


PLASMA ASTROPHYSICS, PART II



PLASMA ASTROPHYSICS

2. Reconnection and Flares

Boris V. Somov

Astronomical Institute and Faculty of Physics

Moscow State University

Springer, 2006



ASTROPHYSICS AND 
SPACE SCIENCE LIBRARY

VOLUME 341

EDITORIAL BOARD
Chairman

W.B. BURTON, National Radio Astronomy Observatory, Charlottesville, Virginia, U.S.A.
(bburton@nrao.edu); University of Leiden, The Netherlands (burton@strw.leidenuniv.nl)

Executive Committee

J. M. E. KUIJPERS, Faculty of Science, Nijmegen, The Netherlands
E. P. J. VAN DEN HEUVEL, Astronomical Institute, University of Amsterdam,

The Netherlands
H. VAN DER LAAN, Astronomical Institute, University of Utrecht, The Netherlands

MEMBERS
F. Bertola, University of Padua, Italy;

J.P. Cassinelli, University of Wisconsin, Madison, USA;
C.J. Cesarsky, European Southern Observatory, Garching bei München, Germany;

P. Ehrenfreund, Leiden University, The Netherlands;
O. Engvold, University of Oslo, Norway;

A. Heck, Strasbourg Astronomical Observatory, France;
E.P.J. van den Heuvel, University of Amsterdam, The Netherlands;

V.M. Kaspi, McGill University, Montreal, Canada;
J.M.E. Kuijpers, University of Nijmegen, The Netherlands;
H. van der Laan, University of Utrecht, The Netherlands;

P.G. Murdin, Institute of Astronomy, Cambridge, UK;
F. Pacini, Istituto Astronomia Arcetri, Firenze, Italy;

V. Radhakrishnan, Raman Research Institute, Bangalore, India;
B.V. Somov, Astronomical Institute, Moscow State University, Russia;

R.A. Sunyaev, Space Research Institute, Moscow, Russia



PLASMA ASTROPHYSICS,
PART II

Reconnection and Flares

BORIS V. SOMOV
Moscow State University

Moscow, Russia



Boris V. Somov
Astronomical Institute
And Faculty of Physics
Moscow State University
Moscow, Russia
somov@sai.msu.ru

Cover illustration: The background is an image of the auroras over Tromsoe, Norway on January
18, 2005, that are the spectacular manifestations of substorms in the Earth’s magnetosphere due
to reconnection in the geomagnetic tail after a large solar flare.

Photograph reproduced with kind permission by Bjorn Jorgensen (Bjorn Jorgensen/www.
arcticphoto.no).

Library of Congress Control Number: 2006926924

ISBN-10: 0-387-34948-0
ISBN-13: 978-0387-34948-0

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com



Contents

Introduction 1

1 Magnetic Reconnection 5
1.1 What is magnetic reconnection? . . . . . . . . . . . . . . . . 5

1.1.1 Neutral points of a magnetic field . . . . . . . . . . . 5
1.1.2 Reconnection in vacuum . . . . . . . . . . . . . . . . 7
1.1.3 Reconnection in plasma . . . . . . . . . . . . . . . . 8
1.1.4 Three stages in the reconnection process . . . . . . . 11

1.2 Acceleration in current layers, why and how? . . . . . . . . 13
1.2.1 The origin of particle acceleration . . . . . . . . . . 13
1.2.2 Acceleration in a neutral current layer . . . . . . . . 15

1.3 Practice: Exercises and Answers . . . . . . . . . . . . . . . 19

2 Reconnection in a Strong Magnetic Field 21
2.1 Small perturbations near a neutral line . . . . . . . . . . . . 21

2.1.1 Historical comments . . . . . . . . . . . . . . . . . . 21
2.1.2 Reconnection in a strong magnetic field . . . . . . . 22
2.1.3 A linearized problem in ideal MHD . . . . . . . . . . 26
2.1.4 Converging waves and the cumulative effect . . . . . 28

2.2 Large perturbations near the neutral line . . . . . . . . . . 30
2.2.1 Magnetic field line deformations . . . . . . . . . . . 31
2.2.2 Plasma density variations . . . . . . . . . . . . . . . 34

2.3 Dynamic dissipation of magnetic field . . . . . . . . . . . . 34
2.3.1 Conditions of appearance . . . . . . . . . . . . . . . 34
2.3.2 The physical meaning of dynamic dissipation . . . . 37

2.4 Nonstationary analytical models of RCL . . . . . . . . . . . 38
2.4.1 Self-similar 2D MHD solutions . . . . . . . . . . . . 38
2.4.2 Magnetic collapse at the zeroth point . . . . . . . . 41
2.4.3 From collisional to collisionless reconnection . . . . . 45

v



vi CONTENTS

3 Evidence of Reconnection in Solar Flares 47
3.1 The role of magnetic fields . . . . . . . . . . . . . . . . . . . 47

3.1.1 Basic questions . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Concept of magnetic reconnection . . . . . . . . . . 48
3.1.3 Some results of observations . . . . . . . . . . . . . . 50

3.2 Three-dimensional reconnection in flares . . . . . . . . . . . 51
3.2.1 Topological model of an active region . . . . . . . . 51
3.2.2 Topological portrait of an active region . . . . . . . 55
3.2.3 Features of the flare topological model . . . . . . . . 57
3.2.4 The S-like morphology and eruptive activity . . . . . 60

3.3 A current layer as the source of energy . . . . . . . . . . . . 63
3.3.1 Pre-flare accumulation of energy . . . . . . . . . . . 63
3.3.2 Flare energy release . . . . . . . . . . . . . . . . . . 64
3.3.3 The RCL as a part of an electric circuit . . . . . . . 66

3.4 Reconnection in action . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 Solar flares of the Syrovatsky type . . . . . . . . . . 68
3.4.2 Sakao-type flares . . . . . . . . . . . . . . . . . . . . 69
3.4.3 New topological models . . . . . . . . . . . . . . . . 73
3.4.4 Reconnection between active regions . . . . . . . . . 75

4 The Bastille Day 2000 Flare 77
4.1 Main observational properties . . . . . . . . . . . . . . . . . 77

4.1.1 General characteristics of the flare . . . . . . . . . . 77
4.1.2 Overlay HXR images on magnetograms . . . . . . . 79
4.1.3 Questions of interpretaion . . . . . . . . . . . . . . . 82
4.1.4 Motion of the HXR kernels . . . . . . . . . . . . . . 83
4.1.5 Magnetic field evolution . . . . . . . . . . . . . . . . 84
4.1.6 The HXR kernels and field evolution . . . . . . . . . 85

4.2 Simplified topological model . . . . . . . . . . . . . . . . . . 87
4.2.1 Photospheric field model. Topological portrait . . . 87
4.2.2 Coronal field model. Separators . . . . . . . . . . . . 88
4.2.3 Chromospheric ribbons and kernels . . . . . . . . . . 89
4.2.4 Reconnected magnetic flux. Electric field . . . . . . 93
4.2.5 Discussion of topological model . . . . . . . . . . . . 96

5 Electric Currents Related to Reconnection 99
5.1 Magnetic reconnection in the corona . . . . . . . . . . . . . 99

5.1.1 Plane reconnection model as a starting point . . . . 99
5.1.2 Three-component reconnection . . . . . . . . . . . . 105

5.2 Photospheric shear and coronal reconnection . . . . . . . . 107
5.2.1 Accumulation of magnetic energy . . . . . . . . . . . 107
5.2.2 Flare energy release and CMEs . . . . . . . . . . . . 109



CONTENTS vii

5.2.3 Flare and HXR footpoints . . . . . . . . . . . . . . . 110
5.3 Shear flows and photospheric reconnection . . . . . . . . . . 114
5.4 Motions of the HXR footpoints in flares . . . . . . . . . . . 117

5.4.1 The footpoint motions in some flares . . . . . . . . . 117
5.4.2 Statistics of the footpoint motions . . . . . . . . . . 118
5.4.3 The FP motions orthogonal to the SNL . . . . . . . 119
5.4.4 The FP motions along the SNL . . . . . . . . . . . . 120
5.4.5 Discussion of statistical results . . . . . . . . . . . . 123

5.5 Open issues and some conclusions . . . . . . . . . . . . . . . 125

6 Models of Reconnecting Current Layers 129
6.1 Magnetically neutral current layers . . . . . . . . . . . . . . 129

6.1.1 The simplest MHD model . . . . . . . . . . . . . . . 129
6.1.2 The current layer by Syrovatskii . . . . . . . . . . . 131
6.1.3 Simple scaling laws . . . . . . . . . . . . . . . . . . . 134

6.2 Magnetically non-neutral RCL . . . . . . . . . . . . . . . . 136
6.2.1 Transversal magnetic fields . . . . . . . . . . . . . . 136
6.2.2 The longitudinal magnetic field . . . . . . . . . . . . 137

6.3 Basic physics of the SHTCL . . . . . . . . . . . . . . . . . . 139
6.3.1 A general formulation of the problem . . . . . . . . 139
6.3.2 Problem in the strong field approximation . . . . . . 141
6.3.3 Basic local parameters of the SHTCL . . . . . . . . 142
6.3.4 The general solution of the problem . . . . . . . . . 143
6.3.5 Plasma turbulence inside the SHTCL . . . . . . . . 145
6.3.6 Formulae for the basic parameters of the SHTCL . . 146

6.4 Open issues of reconnection in flares . . . . . . . . . . . . . 149
6.5 Practice: Exercises and Answers . . . . . . . . . . . . . . . 151

7 Reconnection and Collapsing Traps in Solar Flares 153
7.1 SHTCL in solar flares . . . . . . . . . . . . . . . . . . . . . 153

7.1.1 Why are flares so different but similar? . . . . . . . 153
7.1.2 Super-hot plasma production . . . . . . . . . . . . . 157
7.1.3 On the particle acceleration in a SHTCL . . . . . . . 160

7.2 Coronal HXR sources in flares . . . . . . . . . . . . . . . . . 160
7.2.1 General properties and observational problems . . . 160
7.2.2 Upward motion of coronal HXR sources . . . . . . . 162
7.2.3 Data on average upward velocity . . . . . . . . . . . 163

7.3 The collapsing trap effect in solar flares . . . . . . . . . . . 168
7.3.1 Fast electrons in coronal HXR sources . . . . . . . . 168
7.3.2 Fast plasma outflows and shocks . . . . . . . . . . . 168
7.3.3 Particle acceleration in collapsing trap . . . . . . . . 171
7.3.4 The upward motion of coronal HXR sources . . . . . 174



viii CONTENTS

7.3.5 Trap without a shock wave . . . . . . . . . . . . . . 176
7.4 Acceleration mechanisms in traps . . . . . . . . . . . . . . . 177

7.4.1 Fast and slow reconnection . . . . . . . . . . . . . . 177
7.4.2 The first-order Fermi-type acceleration . . . . . . . . 179
7.4.3 The betatron acceleration in a collapsing trap . . . . 180
7.4.4 The betatron acceleration in a shockless trap . . . . 183

7.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.6 Practice: Exercises and Answers . . . . . . . . . . . . . . . 185

8 Solar-type Flares in Laboratory and Space 193
8.1 Solar flares in laboratory . . . . . . . . . . . . . . . . . . . . 193

8.1.1 Turbulent heating in toroidal devices . . . . . . . . . 193
8.1.2 Current-driven turbulence in current layers . . . . . 195
8.1.3 Parameters of a current layer with CDT . . . . . . . 197
8.1.4 The SHTCL with anomalous heat conduction . . . . 198

8.2 Magnetospheric Physics Problems . . . . . . . . . . . . . . . 200
8.2.1 Reconnection in the Earth Magnetosphere . . . . . . 200
8.2.2 MHD simulations of space weather . . . . . . . . . . 201

8.3 Flares in accretion disk coronae . . . . . . . . . . . . . . . . 202
8.3.1 Introductory comments . . . . . . . . . . . . . . . . 202
8.3.2 Models of the star magnetosphere . . . . . . . . . . 203
8.3.3 Power of energy release in the disk coronae . . . . . 207

8.4 The giant flares . . . . . . . . . . . . . . . . . . . . . . . . . 208

9 Particle Acceleration in Current Layers 211
9.1 Magnetically non-neutral RCLs . . . . . . . . . . . . . . . . 211

9.1.1 An introduction in the problem . . . . . . . . . . . . 211
9.1.2 Dimensionless parameters and equations . . . . . . . 212
9.1.3 An iterative solution of the problem . . . . . . . . . 214
9.1.4 The maximum energy of an accelerated particle . . . 217
9.1.5 The non-adiabatic thickness of current layer . . . . . 218

9.2 Regular versus chaotic acceleration . . . . . . . . . . . . . . 219
9.2.1 Reasons for chaos . . . . . . . . . . . . . . . . . . . . 220
9.2.2 The stabilizing effect of the longitudinal field . . . . 222
9.2.3 Characteristic times of processes . . . . . . . . . . . 223
9.2.4 Dynamics of accelerated electrons in solar flares . . . 224
9.2.5 Particle simulations of collisionless reconnection . . . 225

9.3 Ion acceleration in current layers . . . . . . . . . . . . . . . 226
9.3.1 Ions are much heavier than electrons . . . . . . . . . 226
9.3.2 Electrically non-neutral current layers . . . . . . . . 227
9.3.3 Maximum particle energy and acceleration rates . . 229

9.4 How are solar particles accelerated? . . . . . . . . . . . . . 232



CONTENTS ix

9.4.1 Place of acceleration . . . . . . . . . . . . . . . . . . 232
9.4.2 Time of acceleration . . . . . . . . . . . . . . . . . . 234

9.5 Cosmic ray problem . . . . . . . . . . . . . . . . . . . . . . 236

10 Structural Instability of Reconnecting Current Layers 237
10.1 Some properties of current layers . . . . . . . . . . . . . . . 237

10.1.1 Current layer splitting . . . . . . . . . . . . . . . . . 237
10.1.2 Evolutionarity of reconnecting current layers . . . . 239
10.1.3 Magnetic field near the current layer . . . . . . . . . 240
10.1.4 Reconnecting current layer flows . . . . . . . . . . . 241
10.1.5 Additional simplifying assumptions . . . . . . . . . . 242

10.2 Small perturbations outside the RCL . . . . . . . . . . . . . 244
10.2.1 Basic assumptions . . . . . . . . . . . . . . . . . . . 244
10.2.2 Propagation of perturbations normal to a RCL . . . 244
10.2.3 The inclined propagation of perturbations . . . . . . 246

10.3 Perturbations inside the RCL . . . . . . . . . . . . . . . . . 250
10.3.1 Linearized dissipative MHD equations . . . . . . . . 250
10.3.2 Boundary conditions . . . . . . . . . . . . . . . . . . 251
10.3.3 Dimensionless equations and small parameters . . . 253
10.3.4 Solution of the linearized equations . . . . . . . . . . 255

10.4 Solution on the boundary of the RCL . . . . . . . . . . . . 258
10.5 The criterion of evolutionarity . . . . . . . . . . . . . . . . . 260

10.5.1 One-dimensional boundary conditions . . . . . . . . 260
10.5.2 Solutions of the boundary equations . . . . . . . . . 261
10.5.3 Evolutionarity and splitting of current layers . . . . 265

10.6 Practice: Exercises and Answers . . . . . . . . . . . . . . . 266

11 Tearing Instability of Reconnecting Current Layers 269
11.1 The origin of the tearing instability . . . . . . . . . . . . . . 269

11.1.1 Two necessary conditions . . . . . . . . . . . . . . . 269
11.1.2 Historical comments . . . . . . . . . . . . . . . . . . 270

11.2 The simplest problem and its solution . . . . . . . . . . . . 272
11.2.1 The model and equations for small disturbances . . 272
11.2.2 The external non-dissipative region . . . . . . . . . . 274
11.2.3 The internal dissipative region . . . . . . . . . . . . 276
11.2.4 Matching of the solutions and the dispersion relation 277

11.3 Physical interpretation of the instability . . . . . . . . . . . 279
11.3.1 Acting forces of the tearing instability . . . . . . . . 279
11.3.2 Dispersion equation for tearing instability . . . . . . 281

11.4 The stabilizing effect of transversal field . . . . . . . . . . . 282
11.5 Compressibility and a longitudinal field . . . . . . . . . . . 285

11.5.1 Neutral current layers . . . . . . . . . . . . . . . . . 285



x CONTENTS

11.5.2 Non-neutral current layers . . . . . . . . . . . . . . . 287
11.6 The kinetic approach . . . . . . . . . . . . . . . . . . . . . . 288

11.6.1 The tearing instability of neutral layer . . . . . . . . 288
11.6.2 Stabilization by the transversal field . . . . . . . . . 292
11.6.3 The tearing instability of the geomagnetic tail . . . . 293

12 Magnetic Reconnection and Turbulence 297
12.1 Reconnection and magnetic helicity . . . . . . . . . . . . . . 297

12.1.1 General properties of complex MHD systems . . . . 297
12.1.2 Two types of MHD turbulence . . . . . . . . . . . . 299
12.1.3 Helical scaling in MHD turbulence . . . . . . . . . . 301
12.1.4 Large-scale solar dynamo . . . . . . . . . . . . . . . 302

12.2 Coronal heating and flares . . . . . . . . . . . . . . . . . . . 304
12.2.1 Coronal heating in solar active regions . . . . . . . . 304
12.2.2 Helicity and reconnection in solar flares . . . . . . . 305

12.3 Stochastic acceleration in solar flares . . . . . . . . . . . . . 307
12.3.1 Stochastic acceleration of electrons . . . . . . . . . . 307
12.3.2 Acceleration of protons and heavy ions . . . . . . . . 309
12.3.3 Acceleration of 3He and 4He in solar flares . . . . . . 310
12.3.4 Electron-dominated solar flares . . . . . . . . . . . . 311

12.4 Mechanisms of coronal heating . . . . . . . . . . . . . . . . 313
12.4.1 Heating of the quiet solar corona . . . . . . . . . . . 313
12.4.2 Coronal heating in active regions . . . . . . . . . . . 315

12.5 Practice: Exercises and Answers . . . . . . . . . . . . . . . 317

13 Reconnection in Weakly-Ionized Plasma 319
13.1 Early observations and classical models . . . . . . . . . . . 319
13.2 Model of reconnecting current layer . . . . . . . . . . . . . . 321

13.2.1 Simplest balance equations . . . . . . . . . . . . . . 321
13.2.2 Solution of the balance equations . . . . . . . . . . . 322
13.2.3 Characteristics of the reconnecting current layer . . 323

13.3 Reconnection in solar prominences . . . . . . . . . . . . . . 325
13.4 Element fractionation by reconnection . . . . . . . . . . . . 328
13.5 The photospheric dynamo . . . . . . . . . . . . . . . . . . . 329

13.5.1 Current generation mechanisms . . . . . . . . . . . . 329
13.5.2 Physics of thin magnetic flux tubes . . . . . . . . . . 330
13.5.3 FIP fractionation theory . . . . . . . . . . . . . . . . 332

13.6 Practice: Exercises and Answers . . . . . . . . . . . . . . . 334



CONTENTS xi

14 Magnetic Reconnection of Electric Currents 339
14.1 Introductory comments . . . . . . . . . . . . . . . . . . . . 339
14.2 Flare energy storage and release . . . . . . . . . . . . . . . 340

14.2.1 From early models to future investigations . . . . . . 340
14.2.2 Some alternative trends in the flare theory . . . . . . 344
14.2.3 Current layers at separatrices . . . . . . . . . . . . . 345

14.3 Current layer formation mechanisms . . . . . . . . . . . . . 346
14.3.1 Magnetic footpoints and their displacements . . . . 346
14.3.2 Classical 2D reconnection . . . . . . . . . . . . . . . 348
14.3.3 Creation of current layers by shearing flows . . . . . 350
14.3.4 Antisymmetrical shearing flows . . . . . . . . . . . . 352
14.3.5 The third class of displacements . . . . . . . . . . . 354

14.4 The shear and reconnection of currents . . . . . . . . . . . . 355
14.4.1 Physical processes related to shear and reconnection 355
14.4.2 Topological interruption of electric currents . . . . . 357
14.4.3 The inductive change of energy . . . . . . . . . . . . 357

14.5 Potential and non-potential fields . . . . . . . . . . . . . . . 359
14.5.1 Properties of potential fields . . . . . . . . . . . . . . 359
14.5.2 Classification of non-potential fields . . . . . . . . . 360

14.6 To the future observations by Solar-B . . . . . . . . . . . . 362

Epilogue 365

Appendix 1. Acronyms 367

Appendix 2. Notation 369

Appendix 3. Useful Formulae 371

Appendix 4. Constants 375

Bibliography 377

Index 407



Reconnection and Flares
Introduction

Magnetic fields are easily generated in astrophysical plasma owing to its
high conductivity. Magnetic fields, having strengths of order few 10−6 G,
correlated on several kiloparsec scales are seen in spiral galaxies. Their
origin could be due to amplification of a small seed field by a turbulent
galactic dynamo. In several galaxies, like the famous M51, magnetic fields
are well correlated (or anti-correlated) with the optical spiral arms. These
are the weakest large-scale fields observed in cosmic space. The strongest
magnets in space are presumably the so-called magnetars, the highly mag-
netized (with the strength of the field of about 1015 G) young neutron stars
formed in the supernova explosions.

The energy of magnetic fields is accumulated in astrophysical plasma,
and the sudden release of this energy – an original electrodynamical ‘burst’
or ‘explosion’ – takes place under definite but quite general conditions (Per-
att, 1992; Sturrock, 1994; Kivelson and Russell, 1995; Rose, 1998; Priest
and Forbes, 2000; Somov, 2000; Kundt, 2001). Such a ‘flare’ in astro-
physical plasma is accompanied by fast directed ejections (jets) of plasma,
powerful flows of heat and hard electromagnetic radiation as well as by
impulsive acceleration of charged particles to high energies.

This phenomenon is quite a widespread one. It can be observed in flares
on the Sun and other stars (Haisch et al., 1991), in the Earth’s magneto-
sphere as magnetic storms and substorms (Nishida and Nagayama, 1973;
Tsurutani et al., 1997; Kokubun and Kamide, 1998; Nagai et al., 1998;
Nishida et al., 1998), in coronae of accretion disks of cosmic X-ray sources
(Galeev et al., 1979; Somov et al., 2003a), in nuclei of active galaxies and
quasars (Ozernoy and Somov, 1971; Begelman et al., 1984). However this
process, while being typical of astrophysical plasma, can be directly and
fully studied on the Sun.

The Sun is the only star that can be imaged with spatial resolution
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2 Reconnection and Flares

high enough to reveal its key (fine as well as large-scale) structures and
their dynamic behaviours. This simple fact makes the Sun one of the most
important objectives in astronomy. The solar atmosphere can be regarded
as a natural ‘laboratory’ of astrophysical plasmas in which we can study
the physical processes involved in cosmic electrodynamical explosions.

We observe how magnetic fields are generated (strictly speaking, how
they come to the surface of the Sun, called the photosphere). We ob-
serve the development of solar flares (e.g., Strong et al., 1999) and other
non-stationary large-scale phenomena, such as a gigantic arcade formation,
coronal transients, coronal mass ejections into the interplanetary medium
(see Crooker et al., 1997), by means of ground observatories (in radio and
optical wavelength ranges) and spaceships (practically in the whole electro-
magnetic spectrum). For example, on board the Yohkoh satellite, (Ogawara
et al., 1991; Acton et al., 1992) two telescopes working in soft and hard X-
ray bands (Tsuneta et al., 1991; Kosugi et al., 1991) allowed us to study the
creation and development of non-steady processes in the solar atmosphere
(Ichimoto et al., 1992; Tsuneta et al., 1992; Tsuneta, 1993), acceleration of
electrons in flares.

The LASCO experiment on board the Solar and Heliospheric Observa-
tory , SOHO (Domingo et al., 1995) makes observations of such events in
the solar corona out to 30 solar radii. Moreover SOHO is equipped with
an instrument, the full disk magnetograph MDI (Scherrer et al., 1995), for
observing the surface magnetic fields of the Sun. Following SOHO , the
satellite Transition Region and Coronal Explorer (TRACE ) was launched
to obtain high spatial resolution X-ray images (see Golub et al., 1999).
With the solar maximum of 2000, we had an unprecedented opportunity
to use the three satellites for coordinated observations and study of solar
flares.

The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI )
was launched in 2002 and observes solar hard X-rays and gamma-rays from
3 keV to 17 MeV with spatial resolution as high as 2.3 arc sec (Lin et
al., 2002; 2003). Imaging of gamma-ray lines, produced by nuclear colli-
sions of energetic ions with the solar atmosphere, provides direct informa-
tion of the spatial properties of the ion acceleration in solar flares (Hurford
et al., 2003). RHESSI observations allow us to investigate physical proper-
ties of solar flares in many details (e.g., Fletcher and Hudson, 2002; Krucker
et al., 2003).

The link between the solar flares observed and topology of the magnetic
field in active regions, in which these flares occured, was investigated by
Gorbachev and Somov (1989, 1990). They developed the first model of
an actual flare, the flare on 1980, November 5, and have shown that the
all large-scale characteristic features of this flare can be explained by the



Introduction 3

presence of a current layer formed on the so-called separator which is the
intersection of the separatrix surfaces. In particular, the flare ribbons in
the chromosphere as well as the ‘intersecting’ soft X-ray loops in the corona
are the consequences of a topological structure of a magnetic field near the
separator.

An increasing number of investigations clearly relates the location of a
‘chromospheric flare’ – the flare’s manifestation in the solar chromosphere
– with the topological magnetic features of active regions (Mandrini et al.,
1991 and 1993; Démoulin et al., 1993; Bagalá et al., 1995; Longcope and
Silva, 1998). In all these works it is confirmed that the solar flares can be
considered as a result of the interaction of large-scale magnetic structures;
the authors derived the location of the separatrices – surfaces that separate
cells of different field line connectivities – and of the separator .

These studies strongly support the concept of magnetic reconnection
in solar flares (Giovanelli, 1946; Dungey, 1958; Sweet, 1958). Solar observa-
tions with the Hard X-ray Telescope (HXT) and the Soft X-ray Telescope
(SXT) on board the Yohkoh satellite clearly showed that

the magnetic reconnection process is common to impulsive (com-
pact) and gradual (large scale) solar flares

(Masuda et al., 1994, 1995). However, in the interpretation of the Yohkoh
data, the basic physics of magnetic reconnection in the solar atmosphere
remained uncertain (see Kosugi and Somov, 1998). Significant parts of the
book in your hands are devoted to the physics of the reconnection process,
a fundamental feature of astrophysical and laboratory plasmas.

Solar flares and coronal mass ejections (CMEs) strongly influence the
interplanetary and terrestrial space by virtue of shock waves, hard electro-
magnetic radiation and accelerated particles (Kivelson and Russell, 1995;
Miroshnichenko, 2001). That is why the problem of ‘weather and climate’
prediction in the near space becomes more and more important. The term
‘near space’ refers to the space that is within the reach of orbiting stations,
both manned and automated. The number of satellites (meteorological,
geophysical, navigational ones) with electronic systems sensitive to the ion-
izing radiation of solar flares is steadily growing.

It has been established that adverse conditions in the space environment
can cause disruption of satellite operations, communications, and electric
power distribution grids, thereby leading to broad socioeconomic losses
(Wright, 1997). Space weather (e.g., Hanslmeier, 2002) is of growing
importance to the scientific community and refers to conditions at a par-
ticular place and time on the Sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can influence the performance and relia-
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bility of spaceborne and ground-based technological systems and can affect
human life or health.

It is no mere chance that solar flares and coronal mass ejections are
of interest to physicians, biologists and climatologists. Flares influence
not only geospace – the terrestrial magnetosphere, ionosphere and upper
atmosphere (Hargreaves, 1992; Horwitz et al., 1998; de Jager, 2005) but
also the biosphere and the atmosphere of the Earth. They are therefore not
only of pure scientific importance; they also have an applied or practical
relevance.

The latter aspect is, however, certainly beyond the scope of this text, the
second volume of the book “Plasma Astrophysics”, lectures given the stu-
dents of the Astronomical Division of the Faculty of Physics at the Moscow
State University in spring semesters over the years after 2000. The subject
of the present book “Plasma Astrophysics. 2. Reconnection and Flares”
is the basic physics of the magnetic reconnection phenomenon and the re-
connection related flares in astrophysical plasmas. The first volume of the
book, “Plasma Astrophysics. I. Fundamentals and Practice” (referred in
the text as vol. 1), is unique in covering the main principles and practical
tools required for understanding and work in modern plasma astrophysics.
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Chapter 1

Magnetic Reconnection

Magnetic reconnection is a fundamental feature of astrophysical and
laboratory plasmas, which takes place under definite but quit general
conditions and creates a sudden release of magnetic energy, an original
electrodynamical explosion or flare. Surprisingly, the simplest approx-
imation – a single particle in given force fields – gives us clear approach
to several facets of reconnection and particle acceleration.

1.1 What is magnetic reconnection?

1.1.1 Neutral points of a magnetic field

The so-called zeroth or neutral points, lines and surfaces of magnetic field,
which are the regions where magnetic field equals zero:

B = 0 , (1.1)

are considered to be important for plasma astrophysics since Giovanelli (1946).
They are of interest for the following reasons. First, plasma behaviour is
quite specific in the vicinity of such regions (Dungey, 1958). Second, they
predetermine a large number of astrophysical phenomena. We shall be pri-
marily concerned with non-stationary phenomena in the solar atmosphere
(such as flares, coronal transients, coronal mass ejections), accompanied by
particle acceleration to high energies. Analogous phenomena take place on
other stars, in planetary magnetospheres, and pulsars.

Neutral points of magnetic field most commonly appear in places of
the interaction of magnetic fluxes.

5
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The simplest way to recognize this is to consider the emerging flux in the
solar atmosphere.

ChPh

X

S n s N

Figure 1.1: The emergence of a new magnetic flux (n, s) from under the
photosphere Ph inside an active region whose magnetic field is determined
by the sources S and N .

Figure 1.1 shows the sources N and S corresponding to the active re-
gion’s magnetic field. The sources n and s play the role of a new flux
emerging from under the photosphere Ph. The chromosphere is shown
by the dashed line Ch. We consider an arrangement of the sources along a
straight line, although the treatment can well be generalized (Section 3.2.1)
to consider arbitrary configurations of the four sources in the photosphere.

Figure 1.2: A hyperbolic zeroth
point (line along the axis z) of a
potential magnetic field.

y

x

B

Obviously a point can be found above the emerging flux, where oppo-
sitely directed but equal in magnitude magnetic fields ‘meet’. Here the
total field, that is the sum of the old and the new ones, is zero. Let us
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denote this point by X, bearing in mind that the field in its vicinity has
the hyperbolic structure shown in Figure 1.2.

In order to convince oneself that this is the case, we can consider the
magnetic field in the simplest approach which is the potential approxi-
mation (see vol. 1, Section 13.1.3). This will be done, for example, in
Section 1.1.4. However, at first, we shall recall and illustrate the basic defi-
nitions related to the magnetic reconnection process in simplest situations.

1.1.2 Reconnection in vacuum

The X-type points constitute the most important topological peculiarity
of a magnetic field. They are the places where redistribution of magnetic
fluxes occurs, which changes the connectivity of field lines. Let us illustrate
such a process by the simplest example of two parallel electric currents I of
equal magnitude I in vacuum as shown in Figure 1.3.

l

lδ

2

(a) (b)

A

A

x

y

I

I
1

2

A1

X

Figure 1.3: The potential field of two parallel currents I: (a) the initial
state, 2l is a distance between the currents; (b) the final state after they
have been drawn nearer by a driven displacement δl.

The magnetic field of these currents forms three different fluxes in the
plane (x, y). Two of them belong to the upper and the lower currents,
respectively, and are situated inside the separatrix field line A1 which forms
the eight-like curve with a zeroth X-point. The third flux situated outside
this curve belongs to both currents and is situated outside the separatrix.

If the currents are displaced in the direction of each other, then the
following redistribution of a magnetic flux will take place. The current’s
proper fluxes will diminish by the quantity δA (shown by two shadowed
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rings in Figure 1.3a), while their common flux will increase by the same
quantity (shown by the shadowed area in Figure 1.3b), So the field line A2
will be the separatrix of the final state.

This process is realized as follows. Two field lines approach the X-point,
merge there, forming a separatrix, and then they reconnect forming a field
line which encloses both currents. Such a process is termed reconnection of
field lines or magnetic reconnection. A2 is the last reconnected field line.

Magnetic reconnection is of fundamental importance for the nature of
many non-stationary phenomena in astrophysical plasma. We shall discuss
the physics of this process more fully in Chapters 2 to 14. Suffice it to
note that reconnection is inevitably associated with electric field
generation. This field is the inductive one, since

E = −1
c

∂A
∂t

, (1.2)

where A is the vector potential of magnetic field,

B = curlA . (1.3)

In the above example the electric field is directed along the z axis. It is
clear that, if δt is the characteristic time of the reconnection process shown
in Figure 1.3, then according to (1.2)

E ≈ 1
c

δA

δt
≈ 1

c

A2 − A1

δt
; (1.4)

the last equality is justified in vol. 1, Section 14.2.
Reconnection in vacuum is a real physical process: magnetic

field lines move to the X-type neutral point and reconnect in it as well as

the electric field is induced and can accelerate a charged particle or
particles in the vicinity of the neutral point.

In this sense, a collisionless reconnection – the physical process in a high-
temperature rarefied plasma such as the solar corona, geomagnetic tail,
fusion plasmas, and so on – is simpler for understanding than reconnection
in a highly-conducting collisional space plasma.

1.1.3 Reconnection in plasma

Let us try to predict plasma behaviour near the X-point as reconnection
proceeds on the basis of our knowledge about the motion of a charged
particle in given magnetic and electric fields.
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The first obvious fact is that, given the non-zero electric field E, the
plasma begins to drift in the magnetic field B, in a way shown in Figure 1.4a.
The electric drift velocity

vd = c
E × B

B 2 (1.5)

is shown in four points. The magnetic field is considered as a uniform field
in the vicinity of these points.

The second fact consists of the inapplicability of the adiabatic drift
approximation near the zeroth point, since the Larmor radius

rL =
c p⊥
eB

(1.6)

increases indefinitely as B → 0. We have to solve the exact equations of
motion. This will be done later on. However we see at once that in this
region an electric current J can flow along the z axis. The proper magnetic
field of the current changes the initial field topology, so that there will be
two symmetric zeroth points X1 and X2 on the x axis in Figure 1.4b instead
of one X-point.

The same arguments concerning drift flows and X-point bifurcation are
applicable to the new X-points. We easily guess that the result of the
interaction of line currents with the external hyperbolic field is a current
layer in the region of reconnection. The reconnecting current layer
(RCL) is shown by thick solid straight line in Figure 1.4c. Note that the
direction of the electric current can change at the external edges of the layer.
Here the currents can flow in the opposite direction (the reverse currents)
with respect to the main current (the direct current) in the central part.

RCLs are, in general, at least two-dimensional and two-scale formations.
The former means that one-dimensional models are in principle inadequate
for describing the RCL: both plasma inflow in the direction perpendicular to
the layer and plasma outflow along the layer, along the x axis in Figure 1.5,
have to be taken into account.

The existence of two scales implies that usually (for a sufficiently strong
field and high conductivity like in the solar corona) the RCL width 2b is
much greater than its thickness 2a. This is essential since

the wider the reconnecting current layer, the larger the magnetic
energy which is accumulated

in the region of reconnecting fluxes interaction. On the other hand, a small
thickness is responsible for the high rate of accumulated energy dissipa-
tion, as well as for the possibility of non-stationary processes (for instance,
tearing instability) in the RCL. It is generally believed, on a very serious
basis (see Chapter 3), that the solar flares and similar phenomena in space
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v

E

B

d

E

E

v
d

B

B

v
d

v

E

dJX X1 2

(a)

(b)

E vd(c)

RCL

Figure 1.4: (a) Plasma flows owing to the electric drift in the vicinity of
a zeroth point. (b) The appearance of secondary X-points – bifurcation
of the initial zeroth line, given the current J flowing along it. (c) A thin
reconnecting current layer (RCL).
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2b

2a

EB

v0

0 y

x

Figure 1.5: The simplest model of a RCL – the neutral layer.

plasma result from the fast conversion of the excess magnetic energy into
heat and bulk plasma motions and kinetic energy of accelerated particles.

1.1.4 Three stages in the reconnection process

Now we come back to the example of magnetic reconnection considered in
Section 1.1.2. Let the parallel electric currents I move to each other with
velocity 2u as shown in Figure 1.3. Let us describe the electric field induced
in the space between the currents.

The magnetic field of two parallel currents is expressed with the aid of
the vector-potential A having only the z component:

A = { 0, 0, A (x, y, t) } . (1.7)

The magnetic field B is defined by the z-component of the vector-potential:

B = curl A =
{

∂A

∂y
, − ∂A

∂x
, 0
}

. (1.8)

The scalar function A (x, y, t) is termed the vector potential . In the case
under consideration

A (x, y, t) =
I

c

{
ln
[
x2 + (y − l(t))2

]
+ ln

[
x2 + (y + l(t))2

]}
. (1.9)

For a sake of simplicity, near the zeroth line of the magnetic field, sit-
uated on the z axis, formula (1.9) may be expanded in a Teylor series,
the zeroth order and square terms of the expansion being sufficient for our
purposes:

A (x, y, t) = A (0, 0, t) +
2I

c
(x2 − y2) . (1.10)
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Here

A (0, 0, t) =
4I

c
ln l(t) = A (t) (1.11)

is the time-dependent part of the vector potential.
From formula (1.11) the electric field induced along the zeroth line and

in its vicinity can be found

E = −1
c

∂A
∂t

= −4I

c

1
l

dl

dt
ez , (1.12)

where the half-distance between currents l = l − ut with u = |u |. Hence

E =
4I

c

1
l

u ez . (1.13)

Therefore

the electric field induced between two parallel currents, that move
to each other, is anti-parallel to these electric currents and induces
the current layer in plasma

as shown in Figure 1.6.

lδ

(a) (b)

A1

A1

(c)

A
2CL

x

y

Figure 1.6: Three states of magnetic field: (a) the initial state; (b) the
pre-reconnection state with a ‘non-reconnecting’ current layer CL; (c) the
final state after reconnection.

So two parallel currents are displaced from the initial state (a) in Fig-
ure 1.6 to the final state (c) in plasma, which is the same as the state (b)
in Figure 1.3. However, contrary to the case of reconnection in vacuum,
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in astrophysical plasma of low resistivity we have to add an intermediate
state. We call it the pre-reconnection state.

At this state, coming between the initial and final one, the electric
currents have been displaced to the final positions, but the magnetic field
lines have not started to reconnect yet, if the plasma conductivity can be
considered as infinite. The current layer along the X-type neutral line
protects the interacting fluxes from reconnection. The energy of
this interaction called the free magnetic energy is just the energy of the
magnetic field of the current layer.

Because of the finite conductivity, magnetic reconnection proceeds
slowly (or rapidly) depending on how high (or low) the conductivity of
plasma is. Anyway, the final state (c) after reconnection is the same as the
state (b) in Figure 1.3 with the line A2 as the separatrix of the final state or
the last reconnected line. The following analogy in everyday life is appro-
priate to the process under discussion. A glass of hot water will invariably
cool from a given temperature (the initial state) to a room temperature (the
final state), independently of the mechanism of heat conductivity, i.e. the
heat exchange with the surrounding air; the mechanism determines only
the rate of cooling.

1.2 Acceleration in current layers, why and
how?

1.2.1 The origin of particle acceleration

The formation and properties of current layers will be considered in Chap-
ters 2 to 14 in different approximations. However one property which is
important from the standpoint of astrophysical applications can be under-
stood just now by considering the motion of a charged particle in given
magnetic and electric fields. This property is particle acceleration.

In accordance with Figure 1.5, let the magnetic field B be directed along
the x axis, changing the sign at y = 0 (the current layer plane). That is
why the y = 0 plane is called the neutral surface (or neutral plane) and
the model under consideration is called the neutral current layer. Cer-
tainly this simplest model is not well justified from physical point of view
but mathematically convenient. Moreover, even being a strong idealiza-
tion, the model allows us to understand why particles are accelerated in a
reconnecting current layer.

The electric field E is directed along the z axis, to the right in Figure 1.7,
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being constant and homogeneous. Thus

B = { − hy, 0, 0 } , E = { 0, 0, E } , (1.14)

where h and E are constants. We assume that the magnetic field changes
its value gradually inside the current layer with a gradient h = | ∇B |.

B

B

p
+

∆

B

B

∆
p
+

B

B

∆
B

∆

B

BE
E

BE

y

x z

Figure 1.7: The drift motions of a positively charged particle near the
neutral plane y = 0. The electric field E induces a particle drift towards
the neutral plane from both above and below. The case of the slow gradient
drift is shown high above the plane and for a particle crossing the plane.

Let us consider the particle motion in such crossed fields.
At sufficiently large distances from the neutral plane y = 0, the motion

is a sum of electric and gradient drifts (see Appendix 3). The electric drift
makes a particle move to the neutral plane from both sides of this plane.
So the electric drift creates some confinement of a particle near the neutral
plane.

The gradient drift drives a positively charged particle (an ion) along the
negative direction of the z axis, to the left in Figure 1.7, i.e. in the direction
opposite to the electric field E. Hence the energy of an ion decreases. A
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negatively charged particle (an electron) moves in opposite direction to the
ion’s drift, i.e. along the electric field; so its energy also decreases due to
the gradient drift.

B

B

∆

p
+

y

x

z
p
+

(a) (b) (c)

vd vd

ψ
0

ψ

Figure 1.8: The serpentine-type orbits of a positively charged particle cross-
ing the neutral plane y = 0.

Particles that cross the neutral plane have more complex orbits. An ion
can drift to the left, as shown in Figure 1.8a, or to the right, as shown in
Figure 1.8c, depending on the angle at which it crosses the neutral plane.
There is only one angle ψ 0 for which the ion moves in a figure-eight pattern
(Figure 1.8b) and has no net motion. It stays (in the absence of electric field
along the plane, of course). Any ion that crosses the plane with a velocity
vector closer to the normal than the ion which stays still, will drift to the
right (Cowley, 1986). Such ions moving along the electric field increase
their energy. Hence an acceleration of particles crossing the neutral plane
is possible.

Therefore the electric field induces the particle drift toward the neutral
plane. On reaching the neutral plane, the particles become unmagnetized,
since the magnetic field is zero there, and are accelerated in the electric
field: ions to the right along the electric field and electrons to the left.

1.2.2 Acceleration in a neutral current layer

As we have seen above, on the basis of the gradient drift consideration,
one might think that the neutral current layer is perhaps not the best
place for a particle acceleration. However this is not true. First, in an
isotropic velocity distribution, this must be a majority of the particles,
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resulting in a net rightward current, along the electric field, as required
for acceleration. Second, as the particle approaches the neutral plane, the
Larmor radius rL = R⊥ /B increases indefinitely. Hence the drift formalism
is not applicable here. We have to solve the exact equation of particle
motion. In the non-relativistic case, it is of the form

m v̇ = eE +
e

c
v × B . (1.15)

With the electric and magnetic fields given by (1.14) we have the following
three equations in the coordinates x, y, and z:

ẍ = 0 , ÿ = − eh

mc
y ż , z̈ =

e

m

(
E +

h

c
y ẏ

)
.

Let us rewrite these equations as follows:

ẍ = 0 , ÿ +
eh

mc
ż y = 0 , z̈ =

eE

m
+

eh

mc
y ẏ . (1.16)

The last equation is integrated to give

ż =
eE

m
t +

eh

2mc
y2 + const . (1.17)

The motion along the y axis is finite. This is a result of the above analysis of
the character of motion in the drift approximation which applies when the
particle is far enough from the neutral plane y = 0. That is the reason why,
for large t (the ratio y2/t → 0), the first term on the right of Equation (1.17)
plays a leading role. So we put asymptotically

ż =
eE

m
t .

(1.18)

As we shall see below, (1.18) is the main formula which desribes the effect
of acceleration by the electric field inside the neutral layer.

After substituting (1.18) into the second equation of (1.16) we obtain

ÿ +
e2hE

m2c
t y = 0 .

Introducing the designation

e2hE

m2c
= a2 ,
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we have

ÿ + ω2(t) y = 0 ,

(1.19)

where ω2(t) = a2t.
Let us try to find the solution of Equation (1.19) in the form

y (t) = f(t) cos ϕ(t) , (1.20)

where f(t) is a slowly changing function of the time t. Substituting (1.20)
in Equation (1.19) results in

f̈ cos ϕ − 2ḟ ϕ̇ sin ϕ − f ϕ̈ sin ϕ − f (ϕ̇)2 cos ϕ + a2t f cos ϕ = 0 .

Since f is a slow function, the first term, containing the second deriva-
tive of f with respect to time, can be ignored. The remaining terms are
regrouped in the following way:

f
[
−(ϕ̇)2 + a2t

]
cos ϕ −

(
2ḟ ϕ̇ + f ϕ̈

)
sin ϕ = 0 .

By the orthogonality of the functions sinϕ and cosϕ, we have a set of two
independent equations:

(ϕ̇)2 = a2 t , (1.21)

2ḟ ϕ̇ + f ϕ̈ = 0 . (1.22)

The first equation is integrated, resulting in

ϕ =
2
3

a t3/2 + ϕ0 , (1.23)

where ϕ0 is a constant. Substitute this solution in Equation (1.22):

ḟ

f
= −1

2
ϕ̈

ϕ̇
= −1

4
t−1 .

From this it follows that
f = C t−1/4 , (1.24)

where C is a constant of integration.
On substituting (1.23) and (1.24) in (1.20), we obtain the sought-after

description of the particle trajectory in a current layer:

y (t) = C t−1/4 cos
(

2
3

a t3/2 + ϕ0

)
, (1.25)

z (t) =
eE

m

t2

2
+ z0 . (1.26)
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Eliminate the variable t between formulae (1.25) and (1.26). We have

y (z) = C

[
2m

eE
(z − z0)

]−1/8

cos

{
2
3

a

[
2m

eE
(z − z0)

]3/4

+ ϕ0

}
. (1.27)

The amplitude of this function

Ay ∼ z−1/8 ∼ t−1/4 (1.28)

slowly decreases as z increases.
Let us find the ‘period’ of the function (1.27): ϕ ∼ z3/4, hence δϕ ∼

z−1/4 δz. If δ � 2π, then
δz
∣∣
2π

∼ z1/4 . (1.29)

Thus the period of the function (1.27) is enhanced as shown in Figure 1.9.

B

B

p+

E
y

x z

A y

Figure 1.9: The trajectory of a particle accelerated by the electric field E
in the neighbourhood of the neutral plane inside a neutral current layer.

Note that the transversal velocity

ẏ ∼ t−1/4 ϕ̇ ∼ t1/4 (1.30)

grows with time, but slower than the velocity component parallel to the
electric field. From the main formula (1.18) it follows that

ż ∼ t . (1.31)

As a result, the particle is predominantly accelerated in the electric field
direction along the current layer.
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An exact analytical solution to Equation (1.19) can be expressed as a
linear combination of Bessel functions (Speiser, 1965). It has the same
properties as (it asymptotically coincides with) the approximate solution.
Equation (1.19) corresponds to the equation of a linear oscillator, with the
spring constant becoming larger with time. In the neutral current layer,
the magnetic force returns the particle to the neutral plane: the larger the
force, the higher the particle velocity.

The electric field provides particle acceleration along the reconnect-
ing current layer. This is the main effect.

Needless to say, the picture of acceleration in real current layers is more
complicated and interesting. In particular, acceleration efficiency depends
strongly upon the small transversal component of the magnetic field which
penetrates into the reconnecting current layer (RCL) and makes the accel-
erated particles be ejected from the layer (Speiser, 1965). This effect, as
well as the role of the longitudinal (along the z axis) component of a mag-
netic field inside the current layer, will be considered in Chapters 9 and 11.
Magnetical non-neutrality of the current layer is of great significance for
acceleration of electrons, for example, in the solar atmosphere.

In fact, real current layers are non-neutral not only in the sense of
the magnetic field. They are also electrically non-neutral; they have an
additional electric field directed towards the layer plane from both sides.
This electric field is necessary for ion acceleration and will be considered in
Chapter 9.

1.3 Practice: Exercises and Answers

Exercise 1.1. [ Section 1.1.2 ] Consider the Lorentz force acting between
two parallel electric currents in vacuum.

Answer. One of the currents, for example the upper current I in the
place y = l in Figure 1.3, generates the magnetic field

B =
I

2π R
eϕ . (1.32)

This field circulates around the upper current as shown in Figure 1.10. In
the place of the second current, the magnetic field is

B = − I

π l
ex . (1.33)

The Lorentz force acting on the second current, on its unit length, is
equal to

F = I × B =
I2

π l
ey . (1.34)
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Therefore two parallel currents attract each other.

l2

(a)

I

x

y

z

I
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F
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z
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u
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R

Figure 1.10: Two parallel currents: (a) 2l is a distance between the currents;
(b) the currents are drawn nearer with velocity u and induce the electric
field E.

Exercise 1.2. [ Section 1.1.2 ] Under conditions of the previous problem
discuss how the energy of interaction between two parallel currents depends
on the distance between them.

Answer. According to formula (1.34), the force between the interacting
current is proportional to 1/l. Hence the energy of interaction is propor-
tional to ln l with the sign (-) for the parallel currents but with the sign
(+) for the anti-parallel electric currents.

Exercise 1.3. [ Section 1.1.2 ] Show that the electric field (1.13) between
two parallel electric currents is proportional to the rate of reconnection of
magnetic field lines.

Hint The term A(t), defined by formula (1.11), represents the recon-
nected magnetic flux as a function of time.

Exercise 1.4. [ Section 1.1.2 ] What happens if we move the parallel cur-
rents in opposite directions?



Chapter 2

Reconnection in a Strong
Magnetic Field

When two oppositely directed magnetic fields are pressed together,
the conductive plasma is squeezed out from between them, causing
the field gradient to steepen until a reconnecting current layer (RCL)
appears and becomes so thin that the resistive dissipation determines
the magnetic reconnection rate. In this Chapter, the basic magne-
tohydrodynamic properties of such a process are considered in the
approximation of a strong magnetic field.

2.1 Small perturbations near a neutral line

2.1.1 Historical comments

The notion of reconnection of magnetic field lines, magnetic reconnection,
came into existence in the context of the interpretation of solar flare obser-
vations. The review of early works in the field is contained, for example in
the eminent paper by Sweet (1969). From the viewpoint of reconnection,
points and lines where the magnetic field is zero are peculiari-
ties. This special feature, which is of a topological nature, has already
been mentioned in Section 1.1 (see Figure 1.2).

Giovanelli (1947) pointed out that a highly concentrated electric current
appears readily at an X-type zeroth point in a highly conducting plasma.
This is true and important. Dungey (1958) put forward the idea that

21
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unusual electrodynamic properties of a plasma emerge in the vicinity
of a neutral (or zeroth) point of type X.

Since there was no clear view of the physical essence of reconnection, the
notion has been accepted uncritically. It was assumed, for instance, that
the mere existence of a zeroth point inevitably leads to spontaneous com-
pression of a magneto-plasma configuration and rapid dissipation of the
magnetic field, i.e. a flare (Dungey, 1958; Severny, 1962).

However, as was shown by Syrovatskii (1962), given magnetostatic equi-
librium near a zeroth point, the plasma is stable with respect to spontaneous
compression. The situation changes once the plasma near the zeroth
point is subject to an outside action due to an electric field as
shown in Figure 1.4 or due to a MHD wave which is created, for instance,
by changes of the magnetic field sources at the photosphere (Figure 1.1).

This action gives rise to an original cumulative effect (Syrovatskii, 1966a).
We attempted to understand this fundamental property at the qualitative
level in Section 1.1. Let us illustrate it by the example of the behaviour
of small MHD perturbations near the zeroth line. Bearing the solar flare
case in mind, we consider the reconnection process in the approximation of
a strong magnetic field at first.

2.1.2 Reconnection in a strong magnetic field

Let us start from the set of the ideal MHD equations:

∂v
∂t

+ (v · ∇)v = −∇p

ρ
− 1

4πρ
B × curl B , (2.1)

∂ B
∂t

= curl (v × B) , (2.2)

∂ρ

∂t
+ div ρv = 0 , (2.3)

∂s

∂t
+ (v · ∇) s = 0 , (2.4)

div B = 0 , (2.5)

p = p (ρ, s) . (2.6)

Here v is the macroscopic velocity of plasma considered as a continuous
medium, s is the entropy per unit mass, other notations are also conven-
tional.
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We shall consider a two-dimensional (2D) problem of the second type.
The problems of this type treat the plane plasma flows with the velocity
field of the form

v = { vx(x, y, t), vy(x, y, t), 0 } (2.7)

associated with the plane magnetic field

B = { Bx(x, y, t), By(x, y, t), 0 } . (2.8)

The electric currents corresponding to this field are parallel to the z axis

j = { 0, 0, j (x, y, t) } . (2.9)

The vector-potential A of such a field has as its only non-zero component:

A = { 0, 0, A (x, y, t) } .

The magnetic field B is defined by the z-component of the vector-potential:

B = curl A =
{

∂A

∂y
, − ∂A

∂x
, 0
}

. (2.10)

The scalar function A (x, y, t) is termed the vector potential . This func-
tion is quite useful, owing to its properties (for more detail see vol. 1,
Section 14.2.2).

In the strong-field-cold-plasma approximation, the MHD equations for
a plane two-dimensional flow of ideally conducting plasma (for second-type
problems) are reduced, in the zeroth order in the small parameter (vol. 1,
Section 13.1.1)

ε2 =
v2

V 2
A

, (2.11)

to the following set of equations (see vol. 1, Section 14.3):

∆ A = 0 , (2.12)

dv
dt

× ∇A = 0 , (2.13)

dA

dt
= 0 , (2.14)

∂ρ

∂t
+ div ρv = 0 . (2.15)

A solution of this set is completely defined inside some region G on the
plane (x, y), once the boundary condition is given at the boundary S

A (x, y, t)
∣∣

S
= f1 (x, y, t) (2.16)
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together with the initial conditions inside the region G

v‖ (x, y, 0)
∣∣

G
= f2 (x, y) , (2.17)

ρ (x, y, 0)
∣∣

G
= f3 (x, y) . (2.18)

Here v ‖ is the velocity component along field lines. Once the potential
A (x, y, t) is known, the transversal velocity component is uniquely deter-
mined by the freezing-in Equation (2.14) and is equal, at any moment
including the initial one, to

v⊥(x, y, t) = (v · ∇A)
∇A

| ∇A |2 = −∂A

∂t

∇A

| ∇A |2 . (2.19)

From Equation (2.12) and boundary condition (2.16) we find the vector po-
tential A (x, y, t) at any moment of time. Next, from Equations (2.13) and
(2.14) and the initial condition (2.17), the velocity v (x, y, t) is determined;
the density ρ (x, y, t) is found from the continuity Equation (2.15) and the
initial density distribution (2.18).

However such a procedure is not always possible (see Somov and Sy-
rovatskii, 1972). This means that continuous solutions to the Equations
(2.12)–(2.15) do not necessarily exist. Let the boundary and initial con-
ditions be given. The vector potential A (x, y, t) is uniquely determined
by Equation (2.12) and the boundary condition (2.16). The latter can be
chosen in such a way that the field B will contain zeroth points:

B =
{

∂A

∂y
, − ∂A

∂x
, 0
}

= 0 . (2.20)

Among them, there can exist ones in which the electric field is distinct from
zero

E = −1
c

∂A
∂t

�= 0 . (2.21)

Such points contradict the freezing-in Equation (2.14). We will call them
the peculiar points.

The freezing-in condition allows continuous deformation of the
strong magnetic field and the corresponding continuous motion of
plasma everywhere except at peculiar zeroth points,

i.e. the lines parallel to the z axis of the Cartesian system of coordinates,
where the magnetic field is zero while the electric field is nonzero.

Note that simultaneous vanishing of both fields is quite unlikely. This
is the reason why the peculiar points occur rather frequently. They will
receive much attention in what follows because they represent the places
where a reconnecting current layer (RCL) is formed as will be shown below.
Here we only stress that
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if there is not a zeroth point inside the region G at the initial time,
it does not mean that such a point will never appear there.

An initial field can even be an homogeneous one (Parker, 1972). Following
the continuous evolution of the boundary condition (2.16), a zeroth point
may appear on the boundary S and, if the electric field at this point does
not equal zero, it will create a magnetic field discontinuity which prevents a
change of magnetic field topology in the approximation of an ideal plasma.
This discontinuity is a neutral layer of infinitesimal thickness. In a plasma
of finite conductivity, the RCL of finite thickness is formed at a peculiar
zeroth point.

The creation of a current layer at the zeroth point which appears on the
boundary S was used in the model of coronal streamers driven by the solar
wind (Somov and Syrovatskii, 1972). Just the same occurs in the model for
interacting magnetic fluxes, compressed by a converging motion of magnetic
footpoints in the photosphere (Low, 1987; Low and Wolfson, 1988).

Another case is an appearance of a couple of neutral points inside the
region G. Anyway, and in all cases,

the interaction of magnetic fluxes in the peculiar point changes the
field topology and creates the reconnecting current layer.

This kind of MHD discontinuous flows is of great importance for plasma
astrophysics.

Let two equal currents I flow parallel to the axis z on lines x = 0, y = ± l
as shown in Figure 1.3. The magnetic field of these currents is expressed
with the aid of the vector-potential A0 having only the z component:

A0 = { 0, 0, A0 (x, y) } ,

where

A0 (x, y) =
I

c

{
ln
[
x2 + (y − l)2

]
+ ln

[
x2 + (y + l)2

]}
. (2.22)

Near the zeroth line situated on the z axis, formula (2.22) may be expanded
in a Teylor series, the square terms of the expansion being sufficient for our
purposes:

A0 (x, y) =
2I

c
(x2 − y2)

or

A0 (x, y) =
h0

2
(x2 − y2) . (2.23)
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Here h0 = 4I/c is the magnetic field gradient in the vicinity of the zeroth
line. The gradient of the field is an important characteristic of a reconnec-
tion region. In fact,

B0 = curlA0 =
{

∂A0

∂y
, −∂A0

∂x
, 0
}

= { − h0y , −h0x , 0 } . (2.24)

The field lines of the hyperbolic field (2.24) are shown in Figure 1.2.
Let us assume the field B0 to be sufficiently strong, so that the Alfvén

speed VA should be much greater than that of sound Vs everywhere, the
exception being a small region near the zeroth line. On the strength of
formula (2.24),

V 2
A

=
h 2

0 r2

4πρ0
,

where r = (x2 + y2)1/2 is the radius in the cylindrical frame of reference,
i.e. in the plane (x, y). Hence the condition

V 2
A

� V 2
s

can be rewritten in the form:

r � rs . (2.25)

Here

rs =
(

4π n0kBT0

h 2
0

)1/2

, (2.26)

n0 and T0 being the number density and temperature of the plasma at the
initial stage of the process, kB is Boltzmann’s constant.

