if a non-magnetic force F is perpendicular to the field B, the particle

motion is a sum of the drift with the velocity (5.20) called drift velocity , which
is perpendicular to both F and B, and the spiral motion round the magnetic
field lines – the gyromotion:

m u̇ =
e

c
u × B . (5.21)

Depending on a relative speed of these two motions, we distinguish slow (vd <
u) and fast (vd > u) drifts, see (a) and (b) in Figure 5.2.

To understand the motion, let us think first about how the particle would
move if only the magnetic field were present. It would gyrate in a circle, and
the direction of motion around the circle would depend on the sign of the
particle’s charge. The radius of the circle, rL , would vary with the particle’s
mass and would therefore much larger for an ion than for an electron if their
velocities were the same (see formula 5.14).

The non-magnetic force F accelerates the particle during part of each orbit
(see 1 → 2 in Figure 5.2a) and decelerates it during the remaining part of the
orbit (see 2 → 3 in Figure 5.2a). The result is that the orbit is a distorted
circle with a larger-than-average radius of curvature during half of the orbit
and a smaller-than-average radius of curvature during the remaining half of
the orbit. A net displacement is perpendicular to the force F and the magnetic
field B.

5.1.5 Electric and gravitational drifts

As we have seen above, in collisionless plasma, any force F, that is capable
of accelerating or decelerating particles as they gyrate about the magnetic
field B, will result in a drift perpendicular to both the field and the force.

(a) If F = eE , then the drift is called electric drift, its velocity

vd = c
E × B

B 2 (5.22)



5.1. Constant Homogeneous Fields 85

E

vd

B vd

p

e

+

-

1

Figure 5.3: Electric drift. The kinetic energy E of a positively charged parti-
cle p+ is a maximum at the upper point 1, hence the curvature radius r

L
of

the trajectory is a maximum at this point.

being independent of the particle charge and mass (Figure 5.3).
Since the drift velocity depends upon neither the charge nor the mass of

the particle,

the electric drift generates the motion of collisionless plasma as a
whole with the velocity v = vd relative to a magnetic field.

Being involved in the electric drift, the collisionless plasma tends: (a) to
flow similar to a fluid, and (b) to be ‘squeezed out’ from direct action of the
electric field E applied in a direction which is perpendicular to the magnetic
field B. Formula (5.22) says that the drift velocity is perpendicular to both
the electric and magnetic fields. This is sometimes referred to as an ‘E-cross-B
drift’, but its magnitude is inversely proportional to the magnitude of B.

We should not forget that formula (5.22) was obtained in the non-
relativistic limit. In fact, formula (5.22) would formally result in vd ≥ c
for E ≥ B.

g
vd

B

vd

p

e

+

-

+

-

j

Figure 5.4: Gravitational drift. Initiation of an electric current by the action
of the gravity force in a collisionless plasma with magnetic field.
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(b) For the gravitational force F = mg formula (5.20) gives the drift
velocity

vd =
mc

e

g × B
B 2 . (5.23)

The gravitational drift velocity is seen to depend upon the particle mass and
charge. Positively charged particles drift in the direction coinciding with that
of the product g × B, while negatively charged particles drift in the opposite
direction as shown in Figure 5.4. Therefore

a gravitational field is capable of generating an electric current in a
magnetized collisionless plasma.

5.2 Weakly inhomogeneous slowly changing fields

5.2.1 Small parameters in the motion equation

Let us take the non-relativistic Equation (5.18) for the motion of a charged
particle and rewrite it as follows:

m

e
( r̈ − g ) = E +

1
c

ṙ × B . (5.24)

On making this expression non-dimensional

r∗ =
r
L

, t∗ =
t

τ
, v∗ =

v
v0

, g∗ =
g
g

, B∗ =
B
B0

, E∗ =
E
E0

,

we have the following equation

m

e

L

τ2

(
r̈∗ − gτ2

L
g∗
)

= E0 E∗ +
L

cτ
B0 ṙ∗ × B∗ .

Normalize this equation with respect to the last term (the Lorentz force)
by dividing the equation by LB0/cτ :

m

e

c

B0

1
τ

( r̈∗ − αg g∗) =
E0

B0

cτ

L
E∗ + ṙ∗ × B∗ .

Introduce the dimensionless parameter

αB =
m

e

c

B0

1
τ

.

Two situations are conceivable.
(a) Spatially homogeneous magnetic and electric fields are slowly changing

in time. The characteristic time τ = 1/ω, where ω is a characteristic field
change frequency. Therefore the dimensionless parameter αB is equal to

αB =
ω

ωB

. (a)
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(b) For the fields that are constant in time but weakly inhomogeneous,
the characteristic time is to be defined as τ = L/v0, L and v0 being the char-
acteristic values of the field dimensions and the particle velocity, respectively.
In this case

αB =
rL

L
. (b)

Generally, a superposition of these two cases takes place. The field is called
weakly inhomogeneous slowly changing field, if

αB ≈ ω

ωB

≈ rL

L

 1 .

(5.25)

The second parameter of the problem,

αE =
E0

B0

cτ

L
,

characterizes the relative role of the electric field. We assume αE = 1, because,
if this parameter is small, this can be taken into account in the final result.

The third dimensionless parameter αg = gτ2/L is not important for our
consideration in this Section; so we put αg = 1.

Thus we have
αB ( r̈∗ − g∗) = E∗ + ṙ∗ × B∗ , (5.26)

the equation formally coinciding with the initial dimensional one. That is why
it is possible to work with Equation (5.24), using as a small parameter the
dimensional quantity m/e. This method is rather unusual but quite justified
and widely used in plasma physics. The corresponding expansion in the Taylor
series is termed the expansion in powers of m/e. We find such a solution of
Equation (5.24).

5.2.2 Expansion in powers of m/e

Now let us represent the solution of Equation (5.24) as a sum of two terms,

r (t) = R (t) + rL(t) . (5.27)

The first term R (t) describes the motion of the guiding center of the Lar-
mor circle, the second term rL (t) corresponds to the rotational motion or
gyromotion of the particle. The case of an electron e− is shown in Figure 5.5.

Recall that for the constant homogeneous magnetic field (see (5.14))

rL =
c p⊥
eB

=
m

e

c v⊥
B

,
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n
B

rR

r
r

e

L

L

0

B

.

- Figure 5.5: The Larmor motion of a
negatively charged particle (an elec-
tron) in a weakly inhomogeneous
slowly changing field.

i.e., the Larmor radius is proportional to the parameter m/e. It is natural
to suppose that the dependence is the same for the weakly inhomogeneous
slowly changing field, i.e.

| rL | ∼ m

e
.

For example, if the magnetic field does not change in time and does not change
much within the gyroradius, then the particle moves through a nearly uniform
magnetic field while making a circular round. However the non-uniformities
make the guiding center move in a way different from a simple translatory
motion. We are going to find the equation describing the guiding center
motion.

Let us substitute (5.27) in Equation (5.24) and expand the fields g, E, and
B in the Taylor series about the point r = R:

g (r) = g (R) + (rL · ∇) g (R) + . . . ,

E (r) = E (R) + (rL · ∇)E (R) + . . . , (5.28)
B (r) = B (R) + (rL · ∇)B (R) + . . . .

From Equation (5.24) we have

r̈ = g +
(m

e

)−1
[
E (r) +

1
c

ṙ × B (r)
]

.

Hence the basic equation contains the small parameter m/e to the power (-1).
By substituting (5.27) and (5.28) in this equation we obtain

R̈ + r̈L = g (R) + (rL · ∇)g (R) +

+
(m

e

)−1
{E (R) + (rL · ∇)E (R) } + (5.29)

+
(m

e

)−1
{

1
c

(
Ṙ + ṙL

)
× [B (R) + (rL · ∇)B (R) ]

}
+ . . . .
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Note that we have to think carefully about smallness of different terms in
Equation (5.29). For example, the magnitude of ṙL is not small:

| ṙL | ∼ | rL |
τ

∼ rL ωB ∼ αB α−1
B

∼ 1 .

The particle velocity is not small, although the Larmor radius is
small. That is the physical reason for the term(m

e

)−1 1
c

[ ṙL × (rL · ∇) B (R) ]

having zero order with respect to the small parameter m/e.
The acceleration term r̈L is not small either:

| r̈L | ∼ | rL |
τ2 ∼ rL ω 2

B
∼ α−1

B
∼
(m

e

)−1
.

In the expansion (5.29) let us retain only the terms with the order of
smallness less than one, that is

R̈︸︷︷︸
(0)

= − r̈L︸ ︷︷ ︸
(−1)

+g (R)︸ ︷︷ ︸
(0)

+
(m

e

)−1
[
E (R) +

1
c

Ṙ × B (R)
]

︸ ︷︷ ︸
(−1)

+

+
(m

e

)−1
( rL · ∇ )E (R)︸ ︷︷ ︸

(0)

+
(m

e

)−1 1
c

Ṙ × [ ( rL · ∇ )B (R) ]︸ ︷︷ ︸
(0)

+

+
(m

e

)−1 1
c

ṙL × [ ( rL · ∇ )B (R) ]︸ ︷︷ ︸
(0)

+ O
(m

e

)
. (5.30)

Here the orders of smallness of the corresponding terms are given in brackets
under the braces.

5.2.3 The averaging over gyromotion

In order to obtain the equation for guiding center motion let us average Equa-
tion (5.30) over a small period of the Larmor rotation,

TB =
2π

ωB

.

Since 〈 rL 〉 = 〈 ṙL 〉 = 〈 r̈L 〉 = 0 , we infer the following equation

R̈ = g (R) +
e

m

[
E (R) +

1
c

Ṙ × B (R)
]

+ O
(m

e

)
+

+
e

mc
〈 ṙL × [ ( rL · ∇ )B (R) ] 〉 . (5.31)
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Let us consider the last term which also has to be averaged. Here we may
put

ṙL = ωB rL × n .

On rearrangement (see Exercise 5.9), we obtain

e

mc
〈 ṙL × [ ( rL · ∇ )B (R) ] 〉 = − M

m
∇B . (5.32)

Here
M =

1
c

e ωB

2π

(
πr2

L

)
=

1
c

JS (5.33)

is the magnetic moment of a particle on the Larmor orbit (Figure 5.6). The
case of electron e− is shown here.

B

r
r

e

L
L

.

M

J

S
-

Figure 5.6: The motion of a negatively charged particle on the Larmor orbit
and its magnetic moment. The moment is antiparallel to the magnetic field.

We interpret −e (ωB/2π) as the current +J associated with the gyrating
electron. That is why we call M a dipole magnetic moment as the name
usually refers to a property of a current loop defined as the current J flowing
through the loop times the area S of the loop (see Sivukhin, 1952). Hence it
is clear from (5.33) that M is the magnetic moment of the gyrating particle.

So a single gyrating charge generates a magnetic dipole. Note that, for
any charge of a particle, positive or negative,

the direction of the dipole magnetic moment is opposite to the di-
rection of the magnetic field.

Therefore the diamagnetic effect has to occur.
Substituting the non-relativistic formula ωB = eB/mc in (5.33) gives

M =
1
2π

e2

mc2 B πr2
L

. (5.34)

Therefore
the magnetic moment is proportional to the magnetic field flux
through the surface covering the particle’s Larmor orbit.

It is also obvious from (5.32) that we can use the following formula for the
force acting on the magnetic moment:

F = − M ∇B .
(5.35)
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z
F

e
R

BC Figure 5.7: The diamagnetic
force acts on the guiding center
moving along the symmetry axis
of a magnetic mirror configura-
tion.

Let the field strength increase along the field direction. For the sake of
simplicity, we consider a magnetic configuration symmetric around the central
field line as shown in Figure 5.7. The strength of the magnetic field increases
when the guiding center (not a particle) of a particle moves along the central
line in the direction of the axis z. The force (5.35) is exerted along the field
and away from the direction of increase of the field. As a consequence,
the parallel component of the guiding center velocity Ṙ decreases to zero at
some maximum strength of the magnetic field and then changes sign. We say
that the particle experiences a mirror force, and we shall call the place where
it turns around a magnetic mirror . Note that a charged particle moving along
the symmetry axis z is unaffected by magnetic force of course.

Finally, from Equation (5.31), we obtain the equation of the guiding center
motion:

R̈ = g (R) +
e

m

[
E (R) +

1
c

Ṙ × B (R)
]

− M
m

∇B (R) + O
(m

e

)
. (5.36)

The guiding center calculations involve considerably less amount of nu-
merical work and produce trajectories in good agreement with detailed cal-
culations if the non-uniformities of the magnetic and other fields are really
small over the region through which the particle is making the circular motion.
Moreover

the guiding center theory helps us to develope an intuition about
the motions of charged particles in magnetic field.

And this intuition turns out to be useful in solving many practical problems
of plasma astrophysics, for example, in physics of the Earth magnetosphere.

5.2.4 Spiral motion of the guiding center

Even without regarding the terms O(m/e), Equation (5.36) is more difficult
in comparison with (5.24). The term g (R), the term with electric field E (R),
and the two last terms in Equation (5.36) apart, it is seen that

R̈ =
e

mc
Ṙ × B . (5.37)

Therefore the guiding center spirals, as does the particle (cf. Equation (5.8)).
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By analogy with formula (5.14), the guiding center spiral radius can be
found

R⊥ =
mcṘ⊥

eB
. (5.38)

So it is a small quantity of order

R⊥
rL

=
Ṙ⊥
v⊥

∼ rL

L

as compared with the particle Larmor radius (5.14).
The radius of the guiding center spiral is of the order of m/e as

compared with the particle Larmor radius. Consequently, this spiral has a
higher order with respect to the small parameter m/e and can be neglected
in the approximation under study.

5.2.5 Gradient and inertial drifts

Let us neglect the term O(m/e) in Equation (5.36) and take the vector product
of Equation (5.36) with the unit vector n = B/B:

R̈ × n = g × n +
e

m
E × n +

eB

mc
( Ṙ × n ) × n +

M
m

n × ∇B .

From this we find the drift velocity across the magnetic field

Ṙ⊥ ≡ n × ( Ṙ × n ) = c
E × n

B
+

mc

eB
g × n+

+
Mc

eB
n × ∇B − mc

eB
R̈ × n . (5.39)

The first term on the right-hand side of Equation (5.39) corresponds to
the electric drift (5.22), the second one presents the gravitational drift (5.23).
The third term is new for us in this Chapter; it describes the gradient drift
arising due to the magnetic field inhomogeneity. The gradient drift velocity

vd =
Mc

eB
n × ∇B .

(5.40)

The same formula follows of course from (5.20) after substituting in it the
formula (5.35) for the force acting on the magnetic moment M in the weakly
inhomogeneous field.

So, if a particle gyrates in a magnetic field whose strength changes from
one side of its gyration orbit to the other, the instantaneous radius of the
curvature of the orbit will become alternately smaller and larger. Averaged
over several gyrations,
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the particle drifts in a direction perpendicular to both the magnetic
field and the direction in which the strength of the field changes.

The fourth term on the right-hand side of (5.39) corresponds to the inertial
drift:

vd = − mc

eB
R̈ × n .

(5.41)

Let us consider it in some detail. For calculating the inertial drift veloc-
ity (5.41), we have to know the guiding center acceleration R̈. It will suffice
for the calculation of R̈ to consider Equation (5.39) in the zeroth order, since
the last term of (5.39) contains the small parameter m/e. In this order with
respect to m/e, we have

Ṙ⊥ = c
E × n

B
.

Hence the guiding center acceleration

R̈ =
d

dt
Ṙ =

d

dt
( Ṙ ‖ + Ṙ⊥) =

d

dt

(
v ‖ n + c

E × n
B

)
. (5.42)

Because this aspect of particle motion is important in accounting for the
special properties of a collisionless cosmic plasma, it is good to understand it
not only mathematically but also in an intuitive manner.

5.2.5 (a) The centrifugal drift

At first, we consider the particular case assuming the electric field E = 0
in formula (5.42), the magnetic field B being time-independent but weakly
inhomogeneous. Under these conditions

R̈ =
d

dt
( v ‖ n ) = n

dv ‖
dt

+ v ‖
dn
dt

.

The first term on the right-hand side does not contribute to the drift velocity
since n × n = 0. Rewrite the second term as follows:

v ‖
dn
dt

= v ‖

(
∂ n
∂t

+ v ‖ (n · ∇)n
)

. (5.43)

In this formula, the first term on the right equals zero for the time-independent
field. The second one is equal to

v 2
‖ (n · ∇)n = −v 2

‖

(
ec

Rc

)
. (5.44)

Here Rc is a radius of curvature for the field line at a given point R. At this
point the unit vector ec is directed from the curvature center 0c as shown in
Figure 5.8.
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Figure 5.8: The frame of reference
for derivation of the formula for the
inertial drift in weakly inhomoge-
neous magnetic field.

Thus the dependence of the inertial drift velocity on the curvature of the
weakly inhomogeneous magnetic field is found

Ṙ⊥
∣∣
c =

1
Rc ωB

v 2
‖ ec × n . (5.45)

This is the drift of a particle under action of the centrifugal force

Fc =
mv 2

‖
Rc

ec . (5.46)

In formula (5.45), the centrifugal force produced by motion of a particle
along the magnetic field appears explicitly. Therefore the centrifugal drift
velocity can be seen to be a special case of the expression (5.20) obtained for
drift produced by an arbitrary non-magnetic force F.

5.2.5 (b) The curvature-dependent drift

Let us come back to the gradient drift and consider a time-independent
weakly-inhomogeneous magnetic field. Its gradient

∇B =
1

2B
∇ (B · B ) =

1
B

[ (B · ∇ )B + B × curlB ] .

In a current-free region curlB = 0 , and hence

∇B =
1
B

(B · ∇ )B = (n · ∇)B = (n · ∇) B n = B (n · ∇)n+

+n (n · ∇B ) = −B

(
ec

Rc

)
+ n (n · ∇B ) .
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The last term does not contribute to the gradient drift velocity (5.40). The
contribution of the first term to the drift velocity is

Ṙ⊥ =
Mc

eB
n ×

(
(−B)

ec

Rc

)
= − M

eRc
n × ec =

M
eRc

ec × n . (5.47)

Here, according to definition (5.33) and formula (5.14), the magnetic moment

M =
1
c

JS =
e ωB r2

L

2c
=

e v 2
⊥

2c ωB

. (5.48)

On substituting formula (5.48) into (5.47) we see that the gradient drift
in a time-independent weakly-inhomogeneous magnetic field has a structure
analogous to the centrifugal drift (5.45):

Ṙ⊥
∣∣
gr =

1
Rc ωB

1
2

v 2
⊥ ec × n . (5.49)

Therefore we can add the curvature-dependent part of the gradient drift (5.49)
to the centrifugal drift (5.45):

Ṙ⊥ =
1

Rc ωB

(
v 2

‖ +
1
2

v 2
⊥

)
ec × n . (5.50)

This formula unites the two drifts that depend on the field line
curvature of a weakly inhomogeneous magnetic field.

In a curved magnetic field, the gradient drift is present in combination with
the centrifugal drift.

5.2.5 (c) The curvature-independent gradient drift

It is worth considering the part of the gradient drift, that is independent of
the field line curvature. Let the field lines be straight (Rc → ∞), their density
increasing unidirectionally as shown in Figure 5.9. The field strength B2 at
a point 2 is greater than that one at a point 1. So, according to (5.17), the
Larmor radius

rL

∣∣
2 < rL

∣∣
1 .

The particle moves in the manner indicated in Figure 5.9.
For comparison purposes, it is worth remembering another illustration.

This is related to, on the contrary, the non-magnetic force F (Section 5.1.4).
Under action of the force, the particle velocity at a point 1 in Figure 5.10, v1,
is greater than at a point 2. Hence the Larmor radius rL = cp⊥/eB is greater
at a point 1 than at a point 2 as well.

In other words, when the particle is at the point 2 at the top of its trajec-
tory, the force F and the Lorentz force (e/c)v × B both act in the downward
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Figure 5.9: The simplest interpretation of the gradient drift. A gradient in
the field strength, ∇B , in the direction perpendicular to B will produce a
drift motion of ions and electrons.
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Figure 5.10: The physical nature of the drift under the action of a non-
magnetic force F which is perpendicular to the uniform magnetic field B.

direction in Figure 5.10. This enhanced normal acceleration makes the tra-
jectory more sharply bent than it would have been in the absence of the force
F. On the other hand, when the particle is at the bottom point 1, the Lorentz
force is diluted by F, thereby causing the trajectory to be less sharply bent.
As a result, there is a drift of the guiding center in a direction perpendicular
to both B and F.

Figures 5.9 and 5.10 also demonstrate the validity of formula (5.35).
The drifts with velocity which depends on the particle charge and mass,

like the gradient drift, can give rise to a current by making the electrons
and ions drift in opposite directions. Such drifts can also be important for
the problem of element abundances or element fractionation (see the second
volume of this book).

Recommended Reading: Sivukhin (1965), Morozov and Solov’ev (1966b)
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5.3 Practice: Exercises and Answers

Exercise 5.1 [ Section 5.1 ] Evaluate the gyrofrequency for thermal electrons
and protons in the solar corona above a sunspot.

Answer. At typical temperature in the corona, T ≈ 2 × 106 K, from the
non-relativistic formula (5.11), it follows that: the electron gyrofrequency

ω (e)
B

= 1.76 × 107 B (G) , rad s−1 ; (5.51)

the proton gyrofrequency

ω (p)
B

= 9.58 × 103 B (G) , rad s−1 . (5.52)

The gyrofrequency of electrons is mp / me ≈ 1.84×103 times larger than that
one of protons. Just above a sunspot the field strength can be as high as
B ≈ 3000 G. Here ω (e)

B
≈ 5 × 1010 rad s−1. The emission of thermal electrons

at this height in the corona can be observed at wavelength λ ≈ 4 cm.

Exercise 5.2 [ Section 5.1 ] Under conditions of the corona (Exercise 5.1),
evaluate the mean thermal velocity and the Larmor radius of thermal electrons
and protons.

Answer. The thermal velocity of particles with mass mi and tempera-
ture T i is

VTi =
(

3kB T i

mi

)1/2

. (5.53)

Respectively, for electrons and protons:

VTe = 6.74 × 105
√

Te (K) , cm s−1 , (5.54)

and
VTp = 1.57 × 104

√
Tp (K) , cm s−1 . (5.55)

At the coronal temperature VTe ≈ 9.5×103 km s−1 ∼ 109 cm s−1 and VTp ≈
220 km s−1.

From (5.14) we find the following formulae for the Larmor radius:

r (e)
L

=
VTe

ω
(e)
B

= 3.83 × 10−2

√
Te (K)

B (G)
, cm , (5.56)

and

r (p)
L

=
VTp

ω
(p)
B

= 1.64

√
Tp (K)

B (G)
, cm . (5.57)

At T ≈ 2 × 106 K and B = 3000 G we find r(e)
L

≈ 0.2 mm and r(p)
L

≈ 1 cm.

Exercise 5.3. [ Section 5.1 ] During solar flares electrons are accelerated to
energies higher than 20–30 keV. These electrons produce the bremsstrahlung
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emission. The lower boundary of the spectrum of accelerated electrons is not
known because the thermal X-ray emission of the high-temperature (super-
hot) plasma masks the lower boundary of the non-thermal X-ray spectrum.
Assuming that the lower energy of accelerated electrons K ≈ 30 keV, find
their velocity and the Larmor radius in the corona.

Answer. The kinetic energy of a particle

K = E − mc2, (5.58)

where E is the total energy (5.2), mc2 = 511 keV for an electron. Since
K /mc2 
 1, formula (5.58) can be used in the non-relativistic limit: K =
mv2/2. From here the velocity of a 30 keV electron v ≈ 1010 cm s−1 ≈ 0.3 c.

The Larmor radius of a non-relativistic electron according to (5.14)

r (e)
L

= 5.69 × 10−8 v⊥ (cm s−1)
B (G)

. (5.59)

For a 30 keV electron
r (e)
L

≈ 5.6 × 102 1
B (G)

. (5.60)

Above a sunspot with B ≈ 3000 G the Larmor radius r (e)
L

≈ 2 mm. Inside
a coronal magnetic trap with a field B ≈ 100 G the electrons with kinetic
energy K ≈ 30 keV have the Larmor radius r (e)

L
≈ 6 cm.

Exercise 5.4 [ Section 5.1 ] Under conditions of the previous Exercise esti-
mate the Larmor radius of a proton moving with the same velocity as a 30 keV
electron.

Answer. For a non-relativistic proton it follows from formula (5.14) that

r (p)
L

= 1.04 × 10−4 v⊥ (cm s−1)
B (G)

, cm . (5.61)

Above a sunspot a proton with velocity ≈ 0.3 c has the Larmor radius ≈ 3 m.
Inside a coronal trap with magnetic field ≈ 100 G the Larmor radius ≈ 104 cm.
So

non-relativistic protons (and other ions) can be well trapped in coro-
nal magnetic traps including collapsing ones

(see vol. 2, Chapter 7). This is important for the problem of ion acceleration
in solar flares.

Exercise 5.5 [ Section 5.1 ] The stronger magnetic field, the smaller is the
Larmor radius rL of an electron. Find the condition when rL is so small as
the de Broglie wavelength of the electron

λB =
h

mev
= 1.22 × 10−7 1√K(eV)

. (5.62)
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Here h is Planck’s constant, K is the kinetic energy (5.58) of the electron. If
K = 1 eV, the de Broglie wavelength λB ≈ 10−7 cm ≈ 10 Angström.

Answer. In the non-relativistic limit, the electron with kinetic energy K
has the Larmor radius

rL = 3.37

√ K (eV)
B (G)

, cm . (5.63)

When the energy of the electron is 1 eV and the field has a strength of 1 G,
the Larmor radius rL ≈ 3 cm. However for a field of 3 × 107 G, the Larmor
radius is diminished to the de Broglie wavelength ≈ 10−7 cm. So for white
dwarfs which have B > 107 G, and especially for neutron stars, we have to
take into account

the quantization effect of the magnetic field: the Larmor radius is
no longer arbitrary but can take only certain definite values.

We call a magnetic field the superstrong one, if rL < λB . Substituting (5.63)
and (5.62) into this condition, we rewrite it as follows

B > 3 × 107 K (eV) , G . (5.64)

In superstrong fields the classic theory of particle motion, developed above, is
no longer valid and certain quantum effects appear.

The energy difference between the levels of a non-relativistic electron in a
superstrong field is

δE
B

≈ eB

mc

h

2π
∼ 10−8 B , eV . (5.65)

On the other hand, the difference between energy levels in an atom, for ex-
ample a hydrogen atom, is of about 10 eV; this is comparable with δE

B
in a

superstrong field B > 108 − 109 G. In ordinary conditions B is not so large
and does not affect the internal structure of atoms.

Inside and near neutron stars B > 1011 − 1012 G. In such fields a lot of
abnormal phenomena come into existence due to the profound influence of the
external field on the interior of atoms. For example, the electron orbits around
nuclei become very oblate. Two heavy atoms, e.g. iron atoms, combine into a
molecule (Fe2) and, moreover, these molecules form polymolecular substances,
which are constituents of the hard surface of neutron stars (Ruderman, 1971;
Rose, 1998).

Exceedingly superstrong (ultrastrong) fields, >∼ 1014 G, are suggested in
the so-called magnetars, the highly-magnetized, newly-born neutron stars (see
Section 19.1.3).

Exercise 5.6 [ Section 5.1 ] Is it justified to neglect the radiation reaction
in the motion Equation (5.8) while considering the gyromotion of electrons in
astrophysical plasmas?
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Answer. In the non-relativistic limit v2 
 c2 , the total energy radiated
per unit time by a charge e moving with acceleration r̈ can be calculated
in the dipolar approximation (see Landau and Lifshitz, Classical Theory of
Field , 1975, Chapter 9, § 67):

I =
2

3c3 d̈ 2 . (5.66)

Here d = e r and d̈ = e r̈.
In a uniform magnetic field B, an electron moves in a helical trajectory. For

the transversal motion in the Larmor orbit r = rL , the total power radiated
by the electron

I =
2

3c3 e2 r 2
L

ω 4
B

=
2e2

3c3 v2 ω 2
B

. (5.67)

Here v = ωB rL is the velocity of the electron in the Larmor orbit.
Let us estimate the strength of the magnetic field such that an electron

with kinetic energy K = mv2/2 would radiate an appreciable amount of energy
during one period of gyration, τB = 2π/ωB . Consider a ratio

γr =
τB

τr
=

1
K

dK
dt

2π

ωB

. (5.68)

Substituting (5.67) in (5.68) gives

γr =
8π

3
e3

(mc2)2
B ≈ 1.4 × 10−15 B (G) . (5.69)

Therefore, while considering the gyromotion of non-relativistic electrons
in cosmic plasmas, the radiation reaction could be important in the motion
Equation (5.8) only in ultrastrong magnetic fields with

B >∼
3
8π

(mc2)2

e3 ≈ 7 × 1014 G . (5.70)

However other physical processes already dominate under such conditions; see
discussion in Exercise 5.5.

Recall that formula (5.67) is not valid for a relativistic electron moving in
the Larmor orbit; see next Exercise.

Exercise 5.7 [ Section 5.1 ] For a relativistic electron moving in the Larmor
orbit with a speed v = βc, the total power of radiation is given by formula
(see Landau and Lifshitz, Classical Theory of Field , 1975, Chapter 9, § 74):

I =
2

3c3

e4

m2

β2

1 − β2 B 2 . (5.71)

Therefore, in contrast to the non-relativistic formula (5.67), I → ∞ when
β → 1. Find the rate of energy loss for such an electron.
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Answer. According to (5.4), for a relativistic particle

E2 = (pc)2 + (mc2)2 . (5.72)

By using this expression we rewrite formula (5.71) as follows

dE
dt

= −I =
2e4B2

3m4c7

(
(mc2)2 − E2) . (5.73)

From here we find

E
mc2 = cth

(
2e4B2

3m3c5 t + const
)

. (5.74)

With an increase of time t, the particle’s energy monotonuouly decreases to
the value E = mc2 with the characteristic time

τr =
3m3c5

2e4B2 . (5.75)

Comparing between this time and 2π ω−1
B

gives us the characteristic value
of magnetic field

B =
3m2c4

4π e3

(
1 − β2)1/2

. (5.76)

We see that B → 0 when β → 1. So, for relativistic electrons, there is no
need in strong magnetic fields to radiate efficiently unless they become non-
relativistic particles (see Exercise 5.6). This means that

for relativistic electrons, the radiative losses of energy can be im-
portant even in relatively weak magnetic fields.

That is why the synchrotron radiation is very widespread in astrophysical
conditions (e.g., Ginzburg and Syrovatskii, 1965). It was the first radio-
astronomical radiation mechanism which had been successfully used by classi-
cal astrophysics to interpret the continuum spectrum of the Crab nebula. The
synchrotron mechanism of radio emission works in any source which contains
relativistic electrons in a magnetic field: in the solar corona during flares, in
the Jovian magnetosphere, interstellar medium, supernova remnants etc.

Exercise 5.8 [ Section 5.2.3 ] Consider an actual force acting on a particle
gyrating around the central field line in the magnetic mirror configuration
shown in Figure 5.7.

Answer. Let us use the cylindrical coordinates (r, z, ϕ) with the axis z
along the central field line as shown in Figure 5.7. In the weakly inhomoge-
neous magnetic field, the predominant component is Bz but there is a small
component Br which produces the z component of the Lorentz force:

Fz = − q

c
vϕBr . (5.77)
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Here the ϕ-component is the gyromotion velocity v⊥; for a negatively (pos-
itively) charged particle, it is directed in the positive (negative) ϕ-direction
(see Figure 5.6).

The component Bz of the magnetic field can be found from condition
div B = 0 as follows:

Br = − 1
2

r
∂Bz

∂z
. (5.78)

Substituting (5.78) into (5.77) gives

Fz = − M ∂Bz

∂z
, (5.79)

where M is the magnetic moment (5.33) of the gyrating particle.

Exercise 5.9 [ Section 5.2.3 ] Derive formula (5.32) for the last term in the
averaged Equation (5.31).

Answer. We have to write down the following expression explicitly

( rL × n ) × [ ( rL · ∇ )B (R) ]

and then to average it. It is a matter to do that, once we make use of the
following tensor identities:

(a × b)α = eαβγ aβ bγ .

Here eαβγ is the unit antisymmetric tensor, and

eαβγ eµνγ = δαµ δβν − δαν δβµ .

On rearrangement, we average the last term in Equation (5.31) to obtain

e

mc
〈 ṙL × [ ( rL · ∇ )B (R) ] 〉 = − M

m
∇B , (5.80)

where
M =

1
c

e ωB

2π

(
πr2

L

)
=

1
c

JS (5.81)

is the magnetic moment of a particle on the Larmor orbit.



Chapter 6

Adiabatic Invariants in
Astrophysical Plasma

Adiabatic invariants are useful to understand many interesting proper-
ties of collisionless plasma in cosmic magnetic fields: trapping and ac-
celeration of charged particles in collapsing magnetic traps, the Fermi
acceleration, “cosmic rays” origin.

6.1 General definitions

As is known from mechanics (see Landau and Lifshitz, Mechanics, 1976, Chap-
ter 7, § 49), the so-called adiabatic invariants remain constant under changing
conditions of motion, if these changes are slow. Recall that the system exe-
cuting a finite one-dimensional motion is assumed to be characterized by a
parameter λ that is slowly – adiabatically – changing with time:

λ / λ̇ � T . (6.1)

Here T is a characteristic time for the system (e.g., a particle in given fields)
motion.

More precisely, if the parameter λ did not change, the system would be
closed and would execute a strictly periodic motion with the period T like a
simple pendulum in gravitational field. In this case the energy of the system,
E , would be invariant.

Under the slowly changing parameter λ, if Ė ∼ λ̇, then the integral

I =
∮

P dq , (6.2)

rather than the energy E , is conserved. Here P and q are the generalized
momentum and coordinate, respectively. The integral is taken along the tra-

103
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jectory of motion under given E and λ. The integral I is referred to as the
adiabatic invariant.

6.2 Two main invariants

6.2.1 Motion in the Larmor plane

The motion of a charged particle in slowly changing weakly inhomogeneous
fields has been considered in the previous section. Several types of periodic
motion can be found. In particular, the particle’s motion in the plane per-
pendicular to the magnetic field – the Larmor motion – is periodic. Let P be
the generalized momentum. According to definition (6.2) for such a motion
the adiabatic invariants are the integrals

I1 =
∮

P 1 dq 1 = const and I2 =
∮

P 2 dq 2 = const ,

taken over a period of the motion of coordinates q 1 and q 2 in the plane of the
Larmor orbit.

It is convenient to combine these integrals, that is simply to add them
together:

I =
∮

P⊥ · dq = const . (6.3)

(This is the same, of course, as q = rLφ in definition (6.2) with 0 ≤ φ ≤ 2π.)
Here

P⊥ = p⊥ +
e

c
A

is the generalized momentum (see Landau and Lifshitz, Classical Theory of
Field , 1975, Chapter 3, § 16) projection onto the plane mentioned above. In
this plane q = rL . The vector potential A is perpendicular to the vector B
since B = curlA, and p is the ordinary kinetic momentum of a particle.

Now perform the integration in formula (6.3)

I =
∮

P⊥ · d rL =
∮

p⊥ · d rL +
e

c

∮
A · d rL =

= 2πrL p⊥ − e

c

∫
S

curlA · dS =

by virtue of the Stokes theorem

= 2πrL p⊥ − e

c

∫
S

B · dS = 2πrL p⊥ − e

c
B πr2

L
. (6.4)

Substituting rL = c p⊥/eB (cf. formula (5.17)) into (6.4) gives

I =
πc

e

p 2
⊥
B

= const .
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Thus we come to the conclusion that the conserving quantity is

p 2
⊥
B

= const .

(6.5)

This quantity is called the first or transversal adiabatic invariant.
According to definition (5.33), the particle magnetic moment for the Lar-

mor orbit is

M =
1
c

JS =
p 2

⊥
2mB

=
K⊥
B

. (6.6)

Here use is made of the non-relativistic formula for the Larmor frequency (5.11)
and the non-relativistic kinetic energy of the particle transversal motion is
designated as

K⊥ =
p 2

⊥
2m

.

When (6.5) is compared with (6.6), it is apparent that the particle magnetic
moment is conserved in the non-relativistic approximation.

In the relativistic limit the particle magnetic moment (6.6) does not remain
constant; however, the first adiabatic invariant can be interpreted to represent
the magnetic field flux through the surface covering the particle Larmor orbit,

Φ = B πr2
L

=
πc2

e2

p 2
⊥
B

= const . (6.7)

This also follows directly from (6.4), when we substitute the relativistic for-
mula

p⊥ = rL

eB

c
(6.8)

into the first term on the right-hand side of formula (6.4). We obtain

I =
e

c

(
B πr2

L

)
=

e

c
Φ . (6.9)

Therefore

in the relativistic case, the magnetic field flux Φ through the sur-
face S covering the particle Larmor orbit is conserved.

6.2.2 Magnetic mirrors and traps

Let us imagine the time-independent magnetic field, the field lines forming
the convergent flux. As a rule, the field takes such a form in the vicinity of
its sources, for instance, a sunspot S in the photosphere Ph in Figure 6.1.

The particle transversal momentum is

p⊥ = p sin θ , (6.10)
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p

p

p
||

⊥
θ

B

e

SPh

M1

Figure 6.1: A converging flux
of field lines forms a magnetic
‘mirror’. At the point M1, the
parallel component of momen-
tum reverses under action of
the diamagnetic force (5.35).

it being known that p = const, since by virtue of (5.6) we have E = const.
Substituting (6.10) into (6.5) gives

sin2 θ

B
= const =

sin2 θ0

B0

or
sin2 θ =

B

B0
sin2 θ0 . (6.11)

This formula shows that, for the increasing B, a point M1 must appear in
which sin2 θ1 = 1. The corresponding value of the field is equal to

B1 = B0 / sin2 θ0 . (6.12)

At this point the particle ‘reflection’ takes place:

p ‖ = p cos θ1 = 0 .

The regions of convergent field lines are frequently referred to as magnetic
‘mirrors’.

So, if there is a field-aligned gradient of the magnetic-field strength, the
component of velocity parallel to the field decreases as the particle moves into
a region of increasing field magnitude, although the total velocity is conserved.
Eventually, under action of the diamagnetic force (5.35), the parallel velocity
reverses (see the point M1 in Figure 6.1). Such reflections constitute the
principle of a magnetic trap. For example, magnetic fields create traps for
fast particles in the solar atmosphere as shown in Figure 6.2. The particles
are injected into the coronal magnetic tubes called flaring loops, during a
flare. Let us suppose that this injection occurs at the loop apex.

Let us also suppose that, having hit the chromosphere Ch, the particles
‘die’ because of collisions. The particles do not return to the coronal part of
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Figure 6.2: A coronal
magnetic tube as a trap
for particles accelerated
in a solar flare. θ < θ0
is the loss cone. Mo-
tion between the mirror
points M1 and M2 is
called bounce motion.

N S

Ch

θ
0

0

M M1 2

B 0

the trap, their energy being transferred to the chromospheric plasma, leading
to its heating. Such particles are termed precipitating ones. Their pitch-angles
have to be less than θ0:

θ < θ0 (6.13)

with

θ0 = arcsin
√

B0 / B1 (6.14)

in accordance with (6.12). Here B0 is the magnetic field at the trap apex, B1
is the field at the upper chromosphere level at the mirror points M1 and M2
as shown in Figure 6.2. The quantity B1 / B0 is called the cork ratio.

The angle region (6.13) is termed the loss cone. The particles with the
initial momenta inside the loss cone precipitate from the trap. By contrast,
the particles with θ > θ0 at the loop apex experience reflection and do not
reach the chromosphere. Such particles are termed trapped ones.

An interesting situation arises if the diffusion of the trapped particles into
the loss cone is slower than their precipitation from the trap into the chro-
mosphere. Then the distribution function becomes anisotropic, since the loss
cone is ‘eaten away’, and non-equilibrium. The situation is quite analogous to
the case of the distribution function formation with the positive derivative in
some velocity region, like the bump-on-tail distribution (Figure 7.2). As a re-
sult, some kinetic instabilities (e.g., Silin, 1971; Schram, 1991; Shu, 1992) can
be excited which lead to such plasma processes as wave excitation, anomalous
particle transfer owing to the particles scattering off the waves, and anomalous
diffusion into the loss cone (see also Chapter 7).
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6.2.3 Bounce motion

Let us consider another example of a particle motion in a magnetic trap,
namely that of a motion between two magnetic corks, the transversal drift
being small during the period of longitudinal motion. In other words, the
conditions of periodic longitudinal motion are changing adiabatically slowly.
Then the second adiabatic invariant, referred to as the longitudinal one, is
conserved:

I =
∮

P‖ dl = p

∮ √
1 − sin2 θ dl = p

∮ √
1 − B

B1
dl . (6.15)

Here account is taken of the facts that the vector A is perpendicular to the
vector B and p = |p | = const since E = const; the formula (6.11) for the first
adiabatic invariant is used in the last equality.

L
l

B

B

0

1

v e

Figure 6.3: An idealized model of a long trap with a short moving cork. Unless
a charged particle has its velocity vector very close to the axis of the trap, it
is reflected back and forth between the mirrors, thereby remaining trapped.

Let us apply formula (6.15) to the case of a long trap with short corks:
l 
 L in Figure 6.3. The longitudinal invariant for such a trap is

I =
∮

p ‖ dl ≈ 2 p ‖ L = const .

Therefore the second adiabatic invariant is associated with the cyclical bounce
motion between two mirrors or corks and is equal to

p ‖ L = const .

(6.16)

Let us suppose now that the distance between the corks is changing, that
is the trap length L = L(t). Then from (6.16) it follows that

p ‖ (t) = p ‖ (0)
L(0)
L(t)

. (6.17)
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It is evident from (6.17) that (a) increasing the distance between the corks
decreases the longitudinal momentum and, consequently, the particle energy,
and (b) particle acceleration takes place in the trap if two magnetic corks are
approaching each other as is shown by vector v in Figure 6.3.

The former case can describe the so-called ‘adiabatic cooling’ of accelerated
particles, for example, in a magnetic trap which is captured by the solar wind
and is expanding into interplanetary space. The latter case is more interesting.
It corresponds to the Fermi mechanism considered in the next Section.

6.2.4 The Fermi acceleration

The famous theory of Fermi (1949) discussed the so-called interstellar ‘clouds’
that carry magnetic fields and could reflect charged particles. The same role
could be played for instance by magnetic inhomogeneities in the solar wind
or interplanetary medium. Fermi visualized that charged particles can be
accelerated by being repeatedly hit by the moving magnetic clouds.

The energy of a particle, E , will increase or decrease according to whether
a cloud (an inhomogeneity of magnetic field) that causes the reflection moves
toward the particle (head-on collision) or away from it (overtaken collision).
The particle gains energy in a head-on collision but there can be also ‘trailing’
collisions in which energy is lost. It was shown by Fermi (1949, 1954) that

on the average, the energy increases because the head-on collisions
are more probable than the overtaking collisions

(see a non-relativistic treatment of the problem in Exercise 6.1). Through
this stochastic mechanism

the energy of the particle increases at a rate that, for relativistic
particles, is proportional to their energy

(Exercise 6.2):
dE
dt

∝ E . (6.18)

That is why such a mechanism is often called the first-order (in energy E)
Fermi acceleration. The higher the energy E , the faster acceleration.
This is the most important feature of the Fermi mechanism. However we shall
call it the stochastic Fermi acceleration to avoid a slightly confusing terminol-
ogy in view of the fact that there is another parameter (a relative velocity of
magnetic clouds) which characterizes the coefficient of proportionality in the
problem under consideration (see Exercise 6.2).

From formula (6.18) follows that the energy E increases exponentially with
time:

E(t) = E0 exp
t

ta
, (6.19)

where E0 is the initial energy, ta is the acceleration time scale.
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Large-scale MHD turbulence is generally considered as a source of
magnetic inhomogeneities accelerating particles in astrophysical plasma. Ac-
celeration of particles by MHD turbulence has long been recognized as a pos-
sible mechanism for solar and galactic cosmic rays (Davis, 1956).

Though the Fermi acceleration has been popular, it appears to be neither
efficient nor selective. A mirror reflects particles on a nonselective basis:
thermal particles may be reflected as well as suprathermal ones. Therefore
one is faced with the conclusion (Eichler, 1979) that most of the energy in
the MHD turbulence goes into bulk heating of the plasma rather than
the selective acceleration of only a minority of particles. We shall come back
to this question in Chapter 7.

If we somehow arrange that only head-on collisions take place, then the ac-
celeration process will be much more efficient. We should call the acceleration
resulting from such a situation the regular Fermi acceleration. More often,
however, this mechanism is called the first-order (in the small parameter vm/c,
where vm is the velocity of the moving magnetic clouds; see Exercise 6.1). The
simplest example of this type mechanism is a pair of converging shock waves
(Wentzel, 1964). In this case, there is no deceleration by trailing collisions
(see formula (6.22) in Exercise 6.1) that reduce the net efficiency to the sec-
ond order in the parameter vm/c (Exercise 6.2).

One of several well-known examples of this type of the Fermi acceleration
is the impulsive (with high rate of energy gain) acceleration between two ap-
proaching shocks Sup in the model of a flaring loop as shown in Figure 6.4.
To explain the hard X-ray and gamma-ray time profiles in solar flares, Bai et
al. (1983) assumed that pre-accelerated electrons penetrate into the flare loop
and heat the upper chromosphere to high-temperatures rapidly. As a conse-
quence of the fast expansion of a high-temperature plasma into the corona –
the process of chromospheric ‘evaporation’, two shock waves Sup move upward
from both footpoints.

Energetic particles are to be reflected only by colliding with the shock
fronts. In such a way, the regular Fermi acceleration of particles between
two shocks was suggested as a mechanism for the second-step acceleration of
protons and electrons in flares. A similar example of the regular Fermi-type
acceleration also related to a collapsing (L(t) → 0) magnetic trap in solar
flares is considered in vol. 2, Chapter 7.

The cosmic rays (see Section 5.1.3) were assumed to be accelerated by
crossing shock fronts generated in explosive phenomena such as supernovae.
However a very simple dimensional argument shows the kind of difficulties
encountered even by the most violent phenomena in the Universe.

The more energetic are the particles, the larger are their Larmor
radius and/or the higher are the magnetic fields B necessary to
confine them within the limits of a cosmic accelerator.

The size of a accelerator R must be larger than the Larmor radius of a particle.
The product BR large enough to suit the 1020 eV energy range exists in no
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Figure 6.4: The flare-heated chromospheric plasma P rapidly expands into
the corona. Particle acceleration of the first order Fermi type may occur in a
magnetic loop between two converging shock waves Sup.

known standard astrophysical object.

6.3 The flux invariant

Let us consider the axisymmetric trap which is modelled on, for example,
the Earth’s magnetic field. Three types of the particle’s motion are shown in
Figure 6.5.

First, on the time scales of Larmor period, the particle spirals about a
field line. Second, since there is a field-aligned gradient of the field strength,
the particle oscillates between two mirrors M1 and M2. Third, if the guiding
center does not lie on the trap’s symmetry axis then the radial gradient
of field (cf. Figure 5.9) causes the drift around this axis. This drift (for-
mula (5.40)) is superimposed on the particle’s oscillatory of rotation.

As the particle bounces between the mirrors and also drifts from one field
line to another one, it traces some magnetic surface Sd. The latter is called
the drift shell . Let Ts be the period of particle motion on this surface.

If the magnetic field B = B (t) is changing so slowly that B / Ḃ � Ts ,
then a third adiabatic invariant, referred to as a flux one, is conserved:

Φ =
∫
S

B · dS = const . (6.20)
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Figure 6.5: Particle drift in a trap, due to the radial gradient of field.

Thus the first adiabatic invariant implies conservation of the magnetic flux
through the Larmor orbit, B πr2

L
, whereas

the flux invariant implies conservation of the magnetic flux through
the closed orbit of guiding center motion,

that is the flux through the shaded surface S in Figure 6.5.

6.4 Approximation accuracy. Exact solutions

Adiabatic invariants have been obtained in the approximation of weakly inho-
mogeneous slowly changing magnetic fields. The invariants are approximate
integrals of motion, widely used in plasma astrophysics. However we should
not forget two important facts. First, the adiabatic theory has a limited,
though exponential , accuracy. Second, this theory has a limited, though wide,
area of applicability. The second vo;ume of this book will be devoted to the
effect of magnetic reconnection and will present a situation when the adiabatic
theory a priory does not apply.

Exact solutions to the equations of charged particle motion usually require
numerical integration. The motion in the field of a magnetic dipole is a
simple case that, nevertheless, is of practical significance. The reason for that
is the possibility to approximate the Earth’s magnetic field at moderately
large distances by the dipole field. It was Störmer (1955) who contributed
significantly to the solution of this problem.

Two types of trajectories are considered.
(a) The ones coming from infinity and returning there. These have been

calculated in order to find out whether a particle can reach a given point
along a given direction. An answer to this question is important for cosmic
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ray theories. For each point on the Earth and for each direction the so-
called ‘threshold rigidity’ has been calculated. If a rigidity is greater than the
threshold one, then the particle can reach the point. The vertical threshold
rigidity is the most universally used one. This characterizes particle arrival in
the direction of the smallest column depth of the Earth atmosphere.

(b) The orbits of trapped particles. Two radiation belts of the Earth,
the inner and the outer, have been shown to exist. The mechanisms which
generate trapped particles are not yet fully understood. They are presumably
related to geomagnetic storms (Tverskoy, 1969; Walt, 1994).

Both gradient drift and curvature drift cause the positive particles in the
radiation belt to drift westward in the Earth dipole magnetic field. Thus the
radiation belt forms a ring of westward current circulating the Earth. This
current tends to decrease the strength of the basic northward magnetic field
observed at low latitudes on the Earth surface. There is a simple theoretical
relationship between the depression of the magnetic field at the surface of the
Earth and the total energy in the trapped particles. This relation allows us to
use the observed change of the magnetic field as an indication of the amount
of the energy in ring-current particles.

Recommended Reading: Northrop (1963), Kivelson and Russell (1995).

6.5 Practice: Exercises and Answers

Exercise 6.1 [ Section 6.2.4 ] Show that a non-relativistic particle on average
gains energy in collisions with moving magnetic clouds.

Answer. Let us consider the simplest model of one-dimensional motions
of clouds: half of the clouds are moving in one direction and the other half
moving in the opposite direction with the same velocity vm. Let a particle of
initial velocity V0 undergo a head-on collision. The initial velocity seen from
the rest frame of the cloud is V0 + vm. If the collision is elastic, the particle
bounces back in the opposite direction with the same magnitude of velocity
V0 + vm in this rest frame. In the observer’s frame, the reflected velocity
appears to be V0 + 2vm. Hence the gain of kinetic energy K according to the
observer equals

δK+ =
1
2

m (V0 + 2vm)2 − 1
2

mV 2
0 = 2m vm (V0 + vm) . (6.21)

Similarly, the energy loss in a trailing collision

δK− = − 2m vm (V0 − vm) . (6.22)

The probability of head-on collisions is proportional to the relative velocity
V0+vm, whereas the probability of trailing collisions is proportional to V0−vm.
Therefore the average gain of kinetic energy is equal to

δKav = δK+
V0 + vm

2vm
+ δK−

V0 − vm

2vm
= 4m v2

m . (6.23)
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So a particle is accelerated.

Exercise 6.2 [ Section 6.2.4 ] Prove the Fermi formula (6.18) for a relativistic
particle.

Answer. Make the same procedure as that one in Exercise 6.1 by using
the corresponding expressions in special relativity to see that the average
energy gain

δEav = 4
(vm

c

)2
E . (6.24)

Formula (6.24) obviously reduces to (6.23) in the non-relativistic limit on
putting E = mc 2.

So the average energy gain is proportional to the energy. Therefore the en-
ergy of a relativistic particle suffering repeated collisions with moving nagnetic
clouds increases according to formula

dE
dt

= α
F

E , (6.25)

where α
F

is a constant. Q.e.d.
Note also that the average energy gain (6.24) is propotional to the dimen-

sionless parameter (vm/c)2. Since actual clouds are moving at non-relativistic
velocities, this parameter should be a very small number. Hence the accelera-
tion process is quite inefficient. Because of this quadratic dependence on vm,
this process is referred as the second-order Fermi acceleration.

If only head-on collisions take place, then the acceleration is much more
efficient. It follows from formula (6.21) that, for V0 � vm, the energy gain will
depend linearly on vm. So the acceleration resulting from such conditions is
called the first-order Fermi acceleration. Such conditions are well possible, for
example, in collapsing magnetic traps created by the magnetic reconnection
process in solar flares (see vol. 2, Chapter 7).

Powerful shock waves in a plasma with magnetic field (like the solar wind)
may well provide sites for the first-order Fermi acceleration. Magnetic inho-
mogeneities are expected on both sides of the shock front. It is possible that
a charged particle is trapped near the front and repeatedly reflected from
magnetic inhomogeneities on both sides. Such collisions may lead to more ef-
ficient acceleration (see Chapter 18) compared to original Fermi’s acceleration
by moving interstellar clouds.



Chapter 7

Wave-Particle Interaction
in Astrophysical Plasma

The growth or damping of the waves, the emission of radiation, the
scattering and acceleration of particles – all these phenomena may
result from wave-particle interaction, a process in which a wave ex-
changes energy with the particles in astrophysical plasma.

7.1 The basis of kinetic theory

7.1.1 The linearized Vlasov equation

In this Chapter we shall only outline the physics and main methods used to
describe the wave-particle interaction in collisionless astrophysical plasmas as
well as in Maxwellian plasmas where fast particles interact with electromag-
netic waves. In the simplest – linear – approach, the idea is in the following.

We assume the unperturbed plasma to be uniform and characterized by
the distribution functions f

(0)
k of its components k: electrons and ions. The

unperturbed plasma is also assumed to be steady. So

f
(0)

k = f
(0)

k (v) . (7.1)

Let B (0) be the unperturbed uniform magnetic field inside the plasma.
We further assume that the only zero-order force is the Lorentz force with
E (0) = 0.

The dynamics of individual particles is determined by the first-order forces
related to the wave electric field E (1) and wave magnetic field B (1). To
describe these particles we shall use the perturbation function f

(1)
k , which

is linear in E (1) and B (1). Under the assumptions made, we see that the
Vlasov equation (Section 3.1.2) can be a proper basis for the kinetic theory

115
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of wave-particle interaction. For this reason we shall realize the following
procedure.

(a) We linearize the Vlasov equation (3.3) together with the Maxwell
equations (3.4) for the self-consistent wave field. Equation (3.3) becomes

∂f
(1)

k (X, t)
∂t

+ vα
∂f

(1)
k (X, t)
∂rα

+

+
ek

mk

(
1
c

v × B (0)
)

α

∂f
(1)

k (X, t)
∂vα

=

− ek

mk

(
E (1) +

1
c

v × B (1)
)

α

∂f
(0)

k (v)
∂vα

. (7.2)

The left-hand side of the linear Equation (7.2) is the Liouville opera-
tor (1.10) acting on the first-order distribution function for particles
following unperturbed trajectories in phase space X = { r,v} :

D

Dt
f

(1)
k = − F

(1)
k,α

mk

∂f
(0)

k

∂vα
. (7.3)

This fact (together with the linear Lorentz force in the right-hand side of
(7.3) and the linearized Maxwell equations) can be used to find the general
solution of the problem. We are not going to do this here (see Exercise 7.1).
Instead, we shall make several simplifying assumptions to demonstrate the
most important features of kinetic theory on the basis of Equation (7.3).

(b) Let us consider a small harmonic perturbation varying as

f
(1)

k (t, r,v) = f̃k (v) exp [−i (ωt − k · r)] . (7.4)

Substituting the plane wave expression (7.4) with a similar presentation of
the perturbed electromagnetic field in Equation (7.2) gives us the following
linear equation:

i (ω − k · v) f̃k (v) − ek

mk

(
1
c

v × B (0)
)

α

∂f̃k (v)
∂vα

=

=
ek

mk

[
Ẽ
(

1 − k · v
ω

)
+ k

(
v · Ẽ

ω

)]
α

∂f
(0)

k (v)
∂vα

. (7.5)

Here the Faraday law (1.25) has been used to substitute for the wave magnetic
field.

(c) We shall assume that the waves propagate parallel to the ambient
field B (0) which defines the z axis of a Cartesian system. From Section 5.1 it
follows that in a uniform magnetic field there exist two constants of a parti-
cle’s motion: the parallel velocity v‖ and the magnitude of the perpendicular
velocity

v⊥ = |v⊥ | =
(
v 2

x + v 2
y

)1/2
.
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Hence the unperturbed distribution function

f
(0)

k = f
(0)

k

(
v‖, v⊥

)
, (7.6)

as required by Jeans’s theorem (Exercise 1.1). Therefore in what follows
we can consider two cases of resonance, corresponding two variables in the
distribution function (7.6).

7.1.2 The Landau resonance and Landau damping

Let us consider the so-called electrostatic waves which have only a parallel
electric field E (1) = E ‖ under the assumption of parallel propagation:

k × B (0) = 0 . (7.7)

In this case the linearized Vlasov Equation (7.5) reduces to

i
(
ω − k‖ v‖

)
f̃k − ek

mk

(
1
c

v × B (0)
)

α

∂f̃k

∂vα
=

ek

mk
Ẽ‖

∂f
(0)

k

∂vα
. (7.8)

Now let us find the perturbation of charge density according to defini-
tion (3.5):

ρ q (1) (r, t) =
∑

k

ek

∫
v

f
(1)

k (r,v, t) d 3v . (7.9)

Hence the amplitude

ρ̃ q =
∑

k

ek

∫
v

f̃k (v) d 3v . (7.10)

When we calculate the charge density by using Equation (7.8), the second
term on the left-hand side of this equation vanishes on integration over per-
pendicular velocity.

Therefore, for parallel propagating electrostatic waves, the harmonic per-
turbation of charge density is given by

ρ̃ q = − i Ẽ‖
∑

k

e 2
k

mk

∫
v‖

1(
ω − k‖ v‖

) ∂f
(0)

k

∂v‖
d v‖ . (7.11)

Formula (7.11) shows that there is a resonance which occurs when

ω − k‖ v‖ = 0
(7.12)

or when the particle velocity equals the parallel phase velocity of the wave,
ω/k‖ . This is the Landau resonance.

A physical picture of Landau resonance is simple.
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When the resonance condition (7.12) is satisfied the particle ‘sees’
the electric field of the wave as a static electric field in the particle’s
rest system

(see Exercise 7.3).
Particles in resonance moving slightly faster than the wave will lose energy,

while those moving slightly slower will gain energy. Since the Maxwellian
distribution is decreasing with velocity,

in a Maxwellian plasma, near the Landau resonance, there are more
particles at lower velocities than at higher velocities. That is why
the plasma gains energy at the expense of the wave.

v

f

0 k ||||ω

( )v ||
(0)

v

f

0 k ||||ω

( )v ||

(a) (b)

Figure 7.1: The Landau damping. (a) The initial distribution function of
thermal electrons with some narrow region centered at the resonance with the
wave. (b) The distribution function after an evolution due to interaction of
the electrons with the wave.

This effect, illustrated by Figure 7.1 (see also Exercise 7.6), is called the
Landau damping (Landau, 1946) or collisionless damping. Normally we think
of damping as a dissipative process and hence expect it to be present only in
systems where collisions can convert a part of the wave energy into thermal
energy. At first sight, damping in a collisionless system seems mystifying since
we ask the question where could the energy have gone. For a negative slope
of the distribution function at the phase velocity ω/k, there are more particle
which are accelerated than which are decelerated. For this reason the wave
puts a net amount of energy in the particles so that there is a loss of wave
energy. Therefore the Landau damping is not by randomizing collisions but
by a transfer of wave field energy into oscillations of resonant particles.

Landau damping is often the dominant damping mechanism for waves,
such as ion-acoustic waves and Langmuir waves, in thermal plasma without a
magnetic field.

The absorption of longitudinal waves in plasma in the thermal equi-
librium is often determined by collisionless damping
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(e.g., Zheleznyakov, 1996).
On the other hand, if a distribution function has more particles at higher

velocities than at lower velocities in some region of phase space as shown in
Figure 7.2, this distribution will be unstable to waves that are in resonance
with the particles. This is the known ‘bump-on-tail’ instability. Due to this
type of instability, a beam of fast electrons (with velocities much higher than
the thermal speed of electrons in the plasma) causes Langmuir waves to grow.
Langmuir waves generated through the bump-on-tail instability play an es-
sential role, for example, in solar radio bursts.

v

f

0 k ||||ω

( )v ||

(0)

Figure 7.2: The bump-on-tail distri-
bution function with the resonance
condition in the region of a positive
slope.

There are many examples in plasma astrophysics in which one species
(e.g., electrons) moves relative to another. Solar flares produce a significant
flux of fast electrons moving through the plasma in interplanetary space. Fast
electrons move away from a planetary shock through the solar wind. Aurorae
are produced by fast electrons moving along Earth’s magnetic-field lines. If
we consider a stream of plasma with an average velocity impinding on another
plasma at rest, we have just the same situation. The system has an instability
such that

the kinetic energy of the relative motion between the plasma steams
is fed into a plasma wave of the appropriate phase velocity.

So all the two-stream instabilities have, in fact, the same origin.
The above derivation emphasizes the close relation of the Landau damping

with the Cherenkov effect (see Exercises 7.2–5). It has been definitely
pointed out by Ginzburg and Zheleznyakov (1958) that

the Landau damping and the Cherenkov absorption of plasma
waves, the inverse Cherenkov effect, are the same phenomenon

initially described in two different ways.
The discussion hitherto has focused on the linear Landau damping, i.e.

the behaviour of a small perturbation which satisfies the linearized Vlasov
equation. However this picture can be extended to finite amplitude pertur-
bations (Kadomtsev, 1976, Chapter 4). In the context of plasma astrophysics,
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this means considering nonlinear Landau damping, which generalized the lin-
ear theory by incorporating the possibility of mode-mode couplings that allow
energy transfer between different modes.

In fact, the linear theory illuminates only a narrow window out of the
wealth of all effects related to wave-particle interactions. Mathematically, the
linear theory uses a well-developed algorithm. Few analytical methods
are known to treat the much wider field of nonlinear effects, and most of
these methods rely on approximations and lowest-order perturbation theory.
The theory of weak wave-particle interaction or weak turbulence as well as
the quasi-linear theory for different types of waves are still today the most
important parts in astrophysical applications (e.g., Treumann and Baumjo-
hann, 1997; Benz, 2002).

7.1.3 Gyroresonance

As for the Landau resonance, we shall use the linear Equation (7.5) as a
basis, assuming that a wave is propagating parallel to the ambient field B (0).
However, this time, we shall further assume that the wave electric field E (1)

and hence the wave magnetic field B (1) are perpendicular to the ambient
magnetic field.

Under the assumption of a harmonic perturbation (7.4) we shall make use
of the so-called polarized coordinates:

Ẽ l =
Ẽx + iẼy√

2
, Ẽ r =

Ẽx − iẼy√
2

. (7.13)

Subscripts l and r correspond to the waves with left- and right-hand circular
polarizations, respectively.

By definition, the wave is right-hand circular polarized if Ẽx leads Ẽy by
a quarter of a wave period. If, for such a wave, we multiply Equation (7.5)
by velocity

vr =
vx − i vy√

2
(7.14)

and integrate over velocity space, making use of (7.6) and the fact that the
unperturbed distriburion function f (0) is a symmetric function of v⊥, we find
the equation which determines (see definition (3.6)) the current density in the
harmonic perturbation:

j̃ q
r = − i

∑
k

e 2
k

m k
Ẽ r × (7.15)

×
∫
v

1(
ω − k‖ v‖ − s ω

(k)
B

) [(
1 − k‖ v‖

ω

)
∂f

(0)
k

∂v⊥
+

k‖ v⊥
ω

∂f
(0)

k

∂v‖

]
v⊥ d 3v .
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Here ω (k)
B

is the Larmor frequency of a particle of a kind k, the integer s can
be positive or negative. The resonance condition in formula (7.15) for current
density is the gyroresonance:

ω − k‖v‖ − s ω (k)
B

= 0 .

(7.16)

We see that a gyroresonant interaction occurs when the Doppler-shifted wave
frequency

ωD = ω − k‖ v‖ , (7.17)

as observed by a particle moving with the parallel velocity v‖, is an integer
multiple s of the Larmor frequency in the guiding center frame, i.e.

ωD = s ω (k)
B

. (7.18)

Depending upon the initial relative phase of the wave and particle,
the particle will corotate with either an accelerating or decelerating
electric field over a significant portion of its Larmor motion,

resulting in an appreciable gain or loss of energy, respectively.
If the particle and transversal electric field rotate in the same sense, the

integer s > 0, whereas an opposite sense of rotation requires s < 0. However
the strongest interaction usually occurs when the Doppler-shifted frequency
exactly matches the particle Larmor frequency.

The gyroresonance is important for generating waves such as the wistler
mode, which is polarized predominantly perpendicular to the ambient field.

For a wave to grow from gyroresonance, there should be a net de-
crease in particle energy as the particle diffuses down the phase-
space density gradient defined by the numerator in formula (7.15),

i.e. by the expression enclosed in large square brackets under the integral in
formula (7.15).

For the parallel propagation of a wave in plasma, the Landau resonance
is associated with parallel electric fields. For perpendicular electric fields,
particles and fields can be in gyroresonance. It is clear that the Landau
resonance diffuses particles parallel to the ambient magnetic field, whereas
gyroresonance causes diffusion in the pitch angle. This can be seen
in the wave frame, i.e. the frame in which the parallel phase velocity of the
wave is zero. If we transform the expression enclosed in large square brackets
in formula (7.15) to the wave frame, we find that in this frame the gradient
in velocity space is gradient with respect to pitch angle θ. Hence

the main effect of gyroresonance is to cause particles to change pitch
angle in the wave frame.
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This is contrasted with the Landau resonance, where the diffusion is in the
parallel velocity v‖ due to the term ∂f (0)/∂ v‖ and therefore mainly in energy,
rather than pitch angle.

As such, then the Landau-resonant instabilities are often driven by bump-
on-tail distributions of particles, whereas gyroresonant instabilities are driven
by pitch-angle anisotropy. Thus the gyroresonance-type instabilities can ap-
pear as soon as a ‘tail’ or beam is formed in the direction parallel to the
background field B (0). They excite waves that scatter the particles back to a
nearly isotropic state.

7.2 Stochastic acceleration of particles by waves

7.2.1 The principles of particle acceleration by waves

In Section 7.1 we considered the resonant interaction between particles and
one wave propagating parallel to the uniform magnetic field B (0) in a uniform
plasma without an external electric field: E (0) = 0. The dynamics of indi-
vidual particles was determined by the first-order forces related to the wave
electric field E (1) and wave magnetic field B (1). We described behavior of
these particles by the linearized Vlasov equation (7.2) for the perturbation
function f

(1)
k , which is linear in E (1) and B (1).

Under simplifing assumptions made, we saw that, in addition to the Lan-
dau resonance (7.12):

ωD = 0 , (7.19)

other resonances (7.16) arise in wave-particle interaction. These are the gy-
roresonances which occur when the Doppler-shifted frequency

ωD = ω − k‖ v‖ (7.20)

(as observed by a particle moving with parallel velocity v‖) is some integer
multiple s of the particle Larmor frequency s ω (k)

B
:

ωD = s ω (k)
B

.

(7.21)

If a wave is, in general, oblique, its electric field has components transver-
sal and parallel to B (0), whereas if the wave is parallel, its electric field is
transversal. Since the transversal field typically consists of left- and right-
hand polarized components, the integer s may be either positive or negative.
Anyway

the energy gain is severely limited due to the particle losing reso-
nance with the wave.
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Large gains of energy are possible, in principle, if a spectrum of waves is
present. In this case, the resonant interaction of a particle with one wave
can result in an energy change that brings this particle into resonance with a
neighboring wave, which then changes the energy so as to allow the particle
to resonate with another wave, and so on. Such an energy change can be
diffusive, but over long time scales there is a net gain of energy, resulting in
stochastic acceleration.

A traditional problem of the process under discussion is the so-called in-
jection energy. The problem arises since for many waves in plasma their
phase velocity along the ambient magnetic field, ω/k‖ , is much greater than
the mean thermal velocity of particles. Let us re-write the gyroresonance
condition (7.21) as

γL

(
ω

k‖
− v‖

)
=

s ω (k)
B

k‖
. (7.22)

Here the relativistic Lorentz factor γL has been taken into account (see Exer-
cise 7.3). Consider two opposite cases.

(a) For low thermal velocities we can neglect v‖ in Equation (7.22) and
see that, in order to resonate with a thermal particle, the waves must have
very high frequencies ω ≈ ω (k)

B
or very small k‖.

For the case of thermal electrons and protons in the solar corona, their
Larmor frequencies are very high (Exercise 5.1). If we try to choose a minimal
value of k‖ , we are strongly restricted by a maximal value of wavelenghts,
which must be certainly smaller than the maximal size of an acceleration
region. These difficulties naturally lead to much doubt about the viability of
stochastic acceleration and to a search for preacceleration mechanisms.

(b) On the other hand, high energy particles need, according to the reso-
nance condition (7.22), waves with very low frequencies: ω 
 ω (k)

B
. Therefore

a very broad-band spectrum of waves (extending from ≈ ω (k)
B

to very
low frequencies) is necessary to accelerate particles from thermal to
relativistic energies.