Let l = 1 in formula (2.22). Then the assumed condition (2.25), together
with the condition for applicability of the approximate expression (2.23) for
the potential A0, means that the domain of admissible values is

rs 
 r 
 1 . (2.27)

We shall consider the MHD processes in this domain, related to magnetic
reconnection at the X-type zeroth point.

2.1.3 A linearized problem in ideal MHD

Of concern to us are small perturbations in the region (2.27) relative to the
initial equilibrium state

v0 = 0 , ρ0 = const , p0 = const , ∆A0 = 0 .
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Let us consider plane flows of a plasma with a frozen magnetic field in
the plane (x, y):

v = { vx(x, y, t), vy(x, y, t), 0 } , B = B0 + b ,

the small perturbation of magnetic field being

b = { bx(x, y, t), by(x, y, t), 0 } .

Thus, from the mathematical standpoint (see vol. 1, Section 14.2.2), the
problem at hand belongs to the two-dimensional problems of the second
type.

For small perturbations v, p, ρ, and A (instead of b), the linearized
equations of ideal MHD can be written in the form

∂A

∂t
= −v · ∇A0 ,

∂ v
∂t

= − ∇p

ρ0
− 1

4πρ0
∇A0 ∆A , (2.28)

∂ρ

∂t
= − ρ0 div v .

The gas pressure gradient in the region (2.27) can be ignored. If we did
not ignore the term ∇p, the set of Equations (2.28), on differentiating with
respect to t, could be transformed to give us

∂2A

∂t2
=

(∇A0)2

4πρ0
∆A +

V 2
s

ρ0
∇A0 · ∇ρ ,

∂2v
∂t2

=
∇A0

4πρ0
∆ (v · ∇A0) + V 2

s ∇ div v , (2.29)

∂2ρ

∂t2
=

1
4π

∇A0 · ∇ ∆A + V 2
s ∆ρ .

So perturbations in the region (2.27) are seen (see the underlined terms in
the first equation) to propagate with the local Alfvén velocity VA :

V 2
A0

= V 2
A0

(r) =
(∇A0 (r))2

4πρ0
, (2.30)

the result being accurate to small corrections of the order of V 2
s /V 2

A0
. This

is the case of astrophysical plasma with a strong magnetic field; see the
mostly isotropic wave V+ in vol. 1, Figure 15.3.
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The displacement of the plasma under the action of the perturbation,
ξ, is convenient to introduce instead of the velocity perturbation v:

v =
∂ξ

∂t
. (2.31)

Dropping the terms depending on the pressure gradient, the initial set of
Equations (2.29) is recast as follows (Syrovatskii, 1966b):

∂2A

∂t2
= V 2

A0
(r) ∆A , (2.32)

∂2ξ

∂t2
=

V 2
A0

(r)√
4πρ0

∆ ( ξ · ∇A0) , (2.33)

ρ = − ρ0 div ξ , (2.34)

A = − ( ξ · ∇ ) A0 . (2.35)

Rewrite Equation (2.32) in the cylindrical frame of reference

∂2A

∂t2
=

h 2
0

4πρ0

[
r

∂

∂r

(
r

∂A

∂r

)
+

∂2A

∂ϕ 2

]
.

On substituting x = ln r, this equation is reduced to the usual wave equa-
tion in the variables (x, ϕ)

∂2A

∂t2
= V 2

a

(
∂2A

∂x2 +
∂2A

∂ϕ 2

)
, (2.36)

where
Va = h0/

√
4πρ0

is a constant playing the role of the wave velocity.

2.1.4 Converging waves and the cumulative effect

Let us consider an initial perturbation of the potential, which is independent
of the cylindrical-frame angle ϕ:

A (r, ϕ, 0) = Φ (r) ,

where Φ (r) is an arbitrary function of r. In this case the general solution
of Equation (2.36) is

A (r, t) = Φ ( ln r + Va t) . (2.37)
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The sign +, which we have chosen, by Va t corresponds to the converging
cylindrical wave, its velocity being

V (r) =
dr

dt
= − r Va = −VA0(r) ,

i.e. the wave propagates with the Alfvén velocity (see definition (2.30)).
The following properties of the wave are of interest.

(a) The magnetic field intensity in such a wave is

Br =
1
r

∂A

∂ϕ
= 0 , Bϕ = −∂A

∂r
= −Φ

r
.

As the wave approaches the zeroth line, the field intensity grows

B (r) = B (R) × R

r
.

Here B (R) is the field intensity in the wave when its front is at a distance R
from the zeroth line.

(b) The magnetic field gradient increases as well

∂B

∂r
(r) =

∂B

∂r
(R) ×

(
R

r

)2

.

Thus

as the cylindrical wave converges to zero it gives rise to a cumulative
effect in regard to the magnetic field and its gradient.

(c) The character of the plasma displacement ξ in such a wave can be
judged from the motion Equation (2.33). It contains the scalar product
ξ · ∇A0. Hence the displacements directed along the field lines are absent
in the wave under consideration. The perpendicular displacements

ξ = − A

(∇A0)2
∇A0 , (2.38)

whence, in view of (2.37), it follows that | ξ | ∼ r−1. So

the quantity of the displacement also grows, as the wave approaches
the zeroth line of the magnetic field.

(d) As for the change in plasma density, we find from Equation (2.34),
using formulae (2.38) and (2.37), that

ρ = − ρ0 div ξ ∼ 1
r2 cos 2ϕ . (2.39)
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The plasma density increases in a pair of opposite quadrants while de-
creasing in the other pair (Figure 2.1). The first pair of quadrants
(−π/4 ≤ ϕ ≤ π/4 and 3π/4 ≤ ϕ ≤ 5π/4 ) corresponds to the regions where
the plasma flows are convergent. In the second pair (π/4 < ϕ < 3π/4
and 5π/4 < ϕ < 7π/4 ) of quadrants, the trajectories of the fluid particles
diverge, resulting in a decrease of the plasma density.

Therefore, even in a linear approximation,

small perturbations grow in the vicinity of the magnetic field zeroth
line. As this takes place, regions appear in which the field and its
gradients increase, whereas the plasma density decreases.

E

V

V

B

V

X
Figure 2.1: Plasma flows and the
density change in small perpurba-
tions in the vicinity of a hyperbolic
zeroth point X. Shadow shows two
regions of converging flows; here the
plasma density increases.

The so-called linear-reconnection theory takes into account the dissipa-
tive processes in the linear approximation (see Sections 13.1 and 13.2.3).

2.2 Large perturbations near the neutral line

Let us relax the assumption concerning the smallness of the perturbations
in the vicinity of a zeroth line. Then, instead of linearized MHD equations,
we shall deal with the exact set of two-dimensional equations in the approx-
imation of the strong field and the cold plasma, taken in a zeroth order with
respect to the small parameter ε2 = v2/V 2

A
, i.e. Equations (2.12)–(2.15):

∆A = 0 , (2.40)

dv
dt

× ∇A = 0 , (2.41)
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dA

dt
= 0 , (2.42)

∂ρ

∂t
+ div ρv = 0 . (2.43)

Here it is implied that the region in the vicinity of the zeroth line is to be
restricted by the condition (2.25).

2.2.1 Magnetic field line deformations

As was shown in vol. 1, Section 14.2.2, Equations (2.42) and (2.43) are
integrated on passing to Lagrangian coordinates

r (r0, t) = r0 + ξ (r0, t) . (2.44)

Here r0 is the coordinate of a fluid particle before displacement, i.e. at the
initial moment, r is its coordinate at a moment of time t, ξ(r0, t) is the
displacement vector (cf. definition (2.31)). Let us rewrite Equation (2.44)
as the inverse transformation

r0 (r, t) = r − ξ (r, t) .

Then the continuity Equation (2.43) can be written in its Lagrangian form:

ρ (r, t) = ρ0 (r − ξ (r, t))
D (r − ξ(r, t))

D (r)
, (2.45)

where D (r0)/D (r) is the Jacobian transformation from r0 coordinates to r
coordinates.

The integral of the freezing-in Equation (2.42) is

A (r, t) = A0 (r − ξ (r, t)) , (2.46)

where A0 (r0) is an initial value of the vector-potential.
Had the displacement ξ (r, t) been known, formulae (2.46) and (2.45)

would have allowed us to uniquely determine the field line deformation
and plasma density change in the vicinity of the zeroth line, given the
displacement of the currents I. However, to find ξ(r, t) generally, we must
simultaneously solve Equations (2.40) and (2.41), i.e. the set of equations

∆A = 0 , (2.47)

∂2ξ

∂t2
× ∇A = 0 . (2.48)
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As a rule, to integrate Equation (2.48), we must have recourse to numerical
methods (Somov and Syrovatskii, 1976b). Let us try to circumvent the
difficulty.

Let us suppose the displacement of the currents occurs sufficiently fast
as compared with the speed of sound but sufficiently slow as compared with
the Alfvén speed. With these assumptions, the boundary conditions of the
problem (see (2.16)) change slowly in comparison with the speed of fast
magnetoacoustic waves, which allows us to consider the field as being
in equilibrium at each stage of the process (see Equation (2.47)).

The latter assumption actually means that the total displacement ξ can
be held to be a sum of successive small perturbations δξ of the type (2.38),
each of them transferring the system to a close equilibrial state. Since
the small displacement δξ is directed across the magnetic field lines, the
total displacement ξ is also orthogonal to the picture of field lines. To put
it another way, the lines of the plasma flow constitute a family of curves
orthogonal to the magnetic field lines, i.e. the family of hyperbolae

x y = x0 y0 . (2.49)

A numerical solution of the problem (Somov and Syrovatskii, 1976b) shows
that such a flow is actually realized for comparably small t or sufficiently
far from the zeroth line.

Let us make use of the freezing-in Equation (2.46) to find another
equation relating the coordinates of a fluid particle (x, y) with their ini-
tial values (x0, y0). In view of the formula (2.22) for the initial vector-
potential A0 (x, y), the magnetic field potential of displaced currents is

A (x, y) =
h0

4
{

ln
[
x2 + (y − 1 + δ)2

]
+ ln

[
x2 + (y + 1 − δ)2

]}
. (2.50)

Relative to formula (2.22), I/c = h0/4, l = 1, and δl = δ.
Near the zeroth line, with the accuracy of the terms of order δ, we find

A (x, y) =
h0

2
(
x2 − y2 − 2δ

)
. (2.51)

Substitution of (2.51) in (2.46) gives

y2 − x2 + 2δ = y 2
0 − x 2

0 . (2.52)

Equations (2.49) and (2.52) allow us to express the initial coordinates
of a fluid particle (x0, y0) in terms of its coordinates (x, y) at the moment
of time t (Syrovatskii, 1966a):

x 2
0 =

1
2

{[(
x2 − y2 − 2δ

)2
+ 4x2y2

]1/2
+
(
x2 − y2 − 2δ

)}
,
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(2.53)

y 2
0 =

1
2

{[(
x2 − y2 − 2δ

)2
+ 4x2y2

]1/2
−
(
x2 − y2 − 2δ

)}
.

The displacements determined by these expressions are such that the field
lines which crossed the y axis at points 0,

√
δ,

√
2δ, would take the place of

the field lines which crossed the x axis at points
√

2δ,
√

δ, 0, respectively
(see Figure 2.2 in the region r � rs).

2δ

δ

δ 2δ

δ

y

x

rs2

Figure 2.2: The deformation of the magnetic field lines in the neighbour-
hood of a zeroth line.

The plasma displacements and frozen-in field line deformations obtained
pertain only to the region r � rs. The approximation of a strong field and
a cold plasma is inapplicable outside this region, i.e. r ≤ rs. It must
also be considered that a region of strong plasma compression can arise
in the course of the displacement. The conditions for applicability of the
strong-field-cold-plasma approximation can be broken down in such regions,
thus making it necessary to solve a more general problem. In particular,
field deformations can be distinctly different here, owing to strong electric
currents flowing in these regions. They will be discussed in the next Section.

The main effect demonstrated above is the deformation of the field lines
which is schematically shown as two long dashed areas along the x axis.
Here

a current layer formation is confirmed by the presence of oppositely
directed magnetic field lines

near the origin of the coordinates in Figure 2.3. The current inside the
current layer is parallel to the z axis, i.e. parallel to the electric field E
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related to the magnetic field line motion (cf. Figure 1.4). However, at the
edges of the layer, the currents are sometimes opposite in direction (the
so-called reverse currents) to the one inside the main current layer which is
formed at the zeroth line as shown above.

2.2.2 Plasma density variations

Let us find the density distribution (2.45) by calculating the Jacobian of
the reverse transformation of the Lagrangian variables, with the aid of the
formulae (2.53). Assuming an homogeneous initial distribution of plasma,
we have

ρ (x, y)
ρ0

=
x2 + y2[

(x2 + y2)2 + 4δ (y2 − x2) + 4δ2
]1/2 . (2.54)

The formula obtained shows that in the region

x2 < y2 + δ (2.55)

the displacement of the currents leads to plasma rarefaction. As this takes
place, the largest rarefaction occurs for small r (r2 
 δ):

ρ (x, y)
ρ0

∼ r2

2δ
. (2.56)

By contrast, in the region x2 > y2 +δ the plasma is compressed, its density
tending to infinity at the points (Figure 2.3):

y = 0 , x = ±
√

2δ . (2.57)

The approximation of a strong field and a cold plasma is inapplicable in
the vicinity of these points, and the actual deformation of the field lines
can differ significantly from that found above.

Figure 2.3 illustrates a characteristic distribution of plasma near a cur-
rent layer (−

√
δ ≤ x ≤

√
δ), dissipation of magnetic field being neglected.

The regions of strong plasma compression near the points (2.57) are shown
by the shadowed regions C1 and C2 outside of the layer.

2.3 Dynamic dissipation of magnetic field

2.3.1 Conditions of appearance

In the region between the points (2.57), where the plasma density formally
tends to infinity, the character of the displacements can be determined
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δ

δ

y

x
2a

C C
1 2

Figure 2.3: The plasma distribution near a forming current layer. 2a is the
thickness of the current layer.

by using the freezing-in condition for the magnetic field lines and taking
into account that, as was mentioned in the previous section, plasma spread
along the field lines during the rapid displacement of the currents may
be neglected. Under these assumptions, the magnetic field deformation
is of the form shown in Figures 2.2 and 2.3. Definition of the current
displacement δ is given in formula (2.50).

It is important for the following discussion that the whole magnetic flux
which crossed the axis y in the region

0 < y <
√

2δ ,

namely
Φ = A0 (0,

√
2δ) − A0 (0, 0) = h0 δ , (2.58)

is now confined to the strip y ≤ rs. The thickness of this strip rs ≈ a
in Figure 2.3. The field lines of this flux ‘spread’ along the x axis in the
negative direction. The same flux of field lines, but oppositely directed, is
situated along the x axis in the lower half-plane.

Therefore, in the region

|x | ≤
√

δ , | y | ≤ rs ,

the magnetic field lines of opposite directions are compressed to form a
thin reconnecting current layer (RCL). The region of the magnetic field
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compression is shown in Figures 2.2 and 2.3 as the long dashed area along
the x axis. The magnetic field gradient in this region is evaluated as

h ≈ B

rs
≈ Φ

r 2
s

≈ h0

r 2
s

δ . (2.59)

The field gradient h in the region of the magnetic compression is δ/r 2
s times

its initial value h0. In other words,

the magnetic field gradient inside the current layer is proportional
to the value of the external currents displacement δ,

with the proportionality coefficient, by virtue of definition (2.26), being
larger, the smaller is the gas pressure as compared with the magnetic one
in the reconnecting plasma.

At the same time, according to (2.56) the plasma density in the re-
gion r2 < δ decreases by a factor of r2/2δ. This conclusion applies for
r � rs and is of a qualitative character. Nonetheless it is of fundamental
importance that we can make an order-of-magnitude evaluation of the ra-
tio of the field gradient to the plasma concentration in the region of the
magnetic compression (r ≈ rs)

h

n
≈ h0

n0

δ2

r 4
s

. (2.60)

Recall that in the MHD approximation we usually neglect the displace-
ment current (1/c) ∂E/∂t as compared with the conductive one

j = neu .

Here e is the charge on a particle, u is the current velocity, i.e. the velocity
of current carriers. Subject to this condition, we may use the ‘truncated’
Maxwell equation

curl B =
4π

c
j , (2.61)

whence, on setting | curl B | ≈ h, the following estimate is obtained

h

n
≈ 4πe

(u

c

)
.

Since the particle velocity u cannot exceed the speed of light c,
the current density is limited by the value j = nec and the ratio

h

n
< 4πe . (2.62)
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On the other hand, from (2.60) this ratio is determined by the value of
the displacement δ and by the parameters rs and h0/n0. Once the condi-
tion (2.62) breaks down, by virtue of (2.60), i.e.

h0

n0

δ2

r 4
s

≥ 4πe , (2.63)

the displacement current (1/c) ∂E/∂t must be accounted for in Equa-
tion (2.61). It means that, under condition (2.63),

a strong electric field of an inductive nature arises in the region
where magnetic fluxes interact.

A quantitative description of the physical processes in the region involved
is difficult and is the subject of the theory of reconnection in current layers.
The qualitative effects are as follows.

2.3.2 The physical meaning of dynamic dissipation

The appearance of the inductive electric field, independent of the plasma
motion, signifies the violation of the freezing-in condition. Thus the motion
of the field lines relative to the plasma, which is necessary for their recon-
nection in the region of interaction of the magnetic fluxes, is allowed. The
important aspect of the situation under discussion is that these processes
are independent of Joule dissipation and can take place in a collisionless
plasma. This is the reason why this phenomenon may be termed dynamic
dissipation (Syrovatskii, 1966a) or, in fact, collisionless reconnection (see
Section 2.4.3).

An essential peculiarity of the dynamic dissipation of a magnetic field is
that the inductive electric field is directed along the main current j in the
reconnection region. Hence the electric field does positive work on charged
particles, thus increasing their energy. It is this process that provides the
transformation of the magnetic energy into the kinetic one, i.e. dynamic
dissipation.

As opposed to Joule dissipation, there is no direct proportionality of
the current density j to the electric field intensity E in the case of dynamic
dissipation. Given the condition (2.63),

the current density is saturated at the value j ≈ nec, the field energy
going to increase the total energy of a particle,

E =
mc2√

1 − v2/c2
, (2.64)
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i.e. the acceleration by the electric field. Thus, under the conditions consid-
ered, the field energy converts directly to that of the accelerated particles.

Acceleration occurs along zeroth lines (parallel to the z axis) which are
formed in the current layer region. Recall that the particle motion along a
neutral plane (see Section 1.2) is stable: the magnetic field returns deviating
particles to the neutral plane, as is clear from immediate consideration of
the Lorentz force (e/c)v × B. More realistic analysis of the acceleration
problem will be given in Chapter 9.

The condition (2.63) is, in fact, extreme. This implies the regular accel-
eration of particles to relativistic energies. In fact, acceleration may take
place under much more modest conditions, when the dynamic dissipation
of a magnetic field is, in essence, related to the known phenomenon of the
electric runaway of particles (primarily electrons; see vol. 1, Section 8.4.2).
The condition which in this case replaces the extreme condition (2.63) was
derived by Syrovatskii (1966b).

Needless to say, relativistic energies are not always reached in the ac-
celeration process. Some instabilities are, as a rule, excited in the plasma-
beam system in the acceleration region. As this takes place, particle scat-
tering and acceleration with the created wave turbulence must be accounted
for. However it is important that the general inference as to the possibility
of particle acceleration by an electric field in the magnetic recon-
nection region (i.e. dynamic dissipation of the magnetic field) remains
valid, in particular, when applied to the solar flare problem (see Section 3.1,
Chapters 6 and 9).

2.4 Nonstationary analytical models of RCL

2.4.1 Self-similar 2D MHD solutions

In connection with the 2D problem of the equilibrium state of a plasma near
the X-type zeroth point of magnetic field, Chapman and Kendall (1963) had
obtained the exact particular solution of the ideal MHD equations for an
incompressible fluid. This self-similar analytical solution has a perfectly
defined character. A fixed mass of a plasma near the zeroth point receives
energy from the outside in the form of an electromagnetic-field energy flux.
Finally, a cumulative effect is developed and arbitrarily large energy densi-
ties are attained. The solution demonstrates the tendency to form a current
layer near the zeroth point.

Imshennik and Syrovatskii (1967) had found a self-similar solution for
an ideal compressible fluid. Let us also start from the set of the ideal
MHD Equations (2.1)–(2.6). Consider the 2D MHD problem of the second
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type (see vol. 1, Section 14.2.2). Substitute definition (2.10) of the vector
potential A in the first three equations, we have the following set:

ρ
dv
dt

= −∇p − 1
4π

∆A ∇A , (2.65)

curl
dA
dt

= 0 , (2.66)

dρ

dt
+ ρ div v = 0 . (2.67)

We assume that the pressure p is a function of the density ρ only. This
condition is satisfied by any politropic equation of state. Moreover, as
it was shown by Imshennik and Syrovatskii, for the class of solutions of
interest to us, the plasma density ρ depends only on time. Hence, by
virtue of the foregoing assumption, the pressure p depends only on time
too. Therefore the pressure gradient ∇p in Equation (2.65) vanishes. So
we have equations:

ρ
dv
dt

= − 1
4π

∆A ∇A , (2.68)

curl
dA

dt
= 0 , (2.69)

dρ

dt
+ ρ div v = 0 . (2.70)

Let us seek a solution of the set of Equations (2.68)–(2.70) under the
following initial conditions.

(a) The plasma density is constant:

ρ (x, y, 0) = ρ0 , (2.71)

(b) The magnetic field is a hyperbolic one (cf. formula (2.23) where
put h0/2 = a0):

A (x, y, 0) = a0
(
x2 − y2) , (2.72)

(c) The initial velocity depends linearly on the coordinates, so that
there is no flow of plasma across the coordinate axes:

vx (x, y, 0) = Ux , vy (x, y, 0) = V y . (2.73)

Thus the initial conditions are defined by the four independent quan-
tities ρ0, a0, U, and V . We can construct from them three independent
combinations with the dimension of time:

tx =
1
U

, ty =
1
V

, t0 =
(πρ0)1/2

| a0 | (2.74)



40 Chapter 2. Reconnection in a Strong Magnetic Field

and not even one combination with the dimension of length. We introduce
new variables with dimensions equal to a certain power of the length:

τ =
t

t0
, ux = t0vx , uy = t0vy , a =

A

a0
, g =

ρ

ρ0
. (2.75)

In terms of these variables, Equations (2.68)–(2.70) take the form

∂

∂x

da

dτ
= 0 ,

∂

∂y

da

dτ
= 0 , (2.76)

g
dux

dτ
= −1

4
∂a

∂x
∆a , g

duy

dτ
= −1

4
∂a

∂y
∆a , (2.77)

dg

dτ
+
(

∂ux

∂x
+

∂uy

∂y

)
g = 0 . (2.78)

The initial conditions (2.71)–(2.73) then become

g (x, y, 0) = 1 , a (x, y, 0) = x2 − y2,

ux(x, y, 0) = εxx , uy(x, y, 0) = εyy , (2.79)

where

εx = U
(πρ0)1/2

| a0 | , εy = V
(πρ0)1/2

| a0 | . (2.80)

Thus the problem is completely determined by the two dimensionless
parameters (2.80) which are similar to the parameter ε in (2.11). As to the
choice of the unit of length, Equations (2.76)–(2.78) impose no limitations
whatever. So the length unit can be chosen arbitrarily; and both the coor-
dinates x and y, together with all the variables in definition (2.75), can be
chosen dimensionless.

Therefore we consider the problem as a self-similar one, more exactly,
as the self-similar problem of the first type (Zel’dovich and Raizer, 1966,
2002, Chapter 12). It means that the set of equations in partial derivatives,
(2.76)–(2.78), can be reduced to the set of ordinary differential equations.
Let us do it. Substitute in Equations (2.76)–(2.78) the following solution:

a (x, y, τ) = ax(τ) x2 − ay(τ) y2, (2.81)

g (x, y, τ) = g (τ) , (2.82)

ux(x, y, τ) = fx(τ) x , uy(x, y, τ) = fy(τ) y . (2.83)

We obtain the following set of five ordinary differential equations for the
five unknown functions ax(τ), ay(τ), g (τ), fx(τ) and fy(τ):

ȧx + 2axfx = 0 , ȧy + 2ayfy = 0 ,



2.4. Nonstationary Models of the RCL 41

ġ + (fx + fy) g = 0 , (2.84)(
ḟx + f2

x

)
g = ax (ay − ax) ,

(
ḟy + f2

y

)
g = ay (ax − ay) .

The dot denotes differentiation with respect to the dimensionless time τ .
The initial conditions (2.79) give us the following initial conditions:

ax(0) = 1 , ay(0) = 1 , g(0) = 1 ,

fx(0) = εx , fy(0) = εy . (2.85)

Let us eliminate the functions fx and fy from the first two and last
equations of the set (2.84). As a result we get the equation

ȧx

ax
+

ȧy

ay
− 2

ġ

g
= 0 . (2.86)

From this, assuming that the functions ax, ay and g are not equal to zero
and using the initial conditions (2.85), we obtain an integral of the set of
ordinary Equations (2.84):

g = (axay)1/2
. (2.87)

Since the initial values of these three functions are positive, the subsequent
results will pertain to a time interval τ for which these quantities remain
positive.

2.4.2 Magnetic collapse at the zeroth point

To illustrate the behaviour of the solutions (2.81)–(2.83), it is convenient
to introduce two functions ζx(τ) and ζy(τ) such that

ax =
1
ζ 2
x

, ay =
1
ζ 2
y

. (2.88)

Without loss of generality, we assume that these new functions are positive.
From the first two equations of the set (2.84) and from the integral (2.87)

we obtain formulae for the other three unknown functions:

fx =
ζ̇x

ζx
, fy =

ζ̇y

ζy
, g =

1
ζx ζy

. (2.89)

The set of five equations (2.84) then reduces to two second-order differential
equations for ζx(τ) and ζy(τ):

ζ̈x = −ζy

(
1
ζ 2
x

− 1
ζ 2
y

)
, ζ̈y = ζx

(
1
ζ 2
x

− 1
ζ 2
y

)
, (2.90)
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with the initial conditions

ζx(0) = 1 , ζy(0) = 1 ,

ζ̇x(0) = εx , ζ̇y(0) = εy . (2.91)

For definiteness, let εx > εy. Then a solution of the problem has a
singular point which is reached after a finite time τ0. When τ → τ0 the
quantity ζx tends to a finite value ζx(τ0), and ζy(τ) → 0. So we retain in
Equations (2.90) only the principal terms:

ζ̈x =
1
ζy

, ζ̈y = − ζx

ζ 2
y

. (2.92)

In the region τ < τ0 of interest to us, the solution of these equation is

ζx(τ) = ζx(τ0) + ... ,

ζy(τ) =
(

9
2

ζx(τ0)
)1/3

(τ0 − τ)2/3 + ... . (2.93)

Here the terms of higher order of smallness in (τ0 − τ) have been omitted.
Returning to the variables (2.88) and (2.89), we obtain the asymptopic

behaviour of the unknown functions near the singularity as τ → τ0:

ax → ax(τ0) , ay →
(

2
9

)2/3

(ax(τ0))
1/3 1

(τ0 − τ)4/3 ,

fx → εx(τ0) , fy → − 2
3(τ0 − τ)

, (2.94)

g →
(

2
9

)1/3

(ax(τ0))
2/3 1

(τ0 − τ)2/3 .

Here the quantities τ0, ax(τ0), and εx(τ0) depend on the initial condi-
tions (2.79) and can be determined by numerical integrating (Imshennik
and Syrovatskii, 1967) the complete set of Equations (2.76)–(2.78).

Let us consider the fraction of the plasma that is located within a circle
of radius equal to unity (Figure 2.4) at the initial instant τ = 0. The
corresponding Lagrange line is the circle

ax(0) x2 + ay(0) y2 = 1 .

Therefore at any subsequent instant of time this plasma will be located
inside the ellipse

ax(τ) x2 + ay(τ) y2 =
x2

ζ 2
x (τ)

+
y2

ζ 2
y (τ)

= 1 , (2.95)
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Figure 2.4: Magnetic collapse in the vicinity of a hyperbolic zeroth point.

where ζx(τ) and ζy(τ) introduced above have the simple meaning of semi-
axes of this deforming ellipse.

As follows from the obtained solution, the semi-axis whose direction
corresponds to a smaller initial velocity vanishes at the instant τ0. At the
same time, the second semi-axis remains different from zero and bounded.
Thus any initial circle is transformed at the instant τ0 into a segment of
the x axis with the ends x = ± ζx(τ0) as shown in Figure 2.4.

Let us consider the behaviour of the magnetic field (see definitions (2.72)
and (2.81)):

B = h0 { −ay(τ) y, −ax(τ) x, 0 } , (2.96)

where h0 = 2a0 is the gradient of the initial field near the zeroth point. In
the limit as τ → τ0 the field is equal to

B = h0

{
∓ 1

ζy(τ)
, − x

ζx(τ)
, 0
}

, (2.97)

where the minus and plus signs correspond to the regions y > 0 and y < 0
respectively. Therefore, when τ → τ0, the magnetic field is always tangent
to the x axis segment into which the ellipse (2.95) degenerates, increases in
magnitude without limit, and experiences a discontinuity on the x axis:

Bx(y = +0) − Bx(y = −0) = − 2h0

ζy(τ)
→ ∞ . (2.98)

The appearance of the discontinuity in the magnetic field corresponds
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to an unbounded increase in the density of the electric current:

jz =
c

4π
( curlB )z = − c

4π
∆A . (2.99)

Substituting (2.81) and (2.88) into (2.99), we calculate the current density

jz(τ) =
ch0

4π

(
1

ζ 2
y (τ)

− 1
ζ 2
x (τ)

)
. (2.100)

From this and from the solution (2.93) it follows that when τ → τ0 the
current density increases like

jz(τ) ∼ 1

(τ0 − τ)4/3 . (2.101)

So, when τ → τ0 a kind of magnetic collapse occurs. The x component
of the magnetic field and the z component of the current density become
infinite. The magnetic field is tangential to the x axis everywhere and
changes its sign when passing the plane y = 0. Therefore

the magnetic collapse results in the generation of a neutral current
layer after a finite amount of time.

As we mentioned above, a similar solution for imcompressible plasma
was obtained by Chapman and Kendall (1963). In that solution the quanti-
ties ζx and ζy depend exponentially on time τ . Thus the magnetic collapse
in an incompressible fluid requires an infinite amount of time.

In general, it is difficult to determine the exact conditions under which
the derived plasma motion can occur. The most difficult question is that of
the realization of the assumed initial linear distribution of velocity (2.73).
In practice, such a distribution could be realized as a small perturbation
of an stationary initial state. One might therefore assume, as was done by
Chapman and Kendall, that the entire process has the same character as
an ordinary instability. However Imshennik and Syrovatskii showed that

the plasma flow under consideration – magnetic collapse – is caused
by external forces and has a cumulative nature

(as we saw in Section 2.1.4). Syrovatskii (1968) showed that the self-similar
solutions obtained in both Chapman and Kendall (1963) and Imshennik and
Syrovatskii (1967) can be set in correspondence with exact boundary condi-
tions that have a physical meaning. These conditions are a particular case
of the conditions considered in Sections 2.1 and 2.2. They correspond to a
change of the potential of the external currents producing the hyperbolic
field in accordance with a fully defined law (Syrovatskii, 1968).
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2.4.3 From collisional to collisionless reconnection

An essential circumstance in magnetic collapse is that the current den-
sity (2.101) increases more rapidly than the plasma density and accordingly
the particle density

n(τ) ∼ g(τ) ∼ 1

(τ0 − τ)2/3 . (2.102)

The specific (per one particle) current density is

jz

n
=

ch0

4π n0

(
ζx

ζy
− ζy

ζx

)
, (2.103)

where n0 is the initial plasma density. In the limit as τ → τ0

jz

n
=

ch0

4π n0

(
2

9 ax(τ0)

)1/3( 1
τ0 − τ

)2/3

. (2.104)

So the ratio jz/n tends to infinity when τ → τ0 within the frame of the
solution desribed above. Of course, the solution has no physical meaning
near the singularity where a number of quantities increase infinitely.

When a sufficiently high current density is attained, new effects
arise, not accounted from by MHD.

Here they are. First, when the current density

jz ≥ σEDr , (2.105)

where EDr is the Dreicer field, an intense electric runaway of electrons begins
and causes current instabilities inside the reconnecting current layer. This
process leads to a decrease in an effective conductivity of the plasma inside
the current layer (Section 6.3), but still does not impose essential limitations
on the applicability of MHD to the description of the macroscopic plasma
flows.

If, however,
jz � σEDr , (2.106)

direct acceleration of the particles by the strong electric field can set in.
This is the case of dynamic dissipation of the magnetic field, for exam-
ple, in solar flares (see the estimations in Section 6.1.1). The particle inertia
(usually combined with anomalous resistivity due to wave-particle interac-
tions) replaces the classical resistivity in allowing the magnetic reconnection
to occur very quickly and practically without any Coulomb collisions.
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Fast collisionless reconnection seems to be often observed in a high-
temperature, rarefied cosmic plasma in the presence of a strong magnetic
field, for example, in solar flares. At a first sight, to describe the collisionless
reconnection process, one may try to use an ordinary resistive MHD with
a generalized Ohm’s law (see vol. 1, Chapter 11) by simply including the
electron inertia:

Ez = σ −1
ef jz +

4π(
ω

(e)
pl

)2
d

dt
jz . (2.107)

Here σef is an anomalous conductivity originated from the wave-particle
interaction or the stochasticity of the particle orbits.

The problem will appear soon, however, in such an over-simplified ap-
proach because inside actual reconnecting current layers the magnetic field
is not equal to zero. This internal (transversal and longitudinal) magnetic
field has a strong influence on the particle acceleration by the strong electric
field Ez related to the fast collisionless reconnection. This problem will be
discussed in Chapter 9.



Chapter 3

Evidence of Reconnection
in Solar Flares

The physics of flares on the Sun now becomes ‘an étalon’ for contem-
porary astrophysics, in particular for gamma and X-ray astronomy. In
contrast to flares on other stars and to many analogous phenomena in
the Universe, solar flares are accessible to a broad variety of observa-
tional methods to see and investigate the magnetic reconnection pro-
cess in high-temperature strongly-magnetized plasma of the corona as
well as in low-temperature weakly-ionized plasma in the photosphere.

3.1 The role of magnetic fields

3.1.1 Basic questions

Understanding solar flares has been a major goal of astrophysics since fre-
quent observations of solar flares became available in the 1920s. Early
studies showed that flares were preferentially associated with strong com-
plicated magnetic fields. Estimates of the energy required to power large
flares, together with their association with magnetic fields, led to the con-
clusion that flares must be electromagnetic in origin. Step by step it bacame
more and more clear that a flare is the result of the reconnection of magnetic
field lines in the corona.

However there were and still exist three objections to the hypothesis
that the energy of a solar flare can be stored in the form of a magnetic field
of one or several reconnecting current layers (RCLs).

47
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(1) First, it is claimed that measurements of photospheric magnetic
fields do not demonstrate an unambiguous relation between flares and the
changes of the magnetic fields. More exactly, the changes in question are
those that occur immediately before a flare to creat it. These changes were
supposed to be the cause but not the consequence of the flare.

(2) The second objection is related to the time of dissipation of the
magnetic field in a volume that would contain the energy necessary for the
flare. If this time is estimated in a usual way as the diffusion time in a
solar plasma of a finite conductivity, then it is too long compared with the
observed duration of the flare.

(3) The third objection is the most crucial one: the observers have
never seen real RCLs in solar flares.

For more than four decades, starting from Severny (1964), solar ob-
servers have been studying flare-related changes in photospheric magnetic
fields, which would provide crucial information as to how an active region
stores and releases its energy (see also Lin et al., 1993; Wang, 1999). How-
ever the role of photospheric fields is still far from being fully understood
and is an area of ongoing research (e.g., Liu et al., 2005; Sudol and Har-
vey, 2005; Wang et al., 2005). What are the answers on the reconnection
theory to the objections mentioned above?

3.1.2 Concept of magnetic reconnection

According to contemporary views, the principal flare process is contingent
on the accumulation of the free magnetic energy in the corona and chromo-
sphere. At least, this is one of basic concepts (see Chapter 14). By ‘free’ we
mean the surplus energy above that of a potential magnetic field
having the same sources (sunspots, background fields) in the photosphere.
In other words, the free energy is related to the electric currents in the
solar atmosphere above the photosphere. The flare correspondes to rapid
changes of these currents. So we distinguish between two processes: (1)
the slow accumulation of flare energy and (2) its fast release, a flare.

Let us see these distinctions in the following classical example – the
evolution of the quadrupole configuration of sunspots shown in the two-
dimensional (2D) Figure 3.1. Four sunspots of pairwise opposite polarity
are shown: N and S represent a bipolar group of sunspots in an active
region, n and s model a new emerging flux. All four sunspots are placed
along the axis x placed in the photospheric plane Ph at the bottom of the
chromosphere Ch.

As in Figure 1.6, three consequent states of the potential field are
shown. In Figure 3.1a the field line A1 is the separatrix line of the initial



3.1. Role of Magnetic Fields in Flares 49

N s n S

N s n S

N s n S

(a)

(b)

(c)

A

A

1

2

RCL

Ch
Ph

x

X

Figure 3.1: The classical 2D cartoon of magnetic reconnection in a solar
flare. Three states of the potential field: (a) the initial state, (b) the pre-
reconnection state, (c) the final state after reconnection.
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state (a), this field line will reconnect first; X is the neutral point (line
along the z axis) of the potential field at the initial state, here the RCL is
created at the state (b). The magnetic field line A2 is the separatrix of the
final state (c) or the last reconnected field line. Therefore δA = A2 − A1 is
the reconnected magnetic flux.

In Figure 3.1b three solid arrows under the photosphere show an emer-
gence of the new magnetic flux (the sunspots n and s); the sunspots have
been emerged, but the field lines do not start to reconnect.

In general, the redistribution of fluxes appears as a result of the slow
motions and changes of magnetic field sources in the photosphere.
These changes can be either the emergence of a new flux tube from below the
photosphere (Figure 3.1) or many other flows of photospheric plasma,
in particular the shear flows – inhomogeneous horizontal flows along the
neutral line of the photospheric magnetic field. For this reason,

an actual reconnection of magnetic fields in the solar atmosphere is
always a three-dimensional process

(see next Section). Sometimes the 2D problems still give a simple illus-
tration of an effect, for example, the formation and dissipation of the
RCL at the X point under action of the photospheric shear (Kusano and
Nishikawa, 1996; Karpen et al., 1998), see also Sections 14.3 and 14.4. The
term ‘2.5-dimensional’ frequently refers to such 2D MHD problems (in two
spatial variables x and y) to point out the presence of the longitudinal
field Bz related to the shear flow.

3.1.3 Some results of observations

Let us come back to the first objection (1) in Section 3.1.1 to the recon-
nection theory of solar flares. According to the theory, the free magnetic
energy is related to the electric current J inside the RCL. The flare cor-
responds to rapid changes of this current. It is clear, however, that the
magnetic flux through the photospheric plane Ph (Figure 3.1) can change
only little over the whole area of a flare during this process, except in some
particular places, for example, between close sunspots N and s.

It means that sunspots and other magnetic features in the photosphere
are weakly affected by the occurrence of a flare because the plasma in
the photosphere is almost 109 times denser than the plasma in the corona
where the flare originates. Therefore it is difficult (but still possible) for
disturbances in the tenuous corona and upper chromosphere to affect the
extremely massive plasma in the photosphere. Only small MHD perturba-
tions penetrate into the photosphere.
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The same is true in particular for the vertical component of the magnetic
field, which is usually measured. Therefore

in the first approximation, the photospheric magnetic field changes
a little during the solar flare over its whole area.

As a consequence, it is not surprising that after a flare the large-scale struc-
ture in the corona can remain free of noticeable changes, because it is de-
termined essentially by the potential part of the magnetic field above the
photospheric sources. More exactly, even being disrupted, the large-scale
structure will come to the potential field configuration corresponding to
the post-flare position of the photospheric sources (see discussion in Sec-
tion 14.5.1).

On the other hand, in the Bastille day flare on 2000 July 14 (see Chap-
ters 4 and 5) as well as in some other large solar flares, it was possible to
detect the real changes in the sunspot structure just after a flare. The outer
penumber fields became more vertical due to magnetic reconnection in the
corona (Liu et al., 2005; Wang et al., 2005). One can easily imagine such
changes by considering, for example, Figure 3.1 between sunspots N and s.

Sudol and Harvey (2005) have used the Global Oscillation Network
Group (GONG) magnetograms to characterize the changes in the photo-
spheric vertical component of magnetic field during 15 large solar flares.
An abrupt, significant, and persistent change in the magnetic field occured
in at least one location within the flaring active region during each event
after its start. Among several possible interpretations for these observa-
tions, Sudoh and Harvey favour one in which the magnetic field changes
result from the penumber field relaxing upward by reconnecting magnetic
field above the photoshere. This interpretation is very similar to than one
given by Liu et al. (2005) and Wang et al. (2005).

As for the second objection (2) to the hypothesis of accumulation of
energy in the form of magnetic field of slowly-reconnecting current layers
in the solar atmosphere, the rapid dissipation of the field necessary for the
flare is naturally explained by the theory of current layers presented in what
follows, especially in Chapters 6 and 7).

3.2 Three-dimensional reconnection in flares

3.2.1 Topological model of an active region

Gorbachev and Somov (1989, 1990) have developed a three-dimensional
model for a potential field in the active region AR 2776 with an extended
flare of 1980 November 5. Before discussing the flare, let us consider, at
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Figure 3.2: The model for the magnetic field of four sunspots of pairwise
opposite polarity. The sunspots N and S in the photospheric plane Ph.
The separatrices S1 and S2 cross at the separator X1XX2 above the plane Q
of the effective magnetic ‘charges’ eN , eS , etc.

first, the general properties of this model called topological . Four magnetic
field sources – the magnetic ‘charges’ eN and eS , en and es, located in the
plane Q under the photosphere Ph (Figure 3.2) – are used to reproduce
the main features of the observed field in the photosphere related to the
four most important sunspots: N, S, n and s. As a consequence, the model
reproduces only the large-scale features of the actual field in the corona
related to these sunspots.

The features are two magnetic surfaces, the boundary surfaces called
the separatrices S1 and S2 (Figure 3.2), that divide the whole space above
the under-photospheric plane Q into four regions and, correspondingly, the
whole field into four magnetic fluxes having different linkages. The field
lines are grouped into four regions according to their termini. The separa-
trices of the potential magnetic field are formed from field lines beginning
or ending at magnetic zeroth points X1 and X2 rather than the magnetic
charges, of course. The field lines originating at the point X1 form a sepa-
ratrix surface S1 (for more detail see Gorbachev et al., 1988).

There is a topologically singular field line X1XX2 lying at the intersec-
tion of the two separatrices, it belongs to all four fluxes that interact at
this line – the 3D magnetic separator . So the separator separates the
interacting magnetic fluxes by the separatrices (see also Sweet, 1969,
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Lau, 1993).
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Figure 3.3: The same model for the magnetic field. The field lines located
at the separatrices and connected to the separator due to the reconnection
process at the point X, the vector B ‖ is the longitudinal component of a
magnetic field.

The potential field model does not include any currents and so cannot
model the energy stored in the fields and released in the flares. Therefore
here we introduce some currents and energetics to a flare model. The
linkage of real field lines connected to the separator is shown in Figure 3.3.
This Figure does not mean, of course, that we assume the existance of
real magnetic charges under the photosphere as well as the real X-type
zeroth points X1 and X2 in the plane Q which does not exist either. We
only assume that above the photospheric plane the large-scale magnetic
field can be described in terms of such a model. We also assume that
the actual conditions for reconnection are better at some point X of the
separator rather than at its other points. If the magnetic sources move
or/and change, the field also changes.

It is across the separator that the magnetic fluxes are redistributed
and reconnected so that the magnetic field could remain potential,
if there were no plasma.

In the presence of the solar plasma of low resistivity, the separator plays
the same role as the hyperbolic neutral line of magnetic field, familiar from
2D MHD problems (see Syrovatskii, 1966a; Sweet, 1969; Brushlinskii et
al., 1980; Biskamp, 1986 and 1997). In particular, as soon as the separator
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Figure 3.4: The current layer RCL with a total current J at the separator.

appears, the electric field E 0 induced by the varying magnetic field pro-
duces an electric current J along the separator. The current interacts with
the potential magnetic field in such a way (Section 1.1.3) that the current
assumes the shape of a thin wide current layer (see RCL in Figure 3.4).

In the high-conductivity plasma the current layer hinders the redis-
tribution of the magnetic fluxes.

This results in an energy being stored in the form of magnetic energy of a
current layer – the free magnetic energy.

Therefore the model assumes that the slowly-reconnecting current layer
appears at the separator (Syrovatskii, 1981; Gorbachev and Somov, 1989;
Longcope and Cowley, 1996) in a pre-flare stage. If for some reason (see
Somov, 1992) the reconnection process becomes fast, then the free mag-
netic energy is rapidly converted into kinetic energy of particles. This is a
flare. The rapidly-reconnecting current layer, being in a high-temperature
turbulent-current state (Section 6.3), provides the flare energy fluxes along
the reconnected field lines.

∗ ∗ ∗

It is important for what follows in Chapters 9, 11, and 14 that

actual 3D reconnection at the separator proceeds in the presence of
an increasing (or decreasing) longitudinal magnetic field B ‖

(Figure 3.3), which is parallel to the electric current J inside the RCL
(Figure 3.4). What factors do determine the increase (or decrease) of the
longitudinal field? – The first of them is the global field configuration, i.e.
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the relative position of the magnetic field sources in an active region. It
determines the position of the separator and the value of the longitudinal
field at the separator and in its vicinity. This field is not uniform, of course,
near the separator.

The second factor is the evolution of the global magnetic configuration,
more exactly, the electric field E 0 related to the evolution and responsible
for driven reconnection at the separator. The direction of reconnection –
with an increase (or decrease) of the longitudinal magnetic field – depends
on the sign of the electric field projection on the separator, i.e. on the
sign of the scalar product (E 0 · B ‖ ). In general, this sign can be plus or
minus with equal probabilities, if there are no preferential configurations of
the global field or no preferential directions of the active region evolution.
This statement as well as the whole model must be examined by future
observations and their analysis.

3.2.2 Topological portrait of an active region

Because the topological model uses a minimal number of magnetic sources
– four, which is necessary to describe the minimal number of interacting
magnetic fluxes – two, we call it the quadrupole-type model. This label is
not an exact definition (because in general eN �= − eS and en �= − es) but
it is convenient for people who know well the exact-quadrupole model by
Sweet (1969). In fact, the difference – the presence of another separator in
the model by Gorbachev and Somov – is not small and can be significant for
actual active regions on the Sun. The second separator may be important
to give accelerated particles a way to escape out of an active region in
interplanetary space.

Figure 3.5 shows the topologically important magnetic-field lines in the
plane (x′, y′) which is the plane Q of the effective sources e1, e2, e3, and e4.
They reproduce the large-scale features of the observed magnetic field in
the photosphere related to the four largest sunspots in the active region AR
2776 where the extended 1B/M4 flare of 1980 November 5 was observed by
the SMM satellite. Positions and magnitudes of the sources are adjusted
to fit the main topological features of the magnetogram (see Figures 1 and
3 in Gorbachev and Somov, 1989).

The field lines shown in Figure 3.5 play the role of separatrices (cf.
Figure 3.2) and show the presence of two separators in the active region.
Two zeroth points X1 and X2 are located in the vicinity of the magnetic
sources and are connected by the first separator shown by its projection,
the thin dasched line L1. Near this separator, the field and its gradient are
strong and determine the flare activity of the region. Another separator
starts from the zeroth point X3 far away from the magnetic sources and
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Figure 3.5: The topological portrait of the active region AR 2776 where
the solar flare of 1980 November 5 occurred.

goes much higher above the active region. The second separator can be
responsible for flares in weaker magnetic fields and smaller gradients high
in the corona.

Let us suppose that a part of the flare energy is initially released in some
compact region E near the apex of the main separator X1X2. Then energy
fluxes FE will propagate along the field lines connecting the energy source
with the photosphere. Projections of the energy source E on the photo-
spheric plane Ph along the field lines are shown as two ‘flare ribbons’ FR1
and FR2 in Figure 3.6. Therefore we identify flare brightenings, in the
hydrogen Hα line as well as in EUV and hard X-rays, with the ribbons
located at the intersection of the separatrices with the chromosphere which
is placed slightly above the photospheric plane (x, y).

The characteristic saddle structure of the field in the vicinity of the
reconnecting point X at the separator (cf. vol. 1, Figure 14.1) leads to a
spatial redistribution of the energy flux FE of heat and accelerated parti-
cles. This flux is efficiently split apart in such a way that it creates the
observed long-narrow Hα ribbons in the chromosphere (see FR1 and FR2
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Figure 3.6: The flare ribbons
at both sides of the photo-
spheric neutral line NL in the
flare of 1980 November 5.

in Figure 3.7).
For the first time, the model by Gorbachev and Somov (1989, 1990)

had reproduced the observed features of the M4/1B flare of 1980 Novem-
ber 5. In particular, the model predicts the simultaneous flaring of the two
chromospheric ribbons. Moreover it predicts that a concentration of the
field lines that bring energy into the ribbons in the chromosphere is higher
at the edges of the ribbons, i.e. at relatively compact regions indicated as
A, B, and C. Here the Hα brightenings must be especially bright. This
prediction of the model is consistent with observations of Hα ‘kernels’ in
this flare.

3.2.3 Features of the flare topological model

The topological model also predicts another signature of flares. Since in
the Hα kernels the flare energy fluxes are more concentrated, the impul-
sive heating of the chromosphere must create a fast expansion of high-
temperature plasma upwards into the corona (see Somov, 1992). This ef-
fect is known as the chromospheric ‘evaporation’ observed in the EUV and
soft X-ray (SXR) emission of solar flares. Evaporation lights up the SXR
coronal loops in flares.

Moreover the topological model shows that the two flare ribbons as well
as the four of their edges with Hα kernels are magnetically connected to
the common region of energy release at the separator (see E in Figure 3.7).
Note that Figure 3.7 demonstrates only the field lines connected to one of
the ribbons. Through the same region all four Hα kernels are magnetically
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Figure 3.7: A picture of potential field lines crossing the region of primary
energy release E , which is situated at the apex of the main separator (bold-
face dashed curve). The flare ribbons are formed where these field lines
cross the photosphere (plane z = 0).

connected to one another. Therefore the SXR loops look like they are
crossing or touching each other somewhere in the region of energy release
as shown in Figure 3.8 from Somov et al. (2001, 2002b).

So the quadrupole-type model predicts that the reconnecting magnetic
fluxes are distributed in the corona in such a way that the two SXR loops
may look like that they interact with each other. That is why the
SXR observations demonstrating such structures are usually considered as
direct evidence in favour of the model of two interacting loops (Sakai and
de Jager, 1996). The difference, however, exists in the primary source of
energy. High concentrations of electric currents and twisted magnetic fields
are created inside the interacting loops by some under-photospheric mecha-
nism. If these currents are mostly parallel they attract each other giving an
energy to a flare (Gold and Hoyle, 1960). On the contrary, according to the
topological model, the flare energy comes from an interaction of magnetic
fluxes that can be mostly potential.

Note that the S-shaped structures, when they are observed in SXRs
(e.g., Figure 2 in Pevtsov et al., 1996) or in hydrogen Hα-line, are usu-
ally interpreted in favour of non-potential fields. In general, the shapes of
coronal loops are signature of the helicity (Section 12.1) of their magnetic
fields. The S-shaped loops match flux tubes of positive helicity, and inverse
S-shaped loops match flux tubes of negative helicity (Pevtsov et al., 1996).
As we see in Figure 3.8, the S-shaped structure CEB connecting the bright
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Figure 3.8: Field lines that connect the Hα kernels A, B, C, and D. Chro-
mospheric evaporation creates a picture of the crossing SXR loops predicted
by the topological model for a flare in an active region with the quadrupole-
type configuration of magnetic sources in the photosphere.

points C and B results from the computations of the potential field in the
frame of the topological model.

Not surprisingly, the potential field produced by four sources may be
even more complicated and may look as a strongly non-potential field.
Severely kinked Ω-type loops, sometimes connecting two active regions,
might be understood in terms of a simple topological model, see Figure 8
in Pevtsov and Longcope (1998).

In the active region AR 2776 where the flare of 1980 November 5 was
observed, Den and Somov (1989) had found a considerable shear of a
potential field above the photospheric neutral line near the region of the
brightest flare loop AB. Many authors concluded that an initial energy of
flares is stored in magnetic fields with large shear. However, such flares
presumably were not the case of potential field having a minimum energy.
This means that the presence of magnetic shear is not a sufficient condition
for generation of a large flare in an active region.

The topological model by Gorbachev and Somov postulated a global
topology for an active region consisting of four fluxes. Reconnection be-
tween, for example, the upper and lower fluxes transfers a part of the
magnetic flux to the two side systems. Antiochos (1998) addresses the
following question: ‘What is the minimum complexity needed in the mag-
netic field of an active region so that a similar process can occur in a fully
three-dimensional geometry?’ He starts with a highly sheared field near the
photospheric neutral line held down by an overlying unsheared field. Anti-
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ochos concludes that a real active region can have much more complexity
than very simple configurations. We expect that

the topology of four-flux systems meeting along a coronal separator
is the basic topology underlying eruptive activity of the Sun.

It is unlikely that more than four fluxes would share a common boundary,
a separator. This four-flux topology is precisely what is needed for a flare
to occur.

On the other hand, magnetic configurations with more separators would
have more opportunity to reconnect and would thus more likely to produce
flares. Such complicated configuration would presumably produce many
small flares to release a large excess of magnetic energy in an active region
rather than one large flare.

It is also clear that, in order to accomplish different aims of topological
modeling, different methods have to be used. In general, it is not a simple
task to implement one or another topological model for a time series of
vector magnetograms, paying particular attention to distinguishing real
evolution of the photospheric magnetic fluxes from changes due to variations
in atmospheric seeing, as well as uncorrelated noise. Barnes et al. (2005)
investigated the reliability of one of such methods and have estimated the
uncertainties in its results.

3.2.4 The S-like morphology and eruptive activity

The appearance of separators in the solar atmosphere was initially at-
tributed to the emergence of a new magnetic flux from the photosphere
in the region where a magnetic flux already exists as illustrated by Fig-
ure 3.1. In fact, the presence of separators must be viewed as a much more
general phenomenon. Figure 3.9a taken from Somov (1985) exhibits the
simplest model of the uniform distribution of the vertical component Bz

of the magnetic field in the photosphere. The neutral line NL divides the
region of the field source along the y axis. In accordance with the fact that
it is often visible in solar magnetograms, this region is deformed by photo-
spheric flows with velocity v in such a way that the neutral line gradually
acquires the S-shape as shown in Figure 3.9b.

At first glance it seems that the magnetic field with such simple sources
cannot in principle have any topological peculiarities. However this is not
so. Beginning with some critical bending of the neutral line, the field cal-
culated in the potential approximation contains a separator as shown in
Figure 3.10 (Somov, 1985, 1986). In this figure, the separator X is located
above the photospheric NL like a rainbow above a river which makes a
bend. The separator is nearly parallel to the NL in its central part. The
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Figure 3.9: Model distribution of the vertical component of the magnetic
field in the photosphere. A vortex flow distorts the photospheric neutral
line so that it takes the shape of a letter S.

potential field lines just above the NL are orthogonal to it. This is impor-
tant to make the simplest 2D models.

By using the topological model, Gorbachev and Somov (1988) demon-
strated the appearance and growth of the separator as a result of photo-
spheric vortex flows in the locality of the photospheric neutral line. They
showed that the vortex flows or any other photospheric magnetic field
changes, creating the S-shape of the neutral line, produce a special topo-
logical structure in the field above the photosphere. The peculiarity of this
structure is the separator.

The topological ‘rainbow reconnection’ model explains some reliably
established properties of two-ribbon flares.

First,

the rainbow reconnection model reveals a connection of large solar
flares with the S-shaped bend of photospheric neutral line.

It shows that the neutral line bend must be greater than some critical value.
Then it leads to appearance of the separator above the photosphere. So that
a necessary condition for magnetic reconnection in the solar atmosphere is
satiesfied.

Second, the model explains the bipolar picture of a flare: its devel-
opment simultaneously in regions of different photospheric magnetic field
polarities. Moreover it naturally explains the arrangement and shape of the
flare ribbons in the chromosphere, the structure observed in X-ray bands
like two intersecting loops, and the early appearance of bright flare kernels
on the flare ribbon ends.
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Figure 3.10: The ‘rainbow reconnection’ model: the separator X above the
S-shaped bend of the photospheric neutral line NL. The inset in the upper
right-hand corner shows the structure of the magnetic field near the top of
the separator.

As viewed in SXRs, the coronal part of active regions consists of discrete
bright loops. These loops often collectively form sinuous S shapes similar
to that one which we saw in Section 3.2.3 (see also Acton et al., 1992). This
shape has been named ‘sigmoidal’ by Rust and Kumar (1996) who studied
the characteristic of such brightenings in SXRs and found that they are
typically evolve from a bright, sharp-edges sigmoidal features into either an
arcade of loops or a diffuse cloud. We can expect that such transient arcades
of loops (loop prominence systems) and long-duration events (LDEs) are
related to coronal mass ejections (CMEs).

Using the Yohkoh SXR images, Hudson et al. (1998) considered the
implications of this scenario in the context of ‘halo’ CMEs. These may
correspond to events near the solar disk center. Incorporating data from
the SOHO Large Angle Spectroscopic Coronagraph (LASCO), this survey
found the ‘sigmoid-to-arcade’ development a common feature of active re-
gions associated with the onset of a halo CME.

Canfield et al. (1999), Glover et al. (2000) performed a similar study in-
corporating a much wider range of data and observations over an increased
range in wavelength. A high proportion of active regions were reviewed
with the intention of clarifying which SXR features possess the highest
probability of eruption. The results suggest a strong relationship between
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an overall S-like morphology and the potential of an active region to erupt.
We assume that

the S-like SXR morphology results from the reconnection process
in a high-temperature current layer located at the separator of a
quadrupole-type magnetic field of an active region

as was illustrated in Figure 3.8. Since a pre-event sigmoid disappears leav-
ing a SXR arcade and two ‘transient coronal holes’ (Sterling and Hud-
son, 1997), opening a closed configuration (see Syrovatskii and Somov, 1980;
Syrovatskii, 1982) seems to be an important element of the CME onset,
which drives reconnection at the separator.

3.3 A current layer as the source of energy

3.3.1 Pre-flare accumulation of energy

Potential field has no free energy. Given common and obvious assumptions,
the free energy in the quadrupole-type model described above is simply the
magnetic energy of the total electric current J in the reconnecting current
layer (RCL) in the solar atmosphere (Figure 3.4):

Ef =
1

2c2 LJ2. (3.1)

Here

L ≈ 2l ln
2l

b
(3.2)

is the self-inductance of the current layer, l is the distance taken along the
separator from the zeroth point X1 to the point X2 in Figure 3.3, and b is
the half-width of the layer.

Since we know the physical properties of a pre-flare current layer (see
Section 6.1.2), we estimate the total current inside the layer as well as its
free magnetic energy (Syrovatskii, 1976b, 1981), the energy of a flare.

If we did not know the properties of the pre-flare reconnection process,
we should have considered as an open question the following one. Why can
the considerable excess energy be accumulated in the coronal magnetic field
during the pre-flare stage without contradicting the natural tendency that
lower energy states are more favourable? – We should look for an answer to
this question, for example, in a bifurcation structure of force-free fields in
the corona (e.g., Kusano and Nishikawa, 1996). However we may continue
our consideration of the pre-flare stage as the creation and existence of the
slowly-reconnecting current layer. In this way, we see that
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slowly-reconnecting current layers in the solar atmosphere can store
the magnetic energy Ef necessary for flares.

Moreover in a quasi-stationary case (e.g., in the pre-flare state) their out-
put can account for the energetics of the whole active region (Somov and
Syrovatskii, 1977; Den and Somov, 1989). We may call such a state the
minimum current corona.

Note that from (3.1) a simple formula follows for the total current J
necessary for a solar flare to release the energy Ef :

J = c

(
2Ef

L

)1/2

≈ (1 − 6) × 1011 Ampere . (3.3)

In this estimate the length l is set equal to the characteristic size of a large
active region, l ≈ 1010 cm, and the flare energy to Ef ≈ (1 − 3) × 1032 erg.
The result agrees with the estimates of the total electric current based on
measurements of the magnetic field components in the photospheric plane
(Moreton and Severny, 1968).

The vector magnetographs determine the transversal field at lower at-
mospheric levels; the curl of this field yields the vertical current density
(Gopasyuk, 1990; Zhang, 1995; Wang et al., 1996). Distributions of the
intensity of the vertical current inferred from the horizontal magnetic field
evolve only gradually and demonstrate two possibilities. One is the emer-
gence of a new electric current from the sub-photosphere. The other is the
rearrangement of the current systems in the solar atmosphere.

3.3.2 Flare energy release

The reconnecting current layers in the pre-flare state can suffer many insta-
bilities: thermal instability caused by radiative energy losses (Field, 1965),
resistive instability caused by temperature dependence of plasma conduc-
tivity, two-steam instabilities of various types, structural instability (Chap-
ter 10), tearing instability (Chapter 11) etc. It is assumed that, as a result
of one of these instabilities, the magnetic energy of the RCL is rapidly
released and a flare starts. For example, a flare occurs when the current
carried on a separator exceeds some threshold.

At present there are several open questions related to these instabilities:
what is the relative importance of each of them, which of them can develop
first, and whether an external action upon the current layer is necessary or
whether the layer gradually evolves towards an unstable equilibrium or a
non-equilibrium state by itself. Some attempts to answer these questions
using relatively simple models will be demonstrated in what follows. In gen-
eral, however, answers to these questions depend on the internal structure
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of the RCL. In its turn this structure depends on the initial and boundary
conditions, and on the current layer evolution during previous stages.

Therefore the investigation of RCL dynamics is important for cosmic
plasma physics. This investigation must include the formation stage, the
pre-flare evolution, and the rapid realignment (rupture of the current layer)
with transition to a new state characterized by high temperatures and high
resistivity (Chapter 6).

In the process of solving this problem many numerical (Brushlinskii
et al., 1980; Antiochos et al., 1996) and laboratory (Altyntsev et al., 1977;
Stenzel and Gekelman, 1984; Bogdanov et al., 1986, 2000) experiments have
been performed. The hydrodynamic stage of the rise and evolution of pre-
flare current layers has been studied in detail. Experiments have shown that
a thin, extended current layer can be formed, even in laboratory conditions.
To some approximation it has been possible to study the structures of the
magnetic field inside the layer and in the ambient plasma, to find the current
distribution, the electron density and other plasma parameters.

The laboratory experiments have demonstrated the possibility of a
substantial accumulation of free magnetic energy and the explosive
disruption of the thin wide reconnecting current layer.

The cause of such disruption, which is accompanied by fast reconnection,
may be a local resistivity increase related to the development of plasma
turbulence.

Future experiments will probably, more than hitherto, concentrate on
the study of the conditions for current layer disruption, of nonlinear in-
teractions in the fast reconnection region, and of particle acceleration (see
Chapter 9). This would help us to solve the most difficult problem in the
reconnection theory and, in particular, give us information necessary to in-
vestigate experimentally the characteristics of current layers as the source
of flare energy during the impulsive phase.

The disruptive stage of the evolution cannot be described in hydrody-
namic terms only: it requires a kinetic description in the disruption region.
The impulsive electric field induced there efficiently accelerates charged
particles (Somov and Syrovatskii, 1975). During this process, plasma tur-
bulence is generated. Its intensity depends on the fast particle flux and
governs plasma resistivity, reconnection rate, and, as a consequence, the
electric field intensity. There is thus a nonlinear feedback. Of course, to
solve such a self-consistent problem is not easy. We shall, however, bear
two limiting cases in mind.

First, low-energy particles interact effectively with the plasma, and most
of their energy is rapidly lost by heating the plasma to very high tempera-
tures, the so-called ‘super-hot’ plasma. Second, in the high-energy region, a
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part of the accelerated particles enters into the electric runaway regime (see
vol. 1, Section 8.4.2). i.e. it virtually ceases to interact with the plasma.

3.3.3 The RCL as a part of an electric circuit

We have not discussed yet another problem of the theory of reconnecting
current layers as a source of energy for solar flares. This problem has been
nicely called global electrodynamic coupling (Spicer, 1982; Kan et al., 1983)
and it essentially consists in the question about the role of inductance and
resistance in an equivalent electric circuit one of whose components is a cur-
rent layer in the solar atmosphere. In its simplest form (Baum et al., 1978),
the corresponding task can be illustrated by the elementary equation

L
d

dt
J(t) + J(t)R0 = V (t) . (3.4)

Here V = V (t) is the external electromotive force (emf) due to variations of
photospheric magnetic fields, or simply the potential difference between the
points X1 and X2 at the ends of the separator in Figure 3.2. The unknown
quantity V depends on the strength of the photospheric sources and in the
simplest approach it is treated as a given function of time.

Let us assume that at the initial moment t = 0, the current J(0) along
the separator was zero. At this point the external emf V (0) was completely
used up by acting against the self-induction emf:

L
dJ

dt
+ 0 = V (0) . (3.5)

So the current J(t) will appear.
As soon as a nonzero current J(t) appears, the voltage drop on the

total separator resistance R0 , according to Equation (3.4), makes the rate
of current increase dJ/dt in the circuit smaller, which amounts to decreasing
the rate of magnetic energy accumulation prior to a flare. The final steady
current Js depends on the resistance R0 and the external emf V:

Js =
V

R0

. (3.6)

The characteristic time of the process is proportinal to the self-inductance L:

τa =
L

R0

. (3.7)

Note that L ∼ l and R0 ∼ σ−1l. Therefore τa ∼ σ does not depend of the
length scale l.
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The maximum accumulated energy (3.1) is also proportional to the in-
ductance L of the equivalent circuit comprising the separator current layer:

Ef =
1

2c2

LV 2

R 2
0

. (3.8)

It is important that the free magnetic energy Ef and the energy accumula-
tion time τa depend also on the total resistance R0 . In the pre-flare state,
the RCL with low Coulomb resistivity has low resistance. For this reason,
the accumulated energy can be sufficiently large. The accumulation time
is long enough: τa ∼ 3 × 104 s (Syrovatskii, 1976b).

Schrijver et al. (2005) compared TRACE EUV images of 95 active re-
gions and potential-field source-surface extrapolations based on SOHO MDI
magnetograms. It appears that the electric currents associated with coro-
nal nonpotentiality have a characteristic timescale τobs ∼ 10 − 30 hr. Thus
the flare-energy accumulation time τa ∼ τobs.

TRACE observations of an emerging active region in the vicinity of an
existing active region have been used by Longcope et al. (2005) in order
to quantify magnetic reconnection between two active regions. Compari-
son of the observed EUV loops with the magnetic field lines computed in
a topological model (for more detail see Section 3.4.4) revealed that the
interconnecting EUV loops are consistent with those produced by recon-
nection at a separator overlying the volume between the active regions.
The net energy released is consistent with the amount that could be stored
magnetically during the 24 hr delay between emergence and reconnection.

From what we have seen it is evident that

to release the accumulated energy in a time τf ≈ 102 − 103 s cor-
responding to the solar flare duration, the total current layer resis-
tance must be increased by 2 to 3 orders of magnitude.

Such an effect can be well the result of the appearance of plasma turbulence
(Section 6.3). An alternative possibility (see Chapter 14) is an appearance
of one or many local current disruptions which have large enough resistance,
electric double layers.

Earlier the possibility of formation of the double layers was, for some
reason, treated as being alternative or even more in conflict with the concept
of reconnection. However, after the laboratory experiment by Stenzel and
Gekelman (1984), it became clear that double layers may form inside the
RCL. The hypothesis of the formation of electric double layers inside the
separator-related RCL can prove useful for the explanation of the extremely
rapid energy release observed sometimes during solar flares. However, the
concept of collisionless reconnection seems to be a more natural and more
realistic alternative.
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s n

RCLB 0

Ch

Figure 3.11: The Syrovatsky model
of a solar flare. n and s represent
a bipolar source of a new emerg-
ing flux in the chromosphere Ch.
The uniform field B0 models a large-
scale magnetic field in the corona.
RCL is a reconnecting current layer
between the interacting magnetic
fluxes.

3.4 Reconnection in action

3.4.1 Solar flares of the Syrovatsky type

Much of the activity in the solar corona is related to the emergence of mag-
netic flux from the solar interior. Flux emergence episodes are continually
injecting magnetic fields into the solar atmosphere over a wide range of
length- and timescales, from small magnetic elements on a granular size all
the way up to the emergence of large active regions.

Emerging active regions interact with preexisting magnetic systems by
establishing magnetic links to them, well visible in image series taken by the
TRACE satellite. They also cause the ejection of fast, high-temperature
flows often seen, for example, with the soft X-ray telescope (SXT) on board
the Yohkoh satellite.

Observed changes of connectivity and high-temperature jet emission
clearly point to reconnection of magnetic field lines

as being effective whenever an upcoming and a preexisting magnetic flux
system meet in the corona in spite of the low resistivity of the coronal
plasma.

It is essential to understand how the magnetic field emerged from the
solar interior interacts with the overlying coronal field. The simplest two-
dimensional (2D) model suggested by Syrovatsky (1972) had provided a
first glimpse at the physics of a solar flare as a result of emergence of a
bipolar magnetic region from under the photosphere into a model corona
containing a large-scale uniform horizontal magnetic field (Figure 3.11).

A horisontal reconnecting current layer (RCL) was assumed to be
formed at the interface between the rising magnetic flux and the ambient
coronal field which is antiparallel to the topmost field lines of the upcoming
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magnetic flux. The field lines of the initial coronal field reconnect to those
of the rising flux, so that the corona and the photosphere become mag-
netically connected. This process is repeatedly observed in modern space
missions like SOHO and TRACE .

Syrovatsky (1972) estimated the magnetic energy which can be accu-
mulated by the RCL before a solar flare as well as the characteristic time
and other basic parameters of the 2D reconnection process in the flare.
However, even in the simplest configuration, the accumulation and release
of magnetic energy are highly time dependent, have an intrinsically com-
plex three-dimensional geometry, and contain a wide range of length- and
timescales. Hence numerical simulations are necessary to provide better
physical insight.

The three-dimentional (3D) time-dependent resistive MHD equations
have been integrated numerically by Archontis et al. (2005) in order to
model the process of reconnection between an emerging bipolar region and
a preexisting horizontal uniform field in the corona. In the initial stages
of contact of the two systems, the magnetic configuration across a forming
current layer is similar to the classical X-point type, with mutually antipar-
allel field lines on both sides of the current layer being joined and ejected
sideways.

The RCL is formed with the shape of a narrow arch distributed all
around a rising ‘dome’ of the massive emergence from the photosphere of
magnetic flux and plasma. The numerical experiment shows the struc-
ture and evolution of the RCL. It changes from a structure resembling the
simple tangential discontinuity to another structure resembling the simple
rotational discontinuity. Most of the original subphotospheric flux becomes
connected to the coronal field lines.

The ejection of plasma from the RCL gives rise to high-speed and high-
temperature jets. The acceleration mechanism for those jets is akin to that
found in previous 2D models, but the geometry of the jets bears a clear
3D imprint, having a curved-layer appearance with a sharp interface to the
overlying coronal field system. Temperatures and velocities of the jets in
the numerical experiment are commensurate with those observed by the
Yohkoh SXT.

3.4.2 Sakao-type flares

Sakao et al. (1998) studied the spatial evolution of 14 impulsive flares that
clearly show the typical double-source structure (Figure 3.12) at the peak
of the M2 band (33-53 keV) emission in the hard X-ray (HXR) images
obtained by the Hard X-ray Telescope (HXT) onboard Yohkoh. The dis-
tance l between the sources has been analyzed as a function of time. As
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a result, two subclasses of flares – more impulsive (MI) and less impulsive
(LI) – have been discovered. We assume that in both subclasses, the three-
dimensional reconnection process occurs in the corona at the separator with
a longitudinal field.
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Figure 3.12: Typical HXR structure of a selected impulsive flare is shown
in the right top corner: Pa and Pb are the footpoint sources, l is a distance
between them. Ia and Ib are the HXR flux from the footpoint sources as a
function of time, τ is a total duration of the impulsive phase.

The difference between the LI and MI flares presumably appears because
in the LI flares the reconnection process accompanies an increase of the
longitudinal field at the separator (Somov et al., 1998). In contrast, in
the MI flares the reconnection proceeds with a decrease of the longitudinal
field. Hence the reconnection rate is higher in the MI flares.

To illustrate that the observed variations of the footpoint separation
depend on the longitudinal field B ‖, this field is shown near the separator X
in Figure 3.13. The arrows v0 and v1 indicate the reconnection velocity
pattern (the inflows and outflows) during the impulsive phase of a flare.

Two reconnecting field lines f1 and f2 arrive at the separator X and
pass through it, the second one after the first. They bring different values of
the longitudinal field B ‖. If the second field line f2 arrives with a stronger
longitudinal field than the first one, i.e. B ‖ 2 > B ‖ 1, then the length of the
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Figure 3.13: An apparent motion of the HXR footpoints during the fast
reconnection: (a) the footpoint separation rapidly increases in the LI flares,
(b) a decreasing footpoint separation in the MI flares.

line f2 after reconnection is obviously larger than the length of the line f1
as shown in Figure 3.13a.

Figure 3.13a also shows positions of the footpoints in the chromospheric
plane for the same field lines. The footpoints Pa and P b, being impulsively
heated by accelerated particles, became bright in HXR earlier than the
footpoints P ′

a and P ′
b. Figure 3.13a demonstrates that, if the longitudinal

field becomes stronger at the separator, then the footpoint separation will
increase during the fast reconnection. If, on the contrary, the line f2 brings
a weaker longitudinal field, i.e. B ‖ 2 < B ‖ 1, then the distance between
footpoints rapidly becomes shorter as shown in Figure 3.13b.

The topological model makes intelligible the observed decrease (in-
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crease) of the separation between the HXR sources in the MI (LI) flares
(Somov and Merenkova, 1999). Let us consider two configurations (a) and
(b) in Figure 3.14 for the four magnetic sources in the source plane Q. To
a different extent they differ from the ideal configuration when all the four
sources are placed along the symmetry axis x. The longitudinal magnetic
field at the separator is equal to zero in the ideal symmetrical case.
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Figure 3.14: Two configurations of magnetic sources in the plane Q.

In general, the pre-reconnection state differs from the ideal configura-
tion, of course. So the longitudinal field already exists at the separator.
This field always presents under condition of actual 3D reconnection in the
solar atmosphere, and it will increase (or decrease) depending on the direc-
tion of evolution of the magnetic field in an active region. For example, the
configuration evolves from the less-ideal initial state (a) to a more-ideal one
(b) as shown in Figure 3.14. Under this direction of evolution, indicated by
vector v in Figure 3.14, the reconnection process decreases the longitudinal
field at the separator.

Following Gorbachev and Somov (1988, 1990), let us suppose that a
part of the flare energy is initially released in some compact region E near
the apex of the separator. Then the energy fluxes will propagate along the
field lines connecting the energy source with the photosphere. Projections
of the energy source E on the photospheric plane Ph along the field lines are
shown as the two ‘flare ribbons’ FR in Figure 3.15. Therefore we identify
flare brightenings, in the hydrogen Hα line etc., with the ribbons located at
the intersection of the separatrices with the chromosphere which is placed
slightly above the photospheric plane.

As in the model of the 1B/M4 flare of 1980 November 5, shown in
Figure 3.8, the saddle structure of the field near the separator splits the
flux of heat and accelerated particles in such a way that it creates the long-
narrow Hα ribbons in the chromosphere (FR in Figure 3.15). Moreover the
model predicts that a concentration of the field lines that bring energy into
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Figure 3.15: The long-narrow Hα ribbons FR and Hα kernels Pa and Pb

projected in the photospheric plane Q both sides of the photospheric neutral
line NL.

the flare ribbons in the chromosphere is higher at the edges of the ribbons,
i.e. at relatively compact regions shown by dark points Pa and Pb. Here the
Hα brightenings must be especially bright. This prediction of the model is
consistent with observations of Hα kernels in a flare.

Figure 3.15 shows that the foot-point separation, which is the distance d
between the points Pa and Pb, decreases if the magnetic configuration
evolves from the state (a) to state (b), id. when the longitudinal mag-
netic field decreases during the reconnection process at the separator. So
the reconnection rate is higher in the MI flares of the Sakao type. In con-
trast, in the LI flares the magnetic configuration evolves from (b) to (a).
This means that the reconnection proceeds with an increase of the longitu-
dinal field, more slowly, and with an increase of the foot-point separation.
Therefore we may conclude that

if the evolution of the sunspot configuration goes to a more ideal
state with a smaller displacement from the symmetry axies, then
the MI flares should occur.

This statement must, however, be examined by future observations and
their analysis.

3.4.3 New topological models

When the photospheric magnetic field of active regions was extrapolated
into the corona, it was found in many cases (e.g., Aulanier et al., 2000;
Bentley et al., 2000) that the large-scale magnetic field of active regions
was close to being potential indeed. The basic ingradients for reconnection
to occur were present. Moreover the observed photospheric field evolution is
expected to drive reconnection and to produce flares in such active regions.
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After Gorbachev and Somov (1988, 1989, 1990), a series of similar in-
vestigations have sought observational evidence for reconnection in flares
(Mandrini et al., 1991, 1993; Mandrini and Machado, 1993; Démoulin et
al., 1993; Bagalá et al., 1995; Longcope, 1996; Antiochos, 1998; Longcope
and Silva, 1998). The results of these investigations were summarized as
follows. Flare brightenings are located at the intersection of the separatrices
with the chromosphere and are magnetically connected to one another as
well as to a common region close to the separator (cf. Figure 3.8). In par-
ticular, Longcope (1996), Longcope and Silva (1998) demonstrated clearly
how

motions of the photospheric sources (magnetic charges) lead to the
build-up of ‘ribbon-like’ current layers parallel to the separator

or two separators (Section 3.2.2), as it is in the case of the solar flare on 7
January 1992.

The magnitude of the current J at the separator (see formula (3.2)) is
related through the self-inductance L to the magnetic flux change which
would have occured in a potential field in the corona (Syrovatskii, 1966a,
1981). By calculating approximate self-inductances of the separator, the
topological model, called now the minimum current corona, provides an
estimate of the current and the associated free energy from a given dis-
placement of the magnetic sources.

The model developed by Longcope and Silva (1998) applies a topological
approach to the magnetic field configuration for 7 January 1992. A new
bipole (∼ 1021 Mx) emerges amidst a pre-existing active region flux. This
emergence gives rise to two current layers along the separators separating
the distinct, new and old, magnetic flux systems. Sudden reconnection
across the separators transfers ∼ 1020 Mx of flux from the bipole into the
surrounding flux. The locations of current layers in the model correspond
with observed soft X-ray loops. In addition the footpoints and apexes of the
current layers correspond with observed sources of microwave and hard X-
ray emission. The magnitude of the magnetic energy stored by the current
layers compares favourably to the inferred energy content of accelerated
electrons.

The occurrence of flares in a quadrupolal magnetic configuration is a well
studied topic. Ranns et al. (2000) present multi-wavelength observations
of two homologous flares observed by SOHO and Yohkoh. The preflare
conditions are reformed after the first flare by emerging flux. With the
continual advancements in image resolution, at all wavelengths, we will
learn progressively more about the reconnection process in flares.
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3.4.4 Reconnection between active regions

An active region is generally assumed to be produced by the buoyant emer-
gence of one or more magnetic flux tubes from below the photosphere. Un-
der this assumption, any coronal field interconnecting two distinct regions
must have been produced through magnetic reconnection after emergence.
Thus the coronal loops connecting between two active regions offer some of
the most compelling evidence of large-scale reconnection in the solar corona
(Sheeley et al., 1975; Pevtsov, 2000).

The TRACE high-cadence observations in the 171 A passband show nu-
merous loops interconnecting two active regions and thereby provide a good
opportunity to quantify magnetic reconnection. Longcope et al. (2005) have
analyzed data from the period 2001 August 10–11, during which active re-
gion 9574 emerged in the vicinity of existing active region 9570. They have
identified each extreme-ultaviolet (EUV) loop connecting the emerging po-
larity to a nearby existing active region over the 41 hr perion beginning at
emergence onset.

The topology of the coronal field was modeled as a potential field an-
chored in 36 point sources (i.e., the topological model similar to that one
introduced in Section 3.2 but with many magnetic charges) representing
each of the magnetic field concentrations. Geometrical resemblance of the
identified EUV loops to post-reconnection (see Figure 3.1c) field lines from
the topological model of the active region pair implicates separator recon-
nection in their production. More exactly, comparison of the observed EUV
loops with computed field lines reveals that the interconnecting loops are
consistent with those produced by reconnection at a separator overlying
the volume between the active regions.

The computed field included a domain of magnetic flux interconnecting
one specific charge from the emerging region to another charge of oppo-
site polarity in the pre-existing region. The magnetic flux in this domain
increases steadily, in contrast to the EUV loop observations showing that
during the first 24 hr of emergence, reconnection between the active regions
proceeded slowly.

The lack of reconnection caused magnetic stress to accumulate as cur-
rent layer along the separator (see Figure 19 in Longcope et al., 2005).
When the accumulated current had reached J ≈ 1.2×1011 A, a brief recon-
nection process was triggered, leading to the transfer of ≈ 1021 Mx across
the separator current layer. The stressed field had accumulated at least
≈ 1.4 × 1031 ergs, which was then released by the reconnection. According
to interpretation given by Longcope et al. (2005), only a small fraction of
this energy was dissipated directly at the separator. The released energy
was converted instead into small-scale fluctuations such as a turbulence of
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Alfvén waves etc.
The reconnection rate was relatively small for the first ∼ 24 hr of emer-

gence and then rapidly increased to a peak as high as 1017 Mx s−1 (109 V).
Thus the most intense period of reconnection occured after a 1 day de-
lay. The net energy released, and ultimately dissipated, is consistent with
the amount that could be stored magnetically during this delay between
emergence and reconnection.



Chapter 4

The Bastille Day 2000
Flare

The famous ‘Bastille day 2000’ flare was well observed by several
space- and ground-based observatories and stidied extensively by
many researchers. The modern observations in multiple wavelengths
demonstrate, in fact, that the Bastille day flare has the same behav-
ior as many large solar flares. In this Chapter, the flare is studied
from observational and topological points of view in terms of three-
dimentional magnetic reconnection.

4.1 Main observational properties

4.1.1 General characteristics of the flare

On 14 July 2000 near 10:10 UT, a large solar flare with the X-ray impor-
tance of X5.7 launched near disk center in the active region NOAA 9077.
The event comprised a 3B flare as revealed by bright emission throughout
the electromagnetic spectrum, the eruption of a giant twisted filament, an
extended Earth-directed CME, and a large enhancement of accelerated par-
ticle flux in interplanetary space. This well-observed flare was called the
‘Bastille day 2000’ flare.

The Yohkoh satellite (Ogawara et al., 1991; Acton et al., 1992) ob-
served an early phase (∼10:11 - 10:13 UT) and some of the impulsive phase
(from ∼10:19 UT) of this famous flare classified as a long duration event
(LDE). The Soft X-ray Telescope (SXT; Tsuneta et al., 1991) observed a
large arcade. The width and length of the arcade were ∼30 000 km and
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∼120 000 km, respectively. The Hard X-ray Telescope (HXT; Kosugi et
al., 1991) clearly showed a two-ribbon structure in the energy ranges 33−53
and 53− 93 keV. This structure corresponds to a series of footpoints of the
SXR arcade (Figure 4.1).

Figure 4.1: Yohkoh and TRACE observations of the Bastille day flare. The
right panel shows HXR (53-93 keV) sources aligned along the flare ribbons,
which lie at the feet of the arcade loops in the center of the left panels.

Solar flares often exhibit a two-ribbon structure in the chromosphere,
observed for example in Hα (Svestka, 1976; Zirin, 1988; Strong et al., 1999),
and this pattern becomes especially pronounced for LDEs of the type often
associated with CMEs. In the Bastille day flare, the two ribbons were well
seen in Hα and Hβ (Yan et al., 2001; Liu and Zhang, 2001). Fletcher and
Hudson (2001) describe the morphology of the EUV ribbons of this flare,
as seen in SOHO , TRACE , and Yohkoh data. The two-ribbon structure,
however, had never before been observed so clearly in HXR as presented in
Masuda et al. (2001).

Masuda et al. analyzed the motions of bright HXR kernels (compact
intense sources) in the two ribbons of the Bastille day flare during the
first and second bursts (S1 and S2) of emission in the HXT bands M1,
M2, and H; they cover the energy range of 23-33, 33-53, and 53-93 keV,
respectively. Even without an overlay of the HXR images of the flare on the
photospheric magnetograms, Masuda et al. speculated that “these bright
kernels are footpoints of newly reconnected loops” and that “lower loops,
reconnecting early, are highly sheared; the higher loops, reconnecting later,
are less sheared”.
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This key supposition well supports the idea of three-dimensional recon-
nection in the corona at a separator with a longitudinal magnetic field. Be-
ing introduced to explain the so-called Sakao-type impulsive flares (Sakao
et al., 1998), which have double footpoint sources observed in HXR (see
Figure 3.12), the idea consists in the following. It is easy to imagine that
two reconnecting field lines f1 and f2 pass through the separator, the sec-
ond after the first; see Figure 3.13. If the first line f1 has the stronger
longitudinal field than the second one, then the length of the line f2 in the
corona after reconnection becomes shorter than the length of the line f1.
Therefore the distance between bright HXR footpoints in the chromosphere
also becomes shorter as shown in Figure 3.13b.

In general, such a scenario (Section 3.4) is consistent with the observed
motions of the HXR kernels in the Bastille day flare. However, to make a
judgement about it we need to investigate possible relationships between
the HXR kernels (their appearance positions and further dynamics) and
the photospheric magnetic field (its structure and evolution).

With the aim of finding such relations, let us adopt the following proce-
dure. First, we overlay the HXR images of the flare on the full-disk magne-
tograms by the Michelson Doppler Imager (MDI; Scherrer et al., 1995)
on board the Solar and Heliospheric Observatory (SOHO ; Domingo et
al., 1995). Second, we overlay the obtained results of the first step on
the vector magnetograms of high quality (Liu and Zhang, 2001; Zhang et
al., 2001) obtained with the Solar Magnetic Field Telescope (SMFT) at
Huairou Solar Observing Station (HSOS).

The coalignment of the HXT images with the MDI and SMFT data
allows us (Somov et al., 2002a): (a) to identify the most important MDI
sunspots with the SMFT spots, whose properties, morphology and evolu-
tion have been carefully studied; and (b) to examine the relationships be-
tween the HXR kernel behavior during the impulsive phase of the Bastille
day flare and the large-scale displacements of the most impotant sunspots
during the two days before the flare, based on precise measurements of the
proper motions (Liu and Zhang, 2001). The most important findings will
be described below; their interpretation will be given in Chapter 5.

4.1.2 Overlay HXR images on magnetograms

Since we wish to study the relationship between the HXR kernels and the
underlying magnetic field, we must accurately coalign the Yohkoh data with
simultaneous magnetic field data, first of all, the magnetograms from the
MDI instrument on the SOHO . In principle, such coalignment is possible
using the pointing information of the two instruments. In practice, how-
ever, there are always quantified and unquantified errors in the pointing of
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different satellites and even different instruments on the same satellite.
Concerning the Bastille day flare, as observed by SOHO and TRACE ,

Fletcher and Hudson (2001) have determined the coalignment of data from
the two instruments via cross-correlation of an image made in the white-
light channel of TRACE and the MDI continuum image of the active region
NOAA 9077. This has allowed the authors to locate the EUV ribbon posi-
tions on the photospheric magnetic field. Then the HXT and MDI images
have been coaligned. When this has been done, the strongest HXR M2
sources occur at the same locations as the strongest EUV sources. This
result is reasonable from the physical point of view (see Chapter 2 in So-
mov, 1992).

Figure 4.2: The HXR source contours (blue curves) at the HXR maximum
of the Bastille day flare overlaid on the MDI magnetogram. The green
curve PNL represents the photospheric neutral line. SNL is the simplified
neutral line.

Figure 4.2 shows the HXR source image synthesized during the peak of
the flare at 10:27:00 - 10:27:20 UT; the blue contours are at 25, 50, 75 and
90 % of the maximum HXR intensity. The sources are superimposed by
Fletcher and Hudson (2001) on the MDI magnetic field. The magnetogram
is taken at 11:12 UT. White indicates positive line-of-sight field, and black
negative; the contours are at ± 100, 500 and 1000 G. The broken straight
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line SNL indicates the so-called “simplified neutral line” of the photospheric
magnetic field, as introduced by Masuda et al. (2001). This effective line
does not coincide with an actual photospheric neutral line PNL (or the
polarity inversion line) but it is used to describe dynamic behavior of the
HXR sources during the flare. The physical meaning of the SNL will be
given in Section 5.1 where we discuss a model of the flare.

We have added to this overlay the notations of some sunspots in the
field according to Liu and Zhang (2001). They describe the spots on the
photospheric magnetograms obtained with the SMFT by the polarities with
“P” and “F” representing the preceding (positive) and following (negative)
magnetic polarities respectively. There is a good spatial correspondence
between the spots as seen in the MDI magnetogram and the spots in the
gound-based magnetogram obtained with the SMFT on July 14 at 08:43:19
UT. This allows us to identify the MDI spots with corresponding spots
in the SMFT magnetograms. In this way, we use the sunspot notations
taken from Figure 8 in Liu and Zhang (2001) and from Figure 3 in Liu and
Zhang (2002). For example, the “triangular” negative spot F6 in the MDI
magnetogram at 11:12 UT in Figure 4.2 is the same spot F6 in the SMFT
magnetogram at 08:43:19 UT shown in Figure 4.3.

Figure 4.3: The HXR source positions in the beginning of the first HXR
spike S1 (yellow contours) and near its end (blue contours).

The underlying magnetic field in Figure 4.3 is the SMFT vector mag-
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netogram at 08:43:19 UT on July 14, taken from Figire 8d in Liu and
Zhang (2001). The contour levels of the line-of-sight field are 160, 424, 677
and 1071 G. White contours represent positive polarity and black represent
negative. The bars are transverse components with their length propor-
tional to intensity. P1 and P2 are the most important positive sunspots.

To overlay the HXT data on the SMFT magnetogram we have used the
pointing information for the same satellite and the same instrument, HXT.
This procedure gave us the relative position of the HXR images taken in
the same energy band during the different HXR spikes: S2 and S1, that
is with a small difference in time. Since we already have the coalignment
of the HXT data during the spike S2 at 10:27 UT and the magnetogram
shown in Figure 4.2, we simply find the HXR source positions during the
spike S1 at 10:19 - 10:24 UT according to Masuda et al. (2001) on the
SMFT magnetogram.

The two overlays in Figure 4.3 are the HXT H-band images during the
first HXR spike S1 in its rising and decay phases. The contour levels are
70.7, 50.0, 35.4, 25.0, 17.7, 12.5 and 8.8 % of the peak intensity for each
of two images. The first one, shown by yellow contours, is reconstructed in
the beginning of the spike S1 at 10:19:37 - 10:20:27 UT. The second, shown
by blue contours, is synthesized just after a peak (at about 10:22 UT) of
the spike, at 10:22:17 - 10:22:45 UT. In this way, Figure 4.3 allows us to
study the evolution of the HXR sources during the first spike.

4.1.3 Questions of interpretaion

Several comments should be made here. First, as mentioned before, the
two-ribbon structure is really well seen during the first spike. Two ribbons
are most clearly observed in the rising phase and the decay phase of S1.
Moreover the bright compact kernels in HXR are observed along the ribbons
separated by the simplified magnetic neutral line SNL which is almost ex-
actly aligned in the E-W direction in Figures 4.3 and 4.1. The appearance
of the HXR kernels is not a surprisingly unexpectable result. The chro-
mospheric Hα-ribbons typically demonstrate several bright patches, called
kernels. However the intensity dynamical range of the Yohkoh HXT was
not high enough to observe the HXR ribbons in many flares as a typical
phenomenon.

Second, if the whole structure, the HXR ribbons and kernels together
with the ridge of the huge arcade as it seen in Figures 2 and 5 in Masuda et
al. (2001), is illuminated by fast electrons, then they seem to be accelerated
(or, at least, trapped) in a large-scale system of magnetic loops. If we
accept the standard two-dimensional MHD model of the two-ribbon flares,
which was well known as successful in interpretation of the Yohkoh SXT
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observations (Forbes and Acton, 1996; Tsuneta, 1996; Tsuneta et al., 1997),
then this result seems to be consistent with the hypothesis of a large-scale
reconnection process in the corona, involved in the flare energy release.
Moreover, because of a large scale and large energetics of the system of
interacting magnetic fluxes, the reconnected parts of magnetic fluxes should
be also large. This is clear even if we do not know the exact links of the
magnetic field lines before and after reconnection. Therefore the problem of
identification and measurement of the reconnected fluxes becomes essential
(Fletcher and Hudson, 2001).

Third, the brightest HXR kernels do not coincide with the regions of
highest line-of-sight field strength, with umbrae of sunspots. The question
where the HXR kernels appear and disappear requires a special investi-
gation. Since the HXR kernels are produced as a result of direct bom-
bardment by powerful beams of fast electrons, nonthermal and presumably
quasi-thermal, we expect the fast hydrodynamic and radiative response of
the transition zone and chromosphere to an impulsive heating by these
electrons and secondary XUV emission as discussed in Chapter 2 in So-
mov (1992).

4.1.4 Motion of the HXR kernels

To see the strongest sources of HXR during the first spike S1, we show
in Figure 4.4 only the contours with levels 70.7, 50.0, 35.4 and 25.0 % of
the peak intensity. For this reason, the lower HXR background disappears.
However, two HXR ribbons are still well distinguished as two chains of the
HXR kernels on either side of the SNL. We shall consider the apparent
displacements of the brightest sources.

The most intense kernel K2 in the southern ribbon reappears to the
east. However this displacement is much slower in comparison with that of
the brightest kernel K1 in the northern ribbon. The displacement of the
kernel K1 is shown by the large green arrow. The source K1 moves to the
north, that is outward from the simplified neutral line SNL, and to a larger
extent it moves to the east, parallel to the SNL. An exact description of the
motion of the centroid of the most intensive HXR source in the northern
and southern ribbons is presented in Figure 4 in Masuda et al. (2001).
However, what is important for the following discussion is shown above in
our Figure 4.4.

We shall show that the observed displacement of the brightest HXR
kernel K1 during the first spike S1 can be related to the magnetic field
evolution before the Bastille day flare. It was reasonable to assume that
some relationships between the kernel motion and magnetic field structure
and evolution do exist (Somov et al., 1998). However it has not been known
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Figure 4.4: The position and motion of the strongest HXR sources K1 and
K2 relative to the SMFT magnetogram on 14 July.

how these relations manifest themselves in actual flares or at least in the
models which are more realistic than the ideal ‘standard model’ of the two-
ribbon flare (see discussion in Fletcher and Hudson, 2001).

4.1.5 Magnetic field evolution

The active region (AR) NOAA 9077 had one of the most complex magnetic
field structures; it was in a typical βγδ class (Liu and Zhang, 2001, 2002).
It produced nearly 130 flares, including 3 flares of the X-class, the largest
of those being the X5.7 flare on July 14. The next one in terms of X-ray
importance was the X1.9 flare on July 12. We assume that after this very
large flare the AR had a minimum of magnetic energy and that two days
were necessary for the AR to accumulate an energy sufficient for the Bastille
day flare.

The motions of the sunspots cause the footpoints of magnetic fluxes to
move and interact between themselves in the chromosphere and corona. In
the absence of reconnection this process increases the non-potential part of
the magnetic energy, the excess available for the next flare or flares. When
the original (say on July 12) magnetic configuration is deformed, magnetic
gradients and stresses (including the magnetic shear) become enhanced.
Moreover, slowly reconnecting current layers (RCL) are created at the sur-
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faces that divide different magnetic flux systems, and fast reconnection
would be able to release the free magnetic energy as a flare (Sections 3.1
and 3.3).

Liu and Zhang (2001, 2002) have described the morphology of AR 9077,
the proper motions of many spots, and the evolution of the magnetic fields.
They have found many interesting peculiarities of the sunspot motions, in-
cluding a suggested trigger of the fv2, lare etc. However we shall restrict
ourselve to large scales related to the HXR structure of the Bastille day
flare. Let us compare two magnetograms from a time sequence of magne-
tograms presented in Figure 8 in Liu and Zhang (2001). We overlay the
magnetogram on July 12 in the top panel in our Figure 4.4 on the magne-
togram on July 14 in the bottom panel in the same Figure. We see that
the largest positive spot P1 rapidly moves southwest as shown by the large
red arrow. Other big umbrae seem more stable or, at least, do not move so
quickly as P1. This is well seen from comparison with the displacement of
the second positive spot P2 shown by the small red arrow.

Detail descriptions of the proper motions with precise measurements
and results are given by Liu and Zhang (2001, 2002). For example, a small
part P5 (shown in our Figure 4.4) of the umbra P1 moved away from the
east end of P1 on July 12, but P5 still followed P1 on July 13 and 14. P1
became smaller but tiny satellite spots formed around it. Figure 5 in Liu
and Zhang (2001) shows a variety of spot proper motion velocities. The
small spots P5, A1, B2 and B3 were short-lived relative to spot P1 but all
of them moved in the same direction as one group.

So the southwest motion of the large spot P1 together with its group 1
is certainly one of the dominant motions in the AR. The other motions
and changes of the magnetic field are presented in Liu and Zhang (2001)
but they are presumably more important for the second spike S2 and many
other manifestations of the Bastille day flare. In this Chapter, we shall
discuss only the first spike S1. More exactly, we shall consider its position
and dynamics with relation to the spot P1 displacement shown above.

4.1.6 The HXR kernels and field evolution

The observed displacement of the brightest kernel K1 during the first
spike S1 (as shown by the large green arrow in Figure 4.4) is directed
nearly anti-parallel to the displacement of the strongest positive spot P1
during the two days between two largest flares. An interpretation of this
fact will be given in the next Section. First, let us consider the fact in more
detail, as shown in Figure 4.5.

As in Figure 4.4, the HXR kernel is shown with four contour levels:
70.7, 50.0, 35.4 and 25.0 % of the peak intensity. In the rising phase of
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Figure 4.5: H-band images of the brightest kernel K1 in the rise and decay
of the first HXR spike S1 overlaid on the SMFT magnetogram on July 14.

the spike, the kernel K1 appears in front of the moving spot P1, in its
vicinity but not in the umbra. The brightest part of the kernel, indicated
as the yellow ‘point’ C in the beginning of the green arrow, locates in a
region of weak line-of-sight field: between the contour of the 160 G and
the actual photospheric neutral line (the red curve PNL in Figure 4.5).
This is consistent with observations of several flares at Hα by a fast CCD
camera system installed at Big Bear Solar Observatory (BBSO). Wang
and Qiu (2002) compared the initial brightening of flare kernels at Hα-
1.3 A with photospheric magnetograms and found that initial brightenings
avoided the regions of a strong line-of-sight magnetic field. The observed Hα
flare morphology and evolution suggest that that emission near a magnetic
neutral line may come from footpoints of flare loops of small height, where
the first accelerated electrons precipitate.

Figure 4.5 also shows that, later on,

the centroid of the most intense HXR source moves ahead, mostly
anti-parallel to the spot P1 displacement arrow,

but avoids the strongest field area. In the decay phase of the spike, the cen-
troid arrives at the end of the green arrow in the vicinity of the spot P5 but
still remains outside of the line-of-sight field level 1071 G. One of the possi-
ble reasons of such behavior may be in the magnetic-mirror interpretation
(Somov and Kosugi, 1997). Further investigation is necessary to under-
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stand the actual conditions of propagation, trapping, and precipitation of
accelerated electrons from the corona into the chromosphere.

However the main problem in the flare physics still remains the primary
release of energy. This is the transformation of the excess magnetic energy
into kinetic and thermal energy of particles. Such transformation can be
done by the reconnection process which occurs at the separator (one or
several) with a longitudinal magnetic field. On the basis of the simultaneous
multiwavelength observations, we are interested to understand how such a
mechanism can work in the Bastille day flare.

4.2 Simplified topological model

4.2.1 Photospheric field model. Topological portrait

Following Section 3.2.1, we model the photospheric field by using several
magnetic “charges” qi located in a horizontal plane Q beneath the pho-
tosphere. For example, in order to study the large-scale structure and
dynamics of the 3B/X5.7 flare on 14 July 2000, we replace the five most
important regions, in which the magnetic field of a single polarity is con-
centrated in the SOHO MDI magnetogram (Figure 4.6a), by two sources
of northern polarity (n1 and n2) and three of southern polarity (s1, s2, and
s3) as shown in Figure 4.6b. One characteristic feature of the observed and
model magnetograms is the ω-shaped structure of the photospheric neutral
line NL, shown by the thick curve.

Figure 4.6b also shows contours of the vertical component Bz of the
field in the photospheric plane Ph, z = 0, calculated in the potential field
approximation. Bz = 0 at the calculated neutral line NL. The magnetic
charges are located in the source plane Q at z = −0.1.

Figure 4.7 represents the same magnetic charges in the source plane Q
and the structure of the magnetic field in this plane. The arrows show the
directions of the magnetic-field vectors in Q. The points X1, X2, X3, and
X4 are the zero-field points (or neutral points), where B = 0. They are
important topological features of the field. The magnetic-field separatrix
lines (separatrices), shown by solid curves, pass through these points and
the magnetic charges. Thus the separatices separate the magnetic fluxes
connecting different magnetic charges. At the same time, they are the bases
of the separatric surfaces in the half-space above the plane Q. Therefore
Figure 4.7 contains all the information about the topology of the large-scale
field of the active region. So we refer to this figure as the topological portrait
of the active region.
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Figure 4.6: (a) The SOHO MDI magnetogram of the active region
NOAA 9077 on July 14, 2000. The most important large-scale sources
of the photospheric magnetic field are indicated as n1, n2, s1, s2, and s3.
NL is the photospheric neutral line. (b) The model magnetogram of the
same active region.

4.2.2 Coronal field model. Separators

Figure 4.8 demonstrates the three-dimentional structure of magnetic field
above the plane of topological portrait. The field lines are shown at different
separatrix surfaces that have the forms of “domes” of various size, with their
basis being located on separatrix lines in the plane Q.

The separatrix surfaces intersect along the field lines connecting the
neutral points. Each of these critical lines belongs simultaneously to four
magnetic fluxes with different connectivity; thus it is called separator . Dur-
ing the flare, there is a redistribution of magnetic fluxes - magnetic recon-
nection at the separators. For example, one of the separators connects the
points X1 and X2 (see Figure 4.9). Here, at the separator (X1X2), re-
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Figure 4.7: Topological portrait of the active region NOAA 9077 on July 14,
2000. The magnetic field directions are shown in the source plane Q at the
height z = −0.1 beneath the photospheric plane Ph. The solid curves with
arrows are the separatrices that separate the magnetic fluxes connecting
different magnetic sources.

connection occurs during the first stage S1 in the impulsive phase of the
Bastille-day flare.

4.2.3 Chromospheric ribbons and kernels

Reconnection at the separators transforms the accumulated magnetic en-
ergy of coronal currents into the thermal and kinetic energy of plasma and
accelerated particles. Propagating along the field lines and reaching the
chromosphere, these energy fluxes give rise to a complex hydrodynamic
and radiative response (see vol. 1, Section 8.3.2). Secondary processes in
the chromospheric plasma result in the basic flare behavior observed in the
optical, UV, EUV, soft and hard X-rays.

Following Gorbachev and Somov (1990), let us assume that the most
powerful release of energy and particle acceleration take place near the
tops of the two separators. We calculate the magnetic-field lines passing
through such sources of energy until their intersection with the photospheric
plane Ph. These field lines form narrow flare ribbons in the chromosphere.

It is natural that different parts of the complex active region NOAA 9077
were important during different stages of the large Bastille-day flare in
progress. In fact, the two pairs of field sources (n1, n2) and (s1, s2) played
the main role during the first stage S1 of the impulsive phase of the flare
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Figure 4.8: The magnetic-field lines forming the separatrix surfaces that
are the domes bounding the magnetic fluxes of different pairs of sources.

as illustrated by Figure 4.9, while the large-scale structure of the flare
during the second stage S2 was mainly determined by the pairs (n1, n2)
and (s2, s3). In other words, the region of the most powerful release of
energy and acceleration of electrons was initially located in the western
part of the active region without any influence of the spot s3, then moves
to the eastern part, closer to s3. This is clearly visible in the hard and
soft X-ray Yohkoh images and the TRACE EUV images (Aschwanden and
Alexander, 2001; Fletcher and Hudson, 2001; Masuda et al., 2001).

X1

X2

X3

s3

s1

Figure 4.9: The magnetic-field lines in the vicinity of the separator (the
solid dark curve) connecting the neutral points X1 and X2.

We assume that, during the second stage S2, the spot s1 has not its
primary influence anymore. Instead, the sources (n1, n2) and (s2, s3) are
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efficiently involved in the flare in a way similar to that one shown in Fig-
ure 4.9. Figure 4.10a, presents similar calculations for chromospheric rib-
bons during the stages S1 and S2. The calculated ribbons are shown by
the dashed curves. The ribbon between sources s1 and s2 corresponds to
the first stage, and the ribbon between sources s2 and s3 to the second.
However two calculated ribbons are located between the field sources n1
and n2. The lower ribbon corresponds to the stage S1, and the upper one
to the second stage.
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Figure 4.10: (a) Calculated chromospheric ribbons are shown by the dashed
curves. (b) TRACE image of the Balstille-day flare at 171 A.

Figure 4.10b presents a TRACE image of the flare at 171 Å obtained
during the second stage S2. The eastern part (the left site of the image)
of the flare is somewhat brighter that the western part. A chromospheric
ribbon is clearly visible between the field sources s2 and s3. Bright kernels
at the ends of the ribbon are also visible. The observed ribbons are arc-
shaped and are in a reasonable agreement with the locations and shapes of
the calculated ribbons. However the calculated ribbons are not reproducing
some portions of the observed ribbons. This is especially clear when we
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consider the calculated ribbons in the northern polarity. Two small parallel
ribbons between the sources n1 and n2 are given by the model while the
TRACE observations show one very elongated ribbon.

This discrepancy presumably has the following origins. First, in order
to illustrate the effect of a primary energy source at a separator, we have
taken a small circle encompassing the separator near its top in a plane
perpendicular to the separator. Such a simplistic approach seems to be
good for relatively simple active regions with one dominating separator
(see Section 3.2.2), which is not the case of the active region NOAA 9077.
It is no easy task to investigate how the rate of magnetic reconnection
(and the related dissipation rate) is distributed along the separators in the
active region with a complex topology. Second, the topological model based
on the potential field approximation completely neglects the nonpotential
components of magnetic field in the active region. This approximation is
not justified in places where strong electric cirrents flow (see Section 5.1).
And finally, we use only five charges while the observed photospheric field
is much more complex.

In principle, one could try to achieve a better agreement between the
observed chromospheric ribbons and the calculated ones, for example, by
introducing an additional magnetic charge n3 in the most eastern part of the
active region (see the spot p3 in Figures 1, 3 and 7 in Liu and Zhang, 2001).
This would allow to reproduce the eastern wing of the northern chromo-
spheric ribbon between sources n2 and n3. One could add more charges qi or
replace them with more precise distributions of the magnetic-field sources,
thereby increasing the number of separators. However, in this way, the
model becomes too complicated.

Moreover there is another principal restriction. The real magnetic field
and real velocity field in the photosphere always contain at least two compo-
nents: regular, large-scale and chaotic, small-scale. The topological model
should take into account only the first component, with the aim of de-
scribing the global reconnection mechanism behind a large flare. The small
number of the charges in the model under consideration, five, allows us to
reproduce only the most important large-scale features of the SOHO MDI
magnetogram and keeps the model being simple and clear.

Using the nonpotential, for example, force-free methods to extrapolate
the surface field would also be likely to improve the agreement between the
topological model and the observations. The most logical next approxima-
tion would be to take into account the current layers along the separators.
The magnetic field containing the current layer is in force-free equilibrium.
An expression can be found for the net current induced in the layer in
response to displacement of the photospheric sources (Longcope and Cow-
ley, 1996; Longcope, 1996).
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4.2.4 Reconnected magnetic flux. Electric field

As we made it above, the topology of the active region was defined by
partitioning of the observed photospheric field into a set of discrete sources
and determining which pairs were interlinked by coronal field lines. The
level of topological activity then can be quantified through the transfer of
magnetic flux between domains of differing field line connectivity.

The magnetic fields in the active region NOAA 9077 were observed dur-
ing several days before and after the Bastille-day flare (Liu and Zhang, 2001;
Zhang, 2002). There were many flares in this active region over this period.
The largest one (X5.7) was on July 14 and the next largest in the magnitude
(X1.9) was on July 12. It was suggested by Somov et al. (2002a) that the
magnetic energy of the active region reached its minimum after this flare
and that the energy necessary for the Bastille-day flare was accumulated
over the following two days (July 12-14).

We have made the model of the photospheric and coronal magnetic
fields in the active region NOAA 9077 on July 12 just in the same way
as presented above for July 14. It appears that the topological portrait
of the active region and the structure of its coronal field did not change
significantly during two days. For example, in the western part of the
active region on July 12, there was also the separator (X1X2) connecting
in the corona the neutral points X1 and X2 in the plane Q of five magnetic
sources. We have calculated the magnetic flux beneath this separator and
above the source plane Q, Ψ12 on July 12 and Ψ14 on July 14. The difference
of these fluxes is δΨ = Ψ14 − Ψ12 ∼ 6 × 1021 Mx.

What is the physical meaning of δΨ? – If there were a vacuum without
plasma above the plane Q, then the flux δΨ would reconnect at the separa-
tor (X1X2) over the two day evolution of the photospheric field sources, and
the magnetic field would remain potential without any excess of magnetic
energy. In the low-resistivity plasma, changes in the photospheric sources
induce an electric current at the separator in the corona. This current in
the coronal plasma forms a current layer which will prevent the reconnec-
tion of the flux δΨ. Thus, the energy will be accumulated in the magnetic
field of the current layer.

There are several important questions related to this scenario.
First, why reconnection cannot destroy the current layer during the

long pre-flare state? In principle, the current layer in this state can suffer
many instabilities: thermal instability due to the radiative energy losses,
resistive overheating instability caused by the temperature dependence of
plasma conductivity, two-stream instabilities of various types, tearing in-
stability, structural instability etc. Fortunately, many of these instabilities
can be well stabilized or have a high threshold in many cases of interest.
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For example, the tearing instability is an integral part of magnetic recon-
nection. The theory of resistive MHD instabilities developed for the case of
the neutral current layers predicts very low threshold (Furth et al., 1963).
However laboratory and numerical experiments, as well as some astrophys-
ical observations, show that the reconnecting current layers can be stable
for a long time because the tearing mode is suppressed by a small transver-
sal magnetic field, i.e., by a small component of magnetic field which is
perpendicular to the current layer (see Section 11.4).

The second question is why reconnection is sufficiently slow to permit
the current layer build-up during the slow evolution before flaring and fast
enough during the flare? In the pre-flare state, the current layer with the
classical Coulomb conductivity has very low resistance R0. For this reason,
the characteristic time of the energy accumulation process at the separator
in the corona, τa = L/R0 (with the self-inductance L which is proportional
to the separator length ls), can be long enough (say 3 × 104 s) in order to
accumulate the sufficiently large energy for a large flare (see discussion in
Section 3.3.3).

It is assumed that, as a result of one of the instabilities mentioned above,
the magnetic energy related to the current layer is rapidly released and a
flare starts. It is clear that, in order to release the accumulated energy in
a time τf ∼ 102 − 103 s, the total resistance of the current layer must be
increased by 2 or 3 orders of magnitude. Such an effect can be well the
result of the appearance of plasma turbulence or local current disruptions
that have large enough resistance, electric double layers.

Note that the highly-concentrated currents are necessary to generate
plasma turbulence or double layers. This fact justifies the pre-flare storage
of magnetic energy in current layers rather than distributed currents in the
full volume. The smoothly-distributed currents can be easily generated in a
plasma of low resistivity but they dissipate too slowly. On the contrary, the
current density inside the pre-flare current layers usually grows with time
and reaches one or another limit. For example, wave exitation begins and
wave-particle interaction becomes efficient to produce high resistance, or
the collisionless dynamic dissipation allows the fast process of collisionless
reconnection (Section 6.3.1).

The energy released during the first stage S1 of the Bastille-day flare
was estimated to be εf ∼ (1− 3)× 1031 erg (e.g., Aschwanden and Alexan-
der, 2001). If this energy was accumulated as the magnetic energy of
the current layer at the separator, then it corresponds to the total cur-
rent Jf ∼ (1 − 2) × 1011 Ampere along the separator in the corona (Somov
et al., 2002a). This value does not contradict to the high level of non-
potentiality of the active region NOAA 9077, which was estimated from
measurements of the three components of the photospheric magnetic field
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(see Figure 5 in Deng et al., 2001). More exactly, the estimated total verti-
cal current in the photosphere, Jz ∼ (1 − 2) × 1013 Ampere, is significantly
larger than the coronal current Jf at the separator. Note, however, that
the nonpotential components of the field in this active region are presum-
ably (see Section 5.1) related to the following currents: (a) the pre-flare
slowly-reconnecting current layers which are highly-concentrated currents
flowing along the separators, (b) the smoothly distributed currents which
are responsible for magnetic tension generated by the photospheric shear
flows, (c) the concentrated currents at the separatrices, also generated by
the shear flows.

Anyway, the flare energy εf is much smaller than the energy of potential
field, which we calculated by using the topological model: εar ∼ (3 − 6) ×
1033 erg on July 12 and εar ∼ (1−2)×1034 erg on July 14. We see that the
potential field really dominates the global energetics of the active region
and, therefore, determines the large-scale structure of its magnetic field.
However, in smaller scales, especially in the vicinity of the main neutral
line of the photospheric magnetic field, the energy of nonpotential field has
to be taken into account in modeling of the Bastille-day flare (Deng et
al., 2001; Tian et al., 2002; Zhang, 2002). A two-step reconnection scenario
for the flare energy process was suggested by Wang and Shi (1993). The
first step takes place in the photosphere and manifests as flux cancellation
observed in the photospheric magnetograms. The second-step reconnection
is explosive in nature and directly responsible for the coronal energy release
in flares.

The most rapid reconnection of the flux δΨ in the corona occurs during
the impulsive phase of the Bastille-day flare. Taking the duration of the
first impulsive stage of electron acceleration (during the burst S1 of the
hard X-rays with energies exceeding 33 keV) to be δt ∼ 3 min (Masuda et
al. 2001), we estimate the electric field

E = −1
c

∂A
∂t

. (4.1)

Here A is the vector potential, i.e. B = curlA, c is the speed of light. The
magnetic flux Ψ is written as a function of A as follows:

Ψ =
∮
L

A d l , (4.2)

where L is the closed contour: the separator plus the line connecting its feet,
the neutral points in the source plane Q. First, we have calculated directly
the magnetic flux beneath the separator and above the plane Q, Ψ12 on July
12 and Ψ14 on July 14. We just integrated the flux of magnetic field across
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a surface bounded by the contour L. Second, in order to be sure in the
final results, we also made numerical integration over a “separator loop” as
defined by Longcope (1996): (a) from one neutral point along the separator
above the plane Q and parallel to the magnetic field B at the separator to
another neutral point and then (b) back from the second neutral point to
the first one along the separator below the plane Q and anti-parallel to the
magnetic field B. In this way, we have found the magnetic fluxes on July
12 and 14, and we have estimated the value of electric field E ∼ 30 V/cm.
This value does not contradict to the electric-field estimates obtained for
impulsive flares using the theory of reconnecting SHTCL (Chapter 6.3).

The reconnected magnetic flux can be also estimated in another way.
Since the energy fluxes from the separator reconnection region result in
the formation of chromospheric ribbons, these ribbons correspond to newly
reconnected field lines. In a two-dimensional MHD model for a two-ribbon
flare with a vertical current layer (the standard model, see Forbes and Ac-
ton, 1996), the ascending region of reconnection gives rise to chromosphertic
ribbons moving in opposite directions from the photospheric neutral lines.
In general, a ribbon’s motion with respect to the photospheric neutral line
can be used to estimate the reconnected magnetic flux.