In principle, the so-called wave cascading from low to high frequencies can
be a way of producing the necessary broad-band spectrum. The idea comes
from the Kolmogorov theory of hydrodynamic turbulence (Kolmogorov, 1941).
Here the evolution of turbulence can be described by the Kolmogorov-
style dimensional analysis or by a diffusion of energy in wavenumber
space. The last idea was subsequently introduced to MHD by Zhou and
Matthaeus (1990). They presented a general transfer equation for the wave
spectral density. In Section 7.2.2, we shall discuss briefly both approaches and
their applications; see also Goldreich and Sridhar (1997).

The stochastic acceleration of particles by waves is essentially the resonant
form of Fermi acceleration (see Section 6.2 (c)). An important feature of
stochastic acceleration is an isotropization process because
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the pitch-angle scattering increases the volume of wave phase space
that can be sampled by the resonant particles (7.22).

In general, if isotropization exists and keeps the distribution isotropic dur-
ing an acceleration time, it increases the acceleration efficiency. For example,
Alfvén (1949) considered the betatron acceleration in an uniform magnetic
field B (0)(t) which changes periodically in time and has local nonuniformi-
ties B (1) characterized by significant variations at distances smaller than the
Larmor radius of accelerated particles.

When a particle passes through such nonuniformities its motion becomes
random, with the momenta tending to be uniformly distributed between the
three degrees of freedom. For this reason, when the field B (0)(t) contracts, a
fraction of the energy acquired due to betatron acceleration is transferred to
the parallel component of the particle motion. As a consequence, the decrease
in the energy of the transverse motion with decreasing magnetic field is smaller
than its increase in the growth time. Thus the particle acquires an additional
energy on completion of the full cycle. Therefore the total particle energy can
systematically increase even if the fluctuating magnetic field does not grow.
This phenomenon is known as the Alfvén pumping .

Tverskoi (1967, 1968) showed that in a turbulent cosmic plasma, the Fermi
acceleration related to the reflection from long strong waves is efficient only
in the presence of fast particle scattering by short waves whose length is
comparable to the particle Larmor radius.

7.2.2 The Kolmogorov theory of turbulence

In general terms, a hydrodynamic flow tends to become turbulent if the ra-
tio of inertial to viscous terms in the equation of motion, as described by
the Reynolds number (see Chapter 12), is sufficiently large. In order not
to obscure the essential physical point made in this section, we assume that
a turbulence is isotropic and homogeneous. So we define a one-dimensional
spectral density W (k), which is the wave energy density per unit volume in
the wave vector space k.

First, we remind the Kolmogorov (1941) treatment of stationary turbu-
lence of incompressible fluid. The steady state assumption implies that the
energy flux F through a sphere of radius k is independent of time. In the in-
ertial range of wave numbers, for which supply and dissipation of energy are
neglected, the flux F is also independent of the wave vector k. If P denotes the
total rate of energy dissipation at the short wave (k = kmax) edge of the iner-
tial range, which equals the rate of energy supply at the long wave (k = kmin)
edge, then F = P and dF/dk = 0 in the inertial range in Figure 7.3.

Kolmogorov’s theory adopts the hypothesis that with the above assump-
tions the flux F through a sphere of radius k in the inertial range depends
only upon the energy in that sphere and upon the wave number. Thus by
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Figure 7.3: The energy per unit
wave number in Kolmogorov’s tur-
bulence is plotted as a function of
wavenumber in the inertial range B
between the source A at small k and
the sink C at large k.

dimensional analysis we arrive at

F = P ∼ W 3/2 k5/2. (7.23)

From here it follows that the one-dimensional spectral density

W (k) = Ck P 2/3 k−5/3 .

(7.24)

This is the famous Kolmogorov spectrum for the fluid isotropic turbulence,
involving the Kolmogorov constant Ck.

The turbulent velocity field in fluid can be thought of as being made of
many eddies of different sizes. The input energy is usually fed into the system
in a way to produce the largest eddies. Kolmogorov had realized that these
large eddies can feed energy to the smaller eddies and these in turn feed the
still smaller eddies, resulting in a cascade of energy from the larger eddies to
the smaller ones.

If we anticipate the viscosity ν (see Section 12.2.2) to be not important
for this process, we neglect dissipation of energy. However we cannot have
eddies of indefinitely small size. For sufficiently small eddies of size lmin and
velocity vmin, the Reynolds number is of order unity, i.e.

lmin vmin ∼ ν . (7.25)

So the energy in these small eddies is dissipated by viscosity.
Let the energy be fed into the turbulence at some rate P per unit mass

per unit time at the larges eddies of size lmax and velocity vmax, for which the
Reynolds number

Re =
lmax vmax

ν
� 1 . (7.26)

Then this energy cascades to smaller and smaller eddies untill it reaches the
smallest eddies satisfying condition (7.25).
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The intermediate eddies merely transmit the energy to the smaller eddies.
Let characterize these intermediate eddies only by their size l and velocity v.
Since they are able to transmit the energy at the required rate P, Kolmogorov
postulated that it must be possible to express P in terms of l and v. On
dimensional grounds, there is only one way of writing P in terms of l and v:

P ∼ v3

l
. (7.27)

From here
v ∼ ( Pl )1/3 . (7.28)

So

the velocity associated with the turbulent eddies of a particular size
is proportional to the cube root of this size.

This result is known as the Kolmogorov scaling law. The scaling law (7.28)
expresses the same thing as (7.24). This is shown in Exercise 7.10.

The Kolmogorov scaling law (7.28) was verified by doing experiments on
a turbulent fluid with a sufficiently large inertial range. In laboratory it is
very difficult to reach high enough Reynolds numbers to produce a sufficiently
broad inertial range. One of the first confirmations of it was reported by Grant
et al. (1962) by conducting experiments in a tidal channel between Vancouver
Island and mainland Canada (see also Stewart and Grant, 1969).

The Kolmogorov power spectrum (7.24) is observed in the turbulent
boundary layer on the ground and in some other turbulent flows in astro-
physical plasma (for example, in the solar wind), in spite of the fact that, in
all these cases, the original assumptions of incompressibility and isotropy are
not fulfilled.

7.2.3 MHD turbulent cascading

The Kolmogorov concept of independence of widely separated wave num-
bers in the inertial range of fluid turbulence was modified for the MHD case
by Iroshnikov (1963) and Kraichnan (1965). When the magnetic energy in
subinertial wave numbers exceeds the total energy in the inertial range, the
predicted inertial range spectrum is proportional to k−3/2, instead of k−5/3.
Note that the Kolmogorov spectrum is steeper than the Kraichnan spectrum
(5/3 > 3/2).

Leith (1967) introduced a diffusion approximation for spectral transfer of
energy in isotropic hydrodynamic turbulence. This approach may be viewed
as an alternative to the straight-forward dimensional analysis discussed above.
However it is a natural extension since this approach approximates the spec-
tral transfer as a local process in wave number space, i.e. in accordance with
the spirit of the Kolmogorov hypotheses that the total energy is conserved
with respect to couplings between waves. Therefore



7.3. Relativistic Electron-positron Plasma 127

just diffusion is a physically appealing framework for the simplest
model to describe this kind of local conservative transfer.

If some waves, propagating parallel to the uniform field B(0), are injected at
the longest wavelength λ = λmax and if a Kolmogorov-like nonlinear cascade
transfers the wave energy to smaller scales, then the diffusion equation in wave
number space

∂W

∂t
=

∂

∂k‖

(
D‖‖

∂W

∂k‖

)
− γ (k‖) W + S (7.29)

can describe injection, cascading, and damping of the waves. Here D‖‖ is a dif-
fusion coefficient that depends on W and can be determined for Kolmogorov-
type cascading. γ (k‖) is the damping rate usually due to particle acceleration
in high-temperature low-density astrophysical plasma. The wave energy is
dissipated by accelerating particles in smallest scales λ ∼ λmin.

The source term S in Equation (7.29) is proportional to the injection
rate Q of the wave energy. A mechanism by which the waves are generated
is typically unknown but easily postulated. For example, MHD waves can be
formed by a large-scale restructuring of the magnetic field in astrophysical
plasma, which presumably occurs in nonstationary phenomena with flare-like
energy releases due to magnetic reconnection.

In summary, the wave cascading and particle acceleration are described by
one wave-diffusion equation, in which the damping depends on the accelerating
particle spectra, and by diffusion equations (one for each kind k of particles:
electrons, protons and other ions) for accelerating particles. The system is
therefore highly coupled and generally nonlinear or quasilinear in the case of
small-amplitude waves.

7.3 The relativistic electron-positron plasma

According to present views, in a number of astrophysical objects there
is a relativistic plasma that mainly consists of electrons and positrons.
Among these objects are pulsar magnetospheres (Ruderman and Suther-
land, 1975; Michel, 1991), accretion disks in close binary systems (Takahara
and Kusunose, 1985; Rose, 1998), relativistic jets from active galactic nuclei
(Begelman et al., 1984; Peacock, 1999), and magnetospheres of rotating black
holes in active galactic nuclei (Hirotani and Okamoto, 1998).

Because of synchrotron losses, the relativistic collisionless plasma in a
strong magnetic field should be strongly anisotropic: its particle momenta
should have a virtually one-dimensional distribution distended along the field.
The transversal (with respect to the field) momentum of a particle is small
compared with the longitudinal momentum. In accordance with Ruderman
and Sutherland (1975), such a particle distribution is formed near the pulsar
surface under the action of a strong longitudinal electric field and synchrotron
radiation. What equations can be used as starting ones for a description of
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the electron-positron plasma? – The answer depends upon a property of the
plasma, which we would like to describe.

It is known that the anisotropy can result in various types of instabili-
ties, for example, the fire-hose instability of the relativistic electron-positron
plasma (Mikhailovskii, 1979). Behaviour of Alfvén waves in the isotropic and
anisotropic plasmas can be essentially different (Mikhailovskii et al., 1985).

We suppose that the anisotropic relativistic approach of a type of the CGL
approximation (Section 11.5) can be used to consider the problem of Alfvén
waves of finite amplitude. However the dispersion effects are important for
such waves and are not taken into account in the CGL approximation. The
problem can be analysed on the basis of the standard kinetic approach with use
of the Vlasov equation (Section 3.1.2). As we saw above, such a procedure
is sufficiently effective in the case of linear problems but is complicated in
study of nonlinear processes when one must deal with parts of the distribution
function square and cubic to the wave amplitude.

More effective kinetic approaches are demonstrated in Mikhailovskii et
al. (1985). One of them is based on expansion in the series of the inverse
power of the background magnetic field (Section 5.2) and allowance for the
cyclotron effects as a small corrections. Using this approach, Mikhailovskii et
al. consider the nonlinear Alfvén waves both in the case of an almost one-
dimensional momentum particle distribution (the case of a pulsar plasma) and
in the case of an isotropic plasma. The later case is interesting, in particular,
for the reason that it has been also analysed by means of the MHD equations
(Section 20.1.4). Two types of Alfvén solitons (the moving-wave type and
the nonlinear wave-packet type) can exist in relativistic collisionless electron-
positron plasma.

Magnetic reconnection in a collisionless relativistic electron-positron plasma
is considered as a mechanism of electron and lepton acceleration in large-scale
extragalactic jets, pulsar outflows like the Crab Nebular and core regions
of active galactic nuclei (AGN) as the respectiv jet origin (see Larrabee et
al., 2003; Jaroschek et al., 2004).

Recommended Reading: Lifshitz and Pitaevskii, Physical Kinetics (1981)
Chapters 3 and 6.

7.4 Practice: Exercises and Answers

Exercise 7.1 [ Section 7.1.1 ] Write the general solution of the linear Equa-
tion (7.2).

Answer. Since the left-hand side of (7.2) is the time derivative (more
exactly, the Liouville operator (1.10) acting on the first-order distribution
function for particles following unperturbed trajectories), the solution of (7.2)
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is formally the integral over time

f
(1)

k (r,v, t) = − ek

mk

t∫
−∞

(
E (1) +

1
c
v × B (1)

)
α

∂f
(0)

k (r,v, τ)
∂vα

dτ. (7.30)

Here the integration follows an unperturbed-particle trajectory to the point
(r,v) in phase space X.

In principle, substitution of (7.30) into the Poisson law for electrostatic
waves gives a perturbation of electric charge density (3.5). Similarly, one can
determine a perturbation of current density (3.6) by substitution of (7.30)
into the Ampére law in the case of electromagnetic waves. In practice, solv-
ing (7.30) is fairly complicated.

Exercise 7.2 [ Section 7.1.2 ] Show that, for a particle with velocity v in a
plasma without magnetic field, the resonance condition correspondes to:

ω − k · v = 0 . (7.31)

This is usually called the Cherenkov condition.

Exercise 7.3 [ Sections 7.1.2, 7.2.1 ] Consider a wave that has frequency ω
and wave vector k in the laboratory frame. Show that in the rest frame of
the particle the frequency of the wave is

ω0 = γL (ω − k · v) , (7.32)

where

γL =
(

1 − v2

c2

)−1/2

(7.33)

is the Lorentz factor of the particle. Therefore the Cherenkov resonance con-
dition (7.31) corresponds to ω0 = 0, which means that the fields appear static
in the rest frame of the particle.

Answer. Apply the Lorentz transformation to the four-vector {k, i ω/c }
(see Landau and Lifshitz, Classical Theory of Field , 1975, Chapter 6, § 48).

Exercise 7.4 [ Section 7.1.2 ] In a transparent medium with a refraction
index n, greater than unity, the Cherenkov condition (7.31) can be satisfied
for fast particles with

β =
v

c
≥ 1

n
. (7.34)

Let χ be the angle between the particle’s velocity v and the wave vector k
of appearing emission which is called Cherenkov emission (Cherenkov, 1934,
1937).

As we know, a charged particle must move non-uniformly to radiate in
vacuum. As an example we may recall the formula (5.66) for dipole emission.
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In a medium, however, condition (7.34) allows the uniformly moving paricle
to radiate.

Show that Cherenkov emission is confined to the surface of a cone with
the cone half-angle (as shown in Figure 7.4)

χ = arccos
1
n

. (7.35)

k

v

χ
e

Figure 7.4: The wave-vector cone
of the Cherenkov emission.

Radiation with wave vectors along the conic surface (7.35) is generated as a
result of the Cherenkov emission. Discuss an analogy between the Cherenkov
emission pattern and the bow wave of a ship or a supersonic aircraft.

Exercise 7.5 [ Section 7.1.2 ] Consider the one-dimensional motion of an
electron in the electric field of a Langmuir wave of a small but finite amplitude.

Answer. Let the electric field potential of the wave be of the form

ϕ = ϕ 0 cos
(
ω

(e)
pl t − kx

)
. (7.36)

In the reference frame moving with the wave (see Section 10.2.2), the field is
static:

ϕ = ϕ 0 cos kx . (7.37)

This potential is shown in Figure 7.5a.
For an electron having a small velocity near x = 0, we have the following

equation of motion:

me ẍ = e
∂ϕ

∂x
= −eϕ 0 k sin kx ≈ −eϕ 0 k2 x . (7.38)

So such a trapped electron is oscillating with frequency

ω
(e)
tr = k

(
eϕ 0

me

)1/2

. (7.39)

This is illustrated by particle trajectories in the two-dimensional phase space
(Figure 7.5b).
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Figure 7.5: (a) The the electric field potential in a Langmuir wave of a small
but finite amplitude. (b) The phase trajectories of an electron in the wave.

The potential energy −eϕ of the trapped electron has maximum at the
minimum of the potential ϕ, at points M which determine the separatrix S.

Exercise 7.6 [ Section 7.1.2 ] Consider the Landau resonance for electrons in
a Maxwellian plasma. It is clear that electrons moving much slower or much
faster than the wave tend to see the electric field that averages to zero. So we
have to consider only the particles in some small part of velocity space close
to the phase velocity as shown in Figure 7.1.

Since the slope of the initial distribution function is negative, there
are more electrons at lower velocity than at higher velocity near the reso-
nance (7.12). Estimate a difference.

Exercise 7.7 [ Section 7.1.2 ] Show that the Landau damping prevents
plasma waves from escaping the region where ω = ω

(e)
pl (see definition (8.78))

into rarefied plasma, for example, from the solar corona to interplanetary
medium (see Zheleznyakov, 1996).

Hint. Consider the dispersion equation for electromagnetic waves in a
homogeneous equilibrium plasma without a magnetic field.

Exercise 7.8 [ Section 7.1.2 ] In the fire-hose instability, the driving force
is the beam pressure parallel to the magnetic field. Show that this pressure
increases the amplitude of an electromagnetic transverse wave in a way anal-
ogous to that of a water flowing through a hose.

Hint. Consider low-frequency transverse waves in a homogeneous equilib-
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rium plasma with a magnetic field. Such waves are called the kinetic Alfven
waves. They extend to frequencies higher than that are valid for MHD. Let a
beam of protons or electrons travel parallel to the magnetic field. An analysis
of linear disturbances similar to the MHD waves will introduce an additional
term into the dispersion equation of the Alfven wave. Note that an instability
occurs for beams of protons or electrons. Consider the threshold condition in
both cases.

Exercise 7.9 [ Section 7.1.3 ] Show that fast ions can generate whistler-mode
waves when the resonant particles are traveling faster than the wave. Show
that, in this case, the effect of Doppler shift is to change the sense of rotation
of the wave electric field in the resonant-particle frame from right-handed to
left-handed.

Exercise 7.10 [ Section 7.2.2 ] Show that the Kolmogorov spectrum formula
(7.24) follows from the Kolmogorov scaling law (7.28).

Answer. The kinetic energy density associated with some wavenumber k
is W (k) dk, which can be roughly written as

W (k) k ∼ v2 . (7.40)

Substituting for v from formula (7.28) with l ∼ 1/k, we have

W (k) k ∼ P2/3 k−2/3 . (7.41)

From here the Kolmogorov spectrum (7.24) readily follows.



Chapter 8

Coulomb Collisions in
Astrophysical Plasma

Binary collisions of particles with the Coulomb potential of interaction
are typical for physics of collisional plasmas in space and especially for
gravitational systems. Coulomb collisions of fast particles with plasma
particles determine momentum and energy losses of fast particles, the
relaxation processes in astrophysical plasma.

8.1 Close and distant collisions

8.1.1 The collision parameters

Binary interactions of particles, described by the Coulomb potential

ϕ(r) =
e

r
, (8.1)

have been studied in mechanics (see Landau and Lifshitz, Mechanics, 1976,
Chapter 4, § 19). Considering binary interactions as collisions, we are inter-
ested only in their final result, the duration of the interaction and the actual
form of particle trajectories being neglected. Thus in the centre-of-mass sys-
tem, each particle is deflected through an angle χ defined by the relation

tan
χ

2
=

e1e2

mv2 l
(8.2)

or
l (χ) =

e1e2

mv2 cot
χ

2
. (8.3)

Here
m =

m1m2

m1 + m2
(8.4)

133
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is the reduced mass, v is the relative particle velocity at infinity, l is the
‘impact parameter ’. The last is the closest distance of the particle’s approach,
were it not for their interaction as shown in Figure 8.1.

m

m
2

1

l

χ

v

ld
dσ

Figure 8.1: The trajectory of a light particle with mass m1 near a heavy
particle with mass m2.

For particles deflected through a right angle

l
(π

2

)
≡ l⊥ =

e1e2

mv2 , (8.5)

so the initial formula (8.2) is conveniently rewritten as

tan
χ

2
=

l⊥
l

.

(8.6)

The collisions are called close if

π/2 ≤ χ ≤ π , i.e. 0 ≤ l ≤ l⊥ . (8.7)

Correspondingly, for distant collisions l > l⊥ and 0 ≤ χ < π/2. Both cases
are shown in Figure 8.2.

8.1.2 The Rutherford formula

The average characteristics of the Coulomb collisions are obtained with the
aid of the formula for the differential cross-section. It is called the Rutherford
formula and is derived from (8.3) as follows:

dσ = 2π l(χ) dl = 2π l(χ)
∣∣∣∣ dl

dχ

∣∣∣∣ dχ =

=
πe 2

1 e 2
2

m2v4

cos (χ/2)
sin3(χ/2)

dχ =
( e1e2

2mv2

)2 d Ω
sin4(χ/2)

. (8.8)
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Figure 8.2: Close (a) and distant (b) collisions of particles in the momentum
space in the centre-of-mass system.

Here the modulus bars indicate the absolute value of the derivative dl/dχ
because it has a negative sign: with increase of the impact parameter l, the
scattering angle χ decreases; the solid angle d Ω = 2π sin χ dχ.

By integrating (8.8) over the back hemisphere (8.7), we find the total
cross-section of close collisions

σcl =
πe 2

1 e 2
2

m2v4 = πl 2
⊥ . (8.9)

This formula follows directly from definition (8.5), of course, without inte-
grating the differential cross-section (8.8).

8.1.3 The test particle concept

By analogy with the usual gas, the concept of a ‘test’ particle is introduced
to analyse the collisions in plasma. For instance the frequency of test particle
(m1, e1) collisions with ‘field’ particles (m2, e2) is introduced:

νcl = n2 v1 σcl =
πe 2

1 e 2
2 n2

m 2
1 v 3

1
. (8.10)

Here, for simplicity’s sake, it is assumed that m2 � m1 ≈ m (see for-
mula (8.4)) and v2 
 v1. So this is, for example, the case of an electron
colliding with ‘cold’ ions.

The length of mean free path λ of a test particle in a gas consisting of field
particles is, by definition, the distance along which the particle suffers one
collision,

λ = v1 ν−1 . (8.11)

From (8.10) and (8.11) it follows for close collisions that

λcl =
1

n2 σcl
. (8.12)
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Hence the time between two consecutive collisions is

τcl =
λcl

v1
=

m 2
1 v 3

1

πe 2
1 e 2

2 n2
∼ v 3

1

n2
, (8.13)

or the frequency of close collisions

νcl =
1
τcl

=
πe 2

1 e 2
2 n2

m 2
1 v 3

1
∼ n2

v 3
1

, (8.14)

which is the same as formula (8.10) of course.

8.1.4 Particles in a magnetic trap

Formulae (8.10) and (8.13) are frequently used in order to find out what
approximation we have to use to consider the astrophysical plasma. For ex-
ample, if the length of mean free path λ of the test particles inside a magnetic
trap (Section 6.2) is greater than the trap’s size, then such particles can be
considered in the collisionless approximation. Here charge separation may be
found to be essential, as well as the electric field resulting from it (Alfvén and
Fälthammar, 1963; Persson, 1963).

While the magnetic mirror is the primary trapping mechanism, the
electrostatic potential also traps electrons

with energies low to overcome the electrostatic potential.
In the solar atmosphere, the electrostatic potential produced, in solar-flare

magnetic traps, has an energy equivalent of the average energy of accelerated
electrons. The number and energy fluxes of the electrons that escape from the
trap can be reduced by as much as ∼ 50 or more depending on the magnetic
mirror ratio of the flare loop and the ratio of the ion and electron anisotropy
factors (Spicer and Emslie, 1988).

Some other effects due to non-collisional particles in the so-called collapsing
magnetic traps are mentioned in Section 6.2; they will be considered in Sec-
tion 18.3 and vol. 2, Chapter 7. For example, the electric potential mentioned
above increases the efficiency of confinement and acceleration of electrons in
solar flares (Kovalev and Somov, 2002).

On the other hand, if the length of the mean free path of the test particles
is much less than the trap’s size, the collisions play an important role. As
a rule they maxwellise the plasma (the gas of test particles), making it an
equilibrium one. In such a plasma the notion of temperature is meaningful, as
we shall see in Chapter 9. For example, while considering thermal electrons
(having the density ne and the temperature Te) in the trap, an electron with
the mean thermal velocity (see definition (5.53))

VTe =
√

3kBTe

me
(8.15)
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should be taken as the test particle. Then we obtain the known ‘T to the 3/2
power’ law for the time of the Coulomb collisions (8.13):

τ ∼ T
3/2

e

ne
.

(8.16)

The hotter the astrophysical plasma is, the more non-collisional is
it with respect to some physical phenomenon or another.

The characteristic time τ of the Coulomb collisions has to be compared
with the characteristic times of other physical processes: the time of particle
motion between magnetic corks in the trap, the period of the Larmor rotation,
the time of heating or cooling, etc.

8.1.5 The role of distant collisions

Because for small angles χ the differential cross-section (8.8) is

dσ ∼ dχ

χ3 , (8.17)

the total cross-section diverges.

Such divergence of the collisional cross-section always occurs, once
the interaction potential has no restricting factor,

or, to put the same in another way, if the interaction forces do not break off at
some distance, as in the case of hard balls. This fact is of fundamental impor-
tance, for example, in stellar dynamics (Jeans, 1929; Chandrasekhar, 1943a)
or, more exactly, in any astrophysical system governed by gravitational force
(say a gravitational system), see Sections 3.3 and 9.6.

Although each distant collision causes only a small deflection of the test
particle trajectory, they are present in such large numbers that their total
action upon the particle is greater or much greater than that of relatively rare
close collisions. Let us convince ourselves that this is true.

Each collision causes a small change in momentum perpendicular to the
initial direction of the particle’s motion:

δp⊥ = p sin χ = m1v1
2 tan (χ/2)

1 + tan2(χ/2)
=

2 m1v1 (l⊥/l)
1 + (l⊥/l)2

= 2m1v1
x

1 + x2 .

Here x = l⊥/l, and 0 ≤ x ≤ 1.
Since distant collisions occur chaotically, we are usually interested in the

mean rate of change in the quantity p 2
⊥:

d

dt
p 2

⊥ =

χ=0∫
χ=π/2

(δp⊥)2 n2 v1 dσ =
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= 8π n2 m 2
1 v 3

1 l 2
⊥

0∫
1

dx

(1 + x2)2 x
∼ lnx

∣∣∣∣ 0
1

. (8.18)

The integral diverges logarithmically on the upper limit. Let us
restrict it to some maximal value of the impact parameter

Λ = lmax/l⊥ . (8.19)

Then the integral is approximately equal to

d

dt
p 2

⊥ = 8π n2 m 2
1 v 3

1 l 2
⊥ ln Λ = πe 2

1 e 2
2

n2

v1
8 ln Λ . (8.20)

The factor ln Λ is referred to as the Coulomb logarithm.
Introduce the characteristic time τ⊥ during which the perpendicular com-

ponent of the momentum acquires a value equal to the initial momen-
tum m1v1:

τ⊥ = (m1v1)
2
(

d

dt
p 2

⊥

)−1

=
m 2

1 v 3
1

πe 2
1 e 2

2 n2 (8 ln Λ)
. (8.21)

In other words, the mean resulting deflection becomes comparable with the
quantity π/2 in a time τ⊥. Recall that this deflection through a large angle
is a result of many distant collisions.

The effective frequency of distant collisions that corresponds to the time τ⊥
is

ν⊥ =
1
τ⊥

=
πe 2

1 e 2
2 n2

m 2
1 v 3

1
8 ln Λ , (8.22)

which is 8 ln Λ larger than the close collisions frequency (8.14):

ν⊥ = 8 ln Λ · νcl .
(8.23)

The factor 8 ln Λ is usually much greater than unity; its typical value is >∼ 102

under physical definition of ln Λ given in Section 8.2.

The influence of the close Coulomb collisions on kinetic processes in
astrophysical plasma is, as a rule, negligibly small in comparison to
the action of distant collisions.

For example, the distant collisions determine an evolution of the distribution
function of fast electrons injected into the thermal plasma in the solar atmo-
sphere diring solar flares. However this does not mean that the close
collisions do never play any role in plasma astrophysics. Just in the
same example, the close collisions of fast electrons with thermal ions create
hard X-ray bremsstrahlung emission in the range 10–100 keV, because the
close collisions are responsible for large exchange of the particle momentum.
For typical flare parameters (hν ≈ 20 keV, ln Λ ≈ 20) the efficiency of the
bremsstrahlung process is ∼ 3 × 10−6 (Brown, 1971; Korchak, 1971).
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8.2 Debye shielding and plasma oscillations

8.2.1 Simple illustrations of the shielding effect

While considering the distant collisions, we have removed the divergence of
the integral (8.18) which describes the mean rate of change of the test particle
transversal momentum, purely formally – by artificially restricting the radius
of action of the Coulomb forces at some maximal distance lmax. Meanwhile
this maximal distance may be chosen quite justifiably, based on the following
reasoning. In a plasma,

each charged particle attracts oppositely charged particles and, at
the same time, repels the particles of the same charge.

As a consequence, the oppositely charged particles tend to gather around the
particle, thus weakening its Coulomb field. As a result of such ‘shielding’ the
action of the field extends over a distance no greater than some quantity rD

called Debye radius.
The concept of Debye shielding has a clear meaning. Let us assume that a

plasma contains an immovable charge which then creates the electrostatic field
in its vicinity. As a final result of shielding interactions mentioned above, some
equilibrium distribution of two components : positive and negative plasma
particles is established in this field. Its electrostatic potential ϕ is related to
the densities of ions ni and electrons ne via the Poisson equation

∆ϕ = −4πe (Zni − ne) , (8.24)

where Ze is the ion charge.
In the thermodynamic equilibrium state the ion and electron densities in

the electrostatic field with potential ϕ (r) are to be distributed according to
Boltzmann’s law

ni = n 0
i exp

(
− Zeϕ

kBT i

)
, ne = n 0

e exp
(

eϕ

kBTe

)
. (8.25)

The constant coefficients are set equal to the mean densities n 0
i and n 0

e of
plasma particles, since ϕ → 0 far from the particle considered.

Supposing that the Coulomb interaction is so weak that

Zeϕ 
 kBT i and eϕ 
 kBTe , (8.26)

or restricting our consideration to the approximate solutions applicable at
large distances from the shielded charge, we expand both exponents (8.25) in
a series and substitute in Equation (8.24). We obtain the following equation:

1
r2

d

dr

(
r2 dϕ

dr

)
= − 4πe

[
Zn 0

i

(
1 − Zeϕ

kBT i

)
− n 0

e

(
1 +

eϕ

kBTe

)]
=
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= 4πe

[(
n 0

e − Zn 0
i
)

+
e

kB

((
Zn 0

i
) Z

T i
+
(
n 0

e
) 1

Te

)
ϕ

]
. (8.27)

As usual the actual plasma is quasi-neutral on average (see the next Sec-
tion); instead of this let us assume here (like in Sections 3.2.2 and 3.2.3) that
the plasma is ideally neutral :

Zn 0
i = n 0

e . (8.28)

Thus we have an equation

1
r2

d

dr

(
r2 dϕ

dr

)
=

4πe2n 0
e

kB

(
Z

T i
+

1
Te

)
ϕ =

ϕ

r2
D

. (8.29)

On the right-hand side of Equation (8.29) we have two terms for a two-
component plasma. We divide them by ϕ, then

1
r 2
D

=
1

r
(i) 2
D

+
1

r
(e) 2
D

=
4πe2n 0

e

kBTe

(
1 + Z

Te

T i

)
. (8.30)

Therefore

rD =
(

kB

4πe2n 0
e

TeT i

ZTe + T i

)1/2

(8.31)

is known as the Debye radius, being first derived by Debye and Hückel (1923)
in the theory of electrolytes.

The solution of Equation (8.27) corresponding to the charge e situated at
the origin of the coordinates is the potential

ϕ =
e

r
exp

(
− r

rD

)
.

(8.32)

At distances greater than rD , the electrostatic interaction is exponentially
small.

The Debye length is an effective range for collisions, the potential be-
tween charged particles being the shielded Coulomb potential (8.32)
rather than the Coulomb one (8.1) which would apply in a vacuum.

That is why:
(a) the binary correlation function (3.30) reproduces the shape of the

shielded Coulomb potential (8.32),
(b) the Debye radius rD is substituted in the Coulomb logarithm (8.20)

in place of lmax.
A formula that is simpler than (8.31) is frequently used for the Debye

radius, namely

r(e)
D

=
(

kBT

4πe2ne

)1/2

. (8.33)
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This variant of the formula for the Debye radius implies that the shielding
is due to just the particles of one sign, more exactly, electrons, i.e. in the
formulae (8.25) we have T i = 0 (the approximation of cold ions) and Te = T
(see Exercise 9.3). This is the electron Debye radius. The corresponding
formula for the Coulomb logarithm is

ln Λ = ln
3

2e3

(
k3

B
T 3

πne

)1/2

. (8.34)

Its values typical of the solar atmosphere are around 20 (Exercise 8.1).
Formula (8.33) shows that the electron Debye radius increases with an

increase of temperature, since electrons with higher kinetic energy can with-
stand the attraction of the positive ion charge Ze up to larger distances. It
decreases with an increase of density n0, since a larger number of electrons
and ions can be accommodated in shorter distances to screen the electric field
of charge Ze.

8.2.2 Charge neutrality and oscillations in plasma

The Debye shielding length is fundamental to the nature of a plasma. That
is why this important characteristic appears again and again in plasma astro-
physics, starting from the binary correlation function (3.30).

The first point to note is that a plasma maintains approximate charge
neutrality (Sections 11.5.2 and 3.2.2). The reason for this is simply that any
significant imbalance of positive and negative charge could only be maintained
by a huge electric field. The movement of electrons to neutralize a charge
inhomogeneity would be followed by an oscillatory motion (e.g., Alfvén and
Fälthammar, 1963, Chapter 4).

This brings us to a second characteristic of plasmas called the plasma
frequency or, more exactly, the electron plasma frequency:

ω
(e)
pl =

(
4πe2ne

me

)1/2

.

(8.35)

A charge density disturbance oscillates with this frequency (see Sec-
tion 10.2.1). These oscillations are called Langmuir waves or plasma waves.
Therefore, under most circumstances,

plasma cannot sustain electric fields for lengths in excess of the
Debye radius or times in excess of a plasma period T

(e)
pl = 2π/ω

(e)
pl .

However one cannot talk of plasma oscillations unless a large number of
thermal particles are involved in the motion. It is the Debye shielding length
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which determines the spatial range of the field set up by the charge inequality:

rD =
1√
3

VTe

ω
(e)
pl

. (8.36)

Here VTe is the mean thermal velocity of electrons. Therefore the Debye
length

rD ≈ VTe

ω
(e)
pl

.

(8.37)

So a fully-ionized plasma in the termodynamic equilibrium is a quasi-neutral
medium. The space and time scales of charge separation in such plasma are
the Debye radius and the inverse plasma frequency. Therefore the plasma
oscillations are a typical example of collective phenomena (Section 3.2.3).

The Coulomb collisions, of course, damp the amplitude of the plasma
oscillations with the rate which is proportional to the frequency νei of electron-
ion collisions (see Exercise 10.3).

8.3 Collisional relaxations in cosmic plasma

8.3.1 Some exact solutions

It was shown in Section 8.1 that, as a result of the Coulomb collisions, a
particle deflects through an angle comparable with π/2 in a characteristic time
given by formula (8.21). More exact calculations of the Coulomb collisions
times, that take into account the thermal motion of field particles, have been
carried out by Spitzer (1940) and Chandrasekhar (1943). These calculations
are cumbersome, so we give only their final results.

Let us consider the electron component of a plasma. Suppose that the test
particles likewise are electrons moving with mean thermal velocity. Then the
exact calculation gives instead of the formula (8.21) the time

τee =
m 2

e (3kBTe/me)3/2

πe 4
e ne (8 ln Λ)

· 1
0.714

. (8.38)

This is called the time of mutual electron collisions or simply the electron
collisional time. Comparison of formula (8.38) with (8.21) shows that the
difference (the last factor in (8.38)) is not large. So the consideration of
binary collisions in the approximation used in Section 8.1 is accurate enough,
at least for astrophysical applications.

The analogous time of mutual collisions for ions, having mass mi, charge ei,
temperature T i and density ni, is equal to

τ ii =
m 2

i (3kBT i/mi)3/2

πe 4
i ni (8 ln Λ)

· 1
0.714

. (8.39)
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If a plasma is quasi-neutral: ei ni ≈ −ee ne = en, where ei = −Zee, and if
Te ≈ T i, then the ratio

τ ii

τee
≈
(

mi

me

)1/2 1
Z3 .

(8.40)

Coulomb collisions between thermal ions occur much more rarely
than those between thermal electrons.

However it is not the time of collisions between ions τ ii – the ion collisional
time, but rather the time of electron-ion collisions that is the greatest. This
characterizes, in particular, the process of temperature equalizing between the
electron and ion components in a plasma. The rate of temperature equalizing
can be determined from the equation

d Te

dt
=

T i − Te

τei (E)
, (8.41)

where τei (E) is the time of equilibrium establishment between the electron and
ion plasma components. It characterizes the rate of exchange of energy E be-
tween the components and equals (Spitzer, 1940, 1962; see also Sivukhin, 1966,
§ 9 and § 17; cf. formulae (42.5) in Lifshitz and Pitaevskii, 1981, § 42)

τei (E) =
memi [ 3kB (Te/me + T i/mi) ] 3/2

e 2
e e 2

i (6π)1/2 (8 ln Λ)
. (8.42)

For comparison with formula (8.40) let us put Ti = Te. Then

τei (E) = 0.517
e 2
i

e 2
e

(
mi

me

)1/2

τ ii . (8.43)

Thus the time of energy exchange between electrons and ions is much greater
than the time of mutual ion collisions.

In a plasma consisting of electrons and protons with equal temperatures
we have

τep(E) ≈ 22 τ pp ≈ 950 τee . (8.44)

The energy exchange between electron and ion components occurs
so slowly that for each component a distribution may be set up
which is close to Maxwellian with the proper temperature.

That is the reason why we often deal with a two-temperature plasma. More-
over the so-called adiabatic model for two-temperature plasma (Section 8.3.3)
is often used in astrophysics.
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8.3.2 Two-temperature plasma in solar flares

8.3.2 (a) Impulsive heating by accelerated electrons

Let us illustrate the situation, discussed above, by two examples from the
physics of flares. The first is the impulsive heating of the solar atmosphere
by a powerful beam of accelerated electrons. The beam impinges on the
chromosphere from the coronal part of a flare along the magnetic field tubes.
The maximal energy flux is Fmax

>∼ 1011 erg cm−2 s−1. The time profile with
the maximum at t <∼ 5 s of the energy flux at the upper boundary of the
chromosphere has been used for numerical solution of the two-temperature
dissipative hydrodynamic equations (Chapter 2 in Somov, 1992).

Yohkoh observations, made using three of the instruments on board – the
Hard X-ray Telescope (HXT), the Soft X-ray Telescope (SXT), and the Bragg
Crystal Spectrometer (BCS) – show that the nonthermal electron energy flux
can be even larger, for example, in the flare of 16 December 1991 (see Figure 6a
in McDonald et al., 1999), the maximal energy flux is

Fmax ≈ 2.5 × 1029 erg s−1/ 2 × 1017 cm2 ∼ 1012 erg cm−2 s−1.

Weak beams do not produce a significant response of the chromosphere (see
Figure 6b in McDonald et al., 1999), of course, just hard X-ray bremsstrahlung.

In the chromosphere, beam electrons lose their energy by mainly Coulomb
collisions.

The fastest process is the primary one, namely that of energy trans-
fer from the beam electrons to the thermal electrons

of chromospheric plasma (Figure 8.3).
As a result, plasma electrons are rapidly heated to high temperatures: in a

matter of seconds the electron temperature reaches values of the order of ten
million degrees. At the same time, the ion temperature lags considerably, by
one order of magnitude, behind the electron temperature (Figure 8.4). Here
the Lagrange variable

ξ = −
z∫

zmax

n(z) dz + ξmin , cm−2 , (8.45)

z is the height above the photosphere, zmax corresponds to the transition layer
between the chromosphere and corona before an impulsive heating. Therefore
ξ is the column depth – the number of atoms and ions in a column (of the unit
cross-section) measured down into the chromosphere from its upper boundary,
the transition layer.

The column depth ξmin = nclr is the number of ions inside a flaring loop
which is the coronal part of a reconnected magnetic-field-line tube (see vol. 2,
Section 3.2.1); lr is the length of the reconnected field line, nc is the plasma
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Figure 8.3: A scheme of the energy exchange in the two-temperature model
of hydrodynamic response of the solar atmosphere to impulsive heating by an
electron beam.

density inside the tube above the transition layer between the chromosphere
and corona before an impulsive heating. Let us assume, for simplicity, that

ξmin 
 ξ1 =
E 2
1

2a1
, cm−2 . (8.46)

Here ξ1 is the column thickness that the accelerated electrons with the minimal
energy E1 measured in keV can pass in a plasma before they stop (see formula
(4.40)). The assumption (8.46) means that we neglect the energy losses of
the electrons in the coronal part of the loop. In this way, we consider direct
impulsive heating of the chromosphere by an electron beam. Accelerated
electrons penetrate into the chromosphere to significant depth; for this reason
a significant fraction of the beam energy is lost as radiation in optical and
EUV lines. The column depth of evaporated plasma ξ ≈ 2 × 1019 cm−2 but
its temperature does not exceed Tmax ≈ 107 K.

The difference between the electron and ion temperatures is essen-
tial, at first, for the dynamics of high-temperature plasma
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Figure 8.4: The distribution of
the electron and ion tempera-
tures over the column depth of a
plasma ξ into the chromosphere.

which absorbs the main part (≥ 90 %) of the beam energy flux. Let us imagine
that only the electrons are heated, while the ion heating can be neglected. In
this case the electron temperature is twice as large as it would be in the case
of equal heating of the electrons and ions,

( Te ) 1 � 2 ( Te ) 2 .

The rate of high-temperature plasma cooling is mainly determined by heat
fluxes into colder plasma. These can be evaluated by the formula for the
classical heat flux

Fc = −κe ∇Te (8.47)

under conditions when this formula is applicable, of course (see Somov et
al., 1981). Here κe = κ0 T

5/2
e is the classical heat conductivity due to the

Coulomb collisions of plasma electrons. From formula (8.47) we see that the
heat flux is proportional to T

7/2
e . Therefore the real heat flux

Fc ( Te ) 1 � 27/2 Fc ( Te ) 2 (8.48)

can be an order of magnitude (27/2 ∼ 10) larger than the flux calculated in
one-temperature ( Te = T i ) models. Because of this, the one-temperature
models are much less dynamic than one would expect.

The effect becomes even more important if the accelerated electrons heat
a preliminary (before a flare) evaporated ‘hot’ plasma. This formally means
that, in formula (8.45), the column depth ξmin = nclr is not small in compari-
son with ξ1. So we have to take into account the direct impulsive heating of the
plasma inside the coronal part of the flaring loop. Such process (Duijveman
et al., 1983; MacNeice et al., 1984) can very efficiently produce a ‘superhot’
plasma which has an electron temperature Te much higher than the maximal
temperature in the case of chromospheric heating considered above.
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8.3.2 (b) Heating by high-temperature current layers

The difference between the electron and ion temperatures is known to be
critical for a wide variety of kinetic effects, in particular for the generation
of some turbulence (for example, ion-acoustic or ion-cyclotron) in the impul-
sively heated plasma. The turbulence, in its turn, has a great impact on the
efficiency of heating and particle acceleration in a plasma.

The second example, when the electron component of a plasma has a tem-
perature that is considerably different from the ion temperature, is supplied by
the high-temperature turbulent-current layers (Somov, 1981 and 1986; Somov
and Titov, 1983) in the regions of reconnection. Since the layer thickness 2a
is small in comparison with its width 2b (see vol. 2, Figure 6.1), the plasma
inflow quickly enters the region of the Joule dissipation of reconnecting mag-
netic field components. Here the impulsively fast heating of the electrons
and ions takes place, resulting in considerably different tempera-
tures. The conditions in a reconnecting current layer (RCL) in the solar
corona, especially, in flares (vol. 2, Section 6.3) are such that

the Coulomb exchange of energy between the impulsively heated
electrons and ions inside the RCL can be entirely neglected.

One of distinctive features of fast reconnection in RCLs, proposed as the
primary energy source in solar flares, is the presence of fast plasma outflows,
or jets, whose velocities are nearly equal to the Alfvén velocity, see defini-
tion (15.30). Outflows can give origin to plasma velocity distributions with
equal and opposite components along the x axis in Figure 8.5 and, as a con-
sequence, along the line-of-sight (l.o.s.) to an observer. Therefore, in this
way, they can create a symmetric supra-thermal broadening in the soft
X-ray and EUV lines observed during solar flares. The broadening mainly
depends on the electron and ion temperatures inside the RCL (Antonucci and
Somov, 1992).
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Figure 8.5: High-temperature plasma velocities near a reconnecting current
layer.

A comparison of the supra-thermal profiles of the Fe XXV emission lines
observed at flare onset with the predictions of the high-temperature turbulent-
current layer model suggests that the observed supra-thermal broadenings are
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consistent with the presence in the flare region of several small-scale or one
(a few) curved large-scale RCLs (Antonucci et al., 1996).

The energy release by reconnection has been invoked to explain both large-
scale events, such as solar flares and coronal mass ejections (CMEs), and
small-scale phenomena, such as the coronal and chromospheric microflares
that probably heat the corona (vol. 2, Section 12.4) and accelerate the solar
wind. Ultraviolet observations of the so-called explosive events in the solar
chromosphere by SUMER (the Solar Ultraviolet Measurements of Emitted
Radiation instrument) on the spacecraft SOHO (the Solar and Heliospheric
Observatory) reveal the presence of bi-directional plasma jets ejected from
small sites above the solar surface (Innes et al., 1997; cf. Antonucci and So-
mov, 1992). The structure of these jets evolves in the manner predicted by the-
oretical models of reconnection (see Figure 1 in Somov and Syrovatskii, 1976a),
thereby leading strong support to the view that reconnection is the fundamen-
tal process for accelerating plasma on the Sun.

8.3.3 An adiabatic model for two-temperature plasma

As we saw in Section 8.3.1, equilibrium in an electron-proton plasma is
achieved in three stages. First, the electrons reach a Maxwellian distribu-
tion with temperature Te on a time τee. Then, on a longer time,

τpp ≈ (mp/me)1/2 τee ,

the protons reach a Maxwellian distribution with temperature Tp. Finally,
the two temperatures equalize on the longest time of order

τep ∼ (mp/me) τee .

Let us suppose that a two-temperature plasma is created by a strong
shock wave in an electron-proton plasma. The shock primarily heats
ions because the kinetic energy of a particle is proportional to the particle
mass. In the postshock region, the protons reach thermal equilibrium on a
time τpp after they are heated through the shock (Zel’dovich and Raizer, 1966,
2002). Within this time the proton temperature is significantly higher than
the electron one. Subsequently the protons share their thermal energy with
the electrons through Coulomb collisions.

In astrophysical plasma, sometimes, a difference between electron
and ion temperatures can be observed at huge linear scales.

For example, the so-called X-ray clusters, or clusters of galaxies, with the X-
ray temperatures (4 − 10) × 107 K show noticeable differences between their
electron and ion temperatures at radii greater than 2 Mpc.

The clusters of galaxies are the largest objects in the Universe, contain-
ing galaxies and dark matter, collisionless particles and a diffuse gas compo-
nent. The last one is called the intracluster medium and has a temperature
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of about 108 K, thus emitting hard X-rays (HXR) mainly through the ther-
mal bremsstrahlung of the electrons. In the outer parts of the clusters, the
free-free cooling time is much longer than the Hubble time. So we neglect
radiative cooling in such plasma which is supposed to be heated by the shock
in the accretion flow (see Takizawa, 1998).

If we could also neglect heat conduction (for example, by assuming that the
thermal conductivity of the intracluster medium is strongly reduced by a tem-
perature gradient-driven kinetic instability, see Hattori and Umetsu, 2000),
then the electrons would be considered as an adiabatic gas. It would be very
convenient to calculate the electron and ion temperature profiles by using the
adiabatic model of a two-temperature plasma by Fox and Loeb (1997). This
is also the case if tangled magnetic fields, for example of turbulent origin, can
suppress heat conduction in high-temperature plasma. So we assume that
there exists

a chaotic magnetic field that is sufficiently strong to suppress heat
conduction in high-temperature astrophysical plasma, yet small
enough to have negligible dynamical and dissipative effects including
Joule heating.

These conditions seem to be approximatelly satiesfied in cluster environments;
for more detail see Fox and Loeb (1997).

The general case of a strong shock in a fully ionized plasma with heat
conduction is complicated by the fact that the electron thermal speed exceeds
the shock speed, allowing the electrons to preheat the plasma ahead of the
shock (Zel’dovich and Raizer, 1966). Usually heat conduction determines
internal scales of the problem being in competition with the thermal
instability driven by radiative cooling (Field, 1965; see also Somov and Sy-
rovatskii, 1976a). Radiation emitted by the high-temperature plasma behind
the shock also may heat a preshock region. Fast particles, escaping from the
high-tempertature plasma (see Section 8.4.3), may contribute the preshock
heating too. So we have to be very careful when we apply the adiabatic
model of two-temperature plasma to astrophysical conditions.

If come back to HXR tails observed in the X-ray spectra of some clus-
ters, one suggestion is that all or part of this emission might be nonthermal
bremsstrahlung from suprathermal electrons with energies of ∼ 10− 100 keV.
This nonthermal electrons would form a population in excess of the normal
thermal gas, which is the bulk of the intracluster medium. The most natural
explanation of this suprathermal population would be that they are particles
currently being accelerated to high energies by turbulence in the intraclus-
ter medium. Sarazin and Kempner (2000) have calculated models for the
nonthermal HXR bremsstrahlung in the clasters of galaxies.

The high-Mach-number shocks in young supernova remnants (SNRs)
do not produce electron-ion temperature equilibration either. The heating
process in these collisionless shocks is not well understood, but the Coulomb
collisions times are too long to provide the required heating. Presumably the
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plasma collective processes should be responsible for the heating; see discus-
sion and references in Section 16.4. This raises the question of whether the
heating process leads to temperature equilibration or not. It appears that
the observed electron temperature (Te ∼ 1 keV) remains very low compared
to the observed ion temperature (T i ∼ 500 keV for ions O VII) behind the
shock.

8.3.4 Two-temperature accretion flows

Magnetized accretion disks have become the most convincing physical para-
digm to explain a low emission from the central engines of active galactic
nuclei (AGN) and X-ray binary sources (see also Section 13.2). The observed
radiation comes from the energy dissipation required to maintain steady ac-
cretion of plasma on to the central object. In the standard model of the
optically-thin accreation disk, the heat energy released by viscous dissipation
is radiated almost immediatelly by the accreating plasma. So

the net luminosity must be equal to (≈ one-half) the gravitational
energy released as the mass falls onto the central object.

In a few of binary stellar systems, the mass of the primary star has been
measured and found to be consistent with the mass of a neutron star, ∼
1.4 M	. In several other systems, however, the mass of the primary is found
to be greater than 3 M	, which makes these stars too massive to be neutron
stars. These are considered as black hole candidates.

Although neutron stars and black holes have been distinguished on the
basis of their masses, the real physical distinction between the two is that
black holes must have a horizon (a surface through which the matter and
energy fall in but from which nothing escapes) while neutron stars are normal
stars with surfaces. This basic difference provides an opportunity to test the
reality of black holes (see Narayan et al., 1997).

Two-temperature advection-dominated accretion flows (ADAFs) have re-
ceived much attention in an effort to explain low-luminosity stellar and galac-
tic accreting sources (Blackman, 1999; Wiita, 1999; Manmoto, 2000). Here
the ions are assumed to receive the energy dissipated by the steady accretion
without having enough time to transfer their energy to the cooler
electrons before falling on to the central object.

While the electrons can almost always radiate efficiently, the protons will
not, as long as Coulomb processes are the only thing that share energy between
electrons and protons. So some or most of the dissipated energy is advected
(Section 13.2.3), not radiated, as it would have been if the electrons received
all of the dissipated energy. In the ADAF model, the heat generated via
viscosity is advected inward rather than radiated away locally like a standard
accretion disk (Novikov and Torn, 1973; Shakura and Sunyaev, 1973).

When the central object is a black hole, the advected energy is lost
forever rather than reradiated as it would be for a neutron star.
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Precisely such observed differences between corresponding X-ray binary sys-
tems have been purported to provide evidence for black hole horizons (Narayan
et al., 1997; see also Chakrabarti, 1999); see, however, discussion of the ADAF
model in Section 9.3.3.

8.4 Dynamic friction in astrophysical plasma

8.4.1 The collisional drag force and energy losses

8.4.1 (a) Chandrasekhar-Spitzer’s formulae

As in Sections 8.1 and 8.3, we use the concept of a test particle to illustrate
the effects of the collisional drag force in astrophysical plasma. A test particle
of mass m1 and charge e1 is incident with velocity v in a gas containing field
particles of mass m2, charge e2 and density n2. In what follows, v ‖ will be
the component of the test particle velocity parallel to the original direction of
its motion.

First, for the sake of simplicity, let us consider the field particles at rest . As
in Section 8.1.5, integration over all possible values of the impact parameter
up to the upper cut-off at l = lmax yields the following formulae describing
the mean rates of energy losses and of scattering for the incident particle
(Spitzer, 1962):

dE
dt

= −2πe 2
1 e 2

2 ln Λ
E

m1

m2
n2 v (8.49)

and
d

dt
v ‖ = −πe 2

1 e 2
2 ln Λ
E2

(
1 +

m1

m2

)
n2 v2 . (8.50)

Here E is the energy of the incident particle (see definition (5.2)).
If we consider a beam of accelerated electrons in astrophysical ionized

plasma, the most important are interactions with electrons and protons. So

dE
dt

= −2πe4 ln Λ
E

(
1 +

me

mp

)
ne v (8.51)

and
d

dt
v ‖ = −πe4 ln Λ

E2

(
3 +

me

mp

)
ne v2 . (8.52)

Thus

both ambient electrons and protons produce scattering (8.52) of
the incident electrons but only ambient electrons contribute
significantly to the energy losses;

the contribution of protons in the rate of energy losses (8.51) is proportional
to the small ratio me/mp. This is consistent, of course, with what we have
concluded in Section 4.2 for fast particles propagating in thermal plasma.
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We neglect collective effects due to interaction of the plasma and the elec-
tron beam as a whole without any justification here. It must be emphasized
also at this point that formulae (8.51) and (8.52) describe the mean rates of
change of E and v ‖ for the electrons of an incident beam but neglect the dis-
persions about these means. The accuracy of such procedure decreases as the
scattering and energy losses become not small. These ristrictions have been
discussed in Section 4.4. Now we recall that we have neglected the proper
motions of the plasma particles. Let us take them into account.

8.4.1 (b) Energy losses in plasma

The most general non-relativistic formula for Coulomb losses in the many-
component thermal plasma is given, for example, in Trubnikov (1965), Sivu-
khin (1966) and can be expressed as follows:

P ≡ dE
dt

=
∑

k

(
dE
dt

)
k

= −
∑

k

4πe4 ln Λ
mk

Z2Z 2
k nk

vk
Pk

(
v

vk
,
mk

M

)
. (8.53)

Here Zk, mk, nk and vk are the charge, mass, density and thermal velocity of
the plasma particles of the kind k; they have a temperature Tk. Z, M = Amp
and v are the charge, mass and velocity of the incident particles; their kinetic
energy E = Mv2/2. Contrary to definition (8.15) of the mean thermal velocity,
in formula (8.53) the thermal velocity is equal to the most probable velocity
of thermal particles (Sivukhin, 1966):

vk =
(

2kBTk

mk

)1/2

. (8.54)

It is convenient to determine the dimensionless variable

xk =
v

vk
=
(

mk

M

E
kBTk

)1/2

(8.55)

and to rewrite the dimensionless function Pk as follows

Pk

(
xk,

mk

M

)
=

1
xk

erf (xk) −
(
1 +

mk

M

) 2√
π

exp
(−x 2

k

)
. (8.56)

Here

erf (xk) =
2√
π

xk∫
0

exp
(−t 2) dt (8.57)

is the probability integral.
Let us consider the low-energy limit. Note that

Pk

(
xk,

mk

M

)
≈ 2√

π

[
−mk

M
+

2
3

(
1 +

mk

M

)
x 2

k

]
if xk 
 1 . (8.58)
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Hence the dimensionless function

Pk

(
0,

mk

M

)
= − 2√

π

mk

M
< 0 (8.59)

and, according to formula (8.53), the energy losses rate

Pk ≡
(

dE
dt

)
k

=
8
√

πe4 ln Λ
M

Z2Z 2
k nk

vk
> 0 . (8.60)

This means that a test particle with zeroth (or very small) velocity takes
energy from the field particles having the temperature Tk. The hot field
particles heat a cold test particle.

Consider an opposite limiting case. If xk � 1, then, being positive, the
function

Pk

(
xk,

mk

M

)
∼ 1

xk
→ 0 when xk � 1 . (8.61)

So the higher the energy of a test particle, the smaller are the Coulomb losses.
The maximum of the dimensionless function Pk is reached at xk, max ≈

1.52, see schematical Figure 8.6.

0
max x

P P

k

k,k

xk,

max

P
k,min

Figure 8.6: The Coulomb losses (with the sign minus in formula (8.53)) of
energy of a test particle as a function of its velocity measured in the most
probable velocity of the field thermal particles of the kind k.

Astrophysical plasma consists of many components. To obtain the total
losses it is necessary to sum over all of them in formula (8.53). However
two components – electrons and protons – give the largest contribution. In a
plasma consisting of electrons and protons with ne = np = n and temperatures
Te and Tp we have (Korchak, 1980):

P = −cE
Z2

A

n ln Λ√
kBTe

[
Pe

(
xe,

me

M

)
+
(

meTe

mpTp

)1/2

Pp

(
xp,

mp

M

)]
, (8.62)
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where the constant cE ≈ 1.6 × 10−23.
The location of both maxima of the function (8.62) is determined by con-

ditions:
x1 = xp ≈ 1.52 and x2 = xe ≈ 1.52 . (8.63)

As follows from formula (8.62), the ratio of losses in the maxima

Pmax, p

Pmax, e
=
(

me

mp

Te

Tp

)1/2

≈ 1
43

(
Te

Tp

)1/2

. (8.64)

The maximum of the electron Coulomb losses is the main energy
threshold of the particle acceleration from low energies.

The proton barrier is considerably lower than the electron one.
The energy loss contribution of the proton component of astrophysical

plasma does not seem to be important. This is not always true, however.
First of all, formula (8.64) shows that the Coulomb losses on thermal protons
increase with the growth of the ratio Te/Tp. This may be an important
case if particles of low energies are accelerated in super-hot turbulent-current
layers (SHTCLs, see vol. 2, Section 6.3). The second argument comes from a
consideration of very low energies of accelerated particles. In this region, the
efficiency of acceleration is low for the majority of accelerating mechanisms.
However, just in this region of low energies,

the Coulomb losses can strongly influence the nuclear composition
and the charge-state of accelerated particles in astrophysical plasma

(Korchak, 1980; see also Holman, 1995; Bodmer and Bochsler, 2000; Bykov
et al., 2000).

When particular acceleration mechanisms in a astrophysical plasma are
considered, the role of Coulomb collisions often reduces to the energy losses of
the accelerated particles and, in particular, to the presence of the loss barrier
at low velocities. As a result, Coulomb collisions decrease the efficiency of
any acceleration mechanism. Contrary to this statement, we shall see that
in many cases Coulomb collisions can play a much less trivial and not so
passive role (e.g., vol. 2, Section 12.3.1). This makes plasma astrophysics
more interesting.

8.4.1 (c) Dynamic friction in plasma

The collisional drag force Ff acts on a test particle (mass M , charge Ze) mov-
ing through the many-component plasma with the Maxwellian distribution of
field particles:

M
d

dt
v ‖ = −Ff = −

∑
k

Fk

(
v ‖
)
. (8.65)

Here the velocity component v ‖ is parallel to the vector of the initial velocity
of an incident test particle.
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For a test particle with a velocity v much below the thermal velocity (8.54)
of the field particles with the mass mk, temperature Tk, and number den-
sity nk,

Ff ≈
∑

k

4πe4 ln Λ
kB

Z2Z 2
k nk

Tk

(
1 +

mk

M

) 2
3
√

π

v ‖
vk

∼ v ‖ . (8.66)

Therefore at small velocities the collisional drag force is proportional to the
component v ‖ (cf. formula (1.14)).

When the test particle velocity exceeds the thermal velocity of the field
particles, the drag force decreases with v ‖ as follows:

Ff =
∑

k

Fk ≈
∑

k

2πe4 ln Λ
kB

Z2Z 2
k nk

Tk

(
1 +

mk

M

)(v ‖
vk

)−2

∼ v−2
‖ . (8.67)
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Figure 8.7: The collisional drag force Fk (with the sign minus in formula
(8.65)) on a test particle as a function of its velocity v ‖ measured in the most
probable velocity vk of the field particles of the kind k.

The general formula for collisional drag force is given, for example, in
Sivukhin (1966) and is illustrated by schematical Figure 8.7; here the dimen-
sionless variable x ‖ k = v ‖/vk. The drag force vanishes when x ‖ k = 0; it
linearly increases with increasing x ‖ k, becoming a maximum when

x ‖ k = x ‖ k, max ≈ 0.97, (8.68)

and then falls off, approaching zero asymptotically as x ‖ k → ∞. This be-
haviour of the drag force has important consequences discussed below.

8.4.2 Electric runaway

It has been assumed above that the plasma is characterized by the Maxwellian
distribution and that there are no external fields. Let us now assume that a
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uniform electric field E is switched on at some instant of time, the velocity
distribution being assumed to be Maxwellian at this time. At least, at the
beginning of the process when the velocity distribution has not yet changed
appreciably, the time variation of the test-particle momentum Mv due to
Coulomb collisions with plasma particles will still be given by formulae (8.66)
and (8.67) supplemented by the electric force ZeE in Equation (8.65).

Thus, considering the component v ‖ as a component of the test-particle
velocity v which is parallel to the electric field E, we rewrite Equation (8.65)
as follows:

M
d

dt
v ‖ = −Ff + ZeE = −

∑
k

Fk + ZeE . (8.69)

If the test-particle velocity is not small in comparison with the thermal veloc-
ity vk, then the collisional drag force on a test particle falls off with increasing
velocity v, according to formula (8.67), while the electric force is velocity
independent. Therefore

for all particles with high enough velocities the electric force exceeds
the collisional drag force, and the particles are able to run away from
the thermal distribution.

Equating the electric and collisional drag forces allows us to see the crit-
ical velocity vcr above which runaway will occur for a given electric field
strength E, see point B in Figure 8.7. Runaway in astrophysical plasma can
occur as long as there is a component of the electric field along the magnetic
field. Before the acceleration of the heavy ions becomes significant, the accel-
eration of the light electrons gives rise to the electron runaway effect which
was first predicted by Giovanelli (1949). He has shown that

• as the electric field applied to a highly ionized gas is increased, the cur-
rent, which is initially limited by elastic collisions between electrons and
positive ions, increases rapidly as the field strength reaches a critical
value;

• this is due to a reduction in the cross-section of positive ions for scat-
tering of electrons with increasing electron velocity.

In a strong electric field (or in a plasma of sufficiently low density and
high temperature) all the electrons are accelerated by the field, i.e. become
the runaway electrons. The Dreicer field (Dreicer, 1959):

EDr =
4πe3 ln Λ

kB

ne

Te
(8.70)

approximately correspondes to the electric field strength for which vcr = ve.
Here ve is the most probable velocity of thermal electrons (8.54).

In a weak field only very fast electrons will run away, i.e. those veloc-
ity v ‖ � vcr. The velocity vcr depends in an essential manner on the magni-
tude of electric field. In a weak field, the velocity vcr is naturally much larger
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than the thermal velocity of electrons in the plasma. Therefore the number
of runaway electrons should be very small if their distribution would remain
maxwellian for velocities v ‖ <∼ vcr. This is not true however.

In order to determine the flux of runaway electrons we must know the way
in which the density of electrons having a velocity v ‖ ∼ vcr varies under action
of the runaway effect. This means that we must know the velocity distribution
for the electrons for v ‖ ∼ vcr. To consider this problem self-consistently it is
necessary to solve the kinetic equation taking both collisions and the electric
field into account (Section 4.5). It appears that Coulomb collisions creat a
power-law tail distribution between a region of thermal velocities and the
region where v ‖ ≈ vcr with a constant flux of electrons directed from low
to high velocities. By so doing, Coulomb collisions increase the flux of
runaway electrons (Gurevich, 1961).

To have an idea of the magnitude of the Dreicer field (see Exercise 8.4),
let us substitute the definition of the Debye radius (8.31) in formula (8.70)
and assume that Te = Tp = T and ne = np = n. We find

EDr =
e

r 2
D

ln Λ
2

∼ e

r 2
D

.

(8.71)

So the Dreicer field is approximatelly equal to the electric field of a positive
charge at a distance slightly smaller than the Debye radius.

8.4.3 Thermal runaway in astrophysical plasma

Let us consider a plasma with a non-uniform distribution of electron temper-
ature Te. Let l

T
be the characteristic length of the temperature profile and λe

be the mean free path of thermal electrons. For the classical heat conductivity
to be applicable, it is necessary to satisfy a condition (Section 9.5):

λe 
 l
T

≡ Te

| ∇Te | . (8.72)

The mean free path of a particle increases with its velocity. This can be seen
from formula (8.13) which gives us the mean free path

λ = τv1 ∼ v4
1 . (8.73)

That is why

a number of fast electrons can penetrate from a hot plasma into cold
one even if the gradient of temperature is very small.

In such a way, the hot plasma can lose some part of its thermal energy
transferred by fast thermal escaping electrons. In addition to the usual heat
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flux (8.47), which is determined locally by the Coulomb collisions of plasma
electrons, there appears a non-local energy flux carried by the fast electrons
practically without collisions. A classical diffusive heat transfer and a con-
vective one, determined by thermal runaway electrons, are always present in
plasma.

It is interesting for astrophysical applications that, at not too small tem-
perature gradients, the convective transfer of thermal energy can play a prin-
cipal role. Gurevich and Istomin (1979) have examined the case of a small
temperature gradient. By using a perturbation analysis for the high-speed
kinetic equation (Section 4.2), they have shown that the fast growth of the
mean free path with increasing velocity gives an abrupt growth of the number
of fast electrons in the cold plasma.

The opposite case of a large temperature gradient in the narrow tran-
sition layer between a high-temperature plasma and a cold one was investi-
gated by many authors with applications to the problem of energy transfer in
the solar atmosphere. For example, Shoub (1983) has solved numerically the
boundary-value problem for the Fokker-Planck equation in the model of the
transition layer between the corona and the chromosphere in quiet conditions.
An excess of fast electrons has been found in the low transion layer region.
As for solar flares, the prevailing view is that

the high-temperature plasma can lose energy efficiently by the con-
vective heat transfer by the thermal runaway electrons

(see Somov, 1992).
In both cases, however, it is important to take into account that the fast

runaway electrons, similar to any beam of fast particles, generate the
electric field which drives the reverse current of thermal electrons.
Diakonov and Somov (1988) have found an analytical solution to the self-
consistent kinetic problem on the beam of escaping thermal electrons and its
associated reverse current (Section 4.5). They have shown that the reverse-
current electric field in solar flares leads to a significant reduction of the con-
vective heat flux carried by fast electrons escaping from the high-temperature
plasma to the cold one.

Recommended Reading: Sivukhin (1966), Somov (1992).

8.5 Practice: Exercises and Answers

Exercise 8.1 [ Section 8.1 ] For an electron, which moves in the solar corona
with a mean thermal velocity (Exercise 5.2), evaluate the characteristic time
of close and distant collisions with thermal protons.
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Answer. Characteristic time of close electron-proton collisions follows
from formula (8.13) and is equal to

τcl, ep =
m 2

e

πe4

V 3
Te

np
≈ 4.96 × 10−18 V 3

Te

np
, s . (8.74)

At typical temperatures of electrons in the corona Te ≈ 2×106 K, their thermal
velocity (5.54) VTe ≈ 9.5 × 108 cm s−1. Substituting this value in (8.74) and
assuming np ≈ ne ≈ 2 × 108 cm−3, we find that τcl, ep ≈ 22 s.

According to (8.21) the characteristic time of distant collisions is 8 ln Λ
shorter than the close collision time (8.74). Hence, first, we have to find the
value of the Coulomb logarithm (8.34):

ln Λ = ln

[(
3k 3/2

B

2π1/2 e3

)(
T 3

e

ne

)1/2
]

≈ ln

[
1.25 × 104

(
T 3

e

ne

)1/2
]

. (8.75)

At typical coronal temperature and density, formula (8.75) gives

ln Λ ≈ 22 .

With this value of ln Λ formula (8.21) gives

τ⊥, ep =
m 2

e

πe4

1
8 ln Λ

V 3
Te

np
≈ 2.87 × 10−20 V 3

Te

np
, s . (8.76)

In the solar corona τ⊥, ep ≈ 0.1 s. Therefore the distant collisions of thermal
electrons with thermal protons in the corona are really much more frequent
in comparison with close collisions.

Exercise 8.2 [ Section 8.2 ] Evaluate the Debye radius and the plasma fre-
quency in the solar corona.

Answer. From (8.31) it follows that for electron-proton plasma with
Te = Tp = T and ne = np = n the Debye radius

rD =
(

kBT

8πe2 n

)1/2

≈ 4.9
(

T

n

)1/2

, cm . (8.77)

Under conditions in the solar corona rD ≈ 0.5 cm.
The electron plasma frequency (8.35)

ω
(e)
pl =

(
4πe2 ne

me

)1/2

≈ 5.64 × 104 √
ne , rad s−1 , (8.78)

or
ν

(e)
pl = ω

(e)
pl /2π ≈ 104 √

ne , Hz . (8.79)

In the solar corona ω
(e)
pl ∼ 109 rad s−1.
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Exercise 8.3 [ Section 8.3 ] Under conditions of Exercise 8.1 evaluate the
exact (determined by formulae (8.38) and (8.39)) collisional times between
thermal electrons and between thermal protons, respectively. Compare these
times with the characteristic time of energy exchange between electrons and
protons in the coronal plasma.