In the Bastille-day flare, Fletcher & Hudson (2001) analyzed the mo-
tions of the northern and southern EUV ribbons observed by TRACE at
the maximum of the HXR burst S2. They estimated the value of the
reconnected flux as the total magnetic flux traversed by the ribbons in
the north and the south in the eastern part of the active region. Dur-
ing the time interval from 10:26:15 UT to 10:28:58 UT, which is a part
of the stage S2, δΨ ≈ −(14.5 ± 0.5) × 1020 Mx for the southern ribbon
and δΨ ≈ (8.6 ± 1.4) × 1020 Mx for the northern ribbon with the inclu-
sion of the mixed-polarity fields to the north from the photospheric neutral
line. It is not clear whether the ribbons are actually passing through this
region or just suddenly form. Anyway, the magnetic flux reconnected dur-
ing the stage S2 and estimated by Fletcher & Hudson at the level of the
photosphere is of the same order of magnitude as the magnetic flux which
we have found for the stage S1 and which is the flux reconnected at the
separator (X1X2) in the corona.

4.2.5 Discussion of topological model

The use of the topological model requires that the relevant magnetic po-
larities are well taken into account. So, at least, they should be spatially
well resolved. It is also obvious that the topological model can be relevant
for large flares, since it neglects fine temporal behavior and small-scale pro-
cesses. The model is relatively simple if it concentrates on general evolution
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of the global structure of large flares. The topological model for large-scale
magnetic fields remains simple and clear for such a complex active region as
the NOAA 9077 (the βγδ configuration, according to Liu and Zhang, 2001),
which gave rise to the Bastille-day flare. At the same time, the topological
model explains the main features of this well-studied flare.

First, the simplified topological model approximately predicts the loca-
tion of the flare energy source in the corona and, with a reasonable accuracy,
reproduces the locations and shapes of chromospheric ribbons and bright
kernels on the ribbons. More accurate models should be constructed, with
account of nonpotential components of magnetic field in the active region,
in order to reach a better agreement between the model and observations.

Second, the topological model explains the observed large-scale dynam-
ics of the Bastille-day flare as the result of fast reconnection in the re-
connecting current layers at separators. It allows us to estimate roughly
the reconnection rate and the strength of the large-scale electric fields that
presumably accelerate charged particles along the separators. All these
effects can be carefully investigated in many flares by using the Ramaty
High Energy Solar Spectroscopic Imager (RHESSI) high-resolution HXR
and gamma- imaging data (Krucker et al., 2003; Lin et al., 2003).

In order to interpret the temporal and spectral evolution and spatial
distribution of HXRs in flares, a two-step acceleration was proposed by So-
mov and Kosugi (1997) with the second-step acceleration via the collapsing
magnetic-field lines. The Yohkoh HXT observations of the Bastille-day
flare (Masuda et al., 2001) clearly show that, with increasing energy, the
HXR emitting region gradually changes from a large diffuse source, which
is located presumably above the ridge of soft X-ray arcade, to a two-ribbon
structure at the loop footpoints. This result suggests that electrons are
in fact accelerated in the large system of the coronal loops, not merely in
a particular one. This seems to be consistent with the RHESSI observa-
tions of large coronal HXR sources; see, for example, the X4.8 flare of 2002
July 23 (see Figure 2 in Lin et al., 2003).

Efficient trapping and continuous acceleration also produce the large
flux and time lags of microwaves that are likely emitted by electrons with
higher energies, several hundred keV (Kosugi et al., 1988). Somov et al.
(2005c) believe that the lose-cone instabilities (Benz, 2002) of trapped
mildly-relativistic electrons in the system of many collapsing field lines
(each line with its proper time-dependent lose cone) can provide exitation
of radio-waves with a very wide continuum spectrum as observed.

Qiu et al. (2004) presented a comprehensive study of the X5.6 flare on
2001 April 6. Evolution of HXRs and microwaves during the gradual phase
in this flare exhibits a separation motion between two footpoints, which
reflects the progressive reconnection. The gradual HXRs have a harder
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and hardening spectrum compared with the impulsive component. The
gradual component is also a microwave-rich event lagging the HXRs by
tens of seconds. The authors propose that the collapsing-trap effect is a
viable mechanism that continuously accelerates electrons in a low-density
trap before they precipitate into the footpoints (see Section 7.3).



Chapter 5

Electric Currents Related
to Reconnection

The topological model of a flare, with a reasonable accuracy, predicts
the location of a flare energy source in the corona. In order to clarify
an origin of this energy, we have to consider the non-potential part
of magnetic field in an active region. In this Chapter, we discuss the
main electric currents related to magnetic reconnection in a large solar
flare. More specificaly, we continue a study of the Bastille day 2000
flare which topological model was considered in a previous Chapter

5.1 Magnetic reconnection in the corona

5.1.1 Plane reconnection model as a starting point

The two-dimensional (2D) reconnection models for solar flares, including
the standard model, are definitely an over-simplification that cannot explain
all features of actual flares. However they have to be considered to find a
missing element of the flare modeling and to demonstrate how this element
should be introduced into the flare interpretation. Moreover some features
and predictions of the 2D models still have to be studied and clarified.

5.1.1 (a) Pre-flare evolution and energy accumulation

As in Section 3.4.2, we shall consider a three-component reconnection in
two dimensions, at first. With this simplification, which will be discussed
in Section 5.2.3, the separator is a straight line X in the corona as shown

99



100 Chapter 5. Electric Currents

in Figure 5.1a by dashed vectors X above the photospheric plane Ph. In
the case of the Bastille day 2000 flare, this configuration of magnetic field
corresponds to a central part of the two-dimensional cartoon picture with
two magnetic dipoles (Wang et al., 2005).

To clarify notation, we start here from the classical example of ‘recon-
nection in the plane’, in the plane (x, z). A 2D model means, as usual, that
all the unknown functions do not depend of the coordinate y. In addition
we assume here that there is no the magnetic field component By which is
perpendicular to the plane (x, z).

In this case illustrated by Figure 5.1a, the straight line NL is the neu-
tral line in the photospheric plane (x, y). Above this plane, six magnetic
surfaces are shown to discuss the reconnection model. In the scheme, that
is usual and sufficient to describe the plane reconnection (e.g., Figure 3.1),
we do not introduce the magnetic surfaces because we simply consider
reconnection of magnetic field lines just in one plane, the reconnection
plane (x, z), that is y = 0. And we ‘remember’ that, in all other planes
with y �= 0 , we have the same process. This is not necessarily true in
general and never true in reality, in three-dimensional configurations of the
magnetic fields in solar active regions.

So it is instructive to introduce the magnetic surfaces even in the sim-
plest situation considered here. The magnetic surface 1 in Figure 5.1a
consists of the field lines which are similar to the line f1 starting at the
point a with coordinates x = xa, y = 0, z = 0. The surface 2 consists of
the field lines similar to f2. For the sake of simplicity, we consider here
a symmetrical case with the symmetry plane x = 0 for the magnetic sur-
faces. Hence the field lines f ′

1 , f ′
2 etc have the vertical component Bz of

the opposite sign with respect to the similar field lines on the opposite side
of NL. Morover we have put By = 0 to see the ordinary 2D magnetic field
configuration in the simplest approach to the reconnection problem.

Among the magnetic surfaces shown in Figure, two are topologically
important: separatrices S1 and S2 cross at the separator straight line X
which is parallel to NL. The separator separates the interacting magnetic
fluxes by the separatrices. In addition, it is across the separator that the
interacting fluxes are redistributed (more exactly, reconnected) so that the
magnetic field would tend to keep a minimum energy, to remain potential,
if there were no plasma.

Let Figure 5.1a describe an ‘initial state’ of the magnetic configuration
in evolution. Starting from this state, let us introduce the converging flow
of the photospheric footpoints (for example, two magnetic dipoles join as
proposed by Wang et al., 2005). This converging flow is illustrated by Fig-
ure 5.1b by the displacement vector δx related to the photospheric velocity
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Figure 5.1: (a) An initial state of magnetic field. The separatrices S1 and
S2 cross at the separator X. (b) The converging flows in the photosphere
induce a reconnecting current layer (RCL) in the corona.
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component v⊥
δx = v⊥ × τ , (5.1)

where τ is the duration of a pre-reconnection stage in the active region
evolution. Some part of the magnetic fluxes, δA, would reconnect across
the separator X. Here A is the y-component of the vector potential A
defined by relation B = curlA.

In a plasma of low resistivity, like coronal plasma, the separator plays
the same role as the hyperbolic neutral line (Section 3.2.1). The slowly-
reconnecting current layer (see RCL in Figure 5.1b) is developing and grow-
ing (we may call this process a ‘pile-up regime’) to hinder the redistribution
of interacting magnetic fluxes. This results in an excess energy being stored
in the form of magnetic energy of a RCL. If J is the total electric current
in the RCL, b is the half-width of the current layer, then the surplus energy
above that of a potential magnetic field, having the same sources in the
photosphere (see Section 3.3), is equal to

Ef =
1

2c2 × LJ2 . (5.2)

Here
L ≈ 2l ln

2l

b
(5.3)

is the self-inductance of the RCL, l being its length along the separator.
In the case of the Bastille day 2000 flare, the length of the SXR arcade

was ∼120 000 km. So l ∼ 1010 cm. With a typical RCL width b ∼ 109 cm
(see Section 7.1), we have ln (2l/b) ≈ 3 and

Ef ≈ 3
c2 × l J2 ∼ J2

3 × 1010 (5.4)

or
Ef ∼ 3 × 108 J(Ampere) 2, erg . (5.5)

Hence the total current J ∼ 3×1011 −1012 Ampere is necessary for a large
flare, like the Bastille day flare, to release the energy

Ef ∼ 3 × 1031 − 3 × 1032 erg .

These estimates do not contradict to the estimates of the electric cur-
rent based on measurements of the magnetic field components in the pho-
tosphere in the active region NOAA 9077 (Deng et al., 2001; Zhang, 2002).
More exactly, a level of magnetic non-potentiality in AR NOAA 9077
seemed to be even higher before 14 July than that after the Bastille day
flare and that predicted by formula (5.5). This presumably means that
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some part of free energy is accumulated in surplus to the magnetic energy
of the current layer, as an additional energy related to the photospheric
shear and photospheric reconnection (Sections 5.2 and 5.3).

On the other hand, during the Bastille day flare, the total integrated
thermal energy was <∼ 3×1031 erg (Aschwanden and Alexander, 2001) which
is smaller than the total energy of the flare predicted by formula (5.5). This
means that significant part of the flare energy goes to the kinetic energy
of the fast plasma motions (i.e. CME) and accelerated particles (Share et
al., 2001).

5.1.1 (b) Flare energy release

What could be expected as a result of fast reconnection in the RCL dur-
ing a flare? – Figure 5.2 illustrates such expectations. Being in a high-
temperature turbulent-current state (Section 6.3) the rapidly-reconnecting
current layer provides the powerful fluxes of the flare energy along the
reconnected field lines. These fluxes, when they arrive in the upper chro-
mosphere, create very impulsive heating of the chromospheric plasma to
high temperatures. Fast electrons (accelerated and super-hot) lose their
energy by Coulomb collisions with the thermal electrons of the chromo-
spheric plasma. This creates a quick hydrodynamic and radiative response
of the chromosphere (see vol. 1, Section 8.3.2) observed in SXR, EUV, and
optical emission. Inelastic collisions of the fast electrons with thermal pro-
tons and other ions generate the HXR bremsstrahlung radiation. For this
reason, the footpoints of the reconnected field lines also become bright in
HXR.

We adopt the hypothesis that the EUV and HXR flare ribbons observed
by TRACE and Yohkoh in the Bastille day flare map out the chromospheric
footpoints of magnetic field lines newly linked by reconnection in the corona
(Fletcher and Hudson, 2001; Masuda et al., 2001). So the bright kernels
in the flare ribbons allow us to find the places in the corona where the
magnetic reconnection process has the highest rate and produces the most
powerful fluxes of energy.

Since the magnetic field lines f1 and f ′
1 reconnect first, they create the

first reconnected line f1f
′
1 and the first pair of the chromospheric bright

footpoints Pa and P b related to this line as shown in Figure 5.2. In fact,
two field lines being reconnected create two other field lines of different
magnetic linkage. In Figure 5.2, there are two field lines f1f

′
1 : one goes

down, the second moves up. In order not to obscure the simplest situation,
we do not discuss in this Section the upward-moving field lines. Depending
on conditions, they have complicated structure and behaviour in the upper
corona and interplanetary space.
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Figure 5.2: Apparent motion of footpoints during the fast reconnection
process. The footpoint separation increases with time.

The field lines f2 and f ′
2 will reconnect later on, for example at the

end of the first HXR spike S1 described in Section 4.1. So they will create
a new pair of footpoints P ′

a and P ′
b in different locations. Obviously the

distance between the footpoints of the reconnected field lines will become
larger. This is the well-known prediction of the standard model of two-
ribbon flares, which is also the well-observed effect of the increasing distance
between flare ribbons (Svestka, 1976; Zirin, 1988).

Wang et al. (2005) compared two TRACE images of the active region
NOAA AR 9077 before and after the Bastille day flare on 2000 July 14.
They marked the magnetic field line connections based on the TRACE flux
loop structures. Figure 8 in Wang et al. (2005) clearly shows that, before
the flare, magnetic fields connect outward in the outer border of the active
region. After the flare, connectivity is most obvious between fields inside
the active region and close to the photospheric neutral line. Naturally,
the simple 2D model does not allow the authors to identify the two far
footpoints with where the preflare fields were connected.

From the physical point of view, the predicted and observed displace-
ment δx ′, as illustrated in Figure 5.2, represents the effect of fast relaxation
of the non-potential component of the magnetic field related to the RCL
which has been generated by the photospheric converging motion. Note
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that, in general,
δx ′ �= δx . (5.6)

In the simplest example under consideration, the reason is obvious. Let the
field lines f1 and f ′

1 coincide with the separatrices S1 and S2 of the initial
state shown in Figure 5.1a. Then δx represents a photospheric displace-
ment of the initial separatrices. For this reason, the first pair of the bright
footpoints Pa and P b shows us the real displacement of the footpoints of
the initial separatrices. This is important for interpretation of the flare
onset, the beginning of the first HXR spike S1.

On the other hand, the apparent footpoint displacement δx ′ is directed
to the new positions of the bright kernels P ′

a and P ′
b. These are related

to the footpoints of the separatrices in a final state of the magnetic field
after reconnection. And the final state, in general, does not coincide with
the initial one for many reasons. The main one is that presumably the
magnetic field changes during a flare (Anwar et al., 1993, Kosovichev and
Zharkova, 2001). It is natural to assume that

δx ′ <∼ δx (5.7)

since dissipation of the electric currents in solar flares is presumably never
complete.

Therefore the plane reconnection model with a vertical RCL, considered
here, predicts that the flare bright kernels, as they are seen in EUV, HXR
or Hα, should separate in opposite directions from the photospheric neutral
line, if the photospheric magnetic fields converge to this line before a flare.
Note that the plane-reconnection models of solar flares with a new emerging
flux and with a horizontal RCL (Syrovatskii, 1972) predict a decreasing
footpoint separation (see Section 3.4.1).

From the observational point of view, however, actual solar flares are
not so simple. Initially, on the basis of Yohkoh SXT observations, the flares
with the so-called ‘cusped arcade’ (e.g., the well-known 21 February 1992
flare) were often considered as a clear evidence in favour of the standard 2D
MHD model; see Shibata et al. (1995), Tsuneta (1996) and references there.
In a deeper examination of the SXT data, Uchida et al. (1998), Morita
et al., (2001) noted that there are some essential features inexplicable by
the standard model. Morita et al. showed that the magnetic structure
responsible for these flares, including the homologous flares, turned out to
be a structure with 3D quadruple-type magnetic fields (Section 3.2.1).

5.1.2 Three-component reconnection

In the above we neglected the component of the magnetic field parallel to
the separator in order to discuss the classical example of 2D reconnection.



106 Chapter 5. Electric Currents

However, under actual conditions in the solar atmosphere, reconnection
always occurs in the presence of a longitudinal component. Moreover the
longitudinal component of magnetic field in the vicinity of a separator has
several important physical consequences for the reconnection process in
solar flares (Section 6.2.2). Only those of them will be discussed below that
are important for understanding the apparent motions of chromospheric
ribbons and bright kernels during a large two-ribbon flare.

As in the previous example, illustrated by Figures 5.1 and 5.2, we as-
sume that all the geometrical properties of the magnetic field are uniform
in the y-direction. Now we allow the y-components of the unknown vector
functions, for example the magnetic field vector B. So the problem under
consideration still remains a two-dimensional one, at least in the initial and
pre-reconnection stages, until we shall make new assumption that some-
thing depends on the coordinate y. For example, we shall assume in the
following Sections that the conditions for field dissipation depend on y. In
this case, the problem becomes essentially three-dimensional when dissi-
pation acts quickly at a certain region determined by a given value of y.
Before we make such an assumption, the problem remains two-dimensional
because there is no need and no reason to assume that the longitudinal (par-
allel to the separator X) magnetic field component B ‖ = B y is uniform
in the plane, i.e. in variables (x, z). On the contrary, Somov et al. (1998)
assumed that each field line arrives to the separator with its own value of
B ‖. The only restriction up to now is that the component B ‖ does not
depend on y.

Near the separator X the longitudinal component B ‖ naturally dom-
inates because the orthogonal (perpendicular to the separator) field B⊥
vanishes at the separator. For this obvious reason, the field lines passing
very close to the separator become elongated in the y-direction; the separa-
tor by itself is a unique field line. This and other properties of the separator
are well known since the classical work by Gorbachev et al. (1988); they
will not be discussed here except one of them which is essential. The re-
connection process in the RCL at the separator will just conserve the flux
of the longitudinal component B‖ (Section 6.2.2).

In other words, at the separator, the orthogonal components (i.e. the
magnetic field B⊥) are reconnected. Therefore the orthogonal components
of the magnetic field actively participate in the connectivity change, but
the longitudinal one does not. Hence the longitudinal component plays a
relatively passive role in the topological aspect of the process but it influ-
ences the physical properties of the RCL, in particular the reconnection rate
(see Section 6.2.2). The only exception constitutes a neutral point of the
magnetic field, which can appear on the separator above the photospheric
plane. Gorbachev et al. (1988) showed that even very small changes in the
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configuration of the magnetic field sources can lead to a rapid migration of
such a neutral point along the separator and to a topological trigger of a
solar flare.

So, in general, a three-component reconnection, i.e. the reconnection
process inside a RCL which has three components of magnetic field, at the
separator can proceed with an increase (or decrease) of the longitudinal
component of magnetic field and, as a consequence, with an increase (or
decrease) of the length of the reconnected field lines. According to Somov
et al. (1998), in the more impulsive (MI) flares, the reconnection process
proceeds with a decrease of the longitudinal component and hence with a
decrease of the footpoint separation. The physical origin of this kind of
flare is discussed in the next Section.

5.2 Photospheric shear and coronal recon-
nection

5.2.1 Accumulation of magnetic energy

Figure 5.3 demonstrates the action of a specified photospheric velocity field
on different field lines f1, f2 etc placed at different magnetic surfaces 1, 2
etc. As in the previous Section, a converging flow is present in opposite sides
of the neutral line NL in the photosphere Ph and creates the RCL along
the separator X in the corona as shown in Figure 5.3b. In addition, now a
shear flow is superposed on the converging flow in the photosphere. So the
separatrices S1 and S2 are involved in the large-scale shear flow together
with nearby surfaces 1, 2 and 1′, 2 ′. When a field line, for example the
line f1, moves in direction to NL, it becomes longer along the NL under
action of the shear flow.

Figure 5.3b shows the field lines which were initially in the plane (x, z)
as indicated in Figure 5.3a. Under action of the shear flow, these lines
move out of the plane (x, z), except for an upper corona boundary, which
is assumed, for the sake of simplicity of illustration, to be unaffected by the
photospheric shear.

We assume again that reconnection is too slow to be important yet. We
call this stage of the magnetic field evolution the ‘pre-reconnection state’.
At this stage, coming between the initial and final one, the magnetic field
sources in the photosphere have been displaced to their final pre-flare posi-
tions, but the magnetic field lines have not started to reconnect yet because
the plasma conductivity still can be considered as infinite. Therefore the
RCL prevents the interacting fluxes from reconnection. The energy of this
interaction is just the energy of the magnetic field of the current layer, as
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Figure 5.3: (a) The initial configuration of the magnetic field is the same
as in Figure 5.1. (b) The converging photospheric flow creates the RCL
at the separator X. In addition, the shear flow with velocity v ‖ in the
photosphere makes the field lines longer, thus increasing the energy in the
magnetic field.
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in Section 1.1.4.
Photospheric shear flows add to the energy of the pre-reconnection state

an additional energy. This is the energy of magnetic tension generated by
the shear because of the ‘freezing-in’ property of the solar plasma. The
flow works on the field-plasma system, making the field lines longer. This
is always true, even if there are not a separator. In addition, if the pre-flare
magnetic-field configuration contains the separator, and

if the bases of the field separatrices are involved in the large-scale
photospheric shear flows, then the shear flows induce current lay-
ers extending along the separatrices, with the concentrated current
flowing parallel to the orthogonal field B⊥

(see Sections 14.3 and 14.4). The origin of this current lies in the disconti-
nuity of the longitudinal component B‖ on the separatrices, created by the
photospheric shear flows in the presence of the separator in the corona. Dis-
sipation of the current during a flare leads to a decrease of the discontinuity.
We call such a process the ‘shear relaxation’.

From a mathematical point of view, if the magnetic force dominates
all the others, the potential or force-free field is a solution of the MHD
equations for an ideal medium in the approximation of a strong field (see
vol. 1, Section 13.3.1). Such a field, changing in time according to the
boundary conditions in the photosphere, sets the chromospheric and coronal
plasma in motion. The field remains mainly potential but accumulates non-
potential components related to electric currents: (a) slowly-reconnecting
current layers which are highly-concentrated currents, flowing parallel to
the separator, (b) the smoothly distributed currents which are responsible
for magnetic tension generated by the photospheric shear flows, (c) the
concentrated currents at the separatrices, generated by the shear flows too.

As for the fast reconnection process which tends to release these ex-
cesses of magnetic energy during a flare, the main difference is that now a
longitudinal magnetic field is present inside and outside the RCL. Hence we
shall have a three-component reconnection as mentioned in Section 5.1.2.

5.2.2 Flare energy release and CMEs

The fast reconnection stage of a flare, that is the flare impulsive phase,
is illustrated by Figure 5.4. As in the case of plane reconnection demon-
strated by Figure 5.2, in Figure 5.4b only two pairs of the reconnected field
lines are shown. How were they selected among the continuum of the field
lines at each magnetic surface before reconnection, as they are shown in
Figure 5.4a?
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Note that Figure 5.4a differs from Figure 5.3b in one important respect.
These figures show the same magnetic surfaces but different field lines. An
additional assumption used here is that the physical conditions along the
y-direction are not uniform any longer. More exactly it is assumed that the
fastest reconnection place is located in vicinity of the point y = 0 in the
RCL at the separator. For this reason, those field lines are selected which
have the nearest distance to the RCL under condition y = 0. So just these
field lines will reconnect first and quickly.

Usually, in three-dimensional topological models, the place of fast recon-
nection is chosen at the top of the separator. This is assumed, for example,
in the model for the well-studied flare of 1980 November 5 (Sections 3.2.2
and 3.2.3). In this Section we shall not consider the upward-moving re-
connected field lines in detail. They are just indicated in Figure 5.4b by
a velocity vector U. As a consequence of the three-component reconnec-
tion at the separator, the upward-moving lines may take a twisted-flux-tube
shape, which may correspond to a central helical part of a CME (see Hirose
et al., 2001). This seems to be consistent with observations of a rapid halo-
type CME generated by the Bastille day flare (Klein et al., 2001, Manoharan
et al., 2001, Zhang et al., 2001).

In general, the upward disconnection pictured in Figure 5.4b plays a
central role in observed expansion of arcade loops into the upper corona and
interplanetary space by creating helical fields which may still be partially
connected to the Sun (Gosling et al., 1995; Crooker et al., 2002). It is
now commonly used to interpret white-light signatures of CMEs. On the
other hand, the low-lying SXR-arcade events associated with CMEs are
interpreted as the consequent brightening of the newly formed arcade (see
Figure 2 in Crooker et al., 2002). In terms of the model under consideration,
the reconnected field lines below the separator shrink to form magnetic
arcade loops. This part is discussed below.

5.2.3 Flare and HXR footpoints

The quickest release of energy at the top of the separator creates, at first,
the pair of the chromospheric bright points Pa and P b related to the first
reconnected line f1f

′
1 . Later on the field lines f2 and f ′

2 , being reconnected
at the point y = 0 in the RCL, create the field line f2f

′
2 with the pair of the

bright footpoints P ′
a and P ′

b. Figure 5.4a shows only two pairs of the field
lines that reconnect in the plane y = 0. Being reconnected, they create two
pairs of the bright footpoints shown in Figure 5.4b.

The apparent displacement of the footpoints, from Pa to P ′
a and from P b

to P ′
b, now consists of two parts: δx ′ and δy ′. The first one has the same

meaning as in the classical 2D reconnection process (Section 5.1.1). The
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Figure 5.4: (a) A pre-reconnection state of the magnetic field in an active
region with the converging and shear flows in the photosphere. The field
lines are shown which are nearest to the fastest reconnection place (y = 0)
in the RCL. (b) Rapidly decreasing footpoint separation during the ‘more
impulsive’ Sakao-type flares.
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second apparent displacement δy ′ equals a distance along the y axis between
footpoints of the reconnected field lines f1f

′
1 and f2f

′
2 . This value is related

to an increase of the length of the field lines on two different magnetic
surfaces, generated by the photospheric shear flow along these surfaces.
Therefore the displacement δy ′ during a flare (or a part of its energy release
as the first HXR spike S1 in the Bastille day flare) represents the effect of
relaxation of the non-potential component of the magnetic field related to
the photospheric shear flow.

In fact, the ‘rainbow reconnection’ model (Section 3.2.4) or the topolog-
ical model with photospheric vortex flows (Gorbachev and Somov, 1988),
which is mainly the same, predicts the existence of the converging and shear
flows in the central region under the top of the separator.
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Figure 5.5: (a) A photospheric vortex flow distorts the neutral line NL.
(b) A schematic decomposition of the velocity field v into the components
parallel and perpendicular to the neutral line.

Figure 5.5 illustrates a character of the photospheric velocity field which
deforms the neutral line NL. The vortex-type flow generates two compo-
nents of the velocity field: parallel to NL and directed to NL. The velocity
components v‖ and v⊥ are parallel and perpendicular to the photospheric
neutral line NL. The first component of the velocity field provides a shear
of magnetic field lines above the photospheric neutral line. The second one
tends to compress the photospheric plasma near the NL and in such a way
it can drive magnetic reconnection in the corona and in the photosphere
(Section 5.3).

To demonstrate the basic physics in the simplest way, we considered
only a central region C in the vicinity of the S-shaped neutral line NL
in Figure 5.3b. Here we put the y-direction along the NL; the separator
is nearly parallel to NL as was shown in Figure 5.1. In actual flares this
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‘central part’ can be long enough to be considered in this way. The Bastille-
day flare seems to be a good example of such flares because of its extremely
regular appearance as a beautifully ‘cylindrical arcade’ in EUV and SXR
(Figure 4.1), which extends more than 1010 cm.

In the region C, the converging flow generates the RCL in the corona
above the photospheric neutral line. The shear flow creates the longer
magnetic loops which must be reconnected by the RCL. Such loops, being
reconnected first, provide the bright footpoints, flare kernels, with a large
footpoint separation. Later on, the bright footpoints with shorter separa-
tion appear. In this way, the more impulsive (MI) Sakao-type flares (see
definitions and properties of two sub-classes, more impulsive (MI) and less
impulsive (LI) flares, in Section 3.4.2) with a decreasing footpoint sepa-
ration can appear in active regions. This is consistent with the model by
Somov et al. (1998).

Why does the footpoint separation increase in the LI flares? – This
may be the case when the velocity of the photospheric shear flow decreases
near NL. Hence the second field line f2 arrives to the separator with a
stronger longitudinal field than the first, i.e. B‖2 > B‖1. This can make
the reconnection process slower, because the longitudinal field makes the
solar plasma less compressible, and the flare less impulsive. However the
longitudinal field does not have an overwhelming effect on the parameters
of the current layer and the reconnection rate (Section 6.2.2). This might
be especially true if the compression of the plasma inside the current layer
is not high since its temperature is very high.

What seems to be more efficient is the following. In the LI flares, after
reconnection, the reconnected field line f2 will be longer than the line f1
as illustrated by Figure 3.13a. (It means that reconnection proceeds in
the direction of a stronger shear in the LI flares.) So the energy of a
longitudinal component of magnetic field becomes larger after reconnection
of the shear-related currents (Section 14.4). On the contrary, in the MI
flares, the reconnection process tends to decrease both excesses of energy:
(a) the magnetic energy which comes from the converging flows in the
photosphere, i.e. the magnetic energy of RCL, and (b) the energy taken
by coronal magnetic fields from the photospheric shear flows. Presumably
this circumstance makes the MI flares more impulsive.

We have proposed above that, before the large two-ribbon flares with
observed decrease of footpoint separation,

the separatrices are involved in a large-scale shear photospheric flow
in the presence of an RCL generated by a converging flow.

This seems to be consistent with conclusion by Schrijver et al. (2005)
that shear flows do not by themselves drive enhanced flaring or coronal
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nonpotentiality. These properties related to coronal free energy require
appropriately complex and dynamic flux emergence within the preceding
∼ 10 − 30 hr. The magnetic and velocity field distributions in the pho-
tosphere, more complicated than the simple shear, are necessary to create
large solar flares.

For example, Hénoux and Somov (1987) considered an active complex
with four magnetic sources of interchanging polarities in the photosphere
and vortex-type flows in the photosphere around each source. Two systems
of large-scale coronal currents are distributed inside two different magnetic
cells. These currents are interacting and reconnecting at the separator
together with reconnecting magnetic-field lines (see Section 14.2.1). Such
a process may play a significant role in the dynamics of large solar flares
because of a topological interruption of the electric currents.

Even the scenario with the converging and shear flows considered above
(Somov et al., 2002a) is still incomplete unless it does not take into account
the presence and eruption of a long twisted filament along the photospheric
neutral line before the flare (Liu and Zhang, 2001; Yan et al., 2001; Zhang et
al., 2001). Bearing this morphological fact in mind, we are going to consider
some physical processes in the close vicinity of the polarity reversal line NL
in the photosphere.

5.3 Shear flows and photospheric reconnec-
tion

Let us return to Figure 5.3 and consider only the nearest vicinity of the
photospheric neutral line NL. So, on the one hand, the separatrices are
outside of the region under consideration but, on the contrary, the effects
related directly with NL become dominant. In the case of the Bastille day
flare, the typical distance between the separatrices is ∼ 3 × 109 cm. The
width of the region which we are going to consider <∼ 3 × 108 cm.

The converging flow toward the polarity reversal line can cause the
opposite-polarity magnetic fields to collide in the photosphere and subse-
quently drive magnetic reconnection there. Converging flows in the pho-
tosphere have been reported from many observations (see Martin, 1998;
Kosovichev and Zharkova, 2001). Morover the flux cancellation - defined
by the mutual disappearance of positive magnetic flux and negative one -
has been frequently observed in association with the formation of a quiet
pre-flare filament prominence (Martin et al., 1985, Martin, 1986; Chae et
al., 2001; Zhang et al., 2001).

Figure 5.6 illustrates the possibility of a photospheric reconnection pro-
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Figure 5.6: (a) The converging and shear flows in the photosphere act
on the magnetic field lines near the neutral line NL. (b) Photospheric
reconnection and filament formation.

cess in the presence of the photospheric shear flow. We assume that the
initial magnetic field is mainly a potential one sufficiently high above the
photosphere, so that the field lines pass above the photospheric neutral
line NL more or less at right angles. However, due to a shear flow, the
footpoints on either side of the NL are displaced along it in opposite direc-
tions. This process produces a non-potential magnetic structure, shown in
Figure 5.6a, in which the projections of the field lines onto the photospheric
plane Ph are more closely aligned with the NL. A motion toward the NL
brings the footpoints closer together and further enhances the magnetic
shear. Moreover the converging flow makes the opposite-polarity magnetic
fluxes interact and subsequently drives their reconnection in the photo-
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sphere, shown in Figure 5.6b.
The reconnection changes the topology of the field lines arriving at the

neutral line NL. They become disconnected from the photospheric plane
inside the prominence body. Since the reconnection conserves the flux of the
longitudinal magnetic field generated by the shear flow, the photospheric
reconnection leads to the formation of helical field lines which are capable,
in principle, of supporting the prominence plasma (van Ballegooijen and
Martens, 1989).

Filament eruptions in active regions are sometimes an integral part of
the phenomena associated with a large two-ribbon flare. Let us assume
that, at the beginning of a flare, the prominence erupts and disrupts the
magnetic field configuration shown in Figure 5.6b. In this case, because
of fast energy transport along the field lines, the first field line f1 will be
energized first and will creates the bright footpoints Pa and P b as shown
in Figure 5.4b. More exactly, the upward-directed reconnection outflow
produces a long low loop with the footpoints Pa and P b. However the
downward-directed reconnection outflow creates a short loop (cf. Figure 1
in van Ballegooijen and Martens, 1989), which submerges, remaining under
the photospheric RCL. Next the field line f2 will become bright and will
create the bright footpoints P ′

a and P ′
b.

Hence a general tendency in the kernel behaviour should be similar
to that one as for the coronal collisenless reconnection, but such kinetic
phenomena as acceleration of charged particles, their trapping and precip-
itation are questionable because of high density and low ionization of the
photospheric plasma. An essential aspect of photospheric reconnection is
that the atoms have no trouble flowing accross the magnetic field lines, the
ions are not entirely constrained to follow the field lines as this should be
in ordinary MHD.

The remarkable thing about photospheric reconnection is predicted by
the model (Litvinenko and Somov, 1994b): reconnection effectively occurs
only near the temperature minimum. Here the resistivity is especially high,
and an RCL forms where reconnection proceeds at a rate imposed by the
horizontal converging flows of the photospheric plasma. Magnetic energy
is transformed into the thermal and kinetic energy of the resulting vertical
motions as shown in the central part of Figure 5.6b. The upward flux of
matter through the photospheric RCL into corona is capable of supplying
1017 g of cold weakly-ionized plasma in a time of 105 s. This is amply
sufficient for the formation of a huge filament prominence.

However, in the pre-flare stage, when the height h of such a filament
is presumably comparable with its width, so h <∼ 109 cm, see Figure 2 in
Liu and Zhang (2001) or Figure 1 in Zhang et al. (2001), the gravitational
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energy of the filament

Egrav = mgh <∼ 1017 g × 3 × 104 cm s−2 × 109 cm ∼ 3 × 1030 erg (5.8)

is large but still much smaller than the total energy of a large two-ribbon
flare Efl ∼ (1 − 3) × 1032 erg. Moreover this mass requires an additional
energy to accelerate it outwards, as typically observed. Therefore the flare
energy has to be accumulated in other forms to push plasma upward (see
Litvinenko and Somov, 1994a, 2001).

In the Bastille day flare, the observations of TRACE in 171 and 195 A
together with the synchronous ground-based Hβ observations at HSOS
showed that the filament rupture at some point at 09:48 UT activated
the south-west part of the active region. At 10:10 UT a surge erupted,
and a two-ribbon flare started to develop rapidly along the photospheric
neutral line (Liu and Zhang, 2001). For this reason, we believe that the
photospheric reconnection and filament eruption played a triggering role in
this flare.

5.4 Motions of the HXR footpoints in flares

5.4.1 The footpoint motions in some flares

It is well known that the standard model of a flare (see Kopp and Pneu-
man, 1976; Forbes and Acton, 1996) predicts an increasing separation mo-
tion of the footpoint (FP) sources as new field lines reconnect at higher
and higher altitudes. First results of RHESSI observations (Fletcher and
Hudson, 2002; Krucker et al., 2003) confirm regular but more complex FP
motions than the standard model predicts. Krucker et al. (2003) studied the
HXR source motions in the 2002 July 23 flare. Above 30 keV, at least three
sources were observed during the impulsive phase. One FP source moved
along the photospheric neutral line (NL) at a speed of about 50 km/s.

Asai et al. (2003) examined the fine structure inside Hα-ribbons during
the X2.3 flare on 2001 April 10. They identified the conjugate Hα-kernels
in both ribbons and found that the pairs of the kernels were related to
the FPs of the postflare loops seen in the TRACE 171 Å images. As
the flare progresses, the loops and pairs of Hα kernels moved from the
strongly-sheared to the less-sheared configuration. For the X5.7 two-ribbon
“Bastille-day” flare on 2000 July 14, the motions of bright HXR kernels from
strong-to-weak sheared structure were also observed in the HXR ribbons
(Masuda et al., 2001; Somov et al., 2002a). This fact is consistent with the
FP motions predicted by the Somov et al. (1998) model for the MI flares.
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Somov et al. (2002a) suggested that, during two days before the Bastille-
day flare, the bases of magnetic separatrices were slowly moved by the
large-scale photospheric flows of two types. First, the shear flows, which
are parallel to the NL, increase the length of field lines in the corona and
produce an excess of energy related to magnetic shear. Second, the converg-
ing flows, i.e. the flows directed to the NL, create preflare current layers in
the corona and provide an excess of energy as a magnetic energy of these
layers. During the flare, both excesses of energy are quickly released. Thus,
the structure of magnetic field (its topology) and its slow evolution during
the days before a flare determine the nature of the flare, more exactly the
way of magnetic energy accumulation in an active region and energy release
during the flare.

5.4.2 Statistics of the footpoint motions

From 1991 September to 2001 December, the Yohkoh Hard X-Ray Tele-
scope (HXT) observed about 2000 flares in an energy range above 30 keV.
According to the results of analysis of 28 flares, Sakao (1994) inferred that a
double source structure (Figure 3.12) is the most frequent type in an energy
range above 30 keV. Sakao et al. (1998) studied the spatial evolution of 14
flares around the peaking time of the M2-band (33–53 keV) emission. For
all the flares selected, the separation between the sources was analyzed as a
function of time. In 7 flares, the FPs moved from each other (the separation
velocity vsep > 0). The rest of the flares showed decreasing FP separation
(vsep < 0) or did not show either increasing or decreasing separation of the
FPs (vsep ∼ 0).

These two types of the FP motions were related to the two subclasses
of impulsive flares (Sakao et al., 1998). The flares with vsep > 0 are less
impulsive (LI): they have a longer duration in the impulsive phase. The
flares with a decreasing FP separation are more impulsive (MI). However
the electron acceleration proceeds with the same high efficiency in the both
subclasses of flares; that seemed to be a little bit strange.

Somov et al. (2005a) selected 72 flares according to the following criteria:
(a) the integral photon count of HXRs in the M2-band is greater than
1000 counts per subcollimator, (b) an active region is within 45 ◦ of the
center of the solar disk.

The important result is that about 80 % of the sources studied have
V > 3 σ. Here the average velocity V and the velocity dispersion σ were
determined by a linear regression for each of the 198 intense sources that
are presumably the chromospheric footpoints (FPs) of flare loops. This fact
strongly suggests that: (a) the moving sources are usually observed rather
than stationary ones, and (b) the regular motion of HXR sources during
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the impulsive phase of flares is rather a general rule than an exception.
In order to reveal the observable types of the FP motions, a significant

part of the HXT images (for 43 of 72 flares) were overlayed on the SOHO
MDI photospheric magnetograms. To relate the source motions to magnetic
fields, the fields were characterized by a photospheric neutral line (NL) or a
smoothed , simplified neutral line (SNL; Gorbachev and Somov, 1989). By
so doing, the following types of FP motions relative to the SNL can be
conditionally distinguished.

5.4.3 The FP motions orthogonal to the SNL

In the type I, the HXR sources move mainly away and nearly perpendicular
to the SNL. A fraction of such flares appears to be very small: only 2 out of
43 flares. One of them, the M7.1 flare on 1998 September 23 at 06:56 UT,
is shown in Figure 5.7.

Figure 5.7: Position and motion of the HXR sources in the flare on 1998
September 23. The field of view is 100 ′′ × 83 ′′. The beginnings of arrows
correspond to the time 06:56:09 UT, the ends are at 07:08:54 UT. The
straight semi-transparent line represents the simplified neutral line (SNL).

The maximal value of velocity in this flare, V ≈ 20 km s−1, does not
contradict to the typical velocities of the Hα-ribbon separation in solar
flares (e.g., Svestka, 1976). However, even in this flare, the question appears
how to draw a simplified NL. Presumably the flare does not represent a
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clear example of the type I flares. The second flare, the X1.0 flare on 2001
November 4 at 16:09 UT, is not free from the same question either. The
simple (arithmetical) mean value of the HXR source motion velocity equals
15 km s−1 in two flares of the type I.

In general, the direction of HXR source motions in a flare depends
mainly on the magnetic field configuration. During a flare, reconnection
provides powerful fluxes of energy along the reconnected field lines. As the
flare progresses, the FPs of newly reconnected lines move away from the NL
with a velocity which is proportional to the rate of reconnection. This is the
well-known prediction of the standard model, explaining the effect of the
increasing separation between flare ribbons. However we see that actual
flares are usually not so simple as the standard model predicts. Under
actual conditions in the solar atmosphere, reconnection always occurs in
a more complicated configuration of field: at least, in the presence of the
field component which is parallel to the SNL. As a consequence, the other
types of FP motions dominate in flares.

5.4.4 The FP motions along the SNL

In many flares, the apparent displacements of FPs are directed mainly along
the SNL. There are two types of such motions: the FP sources move in anti-
parallel directions (type II) or they move in the same direction (type III).

5.4.4 (a) The type II of FP motions

The type II motions were found in 11 out of the 43 flares. Figure 5.8
shows the M4.4 flare on 2000 October 29 at 01:46 UT as a clear example
of the type II. In this flare, the maximal value of the FP motion velocity,
V ≈ 65 km s−1, is significantly larger than that for the flare Hα ribbons.
This implies that the FPs mainly move along the ribbons, i.e. along the
SNL, similar to the 2000 July 14 flare.

Note that, in general, it may be not simple to distinguish a flare with an
increasing FP separation from a flare with a decreasing separation. Both
kinds of separations can be present in the same flare of the type II. In the
onset of a flare, the HXR sources move one to another and the distance
between them decreases. Then they pass through a ‘critical point’. At
this moment, the line connecting the sources is nearly perpendicular to the
SNL. After that moment, the sources move one from other with increasing
separation between them. All these stages are seen in Figure 5.8. Such
a motion pattern seems to be close to that one predicted by the rainbow
reconnection model (a sheared vortex flow in the photosphere) assumed by
Somov et al. (2002a) for the Bastille day flare.
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Figure 5.8: Position and motion of the HXR sources in the flare on 1998
September 23. The field of view is 100 ′′ × 83 ′′. The beginnings of arrows
correspond to the time 06:56:09 UT, the ends are at 07:08:54 UT. The
straight semi-transparent line represents the simplified neutral line (SNL).

Note also that, in some flares (e.g., the flare on 1991 November 15 at
22:37 UT), the separation between the FP sources does not increase mono-
tonically but rather shows repeated episodes of small increase and small
decrease, while the overall separation increasing. Recall that our simple
code makes such deviations smooth and provides only the average velocity,
V ≈ 58 km s−1. Thus it is not possible to give a physical classification of
flares by dividing them into two wide categories (with converging or di-
verging FP motions) without considering how these motions are orientated
relative to the SNL.

As for the physical interpretation of the type II motions, the antiparallel
motions of the HXR sources presumably represent the effect of relaxation of
the non-potential shear component of magnetic field (Somov et al., 2003b).
In contrast to the standard model, such configurations accumulate a suffi-
cient amount of energy for a large flare in the form of magnetic energy of a
sheared field.

How are such sheared 3D structures formed? – Large-scale photospheric
flows of vortex type play a leading role in this process. They deform the SNL
in such way that it acquires the shape of the letter S, as shown in Figure 5.5,
proved that such distortion of the NL leads to the separator appearance
in the corona above the NL (see Figure 3.10). Developing this idea, we
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assume that a causal connection exists between the type I and type II
flares and the S-shaped bend of the SNL. The vortex flow generates two
components of the velocity. The first one is directed to the NL and tends
to compress the photospheric plasma near the NL. In such a way, it can
drive magnetic reconnection in the corona and photosphere (Section 5.1).
The second component is parallel to the NL and provides a shear of coronal
magnetic-field lines above the photospheric NL (Section 5.2).

5.4.4 (b) The type III of FP motions

Contrary to the type II, in the type III flares, the HXR sources move along
the SNL in the same direction as shown in Figure 5.9.

Figure 5.9: The type III motions of the HXR sources in the X1.2 flare on
2000 June 7 at 15:44:06 – 15:46:46 UT. The field of view is 80 ′′ × 66 ′′.

We can see here the X1.2 flare on 2000 June 7 at 15:44 UT, in which
both FP sources move with velocity of about 60 km s−1 parallel to the SNL.
This fact suggests that an acceleration region in the corona also moves in
the same direction during the flare. In terms of the rainbow reconnection
model, it means that the fastest reconnection place located at the separator
moves along the separator. This pattern of motions was found in 13 flares.

In addition, there were 8 flares in which the motions away from the SNL
were mixed with the other type motions. For example, in the X2.0 flare
on 2001 April 12 at 10:15 UT, shown in Figure 5.10, the projections of the
motion vectors on the SNL are not small. This flare represents a super-
position of the types I and II. The maximal value of velocity is not large:
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Figure 5.10: The motions of HXR sources representing a combination of
the type I and type II in the X2.0 flare on 2001 April 12 at 10:15:34 –
10:20:19 UT. The field of view is 50 ′′ × 48 ′′.

V ≈ 21 km s−1. In the absence of information about the photospheric
magnetic field, this flare would be classified as a typical LI flare.

5.4.5 Discussion of statistical results

Following the rainbow reconnection model of a two-ribbon flare, we consider
the HXR source motions during the impulsive phase of a flare as the chro-
mospheric signature of the progressive reconnection in the corona. Since
the FPs of newly reconnected field lines move from those of previously re-
connected lines, the places of electron precipitation into the chromosphere
change their position during the flare. In order to study the relationship
between the direction of motions and the configuration of magnetic field in
an active region, we have coaligned the HXT images in 43 flares with MDI
magnetograms. In this way, we have inferred that there are three main
types of the FP motions (Somov et al., 2005a; for more detail and better
statistics see Bogachev et al., 2005).

The type I represents the motions of FP sources away from and nearly
perpendicular to the SNL, predicted by the standard model of a flare. How-
ever only less than 5 % of flares show this pattern of motions. The standard
model is a strong oversimplification that cannot explain even the main fea-
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tures of actual flares. The evolution of the HXR emitting sources is so
complex that it is hardly explained with a simplified model such as the
standard model.

In the type II flares, the HXR sources on the both sides of the SNL move
along the SNL in the opposite directions. Such motions were found in 26 %
of the flares. This type of motions indicates that the reconnected field lines
are highly sheared and the shear angle changes as the flare evolves.

We assume that, before a flare, the shear flows in the photosphere add
to the energy of the pre-flare state of an active region an additional energy.
It is the energy of magnetic tension generated by the shear because of the
freezing-in property of the solar plasma. The photospheric flows work on
the field-plasma system, making the field lines longer. This is always true,
even if there are neither a separator nor separatrices of the magnetic field
above the photosphere. In such a case, the electric currents responsible
for tension are smoothly distributed in a coronal volume above a region of
photospheric shear.

If the pre-flare configuration of magnetic field contains separatrices, then
the shear flows induce the layers of concentrated currents extending along
the separatrices. The origin of these currents lies in the discontinuity of
magnetic field on the separatrices (see Section 14.3.3). During a flare, re-
connection and dissipation of the concentrated current leads to a decrease of
the discontinuity. We call such a process the ‘shear relaxation’ (e.g., Somov
et al. 2003b). At the same time, the observed evolution from “sheared-” to
“less-sheared-” and “relaxed-” HXR pairs also demonstrates the evolution
of the flare and post-flare loops.

The simple mean value of the FP source velocity in the type II flares is
of about 35-40 km s−1 is significantly larger than the mean velocity in the
type I flares, ≈15 km s−1. Statistics is not sufficiently high to say whether
or not the HXR sources are distributed over velocities by the Gaussian law
however the maximum of distribution is well located near the mean velocity.
The difference which we have found between numbers of flares of the type I
and type II means that the highly-sheared magnetic structures are much
more favorable for flare production than simple 2D configurations without
the shear flows in the photosphere.

The type III is similar to the type II except the HXR sources move in the
same direction along the SNL. This happens in about 30 % of flares. The
parallel motions of the FPs is presumably the chromospheric signature of
a ‘horizontal’ displacement of the particle acceleration region in the corona
during a flare. The simple mean velocity is also of about 35-40 km s−1. The
Hα observations by Wang et al. (2003) indicate that an electric field in the
corona is not uniform along the RCL at the separator. The peak point of
the electric field (related to a region of the most powerful energy release
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and particle acceleration) can change its position during the flare, moving
along the separator. Corollary, all three HXR sources (the loop-top source
and two FP sources) move in the same direction along the SNL.

We have not found any flare in that both HXR sources move towards
the SNL. Thus all the other motion patterns could be described in the first
approximation as a combination of these three basic types. In fact, 19 %
of flares show the FP motions away from the SNL mixed with other two
type motions. Only about 20 % of flares seem to be more complicated
in the motion scale under consideration. This is not surprizing since we
know that large and well resolved flares involve multiple loops with complex
structure. For such flares, the loop top and associated FP sources are not
readily identified and separated.

A dominant part (≈ 80 %) of the 43 flares shows a clear or mixed pattern
of the HXR source motions, leading us to the idea that the types I to III are
really the three fundamental components of the FP motions. This seems
to be reasonable because of the following three relationships. The type I
represents the reconnection in the corona. The type II motion indicates the
shear relaxations. And the type III is presumably related with a motion of
the fastest reconnection place along the arcade, along the separator.

What are the reasons of the apparent prevalence of one or two compo-
nents over the other in different flares? We hope to find an explanation in
different topological and physical conditions, we expect that this will help
reveal the underlying physics. We have studied the relationship between
the HXR sources in a flare and the configuration of magnetic field in an
active region. However, it is clear that not only the structure of magnetic
field (more exactly, its topology) but also its slow evolution before a flare
determines the nature of the flare, at least the way of magnetic energy accu-
mulation in an active region and energy release during the flare. Therefore,
in a future research, we have to analyze not only distribution of photo-
spheric magnetic fields (in order to reconstruct topology of coronal fields)
but also their evolution during sufficiently long time before a flare.

5.5 Open issues and some conclusions

On the basis of what we saw above, we assume that the Bastille day 2000
flare energy was accumulated in the following forms.

(a) Magnetic energy of the slowly-reconnecting current layer (RCL) at
the separator in the corona. This excess energy in the amount sufficient
to produce a large two-ribbon flare, like the Bastille day flare, can be ac-
cumulated in the pre-flare active region and can be quickly transformed
into observed forms of the flare energy if the RCL becomes a super-hot
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turbulent-current layer (SHTCL, see Section 6.3).
(b) The magnetic energy of the current layers at the separatices and

the distributed currents generated in the pre-flare active region by the pho-
tospheric shear flows, seems to be sufficiently high to influence the main
reconnection process at the separator in the Bastille day flare. In general,
the energy of a large-scale (>∼ 109 cm) sheared component of magnetic field
participates in energetics of the main reconnection process in the corona
presumably with a positive (negative) contribution in more (less) impulsive
Sakao-type flares.

(c) In the vicinity of the photospheric neutral line, some part of energy
is also accumulated as the energy of the sheared magnetic field and twisted
filament. It is not clear, however, if we could consider this to be a part
of the pre-flare configuration in the force-free approximation which would
be the simplest model for a magnetic field configuration to compute and
analyze its surplus energy. But the non-magnetic forces, including the gas
pressure gradient in a high-β (high-density and high-temperature) plasma,
the inertia-type (proportional to ∂v/∂t + (v · ∇)v) term, in particular the
centrifugal force (Shibasaki, 2001), can make the non-force-free part locally
significant in the pre-flare structure of an active region. Unfortunately we
do not know the value of the related energy excess either observationally
or theoretically.

The non-force-free component participates in the flare development pro-
cess, but we do not know from observations whether it playes the primary
role in a flare triggering or it is initiated somehow by reconnection at the
separator (e.g., Uchida et al., 1998). For example, Antiochos et al. (1999),
Aulanier et al. (2000) proposed that reconnection in the corona, above a
sheared neutral line, removes a magnetic flux that tends to hold down the
sheared low-lying field and thereby allows the sheared field to erupt ex-
plosively outward. Yohkoh, SOHO and TRACE data do not seem to be
capable of providing the necessary information to make a choice between
these two possibilities. We hope this problem will be well investigated with
the coming Solar-B mission (see Section 14.6).

Reconnection at two levels (in the corona and in the photosphere) plays
different roles in solar flares. Photospheric reconnection seems to be mainly
responsible for supply of a cold dense plasma upward, into pre-flare filament
prominences. Wang and Shi (1993) suggested however that the photo-
spheric reconnection transports the magnetic energy and complexity into
the rather large-scale structure higher in the corona. According to Deng
et al. (2001), the effect of photospheric reconnection was manifested by the
change of non-potentiality at least nine hours before the Bastille day flare.
The energy was gradually input into the higher solar levels. Therefore the
slow magnetic reconnection in the photosphere, observed as magnetic flux
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cancellation, seems to play a key role in the energy build-up process.
Two level reconnection in solar flares has been modeled by Kusano (2005)

by numerical integration of the 3D dissipative MHD equations, in those the
pressure gradient force and the density variation are neglected. The simu-
lation is initiated by adding a small 3D perturbation to a quasi-static 2D
equilibrium, in which the magnetic shear is reversed near the magnetic neu-
tral line in the photosphere. This initial state is given by the solution of
the linear force-free field equation.

The simulation results indicate that magnetic reconnection driven by
the resistive tearing mode instability (see Chapter 11) growing on the mag-
netic shear inversion layer (cf. Figure 5.6) can cause the spontaneous for-
mation of sigmoidal structure. The reconnection of the tearing instability
works to eliminate the reversed-shear magnetic field in the lower corona.
Furthermore, it is also numerically demonstrated that the formation of the
sigmoids can be followed by the explosive energy liberation, if the sigmoids
contain sufficient magnetic flux.

Coronal reconnection, being slow before a flare, allows to accumulate
a sufficient amount of magnetic energy. During a flare, the fast reconnec-
tion process in the corona, converts this excess of energy into kinetic and
thermal energies of fast particles and super-hot plasma. As for the physical
mechanism of the Bastille day flare, we assume that it is the collisionless
three-component reconnection at the separator in the corona (Somov et
al., 1998, 2002a).

More specifically, we assume that before the large-scale two-ribbon flares
with an observed significant decrease of the footpoint separation, like the
Bastille day flare, two conditions are satisfied. First, the separatrices are
involved in the large-scale shear photospheric flow, which can be traced by
proper motions of main sunspots. The second condition is the presence of an
RCL generated by large-scale converging motion of the same spots. These
two conditions seem to be sufficient ones for an active region to produce a
huge two-ribbon flare similar to the Bastille day flare. Other realizations of
large solar flares are possible, of course, but this one seems to be the most
favourable situation. At least, in addition to the flare HXR ribbons and
kernels, it explains formation of the twisted filament prominences along the
photospheric neutral line before and after the Bastille day flare.



 

 

 

 

 



Chapter 6

Models of Reconnecting
Current Layers

Reconnection in cosmic plasma serves as a highly efficient engine to
convert magnetic energy into thermal and kinetic energies of plasma
flows and accelerated particles. Stationary models of the reconnection
in current layers are considered in this Chapter. Properties of a sta-
tionary current layer strongly depends on a state of plasma turbulence
inside it.

6.1 Magnetically neutral current layers

6.1.1 The simplest MHD model

Let us consider two consequent approximations used to study the reconnec-
tion process in current layers. The first of them was the neutral current layer
model (Sweet, 1969; Parker, 1979; Syrovatskii, 1981). This was initially the
simplest two-dimensional (2D) configuration of steady reconnection. Two
oppositely directed magnetic fields are pushed together into the neutral
layer as shown in Figure 6.1. The uniform field B0 immediately outside the
layer is frozen into the uniform plasma inflow with a velocity v0 perpen-
dicular to the field. The plasma flows out of the neutral layer through its
edges with a large velocity v1 perpendicular to the velocity v0.

The strength of the magnetic field, B0, on the inflow sides of the neutral
layer can be found out, for example, from the analytical solution of the
problem for the vertical current layer in the solar corona above a dipole
source of the field in the photosphere (Somov and Syrovatskii, 1972). This
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Figure 6.1: A schematic drawing of the field lines undergoing reconnection
across the neutral current layer according to Sweet-Parker model.

would be just the case of the so-called ‘standard model’ for a two-ribbon
flare (see Tsuneta, 1996, and references there). The strength of the electric
field, E0, near the current layer can be estimated for a given value of the
velocity v0 for the coronal plasma inflow into the reconnecting current layer
(RCL) and for a given value of the magnetic field B0.

By definition, there is no magnetic field inside the neutral layer; that
is why it is called a neutral or, more exactly, a magnetically neutral RCL.
This oversimpified approximation seems to be good, however, only for a
low-temperature RCL, for example, for cold dense pre-flare current layers
because heat conduction does not play any role in the energy balance for
such RCL (Section 6.1.2). Although it is a strong idealization, the approx-
imation of a neutral layer is still useful for several reasons.

First, the neutral layer approximation demonstrates the existence of
two linear scales corresponding to two different physical processes. (a) The
layer half-thickness

a ≈ νm

v0
(6.1)

is the dissipative scale responsible for the rate of reconnection; here νm =
c2 (4πσ)−1 is the magnetic diffusivity. (b) The layer width 2b is responsible
for the accumulation of magnetic energy (Syrovatskii, 1976a). The wider
the reconnecting layer, the larger is the energy accumulated in the region
of the reconnecting magnetic fluxes interaction.