Answer. By substituting ln Λ in (8.38), we have the following expression
for the thermal electron collisional time

τee =
m 2

e

0.714 e4 8π ln Λ
V 3

Te

ne
≈ 4.04 × 10−20 V 3

Te

ne
, s . (8.80)

In the solar corona τee ≈ 0.2 s. For thermal protons formula (8.39) gives

τpp =
m 2

p

0.714 e4 8π ln Λ
V 3

Tp

np
≈ 1.36 × 10−13 V 3

Tp

np
, s . (8.81)

Assuming T p = Te and np = ne , we find the proton collisional time in the
solar corona τpp ≈ 7 s; this is in a good agreement with formula (8.40), of
course.

Let us find the time of energy exchange between electrons and protons.
By using formula (8.44), we have

τep(E) ≈ 22 τpp ≈ 164 s . (8.82)

So the energy exchange between electron and proton components in the coro-
nal plasma is the slowest process determined by Coulomb collisions.

Exercise 8.4 [ Section 8.4 ] Evaluate and compare Dreicer’s electric fields in
the solar corona and in the chromosphere.

Answer. From (8.70) it follows that

EDr =
4πe3 ln Λ

kB

ne

Te
≈ 7.54 × 10−8 ne (cm−3)

Te (K)
, V cm−1. (8.83)

Here it was taken ln Λ ≈ 21.6 according to Exercise 8.1.
At typical temperature and number density of electrons in the solar corona

Te ≈ 2 × 106 K and ne ≈ 2 × 108 cm−3, we find that the Dreicer electric field
EDr ≈ 7 × 10−6 V cm−1 ∼ 10−5 V cm−1. The same value follows, of course,
from formula (8.71) with rD ≈ 0.5 cm (see Exercise 8.3).

In the solar chromosphere ne > 2× 1010 cm−3 and Te < 104 K. According
to formula (8.83), the Dreicer electric field EDr > 0.1 V cm−1 in the chromo-
sphere is, at least, 104 times stronger than the coronal one.

Exercise 8.5. Define the dynamic friction by gravitational force as momen-
tum loss by a massive moving object, for example a star in a galaxy, due to its
gravitational interaction with its own gravitationally induced wake. Discuss
two possibilities: (a) the background medium consists of collisionless matter
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(other stars in the galaxy), (b) the medium is entirely gaseous (e.g., Os-
triker, 1999). The first case, the gravitational drag in collisionless systems
(Chandrasekhar, 1943b), has widespread theoretical application in modern
astrophysics.

Hint. At first, let us qualitatively understand why a friction force should
arise in a collisionless gravitational system. Suppose a star has moved from a
point A to a point B as shown in Figure 8.8.

F

A B
v.

Figure 8.8: An illustration of the origin of dynamic friction in a collisionless
gravitational system.

While passing from A to B, the star attracted the surrounding stars to-
wards itself. Hence the number density of stars around AB should be slightly
larger than that ahead of B. Therefore the star at the point B experiences
a net gravitational attraction in the backward direction, i.e. in the direction
opposite to the direction of the star velocity vector v.

The variety of consequences of the gravitational drag force in collisionless
astronomical systems includes the mass segregation in star clusters, sinking
satellites in dark matter galaxy halo, orbital decay of binary supermassive
black holes after galaxy mergers, etc. (Binney and Tremain, 1987).

Exercise 8.6. Discuss why the rate of escape of stars from a galactic claster,
evaluated ignoring dynamic friction, is too rapid to be compatible with a
life for the cluster (Chandrasekhar, 1943c). Show that the escape rate is
drastically reduced when dynamic friction is allowed for.



Chapter 9

Macroscopic Description of
Astrophysical Plasma

In this Chapter we are not concerned with individual particles but we
will treat individual kinds of particles as continuous media interacting
between themselves and with an electromagnetic field. This approach
gives us the multi-fluid models of plasma, which are useful to consider
many properties of astrophysical plasma.

9.1 Summary of microscopic description

The averaged Liouville equation or kinetic equation gives us a microscopic
(though averaged in a statistical sense) description of the plasma state’s evo-
lution. Let us consider the way of transition to a less comprehensive macro-
scopic description of a plasma. We start from the kinetic equation for particles
of kind k, in the form derived in Section 2.2:

∂fk (X, t)
∂t

+ vα
∂fk (X, t)

∂rα
+

F k,α (X, t)
mk

∂fk (X, t)
∂vα

=

(
∂f̂k

∂t

)
c

. (9.1)

Here the statistically averaged force is

F k,α (X, t) =
∑

l

∫
X1

F kl,α (X, X1) fl (X1, t) dX1 (9.2)

and the collisional integral(
∂f̂k

∂t

)
c

= − ∂

∂vα
J k,α (X, t) , (9.3)
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where the flux of particles of kind k

J k,α (X, t) =
∑

l

∫
X1

1
mk

F kl,α (X, X1) f kl (X, X1, t) dX1 (9.4)

in the six-dimensional phase space X = { r,v}.

9.2 Transition to macroscopic description

Before turning our attention to the deduction of equations for the macroscopic
quantities or macroscopic transfer equations, let us define the following mo-
ments of the distribution function.

(a) The zeroth moment (without multiplying the distribution func-
tion fk by the velocity) ∫

v

fk (r,v, t) d 3v = nk(r, t) (9.5)

is obviously the number of particles of kind k in a unit volume, i.e. the number
density of particles of kind k. It is related to the mass density in a natural
way:

ρk(r, t) = mk nk(r, t) .

The plasma mass density is accordingly

ρ (r, t) =
∑

k

ρk(r, t) =
∑

k

mk nk(r, t) . (9.6)

(b) The first moment of the distribution function, i.e. the integral of
the product of the velocity to the first power and the distribution function fk,∫

v

vα fk(r,v, t) d 3v = nk uk,α (9.7)

is the product of the number density of particles of kind k by their mean
velocity

uk,α(r, t) =
1
nk

∫
v

vα fk(r,v, t) d 3v . (9.8)

Consequently, the mean momentum of particles of kind k in a unit volume is
expressed in terms of the first moment of the distribution function as follows

mk nk uk,α = mk

∫
v

vα fk(r,v, t) d 3v . (9.9)
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(c) The second moment of the distribution function is defined to be

Π (k)
αβ (r, t) = mk

∫
v

vαvβ fk (r,v, t) d 3v = mknk uk,αuk,β + p
(k)
αβ . (9.10)

Here we have introduced
v ′

α = vα − uk,α

which is the deviation of the particle velocity from its mean value

uk,α = 〈 vk,α 〉v

in the sense of the definition (9.8), so that 〈 v ′
α 〉 = 0; and

p
(k)
αβ = mk

∫
v

v ′
αv ′

β fk (r,v, t) d 3v , (9.11)

is termed the pressure tensor .
Π (k)

αβ is the tensor of momentum flux density for particles of kind k. Its

component Π (k)
αβ is the αth component of the momentum transported by the

particles of kind k, in a unit time, across the unit area perpendicular to the
axis rβ .

Once we know the distribution function fk (r,v, t), which contains all the
statistically averaged information on the system of the particles of kind k at
the microscopic level, we can derive all macroscopic quantities related to these
particles. So, higher moments of the distribution function will be introduced
as needed.

9.3 Macroscopic transfer equations

Note that the deduction of macroscopic equations is nothing but just the
derivation of the equations for the distribution function moments.

9.3.1 Equation for the zeroth moment

Let us calculate the zeroth moment of the kinetic Equation (9.1):∫
v

∂fk

∂t
d 3v +

∫
v

vα
∂fk

∂rα
d 3v +

∫
v

Fk,α

mk

∂fk

∂vα
d 3v =

∫
v

(
∂f̂k

∂t

)
c

d 3v . (9.12)

We interchange the order of integration over velocities and the differentiation
with respect to time t in the first term and with respect to coordinates rα in
the second one. Under the second integral

vα
∂fk

∂rα
=

∂

∂rα
(vαfk) − fk

∂vα

∂rα
=

∂

∂rα
(vαfk) − 0 ,
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since r and v are independent variables in phase space X.
Taking into account that the distribution function quickly approaches zero

as v → ∞, the integral of the third term is taken by parts and is equal to zero
(Exercise 9.1).

Finally, the integral of the right-hand side of (9.12) describes the change
in the number of particles of kind k in a unit volume, in a unit time, as a
result of collisions with particles of other kinds. If the processes of transfor-
mation, during which the particle kind can be changed (such as ionization,
recombination, charge exchange, dissociation etc., see Exercise 9.2), are not
allowed for, then the last integral is zero as well:∫

v

(
∂f̂k

∂t

)
c

d 3v = 0 . (9.13)

Thus, by integration of (9.12), the following equation is found to result
from (9.1)

∂nk

∂t
+

∂

∂rα
nk uk,α = 0 .

(9.14)

This is the usual continuity equation expressing the conservation of particles
of kind k or (that is the same, of course) conservation of their mass:

∂ρk

∂t
+

∂

∂rα
ρk uk,α = 0 . (9.15)

Here
ρk(r, t) = mk nk(r, t)

is the mass density of particles of kind k.
Equation (9.14) for the zeroth moment nk depends on the unknown first

moment uk,α. This is illustrated by Figure 9.1.

9.3.2 The momentum conservation law

Now let us calculate the first moment of the kinetic Equation (9.1) multiplied
by the mass mk:

mk

∫
v

∂fk

∂t
vα d 3v + mk

∫
v

vαvβ
∂fk

∂rβ
d 3v +

∫
v

vαFk,β
∂fk

∂vβ
d 3v =

= mk

∫
v

vα

(
∂f̂k

∂t

)
c

d 3v . (9.16)
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Figure 9.1: From the microscopic to the macroscopic view of a plasma. LT
is the Liouville theorem (1.11) for an exact distribution function f̂k. KE and
BC are the kinetic Equation (2.36) and the equation for the binary correla-
tion function. m0 is the equation for the zeroth moment of the distribution
function fk, the number density nk of the particles of kind k. This equation
is unclosed.

With allowance made for the definitions (9.7) and (9.10), we obtain the mo-
mentum conservation law

∂

∂t
(mknk uk,α) +

∂

∂rβ

(
mknk uk,αuk,β + p

(k)
αβ

)
−

− 〈F k,α(r, t) 〉v = 〈F
(c)
k,α (r, t) 〉v . (9.17)

Here p
(k)
αβ is the pressure tensor (9.11).

The mean force acting on the particles of kind k in a unit volume (the
mean force per unit volume) is (see Exercise 9.3):

〈F k,α (r, t) 〉v =
∫
v

F k,α (r,v, t) fk (r,v, t) d 3v . (9.18)

This should not be confused with the statistical mean force acting on a single
particle (see definition (9.2)). The statistically averaged force (9.2) is under
the integral in formula (9.18).

In the particular case of the Lorentz force, we rewrite the mean force per
unit volume as follows:

〈F k,α (r, t) 〉v = nkek

[
Eα +

1
c

(uk × B )α

]
or

〈F k,α (r, t) 〉v = ρ q
k Eα +

1
c

( j q
k × B )

α
.

(9.19)
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Here ρ q
k and j q

k are the mean densities of electric charge and current, produced
by the particles of kind k. However note that

the mean electromagnetic force couples all the charged components
of cosmic plasma together

because the electric and magnetic fields, E and B, act on all charged compo-
nents and, at the same time, all charged components contribute to the electric
and magnetic fields according to Maxwell’s equations.

The right-hand side of Equation (9.17) contains the mean force resulting
from collisions, i.e. the mean collisional force (see Exercise 9.4):

〈F
(c)
k,α (r, t) 〉v = mk

∫
v

vα

(
∂f̂k

∂t

)
c

d 3v . (9.20)

Substituting (9.3) in definition (9.20) gives us the following formula

〈F
(c)
k,α (r, t) 〉v = −mk

∫
v

vα
∂

∂vβ
J k,β d 3v . (9.21)

Let us integrate (9.21) by parts. For this purpose, at first, we find the deriva-
tive

∂

∂vβ
(vα J k,β) = J k,β

∂vα

∂vβ
+ vα

∂

∂vβ
J k,β .

From this it follows that

vα
∂

∂vβ
J k,β = −J k,β δαβ +

∂

∂vβ
(vα J k,β) =

= −J k,α +
∂

∂vβ
(vα J k,β) . (9.22)

On substituting (9.22) and (9.4) in (9.20) and integrating, we obtain the most
general formula for the mean collisional force

〈F
(c)
k,α (r, t) 〉v = mk

∫
v

J k,α (r,v, t) d 3v = (9.23)

=
∑
l 
=k

∫
v

∫
v1

∫
r1

F kl,α (r,v, r1,v1) fkl (r,v, r1,v1, t) d 3r1 d 3v1 d 3v .

Note that

for the particles of the same kind, the elastic collisions cannot change
the total particle momentum per unit volume.
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That is why l �= k in the sum (9.23).
Formula (9.23) contains the unknown binary correlation function fkl. The

last should be found from the correlation function Equation (2.46) indicated
as the second link BC in Figure 9.1. Thus the equation for the first moment
of the distribution function is as much unclosed as the initial kinetic Equa-
tion (9.1), which is the first equation of the chain for correlation functions
(see KE in Figure 9.1).

If there are several kinds of particles, and if each of them is in the state of
thermodynamic equilibrium, then the mean collisional force can convention-
ally be expressed in terms of the mean momentum loss during the collisions
of a particle of kind k with the particles of other kinds:

〈F
(c)
k,α (r, t) 〉v = −

∑
l 
=k

mknk (uk,α − ul,α)
τkl

.

(9.24)

Here τ−1
kl = ν kl is the mean frequency of collisions between the particles of

kinds k and l. This force is zero, once the particles of all kinds have identical
velocities. The mean collisional force, as well as the mean electromagnetic
force, tends to make astrophysical plasma be a single hydrodynamic medium
(see Section 12.1).

If ul,α < uk,α then the mean collisional force is negative:

the fastly moving particles of kind k slow down by dint of collisions
with the slowly moving particles of other kinds.

Formula (9.24) has the status of a good approximation in plasma astrophysics.

9.3.3 The energy conservation law

The second moment (9.10) of a distribution function fk is the tensor of mo-
mentum flux density Π (k)

αβ . In general, in order to find an equation for this
tensor, we should multiply the kinetic Equation (9.1) by the factor mk vαvβ

and integrate over velocity space v. In this way, we could arrive to a matrix
equation in partial derivatives. If we take the trace of this equation we could
obtain the partial differential scalar equation for energy density of the par-
ticles under consideration (e.g., Shkarofsky et al., 1966; § 9.2). This is the
correct self-consistent way which is the basis of the moment method. For our
aims, a more simple direct procedure is sufficient and correct.

In order to derive the energy conservation law , we multiply Equation (9.1)
by the particle’s kinetic energy mkv 2

α/2 and integrate over velocities, taking
into account that

vα = uk,α + v ′
α

and
v 2

α = u 2
k,α + (v ′

α)2 + 2uk,α v ′
α .
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A straightforward integration yields

∂

∂t

(
ρku 2

k

2
+ ρk εk

)
+

∂

∂rα

[
ρkuk,α

(
u 2

k

2
+ εk

)
+ p

(k)
αβ uk,β + q k,α

]
=

= ρ q
k (E · uk) +

(
F (c)

k · uk

)
+ Q

(c)
k (r, t) . (9.25)

Here

mk εk(r, t) =
1
nk

∫
v

mk (v ′
α)2

2
fk (r,v, t) d 3v =

=
mk

2nk

∫
v

(v ′
α)2 fk (r,v, t) d 3v (9.26)

is the mean kinetic energy of chaotic (non-directed) motion per single particle
of kind k. Thus the first term on the left-hand side of Equation (9.25) rep-
resents the time derivative of the energy of the particles of kink k in a unit
volume, which is the sum of kinetic energy of a regular motion with the mean
velocity uk and the so-called internal energy.

The pressure tensor can be written as

p
(k)
αβ = pk δαβ + π

(k)
αβ . (9.27)

Thus, on rearrangement, we obtain the following general equation

∂

∂t

(
ρku 2

k

2
+ ρk εk

)
+

∂

∂rα

[
ρkuk,α

(
u 2

k

2
+ wk

)
+ π

(k)
αβ uk,β + q k,α

]
=

= ρ q
k (E · uk) +

(
F (c)

k · uk

)
+ Q

(c)
k (r, t) . (9.28)

Here
wk = εk +

pk

ρk
(9.29)

is the heat function per unit mass. Therefore the second term on the left-hand
side contains the energy flux

ρkuk,α

(
u 2

k

2
+ wk

)
,

which can be called the ‘advective’ flux of kinetic energy.
Let us mention the well known astrophysical application of this term. The

advective cooling of ions heated by viscosity might dominate the cooling by the
electron-ion collisions, for example, in a low-density high-temperature plasma
flow near a rotating black hole. In such an advection-dominated accretion flow
(ADAF), the heat generated via viscosity is transferred inward rather than
radiated away locally like in a standard accretion disk model (see Sections 8.3.4
and 13.2).
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On the other hand, discussing the ADAF model as a solution for the im-
portant astrophysical problem should be treated with reasonable cautions.
Looking at Equations (9.25) for electrons and ions separately, we see how
many assumptions have to be made to arrive to the ADAF approximation.
For example, this is not realistic to assume that plasma electrons are heated
only due to Coulomb collisions with ions and, for this reason, the electrons are
much cooler than the ions. The suggestions underlying the ADAF approxi-
mation ignore several physical effects including reconnection and dissipation
of magnetic fields (regular and random) in astrophysical plasma. This makes
a physical basis of the model very uncertain.

∗ ∗ ∗
In order to clarify the physical meaning of the definitions given above, let
us, for a while, come back to the general principles of plasma physics. If the
particles of the kth kind are in the thermodynamic equilibrium state, then fk

is the Maxwellian function with the temperature Tk:

f
(0)

k (r,v) = nk(r)
[

mk

2π kBTk(r)

]3/2

exp

{
− mk |v − uk(r) |2

2 kBTk(r)

}
, (9.30)

see Section 9.5. In this case, according to formula (9.26), the mean kinetic
energy of chaotic motion per single particle of kind k

mk εk =
3
2

kBTk . (9.31)

The pressure tensor (9.11) is isotropic:

p
(k)
αβ = pk δαβ , (9.32)

where
pk = nk kBTk (9.33)

is the gas pressure of the particles of kind k. This is also the equation of state
for the ideal gas. Thus we have found that the pressure tensor is diagonal.
This implies the absence of viscosity for the ideal gas, as we shall see below.

The heat function per unit mass or, more exactly, the specific enthalpy is

wk = εk +
pk

ρk
=

5
2

kBTk

mk
. (9.34)

This is a particular case of the thermodynamic equilibrium state; it will be
discussed in Section 9.5.

∗ ∗ ∗
In general, we do not expect that the system of the particles of kind k has
reached thermodynamic equilibrium. Nevertheless we use the mean kinetic en-
ergy (9.26) to define the effective temperature Tk according to definition (9.31).
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Such a kinetic temperature is just a measure for the spread of the particle
distribution in velocity space. The kinetic temperatures of different compo-
nents in astrophysical plasma may differ from each other. Moreover, in an
anisotropic plasma, the kinetic temperatures parallel and perpendicular to
the magnetic field are different.

Without supposing thermodynamic equilibrium, in an anisotropic plasma,
the part associated with the deviation of the distribution function from the
isotropic one (which does not need to be a Maxwellian function in general) is
distinguished in the pressure tensor:

p
(k)
αβ − pk δαβ = π

(k)
αβ . (9.35)

Here π
(k)
αβ is called the viscous stress tensor . So the term π

(k)
αβ uk,β in the

energy-conservation Equation (9.25) represents the flux of energy released by
the viscous force in the particles of kind k.

The vector

q k,α =
∫
v

mk (v ′)2

2
v ′

α fk (r,v, t) d 3v (9.36)

is the heat flux density due to the particles of kind k in a system of coordinates,
in which the gas of these particles is immovable at a given point of space.
Formula (9.36) shows that a third order term appears in the second order
moment of the kinetic equation.

The right-hand side of the energy conservation law (9.25) contains the
following three terms:

(a) The first term

ρ q
k (E · uk) = nkek Eα uk,α (9.37)

is the work done by the Lorentz force (without the magnetic field, of course)
in unit time on unit volume.

(b) The second term(
F (c)

k · uk

)
= uk,α

∫
v

mk v ′
α

(
∂f̂k

∂t

)
c

d 3v (9.38)

is the work done by the collisional force of friction of the particles of kind k
with all other particles in unit time on unit volume. This means that

the work of friction force results from the mean momentum change
of particles of kind k (moving with the mean velocity uk) owing to
collisions with all other particles.

(c) The last term

Q
(c)
k (r, t) =

∫
v

mk (v ′)2

2

(
∂f̂k

∂t

)
c

d 3v (9.39)
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is the rate of thermal energy release (heating or cooling) in a gas of the
particles of kind k due to collisions with other particles. Recall that the
collisional integral depends on the binary correlation function fkl.

9.4 General properties of transfer equations

9.4.1 Divergent and hydrodynamic forms

Equations (9.14), (9.17), and (9.25) are referred to as the equations of particle,
momentum and energy transfer , respectively; and the approximation in which
they have been obtained is called the model of mutually penetrating charged
gases. These gases are not assumed to be in the thermodynamic equilibrium.
However the definition of the temperature (9.31) may be generally considered
as formally coinciding with the corresponding definition pertaining to the gas
of particles of kind k in thermodynamic equilibrium.

The equations of mass, momentum and energy transfer are written in the
‘divergent’ form. This essentially states the conservation laws and turns out
to be convenient in numerical work, to constract the conservative schemes for
computations. Sometimes, other forms are more convenient. For instance,
the equation of momentum transfer or simply the equation of motion (9.17)
can be brought into the frequently used form (with the aid of the continuity
Equation (9.14) to remove the derivative ∂ρk/∂t):

ρk

(
∂ uk,α

∂t
+ uk,β

∂ uk,α

∂rβ

)
= − ∂

∂rβ
p

(k)
αβ +

+ 〈F k,α (r, t) 〉v + 〈F
(c)
k,α (r, t) 〉v . (9.40)

The so-called substantial derivative appears on the left-hand side of this
equation:

d (k)

dt
=

∂

∂t
+ uk,β

∂

∂rβ
=

∂

∂t
+ uk · ∇r .

(9.41)

This substantial or advective derivative – the total time derivative following a
fluid element of kind k – is typical of hydrodynamic-type equations, to which
the equation of motion (9.40) belongs. The total time derivative with respect
to the mean velocity uk of the particles of kind k is different for each kind k.
In Chapter 12 on the one-fluid MHD theory, we shall introduce the substantial
derivative with respect to the average velocity of the plasma as a whole.

For the case of the Lorentz force (9.19), the equation of motion of the
particles of kind k can be rewritten as follows:

ρk
d (k) uk,α

dt
= − ∂

∂rβ
p

(k)
αβ + ρ q

k Eα +
1
c

( j q
k × B )

α
+
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+ 〈F
(c)
k,α (r, t) 〉v , (9.42)

where the last term is the mean collisional force (9.20) or, more specifically,
(9.24).

9.4.2 Status of conservation laws

As we saw in Section 9.3, when we treat a plasma as several continuous media
(the mutually penetrating charged gases), for each of them,

the main three average properties (density, velocity, and a quantity
like temperature or pressure) are governed by the basic conserva-
tion laws for mass, momentum, and energy in the media.

These conservation equations are useful, of course, except they contain
more unknowns than the number of equations. The transfer equations for
local macroscopic quantities are as much unclosed as the initial kinetic Equa-
tion (9.1) which is the first equation of the chain for correlation functions (see
KE in Figure 9.2). For example, formula (9.23) for the mean collisional force
contains the unknown binary correlation function fkl. The last should be
found from the correlation function Equation (2.46) indicated as the second
link BC in Figure 9.2. The terms (9.38) and (9.39) in the energy conservation
Equation (9.25) also depend on the unknown binary correlation function fkl.

LT KE

fk fk fkl< >
X

< >
v

n

u

n

ε

k

k

k

fkln

...BC

m0 :

m1 :

m2 :

...

...

fkl

fkl

Figure 9.2: LT is the Liouville
theorem for an exact distribution
function. KE and BC are the ki-
netic equation and the equation
for the binary correlation func-
tion. m0, m1 etc. are the chain
of the equation for the moments
of the distribution function fk.

It is also important that the transfer equations are unclosed in ‘orthogonal’
direction: the Equation (9.14) for the zeroth moment (see m0 in Figure 9.2),
density nk, depends on the unknown first moment, the mean velocity uk, and
so on. This process of generating equations for the higher moments could
be extended indefinitely depending solely on how many primary variables
(nk, uk, εk, ...) one is prepared to introduce. However, if at any level the
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distribution function is known, or can be approximated to, in terms of the
primary variables for which the equations have already been generated, then
this set of equation should be closed. We will come back to this critical point
in the next Section.

Three basic conservation laws for mass, momentum, and energy in
the components of astrophysical plasma represent the main transfer
equations that are the first three links in the chain of the equations
for the distribution function moments.

It certainly would not be possible to arrive to this fundamental conclusion
and would be difficult to derive the conservation laws in the form of the
transfer Equations (9.14), (9.17), and (9.25) in the way which is typical for
the majority of textbooks: from simple specific knowledges to more general
ones. Such generalization means that we could go from well-known things to
more complicated ones, for example, from the Newton equation of motion of
a particle to the ordinary hydrodynamic equation of fluid motion. Though
this way makes a text easier to read, it does not give the reader complete
knowledge of a subject. That is why we selected the opposite way: from
general to specific knowledges.

The consecutive consideration of physical principles, starting from the
most general ones, and of simplifying assumptions, which give us a simpler
description of plasma under astrophysical conditions, allows us to find the
answers to two key questions:

(1) what approximation is the best one (the simplest but sufficient) for
description of a phenomenon in astrophysical plasma;

(2) how to build an adequate model for the phenomenon, for example, a
solar flare or a flare in the corona of an accretion disk.

From a mathematical point of view, an elegant treatment of particle trans-
fer in plasma can be based on the use of non-canonical conjugate variables
(for example, r and p are not canonically conjugate for a system of par-
ticles moving under the Lorentz force) and the associated Lie algebra (see
Balescu, 1988).

9.5 Equation of state and transfer coefficients

The transfer equations for a plasma component k would be closed with respect
to the three unknown terms ρk, uk, and εk, if it were possible to express the
other unknown quantities pk, π

(k)
αβ , q

(k)
α , etc. in terms of these three variables,

or the variables ρk, uk and the formally defined temperature Tk. For this
purpose, we have to know the equation of state and the so-called transfer
coefficients. How can we find them?

Formally, we should write equations for higher (than second) moments of
the distribution function. However these equations will not be closed either.
How shall we proceed?
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According to the general principles of statistical physics,

any distribution function tends, by virtue of collisions, to assume
the Maxwellian form.

In this case the equation of state is that of the ideal gas.
The Maxwellian distribution is the kinetic equation solution for a sta-

tionary homogeneous plasma in the absence of any mean force in the thermal
equilibrium state, i.e. for a plasma in thermodynamic equilibrium. Then
spatial gradients and derivatives with respect to time are zero. In fact they
are always nonzero. For this reason, the assumption of full thermodynamic
equilibrium is replaced with the local thermodynamic equilibrium (LTE). Mo-
rover

if the gradients and derivatives are small , then the real distribution
function differs little from the local Maxwellian one, the difference
being proportional to the small gradients or derivatives.

Thus if we are interested in the processes occurring in a time t, which is
much greater than the characteristic collision time τ , and at a distance L,
which is much larger than the particle mean free path λ,

t � τ , L � λ , (9.43)

then the particle distribution function fk(r,v, t) can be thought of as a sum
of the local Maxwellian distribution

f
(0)

k (r,v, t) = nk(r, t)
[

mk

2π kBTk(r, t)

]3/2

×

× exp

{
− mk |v − uk(r, t) |2

2 kBTk(r, t)

}
(9.44)

and some small additional term f
(1)

k (r,v, t). Therefore

fk(r,v, t) = f
(0)

k (r,v, t) + f
(1)

k (r,v, t) ,
∣∣∣ f (1)

k

∣∣∣ < f
(0)

k . (9.45)

According to (9.44), the function f
(0)

k depends on t and r through nk(r, t),
Tk(r, t) and uk(r, t). Therefore we have derivatives ∂f

(0)
k /∂t and ∂f

(0)
k /∂rα.

Now we substitute (9.44) in the kinetic Equation (9.1) and linearly ap-
proximate the collisional integral (9.3) by using one or another of the models
introduced in Chapter 3; alternatively, see Exercise 9.5 as a specific exam-
ple. Then we seek the additional term f

(1)
k in the linear approximation with

respect to the factors disturbing the Maxwellian distribution, such as gradi-
ents of physical parameters, electric fields etc. The quantities q

(k)
α , π

(k)
αβ etc.,

which in their turn are proportional to the same factors, can be expressed in
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terms of f
(1)

k . The proportionality coefficients are the sought-after transfer
coefficients.

For example, in the case of the heat flux qα, both the additional term f
(1)

k

and the flux qα are chosen to be proportional to the temperature gradient.
Thus, in a fully ionized plasma in the limit of a vanishing magnetic field, we
find the heat flux in the electron component of plasma:

qe = −κe ∇Te , (9.46)

where

κe ≈ 1.84 × 10−5

lnΛ
T 5/2

e (9.47)

is the coefficient of electron thermal conductivity (Spitzer, 1962).
In the presence of strong magnetic field, all the transport coefficients be-

come highly anisotropic. Since the Maxwellian function (9.44) and its deriva-
tives are uniquely determined by the parameters nk, uk, and Tk, the transfer
coefficients are expressed in terms of the same quantities and magnetic field B,
of course.

This procedure makes it possible to close the set of transfer equa-
tions for astrophysical plasma

under the conditions (9.43). The first step is to calculate the departure f
(1)

k

from the Maxwellian distribution function by using some method of handling
collisions. Several models have been suggested on different grounds to account
for collisions in plasma (Shkarofsky et al., 1966; Krall and Trivelpiece, 1973).

The first three moment equations have been extensively used in astro-
physics, for example, in the investigations of the solar wind. They have led
to a significant understanding of phenomena such as escape, acceleration, and
cooling. However, as more detailed solar wind observations become available,
it appeared that the simplified, collisionally dominated models are not ade-
quate for most of the interplanetary range and for most of the times, i.e. most
physical states of the solar wind.

A higher order, closed set of equations for the six moments have been
derived for multi-fluid, moderately non-Maxwellian plasma of the solar wind
(Cuperman and Dryer, 1985). On the basis of these equations, for example,
the generalized expression for heat flux relates the flux to the temperature
gradients, relative streaming velocity, thermal anisotropies, temperature dif-
ferences of the components.

Recommended Reading: Braginskii (1965), Hollweg (1986).

9.6 Gravitational systems

There is a big difference between astrophysical plasmas and astrophysical
gravitational systems (Section 3.3). The gravitational attraction cannot be
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screened. A large-scale gravitational field always exists over a system. This
follows from the formula (3.17) which shows that the averaged gravitational
force cannot be equal to zero because the neutrality condition (3.18) cannot
be satisfied if all the particles have the same charge sign.

The large-scale gravitational field makes an overall thermodynamic
equilibrium impossible. On the contrary, the electric force in a plasma is
screened beyond the Debye radius and does not come in the way of the plasma
having a proper thermodynamic equilibrium. Therefore, as one might have
anticipated,

those results of plasma astrophysics which explicitly depend upon
the plasma being in thermodynamic equilibrium do not hold for
gravitational systems.

For gravitational systems, like the stars in a galaxy, we may hope that
the final distribution function reflects something about the initial conditions
rather than just reflecting the relaxation mechanism. The random motions
of the stars may be not only non-Maxwellian but even direction dependent
within the system. So galaxies may be providing us with clues on how they
were formed (Palmer, 1994; Bertin, 1999; Peacock, 1999).

If we assume that the stars form a collisionless system (see, however, Sec-
tion 3.3), they do not exert pressure. Such a pressureless gravitating system is
unstable (Jean’s instability). Presumably a real galaxy should possess some-
thing akin to pressure to withstand the collapsing action of its gravity. This
‘pressure’ is associated with the random motion of stars. So the role of sound
speed is assumed to be played by the root mean speed of the stars.

Another justification for treating a galaxy in the hydrodynamic approxi-
mation is that we consider processes on a spatial scale which is large enough
to contain a large number of stars – one of the two requirements of the con-
tinuum mechanics. Anyway, several aspects of the structure of a galaxy can
be understood by assuming that it is made up of a continuum medium. More
often than not,

hydrodynamics provides a first level description of an astrophysical
phenomenon governed predominantly by the gravitational force.

Magnetic fields are usually included later on in order to address additional
issues. For example, the early stages of star formation during which an inter-
stellar cloud of low density collapses under the action of its own gravity can
be modeled in the hydrodynamic approximation. However, when we want to
explain the difference between the angular momentum of the cloud and that
of the born star, we have to include the effect of a magnetic field.

9.7 Practice: Exercises and Answers

Exercise 9.1 [ Section 9.3 ] Show that the third integral in Equation (9.12)
equals zero.
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Answer. Let us find the derivative

∂

∂vα

(
Fk,α

mk
fk

)
=

Fk,α

mk

∂fk

∂vα
+

fk

mk

∂Fk,α

∂vα
=

Fk,α

mk

∂fk

∂vα
.

The condition (1.7) has been used on the right-hand side as the condition

∂Fk,α

∂vα
= 0 . (9.48)

Hence ∫
v

Fk,α

mk

∂fk

∂vα
d 3v =

Fk

mk
fk(r,v, t)

∣∣∣∣v→+∞

v→−∞
= 0 ,

if the distribution function fk quickly approaches zero as v → ∞; q.e.d.

Exercise 9.2 [ Section 9.3 ] Write the continuity equation with account of
ionization and recombination.

Answer. The continuity equation including the source/sink terms related
to ionization/recombination or charge exchange reads

∂nk

∂t
+

∂

∂rα
nk uk,α =

∑
l

( γ lk nl − γ kl nk ) . (9.49)

Here nk denotes the particle density of species k, either neutral or ionized.
The right-hand side of the equation is the change of nk due to collisions. The
coefficients γ kl and γ lk denote the rate of transformation of species k into
species l and vice versa. These rates must obey the relation∑

k

∑
l

( γ lk nl − γ kl nk ) = 0 , (9.50)

which ensures the total particle number density conservation.

Exercise 9.3 [ Section 9.3 ] Consider the third integral in the first moment
Equation (9.16).

Answer. Let us find the derivative

∂

∂vβ
(vαFk,β fk) = vαFk,β

∂fk

∂vβ
+ vα

∂Fk,β

∂vβ
fk + Fk,β fk

∂vα

∂vβ
=

= vαFk,β
∂fk

∂vβ
+ 0 + Fk,β fk δαβ . (9.51)

The condition (1.7) has been used on the right-hand side as the condition

∂Fk,β

∂vβ
= 0 . (9.52)
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It follows from (9.51) that

vαFk,β
∂fk

∂vβ
=

∂

∂vβ
(vαFk,β fk) − Fk,α fk .

Thus ∫
v

vαFk,β
∂fk

∂vβ
d 3v = vαFk fk

∣∣∣∣v→+∞

v→−∞
−
∫
v

Fk,α fk d 3v . (9.53)

The first term on the right-hand side equals zero, if the distribution function fk

quickly approaches zero as v → ∞. Therefore, for the mean force acting on
the particles of kind k in a unit volume, formula (9.18) has finally arrived.

Exercise 9.4 [ Section 9.3 ] Find a condition under which the mean collisional
force (9.20) is determined only by random motions of the particles of kind k.

Answer. In definition (9.20), let us take into account that

vα = uk,α + v ′
α.

Thus we obtain

〈F
(c)
k,α (r, t) 〉v = mkuk,α

∫
v

(
∂f̂k

∂t

)
c

d 3v + mk

∫
v

v ′
α

(
∂f̂k

∂t

)
c

d 3v . (9.54)

The first integral on the right-hand side equals zero if condition (9.13) is
satisfied. The remaining part

〈F
(c)
k,α (r, t) 〉v = mk

∫
v

v ′
α

(
∂f̂k

∂t

)
c

d 3v . (9.55)

Thus the average transfer of momentum from the particles of kind k to the
particles of other kinds is solely due to the random motions of the particles of
kind k if the processes of transformation, during which the particle kind can
be changed, are not allowed for.

Exercise 9.5 [ Section 9.5 ] Let us approximate the collisional integral (9.3)
by the following simple form (Bhatnagar et al., 1954):(

∂f̂k

∂t

)
c

= − fk(r,v, t) − f
(0)

k (r,v, t)
τc

, (9.56)

where an arbitrary distribution function fk(r,v, t) relaxes to the Maxwellian
distribution function f

(0)
k (r,v, t), as discussed in Section 9.5, in a collisional

time τc. Discuss why this simple approximation illuminates much of the basic
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physics of transport phenomena in a relatively less-painful way for neutral
gases but is not very reliable for plasmas, especially in the presence of magnetic
fields.

Comment. The departure of the distribution function from the pure
Maxwellian one, the function

f
(1)

k (r,v, t) = fk(r,v, t) − f
(0)

k (r,v, t) (9.57)

satisfies the following equation:

∂fk

∂t
+ vα

∂fk

∂rα
+

F k,α

mk

∂fk

∂vα
= − f

(1)
k

τc
, (9.58)

which is called the BGK (Bhatnagar, Gross and Krook) equation.
If a gradient in space, ∂/∂rα, gives rise to the departure from the

Maxwellian distribution, then in order to have a rough estimate of the ef-
fect, we may balance the second term on the left-hand side of Equation (9.58)
with its right-hand side:

| vα | f
(0)

k

L
≈

∣∣∣ f (1)
k

∣∣∣
τc

. (9.59)

Here | vα | is the typical velocity of the particles of kind k, L is the typ-
ical length scale over which properties of the system change appreciably.
From (9.59) it follows that ∣∣∣ f (1)

k

∣∣∣
f

(0)
k

≈ λc

L
. (9.60)

Thus the departure from the Maxwellian distribution will be small if the mean
free path λc is small compared to the typical length scale. This is consistent
with the second condition of (9.43).



Chapter 10

Multi-Fluid Models of
Astrophysical Plasma

The multi-fluid models of plasma in electric and magnetic fields allow
us to consider many important properties of astrophysical plasma, in
particular the Langmuir and electromagnetic waves, as well as many
other interesting applications.

10.1 Multi-fluid models in astrophysics

The transfer Equations (9.14), (9.17), and (9.25) give us the hydrodynamic-
type description of multi-component astrophysical plasma in electric and mag-
netic fields. The problem is that, if we would like to solve the equations for
one of the plasma components, we could not escape solving the transfer equa-
tions for all of the components since they depend on each other and on the
electric and magnetic fields. For this reason, we should minimize the number
of plasma components under consideration.

The ‘two-fluid’ hydrodynamic-type equations are often used to describe
the flow of the electrons and protons of a fully-ionized astrophysical plasma
under the action of an electric and magnetic fields. Such treatment yields,
for example, the generalized Ohm’s law in astrophysical plasma (Chapter 11)
as well as a dynamical friction force which maximizes when the relative drift
velocity is equal to the sum of the most probable random speeds of the elec-
trons and ions. For relative drift velocities in excess of this value, the friction
force decreases rapidly. The electron and ion currents flowing parallel to the
existing magnetic fields increase steadily in time, i.e. runaway (Dreicer, 1959;
see also Section 8.4).

The ‘multi-fluid’ models are useful, for example, to explore properties of
the solar wind (e.g., Bodmer and Bochsler, 2000). The electrons, protons,

183
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and alpha particles in the solar wind constitute the main three components,
while the less abundant elements and isotopes are treated as test species. To
model the main gases, we have to study solutions for the conservation-law
equations of the three components. The behaviour of minor ions depends in
a complicated manner on their mass and on their charge, structured by the
interplay of acceleration, gravity, pressure gradient, electromagnetic fields,
Coulomb friction force, and thermal diffusion. Such models allow one to
explore the efficiency of isotope fractionation processes in the solar corona.

10.2 Langmuir waves

Because a plasma consists of at least two components (electrons and ions),
the number of possible waves is larger than in a normal fluid or gas, where
sound or acoustic waves are the only possible waves. In this Section we shall
discuss the simplest waves in plasma, whose properties can be deduced from
the hydrodynamic-type equations for two mutually penetrating charged gases
(Section 9.4).

Although astrophysical plasma is almost always magnetized, we can quite
often neglect the magnetic field in discussing small-amplitude plasma waves;
the condition will become clear later. The reduced complexity of the governing
equations can be further simplified by approximations.

10.2.1 Langmuir waves in a cold plasma

Let us assume that the ions do not move at all (they are infinitely massive)
and they are uniformly distributed in space. So the ions have a fixed number
density n0. This is a cold ion approximation.

Let us also neglect all magnetic fields. We shall assume that any variations
of electron density ne, electron velocity ue, and related electric field E occur
only in one dimension – the x axis. Then we are left with a set of three
equations:

(a) the continuity equation (9.14) for electrons

∂ ne

∂t
+

∂

∂x
neue = 0 , (10.1)

(b) the motion equation (9.40)

mene

(
∂ ue

∂t
+ ue

∂ ue

∂x

)
= − ∂ pe

∂x
− eneEx , (10.2)

(c) the electric field equation

∂Ex

∂x
= 4πe (n0 − ne) . (10.3)



10.2. Langmuir Waves 185

In general, we cannot solve these nonlinear equations exactly, except for
very special cases. One of them is trivial:

ne = n0 , ue = 0 , pe = const , Ex = 0 . (10.4)

This solution corresponds to a stationary electron gas of uniform density.
Let us linearize Equations (10.1)–(10.3) with respect to the state (10.4).

This yields the following set of linear equations:

∂ n1

∂t
+ n0

∂ u1

∂x
= 0 , (10.5)

men0
∂ u1

∂t
= − ∂ p1

∂x
− eneE1 , (10.6)

∂ E1

∂x
= 4πe n1 . (10.7)

Let us consider the special case of cold electrons:

pe = 0 . (10.8)

Now we eliminate u1 and E1 from the set of equation by taking the time
derivative of Equation (10.5) to obtain the oscillator equation

∂2n1

∂t2
+
(

4πe2n0

me

)
n1 = 0 . (10.9)

If we displace some electrons to produce an initial perturbation, we create
a positive-charge density at the position where they started. This positive-
charge perturbation attracts the electrons, which will tend to move back to
their original position, but will overshoot it. They come back again, overshoot
it, and so on. Without any damping, the energy put into the plasma to create
the perturbation will remain in the plasma. So the oscillation will continue
forever with the frequency

ω
(e)
pl = ±

(
4πe2ne

me

)1/2

(10.10)

called the electron plasma frequency .
Therefore, in a two-component cold plasma, there exist the oscillations

of charge density – Langmuir waves which frequency is independent of the
wave vector k; so the group velocity, Vgr = dω/dk, is zero. Thus

in a cold plasma, Langmuir waves are spatially localized oscillations
of electric charge density which do not propagate at all.

Note that there is no equivalent to these oscillations in gasdynamics or
gravitational dynamics, for which there is no charge separation and related
electric-type force.
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10.2.2 Langmuir waves in a warm plasma

What happens with behaviour of a Langmuir wave, if the electron temperature
is not equal to zero? – Let us drop the assumption (10.8) of zero pressure in
the linear equations (10.5)–(10.7). We then must include the perturbation of
electron pressure

∂ p1

∂x
= n0kB

∂ T1

∂x
+ kBT0

∂ n1

∂x
(10.11)

in Equation (10.6).
Now we must relate n1 to T1 and vice versa. For example, we could

argue that for long-wavelength waves the compression is the one-dimensional
(N = 1) adiabatic process with the index γ = (N + 2)/N = 3. In this case,
the perturbation of electron pressure becomes

∂ p1

∂x
= 3kBT0

∂ n1

∂x
. (10.12)

Naturally we expect now an initial perturbation to propagate through the
plasma as a wave. Thus a plane-wave solution of the form

f1(x, t) = f̃1 exp [−i (ωt − kx) ] (10.13)

should satisfy the linear differential equations. The quantities with tildes are
the complex amplitudes. They obey three linear algebraic equations:

−iω ñ1 + i k n0 ũ1 = 0 ,

−iω men0 ũ1 + i k 3kBT0 ñ1 + en0 Ẽ1 = 0 ,

i k Ẽ1 + 4πe ñ1 = 0 .

To have a nontrivial solution, the determinant must be zero. Its solution is

ω = ±ω
(e)
pl

(
1 + 3 r2

D
k2)1/2

,

(10.14)

where
rD =

1√
3

VTe

ω
(e)
pl

, (10.15)

is the electron Debye radius; VTe is the mean thermal velocity (8.15) of elec-
trons in a plasma.

The dispersion equation (10.14) can be also derived from the Vlasov equa-
tion, of course (see formula (49) in Vlasov, 1938). It is similar to the well-
known relation for the propagation of transverse electromagnetic waves in a
vacuum, except that the role of the light velocity c is here played by the
thermal velocity VTe. This dispersion relation is shown in Figure 10.1.

Therefore the frequency ω of Langmuir waves in a plasma with warm
electrons depends on the wave vector k which is parallel to the x-axis. So
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1-1
k r

D

ω

ω
pl
(e)

Figure 10.1: A dispersion diagram (solid curves) for Langmuir waves in a
warm plasma. The ions do not move at all. Dashed straight lines are drawn
for Langmuir waves in a cold plasma.

the group velocity, ∂ ω/∂k, of Langmuir waves in a warm plasma
without magnetic field is not equal to zero.

They oscillate at the electron plasma frequency ω
(e)
pl and propagate in a warm

plasma. It follows from (10.14) and (10.15) that the group velocity is

Vgr =
∂ ω

∂ k
= V 2

Te
k

ω
=

3kBT

me

k

ω
. (10.16)

Therefore the plasma waves are propagating as long as the electron tempera-
ture is non-zero. Moreover, due to the small mass of the electrons, the group
velocity (10.16) is always relatively large.

10.2.3 Ion effects in Langmuir waves

Let us show that, when the ions are allowed to move, ion contributions are
important only for slow variations or low-frequency waves because the ions
cannot react quickly enough.

We are still dealing with linear waves which involve only the first-order
electric field E(1) directed along the wave vector k which is parallel to the x-
axis. Linearizing the continuity equations for electrons and ions, the motion
equations for electrons and ions, as well as the electric field equation, let us
assume that the electrons and ions both obey the adiabatic Equation (10.12).
Then we again use the wave solution (10.13) to reduce the linearized differ-
ential equations to algebraic ones and to obtain the determinant. Because
mi/me � 1, we neglect the term me ω2 in this determinant as compared with
the term mi ω

2. By so doing, we obtain the relation

ω2 = k2
(

γi kBTi

mi
+

γe kBTe

mi

1
1 + γe k2r2

D

)
. (10.17)

This dispersion relation is shown in Figure 10.2.
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k = V/ ia
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b

Figure 10.2: A dispersion diagram for ion-acoustic waves (part a) and for ion
plasma waves (part b) in a warm plasma without magnetic field.

In the limit of small krD

ω2 = k2
(

γi kBTi

mi
+

γe kBTe

mi

)
= k2V 2

ia . (10.18)

This is the so-called ion-acoustic waves. They are shown by a curve part (a)
in Figure 10.2. The group velocity of the wave is independent of k:

Vgr =
∂ ω

∂ k
= Via =

(
γi kBTi + γe kBTe

mi

)1/2

. (10.19)

An opposite limit is obtained for cold ions. If ion temperature Ti → 0, then
krD � 1, i.e., short wavelengths are under consideration. In this case, shown
by the curve part (b) in Figure 10.2, the cold ions oscillate with a frequency

ω
(i)
pl = ±

(
4πe2ne

mi

)1/2

(10.20)

called the ion plasma frequency .
Ion-acoustic waves are observed in many cases. They were registred, for

example, by the spacecraft Voyager 1 in the upstream side of the Jovian bow
shock. Ion-acoustic waves presumably play an important role in solar flares,
for example, in super-hot turbulent-current layers (see vol. 2, Section 6.3).

10.3 Electromagnetic waves in plasma

In this Section we still assume that the unperturbed plasma has no magnetic
field: B (0) = 0. However we shall discuss waves that carry not only an electric
field E (1) but also a magnetic field B (1).

Let us consider transversal waves, so that k · E (1) = 0 and k · B (1) = 0.
The last equality is imposed by Equation (1.26) and is always true. We do
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not need Equation (1.27) in this case either. We shall neglect the ion motion,
which is justified for high-frequency waves. So the remaining equations in
their linearized form are

∂ u (1)
e

∂t
= −∇p (1)

e − en (0)
e E (1) , (10.21)

∂n
(1)
e

∂t
+ n (0)

e div u (1)
e = 0 , (10.22)

curl B (1) =
4π

c
j (1) +

1
c

∂ E (1)

∂t
, (10.23)

curl E (1) = −1
c

∂ B (1)

∂t
, (10.24)

j (1) = en (0)
e u (1)

e . (10.25)

The Lorentz force does not appear in the electron-motion Equation (10.21)
because it is of the second-order small value proportional to u (1)

e × B (1).
Furthermore vectors E (1) and u (1)

e are perpendicular to the wave vector k,
and thus n

(1)
e = 0 and p

(1)
e = 0. After assuming the exponential plane-wave

form (10.13) and using usual algebra, we find the dispersion equation for
electromagnetic waves:

ω2 = ω
(e) 2
pl + k2c2 . (10.26)

Here c is the speed of light in a vacuum. This dispersion relation is shown in
Figure 10.3.

k

ω

ω
pl
(e)

ω

0

k = c/
Figure 10.3: The dispersion diagram for
electromagnetic waves in a cold plasma
without magnetic field. For large values
of k (short wavelengths), the group ve-
locity (the slope of the solid curve) and
phase velocity approach the speed of the
light (dashed line). For small values of
k (long wavelengths), the group velocity
goes to zero.

If the wave frequency ω is much larger the electron plasma frequency ω
(e)
pl ,

the wave becomes a free-space light wave with ω = kc.
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If ω → ω
(e)
pl , a wave would decay in space and not propagate. In this case,

the index of refraction

nr =
c

Vph
=

ck

ω
=

(
1 − ω

(e) 2
pl

ω2

)1/2

(10.27)

goes to zero. If ω < ω
(e)
pl , the refraction index becomes imaginary.

Moving through astrophysical plasma of changing ω
(e)
pl , a wave is reflected

when ω = ω
(e)
pl and, therefore, nr = 0. This allows one to measure remotely

the plasma density, for example, in the Earth ionosphere.
Another application is in ionospheric heating. At the height where ω

(e)
pl is

equal to the wave frequency, the group velocity

Vgr =
∂ ω

∂ k
=

kc2

ω
= nrc (10.28)

also goes to zero.

The wave amplitude becames large there because its flux of energy
cannot propagate.

The large electric field of the wave can accelerate electrons and drive currents
in the ionospheric plasma. In this way, the wave can heat and modify the
plasma. If the power from a transmitter on the ground emitting a radiation
at a frequency ω is large enough, the heating is quite significant.

10.4 What do we miss?

We have considered two basic types of waves in a two-fluid plasma. The
Langmuir wave or plasma wave (as well as the ion plasma wave) does not
have a wave magnetic field. The electromagnetic wave does have a magnetic
field but can propagate only if its frequency is above the plasma frequency. We
should see that, when there is a stationary magnetic field in the plasma, the
wave properties become more complex and more interesting (e.g., Stix, 1992;
Zheleznyakov, 1996).

In particular, we could find that the electromagnetic wave with its fre-
quency below the plasma frequency can propagate through a magnetized
plasma. For low-frequency waves this effect will be demonstrated in the mag-
netohydrodynamic (MHD) approximation in Chapter 15. What else has been
lost in the above consideration?

The advantage of the hydrodynamic approach used in this Section to study
the basic properties of waves in a two-fluid plasma is the relative simplicity.
The hydrodynamic-type equations have three spatial dimensions and time,
rather than the seven-dimensional phase space of the Vlasov kinetic theory
(Section 3.1.2).
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The obvious disadvantage is that some subtle fine effects, such as Landau
damping (Section 7.1.2) which is caused by a resonance with particles moving
at the phase velocity of a wave, cannot be obtained from the hydrodynamic-
type equations. We have to use a kinetic treatment to specify how a distribu-
tion of particles responds to a wave. In this case we use the Vlasov equation
to specify how the distribution functions of electrons and ions are affected by
the wave fields (e.g., Chapter 7).

To calculate the collisional damping of plasma waves simply, the simplest
hydrodynamic model is useful (Exercise 10.3).

The hydrodynamic-type models work only when a finite number of the low-
order moments are sufficient to provide all the essential information about the
system.

If the distribution function has some unusual features, then a few
low-order moments may not carry all the necassary information,

and we may lose important physics by restricting ourselves to the quasi-
hydrodynamic description of cosmic plasma.

10.5 Practice: Exercises and Answers

Exercise 10.1. Show that in the solar corona a dynamic viscosity coefficient
can be given by a simple formula (Hollweg, 1986):

η ≈ 10−16 T 5/2
p , g cm−1 s−1 , (10.29)

where Tp is the proton temperature, and the Coulomb logarithm has been
taken to be 22. So, with Tp ≈ 2×106 K, the viscosity coefficient in the corona

η ∼ 1 g cm−1 s−1.

Why does the viscosity grow with the proton temperature? Why is it so large
and does it grow with temperature so quickly?

Hint. Consider a fully-ionized hydrogen plasma in a magnetic field. Let
τ pp represent the typical Coulomb collisional time (8.39) for thermal protons.
Let ω (p)

B
denote the proton cyclotron frequency (5.52).

Write the viscous stress tensor (9.35) for the protons. This tensor involves
five coefficients of viscosity, denoted η 0, η 1, ... η 4 by Braginskii (1965). Show
that the coefficient η 0 is by far the largest one (10.29). The coefficients η 3

and η 4 are smaller by factors ∼ (
ω (p)

B
τpp
)−1

, while η 1 and η 2 are smaller

than η 0 by factors ∼ (ω (p)
B

τpp
)−2

. Thus the parts of the viscous stress tensor
involving the off-diagonal terms can often be neglected. The part involving
η 0 can be dynamically and thermodynamically important.

Exercise 10.2. Discuss a famous puzzle of plasma astrophysics. Solar flares
generate electron beams that move through the solar corona and the inter-
planetary space at velocities ∼ 0.3 c (see Exercise 5.3). These fast beams
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should lose their energy quickly to plasma waves. In fact, they do generate
waves called solar type III radio bursts. However the solar fast electrons are
still seen far beyond the orbit of the Earth. Why?

Hint. The link between the electron beams and the waves observed in
space near the Earth or even on the ground is a little more complex than it
seems. It involves the transformation of the electrostatic plasma oscillations
with frequency near ω

(e)
pl into electromagnetic waves at the same frequency.

In any realistic situation, the electrons in the beam are not cold but have a
thermal spread. They cause a plasma wave to grow. But as the electric field
in the wave grows, the electrons are heated.

The spreading and slowing of the beam in the velocity space cannot be
described by fluid equations. This process is often referred to as quasi-linear
diffusion. We can expect that the electron beam has slowed and spread in
the velocity space to such a degree that waves do not grow anymore. A stable
situation can occur, and a warm electron beam can propagate through the
plasma without lossing energy.

Exercise 10.3. Show that Coulomb collisions damp the Langmuir plasma
waves with the rate

Im ω = −2 νei . (10.30)

Hint. Following formula (9.24), add to the right-hand side of the electron
motion Equation (10.2) the collisional friction term

+ mene νei (ui,α − ue,α) .



Chapter 11

The Generalized Ohm’s
Law in Plasma

The multi-fluid models of the astrophysical plasma in magnetic field
allow us to derive the generalized Ohm’s law and to consider important
physical approximations as well as many interesting applications.

11.1 The classic Ohm’s law

The classic Ohm’s law, j = σE, relates the current j to the electric field E in a
conductor in rest. The coefficient σ is electric conductivity. As we know, the
electric field in plasma determines the electron and ion acceleration, rather
than their velocity. That is why, generally, such a simple relation as the classic
Ohm’s law does not exist. Moreover, while considering astrophysical plasmas,
it is necessary to take into account the presence of a magnetic field and the
motion of a plasma as a whole, and as a medium consisting of several moving
components.

Recall the way of deriving the usual classic Ohm’s law in plasma without
magnetic field. The electric current is determined by the relative motion of
electrons and ions. Considering the processes in which all quantities vary
only slightly in a time between the electron-ion collisions, electron inertia can
be neglected. An equilibrium is set up between the electric field action and
electrons-on-ions friction (see point A in Figure 8.7). Let us assume that the
ions do not move. Then the condition for this equilibrium with respect to the
electron gas

0 = −eneEα + mene νei ( 0 − ue,α)

results in Ohm’s law

jα = −eneue,α =
e2ne

meνei
Eα = σEα , (11.1)

193
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where

σ =
e2ne

meνei
(11.2)

is the electric conductivity .
In order to deduce the generalized Ohm’s law for the plasma with mag-

netic field, we have to consider at least two equations of motion – for the elec-
tron and ion components. A crude theory of conductivity in a fully-ionized
plasma can be given in terms of a two-fluid approximation. The more general
case, with the motion of neutrals taken into account, has been considered
by Schlüter (1951), Alfvén and Fälthammar (1963); see also different appli-
cations of the generalized Ohm’s law in the three-component astrophysical
plasma (Schabansky, 1971; Kunkel, 1984; Hénoux and Somov, 1991 and 1997;
Murata, 1991).

11.2 Derivation of basic equations

Let us write the momentum-transfer Equations (9.17) for the electrons and
ions, taking proper account of the Lorentz force (9.19) and the friction
force (9.24). We have two following equations:

me
∂

∂t
(ne ue,α) = − ∂ Π (e)

αβ

∂rβ
− ene

[
E +

1
c

(ue × B )
]

α

+

+ mene νei (ui,α − ue,α) , (11.3)

mi
∂

∂t
(ni ui,α) = − ∂ Π (i)

αβ

∂rβ
+ Zi eni

[
E +

1
c

(ui × B )
]

α

+

+ meni νei (ue,α − ui,α) . (11.4)

The last term in (11.3) represents the mean momentum transferred, because
of collisions (formula (9.24)), from ions to electrons. It is equal, with opposite
sign, to the last term in (11.4). It is assumed that there are just two kinds
of particles, their total momentum remaining constant under the action of
elastic collisions.

Suppose that the ions are protons (Zi = 1) and electrical neutrality is
observed:

ni = ne = n .

Let us multiply Equation (11.3) by −e/me and add it to Equation (11.4)
multiplied by e/mi. The result is

∂

∂t
[ en (ui,α − ue,α) ] =

[
e

mi
F i,α − e

me
F e,α

]
+

+ e2n

(
1

me
+

1
mi

)
Eα +

e2n

c

[(
u e

me
× B

)
α

+
(

u i

mi
× B

)
α

]
−
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− νei en

[
(ui,α − ue,α) +

me

mi
(ui,α − ue,α)

]
. (11.5)

Here

F e,α = − ∂ Π (e)
αβ

∂rβ
and F i,α =

∂ Π (i)
αβ

∂rβ
. (11.6)

Let us introduce the velocity of the centre-of-mass system

u =
mi u i + me u e

mi + me
. (11.7)

Since mi � me,
u = u i +

me

mi
u e ≈ u i . (11.8)

On treating Equation (11.5), we neglect the small terms of the order of the
ratio me/mi. On rearrangement, we obtain the equation for the current

j = en (u i − u e) (11.9)

in the system of coordinates (11.8). This equation is

∂ j ′

∂t
=

e2n

me

[
E +

1
c

(u × B )
]

− e

mec
( j ′ × B ) −

− νei j ′ +
e

mi
Fi − e

me
Fe . (11.10)

The prime designates the electric current in the system of moving plasma, i.e.
in the rest-frame of the plasma. Let Eu denote the electric field in this frame
of reference, i.e.

Eu = E +
1
c
u × B . (11.11)

Now we divide Equation (11.10) by νei and represent it in the form

j ′ =
e2n

meνei
Eu − ω (e)

B

νei
j ′ × n − 1

νei

∂ j ′

∂t
+

1
νei

(
e

mi
Fi − e

me
Fe

)
, (11.12)

where n = B/B and ω (e)
B

= eB/mc is the electron gyro-frequency.
Thus we have derived a differential equation for the current j ′.
The third and the fourth terms on the right do not depend of magnetic

field. Let us replace them by some effective electric field such that

σEeff = − 1
νei

∂ j ′

∂t
+

e

νei

(
1
mi

Fi − 1
me

Fe

)
, (11.13)

where

σ =
e2n

me νei
(11.14)
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is the plasma conductivity in the absence of magnetic field. Combine the
fields (11.11) and (11.13),

E ′ = Eu + Eeff ,

in order to rewrite (11.12) in the form

j ′ = σE ′ − ω (e)
B

νei
j ′ × n . (11.15)

We will consider (11.15) as an algebraic equation in j ′, neglecting the ∂ j ′/∂t
dependence of the field (11.13). Note, however, that

the term ∂ j ′/∂t is by no means small in the problem of the particle
acceleration by a strong electric field in astrophysical plasma.

Collisionless reconnection is an example in which particle inertia (usually
combined with anomalous resistivity, see vol. 2, Section 6.3) of the current
replaces classical resistivity in allowing fast reconnection to occur (e.g., Drake
and Kleva, 1991; Horiuchi and Sato, 1994).

11.3 The general solution

Let us find the solution to (11.15) as a sum of three currents

j ′ = σ‖ E ′
‖ + σ⊥ E ′

⊥ + σH n × E ′
⊥ .

(11.16)

Substituting formula (11.16) in Equation (11.15) gives

σ ‖ = σ =
e2n

meνei
, (11.17)

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 , τei =
1
νei

; (11.18)

σH = σ⊥
(
ω (e)

B
τei

)
= σ

ω (e)
B

τei

1 +
(
ω

(e)
B τei

)2 . (11.19)

Formula (11.16) is called the generalized Ohm’s law. It shows that the
presence of a magnetic field in a plasma not only changes the magnitude of
the conductivity, but the form of Ohm’s law as well: generally, the electric
field and the resulting current are not parallel, since σ⊥ �= σ ‖. Therefore the
electric conductivity of a plasma in a magnetic field is anisotropic. Moreover
the current component j ′

H
which is perpendicular to both the magnetic and

electric fields, appears in the plasma. This component is the so-called Hall
current (Figure 11.1).
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Figure 11.1: The generalized Ohm’s law
in a magnetized plasma: the direct (j ′

‖
and j ′

⊥) and Hall’s (j ′
H
) currents in a

plasma with electric (E ′) and magnetic
(B) fields.
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11.4 The conductivity of magnetized plasma

11.4.1 Two limiting cases

The magnetic-field influence on the conductivity σ⊥ of the ‘direct’ current j ′
⊥

across the magnetic field B and on the Hall-current conductivity σH is deter-
mined by the parameter ω (e)

B
τei which is the turning angle of an electron on

the Larmor circle in the intercollisional time. Let us consider two limiting
cases.

(a) Let the turning angle be small: )

ω (e)
B

τei 
 1 . (11.20)

Obviously this inequality corresponds to the weak magnetic field or dense cool
plasma, so that the electric current is scarcely affected by the magnetic field:

σ⊥ ≈ σ ‖ = σ ,
σH

σ
≈ ω (e)

B
τei 
 1 . (11.21)

Thus in a frame of reference associated with the plasma, the usual Ohm’s law
with isotropic conductivity holds.

(b) The opposite case, when the electrons spiral freely between rare
collisions:

ω (e)
B

τei � 1 , (11.22)

corresponds to the strong magnetic field and hot rarefied plasma. This plasma
is termed the magnetized one. It is frequently encountered under astrophysical
conditions. In this case

σ ‖ = σ , σ⊥ ≈ σ
(
ω (e)

B
τei

)−2
, σH ≈ σ

(
ω (e)

B
τei

)−1
, (11.23)

or
σ‖ ≈

(
ω (e)

B
τei

)
σH ≈

(
ω (e)

B
τei

)2
σ⊥ . (11.24)
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Hence in the magnetized plasma, for example in the solar corona (see
Exercises 11.1 and 11.2),

σ‖ � σH � σ⊥ .

(11.25)

In other words, the impact of the magnetic field on the direct current is
especially strong for the component resulting from the electric field E ′

⊥. The
current in the E ′

⊥ direction is considerably weaker than it would be in the
absence of a magnetic field. Why is this so?

11.4.2 The physical interpretation

The physical mechanism of the perpendicular current j ′
⊥ is illustrated by Fig-

ure 11.2.
The primary effect of the electric field E ′

⊥ in the presence of the
magnetic field B is not the current in the direction E ′

⊥, but rather
the electric drift in the direction perpendicular to both B and E ′

⊥.

The electric drift velocity (5.22) is independent of the particle’s mass and
charge. The electric drift of electrons and ions generates the motion of the
plasma as a whole with the velocity v = vd. This would be the case if there
were no collisions at all (Figure 5.3).

E

vd

B vd

p

e

+

- 1

2
3

⊥

⊥j

u e⊥

Figure 11.2: Initiation of the current in the direction of the perpendicular
field E ′

⊥ as the result of rare collisions (1, 2, 3, ...) against a background of
the electric drift. Only collisions of electrons are shown.

Collisions, even infrequent ones, result in a disturbance of the particle’s
Larmor motion, leading to a displacement of the ions (not shown in Fig-
ure 11.2) along E ′

⊥, and the electrons in the opposite direction as shown in
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Figure 11.2. The small electric current j ′
⊥ (a factor of ω (e)

B
τei smaller than the

drift one) appears in the direction E ′
⊥.

To ensure the current across the magnetic field, the so-called Hall electric
field is necessary, that is the electric field component perpendicular to both
the current j ′

⊥ and the field B (Braginskii, 1965; Sivukhin, 1996, Chapter 7,
§ 98). This is the secondary effect but it is not small in a strong magnetic
field.

The Hall electric field balances the Lorentz force acting on the car-
riers of the perpendicular electric current in plasma due to the pres-
ence of a magnetic field,

i.e. the force
F ( j ′

⊥) =
en

c
u i⊥ × B − en

c
u e⊥ × B =

=
1
c

en (u i⊥ − u e⊥) × B (11.26)

Hence the magnitude of the Hall electric field is

E ′
H

=
1

enc
j ′
⊥ × B . (11.27)

The Hall electric field in plasma is frequently set up automatically, as a
consequence of small charge separation within the limits of quasi-neutrality.
In this case the ‘external’ field, which has to be applied to the plasma, is
determined by the expressions

E ′
‖ = j ′

‖ /σ‖ and E ′
⊥ = j ′

⊥ /σ⊥ . (11.28)

We shall not discuss here the dissipation process under the conditions
of anisotropic conductivity. In general, the symmetric highest component
of the conductivity tensor can play the most important role (see Landau
et al., 1984, Chapter 3) in this process of fundamental significance for the
flare energy release problem. In the particular case of a fully-ionized plasma,
the tendency for a particle to spiral round the magnetic field lines insures
the great reduction in the transversal conductivity (11.18). However, since
the dissipation of the energy of the electric current into Joule heat is due
solely to collisions between particles, the reduced conductivity does not lead
to increased dissipation (Exercise 11.3).

On the other hand, the Hall electric field and Hall electric current can
significantly modify conditions of magnetic reconnection (e.g., Bhattachar-
jee, 2004).

11.5 Currents and charges in plasma

11.5.1 Collisional and collisionless plasmas

Let us point out another property of the generalized Ohm’s law in astrophys-
ical plasma. Under laboratory conditions, as a rule, one cannot neglect the
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gradient forces (11.6). On the contrary, these forces usually play no part in
astrophysical plasma. We shall ignore them. This simplification may be not
well justified however in such important applications as reconnecting current
layers (RCLs), shock waves and other discontinuities.

Moreover let us also restrict our consideration to very slow (say hydrody-
namic) motions of plasma. These motions are supposed to be so slow that
the following three conditions are fulfilled.

First, it is supposed that

ω =
1
τ


 νei or νei τ � 1 , (11.29)

where τ is a characteristic time of the plasma motions. Thus

departures of actual distribution functions for electrons and ions
from the Maxwellian distribution are small.

This allows us to handle the transport phenomena in linear approximation.
Moreover, if a single-fluid model is to make physical sence, the electrons

and ions could have comparable temperatures, ideally, the same tempera-
ture T which is the temperature of the plasma as a whole:

Te = Tp = T .

Second, we neglect the electron inertia in comparison with that of the ions
and make use of (11.8). This condition is usually written in the form

ω 
 ω (i)
B

=
eB

mic
. (11.30)

Thus

the plasma motions have to be so slow that their frequency is smaller
than the lowest gyro-frequency of the particles.

Recall that the gyro-frequency of ions ω (i)
B


 ω (e)
B

.
The third condition

νei � ω (e)
B

or ω (e)
B

τei 
 1 . (11.31)

Hence the hydrodynamic approximation can be used, the conductivity σ being
isotropic. The generalized Ohm’s law assumes the following form which is
specific to magnetohydrodynamics (MHD):

j ′ = σ

(
E +

1
c
u × B

)
. (11.32)

The MHD approximation is the subject of the next chapter. Numerous ap-
plications of MHD to various phenomena in astrophysical plasma will be con-
sidered in many places in the remainder of the book.
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In the opposite case (11.22), when the parameter ω (e)
B

τei is large, charged
particles revolve around magnetic field lines, and a typical particle may spend
a considerable time in a region of a size of the order of the gyroradius (5.14).
Hence, if the length scale of the plasma is much larger than the gyroradius,
we may expect the hydrodynamic-type models to work.