Second, the neutral layer approximation indicates that very efficient
acceleration of particles can work in the RCL (Section 1.2). Let us take
as the low limits for the magnetic field B0 ≈ 50 G and for the inflow
velocity v0 ≈ 20 km s−1. These values are smaller than those estimated
from the Yokhoh SXT and HXT observations of the well studied impulsive
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flare on 1992 January 13 – the magnetic field strengh in the supposed
Petschek-type (Exercise 10.1) upstream plasma 50 G and the inflow speed
range 40-140 km s−1, respectively (Tsuneta et al., 1997). So the lower limit
for the electric field can be estimated as

E0 =
1
c

v0B0 ≈ 1 V cm−1 . (6.2)

This field is much stronger than the Dreicer’s field – the electric field
strength for which the critical runaway speed is equal to the electron ther-
mal velocity (see Appendix 3):

EDr =
4πe3

kB

(ln Λ)
n

T
≈ 10−4 V cm−1 . (6.3)

Here we have assumed that the density and temperature of the plasma
near the RCL n0 ≈ 4 × 108 cm−3 and T0 ≈ 3 × 106 K . In fact, near the
RCL in solar flares, the magnetic field B0 can be as high as 100–300 G.
So the electric field E0 can be even stronger by one order of magnitude
(Somov, 1981).

Since E0 � EDr , we neglect collisional energy losses (Dreicer, 1959,
Gurevich, 1961) as well as wave-particle interaction of fast particles (Gure-
vich and Zhivlyuk, 1966). So

the neutral layer model predicts very impulsive acceleration of
charged particles by the direct strong electric field E0.

This advantage of the RCL will be discussed in Chapter 9 with account of
the fact that real reconnecting layers are always magnetically non-neutral:
they always have an internal magnetic field. The influence of this three-
component field inside the RCL on the particle acceleration is considered
in Chapter 9. The main disadvantage of the neutral layer model is that it
does not explain the high power of the energy release in solar flares. The
reason will be explained in Section 6.2 by using a less idealized model of
the RCL.

6.1.2 The current layer by Syrovatskii

To establish relations between the parameters of a neutral layer in com-
pressible plasma let us use the equations of continuity and momentum.
Under conditions of the strong magnetic field (see vol. 1, Section 13.1.3)
these equations are rewritten as the following order-of-magnitude relations:

n0v0 b = nsv1 a , (6.4)
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B 2
0

8π
= 2nskBT, (6.5)

2nskBT =
1
2

Mnsv
2
1 . (6.6)

Here n0 and ns is plasma density outside and inside the layer, respectively.
T is temperature of the plasma inside the layer.

It follows from Equations (6.5) and (6.6) that the velocity of outflow
from the current layer

v1 = VA,S =
B0√

4πMns

.

(6.7)

Note that the value of the magnetic field is taken outside the layer, for
plasma density it is taken inside the neutral layer. So the outflow veloc-
ity (6.7) differs from the Alfvén speed outside the layer

VA,0 =
B0√

4πMn0
. (6.8)

The downstream flow velocity v1 of a compressed plasma is not
equal to the upstream Alfvén speed outside the layer VA,0 .

The inflow velocity equals the velocity of the plasma drift to the neutral
layer

v0 = Vd = c
E0

B0
. (6.9)

Hence we have to add an equation which relates the electric field E0 with
the current layer parameters. From the Maxwell equation for curlB and
Ohm’s law, we find

cB0

4πa
= σE0 . (6.10)

Here σ = σ0 T 3/2 is the Coulomb conductivity.
Following Syrovatskii (1976b), from Equations (6.4)–(6.6) and (6.10)

the layer half-thickness a, its half-width b, and the plasma density inside
the layer ns can be expressed in terms of three ‘external’ (assumed known)
parameters n0, h0 = B0/b, E0 and the unknown equilibrium temperature T
of the plasma inside the current layer:

a = b
c

4πσ0

(
h0

E0

)
1

T 3/2 , (6.11)
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b = 4π

(
kBσ 2

0 M

4π2

)1/6(
n0E

2
0

h4
0

)1/3

T 2/3 , (6.12)

ns =
(

πσ 2
0 M

4k 2
B

)1/3(
n0E

2
0

h0

)2/3

T 1/3 . (6.13)

To determine the temperature T let us add the energy equation in the
following form:

B 2
0

4π
Vd b = L (T ) n2

s ab . (6.14)

It is assumed here that the temperature of the neutral layer is not high; so
the energy transfer from the layer by plasma outflow and by heat conduction
play a secondary role. The principal factors are the influx of magnetic
energy into the current layer and radiative cooling. The radiative loss
function L (T ) can be taken, for example, from Cox and Tucker (1969).
More justifications for simple Equation (6.14) follow from the more detailed
numerical model by Oreshina and Somov (1998); see also a comparison
between different models in Somov and Oreshina (2000).

Substituting the solution (6.11)–(6.13) in Equation (6.14) we obtain
the following equation for the temperature of the plasma inside the current
layer:

T = σ
2/5
0

(
πM

4k 2
B

)4/5

Γ4/5
S

L6/5(T ) . (6.15)

Here

ΓS =
n 2

0 E0

h 2
0

(6.16)

is the dimensional parameter which characterizes the reconnection condi-
tions. Therefore the values n0, h0, and E0 must be specified in advance.
The other quantities can be determined from the solution (Exercise 6.1).

Figure 6.2 shows a solution of Equation (6.15) with two unstable
branches indicated by dashed curves. On these branches a small deviation
of the temperature from equilibrium will cause the deviation to increase
with time. It means that the thermal instability of the current layer occurs.

The first appearance of the thermal instability, at T ≈ 2 × 104 K, is
caused by emission in the Lα line of hydrogen. It can hardly be considered
significant since the function L(T ) was taken from Cox and Tucker (1969)
without allowance for the absorption of radiation, which may be important
for the hydrogen lines in the solar atmosphere. On the contrary, the second
break, at

T ≈ 8 × 104 K , ΓS ≈ 3.8 × 1026 , (6.17)
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Figure 6.2: The equilibrium tempera-
ture of a neutral current layer as a
function of Syrovatskii’s parameter ΓS .
Two unstable branches are dashed.

will necessarily occur because of the maximum in the radiative cooling
function L(T ). Near this maximum, in the region where L(T ) ∝ Tα with
α < 1, the condensation mode of the thermal instability (Field, 1965) occurs
(see also Somov and Syrovatskii, 1976a and 1982).

Syrovatskii (1976b) assumed that the temperature T of a cold dense
current layer in the solar atmosphere gradually increases in the pre-flare
stage until the critical values (6.17) are reached. Then the current layer
can no longer stay in equilibrium; the radiative losses cannot balance the
Joule heating, and the temperature of the layer rapidly rises. This leads to
a flare. In this way, Syrovatskii suggested to identify the thermal instability
of a cold dense current layer with the onset of the eruptive phase of a solar
flare.

Whether such a thermal trigger for solar flares occurs or not is unclear
yet (Somov and Syrovatskii, 1982). It is clear only that heating of the
reconnecting current layer (RCL) leads to the powerful heat-conductive
cooling of the plasma electron component. This effect is important for
energy balance of a ‘super-hot’ (T >∼ 3 × 107 K) turbulent-current layer
(SHTCL) discussed in Section 6.3.

6.1.3 Simple scaling laws

In order to determine the parameters of a stationary driven reconnection
configuration, the stationary resistive MHD equations must be solved for
given boundary conditions. Unfortunately it appears that the problem is
too complicated to permit analytical solutions without severe approxima-
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tions. The severest of them are called the scaling ‘laws’.
Let us come back to the Sweet-Parker model of reconnection in

incompressible plasma. The order-of-magnitude relations introduced above
become simpler:

v0 b = v1 a , (6.18)

v0 =
νm

a
, (6.19)

v1 = VA,0 . (6.20)

These equations follow from (6.4)–(6.13) and give us the ratio of the inflow
(upstream) velocity of the incompressible plasma to the upstream Alfvén
speed:

v0

VA,0

=
(

νm

VA,0b

)1/2

. (6.21)

The left-hand side of the relation (6.21) is called the Alfvén-Mach number
MA and is conventionally used as a dimensionless measure of the reconnec-
tion rate. The right-hand side is simply related to the magnetic Reynolds
number (see Appendix 3), more exactly

Rem(VA,0 , b) =
VA,0b

νm
≡ NL . (6.22)

Here NL is called the Lundquist number. Therefore the Sweet-Parker re-
connection rate

MA = N−1/2
L

.

(6.23)

Order-of-magnitude relations similar to (6.23) are often called scaling
‘laws’. They certainly do not have a status of any law but are useful since
they simply characterize the scaling properties of stationary reconnecting
configurations as a proper dimensionless parameter.

Since in formula (6.22) the linear scale L is taken to be equal to the large
half-width b of the Sweet-Parker neutral layer, the Lundquist number (6.23)
is rather a global parameter of the reconnection problem. In the most cases
of practical interest the Lundquist number is too large, typically 1014−1015

in the solar corona (Exercise 6.1), such that the Sweet-Parker rate would
lead to reconnection times many orders of magnitude longer than observed
in flares. This means that

slowly-reconnecting current layers can exist in the solar corona for
a long time.
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In general, scaling relations are useful to summarize and classify dif-
ferent regimes and configurations of reconnection as they are observed, for
example, in numerical simulations (see Chapter 6 in Biskamp, 1997; Hori-
uchi and Sato, 1994).

6.2 Magnetically non-neutral RCL

Magnetic neutrality of the RCL, as assumed in the previous Section, means
that there is no penetration of magnetic field lines through the layer (the
transversal field B⊥ = 0) as well as no longitudinal magnetic field parallel
to the electric current inside the RCL (the longitudinal field B ‖ = 0). In
general, both assumptions are incorrect (see Somov, 1992). The first of
them is the most important for what follows in this Chapter.

6.2.1 Transversal magnetic fields

As it reconnects, every field line penetrates through the current layer as
shown in Figure 6.3. So the reconnecting layer is magnetically non-neutral
by definition because of physical meaning of the reconnection process. In
many real cases (for example, the magnetospheric tail or interplanetary
sectorial current layers) a small transversal component of the magnetic
field is well observed. This is also the case of laboratory and numerical
experiments (Hesse et al., 1996; Ono et al., 1996; Horiuchi and Sato, 1997;
Horiuchi et al., 2001).

2a
2b

2a
out

v
1

EB

v0

0 0

Figure 6.3: A magnetically non-neutral reconnecting layer: the electric cur-
rent distribution is schematically shown by the shadow, the dotted bound-
ary indicates the field lines going through the current layer.
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We characterize the penetration of the magnetic field into the current
layer by the parameter ξ⊥ = B⊥/B0 which is the relative value of the
transversal component B⊥. As distinguished from the neutral-layer ap-
proximation, we assume that ξ⊥ �= 0 and satisfies the inequality

a/b 
 ξ⊥ 
 1 . (6.24)

What are the consequences of such a penetration?
The penetration of even a very small transversal field into the high-

temperature layer essentially increases the outflows of energy and mass from
the layer along the field lines. The effective cross-section for the outflows
of energy and mass is proportional to the outflow scale

aout ≈ ξ⊥b � a . (6.25)

Hence, corresponding to three different physical processes, the magnetically
non-neutral current layer is characterized by three different linear
scales: 2a is a small dissipative thickness of the layer, 2b is the scale
responsible for the energy accumulation process, and 2aout is the linear
scale which determines the outflow of energy and mass along the field lines
into the surrounding plasma.

As we shall see in Section 6.3, even a very small (like ξ⊥ ≈ 10−3)
transversal field B⊥ significantly increases the plasma outflows as
well as the heat-conductive cooling of the non-neutral super-hot turbulent-
current layer (SHTCL). As a result, its energy output is much larger than
that of the neutral SHTCL. (In the neutral-layer approximation aout =
a.) The last reason will enable us to consider the SHTCL with a small
transversal component of the magnetic field as the source of energy in flares.

6.2.2 The longitudinal magnetic field

As we saw in Section 3.1, the reconnection process under the actual condi-
tions in the solar atmosphere is released at the separator which differs from
the X-type neutral line in that the separator has a longitudinal field B ‖ .
In this context, it is necessary to understand the physical effects that are
created by the longitudinal field inside the RCL and its vicinity.

It is intuitively clear that the longitudinal field at the separator decreases
the reconnection rate

v0 = c
E 0 × (B 0 + B ‖ 0 )

B 2
0 + B 2

‖ 0
= c

E 0 × B 0

B 2
0

[
1 + (B ‖ 0/B 0) 2

] . (6.26)

Here B 0 and B‖ 0 are the strengths of the reconnecting component and of
the longitudinal component of the magnetic field on the inflow side of the
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layer, respectively; they are not free parameters, they have to be determined
from a self-consistent solution of the problem on the RCL properties.

The appearance of the longitudinal field changes, first of all, the balance
of forces across the layer. The pressures of the plasma and the magnetic
field outside the RCL should balance not only the plasma pressure but also
the magnetic pressure of the longitudinal field inside it:

2n0kBT0 +
B 2

0

8π
+

B 2
‖ 0

8π
= 2nskBT +

B 2
‖ s

8π
. (6.27)

Here n0 and ns are the plasma densities outside and inside the current
layer. T0 is the temperature of inflowing plasma outside the layer, T is the
temperature of plasma inside the layer. In the right-hand side of Equa-
tion (6.30) B ‖ s is the strength of the longitudinal field inside the current
layer.

If the longitudinal field could be effectively accumulated inside the cur-
rent layer, its pressure would impose strong limitations on the layer com-
pression and, hence, on the rate of reconnection. In terms of the ideal
MHD approximation, the longitudinal field must increase proportionally to
the plasma density ns inside the layer because the field is frozen in the
plasma:

B ‖ s = B ‖ 0
ns

n0
. (6.28)

On the contrary, in a real finite-conductivity plasma, the increase of the
longitudinal field is accompanied by dissipative effects. As soon as the
longitudinal field inside the layer becomes stronger than outside the layer,
a gradient of the longitudinal field B ‖ will appear and give rise to an
electric current. In turn, the dissipation of this current produced by the
field compression affects the B ‖ field value. Thus the compression of the
longitudinal field seems to facilitate its dissipation. In reality, however, this
problem proves to be more delicate; see Somov and Titov (1985a, 1985b),
Somov (1992).

The essence of the effect is that any compression of the longitudinal
field B ‖ within a current layer does create a gradient of the longitudinal
field, ∇B ‖ . By so doing, compression generates an associated electric cur-
rent J⊥ which circulates in the transversal (relative to the main current J
in the layer) plane. The ohmic dissipation of the current J⊥, circulating
around the layer, gives rise to an outward diffusion of the longitudinal field
from the current layer and to the Joule heating of the plasma. It is of
importance that the total flux of the longitudinal field is conserved,
while

the Joule heating due to the B ‖ field compression is produced by
the dissipation of the reconnecting magnetic field B 0.
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This effect is certainly valid for collisionless reconnection in the RCL.
On the one hand, the magnetic field compression decreases the veloc-

ity v0 of plasma inflows. On the other hand, due to the large magnetic
diffusion in the small scale of the current layer thickness 2b, the longitu-
dinal field B ‖ does not have an overwhelming effect on the parameters of
the current layer and the reconnection rate. For this reason, we regard as
likely that

the longitudinal field B ‖ at the separator changes the reconnection
rate in the current layer not too strongly.

This can be especially true if the compression of the plasma inside the
RCL, ns/n0, is not high, for example, in super-hot turbulent-current layers
(SHTCL) of solar flares. Therefore, in the first approximation, we neglect
the longitudinal magnetic field in the next Section.

6.3 Basic physics of the SHTCL

6.3.1 A general formulation of the problem

Coulomb collisions do not play any role in the SHTCL. So the plasma
inside the SHTCL has to be considered as essentially collisionless (So-
mov, 1992). The concept of an anomalous resistivity, which originates from
wave-particle interactions, is then useful to describe the fast conversion
from field energy to particle energy. Some of the general properties of
such a collisionless reconnection can be examined in a frame of a self-
consistent model which makes it possible to estimate the main parameters
of the SHTCL. Basing on the mass, momentum and energy conservation
laws, we write the following relations (valid for a quarter of the current
layer and a unit length along the electric current):

n0v0 b = nsv1 aout, (6.29)

2n0kBT0 +
B 2

0

8π
= nskBT

(
1 +

1
θ

)
, (6.30)

nskBT

(
1 +

1
θ

)
=

1
2

Mnsv
2
1 + 2n0kBT0 , (6.31)

χef E in
mag + E in

th,e = E out
th,e + C an

‖ , (6.32)

(1 − χef) E in
mag + E in

th,i = E out
th,i + K out

i . (6.33)

Here n0 and ns are the plasma densities outside and inside the current layer.
T0 is the temperature of inflowing plasma outside the layer, T = Te is an
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effective electron temperature (the mean kinetic energy of chaotic motion
per single electron) inside the SHTCL, the ratio θ = Te/Ti, Ti is an effective
temperature of ions.

v0 = Vd = c
E0

B0
(6.34)

is the velocity of the plasma drift to the current layer, and

v1 = VA,S =
B0√

4πMns

(6.35)

is the velocity of the plasma outflow from the layer. Compare this approx-
imate formula with (6.7).

The continuity Equation (6.29) as well as the energy Equations (6.32)
and (6.33) are of integral form for a quarter of the current layer assumed
to be symmetrical and for a unit length along the electric current.

The left-hand sides of the energy equations for electrons (6.32) and ions
(6.33) contain the magnetic energy flux (see vol. 1, formula (12.74))

E in
mag =

B 2
0

4π
v0 b , (6.36)

which coincides with the direct heating of the ions and electrons due to their
interactions with waves. A relative fraction χef of the heating is consumed
by electrons, while the remaining fraction (1 − χef) goes to the ions.

The electron and ion temperatures of the plasma inflowing to the layer
are the same. Hence, the fluxes of the electron and ion thermal energies
are also the same:

E in
th,e = E in

th,i =
5
2

n0kBT0 · v0b . (6.37)

Because of the difference between the effective temperatures of electrons
and ions in the outflowing plasma, the electron and ion thermal energy
outflows also differ:

E out
th,e =

5
2

nskBT · v1a
out , E out

th,i =
5
2

nskB

T

θ
· v1a

out . (6.38)

The ion kinetic energy flux from the layer

K out
i =

1
2

Mnsv
2
1 · v1a

out (6.39)

is important in the energy balance (6.33). As to the electron kinetic en-
ergy, it is negligible and disregarded in (6.32). However, electrons play the
dominant role in the heat conductive cooling of the SHTCL:

C an
‖ = fM(θ)

ns(kBT )3/2

M1/2 aout. (6.40)
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Here

fM(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

(
M
m

)1/2
at 1 ≤ θ ≤ 8.1 ,

(
M
m

)1/2
θ 3/2

[ (
1 + 3

θ

)1/2 − 1
θ1/2

]
×

× exp
[
− 2 (θ+3)

5

]
+
(
1 + 3

θ

)1/2 for θ > 8.1
or θ < 1 .

(6.41)

is the Manheimer function which allows us to consider the anomalous
magnetic-field-aligned thermal flux depending on the the effective temper-
ature ratio θ.

Under the coronal conditions derived from the Yohkoh data, especially
in flares, contributions to the energy balance are not made either by the en-
ergy exchange between the electrons and the ions due to collisions, the ther-
mal flux across the magnetic field, and the energy losses for radiation. The
magnetic-field-aligned thermal flux becomes anomalous and plays the dom-
inant role in the cooling of electron component inside the layer. All these
properties are typical for collisionless ‘super-hot’ (Te

>∼ 30 MK) plasma.
Under the same conditions, the effective anomalous conductivity σef in

the Ohm’s law
cB0

4πa
= σefE0 , (6.42)

as well as the relative fraction χef of the direct heating consumed by elec-
trons, are determined by the wave-particle interaction inside the SHTCL
and depend on the type of plasma turbulence and its regime (Ch. 3 in
Somov, 1992). For example, if the resistivity was caused by Coulomb col-
lisions, it would depend on the electron temperature only. However, when
the plasma is in a collisionless turbulent state, the electrons carring the
current and the ions interact with the field fluctuations in the waves, which
changes the resistivity and other transport coefficients of the plasma in a
way that depends on the type of waves that grow.

6.3.2 Problem in the strong field approximation

Let the conditions of a strong magnetic field (see vol. 1, Section 13.1.3) be
satisfied. Then, the set of Equations (6.29)–(6.33) takes the following form:

n0Vd = nsVA,S ξ⊥, (6.43)

B 2
0

8π
= nskBT

(
1 +

1
θ

)
, (6.44)



142 Chapter 6. Stationary Models of RCL

nskBT

(
1 +

1
θ

)
=

1
2

MnsV
2

A,S
, (6.45)

χef
B 2

0

4π
Vd =

5
2

nskBT · VA,S
ξ⊥ + fM(θ)

ns (kBT )3/2

M1/2 ξ⊥ , (6.46)

(1 − χef)
B 2

0

4π
Vd =

(
5
2

nskB

T

θ
+

1
2

MnsV
2

A,S

)
VA,S ξ⊥ . (6.47)

In Ohm’s law (6.42) it is convenient to replace the effective conductivity
σef by effective resistivity η ef :

cB0

4πa
=

E0

η ef
. (6.48)

In general, the partial contributions to the effective resistivity may be
made simultaneously by several processes of electron scattering by different
sorts of waves, so that the resistivity proves to be merely a sum of the
contributions:

η ef =
∑

k

η k . (6.49)

The relative share of the electron heating χef is also presented as a sum of
the respective shares χk of the feasible processes taken, of course, with the
weight factors η k/η ef which defines the relative contribution from one or
another process to the total heating of electrons inside the SHTCL:

χef =
∑

k

η k

η ef
χk . (6.50)

In usual practice (e.g., Somov, 1992), the sums (6.49) and (6.50) consist of
no more than two terms, either of which corresponds to one of the turbulent
types or states. Note also that more detailed numerical results (Somov and
Oreshina, 2000) confirm validity of the assumptions made above.

6.3.3 Basic local parameters of the SHTCL

We shall assume that the magnetic field gradient h0 locally characterizes
the potential field in the vicinity of the separator or X-type neutral line. It
means that we consider a less specific configuration of reconnecting mag-
netic fluxes in comparison with the 2D MHD ‘standard model’ mentioned
in Section 6.1.1. We shall also assume that, at distances larger than the
current layer width 2b, the magnetic field structure becomes, as it should
be, the same as the structure of the potential field of ‘external sources’,
for example, of sunspots in the solar photosphere. So the gradient h0 is
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the local parameter which ‘remembers’ the global structure of the potential
field.

Under the assumptions made, the field B0 on the inflow sides of the
current layer may be estimated as

B0 = h0b . (6.51)

The second local parameter of the reconnection region is the inflow ve-
locity v0 or, alternatively, the electric field E0 determined by formula (6.2).
We shall use E0 in what follows.

In the approximation of a strong magnetic field, the pressure p0 (or tem-
perature T0) of inflowing plasma is negligible, but its density n0 certainly
has to be prescribed as a local parameter of the reconnection region. In
fact, as we shall see below, all characteristics of the SHTCL depend on n0.

The dimensionless parameter ξ⊥ could be, in principle, obtained as a
result of the solution of the more self-consistent problem on the current
layer structure (Section 3.4 in Somov, 1992). However in order to keep the
problem under consideration as simple as possible, here we shall consider
the small (see Inequalities (6.24)) parameter ξ⊥ as the specified one.

Summarizing the formulation of the problem, we see that the set of
Equations (6.43)–(6.48) becomes closed if the particular expressions (6.49)
and (6.50) are added to this set. This allows us to find the following pa-
rameters of the SHTCL: a, b, ns, T, and θ.

6.3.4 The general solution of the problem

The input set of Equations (6.43)–(6.47) exibits a remarkable property
which facilitates the solution of the problem as a whole. The property
consists of the fact that the first three Equations (6.43)–(6.45) allow us to
transform the last two Equations (6.46) and (6.47) into a simpler form:

2 χef
ns

n0
=

2.5
1 + θ−1 +

fM(θ)√
2 (1 + θ−1)3/2

, (6.52)

2 (1 − χef)
ns

n0
= 1 +

2.5
1 + θ

. (6.53)

From these two Equations we find the plasma compression and the relative
share of the total heating of the electrons in the current layer:

ns

n0
= N(θ) = 1.75 +

fM(θ)√
8 (1 + θ−1)3/2

, (6.54)

χef = fχ(θ) = 1 − 3.5 + θ

2N(θ) (1 + θ)
. (6.55)
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Now we use Equations (6.43)–(6.45) together with (6.48) to find the
general solution of the problem, which determines the following parameters
of the SHTCL: the layer half-thickness

a =
c m1/2

e (2π)1/2

[(
1 + θ−1

N(θ)

)1/2 1
Uk (θ)

]
× 1

n
1/2
0

, (6.56)

its half-width

b = (2c)1/2 (πM)1/4
[

1
N(θ)

]1/4

× n
1/4
0

1
h0

(
E0

ξ⊥

)1/2

, (6.57)

the effective temperature of electrons

T =
cM1/2

4kBπ1/2

[
1

(1 + θ−1) N3/2(θ)

]
× 1

n
1/2
0

(
E0

ξ⊥

)
, (6.58)

the effective anomalous resistivity

η ef =
2 m1/2 π1/4

e c1/2M1/4

[
(1 + θ−1)1/2

N1/4(θ) Uk (θ)

]
× 1

n
3/4
0

(ξ⊥E0)
1/2

. (6.59)

Thus to complete the solving this problem, we have to find a form of the
function Uk (θ) which depends on the regime of the plasma turbulence. This
will be done in Section 6.3.5.

In addition, from definitions (6.51), (6.34), (6.35), and (6.36), by using
the obtained solutions (6.56)–(6.59), we have the following formulae: the
magnetic field near the current layer

B0 = (2c)1/2 (πM)1/4
[

1
N(θ)

]1/4

× n
1/4
0

(
E0

ξ⊥

)1/2

, (6.60)

the reconnection inflow velocity

v0 =
c1/2

21/2 π1/4M1/4 [ N(θ) ]1/4 × 1

n
1/4
0

(ξ⊥E0)1/2 , (6.61)

the outflow velocity

v1 =
c1/2

21/2 π1/4M1/4

[
1

N(θ)

]3/4

× 1

n
1/4
0

(
E0

ξ⊥

)1/2

, (6.62)

the power of energy release per unit length along the current layer length lj

Ps

lj
=

B 2
0

4π
v0 4b =

2c2M1/2

π1/2

[
1

N(θ)

]1/2

× n
1/2
0

1
h0

(
E 2

0

ξ⊥

)
, (6.63)
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the rate of high-temperature plasma production by the SHTCL per unit
length along the current layer length lj

Ṅ

lj
= nsv1 4aout = n0v0 4b = 4c × n0

1
h0

E0 . (6.64)

Formula (6.64) demonstrates a high level of self-consistency for the
SHTCL model under consideration. It shows that the total flux of plasma
through the reconnecting current layer depends only on the plasma den-
sity n0 on the inflow sides of the layer, the driving electric field E0, and the
gradient h0 of potential magnetic field in the vicinity of the X-type neu-
tral point. It is remarkable that other parameters, like the dimensionless
parameter ξ⊥, as well as the assumptions on the plasma turbulence inside
the SHTCL, discussed in the next Section, do not influence the total flux
of plasma passing through the current layer.

6.3.5 Plasma turbulence inside the SHTCL

In the case of the marginal regime (e.g., Duijveman et al., 1981), the electron
current velocity

u =
E0

ensη ef
(6.65)

coincides with the critical velocity uk of the k-type wave excitation. Hence,
in formulae (6.56) and (6.59), the unknown function

Uk (θ) = U mar
k (θ) =

uk

VTe

. (6.66)

For example, the ion-cyclotron instability becomes enhanced when the elec-
tron current velocity u is not lower than the critical value uic of the ion-
cyclotron (ic) waves. In the marginal regime of the ion-cyclotron instability

U mar
ic (θ) =

uic

VTe

. (6.67)

As long as the ion-cyclotron waves are not saturated, the electron current
velocity u remains approximately equal to uic and thus it is possible to
calculate the effective resistivity η ef from Equation (6.65).

In the saturated turbulence regime, U k (θ) must be replaced by cer-
tain functions U sat

ic (θ) and U sat
ia (θ) for the ion-cyclotron and ion-acoustic

turbulence, respectively (see Section 3.3 in Somov, 1992).
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6.3.6 Formulae for the basic parameters of the SHTCL

So we rewrite the general solution (6.56)–(6.59) as follows: the SHTCL
half-thickness

a = 7.5 × 105 fa(θ) × 1

n
1/2
0

, cm ; (6.68)

the half-width of the layer

b = 3.7 × 10−1 fb(θ) × n
1/4
0

1
h0

(
E0

ξ⊥

)1/2

, cm ; (6.69)

the effective temperature of electrons

T = 4.0 × 1013 f
T
(θ) × 1

n
1/2
0

(
E0

ξ⊥

)
, K ; (6.70)

the effective anomalous resistivity

η ef = 8.5 × 10−4 fη(θ) × 1

n
3/4
0

(ξ⊥E0)
1/2

, s . (6.71)

Here we write separatelly the functions which are determined by the plasma
turbulence inside the current layer:

fa(θ) =
(

1 + θ−1

N(θ)

)1/2 1
Uk (θ)

≈ 2.9 , (6.72)

fb(θ) =
1

N1/4(θ)
≈ 6.8 × 10−1 , (6.73)

f
T
(θ) =

1
(1 + θ−1) N3/2(θ)

≈ 8.2 × 10−2 , (6.74)

fη(θ) =
(1 + θ−1)1/2

N1/4(θ) Uk (θ)
≈ 4.3 . (6.75)

Bearing in mind the discussion of solar flares in Section 7.1, we calculate
the right-hand sides of functions (6.72)–(6.75) in the marginal regime of the
ion-acoustic turbulence:

θ ≈ 6.5 , N ≈ 4.8 , Uk = U mar
ia ≈ 0.17 ,

see Section 3.3 in Somov (1992).
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The magnetic field on the inflow sides of the current layer can be found
from formula (6.60):

B0 = 3.7 × 10−1 fb(θ) × n
1/4
0

(
E0

ξ⊥

)1/2

, G . (6.76)

From (6.61) it follows that the reconnection inflow velocity

v0 = 8.1 × 105 N1/4(θ) × 1

n
1/4
0

(ξ⊥E0)
1/2

, km s−1 . (6.77)

From (6.62) and (6.63) we obtain the outflow velocity

v1 = 8.1 × 105 N−3/4(θ) × 1

n
1/4
0

(
E0

ξ⊥

)1/2

, km s−1 , (6.78)

and the power of energy release per unit length along the current layer
length lj

Ps

lj
= 6.0 × 108 N−1/2(θ) × n

1/2
0

1
h0

(
E 2

0

ξ⊥

)
, erg s−1 cm−1 . (6.79)

The rate of super-hot plasma production by the SHTCL is found from (6.64):

Ṅ

lj
= 1.2 × 1011 × n0

1
h0

E0 , s−1 cm−1 . (6.80)

The applicability scope of the SHTCL model has been considered in So-
mov (1992) with account of the ion-acoustic and ion-cyclotron instabilities
in marginal and saturated regimes. It follows from this consideration that
the best agreement between the average quantities predicted by the model
and those observed in solar flares can be achieved in the marginal regime of
ion-acoustic turbulence. A small parameter of the model, ξ⊥, is really small;
on average ξ⊥ ≤ 3 × 10−3. With this value taken into account, we finally
have the following approximate formulae: the current-layer half-thickness

a = 2.2 × 106 × 1

n
1/2
0

, cm ; (6.81)

the half-width of the current layer

b = 4.6 × n
1/4
0

1
h0

E
1/2
0 , cm ; (6.82)
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the effective temperature of electrons

T = 1.1 × 1015 × 1

n
1/2
0

E0 , K ; (6.83)

the effective anomalous resistivity

η ef = 2.0 × 10−4 × 1

n
3/4
0

E
1/2
0 , s ; (6.84)

the magnetic field on the inflow sides of the current layer

B0 = 4.6 × n
1/4
0 E

1/2
0 , G ; (6.85)

the reconnection inflow velocity

v0 = 6.6 × 104 × 1

n
1/4
0

E
1/2
0 , km s−1 ; (6.86)

the outflow velocity of super-hot plasma

v1 = 4.6 × 106 × 1

n
1/4
0

E
1/2
0 , km s−1 ; (6.87)

the power of energy release per unit length along the current layer length lj

Ps

lj
= 2.0 × 1011 × n

1/2
0

1
h0

E 2
0 , erg s−1 cm−1 ; (6.88)

and the rate of high-temperature plasma production by the SHTCL

Ṅ

lj
= 1.2 × 1011 × n0

1
h0

E0 , s−1 cm−1 . (6.89)

Formulae (6.81)–(6.89) depend on three principal parameters of
the reconnection region: the gradient of the magnetic field h0 in the
vicinity of separator, the value of the inductive electric field E0 and the
plasma density n0. For applications to the solar flares in the next Chapter.

We also introduce the heating time th which is the time for a given
magnetic-field line to be connected to the SHTCL. In other words, during
the time th, the thermal flux from the SHTCL along the field line heats the
high-temperature plasma flowing out of the current layer along this field
line. Let us take by definition

th =
2b

v1
= 4(πM)1/2 [ N(θ) ]1/2 × n

1/2
0

1
h0

=

= 2.0 × 10−11 × n
1/2
0

1
h0

, s . (6.90)

In all these formulae all the quantities, except the temperature, are mea-
sured in CGS units; the temperature is given in degrees Kelvin.
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6.4 Open issues of reconnection in flares

The existing models of magnetic reconnection in the solar atmosphere can
be classified in two wide groups: global and local ones (Figure 6.4).

Reconnection models

Global Local

Advantages

Disadvantages

Direct comparison with 
global structures and 
dynamics observed by 
Yohkoh, SOHO, TRACE, 
RHESSI ...

Plasma physics of
reconnection and
acceleration of
electrons and ions

No internal 
consistency

No incorporation 
in global models

Figure 6.4: Models of magnetic reconnection in the solar atmosphere.

The global models are used to describe actual active regions or even com-
plexes of activity on the Sun in different approximations and with different
accuracies (Somov, 1985, 1986; Gorbachev and Somov, 1989, 1990; De-
moulin et al., 1993; Bagalá et al., 1995; Tsuneta, 1996; Tsuneta et al., 1997;
Antiochos, 1998; Longcope and Silva, 1998; Aschwanden et al., 1999; So-
mov, 2000; Morita et al., 2001; Somov et al., 2002a). We make no attempt
to review all these models, stationary or non-stationary, 3D or 2D, but just
remark that

the main advantage of the global models for magnetic reconnection
in solar flares is a direct comparison between the results of compu-
tation and the observed large-scale patterns.

For example, the ‘rainbow reconnection’ model (Section 3.2.4) is used to
reproduce the main features of the observed magnetic and velocity fields
in the photosphere related to the large-scale photospheric vortex flows. As
a consequence, the model reproduces, in the potential approximation, the
large-scale features of the actual field in the corona, related to these flows
before a flare.
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The advantage of the local models is that they take kinetic effects into
account and allow us to develop the basic physics of the magnetic recon-
nection process in solar flares. In general, many analytical, numerical, and
combined models of reconnection exist in different approximations and with
different levels of self-consistency (e.g., Biskamp, 1994; Somov, 2000). It
becomes more and more obvious that collisionless reconnection in a ‘super-
hot’ rarefied plasma is an important process in considering active phenom-
ena like solar flares. This process was introduced by Syrovatskii (1966a,
1966b) as a dynamic dissipation of magnetic field in a reconnecting current
layer (RCL) and leads to fast conversion from field energy to particle en-
ergy, as well as a topological change of the magnetic field (e.g., Horiuchi
and Sato, 1997; Horiuchi et al., 2001).

General properties and parameters of the collisionless reconnection can
be examined in a frame of local models based on the mass, momentum,
and energy conservation laws. As discussed in this Chapter, a particular
feature of the models is that electrons and ions are heated by wave-particle
interactions in a different way; contributions to the energy balance are not
made by energy exchange between electrons and ions. The magnetic-field-
aligned thermal flux becomes anomalous and plays the role in the cooling
of the electrons in the super-hot turbulent-current layer (SHTCL). These
properties are typical for collisionless plasmas under the coronal conditions
derived from the Yohkoh data. Unfortunately, the local models, like the
SHTCL, are not incorporated yet in the global 3D consideration of the
reconnection process in the corona. Only a few first steps have been made
in this direction (e.g., Somov and Kosugi, 1997; Somov et al., 1998).

Future models should join ‘global’ and ‘local’ properties of the mag-
netic reconnection process under solar coronal conditions. For example,
chains of plasma instabilities, including kinetic instabilities, can be impor-
tant for our understanding of the types and regimes of plasma turbulence
inside the collisionless current layer. In particular it is necessary to evalu-
ate anomalous resistivity and selective heating of particles in the SHTCL.
Heat conduction is also anomalous in the high-temperature plasma of solar
flares. Self-consistent solutions of the reconnection problem will allow us
to explain the energy release in flares, including the open question of the
mechanism or combination of mechanisms which explains the observed ac-
celeration of electrons and ions to high energy (see Chapter 9). One can be
tempted to use, however, the MHD approximation to describe the energy
release in solar flares, since this approximation may give a global picture of
plasma motions.

To understand the 3D structure of actual reconnection in flares is one
of the most urgent problems. Actual flares are 3D dynamic phenomenon of
electromagnetic origin in a highly-conducting plasma with a strong mag-
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netic field. The Sakao-type flares (Section 3.4.2) are a clear example which
shows that 3D models of flares should be involved in treatment of Yohkoh
data. It does not seem possible to explain these flares in the framework of
2D MHD models.

Yohkoh observations with HXT, SXT, and BCS had offered us the means
to check whether phenomena predicted by solar flare models of a definite
type (such as the 2D MHD standard model or the quadrupole-type model
described in Section 3.2) actually occur. There are apparent successes of
the standard model, for example, in the morphology of flares with cusp
geometries. However some puzzling discrepancies also exist, and further
development of more realistic 3D models is required.

6.5 Practice: Exercises and Answers

Exercise 6.1. Evaluate the characteristic value of the global Lundquist
number (6.22) for a current layer with the classical Coulomb conductivity
in the solar corona before an impulsive flare. Compare a predicted recon-
nection rate with the real one.

Answer. First, let us formally apply the Sweet-Parker scaling prop-
erty (6.23) to the Syrovatskii current layer (see Section 6.1.2). Consider
the main parameters of the neutral layer at the limit of thermal stabil-
ity (6.17). The values n0 ≈ 5 × 108 cm−3, h0 ≈ 5 × 10−7 Gauss cm−1, and
E0 ≈ 1.2×10−1 V cm−1 have been specified in advance. The other quanti-
ties have been determined from the Syrovatskii solution. For example, the
half-width of the current layer b ≈ 7 × 108 cm, the magnetic field near the
layer B0 = h0b ≈ 340 Gauss, the plasma density inside the neutral layer
ns ≈ 2 × 1014 cm−3.

The upstream Alfvén speed (6.8):

VA,0 = 2.18 × 1011 B0√
n0

≈ 3 × 109 cm s−1 ≈ 0.1 c . (6.91)

Here c is the light speed.
The global Lundquist number (6.22):

NL =
VA,0b

νm
≈ 2.3 × (1014 − 1015) .

Therefore the Sweet-Parker reconnection rate (6.23) predicted for the Sy-
rovatskii neutral layer is extremely low:

MA = N−1/2
L

≈ (2.1 − 6.7) × 10−8 .
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Let us compare this rate with the one which directly corresponds to the
Syrovatskii model. According to formula (6.9) the inflow velocity

v0 = Vd = c
E0

B0
≈ 3.5 × 104 cm s−1 = 0.35 km s−1 .

Hence an actual reconnection rate in the Syrovatskii neutral layer

MA,S =
v0

VA,0

≈ 1.1 × 10−5 � MA .

Obviously a difference in the reconnection rate is related to the compressibi-
lity of the plasma in the Syrovatskii model. With account the plasma com-
pressibility inside the reconnecting current layer, the actual reconnection
rate

MA,S =
v0

VA,0

=
(

ns

n0

)1/2

N−1/2
L

.

(6.92)

In the frame of Syrovatskii’s model for the neutral layer(
ns

n0

)1/2

> 102.

So the astrophysical plasma compressibility is really very important factor
in the magnetic reconnection theory.
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Reconnection and
Collapsing Traps in Solar
Flares

The super-hot turbulent-current layer (SHTCL) model fits well for
solar flares with different properties: impulsive and gradual, compact
and large-scale, thermal and non-thermal. Reconnection in SHTCLs
creates collapsing magnetic traps. In this Chapter, we discuss the pos-
sibility that coronal HXR emission is generated as bremsstrahlung of
the fast electrons accelerated in the collapsing traps due to joint action
of the Fermi-type first-order mechanism and betatron acceleration.

7.1 SHTCL in solar flares

7.1.1 Why are flares so different but similar?

Even if one considers the flares driven by reconnection in the SHTCL with
the same kind of plasma turbulence, then one can see from the solution
described above that very different physical processes will dominate in a
flare depending on physical conditions. The advantage which this analytical
solution gives us is that we can estimate the most important parameters
which determine the physical difference in solar flares.

153
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7.1.1 (a) Magnetic reconnection rate in SHTCL

Let us consider, first, the reconnection inflow velocity v0 of plasma in the
vicinity of the SHTCL. According to formula (6.86), v0 does not depend on
the magnetic-field gradient h0. For given values of the plasma density n0
and the electric field E0, the inflow velocity is shown in Figure 7.1. On aver-

1

v km s

10 10 10 10
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2

8 9 10 11

n

E

cm

V cm-1

-3

0

0 ,

 1 

V cm-10.1

V cm-110-1 =
0

,

Figure 7.1: The reconnection inflow velocity v0 in the vicinity of the SHTCL
as a function of the plasma density n0 and the electric field E0.

age, the characteristic value of the reconnection velocity is v0 ∼ 10 km s−1.
So the reconnection inflow velocity during the ‘main’ or ‘hot’ phase of

solar flares is much higher than that one in the pre-flare state (cf. Exer-
cise 6.1).

Second, if the characteristic value of the upstream Alfvén speed in the
undisturbed solar corona VA,0 ≈ 3 × 104 km s−1 (see (6.91)), then the pa-
rameter ε ≈ 3 × 10−4. Hence the parameter ε2 ≈ 10−7 is really very small.
Therefore the approximation of a strong magnetic field (see vol. 1, Sec-
tion 13.1.3) is well applicable to the SHTCL in solar flares. Except, the
parameter γ2 is small but not so small as ε2:

γ2 ≈ V 2
s

V 2
A,0

∼ 10−4 � ε2 ∼ 10−7 .

So the condition (13.20) in vol. 1 would be well satisfied in the undisturbed
corona near the SHTCL.
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This means that, in a first approximation, the parameter γ2 is more
important than the ε2 (see vol. 1, Equation (13.22)). Hence we cannot
neglect the gas-pressure-gradient effects in the vicinity of the SHTCL.

We have to take into account a compression of the plasma by a
magnetic field near the SHTCL.

That is why we use in the SHTCL model the plasma density n0 ∼ 109 −
1011 cm−3 which is different from the plasma density in the undisturbed
corona. In other words, the thin SHTCL, being in equilibrium considered
here, is presumably embedded into a thicker plasma layer.

7.1.1 (b) Magnetic-field gradient effects

Let us distinguish impulsive and gradual flares in the following way. If the
difference in the time scale of a flare tf would be mainly determined by
the difference in its linear size lf , then the impulsive flares should have
the stronger gradient h0 near the separator of the potential field in an
active region (see Section 3.2.1). By thinking so, we would believe that the
impulsive flares are the compact flares in strong magnetic fields,
for example, flares in the low corona not far from sunspots. On the contrary,
the gradual or long-duration flares may occur in a large-scale region placed
high in the corona at a significant distance above the strong sunspots.

For definiteness, let us put lf ≈ 3 × 109 cm as a typical value at an
imaginary boundary between compact (impulsive) and large-scale (long-
duration or gradual) flares. In that case, the typical value of the field
gradient hf = Bf/lf , where Bf is a typical value of the external (with
respect to the reconnecting current layer) magnetic field in the photosphere.
Since in sunspots Bf ≈ 103 G, we take

hf =
Bf

lf
≈ 3 × 10−7 G cm−1 (7.1)

as a boundary value of the field gradient. Therefore, by our conventional
definition, which is not always true, in impulsive flares h0 > hf but in
gradual flares h0 < hf .

Note that the half-thickness a of the current layer, its temperature T
and effective anomalous resistivity ηef , the magnetic field B0 on the in-
flow sides of the current layer, the inflow and outflow velocities v0 and v1
do not depend on the gradient h0. This remarkable feature follows from
formulae (6.81), (6.83)–(6.87), respectively. Perhaps, that is why

there still exists some similarity between solar flares, in spite of the
great difference in their observed scales and shapes.
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On the contrary, the current-layer half-width b and, as a consequence,
the power of energy release per unit length along the current Ps/lj and
the rate of high-temperature plasma production by the SHTCL Ṅ/lj are
inverse proportional to the field gradient h0, see formulae (6.82), (6.88) and
(6.89). The plasma production rate is proportional to the electric field E0,
which is typical for driven reconnection.

7.1.1 (c) The role of the plasma density

Also conventionally, we shall distinguish thermal and non-thermal flares.
Plasma heating is an unavoidable phenomenon in all flares. The relative
role of the thermal part of a flare certainly depends on collisional relaxation
processes mainly in the secondary (Somov, 1992) transformations of the
flare energy. It is natural to assume that

the plasma density n0 determines the importance of collisions in
flares: the higher the density, the faster is the thermalization.

The thermal flares, having the high plasma density, have to produce very
efficient heating but inefficient acceleration. The opposite seems to be true
for the non-thermal flares.

The solutions (6.56)–(6.63) show that all parameters of the SHTCL de-
pend on the density n0. Generally, this dependence is not strong (n1/2

0 , n
1/4
o

etc.), but the difference in density can be large. This is important for what
follows. For example, Figure 7.2 shows the effective temperature of elec-
trons (6.83) as a function of the plasma density n0 and electric field E0.

As we see, temperatures greater than 108 K can be easily
reached in flares. Moreover the effective temperature of electrons does
not depend on the field gradient h0. So the SHTCL may well exist in both
impulsive and gradual flares.

In the conditions of the ‘main’ or ‘hot’ phase of solar flares the char-
acteristic parameters of such collisionless current layers, computed in the
frame of the model described above (see also Table 3.3.3 in Somov, 1992),
are the followings.

(a) The effective electron temperature inside the current layer Te ≈
100 − 200 MK, the temperature ratio θ = Te/Tp ≈ 6.5 . The plasma
compression ns/n0 ≈ 4.8 is not high.

(b) The effective dissipative thickness of the current layer 2a ≈ 20 cm is
very small but its width 2b ≈ (1 − 2) × 109 cm is large, for this reason the
linear scale (6.25) for the outflows of energy and mass 2aout ≈ (3−6)×106

cm is not small. This scale should be considered as actual thickness of the
SHTCL.
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Figure 7.2: The effective temperature of electrons inside the SHTCL as a
function of the plasma density n0 and the driving electric field E0.

(c) The anomalously high resistivity η ≈ (3−10)×10−13 s is induced by
the ion-acoustic turbulence in a marginal regime inside the SHTCL. Under
this condition, the energy release power per unit layer length lj (along the
direction of current inside the layer) is Ps/lj ≈ (1 − 7) × 1019 erg (s cm)−1,
if the plasma inflow velocity v0 ≈ 10 − 30 km s−1. Hence, if the current
layer length lj ≈ 3 × 109 cm, then the power of energy release

Ps ≈ 3 × 1028 − 2 × 1029 erg s−1 .

The outflow velocity equals v1 ≈ 1400 − 1800 km s−1.

7.1.2 Super-hot plasma production

How much super-hot plasma is generated by the SHTCL? – According
to formula (6.89), for the impulsive flares with the field gradient h0 ≈
5 × 10−7 G cm−1, the rate of high-temperature plasma production by the
SHTCL (per unit length along the current layer length lj) is

Ṅ/lj ≈ 2 × 1017 n0 E0 , s−1 cm−1.

If we take the maximum value of the electric field E0 ≈ 10 V cm−1 and
plasma density n0 ≈ 109 − 1010 cm−3 , then we estimate the rate of plasma
production as Ṅ/lj ≈ 1025 − 1026 s−1 cm−1.
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Let us take the characteristic length lj ∼ lf ≈ 3 × 109 cm and the
characteristic value of the impulsive phase duration τ ≈ 30 s. Then the
amount of super-hot plasma produced by the SHTCL can be estimated as

N =
Ṅ

lj
× lj τ ≈

(
1036 − 1037) particles . (7.2)

This amount of high-temperature (super-hot) particles seems to be
comparable with the total number of accelerated electrons

having energies larger than ≈ 10 keV during the impulsive phase of a typical
flare. So, in principle, the SHTCL can produce an observable amount of
the super-hot plasma (Section 7.3) and pre-accelerated particles: protons
and other ions.

Let us estimate the emission measure of the super-hot plasma. The
2D distributions of temperature and pressure, that follow from the Yohkoh
SXT and HXT observations (Tsuneta et al., 1997), do not allow us to
estimate the volume Vsh occupied by super-hot plasma. So we have to
start from a rather arbitrary assumption frequently used in this situation
as a first approximation. If this plasma would be distributed uniformly over
the large volume of a flare Vf = l 3

f , then the emission measure should be

EMmin =
N2

l 3
f

≈ 3 ×
(
1043 − 1045) cm−3 . (7.3)

This is not the case. The emission measure can be much higher because the
super-hot plasma is concentrated in a much smaller volume, more exactly,
in a compact source above the soft X-ray (SXR) loops (see Figures 7.8 and
7.9). So the value (7.3) is only a lower limit to the emission measure of
the super-hot plasma in real flares. A reasonable value of the volume filling
factor Vsh/Vf , which we may assume, is of about 3 × 10−4 − 10−3. That
is why the super-hot plasma was observed in flares by the HXT on board
Yohkoh.

∗ ∗ ∗

Before Yohkoh, a little indirect evidence of the super-hot plasma was
known. First, the high-resolution (≈ 1 keV) spectral measurements (Lin et
al., 1981) from 13 to 300 keV of a flare on June 27, 1980 have shown, at
energies below ≈ 35 keV, an extremely steep spectrum which fits to that
from the Maxwellian distribution with an electron temperature Te ≈ 34 MK
and an emission measure EM ≈ 3 × 1048 cm−3. Second, statistical proper-
ties of a large number of solar flares detected with the Hard X-Ray Burst
Spectrometer (HXRBS) on the satellite Solar Maximum Mission (SMM )
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allowed to confirm the existence of super-hot thermal flares (Type A) with
temperatures 30-40 MK (Dennis, 1985, 1988).

Third, the 2D distributions of electron temperature and emission mea-
sure of the ‘hot’ (say 10 ≤ Te ≤ 30 MK) and super-hot plasma (Den and
Somov, 1989) were calculated for the 1B/M4 flare on November 5, 1980
on the basis of data obtained with the Hard X-ray Imaging Spectrometer
(HXIS) on board SMM . It was shown that

the large and small SXR ‘interacting loops’ do not coincide with
the location of super-hot plasma in a long structure (≈ 1 arc min)
during the long after-impulsive phase of the flare.

The emission measure of the super-hot plasma in this flare was of about
EM ∼ 1047 cm−3. In two maxima, the electron temperature reaches enor-
mous values, Te ≈ 50-60 MK, determined with accuracy better than 20 %.

Hard X-ray imaging telescopes on Hinotori observed a super-hot plasma
of 30-35 MK with an emission measure of the order of 1049cm−3 (Tsuneta
et al., 1984, Tanaka, 1987). The same super-hot plasma was detected by
the Bragg-type spectrometer (Tanaka, 1987).

Fast flows of the hot plasma can produce a symmetrical broadening of
the optically thin SXR lines observed during solar flares. This broadening
is larger than the thermal one. A comparison of the observed profiles of the
Fe XXV emission lines with the predictions of the SHTCL model suggests
that the presence in the flare region of several small-scale or one (or a few)
large-scale curved SHTCL (Antonucci et al., 1996).

∗ ∗ ∗

The Yohkoh data obtained simultaneously with the HXT, SXT, and
BCS offered an opportunity for a detailed analysis which is necessary to
distinguish the super-hot plasma components of different origins in different
classes of flares as well as at different phases of the flare development.

Fast outflows of super-hot plasma create complicated dynamics of
plasma in an external (relative to the current layer) region (see Sec-
tion 7.3.2). If the distance between the SHTCL and the magnetic obstacle
is not large, then the outflow becomes wider but does not relax in the coro-
nal plasma before reaching the obstacle. Moreover, if the plasma velocity
still exceeds the local fast-magnetoacoustic-wave velocity, a fast MHD shock
wave appears ahead the obstacle (see Figure 7.6).

If, on the contrary, the distance is large, the outflow of super-hot plasma
relaxes gradually with (or even without) a collisinal shock depending on
the height and the conditions in an active region where a flare occurs (e.g.,
Tsuneta, 1996). For example, collisional relaxations can be fast just near
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the SHTCL if the plasma density is relatively high but its temperature
inside the reconnecting current layer is relatively low.

We do not discuss in this Chapter an existance of slow or fast MHD
shocks (or other MHD discontinuities) which may be attached to external
edges of the collisionless SHTCL. It will be reasonable to discuss such struc-
tures as a part of the current layer evolutionarity problem in Chapter 10,
see also Exercise 10.1.

7.1.3 On the particle acceleration in a SHTCL

The collisionless transformation of the magnetic energy into kinetic energy
of particles inside the non-steady 2D reconnecting current layer (RCL) was
introduced by Syrovatskii (1966a) as a dynamic dissipation. An essential
peculiarity of the dynamic dissipation is that

the inductive electric field E0 is directed along the current in the
RCL; this field does positive work on charged particles, thus increas-
ing their energy.

Naturally, some instabilities are excited in the plasma-beam system in the
RCL. Wave-particle interactions transform a part of this work into direct
heating of ions and electrons.

Three-component collisionless reconnection (Ono et al., 1996; Horiuchi
and Sato, 1997) includes several natural complications. For example, large
ion viscosity possibly contributes to the thermalization process of the ion
kinetic energy. However the general inference as to the possibility of par-
ticle acceleration and heating inside the collisionless RCL (i.e. dynamic
dissipation of the magnetic field) remains valid and is used in the SHTCL
model. This allows us to consider the SHTCL as the primary source of flare
energy and, at least, the first-step acceleration mechanism.

7.2 Coronal HXR sources in flares

7.2.1 General properties and observational problems

An unexpected feature of solar flares is the presence of a HXR source located
in the corona (Figure 7.3). Such emission interpreted as the bremsstrahlung
of fast electrons was not predicted by theory because of very low density
of coronal plasma. Space observations before the Yohkoh satellite had not
sufficient sensitivity to observe these relatively faint emissions.

At first, a coronal source of HXRs was detected in the impulsive flare
which occurred at the limb on 1992 January 13 and is well known as Ma-
suda’s flare (Masuda et al., 1994). The source was observed in the HXT
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Figure 7.3: A coronal HXR
source in a flare: the non-
thermal (N) and quasi-thermal
(T ) components of the HXR
emission above a flare loop FL.
A and B are the chromospheric
HXR footpoints.

energy bands M1 (23-33 keV) and M2 (33-53 keV) and had a relatively
hard spectrum with index γ ∼ 4. It was located above a SXR flare loop.
Another source was observed in the L-band (14-23 keV), had a very soft
spectrum, and looked similar to the SXR loop. This quasi-thermal emission
of a ‘superhot’ (with electron temperature Te

>∼ 30 MK) plasma started in
the impulsive phase and became dominant in the gradual phase of the flare.
In some flares, non-thermal sources seemed to be too weak and only such
quasi-thermal component was observed during almost the whole flare pe-
riod. For example, in the flare of 1992 February 6, the HXR spectrum was
fitted by the thermal spectrum with Te ∼ 40 MK (Kosugi et al., 1994).

Masuda’s analysis was extended by Petrosian et al. (2002). Of 18 X-ray-
bright limb flares analyzed, 15 showed detectable loop top (LT) emission.
The absence of LT emission in the remaining cases was most likely due to the
finite dynamic range of the HXT. The coronal LT emission is presumably
a common feature of all flares. This is one of the important properties
of flares, which has to be investigated by using high resolution data of
the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI )
satellite (Lin et al., 2002).

Different types of coronal HXR sources may exist simultaneously even
in a single flare (Masuda, 2002). Some sources slowly move upward during
a flare. For example, in the flare of 1992 October 4, a clear upward motion
was observed in the impulsive phase as shown in Figure 2 in Masuda et
al. (1998). The flare had a multiple spikes in the HXR time profile. The
position of the footpoints (FPs) changed at the time of each spike. This
observation suggests that the energy release process proceeds not only in
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a vertical direction, like reconnection in the ‘standard’ model, but also in
horizontally-different places.

The number of impulsive flares, in which the presence of the above-the-
loop-top (ALT) source was well confirmed, was small. Mainly, these were
three flares: 1992 January 13, 1993 February 17, 1994 January 16. Their
L-band images had been synthesized by Sato et al. (1999). However, these
flares did not look intense enough for an analysis of motion of the coronal
source.

Due to the work in recalibrating the HXT and improvement of the
software, it became possible to study the coronal source in long-duration
events (LDEs). The size of LDEs is generally larger than that of impulsive
flares. In a typical LDE, the extended HXR source lies above or slightly
overlapping the SXR loops (Sato, 1997; Masuda et al., 1998). The source
observed in the L-band has two components – thermal and non-thermal.
The source is maintained for a much longer time than the compact sources
in impulsive flares. The shape of the HXR source is indicative of a high-
temperature cusp region tracing an arcade of loops (Sato, 1997).

In the X1.2 flare on 1998 April 23, coronal HXR sources showed complex
structure unlike any previously observed (Sato, 2001). Dominant thermal
and nonthermal sources did not come from the same loop-top region. Non-
thermal sources included two sources in the low corona (∼ 3 × 103 km)
and an extended source in the high corona (∼ 5 × 104 km). The low and
high coronal sources had common features such as a hard spectrum and a
related evolution of spatial structures. The high coronal source showed a
delayed peak. These observations suggest that energetic phenomena occur
in the low corona at first, and energized electrons are then injected into a
high coronal region (Sato, 2001).