It appears that, even when the parameter ω (e)
B

τei tends to infinity (like
in the solar corona, see Exercise 11.2) and collisions are negligible, the quasi-
hydrodynamic description of plasma, the Chew-Goldberger-Low (CGL) ap-
proximation (Chew et al., 1956) is possible (especially if the actual electric
field E in a collisionless plasma is perpendicular to a sufficiently strong mag-
netic field B) and quite useful. This is because

the strong magnetic field makes the plasma, even a non-collisional
one, more ‘interconnected’, so to speak, more hydrodynamic in the
directions perpendicular to the magnetic field.

That allows one to write down a well-justified set of two-dimensional MHD
equations for the collisionless plasma in a magnetic field (see Volkov, 1966,
Equations (42)–(45)). As for the motion of collisionless particles along the
magnetic field, some important kinetic features and physical restrictions still
are significant (Klimontovich and Silin, 1961; Shkarofsky et al., 1969, Chap-
ter 10). Chew et al. (1956) emphasized that “a strictly hydrodynamic ap-
proach to the problem is appropriate only when some special circumstance
suppresses the effects of pressure transport along the magnetic lines”.

There is ample experimental evidence that strong magnetic fields do make
astrophysical plasmas behave like hydrodynamic charged fluids. This does not
mean, of course, that there are no pure kinetic phenomena in such plasmas.
There are many of them indeed.

11.5.2 Volume charge and quasi-neutrality

One more remark concerning the generalized Ohm’s law is important for the
following. While deriving the law in Section 11.2, the exact charge neutrality
of plasma or the exact electric neutrality was assumed:

Zini = ne = n , (11.33)

i.e. the absolute absence of the volume charge in plasma: ρ q = 0 . The same
assumption was also used in Sections 8.2 and 3.2. However there is no need
for such a strong restriction. It is sufficient to require quasi-neutrality , i.e.
the numbers of ions (with account of their charge taken) and electrons per
unit volume are very nearly equal:

Zini − ne

ne

 1 . (11.34)

So
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the volume charge density has to be small in comparison to the
plasma density.

Once the volume charge density

ρ q �= 0 , (11.35)

yet another term must be taken into account in the generalized Ohm’s law:

j q
u = ρ q u . (11.36)

This is the so-called convective current. It is caused by the volume charge
transfer and must be added to the conductive current (11.16).

The volume charge, the associated electric force ρ q E and the convective
current ρ q u are of great importance in electrodynamics of relativistic objects
such as black holes (Novikov and Frolov, 1989) and pulsars (Michel, 1991).
Charge-separated plasmas originate in magnetospheres of rotating black
holes, for example, a super-massive black hole in active galactic nuclei. The
shortage of charge leads to the emergence of a strong electric field along
the magnetic field lines. The parallel electric field accelerates migratory
electrons and/or positrons to ultrarelativistic energies (e.g., Hirotani and
Okamoto, 1998).

Charge density oscillations in a plasma, the Langmuir waves, are consid-
ered in Section 10.2.

∗ ∗ ∗
The volume charge density can be evaluated in the following manner. On the
one hand, from Maxwell’s equation divE = 4πρ q we estimate

ρ q ≈ E

4πL
. (11.37)

On the other hand, the non-relativistic equation of plasma motion yields

eneE ≈ p

L
≈ nekBT

L
,

so that
E ≈ kBT

eL
. (11.38)

On substituting (11.38) in (11.37), we find the following estimate

ρ q

ene
≈ kBT

eL

1
4πL

1
ene

=
1
L2

(
kBT

4πe2 ne

)
or

ρ q

ene
≈ r 2

D

L2 .

(11.39)
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Since the usual concept of plasma implies that the Debye radius

rD 
 L , (11.40)

the volume charge density is small in comparison with the plasma density.
When we consider phenomena with a length scale L much larger than the

Debye radius rD and a time scale τ much larger than the inverse the plasma
frequency, the charge separation in the plasma can be neglected.

11.6 Practice: Exercises and Answers

Exercise 11.1 [ Section 11.4 ] Evaluate the characteristic value of the parallel
conductivity (11.17) in the solar corona.

Answer. It follows from formula (11.17) that

σ ‖ =
e2n

me
τei = 2.53 × 108 n τei ∼ 1016 − 1017 , s−1 , (11.41)

if we take τep ∼ 0.2 − 2.0 s (Exercise 8.1).

Exercise 11.2 [ Section 11.4 ] Estimate the parameter ω (e)
B

τei in the solar
corona above a sunspot.

Answer. Just above a large sunspot the field strength can be as high as
B ≈ 3000 G . Here the electron Larmor frequency ω (e)

B
≈ 5 × 1010 rad s−1

(Exercise 5.1). Characteristic time of close electron-proton collisions τep(cl) ≈
22 s (see Exercise 8.1). Therefore ω (e)

B
τei(cl) ∼ 1012 rad � 1.

Distant collisions are much more frequent (Exercise 8.1). However, even
with τep ≈ 0.1 s, we obtain

ω (e)
B

τei ∼ 1010 rad � 1 .

So, for anisoptropic conductivity in the corona, the approximate formu-
lae (11.23) can be well used.

Exercise 11.3 [ Section 11.4.2 ] Consider the generalized Ohm’s law in the
case when the electric field is perpendicular to the magnetic field B = B n.
So

j ′ = σ⊥ E ′
⊥ + σH n × E ′

⊥ , (11.42)

where

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 and σH = σ
ω (e)

B
τei

1 +
(
ω

(e)
B τei

)2 . (11.43)

This indicates that the current j ′
⊥ in the direction of E ′

⊥ is reduced in the
ratio

1/

(
1 +

(
ω (e)

B
τei

)2)
≈
(
ω (e)

B
τei

)−2
, if ω (e)

B
τei � 1 ,
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by the magnetic field. In addition, the other current
(
ω (e)

B
τei
)2

times as large
flows in the direction perpendicular to both B and E ′

⊥; this is the Hall cur-
rent j ′

H
.

Show that the reduction in the ‘perpendicular’ conductivity (Figure 11.1)
does not increase the rate of dissipation of current energy (see Cowling, 1976,
§ 6.2).



Chapter 12

Single-Fluid Models for
Astrophysical Plasma

Single-fluid models are the simplest but sufficient approximation to
describe many large-scale low-frequency phenomena in astrophysical
plasma: regular and turbulent dynamo, plasma motions driven by
strong magnetic fields, accreation disks, and relativistic jets.

12.1 Derivation of the single-fluid equations

12.1.1 The continuity equation

In order to consider cosmic plasma as a single hydrodynamic medium, we have
to sum each of the three transfer equations over all kinds of particles. Let us
start from the continuity Equation (9.14). With allowance for the definition
of the plasma mass density (9.6), we have

∂ρ

∂t
+ div

(∑
k

ρkuk

)
= 0 . (12.1)

The mean velocities of motion for all kinds of particles are supposed to be
equal to the plasma hydrodynamic velocity:

u1 (r, t) = u2 (r, t) = · · · = u (r, t) , (12.2)

as a result of action of the mean collisional force (9.24). However this is not
a general case.

In general, the mean velocities are not the same, but a frame of reference
can be chosen in which

ρu =
∑

k

ρkuk . (12.3)

205
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Then from (12.1) and (12.3) we obtain the usual continuity equation

∂ρ

∂t
+ div ρu = 0 .

(12.4)

12.1.2 The momentum conservation law in plasma

In much the same way as in previous Section, we handle the momentum
transfer Equation (9.42). On summing over all kinds of particles, we obtain
the following equation:

ρ
d uα

dt
= − ∂

∂rβ
pαβ + ρ q Eα +

1
c

( j × B )α +
∑

k

〈F
(c)
k,α (r, t) 〉v . (12.5)

Here the volume charge density in plasma is

ρ q =
∑

k

nkek =
1
4π

div E , (12.6)

and the electric current density is

j =
∑

k

nkek uk =
c

4π
curl B − 1

4π

∂E
∂t

. (12.7)

The electric and magnetic fields, E and B, involved in this description are av-
eraged fields associated with the total electric charge density ρ q and the total
current density j. They satiesfy the macroscopic Maxwell equations. In cos-
mic plasma, the magnetic permeability and the electric permittivity can almost
always be replaced by their vacuum values. For this reason, the macroscopic
Maxwell equations have the same structure as Equations (1.27) and (1.24)
that have been used on the right-hand side of formulae (12.6) and (12.7).

Since elastic collisions do not change the total momentum, we have∑
k

〈F
(c)
k,α (r, t) 〉v = 0 . (12.8)

On substituting (12.6)–(12.8) in Equation (12.5), the latter can be rear-
ranged to give the momentum conservation law for plasma

ρ
d uα

dt
= − ∂

∂rβ
pαβ + Fα(E,B) .

(12.9)
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Here the electromagnetic force is written in terms of the electric and magnetic
field vectors:

Fα(E,B) = − ∂

∂t

(E × B )α

4πc
− ∂

∂rβ
Mαβ . (12.10)

The tensor

Mαβ =
1
4π

[
−EαEβ − BαBβ +

1
2

δαβ (E2 + B2)
]

(12.11)

is called the Maxwellian tensor of stresses.
The divergent form of the momentum conservation law is

∂

∂t

[
ρ uα +

(E × B )α

4πc

]
+

∂

∂rβ
( Παβ + Mαβ ) = 0 .

(12.12)

The operator ∂/∂t acts on two terms that correspond to momentum density:
ρu is the momentum of the motion of the plasma as a whole in a unit vol-
ume, E × B/4πc is the momentum density of the electromagnetic field. The
divergency operator ∂/∂rα acts on

Παβ = pαβ + ρ uαuβ (12.13)

which is the momentum flux density tensor

Παβ =
∑

k

Π (k)
αβ , (12.14)

see definition (9.10). Therefore the pressure tensor

pαβ = p δαβ + παβ , (12.15)

where
p =

∑
k

pk (12.16)

is the total plasma pressure, the sum of partial pressures, and

παβ =
∑

k

π
(k)
αβ (12.17)

is the viscous stress tensor (see definition (9.35)), which allows for the trans-
port of momentum from one layer of the plasma flow to the other layers so
that relative motions inside the plasma are damped out. If we accept con-
dition (12.2) then the random velocities are now defined with respect to the
macroscopic velocity u of the plasma as a whole.

The momentum conservation law in the form (12.9) or (12.12) is applied
for a wide range of conditions in cosmic plasmas like fluid relativistic flows,
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for example, astrophysical jets (Section 13.3). The assumption that the astro-
physical plasma behaves as a continuum medium, which is essential if these
forms of the momentum conservation law are to be applied, is excellent in the
cases in which we are often interested:

the Debye length and the particle Larmor radii are much smaller
than the plasma flow scales.

On the other hand, going from the multi-fluid description to a single-fluid
model is a seriuos damage because we loose an information not only on the
small-scale dynamics of the electrons and ions but also on the high-frequency
processes in plasma.

The single-fluid equations describe the low-frequency large-scale be-
haviour of plasma in astrophysical conditions.

12.1.3 The energy conservation law

In a similar manner as above, the energy conservation law is derived. We
sum the general Equation (9.25) over k and then substitute in the resulting
equation the total electric charge density (12.6) and the total electric current
density (12.7) expressed in terms of the electric field E and magnetic field B.
On rearrangement, the following divergent form of the energy conservation
law (cf. the simplified Equation (1.54) for electromagnetic field energy and
kinetic energy of charged particles) is obtained:

∂

∂t

(
ρu2

2
+ ρ ε +

E2 + B2

8π

)
+

+
∂

∂rα

[
ρ uα

(
u2

2
+ w

)
+

c

4π
(E × B )α + παβ uβ + qα

]
=

=
(
uαF (c)

α

)
ff

. (12.18)

On the left-hand side of this equation, an additional term has appeared: the
operatop ∂/∂t acts on the energy density of the electromagnetic field

W =
E2 + B2

8π
. (12.19)

The divergency operator ∂/∂rα acts on the Pointing vector , the electromag-
netic energy flux through a unit surface in space:

G =
c

4π
[E × B ] . (12.20)

The right-hand side of Equation (12.18) contains the total work of friction
forces (9.38) in unit time on unit volume(

uαF (c)
α

)
ff

=
∑

k

(
F

(c)
k,α uk,α

)
=
∑

k

uk,α

∫
v

mk v ′
α

(
∂fk

∂t

)
c

d 3v . (12.21)
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This work related to the relative motion of the plasma components is not zero.
By contrast, the total heat release under elastic collisions between particles

of different kinds (see definition (9.39)) is∑
k

Q
(c)
k (r, t) =

∑
k

∫
v

mk (v ′)2

2

(
∂fk

∂t

)
c

d 3v = 0 . (12.22)

Elastic collisions in a plasma conserve both the total momentum
(see Equation (12.8)) and the total energy (see Equation (12.22)).

If we accept condition (12.2) then, with account of formula (9.24), the
collisional heating (12.21) by friction force is also equal to zero. In this limit,
there is not any term which contains the collisional integral. Collisions have
done a good job.

Note, in conclusion, that we do not have any equations for the anisotropic
part of the pressure tensor, which is the viscous stress tensor παβ , and for the
flux qα of heat due to random motions of particles. This is not unexpected, of
course, but inherent at the method of the moments as discussed in Section 9.4.
We have to find these transfer coefficients by using the procedure described
in Section 9.5.

12.2 Basic assumptions and the MHD equa-
tions

12.2.1 Old and new simplifying assumptions

As we saw in Chapter 9, the set of transfer equations for local macroscopic
quantities determines the behaviour of different kinds of particles, such as elec-
trons and ions in astrophysical plasma, once two main conditions are complied
with:

(a) many collisions occur in a characteristic time τ of the process or phe-
nomenon under consideration:

τ � τc , (12.23)

(b) the particle’s path between two collisions – the particle’s free path – is
significantly smaller than the distance L, over which macroscopic quantities
change considerably:

L � λc . (12.24)

Here τc and λc are the collisional time and the collisional mean free path,
respectively. Once these conditions are satisfied, we can close the set of hy-
drodynamic transfer equations, as has been discussed in Section 9.5.

While considering the generalized Ohm’s law in Chapter 11, three other as-
sumptions have been made, that are complementary to the restriction (12.23)
on the characteristic time τ of the process.
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The first condition can be written in the form

τ � τei = ν−1
ei , (12.25)

where τei is the electron-ion collisional time, the longest collisional relaxation
time. Thus departures from the Maxwellian distribution are small. Moreover
the electrons and ions should have comparable temperatures, ideally, the same
temperature T being the temperature of the plasma as a whole.

Second, we neglect the electron inertia in comparison with that of the ions.
This condition is usually written as

τ �
(
ω (i)

B

)−1
, where ω (i)

B
=

eB

mic
. (12.26)

Thus the plasma motions have to be so slow that their frequency ω = 1/τ
is smaller than the lowest gyro-frequency of the particles. Recall that the
gyro-frequency of ions ω (i)

B

 ω (e)

B
.

The third condition,
ω (e)

B
τei 
 1 , (12.27)

is necessary to write down Ohm’s law in the form

j = σ

(
E +

1
c
v × B

)
+ ρ q v . (12.28)

Here v is the macroscopic velocity of plasma considered as a continuous
medium, E and B are the electric and magnetic fields in the ‘laboratory’
system of coordinates, where we measure the velocity v. Accordingly,

Ev = E +
1
c
v × B (12.29)

is the electric field in a frame of reference related to the plasma. The isotropic
conductivity is (formula (11.14)):

σ =
e2n

me νei
. (12.30)

Complementary to the restriction (12.24) on the characteristic length L of
the phenomenon, we have to add the condition

L � rD , (12.31)

where rD is the Debye radius. Then the volume charge density ρ q is small in
comparison with the plasma density ρ.

Under the conditions listed above, we use the general hydrodynamic-type
equations which are the conservation laws for mass (12.4), momentum (12.5)
and energy (12.18).
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These equations have a much wider area of applicability than the
equations of ordinary magnetohydrodynamics derived below.

The latter will be much simpler than the equations derived in Section 12.1.
Therefore new additional simplifying assumptions are necessary. Let us
introduce them. There are two.

∗ ∗ ∗
First assumption: the plasma conductivity σ is assumed to be large, the
electromagnetic processes being not very fast. Then, in Maxwell’s equa-
tion (1.24)

curlB =
4π

c
j +

1
c

∂E
∂t

,

we ignore the displacement current in comparison to the conductive one. The
corresponding condition is found by evaluating the currents as follows

1
c

E

τ

 4π

c
j or ωE 
 4πσE .

Thus we suppose that

ω 
 4πσ .
(12.32)

In the same order with reference to the small parameter ω/σ (or, more
exactly, ω/4πσ), we can neglect the convective current (see formula (11.36)
and its discussion in Section 11.5.2) in comparison with the conductive current
in Ohm’s law (12.28). Actually,

ρ q v ≈ v div E
1
4π

≈ L

τ

E

L

1
4π

≈ ω

4π
E 
 σE ,

once the condition (12.32) is satisfied.
The conductivity of astrophysical plasma, which is often treated in the

MHD approximation, is very high (e.g., Exercise 11.1). This is the reason
why condition (12.32) is satisfied up to frequencies close to optical ones.

Neglecting the displacement current and the convective current,
Maxwell’s equations and Ohm’s law result in the following relations:

j =
c

4π
curlB , (12.33)

E = − 1
c
v × B +

c

4πσ
curlB , (12.34)

ρ q = − 1
4πc

div (v × B ) , (12.35)

div B = 0 , (12.36)
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∂B
∂t

= curl (v × B ) +
c2

4πσ
∆B . (12.37)

Once two vectors, B and v, are given, the current density j, the elec-
tric field E, and the volume charge density ρ q are completely determined by
formulae (12.33)—(12.35). Thus

the problem is reduced to finding the interaction of the magnetic
field B and the hydrodynamic velocity field v.

As a consequence, the approach under discussion has come to be known as
magnetohydrodynamics (Alfvén, 1950; Syrovatskii, 1957).

The corresponding equation of plasma motion is obtained by substitution
of formulae (12.33)–(12.35) in the equation of momentum transfer (12.5).
With due regard for the manner in which viscous forces are usually written
in hydrodynamics, we have

ρ
dv
dt

= −∇p + ρ q E − 1
4π

B × curlB+

+ η ∆v +
(
ζ +

η

3

)
∇ div v . (12.38)

Here η is the first viscosity coefficient, ζ is the second viscosity coefficient (see
Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 2, § 15). Formulae for
these coefficients as well as for the viscous forces should be derived from the
moment equation for the pressure tensor, which we were not inclined to write
down in Section 9.3 being busy in the way to the energy conservation law.

∗ ∗ ∗

A second additional simplifying assumption has to be introduced now.
Treating Equation (12.38), the electric force ρ q E can be ignored in compari-
son to the magnetic one if

v2 
 c2 , (12.39)

that is in the non-relativistic approximation. To make certain that this is
true, evaluate the electric force using (12.35) and (12.34):

ρ q E ≈ 1
4πc

vB

L

vB

c
≈ B2

4π

1
L

v2

c2 , (12.40)

the magnetic force being proportional to

1
4π

|B × curlB | ≈ B2

4π

1
L

. (12.41)

Comparing (12.40) with (12.41), we see that the electric force is a factor of
v2/c2 short of the magnetic one.
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In a great number of astrophysical applications of MHD, the plasma ve-
locities fall far short of the speed of light. The Sun is a good case in point.
Here the largest velocities observed, for example, in coronal transients and
coronal mass ejections (CMEs) do not exceed several thousands of km/s, i.e.
<∼ 108 cm/s. Under these conditions, we neglect the electric force acting
upon the volume charge in comparison with the magnetic force.

However the relativistic objects such as accretion disks near black holes
(see Chapter 7 in Novikov and Frolov, 1989), and pulsar magnetospheres are
at the other extreme (Michel, 1991; Rose, 1998). The electric force acting on
the volume charge plays a crucial role in the electrodynamics of relativistic
objects.

12.2.2 Non-relativistic magnetohydrodynamics

With the assumptions made above, the considerable simplifications have been
obtained; and now we write the following set of equations of non-relativistic
MHD:

∂

∂t
ρ vα = − ∂

∂rβ
Π ∗

αβ , (12.42)

∂B
∂t

= curl (v × B ) + νm ∆B , (12.43)

div B = 0 , (12.44)

∂ρ

∂t
+ div ρv = 0 , (12.45)

∂

∂t

(
ρv2

2
+ ρε +

B2

8π

)
= − div G , (12.46)

p = p (ρ, T ) . (12.47)

In contrast to Equation (12.12), the momentum of electromagnetic field
does not appear on the left-hand side of the non-relativistic Equation (12.42).
It is negligibly small in comparison to the plasma stream momentum ρ vα.
This fact is a consequence of neglecting the displacement current in Maxwell’s
equations.

On the right-hand side of Equation (12.42), the asterisk refers to the total
(unlike (12.13)) momentum flux density tensor Π ∗

αβ , which is equal to

Π ∗
αβ = p δαβ + ρ vαvβ +

1
4π

(
B2

2
δαβ − BαBβ

)
− σv

αβ . (12.48)

In Equation (12.43)

νm =
c2

4πσ
(12.49)

is the magnetic diffusivity (or magnetic viscosity). It plays the same role
in Equation (12.43) as the kinematic viscosity ν = η/ρ in the equation of
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plasma motion (12.42). The vector G is defined as the energy flux density
(cf. Equation (12.18))

Gα = ρ vα

(
v2

2
+ w

)
+

1
4π

[B × (v × B ) ]α −

− νm

4π
(B × curlB )α − σv

αβ vβ − κ ∇α T, (12.50)

where the specific enthalpy is

w = ε +
p

ρ
(12.51)

(see definition (9.34)).
The Poynting vector appearing as a part in expression (12.50) is rewritten

using formula (12.34):

GP =
c

4π
E × B =

1
4π

B × (v × B ) − νm

4π
B × curl B . (12.52)

As usually in electrodynamics, the flux of electromagnetic energy disappeares
when electric field E is parallel to magnetic field B.

The energy flux density due to friction processes is written as the contrac-
tion of the velocity vector v and the viscous stress tensor

σv
αβ = η

(
∂vα

∂rβ
+

∂vβ

∂rα
− 2

3
δαβ

∂vγ

∂rγ

)
+ ζ δαβ

∂vγ

∂rγ
(12.53)

(see Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 2, § 15). How
should we find formula (12.53) and formulae for coefficients η and ζ? – In
order to find an equation for the second moment (9.10), we should multiply
the kinetic Equation (9.1) by the factor mk vαvβ and integrate over velocity
space v. In this way, we could derive the equations for the anisotropic part of
the pressure tensor and for the flux of heat due to random motions of particles
(Shkarofsky et al., 1966; § 9.2). We restrict ourself just by recalling the
expressions for the viscous stress tensor (12.53) and heat flux density −κ∇T ,
where κ is the plasma thermal conductivity.

∗ ∗ ∗

The equation of state (12.47) can be rewritten in other thermodynamic
variables. In order to do this, we have to make use of Equations (12.42)–
(12.45) and the thermodynamic identities

dε = T ds +
p

ρ2 dρ and dw = T ds +
1
ρ

dp .

Here s is the entropy per unit mass.
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At the same time, it is convenient to transform the energy conservation
law (12.46) from the divergent form to the hydrodynamic one containing the
substantial derivative (9.41). On rearrangement, Equation (12.46) results in
the heat transfer equation

ρ T
ds

dt
=

νm

4π
(curl B)2 + σv

αβ

∂vα

∂rβ
+ div κ∇T . (12.54)

It shows that
the heat abundance change dQ = ρ T ds in a moving element of unit
volume is a sum of the Joule and viscous heating and conductive
heat redistribution to neighbour elements.

The momentum conservation law (12.42) can be also recast into the equa-
tion of plasma motion in the hydrodynamic form:

dv
dt

= − ∇p

ρ
− 1

4πρ
B × curlB +

η

ρ
∆v +

1
ρ

(
ζ +

η

3

)
∇ div v . (12.55)

Once again, we see that the momentum of electromagnetic field does not
appear in the non-relativistic equation of plasma motion.

12.2.3 Relativistic magnetohydrodynamics

Relativistic MHD models are of considerable interest in several areas of as-
trophysics. The theory of gravitational collapse and models of supernova
explosions are based on relativistic hydrodynamic models for a star. In most
models a key feature is the occurrence of a relativistic shock, for example, to
expel the bulk of the star. The effects of deviations from spherical symmetry
due to an initial angular momentum and magnetic field require the use of
relativistic MHD models.

In the theories of galaxy formation, relativistic fluid models have been
used, for example, in order to describe the evolution of perturbations of
the baryon and radiation components of the cosmic medium. Theories of
relativistic stars are also based on relativistic fluid model (Zel’dovich and
Novikov, 1978; Rose, 1998).

When the medium interacts electromagnetically and is highly conducting,
the simplest description is in terms of relativistic MHD. From the mathema-
tical viewpoint, the relativistic MHD was mainly treated in the framework of
general relativity . This means that the MHD equations were studied in con-
junction with Einstein’s equations. Lichnerowicz (1967) has made a thorough
and deep investigation of the initial value problem. Gravitohydromagnetics
describes one of the most fascinating phenomena in the outer space (e.g.,
Punsly, 2001).

In many applications, however, one neglects the gravitational field gener-
ated by the conducting medium in comparison with the background gravita-
tional field as well as in many cases one simply uses special relativity . Math-
ematically this amounts to taking into account only the conservation laws
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for matter and the electromagnetic field, neglecting Einstein’s equa-
tions. Such relativistic MHD theory is much simpler than the full general
relativistic theory. So more detailed results can be obtained (Anile, 1989;
Novikov and Frolov, 1989; Koide et al., 1999).

12.3 Magnetic flux conservation. Ideal MHD

12.3.1 Integral and differential forms of the law

Equations (12.45), (12.42), and (12.46) are the conservation laws for mass,
momentum, and energy, respectively. Let us show that, with the proviso that
νm = 0, Equation (12.43) is the magnetic flux conservation law.

Let us consider the derivative of the vector B flux through a surface S
moving with the plasma (Figure 12.1).

B
S

S
L

d

v

v

x
y

z

Figure 12.1: The magnetic field B flux through the surface S moving with a
plasma with velocity v.

According to the known formula of vector analysis (see Smirnov, 1965),
we have

d

dt

∫
S

B · dS =
∫
S

(
∂ B
∂t

+ v div B + curl (B × v )
)

· dS . (12.56)

By virtue of Equation (12.44), formula (12.56) is rewritten as follows

d

dt

∫
S

B · dS =
∫
S

(
∂ B
∂t

− curl (v × B )
)

· dS ,
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or, making use of Equation (12.43),

d

dt

∫
S

B · dS = νm

∫
S

∆B · dS .

(12.57)

Thus, if we cannot neglect magnetic diffusivity νm, then

the change rate of magnetic flux through a surface moving together
with a conducting plasma is proportional to the magnetic diffusivity
of the plasma.

The right-hand side of formula (12.57) can be rewritten with the help of
the Stokes theorem:

d

dt

∫
S

B · dS = − νm

∮
L

curl B · d l . (12.58)

Here L is the ‘liquid’ contour bounding the surface S. We have also used here
that

∆B = − curl curl B .

By using Equation (12.33) we have

d

dt

∫
S

B · dS = − c

σ

∮
L

j · d l .

(12.59)

The change rate of flux through a surface connected with the moving plasma
is proportional to the electric resistivity σ−1 of the plasma.

Equation (12.59) is equivalent to the differential Equation (12.43) and
presents an integral form of the magnetic flux conservation law.

The magnetic flux through any surface moving with the plasma is
conserved, once the electric resistivity σ−1 can be ignored.

Let us clarify the conditions when it is possible to neglect electric resistivity
of plasma. The relative role of the dissipation processes in the differential
Equation (12.43) can be evaluated by proceeding as follows. In a spirit similar
to that of Section 5.2, we pass on to the dimensionless variables

r∗ =
r
L

, t∗ =
t

τ
, v∗ =

v
v

, B∗ =
B
B0

. (12.60)

On substituting definition (12.60) into Equation (12.43) we obtain

B0

τ

∂ B∗

∂t∗
=

vB0

L
curl∗ (v∗ × B∗ ) + νm

B0

L2 ∆∗ B∗ .
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Now we normalize this equation with respect to its left-hand side, i.e.

∂ B∗

∂t∗
=

vτ

L
curl∗ (v∗ × B∗ ) +

νmτ

L2 ∆∗ B∗ . (12.61)

The dimensionless Equation (12.61) contains two dimensionless parame-
ters. The first one,

δ =
vτ

L
,

will be discussed in the next Section. Here, for simplicity, we assume δ = 1.
The second parameter,

Rem =
L2

νm τ
=

vL

νm
,

(12.62)

is termed the magnetic Reynolds number, by analogy with the hydrodynamic
Reynolds number Re = vL/ν. This parameter characterizes the ratio of the
first term on the right-hand side of (12.61) to the second one. Omitting the
asterisk, we write Equation (12.61) in the dimensionless form

∂ B
∂t

= curl (v × B ) +
1

Rem
∆B . (12.63)

The larger the magnetic Reynolds number, the smaller the role
played by magnetic diffusivity.

So the magnetic Reynolds number is the dimensionless measure of the
relative importance of resistivity. If Rem � 1, we neglect the plasma resis-
tivity and associated Joule heating and magnetic field dissipation, just as one
neglects viscosity effects under large Reynolds numbers in ordinary hydrody-
namics.

In laboratory experiments, for example in devices for studying the pro-
cesses of current layer formation and rupture during magnetic reconnection
(e.g., Altyntsev et al., 1977; Bogdanov et al., 1986, 2000), because of a small
value L2, the magnetic Reynolds number is usually not large: Rem ∼ 1 − 3.
In this case the electric resistivity has a dominant role, and Joule dissipation
is important.

12.3.2 The equations of ideal MHD

Under astrophysical conditions, owing to the low resistivity and the enor-
mously large length scales usually considered, the magnetic Reynolds number
is also very large: Rem > 1010 (for example, in the solar corona; see Exer-
cise 12.1). Therefore, in a great number of problems of plasma astrophysics,
it is sufficient to consider a medium with infinite conductivity :

Rem � 1 . (12.64)
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Furthermore the usual Reynolds number can be large as well (see, however,
Exercise 12.2):

Re � 1 . (12.65)

Let us also assume the heat exchange to be of minor importance. This
assumption is not universally true either. Sometimes the thermal conduc-
tivity (due to thermal electrons or radiation) is so effective that the plasma
behaviour must be considered as isothermal, rather than adiabatic. However,
conventionally,

while treating the ‘ideal medium’, all dissipative transfer coefficients
as well as the thermal conductivity are set equal to zero

in the non-relativistic MHD equations (12.42)–(12.49):

νm = 0 , η = ζ = 0 , κ = 0 .
(12.66)

The complete set of the MHD equations for the ideal medium has two dif-
ferent (but equivalent) forms. The first one (with the energy Equation 12.54)
is the form of transfer equations:

∂v
∂t

+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × curl B ,

∂ B
∂t

= curl (v × B) , div B = 0 , (12.67)

∂ρ

∂t
+ div ρv = 0 ,

∂s

∂t
+ (v · ∇) s = 0 , p = p (ρ, s) .

The other form of ideal MHD equations is the divergent form which also
corresponds to the conservation laws for energy, momentum, mass and mag-
netic flux:

∂

∂t

(
ρv2

2
+ ρε +

B2

8π

)
= − div G , (12.68)

∂

∂t
ρ vα = − ∂

∂rβ
Π ∗

αβ , (12.69)

∂ρ

∂t
= − div ρv , (12.70)

∂ B
∂t

= curl (v × B ) , (12.71)

div B = 0 , (12.72)

p = p (ρ, s) . (12.73)
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Here the energy flux density and the momentum flux density tensor are, re-
spectively, equal to (cf. (12.50) and (12.48))

G = ρv
(

v2

2
+ w

)
+

1
4π

(
B2 v − (B · v)B

)
, (12.74)

Π ∗
αβ = p δαβ + ρ vαvβ +

1
4π

(
B2

2
δαβ − BαBβ

)
. (12.75)

The magnetic flux conservation law (12.71) written in the integral
form

d

dt

∫
S

B · dS = 0 , (12.76)

where the integral is taken over an arbitrary surface moving with the plasma,
is quite characteristic of ideal MHD. It allows us to clearly represent the
magnetic field as a set of field lines attached to the medium, as if they were
‘frozen into’ it. For this reason, Equation (12.71) is frequently referred to as
the ‘freezing-in’ equation.

The freezing-in property converts the notion of magnetic field line from
the purely geometric to the material sphere.

In the ideally conducting medium, the field lines move together with
the plasma. The medium displacement conserves not only the mag-
netic flux but each of the field lines as well.

To convince ourselves that this is the case, we have to imagine a thin tube
of magnetic field lines. There is no magnetic flux through any part of the
surface formed by the collection of the boundary field lines that intersect the
closed curve L. Let this flux tube evolve in time. Because of flux conservation,
the plasma elements that are initially on the same magnetic flux tube must
remain on the magnetic flux tube.

In ideal MHD flows, magnetic field lines inside the thin flux tube accom-
pany the plasma. They are therefore materialized and are unbreakable because
the flux tube links the same ‘fluid particles’ or the same ‘fluid elements’. As
a result its topology cannot change. Fluid particles which are not initially
on a common field line cannot become linked by one later on. This general
topological constraint restricts the ideal MHD motions, forbidding a lot of
motions that would otherwise appear.

Conversely, the constraint that the thin flux tube follows the fluid particle
motion, whatever its complexity, may create situations where the magnetic
field structure becomes itself very complex (see vol. 2, Chapter 12).

In general, the field intensity B is a local quantity. However the magnetic
field lines (even in vacuum) are integral characteristics of the field. Their
analysis becomes more complicated. Nonetheless, a large number of actual
fields have been studied because the general features of the morphology – an
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investigation of non-local structures – of magnetic fields are fairly important
in plasma astrophysics.

The geometry of the field lines appears in different ways in the equilibrium
criteria for astrophysical plasma. For example, much depends on whether the
field lines are concave or convex, on the value of the gradient of the so-called
specific volume of magnetic flux tubes (Chapter 19), on the presence of X-type
points (Section 14.3) as well as on a number of other topological characteristics,
e.g. magnetic helicity (see vol. 2, Chapter 12).

12.4 Practice: Exercises and Answers

Exercise 12.1 [ Section 12.3.2 ] Estimate the magnetic diffusivity and the
magnetic Reynolds number under typical conditions in the solar corona.

Answer. Let us take characteristic values of the parallel conductivity as
they were estimated in Exercise 11.1:

σ ‖ = σ ∼ 1016 − 1017 s−1 .

Substituting these values in formula (12.49) we obtain

νm =
c2

4πσ
≈ 7.2 × 1019 1

σ
∼ 103 − 104 cm2 s−1. (12.77)

According to definition (12.62) the magnetic Reynolds number

Rem =
vL

νm
∼ 1011 − 1012 , (12.78)

if the characteristic values of length and velocity, L ∼ 104 km ∼ 109 cm
and v ∼ 10 km s−1 ∼ 106 cm s−1, are taken for the corona. Thus the ideal
MHD approximation can be well used to consider, for example, magnetic field
diffusion in coronal linear scales.

Exercise 12.2 [ Section 12.3.2 ] Show that

in the solar corona, viscosity of plasma can be a much more impor-
tant dissipative mechanism than its electric resistivity.

Answer. By using the formula (10.29) for viscosity, let us estimate the
value of kinematic viscosity in the solar corona:

ν =
η

ρ
≈ 3 × 1015 cm2 s−1. (12.79)

Here Tp ≈ 2 × 106 K and np ≈ ne ≈ 2 × 108 cm−3 have been taken as the
typical proton temperature and density.
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If the characteristic values of length and velocity, L ∼ 109 cm and v ∼
106 cm s−1, are taken (see Exercise 12.1), then the hydrodynamic Reynolds
number

Re =
vL

ν
∼ 0.3 . (12.80)

The smallness of this number demonstrates the potential importance of viscos-
ity in the solar corona. A comparison between (12.80) and (12.78) shows that
Rem � Re. Clearly, the viscous effects can dominate the effects of electric
resistivity in coronal plasma.



Chapter 13

Magnetohydrodynamics in
Astrophysics

Magnetohydrodynamics (MHD) is the simplest but sufficient approx-
imation to describe many large-scale low-frequency phenomena in as-
trophysical plasma: regular and turbulent dynamo, plasma motions
driven by strong magnetic fields, accreation disks, and relativistic jets.

13.1 The main approximations in ideal MHD

13.1.1 Dimensionless equations

The equations of MHD, even the ideal MHD, constitute a set of nonlinear dif-
ferential equations in partial derivatives. The order of the set is rather high,
while its structure is complicated. To formulate a problem in the context of
MHD, we have to know the initial and boundary conditions admissible by this
set of equations. To do this, in turn, we have to know the type of these equa-
tions, in the sense adopted in mathematical physics (see Vladimirov, 1971).

To formulate a problem, one usually uses one or another approximation,
which makes it possible to isolate the main effect – the essence of the phe-
nomenon. For instance, if the magnetic Reynolds number is small, then the
plasma moves comparatively easily with respect to the magnetic field. This
is the case in MHD generators and other laboratory and technical devices
(Sutton and Sherman, 1965, § 1.3; Shercliff, 1965, § 6.5).

The opposite approximation is that of large magnetic Reynolds numbers,
when magnetic field ‘freezing in’ takes place in the plasma (see Section 12.3.2).
Obviously, the transversal (with respect to the magnetic field) plasma flows
are implied. For any flow along the field, Equation (12.71) holds. This ap-
proximation is quite characteristic of the astrophysical plasma dynamics.

223
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How can we isolate the main effect in a physical phenomenon and correctly
formulate the problem? – From the above examples concerning the magnetic
Reynolds number, the following rule suggests itself:

take the dimensional parameters characterizing the phenomenon at
hand, combine them into dimensionless combinations and then, on
calculating their numerical values, make use of the corresponding
approximation in the set of dimensionless equations.

Such an approach is effective in hydrodynamics (Sedov, 1973, Vol. 1).
Let us start with the set of the ideal MHD Equations (12.67):

∂v
∂t

+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × curl B , (13.1)

∂ B
∂t

= curl (v × B) , (13.2)

∂ρ

∂t
+ div ρv = 0 , (13.3)

∂s

∂t
+ (v · ∇) s = 0 , (13.4)

div B = 0 , (13.5)

p = p (ρ, s) . (13.6)

Let the quantities L, τ, v, ρ0, p0, s0, and B0 be the characteristic values of
length, time, velocity, density, pressure, entropy and field strength, respec-
tively. Rewrite Equations (13.1)–(13.6) in the dimensionless variables

r∗ =
r
L

, t∗ =
t

τ
, . . . B∗ =

B
B0

.

Omitting the asterisk, we obtain the equations in dimensionless variables (So-
mov and Syrovatskii, 1976b):

ε2
{

1
δ

∂v
∂t

+ (v · ∇)v
}

= − γ2 ∇p

ρ
− 1

ρ
B × curl B , (13.7)

∂ B
∂t

= δ curl (v × B) , (13.8)

∂ρ

∂t
+ δ div ρv = 0 , (13.9)

∂s

∂t
+ δ (v · ∇) s = 0 , (13.10)

div B = 0 , (13.11)

p = p (ρ, s) . (13.12)
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Here

δ =
vτ

L
, ε2 =

v2

V 2
A

, γ2 =
p0

ρ0V 2
A

(13.13)

are three dimensionless parameters characterizing the problem;

VA =
B0√
4πρ0

(13.14)

is the characteristic value of the Alfvén speed (see Exercise 13.1).
If the gravitational force were taken into account in (13.1), Equation (13.7)

would contain another dimensionless parameter, gL/V 2
A

, where g is the grav-
itational acceleration. The analysis of these parameters allows us to gain an
understanding of the approximations which are possible in the ideal MHD.

13.1.2 Weak magnetic fields in astrophysical plasma

We begin with the assumption that

ε2 � 1 and γ2 � 1 . (13.15)

As is seen from Equation (13.7), in the zero-order approximation relative to
the small parameters ε−2 and γ−2, we neglect the magnetic force as com-
pared to the inertia force and the gas pressure gradient. In subsequent ap-
proximations, the magnetic effects are treated as a small correction to the
hydrodynamic ones.

A lot of problems of plasma astrophysics are solved in this approxima-
tion, termed the weak magnetic field approximation. Among the simplest of
them are the ones concerning the weak field’s influence on hydrostatic equi-
librium. An example is the problem of the influence of poloidal and toroidal
magnetic fields on the equilibrium of a self-gravitating plasma ball (a star,
the magnetoid of quasar’s kernel etc., see examples in Section 19.1.3).

Some other problems are in fact analogous to the previously mentioned
ones. They are called kinematic problems, since

they treat the influence of a given plasma flow on the magnetic field;
the reverse influence is considered to be negligible.

Such problems are reduced to finding the magnetic field distribution resulting
from the known velocity field. An example is the problem of magnetic field
amplification and support by stationary plasma flows (magnetic dynamo) or
turbulent amplification. The simplest example is the problem of magnetic field
amplification by plasma differential rotation (Elsasser, 1956; Moffat, 1978;
Parker, 1979; Rüdiger and von Rekowski, 1998).

A leading candidate to explain the origin of large-scale magnetic fields in
astrophysical plasma is the mean-field turbulent magnetic dynamo theory
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(Moffat, 1978; Parker, 1979; Zel’dovich et al., 1983). The theory appeals to a
combination of helical turbulence (leading to the so-called α effect), differential
rotation (the Ω effect) and turbulent diffusion to exponentiate an initial seed
mean magnetic field. The total magnetic field is split into a mean component
and a fluctuating component, and the rate of growth of the mean field is
sought.

The mean field grows on a length scale much larger than the outer scale of
the turbulent velocity, with a growth time much larger than the eddy turnover
time at the outer scale. A combination of kinetic and magnetic helicities
provides a statistical correlation of small-scale loops favorable to exponential
growth. Turbulent diffusion is needed to redistribute the amplified mean field
rapidly to ensure a net mean flux gain inside the system of interest (a star
or galaxy). Rapid growth of the fluctuating field necessarily accompanies the
mean-field dynamo. Its impact upon the growth of the mean field, and the
impact of the mean field itself on its own growth are controversial and depends
crucially on the boundary conditions (e.g., Blackman and Field, 2000).

13.1.3 Strong magnetic fields in plasma

The opposite approximation – that of the strong magnetic field – has been
less well studied. It reflects the specificity of MHD to a greater extent than
the weak field approximation. The strong field approximation is valid when
the magnetic force

Fm = − 1
4π

B × curl B (13.16)

dominates all the others (inertia force, gas pressure gradient, etc.). Within
the framework of Equation (13.7), the magnetic field is referred to as a strong
one if in some region under consideration

ε2 
 1 and γ2 
 1 , (13.17)

i.e. if the magnetic energy density greatly exceeds that of the kinetic and
thermal energies:

B 2
0

8π
� ρ0v

2

2
and

B 2
0

8π
� 2n0kBT0 .

From Equation (13.7) it follows that, in the zeroth order with respect to
the small parameters (13.17), the magnetic field is force-free, i.e. it obeys the
equation

B × curl B = 0 . (13.18)

This conclusion is quite natural:

if the magnetic force dominates all the others, then the magnetic
field must balance itself in the region under consideration.
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Condition (13.18) obviously means that electric currents flow parallel to
magnetic field lines. If, in addition, electric currents are absent in some region
(in the zeroth approximation relative to the small parameters ε2 and γ2), then
the strong field is simply potential in this region:

curl B = 0 , B = ∇Ψ , ∆Ψ = 0 . (13.19)

In principle, the magnetic field can be force-free or even potential for another
reason: due to the equilibrium of non-magnetic forces. However this does not
happen frequently.

Let us consider the first order in the small parameters (13.17). If they are
not equally significant, there are two possibilities.

(a) We suppose, at first, that

ε2 
 γ2 
 1 . (13.20)

Then we neglect the inertia force in Equation (13.7) as compared to the gas
pressure gradient. Decomposing the magnetic force into a magnetic tension
force and a magnetic pressure gradient force (see Exercises 13.2 and 13.3),

Fm = − 1
4π

B × curl B =
1
4π

(B · ∇)B − ∇ B2

8π
, (13.21)

we obtain the following dimensionless equation:

(B · ∇)B = ∇
(

B2

2
+ γ2p

)
. (13.22)

Owing to the presence of the gas pressure gradient, the magnetic field differs
from the force-free one at any moment of time:

the magnetic tension force (B · ∇)B/4π must balance not only the
magnetic pressure gradient but that of the gas pressure as well.

Obviously the effect is proportional to the small parameter γ2.
This approximation can be naturally called the magnetostatic one since

v = 0. It effectively works in regions of a strong magnetic field where the gas
pressure gradients are large, for example, in coronal loops and reconnecting
current layers (RCLs) in the solar corona (Exercise 13.4).

(b) The inertia force also causes the magnetic field to deviate from the
force-free one:

ε2
{

1
δ

∂v
∂t

+ (v · ∇)v
}

= − 1
ρ

B × curl B . (13.23)

Here we ignored (in the first order) the gas pressure gradient as compared
with the inertia force. Thus it is not the relation (13.20) between the small
parameters (13.17), but rather its converse, that should be obeyed, i.e.

γ2 
 ε2 
 1 . (13.24)
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The problems on plasma flows in a strong magnetic field are of considerable
interest in plasma astrophysics. To solve them, inequalities (13.24) can be
assumed to hold. Then we can use (13.23) as the MHD equation of motion.
The approximation corresponding inequalities (13.24) is naturally termed the
approximation of strong field and cold plasma.

The main applications of the strong-field-cold-plasma approximation are
concerned with the solar atmosphere (see vol. 2, Chapters 2 and 6) and the
Earth’s magnetosphere. Both astrophysical objects are well studied from the
observational viewpoint. So we can proceed with confidence from qualitative
interpretation to the construction of quantitative models. The presence of a
sufficiently strong magnetic field and a comparatively rarefied plasma is com-
mon for both phenomena. This justifies the applicability of the approximation
at hand.

A sufficiently strong magnetic field easily moves a comparatively
rarefied plasma in many non-stationary phenomena in space.

Analogous conditions are reproduced under laboratory modelling of these phe-
nomena (e.g., Hoshino et al., 2001). Some other astrophysical applications of
the strong-field-cold-plasma approximation will be discussed in the following
two Sections.

∗ ∗ ∗
In closing, let us consider the dimensionless parameter δ = vτ/L. As is seen
from Equation (13.23), it characterizes the relative role of the local ∂/∂t and
transport (v · ∇) terms in the substantial derivative d/dt.

If δ � 1 then, in the zeroth approximation relative to the small parameter
δ−1, the plasma flow can be considered to be stationary

ε2 (v · ∇)v = − 1
ρ

B × curl B . (13.25)

If δ 
 1, i.e. plasma displacement is small during the magnetic field
change, then the transport term (v · ∇) can be ignored in the substantial
derivative and the equation of motion in the strong-field-cold-plasma approx-
imation takes the form

ε2 ∂v
∂t

= − 1
ρ

B × curl B , (13.26)

other equations becoming linear. This case corresponds to small plasma dis-
placements from the equilibrial state, i.e. small perturbations. (If need be,
the right-hand side of Equation (13.26) can be linearized in the usual way.)

Generally the parameter δ ≈ 1 and the set of MHD equations in the
approximation of strong field and cold plasma for ideal medium assumes the
following dimensionless form:

ε2 dv
dt

= − 1
ρ

B × curl B , (13.27)
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∂ B
∂t

= curl (v × B ) , (13.28)

∂ρ

∂t
+ div ρv = 0 . (13.29)

In the next Chapter we shall consider some continuous plasma flows in a
strong magnetic field, which are described by Equations (13.27)–(13.29).

13.2 Accretion disks of stars

13.2.1 Angular momentum transfer in binary stars

Magnetic fields were discussed as a possible means of angular transport in
the development of accretion disk theory in the early seventies (Shakura and
Sunyaev, 1973; Novikov and Thorne, 1973). Interest in the role of magnetic
fields in binary stars steadily increased after the discovery of the nature of AM
Herculis. It appeared that the optical counterpart of the soft X-ray source has
linear and circular polarization in the V and I spectral bands, of a strength
an order of magnitude larger than previously observed in any object. This
suggested the presence of a very strong field, with B ∼ 108 G, assuming the
fundamental cyclotron frequency to be observed.

Similar systems were soon discovered. Evidence for strong magnetic fields
was subsequently found in the X-ray binary pulsars and the intermediate polar
binaries, both believed to include accretion disks. A magnetically channelled
wind from the main sequence star has been invoked to explain the higher
rates of mass transfer observed in binaries above the period gap, and in an
explanation of the gap. The winds from accretion disks have been suggested
as contributing to the inflow by removing angular momentum.

Magnetohydrodynamics in binary stars is now an area of central im-
portance in stellar astrophysics (Campbell, 1997; Rose, 1998). Magnetic fields
are believed to play a role even in apparently non-magnetic binaries. They
provide the most viable means, through the so-called shear-type instabilities,
of generating the MHD turbulence in an accretion disk necessary to drive the
plasma inflow via the resulting magnetic and viscous stresses.

The fundamental problem is the role of magnetic fields in redistributing
angular momentum in binary stars. The disk is fed by the plasma stream
originated in the L1 region (Figure 13.1) of the secondary star. In a steady
state,

plasma is transported through the disk at the rate it is supplied by
the stream and the angular momentum will be advected outwards.

Angular momentum avdection requires coupling between rings of rotating
plasma; the ordinary hydrodynamic viscosity is too weak to provide this.
Hence some form of anomalous viscosity must be invoked to explain the
plasma flow through the disk.
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D
SS

L1

St

Figure 13.1: The standard model of a binary system viewed down the rota-
tional pole. The tidally and rotationally distorted secondary star SS loses
plasma from the unstable L1 point. The resulting plasma stream St feeds an
accretion disk D, centred on the primary star.

The key point is the recognition that a simple linear instability, which
we refer to here as the standard magnetorotational instability (Hawley et
al., 1995), generates MHD turbulence. This turbulence transports angular mo-
mentum outward through the disk, allowing accretion to proceed. Although
turbulence seems like a natural and straightforward transport mechanism, it
turns out that the magnetic fields are essential. Purely hydrodynamic tur-
bulence is not self-sustaining and does not produce sustained outward trans-
port of angular momentum (see Hawley and Balbus, 1999). MHD turbulence
greatly enhances angular momentum transport associated with the so-called
α-disks (Balbus and Papaloizou, 1999).

It is most probable that the accretion disks have turbulent motions gen-
erated by the shear instabilities. The turbulence and strong radial shear lead
to the generation and maintenance of a large scale magnetic field.

Viscous and magnetic stresses cause radial advection of the angular
momentum via the azimutal forces.

Provided these forces oppose the large-scale azimutal motion, plasma will spi-
ral in through the disk as angular momentum flows outwards. Presumably,
the approximation of a weak field (Section 13.1.2) can be used inside the
disk to model these effects. Most models to date involve a vertically aver-
aged structure. The future aim is to find 3D solutions which self-consistently
incorporate the magnetic shear instabilities and vertical structure.

The stellar spin dynamics and stability are also important, of course.
For example, in spin evolution calculations, a compact white draft, or neutron
star, is usually treated as a rigid body. This is valid provided the dynamic
time-scale for adjustments in the stellar structure is short compared to the
spin evolution time scale. In general, however, a strongly-magnetic primary
star may experience significant distortions from spherical symmetry due to
non-radial internal magnetic forces. This fact can be demonstrated by the
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tensor virial theorem in MHD (Section 19.1.3).

13.2.2 Magnetic accretion in cataclysmic variables

Cataclysmic variables (CVs) are interacting binary systems composed of a
white dwarf (primary star) and a late-type, main-sequence companion (sec-
ondary star). The secondary star fills its Roche lobe, and plasma is trans-
ferred to the compact object through the inner Lagrangian point. The way
this plasma falls towards the primary depends on the intensity of a magnetic
field of the white dwarf.

If the magnetic field is weak, the mass transfer occurs through an optically
thick accretion disk. Such CVs are classified as non-magnetic ones.

The strong magnetic field (B >∼ 107 G) may entirely dominate the geome-
try of the accretion flow. The magnetic field is strong enough to synchronize
the white dwarf rotation (spin) with the orbital period. Synchronization oc-
curs when the magnetic torque between primary and secondary overcomes
the accretion torque, and no disk is formed. Instead, the field channels accre-
tion towards its polar regions. Such synchronous systems are known as AM
Herculis binaries or polars.

The intermediate (B ∼ 2−8×106 G) magnetic field primary stars harbor
magnetically truncated accretion disks which can extend until magnetic pres-
sure begins to dominate. A shock should appear when the plasma streams
against the white dwarf’s magnetosphere. The shock should occur close to
the corotation radius (the distance from the primary at which the Keplerian
and white dwarf angular velocities match), inside and above the disk plane.
Presumably the plasma is finally accreted onto the magnetic poles of the
white dwarf. The asynchronous systems are known as DQ Herculis binaries
or Intermediate Polars (IPs).

General properties of plasma flows driven by a strong magnetic field will
be discussed in Chapter 14.

The accretion geometry strongly influences the emission properties at all
wavelengths and its variability. The knowledge of the behaviour in all energy
domains can allow one to locate the different accreting regions (Bianchini et
al., 1995). Reid et al. (2001) discovered the first magnetic white dwarf of
the spectral type DZ, which shows lines of heavy elements like Ca, Mg, Na,
and Fe. The cool white dwarf LHS 2534 offers the first empirical data in an
astrophysical setting of the Zeeman effect on neutral Na, Mg, and both ionized
and neutral Ca. The Na I splittings result in a mean surface field strength
estimate of 1.92× 106 G. In fact, there are direct laboratory measurements of
the Na I D lines that overlap this field strength.

13.2.3 Accretion disks near black holes

In interacting binary stars there is an abundance of evidence for the presence
of accretion disks: (a) double-peaked emission lines are observed; (b) eclipses
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of an extended light source centered on the primary occur, and (c) in some
cases eclipses of the secondary star by the disk are also detected. The case for
the presence of accretion disks in active galactic nuclei is less clear. Nonethe-
less the disk-fed accreation onto a super-massive black hole is the commonly
accepted model for these astronomical objects. In fact, active galactic nu-
clei also exhibit the classical double-peaked, broad emission lines which are
considered to be characteristic for a rotating disk.

As the plasma accretes in the gravitational field of the central mass, mag-
netic field lines are convected inwards, amplified and finally deposited on the
horizon of the black hole (Section 8.3.4). As long as a magnetic field is
confined by the disk, a differential rotation causes the field to wrap up tightly
(see Section 20.1.5), becoming highly sheared and predominantly azimuthal
in orientation. A dynamo in the disk may be responsible for the maintenance
and amplification of the magnetic field.

In the standard model of an accreation disk (Shakura and Sunyaev, 1973;
Novikov and Thorne, 1973), the gravitational energy is locally radiated from
the optically thin disk, and the plasma keeps its Keplerian rotation. However
the expected power far exceeds the observed luminosity.

There are two possible explanations for the low luminosities of nearby black
holes: (a) the accretion occurs at extremely low rates, or (b) the accretion
occurs at low radiative efficiency. Advection has come to be thought of as
an important process and results in a structure different from the standard
model. The advection process physically means that

the energy generated via viscous dissipation is restored as entropy
of the accreting plasma flow rather than being radiated.

The advection effect can be important if the radiation efficiency decreases
under these circumstances (Section 8.3.4). An optically thin advection-
dominated accretion flow (ADAF) seems to be a hydrodynamic model that can
reproduce the observed hard spectra of black hole systems such as active galac-
tic nuclei (AGN) and Galactic black hole candidates (e.g., Manmoto, 2000).

This situation is perhaps best illustrated by the case of nearby ellipti-
cal galaxy nuclei (Di Matteo et al., 2000). Assuming that the accretion oc-
curs primarily from the hot, quasi-spherical interstellar medium (ISM), the
Bondi (1952) theory can be used to estimate the accreation rates onto the
supermassive black holes. Such estimates, however, require accurate mea-
surements of both the density and the temperature of the ISM at the Bondi
accreation radius, i.e., the radius at which the gravitational force of the black
hole begins to dominate the dynamics of the hot plasma.

In order to determine unambiguously whether or not the low luminosities
of nearby black holes are due to a low radiative efficiency in the accreting
plasma, it is also necessary to measure the nuclear power. When combined
with the estimated accretion rates, this gives us a direct measurement of the
radiative efficiency η r.
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Thanks to its high spatial resolution and sensitivity, the Chandra X-ray
Observatory is able, for the first time, to detect nuclear X-ray point sources in
nearby galaxies and provide us with direct measurements of their luminosities.
Chandra also allows us to measure the central temperatures and densities of
the ISM close to accretion radii of the central black holes and therefore to
determine the Bondi accretion rates in these systems to much greater accuracy
than before.

Di Matteo et al. (2001) explored the implications of Chandra observa-
tions of the giant elliptical galaxy NGC 6166. They show that, if the central
black hole of ∼ 109 M	 is fed at the estimated Bondi rate, the inferred ef-
ficiency η r

<∼ 10−5. At the given accretion rate, ADAF models can explain
the observed nuclear luminosity. However the presence of fast outflows in
the accretion flow is also consistent with the present constraints. The power
output from the jets in NGC 6166 is also important to the energetics of the
system.

13.2.4 Flares in accretion disk coronae

Following the launch of several X-ray satellites, astrophysicists have tried to
observe and analyze the violent variations of high energy flux from black
hole candidates (e.g., Negoro et al., 1995; see also review in Di Matteo et
al., 1999). So far, similar solar and astrophysical statistical studies have been
done almost independently of each other. Ueno (1998) first compared X-ray
light curves from the solar corona and from the accretion disk in Cyg X-1, a
famous black hole candidate. He analyzed also the power spectral densities,
the peak interval distributions (the interval of time between two consecutive
flares), and the peak intensity distributions.

It has appeared that there are many relationships between flares in the
solar corona and ‘X-ray shots’ in accretion disks. (Of course, there are many
differences and unexplained features.) For example, the peak interval distri-
bution of Cyg X-1 shows that the occurrence frequency of large X-ray shots
is reduced. A second large shot does not occur soon after a previous large
shot. This suggests the existence of energy-accumulation structures, such as
magnetic fields in solar flares.

It is likely that accretion disks have a corona which interacts with a mag-
netic field generated inside a disk. Galeev et al. (1979) suggested that the
corona is confined in strong magnetic loops which have buoyantly emerged
from the disk. Buoyancy constitutes a mechanism able to channel a part of
the energy released in the accretion process directly into the corona outside
the disk.

Magnetic reconnection of buoyant fields in the lower density surface
regions may supply the energy source for a hot corona.

On the other hand, the coronal magnetic field can penetrate the disk and is
stressed by its motions. The existence of a disk corona with a strong field
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(Section 13.1.3) raises the possibility of a wind flow similar to the solar wind.
In principle, this would result in angular momentum transport away from the
disk, which could have some influence on the inflow. Another feature related
to the accretion disk corona is the possibility of a flare energy release similar
to solar flares (see vol. 2, Section 8.3).

When a plasma in the disk corona is optically thin and has a dominant
magnetic pressure, the circumstances are likely to be similar to the solar
corona. Therefore

it is possible to imagine some similarity between the mechanisms of
solar flares and X-ray shots in accretion disks.

Besides the effect of heating the the disk corona, reconnection is able to
accelerate particles to high energies (Lesch and Pohl, 1992; Bednarek and
Protheroe, 1999). Some geometrical and physical properties of the flares in
accretion disk coronae can be inferred almost directly from soft- and hard
X-ray observations of Galactic black hole candidates (Beloborodov, 1999; Di
Matteo et al., 1999).

13.3 Astrophysical jets

13.3.1 Jets near black holes

Jet-like phenomena, including relativistic jets (Begelman et al., 1984; Birkin-
shaw, 1997), are observed on a wide range of scales in accretion disk systems.
Active galactic nuclei (AGN) show extremely energetic outflows extending
even to scales beyond the outer edge of a galaxy in the form of strongly colli-
mated radio jets. The luminosities of the radio jets give an appreciable frac-
tion of the luminosity of the underlying central object. There is substantial
evidence that magnetic forces are involved in the driving mechanism
and that the magnetic fields also provide the collimation of relativistic flows
(see also Section 20.1.3). So numerucal simulations must incorporate rela-
tivistic MHD in a four-dimensional space-time (Nishikawa et al., 1999; Koide
et al., 1999).

Rotating black holes are thought to be the prime-mover behind the
activity detected in centers of galaxies. The gravitational field of rotating
black holes is more complex than that of non-rotating ones. In addition
to the ordinary gravitational force, mg, the rotation generates the so-called
gravitomagnetic force which is just an analogy of the Lorentz force. In fact,
the full weak-gravity (far from the hole) low-velocity (replacing the relativistic
unified space-time with an equivalent Galilean ‘absolute-space-plus-universal-
time’) coordinate acceleration of uncharged particle (Macdonald et al., 1986;
see also Chapter 4 in Novikov and Frolov, 1989)

d2r
dt2

= g +
dr
dt

× Hgr (13.30)
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looks like the Lorentz force with the electric field E replaced by g, the mag-
netic field B replaced by the vector Hgr = curl Agr, and the electric charge e
replaced by the particle mass m. These analogies lie behind the use of the
words ‘gravitoelectric’ and ‘gravitomagnetic’ to describe the gravitational ac-
celeration field g and to describe the ‘shift function’ Agr and its derivatives
(Exercise 13.6).

The analogy with electromagnetism remains strong so long as all velocities
are small compared with that of light and gravity is weak enough to be linear.
Thus, far from the horizon, the gravitational acceleration

g = −M

r2 er (13.31)

is the radial Newtonian acceleration and the gravitomagnetic field

Hgr = 2
J − 3 (J · er) er

r3 (13.32)

is a dipole field with the role of dipole moment played by the hole’s angular
momentum

J =
∫

( r × ρmv) dV . (13.33)

A physical manifestation of the gravitomagnetic field (13.32) is the pre-
cession that is induced in gyroscopes far from the hole. The electromagnetic
analogy suggests that not only should the gravitomagnetic field exert a torque
on a gyroscope outside a black hole, it should also exert a force. The grav-
itomagnetic force drives an accretion disk into the hole’s equatorial
plane and holds it there indefinitely regardless of how the disk’s angular
momentum may change (Figure 13.2).

Consequently, at radii where the bulk of the disk’s gravitational energy
is released and where the hole-disk interactions are strong, there is only one
geometrically preferred direction along which a jet might emerge: the normal
to the disk plane, which coincides with the rotation axis of the black hole. In
some cases the jet might be produced by winds off the disk, in other cases
by electrodynamic acceleration of the disk, and in others by currents in the
hole’s magnetosphere (see Begelman et al., 1984). However whatever the
mechanism, the jet presumably is locked to the hole’s rotation axis.

The black hole acts as a gyroscope to keep the jet aligned. The
fact that it is very difficult to torque a black hole accounts for the constancy
of the observed jet directions over length scales as great as millions of light
years and thus over time scales of millions of years or longer.

A black hole by itself is powerless to produce the observed jets. It does
so only with the aid of surrounding plasma and magnetic fields. A super-
massive hole in a galactic nucleus can acquire surrounding matter either by
gravitationally pulling interstellar gas into its vicinity, or by tidally disrupting
passing stars and smearing their matter out around itself. In either case the
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H

J

gr

D

jet

V

Figure 13.2: An accretion disk D around a rotating black hole is driven into
the hole’s equatorial plane at small radii by a combination of gravitomagnetic
forces (action of the gravitomagnetic field Hgr on orbiting plasma) and viscous
forces.

gas is likely to have so much angular momentum that, instead of being swal-
lowed directly and radially into the hole, it forms an orbiting disk around the
hole. The orientation of the disk at large radii is determined by the direction
of the angular momentum of the recently acquired gas, see an external part
of the accretion disk in Figure 13.2.

In the highly-conducting medium, the gravitomagnetic force couples with
electromagnetic fields over Maxwell’s equations. This effect has interesting
consequences for the magnetic fields advected from the interstellar matter
towards the black hole (Camenzind, 1990). It leads to a gravitomagnetic
dynamo which amplifies any seed field near a rotating compact object. This
process builds up the dipolar magnetic structures which may be behind the
bipolar outflows seen as relativistic jets (for comparison with a non-relativistic
process see Section 14.4).

Magnetic fields also influence the accretion towards the rotating black
hole. For rapidly rotating holes, the accreation can carry negative angular
momentum inwards, spinning down the black hole.

13.3.2 Relativistic jets from disk coronae

Relativistic jets are produced perpendicular to the accretion disk plane (see
Figure 13.2) around a super-massive black hole in the central part of an AGN.
The shock of the jets on intergalactic media, at a distance of several hundreds
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of kpc from the central engine, is considered as being able to accelerate parti-
cles up to the highest energies, say 1020 eV for cosmic rays. This hypothesis
need, however, to be completed by some further and necessary ingradients
since such powerful galaxies are rare objects.

Subramanian et al. (1999) consider the possibility that the relativistic jets
observed in many active galactic nuclei may be powered by the Fermi acceler-
ation of protons in a tenuous corona above a two-temperature accretion disk
(Section 8.3.4). The acceleration arises, in this scenario, as a consequence of
the shearing motion of the magnetic field lines in the corona, that are anchored
in the underlying Keplerian disk. The protons in the corona have a power-law
distribution because the density there is too low for proton-proton collisions
(formula (8.39)) to thermalize the energy supplied via Fermi acceleration.

The same mechanism also operates in the disk itself. However there the
density is high enough for thermalization to occur and consequently the disk
protons have the Maxwellian distribution. Particle acceleration in the corona
leads to the development of a pressure-driven wind that passes through a crit-
ical point and subsequently transforms into a relativistic jet at large distances
from the black hole.

13.4 Practice: Exercises and Answers

Exercise 13.1 [ Section 13.1.1 ] Evaluate the characteristic value of Alfvén
speed in the solar corona above a large sunspot.

Answer. From definition (13.14) we find the following formula for Alfvén
speed

VA ≈ 2.18 × 1011 B√
n

, cm s−1 . (13.34)

In this formula, in the coefficient, we have neglected a small contribution of
the ions that are heavier than protons into the plasma density ρ. Another
thing is much more important however.

Above a sunspot the field strength can be as high as B ≈ 3000 G. Plasma
density in the low corona n ≈ 2 × 108 cm−3 . For these values formula (13.34)
gives unacceptably high values of the Alfvén speed: VA ≈ 5×1010 cm s−1 > c.
This means that

in a strong magnetic field and low density plasma, the Alfvén waves
propagate with velocities approaching the light speed c.

So formula (13.34) has to be corrected by a relativistic factor which takes this
fact into account.

Alfvén (1950) pointed out that the ‘magnetohydrodynamic waves’ are just
an extreme case of electromagnetic waves (Section 15.2.2 and Exercise 15.3).
Alfvén has shown that the transition between electromagnetic and Alfvén
waves can be surveyed by the help of the following formula for the speed of



238 Chapter 13. MHD in Astrophysics

propagation along the magnetic field:

V rel
A

=
B√
4πρ

1√
1 + B2/4πρc2

, (13.35)

which agrees with (13.14) when B2 
 4πρc2. Therefore the relativistic Alfvén
wave speed is always smaller than the light speed:

V rel
A

=
c√

1 + 4πρc2/B2
≤ c . (13.36)

For values of the magnetic field and plasma density mentioned above, this
formula gives V rel

A
≈ 2 × 1010 cm s−1 < c.

Formula (13.36) shows that, in low desity cosmic plasmas, the Alfvén speed
can easily approach the light speed c.

Exercise 13.2 [ Section 13.1.3 ] Discuss properties of the Lorentz force (13.16)
in terms of the Maxwellian stress tensor (12.11).

Answer. In non-relativistic MHD, the Maxwellian stress tensor has only
magnetic field components (see formula (12.48))

Mαβ =
1
4π

(
B2

2
δαβ − BαBβ

)
. (13.37)

Let us write down these components in the reference system which has the
z coordinate in the direction of the magnetic field at a given point. In its
neighbourhood, formula (13.37) implies

Mαβ =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
B2/8π 0 0

0 B2/8π 0

0 0 −B2/8π

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
. (13.38)

According to definition (13.37) the zz component of the tensor has two parts:

Mzz =
B2

8π
− B2

4π
. (13.39)

The first part, B2/8π, combines with the Mxx and Myy components to give
an isotropic pressure. The remaining part, −B2/4π, corresponds to excess
‘negative pressure’ or tension in the z direction. Thus

a magnetic field has a tension along the field lines in addition to
having the isotropic pressure, B2/8π.

The second term on the right-hand side of the Maxwellian stress tensor (13.37)
describes the magnetic tension along field lines. Recall that the diagonal
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components of the pressure tensor (12.15), in exactly the same way, correspond
to isotropic gas pressure and the off-diagonal components to viscous shear.

Exercise 13.3 [ Section 13.1.3 ] Show that the magnetic tension force is di-
rected to the local centre of curvature.

Answer. The Lorentz force is

Fm = − 1
4π

B × curl B =
1
4π

(B · ∇)B − ∇ B2

8π
. (13.40)

Here (B · ∇) is the directional derivative along a magnetic field line. Hence
we can use formulae that are similar to (5.43) and (5.44) to rewrite the first
term on the right-hand side of (13.40) as follows

1
4π

(B · ∇)B = −B2

4π

ec

Rc
+

∂

∂l

B2

8π
n . (13.41)

Here n = B/B is the unit vector along the magnetic field, l is the distance
along the field line, Rc is a radius of curvature for the field line at a given
point R. At this point the unit vector ec is directed from the curvature
center 0c as shown in Figure 5.8.

Let us decompose the second term on the right-hand side of (13.40) as

−∇ B2

8π
= −∇⊥

B2

8π
− ∂

∂l

B2

8π
n , (13.42)

where the operator ∇⊥ operates in the planes normal to the magnetic field
lines.

Now we combine formulae (13.41) and (13.42) to write the Lorentz force
as

Fm = −∇⊥
B2

8π
− B2

4π

ec

Rc
.

(13.43)

The first term in the Lorentz force is the magnetic pressure force which is
isotropic in the planes normal to the magnetic field lines. It is directed from
high magnetic pressure (strong magnetic field) to low magnetic pressure (low
field strength) in the same way as the gas pressure. Therefore

the magnetic pressure force acts when the strength of the magnetic
field is not a constant in space.

The second term on the right-hand side of (13.43), the magnetic tension
force, is directed to the local center of curvature (see point 0c is Figure 5.8).
It is inversely proportional to the curvature radius Rc. Thus the more a field
line is curved, the stronger the tension force is.
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The magnetic tension force behaves in an identical way as the ten-
sion force in an elastic string.

It is present for magnetic fields with curved field lines and tendes to make
curved field lines straight, for example, in an Alfvén wave (see Figure 15.1).

The sum of both terms, the Lorentz force, has no component along the
magnetic field. We already knew this since the vector product B × curl B is
perpendicular to the vector B.

Exercise 13.4 [ Section 13.1.1 ] For the conditions in the low corona, used in
Exercise 13.1, estimate the parameter γ2.

Answer. Substitute p0 = 2n0kBT0 in definition (13.13):

γ2 =
n0kBT0

B 2
0 /8π

≈ 3.47 × 10−15 n0T0

B 2
0

. (13.44)

Let us take as the characteristic values of temperature T0 ≈ 2 × 106 K and
magnetic field B0 ≈ 3000 G. For these values formula (13.44) gives the di-
mensionless parameter γ2 ∼ 10−7. Hence, in the solar corona above sunspots,
the conditions (13.24) of a strong field can be satisfied well for a wide range
of plasma parameters.

Exercise 13.5 [ Section 12.3.2 ] By using general formula (12.74) for the
energy flux in ideal MHD, find the magnetic energy influx into a reconnecting
current layer (RCL).

Answer. Let us consider a current layer as a neutral one (Figure 8.5).
In this simplest approximation, near the layer, the magnetic field B ⊥ v.
Therefore in formula (12.74) the scalar product B · v = 0 and the energy flux
density

G = ρv
(

v2

2
+ w

)
+

B2

4π
v . (13.45)

If the approximation of a strong field is satisfied, the last term in (13.45) is
dominating, and we find the magnetic energy flux density or the Poynting
vector (cf. general definition (12.52)) directed into the current layer

GP =
B2

4π
v . (13.46)

For a quarter of the current layer assumed to be symmetrical and for a unit
length along the current, the total flux of magnetic energy

E in
mag =

B 2
0

4π
v0b . (13.47)

Here b is half-width of the layer (see vol. 2, Figure 6.1), B0 is the field strength
on the inflow sides of the current layer, v0 is the inflow velocity.
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Exercise 13.6 [ Section 13.3 ] Consider a weakly gravitating, slowly rotating
body such as the Earth or the Sun, with all nonlinear gravitational effects
neglected. Compute the gravitational force and gravitomagnetic force (as
in Section 13.3.1) from the linearized Einstein equations (see Landau and
Lifshitz, Classical Theory of Field , 1975, Chapter 10, § 100). Show that,
for a time-independent body, these equations are identical to the Maxwell
equations (1.24)–(1.27):

curlg = 0 , div g = − 4π Gρm , (13.48)

curl Hgr = − 16π Gρmv , div Hgr = 0 . (13.49)

Here the differences are: (a) two minus signs due to gravity being attractive
rather than repulsive, (b) the factor 4 in the curlHgr equation, (c) the presence
of the gravitational constant G, (d) the replacement of charge density ρ q by
mass density ρm, and (e) the replacement of electric current density j by the
density of mass flow ρmv with v the velocity of the mass.



Chapter 14

Plasma Flows in a Strong
Magnetic Field

A sufficiently strong magnetic field easily moves a comparatively ra-
rified plasma in many non-stationary phenomena in space, for example
in solar flares and coronal mass ejections which strongly influence the
interplanetary and terrestrial space.

14.1 The general formulation of the problem

As was shown in Section 13.1.3, the set of MHD equations for an ideal medium
in the approximation of strong field and cold plasma is characterized only by
the small parameter ε2 = v2/V 2

A
:

ε2 dv
dt

= − 1
ρ

B × curl B , (14.1)

∂ B
∂t

= curl (v × B) , (14.2)

∂ρ

∂t
+ div ρv = 0 . (14.3)

Let us try to find the solution to this set as a power series in the parameter ε2,
i.e. representing all the unknown quantities in the form

f(r, t) = f (0)(r, t) + ε2f (1)(r, t) + . . . . (14.4)

Then we try to find the solution in three consequent steps.
(a) To zeroth order with respect to ε2, the magnetic field is determined

by the equation
B (0) × curl B (0) = 0 . (14.5)

243
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This must be supplemented with a boundary condition, which generally de-
pends on time:

B (0) (r, t)
∣∣

S
= f 1 (r, t) . (14.6)

Here S is the boundary of the region G, in the interior of which the force-free-
field Equation (14.5) applies.

The strong force-free magnetic field, changing in time according to
the boundary condition (14.6), sets the plasma in motion.

(b) The kinematics of this motion is uniquely determined by two con-
ditions. The first one follows from the equation of motion and signifies the
orthogonality of acceleration to the magnetic field lines

B (0) · dv (0)

dt
= 0 . (14.7)

This equation is obtained by taking the scalar product of Equation (14.1) and
the vector B(0).

The second condition is a consequence of the freezing-in Equation (14.2)

∂ B (0)

∂t
= curl

(
v(0) × B (0)

)
. (14.8)

Equations (14.7) and (14.8) determine the velocity field v(0)(r, t), if the initial
condition inside the region G is given:

v (0)
‖ (r, 0)

∣∣
G

= f 2 (r) . (14.9)

Here v(0)
‖ is the velocity component along the field lines. The velocity com-

ponent across the field lines is uniquely defined, once the field B (0) (r, t) is
known, by the freezing-in Equation (14.8) at any moment, including the initial
one.

(c) Since we know the velocity field v(0)(r, t), the continuity equation

∂ρ (0)

∂t
+ div ρ (0)v(0) = 0 (14.10)

allows us to find the plasma density distribution ρ (0)(r, t), if we know its
initial distribution

ρ (0)(r, 0)
∣∣

G
= f3 (r) . (14.11)

Therefore Equations (14.5), (14.7) and (14.8), together with the continuity
equation (14.10), completely determine the unknown zero-order quantities
B (0) (r, t), v(0)(r, t) and ρ (0)(r, t), once the boundary condition (14.6) at the
boundary S is given, and the initial conditions (14.9) and (14.11) inside the
region G are given (Somov and Syrovatskii, 1976b).
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At any moment of time, the field B (0) (r, t) is found from Equation (14.5)
and the boundary condition (14.6). Thereupon the velocity v(0)(r, t) is de-
termined from Equations (14.7) and (14.8) and the initial condition (14.9).
Finally the continuity Equation (14.10) and the initial condition (14.11) give
the plasma density distribution ρ (0) (r, t).

From here on we restrict our attention to the consideration of the zeroth
order relative to the parameter ε2, neglecting the magnetic field deviation from
a force-free state. However the consecutive application of the expansion (14.4)
to the set of Equations (14.1)–(14.3) allows us to obtain a closed set of
equations for determination of MHD quantities in any order relative to
the small parameter ε2.

An important point, however, is that, during the solution of the problem
in the zeroth order relative to ε2, regions can appear, where the gas pressure
gradient cannot be ignored. Here effects proportional to the small parame-
ter γ2 must be taken into account (Section 13.1.3). This fact usually imposes a
limitation on the applicability of the strong-field-cold-plasma approximation.

The question of the existence of general solutions to the MHD equations in
this approximation will be considered in Section 14.3, using two-dimensional
problems as an example.

14.2 The formalism of two-dimensional prob-
lems

While being relatively simple from the mathematical viewpoint, two-dimen-
sional MHD problems allow us to gain some knowledge concerning the flows
of plasma with the frozen-in strong magnetic field. Moreover the two-
dimensional problems are sometimes a close approximation of the real three-
dimensional flows and can be used to compare the theory with experiments
and observations, both qualitatively and quantitatively.

There are two types of problems (Somov, 1994a) treating the plane
flows of plasma, i.e. the flows with the velocity field of the form

v = { vx(x, y, t), vy(x, y, t), 0 } . (14.12)

All the quantities are dependent on the variables x, y and t.

14.2.1 The first type of problems

The first type incorporates the problems with a magnetic field which is ev-
erywhere parallel to the z axis of a Cartesian system of coordinates:

B = { 0, 0, B (x, y, t) } . (14.13)

Thus the corresponding electric current is parallel to the (x, y) plane:

j = { jx(x, y, t), jy(x, y, t), 0 } . (14.14)
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As an example of a problem of the first type, let us consider the effect of a
longitudinal magnetic field in a reconnecting current layer (RCL). Under real
conditions, reconnection does not occur at the zeroth lines, but rather at the
‘limiting lines’ of the magnetic field or ‘separators’ (see vol. 2, Section 3.2).
The latter differ from the zeroth lines only in that the separators contain the
longitudinal component of the field as shown in Figure 14.1.

B

B ||

y

x

Figure 14.1: Structure of the
magnetic field near a separator.
A longitudinal field B ‖ parallel
to the z axis is superimposed on
the two-dimensional hyperbolic
field in the plane (x, y).

With the appearance of the longitudinal field, the force balance in the RCL
that is formed at the separator is changed. The field and plasma pressure
outside the layer must balance not only the gas pressure but also that of the
longitudinal field inside the layer (Figure 14.2)

B ‖ =
{

0, 0, B ‖ (x, y, t)
}

. (14.15)

This effect is well known in the so-called theta-pinch. In axially symmetric
geometry, in cylindrical coordinates r, θ, z, an azimuthal current density jθ

crossed with an axial field Bz can support a radial pressure gradient.
If the longitudinal field accumulated in the layer during reconnection, the

field pressure B 2
‖/8π would considerably limit the layer compression as well

as the reconnection rate. However the solution of the problem of the first type
with respect to B ‖ (see vol. 2, Section 6.2.2) shows that another effect is of
importance in the real plasma with finite conductivity.

The effect, in essence, is this: the longitudinal field compression in
the RCL produces a gradient of this field and a corresponding electric current
circulating in the transversal (relative to the main current jz in the layer)
plane (x, y). This current circulation is of the type (14.14); it is represented
schematically in Figure 14.2.

The circulating current plays just the same role as the jθ-current in the
theta-pinch, a one-dimensional equilibrium in a cylindric geometry with an
axial field Bz(r). Ohmic dissipation of the circulating current under
conditions of finite conductivity leads to longitudinal field diffusion outwards
from the layer, thus limiting the longitudinal field accumulation in the RCL.
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B

B || jj x
y x

y

Figure 14.2: A model of a reconnecting current layer with a longitudinal
component of a magnetic field B ‖.

14.2.2 The second type of MHD problems

14.2.2 (a) Magnetic field and its vector potential

From this point on we shall be mainly interested in two-dimensional problems
of the second type. They treat the plane plasma flows (14.12) associated with
the plane magnetic field

B = { Bx(x, y, t), By(x, y, t), 0 } . (14.16)

The electric currents corresponding to this field are parallel to the z axis

j = { 0, 0, j (x, y, t) } . (14.17)

The vector-potential A of such a field has as its only non-zero component:

A = { 0, 0, A (x, y, t) } .

The magnetic field B is defined by the z-component of the vector-potential:

B =
{

∂A

∂y
, − ∂A

∂x
, 0
}

. (14.18)

The scalar function A (x, y, t) is often termed the vector potential . This
function is quite useful, owing to its properties.

Property 1. Substitute (14.18) in the differential equations describing
the magnetic field lines

dx

Bx
=

dy

By
=

dz

Bz
. (14.19)

Equations (14.19) imply parallelism of the vector d l = {dx, dy, dz} to the
vector B = {Bx, By, Bz}. In the case under study Bz = 0, dz = 0, and

dx

∂A/∂y
= − dy

∂A/∂x
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or
∂A

∂x
dx +

∂A

∂y
dy = 0 .

On integrating the last, we come to the conclusion that the relation

A (x, y, t) = const for t = const
(14.20)

is the equation for a family of magnetic field lines in the plane z = const at
the moment t.

Property 2. Let L be some curve in the plane (x, y) and d l an arc
element along the curve in Figure 14.3.

2

1 BL

d l

d S Figure 14.3: The curve L connects
the points 1 and 2 situated in dif-
ferent field lines.

Let us calculate the magnetic flux d Φ through the arc element d l. By
definition,

d Φ = B · dS = B · (ez × d l ) = B ·

∣∣∣∣∣∣∣∣∣∣
ex ey ez

0 0 1

dx dy 0

∣∣∣∣∣∣∣∣∣∣
=

= B · { (−dy) ex + dx ey } = −Bx dy + By dx . (14.21)

On substituting definition (14.18) in formula (14.21) we find that

d Φ = −∂A

∂y
dy − ∂A

∂x
dx = − dA . (14.22)

On integrating (14.22) along the curve L from point 1 to point 2 we obtain
the magnetic flux

Φ = A2 − A1 . (14.23)

Thus the fixed value of the vector potential A is not only the field line ‘tag’
determined by formula (14.20);

the difference of values of the vector potential A on two field lines
is equal to the magnetic flux between them.
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From this, in particular, the following simple rule holds: we have to plot
the magnetic field lines corresponding to equidistant values of A.

Property 3. Let us substitute definition (14.18) in the freezing-in Equa-
tion (14.2). We obtain the following general equation

curl
dA
dt

= 0 . (14.24)

Disregarding a gradient of an arbitrary function, which can be eliminated by
a gauge transformation, and considering the second type of MHD problems,
we have

dA

dt
≡ ∂A

∂t
+ (v · ∇)A = 0 . (14.25)

This equation means that, in the plane (x, y), the lines

A (x, y, t) = const (14.26)

are Lagrangian lines, i.e. they move together with the plasma. According
to (14.20) they are composed of the field lines, hence Equation (14.25) ex-
presses the magnetic field freezing in plasma.

Thus (formally it follows from (14.25) on passing to the Lagrangian vari-
ables) we have one of the integrals of motion

A (x, y, t) = A (x0, y0, 0) ≡ A0

(14.27)

at an arbitrary t. Here x0, y0 are the coordinates of some ‘fluid particle’ at
the initial moment of time; x, y are the coordinates of the same particle at
a moment of time t or (by virtue of (14.27)) the coordinates of any other
particle situated on the same field line A0 at the moment t.

Property 4. Equation of motion (14.1) rewritten in terms of the vector
potential A(x, y, t) is of the form

ε2 dv
dt

= −1
ρ

∆A ∇A . (14.28)

In the zeroth order relative to ε2, outside the zeroth points (where ∇A = 0)
and the magnetic field sources (where ∆A �= 0) we have:

∆A = 0 .
(14.29)

So the vector potential is a harmonic function of variables x and y. Hence,
while considering the (x, y) plane as a complex plane z = x+iy, it is convenient
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to relate an analytic function F to the vector potential A in the region under
consideration:

F (z, t) = A (x, y, t) + iA+(x, y, t) . (14.30)

Here A+(x, y, t) is a conjugate harmonic function connected with A (x, y, t)
by the Cauchy-Riemann condition

A+(x, y, t) =
∫ (

− ∂A

∂y
dx +

∂A

∂x
dy

)
+ A+(t) =

= −
∫

B · d l + A+(t) , (14.31)

where A+(t) is a quantity independent of the coordinates x and y (see
Lavrent’ev and Shabat, 1973, § 2).

The function F (z, t) is termed the complex potential . The magnetic field
vector, according to (14.18) and (14.30), is:

B = Bx + iBy = − i
(

dF

dz

)∗
, (14.32)

the asterisk denoting the complex conjugation. After the introduction of the
complex potential, we can widely apply the methods of the complex vari-
able function theory, in particular the method of conform mapping , to de-
termine the magnetic field in zeroth order in the small parameter ε2 (e.g.,
Exercise 14.4).

This has been done successfully many times in order to determine the
structure of the magnetic field: in vicinity of reconnecting current layer (RCL;
Syrovatskii, 1971), in solar coronal streamers (Somov and Syrovatskii, 1972b)
and the field of the Earth’s magnetosphere (Oberz, 1973), the accretion disk
magnetosphere (see vol. 2, Section 8.3). Markovskii and Somov (1989) sug-
gested a generalization of the Syrovatskii model by attaching four shock MHD
waves at the endpoints of the RCL. Under some simplifying assumptions, such
model reduces exactly to the Riemann-Hilbert problem solved by Bezrodnykh
and Vlasov (2002) in an analytical form on the basis of the Christoffel-Schwarz
integral.

14.2.2 (b) Motion of the plasma and its density

In the strong field approximation, the plasma motion kinematics due to
changes in a potential field is uniquely determined by two conditions:

(i) the freezing-in condition (14.25) or its solution (14.27) and
(ii) the acceleration orthogonality with respect to the field lines

dv(0)

dt
× ∇A(0) = 0 (14.33)



14.3. Continuous MHD Flows 251

(cf. Equation (14.7)). A point to be noted is that Equation (14.33) is a result
of eliminating the unknown ∆A(1), which has a first order in ε2, from two
components of the vector equation

dv(0)

dt
= − 1

ρ (0) ∆A(1) ∇A(0) . (14.34)

Once the kinematic part of the problem is solved, the trajectories of fluid
particles are known:

x = x (x0 , y0 , t) , y = y (x0 , y0 , t) . (14.35)

In this case the continuity Equation (14.3) solution presents no problem. In
fact, the fluid particle density change on moving along the found trajectory
is determined by the continuity Equation (14.3), rewritten in the Lagrangian
form, and is equal to

ρ (x, y, t)
ρ0 (x0, y0)

=
dU0

dU
=

D(x0, y0)
D(x, y)

. (14.36)

Here dU0 is the initial volume of a particle, dU is the volume of the same
particle at a moment of time t;

D(x0, y0)
D(x, y)

=
∂x0

∂x

∂y0

∂y
− ∂x0

∂y

∂y0

∂x
(14.37)

is the Jacobian of the transformation that is inverse to the transforma-
tion (14.35) of coordinates at a fixed value of time t.

The two-dimentional equations of the strong-field-cold-plasma approxima-
tion (Somov and Syrovatskii, 1976b) in the problem of the second type are
relatively simple but rather useful for applications to space plasmas. In par-
ticular, they enable us to study the fast plasma flows in the solar atmosphere
(Syrovatskii and Somov, 1980) and to understand some aspects of the recon-
nection process.

In spite of their numerous applications, the list of exact solutions to
them is rather poor. Still, we can enrich it significantly,

relying on many astrophysical objects, for example in the accretion disk coro-
nae (see vol. 2, Section 8.3), and some mathematical ideas.

Titov and Priest (1993) have shown that the equations of zeroth order can
be reduced to a set of Cauchy-Riemann and ordinary differential equations, by
using a conformal system of coordinates in which the positions of particles are
fixed by magnitudes of two conjugate functions. These are the flux function
and the potential of magnetic field. The set obtained has a special class of so-
lutions. First, in such flows the conjugate potential is frozen into the moving
medium as well as the vector potential A(x, y, t). Second, each flow is realized
as a contiuous sequence of conformal mappings. A linear diffusion-like equa-
tion describes such flows. The equation was solved analytically for examples
describing the magnetic collapse (cf. vol. 2, Chapter 2) in the neighbourhood
of the X-point.
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14.3 On the existence of continuous flows

Thus, in the strong-field-cold-plasma approximation, the MHD equations for
a plane two-dimensional flow of ideally conducting plasma (for second-type
problems) are reduced, in the zeroth order in the small parameter ε2, to the
following set of equations:

∆ A = 0 , (14.38)

dv
dt

× ∇A = 0 , (14.39)

dA

dt
= 0 , (14.40)

∂ρ

∂t
+ div ρv = 0 . (14.41)

Seemingly, the solution of this set is completely defined inside some re-
gion G (Figure 14.4) on the plane (x, y), once the boundary condition is given

x

y

v
v

||

⊥

B

G

S

Figure 14.4: The boundary and initial conditions for the second-type MHD
problems.

at the boundary S
A (x, y, t)

∣∣
S

= f1 (x, y, t) (14.42)

together with the initial conditions inside the region G

v‖ (x, y, 0)
∣∣

G
= f2 (x, y) , (14.43)

ρ (x, y, 0)
∣∣

G
= f3 (x, y) . (14.44)

Here v ‖ is the velocity component along field lines. Once the potential
A (x, y, t) is known, the transversal velocity component is uniquely determined
by the freezing-in Equation (14.40) and is equal, at any moment including the
initial one, to

v⊥(x, y, t) = (v · ∇A)
∇A

| ∇A |2 = −∂A

∂t

∇A

| ∇A |2 . (14.45)
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From Equation (14.38) and boundary condition (14.42) we find the vector
potential A (x, y, t) at any moment of time. Next, from Equations (14.39)
and (14.40) and the initial condition (14.43), the velocity v (x, y, t) is deter-
mined; the density ρ (x, y, t) is found from the continuity Equation (14.41)
and the initial density distribution (14.44). The next Section is devoted to
the consideration of an example which may have interesting applications.

14.4 Flows in a time-dependent dipole field

14.4.1 Plane magnetic dipole fields

Two straight parallel currents, equal in magnitude but opposite in direction,
engender the magnetic field which far enough from the currents can be de-
scribed by a complex potential

F (z) =
im
z

, m = m e iψ (14.46)

and is called the plane dipole field. The quantity m = 2Il/c has the meaning
of the dipole moment , I is the current magnitude, l is the distance between
the currents. Formula (14.46) corresponds to the plane dipole situated at the
origin of coordinates in the plane (x, y) and directed at an angle of ψ to the
x axis. The currents are parallel to the z axis of the Cartesian system of
coordinates.

Let us consider the plasma flow caused by the change with time of the
strong magnetic field of the plane dipole. Let ψ = π/2 and m = m(t),
m(0) = m0.

(a) Let us find the first integral of motion. According to (14.30) and
(14.46), the complex potential

F (z, t) =
i m(t) e iπ/2

x + i y
=

−m(t) x + im(t) y

x2 + y2 . (14.47)

So, according to (14.20), the field lines constitute a family of circles

A (x, y, t) = − m(t) x

x2 + y2 = const for t = const . (14.48)

They have centres on the axis x and the common point x = 0, y = 0 in
Figure 14.5.

Therefore the freezing-in condition (14.27) results in a first integral of
motion

m x

x2 + y2 =
m0 x0

x 2
0 + y 2

0
. (14.49)

Here x0, y0 are the coordinates of some fluid particle at the initial moment
of time t = 0 ; Lagrangian variables x and y are the coordinates of the same
particle at a moment t.
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m

x

y

Figure 14.5: The field lines of a plane magnetic dipole.

(b) The second integral is easily found in the limit of small changes of the
dipole moment m (t) and respectively small plasma displacements. Assuming
the parameter δ = vτ/L to be small, Equation (13.26), which is linear in
velocity , takes the place of (14.33). The integration over time (with zero
initial values for the velocity) allows us to reduce Equation (13.26) to the
form

∂x

∂t
= K(x, y, t)

∂A

∂x
,

∂y

∂t
= K(x, y, t)

∂A

∂y
. (14.50)

Here K(x, y, t) is some function of coordinates and time. Eliminating it from
two Equations (14.50), we arrive at

∂y

∂x
=

∂A

∂y

/
∂A

∂x
. (14.51)

Thus, in the approximation of small displacements, not only the acceleration
but also the plasma displacements are normal to the field lines.

On substituting (14.48) in (14.51), we obtain an ordinary differential equa-
tion. Its integral

y

x2 + y2 = const

describes a family of circles, orthogonal to the field lines, and presents
fluid particle trajectories. In particular, the trajectory of a particle, situated
at a point (x0, y0) at the initial moment of time t = 0, is an arc of the circle

y

x2 + y2 =
y0

x 2
0 + y 2

0
(14.52)

from the point (x0, y0) to the point (x, y) on the field line (14.49) as shown in
Figure 14.6.

Thus the integrals of motion (14.49) and (14.52) completely determine the
plasma flow in terms of the Lagrangian coordinates

x = x (x0, y0, t) , y = y (x0, y0, t) . (14.53)
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Figure 14.6: A trajectory of a fluid
particle driven by a changing mag-
netic field of a plane dipole.

m

x

y

y

yx,

x
0

0

t = 0

0

This flow has a simple form: the particles are connected with the magnetic
field lines and move together with them in a transversal direction. Such simple
kinematics is a result of considering small plasma displacements (from the
state having zero initial velocity) under the action of the force perpendicular
to the field lines.

The plasma density change is defined by Equation (14.36). On calculat-
ing the Jacobian for the transformation implicitly given by formulae (14.49)
and (14.52), we obtain (for the case of a homogeneous initial density distri-
bution ρ0) the formula

ρ (x, y, t)
ρ0

=
(

m

m0

)
m 4

0

(m2x2 + m 2
0 y2)4

{[
m2x4 + m 2

0 y4+

+x2y2 (3m2 − m 2
0
) ]2 − [ 2x2y2 (m 2

0 − m2)]2} . (14.54)

In particular, on the dipole axis (x = 0)

ρ (0, y, t)
ρ0

=
m

m0
,

(14.55)

whereas in the ‘equatorial plane’ (y = 0)

ρ (x, 0, t)
ρ0

=
(m0

m

)3
. (14.56)

With increasing dipole moment m, the plasma density on the dipole
axis grows proportionally to the moment,

whereas that at the equatorial plane falls in inverse proportion to the third
power of the moment. The opposite process takes place as the moment de-
creases.

The result pertains to the case of small changes in the dipole moment
and can demonstrate just the tendency of plasma behaviour in the strong
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magnetic field of a plane dipole. The exception is formula (14.55). It applies
to any changes of the dipole moment. The reason is in the following. In the
approximation of a strong field and cold plasma, the acceleration of plasma
is perpendicular to the field lines and is zero at the dipole axis. Hence, if the
plasma is motionless at the initial moment, arbitrary changes of the dipole
moment do not cause a plasma motion on the dipole axis (v = 0). Plasma
displacements in the vicinity of the dipole axis always remain small (δ 
 1)
and the solution obtained applies.

In the general case of arbitrarily large dipole moment changes,

the inertial effects resulting in plasma flows along the magnetic field
lines are of considerable importance

(Somov and Syrovatskii, 1972a). In this case, the solution of the problem
requires the integration of Equation (14.33) or (14.34) together with the
freezing-in Equation (14.25).

One can obtain exact analytical solutions for a linearly changing magnetic
moment using the ‘frozen-in coordinates’ technique (Gorbachev and Kel’ner,
1988). These coordinates can be quite useful while solving nonstationary
MHD problems. One introduces a set which is doubly Lagrangian: in the pa-
rameter s1 along a stream line (along the velocity field v) and in the parameter
s2 along a magnetic field line.

14.4.2 Axisymmetric dipole fields in plasma

Two-dimensional axisymmetric MHD problems can be better suited to as-
trophysical applications of the second-type problem considered. The MHD
equations are written, using the approximation of a strong field and cold
plasma, in spherical coordinates with due regard for axial symmetry. The
role of the vector potential is fulfilled by the so-called stream function

Φ (r, θ, t) = r sin θ Aϕ(r, θ, t) . (14.57)

Here Aϕ is the only non-zero ϕ-component of the vector-potential A.
In terms of the stream functions, the equations take the form

dv
dt

= ε−2K(r, θ, t) ∇Φ ,
d Φ
dt

= 0 ,
dρ

dt
= −ρ div v , (14.58)

where

K(r, θ, t) =
jϕ(r, θ, t)
ρ r sin θ

(14.59)

(Somov and Syrovatskii, 1976b). The equations formally coincide with the
corresponding Equations (14.28), (14.25) and (14.3) describing the plane flows
in terms of the vector potential.
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As a zeroth approximation in the small parameter ε2, we may take, for
example, the dipole field. In this case the stream function is of the form

Φ(0) (r, θ, t) = m(t)
sin2 θ

r
, (14.60)

where m(t) is a time-varying moment.
Let us imagine a homogeneous magnetized ball of radius R(t) with the

frozen field Bint(t). The dipole moment of such a ball (a star or its envelope)
is

m(t) =
1
2

Bint(t) R3(t) =
1
2π

(
B0 πR 2

0
)
R(t) , (14.61)

where B0 and R0 are the values of Bint(t) and R(t) at the initial moment of
time t = 0. The second equality takes account of the magnetic field freezing-in
as conservation of the flux Bint(t) R 2(t) through the ball. Formula (14.61)
shows that the dipole moment of the ball is thereby proportional to its ra-
dius R(t).

The solution to the problem (Somov and Syrovatskii, 1972a) shows that
as the dipole moment grows (when the ball expands)

the magnetic field rakes the plasma up to the dipole axis, compresses
it and simultaneously accelerates it along the field lines.

A distinguishing characteristic of the solution is that the density at the axis
grows in proportion to the dipole moment, just as in the two-dimensional
plane case (formula (14.55)).

Envelopes of nova and supernova stars present a wide variety of different
shapes. We can hardly find the ideally round envelopes, even among the ones
of regular shape. It is more common to find either flattened or stretched
envelopes. As a rule, their surface brightness is maximal at the ends of the
main axes of an oval image. This phenomenon can sometimes be interpreted
as a gaseous ring observed almost from an edge. However, if there is no
luminous belt between the brightness maxima, which would be characteristic
of the ring, then the remaining possibility is that single gaseous compressions
– condensations – exist in the envelope.

At the early stages of the expansion during the explosion of a nova, the
condensations reach such brightness that they give the impression that the
nova ‘bifurcates’. Consider one of the models in which a magnetic field plays a
decisive role. Suppose that the star’s magnetic field was a dipole one before the
explosion. At the moment of the explosion a massive envelope with the frozen-
in field separated from the star and began to expand. According to (14.61),
the expansion results in the growth of the dipole moment. According to the
solution of the problem considered above, the field will rake the interstellar
plasma surrounding the envelope, as well as external layers of the envelope,
up in the direction of the dipole axis.

The process of polar condensate formation can be conventionally divided
into two stages (Somov and Syrovatskii, 1976b, Chapter 2). At the first one,
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the interstellar plasma is raked up by the magnetic field into the polar regions,
a corresponding growth in density and pressure at the dipole axis taking place.
At the second stage, the increased pressure hinders the growth of the density at
the axis, thus stopping compression, but the plasma raking-up still continues.
At the same time, the gas pressure gradient, arising ahead of the envelope,
gives rise to the motion along the axis. As a result, by the time the magnetic
force action stops, all the plasma is raked up into two compact condensates.

The plasma raking-up by the strong magnetic field seems to be capable
of explaining some types of chromospheric ejections on the Sun (Somov and
Syrovatskii, 1976b, Chapter 2, § 4).

If a magnetized ball compresses, plasma flows from the poles to the equa-
torial plane, thus forming a dense disk or ring. This case is the old problem
of cosmic electrodynamics concerning the compression of a gravitating plasma
cloud with the frozen-in field. The process of magnetic raking-up of plasma
into dense disks or rings can effectively work in the atmospheres of collapsing
stars.

14.5 Practice: Exercises and Answers

Exercise 14.1. Consider the properties of the vector-potential A which is
determined in terms of two scalar functions α and β:

A = α∇β + ∇ψ . (14.62)

Here ψ is an arbitrary scalar function.
Answer. Formula (14.62) permits B to be written as

B = curl A = ∇α × ∇β , (14.63)

where the last step follows from the fact that the curl of a gradient vanishes.
This representation of B provides another way to obtain information about

the magnetic field in three-dimensional problems. According to (14.63)

B · ∇α = 0 and B · ∇β = 0 . (14.64)

Thus ∇α and ∇β are perpendicular to the vector B, and functions α and β
are constant along B. The surfaces α = const and β = const are orthogonal
to their gradients and targent to B. Hence

a magnetic field line can be conveniently defined in terms of a pair
of values: α and β.

A particular set of α and β labels a field line.
The functions α and β are referred to as Euler potentials or Clebsch vari-

ables. Depending on a problem to be examined, one form may have an advan-
tage over another. The variables α and β, while in general not easily obtained,
are available for some axisymmetric geometries.
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Another advantage of these variables appears in the study of field line
motions in the context of the ideal MHD theory (Section 5.7 in Parks, 2004).
Since the time evolution of the magnetic field is governed by the induction
Equation (14.2), the functions α (r, t) and β (r, t) satisfy the equations:

∂α

∂t
+ (v · ∇) α = 0 and

∂β

∂t
+ (v · ∇) β = 0 . (14.65)

That is, the functions α (r, t) and β (r, t) take constant values for a point that
moves with the plasma.

Exercise 14.2. Evaluate the typical value of the dipole moment for a neutron
star.

Answer. Typical neutron stars have B ∼ 1012 G. With the star ra-
dius R ∼ 10 km, it follows from formula (14.61) that m ∼ 1030 G cm3. Some
of neutron stars, related to the so-called ‘Soft Gamma-ray Repeaters’ (SGRs),
are the spinning super-magnetized neutron stars created by supernova explo-
sions. The rotation of such stars called magnetars is slowing down so rapidly
that a superstrong field of the unprecedented strength, B ∼ 1015 G, could pro-
vide so fast braking (see Section 19.1.3). For a magnetar the dipole moment
m ∼ 1033 G cm3.

Exercise 14.3. Show that, prior to the onset of a solar flare, the magnetic
energy density in the corona is of about three orders of magnitude greater
than any of the other types. So the flares occur in a plasma environment well
dominated by the magnetic field.

Hint. Take the coronal field of about 100 Gauss, and the coronal plasma
velocity of order of 1 km s−1.

Exercise 14.4. By using the method of conform mapping, determine the
shape of a magnetic cavity created by a plane dipole inside a perfectly con-
ducting uniform plasma with a gas pressure p0. Determine the magnetic field
inside the cavity.

Answer. The conditions to be satisfied along the boundary S of the
magnetic cavity G are equality of magnetic and gas pressure,

B2

8π
S

= p0 = const , (14.66)

and tangency of the magnetic field,

B · n
S

= 0 . (14.67)

Condition (14.67) means that

Re F (z) = A (x, y) = const , (14.68)
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where a complex potential F (z) is an analytic function (14.30) within the
region G in the complex plane z except at the point z = 0 of the dipole.

Let us assume that a conform transformation w = w(z) maps the region G
onto the circle |w | ≤ 1 in an auxiliary complex plane w = u + iv so that the
point z = 0 goes into the centre of the circle without rotation of the dipole as
shown in Figure 14.7.
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Figure 14.7: The field lines of a plane dipole m inside: (a) the unit circle in
the plane w, (b) the cavity in a plasma of constant pressure.

The boundary |w | = 1 is the field line S ′ of the solution in the plane w,
which we easily construct:

F (w) =
(

w − 1
w

)
. (14.69)

Note that we have used only the boundary condition (14.67).
The other boundary condition (14.66) will allow us to find an unknown

conform transformation w = w(z). With account of definition (14.32) taken,
condition (14.66) gives us the following relation∣∣∣∣ dz

dw

∣∣∣∣ 2 =
1

8π p0

∣∣∣∣ dF

dw

∣∣∣∣ 2 . (14.70)

At the boundary |w | = 1, this condition reduces to an ordinary differential
equation relative to the real part, x = x(u), of an unknown function z = z(w):(

dx

du

)2

= M2u4 , where M2 =
1
2π

. (14.71)

By integrating this equation we find

x = ±M
u3

3
+ c1 = ± M

3
cos3 ϕ + c1 , (14.72)
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here ϕ is an argument of the complex number w, and c1 is a constant of
integration.

Since we know the real part x = x(ϕ) on the circle boundary, we find
the complex function z = z(w) in the entire region |w | ≤ 1, for example, by
expanding the function x = x(ϕ) in the Fourier series

x(ϕ) = c1 +
M

4
cos ϕ +

M

12
cos 3ϕ . (14.73)

So, inside the circle, the power series has only three terms:

x(r, ϕ) = c1 +
M

4
r cos ϕ +

M

12
r3 cos 3ϕ , (14.74)

y(r, ϕ) = c2 +
M

4
r sin ϕ +

M

12
r3 sin 3ϕ . (14.75)

Moreover c1 = c2 = 0 because z(0) = 0. Therefore

z(w) =
M

4

(
w +

w3

3

)
. (14.76)

The conform mapping (14.76) and the potential (14.69) determine the
general solution of the problem, the complex potential (Oreshina and So-
mov, 1999):

F (z) = B0L
2/3 K4 − 3L2/3K2 + L4/3

K
(
K2 − L2/3

) . (14.77)

Here B0 = p
1/2
0 is the unit of magnetic field strength, the function

K(z) =
(
6
√

2π · z +
√

L2 + 72π · z2
)1/3

, (14.78)

and L = m1/3p
−1/6
0 is the unit of length; it shows that, when the dipole

moment m increases, the size of the magnetic cavity also increases. This is
consistent with what we discussed in Section 14.4.

The field lines corresponding solution (14.77) are shown in Figure 14.7b.
Therefore, in addition to the shape of the boundary (Cole and Huth, 1959), we
have found an analytic solution for the magnetic field inside the static dipole
cavity. This solution can be used in the zero-order approximation, described in
Section 14.1, to analyse properties of plasma flows near collapsing or exploding
astrophysical objects with strong magnetic fields.

Exercise 14.5. To estimate characteristic values of the large-scale magnetic
field in the corona of an accretion disk (see vol. 2, Section 8.3.1), we have
to find the structure of the field inside an open magnetosphere created by a
dipole field of a star and a regular field generated by the disk.

Consider a simplified two-dimensional problem, demonstrated by Fig-
ure 14.8, on the shape of a magnetic cavity and the shape of the accretion
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Figure 14.8: A two-dimensional model of the star magnetosphere with an
accretion disk; Γl and Γr are the cross sections of the disk. The plane z
corresponds to the complex variable z = x + iy. Su and Sd together with
Γl and Γr constitute the boundary of the singly connected domain G in the
plane z.

disk under assumption that this cavity, i.e. the magnetosphere, is surrounded
by a perfectly conducting uniform plasma with a gas pressure p0. Discuss a
way to solve the problem by using the method of conform mapping (see vol. 2,
Section 8.3.2).



Chapter 15

MHD Waves in
Astrophysical Plasma

There are four different modes of magnetohydrodynamic waves in an
ideal plasma with magnetic field. They can create turbulence, nonlin-
early cascade in a wide range of wavenumbers, accelerate particles and
produce a lot of interesting effects under astrophysical conditions.

15.1 The dispersion equation in ideal MHD

Small disturbances in a conducting medium with a magnetic field propagate
as waves, their properties being different from those of the usual sound waves
in a gas or electromagnetic waves in a vacuum. First, the conducting medium
with a magnetic field has a characteristic anisotropy: the wave propagation
velocity depends upon the direction of propagation relative to the magnetic
field. Second, as a result of the interplay of electromagnetic and hydrody-
namic phenomena, the waves in MHD are generally neither longitudinal nor
transversal.

The study of the behaviour of small-amplitude waves, apart from being
interesting in itself, has a direct bearing on the analysis of large-amplitude
waves, in particular shock waves and other discontinuous flows in MHD.

Initially we shall study the possible types of small-amplitude waves, re-
stricting ourselves to the ideal MHD Equations (12.67). Let us suppose a
plasma in the initial stationary state is subjected to a small perturbation, so
that velocity v0, magnetic field B0, density ρ0, pressure p0 and entropy s0
acquire some small deviations v ′, B ′, ρ ′, p ′ and s ′:

v = v0 + v ′ , B = B0 + B ′ ,
ρ = ρ0 + ρ ′ , p = p0 + p ′ , s = s0 + s ′ . (15.1)

263
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The initial state is assumed to be a uniform flow of an homogeneous medium
in a constant magnetic field:

v0 = const , B0 = const ,
ρ0 = const , p0 = const , s0 = const .

(15.2)

Needless to say, the latter simplification can be ignored, i.e. we may study
waves in inhomogeneous media, the coefficients in linearized equations being
dependent upon the coordinates. For the sake of simplicity we restrict our
consideration to the case (15.2).

It is convenient to introduce the following designations:

u =
B0√
4πρ0

, u ′ =
B ′

√
4πρ0

. (15.3)

Let us linearize the initial set of MHD equations for an ideal medium. We
substitute definitions (15.1)–(15.3) in the set of Equations (12.67), neglecting
the products of small quantities. Hereafter the subscript ‘0’ for undisturbed
quantities will be omitted. We shall get the following set of linear differential
equations for the primed quantities characterizing small perturbations:

∂ u ′ / ∂t + (v · ∇)u ′ = (u · ∇)v ′ − u div v ′ , div u ′ = 0 ,

∂ v ′ / ∂t + (v · ∇)v ′ = − ρ−1 ∇ ( p ′ + ρu · u ′ ) + (u · ∇)u ′ ,
∂ρ ′ / ∂t + (v · ∇) ρ ′ = − ρ div v ′ , (15.4)
∂s ′ / ∂t + (v · ∇) s ′ = 0 , p ′ = (∂p / ∂ρ)s ρ ′ + (∂p / ∂s)ρ s ′ .

The latter equation is the linearized equation of state. We rewrite it as follows:

p ′ = V 2
s ρ ′ + b s ′. (15.5)

Here
Vs = (∂p / ∂ρ) 1/2

s (15.6)

is the velocity of sound in a medium without a magnetic field (Exercise 15.1),
the coefficient b = (∂p/∂s)ρ .

By virtue of (15.2), the set of Equations (15.4) is that of linear differential
equations with constant coefficients . That is why we may seek a solution in
the form of a superposition of plane waves with a dependence on coordinates
and time of the type

f ′(r, t) ∼ exp [ i (k · r − ωt) ] , (15.7)

where ω is the wave frequency and k is the wave vector. An arbitrary distur-
bance can be expanded into such waves by means of a Fourier transform. As
this takes place, the set of Equations (15.4) is reduced to the following set of
linear algebraic equations:

(ω − k · v)u ′ + (k · u)v ′ − u (k · v ′) = 0 , k · u ′ = 0 ,
(ω − k · v)v ′ + (k · u)u ′ − ρ−1 ( p ′ + ρu · u ′ )k = 0 ,
(ω − k · v) ρ ′ − ρ (k · v ′) = 0 ,
(ω − k · v) s ′ = 0 , p ′ − V 2

s ρ ′ − b s ′ = 0 .

(15.8)
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The quantities k and ω appearing in this set are assumed to be known from
the initial conditions. The unknown terms are the primed ones. With respect
to these the set of Equations (15.8) is closed, linear and homogeneous (the
right-hand sides equal zero). For this set to have nontrivial solutions, its
determinant must be equal to zero.

The determinant can be conveniently calculated in a frame of reference
with one of the axes along the wave vector k. In addition, it is convenient to
use the frequency

ω0 = ω − k · v , (15.9)

i.e. the frequency in a frame of reference moving with the plasma.
Setting the determinant equal to zero, we get the following equation

ω 2
0
[
ω 2

0 − (k · u)2
]×

× [ω 4
0 − k2 (V 2

s + u2)ω 2
0 + k2V 2

s (k · u)2
]

= 0 . (15.10)

This equation is called the dispersion equation. It defines four values of ω 2
0 .

Since they differ in absolute magnitude, four different modes of waves are
defined, each of them having its own velocity of propagation with respect to
the plasma

Vph =
ω0

k
. (15.11)

Clearly this is the phase velocity of the wave. It should be distinguished from
the group velocity

Vgr =
dω0

dk
. (15.12)

Let us consider the properties of the waves defined by the dispersion Equa-
tion (15.10) in greater detail.

15.2 Small-amplitude waves in ideal MHD

15.2.1 Entropy waves

The first root of the dispersion Equation (15.10)

ω0 = ω − k · v = 0 (15.13)

corresponds to the small perturbation which is immobile with respect to the
medium:

Vph = 0 . (15.14)

If the medium is moving, the disturbance is carried with it.
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Substituting (15.13) in (15.8), we obtain the following equations:

(k · u)v ′ − u (k · v ′) = 0 , (15.15)
k · u ′ = 0 , (15.16)
(k · u)u ′ − ρ−1 ( p ′ + ρu · u ′ )k = 0 , (15.17)
k · v ′ = 0 , (15.18)
p ′ − V 2

s ρ′ − b s ′ = 0 . (15.19)

Let us make use of (15.18) in (15.15). Then we take the scalar product of
Equation (15.17) with the vector k and make allowance for (15.16). We write

(k · u)v ′ = 0 , (15.20)
k · u ′ = 0 , (15.21)
p ′ + ρu · u ′ = 0 , (15.22)
k · v ′ = 0 , (15.23)
p ′ − V 2

s ρ ′ − b s ′ = 0 . (15.24)

Substitution of (15.22) in (15.17) gives us the following set of equations:

(k · u)u ′ = 0 , (k · u)v ′ = 0 , (15.25)
p ′ + ρu · u ′ = 0 , p ′ − V 2

s ρ ′ − b s ′ = 0 . (15.26)

Since generally k · u �= 0, the velocity, magnetic field and gas pressure are
undisturbed in the wave under discussion:

v ′ = 0 , u ′ = 0 , p ′ = 0 . (15.27)

The only disturbed quantities are the density and entropy related by
the condition

ρ ′ = − b

V 2
s

s ′ .

(15.28)

This is the reason why these disturbances are called the entropy waves. They
are well known in hydrodynamics (Exercise 15.2). The meaning of an entropy
wave is that regions containing hotter but more rarefied plasma can exist in
a plasma flow.

The entropy waves are only arbitrarily termed waves, since their velocity
of propagation with respect to the medium is zero. Nevertheless the entropy
waves must be taken into account together with the real waves in such cases
as the study of shock waves behaviour under small perturbations. Blokhint-
sev (1945) has considered the passage of small perturbations through a shock
in ordinary hydrodynamics. He came to the conclusion that

the entropy wave must be taken into account in order to match the
linearized solutions at the shock front
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(see Exercise 17.1). In MHD, the entropy waves are importnant in the problem
of evolutionarity of the MHD discontinuities (Chapter 17) and reconnecting
current layers (see vol. 2, Chapter 10). The entropy waves can be princi-
pally essential in astrophysical plasma where plasma motions are not slow,
for example in helioseismology of the chromosphere and corona.

15.2.2 Alfvén waves

The second root of the dispersion Equation (15.10),

ω 2
0 = (k · u)2 or ω0 = ± k · u , (15.29)

corresponds to waves with the phase velocity

VA = ± B√
4πρ

cos θ .

(15.30)

Here θ is the angle between the direction of wave propagation k/k and the
ambient field vector B0 (Figure 15.1). In formula (15.30) the value B = | B0 |
and ρ = ρ0. These are the Alfvén waves.

By substituting (15.29) in the algebraic Equations (15.8) we check that
the thermodynamic characteristics of the medium remain unchanged

ρ ′ = 0 , p ′ = 0 , s ′ = 0 , (15.31)

while the perturbations of the velocity and magnetic field are subject to the
conditions

v ′ = ∓u ′ , u · u ′ = 0 , k · u ′ = 0 . (15.32)

Thus the Alfvén waves are the displacements of plasma together with the
magnetic field frozen into it. They are transversal with respect to both the
field direction and the wave vector as shown in Figure 15.1.

The Alfvén waves have no analogue in hydrodynamics. They are specific to
MHD and were called the magnetohydrodynamic waves. This term emphasized
that they do not change the density of a medium. The fact that the Alfvén
waves are transversal signifies that

a conducting plasma in a magnetic field has a characteristic elastic-
ity resembling that of stretched strings under tension.

The magnetic tension force is one of the characteristics of MHD (see Exercise
13.3). According to (15.32), the perturbed quantities are related by an energy
equipartition:

1
2

ρ (v ′ )2 =
1
8π

(B ′ )2 . (15.33)

Let us note also that
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Figure 15.1: The transversal displacements of plasma and magnetic field in
the Alfvén wave.

the energy of Alfvén waves, much like the energy of oscillations in
a stretched string, propagates along the field lines only.

Unlike the phase velocity, the group velocity of the Alfvén waves (15.12)

Vgr = ± B√
4πρ

(15.34)

is directed strictly along the magnetic field; here B = B0 of course.
In low density astrophysical plasmas with a strong field, like the solar

corona, the Alfvén speed VA can approach the light speed c (Exercise 15.3).
The discovery of Alfvén waves was a major stage in the development of plasma
astrophysics (Alfvén, 1950).

15.2.3 Magnetoacoustic waves

The dispersion Equation (15.10) has two other branches – two types of waves
defined by a bi-square equation

ω 4
0 − k2 (u2 + V 2

s

)
ω 2

0 + k2 V 2
s (k · u)2 = 0 . (15.35)

Its solutions are two values of ω0, which differ in absolute magnitude, corre-
sponding to two different waves with the phase velocities V+ and V− which
are equal to

V 2
± =

1
2

[
u2 + V 2

s ±
√

(u2 + V 2
s )2 − 4u2V 2

s cos2 θ

]
. (15.36)

These waves are called the fast (+) and the slow (−) magnetoacoustic waves,
respectively (van de Hulst, 1951). The point is that the entropy of the medium,
as follows from Equations (15.8) under condition (15.35), does not change in
such waves

s′ = 0 , (15.37)
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as is also the case in an usual sound wave. Perturbations of the other quantities
can be expressed in terms of the density perturbation

p ′ = V 2
s ρ ′ , (15.38)

v ′ = − ω0

ρ k2

(
k2(k · u)u − ω 2

0 k
ω 2

0 − (k · u)2

)
ρ ′ , (15.39)

u ′ =
ω 2

0

ρ k2

(
k2 u − (k · u)k
ω 2

0 − (k · u)2

)
ρ ′ . (15.40)

Formulae (15.39) and (15.40) show that the magnetoacoustic waves are
neither longitudinal nor transversal. Perturbations of the velocity and mag-
netic field intensity, v ′ and u ′, as differentiated from the Alfvén wave, lie in
the (k,B0) plane in Figure 15.1. They have components both in the direction
of the wave propagation k/k and in the perpendicular direction. That is why
the magnetoacoustic waves generally have a linearly polarized electric field E ′

normal to both B0 and k.
The perturbation of magnetic pressure B2/8π may be written in the form

(see definition (15.3))

p ′
m = ρu · u ′ =

(
V 2

±
V 2

s

− 1
)

p ′ . (15.41)

Therefore for the fast wave, by virtue of that V 2
+ > V 2

s , the perturbation of
magnetic pressure p ′

m is of the same sign as that of gas pressure p ′.

The magnetic pressure and the gas pressure are added in the fast
magnetoacoustic wave. The wave propagates faster, since the effec-
tive elasticity of the plasma is greater.

A different situation arises with the slow magnetoacoustic wave. In this case
V 2

− < V 2
s and p ′

m is opposite in sign to p ′. Magnetic and gas pressure de-
viations partially compensate each other. That is why such a slow wave
propagates slowly.

15.2.4 The phase velocity diagram

The dependence of the wave velocities on the angle θ between the undisturbed
field B0 and the wave vector k is clearly demonstrated in a polar diagram –
the phase velocity diagram. In Figure 15.2, the radius-vector length from
the origin of the coordinates to a curve is proportional to the corresponding
phase velocity (15.11). The horizontal axis corresponds to the direction of the
undisturbed magnetic field.

As the angle θ → 0, the fast magnetoacoustic wave V+ transforms to the
usual sound one Vs if

Vs > VA ‖ =
B√
4πρ

≡ uA (15.42)
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Figure 15.2: The phase velocities of MHD waves versus the angle θ for the
two cases: (a) uA < Vs and (b) uA > Vs.

in Figure 15.2a or to the Alfvén wave if Vs < uA in Figure 15.2b.
For the angle θ → π/2, the propagation velocities of the Alfvén and slow

waves approach zero. As this takes place, both waves convert to the weak
tangential discontinuity in which disturbances of velocity and magnetic field
are parallel to the front plane. As θ → π/2, the fast magnetoacoustic wave
velocity tends to

V⊥ =
√

V 2
A ‖ + V 2

s =
√

u2
A

+ V 2
s . (15.43)

In the strong field limit (V 2
A ‖ � V 2

s ) the diagram for the fast magnetoacoustic
wave becomes practically isotropic as shown in Figure 15.3.

V

V
V

A

-

+

V⊥

Vs Au

θ

0

Figure 15.3: The phase velocity di-
agram for a plasma with a strong
magnetic field.

Such a wave may be called the ‘magnetic sound’ wave since its phase
velocity V+ ≈ VA ‖ ≡ uA is almost independent of the angle θ.
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Generally the sound speed is the minimum velocity of disturbance
propagation in ordinary hydrodynamics. By contrast, there is no
minimum velocity in magnetohydrodynamics.

This property is of fundamental importance for what follows in Chap-
ters 16 and 17 – in study of the principal questions related to discontinuous
flows of astrophysical plasma. The first of these questions is what kinds of
discontinuities can really exist?

MHD waves produce a lot of effects in astrophysical plasma. The fast
magnetoacoustic wave turbulence can presumably accelerate electrons in solar
flares (see vol. 2, Section 12.3.1). The heavy ions observed in interplanetary
space after impulsive flares can result from stochastic acceleration by the
cascading Alfvén wave turbulence (vol. 2, Section 12.3.2).

15.3 Dissipative waves in MHD

15.3.1 Small damping of Alfvén waves

We shall start by treating a plane Alfvén wave propagating along a uniform
field B0; so the angle θ = 0 in Figure 15.1. Perturbations of the magnetic
field and the velocity are small and parallel to the z axis:

B ′ = { 0, 0, b (t, y) } , v ′ = { 0, 0, v (t, y) } . (15.44)

In general, the damping effects for such a wave are determined by viscosity and
conductivity. Let us consider, first, only the uniform finite conductivity σ. In
this case we obtain the extended equation of the wave type with a dissipative
term:

∂2h

∂t2
= u2

A

∂2h

∂y2 + νm
∂3h

∂2y ∂t
. (15.45)

Here uA = VA ‖ and νm is the magnetic diffusivity (12.49). In the case of
infinite conductivity Equation (15.45) is reduced to the wave equation and
represents an Alfvén wave with velocity uA .

Let us suppose that the conductivity is finite. We suppose further that
the small perturbations are functions of t and y only:

b (t, y) = b0 exp ( i ωt + αy) , v (t, y) = v0 exp ( i ωt + αy) . (15.46)

Here ω, α, b0, and v0 are constants, all of which except ω may be complex
numbers. Substituting (15.46) in (15.45) gives us the dispersion equation:

ω2 +
(
u2

A
+ i νm ω

)
α2 = 0 (15.47)

or

α = ± i
ω

uA

(
1 + i

νm ω

u2
A

)−1/2

. (15.48)
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For small damping

α = ±
(

i
ω

uA

+
νm ω2

2u3
A

)
. (15.49)

The distance y0 in which the amplitude of the wave is reduced to 1/e is
the inverse value of the real part of α. Thus we have

y0 =
2u3

A

νm ω2 =
8πσu3

A

ω2c2 =
2σuA

πc2 λ2, (15.50)

where λ = 2πuA/ω is the wave length. The short waves suffer more
damping than do the long waves.

Since we treat the dissipative effects as small, the expression (15.50) is
valid if λ 
 y0. Thus we write

b (t, y) = b0 exp
(

− y

y0

)
exp

[
i ω
(

t − y

uA

)]
, (15.51)

v (t, y) = v0 exp
(

− y

y0

)
exp

[
i ω
(

t − y

uA

)]
(15.52)

with

v0 = uA

b0

B0

(
1 − i

νm ω

2u2
A

)
. (15.53)

The imaginary part indicates the phase shift of the velocity v in relation to
the magnetic perturbation field b. Therefore

v (t, y) = uA

b0

B0
exp

(
− y

y0

)
exp

{
i
[

ω

(
t − y

uA

)
− ϕ

]}
, (15.54)

where

ϕ =
νm ω

2u2
A

=
ω c2

8πσu2
A

=
ω c2ρ

2σB 2
0

. (15.55)

So the existence of Alfvén waves requires an external field B0 enclosed between
two limits.

The magnetic field should be strong enough to make the damping
effects small but yet weak enough to keep the Alfvén speed well
below the velocity of light,

because otherwise the wave becomes an ordinary electromagnetic wave (see
Exercise 13.1). In optical and radio frequencies it is not possible to satisfy
both conditions. However longer periods often observed in cosmic plasma
leave a wide range between both limits so that Alfvén waves may easily exist.

One of favourable sites for excitation of MHD waves is the solar atmo-
sphere. The chromosphere and corona are highly inhomogeneous media sup-
porting a variety of filamentary structures in the form of arches and loops.
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The foot points of these structures are anchored in the poles of the photo-
spheric magnetic fields. They undergo a continuous twisting and turning due
to convective motions in the subphotospheric layers. This twisting and turning
excite MHD waves. The waves then dissipate and heat the corona (see vol. 2,
Section 12.5). Presumably this energy is enough to explain coronal heating,
but the unambiguous detection of the MHD waves heating the corona is still
awaited.

15.3.2 Slightly damped MHD waves

The damping effects due to a finite conductivity σ and due to a kinematic
viscosity ν = η/ρ (Section 12.2.2) can be included in a general treatment
of MHD waves of small amplitudes (van de Hulst, 1951). Well developed
waves are the waves that travel at least a few wave lengths before they lose a
considerable fraction of their energy if the two dimensionless parameters

p ν =
ω ν

c2 and p ν m =
ω νm

c2 , (15.56)

that characterize two dissipative processes, are much smaller than the two
small dimensionless parameters

p s =
V 2

s

c2 and pA =
u2

A

c2 , (15.57)

that characterize the propagation speeds of undamped waves.
Let us postulate the form

X ≡ c2/ V 2
ph = X0 (1 − i q) (15.58)

for a general solution of the linearized equations of dissipative MHD. Here

X0 = c2/ V 2
ph,0 (15.59)

represents any solution for an undamped wave.
We shall not review all special cases here but shall mention only one,

the same case as in previous Section. For Alfvén wave we find the following
solution

X = Xm ≡ c2/u2
A
, q = (p ν + p ν m) Xm . (15.60)

This shows that, if dissipative effects are small,

the relative importance of resistivity and viscosity as damping
effects in Alfvén wave is independent of frequency ω.

The damping length, i.e., the distance ld, in which the amplitude of a wave
decreases by a factor 1/e, and the damping time τd, in which this distance is
covered by the wave, can be found:

ld =
1
kq

=
uA

q ω
=

u3
A

ω2 (ν + νm)
, (15.61)
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τd =
ld
uA

=
1

q ω
=

u2
A

ω2 (ν + νm)
. (15.62)

So the high frequency waves have a short damping length and time.
The magnetoacoustic waves (Section 15.2.3), being compressional, have

an additional contribution to their damping rate from compressibility of the
plasma. If dissipative effects are not small, they result in additional waves
propagating in a homogeneous medium (see Section 17.3).

15.4 Practice: Exercises and Answers

Exercise 15.1. Evaluate the sound speed in the solar corona.
Answer. For an ideal gas with constant specific heats cp and cv, the

sound speed (15.6) is

Vs =
(

γg
p

ρ

)1/2

, (15.63)

where γg = cp/cv. Let us consider the coronal plasma as a ‘monatomic gas’
(γg = 5/3) of electrons and protons with Te = Tp = T ≈ 2 × 106 K and
ne = ne = n. So p = 2nkBT and ρ = nmp. Hence

Vs =
(

10
3

kB

mp

)1/2

s

√
T = 1.66 × 104

√
T (K) , cm s−1 . (15.64)

In the solar corona Vs ≈ 230 km s−1.

Exercise 15.2. Consider entropy waves in ordinary hydrodynamics.
Answer. Let us take the linear algebraic Equations (15.25) and (15.26).

In the absence of a magnetic field we put u = 0 and u ′ = 0. It follows from
(15.25) that the perturbation of the velocity v ′ can be an arbitrary value
except the gas pressure must be undisturbed. This follows from (15.26) and
means that, instead of (15.27), we write

v ′ �= 0 , p ′ = 0 . (15.65)

Perturbations of the density and entropy remain to be related by condi-
tion (15.28). So the velocity perturbation is independent of the entropy per-
turbation and, according to (15.13) and (15.23), satisfies the equation

k · v ′ =
ω

v
v ′

x + kyv ′
y = 0 . (15.66)

This is in the reference frame in which v = vx.
Note that for such velocity perturbation (see Landau and Lifshitz, Fluid

Mechanics, 1959a, Chapter 9):

curl v ′ �= 0 . (15.67)

That is why the wave is called the entropy-vortex wave.
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In the presence of a magnetic field in plasma, it is impossible to
create a vortex without a perturbation of the magnetic field.

For this reason, in a MHD entropy wave, the only disturbed quantities are
the entropy and the density (see Equation (15.28)).

Exercise 15.3. Show that the inclusion of the displacement current modifies
the dispersion relation for the Alfvén waves (15.29) to the following equation

ω 2
0 =

(k · u)2

1 + u2/c2 or ω0 = ± k · u√
1 + u2/c2

. (15.68)

So the phase velocity of the relativistic Alfvén waves

VA = ± B√
4πρ

cos θ
1√

1 + B2/4πρc2
, (15.69)

which coinsides with the Alfvén formula (13.35).

Exercise 15.4. Discuss the following situation. A star of the mass M moves
along a uniform magnetic field B 0 at a constant velocity v 0 which exceeds
the phase velocity of a fast magnetoacoustic wave (Dokuchaev, 1964).

Hint. The moving star emits magnetoacoustic waves by the Cherenkov
radiation (see Exercises 7.2–7.5).



Chapter 16

Discontinuous Flows in a
MHD Medium

The phenomena related to shock waves and other dicontinuous flows
in astrophysical plasma are so numerous that the study of MHD dis-
continuities on their own is of independent interest for space science.

16.1 Discontinuity surfaces in hydrodynamics

16.1.1 The origin of shocks in ordinary hydrodynamics

First of all, let us recall the way the shock waves are formed in ordinary
hydrodynamic media without a magnetic field. Imagine a piston moving into
a tube occupied by a gas. Let the piston velocity increase from zero by small
jumps δv. As soon as the piston starts moving, it begins to rake the gas up
and compress it. The front edge of the compression region thereby travels
down the undisturbed gas inside the tube with the velocity of sound

Vs =
(

∂p

∂ρ

)1/2

s

. (16.1)

Each following impulse of compression δρ will propagate in a denser medium
and hence with greater velocity. Actually, the derivative of the sound speed
with respect to density

∂Vs

∂ρ
=

1
2

(
∂2p

∂ρ2

)
s

(
∂p

∂ρ

)−1/2

s

≈ √
γg (γg − 1) ρ (γg−3)/2 > 0 ,

since for all real substances γg > 1 in the adiabatic process p ∼ ρ γg . There-
fore δVs > 0.

277
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Figure 16.1: The behaviour of small perturbations in front of a piston.

As a consequence of this fact, successive compression impulses will catch
up with each other as shown in Figure 16.1a. As a result, the compression
region front steepens (Figure 16.1b). The gradients of the gas parameters
become so large that the description of the gas as a hydrodynamic medium
(Section 12.2) is no longer valid. The density, pressure and velocity of the gas
change abruptly over a distance comparable to a particle’s mean free path λ.

The physical processes inside such a jump, called a shock wave, are de-
termined by the kinetic phenomena in the gas. As far as the hydrodynamic
approximation is concerned,

the surface, at which the continuity of the hydrodynamic parameters
of a medium is violated, represents some discontinuity surface – a
discontinuous solution of the hydrodynamic equations.

It stands to reason that some definite boundary conditions must hold at the
discontinuity surface. What are they?

16.1.2 Boundary conditions and classification

Let us choose a frame of reference connected with a discontinuity surface.
The frame is supposed to move with a constant velocity with respect to the
medium. Generally, if the gas flow is non-stationary in the vicinity of the
discontinuity, we could consider the discontinuity surface over a small period
of time, so that the changes of velocity and other hydrodynamic quantities in
time could be neglected.

In order to formulate the boundary conditions, let us consider an element
of the discontinuity surface. Let the axis x be directed normally to it. The
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flux of mass through such a surface element must conserve:

ρ1 vx1 = ρ2 vx2 . (16.2)

Here the indices 1 and 2 refer to the two sides of the discontinuity surface.
In this chapter, the difference in a quantity across the discontinuity surface

will be designated by curly brackets, e.g.

{ ρ vx } = ρ1 vx1 − ρ2 vx2 .

Then Equation (16.2) is rewritten as

{ ρ vx } = 0 . (16.3)

The energy flux must also be continuous at the discontinuity surface.
For a hydrodynamic medium without a magnetic field (cf. (12.74)) we obtain
the following condition for the energy flux conservation:{

ρ vx

(
v2

2
+ w

)}
= 0 . (16.4)

Here w is the specific enthalpy (9.34).
The momentum flux must be also continuous (cf. (12.75)):

Παβ = p δαβ + ρ vαvβ , α = x .

The continuity of the x-component of the momentum flux means that{
p + ρ v 2

x

}
= 0 ,

while the continuity of y- and z-components gives the two conditions

{ ρ vxvy } = 0 , { ρ vxvz } = 0 .

Taking care of condition (16.3), let us rewrite the full set of boundary
conditions at the discontinuity surface as follows:

{ ρ vx } = 0 , ρ vx {vτ } = 0 ,

ρ vx

{
v2

2
+ w

}
= 0 ,

{
p + ρ v 2

x

}
= 0 . (16.5)

Here the index τ identifies the tangential components of the velocity.
Obviously the set of Equations (16.5) falls into two mutually exclusive

groups, depending on whether the matter flux across the discontinuity surface
is zero or not. Consider these groups.

(a) If
vx = 0
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then the gas pressure is also continuous at the discontinuity surface,

{ p } = 0 , (16.6)

while the tangential velocity component vτ as well as the density may expe-
rience an arbitrary jump:

{ vτ } �= 0 , { ρ } �= 0 ,

{
v2

2
+ w

}
�= 0 .

Such discontinuities are called tangential (see Landau and Lifshitz, Fluid Me-
chanics, 1959a, Chapter 9, § 84).

(b) By contrast, if
vx �= 0

then

{ ρ vx } = 0 , { vτ } = 0 ,
{

p + ρ v 2
x

}
= 0 ,

{
v2

2
+ w

}
= 0 . (16.7)

Discontinuities of this type are termed shock waves. Their properties are also
well known in hydrodynamics (Landau and Lifshitz, Fluid Mechanics, 1959a,
Chapter 9, § 84).

Therefore

the equations of ideal hydrodynamics in the conservation law form
allow just two mutually exclusive types of discontinuities to exist:
the shock wave and the tangential discontinuity.

16.1.3 Dissipative processes and entropy

The equations of ideal hydrodynamics, as a specific case (B = 0) of the ideal
MHD Equations (12.68)–(12.73), do not take into account either viscosity or
thermal conductivity:

η = ζ = 0 , κ = 0 . (16.8)

For this reason the ideal hydrodynamics equations describe three conservation
laws: conservation of mass, momentum, and entropy. The last one,

∂s

∂t
+ (v · ∇) s = 0 , (16.9)

is the specific form of the energy conservation law (see Equation (12.54))
under assumption that the process under consideration is adiabatic. In Sec-
tion 16.1.2 to obtain the boundary conditions at the discontinuity surface we
used conservation of mass, momentum, and energy, but not entropy.
The entropy increases across a shock (Exercise 16.6).

The increase in entropy indicates that irreversible dissipative processes
(which can be traced to the presence of viscosity and heat conduction in a
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medium) occur in the shock wave. The model which does not take into account
these processes (Section 16.1.2) admits the existence of discontinuities but is
not capable of describing the continuous transition from the initial to the
final state. The ideal hydrodynamics cannot describe either the mechanism
of shock compression or the structure of the very thin but finite layer where
the plasma undergoes a transition from the initial to the final state.

The entropy increase across the shock is entirely independent of the
dissipative mechanism and is defined exclusively by the conservation
laws of mass, momentum, and energy

(see Exercise 16.6). Only the thickness of the discontinuity depends upon the
rate of the irreversible heating of the plasma compressed by the shock. The
following analogy in everyday life is interesting. A glass of hot water will
invariably cool from a given temperature (the initial state) to a room tem-
perature (the final state), independently of the mechanism of heat exchange
with the surrounding air; the mechanism determines only the rate of cooling.

Recommended Reading: Zel’dovich and Raizer, Physics of Shock Waves
and High-Temperature Hydrodynamic Phenomena, 1966, 2002, v. 1, Chap-
ter 2.

16.2 Magnetohydrodynamic discontinuities

16.2.1 Boundary conditions at a discontinuity surface

Much like ordinary hydrodynamics, the equations of MHD for an ideal medium
(Section 12.3) allow discontinuous solutions. De Hoffmann and Teller (1950)
were the first to consider shock waves in MHD, based on the relativistic energy-
momentum tensor for an ideal medium and the electromagnetic field.