7.2.2 Upward motion of coronal HXR sources

Harra-Murnion et al. (1998) analyzed two LDEs observed by Yohkoh. They
concluded that the SXR loops were located below the HXR emission of
the ALT source. For the LDE of 1992 November 2, the ALT source rose
with a velocity of ≈ 3 km/s. For the 28 June 1992 event, it was not
possible to follow the HXR images for a long time due to the poor count
statistics. So the ascent velocity was not estimated. The improved L-band
images synthesized with the revised MEM for three LDEs, including the
1992 November 2 event, have been published (see Figure 13 in Sato et
al., 1999) but the ascent velocity was not estimated.

The RHESSI mission provides high-resolution imaging from soft X-rays
to γ-rays and allows the HXR source motions to be studied in detail. For
example, the HXR observations of the 2002 July 23 flare show FP emissions



7.2. Coronal HXR Sources in Flares 163

originating from the chromospheric ribbons of a magnetic arcade and a
coronal (LT or ALT) source moving with a velocity of ∼ 50 km/s (Krucker
et al., 2003; Lin et al., 2003). Some part of this velocity is presumably
directed upward, another part along the ribbons. LT and FP sources are
also seen in the limb X28 flare on November 4, 2003. The limb flare on
2002 April 15, demonstrates that, after the HXR peak, the coronal HXR
source moved upward at velocity ∼ 300 km/s, presumably indicating a
fast upward outflow from reconnecting current layer (RCL) or its upward
expansion (Sui and Holman, 2003).

Sui et al. (2004) studied the RHESSI imagies of three homologous flares
that occurred between April 14 and 16, 2002. The flares share the following
common features: (a) The higher energy loops are at higher altitude than
those of lower energy loops, indicating the hotter loops are above the cooler
ones. (b) Around the start of the HXR impulsive phase, the altitude of the
looptop centroid decreases with time. (c) Then the altitude increases with
time with velocities up to 40 km/s. (d) A separate coronal source appears
above the flare loop around the start time and stays stationary for a few
minutes. (e) The looptop centroid moves along a direction which is either
away from or toward the coronal source above the loop.

These features are presumably associated with the formation and de-
velopment of a RCL between the looptop and the coronal source. Physical
parameters of such RCL seem to be consistent with the model of super-hot
turbulent-current layer (SHTCL). Moreover Sui et al. (2004) found a cor-
relation between the loop growth rate and the HXR (25-50 keV) flux of the
flare. The faster the reconnection site moves up, the faster the reconnec-
tion rate. More energetic electrons are produced and, therefore, more HXR
emission is observed.

Different parts of the flare ‘mechanism’ in the corona can be seen in
HXR emission, depending on conditions. These parts are the reconnection
downflows in a cusp area, the reconnection site itself and with its vicin-
ity, the reconnection upflows with or without ‘plasmoid’. They certainly
have different physical properties and demonstrate different observational
signatures of the flare mechanism, that should be studied in detail. We
start such a study from the simplest situation, a slow upward motion of the
coronal HXR source above the SXR loop in a limb flare.

7.2.3 Data on average upward velocity

Somov et al. (2005b) have searched through the Yohkoh HXT/SXT Flare
Catalogues (Sato et al., 2003) for appropriate limb flares using Masuda’s two
criteria: (a) The heliocentric longitude of an active region must be greater
than 80 ◦. This ensures maximum angular separation between the LT and
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FP sources. (b) The peak count rate in the M2-band must be greater than
10 counts per second per subcollimator (counts s−1 SC−1). Thus at least
one image can be formed at energies 33-53 keV, where thermal contribution
is expected to be lower.

Masuda (1994) found 11 such limb flares before 1993 September. After
1993 September up to 1998 August, Petrosian et al. (2002) found additional
8 flares. Thus there were 19 flares from 1991 October through 1998 August
that satisfy these conditions. Only 15 of these flares show detectable LT
emission. We (in this Section Somov et al., 2005b) have added some limb
flares after 1998 August, that met Masuda’s criteria. However, for the study
of the upward motion of a coronal HXR source, we selected from this set
only 6 flares that have a relatively simple structure: a compact LT source
moving upward during sufficiently long time.

Some flares have complex behavior and structure with multiple LT and
FP sources (see Aschwanden et al., 1999; Petrosian et al., 2002). The
coronal sources may appear and disappear, change direction of motion, or
combine with another source as a flare evolves (e.g., the limb flare of 1993
February 17 at 10:35 UT); this can lead to erroneous interpretations if the
spatial and time resolution is not sufficiently high. After all removings, we
limited our analysis to the 6 flares. For 5 of these flares V > 3 σ, where
the average velocity V and the velocity dispersion σ were determined by a
linear regression. Two of them are presented below.

1991 December 02.— The M3.6 flare at approximately 04:53 UT with
the location coordinates N16◦ E87◦ occurred in the active region 6952,
which just started to appear from the East limb (Figure 7.4).

Two upper panels show the HXT images in the M2 band (33–53 keV) in-
tegrated from 04:52:48.2 UT to 04:53:22.7 UT (left) and from 04:53:47.7 UT
to 04:54:09.2 UT (right). The eight contour levels are 12 %, 24 %, 36 %,
48 %, 60 %, 70 %, 82 % and 98 % of the peak intensity for each panel. The ar-
rows show the direction of the HXR source motions. The lower panel shows
the height of the upper source centroid as a function of time. The dashed
straight line represents the averaged upward motion derived by the method
of least squares to estimate the average upward velocity. The dashed thin
curve is the HXR emission coming from the selected coronal source area as
a function of time.

Presumably, a low part of the flare was partially occulted by the solar
limb and, for this reason, it did not show significant chromospheric emis-
sion in the M2-band (33-53 keV) at first. Alternatively, the chromospheric
emission in the beginning of the flare was weak indeed. The HXT images
show two sources (Figure 7.4) associated with a compact flaring SXR loop.
One of them that appears high above the limb was probably an LT source.
It was observed rather inside the SXT loop than above it (see Petrosian
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Figure 7.4: The HXR sources and their motions during the 1991 December 2
flare. Upper panels: HXT images in two different times. Lower panel :
Height of the upper source as a function of time. The dashed straight line
shows the averaged upward motion. The dashed thin curve is the HXR
emission coming from the upper coronal source.
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et al., 2002). The other fainter source lay at lower altitudes and could be
either an LT or an FP source. This source also shifted its position but we
were not able to investigate its motion with sufficient accuracy.

In contrast to the Masuda flare, the coronal HXR source here was bright
and long lived (see the dashed thin curve which shows the HXR emission
coming from the coronal source area as a function of time). During the
initial phase, the average height of the source did not change significantly.
The motion seems to be downward in the beginning of the flare like the
LT centroid motion in the homologous flares observed by RHESSI (Sui
et al., 2004). The height of the LT source begun to increase only after
04:53:20–04:53:30 UT. We tried to make the downward part of a motion
track. However an accuracy was not sufficient to study this part. It is
enough only to estimate the average velocity during the HXR flare. The
average upward velocity of the LT source is ≈ 23±7 km/s. The lower (FP)
source showed the most strong emission at the time when the LT source
rose.

1992 January 13.— Masuda’s flare started at approximately 17:27 UT,
it was one the most famous events and had been studied extensively. The
flare occurred close to the west limb of the Sun. In Figure 7.5 we see three
bright sources here, one LT-source and the other two at the footprints. The
coronal HXR source located well above the apex of the SXR loop. So this
is an ALT source. Its emission was weaker than the FP emission. From
17:28:03 to 17:28:07 UT the LT source disappeared, then arose again for
several seconds and faded away completely. Its displacement was about 2 ′′.
The corresponding upward velocity is ≈ 16 ± 2 km/s.

Slow ascending motions of sources can be seen in several flares. However,
only in five flares, it was possible to estimate the velocity of the upward
motion with values between 10 and 30 km/s. These results do not mean, of
course, that the HXR source moves monotonically upward. We simply cal-
culated just the average upward velocity expected in view of the standard
model of flares. On the other hand, the motion seems to be downward, for
example, in the beginning of the flare shown in Figure 7.4. The accuracy
of the Yohkoh HXT data was not sufficiently high to investigate this ac-
tual effect discovered by RHESSI (Sui and Holman, 2003). Therefore, the
motion of the coronal HXR sources in flares should be studied statistically
better by using the RHESSI high-resolution imaging data.
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Figure 7.5: The same as Figure 7.4 for the 1992 January 13 flare, Masuda’s
flare.



168 Chapter 7. Reconnection and Collapsing Traps

7.3 The collapsing trap effect in solar flares

7.3.1 Fast electrons in coronal HXR sources

Fletcher (1995) proposed that the coronal HXR sources as well as the FP
sources are nonthermal in origin and are generated by the same population
of electrons, with enhanced emission near the top of loops due to initially
high pitch-angle distribution of accelerated electrons orbiting the magnetic
field near their site of injection before being scattered into the lose-cone.
Hudson and Ryan (1995) argued that the impulsive part of the coronal
source cannot be thermal, because the thermalization timescale for the
superhot plasma with the inferred temperature and density is longer than
the observed timescale of variations of emission.

According to Kosugi (1996), the trapped fast electrons create the coro-
nal ALT source of HXR. Meanwhile, the electrons precipitating from the
trap generate the thick-target bremsstrahlung in the chromosphere, ob-
served as the FP sources of HXR near the feet of a flare loop. The collapsing
trap model, where mirroring particles become energized by the first-order
Fermi-type acceleration mechanism in the cusp region between the superhot
turbulent-current layer (SHTCL) and the fast oblique collisionless shock
(FOCS) front, explains several observed properties of the coronal HXR
source (Somov and Kosugi, 1997). One of the questions in the context of
this Section is whether or not the observed upward motion of the coro-
nal HXR source in limb flares can be related to the upward motion of the
FOCS. An answer to this question depends on two factors: (a) physical
properties of the FOCS, and (b) physical and geometrical properties of a
magnetic obstacle (MO), the region of strong magnetic field, which stops
the fast downflow of superhot plasma and which is observed in SXR as a
coronal loop or an arcade of loops.

7.3.2 Fast plasma outflows and shocks

Reconnection serves as a highly efficient engine to convert magnetic energy
into thermal and kinetic energies of plasma flows and accelerated parti-
cles (Section 3.1). The collisionless reconnection theory (more exactly, the
model of a super-hot turbulent-current layer (SHTCL, Section 6.3) un-
der the coronal conditions derived from the Yohkoh data) shows that the
SHTCL can be considered as the source of flare energy and, at least, the
first-step mechanism in a two-step acceleration of electrons and ions to high
energies (Somov and Kosugi, 1997).

Fast outflows of super-hot collisionless plasma create complicated dy-
namics in an external (relative to the SHTCL) region; this dynamics should
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be a topic of special research. From the physical point of view, it is difficult
to find a proper approximation which takes into account both collisionless
and collisional effects. From the mathematical point of view, it is not simple
to construct a self-consistent model of the collapsing trap even in a simple
kinematic 2D MHD approximation (Giuliani at al., 2005).

It is clear, however, that the interaction of the fast flow of super-hot
plasma with an external plasma and magnetic field strongly depends on
the initial and boundary conditions, especially on the relative position of
the outflow source (the SHTCL) and the magnetic ‘obstacle’ – the region
of the strong external field. Near the boundary of this region the energy
density of the outflow becomes equal to the energy density of the field which
tries to stop the flow. In Figure 7.6 the magnetic obstacle is shown as a
shadowed loop placed schematically above two sunspots N and S in the
photosphere Ph.
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Figure 7.6: A SHTCL as the
source of the super-hot plasma
outflow with velocity v1. Mag-
netic obstacle (MO) is the SXR
loop shown by shadow. v2 is the
postshock velocity, v3 is the ve-
locity of expansion of the com-
pressed plasma along the field
lines toward the feet of the loop.

Something similar was observed by the SXT on the Yohkoh during the
limb flare in 1999 January 20. Images from the SXT show the formation of
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a large arcade of loops as well as high-speed flows in the region immediately
above the flare loops (McKenzie and Hudson, 1999). Downward-traveling
dark voids appear in the SXR images. They presumably represent the
cross-section of flux tubes; their downward motion would be interpretable
as shrinkage of the field lines due to magnetic tension. Some of the voids
slow down and stop as they approach the top of the arcade.

The coronal imaging instruments on SOHO study fast (> 1000 km/s)
coronal mass ejections (CMEs) which may be responsible for accelerat-
ing some of the energetic particles very high in the corona. The LASCO
coronagraphs identify motion of plasma in both directions along a radius
vector. Simnett (2000) has suggested that such bi-directional flows seen by
LASCO are evidence for reconnection in coronal streamers (Somov, 1991).
Therefore the SOHO observations have identified the sites of reconnecting
magnetic fields in the high corona.

v
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Figure 7.7: A magnetic trap between the SHTCL and the shock front;
an accelerated particle moves with velocity vp1 along the field lines. Big
arrows F show heat fluxes, directed along the field lines.

Let us assume that the distance l1 between the source of a fast outflow
(an edge of the HTTCS) and the stagnation point 2 at the obstacle is not too
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large (Figure 7.7). This means that the outflow becomes wider but does not
relax in the coronal plasma before reaching the obstacle. Moreover, if the
flow velocity still exceeds the local fast magnetoacoustic wave velocity, a fast
MHD shock appears ahead the obstacle, which is similar to the terrestrial
bow shock ahead the magnetosphere.

By analogy with the ordinary hydrodynamics of supersonic flows, we
assume that the shock front reproduces the shape of the obstacle smoothly
and on a larger scale (Figure 7.7), more exactly, the shape of the upper
part of the obstacle facing the incoming flow. This is true if the incoming
flow is uniform or quasi-uniform. Generally, the incoming flow may signifi-
cantly differ from a quasi-uniform one. Hence the shock may have a more
complicated shape. This is, however, not crucial to the effect of the col-
lapsing magnetic trap discussed below. For simplicity, in Figure 7.7, all the
field lines ejected by the SHTCL penetrate through the shock. Therefore
all super-hot plasma and all particles pre-accelerated by the SHTCL, being
frozen into the reconnected field lines, interact with the shock.

For what follows the most important point is that, with respect to the
particles pre-accelerated and to superhot particles energized by the SHTCL,
the shock should be considered as a fast oblique collisionless shock (FOCS).

7.3.3 Particle acceleration in collapsing trap

Being frozen into super-hot plasma, the reconnected field lines move out of
the SHTCL and form magnetic loops at the height l1 above the magnetic
obstacle. The top of each loop moves with a high velocity v1 ≈ 1400 −
2000 km s−1. The local fast magnetoacoustic wave speed ≈ 1000 km s−1.
Therefore a fast shock may appear between the SHTCL and the obstacle.
Let us assume that both feet of a loop penetrate through the shock front
ahead the obstacle.

Depending on the velocity and pitch-angle, some of the particles pre-
accelerated by the SHTCL may pass directly through the magnetic field
jump related to the shock. Others may either be simply reflected by the
shock or interact with it in a more complicated way.

For the particles reflected by the shock the magnetic loop represents
a trap whose length decreases from the initial length L0 ≈ 2l1 to zero
(collapses) with the velocity vm ≈ 2v1. Therefore the lifetime of each
magnetic field line – of each collapsing trap – is equal to

t1 ≈ l1/v1 ∼ 10 s , (7.4)

if l1 ≈ 104 km and v1 ≈ 103 km s−1 are taken as the characteristic values
for the length and velocity.
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During the trap lifetime t1 the reflected fast particles move between two
magnetic corks – the reflecting points where the field line crosses the shock
front. Since these corks (or magnetic mirrors) move to each other with the
velocity vm, the particles trapped inside the trap are ‘heated’ quickly by
the first-order Fermi-type mechanism.

For the electrons pre-accelerated by the SHTCL we estimate the charac-
teristic value of the velocity as Ve,1 ≈ 1010 cm s−1. Hence the characteristic
time between two subsequent reflections of a particle is estimated as

τ1 ≈ 2l1/Ve,1 ∼ 0.1 s . (7.5)

Since τ1 
 t1, the conditions of the periodic longitudinal motions change
adiabatically slowly (see vol. 1, Section 6.1). Then the longitudinal adia-
batic invariant is conserved (vol. 1, Section 6.2):

I =
∮

p ‖ dl ≈ p ‖(t) · 4 l(t) = const . (7.6)

Here p ‖ = p cos θ is the particle longitudinal momentum, θ is its pitch
angle. From (7.6) it follows that

p ‖(t) = p ‖(0)
l1

l(t)
≈ p ‖(0)

1
1 − (t/t1)

. (7.7)

When the magnetic trap collapses, the longitudinal momentum of a
particle grows infinitely within the finite lifetime t1.

Neglecting an unknown change of the transversal momentum, we see that
the particle kinetic energy of longitudinal motion increases within the time
scale t1:

K ‖(t) =
1

2m
p 2

‖ = K ‖(0)
1

[1 − (t/t1)]2
. (7.8)

That is why we can assume, for example, that just the trap lifetime t1 is
responsible for the observed few-second delay in the higher energies of the
hard X-ray (HXR) and gamma-ray emission (Bai et al., 1983).

The main objection usually raised against Fermi acceleration is that
the Fermi mechanism is ‘neither efficient nor selective’. A magnetic mirror
reflects particles on a non-selective basis: thermal particles may be reflected
as well as supra-thermal ones. Hence most of the primary energy – the
kinetic energy of the fast flow of super-hot plasma – goes into bulk heating
of the plasma rather than the selective acceleration of only a small minority
of the fast particles. This ‘disadvantage’ appears to be the main advantage
of the Fermi mechanism when applied to solar flares in the frame of the
collapsing trap model (Somov and Kosugi, 1997).
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First, the collapsing trap heats and compresses the super-hot plasma.
Thus it becomes visible in HXR emission. Second, the same mechanism
lifts some electrons from a quasi-thermal distribution and accelerates them
to higher energies; even better, it can further accelerate the electrons pre-
accelerated by the SHTCL. The trap of the accelerated electrons is seen as
the non-thermal component of the coronal HXR source in flares. Third,

being non-selective, the collapsing magnetic trap can accelerate not
only electrons but also protons and other ions to high energies.

This is a big problem for many other acceleration mechanisms.
Super-hot plasma trapped inside the collapsing loops certainly also con-

tributes to the HXR and radio emission above the SXR loop. The total coro-
nal HXR emission consists of two parts: non-thermal and quasi-thermal.
The model predicts, however, a significant difference between them. Being
more collisional, the super-hot plasma is less confined inside the trap. For
this reason the non-thermal emission dominates at higher energies and oc-
cupies a more compact ‘vertical’ (Figure 7.8) HXR source in comparison
with more extended ‘horizontal’ distribution of a quasi-thermal emission
at lower energies. This seems to be consistent with the Yohkoh results
(Tsuneta et al., 1997).

V
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T

Chromosphere

Limb

A B

Figure 7.8: The non-thermal (N)
and quasi-thermal (T ) compo-
nents of the coronal HXR emis-
sion and their apparent motion.
A and B are the chromospheric
footpoints.

Electron acceleration in the collapsing trap seems to be consistent with
the results of the wavelet analysis of the solar flare HXR (Aschwanden
et al., 1998). This analysis yields a dynamic decomposion of the power at
different timescales τ . The lifetime t1 may correspond to the dominant peak
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time τpeak detected in the wavelet scalegrams. The collapsing trap scenario
is also consistent with the observed correlations, because the acceleration
time is proportional to the spatial size of the collapsing trap (τmin ∼ l1).

7.3.4 The upward motion of coronal HXR sources

Further development required for the collapsing trap model is a quantitative
consideration of the upward motion of the coronal X-ray sources predicted
by the model (Somov et al., 1999). It is clear that the super-hot plasma
heated and compressed inside the trap will unavoidably relax in the down-
stream flow behind the shock. This relaxation is strongly influenced by
thermal conductive cooling, hydrodynamic expansion as well as by radia-
tive energy losses. The dynamics of relaxation may not be simple and will
depend on the initial and boundary conditions.

The behaviour of the magnetic field behind the shock seems to be more
determined – the incoming field lines simply accumulate between the ob-
stacle and the shock. Hence the shock must move upward together with
the HXR source in the upstream side (Figure 7.8) and the SXR source in
the downstream side.

In the adiabatic approximation, the postshock pressure reach extremely
high values. As a result, the shock is accelerated to speeds of order 1000
km/s. This value exceeds by two orders of magnitude the upward speed of
the coronal HXR source observed in flares, which usually does not exceed
10–20 km/s.

Postshock energy losses considerably change shock parameters. Bo-
gachev et al., (1998) have considered three mechanisms of energy losses
from the shock-compressed super-hot plasma: anomalous heat conduction,
hydrodynamic expansion, and radiation. According to estimates, timescales
of the first two processes do not exceed a few seconds, whereas radiative
losses are much slower and can be initially neglected.

A fast removal of heat from the postshock super-hot plasma and its
expansion lead to a considerable decrease of the temperature and, as a
consequence, of the gas pressure. As a result, the shock speed v2 noticeably
decreases. For large flow speeds v1, the shock speed v2 is proportional to
the Alfvén speed upstream, i.e. directly proportional to the field B1, frozen
into the plasma, and inversely proportional to the square root of electron
number density n1. In particular, if we adopt n1 ≈ 2 × 109 cm−3 and
B1 ≈ 0.5 G, then the shock is moving at a speed of order 10 km/s, which
coincides with the observed upward speed. Of course, this combination of
n1 and B1 is not unique; we give it here just as the most plausible one on
the basis of the Yohkoh observations.

However, if we assume higher densities of the flow, we have to assume
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Figure 7.9: The two level structure of the SXR and Hα loops in the solar
corona, created as a result of an instability of the magnetic obstacle. NL is
the photospheric neutral line, B represents the magnetic field lines in the
corona.

stronger fields frozen into super-hot plasma. This is acceptable. On the
other hand, the shock speed only very weakly depends on the temperature
and on the upstream speed. For this reason, a considerable uncertainty
in these quantities (especially in the latter one) practically does not affect
the results. Moreover, taking into account that the magnetic obstacle is
not ideal (Somov et al., 1999) and hence some of plasma with the frozen-in
field can ‘filter through’ it (Figure 7.9) with speeds v4 ≈ v2, allows us to
obtain better agreement of the upward shock speed v2 with observations
for stronger magnetic fields in the corona above the shock.

To conclude, a fast MHD or collisionless shock wave with heat-conduction
cooling of the postshock plasma may play an important role in the dynam-
ics of a coronal source of HXR during a solar flare. The upward speed of
the shock is determined by two processes: accumulation of magnetic flux
behind the shock and ‘filtering’ of cold dense filaments (toghether with the
frozen-in field) through the magnetic obstacle. This scenario agrees with
the observed hierarchy of hot (SXR) and cool (Hα) loops. For a more
detailed comparison of the observed distributions of temperature and emis-
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sion measure of the source, a more accurate model is required: it must take
into account the actual structure of interaction of the super-Alfvén flow of
super-hot magnetized plasma with a magnetic obstacle.

7.3.5 Trap without a shock wave

If, on the contrary to the assumption made above, the distance l1 between
the SHTCL and the stagnation point is large enough, then the fast flow
of ‘super-hot’ plasma relaxes gradually with (or without) collisional shock
depending on the height of the reconnection site and other conditions in an
active region where the flare occurs. F or example, collisional relaxation
can be very fast near the SHTCL if the plasma density is relatively high
but the temperature inside the RCL is relatively low.

Let us consider the configuration of a magnetic trap with field lines
rapidly moving down but without any shock (Figure 7.10). The strongly de-

l 1

v
1

SHTCL

l2
Ph

MO

Figure 7.10: Trap without a
shock. A SHTCL provides the
plasma outflow. The stretched
field lines are carried away
from the SHTCL by recon-
nection outflow and relax to
a lower energy state. Since
the magnetic field strength in-
creases with decreasing coro-
nal height, particles can be
trapped within this configura-
tion.

creasing length of the field lines leads to a decrease of the distance between
the mirror points and a consequent Fermi-type acceletation of charged par-
ticles, while the general increase of the magnetic field strength gives rise to
the betatron acceleration. Both effects are considered in Section 7.4 in the
adiabatic approximation by using two adiabatic invariants. For the sake of
simplicity, let us consider the first effect as a starting point.
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In this case, instead of formula (7.7), we have for the collapsing trap
without a shock wave another simple formula:

p ‖(t) ≈ p ‖(0)
(l1 + l2)

l2 + (l1 − v1t)

⇒ p ‖(0)
(l1 + l2)

l2
, when t → t1 . (7.9)

So the trap does not collapse.
If the height l2 of the magnetic obstacle is not small, the adiabatic

heating of fast particles inside the trap is less efficient than in the collapsing
trap with the shock. The small height l2 is probably the case of the so-called
‘shrinkage’ of X-ray loops, as observed by the Yohkoh SXT (e.g. McKenzie
and Hudson, 1999). Such situation is expected when magnetic reconnection
takes place high in the corona, far from photospheric magnetic-field sources,
as follows, for example, from the SOHO observations made with LASCO
(e.g. Wang and Sheeley, 2002; see also discussion in Section 7.3.2).

7.4 Acceleration mechanisms in traps

7.4.1 Fast and slow reconnection

Collapsing magnetic traps are formed by the process of collisionless recon-
nection in the solar atmosphere. Figure 7.11 illustrates two possibilities.
Fast (Figure 7.11a) and slow (Figure 7.11b) modes of reconnection are
sketchy shown in the corona above the magnetic obstacle, the region of a
strong magnetic field, which is observed in SXRs as a flare loop (shaded).

In the first case, let us assume that both feet of a reconnected field
loop path through the shock front (SW in Figure 7.11a) ahead the ob-
stacle. Depending on the velocity and pitch-angle, some of the particles
preaccelerated by the SHTCL may penetrate through the magnetic-field
jump related to the shock or may be reflected. For the particles reflected
by the shock, the magnetic loop represents a trap whose length L(t), the
distance between two mirroring points at the shock front, measured along
a magnetic-field line, decreases from its initial value L(0) ≈ 2L0 to zero
(the top of the loop goes through the shock front) with the velocity ≈ 2v1.
Therefore, the lifetime of each collapsing trap t1 ≈ L0/v1.

In the case of slow reconnection, there is no a shock wave, and the trap
length L(t) is the distance between two mirroring points (M1 and M2 in
Figure 7.11b), measured along a reconnected magnetic-field line. In both
cases, the electrons and ions are captured in a trap whose length decreases.
So the particles gain energy from the increase in parallel momentum.
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Figure 7.11: Plasma flows related to a super-hot turbulent-current layer
(SHTCL): the inflows with a relatively low velocity v0, the downward out-
flow with a super-Alfvén velocity v1. (a) SW is the shock wave above the
magnetic obstacle. v2 is the postshock velocity, v‖ is the velocity of spread-
ing of the compressed plasma along the field lines toward the feet of the
loop. (b) The supra-arcade downflow and collapsing trap without a shock.
M1 and M2 are the mirroring points where the field becomes sufficiently
strong to reflect fast particles above the chromosphere (Ch).

Note that the opposite effect – a decrease in parallel momentum and the
related adiabatic cooling – should occur for particles trapped between two
slow shocks in the Petschek-type MHD reconnection model (see Tsuneta
and Naito (1998), Figure 1) because the length of the trap (the distance
between the two slow shocks in the reconnection downflow) increases with
time. However, Tsuneta and Naito considered acceleration by a fast termi-
nation shock; more exactly, they assumed that nonthermal electrons in solar
flares can be efficiently accelerated at the fast shock (see the same Figure)
by the first-order Fermi-type process if the diffusion length is sufficiently
small. The opposite limiting case will be assumed in what follows.

Thus, in the first approximation, we shall neglect collisions of particles
ahead of the shock wave (Figure 7.11a) or in the trap without a shock
(Figure 7.11b). In both cases, the particle acceleration can be demonstrated
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Figure 7.12: Two main effects in a collapsing trap. (a) Magnetic mirrors
move toward each other with velocity vm. (b) Compression of the trap
with velocity vt.

in a simple model – a long trap with short mirrors (Figure 7.12). The
decreasing length L(t) of the trap is much larger than the length lm of
the mirrors; the magnetic field B = B1 is uniform inside the trap but
grows from B1 to B2 in the mirrors. The quantity B2/B1 is called the
mirror ratio; the larger this ratio, the higher the particle confinement in
the trap. The validity conditions for the model are discussed by Somov
and Bogachev (2003).

7.4.2 The first-order Fermi-type acceleration

We consider the traps for those the length scale and timescale are both much
larger than the gyroradius and gyroperiod of an accelerated particle. Due
to strong separation of length and timescales, the magnetic field inside the
trap can be considered as uniform and constant (for more detail see Somov
and Bogachev, 2003). If so, then the longitudinal momentum of a particle
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increases with a decreasing length L(t), in the adiabatic approximation, as

p ‖(l) =
p ‖ 0

l
. (7.10)

Here l = L(t)/L(0) is the dimensionless length of the trap. The transverse
momentum is constant inside the trap,

p ⊥ = p ⊥ 0 , (7.11)

because the first adiabatic invariant is conserved:

p 2
⊥

B
= const . (7.12)

Thus the kinetic energy of the particle increases as

K(l) =
p 2

‖ + p 2
⊥

2 m
=

1
2 m

(
p 2

‖ 0

l 2 + p 2
⊥ 0

)
. (7.13)

The time of particle escape from the trap, l = les, depends on the initial
pitch-angle θ0 of the particle and is determined by the condition

tg θ0 =
p ⊥ 0

p ‖ 0

≤ 1
R les

, (7.14)

where

R =
(

B 2

B 1
− 1
)1/2

. (7.15)

The kinetic energy of the particle at the time of its escape is

Kes =
p 2

⊥ 0

2 m

(
R2 + 1

)
=

p 2
⊥ 0

2 m

B 2

B 1
. (7.16)

One can try to obtain the same canonical result by using more complicated
approaches. For example, Giuliani et al. (2005) numerically solved the drift
equations of motion (see vol. 1, Section 5.2). However it is worthwhile to
explore first the simple analytical approach presented in this Chapter to
investigate the particle energization processes in collapsing magnetic traps
in more detail before starting to use more sophisticated methods and large-
scale simulations.

7.4.3 The betatron acceleration in a collapsing trap

If the thickness of the trap also decreases with its decreasing length, then
the strength of the field B1 inside the trap increases as a function of l, say
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Figure 7.13: The betatron effect in a collapsing magnetic trap. As the trap
is compressed with velocity vt, the loss cone becomes larger. A particle
escapes from the trap earlier with an additional energy due to betatron
acceleration.

B 1(l). In this case, according to (7.12), the transverse momentum increases
simultaneously with the longitudinal momentum (7.10):

p ⊥(l) = p ⊥ 0

(
B 1(l)
B 1

)1/2

. (7.17)

Here B 1 = B 1(1) is the initial (at l = 1) value of magnetic field inside the
trap.

The kinetic energy of a particle

K(l) =
1

2 m

(
p 2

‖ 0

l 2 + p 2
⊥ 0

B 1(l)
B 1

)
(7.18)

increases faster than that in the absence of trap contraction, see (7.13).
Therefore it is natural to assume that the acceleration efficiency in a col-
lapsing trap also increases.

However, as the trap is compressed, the loss cone becomes larger (Fig-
ure 7.13),

θes(l) = arcsin
(

B 1(l)
B 2

)1/2

. (7.19)

Consequently, the particle escapes from the trap earlier.
On the other hand, the momentum of the particle at the time of its

escape satisfies the condition

p ‖(l) = R(l) p ⊥(l) , (7.20)
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where

R(l) =
(

B 2

B 1(l)
− 1
)1/2

. (7.21)

Hence, using (7.17), we determine the energy of the particle at the time of
its escape from the trap

Kes =
p ⊥(l) 2

2 m

(
R(l) 2 + 1

)
=

p 2
⊥ 0

2 m

B 1(l)
B 1

B 2

B 1(l)
=

p 2
⊥ 0

2 m

B 2

B 1
. (7.22)

The kinetic energy (7.22), that the particle gains in a collapsing trap with
compression, is equal to the energy (7.16) in a collapsing trap without
compression, i.e. without the betatron effect.

Thus the compression of a collapsing trap (as well as its expansion or
the transverse oscillations) does not affect the final energy that the particle
acquires during its acceleration.

The faster gain in energy is exactly offset by the earlier escape of
the particle from the trap

(Somov and Bogachev, 2003).
The acceleration efficiency, which is defined as the ratio of the final

(l = lls) and initial (l = 1) energies, i.e.

Kes

K(1)
=

p 2
⊥ 0

p 2
⊥ 0 + p 2

‖ 0

B 2

B 1
=
(

p ⊥ 0

p 0

)2
B 2

B 1
, (7.23)

depends only on the initial mirror ratio B 2/B 1 and the initial particle
momentum or, to be more precise, on the ratio p ⊥ 0/p 0. The acceleration
efficiency (7.23) does not depend on the compression of collapsing trap and
the pattern of decrease in the trap length either.

It is important that

the acceleration time in a collapsing trap with compression can be
much shorter than that in a collapsing trap without compression.

For example, if the cross-section area S(l) of the trap decreases proportion-
ally to its length l:

S(l) = S(1) l , (7.24)

then the magnetic field inside the trap

B 1(l) = B 1(1) / l , (7.25)

and the effective parameter

R(l) =
(

R2 − 1 − l

l

)1/2

, (7.26)
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where R is define by formula (7.15). At the critical length

lcr =
1

1 + R2 , (7.27)

the magnetic field inside the trap becomes equal the field in the mirrors,
and the magnetic reflection ceases to work. If, for certainty, B 2/B 1 = 4,
then lcr = 1/4. So contraction of the collapsing trap does not change the
energy of the escaping particles but this energy is reached at an earlier
stage of the magnetic collapse when the trap length is finite. In this sense,
the betatron effect increases the actual efficiency of the main process – the
particle acceleration on the converging magnetic mirrors.

7.4.4 The betatron acceleration in a shockless trap

If we ignore the betatron effect in a shockless collapsing trap, show in
Figure 7.11b, then the longitudinal momentum of a particle is defined by
the formula (instead of (7.10))

p ‖(t) ≈ p ‖(0)
(l1 + l2)

l2 + (l1 − v1t)
⇒ p ‖(0)

(l1 + l2)
l2

, when t → t1 . (7.28)

The particle acceleration on the magnetic mirrors stops at the time t1 =
l1/v1 at a finite longitudinal momentum that corresponds to a residual
length (l2 in Figure 7.11b) of the trap.

Given the betatron acceleration due to compression of the trap, the par-
ticle acquires the same energy (7.16) by this time or earlier if the residual
length of the trap is comparable to a critical length lcr determined by a
compression law (see Somov and Bogachev, 2003). Thus the acceleration
in shockless collapsing traps with a residual length becomes more plausible.
The possible observational manifestations of such traps in the X-ray and
optical radiation are discussed by Somov and Bogachev (2003). The most
sensitive tool to study behaviour of the electron acceleration in the collaps-
ing trap is radio radiation. We assume that wave-particle interactions are
important and that two kinds of interactions should be considered in the
collapsing trap model.

The first one is resonant scattering of the trapped electrons, including
the loss-cone instabilities and related kinetic processes (e.g., Benz (2002),
Chapter 8). Resonant scattering is most likely to enhance the rate of pre-
cipitation of the electrons with energy higher that hundred keV, generating
microwave bursts. The lose-cone instabilities of trapped mildly-relativistic
electrons (with account taken of the fact that there exist many collaps-
ing field lines at the same time, each line with its proper time-dependent
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loss cone) would provide exitation of waves with a very wide continuum
spectrum. In a flare with a slowly-moving upward coronal HXR source,
an ensemble of the collapsing field lines with accelerated electrons would
presumably be observed as a slowly moving type IV burst with a very high
brightness temperatures and with a possibly significant time delay relative
to the chromospheric footpoint emission.

The second kind of wave-particle interactions in the collapsing trap-
plus-precipitation model is the streaming instabilities (including the current
instabilities related to a return current) associated with the precipitating
electrons.

7.5 Final remarks

In order to interpret the temporal and spectral evolution and spatial dis-
tribution of HXRs in flares, a two-step acceleration was proposed by So-
mov and Kosugi (1997) with the second-step acceleration via the collapsing
magnetic-field lines. The Yohkoh HXT observations of the Bastille-day
flare (Masuda et al., 2001) clearly show that, with increasing energy, the
HXR emitting region gradually changes from a large diffuse source, which
is located presumably above the ridge of soft X-ray arcade, to a two-ribbon
structure at the loop footpoints. This result suggests that electrons are
in fact accelerated in the large system of the coronal loops, not merely in
a particular one. This seems to be consistent with the RHESSI observa-
tions of large coronal HXR sources; see, for example, the X4.8 flare of 2002
July 23 (see Figure 3 in Lin et al., 2003).

Efficient trapping and continuous acceleration also produce the large
flux and time lags of microwaves that are likely emitted by electrons with
higher energies, several hundred keV (Kosugi et al., 1988). We believe
that the lose-cone instabilities (Benz, 2002) of trapped mildly-relativistic
electrons in the system of many collapsing field lines (each line with its
proper time-dependent lose cone) can provide exitation of radio-wave with
a very wide continuum spectrum.

Qiu et al. (2004) presented a comprehensive study of the X5.6 flare on
2001 April 6. Evolution of HXRs and microwaves during the gradual phase
in this flare exhibits a separation motion between two footpoints, which
reflects the progressive reconnection. The gradual HXRs have a harder
and hardening spectrum compared with the impulsive component. The
gradual component is also a microwave-rich event lagging the HXRs by
tens of seconds. The authors propose that the collapsing-trap effect is a
viable mechanism that continuously accelerates electrons in a low-density
trap before they precipitate into the footpoints.
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Imaging radio obsevations (e.g., Li and Gan, 2005) should provide an-
other way to investigate properties of collapsing magnetic traps. It is not
simple, however, to understand the observed phenomena relative to the
results foreseen by theory. With the incessant progress of magnetic recon-
nection, the loop system newly formed after reconnection will grow up,
while every specific loop will shrink. Just because of such a global growth
of flare loops, it is rather difficult to observe the downward motion of newly
formed loops. The observations of radio loops by Nobeyama Radiohelio-
graph (NoRH) are not sufficient to resolve specific loops. What is observed
is the whole region, i.e., the entire loop or the loop top above it. Anyway,
combined microwave and HXR imaging observations are essential in the
future.

7.6 Practice: Exercises and Answers

Exercise 7.1. Consider the velocity and magnetic fields in the vicinity of
the shock front locally at two points. One of them is point 1 related to the
stagnation point 2 at the surface of the magnetic obstacle in Figure 7.7.
The other is point 3 located somewhere far from point 1.

Answer. Near point 3 the reconnection outflow with velocity v1 crosses
the shock front and continues to move downwards relative to the front with
a small perpendicular component v2⊥ and a large velocity component v2‖,
which is parallel to the surface of the front (see Figure 7.14a). In the
presence of the obstacle MO, the first component is compensated by a slow
upward motion of the shock with velocity v sw

2 = −v2⊥.
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Figure 7.14: The velocity and magnetic fields in the vicinity of: (a) an
arbitrary point 3 and (b) point 1 related to the stagnation point 2 at the
magnetic obstacle MO.

Near point 1 the flow crosses the front and diverges in such a way that
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the velocity v2 = 0 at the stagnation point 2. So the plasma mainly flows
out of the vicinity of this point (Figure 7.14a). On the contrary, new
field lines arrive through the shock but, being unidirectional, they cannot
disappear there. They are accumulated between the front and the magnetic
‘wall’. Magnetic field B2 increases. Thus we expect the upward motion of
the shock with some velocity v sw

2 .

Exercise 7.2. Derive an Equation which relates the parameters of the
plasma and magnetic field upstream and downstream the shock in the vicin-
ity of point 1 in Figure 7.14b.

Answer. Let us write the MHD continuity Equations for the fluxes of
mass, momentum, and energy across the shock front. Considering a pure-
hydrogen plasma, we write its pressure and density in terms of the electron
number density n and temperature T :

p = 2nkBT, ρ = mpn, (7.29)

mp is the proton mass, kB is the Boltzmann constant; we also assume that
Te = Tp = T . With (7.29), the conservation laws become:

n1 (v1 + v2) = n2 v2, (7.30)

2n1kBT1 + mpn1 (v1 + v2)
2 +

B 2
1

8π
=

= 2n2kBT2 + mpn2v
2
2 +

B 2
2

8π
, (7.31)

γ

γ − 1
2kBT1

mp
+

(v1 + v2)
2

2
+

B 2
1

4πmpn1
=

=
γ

γ − 1
2kBT2

mp
+

v 2
2

2
+

B 2
2

4πmpn2
. (7.32)

Freezing of the field into the plasma is described by the Equation

B1

n1
=

B2

n2
. (7.33)

Here v1 is the speed of the outflow from the RCL in the immovable reference
frame, connected with the ‘immovable’ obstacle. We neglect the slow proper
motion of the obstacle because the SXR loops move upwards much slower
than the coronal HXR source. In Equations (7.30)–(7.32) velocity v2 ≡ vsw

2
is directed upward and represents the velocity of the shock with respect to
the obstacle. Hence, v1+v2 is the velocity of the plasma inflow to the shock;
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n1 and n2, T1 and T2, B1 and B2 are electron number density, temperature,
and magnetic field upstream and downstream the shock, γ is the adiabatic
exponent.

Equations (7.30)–(7.33) yield a relationship, allowing us to determine
the front velocity v2 from the known onflow parameters n1, T1, B1, and v1:

2v 3
2 + (3 − γ) v 2

2 v1 − (γ − 1) v2v
2
1 −

− (2 − γ) V 2
A

v1 − 2
(
V 2

A
+ V 2

s

)
v2 = 0. (7.34)

Here VA and Vs are the Alfvén and sound speeds in the upstream plasma.

Exercise 7.3. The shock-heated plasma inevitably loses energy because of
fast heat-conduction cooling. Fast expansion of the compressed super-hot
plasma along the field lines also reduces its temperature and pressure. Both
cooling mechanisms play an important role in the energy balance, leading
to a fast decrease of the postshock temperature. Radiative cooling of the
plasma becomes dominating later, at lower temperatures: T2 < 107 K.
Suppose a rapid fall of the temperature T2, which must inevitably result in
a fast decrease of the gas pressure to values negligible in comparison with
the high postshock magnetic pressure:

2n2kBT2 
 B 2
2

8π
. (7.35)

Consider properties of such a shock with fast cooling.
Answer. Condition (7.35) allows us to simplify Equation (7.31):

2n1kBT1 + mpn1 (v1 + v2)
2 +

B 2
1

8π
= mpn2v

2
2 +

B 2
2

8π
. (7.36)

Moreover Equation (7.32) is no more necessary. From (7.36), (7.30) and
(7.33) there follows an Equation for the shock speed:

1
γ

V 2
s v 2

2 + v 3
2 v1 + v 2

2 v 2
1 − V 2

A
v2v1 − 1

2
V 2

A
v 2
1 = 0. (7.37)

The shock speed v2 as a function of the super-hot flow speed and its temper-
ature is shown in Figure 7.15. The dependence of v2 on the temperature T1
as well as on the upstream speed v1 is so weak that in wide ranges of these
parameters we see practically the same values of v2, 10 < v2 < 20 km/s.

So the fast shock with fast cooling slowly moves upwards. Morover such
shock can provide a significant compression of a magnetic field necessary
for particle trapping and acceleration (Somov et al., 1999).
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Figure 7.15: Shock speed v2 versus the speed of the onflowing stream v1 of
the super-hot plasma and its temperature T1.

Exercise 7.4. Conditions of the second invariant conservation are well
satisfied for electrons trapped in collapsing traps of solar flares (Somov
and Kosugi, 1997). For ions, however, the acceleration has a more discrete
character than for electrons (Somov et al., 2002c). Find how the number
of collisions suffered by a trapped ion does depend on the current length of
a collapsing trap.

Answer. Each reflection of an ion on a moving mirror leads to an
increase of the parallel velocity δV = 2vm. After n reflections the parallel
velocity of the ion becomes equal to

Vn = V0 + 2nvm or Vn = Vn−1 + 2vm . (7.38)

After the reflection number n the ion moves from one mirror with veloc-
ity (7.38) to another mirror moving in an opposite direction with veloc-
ity vm. If Ln is the length of the trap at the time of the reflection n, then
the time δtn between consequent reflections can be found from the simple
kinematic condition

Ln − vm δtn = Vn δtn . (7.39)

Hence the time of flight of the ion between the reflection n and the reflection
n + 1

δtn =
Ln

Vn + vm
. (7.40)

During this time, the length of the trap decreases on 2vm δtn. Thus the
length of the trap at the time of the reflection n is

Ln − Ln+1 = 2vm δtn. (7.41)

Let us assume that fast ions are injected into the trap in its center at
the time t0 = 0. Then, before the first reflection at the time δt0, each ion
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passes the distance L0/2 − vm δt0 = V0 δt0. From this condition

δt0 =
L0

2 (V0 + vm)
. (7.42)

Substituting (7.42) in formula (7.41) with n = 0 gives us the first decrease
of the trap length

L0 − L1 = 2vm δt0 = vm
L0

V0 + vm
. (7.43)

Thus
L1 = L0 − vm

L0

V0 + vm
= L0

V0

V0 + vm
. (7.44)

Acting similarly for any reflection number n we find a general formula which
relates the trap length Ln with n:

Ln = L0
V0

V0 + vm

V0 + vm

V0 + 2nvm − vm
= L0

V0

V0 − vm + 2nvm
. (7.45)

From here, the number of reflections as a function of the descrete lengths Ln

is equal to

n =
L0V0 + Ln (vm − V0)

2vmLn
. (7.46)

For arbitrary value of the trap length L and for any number n, we introduce
the step-function

n = N
(

L0V0 + L (vm − V0)
2vmL

)
, (7.47)

where N (x) = 0, 1, 2, etc. is the integer part of the argument x.
As the trap becomes shorter and shorter, the trapped particle is accel-

erated, and the number of accelerations per second increases.

Exercise 7.5. How does kinetic energy of a trapped ion increase in a
collapsing trap?

Answer. Substituting (7.47) in formula (7.38) gives us a relationship
between the ion velocity V and the trap length L:

V (L) = V0 + 2vm N
(

L0V0 + L (vm − V0)
2vmL

)
. (7.48)

By using the dimensionless parameter l(t) = L(t)/L0, we rewrite (7.48) as
follows

V (l) = V0 + 2vm N
(

V0 (1 − l) + lvm

2vml

)
. (7.49)
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Since for a nonrelativistic ion, the momentum p = m iV, the parallel mo-
mentum variation as a function of l is given by

p ‖ i(l) = m i V ‖ i(l) = p ‖ i 0 + 2m i vm N
(

p ‖ i 0 (1 − l) + m i vm l

2m i vm l

)
, (7.50)

instead of formula (7.7). Here, as above, N is the step function of its
argument or simply the number of mirroring reflections of a given particle.
The parallel motion energy of an ion is growing as

K ‖ i(l) =
m i

2
V ‖ i(l) 2 = (7.51)

=
m i

2

[(
2K ‖ i 0

m i

)1/2

+ 2 vm N
(

(1 − l)
√

2 K ‖ i 0/m i + vm l

2 vm l

)] 2
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Figure 7.16: Kinetic energy of electrons and protons in a collapsing mag-
netic trap as a function of its length.
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For comparison, we show in Figure 7.16 the kinetic energy of a pro-
ton (solid steps) and of an electron (the dashed curve) as a function of l.
Initially, the energy steps for the proton are not frequent but follow the
second invariant curve of the electron. Later on, when the kinetic energy of
the electron becomes close to m ec

2, its energy grows more slowly than the
one of the proton. For example, a proton with an initial energy K0 ≈ k

B
T ,

where T ≈ 108 K is a typical temperature for a high-temperature turbulent-
current layer (see Sections 6.3 and 7.1), has a kinetic energy twice higher
than the one of an electron at l ≈ 0.1 with the same initial energy. At
the same time, reflections of the proton on magnetic mirrors become more
frequent, and the second adiabatic invariant is conserved. So, conservation
of the second invariant is not a bad approximation for trapped protons.

After a number of bounces the ion’s pitch angle becomes less than the
loss cone pitch angle, and it passes through the mirror, never to return. An
accelerated particle escapes from a trap as soon as

p ‖ ≥ R p ⊥ , where R =
(

B2

B1
− 1
)1/2

. (7.52)

As soon as the increase of its parallel momemtum under the acceleration
process is high enough to satisfy this condition, a particle escapes from the
trap. Every particle is able to escape the collapsing magnetic trap before
the length of the trap shrinks to zero.



 

 

 

 

 



Chapter 8

Solar-type Flares in
Laboratory and Space

The super-hot turbulent-current layer (SHTCL) theory offers an
attractive opportunity for laboratory and astrophysical applications
of the magnetic reconnection.

8.1 Solar flares in laboratory

New data on the mechanism of magnetic energy transformation into kinetic
and thermal energies of a super-hot plasma at the Sun require new models
of reconnection under conditions of anomalous resistivity, which are similar
to that ones investigated in toroidal devices performed to study turbulent
heating of a collisionless plasma.

8.1.1 Turbulent heating in toroidal devices

The electric resistivity of plasma is the important macroscopic parameter
that can be assessed relatively straightforwardly in laboratory experiments.
In order to clarify the basic physical mechanisms behind the anomalous
resistivity, much effort has been spent. Many experiments were done to
investigate the feasibility of using turbulent heating as a means of injecting a
large power into toroidal devices: stellarators and tokamaks. Much progress
has been made in understanding the anomalous resistivity and concurrent
plasma heating by current-driven turbulence (CDT), the turbulence driven
by a current parallel to a magnetic field (for a review see de Kluiver et
al., 1991). In general,

193
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the electric conductivity σ exhibits an anomalous reduction when
the electric field E exceeds a threshold.

The electric conductivities observed in the toroidal devices are highly
anomalous, and scales with the electric field as

σ

σcl
≈ 0.1

EDr

E
. (8.1)

Here σcl = σ0 T 3/2 is the classical conductivity, σ0 ≈ 1.44 × 108/ ln Λ, ln Λ
is the Coulomb logarithm; the Dreicer’s field (see Appendix 3)

EDr ≈ 6.4 × 10−10 n

T
ln Λ , V . (8.2)
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Figure 8.1: Normalized conductivity σ/σcl versus the normalized electric
field E/EDr in various toroidal devices (de Kluiver et al., 1991).
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The scaling law (8.1) is valid in the range of electric fields

10−2 ≤ E/EDr ≤ 105 .

The corresponding ratio σ/σcl varies from 10 to 10−6. Almost all known
nonlinear process (from quasilinear to strong turbulence) are likely to be
involved in the experiments. However all data points from considerably
different devices fall in a narrow band indicated in Figure 8.1.

Formulae (8.1) and (8.2) give us

σ ≈ 3.0 × 10−5 T 1/2 n

E
, s−1 . (8.3)

So, instead of using complicated methods to find the anomalous conductiv-
ity in different regimes of CDT, as it was done in Section 6.3, we can apply
the simple empirical formula (8.3).

8.1.2 Current-driven turbulence in current layers

Let us assume that the electron temperature exceeds significantly the ion
one in the super-hot turbulent-current layer (SHTCL):

Te � Ti , T = Te .

In the reconnecting current layer (RCL), magnetic field lines inflow together
with plasma at a small velocity v, reconnect inside the layer and then
outflow at a large velocity V . It follows from the set of Equations (6.43)–
(6.48) that:

n0 v b = n V ξ b , (8.4)

B 2
0

8π
= n kBT , n kBT =

1
2

M nV 2 , (8.5)

c B0

4π a
= σ E0 , (8.6)

E in
mag = E out

th + K out + C‖ . (8.7)

In the continuity Equation (8.4), v = c E0/B0 is the plasma drift velocity
into the layer. It follows from Equations (8.5) that the velocity of the
plasma outflow is

V =
B0√

4π Mn
. (8.8)

The magnetic field near the RCL is estimated as (6.51).
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The energy equation (8.7) includes the magnetic enthalpy flux into the
layer

E in
mag =

B 2
0

4π
v b , (8.9)

which coincides with the Joule heating of the RCL (j2 /σ) a b. The thermal
enthalpy flux from the layer along the magnetic field lines is

E out
th =

(
5
2

ne kBTe +
5
2

ni kBTi

)
V ξ b ≈ 5

2
nkBT × V ξ b , (8.10)

where allowance is made for ni = ne ≡ n and Ti 
 Te = T . The kinetic
energy flux of the plasma outflowing from the layer is

K out =
(

1
2

Mn V 2 +
1
2

mn V 2
)

V ξ b ≈ 1
2

Mn V 2 × V ξ b , (8.11)

since the ion mass M exceeds significantly the electron mass m.
The heat flux along the field lines can be taken as (6.40). Therefore,

in general, the new models presented below are similar to the simple ‘test
models’ of a SHTCL, described in Chapter 3 in Somov (1992), or, more
exactly to an ‘one-temperature model’ (Somov and Titov, 1983; see also
Somov, 1981). We remind that the heat flux in the test model was consid-
ered as saturated at 1 ≤ θ ≤ 8.1; this only approximately satisfies inequality
Te � Ti . We shall keep in the next Section the same value of the flux

C‖ =
n (kB T )3/2

4 m1/2 ξ b , (8.12)

in order to demonstrate clearly the effect of formula (8.3) for estimating
the turbulent conductivity:

σ = σ1
T 1/2 n

E0
, s−1 , where σ1 ≈ 2.98 × 10−5 . (8.13)

Later on, the anomalous value of the heat flux will be adopted which corre-
sponds to θ � 1. So a better agreement will be reached between the initial
assumptions and designed functions; moreover the question will be solved
on a sensitivity of the SHTCL model to the heat flux value.

Equation (8.7) does not include the thermal enthalpy flux into the RCL

E in
th = (5n0 kBT0) v b 
 E out

th , (8.14)

as long as the coronal plasma temperature T0 
 T , and the kinetic energy
flux of the plasma flowing into the layer

K in =
(

1
2

Mn0 v2 +
1
2

mn0 v2
)

v b 
 K out, (8.15)
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as v2 
 V 2 in the strong field approximation. We neglect also the magnetic
enthalpy flux from the current layer

E out
mag =

B 2
y

4π
V ξ b 
 E in

mag , (8.16)

since B 2
y 
 B 2

0 . Moreover, as is shown in the test model, the following
factors do not influence the energy balance of the SHTCL under the corona
conditions: the energy exchange between electrons and ions due to Coulomb
collisions, the heat flux across a magnetic field, and the energy losses due
to radiation.

8.1.3 Parameters of a current layer with CDT

Let us find the unknown values a, b, n, and V from Equations (8.4)–(8.6)
considering the temperature T as an unknown parameter. We obtain the
following formulae:

a = 21/6 π−1/3 k5/6
B

M−1/6 c2/3 σ−1
1

[
n

−1/3
0 E

−1/3
0 ξ1/3

]
T 1/3 , (8.17)

b = 25/6 π1/3 k1/6
B

M1/6 c1/3
[
n

1/3
0 E

1/3
0 h−1

0 ξ−1/3
]

T 1/6 , (8.18)

n = 2−4/3 π−1/3 k−2/3
B

M1/3 c2/3
[
n

2/3
0 E

2/3
0 ξ−2/3

]
T−2/3 , (8.19)

V = 21/2 k1/2
B

M−1/2 T 1/2 . (8.20)

Now from Equation (8.7), we derive the temperature as a function of
the parameters n0, h0, E0, and ξ. On this purpose, let us rewrite (8.7):

B 2
0

4π
v b =

1
2
(
Mn V 2 + 5n kBT

)
V ξ b +

n (kB T )3/2

4 m1/2 ξ b . (8.21)

Transform the terms on the right-hand side:

1
2
(
Mn V 2 + 5n kBT

)
V ξ b =

7
4

n0

n

B 2
0

4π
v b , (8.22)

n (kBT )3/2

4 m1/2 ξ b =
1
8

(
M

2 m

)1/2
n0

n

B 2
0

4π
v b . (8.23)

Substituting (8.22) and (8.23) in Equation (8.21) yields

n

n0
=

7
4

+
1
8

(
M

2 m

)1/2

≈ 5.54 . (8.24)
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From this, with allowance for formula (8.19), we find the temperature

T =
2[

7 +
√

M/8m
]3/2 π−1/2 k−1

B
M1/2 c

[
n

−1/2
0 E0 ξ−1

]
. (8.25)

Thus formulae (8.24), (8.25), (8.17), (8.18), and (8.20) determine the
current layer characteristics n, T , a, b, and V via the external parame-
ters n0, E0, h0, and the dimensionless parameter ξ. Apart from the SHTCL
parameters mentioned above, the energy release power per unit of the layer
length has been calculated:

P

l
=

B 2
0

4π
v 4b =

1
π

c E0 h0 b2 . (8.26)

Comparison of the parameters estimated in the framework of the well
studied test models with the results of the new models, shows the previous
and new results differ only slightly. This indicates an agreement between
two different approaches to the estimation of anomalous conductivity: the
theoretical one used in the test models, and the empirical one described by
de Kluiver et al. (1991). For example, with the electric field E0 ≈ 0.1 −
6.9 V/cm the test model predicts the conductivity σ ≈ 3×1012−6×1011 s−1,
which is the well suitable range for solar flares and CMEs (Somov, 1992).
For the same electric field, the new model yields σ ≈ 2×1013 −6×1011 s−1.

8.1.4 The SHTCL with anomalous heat conduction

Let now the electric conductivity be determined by formula (8.13) and heat
conduction flux by

C‖ =
n (kBT )3/2

M1/2 ξ b . (8.27)

Here it is taken into account that f
M

(θ) = 1 at θ � 1, see formulae (6.40)
and (6.41). Equation (8.7) in this case has the following form:

B 2
0

4π
v b =

1
2
(
Mn V 2 + 5n kBT

)
V ξ b +

n (kBT )3/2

M1/2 ξ b . (8.28)

Solving procedure of the set of Equations (8.4)–(8.6) and (8.28) is similar
to that one developed earlier. From Equation (8.28) we obtain the ratio

n

n0
=

7
4

+ 2−3/2 ≈ 2.1 . (8.29)
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From here, taking into account (8.19), the RCL temperature is found:

T =
1

4
[
(7/4) + 2−3/2

]3/2 π−1/2 k−1
B

M1/2 c
[
n

−1/2
0 E0 ξ−1

]
. (8.30)

So, in the framework of the new models of a SHTCL with the anomalous
heat conduction, the values describing the RCL (n, T , a, b, and V ) are
determined by formulae (8.29), (8.30), (8.17), (8.18), and (8.20). Their
estimations, obtained for the same initial data as in the test models, show
that a replacement of the saturated heat flux by the anomalous one leads to
decreasing C‖ by a factor of 2–3. This slightly influences the results. The
RCL becomes hotter and more rarefied, its thickness and width somewhat
increase. A factor of changes does not exceed 4. Therefore a choice of
the turbulent heat flux (saturated or anomalous) model generally is not a
crutial point when a rough comparison is made of the local models of a
RCL. However

the choice of the heat transport regime in a super-hot plasma may
be of importance for interpreting HXRs of solar flares

(Somov and Kosugi, 1997; Somov et al., 1998).
The energy release power per unit of length of the layer, depending on

conditions, varies over a wide range: from ∼ 1015 to ∼ 1019 erg/(cm s),
i.e. for the SHTCL with characteristic length L ∼ 1010 cm, the power is
high as 1029 erg/s which is sufficient to account for the most powerful flares
and CMEs (Somov, 1992). So

the collisionless 3D reconnection in the solar active phenomena
seems to be similar to the reconnection observed in laboratory, in
the toroidal devices: tokamaks and stellarators.