Syrovatskii (1953) has given a more general formulation of the problem
of the possible types of discontinuity surfaces in a conducting medium with
a magnetic field. He has formulated a closed set of equations of ideal MHD
and, using this, the boundary conditions at the discontinuity were written.
We shall briefly reproduce the derivation of the boundary conditions.

We start from the equations of ideal MHD (12.68)–(12.73). Rewrite them
(the Equation of state (12.73) is omitted for brevity) as follows:

div B = 0 ,
∂B
∂t

= curl (v × B ) ,
∂ρ

∂t
= − div ρv , (16.10)

∂

∂t

(
ρ v2

2
+ ρ ε +

B2

8π

)
= − div G ,

∂

∂t
(ρ vα) = − ∂

∂rβ
Π ∗

αβ .

In a frame of reference moving with the discontinuity surface, all the conditions
are stationary (∂/∂t = 0). Hence

div B = 0 , (16.11)
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curl (v × B ) = 0 , (16.12)

div ρv = 0 , div G = 0 ,
∂

∂rβ
Π ∗

αβ = 0 . (16.13)

Four of these conditions have the divergent form and are therefore reduced
in the integral form to the conservation of fluxes of vectors appearing at the
divergence. Thus the following quantities must conserve at the discontinuity:
the perpendicular (to the surface S) component of the magnetic field vec-
tor Bn, the mass flux ρ vn, the energy flux Gn, and the momentum flux Π∗

αn.

The exception is condition (16.12). It is written as the curl of v×B. Inte-
gration of (16.12) over the area enclosed by the contour shown in Figure 16.2
gives, by virtue of the Stokes theorem,∫

S

curl (v × B ) · dS =
∮
L

(v × B ) · d l = 0 .

Thus condition (16.12) demonstrates the continuity of the tangential compo-
nent of the vector (v × B )τ , i.e. the electric field Eτ in the discontinuity
surface S.

S
L

1 2

n

τ

Figure 16.2: The contour L for the
derivation of the boundary condition on
electric field tangential component.

As in the previous section, the jump of a quantity on crossing the discon-
tinuity surface is designated by curly brackets. The full system of boundary
conditions at the surface is written as follows:

{ Bn } = 0 , (16.14)

{ (v × B )τ } = 0 , (16.15)

{ ρ vn } = 0 , (16.16)

{ Gn } = 0 , (16.17)

{ Π ∗
αn } = 0 . (16.18)

The physical meaning of the boundary conditions obtained is obvious. The
first two are the usual electrodynamic continuity conditions for the normal
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component of the magnetic field and the tangential component of the electric
field. The last three equations represent the continuity of fluxes of mass,
energy and momentum, respectively.

As distinct from that in ordinary hydrodynamics (see Equations (16.5)),

the set of the MHD boundary conditions does not fall into mutually
exclusive groups of equations.

This means that, with a few exceptions, any discontinuity, once accepted by
these equations, can, generally speaking, transform to any other discontinuity
under continuous change of the conditions of the motion (Syrovatskii, 1956).

Hence the classification of discontinuities in MHD seems to be a matter
of convention. Any classification is based on the external properties of the
flow near the surface, such as the absence or presence of normal components
of the velocity vn and magnetic field Bn, continuity or jump in density. The
classification given below is due to Syrovatskii (1953). It is quite convenient
for investigating MHD discontinuities.

Before turning our attention to the discussion of the classification men-
tioned above, let us rewrite the boundary conditions obtained, using (12.74)
and (12.75) for the densities of the energy and momentum fluxes and substi-
tuting (16.14) in (16.15) and (16.16) in (16.18). We get

{ Bn } = 0 , (16.19)

{ vnBτ} = Bn {vτ} , (16.20)

{ ρ vn } = 0 , (16.21){
ρ vn

(
v2

2
+ w

)
+

1
4π

(
B2vn − (v · B ) Bn

)}
= 0 , (16.22){

p + ρ v2
n +

B2

8π

}
= 0 , (16.23)

ρ vn {vτ} =
Bn

4π
{Bτ} . (16.24)

For later use, we write down the boundary conditions in the Cartesian frame
of reference, the x axis being perpendicular to the discontinuity surface:

{ Bx} = 0 , (16.25)

{ vxBy − vyBx} = 0 , (16.26)

{ vxBz − vzBx} = 0 , (16.27)

{ ρ vx} = 0 , (16.28){
ρ vx

(
v2

2
+ w

)
+

1
4π

(
B2vx − (v · B ) Bx

)}
= 0 , (16.29)
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{
p + ρ v2

x +
B2

8π

}
= 0 , (16.30){

ρ vxvy − 1
4π

BxBy

}
= 0 , (16.31){

ρ vxvz − 1
4π

BxBz

}
= 0 . (16.32)

The set consists of eight boundary conditions. For B = 0 it converts to the
set of four Equations (16.5).

Let us consider the classification of discontinuity surfaces in MHD, which
stems from the boundary conditions (16.19)–(16.24).

16.2.2 Discontinuities without plasma flows across them

Let us suppose the plasma flow through the discontinuity surface is absent

vn = 0 . (16.33)

The discontinuity type depends on whether the magnetic field penetrates
through the surface or not. Consider both possibilities.

(a) If the perpendicular component of the magnetic field

Bn �= 0 , (16.34)

then the set of Equations (16.19)–(16.24) becomes

{ Bn} = 0 , Bn {vτ} = 0 , Bn {Bτ} = 0 ,{
p +

B2

8π

}
= 0 , { ρ } �= 0 . (16.35)

The velocity, magnetic field strength and (by virtue of the fourth equation)
gas pressure are continuous at the surface. The density jump does not have
to be zero; otherwise, all values change continuously.

The discontinuity type considered is called the contact discontinuity and
constitutes just a boundary between two media, which moves together
with them. It is schematically depicted in Figure 16.3a.

(b) On the other hand, if
Bn = 0 (16.36)

then the velocity and magnetic field are parallel to the discontinuity surface
(plane x = 0). In this case all the boundary conditions (16.19)–(16.24) are
satisfied identically, with the exception of one. The remaining equation is{

p +
B2

8π

}
= 0 .
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(a)

0 x

v1 v2 = v1

B1

B2 = B1

(b)

0 x

B1

v1 v2 �= v1

B2 �= B1

� �

��������������

�

�

�

�

Figure 16.3: Discontinuity surfaces without a plasma flow across them:
(a) contact discontinuity, (b) tangential discontinuity.

In other words, the velocity and magnetic field are parallel to the discontinuity
surface and may experience arbitrary jumps in magnitude and direction, the
only requirement being that the total pressure, that is the sum of the usual
gas pressure and the magnetic one, remains continuous at the discontinuity
surface:

p∗ = p +
B2

8π
. (16.37)

Such a discontinuity is called a tangential discontinuity (Figure 16.3b). As
treated in MHD, it has a remarkable property. The tangential discontinuity in
ordinary hydrodynamics is always unstable (Syrovatskii, 1954; see also Landau
and Lifshitz, Fluid Mechanics, Third Edition, Chapter 9, § 84, Problem 1).
The velocity jump engenders vortices, thus resulting in a turbulence near the
discontinuity. Another situation occurs in MHD.

Syrovatskii (1953) has shown that the magnetic field exerts a stabilizing
influence on the tangential discontinuity. In particular, if the density ρ0 and
magnetic field B0 are continuous, the only discontinuous quantity being the
tangential velocity component, v2 − v1 = v0 �= 0, then the condition for the
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tangential discontinuity stability is especially simple:

B 2
0

8π
≥ 1

4
ρ0v

2
0

2
.

(16.38)

To put it another way, such a discontinuity (Figure 16.4a) becomes stable with
respect to small perturbations (of the general rather than a particular type)
once the magnetic energy density reaches one quarter of the kinetic energy
density.

(a) (b)

B v

v = 0

0

B 0

0

Figure 16.4: (a) The simplest type of the MHD tangential discontinuities.
(b) Formation of a turbulent vortex gives rise to the magnetic field growth.

The general conclusion concerning the influence of the magnetic field on
the stability of hydrodynamic motions of a conducting fluid is as follows:

the magnetic field can only increase the stability of a given velocity
distribution as compared to the stability of the same distribution in
the absence of a magnetic field.

The point is that any flow instability and turbulence give rise, in view of the
freezing-in of the field, to an increase of the magnetic energy (Figure 16.4b),
which is always disadvantageous from the standpoint of the energetic principle
of stability.

16.2.3 Perpendicular shock wave

Now let
vn �= 0 and Bn = 0 , (16.39)

i.e. a flow through the discontinuity surface is present whereas the magnetic
field does not penetrate through the surface. Under these conditions, the
following two statements result from Equations (16.19)–(16.24).
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(a) From (16.24) the continuity of the tangential velocity component fol-
lows:

{vτ} = 0 . (16.40)

This makes it possible to transform to such a frame of reference in which the
tangential velocity component is absent on either side of the discontinuity:
vτ1 = vτ2 = 0.

(b) The tangential electric field continuity (16.20) results in

{ vn Bτ} = 0 . (16.41)

If the frame of reference is rotated with respect to the x axis in such a way
that Bz = 0 on one side of the surface, then the same is true on the other side
(for clarity see (16.27)). Thus a frame of reference exists in which, in view of
(a),

v = ( vn, 0, 0 ) = ( v, 0, 0 )

and in addition, by virtue of (b),

B = ( 0, Bτ , 0 ) = ( 0, B, 0 ) .

In this frame of reference, the other boundary conditions take the form:

{ ρ v } = 0 , (16.42)

{ B/ρ } = 0 , (16.43){
ρ v2 + p +

B2

8π

}
= 0 , (16.44){

v2

2
+ w +

B2

4πρ

}
= 0 . (16.45)

Such a discontinuity is called the perpendicular shock wave, since it con-
stitutes the compression shock (see (16.7)) propagating perpendicular to the
magnetic field as shown Figure 16.5.

Condition (16.43) reflects the fact of the field ‘freezing-in’ into the plasma.
The role of pressure in such a wave is played by the total pressure

p∗ = p +
B2

8π
, (16.46)

whereas the role of the specific enthalpy is fulfilled by

w∗ = w +
B2

4πρ
. (16.47)

Therefore the role of the internal energy density is played by the total internal
energy

ε∗ = w∗ − p∗

ρ
= ε +

B2

8πρ
(16.48)
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x0

ρ 2

ρ 1

v 1 v 2

B 1 B 2

� �

� � � � � �

Figure 16.5: The character of
the plasma motion and magnetic
field compression (B2 > B1) in
the perpendicular shock wave.

(cf. corresponding terms in Equations (12.68) and (12.69)).
For B = 0, the perpendicular shock degenerates to the usual compression

shock wave (Equations (16.7)).
For B �= 0, the propagation velocity of the perpendicular shock depends

on the magnetic field strength.

A magnetic field decreases the compressibility of plasma while in-
creasing its elasticity.

This is seen from (16.46) and the freezing-in condition (16.43). Accordingly,
the magnetic field increases the shock wave propagation velocity.

If the intensity of a perpendicular shock is diminished, it converts to a
fast magnetoacoustic wave propagating across the magnetic field (θ = π/2 in
Figure 15.2) with the speed (15.43), i.e.

V⊥ =
√

V 2
s + V 2

A
. (16.49)

16.2.4 Oblique shock waves

The types of discontinuity surfaces treated above are the limiting cases of a
more general discontinuity type for which

vn �= 0 and Bn �= 0 . (16.50)

16.2.4 (a) The de Hoffmann-Teller frame of reference

In investigating the discontinuities (16.50), a frame of reference would be
convenient in which v1 and B1 are parallel to each other. Such a frame does
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exist. It moves with respect to the laboratory one with the velocity

U = v1 − vx1

Bx1
B1

parallel to the discontinuity surface. Actually, in this frame

v1 (U) = v1 − U =
vx1

Bx1
B1

and hence
v1 × B1 = 0 . (16.51)

Then condition (16.20) in its coordinate form (16.26)–(16.27) can be used to
obtain two equations valid to the right of the discontinuity, i.e. downstream
of the shock:

vx2By2 − vy2Bx2 = 0 , vx2Bz2 − vz2Bx2 = 0 .

On rewriting these conditions as

vx2

vy2
=

Bx2

By2
and

vx2

vz2
=

Bx2

Bz2
,

we ensure that the magnetic field is parallel to the velocity field (in the chosen
reference frame) to the right of the discontinuity. In such frame of reference,
called the de Hoffmann-Teller frame (de Hoffmann and Teller, 1950), the elec-
tric field does not appear according to (16.51).

This fact does not mean, of course, that the local cross-shock electric fields
do not appear inside the shock transition layer, i.e. inside the discontinuity.
The quasi-static electric and magnetic fields may determine the dynamics of
particles in the shock front especially if Coulomb collisions play only a minor
role. In collisionless shock waves, this dynamics depend on the particular
mechanism of the energy redistribution among the perpendicular (with respect
to the local magnetic field) and parallel degrees of freedom (see Section 16.4).

16.2.4 (b) Two types of shock waves

Thus v is parallel to B on either side of the discontinuity. As a consequence, of
the eight boundary conditions initially considered (see (16.25)–(16.32)), there
remain six equations:

{ Bx } = 0 , (16.52)

{ ρ vx } = 0 , (16.53){
v2

2
+ w

}
= 0 , (16.54){

p + ρ v2
x +

B2

8π

}
= 0 , (16.55)
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ρ vxvy − BxBy

4π

}
= 0 , (16.56){

ρ vxvz − BxBz

4π

}
= 0 . (16.57)

Let us take account of the parallelism of v and B in the chosen reference
frame:

v1 = q1B1 , v2 = q2B2 , (16.58)

where q1 and q2 are some proportionality coefficients. On substituting (16.58)
in (16.52)–(16.57) we obtain the following three conditions from (16.53),
(16.56), and (16.57):

{ ρ q } = 0 , (16.59){(
1 − 1

4πρ q2

)
vy

}
= 0 , (16.60){(

1 − 1
4πρ q2

)
vz

}
= 0 . (16.61)

These equations admit two essentially different discontinuity types,
depending on whether the density of the plasma is continuous or
experiences a jump.

First we consider the discontinuity accompanied by a density jump:

{ ρ } �= 0 . (16.62)

Discontinuities of this type are called oblique shock waves.
Rotate the reference frame with respect to the x axis in such a way that

vz1 = 0 .

Then from (16.61) the following equation follows:(
1 − 1

4πρ2 q 2
2

)
vz2 = 0 . (16.63)

This suggests two possibilities: either
(Case I )

vz2 = 0 , (16.64)

i.e. the motion is planar (the velocity and magnetic field are in the plane
(x, y) on either side of the discontinuity), or

(Case II )

vz2 �= 0 but q 2
2 =

1
4πρ2

. (16.65)

Note that in the latter case
q 2
1 �= 1

4πρ1
(16.66)
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since concurrently valid equations

q 2
2 =

1
4πρ2

and q 2
1 =

1
4πρ1

would imply that

ρ2q2 =
1

4πq2
and ρ1q1 =

1
4πq1

,

thus obviously contradicting (16.59) and (16.62). Therefore condition (16.66)
must be valid.

Let us consider both cases indicated above.

16.2.4 (c) Fast and slow shock waves

Let us consider first the Case I . On the strength of (16.64), the boundary
conditions (16.52)–(16.57) take the form

{ Bx } = 0 , { ρ vx } = 0 ,

{
v2

2
+ w

}
= 0 ,

{
p + ρ v 2

x +
B 2

y

8π

}
= 0 ,

{
ρ vxvy − 1

4π
BxBy

}
= 0 . (16.67)

The compression oblique shock wave interacts with the magnetic field in an
intricate way. The relationship between the parameters determining the state
of a plasma before and after the wave passage is the topic of a large body of re-
search (see reviews: Syrovatskii, 1957; Polovin, 1961; monographs: Anderson,
1963, Chapter 5; Priest, 1982, Chapter 5).

Boundary conditions (16.67) can be rewritten in such a way as to represent
the Rankine-Hugoniot relation (see Exercises 16.2 and 16.3 for an ordinary
shock wave) for shocks in MHD (see Landau et al., 1984, Chapter 8). Moreover
the Zemplen theorem on the increase of density and pressure in a shock
wave can be proved in MHD (Iordanskii, 1958; Liubarskii and Polovin, 1958;
Polovin and Liubarskii, 1958; see also Zank, 1991). The fast and the slow
oblique shock waves are distinguished.
In the fast shock wave, the magnetic field increases across the shock and is
bent towards the shock front surface x = 0 (Figure 16.6). So the magnetic
pressure increases as well as the gas pressure:

δpm > 0 , δp > 0 . (16.68)

In other words, and this seems to be a natural behaviour,

compression of the plasma in a fast MHD shock wave is accompanied
by compression of the magnetic field.
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Figure 16.6: The magnetic field
change (B2 > B1), velocity field
and plasma density at the front
of the fast shock wave.

In the limiting case of small intensity, the fast shock converts to the fast
magnetoacoustic wave (see (16.46)). The speed of the fast shock wave with
respect to the medium equals vx1. It is greater than or equal to the speed of
the fast magnetoacoustic wave:

vx1 ≥ V+ . (16.69)

No small perturbation running in front of the shock can exist upstream of the
fast shock wave.
In the slow shock wave, the magnetic field decreases across the shock and is
bent towards the shock normal (Figure 16.7). Therefore

δpm < 0 , δp > 0 . (16.70)

Compression of the plasma is accompanied by a decrease of the
magnetic field strength in the slow MHD shock wave.

As the amplitude decreases, the slow shock wave will transform to the slow
magnetoacoustic wave. The speed of the slow shock propagation is

V− ≤ vx1 ≤ VA . (16.71)

In the particular case
By = 0 (16.72)

the set of boundary conditions (16.67) results in the set (16.5). This means
that the oblique shock wave converts to the parallel (longitudinal) shock wave
propagating along the magnetic field, mutual interaction being absent.
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Figure 16.7: The magnetic field
change (B2 < B1), velocity field
and plasma density at the front
of the slow shock wave.
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The set of boundary conditions (16.52)–(16.57) formally admits four other
types of discontinuous solutions (Section 17.4.2), apart from those indicated
above. These are the so called intermediate or transalfvénic shock waves (e.g.,
Shercliff, 1965, Chapter 7).

The peculiarity of these discontinuous solutions is that they have
no counterpart among the small amplitude waves or simple waves.

This is the reason why the intermediate and transalfvénic shock waves are
not included in the classification of discontinuities under consideration. What
is more important is that the intermediate and transalfvénic shock waves are
non-evolutionary (see Section 17.1).

The Case II shall be considered in the next Section.

16.2.5 Peculiar shock waves

We return to the consideration of the particular case (16.65) and (16.66):

vz2 �= 0 , q 2
1 �= 1

4πρ1
, q 2

2 =
1

4πρ2
. (16.73)

On the strength of (16.60) and (16.61), the following conditions must be sat-
isfied at such a discontinuity:(

1 − 1
4πρ1q 2

1

)
vy1 = 0 ,

(
1 − 1

4πρ1q 2
1

)
vz1 = 0 .

Because the expression in the parentheses is not zero, we get

vy1 = vz1 = 0 , (16.74)
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i.e. in front of such a discontinuity the tangential velocity component vτ1
is absent. The tangential field component Bτ1 is also zero in front of the
discontinuity, i.e. the motion follows the pattern seen in the parallel shock
wave. However arbitrary tangential components of the velocity and magnetic
field are permissible downstream of the shock, the only condition being that

v2 =
B2√
4πρ2

. (16.75)

Such a discontinuity is called the switch-on shock. The character of motion
of this wave is shown in Figure 16.8.

Figure 16.8: A switch-on
wave: Bτ1 = 0, but Bτ2 �= 0.
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The switch-on shock exists in the interval

1 <
v 2

x1

V 2
Ax1

<
4 v 2

x1

v 2
x1 + V 2

s1

(e.g., Liberman, 1978).
Assuming the tangential magnetic field component to be zero to the rear

of the peculiar shock wave,
Bτ2 = 0 , (16.76)

the fluid velocity in front of the discontinuity is the Alfvén one:

v1 =
B1√
4πρ1

. (16.77)

Such a peculiar shock wave is called the switch-off shock (Figure 16.9).

16.2.6 The Alfvén discontinuity

Returning to the general set of Equations (16.52)–(16.57), consider the dis-
continuity at which the density is constant:

{ ρ } = 0 . (16.78)
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Figure 16.9: A switch-off
wave: Bτ2 = 0 but Bτ1 �= 0.
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On substituting this condition in (16.53), we see that the normal component
of the velocity is continuous at the discontinuity:

{ vx } = 0 .

Furthermore, in view of Equation (16.59), the quantity q does not change at
the discontinuity:

{ q } = 0 .

Hence the quantity (
1 − 1

4πρ q2

)
is also continuous and may be factored out in Equations (16.60) and (16.61).
Rewrite them as follows: (

1 − 1
4πρ q2

)
{vτ } = 0 . (16.79)

If the expression in the parentheses is not zero then the tangential velocity
component is continuous and all other quantities are easily checked to be
continuous solutions. So, to consider the discontinuous solutions, we put

q = ± 1√
4πρ

.

Thus the velocity vector is connected with the magnetic field strength through
the relations

v1 = ± B1√
4πρ

, v2 = ± B2√
4πρ

. (16.80)

The following relations also hold at the discontinuity surface

{ p } = 0 ,
{
B2

τ

}
= 0 . (16.81)
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Therefore the normal components and the absolute values of the tangential
components of the magnetic field and velocity as well as all thermodynamical
parameters conserve at the discontinuity. For given values of B1 and v1,
possible values of B2 and v2 lie on a conical surface, the cone angle being equal
to that between the normal to the discontinuity surface and the vector B1
(Figure 16.10). A discontinuity of this type is called Alfvén or rotational .

B
v

B
v2

2
1

1

θ

θ

0 x

y

z

Figure 16.10: An Alfvén or rotational discontinuity.

Its peculiarity is reflected in the second name. On passing the discontinuity
surface, a medium can acquire a directionally arbitrary tangential momentum,
so that the flow is not generally planar.

The speed of the discontinuity propagation relative to the plasma

vx1 = ∓ Bx1√
4πρ

. (16.82)

In the limiting case of small intensity, the Alfvén or rotational discontinuity
converts to the Alfvén wave (see (15.29)).

16.3 Transitions between discontinuities

As was shown by Syrovatskii (1956), continuous transitions occur between
discontinuous MHD solutions of different types. This statement is easily ver-
ified on passing from the discontinuities (Section 16.2) to the limit of small-
amplitude waves (Section 15.1). In this limit the fast and slow magnetoa-
coustic waves correspond to the oblique shocks, whereas the Alfvén wave
corresponds to the Alfvén or rotational discontinuity.

The phase velocity diagrams for the small-amplitude waves are shown in
Figure 15.2. Reasoning from it, the following scheme of continuous transi-
tions between discontinuous solutions in ideal MHD can be suggested (Fig-
ure 16.11).

Let us recall that θ is the angle between the wave vector k and the mag-
netic field direction B0/B0, i.e. axis x in Figure 15.2. If θ → π/2 then the fast
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Figure 16.11: A scheme of the continuous transitions between discontinuous
solutions in MHD, following from comparison of the properties of the discon-
tinuities and small-amplitude waves on the phase velocity diagram.

magnetoacoustic wave (V+) converts to the perpendicular wave propagating
across the field with the velocity V⊥ (15.43). In the limit of large-amplitude
waves this corresponds to the transition from the fast shock (S+) to the per-
pendicular one (S⊥).

As θ → 0, the fast magnetoacoustic wave (V+) converts to the usual sound
one (Vs) if Vs > VA or to the Alfvén wave (VA) if VA > Vs. Therefore the fast
shock (S+) must convert, when θ → 0, either to the longitudinal shock (S‖)
if Vs1 > VA1 or to the Alfvén discontinuity (A) if VA1 > Vs1.

In much the same way, we conclude, reasoning from Figure 15.2, that the
slow shock (S−) converts either to the longitudinal shock (S‖) for Vs1 < VA1
or to the Alfvén discontinuity (A) for Vs1 > VA1 . This transition takes place
as θ → 0. For θ → π/2, both the slow shock wave (S−) and Alfvén discontinu-
ity (A) transform to the tangential discontinuity (T ) as demonstrated by the
fact that the corresponding phase velocities of the slow magnetoacoustic (V−)
and Alfvén (VA) waves tend to zero for θ → π/2.

∗ ∗ ∗

How are such transitions realized? – They are effected through some
discontinuities which may be called transitional since they conform to bound-
ary conditions for both types of discontinuities and may be classified as either
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of the two. The existence of transitional discontinuities means that the dis-
continuity of one type can convert to the discontinuity of another type under
a continuous change of parameters (Syrovatskii, 1956).

The absence of transitional discontinuities in MHD, manifested as the ab-
sence of transitions between small-amplitude waves in the phase velocity dia-
gram (Figure 15.2), signifies the impossibility similar to that one in ordinary
hydrodynamics because there exists a minimal velocity of shock propagation
– the sound velocity Vs. That is why small perturbations in hydrodynamics
cannot convert the shock wave (S) into the tangential discontinuity (T ).

For the same reason the continuous transition between fast (S+) and
slow (S−) shocks is impossible in MHD. This is shown in Figure 16.11 by
the doubly crossed arrow. The fast shock (S+) cannot continuously convert
to the perpendicular one (S⊥). These and other restrictions on continuous
transitions between discontinuities in MHD will be explained in Chapter 17
from the viewpoint of evolutionarity conditions.

The classical theory of the MHD discontinous flows is of great utility in
analysing the results of numerical calculations, for example time dependent
numerical solutions of the dissipative MHD equations, in order to determine
whether the numerical solutions are physically correct (e.g., Falle and Komis-
sarov, 2001).

16.4 Shock waves in collisionless plasma

In ordinary collision-dominated gases or plasmas the density rise across a
shock wave occurs in a distance of the order of a few collision mean free
paths. The velocity distributions on both sides of the front are constrained
by collisions to be Maxwellian and, if there is more than one kind of particles
(for example, ions and electrons), the temperature of the various constituents
of the plasma reach equality. Moreover, as we saw in Sections 16.1 and 16.2,
the conditions (density, pressure, and flow velocity) on one side of the front are
rigidly determined in terms of those on the other side by requirement that the
flux of mass, momentum, and energy through the front be conserved. For weak
shocks the front structure itself can be determined relatively simple, by taking
into account collisional transfer coefficients representing viscosity, resistivity,
and so on (Sirotina and Syrovatskii, 1960; Zel’dovich and Raizer, 1966, 2002;
see also Section 17.4).

In a collisionless plasma the mechanisms by which the plasma state is
changed by the passage of the shock front are more complex. Energy and
momentum can be transferred from the plasma flow into electric and magnetic
field oscillations for example by some kinetic instabilities. The energy of
these collective motions must be taken into account when conservation laws
are applied to relate the pre-shock state to the post-shock state. The ions
and electrons are affected differently by instabilities. So there is no reason
for their temperatures to remain equal. Since kinetic instabilities are seldom
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isotropic, it is unlikely that the temperatures will remain isotropic. These
anisotropies further change the jump conditions.

The change in state derives from the collective interactions between parti-
cles and electric and magnetic fields. In general these fields are of two types.
They can be: (a) constant in time, more exactly, quasi-static fields pro-
duced by charge separation, currents (e.g., Gedalin and Griv, 1999), or (b)
fluctuating in time, produced by kinetic instabilities. The first situation
is usually termed laminar, the second one turbulent. The fields often are
turbulent. So the scattering of particles by turbulence can play the role of
dissipation in the collisionless shock structure. This turbulence can be either a
small-scale one generated by plasma instabilities inside a laminar shock front,
or a large-scale turbulence associated with the dominant mode of the shock
interaction itself (see Tidman and Krall, 1971).

Since we are discussing the kinetic processes which occur on a time scale
much shorter than the time scale of Coulomb collisions, we may efficiently
use the Vlasov equation (3.3) or the fluid-type descriptions derived from it
(Chew et al., 1956; Klimontovich and Silin, 1961; Volkov, 1966) to study the
properties of shock waves in collisionless plasma.

The high Much number collisionless shocks are well observed in some as-
trophysical objects, for example in young supernova remnants (SNRs). It has
been suspected for many years that such shocks do not produce the electron-
ion temperature equilibration. A clear hint for nonequilibration is the low
electron temperature in young SNRs, which in no object seems to exceed
5 keV, whereas a typical shock velocity of 4000 km s−1 should give rise to a
mean plasma temperature of about 20 keV. X-ray observations usually allow
only the electron temperature to be determined.

The reflective grating spectrometer on board XMM-Newton allowed a
direct measurement of an oxygen (O VII) temperature Ti ≈ 500 keV in
SN 1006 (Vink et al., 2003). Combined with the observed electron tem-
perature Te ∼ 1.5 keV, this measurement confirms, with a high statistical
confidence, that shock heating process resulted in only a small degree (∼3 %)
of electron-ion equilibration at the shock front and that the subsequent equi-
libration process is slow.

16.5 Practice: Exercises and Answers

Exercise 16.1. Relate the flow variables ρ, v, and p at the surface of an
ordinary shock wave (Section 16.1.2).

Answer. From formula (16.7) with vτ = 0 and vx = v, we find

ρ1 v1 = ρ2 v2 , (16.83)

p1 + ρ1 v 2
1 = p2 + ρ2 v 2

2 , (16.84)

v 2
1

2
+ w1 =

v 2
2

2
+ w2 . (16.85)
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Here
w = ε +

p

ρ
(16.86)

is the specific enthalpy; the thermodynamic relationship for the specific inter-
nal energy ε(p, ρ) is assumed to be known.

Exercise 16.2. Assuming that the value of a parameter describing the
strength of the shock in Exercise 16.1 is known (for example, the relative
velocity δv = v1 − v2 which playes the role of the ‘piston’ velocity), find the
general relationships that follow from the conservation laws (16.83)–(16.85).

Answer. Instead of the density let us introduce the specific volume U =
1/ρ. From (16.83) we obtain

U2

U1
=

v2

v1
. (16.87)

Eliminating the velocities v1 and v2 from Equations (16.84) and (16.85), we
find

v 2
1 = U 2

1
p2 − p1

U1 − U2
, (16.88)

v 2
2 = U 2

2
p2 − p1

U1 − U2
. (16.89)

The velocity of the compressed plasma with respect to the undisturbed one

δv = v1 − v2 = [(p2 − p1)(U1 − U2)]
1/2

. (16.90)

Substituting (16.88) and (16.89) in the energy equation (16.85), we obtain

δw = w2 − w1 =
1
2

(p2 − p1)(U1 + U2) . (16.91)

This is the most general form of the Rankine-Hugoniot relation.

Exercise 16.3. Consider the Rankine-Hugoniot relation for an ideal gas.
Answer. For an ideal gas with constant specific heats cp and cv, the

specific enthalpy
w (p, U) = cp T =

γg

γg − 1
p U , (16.92)

where γg = cp/cv is the specific heat ratio.
If we substitute (16.92) in (16.91), we obtain the Rankine-Hugoniot rela-

tion in the explicit form

p2

p1
=

(γg + 1)U1 − (γg − 1) U2

(γg + 1)U2 − (γg − 1) U1
. (16.93)

From here, the density ratio

r =
ρ2

ρ1
=

U1

U2
=

(γg + 1) p2 + (γg − 1) p1

(γg − 1) p2 + (γg + 1) p1
. (16.94)
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It is evident from (16.94) that the density ratio across a very strong shock,
where the pressure p2 behind the wave front is much higher than the initial
pressure p1, does not increase infinitely with increasing strength p2/p1,
but approaches a certain finite value. This limiting density ratio is a fuction
of the specific heat ratio γg only, and is equal to

r∞ =
ρ2

ρ1
=

γg + 1
γg − 1

. (16.95)

For a monatomic gas with γg = 5/3 the limiting compression ratio r∞ = 4.

p

p

U U1 2

1

2

U1 r

Figure 16.12: The Rankine-Hugoniot
curve.

A curve on the diagram (p, U) passing through the initial state (p1, U1)
according to (16.93) is called the Rankine-Hugoniot curve; it is shown in
Figure 16.12.

Exercise 16.4. What is the value of the limiting density ratio r in relativistic
shock waves?

Answer. Note that Equation (16.83) is valid only for nonrelativistic
flows. In relativistic shock waves, the Lorentz factor (5.3) for the upstream
and downstream flows must be included, and we have (de Hoffmann and
Teller, 1950):

γL,1 ρ1 v1 = γL,2 ρ2 v2 . (16.96)

The density ratio
r =

ρ2

ρ1
=

v1

v2

γL,1

γL,2

. (16.97)

In highly relativistic shock waves, the ratio v1/v2 remains finite,
while the density ratio r → ∞.

This is important fact for particle acceleration by shock waves (see Chap-
ter 18).
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Exercise 16.5. Write the density ratio r as a function of the upstream Mach
number.

Answer. Let us use the definition of the sound speed (16.1) in an ideal
gas with constant specific heats

Vs =
(

γg
p

ρ

)1/2

= (γg p U)1/2
. (16.98)

The upstream Mach number (to the second power)

M 2
1 =

v 2
1

V 2
s1

=
U1

γg p1

p2 − p1

V1 − V2
. (16.99)

Here the solution (16.88) has been taken into account.
Substituting (16.99) in (16.94) gives us the compression ratio as a function

of the upstream Mach number

r =
(γg + 1)M 2

1

(γg − 1) M 2
1 + 2

. (16.100)

When M1 → ∞, the density ratio

r → (γg + 1)/(γg − 1)

of course. This is the limiting case of a strong but nonrelativistic shock wave.
When M1 → 1, which is the limiting case of a weak shock wave, the

density ratio r → 1 too. By using formula (16.93), we see that the pressures
on both sides of a weak shock wave are close to each other: p1 ≈ p2 and
(p2 − p1)/p1 
 1. Thus a weak shock wave is practically the same as an
acoustic compression wave.

For M1 < 1 we could formally have an expansion shock wave with r < 1
and p2 < p1. However it can be shown (see the next Exercise) that such a
transition would involve a decrease of entropy rather than an increase. So
such transitions are ruled out by the second law of thermodynamics.

Exercise 16.6. Show that the entropy jump of a gas compressed by a shock
increases with the strength of the shock wave but is entirely independent of
the dissipative mechanism.

Answer. To within an arbitrary constant the entropy of an ideal gas with
constant specific heats is given by formula (see Landau and Lifshitz, Statistical
Physics, 1959b, Chapter 4):

S = cv ln pUγg . (16.101)

The difference between the entropy on each side of the shock front, as derived
from (16.94), is

S2 − S1 = cv ln
{(

p2

p1

)[
(γg − 1)(p2/p1) + (γg + 1)
(γg + 1)(p2/p1) + (γg − 1)

]γg
}

. (16.102)
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In the limiting case of a weak wave (p2 ≈ p1) the expression in braces is
close to unity. Therefore S2 ≈ S1 and S2 > S1 if p2 > p1.

As the strength of the wave increases, that is, as the ratio p2/p1 increases
beyond unity, the expression in braces increases monotonically and approaches
infinity as p2/p1 → ∞. Thus the entropy jump is positive and does increase
with the strength of the shock wave.

The increase in entropy indicates that irreversible dissipative pro-
cesses occur in the shock front.

This can be traced to the presence of viscosity and heat conduction in the gas
or plasma (see the discussion in Section 16.1.3).

Exercise 16.7. Consider a collisionless gravitational system described by the
gravitational analog of the Vlasov equation (Exercise 3.9). Explain qualita-
tively why the Vlasov equation (3.44) does not predict the existence of a shock
wave. In other words, unlike the case of gas or plasma, an evolution governed
by the set of Equations (3.44)–(3.46) never leads to caustics or shocks.

Hint. By analogy with the discussion of the shock origin in ordinary
hydrodynamics (Section 16.1.1), it is necessary to show that

given sufficiently smooth initial data, the distribution function of a
collisionless gravitational system will never diverge.

So the gravitational analog of the Vlasov equation manifests the so-called
‘global existance’ (Pfaffelmoser, 1992).



Chapter 17

Evolutionarity of MHD
Discontinuities

A discontinuity cannot exist in astrophysical plasma with magnetic
field if small perturbations disintegrate it into other discontinuities or
transform it to a more general nonsteady flow.

17.1 Conditions for evolutionarity

17.1.1 The physical meaning and definition

Of concern to us is the issue of the stability of MHD discontinuities with re-
spect to their decomposition into more than one discontinuity. To answer this
question small perturbations must be imposed on the discontinuity surface.
If they do not instantaneously lead to large changes of the discontinuity, then
the discontinuity is termed evolutionary .

Obviously the property of evolutionarity does not coincide with stability
in the ordinary sense. The usual instability means exponential (eγt, γ > 0)
growth of the disturbance, it remains small for some time (t ≤ γ−1). The
discontinuity gradually evolves. By contrast,

a disturbance instantaneously becomes large in a non-evolutiona-
ry discontinuity.

By way of illustration, the decomposition of a density jump ρ (x) is shown in
Figure 17.1. The disturbance δρ is not small, though it occupies an interval δx
which is small for small t, when the two discontinuities have not become widely
separated.

The problem of disintegration of discontinuities has a long history. Kot-
chine (1926) considered the disintegration of an arbitrary discontinuity into

305
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Figure 17.1: Disintegration of a density jump into two successive jumps.

a set of other discontinuities and rarefaction waves in the frame of hydrody-
namics. Bethe (1942) studied the disintegration of a shock wave. The mathe-
matical idea of evolutionarity was expressed for the first time in the context of
the study of discontinuities in hydrodynamics (Courant and Friedrichs, 1985;
see also Gel’fand, 1959).

With respect to evolutionary discontinuities, the usual problem of
linear stability can be formulated,

i.e. we find solutions to the linearized equations giving rise to small amplitudes
which grow or decay in time.

The evolutionarity criterion may be obtained by counting the number of
equations supplied by linearized boundary conditions at the discontinuity sur-
face, and the number of independent parameters determining an arbitrary,
initially small disturbance of the discontinuity. If the numbers are equal, then
the boundary conditions uniquely define further development – evolution – of
the disturbance which remains small for small t > 0. Such a discontinuity
is evolutionary . By contrast, if the number of parameters is greater or less
than the number of independent equations, then the problem of a small per-
turbation of the discontinuity has an infinitely large number of solutions or
no solutions at all. Thus

the initial assumption of the smallness of the disturbance for small t
is incorrect, hence the discontinuity is non-evolutionary .

Such a discontinuity cannot exist as a stationary configuration because a small
perturbation leads to a finite variation of the initial flow. This variation is the
disintegration of the discontinuity into other discontinuities that move away
from the place of their formation (Figure 17.1), or a transition to a more
general nonsteady flow.
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Let us count the number of equations which must be satisfied by an ar-
bitrary small perturbation at the discontinuity. Let us take as the initial
conditions the set of eight boundary conditions (16.25)–(16.32). It is to be
linearized.

We consider perturbations of the discontinuity, which generate plane waves
propagating along the x axis. Then the quantity Bx remains constant on
either side of the discontinuity, and condition (16.25) (both exact and lin-
earized) is satisfied identically. Hence, on either side of the discontinuity,
seven quantities are perturbed: three velocity components (vx, vy, vz), two
field components (By, Bz), density ρ and pressure p. Small perturbations of
these quantities,

δvx , δvy , δvz , δBy , δBz , δρ , δp,

on either side of the discontinuity surface are characterized by the coordinate
and time dependence

δf (t, x) ∼ exp [ i (kx − ωt) ]

typical of the plane wave.
If the number of waves leaving the discontinuity is equal to the number of

boundary conditions, then the problem of small perturbations has only one
solution and the discontinuity is evolutionary. This form of evolutionarity
conditions has been obtained for the first time by Lax (1957, 1973). The
small perturbations must obey the linearized boundary conditions, i.e. linear
algebraic equations following from (16.26)–(16.32). In addition to the seven
quantities mentioned above, the velocity of propagation of the discontinuity
surface is disturbed. It acquires a small increment δux relative to the chosen
frame of reference in which the undisturbed discontinuity is at rest.

17.1.2 Linearized boundary conditions

Let us write down the linearized boundary conditions in a reference frame
rotated with respect to the x axis in such a way that the undisturbed val-
ues Bz = 0 and vz = 0. Thus we restrict our consideration to those discon-
tinuity surfaces in which the undisturbed fields B1, B2 and the velocities v1,
v2 lie in the plane (x, y).

From the boundary conditions (16.25)–(16.32) we find a set of linear equa-
tions which falls into two groups describing different perturbations:

(a) Alfvén perturbations (δvz, δBz){
ρ vx δvz − 1

4π
Bx δBz

}
= 0 , (17.1)

{ vx δBz − Bx δvz } = 0 ; (17.2)
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(b) magnetoacoustic and entropy perturbations (δvx, δvy, δBy, δρ, δp)

{ ρ (δvx − δux) + vx δρ } = 0 , (17.3){
ρ vx δvy + vy [ ρ (δvx − δux) + vx δρ ] − 1

4π
Bx δBy

}
= 0 , (17.4){

δp + v 2
x δρ + 2ρ vx (δvx − δux) +

1
4π

By δBy

}
= 0 , (17.5)

{ Bx δvy − By (δvx − δux) − vx δBy } = 0 , (17.6)

{ ρ vx [ vx (δvx − δux) + vy δvy + δw ] +

+

(
v 2

x + v 2
y

2
+ w

)
[ ρ (δvx − δux) + vx δρ ] +

+
By

4π
[ By (δvx − δux) + vx δBy − Bx δvy ] +

+
1
4π

(vxBy − vyBx) δBy

}
= 0 . (17.7)

Condition (17.3) allows us to express the disturbance of the propagation ve-
locity of the discontinuity surface δux in terms of perturbations of ρ and vx:

δux { ρ } = { ρ δvx + vx δρ } . (17.8)

On substituting (17.8) in (17.4)–(17.7) there remain four independent equa-
tions in the second group of boundary conditions, since the disturbance of the
velocity of the discontinuity surface δux can be eliminated from the set.

Therefore the MHD boundary conditions for perturbations of the discon-
tinuity, which generate waves propagating perpendicular to the discontinuity
surface, fall into two isolated groups. As this takes place,

the conditions of evolutionarity (the number of waves leaving the
MHD discontinuity is equal to the number of independent linearized
boundary conditions) must hold not only for the variables in total
but also for each isolated group

(Syrovatskii, 1959). The number of Alfvén waves leaving the discontinuity
must be two, whereas there must be four magnetoacoustic and entropy waves.
This make the evolutionary requirement more stringent.

Whether or not a discontinuity is evolutionary is clearly a purely kinematic
problem. We have to count the number of small-amplitude waves leaving the
discontinuity on either side. Concerning the boundary conditions the following
comment should be made. As distinct from the unperturbed MHD equations,
the perturbed ones are not stationary. Therefore the arguments used to derive
Equations (16.19)–(16.24) from (16.10) are not always valid.
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To derive boundary conditions at a disturbed discontinuity we have to
transform to the reference frame connected with the surface. For example,
for a perturbation (see Exercise 17.2)

ξ x(y, t) = ξ 0 exp [ i (ky y − ω t)] ,

where ξx is a displacement of the surface, this is equivalent to the following
substitution in the linearized MHD equations

∂

∂t
δ → − i ω

(
δ − ξ 0

∂

∂y

)
,

∂

∂y
δ → i ky

(
δ − ξ 0

∂

∂y

)
,

where − i ω ξ 0 = δux is the amplitude of the time derivative of ξ. Consider,
for example, the linearized continuity equation which after the integration
over the discontinuity thickness takes the form

i

+a∫
−a

(ω − kyvy) δρ dx − i ky

+a∫
−a

ρ δvy dx =

= { vx δρ + ρ [ δvx + i (ω − kyvy) ξ 0 ] } . (17.9)

If the integrals on the left-hand side of Equation (17.9) are equal to zero
in the limit a → 0 then, for ky = 0, formula (17.9) transforms to (17.3).
However this possibility is based on the supposition that δρ and δvy inside
the discontinuity do not increase in the limit a → 0. We shall see in vol. 2,
Chapter 10 that this supposition is not valid at least for more complicated,
two-dimensional, configurations such as a reconnecting current layer.

17.1.3 The number of small-amplitude waves

If the discontinuity is immovable with respect to the plasma (no flow across
the discontinuity), then on either side of the surface there exist three waves
leaving it as shown in Figure 17.2:

−V+x1 , −VAx1 , −V−x1 , V−x2 , VAx2 , V+x2 . (17.10)

Let the discontinuity move with a velocity vx1 relative to the plasma (Fig-
ure 17.3). The positive direction of the axis x is chosen to coincide with the
direction of the plasma motion at the discontinuity surface. The index ‘1’
refers to the region in front of the surface (x < 0) whereas the index ‘2’
refers to the region behind the discontinuity (x > 0), i.e. downstream of the
flow. Then there exist fourteen different phase velocities of propagation of
small-amplitude waves:

vx1 ± V+x1 , vx1 ± VAx1 , vx1 ± V−x1 , vx1 ,

vx2 ± V−x2 , vx2 ± VAx2 , vx2 ± V+x2 , vx2 .
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Figure 17.2: Six small-amplitude waves leaving an immovable discontinuity
surface (x = 0) being perturbed.

Waves leaving the discontinuity have negative phase velocities in the region 1
and positive phase velocities in the region 2.

In the region 1, four velocities, corresponding to the waves moving toward
the discontinuity surface, can be immediately discarded:

vx1 + V+x1 , vx1 + VAx1 , vx1 + V−x1 , vx1 .

The remaining three waves (7 − 4) can leave the discontinuity or propagate
toward it, depending on the plasma flow velocity towards the discontinuity vx1.

In the region 2, four waves always have positive phase velocities:

vx2 + V+x2 , vx2 + VAx2 , vx2 + V−x2 , vx2 . (17.11)

These waves leave the discontinuity. Other waves will be converging or di-
verging, depending on relations between the quantities

vx2 , V+x2 , VAx2 , V−x2 .

Let
0 < vx1 < V−x1 . (17.12)

Then there are three waves leaving the discontinuity in the region 1:

vx1 − V−x1 , vx1 − VAx1 , vx1 − V−x1 .

If
0 < vx2 < V−x2 , (17.13)

then four waves (17.11) propagate downstream of the discontinuity since the
waves

vx2 − V−x2 , vx2 − VAx2 , vx2 − V+x2
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Figure 17.3: Small-amplitude waves in a plasma moving through the MHD
discontinuity.

converge to the discontinuity.
We shall write down the number of diverging waves to the left (in front

of) and to the right (behind) the discontinuity as their sum (e.g. 3 + 4 = 7
in the case considered) in the corresponding rectangle in the plane (vx1, vx2)
presented in Figure 17.4. This rectangle is the lower left one. In the rectangle
situated to the right of this one, two rather than three waves are diverging in
the region 1:

vx1 − VAx1 , vx1 − V+x1 .

The wave vx1 − V−x1 is carried by the flow to the discontinuity since

V−x1 < vx1 < VAx1 .
(17.14)

Thus we write 2 + 4 = 6 in this rectangle. The whole table is filled up in a
similar manner.

17.1.4 Domains of evolutionarity

If one considers the total number of boundary conditions (six), without al-
lowance being made for their falling into two groups, then just three rectangles
in Figure 17.4 should be inspected for possible evolutionarity. The boundaries
of these rectangles are shown by solid lines.

However, as indicated above, the equality of the total number of indepen-
dent boundary conditions to the number of diverging waves is insufficient for
the existence and uniqueness of the solutions in the class of small perturba-
tions (Syrovatskii, 1959). Take into account that
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3 + 4 = 7
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0 + 6 = 6
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V+x2

vx2

Figure 17.4: The number of small-amplitude waves leaving a discontinuity
surface.

the linearized boundary conditions fall into two groups, and hence
the number of Alfvén waves must equal two and that of diverging
magnetoacoustic and entropy waves must equal four.

Then one of the three rectangles becomes the point A in Figure 17.5.
The figure shows that there exist two domains of evolutionarity of shock

waves:
(a) fast shock waves (S+) for which

vx1 > V+x1 , VAx2 < vx2 < V+x2 , (17.15)

(b) slow shock waves (S−) for which

V−x1 < vx1 < VAx1 , vx2 < V−x2 . (17.16)

Recall that our treatment of the Alfvén discontinuity was not quite sat-
isfactory. It was treated as a flow in the plane (x, y). Generally this is not
the case (Figure 16.10). The result of the above analysis is also not quite
satisfactory: the evolutionarity of the Alfvén discontinuity, as well as the
switch-on and switch-off shocks, is more complicated. While investigating the
evolutionarity of these discontinuities, dissipative effects must be allowed for
(Section 17.3).

Although dissipative waves quickly damp as they propagate away from
the discontinuity surface, they play an important role in the system of small-
amplitude waves leaving the discontinuity. Thus only one solution exists for
the switch-off shock, i.e. it is evolutionary. By contrast,

the switch-on shock wave, as well as the Alfvén or rotational dis-
continuity, are non-evolutionary
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Figure 17.5: The evolutionarity domains for the fast (S+) and slow (S−)
shocks and the Alfvén discontinuity.

in the linear approximation.
Roikhvarger and Syrovatskii (1974) have shown that attention to dissipa-

tion in the dispersion equation for magnetoacoustic and entropy waves leads
to the appearance of dissipative waves and, as a consequence, to the non-
evolutionarity of tangential and contact discontinuities (Section 17.3).

Recall that in an ideal medium the disintegration of a discontinuity is in-
stantaneous in the sense that the secondary discontinuities become separated
in the beginning of the disintegration process (Figure 17.1). In a dissipative
medium the spatial profiles of the MHD discontinuities are continuous. Nev-
ertheless the principal result remains the same. The steady flow is rearranged
toward a nonsteady state, and after a large enough period of time the disin-
tegration manifests itself (Section 17.4).

17.2 Consequences of evolutionarity conditions

17.2.1 The order of wave propagation

Some interesting inferences concerning the order of shock propagation result
from the evolutionarity conditions (17.15) and (17.16).

If a shock wave follows another one of the same type (fast or slow), the
back shock will catch up with the front one (Akhiezer et al., 1959). Let us
consider, as an example, two slow shock waves, S A

− and S B
− , propagating in

the direction of the x axis as shown in Figure 17.6.
In a reference frame connected with the front of the first shock S A

− , we
get, by virtue of the evolutionary condition (17.16),

V A
−x1 < v A

x1 < V A
Ax1 , v A

x2 < V A
−x2 . (17.17)
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Figure 17.6: Plasma flow velocities relative to: (a) shock wave fronts, (b) the
plasma between the shock waves.

In a reference frame connected with the front of the second shock S B
− , analo-

gous conditions hold:

V B
−x1 < v B

x1 < V B
Ax1 , v B

x2 < V B
−x2 . (17.18)

Since the velocities of slow magnetoacoustic waves of small amplitude V A
−x2

and V B
−x1 refer to the same region (between the shocks), they are equal

V A
−x2 = V B

−x1 . (17.19)

Substituting (17.19) in the second part of (17.17) and in the first part of
(17.18) gives the inequality

v A
x2 < v B

x1 . (17.20)

Hence, relative to the plasma between the shocks (Figure 17.6b), the shock S B
−

catches up with the shock S A
− , which was to be proved.

As for different types of waves, the following inferences can be drawn: the
Alfvén discontinuity will catch up with the slow shock, whereas the fast shock
will catch up with all possible types of discontinuities. If shock waves are
generated by a single source (for example, a flare in the solar atmosphere),
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then no more than three shocks can move in the same direction: the fast shock
is followed by the Alfvén discontinuity, the slow shock being to the rear of the
Alfvén discontinuity.

17.2.2 Continuous transitions between discontinuities

Reasoning from the polar diagram for phase velocities of small-amplitude
waves, in Section 16.3 we have treated the possibility of continuous transi-
tions between different types of discontinuous solutions in MHD. However the
evolutionarity conditions have not been taken into account. They are known
to impose limitations on possible continuous transitions between the discon-
tinuities under changes of external parameters (magnetic field, flow velocity,
etc.).

Continuous transition is impossible between the fast and slow shock waves.
This stems from the fact that the evolutionarity domains for fast (S+) and
slow (S−) shocks have no common points (Figure 17.5). Similarly, the lines
of phase velocities V+ and V− in polar diagrams (Figures 15.2 and 15.3) are
out of contact. That was the basis for banning transitions between the fast
and slow shocks in Figure 16.11.

The fast shock (S+) cannot continuously convert to the tangential disconti-
nuity (T ) since that would go against the evolutionarity condition vx1 > VAx1.
The same ban stems from the consideration of the phase velocity diagram
(Section 16.3). The perpendicular shock (S⊥) is the limiting case of the fast
shock. That is why the continuous transition of the perpendicular shock to
the tangential discontinuity is forbidden, as shown in Figure 16.11.

As was indicated in the previous section, the issue of evolutionarity of the
Alfvén discontinuity has no satisfactory solution in the framework of ideal
MHD. The established viewpoint is that the continuous transition of shock
waves (S− and S+) to the Alfvén discontinuity (A) is impossible, as is pre-
dicted by the phase velocity diagram with θ → 0. Transitions between the
Alfvén (A) and tangential (T ) discontinuities, between the tangential discon-
tinuity and the slow shock (S−), between the tangential and contact (C) dis-
continuities are assumed to be possible. These discontinuities convert to the
tangential discontinuity in the limiting case Bx → 0 (Polovin, 1961; Akhiezer
et al., 1975).

We shall consider the evolutionarity conditions and their consequences
for reconnecting current layers (RCLs) as a MHD discontinuity in vol. 2,
Chapter 10.

17.3 Dissipative effects in evolutionarity

Roikhvarger and Syrovatskii (1974) have taken into account the effect of dis-
sipation on the peculiar shocks. In this case the dispersion relation of the
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Alfvén waves has the form:

k2 V 2
Ax − (ω − kvx − ik2 νm

) (
ω − kvx − ik2 ν

)
= 0 . (17.21)

Here k is directed along the x axis, νm is the magnetic diffusivity, and ν = η/ρ
is the kinematic viscosity. After expansion of the solutions of this equation in
powers of a small ω (the conditions under which ω is small will be discussed
below) the expression for k reads as follows:
(a) for vx = VAx

kd = ±
√

ω

νm + ν
(1 − i) , (17.22)

k A =
ω

2vx
− i

(νm + ν) ω 2

16 v 3
x

, (17.23)

k∗ = −ω
(
ν 2

m + ν 2
)

vx (νm + ν)2
+ i

vx (νm + ν)
νm ν

; (17.24)

(b) for vx �= VAx

k A =
ω

vx ± VAx
− i

(νm + ν) ω 2

2 (vx ± VAx)3
, (17.25)

k∗ = − ω [ (νm − ν)2 vx ± (νm + ν) K ]
4 V 2

Ax νm ν + v 2
x (νm − ν)2 ± vx (νm + ν) K

+

+ i
vx (νm + ν) ± K

2 νm ν
, (17.26)

where

K =
[

v 2
x (νm − ν)2 + 4V 2

Ax νm ν

]2
.

Thus

the dissipative effects result in additional small-amplitude waves
propagating in a homogeneous MHD medium.

The width of an MHD shock (at least of small amplitude) is proportional,
in order of magnitude, to the dissipative transport coefficients and inversally
proportional to the shock intensity (Sirotina and Syrovatskii, 1960). The in-
tensity is determined by the difference vx−VAx on the side of the discontinuity
on which it is not zero. Since the switch-off shock, as a slow one, has a finite
intensity, and the switch-on shock exists in the interval (see Section 16.2.5)

1 <
v 2

x1

V 2
Ax1

<
4v 2

x1

v 2
x1 + V 2

s1
,

the width of the peculiar shock can be estimated as

l ∼ νm + ν

| vx − VAx | (17.27)
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Figure 17.7: The direction of the wave propagation in the case of a switch-on
shock (a) and a switch-off shock (b).

(Roikhvarger and Syrovatskii, 1974). It is just this distance within which the
perturbations k∗ from (17.24) and (17.26) damp considerably.

Therefore outside the shock front these waves are absent, and their ampli-
tudes do not enter into the boundary conditions which relate perturbations
outside the shock front.

The situation is different for the remaining perturbations, in particular,
for the purely dissipative waves kd from (17.22). For small enough ω their
wave numbers are much larger than the thickness l of the shock. This is true
under the condition

ω 
 (vx − VAx)2

νm + ν
, (17.28)

which coinsides with that used to derive (17.22)–(17.26). Since the character-
istic length scale of such perturbations is much larger than the shock thick-
ness l , their amplitudes satisfy the boundary conditions at the discontinuity
surface (17.1) and (17.2) obtained for an ideal medium.

The classification of dissipative perturbations on incoming and outgoing
waves should be made according to the sign of the imaginary part of the wave
vector, because in a stable medium such waves damp in the direction of the
propagation (Section 15.3). Consequently, there are two outgoing perturba-
tions leaving the peculiar shock, one of them being the dissipative wave. Much
like the case of non-peculiar shocks, both waves propagate downstream away
from the (fast) switch-on shock, while there is one outgoing wave on each side
of the (slow) switch-off shock (Figure 17.7).

With the precision adopted when deriving (17.22)–(17.26), the perturba-
tions δvz and δBz in the dissipative wave k∗ from (17.22) are related by the
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formula

δv d
z =

(
1 ± νm − ν

vx

√
i ω

2 (νm + ν)

)
δB d

z√
4πρ

. (17.29)

From here and, (17.1) and (17.2), it follows that if an Alfvén wave is incident
onto the switch-off shock from upstream or downstream then the amplitude
of the dissipative wave equals respectively

δB d
z1 = − 2 vx1

νm − ν

√
2 (νm + ν)

i ω
δB ↓

z1 , (17.30)

or

δB d
z1 = − 2 vx1

νm − ν

√
2 (νm + ν)

i ω
δB ↑

z2 . (17.31)

The amplitude δB ↓
z2 of the travelling (non-dissipative) wave equals zero in

the first case and −δB ↑
z2 in the second case. Thus only one solution exists

for the switch-off shock. Consequently, the switch-off shock is evolutionary.
On the contrary, the switch-on shock is non-evolutionary. Indeed, Equa-

tions (17.1) and (17.2), with regard for the relation at the switch-on shock

vx1 vx2 = V 2
Ax1 and

ρ 2

ρ 1
=

v 2
x1

V 2
Ax1

, (17.32)

can be rewritten as

vx1

(
δvz2 − δBz2√

4πρ

)
= vx1 δvz1 − VAx1

δBz1√
4πρ

, (17.33)

VAx1

(
δvz2 − δBz2√

4πρ

)
= VAx1 δvz1 − vx1

δBz1√
4πρ

. (17.34)

The set of Equations (17.33) and (17.34) is incompatible with a non-zero
amplitude of the incident wave, i.e. when δvz1 and δBz1 are not equal to
zero. Note that if the incident wave is absent, this set has an infinite number
of solutions. Hence the switch-on shock is non-evolutionary.

Finally it should be mentioned that the additional dissipative waves appear
only for vx = VAx. This means that

the dissipative effects do not alter the evolutionarity conditions for
non-peculiar (fast and slow) MHD shock waves.

At the same time the Alfvén discontinuity becomes non-evolutionary with
respect to dissipative Alfvén waves. This is consistent with the fact that in
the presence of dissipation it cannot have a stationary thickness and smooths
out with time (see Landau et al., 1984).

It was also pointed out by Roikhvarger and Syrovatskii (1974) that the
inclusion of dissipation into the dispersion relation for magnetoacoustic and
entropy waves results in the appearence of dissipative waves, and, as a conse-
quence, in non-evolutionarity of tangential, contact, and weak discontinuities
(discontinuities of the derivatives of the MHD properties).
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17.4 Discontinuity structure and evolutionar-
ity

17.4.1 Perpendicular shock waves

It is natural to assume that

the stationary problem of the structure of an evolutionary MHD
discontinuity has a unique solution, while for the non-evolutionary
one this problem does not have a solution.

To illustrate this assumption let us obtain the structure of the perpendicular
shock. With this aim the one-dimensional dissipative MHD equations should
be integrated over x. After that the conservation laws of mass, momentum,
and energy, and Maxwell equations take the form (see Polovin and Demut-
skii, 1990):

ρ v = J , (17.35)

Jv + p +
B 2

8 π
− µ

dv

dx
= S , (17.36)

J

[
v 2

2
+

p

ρ (γg − 1)

]
+ p v +

vB 2

4π
− µv

dv

dz
− νm

4π
B

dB

dx
= Q , (17.37)

vB − νm
dB

dx
= c E . (17.38)

Here the thermal conductivity of the medium is assumed to be zero. J , S,
and Q are constants of integration, γg is the adiabatic index, µ = (4/3) η + ζ ,
and ζ is a bulk viscosity (the indexes x and y at the quantities vx and By are
omitted).

From (17.35)–(17.38) we obtain the set of ordinary differential equations
which describes the structure of the perpendicular shock:

µ
dv

dx
= f (v, B) , (17.39)

νm
dB

dx
= g (v, B) , (17.40)

where

f (v, B) =
γg + 1

2
Jv − γg

(
S − B 2

2π

)
+

γg − 1
v

(
Q − cE B

4π

)
, (17.41)

g (v, B) = vB − cE . (17.42)

The curves f (v, B) = 0 and g (v, B) = 0 on the plane (v, B) are shown
schematically in Figure 17.8. At the points 1 and 2 of intersection of these
curves the derivatives dv/dx and dB/dx equal zero simultaneously.
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Figure 17.8: The structure of the
perpendicular shock (bold arrow)
connecting the states 1 and 2.

The points (B 1 , v 1) and (B 2 , v 2) correspond to the states ahead of the
shock (x → −∞) and behind the shock (x → +∞). These are stationary
points of the set of differential Equations (17.39) and (17.40). The structure
of the shock

v = v (x) , B = B (x) (17.43)

is a solution to the set (17.39), (17.40) which leaves the initial point 1 and
enters into the final point 2.

To consider the behaviour of the integral curves in the vicinity of the sta-
tionary points 1 and 2 (Figure 17.8) the quantities J , S, and Q should be ex-
pressed in termes of the MHD properties vi and Bi ahead of the shock (i = 1)
and behind the shock (i = 2). Then, by virtue of the fact that the deriva-
tives dv/dx and dB/dx tend to zero for x → ± ∞, Equations (17.35)–(17.37)
yield

J = ρi vi , (17.44)

S = Jvi + pi +
B 2

i

8π
, (17.45)

Q = J

(
v 2

i

2
+

γg

γg − 1
pi

ρi

)
+

viB
2
i

4π
, (17.46)

where i = 1, 2.
Let us now represent the quantities B and v in the form

B = Bi + δBi , v = vi + δvi , (17.47)

with δ being a small perturbation. Substituting this together with (17.44)–
(17.46) in (17.41) and (17.42), and expanding the result in powers of δBi and
δvi , we find to the first order

µ
d δvi

dx
=

ρi

vi

(
v 2

i − V 2
s i

)
δvi +

Bi

4π
δBi , (17.48)

νm
d δB i

dx
= Bi δvi + vi δBi . (17.49)
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As is known (e.g., Fedoryuk, 1985), a stationary point δvi = 0, δBi = 0 of
the set of autonomous differential equations

d δvi

dx
= a 11 δvi + a 12 δBi , (17.50)

d δBi

dx
= a 21 δvi + a 22 δBi (17.51)

is a saddle if the roots of characteristic equation

(a 11 − λ) (a 22 − λ) − a 12 a 21 = 0 (17.52)

are real numbers and have opposite signs, i.e. if

(a 11 − a 22)2 + 4a 12 a 21 > 0 , a 11 a 22 − a 12 a 21 < 0 . (17.53)

In this case only two integral curves enter the stationary point δvi = 0, δBi = 0
from the opposite directions (Figure 17.9a). And in the orthogonal way only
two curves leave the stationary point.

v

B

v

B

(a) (b)

Figure 17.9: Stationary points of the set of autonomous differential equations.
(a) Saddle. (b) Unstable node.

In the case when the roots of characteristic Equation (17.52) are real num-
bers and have the same sign, i.e. if

(a 11 − a 22)2 + 4a 12 a 21 > 0 , a 11 a 22 − a 12 a 21 > 0 , (17.54)

then the stationary point is a node. If in addition

a 11 + a 22 > 0 (17.55)

then the node is unstable, and all the integral curves leave the stationary
point (Figure 17.9b).
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In a perpendicular MHD shock

a 11 a 22 − a 12 a 21 =
ρi

(
v 2

i − V 2
⊥i

)
µ νm

, (17.56)

as follows from Equations (17.48) and (17.49). Here

V⊥ =
√

V 2
A ‖ + V 2

s =
√

u2
A

+ V 2
s . (17.57)

(Section 15.2.4). So the second inequality (17.54) is always valid. As for the
quantity a 11 + a 22 , it equals

a 11 + a 22 =
ρi

(
v 2

i − V 2
s i

)
µ vi

+
vi

νm
. (17.58)

It follows from (17.56) and (17.58) that in the case of the perpendicular
shock the stationary points of (17.48), (17.49) can be only of two types: either
a saddle or an unstable node (recall that v i is assumed to be positive).

Let us consider at first the case when

v 1 > V⊥1 , v 2 < V⊥2 . (17.59)

Then point 2 is a saddle, while point 1 is an unstable node. The only integral
curve enters into point 2 in Figure 17.8 from the side of larger values of v.
If the quantities v and B vary along this curve in the opposite direction, i.e.
upstream of the shock, then they will inevitably reach the values (v 1, B 1),
i.e. point 1, because all integral curves leave point 1 (unstable node in the
case under consideration). This curve describes a unique structure of the
perpendicular shock. The inequalities (17.59) coincide with the conditions of
evolutionarity of the perpendicular shock (see (17.15)), because V+ = V⊥ for
perpendicular propagation. Therefore

the conditions that the perpendicular shock wave has the unique
structure coincide with the conditions of its evolutionarity.

Now we consider the structure of a non-evolutionary perpendicular shock
wave. If

v 2 > V⊥2 , (17.60)

then point 2 is an unstable node. Neither integral curve enters this point, i.e.
the problem of structure of the shock does not have a solution.

If
v 1 < V⊥1 , v 2 < V⊥2 , (17.61)

then both stationary points 1 and 2 are saddles. In this case one of two
integral curves, leaving point 1, may coinside with one of two curves entering
point 2. However this takes place only for the definite exclusive values of
the parameters ahead of the shock front. An infinitesimal perturbation of
the state upstream of the shock destroys its structure. In other words, the
integral curve cannot connect the states 1 and 2 in a general case.



17.4. Discontinuity Structure and Evolutionarity 323

17.4.2 Discontinuities with penetrating magnetic field

Let us turn to the discontinuity type for which

vx �= 0 and Bx �= 0 (17.62)

(Sections 16.2.4 and 16.2.5). Consider at first the discontinuity accompanied
by a density jump:

{ ρ } �= 0 . (17.63)

(oblique shock waves). In this case the boundary conditions (16.67) can be
rewritten in such a way as to represent the Rankine-Hugoniot relation for
shock waves in MHD. Germain (1960) has shown that the boundary conditions
allow four states (see also Shercliff, 1965):

I : vx > V+ ,

II : V+ > vx > VAx , (17.64)
III : VAx > vx > V− ,

IV : V− > vx .

The states are arranged in order of increasing entropy. The second law of
thermodynamics requires that a shock transition is possible only from a lower
state of entropy to an upper one. There are thus six transitions shown in
Figure 17.10.

III → IV

I → II

I → III

I → IVII → IV

II → III

0 V−x1 VAx1 V+x1 vx1

V−x2

VAx2

V+x2

vx2

A
•

Figure 17.10: Transitions with increasing entropy. Evolutionarity domains
(bold rectangles) for the fast (I → II) and slow (III → IV) shock waves.

The evolutionarity of an oblique shock wave is related to its structure
in the following way (Germain, 1960; Kulikovskii and Lyubimov, 1961; An-
derson, 1963). The evolutionary fast and slow shocks always have a
unique structure. The shock transition II → III has a unique structure only
for the definite relationship between the dissipative transport coefficients. If
these coefficients fall into the certain intervals, the I → III and II → IV shocks
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may have a unique structure, while the I → IV transition may be connected
by an infinite number of integral curves.

Besides, as shown by Liberman (1978) with the help of the method dis-
cussed in Section 17.4.1, the switch-on shock, which is not evolutionary with
respect to dissipative waves, has a unique structure. The possible reason is
that the peculiarity of the switch-on and switch-off shocks is related to the
absence of B τ on one side of the discontinuity surface. The small asymmetry,
that is assumed when studying the stationary points, removes the degenera-
tion, and thus makes the shock evolutionary.

17.5 Practice: Exercises and Answers

Exercise 17.1. Show that an ordinary shock wave is evalutionary.
Answer. From (16.7) it follows that there exist three boundary conditions

at the surface of a shock wave in ordinary hydrodynamics:

{ ρ vx } = 0 ,
{

p + ρ v 2
x

}
= 0 ,

{
v2

2
+ w

}
= 0 . (17.65)

The boundary condition
{ vτ } = 0 (17.66)

makes it possible to transform to such a frame of reference in which the
tangential velocity component is absent on either side of the discontinuity:
vτ1 = vτ2 = 0. So we obtain three linearized conditions for small perturba-
tions. Since the disturbance of the velocity of the shock front surface δux can
be eliminated from the set of boundary conditions, there remain two indepen-
dent equations in the set.

Figure 17.11: Small-amplitude
waves in a plasma moving through
a shock wave without a magnetic
field.

x0

ρ 2

ρ 1

vx2 vx2 + Vs2
� �

Let us count the number of outgoing small-amplitude waves. There are
no such waves upstream the shock because of the condition

vx1 > Vs1 = 0 , (17.67)
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where Vs1 is the upstream sound velocity. At the downstream side of the
shock there are two waves: the sound wave propagating with velocity vx2+Vs2
and the entropy-vortex wave (Exercise 15.2) propagating with velocity vx2 as
shown in Figure 17.11. Therefore the number of waves leaving the shock is
equal to the number of independent linearized boundary conditions; q.e.d.

Exercise 17.2. Since an ordinary shock wave is evolutionary, consider the
linear problem of its stability in the ordinary sense of small perturbations.

Answer. Suppose that the surface of a shock is perturbed in the following
way:

ξ = ξ 0 exp [ i (k y y − ω t)] , (17.68)

where ξ is a displacement of the surface. The shock front thus becomes cor-
rugated. The corrugation causes a perturbation of the flow. An arbitrary
hydrodynamic perturbation is represented as a sum of the entropy-vortex
wave and the sound wave. Since the flow is stationary and homogeneous in
the y direction, all perturbations have the same frequency ω and tangential
component of the wave vector ky.

Since the flow velocity ahead of the shock v1 > Vs1, only the downstream
flow is perturbed. The usual condition of compatibility of the linear equation
set is that the determinant of the coefficients at unknown quantities is zero,
which yields the dispersion equation

ωv2

v1

(
k 2

y +
ω 2

v 2
2

)
−
(

ω 2

v1v2
+ k 2

x

)
(ω − kyv2)

[
1 + J2

(
∂U2

∂p2

)
RH

]
= 0 . (17.69)

Here U = 1/ρ is a specific volume, J = ρ1v1 = ρ2v2. The subscript RH means
that the derivative is taken along the Rankine–Hugoniot curve.

The shock front as a discontinuity is unstable if

Im ω > 0 , Im kx > 0 . (17.70)

The second condition (17.70) means that the perturbation is excited by the
shock itself, but not by some external source. As shown by D’yakov (1954),
Equation (17.69) has solution which satisfies the condition (17.70), when

J2
(

∂U2

∂p 2

)
RH

< −1 (17.71)

or

J2
(

∂U2

∂p 2

)
RH

> 1 + 2
v2

Vs2
. (17.72)

If the parameters of the flow fall into the interval (17.71) or (17.72) then the
small perturbation of the shock grows exponentially with time. This is the
so-called corrugational instability of shock waves in ordinary hydrodynamics.
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Along with this there is a possibility that Equation (17.69) has solutions
with real ω and k x which correspond to non-damping waves outgoing from
the discontinuity (D’yakov, 1954). In this case

the shock spontaneously radiates sound and entropy-vortex waves,
with the energy being supplied from the whole moving medium.

Apparently this instability is the reason of the flow inhomogeneities observed,
for example, in laboratory experiments when a strong shock propagates in a
gas (see Markovskii and Somov, 1996).

Exercise 17.3. Show that an ordinary tangential discontinuity introduced
in Section 16.1.2 is non-evalutionary.

Answer. From (16.6) it follows that there exists only one boundary con-
dition at the surface of a tangential discontinuity in ordinary hydrodynamics.
However two sound waves can propagate from the discontinuity at its both
sides. Therefore the number of small-amplitude waves is greater than the
number of linearized boundary equations.



Chapter 18

Particle Acceleration by
Shock Waves

Sir Charles Darwin (1949) presumably thought that shock waves are
responsible for accelerating cosmic rays. Nowadays shocks are widely
recognized as a key to understanding high-energy particle acceleration
in a variety of astrophysical environments.

18.1 Two basic mechanisms

Astrophysical plasma, being tenuous, differs from laboratory plasma in many
ways. One of them is the following. In most environments where accelerated
paricles are observed, typical sound speeds are considerably less than easily
obtainable bulk flow velocities, and shock waves are expected to develop. In
fact, shocks are associated with most energetic particle populations seen in
space.

In the heliosphere, collisionless shocks are directly observable with space-
crafts and they have been well studied. In every case where direct observations
have been made, shocks are seen to accelerate particles, often to power-law
distributions. Investigations of heliospheric shocks, along with a great deal of
theoretical work, also show that collective field-particle interactions control
the shock dissipation and structure. The physics of shock dissipation and
particle acceleration seem to be intimately related.

In this Chapter, we introduce only the most important aspects of the shock
acceleration theory including two fundamental mechanisms of particle accel-
eration by a shock wave. Analytical models and numerical simulations (Jones
and Ellison, 1991; Blandford, 1994; Giacalone and Ellison, 2000; Parks, 2004)
illustrate the possible high efficiency of diffusive and drift accelerations to
high energies.

327
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18.2 Shock diffusive acceleration

18.2.1 The canonical model of diffusive mechanism

Axford et al. (1977) and Krymskii (1977) considered the idealized problem
of the particle acceleration by a shock wave of plane geometry propagating
in a medium containing small-scale inhomogeneities of a magnetic field which
scatter fast particles. The origin of these scatterers will be discussed later on.
This may be, for example, the case of parallel or nearly parallel MHD shocks.
In shocks of this kind (see case (16.72)) the avarage magnetic field plays
essentially no role since it is homogeneous, while fluctuations in the avarage
field play a secondary role producing particle scattering. Assuming this, we
consider a shock wave as an ordinary hydrodynamic shock with scatterers.

If the medium is homogeneous, and if the propagation of the shock is
stationary, then the front of the shock separates the two half-spaces: x < 0
and x > 0, and the velocity of the medium is given by the following formula:

v(x) =
{

v1 for x < 0 ,
v2 = r−1v1 for x > 0 .

(18.1)

Here
r =

ρ2

ρ1
=

v1

v2
(18.2)

is the compression ratio. It follows from formula (16.94) that, in a very strong
(but nonrelativistic) shock wave, the ratio

r → r∞ =
γg + 1
γg − 1

and
v2 =

v1

r∞
=

γg − 1
γg + 1

v1 . (18.3)

The adiabatic index γg is considered constant on both sides of the shock
front x = 0.

Following Axford et al. (1977) and Krymskii (1977), let us assume that
the distribution function in space and the scalar momentum of the acceler-
ated particles, f(r, p), is isotropic (see generalization in Gieseler et al., 1999;
Ruffolo, 1999). This means that f(r, p) is the same in all reference frames
to first order in the small parameter v/vp, where vp and p are the individual
particle velocity and momentum measured in the local plasma frame.

As long as scattering is strong enough to insure the isotropy assumption,
the kinetic Equation (2.15) describing the transport of particles with vp � v
in space and velocity can be written in the form of a diffusion-convection
equation (see Krymskii (1977) and references therein):

∂f

∂t
= ∇r (D ∇r f) − ∇r (fv) +

1
3

∂ (fp)
∂p

div v . (18.4)
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Here D = D(r, p) is the coefficient of diffusion of fast particles.
For our problem under consideration, with one-dimensional geometry, we

have in the stationary case

∂

∂x

[
vf(x, p) − D(x, p)

∂ f(x, p)
∂x

]
=

1
3

∂v

∂x

∂

∂p
[ pf(x, p) ] . (18.5)

Let us integrate Equation (18.5) over x from x = −∞ to x = +∞. By
employing the boundary conditions

f(x = −∞, p) = f1(p) and f(x = +∞, p) = f2(p) , (18.6)

where f2(p) is an unknown spectrum of accelerated particles, we obtain the
following differential equation in p

v2f2(p) − v1f1(p) − 0 + 0 =
1
3

(v2 − v1)
d

dp
[ pf2(p) ] . (18.7)

Using the definition of the compression ratio (18.2), we obtain an ordinary
differential equation for the downstream distribution function f2(p) in the
form

p
d

dp
f2(p) +

r + 2
r − 1

f2(p) =
3r

r − 1
f1(p) ; (18.8)

recall that r > 1.
The general solution of this equation is

f2(p) =
3

r − 1
p−γp

p∫
p0

f1(p′) (p′)−γp dp′ + c1 p−γp . (18.9)

Here

γp =
r + 2
r − 1

(18.10)

plays the role of the spectral index of the accelerated particles, c1 is an ar-
bitrary constant of integration which multiplies the homogenious term, the
distribution function f1(p) is the far upstream spectrum of ambient parti-
cles that are accelerated by the shock, and p0 is large enough so that the
assumption vp � v holds.

So the solution of the diffusion-convection equation does show that a pla-
nar shock, propagating through a region in which fast particles are diffusing,
produces a superthermal population of particles with the power-law momen-
tum distribution

f2(p) ∼ p−γp . (18.11)

The property which gave the diffusive acceleration process a wide appeal
is the fact that, with the simplest assumptions made above,
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the spectral index (18.10) of the accelerated particles depends only
on the compression ratio r of the shock wave.

Most astrophysical shocks, since they are strong, have compression ratios
constrained to a rather narrow range of values near r∞ = 4 assuming γg = 5/3.
For a shock with Mach number M (see Exercise 16.5) greater than 3 say, as
we see in Figure 18.1, the compression ratio 3 < r < 4 and the spectral index
2 < γp < 2.5.
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Figure 18.1: The compression ratio r and spectral index γp versus the Mach
number M .

A spectral index of γp ≈ 2 is characteristic of energy particle spectra ob-
served in a wide range of astrophysical environments (Jones and Ellison, 1991;
Blandford, 1994). For example, γp ≈ 2 closely fits the inferred source spec-
trum of Galactic cosmic rays for high energies below approximately 1015 eV
(e.g., Gombosi, 1999). In the cosmic rays observed at Earth, the spectrum of
cosmic-ray ions is an unbroken power law from 109 to 1015 eV. The supernova
shocks are one of the few mechanisms known to be capable of providing ade-
quate energy to supply the pool of Galactic cosmic rays. Supernova remnants
(SNRs) have long been suspected as the primary site of Galactic cosmic-ray
acceleration.

The earliest evidence of non-thermal X-ray emission in a SNR came from
featureless observed spectra interpreted as the extrapolation of a radio syn-
chrotron spectrum. However early data were poor and the models were sim-
plistic. New observations and theoretical results (Dyer et al., 2001) indicate
that joint thermal and non-thermal fitting, using sophisticated models, will
be required for analysis of most supernova-remnant X-ray data in the future
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to answer two questions: (a) Do SNRs accelerate ions? (b) Are they capable
of accelerating particles to energies of 1015 eV?

In the solar wind the shock-associated low-energy-proton events seem
to be well studied. The most intensive of them have a power-low energy
spectrum, suggesting that protons are accelerated by the diffusive-shock ac-
celeration mechanism (e.g., Rodriguez-Pacheco et al., 1998). Nevertheless the
correlation between the spectral exponent γ with the solar wind velocity com-
pression ratio is found to be linear. This result differs from that presented
above. The discrepancy of the spectral-exponent dependence on the shock-
wave parameters could lie on the event selection criterion or on the account
of nonlinear effects (Section 18.2.3) or on another mechanism of acceleration.

18.2.2 Some properties of diffusive mechanism

As we saw above, the spectral index γp of energetic particles produced by
diffusive shock acceleration does not depend on the diffusion coefficient D.
However the diffusion coefficient D, together with the characteristic flow ve-
locity v ∼ v1, determines the overall length scale of the acceleration region

l
D

∼ D(p)/v (18.12)

and acceleration time
t

D
∼ D(p)/v2 . (18.13)

The first-order Fermi or diffusive shock acceleration is a statistical process in
which particles undergo spatial diffusion and are accelerated as they scatter
back and forth across the shock, thereby being compressed between scattering
centers fixed in the converging upstream and downstream flows.

Particle energies are derived just from the relative motion, the con-
verging flow with velocity v1 − v2, between scatterers (waves) on
either side of a shock front.

This is a main advantage of the diffusive mechanism. Its disadvantage is that
particles can achieve very high energies by diffusion acceleration, but

since particles spend most of their time random walking in the up-
stream or downstream plasma, the acceleration time can become
excessively large

compared with, for example, the shock’s life time.
Another disadvantage in applying it to some astrophysical phenomena,

for example solar flares, consists of the lack of actual knowledge about the
assumed scattering waves. However diffusion determines only the length
scale (18.12) and characteristic time (18.13) of the acceleration process. In
this context, let us recall once more (Section 16.1.3) the following analogy
from everyday life. A glass of hot water with a temperature T1 will invariably
cool to a given room temperature T2, independently of the mechanism of heat
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exchange with the surrounding medium, while the mechanism determines only
the time of cooling.

In the presence of a magnetic field in plasma, the diffusive acceleration
requires that the particles are able to traverse the shock front in both direc-
tions either along the field or by scattering across the field, in order that they
may couple to the shock compression by pitch-angle scattering both upstream
and downstream of the shock. At quasi-parallel shocks this condition on par-
ticle mobility is easily met. For sufficiently fast shocks, downstream shock-
heated particles can be kinematically able to return to the shock along the
downstream magnetic field to initiate the process of diffusive shock accelera-
tion. At quasi-perpendicular shocks (Section 18.3.2), however, this condition
is stringent. Although the diffusive mechanism is rapid since particles are
confined closer to the shock front, there is a high threshold speed, signif-
icantly exceeding v1, in order that diffusive acceleration can occur (Webb et
al., 1995).

18.2.3 Nonlinear effects in diffusive acceleration

The test particle (i.e., linear) model demonstrated above yields the most im-
portant result: the power law (18.11) with the spectral index (18.10) is the
natural product of the diffusive acceleration in shock waves. The equally im-
portant question of the actual efficiency of the process can only be adequately
addressed to a fully nonlinear (and more complex) theory. Using observations
of the Earth bow shock and interplanetary observations, numerical modeling
of different shocks shows that the inherent efficiency of shock acceleration
implies that

the hydrodynamic feedback effects between the accelerated particles
and the shock structure are important

and therefore essential to any complete description of the process. This has
turned out to be a formidable task because of the wide range of spatial and
energy scales that must be self-consistently included in numerical simulations.

On the one hand, the plasma microprocesses of the shock dissipation con-
trol injection from the thermal population. On the other hand, the highest
energy particles (extending to 1014 − 1015 eV in the case of galactic cosmic
rays) with extremely long diffusion lengths (18.12) are dynamically significant
in strong shock waves and feed back on the shock structure. Ranges of inter-
acting scales of many orders of magnitudes must be described self-consistently
(for review see Parks, 2004).

18.3 Shock drift acceleration

The principal process whereby a particle gains energy upon crossing a shock
wave with a magnetic field may be the so-called shock drift acceleration (Hud-
son, 1965). The drift mechanism, in contrast to the diffusive one, neglects
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any shock-front associated turbulence. So many not-well-justified assump-
tions concerning the physics of scatterers have not to be made in applying the
drift acceleration model to an astrophysical phenomenon.

If the fast particle Larmor radius

rL =
c p⊥
eB

� lf , (18.14)

where lf is the front thickness, we can replace the shock by a simple dis-
continuity (the shock surface) and can approximate the particle motion as
scatter-free on both sides of the shock. Let us begin by considering an in-
teraction of individual particles with such a discontinuity. We shall consider
very fast particles:

vp � v1 > v2 . (18.15)

These assumptions are basic for further considerations that we start from the
simplest case – a perpendicular shock (Section 16.2.3).

18.3.1 Perpendicular shock waves

As shown in Figure 16.5, the magnetic fields B1 and B2 are parallel to the
shock front x = 0; and plasma moves perpendicularly to the front. According
to (16.41), there exists an identical electric field on both sides of the shock:

E = −1
c
v1 × B1 = −1

c
v2 × B2 . (18.16)

The fast particles rotate on the magnetic field lines and move together with
the field lines with the plasma speed across the front as shown in Figure 18.2.
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Figure 18.2: The Larmor ring moves together with the plasma and the mag-
netic field across the perpendicular shock front.
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Nothing will happen before the Larmor ring touches the front; a particle
simply drifts to the front. For what follows it is important that the particle
will make many rotations (Figure 18.3) during the motion of the Larmor ring
across the front because of the condition (18.15). A ‘single encounter’ consists
of many individual penetrations by the particle through the shock surface as
the particle follows its nearly helical trajectory. Because of the difference
between the Larmor radius ahead of and behind the front, a drift parallel to
the front will appear, accompanying the drift across the front.
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Figure 18.3: The trajectory of a negatively charged particle (an electron)
multiply crossing the perpendicular shock front.

During each rotation, the electric field E accelerates a particle on the
upstream side (x < 0) of the shock and decelerates it on the downstream side
(x > 0). However the work of the field E on a larger circle exceeds the work
on the smaller circle:

δA1 = + eE × AC > − δA2 = eE × BC , (18.17)

since the length AC is larger than the length AB. Therefore, during each ro-
tation, the particle is slightly accelerated. How much energy does the particle
take during the motion of its Larmor ring across the shock front?

Since we consider the shock as a discontinuity, the adiabatic approximation
is formally not suitable. However it appears that the transversal invariant
(Section 6.2) conserves:

p 2
⊥
B

= const (18.18)

(Hudson, 1965; Alekseyev and Kropotkin, 1970). From (18.18) it follows that

p 2
⊥2 = p 2

⊥1 × B2

B1
.
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Therefore the transversal kinetic energy of a nonrelativistic particle

K⊥2

K⊥1
=

p 2
⊥2

p 2
⊥1

∝ B2

B1
= r . (18.19)

An increase of transversal energy (18.19) is relatively small when
the Larmor ring of a particle crosses the front only once.

Multiple interactions of a particle with the shock is a necessary condition for
a considerable increase of energy.

Drift acceleration typically involves several shock crossings and results
from a net displacement δz of an ion (electron) guiding center parallel (anti-
parallel) to the convection electric field E. The energy gain is proportional
to this displacement, which in general depends upon the plasma and shock
parameters, the particle species and velocity, and the intensity of possible
electromagnetic fluctuations in the vicinity of the shock as well as within the
shock front itself. It is popular to discuss the displacement δz as the conse-
quence of a gradient drift (see formula (5.14) in Jones and Ellison, 1991). Such
a treatment is not reasonable when we consider the shock as a discontinuity;
so formally ∇B → ∞. A wondeful thing is that the adiabatic approximation
is not applicable for such a situation but the first adiabatic invariant (18.18)
conserves.

18.3.2 Quasi-perpendicular shock waves

18.3.2 (a) Classical model of acceleration

The basic aspects of drift acceleration of fast particles by an almost perpen-
dicular shock wave, as a discontinuity, emerge from a simple model which is
valid for a certain range of incident pitch angles and which allows us to de-
rive analytical expressions for the reflection and transmission coefficients, the
energy and the angular distributions (Toptyghin, 1980; Decker, 1983).

By definition, in a quasi-perpendicular shock, the angle Ψ1 (Figure 18.4)
between the shock normal n and the upstream magnetic field vector B1 is
greater than about 80◦. Hence the field lines form small angles α1 and α2
with the shock front plane x = 0. Under this condition, as well as for the
perpendicular shock case considered above, the first adiabatic invariant
is conserved (Hudson, 1965; see also Section 4 in Wentzel, 1964). This
enables analytical calculations of the energy increase on the front of a quasi-
perpendicular shock as well as the reflection and transmission of fast particles
(Sarris and Van Allen, 1974).

Since the particles conserve the first adiabatic invariant (Section 6.2.1), all
particles with pitch angles

θ > θ0 (18.20)

will be reflected. To find the critical pitch angle θ0, consider two frames of
reference: S and S ′.
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Figure 18.4: A quasi-perpendicular shock wave in the frame of reference S
where v1 ‖ n.

In the frame of reference S, where the shock front is in the plane (y, z)
and the shock normal n is along the x axis, there is an electric field

E = −1
c
v1 × B1 = −1

c
v2 × B2 . (18.21)

In the frame of reference S ′, where B1 ‖ v1 and B2 ‖ v2 (Section 16.2.4), there
is no electric field. The system S ′ moves along the y axis (perpendicular
to the vector E) with velocity

vy = c
E × Bn

B 2
n

, (18.22)

where Bn is the normal component of the magnetic field. Since E ′ = 0, there
is no change in the energy of a fast particle after reflection from the front:
δE ′ = 0.

We shall assume that Bn is very small but vy < c. Using the relativistic
Lorentz transformation for the energy-momentum 4D-vector with condition
δE ′ = 0, we obtain the relative energy increment of the reflected fast particles
(see Exercise 18.1):

δK
K ≈ 4v 2

1

v 2
p

[
vp cos θ

v1
+ tg Ψ1

]
tg Ψ1 . (18.23)

Here K = mv 2
p /2 is the kinetic energy of a particle in the shock wave frame

of reference S, vp is the particle velocity in the same frame, and θ is the pitch
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angle also in the frame S. The connection between θ ′ and θ is given by

cos θ ′ =
vp cos θ + v1 tg Ψ1[

v 2
p + (v1 tg Ψ1)2 + 2vp (v1 tg Ψ1) cos θ

]1/2 . (18.24)

In the S ′ frame of reference, where the electric field is zero, the first adiabatic
invariant can be written as (see definition (6.11)):

sin2 θ ′

B
= const . (18.25)

So the critical pitch angle θ ′
0 satisfies equation

sin2 θ ′
0 =

B1

B2
. (18.26)

This allows us to calculate the critical pitch angle θ0 in the shock-front
frame S. For example, if a non-relativistic proton has an initial energy K =
0.3 MeV and if a shock wave has an upstream velocity v1 = 150 km/s, the
ratio B1/B2 = 1/3, and the angle Ψ1 = 88◦ and 89◦, then we find, corre-
spondingly, θ0 = 55◦ and 77◦. As the angle Ψ1 increases toward 90◦, most of
the particles are really transmitted into the downstream side. At Ψ1 = 90◦,
which is the perpendicular shock case, there are no reflecting particles.

Formula (18.23) shows that

the relative increment of kinetic energy of a fast particle increases
when the angle Ψ1 increases toward 90◦.

The model under consideration predicts high field-aligned anisotropies for
a large Ψ1 because of conservation of first adiabatic invariant and the large
energy gains.

It is widely believed that the slow thermal particles inside the shock
front can also be considered as adiabatic, at least, in thick collisionless
shocks: the electron magnetic moment is conserved throughout the shock
and v2

⊥/B = const (Feldman et al., 1982). In very thin collisionless shock
(with a large cross-shock potential) the adiabaticity may break down, so that
electrons become demagnetized. It means that the magnetic moment is no
longer conserved, and a more substantial part of the energy may be transferred
into the perpendicular degree of freedom (Balikhin et al., 1993; Gedalin and
Griv, 1999).

18.3.2 (b) Some astrophysical applications

Observations of interplanetary shocks (e.g., Balogh and Erdös, 1991) show
that the intensive acceleration of protons occurs when the upstream magnetic
field is almost parallel to the shock front. Energetic particles entering the
shock front stay with it, crossing it many times and being accelerated by the
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electric field of the front. After the direction of the interplanetary magnetic
field changes again away from the parallel to the front, the intensive acceler-
ation ceases.

Owing to interplanetary magnetic field fluctuations the upstream field vec-
tor B1, if it is found to be parallel to the shock front, stays as such for only a
short time (a few minutes, in general). This time is enough for the low-energy
protons (Kp < 1 MeV) to be accelerated to about 2–3 times their original
energy but not enough for the high-energy protons (Kp < 10 MeV) to be
noticeably affected by the shock wave.

Single scatter-free shock drift interactions at quasi-perpendicular shocks
can accelerate particles to at most a few times the shock compression ratio.
Weak scattering during single drift interactions can increase this upper limit
for a small fraction of an incident particle distribution, but the energy spectra
will be still rather steep. One anticipates large energy gains and flatter spectra
that extend to high energies if some particles can return to the shock for many
drift interactions.
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Figure 18.5: A collapsing magnetic trap on the upstream side of a quasi-
perpendicular shock wave.

This is suggestive of the classical case of a collapsing magnetic trap
(Section 6.2), and is the basis of the model of proton trapping and accel-
eration due to multiple drift interactions along magnetic loops that convect
through a planar quasi-perpendicular shock (Wentzel, 1963, 1964; Gisler and
Lemons, 1990). Figure 18.5 represents a quasi-perpendicular shock, with a
small perturbation of the magnetic field superimposed on the unshocked ho-
mogeneous field B1. The heavy line displays a particular field line which
intersects the shock front plane x = 0 two times, forming a magnetic loop in
the upstream region.
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Upstream particles bounce back and forth along a loop and gain
parallel energy at each reflection until they fall within the loss cone
and transmit downstream.

Simple analytic models and detailed numerical study have shown that the
collapse of the trap by the convection of the loop field lines through the
shock is accompanied by a considerable increase of the accelerated proton
flux, which may be responsible for the ‘shock spike’ events observed near fast
mode interplanetary shock waves (Decker, 1993; Erdös and Balogh, 1994).

In general, if the magnetic field contains fluctuations with wavelengths
that are considerably larger than the gyroradii of the fast particles, a fraction
of particles is accelerated by a quasi-perpendicular shock to energy well above
the thermal energy (Giacalone and Ellison, 2000).

18.3.3 Oblique shock waves

If values of the angle α between the magnetic field and the shock front plane
are arbitrary, then the phase-averaged coefficients of reflection and transmis-
sion are complicated and can be found, in principle, by numerical calculations.
When

v1

vp
≤ α1 ≤ π

2
(18.27)

and the pitch angle θ is arbitrary, the order of magnitude of the energy increase

δK ≈ p v1

α1

 K = E − mc2 (18.28)

is small in comparison with the initial kinetic energy. In a general case, the
increase of particle energy is small when the Larmor ring of a particle crosses
the front once. Multiple interactions of a particle with the shock front is the
necessary condition for a considerable increase of energy.

One possibility for multiple interactions of a particle with the shock is a
strong MHD turbulence. More exactly, it is assumed that in a sufficiently
large region of space there exists an ensemble of MHD shocks which interact
successively with the particles. The investigation of particle acceleration by a
random shock wave ensemble is of certain interest in astrophysical applications
but the conditions of such an acceleration mechanism are not totally clear yet.

Another possibity is the propagation of one shock in a turbulent medium
or of an oblique collisionless shock when magnetic turbulence exists in the
regions upstream and downstream of the shock (Decker and Vlahos, 1986).
It is important, however, that the particle acceleration near the shock front
in a turbulent medium, i.e. the diffusive mechanism (Section 18.2) will take
place in the absence of a regular electric field. No terms should be added
to the basic diffusion-convection equation (18.4) to take account of the drift
mechanism in an oblique shock. The process is already included in the energy
change which is proportional to the divv term. This, of course, assumes that
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there is sufficient scattering and that other assumptions used in deriving the
diffusion-convection equations are also valid. That is not trivial.

The interesting possibility discussed in Section 18.3.2 is a combination of
a magnetic trap with an oblique shock wave. In vol. 2, Section 7.3, this idea
is applied to the particle acceleration in solar flares.

18.4 Practice: Exercises and Answers

Exercise 18.1. Derive formula (18.23) in Section 18.3.2.
Answer. According to the geometry shown in Figure 18.4, the frame of

reference S ′ moves with respect to the shock wave frame of reference S with
velocity (18.22):

vy = − cE

Bn
ey . (18.29)

In the frame S ′ there is no electric field; therefore there is no change in the
energy of a particle reflecting at the shock front, that is δE ′ = 0, where E ′

is the energy of the particle in S ′. Let us transform this condition back to
S by using the Lorentz transformation of the energy-momentum 4D-vector
(Landau and Lifshitz, Classical Theory of Field , 1975, Chapter 2, § 9):

px = p ′
x, py = γL

(
p ′

y +
vy

c2 E ′
)

, pz = p ′
z,

E = γL

(E ′ + vy p ′
y

)
. (18.30)

Since δE ′ = 0, it follows from (18.30) that

δE = γLvy δp ′
y. (18.31)

The change in the y component of momentum of the reflected particle in the
frame of reference S ′ is

δ p ′
y = −2p ′

y = 2γL

(
py − vy

c2 E ey

)
. (18.32)

Note that vectors py and vy point in opposite directions. Substituting (18.32)
into (18.31) gives us

δE =
2vy

1 − v 2
y /c2

[
py +

vy

c2

(K + mc2)] , (18.33)

where K = mv 2
p /2 is kinetic energy of a particle. Assuming K 
 mc 2 and

using (18.29), we obtain

δE = δK =
2E

B 2
n − E 2

( vp,y

c
Bn + E

)
mc2, (18.34)

where vp,y is the y component of the particle velocity.
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According to (18.21) the electric field

E =
1
c

v1By1 , (18.35)

where By1 is the y component of the vector B1. So we rewrite formula (18.34)
as follows

δK = 2mv 2
1

(vp,y/v1)(Bn/By1) + 1
(Bn/By1)2 − (v1/c)2

. (18.36)

The condition vy < c can equivalently be written as

Bn

By1
>

v1

c
or tg Ψ1 <

v1

c
. (18.37)

If we further assume that
Bn

By1
� v1

c
, (18.38)

we obtain from (18.36) the following formula

δK = 2mv 2
1

(
vp cos θ

v1
tg Ψ1 + tg2 Ψ1

)
, (18.39)

where θ is the pitch angle in the shock-front frame of reference S. Divid-
ing (18.39) by K, we obtain formula (18.23).



Chapter 19

Plasma Equilibrium in
Magnetic Field

The concept of equilibrium is fundamental to any discussion of the
energy contained in an astrophysical object or phenomenon. The MHD
non-equilibrium is often related to the onset of dynamic phenomena
in astrophysical plasma.

19.1 The virial theorem in MHD

19.1.1 A brief pre-history

An integral equality relating different kinds of energy (kinetic, thermal, grav-
itational, etc.) of some region with a volume V and a surface S, is commonly
referred to as the virial theorem. It has been proved for mechanical systems
for the first time by Clausius (1870). The derivation of the virial theorem for
a mechanical system executing a motion in some finite region of space, veloci-
ties also being finite, can be found, for example, in Landau and Lifshitz (1976,
Mechanics, Chapter 2, § 10). Its relativistic form is presented in Landau and
Lifshitz (1975, Classical Theory of Field , Chapter 4, § 34).

The generalization of the virial theorem to include the magnetic energy in
the context of MHD was achieved by Chandrasekhar and Fermi (1953) when
addressing the question of the gravitational stability of infinitely conductive
masses of cosmic dimensions in the presense of a magnetic field. Although
“most students of physics will recognize the name of the virial theorem, few
can state it correctly and even fewer appreciate its power” (Collins, 1978).

343
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19.1.2 Deduction of the scalar virial theorem

The virial theorem is deduced from the momentum conservation law (see
the ideal MHD motion Equation (12.69) or Equation (13.1)) rather than the
energy conservation law. We have

ρ
dvα

dt
≡ ρ

(
∂vα

∂t
+ vβ

∂vα

∂rβ

)
= − ∂p

∂rα
− ∂Mαβ

∂rβ
− ρ

∂φ

∂rα
. (19.1)

Here

Mαβ =
1
4π

(
B2

2
δαβ − BαBβ

)
(19.2)

is the Maxwellian stress tensor. So we consider an ideal MHD plasma dis-
tributed within a limited region V of space. The gravitational potential at a
point r is

φ (r) = −G

∫
ρ (r ′)

| r − r ′ | d 3r ′, (19.3)

where G is the gravitational constant (Appendix 3), d 3r ′ = dx ′ dy ′ dz ′.
The partial differential Equations (19.1) are often very difficult to solve.

Moreover, in astrophysics, we may have such incomplete knowledge of a sys-
tem that it may not be worthwhile to work out an elaborate solution. In many
situations, it is possible to make important conclusions if we know some global
relationships among the different forms of energy in the system.

Let us multiply the plasma motion Equation (19.1) by rα and integrate
it over the volume V . We observe in passing that multiplication of (19.1) by
rγ rather than rα would result, on integrating, in the tensor virial theorem
and not in the scalar one (Chandrasekhar, 1981; see also Strittmatter, 1966;
Choudhuri, 1998).

First let us integrate the left-hand side of Equation (19.1) multiplied by rα.
We get ∫

ρ rα
dvα

dt
dV =

∫
rα

d 2rα

dt 2 ρ dV =
∫

rα
d 2rα

dt 2 dm . (19.4)

Here we have passed from the integration over volume to integration over
mass: dm = ρ dV . We rearrange formula (19.4) as follows

rα
d 2rα

dt 2 =
d

dt

(
rα

drα

dt

)
−
(

drα

dt

)2

=

=
d

dt

(
1
2

dr 2
α

dt

)
−
(

drα

dt

)2

=
1
2

d 2

dt 2 r 2
α − v 2

α .

On substituting this into (19.4), we obtain∫
ρ rα

dvα

dt
dV =

1
2

d 2

dt 2

∫
r2 dm −

∫
v2 dm =

1
2

d 2I

dt 2 − 2T. (19.5)
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Here
I =

∫
r 2 dm (19.6)

is the moment of inertia in the reference frame related to the mass center of
the system. When the system expands, its moment of inertia I increases.

T =
∫

v2

2
dm (19.7)

is kinetic energy or (to be more specific) the kinetic energy of macroscopic
motions inside the system.

Let us multiply the first term on the right-hand side of Equation (19.1)
by rα and integrate it over volume:

−
∫
V

rα
∂p

∂rα
dV = −

∮
S

p rα dSα + 3
∫
V

p dV, (19.8)

since
∂

∂rα
( prα) = rα

∂p

∂rα
+ p

∂rα

∂rα
= rα

∂p

∂rα
+ 3p .

The Gauss theorem was used to integrate the divergence over the volume in
formula (19.8).

If Uth is the thermal energy of the plasma, γg is the ratio of specific heats
at constant pressure and at constant volume, then∫

V

p dV = (γg − 1) Uth . (19.9)

Therefore

−
∫
V

rα
∂p

∂rα
dV = −

∮
S

p ( r · dS ) + 3 (γg − 1) Uth . (19.10)

Similarly we calculate the integral

−
∫
V

rα
∂Mαβ

∂rβ
dV = −

∫
S

Mαβ rα dSβ +
∫
V

Mαβ δαβ dV (19.11)

since
∂

∂rβ
(rα Mαβ) = rα

∂Mαβ

∂rβ
+ Mαβ δαβ .

On rearranging, we find from (19.11) and (19.2)

−
∫
V

rα
∂Mαβ

∂rβ
dV = M −

∫
S

[
B2

8π
(r · dS) − 1

4π
(B · r) (B · dS)

]
, (19.12)
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where

M =
∫
V

B2

8π
dV (19.13)

is the magnetic energy of the system.
The third term on the right-hand side of Equation (19.1) gives

−
∫
V

rα
∂φ

∂rα
ρ dV =

∫
V

ρ rα
∂

∂rα

∫
V ′

Gρ (r ′)
| r − r ′ | dV ′ dV =

= G

∫
V

∫
V ′

ρ ρ ′ rα
∂

∂rα

1√(
rβ − r ′

β

)2
dV dV ′. (19.14)

We rewrite the expression as follows. Let the distance R =

√(
rβ − r ′

β

)2
.

Then

rα
∂

∂rα

1
R

=
1
2

(
rα

∂

∂rα

1
R

+ r ′
α

∂

∂r ′
α

1
R

)
= − 1

R

and

−
∫
V

rα
∂φ

∂rα
ρ dV = Ω , (19.15)

where

Ω = − G

2

∫
V

∫
V ′

ρ ρ ′

R
dV dV ′, (19.16)

is the gravitational energy of the system. Obviously, the energy is negative.
Combining (19.5), (19.10), (19.12), and (19.15) into a single equation, we

finally obtain

1
2

d2I

dt 2 = 2T + 3 (γg − 1) Uth + M + Ω −
∮
S

p ( r · dS )−

−
∮
S

[
B2

8π
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
. (19.17)

Formula (19.17) is called the virial theorem. It has repeatedly been used
in astrophysics when ‘discussing the question of the stability’ of equilibrium
systems of various types. More exactly, this integral force balance relation
is nothing more than a necessary condition for equilibrium. So it may
be well used as a non-existance theorem for the equilibrium problem to find
circumstances when non-equilibrium may occur.
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19.1.3 Some astrophysical applications

The positive terms on the right-hand side of Equation (19.17) lead to an
increase in the moment of inertia I of an astrophysical system under consid-
eration. It is no wonder that the kinetic energy T or the thermal energy Uth

tends to expand the system. The effect of magnetic field is more subtle. The
magnetic field has tension along field lines and magnetic pressure. So we
expect the overall average effect to be expansive. On the other hand, a nega-
tive term on the right-hand side, which is the gravitational energy Ω, tries to
make the system more compact. Gravity is the only force which introduces a
confining tendency in the system.

By way of illustration, let us consider some consequences of the virial the-
orem for the case of a steady system, i.e. when gravity balances the expansive
forces so that

d2I

dt 2 = 0 . (19.18)

Moreover let the kinetic energy of macroscopic motions be equal to zero

T = 0 , (19.19)

i.e. the system is in static equilibrium. Both assumptions must be justified
carefully, if they are applied to astrophysical plasma.

Let us suppose also that the system is finite and the surface S, over which
the integration in (19.10) and (19.12) is performed, can be moved sufficiently
far away (formally speaking, to infinity), so that∮

S

p ( r · dS ) = 0 (19.20)

and ∮
S

[
B2

8π
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
= 0 . (19.21)

Then from the virial theorem (19.17) it follows that

3 (γg − 1) Uth + M + Ω = 0 . (19.22)

Introduce the ‘total’ (without what has been neglected) energy of the system

E = Uth + M + Ω . (19.23)

Eliminating the thermal energy Uth from Equations (19.22) and (19.23), the
total energy is expressed as follows

E = − (3γg − 4)
3 (γg − 1)

( | Ω | − M ) .

(19.24)
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In a sense, the equilibrium is stable if E < 0, i.e.

(3γg − 4)
3 (γg − 1)

( | Ω | − M ) > 0 , (19.25)

which is equivalent, once γg > 4/3, to

| Ω | > M . (19.26)

It is self-evident that inequality (19.26) is just a necessary condition for the
dynamical global stability of a system. The condition is by no means sufficient.
It can be used to show a non-existence of equilibrium of the system.

Let us consider two particular cases of astrophysical interest.
(a) If M = 0 then the system can be stable only for γg > 4/3. This

condition is easy to understand. The pressure inside the system under adia-
batic compression (p ∼ ρ γg ) must grow faster than the gravitational pressure
pg ∼ ρ 4/3. It is in this case that the system, for instance a star, can be
sufficiently resilient to resist the gravitational collapse. That is why a star
consisting of a monatomic gas (with γg = 5/3) can be dynamically stable.

(b) Let M > 0. Generally, the necessary condition for stability (19.25)
can be, in principle, violated. What this means is that the field diminishes the
stability of a star. Given a sufficiently strong field, gravitational attraction
forces cannot balance the magnetic repulsion of the constituents of the system.
However, such a situation is difficult to conceive.

In actuality, gravitational compression cannot result in M > | Ω | since,
given the freezing-in condition and isotropic compression, pmag ∼ ρ 4/3 in
common with pg ∼ ρ 4/3. It is also impossible to obtain M > | Ω | by dint
of magnetic field amplification owing to differential rotation, since | Ω | >
2T in a gravitationally bound system. On the other hand, the energy of a
magnetic field generated by differential rotation must remain less than the
kinetic energy T of the rotation motion, i.e. M < T . Hence M < | Ω |.

At most, the condition M ∼ |Ω | can be realized. This situation is proba-
bly realized in stars of the cold giant type with a large radius. Perhaps such
stars are at the limit of stability, which reveals itself as non-steady behaviour.

Condition (19.26) allows us to evaluate the upper limit of the mean in-
tensity of a magnetic field inside a star or other equilibrium configuration.
Substitute the gravitational energy of a uniform ball,

Ω = −3
5

GM2

R
, (19.27)

in (19.26). The result is (Syrovatskii, 1957)

B < Bcr = 2 × 108
(

M

M	

)(
R

R	

)−2

. (19.28)

For the Sun, magnetic field B must be less than 2 × 108 Gauss. For the most
magnetic stars of the spectral class A, which are observed to have fields ∼ 104
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Gauss, the condition B < 3 × 107 Gauss must hold. Hence these magnetic
stars called the Ap stars, because they possess some peculiar properties (e.g.,
Hubrig et al., 2000), still are very far from the stability limit. As is seen from
the Syrovatskii condition (19.28), the cold giants with large radii could be
closer to such a limit.

Given a uniform field inside a star, on approaching the limit established
by (19.28), the form of the star increasingly deviates from a sphere:

the magnetic field resists gravitational compression of a collapsing
star in the direction perpendicular to the field, whereas the plasma
may freely flow along the field lines.

As a result, the equilibrium configuration is represented by a rotation ellipsoid
compressed in the field direction. The virial theorem can be written (e.g.,
Nakano, 1998) for an axisymmetric oblate magnetic cloud of mass M and
semimajor axes a⊥ and a‖, respectively, embedded in a medium of pressure ps.
This is typical for the problem of star formation in magnetic clouds.

The action of a magnetic field is analogous to rotation (Strittmatter, 1966).
Furthermore, both the strong field and fast rotation are typical of pul-
sars, especially of the magnetars (see Exercise 14.2). So both these factors
determine the real flattening of a neutron star. The flattening can be cal-
culated using the tensor virial theorem. Note, however, that for a neutron
star with M ∼ M	 and R ∼ 10 km the critical magnetic field (19.28) is still
unprecedentelly high: Bcr ∼ 1018 G. We call such fields ultrastrong .

Magnetars, or ‘magnetically powered neutron stars’, could form via a
magnetic dynamo action in hot, nascent neutron stars if they are born spinning
rapidly enough. Magnetism may be strong enough within these stars to evolve
diffusively, driving internal heat dissipation that would keep the neutron stars
hot and X-ray bright. Above a field strength of ∼ 1014 G, the evolving field
inevitably induces stresses in the solid crust. Observations (e.g., Feroci et
al., 2001) indicate that giant flares, involved a relativistic outflow of pairs and
hard gamma rays, can plausibly be triggered by a large fracture in the crust
of a neutron star with a field exceeding 1014 G. So the observed giant flares
are presumably due to local magnetic instabilities in magnetars.

On the other hand, numerical studies (Bocquet et al., 1995) have confirmed
that neutron stars with the ultrastrong internal magnetic fields are globally
stable up to the order of 1018 G. They also have found that, for such values,
the maximum mass of neutron stars increases by 13–29 % relative to the
maximum mass of non-magnetized neutron stars.

If ultrastrong fields exist in the interior of neutron stars, such fields will
primarily affect the behavior of the residual charged particle. Moreover, con-
tributions from the anomalous magnetic moment of the particles in a magnetic
field should also be significant (Broderic et al., 2000). In particular, in a ul-
trastrong field, complete spin polarization of the neutrons occurs as a result of
the interaction of the neutron magnetic moment with the magnetic field. The
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presence of a sufficiently strong field changes the ratio of protons to neutrons
as well as the neutron drip density (Suh and Mathews, 2001).

The virial theorem is sometimes applied in solar physics, for example,
while studying active regions (Section 19.5). It allows us to evaluate the
energy of equilibrium electric currents and show that the energy can be large
enough to explain the flaring activity (Litvinenko and Somov, 1991a); see also
discussion of the problem of the global MHD equilibria and filament eruptions
in the solar corona (Litvinenko and Somov, 2001).

19.2 Force-free fields and Shafranov’s theorem

19.2.1 The simplest examples of force-free fields

A particular case of equilibrium configurations of astrophysical plasma in a
magnetic field is the force-free field , i.e. the field which does not require
external forces. As was noted in Section 13.1, force-free fields naturally occur
when the magnetic force dominates all the others, and hence the magnetic
field must balance itself

B × curl B = 0 . (19.29)

Let us consider several examples of such equilibrium configurations.

19.2.1 (a) The Syrovatskii force-free field

Let the magnetic field vector be situated in the plane parallel to the plane (x, y),
but depend only on z

B = { Bx(z), By(z), 0 } . (19.30)

Substitute (19.30) in Equation (19.29):

curl B =
{

− ∂By

∂z
,

∂Bx

∂z
, 0
}

, (19.31)

B × curl B =
{

0 , 0 , Bx
∂Bx

∂z
+ By

∂By

∂z

}
= 0 . (19.32)

The resulting equation is

∂

∂z

(
B 2

x + B 2
y

)
= 0 , (19.33)

with the solution
B 2 = B 2

x + B 2
y = const . (19.34)

This is the simplest example of a force-free field. The magnitude of the
field vector is independent of z. A one-dimensional force-free field of this type
may be considered to be a local approximation of an arbitrary force-free field
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in a region of the magnetic ‘shear’ in the solar atmosphere. As a particular
example, suitable for formal analysis, one may adopt the force-free field of the
type

B = { B0 cos kz , B0 sin kz , 0 } (19.35)

(Bobrova and Syrovatskii, 1979). The field lines, and hence the electric cur-
rent, lie in the plane (x, y). The direction of the lines rotates with increasing z.

19.2.1 (b) The Lundquist force-free field

The magnetic field of a direct current flowing along the z axis tends to com-
press the plasma to the axis, owing to the tension of the field lines (see Sec-
tion 13.1.3). By contrast,

a bundle of parallel field lines tends to expand by the action of the
magnetic pressure gradient.

Given the superposition of these fields for a certain relationship between them,
the total magnetic force can be zero. Field lines for such a force-free field have
the shape of spirals shown in Figure 19.1.

Figure 19.1: A helical magnetic field in
the form of a spiral of constant slope on
a cylindrical surface r⊥ = const.

x
y

z r⊥

The corresponding axially symmetric solution to Equation (19.29) in cylin-
drical coordinates r⊥, φ, z is of the form (Lundquist, 1951):

Bz = A J0 (α r⊥) , Bφ = A J1 (α r⊥) , Br = 0 . (19.36)

Here J0 and J1 are the Bessel functions, A and α are constants.
A distinguishing feature of the field is that B2 ∼ r−1

⊥ for large r⊥ since
Bessel functions Jn ∼ r

−1/2
⊥ as r⊥ → ∞ (n = 0, 1). The magnetic energy

M =
∫

B2

8π
dV ∼ r−1

⊥ r2
⊥ ∼ r⊥ (19.37)

diverges for large r⊥. Such a divergence of magnetic energy is known to
be typical of force-free fields and will be explained below.
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19.2.2 The energy of a force-free field

Let us retain only magnetic terms in the virial theorem; we have

M −
∮
S

[
B2

8π
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
= 0 . (19.38)

Provided the electric currents occupy a finite region, the value of the magnetic
field is proportional to r−3 (or higher degrees of r−1). Once the surface
of integration S is expanded to infinity, the surface integral tends to zero.
Equality (19.38) becomes impossible.

Therefore any finite magnetic field cannot contain itself. There must be
external forces to balance the outwardly directed pressure due to the total
magnetic energy M.

The same statement may be formulated as follows. The force-free field
cannot be created in the whole space. This is the so-called Shafra-
nov theorem (Shafranov, 1966). While stresses may be eliminated in a given
region V , they cannot be canceled everywhere. In general

a force-free configuration requires the forces needed to balance the
outward pressure of the magnetic field to be reduced in magnitude
by spreading them out over the bounding surface S.

In this way, the virial theorem sets limits on the space volume V that can be
force-free.

The Shafranov theorem is the counterpart of the known Irnshow theorem
(see Sivukhin, 1996, Chapter 1, § 9) concerning the equilibrium configuration
of a system of electric charges. Such a configuration also can be stable only
in the case that some external forces, other than the electric ones, act in the
system.

In fact, Shafranov (1966) has proved a stronger statement than the above
theorem on the force-free field. He has taken into account not only the terms
corresponding to the magnetic force in (19.17) but the gas pressure as well:∫

V

(
3p +

B2

8π

)
dV =

=
∮
S

[(
p +

B2

8π

)
( r · dS ) − 1

4π
(B · r ) (B · dS )

]
. (19.39)

If the plasma occupies some finite volume V , the pressure outside of this
volume being zero, and if electric currents occupy a finite region, then the
surface integral tends to zero, once the surface of integration, S, is expanded
to infinity. On the other hand, the expression under the integral sign on the
left-hand side is always positive. Hence the integral is positive. Thus the
equality (19.39) turns out to be impossible. Therefore
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any finite equilibrium configuration of a plasma with a magnetic
field can exist only in the presence of external forces which, apart
from the gas pressure, serve to fix the electric currents.

In a laboratory, fixed current conductors must be present. In this case the
right-hand side of (19.39) is reduced to the integral over the surface of the
conductors.

Under astrophysical conditions, the role of the external force is frequently
played by the gravitational force or by an external magnetic field having its
sources outside the volume under investigation. However these sources must
be kept and driven by non-magnetic forces.

A typical example of such a situation is the magnetic field of an active
region on the Sun. This is the sum of the proper field created by currents
flowing inside the active region, and the external field with the sources situated
(and fixed) below the photosphere (Litvinenko and Somov, 1991a). In this
case the formula for the magnetic energy of the equilibrium system contains
a term due to the interaction of internal currents (in particular current sheets
in the regions of reconnection) with the external magnetic field.

19.3 Properties of equilibrium configurations

19.3.1 Magnetic surfaces

Let us consider the case of magnetostatic equilibrium

−∇p +
1
4π

curl B × B − ρ ∇φ = 0 . (19.40)

The gravitational force is supposed to be negligible

ρ ∇φ = 0 , (19.41)

On dropping the third term in Equation (19.40) and taking the scalar product
with vector B we obtain

B · ∇p = 0 ,
(19.42)

i.e. magnetic field lines in an equilibrium configuration are situated on the
surface p = const. Therefore

in order to contain a plasma by the magnetic field, the field lines
are forbidden to leave the volume occupied by the plasma.

There is a common viewpoint that, by virtue of the condition

div B = 0 , (19.43)
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Figure 19.2: (a) A line current J1 and a ring current J2. (b) The field lines
of the total field B 1 + B 2 form a toroidal surface S.

field lines may either close or go to infinity. However the other variant is
possible, when a field line fills up an entire surface – magnetic surface.

Let us consider the field of two electric currents – a line current J1 flow-
ing along the vertical z axis (Figure 19.2a) and a plane current ring J2 (see
Tamm, 1989, Chapter 4, § 53). If there were only the current J1, the field
lines of this current B 1 would constitute circumferences centred at the z axis.
The field lines B 2 of the ring current J2 lie in meridional planes. The total
field B = B 1 + B 2 forms a helical line on a toroidal surface S. The course of
this spiral depends on the ratio B1/B2. Once this is a rational number, the
spiral will close. However, in general, it does not close but continuously fills
up the entire toroidal surface S (Figure 19.2b).

By virtue of condition (19.42), the plasma pressure at such a surface (called
the magnetic one) is constant. Such a magnetic field can serve as a trap for
the plasma. This fact constitutes the basis for constructing laboratory devices
for plasma containment in stellarators, suggested by Spitzer.

Take the scalar product of Equation (19.40), without the gravitational
force, with the electric current vector

j =
c

4π
curl B . (19.44)

The result is

j · ∇p = 0
(19.45)

which, in combination with (19.42), signifies that, in an equilibrium configu-
ration, the electric current flows on magnetic surfaces (Figure 19.2b).

In general, magnetic fields do not form magnetic surfaces. Such surfaces
arise in magnetohydrostatic equilibria and for some highly symmetric field
configurations. In the case of the latter, Equations (14.19) for the magnetic
field lines admit an exact integral which is the equation for the magnetic
surface.
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19.3.2 The specific volume of a magnetic tube

Let us consider two closed magnetic surfaces: p = const and p + dp = const.
Construct a system of noncrossing partitions between them (Figure 19.3). Let
d l 1 be the line element directed normally to the surface p = const:

d l 1 =
∇p

| ∇p | 2 dp . (19.46)

The vectors d l 2 and d l 3 are directed along the two independent contours l2
and l3 which may be drawn on a toroidal surface: for example the curve l2
is directed along a large circle of the toroid while l3 lies along the small one.
The surface element of this partition is

dS 3 = d l 1 × d l 2 . (19.47)
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Figure 19.3: The calculation of the electric current between two magnetic
surfaces.

The total current dJ3 flowing through the partition situated on the con-
tour l2 is

dJ3 =
∮
l 2

j · (d l 1 × d l 2) . (19.48)

According to Equation (19.45), the total current flowing through the system
of noncrossing partitions between the two magnetic surfaces is constant. In
other words, dJ3 is independent of the choice of the integration contour. We
are concerned with the physical consequences of this fact.

In order to find the expression for the current density j in an equilibrium
configuration, take the vector product of Equation (19.40) with the magnetic
field B. The result is

B × ∇p =
1
c

B × ( j × B ) ,

which, on applying the formula for a double vector product to the right-hand
side, becomes

cB × ∇p = jB 2 − B ( j × B ) .
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Thus we have
j = c

B × ∇p

B 2 + f B , (19.49)

where f = f(r) is an arbitrary function. If need be, it can be found from the
condition div j = 0.

Substitute (19.49) in the integral (19.48). The last takes the following
form (see Exercise 19.4):

dJ3 = − c dp

∮
l 2

B · d l 2

B 2 +
∮
l 2

f(r)B · (d l 1 × d l 2) . (19.50)

Provided the contour l2 coincides with a closed field line, the vector

d l 2 =
B
B

dl ,

and, therefore, the second term on the right-hand side of Formula (19.50)
vanishes.

Once a magnetic field line closes on making one circuit of the toroid, the
expression

dJn = −c dp

∮
dl

B
(19.51)

defines the total current flowing between neighbouring magnetic surfaces nor-
mal (the subscript n) to the field line. Since the magnitude of this current is
independent of the choice of contour, for each field line on a magnetic surface
the integral

U =
∮

dl

B
(19.52)

is constant. The condition of constancy of U can be generalized to include the
surface with unclosed field lines (Shafranov, 1966). Thus (Kadomtsev, 1966),

under the condition of magnetostatic equilibrium, the magnetic sur-
face consists of the field lines with the same value of U .

Let us introduce the notion of the specific volume of a magnetic tube
(Rosenbluth and Longmire, 1957) or simply the specific magnetic volume as
the ratio of its geometric volume dV to the magnetic flux d Φ through the
tube. If dSn is the cross-sectional surface of the tube, its geometric volume is

dV =
∮

dSn dl

whereas the magnetic flux
d Φ = B dSn .
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On the basis of the magnetic flux constancy inside the tube of field lines, i.e.
d Φ = const, we deduce that

d V

d Φ
=
∮

dSn

B dSn
dl =

∮
dl

B
= U. (19.53)

The stability of an equilibrium MHD configuration can be judged by the
condition (19.52). This property will be discussed in the next Section.

19.3.3 The flute or convective instability

Much like any gas with a finite temperature, the plasma in a magnetic field
tends to expand. However, given a high conductivity, it cannot move inde-
pendently of the magnetic field. The plasma moves together with the field
lines in such a way that it travels to a region of the field characterized by a
greater specific volume.

In order for an equilibrium configuration to be stable with respect to a
given perturbation type – deformation of a tube of magnetic field lines – the
following condition is necessary (Rosenbluth and Longmire, 1957):

δU = δ

∮
dl

B
< 0 . (19.54)

To put it another way,

the magnetostatic equilibrium is stable once the given type of de-
formation does not facilitate the plasma spreading,

i.e. increasing its specific volume.
As an example, let us consider the plasma in the magnetic field of a linear

current J :
Bϕ =

2J

cr
, (19.55)

here r, z, ϕ are cylindrical coordinates. In such a field there exists an equi-
librium plasma configuration in the form of an infinite hollow cylinder C as
shown in Figure 19.4a.

Let us calculate the specific volume for such a configuration. The geometric
volume of the tube of field lines is

d V = 2πr dr dz ,

whereas the magnetic flux

d Φ = Bϕ dr dz =
2J

cr
dr dz .

Hence the specific volume

U =
d V

d Φ
=

πc

J
r2. (19.56)
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Figure 19.4: (a) An equilibrium plasma configuration. (b) Unstable pertur-
bations of the outer boundary.

It is seen from (19.56) that the specific volume grows with the radius. In
particular, for small perturbations δr of the external surface S of the plasma
cylinder C

δU =
2πc

J
r δr > 0

once δr > 0. It is sufficient to have a small perturbation of the external
boundary of the plasma to obtain ring flutes which will rapidly grow towards
the wall W of the chamber as shown in Figure 19.4b.

19.3.4 Stability of an equilibrium configuration

The problems of plasma equilibrium and stability are of great value
for plasma astrophysics as a whole (Zel’dovich and Novikov, 1971; Chan-
drasekhar, 1981), and especially for solar physics (Parker, 1979; Priest, 1982).

The Sun seems to maintain stability of solar prominences and coro-
nal loops with great ease

(Tandberg-Hanssen, 1995; Acton, 1996) in contrast to the immense difficulty
of containing plasmas in a laboratory.

Therefore, sometimes, we need to explain how an equilibrium can remain
stable for a very long time. This is, for example, the case of reconnecting
current layers (RCLs) in the solar atmosphere and the geomagnetic tail (see
vol. 2, Sections 8.2 and 11.6.3). At other times, we want to understand

why magnetic structures on the Sun suddenly become unstable and
produce dynamic events
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of great beauty such as eruptive prominences and solar flares, coronal tran-
sients, and coronal mass ejections (CMEs).

The methods employed to investigate the stability of an equilibrium MHD
system are natural generalizations of those for studying a particle in one-
dimensional motion. One approach is to seek normal mode solutions as we
did it in Chapter 15.

An alternative approach for tackling stability is to consider the change in
potential energy due to a displacement from equilibrium. The main property
of a stable equilibrium is that it is at the minimum of the potential energy. So
any perturbations around the equilibrium ought to increase the total potential
energy. Hence, in order to determine if an equilibrium is stable, one finds
out if all types of perturbations increase the potential energy of the system
(Bernstein et al., 1958).

Recommended Reading: Morozov and Solov’ev (1966a), Kadomtsev (1960,
1966), Shu (1992).

19.4 The Archimedean force in MHD

19.4.1 A general formulation of the problem

Now we return to the equation of magnetostatic equilibrium (19.40). Let us
rewrite it as follows:

∇p = ρg + f , (19.57)

where
f =

1
c

j × B (19.58)

is the Lorentz force, g = −g ez is the gravity acceleration.
We begin by considering an incompressible conducting fluid situated in a

uniform magnetic field B 0 and electric field E 0 as illustrated by Figure 19.5.
Provided the current j 0 flowing in the fluid is uniform, the Lorentz force
created is uniform as well:

f 0 =
1
c

j 0 × B 0 . (19.59)

By virtue of Equation (19.57), the Lorentz force makes the fluid
heavier or lighter. In both cases the uniform volume force is potential and,
much like the gravity force, will be balanced by an additional pressure gradient
appearing in the fluid. As will be shown later, that allows the creation of a
regulated expulsion force (Figure 19.5) analogous to the Archimedean force
in ordinary hydrodynamics.

A body plunged into the fluid is acted upon by the force

F =
∫
V

( ρ1 g + f 1) dV +
∮
S

p 0 n dS . (19.60)
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Figure 19.5: Formulation of
the problem concerning the
Archimedean force in mag-
netohydrodynamics (see So-
mov, 1994b).

Here ρ1 is the density of the submerged body, which is generally not equal to
that of the fluid ρ0;

f 1 =
1
c

j 1 × B 0 (19.61)

is the volume Lorentz force, j 1 is the current inside the body, n is the inward
normal to the surface S, and p 0 is the pressure on the body from the fluid,
resulted from (19.57):

∇p 0 = ρ0 g + f 0 . (19.62)

19.4.2 A simplified consideration of the effect

If the current j 0 was uniform, the right-hand side of Equation (19.62) would
be a uniform force, and formula (19.60) could be rewritten as

F =
∫
V

( ρ1 g + f 1 ) dV −
∫
V

∇p 0 dV (19.63)

or

F =
∫
V

( ρ1 − ρ0)g dV +
1
c

∫
V

( j 1 − j 0 ) × B 0 dV.

(19.64)

The first term in (19.64) corresponds to the usual Archimedean force in
hydrodynamics. It equals zero once ρ1 = ρ0. When ρ1 > ρ0, the direction
of this force coinsides with the gravitational acceleration g. The second term
describes the magnetic expulsion force. It vanishes once j 1 = j 0 , i.e. σ1 = σ0.
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The second term in formula (19.64) shows that the magnetic expulsion
force, different from the known Parker’s magnetic buoyancy force (see Chap-
ter 8 in Parker, 1979) by its origin, appears provided σ1 �= σ0. This fact
has been used to construct, for example, MHD devices for the separation of
mechanical mixtures. In what follows we shall call the second term in (19.64)
the magnetic σ-dependent force:

Fσ =
1
c

∫
V

(σ1 − σ0) E 0 × B 0 dV. (19.65)

j

F

0
j

0

σ Fσ(a) (b)

Figure 19.6: Opposite orientation of the σ-dependent force in two opposite
cases: (a) σ1 > σ0 and (b) σ1 < σ0. Appearence of a non-uniform distribution
of electric current is shown.

Note, however, that the simplest formula (19.64) is of purely illustrative
value since the electric field and current density are not uniform in
the presence of a body with conductivity σ1 which is not equal to that
of the fluid σ0 (Figure 19.6). In this case, the appearing σ-dependent force
is generally not potential. Hence it cannot be balanced by potential forces.
That is the reason why

the magnetic σ-dependent force generates MHD vortex flows of the
conducting fluid.

The general analysis of the corresponding MHD problem was made by Andres
et al. (1963). The stationary solutions for a ball and a cylinder were obtained
by Syrovatskii and Chesalin (1963) for the specific case when both the mag-
netic and usual Reynolds numbers are small; similar stationary solutions for
a cylinder see also in Marty and Alemany (1983), Gerbeth et al. (1990). The
character of the MHD vortex flows and the forces acting on submerged bodies
will be analyzed in Sections 20.3 and 20.4.

19.5 MHD equilibrium in the solar atmosphere

The magnetic configuration in an active region in the solar atmosphere is, in
general, very complex and modelling of dynamical processes in these regions
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requires a high degree of idealization. First, as regards the most powerful
and fascinating of these processes, the two-ribbon flare, the typical preflare
magnetic field distribution seems to conform to a certain standard picture: a
magnetic arcade including a more or less pronounced plage filament, promi-
nence. Second, instead of dynamics, models deal with a static or steady-state
equilibrium in order to understand the causes of a flare or another transient
activity in the solar atmosphere as a result of some instability or lack of equi-
librium.

So it is assumed that initially the configuration of prominence and overly-
ing arcade is in equilibrium but later the eruption takes place.

Either the MHD equilibrium of solar plasma has become unstable
or the equilibrium has been lost.

One limiting possibility is that the magnetic field around the prominence
evolves into an unstable or non-equilibrium configuration and then drives the
overlying magnetic arcade. However observations imply that this is unlikely.
An alternative is that the overlying arcade evolves until it is no longer in
stable equilibrium and then its eruption stimulates the prominence to erupt
by removing stabilising field lines. Presumably this is the case of a coronal
loop transient and coronal mass ejection (CME).

The idealized models used in theoretical and numerical studies of this prob-
lem usually consider two-dimensional force-free arcade configurations with
foot points anchored in the photosphere which are energized, for example, by
photospheric shear flows in the direction along the arcade (see Biskamp and
Welter, 1989). Some other models take into account the gas pressure gradient
and the gravitational force (Webb, 1986).

However it is important to investigate more general circumstances when
equilibrium and non-equilibrium may occur. The electromagnetic expulsion
force – a MHD analogue of the usual Archimedean force – plays an important
part in the dynamics of coronal plasma with a non-uniform distribution of
temperature and, hence, electric conductivity. More exactly, the condensa-
tion mode of the radiatively-driven thermal instability in an active region may
result in the formation of cold dense loops or filaments surrounded by hot rar-
ified plasma (see Somov, 1992). The effect results from the great difference of
electric conductivities outside and inside the filaments. The force can generate
vortex flows (see Section 20.4) inside and in the vicinity of the filaments as
well as initiate the non-equilibrium responsible for transient activities: flares,
CMEs etc.

The virial theorem confirms this possibility and clarifies the role of pre-
flare reconnecting current sheets in MHD equilibrium and non-equilibrium of
an active region. Correct use of the virial theorem confirms the applicability
of reconnection in current sheets for explaining the energetics of flares (Litvi-
nenko and Somov, 1991a, 2001) and other non-steady phenomena in the solar
atmosphere.
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19.6 Practice: Exercises and Answers

Exercise 19.1. Show that, apart from the trivial case of a potential field,
the magnetic fields for which

curl B = αB (19.66)

will be force-free. In the most general case, α will be spatially dependent.
Answer. Just substitute formula (19.66) in Equation (19.29).

Exercise 19.2. Show that the force-free fields with α = const represent the
state of minimal magnetic energy in a closed system (Woltjer, 1958).

Hint. First, assume perfect conductivity and rewrite the freezing-in equa-
tion (12.71) by using B = curl A as follows

∂ A
∂t

= v × (∇ × A) . (19.67)

Here A is the vector potential. Using Equation (19.67), show that

H =
∫
V

A · (∇ × A) dV = const

(19.68)

for all A which are constant on the boundary S of the region V . The integral H
is called the global magnetic helicity of the closed system under consideration
(for more detail see vol. 2, Section 12.1.1).

Second, examine the stationary values of the magnetic energy

M =
∫
V

B2

8π
dV =

∫
V

1
8π

(curlA)2 dV. (19.69)

Introduce a Lagrangian multiplier α/8π and obtain the following condition
for stationary values

δ

∫
V

[
(curlA)2 − αA · curlA

]
dV = 0 . (19.70)

Performing the variation, Equation (19.66) follows with α = const. Such fields
are called linear force-free fields.

Exercise 19.3. The highly-conductive plasma in the solar corona can support
an electric field E ‖ if E ‖ 
 EDr where EDr is the Dreicer field (8.70). In
the corona EDr ≈ 7×10−6 V cm−1 (Exercise 8.4). Evaluate the characteristic
values of the magnetic field B and the velocity v of plasma motions in the
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corona which allow us to consider an equilibrium of moving plasma in the
corona as a force-free one.

Answer. Let us evaluate an electric field as the electric field related to a
motion of magnetic field lines in the corona

E ‖ ≈ E ≈ 1
c

vB ≈ 10−8 v (cm s−1) B (G) , V cm−1 . (19.71)

From the condition that this field must be much smaller than the Dreicer field
we find that

v (cm s−1) B (G) 
 108 EDr ≈ 7 × 102 . (19.72)

So, with the magnetic field in the corona B ∼ 100 G, the plasma motion
velocity must be very small: v 
 10 cm s−1. Hence, if the electric fields that
are parallel to the magnetic field lines have the same order of magnitude as
the perpendicular electric fields, the solar corona hardly can remain force-free
with ordinary collisional conductivity because of the motion of magnetic field
lines. The electric runaway effects (Section 8.4.2) can become important even
at very slow motions of the field lines in the corona. The minimum current
corona (see vol. 2, Sections 3.3.1 and 3.4.3) seems to be a more realistic
approximation everywhere except the strongly-twisted magnetic-flux tubes.

Exercise 19.4. Derive formula (19.50) in Section 19.3.2 for the total electric
current flowing through the system of noncrossing partitions between two
magnetic surfaces.

Answer. Substitute the electric current density (19.49) in the inte-
gral (19.48):

j · (d l 1 × d l 2) =
c

B 2 (B × ∇p ) · (d l 1 × d l 2) + f B · (d l 1 × d l 2) . (19.73)

Let us rearrange the first item, using the well-known Lagrange identity in
vector analysis:

(a × b) · (c × d) = (a · c) (b · d) − (b · c) (a · d) .

We get

(B × ∇p ) · (d l 1 × d l 2) = (B · d l 1) (∇p · d l 2) − (B · d l 2) (∇p · d l 1) .

By virtue of (19.42) and (19.46),

(B · d l 1) = (B · ∇p )
dp

| ∇p | 2 = 0 , (∇p · d l 1) = dp .

Hence
(B × ∇p) · (d l 1 × d l 2) = − (B · d l 2) dp . (19.74)
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Substitute (19.74) in (19.73):

j · (d l 1 × d l 2) = − c
dp

B 2 (B · d l 2) + f(r)B · (d l 1 × d l 2) .

Thus the expression (19.48) for current dJ3 takes the form

dJ3 = − c dp

∮
l 2

B · d l 2

B 2 +
∮
l 2

f(r)B · (d l 1 × d l 2) , (19.75)

q.e.d.



Chapter 20

Stationary Flows in a
Magnetic Field

There exist two different sorts of stationary MHD flows depending
on whether or not a plasma can be considered as ideal or non-ideal
medium. Both cases have interesting applications in modern astro-
physics.

20.1 Ideal plasma flows

Stationary motions of an ideal conducting medium in a magnetic field are
subject to the following set of MHD equations (cf. (12.67)):

(v · ∇)v = −1
ρ

∇
(

p +
B2

8π

)
+

1
4πρ

(B · ∇)B , (20.1)

curl (v × B) = 0 , (20.2)

div ρv = 0 , (20.3)

div B = 0 , (20.4)

(v · ∇) s = 0 , (20.5)

p = p (ρ, s) . (20.6)

The induction Equation (20.2) is satisfied identically, provided the motion
of the medium occurs along the magnetic field lines, i.e.

v ‖B .

(20.7)

367
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20.1.1 Incompressible medium

In the case of an incompressible fluid (ρ = const) Equations (20.1)–(20.6)
have the general solution (Syrovatskii, 1956, 1957):

v = ± B√
4πρ

, (20.8)

∇
(

p +
B2

8π

)
= 0 . (20.9)

Here B is an arbitrary magnetic field: the form of the field lines is unimpor-
tant, once condition (20.4) holds. A conducting fluid flows parallel or anti-
parallel to the magnetic field. We shall learn more about such equilibrium
flows later on.