Classically, most electrons are expected to run away in strong electric
fields. However the experiments in the toroidal devices, most of which
have been made in well magnetized plasmas, indicate that effective braking
mechanisms exist to retard runaway electrons. In this way, a sufficiently
strong electric field creates the state of the CDT. This state is macroscopi-
cally characterized by a large decrease of conductivity σ from the classical
value σcl.

With the anomalous decrease of conductivity, Joule dissipation is en-
hanced by a factor σcl/σ and leads to rapid plasma heating to extremaly
high temperatures. Yohkoh observations of super-hot plasma in solar flares
presumably indicate that the anomalous conductivity and accompanying
turbulent heating are macroscopic manifestations of the CDT in the place
of collisionless reconnection (the SHTCL) as well as in the surrounding
coronal plasmas heated by anomalous heat fluxes.
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8.2 Magnetospheric Physics Problems

8.2.1 Reconnection in the Earth Magnetosphere

The coupling between the solar wind and the magnetosphere is mediated
and controlled by the magnetic field in the solar wind through the process
of magnetic reconnection as illustrated by Figure 8.2 according to Dungey
(1961).

(a)

(b)

SW
IMF

SW

Figure 8.2: Schematic of the process of reconnection in the magnetosphere.
(a) No reconnection and no energy flow into the magnetosphere. Energy
flow is indicated by solid arrows. (b) Reconnection opens the magneto-
sphere and allows entry of plasma, momentum, and energy. Magnetospheric
convection is indicated by the open arrows.

Reconnection occurs on the dayside if an interplanetary magnetic field
(IMF ) is directed southwardly. Reconnection turns closed field lines of
the Earth into open field lines: one end is connected to the Earth and the
other in the solar wind (SW in Figure 8.2). The reconnected field lines
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take part in the antisunward motion of the solar wind and get dragged to
the nightside. Here they enhance the tail lobes. Hence reconnection must
again occur on the nightside, and the new closed field lines must return
to the dayside. Therefore, reconnection gives rise to convection of plasma
through the magnetosphere.

3D magnetospheric configurations that represent pressure balance across
the magnetopause were found for a variety of actual conditions (e.g.,
Sotirelis and Meng, 1999) allowing for the cross-tail current. Many dif-
ferent configurations were presented for general reference. The magneto-
spheric magnetic pressure was calculated by using the current systems of
the model by Tsyganenko (1996) together with self-consistently calculated
magnetopause shapes and currents.

8.2.2 MHD simulations of space weather

As we discussed in Introduction, solar flares and coronal mass ejections
(CMEs) strongly influence interplanetary and terrestrial space by virtue of
shock waves, hard electromagnetic radiation and accelerated particles (e.g.,
Kivelson and Russell, 1995). That is why space weather is of growing
importance to the scientific community and refers to conditions at a par-
ticular place and time on the Sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can influence the performance and relia-
bility of spaceborne and ground-based technological systems and can affect
human life or health (Wright, 1997; Hanslmeier, 2002; de Jager, 2005).
These influences have prompted efforts to enhance our understanding of
space weather and develop effective tools for space weather prediction.

Global MHD simulations have been used for a long time to model the
global magnetospheric configuration and to investigate the response of the
magnetosphere-ionosphere system to changing solar wind conditions (see
review by Lyon, 2000). Variations in the solar wind can lead to disruptions
of space- and ground-based systems caused by enhanced electric currents
flowing into the ionosphere and increased radiation in the near-Earth envi-
ronment.

A focus of many MHD investigations was the study of magnetospheric
‘events’. In addition to this study, there have been several applications of
MHD models to the study of coronal and solar wind plasma flows. For
example, the ideal MHD approximation was efficiently used by Groth et
al. (2000) to simulate the initiation, structure, and evolution of a CME and
its interaction with the magnetosphere-ionosphere system.

Groth et al. have developed a new parallel adaptive mesh refinement
(AMR) finite-volume scheme to predict the ideal MHD flows in a com-
plete fully three-dimensional space weather event. So the simulation spans
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the initiation of the solar wind disturbance at the surface to its interac-
tion with the Earth’s magnetosphere-ionosphere system. Starting with
generation of a CME at the Sun, the simulation follows the evolution of
the solar wind disturbance as it evolves into a magnetic cloud and travels
through interplanetary space and subsequently interacts with the terrestrial
magnetosphere-ionosphere system.

8.3 Flares in accretion disk coronae

In this Section we discuss the possibility of applying the theory of mag-
netic reconnection in solar flares to astrophysical phenomena accompanied
by fast plasma ejection, powerful fluxes of heat and radiation, impulsive
acceleration of electrons and ions to high energies. We use the well-tested
models of the SHTCL to evaluate an ability to release a free magnetic en-
ergy in the accretion disk coronae of compact stars, for example, neutron
stars.

8.3.1 Introductory comments

The accretion disks presumably have a corona which interacts with a mag-
netic field generated inside a disk. Drawing on developments in solar flare
physics, Galeev et al. (1979) suggested that the corona is heated in mag-
netic loops which have buoyantly emerged from the disk. Reconnection of
buoyant fields in the lower density surface regions may supply the energy
source for a hot corona. Another feature related to the disk corona is the
possibility of a flare energy release similar to solar flares. They are ac-
companied by fast directed plasma ejections (jets), coronal mass ejections
(CMEs) into interplanetary space, powerful fluxes of hard electromagnetic
radiation.

If a plasma in the disk corona is optically thin and has a dominant
magnetic pressure, the circumstances are likely to be similar to the solar
corona. Therefore it is also possible to imagine some similarity between
solar flares and the X-ray flares in the accretion disk coronae. Besides the
effect of heating the the disk corona, reconnection is able to accelerate elec-
trons and protons to relativistic energies (Lesch and Pohl, 1992; Bednarek
and Protheroe, 1999). Starting from well-tested models for magnetic recon-
nection in the solar corona during flares, we examine whether the magnetic
reconnection may explain the hard X-ray emission of stars.
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8.3.2 Models of the star magnetosphere

8.3.2 (a) Global and local magnetic fields

Let us assume that the magnetic fields in the magnetosphere of a star
(for example, the pulsar magnetosphere) with an accretion disk consist of
two components of different origin. The first, regular large-scale magnetic
component is related to the proper magnetic field of a star and large-scale
electric currents flowing in the accretion disk as a whole. This component is
similar to the large-scale quasi-stationary magnetic field in the solar corona,
including the coronal streamers, or in the Earth magnetosphere, including
the magnetotail.

The second component represents the chaotic magnetic fields generated
by the differential rotation and turbulence in the accretion disk. The MHD
turbulence inside the disk gives rise to the dynamo mechanism with a wide
spectrum of scales for magnetic fields emerging at the disk’s surfaces into
its corona. These fields, interacting between themselves and with the large-
scale regular field of the magnetosphere, create flares of different scales in
the corona of the disk. We believe that they heat the corona and accelerate
particles to very high energy via magnetic reconnection in myriads of large
and small flares similar to solar flares.

By analogy with the solar corona or the Earth magnetosphere, we shall
assume that, in the magnetosphere of a compact star, the magnetic-field
energy density greatly exceeds that of the thermal, kinetic and gravitational
energy of the accreting plasma:

B 2

8π
� 2nkBT ,

B 2

8π
� ρv2

2
, and

B 2

8π
� ρ g . (8.31)

So the magnetic field can be considered in the strong field approximation.
This means, in fact, that the magnetic field is mainly potential in the
magnetosphere everywhere outside the field sources: a star, an accretion
disk, and the magnetospheric boundaries. At least, the magnetic field is
potential in a large scale, in which the field determines the global structure
of the magnetosphere. This 3D structure is illustrated by Figure 8.3 (Somov
et al., 2003a).

Here m is a magnetic dipole moment of a star which rotates with an
angular velocity Ω. The velocity of plasma flow inside the accretion disk D
is shown by vectors V. The large-scale regular magnetic field B is presented
by two pairs of field lines separated by the accretion disk. Such structure
seems to be well supported by results of the fully three-dimensional MHD
simulations (see Romanova et al., 2004, Figure 4). Su and Sd are the up-
per and bottom boundary surfaces of the magnetosphere. Cu is a cusp at
the upper boundary. The outer surfaces Su and Sd play the role of the
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Figure 8.3: A three-dimensional picture of the star magnetosphere. The
field lines B show the transition from the dipolar field of a rotating mag-
netized star to the tail-like field above and below an accretion disk D. The
solid curves with arrows V represent the velocity field of the differentially
rotating flows inside the disk.

magnetopause; their location and configuration are determined primarily
by the condition of pressure equilibrium. The interaction between the mag-
netosphere and the surrounding plasma makes the outer boundaries highly
asymmetric.

8.3.2 (b) An auxiliary two-dimensional problem

To estimate characteristic values of the large-scale magnetic field and its
gradient in the corona of an accretion disk, we have to find the structure
of the field inside the magnetosphere created by a dipole field of a star
and a regular field generated by the disk. Let us consider a simplified two-
dimensional problem on the shape of a magnetic cavity and the shape of
the accretion disk under assumption that this cavity, i.e. the magneto-
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sphere, is surrounded by a perfectly conducting uniform plasma with a gas
pressure p0.

Two conditions have to be satisfied at the boundary surface S which
consists of two surfaces: the upper one Su and the bottom Sd (compare
Figures 8.3 and 8.4). These conditions are the equality of magnetic and gas

B

m

x

y
S Cu

u

S d

Cd

ψ

Γ

Γ

z

G

2 R 1

l

r

Figure 8.4: A two-dimensional model of the star magnetosphere. Γl and Γr

are the cross sections of the accretion disk D by the plane determined by
two vectors: the dipole moment m of the star and its angular velocity Ω in
Figure 8.3. An auxiliary plane z corresponds to the complex variable z =
x+iy. R1 is the inner radius of the disk. Su and Sd together with Γl and Γr

constitute the boundary of the singly connected domain G in the plane z.

pressure,

B2

8π
S

= p0 = const , (8.32)

and tangency of the magnetic field along the boundary S,

B · n
S

= 0 . (8.33)
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Condition (8.33) means that, along the boundary S,

Re F (z) = A (x, y) = const . (8.34)

Here a complex potential F (z) is an analytic function

F (z, t) = A (x, y, t) + iA+(x, y, t) , (8.35)

within the domain G in the complex plane z except at the point z = 0 of
the dipole and the current layers Γl and Γr related to the accretion disk.
A+(x, y, t) is a conjugate harmonic function connected with A (x, y, t) by
the Cauchy-Riemann condition

A+(x, y, t) =
∫ (

− ∂A

∂y
dx +

∂A

∂x
dy

)
+ A+(t) , (8.36)

where A+(t) is a quantity independent of the coordinates x and y.
The magnetic field vector, according to definition B = curlA, is:

B = Bx + iBy = − i
(

dF

dz

)∗
, (8.37)

the asterisk denoting the complex conjugation. After introducing the com-
plex potential, we apply the methods of the complex variable function the-
ory, in particular the method of conform mapping , to determine the mag-
netic field. This has been done, for example, to determine the structure of
the magnetic field in solar coronal streamers (Somov and Syrovatskii, 1972).

By analogy with the solar coronal streamers or with the Earth mag-
netotail, we assume that the large-scale regular magnetic field reverses its
direction from one side of the accretion disk to the other:

B
Γ+

= −B
Γ−

. (8.38)

So, with respect to the large-scale field of the global magnetosphere, the
accretion disk electric current is considered, for simplicity, as the large-scale
neutral current layer Γ.

We also assume that a conform transformation w = w(z) maps the
domain G shown in Figure 8.4 onto the circle |w| ≤ 1 in an auxiliary
complex plane w = u + iv so that the point z = 0 goes into the centre of
the circle without rotation of the magnetic dipole as shown in Figure 8.5.

Then the complex potential inside the circle has the following form:

F (w) = i Q

(
ln

w − eiα

w eiα − 1
+ ln

w − ei(π−α)

−w ei(π−α) + 1

)
+ i e−iψ w +

i eiψ

w
. (8.39)



8.3. Flares in Accretion Disk Coronae 207

u

v

1

-1

i

-i

Cu

Cd

m
α

− α

δ

δ
l

r

π − α

π + α

Γ
l

Γr

Su

Su

w

Figure 8.5: A solution of the two-dimensional problem inside the unit circle
in the complex plane w = u + iv. The domain G in the plane z shown in
Figure 8.4 is mapped onto the unit circle.

Here Q is a ‘magnetic charge’, the value which is proportional to the flux
of the ‘open’ field lines, that go from a star to infinity. An angle α is a free
parameter of the problem, which determines the type of a selected solution
(for more mathematical details see Somov et al., 2003a).

8.3.3 Power of energy release in the disk coronae

Let us consider some consequences of the solution of the auxiliary two-
dimensional problem. For parameters m ≈ 1030 G cm3 , ψ = π/4 , p0 ≈
1.4 × 106 dynes cm−2, we obtain that the inner radius R1 of the accretion
disk (Figure 8.4) is about 4×108 cm. The half-size of the magnetosphere is
about 6×108 cm. These values seem to be in agreement with those inferred
for the 4U 1907+09 neutron star and similar objects (Mukerjee et al., 2001).
At a distance of 5 × 108 cm from the star, the magnetic-field strength is
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(1−2)×104 G while the magnetic-field gradient is h0 ∼ 10−6−10−2 G cm−1.
From the solution of the problem on the SHTCL parameters (see Sec-

tion 8.1.3) we find the power released per one current layer. For ex-
ample, for the input parameters n0 ≈ 1013 cm−3, h0 ≈ 10−2 G cm−1,
E0 ≈ 103 CGSE units, and ξ ≈ 0.1 (Somov et al., 2003a), we obtain
b ≈ 5 × 106 cm and the power released per layer length

P1

l
=

B 2
0

4π
v 4b =

1
π

c E0 h0 b2 ≈ 3 × 1024 erg s−1 cm−1. (8.40)

Let us assume that the SHTCL length l has the same order of magnitude
as its width 2b. Then the power released by a single SHTCL is P1. We
assume that new layers are continually forming in the disk corona as a result
of permanently emerging new magnetic loops. Let us consider an inner part
of the ring-shaped accretion disk. Let the inner radius be R1 ∼ 4 × 108 cm
while the outer radius is R2 ∼ 8×108 cm. Its area is thus Sr = π(R 2

2 −R 2
1 ),

while the area of a single RCL is S1 = l ×2b. Thus, in the inner part of the
accretion disk, a number N ∼ 2Sr/S1 of current layers exist simultaneously.
The total energy release per second is

P ∼ N P1 =
2 Sr

S1
× P1 =

2 π
(
R 2

2 − R 2
1
)

l 2b
× c

π
E0 h0 b2 l =

=
(
R 2

2 − R 2
1
)

c E0 h0 b ∼ 7 × 1035 erg s−1. (8.41)

This estimate (which should be, in fact, considered as a lower limit, accord-
ing to Somov et al., 2003) does not contradict to the total power released
by some neutron stars such as Aql X-1, SLX1732-304, 4U0614+09, 4U1915-
05, SAX J1808.4-3658 (Barret et al., 2000). So the magnetic reconnection
in accretion disk coronae is a powerful mechanism which may explain the
observed X-ray emission from neutron stars.

Disk accretion to a rotating star with an inclined dipole magnetic field
has been studied by three-dimensional MHD simulations (Romanova et
al., 2004). It was shown that the hot spots arise on the stellar surface
because of the impact on the surface of magnetically channeled accretion
streams. The results are of interest for understanding the variability of
classical T Tauri stars, millisecond pulsars, and cataclysmic variables.

8.4 The giant flares

The so-called giant flares are produced via annihilation of magnetic fields of
a highly magnetized neutron star, a magnetar . This annihilation deposits
energy in the form of photons and pairs near the surface of the neutron star.
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The pair-radiation plasma evolves as an accelerating fireball , resulting in a
thermal radiation burst carring the bulk of the initial energy with roughly
the original temperature and a fraction of energy in the form of relativistic
pairs. The thermal spectrum of giant flares and their temperatures support
this scenario.

On 2004 December 27, a giant flare from SGR (soft gamma-ray) 1806-20
was the most powerful flare of gamma rays ever measured on Earth (for a
review see Nakar et al., 2005). Its energy of 3 × 1046 erg was released at a
distance of 15 kpc during about 0.2 s. The spectrum of the flare is consistent
with that of a cooling blackbody spectrum with an average temperature of
175 ± 25 keV. Like other giant flares, this flare was followed by a pulsed
softer X-ray emission that lasted more than 380 s. Radio afterglow was
detected from Very Large Array (VLA) observations. After 1 week the
radio source was extended to a size of (0.6 − 0.9) × 1016 cm. Therefore a
significant amount of energy was emitted in the form of a relativistic ejecta
around the same time that the gamma-ray flare was emitted.



 

 

 

 

 



Chapter 9

Particle Acceleration in
Current Layers

The inductive electric field is directed along the current inside a colli-
sionless reconnecting current layer (RCL). This strong field does posi-
tive work on charged particles, thus increasing their energy impulsively,
for example, in solar flares of flares in the accretion disk coronae of
compact astrophysical objects.

9.1 Magnetically non-neutral RCLs

9.1.1 An introduction in the problem

Magnetic reconnection determines many phenomena in astrophysical plas-
ma (for a review of pioneering works see Sweet, 1969; Syrovatskii, 1981,
1982). The theory of reconnection in a super-hot turbulent-current layer
(SHTCL, see Section 6.3) explains the total amount of energy accumulated
before solar flares, the power of energy released during flares and some
other parameters of flares (Section 7.1). In particular, it has been shown
(Litvinenko and Somov, 1991) that acceleration by the electric field and
scattering of particles by ion-acoustic turbulence in an SHTCL lead to the
appearance of about 1035 − 1036 electrons with a power-law spectrum and
with energies of the order of tens of keV. Future development of the the-
ory should result in models for the total number of accelerated particles,
their maximum energy and the rate of particle acceleration (Bai and Stur-
rock, 1989; Somov, 1992; Hudson and Ryan, 1995; Miroshnichenko, 2001).

211
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In this Section we return to the question of the maximum energy of
particles accelerated in a RCL, which has been formulated in Section 1.2.
Three points are important here.

(a) The problem of particle motion in a magnetic field which changes
the sign of its direction and in the electric field related to reconnection has
been considered many times. Speiser (1965) found particle trajectories near
the neutral plane where the magnetic field is zero. The physical meaning
of the Speiser solution is in the following. Formally speaking,

a charged particle can spend an infinite time near such a neutral
plane and can take an infinite energy from the electric field.

However, under real conditions in astrophysical plasma, the probability of
such a situation is small; usually the magnetic field in the ‘reconnecting
plane’, i.e. the current layer, has non-zero transversal and longitudinal
components. Therefore actual current layers are magnetically non-neutral
RCLs. This is of importance for their energetics (Chapter 6), stability
(Chapter 11), and for the mechanism of acceleration that will be considered
in the present Chapter.

(b) Speiser (1965) showed also that

even a small transversal field changes the particle motion in such a
way that the particle leaves the RCL after a finite time,

the particle energy being finite. In what follows we show that this time is
small and the energy is not sufficient in the context of solar flares.

(c) Can we increase the time spent by the particle inside the RCL? –
In the following it will be shown that (Somov and Litvinenko, 1993)

the longitudinal field increases the acceleration time and, in this
way, strongly increases the efficiency of particle acceleration

thus allowing us to explain the first step of acceleration of electrons in solar
flares. An iterative method will be presented which gives an approximate
general solution of the problem.

9.1.2 Dimensionless parameters and equations

Let us consider a reconnecting current layer placed in the (x, z) plane in
Figure 9.1. More exactly, this is a right-hand-side part of the magnetically
non-neutral RCL as shown in Figure 6.3. The electric field E and current
density j are parallel to the z axis; so the associated magnetic field compo-
nents are parallel to the x axis and change their sign in the plane y = 0.
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B ||

E

B⊥ x

y a

Figure 9.1: The projection of field lines inside the RCL to the plane (x, y);
B‖ is the longitudinal magnetic field. E is the inductive electric field related
to magnetic reconnection.

Therefore we prescribe the electric and magnetic fields inside the current
layer as follows:

E = { 0, 0, E0 } , B =
{

− y/a , ξ⊥, ξ ‖
}

B0 . (9.1)

The non-relativistic equation of motion for a particle with mass m and
charge q = Ze is

m
∂ v
∂t

= q

(
E +

1
c
v × B

)
. (9.2)

Let us take the half-thickness a of the layer as a unit of length and the in-
verse gyro-frequency ω−1

B
= mc/qB0 as a unit of time. Then Equation (9.2)

can be rewritten in the dimensionless form:

∂2x

∂t2
= ξ ‖

∂y

∂t
− ξ⊥

∂z

∂t
, (9.3)

∂2y

∂t2
= − ξ ‖

∂x

∂t
− y

∂z

∂t
, (9.4)

∂2z

∂t2
= ε + ξ⊥

∂x

∂t
+ y

∂y

∂t
. (9.5)

Here the dimensionless electric field

ε =
mc2E0

aqB 2
0

. (9.6)

The influence of plasma turbulence on particle motions is ignored in
(9.2). This is justified provided the time spent by a particle inside the RCL
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is less than the inverse frequency of the wave-particle interactions ν (v). For
the typical case, like the ion-acoustic turbulence,

ν (v) = ν eff

(√
kBT/m

v

)3
, (9.7)

T being the temperature in the layer. For typical parameters of SHTCL
(Chapter 6), the effective collision frequency can be estimated as

ν eff ≈ ξ⊥ ωB ≈ 106 s−1 .

Hence the turbulence can be ignored for suprathermal particles, once the
time spent by a particle inside the SHTCL does not exceed

τ eff = (ξ⊥ ωB)−1 ≈ 10−6 s .

On integrating Equations (9.3) and (9.5) and substituting in (9.4), the
set of Equations (9.3)–(9.5) becomes

∂x

∂t
= ξ ‖ y − ξ⊥z + c1 , (9.8)

∂2y

∂t2
+ ξ 2

‖ y = −
(

ε t + ξ⊥ x +
1
2

y2 + c2

)
y +

+ ξ ‖ ( ξ⊥z − c1) , (9.9)

∂z

∂t
= ε t + ξ⊥ x +

1
2

y2 + c2 . (9.10)

Let x0, y0, and z0 be the initial coordinates of the particle. Its initial
velocity is assumed to be negligible. In this case the constants of integration
are as follows:

c1 = −ξ ‖ y0 + ξ⊥z0 , c2 = −ξ⊥x0 − 1
2

y 2
0 . (9.11)

So, in principle, the problem can be solved.

9.1.3 An iterative solution of the problem

The simple-looking set of ordinary differential Equations (9.3)–(9.5) for the
single particle motion inside the RCL is still complex, because the equations
are not linear in the variables. As surprising as it may seem, we cannot
solve these equations exactly, except for very special cases or with some
simplifications.
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Until the particle leaves the layer, the value of y (t) is small, since the
layer is supposed to be thin. The behaviour of the functions x (t) and
z (t) does not depend strongly on the exact form of the solution y (t). For
this reason the Equations (9.8) and (9.10) can be solved by the following
iterative procedure. First, we prescribe some function

y (t) = y(0)(t) .

Second, using this function, we calculate x(0)(t) and z(0)(t) from Equa-
tions (9.8) and (9.10). Third, we use these functions to find a small correc-
tion y(1)(t) from Equation (9.9).

In zeroth approximation Equation (9.9) takes the simplest form

∂2y(0)

∂t2
+ ξ 2

‖
(
y(0) − y0

)
= 0 , (9.12)

whence y(0) = y0 = const. Now, from Equations (9.8) and (9.10), we find
the zeroth order functions:

x(0)(t) = x0 + (sin ξ⊥t − ξ⊥t) ε/ ξ 2
⊥ ,

(9.13)
z(0)(t) = z0 + (1 − cos ξ⊥t) ε/ ξ 2

⊥ .

In this approximation the projection of the particle’s trajectory on the
plane (x, z) is a cycloid curve whose shape does not depend on the longi-
tudinal field Bz = ξ ‖ B0. Physically, formulae (9.13) describe the particle
drift in the perpendicular fields By = ξ⊥B0 and Ez = E0 (see Appendix 3),
the influence of the Bz component being neglected.

Now let us write an equation which will allow us to find a correction to
y(0)(t). Making use of (9.9) and (9.13), we obtain

∂2y

∂t2
+
(

ξ 2
‖ + ε

sin ξ⊥t

ξ⊥

)
y = ξ 2

‖ y(0) + (1 − cos ξ⊥t) ε
ξ ‖
ξ⊥

. (9.14)

So the character of the particle motion is determined by two dimensionless
parameters: ξ ‖ and ξ⊥. Depending on them, two cases can be considered.

9.1.3 (a) No longitudinal field

The case ξ ‖ = 0 means that there is no longitudinal magnetic field inside
the RCL. Equation (9.14) becomes

∂2y

∂t2
+
(

ε
sin ξ⊥t

ξ⊥

)
y = 0 . (9.15)
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This is the equation of a one-dimensional oscillator with a time-dependent
frequency. From (9.15), together with (9.13), Speiser’s results follow. In
particular, a particle can remain inside the layer only for the time

τ =
π

ξ⊥
. (9.16)

When t > τ , the particle quickly moves out of the layer, since the frequency
formally becomes an imaginary value. At this instant,

∂x (τ)
∂t

= − 2ε

ξ⊥
,

∂z (τ)
∂t

= 0 . (9.17)

Note that in the case of a neutral layer ξ⊥ = 0 and the particle accel-
eration along the z axis is not restricted. According to (9.16), τ → ∞; the
non-relativistic kinetic energy increases as K ∼ z ∼ τ2, while the oscillation
amplitude decreases as Ay ∼ τ−1/4 (formula (1.28)).

If ξ⊥ �= 0 and the electric field is small enough,

ε <
1
2

ξ 3
⊥ , (9.18)

then small oscillations near the plane y = 0 are stable, and particles are
not pushed out of the layer. However, in the SHTCL model pertaining to
solar flare conditions (Section 7.1), ξ⊥ ∼ 10−3 and ε ∼ 10−5. Therefore
the inequality (9.18) cannot be satisfied and particles go out of the RCL
without being accelerated.

9.1.3 (b) Stabilization by the longitudinal field

The case ξ ‖ �= 0, the RCL with a longitudinal field. Equation (9.14) de-
scribes an oscillator the frequency of which changes with time and which
is also subject to the action of an external periodic force. Hence the oscil-
lating system represented by Equation (9.14) is not closed and may have
resonance increases of y = y (t). This corresponds to the particle going out
of the layer.

It is important, however, that the particle’s motion can become stable
provided ξ ‖ is large enough. Here we assume that the domains of stability
exist for sufficiently large values of the longitudinal magnetic field. The
simple argument is that, if the longitudinal field is strong enough, then the
particles tend to follow the orbits mostly parallel to the direction of the
longitudinal field, which is also parallel the the electric field. Such particles
stay within the RCL and they are accelerated by the electric field.
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In this case a particle remains in the vicinity of the layer plane, y = 0.
For the resonance effects to be absent, the oscillation frequency must always
be real:

ξ 2
‖ >

ε

ξ⊥
. (9.19)

Once the inequality (9.19) is valid, some particles do not leave the RCL
due to unstable trajectories. Were it not for the turbulence, these parti-
cles would simply drift along the RCL, gaining energy. The ion-acoustic
turbulence in SHTCL (cf. formula (9.7)) makes the particle motion more
complex.

9.1.4 The maximum energy of an accelerated particle

In general, the kinetic energy gain of escaping particles is a function of the
physical parameters of the RCL and of the initial conditions that determine
the orbits of particles. An issue of great concern is, however, what is the
maximum energy to which a particle can be accelerated by the RCL?

For the case of a strong longitudinal magnetic field, the maximum ve-
locity can be evaluated as

vmax ≈ ξ ‖ . (9.20)

Here a unit of velocity (Section 9.1.2) is

V1 = a ωL =
aqB0

mc
. (9.21)

Therefore the longitudinal field qualitatively changes the character of par-
ticle motion inside the layer. As an example, let us consider electron accel-
eration in SHTCL during solar flares.

The SHTCL model allows us to express the characteristics of a current
layer through the external parameters of a reconnection region: the concen-
tration of plasma n0 outside the layer, the electric field E0, the magnetic
field gradient h0 and the relative value ξ⊥ of a transversal magnetic field
(Chapter 6). In the case ξ ‖ = 0 (no longitudinal field), i.e. (9.17), the
maximum electron energy is given by

Emax = 2mc2
(

E0

ξ⊥B0

)2

(9.22)

or, using the SHTCL model,

Emax (keV) ≈ 5 × 10−9 T (K) . (9.23)

Formula (9.23) shows that acceleration in the RCL without a longitudinal
field is not efficient: for the temperature inside the layer T ≈ 108 K, the
maximum energy of accelerated electrons is only 0.5 keV.
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Let us consider now the case of a non-zero longitudinal field. The sta-
bilization condition (9.19) can be rewritten in dimensional units as follows:(

B ‖
B0

)2

>
mc2E0

aq B⊥B0
. (9.24)

In the frame of the SHTCL model the last inequality becomes especially
simple:

B ‖ > 0.1 B0 . (9.25)

Thus the longitudinal component can be one order of magnitude smaller
than the reconnecting components related to the electric current in the
current layer.

The maximum energy (written in dimensional units) of accelerated elec-
trons in the RCL is

Emax =
1

2m

(
qa B ‖

c

)2

(9.26)

or, in the SHTCL model,

Emax (keV) ≈ 10−5 ξ 2
‖ T (K) . (9.27)

If the current-layer temperature T ≈ 108 K and ξ 2
‖ ≈ 0.1, formula (9.27)

gives Emax ≈ 100 keV. Therefore

the longitudinal magnetic field increases the acceleration efficiency
to such a degree that it becomes possible to interpret the first stage
or the first step of electron acceleration in solar flares

as the particle energization process in a non-neutral SHTCL.
The results obtained are clear. On the one hand, the transversal field

turns a particle trajectory in the layer plane (the plane (x, z) in Figure 9.1).
At some point, where the projection of velocity vz on the electric field
direction changes its sign, the Lorentz force component associated with the
field component Bx = (−y/a) B0 pushes the particle out of the layer. This
process is described by Equation (9.4) with ξ ‖ = 0, or by Equation (9.15).
On the other hand, a non-zero longitudinal magnetic field tries to turn the
particle back to the layer. This effect is related to the first term on the
right-hand side of Equation (9.4). That is why the maximum velocity of a
particle is proportional to the gyro-frequency in the longitudinal field.

9.1.5 The non-adiabatic thickness of current layer

The condition (9.24) is simply understood from the physical point of view.
In the absence of a longitudinal magnetic field, there exists a region near



9.2. Regular or Chaotic Acceleration 219

the neutral plane (x, z), where the adiabatic approximation is not valid
(see Section 1.2.2). So we had to solve Equation (9.2) to determine the
character of the particle motion. The thickness of this region which is
called the non-adiabatic thickness of a current layer equals

d = (rLa)1/2 =
(

mc va

qB0

)1/2

. (9.28)

Here the maximum velocity v ≈ cE0/ξ⊥B0 is substituted in the formula
for the Larmor radius rL (see Appendix 3).

The longitudinal magnetic field tends to keep particles ‘frozen’ and to
confine them inside the layer. Obviously such a confinement can become
efficient, once

rL

(
B ‖
)

< d , (9.29)

where
rL

(
B ‖
)

=
mcv

qB ‖
=

rL

ξ ‖
. (9.30)

This last expression coincides with condition (9.24).
The condition given by Inequality (9.19) or (9.24), which is the same, is

not sufficient to ensure stability of the orbits, of course. A detailed study
of the solutions of Equation (9.14) shows that the instability domains of
considerable width exist for relatively low values of B ‖ (Efthymiopoulos
et al., 2005). For super-Dreicer electric fields, these domains are very nar-
row so that the criterion (9.19) is an acceptable approximation in order to
consider the particle acceleration in solar flares.

∗ ∗ ∗
Let us remind that, in the solar atmosphere, reconnection usually takes

place at the separators with the non-zero transversal and longitudinal com-
ponents of the magnetic field (Section 3.1). This effect was already consid-
ered in the MHD approximation from the viewpoint of the RCL energetics
(Chapter 6). The longitudinal and transversal components of the magnetic
field are also important for the current layer stability (Chapter 11). As
was shown in this Section, the longitudinal field has strong influence on the
kinetics of suprathermal particles: the magnetically non-neutral SHTCL
does efficient work as an electron accelerator and, at the same time, as a
trap for fast electrons in solar flares.

9.2 Regular versus chaotic acceleration

Considerable attention is focused on the phenomenon of dynamic chaos.
The stochastic behaviour of a dynamic system is due to its intrinsic non-
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linear properties rather than some external noise (Lichtenberg and Lieber-
man, 1983). A particular example of such a system is a particle moving in
the RCL.

So far both numerical (Chen and Palmadesso, 1986) and analytic (Büch-
ner and Zelenyi, 1989) treatments of the particle’s motion have concentrated
on a current layer with a small magnetic field component perpendicular to
the layer. This small transversal component has been shown to give rise to
chaotic particle behaviour. However current layers in the solar atmosphere
usually have also longitudinal (parallel to the electric field inside the RCL)
magnetic field components. The purpose of this section is to illustrate the
influence of the longitudinal field on the character of particle motion in
non-neutral current layers.

9.2.1 Reasons for chaos

Let us consider the RCL with the electric and magnetic fields (9.1). An
approximate solution to Equations (9.3)–(9.5) of particle motion in such
current layer was discussed above. Now we consider some general properties
of this set of equations, starting from the fact that it possesses three exact
constants of motion – the invariants of particle motion:

Cx = ẋ − ξ ‖ y + ξ⊥z , (9.31)

Cz = ż − ξ⊥x − 1
2

y2 − ε t , (9.32)

H =
1
2
(
ẋ 2 + ẏ 2 + ż 2)− ε z . (9.33)

Here H is the usual Hamiltonian (see Landau and Lifshitz, Mechanics, 1976,
Chapter 7, § 40).

Rewrite the set of master Equations (9.3)–(9.5) in the Hamiltonian form.
The usual way to do this is to introduce the four generalized coordinates

Q = { t , x , y , z } (9.34)

and the generalized momenta

P =
{

−H, ẋ − ξ‖ y , ẏ , ż − ξ⊥x − 1
2

y2
}

. (9.35)

Then the equations of motion take the form

Q̇i =
∂H
∂Pi

, Ṗi = − ∂H
∂Qi

( i = 0, 1, 2, 3 ) , (9.36)
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where
H = H(P, Q) + P0 . (9.37)

The transformed Hamiltonian H is formally time-independent since t is
treated as another coordinate variable. The constants of motion are now
as follows:

Cx = Px + ξ⊥z , (9.38)

Cz = Pz − εQ0 , (9.39)

H =
1
2
(
Px + ξ ‖ y

)2 +
1
2

P 2
y +

1
2

(
Pz + ξ⊥ x +

1
2

y2
)2

− ε z + P0 . (9.40)

The Hamiltonian system (9.36) is integrable if the three constants
of motion are in involution, i.e. their Poisson brackets are zero

(see Landau and Lifshitz, Mechanics, 1976, Chapter 7, § 42). Otherwise
the system is likely to demonstrate chaotic behaviour, i.e. the particle
trajectory inside the current layer is unpredictable.

Straightforward calculation, based on the definition (see vol. 1, Exer-
cise 1.2) for the Poisson brackets, shows that

[ H , Cx ] = 0 and [H , Cz ] = 0 .

However, for Cx and Cz we find

[ Cx , Cz ] = ξ⊥ ,

(9.41)

so that the constants Cx and Cz are not in involution.
Chen and Palmadesso (1986) have obtained this result for the case ξ ‖ =

0 and numerically showed the particle trajectory to be chaotic. In what
follows our attention will be drawn to the fact that a non-zero longitudinal
magnetic field leaves the result (9.41) unchanged. This means that the
chaos is entirely due to the transversal field which is proportional to
ξ⊥ inside the RCL.

Moreover, as will be proved below,

the longitudinal magnetic field tends to make the particle trajectory
bounded and integrable inside the RCL.

Therefore an additional constant of motion must be present in the set of
equations under consideration for a sufficiently large value of the parame-
ter ξ ‖ (Litvinenko, 1993). Seemingly, this constant cannot be expressed in
terms of elementary functions.
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9.2.2 The stabilizing effect of the longitudinal field

Because of the presence of three constants of motion, the phase trajectory –
the particle trajectory inside a six-dimensional phase space X – is restricted
to a three-dimensional surface. It follows from Equations (9.31)–(9.33) that
the particle coordinate and velocity components are subject to the relation

H =
1
2

ẏ2+
1
2
(
ξ ‖ y − ξ⊥z

)2+
1
2

(
ε t + ξ⊥ x +

1
2

y2
)2

−ε z = const , (9.42)

where zero initial conditions are assumed for simplicity.
A useful way to study the character of the particle motion is to calculate

the curvature of the energy surface H = H(P, Q).

The negative curvature K implies the exponentially fast divergence
with time of initially close trajectories.

In its turn, that gives rise to chaos. Analogous inferences can be drawn con-
cerning the particle motion in the usual coordinate space (Anosov, 1967).
Provided the curvature K ≤ 0, the asymptotic (for large t) behaviour of
the trajectory is indistinguishable from that of random motion, which cor-
responds to stochasticity.

As was shown by Speiser (1965, 1968), particle motions in the current
layer plane and across it occur almost independently. Thus, while study-
ing the instability in the y direction, it is justifiable to consider the two-
dimensional energy surface H = H(y, ẏ) , treating x and z as some time-
dependent constants. Attention must be centred on the motion along the
y axis, which is known to possess the strongest instability (Speiser, 1965).
Therefore the quantity to be calculated is

K =
HẏẏHyy − Hẏy

2

(1 + Hẏ
2 + Hy

2 )2
. (9.43)

Assuming that ξ 2
‖ 
 1 and that the particle is near the layer plane (i.e.,

y 
 1), we show that the denominator of formula (9.43) approximately
equals unity. Anyway, being positive, it does not influence the sign of K.
The curvature of the energy surface is calculated to be

K(t) ≈ ξ 2
‖ + ε t + ξ⊥ x +

3
2

y2 , (9.44)

or on making use of the invariant (9.32),

K(t) ≈ ξ 2
‖ + ż(t) + y2(t) . (9.45)
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It is known that ż ≥ −ε/ξ⊥ (Speiser, 1965). Thus strong chaos is
expected in the vicinity of the neutral plane y = 0 , provided ξ ‖ = 0 . In
this case the model of Büchner and Zelenyi (1989) is applicable. On the
other hand, inside the RCL and in its vicinity,

a sufficiently strong longitudinal magnetic field tends to suppress
chaos and make the particle motion regular.

The necessary condition for such a suppression is K > 0 , that is

ξ ‖ >

(
ε

ξ⊥

)1/2

. (9.46)

So, in another way, we arrive at an inequality which coincides with (9.19).
The inequality (9.46) gives ξ ‖ > 0.1 for typical solar flare conditions if
the particles under consideration are electrons (Somov, 1992; Somov et al.,
1998; Somov and Merenkova, 1999). Litvinenko and Somov (1993) have
been the first to pay attention to this important property of the magneti-
cally non-neutral current layer.

9.2.3 Characteristic times of processes

It might seem surprising that ξ ‖ in inequality (9.46) should tend to infinity
for ξ⊥ → 0. However, it is incorrect to consider such a limiting case. The
point is that the time needed for the instability to start developing is of the
order of ξ⊥−1 (Speiser, 1965). Hence, while being formally unstable, the
particle’s motion in the limit of small ξ⊥ is regular for all reasonable values
of time.

The result (9.46) is easy to understand from the physical viewpoint. A
typical time for destabilization of the y-motion, i.e. the time for divergence
of initially close trajectories inside the current layer, is (in dimensional
units)

t⊥ =
(am

F

)1/2
, (9.47)

where the Lorentz force component is evaluated to be

F ≈ 1
c

q vB0 =
1
c

q
cE

B⊥
B0 =

qE

ξ⊥
(9.48)

and some typical value of v = cE/B⊥ is assumed; q = Ze. The instability
creating the chaos becomes suppressed once it has no time for developing,
i.e.

t⊥ > t ‖ , (9.49)
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t ‖ being the time scale introduced by the longitudinal magnetic field:

t ‖ =
mc

qB‖
=

mc

ξ ‖ qB0
. (9.50)

Once (9.49) is valid, the particle becomes magnetized inside the current
layer and its trajectory is no longer chaotic. Clearly the inequality (9.49)
is equivalent to condition (9.46).

9.2.4 Dynamics of accelerated electrons in solar flares

A question at this point is: What observational data can be used to verify
the above-presented results? To put it another way: What are the obser-
vational consequences of chaotic particle dynamics? – Such consequences
do exist.

Consider electron acceleration in solar flares. The accelerated electrons
spiral in the coronal magnetic field and produce flare radio emission. Using
the data on radio pulsations, Kurths and Herzel (1986), Kurths et al. (1991),
Isliker (1992) have calculated the dimension of the pseudo-phase space re-
lated to the electron source. The technique for reconstructing phase space
from a one-dimensional data array is described by Schuster (1984), where
also the references to original works can be found.

The dimension of the pseudo-phase space serves as a measure of
chaos: the larger the dimension, the more chaotic is the system.

Using the data on ms-spikes, Isliker (1992) has found that the degree
of chaos varied from flare to flare and during the course of a flare. He
conjectured that such behaviour was due to some exterior (to the electron
source) parameter which could change with time. Based on the above
discussion, the role of this parameter may be ascribed to the value of the
longitudinal magnetic field.

This conclusion is in agreement with previous findings. From the theo-
retical viewpoint, the longitudinal field is determined by the photospheric
sources and does change in time. It is this change that can be responsible
for flare onset, i.e., the longitudinal field can be the ‘topological trigger’
of a solar flare (Section 3.2.1). As far as observations are concerned, the
electron acceleration during flares is likely to occur at the separators with a
strong longitudinal field, where magnetically non-neutral current layers are
formed (Section 3.1). As indicated above, the relative value of this field,
ξ ‖ = B‖ /B0 , determines whether the acceleration occurs in a regular or
stochastic manner. To summarize,
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the motion of electrons in magnetically non-neutral current layers
of solar flares becomes regular rather than chaotic, once the
relative value of the longitudinal magnetic field ξ ‖ > 0.1.

This fact has important implications for the dynamics of the electron accel-
eration in solar flares. It would be also of interest to perform calculations
analogous to those of Isliker (1992), in the context of the geomagnetic tail.

Recommended Reading: Froyland (1992).

9.2.5 Particle simulations of collisionless reconnection

A particle simulation study (e.g., Horiuchi and Sato, 1997) has investigated
collisionless driven reconnection in a sheared magnetic field by modeling
the response of a collisionless plasma to an external driving flow. They
specifically studied the effects of the transversal and longitudunal magnetic
fields on the rate of reconnection and the acceleration of electrons.

Litvinenko (1997) has used our model for electron acceleration in a
magnetically non-neutral current layer to interpret the results of the sim-
ulation. He explained the electron energization in both two-dimensional
(ξ⊥ �= 0, ξ ‖ = 0) and three-dimensional (ξ⊥ �= 0, ξ ‖ �= 0) magnetic fields.
An agreement was obtained between the analytical predictions and the
numerical results for the electron energy gain, the acceleration time, the
longitudinal field diving rise to adiabatic particle motion, and the scaling
with B ‖ of the collisionless resistivity due to particle escape from the RCL.

The particle simulation, therefore, has substantiated the theoretical
modeling presented in Section 9.1. This is important both for future more
general analytical models of particle acceleration and for the application of
the existing models, for example, to the electron acceleration in solar flares
(Sections 9.1.4 and 9.2.4).

Although the particle simulation (Horiuchi and Sato, 1997) had not been
run for a sufficient time to study the acceleration of protons, it did show
that the question of proton acceleration is more complicated. Their motion,
as we shall see in the next Section, is influenced by the polarization electric
field arising due to charge separation. Because it is much more difficult
to magnetize a proton than an electron, the protons tend to escape the
current layer across its border even when the electrons are well magnetized
by the longitudinal field B ‖. This leads to the generation of a transversal
electric field E⊥ directed towards the plane of the layer. This field may
have important consequences for the proton motion as we discuss below.
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9.3 Ion acceleration in current layers

9.3.1 Ions are much heavier than electrons

In Section 9.1 we considered the particle acceleration in a current layer,
taking into account not only the reconnecting field B 0, parallel to the x axis,
but also a small transversal field component B⊥ = ξ⊥B 0, parallel to the
y axis as shown in Figure 9.1. A typical relative value of the transversal
field is ξ⊥ ∼ 10−3 ÷ 10−2 (see Somov, 1992). In what follows we adopt the
value of ξ⊥ ≈ 3 × 10−3 for our estimates. The basic Speiser’s (1965) result
is that both the energy gain δE and the time that the particles spend in
the magnetically non-neutral RCL, δt in , are finite.

The transversal magnetic field makes the particle turn in the plane
of the layer, and then a component of the Lorentz force expels it
from the RCL plane almost along the field lines

(see Figure 3 in Speiser, 1965). The distance that the particle can travel
along the layer equals the Larmor diameter determined by the transversal
field and a typical speed of the particle.

Litvinenko and Somov (1993) generalized the results of Speiser (1965) by
including into consideration the longitudinal (parallel to the main electric
field E in Figure 9.1) magnetic field B ‖ in the layer.

The longitudinal field efficiently magnetizes fast electrons in the
RCL, but it cannot influence the motion of the accelerated protons
and heavier ions.

The Larmor radius of ions is much larger than the Larmor radius of elec-
trons having the same velocity because ions are much heavier than electrons.
As a consequence of this fact, the critical longitudinal field, necessary to
magnetize a particle and to accelerate it, is proportional to the square root
of the particle mass (see (9.24)). Hence we can use, first, the Speiser’s
non-relativistic formulae, derived for the case when an ion of mass m and
charge q = Ze enters the RCL with a negligible velocity:

δE = 2mc 2
(

E 0

B⊥

)2

, (9.51)

δt in =
π mc

q B⊥
. (9.52)

Generalizations of these formulae to particles with nonzero initial velocities
are given in Section 9.3.3.
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Thus, on the one hand, electrons can acquire even relativistic energies
in current layers with a nonzero longitudinal field B ‖ (Litvinenko and So-
mov, 1993). On the other hand, application of formulae (9.51) and (9.52)
to the RCL, formed, for example, behind a rising coronal mass ejection –
CME (see Section 9.4), shows that a nonzero field B⊥ radically restricts
the energy of heavier particles: δE for protons cannot exceed 20 MeV if a
typical value of ξ⊥ = 3 · 10−3 (B⊥ = 0.3 G) is assumed.

Therefore the relativistic energies cannot be reached after a single ‘in-
teraction’ of a proton with the layer (cf. Martens, 1988). To overcome this
difficulty, Martens conjectured that the relativistic acceleration could take
place in RCL regions where B⊥ → 0 (the neutral layer approximation),
and the protons are freely accelerated by the electric field. This conjecture,
however, does not seem to be adequate for actual RCLs, where reconnec-
tion always occurs in the presence of a transversal magnetic field. Though
we expect the latter to vary somewhat along the RCL (Somov, 1992), the
region with a vanishing B⊥ is so small that a particle will quickly leave the
region (and hence the RCL) before being accelerated. Thus we are led to
modify the classic Speiser’s model significantly.

Let us propose that a proton (or another ion) interacts with the RCL
more than once, each time gaining a finite, relatively small amount of en-
ergy. The effect could be the required relativistic acceleration. A similar
model was considered in the context of acceleration in the geomagnetic tail
(see Section 2.4 in Schabansky, 1971). However, the magnetic structures in
the solar atmosphere are quite different from that of the geomagnetic tail;
and conditions also differ. Therefore formulae given by Schabansky are in-
applicable to the problem at hand. For this reason, we have to consider
another model in application to the solar atmosphere.

9.3.2 Electrically non-neutral current layers

The factor that makes positively charged particles return to the RCL is the
transversal electric field E⊥, which is parallel to the y axis in Figure 9.2
and directed toward the layer plane from both sides (cf. Figure 9.1). What
is the origin of this electric field?

As we saw in the previous Section, protons and other ions, having much
larger masses than the electron mass, have significanly larger Larmor radii.
Both electrons and protons try to escape from magnetic confinement inside
the RCL. They are deflected by the magnetic field when they move out of
the layer. However the trajectories of electrons are bent to a much greater
degree owing to their smaller mass. As for the much heavier protons and
ions, they stream out of the layer almost freely. Hence the charge sepa-
ration arises, leading to the electric field E⊥ at both sides of the layer.
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Figure 9.2: An electrically non-neutral current layer: E⊥ is the transver-
sal component of the electric field. E is the electric field related to the
reconnection process.

This field detains the protons and ions in the vicinity of the electron cur-
rent layer (Harris, 1962; see also Chapter 5 in Longmire, 1963; Hoh, 1966;
Dobrowolny, 1968).

In an exact self-consistent one-dimensional model of the electrically non-
neutral current layer due to Harris (1962), this field equals

E⊥ = 2π σ q . (9.53)

Here the magnitude of the electric charge density integrated over the layer
thickness is

σ q =
( u

c

)2
nea , (9.54)

u is the current velocity of electrons in the RCL.
Let us estimate the velocity u from the Maxwell Equation for curlB as

u =
c

4π

B0

nea
. (9.55)

On substituting (9.55) and (9.54) in (9.53), we obtain

E⊥ ≈ kBT

e a
, (9.56)

where the equation B 2
0 /8π ≈ nkBT has been used, T being the plasma

temperature in the layer.
It is not obvious a priori that Harris’s solution applies to actual RCLs

with nonzero ξ⊥ and finite conductivity σ. It should be valid, however,
for small ξ⊥, at least as a first approximation. In fact all we need for our
calculations is the electric potential

φ =
∫

E⊥ dy , (9.57)
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which we take to equal kBT/e, the usual value owing to spread of a ‘cloud’
of charged particles.

The following point is worth emphasizing here. The charge separation
that gives rise to the potential φ mainly stems from the motion of protons
perpendicular to the layer plane. At the same time, some protons are known
to leave the layer almost along its plane. This property is a characteristic
feature of the Speiser’s mechanism of acceleration. It seems obvious that

even a modest transversal electric field will considerably influence
the motion of the particles, leaving the layer, because they always
move almost perpendicular to this field.

Having made this qualitative remark, we now proceed to calculating the
energy gain rate and maximum energy for the protons being accelerated in
the RCL, taking into account both the main components of electromagnetic
field (B 0 and E 0) and the transversal ones (B⊥ and E⊥).

9.3.3 Maximum particle energy and acceleration rates

According to the model delineated above, a positively charged particle
ejected from the RCL may be quickly reflected and moves back to the
layer. The reason for this is the electric field E⊥, directed perpendicular to
the current layer, which always exists outside the RCL (Harris, 1962). It is
of importance for what follows that the accelerated protons and other ions
are ejected from the layer almost along the field lines (Speiser, 1965). The
transversal electric field efficiently locks the particles in the RCL because
they always move almost in the plane of the layer. On getting into the layer
again, the particles are further accelerated and the cycle repeats itself.

In order to find the properties of the acceleration mechanism, we need to
dwell at some length on the particle motion outside the RCL. Let us consider
a proton leaving the RCL plane with energy E and momentum p. According
to Speiser (1965), the component of the momentum perpendicular to the
layer is

p⊥ ≈ ξ⊥ p 
 p (9.58)

for such a proton. The perpendicular component of the equation of motion
for the particle outside the electron current layer is

d
dt

p⊥(t) = − qE⊥ . (9.59)

Here we neglect the magnetic force, in order not to obscure the essential
physical point made in this Section. Equation (9.59) allows us to estimate
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the time spent by the proton between two successive interactions with the
RCL,

δt out =
2 p⊥
qE⊥

≈ 2 ξ⊥ p

qE⊥
. (9.60)

The largest energy attainable is determined by the condition that the
potential (9.57) is just enough to prevent the proton from leaving the RCL.
In other words, the field E⊥ must cancel the perpendicular momentum p⊥.
The energy conservation gives:

Emax =
(
E 2

max − p 2
⊥ c 2 )1/2

+ qφ , (9.61)

where
p 2

⊥ c 2 = ξ 2
⊥
(
E 2

max − (mc2)2
)
. (9.62)

Eliminating the unknown p⊥ between (9.61) and (9.62), we get the maxi-
mum energy

Emax = qφ
1

ξ 2
⊥

[
1 +

(
1 − ξ 2

⊥ +
ξ 4

⊥ (mc2)2

q2φ 2

)1/2
]

. (9.63)

According to formulae (9.56) and (9.57), here the electric field poten-
tial φ ≈ kBT/e. Formula (9.63) shows that

protons can actually be accelerated to GeV energies in the super-hot
turbulent-current layers (SHTCLs) in solar flares

(see Chapter 6): for instance Emax ≈ 2.4 GeV provided Te ≈ 108 K. Even
larger energies can be reached in RCL regions with a smaller transversal
magnetic field.

Note in passing that if a particle leaves the layer with the velocity that
is perpendicular to the magnetic field lines outside the RCL, the magnetic
reflection is very efficient too. In this case it occurs in a time of order the
inverse gyrofrequency in the field B 0.

The resulting acceleration rate can be estimated as

dE
dt

≈ 〈 δE 〉
δt in + δt out

. (9.64)

Here

〈 δE 〉 = 2E
(

E 0

B⊥

)2

(9.65)

is the relativistic generalization of the Speiser formula (9.51) for the average
energy gain. The averaging needs to be introduced because, in general,
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a term linear in a component of the particle momentum appears in the
expression for δE (cf. Speiser and Lyons, 1984).

In much the same way

δt in =
πE

c qB⊥
(9.66)

is the relativistic generalization of the Speiser formula (9.52). The approach
using the differential equation (9.64) is quite justified once the inequality
〈 δE 〉 
 Emax holds.

Equation (9.64), with account taken of the formulae (9.60), (9.65), and
(9.66), can be integrated in elementary functions. To simplify the problem
further, we note that

δt in

δt out
=

π E⊥
2 ξ⊥ B⊥

(
E
pc

)
≈ 103 E

pc
� 1 . (9.67)

Hence it is justifiable to ignore the second term in the denominator of
Equation (9.64). The simplified equation is integrated to give the kinetic
particle energy

K (t) ≡ E − mc 2 =
2
π

c qE 0

(
E 0

B⊥

)
t , (9.68)

whence the time of the particle acceleration is

t ac (K) ≈ 0.03
(

K
1 GeV

)
s . (9.69)

This result demonstrates the possibility of very efficient acceleration of
protons and other ions by the direct electric field in the RCL (Litvi-
nenko and Somov, 1995). At the same time, taking care of the ac-
tual magnetic field structure has considerably diminished (by a factor of
E 0/B⊥ = V/(ξ⊥ c) ≈ 10−1) the magnitude of the energy gain rate, as
compared with the case B⊥ = 0.

Alternatively, we could rewrite formula (9.68) to obtain the energy E as
a function of the number of particle entries to the RCL, Nint:

E (Nint) = mc 2 exp

[
2
(

E 0

B⊥

)2

Nint

]
. (9.70)

Therefore the particle must interact with the RCL

Nmax ≈
(

B⊥
E 0

)2

≈ 102 (9.71)
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times in order to reach a relativistic energy. As was shown above (see
Equation (9.63)), the transversal electric field outside the RCL is actually
capable of providing this number of reentries into the current layer.

In principle, the protons and other ions could leave the RCL along its
plane rather than across it. This is not likely, however, because of a very
short acceleration time t ac ; the distance a proton can travel along the layer
when being accelerated is less than c t ac ≈ 109 cm, that does not exceed a
typical RCL width and length 109 ÷ 1010 cm.

Therefore we have estimated the efficiency of the acceleration process in
the frame of the simple RCL model which contains several taciturn assump-
tions. One of them is a modification of the steady two-dimensional model
for the SHTCL (Chapter 6) with account of the Harris type equilibrium
across the layer. Such a possibility does not seem surprising one a priory ,
but it certainly has to be considered in detail somewhere else.

Another assumption is that the initially assumed conditions of the layer
equilibrium are not changed due to the acceleration, more exactly, during
the characteristic time of the acceleration of a particle. In fact, we con-
sider the number of particles accelerated to high energies as a small one
in comparison with the number of current driving thermal electrons inside
the RCL. However, in general, it remains to be seen that this assumption
can be well justified without careful numerical modelling of the real plasma
processes in the region of reconnection and particle acceleration.

9.4 How are solar particles accelerated?

9.4.1 Place of acceleration

It was widely believed that the most-energetic and longest-lasting solar
energetic particle events (SEPs) observed in interplanetary space result
from acceleration by the bow shocks of coronal mass ejections (CMEs).
However, using gamma-ray, X-ray and radio diagnostics of interacting (with
the solar plasmas and magnetic fields) particles and spaceborne and ground-
based detection of >∼ 20 MeV protons at 1 AU during two large events
(1989 September 29 and October 19), Klein et al. (1999) demonstrated that
time-extended acceleration processes in the low and middle corona, far
behind the CME, leave their imprints in the proton intensity time profiles
in interplanetary space for one or several hours after the onset of the solar
flare. So the bow shock is not the main accelerator of the high-energy
protons.

Electrons accelerated to ∼ 1− 100 keV are frequently observed in inter-
planetary space. The energy spectrum has a power-law shape, often extend-
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ing down to <∼ 2 keV without clear signatures of collisional losses. Electron
events showing enhanced electron fluxes at energies as low as 0.5 keV were
observed by Lin et al. (1996). This requires an acceleration in a low-density
coronal plasma.