It follows from (20.8) that

ρv2

2
=

B2

8π
, (20.10)

while Equation (20.9) gives

p +
B2

8π
= const . (20.11)

For the considered class of plasma motions along the field lines, the equiparti-
tion of energy between that of the magnetic field and the kinetic energy of the
medium takes place, whereas the sum of the gas pressure and the magnetic
pressure is everywhere constant.

The existence of the indicated solution means that

an arbitrary magnetic field and an ideal incompressible medium
in motion are in equilibrium, provided the motion of the medium
occurs with the Alfvén speed along magnetic field lines.

Stationary flows of this type can be continuous in the whole space as well as
discontinuous at some surfaces. For example, the solution (20.10) and (20.11)
can be realized as a stream or non-relativistic jet of an arbitrary form, flowing
in an immovable medium without a magnetic field.

Note that the tangential discontinuity at the boundary of such a jet is
stable, since, by virtue of (20.10), the condition (16.38) by Syrovatskii is valid:

B2

8π
>

1
4

ρv2

2
. (20.12)

Such stable stationary jets of an incompressible fluid can close in rings and
loops of an arbitrary type.
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20.1.2 Compressible medium

In a compressible plasma (ρ �= const) the solution (20.8) is still possible, once
the density of the plasma does not change along the field lines:

B · ∇ρ = 0 . (20.13)

Obviously, this condition is necessary, but not sufficient. On substituting the
solution (20.8) in Equation (20.3), we get

div ρv = ± 1√
4π

[
1√
ρ

div B − 1
2

ρ−3/2 B · ∇ρ

]
= 0

by virtue of (20.4) and (20.13). Thus the condition (20.13) is enough for
Equation (20.3) to be satisfied identically. However, to ensure the fulfilment
of condition (20.9), we must require constancy of the gas and the magnetic
pressure or the absolute value of the magnetic field intensity. The latter means
that each magnetic flux tube must have a constant cross-section. Hence, by
virtue of (20.8), the flow velocity along the tube will be constant as well.

ω

v

v

(a) (b)

v

Figure 20.1: Rotational (a) and helical (b) stationary flows of a compressible
plasma.

Therefore stationary flows corresponding to the solutions (20.8) and (20.9),
which are flows with a constant velocity in magnetic tubes of a constant cross-
section, are possible in a compressible medium. An example of such a flow
is the plasma rotation in a ring tube (Figure 20.1a). We can envisage spiral
motions of the plasma, belonging to the same type of stationary solutions in
MHD (Figure 20.1b). This may be, for example, the case of an astrophysical
jet when plasma presumably moves along a spiral trajectory.

20.1.3 Astrophysical collimated streams (jets)

Powerful extragalactic radio sources comprise two extended regions contain-
ing magnetic field and synchrotron-emitting relativistic electrons, each linked
by a jet to a central compact radio source located in the nucleus of the asso-
ciated active galaxy (Begelman et al., 1984). These jets are well collimated
streams of plasma that emerge from the nucleus in opposite directions,



370 Chapter 20. Stationary MHD Flows

along which flow mass, momentum, energy, and magnetic flux. The oscilla-
tions of jets about their mean directions are observed. The origin of the jet
is crucial to understanding all active nuclei (Section 13.3).

The microquasars recently discovered in our Galaxy offer a unique oppor-
tunity for a deep insight into the physical processes in relativistic jets observed
in different source populations (e.g., Mirabel and Rodriguez, 1998; Atoyan and
Aharonian, 1999). Microquasars are stellar-mass black holes in our Galaxy
that mimic, on a small scale, many of the phenomena seen in quasars. Their
discovery opens the way to study the connection between the accretion of
plasma onto the black holes and the origin of the relativistic jets observed in
remote quasars (Section 13.3).

In spite of the vast differences in luminosity and the sizes of microquasars
in our Galaxy and those in active galaxies both phenomena are believed to
be powered by gravitational energy released during the accretion of plasmas
onto black holes. Since the accreting plasmas have non-zero angular momen-
tum, they form accreation disks orbiting around black holes. If the accreting
plasmas have non-zero poloidal magnetic field, the magnetic flux accumulates
in the inner region of the disk to form a global poloidal field penetrating the
disk. Such poloidal fields could also be generated by dynamo action inside
the accreation disk.

In either case, poloidal fields are twisted by the rotating disk toward the
azimuthal direction. Moreover this process extracts angular momentum from
the disk, enabling efficient accreation of disk plasmas onto black holes. In
addition, magnetic twist generated during this process accelerates plasmas in
the surface layer of the disk toward the polar direction by the Lorentz force to
form bi-directional relativistic jets which are also collimated by the magnetic
force (Lovelace, 1976).

20.1.4 MHD waves of arbitrary amplitude

Let us return to the case of an incompressible medium. Consider a steady
flow of the type (20.8) and (20.9) in the magnetic field shown in Figure 20.2.

Figure 20.2: A MHD wave
of arbitrary amplitude.
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v
h
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0

0

1 2

x

In the region 1, transformed to the frame of reference, the wave front of an
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arbitrary amplitude h = h (x) runs against the immovable plasma in the
uniform magnetic field B 0 , the front velocity being the Alfvén one:

v0 =
B 0√
4πρ

. (20.14)

On the strength of condition (20.11), in such a wave

p +
(B 0 + h)2

8π
= p0 +

B 2
0

8π
= const , (20.15)

i.e. the gas pressure is balanced everywhere by the magnetic pressure.

The non-compensated magnetic tension, (B ·∇)B/4π, provides the
wave motion of arbitrary amplitude

(cf. Section 15.2.2). In this sense, the MHD waves are analogous to elastic
waves in a string. MHD waves of an arbitrary amplitude were found for the
first time by Alfvén (1950) as non-stationary solutions of the MHD equations
for an incompressible medium (see also Alfvén, 1981).

The Alfvén or rotational discontinuity considered in Section 16.2 is a par-
ticular case of the solutions (20.8) and (20.9), corresponding to a discontinuous
velocity profile. Behaviour of Alfvén waves in the isotropic and anisotropic
astrophysical plasmas can be essentially different (see Section 7.3).

20.1.5 Differential rotation and isorotation

Now we consider another exact solution to the stationary equations of ideal
MHD. Let us suppose that an equilibrium configuration (for example, a
star) rigidly rotates about the symmetry axis of the cylindrically symmet-
ric (∂/∂ϕ = 0) magnetic field. The angular velocity ω is a constant vector.
Then

v = r × ω = { 0, 0, vϕ} , (20.16)

where
vϕ = ω r .

The induction Equation (20.2) is satisfied identically in this case.
Now we relax the assumption that ω is a constant. Consider the case of

the so-called differential rotation. Let the vector ω be everywhere parallel to
the z axis, i.e. the symmetry axis of the field B, but the quantity |ω | = ω be
dependent on the coordinates r and z, where r is the cylindrical radius:

ω = ω (r, z) .

Hence
vϕ = ω (r, z) r . (20.17)
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Substitution of (20.17) in the induction Equation (20.2), with allowance being
made for ∂/∂ϕ = 0 and (20.4), gives

curl (v × B) = eϕ r (B · ∇ω) = 0 .

Therefore

B · ∇ω = 0 ,
(20.18)

i.e. the magnetic field lines are situated at ω = const surfaces. When treated
in astrophysics, this case is called isorotation.

As a consequence of cylindrical symmetry, the ω = const surfaces are those
of rotation, hence isorotation does not change the magnetic field.

On the other hand, if the condition for isorotation (20.18) is not valid,
differential rotation twists the field lines, for example as shown in Fig-
ure 20.3, creating a toroidal field Bϕ. The magnetic field is amplified.

Rigid rotation and isorotation are widely discussed, when applied to stellar
physics, because

rotation is an inherent property of the majority of the stars having
strong magnetic fields

(Schrijver and Zwaan, 1999). What is the actual motion of the plasma in the
interior of stars?

ω ω

(a) (b)

B

Figure 20.3: Differential rotation creates the toroidal (Bϕ) component of a
magnetic field inside a star.

Suppose there is no tangential stress at the surface of a star. The rigid
rotation must be gradually established owing to viscosity in the star. However
the observed motion of the Sun, as a well studied example, is by no means
rigid: the equator rotates faster than the poles. This effect cannot
be explained by surface rotation. Deep layers of the Sun and fast-rotating
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solar-type stars participate in complex motions: differential rotation, convec-
tion, and meridional circulation (see Rüdiger and von Rekowski, 1998). Such
motions ensure mixing of deep solar layers down to the solar core. The cir-
cumstantial evidence for this comes from observations of the solar neutrino
flux as well as helioseismological data. The latter show, in particular, that the
solar core rotates faster than the surface. The results of the SOHO he-
lioseismology enable us to know the structure of the solar internal differential
rotation (Schou et al., 1998).
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ω
r

ω
r

ω
r
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Pole

Equator

CZT

RI

Figure 20.4: Schematic summary
of a radial gradient in rotation
that have been inferred from he-
lioseismic measurements.

Roughly speaking, in the convective zone (see CZ in Figure 20.4) the
angular velocity ω is independent of radius r. The radiative interior (RI)
appears to rotate almost uniformly, and is separated from the differentially
rotating convective zone by a thin shear layer called the tachocline (shown by
T in Figure 20.4). The last is, in fact, too thin to be convincingly resolved by
the SOHO data.

Pole

Equator

CZ
T

RI

Figure 20.5: Schematic of the flow of
angular momentum in the convective
zone, tachocline, and photosphere, that
may be responsible for the rotation gra-
dients summarized in previous Figure.

Numerical simulations are still rather far from producing a radius-indepen-
dent differential rotation in the convective zone. A qualitative perspective,
which probably will define a context for progress in the future, invoke the
concepts of angular momentum balance and transport, and angular momen-
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tum cycles in the Sun. With this perspective, it is possible to consider all
the angular velocity domains in the outer part of the Sun in a unified way
(Gilman, 2000). Figure 20.5 illustrates how angular momentum could be con-
tinually cycling in the convective zone and adjacent layers.

If we accept that some process dominates in the cycle by transporting an-
gular momentum from high latitudes to low in the bulk of the convective zone,
then everything else follows. All that is required is that some of this momen-
tum ‘leak’ into the tachocline below and the granulation and supergranulation
layers above. Then, to complete the cycle, there is transport of angular mo-
mentum back toward the pole in both layers. There the momentum reenters
the bulk of the convective zone to be recycled again.

Recommended Reading: Elsasser (1956), Parker (1979), Moreau (1990).

20.2 Flows at small magnetic Reynolds num-
bers

While investigating MHD flows in a laboratory, the finite conductivity being
significant, one has to account for the magnetic field dissipation. Furthermore
one has to take account of the fact that the freezing-in condition breaks down
owing to the smallness of the magnetic Reynolds number (12.62):

Rem =
vL

νm

 1 . (20.19)

The analogous situation takes place, for example, in deep layers of the so-
lar atmosphere near the temperature minimum. The conductivity is small
here, since the number of neutral atoms is relatively large (e.g., Hénoux and
Somov, 1987, 1991).

Stationary flows are possible in the case of finite conductivity. However
they differ greatly from the ideal medium flows considered in the previous
Section. The difference manifests itself in the fact that, given dissipative
processes, steady flows are realized only under action of some external force,
a pressure gradient, for instance. A second difference is that the plasma of
finite conductivity can flow across the field lines.

20.2.1 Stationary flows inside a duct

We shall examine a flow which has been well studied for reasons of practical
importance. Let us consider the steady flow of a viscous conducting fluid
along a duct with a transversal magnetic field. Let the x axis of the Cartesian
system (Figure 20.6) be chosen in the flow direction, the external uniform
field B0 coinciding with the z axis:

v = { v(z), 0, 0 } , B0 = { 0, 0, B0 } . (20.20)
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Figure 20.6: Formulation of the problem on the finite conductivity plasma
flow in a duct.

Let the width of the duct be 2l.
We start from the set of Equations (12.42)–(12.47) for a steady flow of an

incompressible medium:
ρ = const . (20.21)

Consider two equations:

curl (v × B ) + νm ∆B = 0 , (20.22)

(v · ∇ )v = − ∇p

ρ
− B × curl B

4πρ
+ ν ∆v . (20.23)

The pressure gradient ∂p/∂x along the x axis, which is independent of x, is
assumed to be the cause of the motion. Supposing the flow to be relatively
slow, neglect the term on the left-hand side of Equation (20.23).

Let b = b (z) be the magnetic field component along the velocity. In the
coordinate form, Equations (20.22) and (20.23) are reduced to the following
three equations:

B0
∂v

∂z
+ νm

∂2b

∂z2 = 0 , (20.24)

ρ ν
∂2v

∂z2 +
B0

4π

∂b

∂z
− ∂p

∂x
= 0 , (20.25)

∂

∂z

(
p +

b2

8π

)
= 0 . (20.26)

Differentiating Equation (20.26) with respect to x gives

∂2p

∂x ∂z
= 0 . (20.27)
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Differentiating (20.25) with respect to z, with care taken of (20.27), gives

ρ ν
∂3v

∂z3 +
B0

4π

∂2b

∂z2 = 0 . (20.28)

Eliminate ∂2b/∂z2 between Equations (20.24) and (20.28). The result is

d3v

dz3 − B2
0

4πρ ννm

dv

dz
= 0 . (20.29)

This equation is completed by the boundary conditions on the duct walls

v (l) = v (−l) = 0 . (20.30)

The corresponding solution is of the form

v(z) = v0
cosh Ha − cosh (Ha z/l )

cosh Ha − 1
. (20.31)

Here v0 = v (0) is the flow velocity at the centre of the duct, the dimensionless
parameter characterizing the flow is

Ha =
l B0√

4πρ ννm
.

(20.32)

It is called the Hartmann number , the flow (20.31) being the Hartmann flow.
As Ha → 0 , formula (20.31) converts to the usual parabolic velocity profile
which is typical of viscous flows in a duct without a magnetic field:

v(z) = v0

(
1 − z2

l2

)
. (20.33)

The influence of a transversal magnetic field shows itself as the appearance
of an additional drag to the plasma flow and the change of the velocity
profile which becomes flatter in the central part of the duct (Figure 20.7).

In the limit Ha → ∞, the Hartmann formula (20.31) gives

v(z) = v0

{
1 − exp

[
−Ha

(
1 − z

l

)]}
. (20.34)

Such a velocity profile is flat, v(z) ≈ v0, the exception being a thin layer near
the walls, the boundary layer of the thickness l/Ha.

20.2.2 The MHD generator or pump

What factors determine the value of velocity v0 at the center of the duct? To
find them let us calculate the electric current density in the duct

jy =
c

4π

∂b

∂z
=

c

4π

(
4π

B0

∂p

∂x
− ρ ν

4π

B0

∂2v

∂z2

)
=
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Figure 20.7: Usual parabolic
(Ha = 0) and Hartmann pro-
files of the viscous flow veloc-
ity in a duct with a transverse
magnetic field.

=
c

B0

(
∂p

∂x
− ρ ν

∂2v

∂z2

)
. (20.35)

Here the use is made of formula (20.25) to find the derivative ∂b/∂z. Let us
substitute in (20.35) an expression for velocity of the type (20.31), i.e.

v(z) = A

(
cosh Ha − cosh

Ha z

l

)
. (20.36)

We get the following equation

jyB0

c
=

∂p

∂x
− ρ νA

(
Ha
l

)2

cosh
Ha z

l
. (20.37)

Let us integrate Equation (20.37) over z from −l to +l. The result is

IB0

c
= 2l

∂p

∂x
− A 2ρ ν

(
Ha
l

)
sinh Ha , (20.38)

where

I =

l∫
−l

jy dz (20.39)

is the total current per unit length of the duct. We shall assume that there
is an electrical circuit for this current to flow outside the duct. The opposite
case is considered in Landau and Lifshitz, Fluid Mechanics, 1959a, Chapter 8,
§ 67.

Finally it follows from Equation (20.38) that the sought-after coefficient
in formula (20.36) is

A =
∂p/∂x − (1/2lc) IB0

(ρ ν/l 2) Ha sinh Ha
.

(20.40)
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Thus

the velocity of the plasma flow in the duct is proportional to the gas
pressure gradient and the magnetic Lorentz force.

This is why two different operational regimes are possible for the duct.
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Figure 20.8: Utilization
of the MHD duct as
the generator of the cur-
rent I; R is an external
load.

If the flow in the duct is realized under the action of an external pressure
gradient, the duct operates as the MHD generator shown in Figure 20.8. The
same principle explains the action of flowmeters (for more detail see Shercliff,
1965, § 6.5; Sutton and Sherman, 1965, § 10.2) which are important, for
example, in controling the flow of the metallic heat conductor in reactors.

The second operating mode of the duct occurs when an external elec-
tromagnetic force (instead of a passive load R in Figure 20.8) creates the
electric current I between the walls of the duct. Interaction of the current
with the external magnetic field B0 gives rise to the Lorentz force that makes
the plasma move along the duct, i.e. in the direction of the x axis. Hence
the duct operates as the MHD pump, and this is also used in some technical
applications.

20.2.3 Weakly-ionized plasma in astrophysics

Under astrophysical conditions, both operating modes of the MHD duct are
realized, once the plasma resistivity is high due, for instance, to its low temper-
ature. In the solar atmosphere, in the minimum temperature region, neutral
atoms move in the directions of convective flows and collide with ions, thus
setting them in motion. At the same time, electrons remain ‘frozen’ in the
magnetic field. This effect (termed the photospheric dynamo) can generate
electric currents and amplify the magnetic field in the photosphere and the
low chromosphere (see vol. 2, Section 12.4).
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A violent outflow of high-velocity weakly-ionized plasma is one of the first
manifestations of the formation of a new stars (Bachiller, 1996; Bontemps
et al., 1996). Such outflows emerge bipolarly from the young object and
involve amounts of energy similar to those involved in accretion processes. The
youngest proto-stellar low-mass objects known to date (the class 0 protostars)
present a particularly efficient outflow activity, indicating that outflow and
infall motions happen simultaneously and are closely linked since the very
first stages of the star formation processes.

The idea of a new star forming from relatively simple hydrodynamic infall
of weakly-ionized plasma is giving place to a picture in which magnetic fields
play a crucial role and stars are born through the formation of complex en-
gines of accreation/ejection. It seems inevitable that future theories of star
formation will have to take into account, together with the structure of the
protostar and its surrounding accretion disk, the processes related to multi-
fluid hydrodynamics of weakly-ionized plasma. These are the effects
similar to the photospheric dynamo and magnetic reconnection in weakly-
ionized plasma (vol. 2, Section 12.3).

Recommended Reading: Sutton and Sherman (1965), Ramos and Wino-
wich (1986).

20.3 The σ-dependent force and vortex flows

20.3.1 Simplifications and problem formulation

As was shown in Section 19.4, a body plunged into a conducting fluid with
magnetic and electric fields is acted upon by an expulsion force or, more
exactly, by the magnetic σ-dependent force. As this takes place, the electric
field E and current density j are non-uniform, and the volume Lorentz force
inside the fluid is non-potential. The force generates vortex flows of the
fluid in the vicinity of the body.

(a) Let us consider the stationary problem for an incompressible fluid
having uniform constant viscosity ν and magnetic diffusivity νm (Syrovatskii
and Chesalin, 1963; Marty and Alemany, 1983; Gerbeth et al., 1990). Let, at
first, both the usual and magnetic Reynolds numbers be small:

Re =
vL

ν

 1 , (20.41)

Rem =
vL

νm

 1 . (20.42)

The freezing-in condition (12.63) can be rewritten in the form

∆B + Rem curl (v × B ) = 0 , (20.43)
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where, in view of (20.42), Rem is a small parameter. In a zeroth approximation
in this parameter, the magnetic field is potential:

∆B = 0 .

Moreover the magnetic field will be assumed to be uniform, in accordance with
the formulation of the problem discussed in Section 19.4. Strictly speaking,
the assumption of a uniform magnetic field implies the inequality

B � 4π

c
Lj . (20.44)

Its applicability will be discussed later on, in connection with the simplified
form of Ohm’s law to be used while solving the problem.

(b) Assuming the stationary flows occurring in the fluid to be slow, the
inertial force (proportional to v2) will be ignored in the equation of motion
(20.23) as compared to the other forces: pressure gradient, Lorentz force,
viscous force. The term describing the gravity force will be dropped, since
its effect has already been studied in Section 19.4. Finally, on multiplying the
equation

0 = − ∇p

ρ
− B × curl B

4πρ
+ ν ∆v

by the fluid density ρ = ρ0, it is rewritten in the form

η ∆v = ∇p − f . (20.45)

Here η = ρ0 ν is the dynamic viscosity coefficient, and

f =
1
c

j × B 0 (20.46)

is the Lorentz force in the same approximation.
Recall that, in view of the assumed incompressibility of the fluid, the

velocity field obeys the equation

div v = 0 . (20.47)

(c) The electric field E is assumed to be uniform at infinity

E → E 0 , r → ∞ . (20.48)

Given the conductivities of the fluid σ0 and of the submerged body σ1, we
can find the current j in the whole space using the following conditions:

div j = 0 , (20.49)

j = σE , (20.50)

curl E = 0 . (20.51)
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The current (σ/c)v×B has been ignored in Ohm’s law (20.50). This may
be done, once the velocity of engendered vortex flows is much less than the
drift velocity, i.e. once the inequality

v 
 vd = c
E

B
(20.52)

holds. Note that substituting (20.44) in (20.52) results in the inequality

vL

(c2/4πσ)

 1 , (20.53)

which coincides with the initial assumption (20.42).

20.3.2 The solution for a spherical ball

Let us solve the problem for a ball of radius a. We choose the Cartesian
frame of reference, in which the direction of the x axis is parallel to E 0, and
the origin of coordinates coincides with the center of the ball as shown in
Figure 20.9.

By virtue of Ohm’s law (20.50), the electric current at infinity

j 0 = σ0 E 0 (20.54)

is also parallel to the x axis.
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Figure 20.9: An uniform conducting ball of radius a, submerged in a conduct-
ing fluid with electric and magnetic fields.

It follows from Equation (20.51) that the current can be represented in
the form

j = ∇ψ . (20.55)

Here a scalar function ψ, in view of Equation (20.49), satisfies the Laplace
equation

∆ψ = 0 . (20.56)

Let us try to find the solution to the problem in the form of uniform and
dipole components:

ψ = j 0 · r + c0 j 0 · ∇ 1
r

, r ≥ a , (20.57)



382 Chapter 20. Stationary MHD Flows

and
ψ = j 1 · r , r < a . (20.58)

Here c0 is an unknown constant, j 1 = { j1, 0, 0 } is an unknown current
density inside the ball. Both unknowns are to be found from the matching
conditions at the surface of the ball:

{ jr } = 0 and {Eτ } = 0 .

These conditions can be rewritten as follows

j · r
r

=
j 1 · r

r
at r = a , (20.59)

and
j τ

σ0
=

j τ1

σ1
at r = a . (20.60)

On substituting (20.57) and (20.58) in (20.59) and (20.60), the constants c0
and j1 are found. The result is

ψ =
[

1 + β
(a

r

)3 ]
j 0 · r for r ≥ a , (20.61)

and
ψ = (1 − 2β) j 0 · r for r < a . (20.62)

Here the constant

β =
σ0 − σ1

2σ0 + σ1
. (20.63)

Specifically, inside the ball

j 1 = (1 − 2β) j 0 , (20.64)

and j 1 = j 0 , once σ1 = σ0 .

20.3.3 Forces and flows near a spherical ball

Knowing the current in the whole space, we can find the Lorentz force (20.46)

f =
1
c

∇ψ × B 0 = curl
ψ B 0

c
. (20.65)

In the case at hand,

the volume Lorentz force has a rotational character and hence gen-
erates vortex flows in the conducting fluid.
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Let us operate with curl curl on Equation (20.45). Using the known vector
identity

curl curl a = ∇ (∇a) − ∆a

and taking account of relations (20.49)–(20.51), a biharmonic equation for the
velocity field is obtained

∆∆v = 0 . (20.66)

Operating with divergence on (20.45) and taking account of (20.49)–
(20.51), we get

∆ p = 0 . (20.67)

Equations (20.66) and (20.67) are to be solved together with Equa-
tions (20.45) and (20.47). For bodies with spherical or cylindrical symmetry,
it is convenient to make use of the identity

r · ∆q = ∆ (q · r) , (20.68)

where q is any vector satisfying the condition divq = 0. Then from Equa-
tion (20.66) subject to the condition (20.47) we find

∆∆ (vr r) = 0 . (20.69)

The boundary conditions are taken to be

v
∣∣

S
= 0 , v

∣∣
∞ = 0 . (20.70)

Here S is the surface of the submerged body which is assumed to be a ball of
radius a (cf. Figure 20.7). At its surface r = a = const, Equation (20.47) and
the first of conditions (20.70) give

∂vr

∂r

∣∣∣∣
S

= 0 . (20.71)

The solution of Equation (20.69), satisfying the boundary condition (20.71)
and the second of conditions (20.70), is clearly seen to be

vr ≡ 0 . (20.72)

Thus

in the case of a spherical ball, the flow lines of a conducting incom-
pressible fluid are situated at r = const surfaces.

Next an equation for the pressure is found using Equation (20.45) and
taking into account that, by virtue of (20.68),

r · ∆v = ∆ (vrr) = 0 .
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The resulting equation is
∂p

∂r
= fr . (20.73)

The function fr occuring on the right-hand side is the radial component of
the above mentioned Lorentz force (20.65).

Once the plasma pressure has been found by integrating Equations (20.73)
and (20.67), the velocity is determined from Equation (20.45) with the known
right-hand side.

Choose the Cartesian frame of reference in which

B 0 = { B 0x, 0, B 0z } ,

B 0x = B ‖ and B 0z = B⊥ being the magnetic field components parallel
and perpendicular to j 0, respectively (see Figure 20.9). The current in the
conducting fluid (cf. formula (20.61)) is

j = ∇ψ , ψ = j0 x + j0
β a3x

r3 , (20.74)

the current inside the ball being defined by formula (20.64). The pressure in
the fluid

p =
1
c

j0B⊥ y

(
βa3

2r3 − 1
)

+ const . (20.75)

It is convenient to rewrite the velocity distribution in spherical coordinates

v = { vr, vθ, vϕ } (20.76)

(cf. Syrovatskii and Chesalin, 1963):

vr = 0 ,

vθ =
βj0a

2

4cη

a

r

(
1 − a2

r2

)(−B⊥ cos θ sin ϕ + B ‖ sin θ sin 2ϕ
)
,

vϕ =
βj0a

2

4cη

a

r

(
1 − a2

r2

)(
B⊥ cos 2θ cos ϕ + B ‖ sin 2θ cos2 ϕ

)
.

This velocity field pattern is shown in Figure 20.10.
The force acting on the body is defined to be (cf. formula (19.60))

F =
1
c

∫
V

j × B 0 dV +
∮
S

pn dS −
∮
S

σ ′
n dS , (20.77)

where n is the inward normal to the sphere;

σ ′
n = (σ ′

αβ nβ)n , (20.78)

σ ′
αβ being the viscous stress tensor, see definition (12.53).

On substituting the velocity distribution (20.76) in the viscous force for-
mula (20.78) and integrating (20.77) over the surface S of the ball,
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Figure 20.10: Vortex flows near the
conducting ball submerged in a con-
ducting fluid with electric and mag-
netic fields.
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the sum of the viscous forces is concluded to be zero. The moment
of the viscous forces acting on the ball is also zero.

The remaining force determined by (20.77) is directed along the y axis and is
equal to

F =
4πa3

3
j0B⊥

c

{
− (1 − 2β) +

(
1 − β

2

)}
. (20.79)

The constant β is defined by formula (20.63):

β =
σ0 − σ1

2σ0 + σ1
.

The first term in the curly brackets corresponds to the force j 1 × B 0 /c
which immediately acts on the current j 1 inside the ball. Note that

1 − 2β =
3σ1

2σ0 + σ1
> 0 ,

in agreement with the direction of the vector product j 1 × B 0 or j 0 × B 0
(Figure 20.9). Moreover, provided σ1 = 0, the term (1 − 2β) = 0 as it should
be the case for a non-conducting ball, since there is no current inside it.

The second term in the curly brackets of formula (20.79) expresses the
sum of the forces of the pressure on the surface of the ball. The coefficient

1 − β

2
=

3 (σ0 + σ1)
2 (2σ0 + σ1)

> 0 ,

signifying that

the actual σ-dependent force is always somewhat less than the force
owing to the interaction of the current j 1 and the magnetic field B 0 .
Moreover the total force can be opposite in sign.
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In the particular case σ1 = 0, when the current j1 = 0

1 − β

2
=

3
4

.

Hence F > 0 . The non-conducting ball is expelled in the direction opposite
to that of the vector product j 0 × B 0 (Figure 20.11).

x

E

j

0

0
σ

σ
0

1

z
B ||

B⊥
f

F

0

= 0

Figure 20.11: The expulsion force F acting on the non-conducting ball sub-
merged in a conducting fluid with electric and magnetic fields.

The above properties of the magnetic σ-dependent force are used in tech-
nical MHD. They constitute the principle of action for magnetic separators
which are intended for dividing mechanical mixtures having different conduc-
tivities.

Having the physical sense of the two terms determining the magnetic σ-
dependent force (20.79), let us combine them in the following descriptive
formula:

F = − f 0 V × 3
2

β .

(20.80)

Here V = 4πa3/3 is the volume of the ball, f 0 = j 0 × B 0 /c is the Lorentz
force in the conducting fluid with uniform magnetic B 0 and electric E 0 fields
(cf. (19.59)), the coefficient β being determined by formula (20.63).

20.4 Large magnetic Reynolds numbers

In the previous section we have considered the solution to the MHD problem
concerning the magnetic σ-dependent force in the limit of small (usual and
magnetic) Reynolds numbers. Leenov and Kolin (1954) were the first to obtain
similar solutions in connection with the problem of electromagnetophoresis.

As a rule the opposite limiting case is applicable for astrophysical use. In
this case, the problem of the magnetic σ-dependent force is difficult and can
hardly be solved completely, especially given

Re 
 1 , Rem � 1 . (20.81)
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A situation of this kind occurs, for example, in solar prominences (Sec-
tion 20.4.2). In what follows we will show (Litvinenko and Somov, 1994;
Somov, 1994b) that an expression for the magnetic σ-dependent force can be
found for large magnetic Reynolds numbers, without rigorous calculations of
the characteristics of the plasma flow near a body.

20.4.1 The general formula for the σ-dependent force

The equations of stationary MHD for flows of an incompressible fluid with
density ρ0 and dynamic viscosity η = ρ0ν are of the form:

ρ (v · ∇)v = −∇ p +
1
c

j × B + η ∆v ,

curl (v × B) + νm ∆B = 0 , (20.82)

curl B =
4π

c
j , div v = 0 , div B = 0 .

Let us find the σ-dependent force density f on the basis of similarity con-
siderations. The given set of equations implies that five quantities are the
determining parameters of the problem: ν, νm, a, ρ0, and f 0 . By way of
example, velocity v0 depends on these parameters. Hence v0 rather than
ρ0 may be treated as a determining parameter. The standard procedure of
dimensional analysis, described by Bridgman (1931), gives us the formula

f = − f 0 Φ (Re, Rem) . (20.83)

In the limit Rem = 0 it reproduces (in a slightly different notation) the
result presented in the theoretical part of the paper by Andres et al. (1963).
Experimental data, which are stated in the same paper for Re < 102, al-
low one to conclude that, with an accuracy which is completely sufficient for
astrophysical applications,

Φ (Re, Rem) ≈ Φ1(Rem) , (20.84)

where Φ1(0) ≈ 1.
Generally, the behaviour of the magnetic field lines near the body for

Rem �= 0 can become nonregular and intricate, as a consequence of the electric
current redistribution and vortex flow generation. For example, if Rem <
1, then the value of the nonregular field component δB ≈ Rem B0. The
effective magnitude of the field and the magnetic σ-dependent force decrease
as compared to the case Rem = 0.

The form of the decreasing function Φ1 for Rem � 1 can be determined
as follows. Far from the body, at infinity, the electromagnetic energy flux is
equal to

G 0 =
c

4π
E 0 × B 0 . (20.85)
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In close proximity to the body, the magnitude of the Poynting vector must
diminish once the disordered behaviour of lines of force is assumed. The
difference (G0 − G) is equal to the power of engendered vortex flows, hence
generally we get

fa3 v0 ≤ G0 a2. (20.86)

The equality (20.86) is achieved in the limit Rem → ∞. Here the characteristic
velocity v0 is determined from the equation of motion in the set (20.82):

v0 = fa2/η for Re 
 1 , (20.87)
v0 = (fa/ρ0)1/2 for Re � 1 . (20.88)

When Rem → ∞, relations (20.84)–(20.88) allow us to obtain the sought-after
function appearing in formula (20.83):

Φ (Re, Rem) =
{

1 for Rem < 1 ,
Re−1

m for Rem > 1 .
(20.89)

The case Rem < 1 was treated by Leenov and Kolin (1954).
Strictly speaking, we could take also into account the dependence of the

function Φ on the usual Reynolds number Re. We could obtain

Φ (Re, Rem) =
1

Rem
Φ2 (Re) , (20.90)

where the function Φ2 (Re) is practically constant.
Note that formula (20.90) can be interpreted as a manifestation of an

incomplete self-similarity of the function Φ relative to the similarity parame-
ter Rem (Barenblatt, 1979). The point is that, from the viewpoint of a ‘naive’
analysis, the function Φ does not depend on a dimensionless parameter whose
magnitude is much greater (or less) than unity. This statement is true only
if there exists a final non-zero limit of the function Φ as the parameter at
hand tends to infinity (or zero). However, in general, this is not the case, as
is clearly demonstrated by (20.90). In fact, Φ → 0 when Rem → ∞. At the
same time the function Φ is a power-law one in Rem; that allows us to write
down an expression for the force density f in a self-similar form. As this takes
place, the exact form of dimensionless combinations cannot be determined
from the formal dimensional analysis alone.

Therefore an order-of magnitude expression is obtained for the density of
the magnetic σ-dependent force acting on a body submerged into a conducting
fluid or plasma (Litvinenko and Somov, 1994; Somov, 1994b):

f = − c

4πv0 a
E 0 × B 0 . (20.91)

The expression (20.91) is valid in the limit of large magnetic Reynolds num-
bers. For a body with a non-zero conductivity σ1, the electric current flowing
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inside the body must be taken care of in formula (20.91). The corresponding
treatment was presented in Section 20.3.

The physical sense of formula (20.91) is obvious. Comparison of (20.91)
with formula (19.59) for the σ-dependent force, which then holds a uniform
current flow in the plasma, shows that for Rem → ∞ (σ → ∞) the plasma in
the vicinity of the body possesses, as it were, an effective conductivity

σef ≈ c2

v0a
.

(20.92)

This finite conductivity of a plasma is a result of the electromagnetic
energy losses to generation of macroscopic vortex flows.

This mechanism of conductivity of a plasma is different from the usual micro-
scopic one, in which energy losses result from Coulomb collisions of current-
carrying electrons with thermal electrons and ions of the plasma. It is no
accident that an expression for conductivity, which is equivalent to (20.92),
has emerged in quite another problem – while calculating the electrical resis-
tivity of necks in Z-pinches appearing in a highly conductive plasma (Chernov
and Yan’kov, 1982).

Note in this context that the σ-dependent force, as well as the character-
istic velocity of the plasma flow, depends in a non-linear way on the quan-
tity E0B0. Using (20.88), (20.88) and (20.91), we see that

f ∼
⎧⎨⎩ (E0B0)1/2 , Re 
 1 ,

(E0B0)2/3 , Re � 1 .
(20.93)

Litvinenko and Somov (1994) have supposed that

the magnetic σ-dependent force may play an important part in the
dynamics of astrophysical plasma with a non-uniform distribution
of temperature and, hence, electric conductivity.

It is this force that can generate large-scale vortex flows of plasma in space.
This possibility is illustrated in the next Section.

20.4.2 The σ-dependent force in solar prominences

The solar corona is a natural ‘plasma physics laboratory’ where formula
(20.91), which is applicable at large magnetic Reynolds numbers, can be
tested. Recall several of its characteristics: low density ρ0 ≈ 10−16 g cm−3,
high temperature T0 ≈ 106 K, dynamic viscosity η ≈ 1 g cm−1 s−1, magnetic
field B0 ≈ 10 − 100 G, electric field E0 ≈ 10−5 CGSE units.

On the other hand, according to observational data (Tandberg-Hanssen,
1995), prominences consist of numerous fine threads – cold dense formations
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having a transversal scale a ≈ 107 cm and temperature T1 ≈ 104 K. Hence
the ratio

σ1/σ0 ≈ 10−3 
 1 ,

as applied to prominences in the corona. In the vicinity of the threads, as
well as near a prominence as a whole, rather fast plasma flows are actually
observed.

According to the model under discussion, these flows can be generated by
the vortex component of the magnetic σ-dependent force. For Re 
 1, their
maximum velocity, as follows from relations (20.88) and (20.91), is determined
by the expression

v0 ≈
(

cE0B0a

4πη

)1/2

≈ 10 − 30 km s−1, (20.94)

that, generally speaking, corresponds to the characteristic values of observed
velocities. However the spatial resolution of modern optical, EUV and soft
X-ray observations is smaller than is necessary for the model to be confirmed
or refuted. Let us consider another possibility.

The symmetric distribution of velocities on the line-of-sight projection
(i.e., in the direction towards the observer) is a distinguishing feature of the
model since it predicts the presence of a large number of vortex flows
of plasma inside the prominence. Such a distribution can be observed as a
symmetric broadening of spectral lines, which it will be necessary to study if
one wishes to study the effect quantitatevly. A similar observational effect can
be related to the existence of reconnecting current layers in the same region
(Antonucci and Somov, 1992; Antonucci et al., 1996).

The gravity force acting on the prominences is supposed to be balanced
by the σ-dependent expulsion. The equilibrium condition makes it possible
to evaluate the characteristic value of the plasma density related to the fine
threads forming the prominence

( ρ1 − ρ0) g	 ≈ f . (20.95)

Here the specific gravity of the Sun g	 ≈ 3 × 104 cm s−2. Formulae (20.91),
(20.92), and (20.95) result in

ρ1 ≈
(

cE0B0 η

4π g2	a3

)1/2

≈ 3 × 10−13 g cm−3, (20.96)

in accordance with observational data.
Even faster flows with characteristic velocities 102−103 km s−1 in so-called

eruptive prominences are probably a consequence of the fact that the coronal
fields E 0 and B 0 can change (in magnitude or direction) during the course of
evolution. As this takes place, the equilibrium described by equation (20.95)
can be violated.
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Observations with high spectral resolution in EUV and soft X-ray ranges
are necessary to study the effect of the magnetic force stimulated by the
presence of plasma regions with considerably different conductivity in the
solar atmosphere.

20.5 Practice: Exercises and Answers

Exercise 20.1. Discuss a possible behavior of electrically conducting spheres
in an insulating bounded fluid placed in a vertical traveling magnetic field.

Hint. The spheres move in response to the induced electromagnetic forces,
the motion being influenced by gravity, viscous drag, vessel boundary reac-
tion, and collisions. The range of possible behaviors, stable, unstable, and
chaotic, is very wide. The term ‘electromagnetic billiards’ seems appropriate
to describe this phenomenon (Bolcato et al., 1993).



Appendix 1. Notation

Latin alphabet

Symbol Description Introduced
in Section
(Formula)

a current layer half-thickness 8.3
A vector potential of a magnetic field 6.2
b half-width of a reconnecting current layer (RCL) 8.3
b perturbation of a magnetic field 20.2.1
B magnetic field 1.2
Bτ tangential magnetic field 16.2
e, ea electric charge 1.2
ec unit vector from the curvature centre 5.2
E energy of a particle 5.1
E electric field 1.2
Eu electric field in the plasma rest-frame 11.1
fk averaged distribution function for particles of kind k 1.1
fkl binary correlation function 2.2
fkln triple correlation function 2.3
f̂k exact distribution function for particles of kind k 2.2
F complex potential 14.2
F,Fk force 1.1
〈Fk 〉v mean force per unit volume 9.1
Fkl force density in the phase space 2.2
F ′ fluctuating force 2.1
g velocity-integrated correlation function 3.2
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G gravitational constant 1.2
G energy flux density (1.52)
h magnetic field at a wave front 20.1
Ha Hartmann number 20.2
j electric current density 1.2
j ′ current density in the plasma rest-frame 11.1
j q
k current density due to particles of kind k 9.1
jk particle flux density in the phase space 3.1
J electric current 19.3
k friction coefficient 1.1
k wave vector 15.1
K kinetic energy of a particle (5.58)
m magnetic dipole moment 14.4
m, ma particle mass 1.2
M mass of star 19.1
M magnetic moment of a particle 5.2

magnetic energy of a system 19.1
n, nk number density 8.1
n unit vector along a magnetic field 5.1
Nk number of particles of kind k 1.1
p k gas pressure of particles of kind k 9.1
pm magnetic pressure 15.1
pαβ pressure tensor 9.1
p particle momentum 5.1
P generalized momentum 6.2
q generalized coordinate 6.2
q heat flux density 12.1
q k heat flux density due to particles of kind k 9.1
Qk rate of energy release in a gas of particles of kind k 9.1
rD Debye radius 8.2
rL Larmor radius 5.1
ra coordinates of ath particle 1.2
R radius of star 14.4
R⊥ guiding centre spiral radius 5.2
R rigidity of a particle 5.1
R guiding centre vector 5.2
Re Reynolds number 12.3
Rem magnetic Reynolds number 12.3
s entropy per unit mass 12.2
T temperature 12.2

kinetic energy of a macroscopic motion 19.1
TB period of the Larmor rotation 5.2
Tαβ Maxwellian stress tensor 12.1
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u relative velocity 5.1
velocity of the centre-of-mass system 11.1

ue mean electron velocity 11.1
ui mean ion velocity 11.1
uk mean velocity of particles of kind k 9.1
U interaction potential 8.1

volume of a fluid particle 14.2
specific volume of a magnetic tube 19.3

Uth thermal energy 19.1
U velocity of the moving reference frame 16.2

shock speed 17.1
v macroscopic velocity of a plasma 12.2
v,va particle velocity 1.2
vd drift velocity 5.1
vn normal component of the velocity 16.2
vx velocity orthogonal to a discontinuity surface 16.1
v ′ deviation of particle velocity from its mean value 9.1
vτ tangential velocity 16.1
v ‖ velocity component along the magnetic field lines 5.1
v⊥ transversal velocity 5.1
VA Alfvén speed 13.1
Vgr group velocity of a wave 15.1
Vph phase velocity of a wave 15.1
Vs sound speed velocity 15.1
VTe mean thermal velocity of electons (5.54)
VTi mean thermal velocity of ions (5.53)
VTp mean thermal velocity of protons (5.55)
V± speed of a fast (slow) magnetoacoustic wave 15.1
w probability density 2.1
w, wk heat function per unit mass 9.1
W energy density of an electromagnetic field (1.51)
X phase space 1.1
Z ion charge number 8.2
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Greek alphabet

Symbol Description Introduced
in Section
(Formula)

αB parameter of the magnetic field inhomogeneity 5.2
αE parameter of the electric field inhomogeneity 5.2
β coefficient in an expulsion force 20.3
γ dimensionless parameter of ideal MHD 13.1
γg ratio of specific heats 16.1
Γ 6N -dimensional phase space 2.1
δ dimensionless parameter of ideal MHD 12.3
ε mean kinetic energy of a chaotic motion 12.1

dimensionless parameter of ideal MHD 13.1
ζ second viscosity coefficient 12.2
ζ i interaction parameter 3.1
ζ p plasma parameter 3.1
η first viscosity coefficient (dynamic viscosity) 12.2
θ pitch-angle 5.1

angle between a wave vector and the magnetic field 15.1
κe classical electron conductivity 8.3
λ mean free path 8.1
ln Λ Coulomb logarithm 8.1
ν collisional frequency 8.1
ν kinematic viscosity 12.2
νei electron-ion mean collisional frequency 11.1
νkl mean collisional frequency 9.1
νm magnetic diffusivity 12.2
ξ column depth 8.3
π

(k)
αβ viscous stress tensor 9.1

Π∗
αβ total momentum flux density tensor 12.2

ρ plasma mass density 9.1
ρk mass density for particles of kind k 9.1
ρ q electric charge density 1.2
ρ q

k charge density due to particles of kind k 9.1
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ρ rotational motion vector 5.2
σ isotropic electric conductivity 11.1
σH Hall conductivity 11.1
σ ‖ conductivity parallel to the magnetic field 11.1
σ⊥ conductivity perpendicular to the magnetic field 11.1
σv

αβ viscous stress tensor 12.2
τ characteristic time scale 5.2
τee electron collisional time 8.3
τei electron-ion collisional time 8.3
τii ion collisional time 8.3
φ gravitational potential 1.2
ϕ electrostatic potential 8.2
ϕ angle in the spherical frame 14.4
φ, ϕ angle in the cylindrical frame 19.2
ϕ̂k deviation of the exact distribution function

from an averaged distribution function 2.2
Φ magnetic flux 14.2

stream function 14.4
χ deflection angle 8.1
ψ angle to the x axis 14.4

potential of an electric current 20.3
Ψ potential of a current-free magnetic field 13.1
ω wave frequency 15.1
ω0 wave frequency in a moving frame of reference 15.1
ωB cyclotron or Larmor frequency 5.1
ωpl electron plasma frequency 8.2
Ω gravitational energy 19.1
ω vector of angular velocity 20.1
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Useful Expressions

Source formulae

Larmor frequency of a non-relativistic electron (5.11), (5.51)

ω (e)
B

=
eB

mec
≈ 1.76 × 107 B (G) , rad s−1 .

Larmor frequency of a non-relativistic proton (5.52)

ω (p)
B

≈ 9.58 × 103 B (G) , rad s−1 .

Larmor radius of a non-relativistic electron (5.14), (5.59)

r (e)
L

=
c p⊥
eB

≈ 5.69 × 10−8 v (cm s−1)
B (G)

, cm .

Larmor radius of a non-relativistic proton (5.14), (5.61)

r (p)
L

≈ 1.04 × 10−4 v (cm s−1)
B (G)

, cm .

Mean thermal velocity of electrons (5.54)

VTe =
(

3kB T e

me

)1/2

≈ 6.74 × 105
√

Te (K) , cm s−1 .

Mean thermal velocity of protons (5.55)

VTp ≈ 1.57 × 104
√

Tp (K) , cm s−1 .

Larmor radius of non-relativistic thermal electrons (5.56)

r (e)
L

=
VTe

ω
(e)
B

≈ 3.83 × 10−2

√
Te (K)

B (G)
, cm .
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Larmor radius of non-relativistic thermal protons (5.57)

r (p)
L

=
VTp

ω
(p)
B

≈ 1.64

√
Tp (K)

B (G)
, cm .

Drift velocity (5.20)

vd =
c

e

F × B
B 2 .

Magnetic moment of a particle on the Larmor orbit (6.6)

M =
1
c

JS =
e ωB r 2

L

2c
=

p 2
⊥

2mB
=

E⊥
B

.

Debye radius (Te = T , T i = 0 or Te � Ti) (8.33)

rD =
(

kBT

4π ne2

)1/2

.

Debye radius in electron-proton thermal plasma (Te = Tp = T ) (8.77)

rD =
(

kBT

8π e2 n

)1/2

≈ 4.9
(

T

n

)1/2

, cm .

Coulomb logarithm (8.75)

ln Λ = ln

[(
3k 3/2

B

2π1/2 e3

)(
T 3

e

ne

)1/2
]

≈ ln

[
1.25 × 104

(
T 3

e

ne

)1/2
]

.

Electron plasma frequency (8.78)

ω
(e)
pl =

(
4π e2 ne

me

)1/2

≈ 5.64 × 104 √
ne , rad s−1 .

Thermal electron collisional time (8.80)

τee =
m 2

e

0.714 e4 8π ln Λ
V 3

Te

ne
≈ 4.04 × 10−20 V 3

Te

ne
, s .

Thermal proton collisional time (8.81)

τpp =
m 2

p

0.714 e4 8π ln Λ
V 3

Tp

np
≈ 1.36 × 10−13 V 3

Tp

np
, s .

Electron-ion collision (energy exchange) time Section 8.3

τei (E) =
memi [ 3kB (Te/me + T i/mi) ]3/2

e 2
e e 2

i (6π)1/2 8 ln Λ
.
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Time of energy exchange between electrons and protons (8.44)

τep (E) ≈ 22 τpp ≈ 950 τee .

Dreicer field (8.83)

EDr =
4πe3 ln Λ

kB

ne

Te
≈ 6.54 × 10−8 ne

Te
, V cm−1 .

Conductivity of magnetized plasma Section 11.3

σ ‖ = σ =
e2n

me
τei ≈ 2.53 × 108 n (cm−3) τei (s) , s−1 ,

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 , σH = σ
ω(e)

B
τei

1 +
(
ω

(e)
B τei

)2 .

Magnetic diffusivity (or viscosity) (12.49)

νm =
c2

4πσ
≈ 7.2 × 1019 1

σ
, cm2 s−1 .

Magnetic Reynolds number (12.62)

Rem =
L2

νm τ
=

vL

νm

Alfvén speed (13.14), (13.34)

VA =
B√
4πρ

≈ 2.18 × 1011 B√
n

, cm s−1 .

Sound speed in electron-proton plasma (16.98)

Vs =
(

γg
p

ρ

)1/2

≈ 1.66 × 104
√

T (K) , cm s−1 .

Electric field in magnetized plasma (19.71)

E ≈ 1
c

vB ≈ 10−8 v (cm s−1) B (G) , V cm−1 .
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Fundamental physical constants

Speed of light c 2.998 × 1010 cm s−1

Electron charge e 4.802 × 10−10 CGSE
Electron mass me 9.109 × 10−28 g
Proton mass mp 1.673 × 10−24 g
Boltzmann constant kB 1.381 × 10−16 erg K−1

Gravitational constant G 6.673 × 10−8 dyne cm2 g−2

Planck’s constant h 6.625 × 10−27 erg s

Some useful constants and units

Ampere (current) A 3 × 109 CGSE
Angström (length) A 10−8 cm
Electron Volt (energy) eV 1.602 × 10−12 erg

eV 11605 K
Gauss (magnetic induction) G 3 × 1010 CGSE
Henry (inductance) H 1.111 × 10−12 s2 cm−1

Ionization potential of
hydrogen 13.60 eV

Joule (energy) J 107 erg
Maxwell (magnetic flux) M 3 × 1010 CGSE
Ohm (resistance) Ω 1.111 × 10−12 s cm−1

Tesla (magnetic induction) 104 Gauss
Volt (potential) V 3.333 × 10−3 CGSE
Watt (power) W 107 erg s−1

Weber (magnetic flux) Wb 108 Maxwell

Some astrophysical constants

Astronomical unit AU 1.496 × 1013 cm
Mass of the Sun M	 1.989 × 1033 g
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Mass of the Earth ME 5.98 × 1027 g
Solar radius R	 6.960 × 1010 cm
Solar surface gravity g	 2.740 × 104 cm s−2

Solar luminosity L	 3.827 × 1033 erg s−1

Mass loss rate Ṁ	 1012 g s−1

Rotation period of the Sun T	 26 days (at equator)
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Bagalá, L.G., Mandrini, C.H., Rovira, M.G., et al.: 1995, A topological ap-
proach to understand a multi-loop flare, Solar Phys., v. 161, No. 1, 103–
121. [ Intr. ]

Bai, T., Hudson, H.S., Pelling, R.M., et al.: 1983, First-order Fermi accel-
eration in solar flares as a mechanism for the second-step acceleration of
protons and electrons, Astrophys. J ., v. 267, No. 1, 433–441. [ § 6.2.4 ]

Balbus, S.A. and Papaloizou, J.C.B.: 1999, On the dynamical foundations of
α disks, Astrophys. J ., v. 521, No. 2, 650–658. [ § 13.2 ]

Balescu, R.: 1963, Statistical Mechanics of Charged Particles, London, New
York, Sydney; Interscience Publ., John Wiley and Sons, Ltd., p. 477.
[ § 4.1 ]

Balescu, R.: 1975, Equilibrium and Nonequilibrium Statistical Mechanics,
New York, London, Sydney, Toronto; A Wiley-Interscience Publ., John
Wiley and Sons, Ltd. [ § 3.1 ]

Balescu, R.: 1988, Transport Processes in Plasmas, Amsterdam, [ § 9.4 ]
Balikhin, M., Gedalin, M., and Petrukovich, A.: 1993, New mechanism for

electron heating in shocks, Phys. Rev. Lett ., v. 70, 1259–1262. [ § 18.3 ]
Balogh, A. and Erdös, G.: 1991, Fast acceleration of ions at quasi-perpendi-

cular shocks, J. Geophys. Res., v. 96, No. A9, 15853–15862. [ § 18.3 ]
Barenblatt, G.I.: 1979, Similarity, Self-Similarity, and Intermediate Asymp-

totics, New York, Consultants Bureau, Plenum. [ § 20.4 ]
Bednarek, W. and Protheroe, R.J.: 1999, Gamma-ray and neutrino flares

produced by protons accelerated on an accretion disc surface in active
galactic nuclei, Mon. Not. Royal Astron. Soc., v. 302, 373–380. [ § 13.2 ]

Begelman, M.C., Blandford, R.D., and Rees, M.J.: 1984, Theory of extra-
galactic radio sorces, Rev. Mod. Phys., v. 56, No. 2, 255–351. [ § 7.3,
§ 13.3, § 20.1 ]

Beloborodov, A.M.: 1999, Plasma ejection from magnetic flares and the X-ray
spectrum of Cygnus X-1, Astrophys. J ., v. 510, L123–L126. [ § 13.2 ]

Benz, A.: 2002, Plasma Astrophysics: Kinetic Processes in Solar and Stel-
lar Coronae, Second Edition, Dordrecht, Kluwer Academic Publ., p. 299.



Bibliography 407

[ § 3.1, § 7.1 ]
Bernstein, I.B., Frieman, E.A., Kruskal, M.D., et al.: 1958, An energy princi-

ple for hydromagnetic stability problems, Proc. Royal Soc., v. 244, No. A1,
17–40. [ § 19.3 ]

Bertin, G.: 1999, The Dynamics of Galaxies, Cambridge Univ. Press, p. 448.
[ § 1.3, § 9.6 ]

Bethe, H.A.: 1942, Office of Scientific Research and Development, Rep.
No. 445. [ § 17.1 ]

Bezrodnykh, S.I. and Vlasov, V.I.: 2002, The Riemann-Hilbert problem in
a complicated domain for the model of magnetic reconnection in plasma,
Computational Mathematics and Mathematical Physics, v. 42, No. 3, 263-
298. [ § 14.2.2 ]

Bhatnagar, P.L., Gross, E.P., and Krook, M.: 1954, A model for collision
processes in gases. 1. Small amplitude processes in charged and neutral
one-component systems, Phys. Rev ., v. 94, No. 3, 511-525. [ § 9.7 ]

Bhattacharjee, A.: 2004, Impulsive magnetic reconnection in the Earth’s mag-
netotail and the solar corona, Ann. Rev. Astron. Astrophys ., v. 42, 365-
384. [ § 11.4.2 ]

Bianchini, A., Della Valle, M., and Orio, M. (eds): 1995, Cataclysmic
Variables, Dordrecht, Boston, London; Kluwer Academic Publ., p. 540.
[ § 13.2.2 ]

Binney, J. and Tremaine, S.: 1987, Galactic Dynamics, Princeton, New Jer-
sey; Princeton Univ. Press. [ § 3.3, § 8.5 ]

Birkinshaw, M.: 1997, Instabilities in astrophysical jets, in Advanced Topics
on Astrophysical and Space Plasmas, eds E.M. de Gouveia Dal Pino et al .,
Dordrecht, Kluwer Academic Publ., p. 17–91. [ § 13.3.1 ]

Biskamp, D. and Welter, H.: 1989, Magnetic arcade evolution and instability,
Solar Phys., v. 120, No. 1, 49–77. [ § 19.5 ]

Blackman, E.G.: 1999, On particle energization in accretion flow, Mon. Not.
Royal Astron. Soc., v. 302, No. 4, 723–730. [ § 8.3 ]

Blackman, E.G. and Field, G.B.: 2000, Constraints on the magnitude of α in
dynamo theory, Astrophys. J ., v. 534, No. 2, 984–988. [ § 13.1 ]

Blandford, R.D.: 1994, Particle acceleration mechanisms, Astrophys. J.,
Suppl ., v. 90, No. 2, 515–520. [ § 18.1, § 18.2 ]

Bliokh, P., Sinitsin, V., and Yaroshenko, V.: 1995, Dusty and Self-Gravita-
tional Plasmas in Space, Dordrecht, Kluwer Academic Publ., p. 250.
[ § 1.2 ]

Blokhintsev, D.I.: 1945, Moving receiver of sound, Doklady Akademii Nauk
SSSR ( Soviet Physics Doklady ), v. 47, No. 1, 22–25 (in Russian). [ § 15.2 ]

Bobrova, N.A. and Syrovatskii, S.I.: 1979, Singular lines of 1D force-free field,
Solar Phys., v. 61, No. 2, 379–387. [ § 19.2 ]

Bocquet, M., Bonazzola, S., Gourgoulhon, E., et al.: 1995, Rotating neutron
star models with a magnetic field, Astron. Astrophys., v. 301, No. 3, 757-
775. [ § 19.1 ]



408 Bibligraphy

Bodmer, R. and Bochsler, P.: 2000, Influence of Coulomb collisions on isotopic
and elemental fractionation in the solar wind, J. Geophys. Res., v. 105,
No. A1, 47–60. [ § 8.4, § 10.1 ]

Bogdanov, S.Yu., Frank, A.G., Kyrei, N.P., et al.: 1986, Magnetic reconnec-
tion, generation of plasma fluxes and accelerated particles in laboratory
experiments, in Plasma Astrophys., ESA SP-251, 177-183. [ § 12.3 ]

Bogdanov, S.Yu., Kyrei, N.P., Markov, V.S., et al.: 2000, Current sheets in
magnetic configurations with singular X-lines, JETP Letters, v. 71, No. 2,
78–84. [ § 12.3 ]

Bogoliubov, N.N.: 1946, Problems of a Dynamical Theory in Statistical
Physics, Moscow, State Technical Press (in Russian). [ § 2.4 ]

Bolcato, R., Etay, J., Fautrelle, Y., et al.: 1993, Electromagnetic billiards,
Phys. Fluids, v. 5, No. A7, 1852–1853. [ § 20.5 ]

Boltzmann, L.: 1872, Sitzungsber. Kaiserl. Akad. Wiss. Wien, v. 66, 275–
284. [ § 3.5 ]

Boltzmann, L.: 1956, Lectures on the Theory of Gases, Moscow, Gostehizdat
(in Russian). [ § 3.5 ]

Bondi, H.: 1952, On spherical symmetrical accretion, Mon. Not. Royal As-
tron. Soc., v. 112, No. 1, 195–204. [ § 13.2 ]
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Rüdiger, G. and von Rekowski, B.: 1998, Differential rotation and meridional
flow for fast-rotating solar-type stars, Astrophys. J ., v. 494, No. 2, 691–
699. [ § 13.1, § 20.1 ]



420 Bibligraphy

Ruffolo, D.: 1999, Transport and acceleration of energetic particles near an
oblique shock, Astrophys. J ., v. 515, No. 2, 787–800. [ § 18.2 ]

Sarazin, C.L. and Kempner, J.C.: 2000, Nonthermal bremsstrahlung and hard
X-ray emission from clusters of galaxies, Astrophys. J ., v. 533, No. 1, 73–
83. [ § 8.3 ]

Sarris, E.T. and Van Allen, J.A.: 1974, Effects of interplanetary shocks on
energetic particles, J. Geophys. Res., v. 79, No. 28, 4157–4173. [ § 18.3 ]

Schabansky, V.P.: 1971, Some processes in the magnetosphere, Space Sci.
Rev ., v. 12, No. 3, 299–418. [ § 11.1 ]

Schlickeiser, R.: 2002, Cosmic Ray Astrophysics, New York, Berlin, Heidel-
berg, Tokyo; Springer-Verlag, p. 519. [ § 5.1 ]
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Liouville operator, 6, 116, 128
Liouville theorem, 6
liquid contour, 217
loop

flaring, 106, 110
Lorentz factor, 79, 123, 129
Lorentz force, 7, 30, 86, 167, 370
loss cone

anomalous diffusion, 107
magnetic trap, 107

macroparticle method, 47
magnetar, 99, 259, 349
magnetic collapse, 251, 261
magnetic diffusivity, 213, 217, 379
magnetic dynamo, 225, 232
magnetic energy, 346, 363
magnetic field

force free, 226, 244, 350
helical, 351
interplanetary, 338
limiting line, 246

longitudinal, 246
plane dipole, 253
potential or current free, 227
shear, 351
superstrong, 99
toroidal, 372
transversal, 374
ultrastrong, 99, 259, 349
zeroth point or line, 246

magnetic field line
equations, 247
meaning, 220
separator, 246

magnetic flux, 248
magnetic flux conservation, 216, 220
magnetic flux tube

coronal, 106
specific volume, 356

magnetic force, 81, 212
magnetic helicity

global, 363
magnetic mirror, 106
magnetic moment, 90, 102, 105, 257
magnetic pressure, 227, 285, 291, 351,

368
perturbation, 269

magnetic reconnection, 14, 171, 234,
246, 251

collisionless, 14
magnetic Reynolds number, 218
magnetic separator, 386
magnetic sound, 270
magnetic stresses, 229
magnetic surface, 111, 354
magnetic tension, 227, 239, 267, 351,

371
magnetic trap, 98, 106, 136, 338
magnetoacoustic wave, 312

fast, 288, 292
slow, 292

magnetohydrodynamics, 14, 200, 209,
212

relativistic, 215
magnetosphere

black hole, 127, 202
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Earth, 82, 228
Jovian, 101
pulsar, 127, 202
white dwarf, 231

Maxwell equations, 11, 37, 116, 211
Maxwellian function, 42, 171, 176
Maxwellian stress tensor, 207, 344
mean collisional force, 168
mean field, 226
mean force, 25, 46, 167
mean free path, 135, 157, 176
mean kinetic energy, 170
mean momentum, 164
mean thermal velocity, 97, 136
mean velocity, 164
MHD assumptions, 211
MHD pump, 378
MHD turbulence, 110, 124, 126
microquasar, 370
minimum current corona, 364
mixing mechanism, 22
moment

inertia, 345
magnetic, 90, 102, 105, 257
of distribution function, 164
viscous force, 385

momentum
angular, 229, 373
conservation, 279
electromagnetic field, 213
generalized, 16, 103
longitudinal, 127
mean, 164
plasma stream, 213
transversal, 105, 127

momentum flux density tensor, 165,
207, 213, 220

motion
guiding center, 89, 112
spiral, 84

neutron star, 99, 150, 259, 349
Newton equations, 12

Ohm’s law

generalized, 14, 196
in MHD, 200, 210
usual, 14, 69, 193

operator
Liouville, 6, 116, 128

parameter
m/e, 87
interaction, 28, 36
plasma, 45

particle
accelerated, 41, 109
field, 38, 135
fluid, 249
precipitating, 107
test, 135
trapped, 107, 113

particle flux density, 4
particle interaction, 5
particle simulation, 14
phase space, 3, 19
phase trajectory, 6
phase velocity, 265
phase velocity diagram, 269, 296
pinch effect, 246
pitch-angle, 82, 107, 122
plasma, 43

anisotropic, 172
charge-separated, 202
collisional, 38, 115
collisionless, 38, 115, 127, 201
dusty, 14
electron-positron, 127
fully-ionized, 38, 55, 183
self-gravitational, 14
strongly-coupled, 36
superhot, 98
three-component, 194
two-temperature, 143
weakly-coupled, 36
weakly-ionized, 14, 378

plasma frequency, 141
plasma parameter, 45
plasma wave, 69, 141
Poisson brackets, 16
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Poisson equation, 51, 139
polarized coordinates, 120
postulates of statistics, 21
potential

complex, 250
conjugate harmonic, 251
Coulomb, 133
Euler, 258
gravitational, 344
magnetic field, 227
vector, 247

Poynting vector, 17, 214, 240, 388
pressure

partial, 207
total, 207

pressure tensor, 165, 170, 172
probability density, 24
prominence, 14, 358, 389
protostar, 379
pulsar

magnetosphere, 127

quasar, 370

radiation
synchrotron, 101

radiation belts, 113
radiation reaction, 99
radio source

extragalactic, 369
Rankine-Hugoniot relation, 291, 300,

323
reconnection

collisionless, 14, 196
magnetic, 171, 233, 390

reduced mass, 134
refraction index, 129, 190
resonance

Landau, 39, 117
reverse current, 41, 55, 68, 158
Reynolds number

hydrodynamic, 125, 218
magnetic, 218

RHESSI, 76
rigidity, 82

threshold, 113
ring current, 113
rotation

differential, 225, 371
runaway

electric, 71, 155, 183
thermal, 158

Rutherford formula, 51, 134

scaling law
Kolmogorov, 126

separation
charge, 136
MHD, 361

separator, 246
Shafranov theorem, 352
shear, 229
shock wave

collisionless, 289, 298, 337
discontinuity surface, 280
fast

evolutionarity, 312
high Much number, 149, 299
intermediate or transalvénic, 293
interplanetary, 337
longitudinal, 297
oblique, 290

fast, 291, 297
slow, 291, 297

perpendicular, 287, 297
propagation order, 313
Rankine-Hugoniot relation, 291,

323
slow

evolutionarity, 312
switch-off, 294
switch-on, 294

soft gamma-ray repeater, 259
SOHO, 148, 373
solar atmosphere, 41, 136, 141, 314
solar corona, 97, 101, 123, 158, 184,

198, 203, 221, 272, 274, 389
solar photosphere, 14
solar wind, 177, 183, 331
sound velocity, 264, 277



436 Index

space
phase, 3, 19

special relativity, 215
specific enthalpy, 171, 214, 300
specific magnetic volume, 356
specific volume, 300
spectrum

injection, 61
Störmer solutions, 112
star

AM Herculis, 231
binary, 150, 229
cataclysmic variable, 231
class A, 348
cold giant, 348
collapse, 258, 348
DQ Herculis, 231
formation, 379
in galaxy, 46, 160, 178
magnetar, 99
neutron, 150, 259, 349
nova, 257
polars, 231
rotation, 372
Sun, 213, 348
supernova, 101, 110, 149, 257,

259, 299, 330
white dwarf, 16, 36, 49, 99, 231

statistical averaging, 24
stochastic acceleration, 122
stream function, 256
substantial derivative, 173, 228
Sun

active region, 353
chromosphere, 106, 144, 378
corona, 110, 274, 389
photosphere, 378
prominence, 358
rotation, 372

superstrong magnetic field, 99
synchrotron radiation, 101
Syrovatskii, 281, 308, 368

tachocline, 373
tangential discontinuity, 297

evolutionarity, 313
hydrodynamics, 280, 326
ideal MHD, 285, 368
stability, 285
weak, 270

temperature, 136, 171
tensor

conductivity, 199
Maxwellian stress, 344
momentum flux density, 165, 207,

213, 220
pressure, 165, 170, 172
unit antisymmetric, 102
viscous stress, 172, 191, 214, 384

theorem
Irnshow, 352
Jeans, 15, 117
Liouville, 6
Shafranov, 352
virial, 15, 343
Zemplen, 291

thermal conductivity, 214
thermal energy, 345
theta-pinch, 246
thick target, 60
threshold rigidity, 113
transfer coefficients, 175, 298
transfer equations, 123, 164, 173
trapped particle, 98, 107, 113, 338
triple correlation function, 33, 43
turbulence

fluid, 125
helical, 226
MHD, 110, 126, 226, 230, 339
plasma, 147
weak, 120

two-dimensional problem
axisymmetric, 256
first type, 245
second type, 247

two-temperature plasma, 143

vector potential, 247
velocity

drift, 84
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group, 265
hydrodynamic, 205
mean thermal, 136
most probable, 152
phase, 265
sound or acoustic, 264, 277

virial theorem, 15
scalar, 343
tensor, 344

viscosity
dynamic, 191, 380
kinematic, 125, 213, 221

viscosity coefficient, 212
viscous force, 172
viscous stress tensor, 172, 191, 214
Vlasov, 37
Vlasov equation, 37, 70, 116

gravitational analog, 46, 52, 303
volume charge, 201, 206, 213
vortex flow, 361
Voyager, 188

wave
Alfvén, 267, 296, 312, 371

kinetic, 132
nonlinear, 128
relativistic, 128

de Broglie, 98
dissipative, 312, 317
electromagnetic, 188
entropy, 266, 308, 312
entropy-vortex, 274
ion-acoustic, 118, 188
Langmuir, 118, 141, 185
large-amplitude, 263, 297
low-frequency, 187
magnetoacoustic, 274, 312

fast, 268, 288, 292, 297
slow, 268, 292

plane, 264, 307
shock, 263, 280
small-amplitude, 263, 296
sound or acoustic, 184, 297
wistler, 121

wave cascading, 123

wave spectral density, 123
white dwarf, 16, 36, 49, 99, 231

X-ray binary system, 150
X-ray claster, 148
X-ray emission

bremsstrahlung, 67, 98, 144, 149
hard, 63, 110, 138, 144, 149

polarization, 67
soft, 147

X-type zeroth point, 221, 246, 251
XMM-Newton, 299

Yohkoh, 144

Zeeman effect, 231
Zemplen theorem, 291
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