Low-energy (2-19 keV) impulsive electron events observed in interplane-
tary space have been traced back to the Sun, using their interplanetary type
III radiation and metric-decimetric radio-spectrograms (Benz et al., 2001).
The highest frequencies and thus the radio signatures closest to an accelera-
tion region have been studied. All the selected events have been found to be
associated with the interplanetary type III bursts. This allows to identify
the associated coronal radio emission. The start frequency yields a lower
limit to the density in the acceleration region of the order of 3× 108 cm−3.

It is obvious that a 3D reconstruction of source locations depends on a
chosen model of the coronal density in terms of absolute heights. However
the relative positions are not altered by changing the atmospheric models.
The trajectories of the type III bursts may be stretched and shifted in height
but the topology of the birst remains the same. Figure 9.3 (cf. Paesold et
al., 2001) displays a sketch depicting a possible location of acceleration with
respect to two simultaneous bursts.

Type III  (B)Type III  (A)

Spike
source

Acceleration
region

Chromosphere

Electron
beams

Figure 9.3: Location of the acel-
eration region with respect to a
type III burst (labeled A) and an
associated spike source. A sec-
ond type III (labeled B) is dis-
played in a case of two simulta-
neous bursts. The upward mov-
ing electrons produce type III
bursts and the downward mov-
ing electrons lose their energy in
the chromosphere.

The spatial association of narrow band metric radio spikes with type III
bursts has been analyzed by using data provided by the Nancay Radioheli-
ograph (NRH) and the Phoenix-2 spectrometer (ETH Zurich), see Paesold
et al. (2001). It has been found that the spike source location, presum-
ably an acceleration region, is consistent with the backward extrapolation
of a trajectory of the type III bursts, tracing a magnetic field line. In one
of the five analyzed events, type III bursts with two different trajectories
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originating from the same spike source were identified.
These findings support the hypothesis that narrow metric spikes are

closely related to the acceleration region (Krucker et al., 1997). Escaping
beams of electrons cause the type III emission. Energetic electrons appear
to be injected into different and diverging coronal structures from one single
point as illustrated in Figure 9.3. Such a diverging magnetic field geometry
is a standard ingradient of reconnection.

9.4.2 Time of acceleration

Litvinenko and Somov (1995) have suggested that the time-extended (or
late, or second) acceleration of protons and perhaps heavier ions to relativis-
tic energies during the late phase of large-scale solar flares (e.g., Akimov et
al., 1996) occurs in a ‘vertical’ RCL (Figure 9.4). Here the field lines are
driven together and forced to reconnect below erupting loop prominences.
The time of RCL formation corresponds to the delay of the second phase
of acceleration after the first (or early), impulsive phase. The mechanism
invoked (the direct electric field acceleration) is, in fact, quite ordinary in
studies of the impulsive phase (Syrovatskii, 1981; Chupp, 1996). There are
good reasons to believe that the same mechanism also efficiently operates
during the second phase of the acceleration in large-scale flares occuring
high in the corona.

Chromosphere

Plasma
inflow

Current
layer

Plasma
outflow

Erupting
prominence

CME

Bow shock
wave

N S

Figure 9.4: When passing
through the corona, a promi-
nence strongly disturbs mag-
netic field and creates a
CME. The disturbed field
will relax to its initial state
via reconnection. This is
assumed to accompany by
a prolongated energy re-
lease and particle acceler-
ation (Litvinenko and So-
mov, 1995).

First, early radio imaging observations of solar flares (Palmer and
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Smerd, 1972; Stewart and Labrum, 1972) were indicative of particle ac-
celeration at the cusps of helmet magnetic structures in the corona. These
are exactly the structures where RCLs are expected to form according to the
Yohkoh observations in soft and hard X-rays (see Kosugi and Somov, 1998).

Note that the acceleration by Langmuir turbulence inside the RCL in
the helmet structure, invoked by Zhang and Chupp (1989) to explain the
electron acceleration in the flare of April 27, 1981, is too slow to account
for the generation of relativistic protons and requires an unreasonably high
turbulence level.

Specific models have been designed to explain the particle acceleration
in magnetic cusp geometry, in particular the two-step acceleration model
with a RCL and magnetic collapsing trap, described in Section 7.3.

Second, gamma-emission during large flares consists of separate peaks
with a characteristic duration of 0.04–0.3 s (Gal’per et al., 1994; Akimov
et al., 1996). If this behaviour is interpreted in terms of a succession of
separate acts of the acceleration, then the shock mechanism is also too
slow since the acceleration time would be

t ac = 50
(

100 G
B 0

)(
E

1 GeV

)
s ≈ 50 s (9.72)

(Colgate, 1988). By contrast, as we saw above,

the direct electric field inside the RCL provides not only the maxi-
mum energy but also the necessary energy gain rate

(see formula (9.69)). High velocities (up to the coronal Alfvén speed) of
erupting filaments and other CMEs imply a large direct electric field in the
RCL. This is the reason why the acceleration mechanism considered is so
efficient in fast transient phenomena in the corona (Somov, 1981). Strong
variability of gamma-emission may reflect the regime of impulsive, bursty
reconnection in the RCL.

An interesting feature of the mechanism considered is that neither the
maximum energy nor the acceleration rate depend upon the particle mass.
Hence the mechanism may play a role in the preferential acceleration of
heavy ions during solar flares.

Recall that Martens (1988) applied the Speiser (1965) model when con-
sidering relativistic acceleration of protons during the late phase of flares.
However it turned out necessary to assume an idealized geometry of the
magnetic field in the RCL, viz. B⊥ → 0, in order to account for the rela-
tivistic acceleration. We have seen that the difficulty can be alleviated by
allowing for the transversal electric field E⊥ outside the layer. This field
necessarily arises in the vicinity of the RCL (Harris, 1962).
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Though MHD shocks are usually thought to be responsible for the rel-
ativistic generation of protons during the late phase of extended (gradual)
gamma-ray/proton flares (Bai and Sturrock, 1989), another mechanism –
the direct electric field acceleration in RCL – can explain the proton ac-
celeration to the highest energies observed, at least in flares with strong
variability of gamma-emission. Of course, the same sudden mass motions
that lead to formation of current layers also give rise to strong shock waves,
so the two mechanisms of acceleration can easily coexist in a solar flare.

9.5 Cosmic ray problem

The cosmic ray energy spectrum extends from 1 GeV to 100 EeV (the pre-
fix “E” is for “exa”, i.e. 1018). To be accelerated at such high energies, a
particle has to be submitted to powerful electromagnetic fields. Such ener-
gies hardly can be reached by any one-shot mechanism. In the late forties,
the Fermi mechanism was introduced as the stochastic and repetitive scat-
tering by “magnetic clouds”. However such a process is a very slow one
and to reach the highest energies under “normal conditions”, the necessary
acceleration time often exceeds the age of the universe.

Many models with extreme parameters or assumptions were proposed
in the past. They mostly relay on relativistic shock acceleration such as
in hot spots of powerful radio-galaxies. However such galaxies are rare
objects. The second type models relate the ultra-high-energy cosmic rays to
another long-lasting astrophysical puzzle, the Gamma Ray Bursts (GRBs).
These are characterized by the emission of huge amounts of energies (a non-
negligible fraction of the mass energy of the Sun) over a very short time,
minutes.

GRBs are observed as gamma rays but with, in some cases, X-ray and
optical counterparts. Their distribution is uniform over the sky; and they
happen at a rate of 2-3 per day. Young black holes, neutron stars and
magnetars were proposed as putative sources of cosmic rays, because these
rapidly rotating compact objects possibly are the sources of the most intense
magnetic fields in the universe. The capability of such relativistic systems
to reach the required energies has to be investigated in the context of the
magnetic reconnection concept.



Chapter 10

Structural Instability of
Reconnecting Current
Layers

The interrelation between the stability and the structure of current
layers governs their nonlinear evolution and determines a reconnection
regime. In this Chapter we study the structural instability of the
reconnecting current layer, i.e. its evolutionarity.

10.1 Some properties of current layers

10.1.1 Current layer splitting

The continuous MHD flow of a perfectly conducting medium is impos-
sible in the zeroth point of a magnetic field, in which the electric field
differs from zero. In the vicinity of this peculiar point the frozen-in con-
dition breaks down (Section 2.1.2), and the reconnectiong current layer
(RCL in Figure 10.1) – the discontinuity dividing magnetic fields of op-
posite directions – forms there in compliance with the statement of Sy-
rovatskii (1971). Later on Brushlinskii et al. (1980), Podgornii and Sy-
rovatskii (1981), Biskamp (1986, 1997) observed the splitting of the RCL
into other MHD discontinuities in their numerical experiments.

This splitting (or bifurcation) of the RCL is usually discussed in relation
to the configuration suggested by Petschek (1964), which appears in partic-
ular during the reconnection of uniform magnetic fluxes (see Exercise 10.1).

237
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(a)

(b)

RCL

RCRC

y

x

x

y

x*0

DC

Figure 10.1: Thin current layers: (a) without reverse electric currents, and
(b) with two reverse currents (RC), DC is a region of direct current.

It consists of a system of MHD discontinuities, crossing in the small central
diffusion region D.

As distinct from Petschek’s configuration, the thin wide current layer
forms in the vicinity of a hyperbolic zeroth point of a strong magnetic field
as shown in Figure 10.2. Just this case (and more complicated ones) has
been realized in the numerical MHD experiments carried out by Brushlinskii
et al. (1980), Podgornii and Syrovatskii (1981), Biskamp (1986), Antiochos
et al. (1996), Karpen et al. (1998) and will be considered below.

The splitting of the current layer means a change of the regime of mag-
netic reconnection, since the distribution of electric current becomes two-
dimensional. In the present Chapter we consider the conditions under which
the splitting takes place and point out its possible reason. This reason is
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RCL

y

x

S-S-

S-

Figure 10.2: A splitted current layer (RCL) with the attached MHD dis-
continuities – the four slow shock waves (S−).

the non-evolutionarity of the RCL as a discontinuity or its structural in-
stability, as people sometimes say.

10.1.2 Evolutionarity of reconnecting current layers

The one-dimensional equations of ideal MHD have discontinuous solutions:
fast and slow shock waves, tangential, contact and Alfvén discontinuities,
peculiar shocks (vol. 1, Chapter 16). As was shown, a steady discontinuity
may exist in a real plasma only if it is stable with respect to the break up
into other discontinuities or the transition to some unsteady flow (vol. 1,
Chapter 17).

Let the MHD quantities be subjected to an infinitesimal perturbation
at the initial instant of time. Then a linear passage of waves out from the
discontinuity occurs. If the amplitudes of these waves and the displacement
of the discontinuity are uniquely determined from the linearized boundary
conditions, then the problem of the time evolution of the initial perturba-
tion has a single solution. If this problem does not have a single solution,
then the supposition that the initial perturbation is small is not valid. In
this case

the infinitesimal perturbation results in an instant (in the approxi-
mation of an ideal medium) non-linear change of the original flow.

This is a non-evolutionary discontinuity. Note that, as distinct from a non-
evolutionary discontinuity, the perturbation of an unstable evolutionary
discontinuity remains infinitesimal during a small enough period of time.
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The criterion of evolutionarity results from the comparison of two num-
bers. Nw is the number of the independent unknown parameters: the
amplitudes of outgoing, i.e. reflected and refracted, waves and the dis-
placement of the discontinuity, describing infinitesimal perturbation. And
Ne is the number of independent boundary conditions (equations) which
infer the unknown parameters by the amplitudes of the incident waves. If
these numbers are equal, then the discontinuity satisfies the requirement of
evolutionarity. Otherwise the problem of the time evolution of an initial
infinitesimal perturbation does not have a solution, or else it has an infinite
amount of solutions. Such a discontinuity cannot exist in a real medium.

As the direction of the propagation of a wave depends on the relationship
between its group velocity and the flow velocity,

the requirement of evolutionarity gives the restriction on the unper-
turbed MHD quantities on both sides of the discontinuity.

In particular, the shock waves turn out to be evolutionary when either the
upflow and the downflow velocities are larger than the Alfvén speed (fast
shocks) or smaller than it (slow shocks).

The RCL cannot be reduced to a one-dimensional flow, since the inho-
mogeneity of velocity in it is two-dimensional, and is characterized by two
spatial parameters. The thickness of the layer, i.e. the distance 2a between
the reconnecting magnetic fluxes (see Figure 1.5), determines the rate of
magnetic field dissipation in it, but the width 2b characterizes the storage
of magnetic energy in the domain of the flux interaction.

In what follows we obtain the conditions under which, in a plasma of
high conductivity, infinitesimal perturbations interact with the RCL as with
a discontinuity, and the problem of its evolutionarity with respect to such
perturbations can be solved.

10.1.3 Magnetic field near the current layer

Consider the thin current layer, appearing in the vicinity of the zeroth point
of a magnetic field

B0 = (h0y, h0x, 0 ) ,

at which the electric field
E = ( 0, 0, E )

differs from zero. The magnetic field lines, frozen into the plasma, drift
along the y axis into the layer, where the frozen-in condition breaks down,
reconnect in it, and flow out along the x axis. Syrovatskii (1971) represented
the coordinate dependence of the field B outside the layer in a complex
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form, supposing that the half-thickness of the current layer a (size along
the y axis) equals zero (see Figure 10.1),

By + iBx = h0
(
ζ2 − (x∗)2

) (
ζ2 − b2)−1/2

(10.1)

(see also Chapter 3 in Somov and Syrovatskii, 1976b). Here the complex
variable ζ = x + i y, b is the half-width of the layer (size along the x axis),
c is the speed of light, and I is the total current in the layer. The quantity
I varies through the range 0 ≤ I ≤ ch0b

2/4. At the points

x∗ = ±
√

1
2

b2 +
2I

ch0
(10.2)

the magnetic field changes its sign (see formula (10.1) and Figure 10.1b).
For | x |< | x∗ | the direction of the current coincides with the direction

of the electric field. This is direct (DC) current in Figure 10.1b. However
for | x∗ |< | x |< b it has the opposite direction (reverse currents RC). If
x ∼ b and b − | x∗ | ∼ b, then the reverse current is comparable with the
forward one. Suppose that precisely this configuration appears. In so doing
all MHD quantities outside (but near) the RCL may be treated as quasi-
homogeneous everywhere, except in some neighborhood of the points x = x∗

and x = ± b, which are excluded from the further consideration.
Given the plasma conductivity σ is infinite the quantity b increases

indefinitely with time. If σ is limited, then the finite width 2b settles in
finite time (Syrovatskii, 1976a) and a/b �= 0, although a 
 b. In this
case, as distinct from (10.1), By �= 0 on the surface of the current layer.
However, when σ is large enough, Bx � By outside some neighborhood
of the points (10.2). Later on By is assumed to be zero. More general
formulation of the problem is given in Section 3.4 in Somov (1992).

10.1.4 Reconnecting current layer flows

Let the flow of the plasma satisfy the MHD approximation. If a 
 b, all
quantities except the velocity v are quasi-homogeneous along the x axis
inside the layer. As for the inhomogeneity of the velocity, it is two-
dimensional, since it follows from the mass conservation equation that at
the point x = 0, y = 0

∂vx

∂x
= − ∂vy

∂y

because of the flow symmetry. Therefore the RCL cannot be reduced to a
one-dimensional flow. This is obvious because

two reconnecting magnetic fluxes move towards each other and the
plasma flow inside the current layer is thus two-dimensional.
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If the conductivity is infinite it becomes a tangential discontinuity in the
limit t → ∞.

Let us consider a settled RCL. Then the electric field E is independent
of time. This being so the ratio a/b was estimated by Syrovatskii (1976a)
from the steady-state Ohm’s law

a

b
∼ νm h0

cE
, (10.3)

where νm is the magnetic diffusivity. Besides, in the stationary model, the
electric field is independent of the coordinates. Hence

in the region of direct current the plasma flows into the layer, but
in the regions of reverse currents it flows out along the y axis.

x

y

vy v

2a

DCRC RC

Figure 10.3: Plasma flows inside the RCL and in its vicinity.

Such character of the conductive plasma flows is shown schematically in
Figure 10.3. The velocity component vy changes the sign when the plasma
flows from the region DC of direct current into two regions RC of reverse
current, which are the same regions as in Figure 10.1b. This is important
for counting the number Nw of the outgoing small-amplitude waves.

10.1.5 Additional simplifying assumptions

Let us suppose that all dissipative factors except the magnetic diffusiv-
ity νm equal zero, but νm is so small that

cE

h0b

 h0b√

4πρ
. (10.4)
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The left side of this inequality represents the characteristic value of the
drift velocity directed to the current layer vy, the right side gives the value
of the Alfvén speed VA .

Consider also that

ρ in ∼ ρ ex. (10.5)

Here the indexes ‘in′ and ‘ex′ denote the quantities inside and outside the
layer. Such a distribution was, for example, in the numerical experiment
by Brushlinskii et al. (1980).

On the surface of the current layer the magnetic field increases without
bound but the drift velocity tends to zero, if the conductivity is infinite.
At the same time the quantity of the pressure p outside the RCL is close
to its value for ζ = ∞ and does not equal zero or infinity for all σ. On this
basis it may be thought that, outside the neighborhood of the point (10.2),
the sound velocity Vs satisfies the condition

v ex
y 
 V ex

s 
 V ex
A

,

(10.6)

when the conductivity is large enough. Inequalities (10.6) are well consis-
tent with the magnetostatic approximation (see vol. 1, Section 13.1.3).

Taking the characteristic values of these quantities for an active region
in the solar corona:

vy ∼ 10 km/s , Vs ∼ 100 km/s , VA ∼ 1000 km/s ,

we see that the approximation (10.6) well holds there.
As far as the component of the velocity vx is concerned, its modulus

grows from zero for x = 0 to

| v in
x | ∼ h0b√

4πρ
(10.7)

for x = x∗ (Syrovatskii, 1971) and then reduces to zero for | x | = b.
Outside, the component vx also does not exceed the characteristic Alfvén
speed.

Let us now investigate the infinitesimal perturbation of the RCL using
the outlined properties of the plasma flow.
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10.2 Small perturbations outside the RCL

10.2.1 Basic assumptions

Let us assume that the MHD quantities Q are subjected to an infinitesimal
perturbation δQ. Suppose that δvz ≡ 0 and δBz ≡ 0, and outside the
current layer the perturbation satisfies the WKB approximation. Then its
wave vector k, in the zeroth order in terms of the small parameter 1/kb, is
determined from the dispersion equation

ω 0

[
i k2 V 2

s (kVA)2 − V 2
s k2 ω 0

(
i ω 0 − νm k2 )−

− i k2 V 2
A

ω 2
0 + ω 3

0
(
i ω 0 − νm k2 )] = 0 , (10.8)

where ω 0 = ω − kv.
Let us impose the following restriction on the frequency ω:

vy

a

 ω ‖ 
 Vs

a
,

(10.9)

where
ω ‖ = ω − kx vx . (10.10)

Besides, for the sake of simplicity, we put

vy ∼ V 3
s

V 2
A

. (10.11)

We will show in Section 10.5.3 that precisely this velocity appears in the
criterion of evolutionarity for the RCL.

10.2.2 Propagation of perturbations normal to a RCL

At first, let us consider the case of the propagation of the perturbations
normal to the current layer, i.e. the perturbations with kx = 0. In the
zeroth order in terms of the small parameters, given by inequality (10.9),
the solutions of Equation (10.8) take the form

k d
y = − i

vy

νm

V 2
A

V 2
s

, (10.12)

k 0
y =

ω

vy
, (10.13)
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k −
y =

ω

vy
, (10.14)

k +
y = ± ω

VA

. (10.15)

Here the root (10.14) is twofold.
The WKB approximation (see Landau et al., Electrodynamics of Con-

tinuous Media, 1984, Chapter 10, § 85, Geometrical optics) holds for these
perturbations if

1/k +
y b 
 1

since | k +
y | is the least wave number. This is equivalent to the following

condition for the frequency ω:

ω � h0√
4πρ

. (10.16)

When condition (10.16) is true, the derivatives of the unperturbed quan-
tities over the coordinates in the linear MHD equations are negligible and
the dispersion Equation (10.8) is valid.

To obtain the criterion of evolutionarity it is necessary to classify the
perturbations according to whether they are incoming to the current layer
or outgoing from it. Generally, such a classification has to be made by the
sign of the sum of the projections of the velocity v of the medium and the
group velocity on the normal to the layer. However, as it was mentioned
by Kontorovich (1959), in the case of normal propagation it is sufficient
to determine only the sign of the phase velocity, since in the absence of
frequency dispersion the latter coincides with the projection of the group
velocity on the direction of the vector k in the system of coordinates, where
the plasma is at rest.

The perturbation with the wave vector k 0
y from formula (10.13) corre-

sponds to an entropy wave (see vol. 1, Section 15.2.1), but k −
y from (10.14)

corresponds to the slow magnetoacoustic wave propagating perpendicu-
larly to the magnetic field. In the system of coordinates, where the moving
plasma is at rest, their phase velocities equal zero, but in the laboratory
system they coincide with the plasma velocity v. This being so,

both perturbations are incoming to the RCL when the plasma flows
into it, and are outgoing ones when the plasma flows out.

Besides, by virtue of the left side of inequality (10.9), we have conditions

k 0
y � 1/a and k −

y � 1/a.

Hence the RCL is not a discontinuity for the perturbations (10.13) and
(10.14).
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The perturbation with the wave vector k +
y from (10.15) represents fast

magnetoacoustic waves. Their phase velocity ω/k +
y satisfies the condition

V +
ph � vy (see (10.6) and (10.15)) and is aligned with the normal to the

RCL or opposed to it. So one of them is always incoming to the layer and
the other is outgoing from it, regardless of the sign of vy. As distinct from
k 0

y and k −
y , the quantity k +

y 
 1/a, and the waves (10.15) interact with
the RCL as with a discontinuity.

The perturbation k d
y from (10.12) is a dissipative wave and it damps

within a distance which is much smaller than the layer half-thickness a.
Consequently, as was pointed out by Roikhvarger and Syrovatskii (1974),
its amplitude does not appear in the boundary conditions on the surface of
a discontinuity. This being so, the dissipative effects outside the RCL are
negligible.

Thus, in the case of normal propagation,

there is one outgoing wave on each side of the current layer when
the plasma flows into it (in the region DC of forward current),

and there are four of such waves, when the plasma flows out (in the domains
RC of the reverse currents).

10.2.3 The inclined propagation of perturbations

Let us now turn to the inclined propagation. To solve the problem of the
evolutionarity of the current layer as a discontinuity, it is necessary to obtain
the solution of Equation (10.8) with common ω and kx. Kontorovich (1959)
showed that, for a given flow, the number of waves incoming to the x axis
and outgoing from it, with common ω and kx, is independent of kx, i.e. of
the angle of propagation (see also Chapter 3 in Anderson, 1963). Thus it
is sufficient to determine the number of such waves for kx = 0. From the
preceding it follows that, when the plasma flows into the layer (the region
DC of the forward current in Figure 10.1b), there is one outgoing wave on
each side of it. But when the plasma flows out there are four of them.

For the RCL under condition (10.9), however, the number of the per-
turbations with ky 
 1/a (i.e. those for which the amplitudes are discon-
tinuous across it) depends on kx. If kx = 0, then there are two of such
perturbations, determined by the wave vector k +

y from (10.15). As will
be shown below, there are three for the inclined propagation. This fact is
important in our further considerations.

The wave vector of a slow magnetoacoustic wave is given by the formula

| k− | =
ω

vy sin θ + vx cos θ ± | V −
ph |

, (10.17)
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where V −
ph is the phase velocity, and θ is the angle between k− and the

x axis. Here the scalar product kv is represented in the form

kv = | k− | × ( vy sin θ + vx cos θ ) .

With Vs 
 VA the following expression for | V −
ph | is valid:

| V −
ph | =

VAVs

V⊥
| cos θ |

[
1 +

1
2

V 2
A

V 2
s

V 4
⊥

cos2 θ + o

(
V 2

A
V 2

s

V 4
⊥

)]
, (10.18)

where V 2
⊥ = V 2

A
+ V 2

s .
Let us choose the angle θ 0 in such a way that | V −

ph |∼ Vs, i.e. | cos θ 0 |
is not small, and find the solutions of Equation (10.8) for fixed ω and

kx = | k− | cos θ 0 . (10.19)

For this purpose let us separate out the unknown variable ky

( ω ‖ − ky vy )
[ (

νm vy V 2
s

)
k 5

y +
(
i v 2

y V 2
⊥ − νm ω ‖ V 2

s

)
k 4

y −

−
(
2i ω ‖ vy V 2

⊥
)
k 3

y + i
(

ω 2
‖ V 2

⊥ − k 2
x V 2

A
V 2

s

)
k 2

y −

−
[
2i ω ‖ vy

(
V 2

⊥ k 2
x − 2 ω 2

‖
)]

ky + (10.20)

+i k 2
x

(
ω 2

‖ V 2
⊥ − k 2

x V 2
A

V 2
s

)
− i ω 4

‖
]

= 0 .

Here condition (10.9) is used.
In the zeroth order in terms of the small parameters, given by Inequal-

ity (10.9), this equation has the following solutions: (10.12) and

k 0
y =

ω ‖
vy

, (10.21)

k1−
y =

2 ω ‖
vy

, (10.22)

k2−
y = kx tan θ 0 , (10.23)

k s
y =

1
2

[
ω ‖ V 2

s cos2 θ 0

2vy V 2
A

±
(

−
4 ω 2

‖
V 2

s

+

+
ω 2

‖ V 4
s cos4 θ 0

4v 2
y V 4

A

± 2 sin θ 0 | cos θ 0 |
ω 2

‖ Vs

vy V 2
A

)1/2 ]
. (10.24)
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The sign in the round brackets in (10.24) coincides with the sign in front of
| V −

ph | in formula (10.17), but that in front of the round brackets specifies
two different solutions of Equation (10.20). From inequality (10.9) it follows
that for the perturbations (10.21) and (10.22) ky � 1/a, but for (10.23)
and (10.24), on the contrary, ky 
 1/a.

The waves k 1−
y and k 2−

y are slow magnetoacoustic ones, here with the
angle between k 2− and the x axis equals θ 0 for kx from (10.19). As for the
waves k s

y , they may be either slow magnetoacoustic or the surface ones,
depending on the ratio vy V 2

A
/V 3

s . Recall that if the perturbations are
characterized by a common θ, but not kx, as in the present case, then there
are always two slow waves, but the rest are fast magnetoacoustic waves.

If the expression in the round brackets in formula (10.24) is negative,
then k s

y has an imaginary part and the corresponding perturbations increase
or decrease exponentially with the characteristic length, which is much
smaller than a, while propagating away from the surface.

Investigation of the polynomial of the second degree in vy in the round
brackets in formula (10.24) shows that it equals zero at the points

vy =
V 3

s

4 V 2
A

| cos θ 0 | × ( ± sin θ 0 ± 1) . (10.25)

Here the sign in front of sin θ 0 is given by the sign in formula (10.17).
Two signs in front of 1 determine two ends of the length on the axis of vy,
within which the perturbations (10.24) are slow magnetoacoustic waves.
Outside this length they become surface waves. The one of them, which
increases, while propagating away from the surface, should be rejected as it
does not satisfy the boundary condition at infinity. As was stated by Kon-
torovich (1959), the decreasing perturbation should be classified as outgoing
from the discontinuity surface.

Below we will use the fact that for large enough velocities, vy, the waves
(10.24) are surface ones, independent of θ 0. It may be shown that the
function vy(θ 0), determined by formula (10.24), is restricted by modulus
from above by the quantity

v max
y =

3
√

3
16

V 3
s

V 2
A

, (10.26)

here the maximum value (10.26) is reached for θ 0 = π/6. If

| vy | > v max
y , (10.27)

the waves (10.24) are surface ones for all θ 0.
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The surface perturbation, which decreases with distance from the x axis,
does not transfer energy away from the layer surface, because its amplitude
equals zero at y = ∞. However this

surface wave enters into the total perturbation of the RCL and its
amplitude must be determined from the boundary conditions. In
this sense the wave is classified as an outgoing one.

As for the increasing perturbation, it is formally an incoming wave, but
it must be discarded, since it tends to infinity as y → ∞ . Note that for this
reason in the domain of the plasma outflow, where only one incoming wave is
possible, the incoming waves are absent, for a given θ 0, when | vy |> v max

y .
Note that v max

y coincides with the maximum value of the projection of
the group velocity of a slow magnetoacoustic wave on the y axis, which in
the approximation Vs 
 VA has the form

(V −
gr )y =

V 3
s

V 2
A

sin θ cos3 θ . (10.28)

Moreover this value is also reached for the angle θ = π/6. So inequal-
ity (10.27) means that

all slow waves are either incoming or outgoing, provided the plasma
flows into or out of the RCL.

To solve the problem of evolutionarity of the current layer we now have to
derive boundary conditions. They relate the amplitudes of the perturba-
tions with ky 
 1/a (that interact with the layer as with a discontinuity)
on two sides of the surface.

However, as distinct from a one-dimensional discontinuity, the waves
with ky 
 1/a outside the current layer may lead to the perturbations
for which the inverse inequality is valid in the interior. Furthermore, since
inside the layer the dissipative effects are essential, the wave numbers of
these perturbations have imaginary parts that tend to infinity in the limit
a/b → 0. This means that the magnitude of the perturbation increases
without bound, and therefore

the linearized one-dimensional boundary conditions generally do not
hold at the reconnecting current layer (RCL)

(Markovskii and Somov, 1996). This fact can be understood in the next
Section from the analysis of the perturbations inside the current layer.
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10.3 Perturbations inside the RCL

10.3.1 Linearized dissipative MHD equations

Let us deduce the equations for the perturbed MHD quantities δQ inside
the current layer. In this case y <∼ a. We linearize the dissipative MHD
equations (see vol. 1, Section 12.2.2).

For Qz ≡ 0 and ∂ δQ/∂z ≡ 0 the equations for δvz and δBz, which
we put equal to zero, are separated from the equations for the other small
quantities. In the latter we may neglect the derivatives ∂p/∂x, ∂ B/∂x,
and ∂ρ/∂x in the approximation a 
 b. The left side of inequality (10.9)
allows us also to neglect the derivative ∂vx/∂x.

Consider, for example, the linear equation of mass conservation

∂ δρ

∂t
+ δρ

∂vx

∂x
+ ρ

∂ δvx

∂x
+ δvx

∂ ρ

∂x
+ vx

∂ δρ

∂x
+

+vy
∂ δρ

∂y
+ δρ

∂vy

∂y
+ δvy

∂ρ

∂y
+ ρ

∂ δvy

∂y
= 0 . (10.29)

Since, inside the RCL, the inhomogeneity of the velocity is two-dimensional
then, together with the terms proportional to ∂vx/∂x, we have to neglect
the terms with ∂vy/∂y.

Let us choose the sign in formula (10.17) coinciding with the sign of vx.
Inside the layer | vx | is a growing function of | y |, but kx is constant. So
from formulae (10.10) and (10.17) it follows that | ω ‖ | increases, while | y |
decreases, and satisfies the condition

| ω ‖ | > | ω ex
‖ | . (10.30)

Estimating
∂ δρ

∂t
+ vx

∂ δρ

∂x
∼ ω ‖ δρ ,

∂vy

∂y
∼

v ex
y

a
,

we get from (10.30) and the left side of (10.9) that

∂ δρ

∂t
+ vx

∂ δρ

∂x
� δρ

∂vy

∂y
, q.e.d.

If the other sign in (10.17) is chosen, then a value of y exists for which
ω ‖ = 0 and this inequality does not hold.

Similar reasoning is valid for the other equations. Hence ∂Q/∂x = 0 in
the zeroth order in terms of the small parameters given by relation (10.9).
Besides, we put ∂Q/∂t = 0 in all equations.
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Following Syrovatskii (1956), let us substitute ∂ δQ/∂t by

− i ω
(

δQ − ξ
∂Q

∂y

)
≡ − i ω D̂Q , (10.31)

and ∂ δQ/∂x by i kx D̂Q, where ξ is the displacement of the layer as a unit.
Then we obtain the set of linear ordinary differential equations with respect
to y

i ω ‖ D̂ρ = i kx ρ D̂vx + ( ρ δvy ) ′ + vy δρ ′ , (10.32)

i kx D̂Bx + δB ′
y = 0 , (10.33)

i ω ‖ ρ D̂vx = i kx D̂p + ρ vy δv ′
x − B ′

x δBy

4π
+ v ′

x ρ δvy , (10.34)

i ω ‖ ρ δvy = δ

(
p +

B 2
x

8π

)′
+ ρ vy δv ′

y − i kx
Bx δBy

4π
, (10.35)

i ω ‖ D̂p = i kx γp D̂vx + γp δv ′
y +

+ δ ( p ′vy ) − (γ − 1)
2π

νm B ′
x δB ′

x , (10.36)

i ω ‖ D̂Bx = (Bx δvy) ′ + vy δB ′
x − v ′

x δBy − νm δB ′′
x , (10.37)

where the prime denotes the differentiation with respect to y. Here we
make use of the equality

p +
B 2

x

8π
= const , (10.38)

which follows from the y component of the unperturbed momentum equa-
tion.

10.3.2 Boundary conditions

Under certain restrictions on the unperturbed MHD quantities Q and the
frequency ω, the boundary conditions (the conservation laws), which relate
the amplitudes of the small perturbations on both sides of the current layer,
may be deduced from the set of linear Equations (10.32)–(10.37).

For a one-dimensional discontinuity these conditions are obtained as a
result of integrating the linear equations over the thickness of the domain
in which the unperturbed quantities change substantially, and allowing this
thickness (the thickness 2a of the layer shown in Figure 10.3) to tend to
zero.
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Let us integrate, for example, the induction Equation (10.37), substitut-
ing v ′

x = −ω ′
‖ /kx (see definition (10.10)) and δBy from Equation (10.33)

i ω ex
‖

+a∫
−a

δBx dy =
{

Bx

(
δvy + iω ‖ ξ

) }
+

+

+a∫
−a

vy δB ′
x dy − νm { δB ′

x } . (10.39)

Here and below, the braces denote the jump of a quantity over a discon-
tinuity. Supposing that δQ varies only slightly inside the discontinuity, if
k ex

y a 
 1 outside it, we can estimate the integral proportional to ω ex
‖ :

ω ex
‖

+a∫
−a

δBx dy ∼ ω ex
‖ δB ex

x a .

Let us compare this expression with the jump

{ Bx δvy } ∼ B ex
x δv ex

y .

In the case under study the requirement k ex
y a 
 1 is satisfied for the waves

(10.23) and (10.24). The relationship between the perturbations δQ in such
waves, in approximation (10.6) and (10.9), is given by the formulae:

δp ∼ V 2
s δρ , δvx ∼ Vs

δρ

ρ
, δBx ∼ Bx

(
Vs

VA

)2
δρ

ρ
,

δvy ∼ Vs

(
Vs

VA

)2
δρ

ρ
, and δBy ∼ Bx

(
Vs

VA

)2
δρ

ρ
. (10.40)

Taking (10.40) into account, we find that the condition

ω ex
‖

+a∫
−a

δBx dy 
 { Bx δvy }

coincides with the inequality k ex
y a 
 1, i.e. with the right side of (10.9).

Similar reasoning for the other terms in Equation (10.37) leads to the
following boundary condition{

Bx

(
δvy + iω ‖ ξ

) }
= 0 . (10.41)
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The application of this approach to Equation (10.33) gives

{ δBy − i kx Bx ξ } = 0 . (10.42)

As in the magnetoacoustic waves, in approximation (10.9)

δvy = −
ω ‖ δBy

kx Bx
, (10.43)

Equations (10.41) and (10.42) are satisfied if

δBy = i kx ξ B ex
x , (10.44)

and, consequently,
δvy = − i ω ex

‖ ξ . (10.45)

As distinct from a one-dimensional discontinuity, δQ changes substantially
inside the RCL. We will show that the perturbation with k ex

y 
 1/a out-
side the RCL may lead to perturbations inside it, for which k in

y � 1/a

and k in
y has an imaginary part. These perturbations increase or decrease

exponentially on the characteristic length which is much smaller than a. So
the above estimations of the terms in Equation (10.37) are generally not
valid.

10.3.3 Dimensionless equations and small parameters

To deduce the boundary conditions on the RCL as on the surface of a dis-
continuity, let us obtain the solutions of the set (10.32)–(10.37) inside the
layer for given ω and kx. Assume that outside the layer only the ampli-
tudes of the waves with k ex

y 
 1/a differ from zero. Let us bring Equa-
tions (10.32)–(10.37) to a dimensionless form by the following substitution
of variable and unknown functions:

y = a ỹ , Q = Q ex Q̃ , δQ = δQ ex δQ̃ , (10.46)

ξ =
δv ex

y

ω ex
‖

ξ̃ , kx =
ω ex

‖
V ex

s

k̃ x , (10.47)

δvy = −i ξ ω ‖ +
a ω ex

‖
V ex

s

δv ex
y ω̃ ‖ δṽy , (10.48)

δBy = i kx ξBx +
a ω ex

‖
V ex

s

δB ex
y δB̃y . (10.49)
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Here the quantities δQ ex are related by formula (10.40), the tilde denotes
the dimensionless functions and the expressions for δvy and δBy contain
the boundary values (10.44) and (10.45) in an explicit form.

Let us insert expressions (10.46)–(10.49) into Equations (10.32)–(10.37)
and introduce the following four small parameters in accordance with the
basic assumptions (10.9) and (10.11):

ε 0 =
v ex

y

a ω ex
‖

, ε 1 =
a ω ex

‖
V ex

s

, ε 2 =
v ex

y

V ex
s

, ε 3 =
(

V ex
s

V ex
A

)2

. (10.50)

As a result, we obtain equations describing the dimensionless functions,

i ω̃ ‖ δρ̃ = i k̃x ρ̃ δṽx + ε 3 ( ρ̃ ω̃ ‖ δṽy ) ′ + ε 0 ṽy δρ̃ ′ , (10.51)

i k̃x δB̃x + δB̃ ′
y = 0 , (10.52)

i ω̃ ‖ ρ̃ δṽx = i k̃x δp̃ − 1
k̃x

ε 3 ω̃ ‖ ω̃ ′
‖ ρ̃ δṽy −

−B̃ ′
x δB̃y + ε 0 ṽy ρ̃ δṽ ′

x , (10.53)

(
δp̃ + B̃x δB̃x

)′
= ε 2 ε 3 ρ̃ ṽy

[
i ξ̃ ω̃ ′

‖ − ε 1
(
ω̃ ‖ δṽy

)′ ]+

+ε 1 ε 3 ω̃ 2
‖ ρ̃
(

ξ̃ + i ε 1 δṽy

)
− ε 1 k̃x B̃x

(
k̃x ξ̃B̃x − i ε 1 δB̃y

)
, (10.54)

i ω̃ ‖ δp̃ = i k̃x p̃ δṽx + ε 3

[
p̃
(
ω̃ ‖ δṽy

)′ +
1
γ

ω̃ ‖ p̃ ′ δṽy

]
+

+ ε 0

[
ṽy δp̃ ′ − 2 (γ − 1) B̃ ′

x δB̃ ′
x

]
, (10.55)

i ω̃ ‖ δB̃x =
(

B̃x ω̃ ‖ δṽ y

)′
+

1
k̃x

ω̃ ′
‖ δB̃y +

+ε 0

(
ṽy δB̃ ′

x − δB̃ ′′
x

)
. (10.56)

This is the complete set of dimensionless equations valid on the RCL as a
discontinuity surface.
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10.3.4 Solution of the linearized equations

Since we are interested in the solutions of the set of Equations (10.51)–
(10.56) in approximation (10.9), let us allow the small parameters ε i (ex-
cept the parameter ε 3) to tend to zero. Then the equations reduce to the
following simpler ones:

i ω̃ ‖ δρ̃ = i ρ̃ δṽx , (10.57)

i δB̃x + δB̃ ′
y = 0 , (10.58)

i ω̃ ‖ ρ̃ δṽx = i δp̃ − ε 3 ω̃ ‖ ω̃ ′
‖ ρ̃ δṽy − B̃ ′

x δB̃y , (10.59)(
δp̃ + B̃x δB̃x

)′
= 0 , (10.60)

i ω̃ ‖ δp̃ = i p̃ δṽx + ε 3

[
p̃
(
ω̃ ‖ δṽy

)′ +
1
γ

ω̃ ‖ p̃ ′ δṽy

]
, (10.61)

i ω̃ ‖ δB̃x =
(

B̃x ω̃ ‖ δṽy

)′
+ ω̃ ′

‖ δB̃y . (10.62)

The terms proportional to ε 3 are retained in Equations (10.59) and (10.61),
since inside the current layer the quantities(

ω̃ ′
‖ , ω̃ ‖

)
<∼ 1/

√
ε 3

(see (10.7)) and ( p̃, p̃ ′ ) ∼ 1/ε 3 (see equality (10.38)). Besides, the ex-
pression for k̃x, which follows from (10.18) and (10.19), is used

k̃x = 1 + O(ε 2) + O(ε 3) . (10.63)

In the set (10.57)–(10.62) the Equations (10.57) and (10.59) are not
differential, but serve as the algebraic definitions of the functions δṽx and
δρ̃. After the substitution of δB̃x from Equation (10.58) to (10.62), the
latter becomes the full derivative with respect to ỹ and, by integrating, is
brought to the form

δB̃y + B̃x δṽy = 0 . (10.64)

The constant of integration in this equation is put equal to zero, as the per-
turbation outside the layer represents the superposition of magnetoacoustic
waves, for which (10.43) holds. The integration of Equation (10.60) gives

δp̃ + B̃x δB̃x = C 0 . (10.65)

The substitution of (10.59), (10.64) and (10.65) in Equation (10.61) reduces
it to [

ε 3 p̃ + B̃ 2
x

(
1 − p̃

ρ̃ ω̃ 2
‖

)]
δṽ ′

y +
(

1
γ

ε 3 p̃ ′ + B̃x B̃ ′
x

)
δṽy =
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= iC 0

(
1 − p̃

ρ̃ ω̃ 2
‖

)
. (10.66)

Expressing the dimensionless values in the coefficient in front of δṽy in
terms of the dimensional ones, we find that they are equal to(

p +
B 2

x

8π

)′ 4πa

( B ex
x )2

= 0 . (10.67)

(see equality (10.38)).
Hence the solution of the set (10.58), (10.60)–(10.62) is

δṽy = iC 0

∫ (
1 − p̃/ρ̃ ω̃ 2

‖
)

dỹ

ε 3 p̃ + B̃ 2
x

(
1 − p̃/ρ̃ ω̃ 2

‖
) + C , (10.68)

δB̃y = − B̃x δṽy , (10.69)

δB̃x = − i
(

B̃x δṽy

)′
, (10.70)

δp̃ = C 0 − B̃x δB̃x . (10.71)

The solution (10.68)–(10.71) has a singularity at the point ỹ 0, in which

Ã ≡ ε 3 p̃ + B̃ 2
x

(
1 − p̃

ρ̃ ω̃ 2
‖

)
= 0 , (10.72)

and the function in the integral in (10.68) turns to infinity. However it
may be shown by expressing δQ ′ in terms of δQ in the set (10.32)–(10.37)
that it has a singularity only for y = 0, where vy = 0. This means that
in some neighborhood of ỹ 0 we cannot neglect the small parameters in the
set (10.51)–(10.56) and turn to (10.57)–(10.62). The vicinity of the point
ỹ 0 will be considered below.

Let us now find the remaining solutions of the set of Equations (10.51)–
(10.56) in the domain where the formulae (10.68)–(10.71) are valid. We
suppose, for the sake of definiteness, that v in

x ∼ V ex
A

(see (10.7)), i.e.
ω̃ 2

‖ ∼ 1/ε 3. Such a relation holds if x is not close to 0 and ± b. The solu-
tion (10.68)–(10.71) is valid when the expression in the integral in (10.68)
is of order of unity. Since, inside the current layer B̃x

<∼ 1 and p̃ ∼ 1/ε 3, it
follows from (10.68) and (10.72), that in this case

Ã ∼ 1 . (10.73)
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Then the remaining solutions of the set (10.51)–(10.56) satisfy the WKB
approximation inside the RCL and may be found from the dispersion Equa-
tion (10.20).

Let us express the dimensionless quantities in Ã in terms of the dimen-
sional ones and take into account that

kx = ω ex
‖ /V ex

s .

Then we find that the quantity Ã is related with the coefficient in front of
k 2

y in dispersion Equation (10.20) in the following way:

A = ω 2
‖ V 2

⊥ − k 2
x V 2

A
V 2

s ∼ ω 2
‖
(
V ex

A

)2
Ã . (10.74)

Under condition (10.73) in the zeroth order in terms of the small para-
meters ε i (see definition (10.50)) the solutions of Equation (10.20) take on
the form (10.21) and

k d
y =

ω ‖
vy

, (10.75)

k −
y = ±

√
iA

V 2
s νm ω ‖

, (10.76)

k ∗
y =

1
A

[
ω ‖ vy F ±

√
ω 2

‖ v 2
y F 2 − A

(
k 2

x A − ω 4
‖
)]

, (10.77)

where
F = V 2

⊥ k 2
x − 2 ω 2

‖ .

From the basic Inequality (10.9) it follows that the wave vectors (10.21),
(10.75), and (10.76) satisfy the WKB approximation inside the RCL. The
dispersion equation is valid for them, as in the limit ky � 1/a the terms
with the derivatives of unperturbed quantities in Equations (10.32)–(10.37)
are negligible.

The expressions (10.42), (10.75), and (10.76) give us four solutions of
the set of Equations (10.32)–(10.37). By contrast, the perturbations (10.77)
do not satisfy the WKB approximation, since they have 1/ky a → 0. In this
case we cannot neglect the derivatives of unperturbed quantities in the set
of Equations (10.32)–(10.37), so we cannot use Equation (10.20). These
perturbations are described by formulae (10.68)–(10.71).

Thus we have shown that

there are four perturbations, which satisfy the WKB approximation
inside the RCL, regardless of the value of kx.
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Recall that outside the current layer there are also four of such perturba-
tions in the case of normal propagation, but in the case of oblique propa-
gation there are three. Therefore in the latter case the perturbations with
ky 
 1/a and ky � 1/a transform to each other.

10.4 Solution on the boundary of the RCL

In order to obtain the boundary conditions it is necessary to determine the
value of the perturbation on the boundary of the current layer, i.e. for
Q = Q ex. In this case

a 
 y 
 1/k ex
y .

If Q = Q ex, then the solution (10.68)–(10.71) is not valid, since the
coefficients in Equation (10.66) are much smaller than unity (see defini-
tions (10.46)) and the small parameters cannot be neglected in deducing of
this equation.

Let us find the solutions of Equations (10.51)–(10.56) in the neighbor-
hood of the boundary of the RCL in the domain

Q̃ ∼ 1 . (10.78)

Note that as p in � p ex and ω in
‖ � ω ex

‖ , the value of ỹ exists, for which
p̃ � 1 and ω̃ ‖ � 1, although for ỹ � 1 always Q̃ ′/Q̃ 
 1.

Substitute Equation (10.52) in (10.56) and then substitute (10.56) and
(10.53) in Equation (10.54), in the same way as for deduction of (10.66),
but hold the terms proportional to the small parameter ε 0

i ω̃ ‖

(
1 − p̃

ρ̃ ω̃ 2
‖

)
δp̃ = ω̃ ‖ ε 3

(
p̃ δṽ ′

y +
1
γ

p̃ ′ δṽy

)
−

− p̃

ρ̃ ω̃ ‖
B̃ ′

x δB̃y + ε 0 ṽy

(
p̃

ω̃ ‖
δṽ ′

x + δp̃ ′
)

. (10.79)

Here we use (10.63) and the inequality ε 0 
 ( ε 2, ε 3 ), which follows from
condition (10.9).

As the derivatives δṽ ′
x and δp̃ ′ appear in (10.78) with small parameters,

in the first order they may be expressed from Equations (10.59) and (10.60),
which do not contain small parameters. Let us integrate Equation (10.59)
and use (10.64) and (10.65). Then, taking into account that Q̃ ′ 
 1 and
considering (10.67), we find the equation describing the function δṽy,

i ε 0 B̃ 2
x ṽy

(
1 +

p̃

ρ̃ ω̃ 2
‖

)
δṽ ′′

y + ω̃ ‖ Ã δṽ ′
y = iC 0 ω̃ ‖

(
1 − p̃

ρ̃ ω̃ 2
‖

)
(10.80)
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(cf. Equation (10.66)). Three cases differ.
(a) Let

1 − p̃/ρ̃ ω̃ 2
‖ � ε 0 ,

then Ã � ε 0 (see definition (10.72)), as in the domain (10.78) ε 3 p̃ 
 ε 0 ,
and Equation (10.66) is valid.

(b) Let
1 − p̃/ρ̃ ω̃ 2

‖ <∼ ε 0 ,

then Ã <∼ ε 0 and all the terms in Equation (10.79) are essential. In this
case, in the first order, it is sufficient to substitute δp̃ in Equation (10.79)
from (10.65), but not from (10.54). So the small parameter ε 1 does not
enter in Equation (10.80).

(c) On the boundary of the layer ( | Q̃ | = 1 ),

1 − p̃

ρ̃ ω̃ 2
‖

= 0 , Ã = 0 ,

and Equation (10.80) transforms to δṽ ′′
y = 0. After integrating, this equal-

ity turns to the following one:

δṽy = C∗ ỹ + C . (10.81)

Expression (10.81) together with (10.69)–(10.71) defines three solutions of
the set of Equations (10.51)–(10.56). The remaining three solutions for
| Q̃ | = 1 satisfy the WKB approximation with the wave vectors (10.12),
(10.21), and (10.22).

∗ ∗ ∗
Let us now return to the vicinity of the point ỹ 0, in which Ã = 0.

From Equation (10.38) and condition (10.7) it follows that the point ỹ 0
may generally be situated either in the domain ỹ <∼ 1 or ỹ � 1. If

ỹ 0
<∼ 1 , (10.82)

then the terms containing ṽ ′
y appear in the equation for δṽy with Ã = 0.

As ṽ ′
y ∼ 1, they are found to be comparable with the terms propor-

tional to ∂vx/∂x, which we have neglected when deducing the set of Equa-
tions (10.32)–(10.37). Because of this, to determine δṽy in the vicinity of
ỹ 0, in the present case, it is necessary to solve a partial differential equation.

Let
ỹ 0 � 1 , (10.83)

then ṽ ′
y 
 1 and for ỹ = ỹ 0, in the first order, δṽy is described by an

ordinary differential equation. In particular, in the domain (10.78), it is
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the Equation (10.80). It does not have a singularity for Ã = 0 and the
solutions of the set of Equations (10.51)–(10.56) in the vicinity of ỹ 0 are
given by the formulae (10.81), (10.69)–(10.71), (10.12), (10.21), and (10.22).

Finally let us establish the correspondence between the perturbations
outside and inside the RCL. Assume that (10.83) holds and, for ỹ <∼ 1
(10.73) is true.

Solving the set of Equations (10.51)–(10.56) in the domain

1 

(

p̃ , ω̃ 2
‖
)


 1/ε 3 ,

it may be shown that the following correspondence takes place. The per-
turbations, which are described by the wave vectors k d

y from (10.12) and
k 0

y from (10.21) outside the RCL, transform into (10.76) and (10.21) inside
it, i.e. represent the same roots of Equation (10.20) for the different values
of ỹ.

The wave (10.22) transforms into one of the perturbations (10.76),
with the sign ‘−′ or ‘+′ depending on the sign of vy.

Hence the superposition of (10.23) and (10.24) corresponds to the superpo-
sition of (10.68)–(10.71) and the other perturbation (10.76).

Besides, the frequency ω ‖ from the interval (10.9) may be chosen in
such a way, that the solution proportional to C 0 exists inside the RCL for
all ỹ. In this case the solution proportional to C ∗ , in the domain (10.78),
transforms, for ỹ <∼ 1 into the perturbation with the wave vector (10.76).
Thus

the three waves with λ ex
y � a outside the RCL cause the perturba-

tion inside the RCL, for which λ in
y 
 a.

So now we can formulate the conditions of evolutionarity for the RCL.

10.5 The criterion of evolutionarity

10.5.1 One-dimensional boundary conditions

Let us now turn to the criterion of evolutionarity. With this end in view, we
deduce the boundary conditions on the RCL as a surface of a discontinuity.
There are two possibilities.

(a) If the amplitudes of the perturbations (10.21), (10.75), and (10.76)
with ky � 1/a inside the layer differ from zero, then the boundary con-
ditions, similar to those which hold on one-dimensional discontinuities, do
not exist on its surface. If this were not so, then the quantity δvy would
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remain constant after a transition across the layer, by virtue of condition
(10.45). However the magnitude of the perturbations (10.21), (10.75), and
(10.76) changes substantially within the distance a and (10.45) is not valid
in a general case.

(b) We consider below only such perturbations that the amplitudes of
the modes (10.21), (10.75), and (10.76) equal zero. This requirement is
obeyed by the solution of Equations (10.32)–(10.37), if the constant C 0
differs from zero, but the other constants equal zero (see the end of Sec-
tion 10.4).

Let us obtain the boundary conditions which the solution proportional
to C 0 satisfies. Due to (10.81), formulae (10.48) and (10.49) give the bound-
ary values (10.44) and (10.45) for δvy and δBy. From (10.45) it follows that

{ δvy } = 0 . (10.84)

As for condition (10.44), it is equivalent to (10.45) and does not result in an
additional boundary condition. Expression (10.71) determines the second
boundary condition {

δp +
Bx δBx

4π

}
= 0 . (10.85)

Finally formula (10.70) means that

δBx = 0 (10.86)

on both sides of the discontinuity, since δṽ ′
y = 0 and B̃ ′

x = 0.
The appearance of the equality (10.86) is caused by the fact that we

consider the perturbation, for which only the constant C 0 differs from zero,
but not an arbitrary one. Given another perturbation is present inside the
RCL, the condition (10.86) is generally not satisfied. As δB x in magneto-
acoustic waves do not equal zero, condition (10.86) together with (10.84)
and (10.85) represents four boundary conditions, relating the amplitudes
of the waves outside the RCL. Note that equalities (10.57) and (10.58)
do not give additional boundary conditions, since they are valid for the
perturbations in magnetoacoustic waves.

10.5.2 Solutions of the boundary equations

Now we write Equations (10.84)–(10.86) in an explicit form, i.e. express-
ing all small quantities in terms of the perturbation of density. As was
pointed out at the end of Section 10.4, the superposition of the waves (10.23)
and (10.24) outside the RCL corresponds to the superposition of the solu-
tions (10.68)–(10.71) and (10.76) inside it.
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This being so, the waves (10.23) and (10.24) are present outside the
RCL, but the amplitudes of the waves (10.12), (10.21), and (10.22) equal
zero, if inside it only the constant C 0 differs from zero. Using the rela-
tionship between the perturbations of MHD quantities in magnetoacoustic
waves in approximation (10.9) we obtain from the boundary conditions
(10.84)–(10.86), respectively

3∑
i=1

k
(i)
y+

( k (i) )2

(
δρ

(i)
+ + δρ

(i)
−
)

= 0 , (10.87)

3∑
i=1

1
( k (i) )2

(
δρ

(i)
+ − δρ

(i)
−
)

= 0 , (10.88)

3∑
i=1

(
k

(i)
y

k (i)

)2

δρ
(i)
± = 0 . (10.89)

Here the indexes + and − denote the quantities outside the RCL for y =
+ ∞ and y = − ∞, the index i specifies three waves (10.23) and (10.24);
and it is taken into account that

k
(i)
y+ = − k

(i)
y−

due to the plasma flow symmetry.
Let us find the solutions of these equations for the cases of the inflowing

and the outflowing of a plasma, i.e. determine the amplitudes of outgoing
waves versus the amplitudes of incident ones.

If the plasma flows into the layer, then there are two outgoing waves:
one on each side. As there are four equations, set (10.87)–(10.89) has
solutions only for a definite relationship between the amplitudes of incident
waves. If these amplitudes are arbitrary, then the set of Equations (10.87)–
(10.89) does not have a solution. It means that for such perturbations
condition (10.86) cannot be satisfied. Since equality (10.86) is valid always,
when C 0 is the only constant which differs from zero, a violation of this
equality results in the fact that the other constants, i.e. the amplitudes of
the perturbations with k in

y � 1/a, differ from zero. Hence, in this case, the
boundary conditions do not exist on the surface of the layer, i.e. it is not a
discontinuity, and the conclusion of its evolutionarity cannot be obeyed.

Let the plasma flow out from the current layer. In this case there are four
outgoing waves (two on each side). Denote them by the indexes i = 1, 2.
Then their amplitudes δρ

(1,2)
± are expressed in terms of the amplitudes δρ

(3)
±

of incident waves in the following way

δρ
(1)
± = −1

2

(
k (1)

k (3)

)2
k

(2)
y − k

(3)
y

k
(2)
y − k

(1)
y

×



10.5. Criterion of Evolutionarity 263

×
[

k
(3)
y

k
(1)
y

(
δρ

(3)
+ + δρ

(3)
−
)

± k
(2)
y + k

(3)
y

k
(2)
y + k

(1)
y

(
δρ

(3)
+ − δρ

(3)
−
)]

, (10.90)

δρ
(2)
± = −

(
k (2)

k
(2)
y

)2 [(
k

(3)
y

k (3)

)2

δρ
(3)
± +

(
k

(1)
y

k (1)

)2

δρ
(1)
±

]
. (10.91)

In formula (10.90) all the quantities k
(i)
y are taken for one side of the

discontinuity. From (10.90) it follows that if k
(1)
y = k

(2)
y and k

(2)
y �= k

(3)
y ,

then δρ
(1)
± turns to infinity, i.e. the coefficients of refraction and reflection

are not limited.
Let us find the conditions under which the wave vectors of two outgoing

waves coincide. In Section 10.2 it was shown that if

| v ex
y |< 3

√
3

16
V 3

s

V 2
A

, (10.92)

then the resonant angle θ ∗
0 exists, for which the expression in the round

brackets in formula (10.24) equals zero and two roots (10.24) coincide. This
angle is determined by Equation (10.25).

Provided θ 0 = θ ∗
0 , both waves (10.24) are outgoing, since if the plasma

flows out from the current layer, then there is only one incoming wave. In
the present case its wave vector is given by formula (10.23) and k

(2)
y �= k

(3)
y .

If condition (10.92) is not valid, then the expression in the round brackets
in (10.24) is negative and the corresponding waves are surface ones for
all θ 0 (see Section 10.2). In this case all wave vectors are different and
k

(i)
y �= ± k

(j)
y for i �= j. So the coefficients of refraction and reflection are

limited.
For the definite, but rather general, distribution of the unperturbed

MHD properties inside the RCL the expressions describing the perturbation
(and thus the transition between the perturbations with ky 
 1/a and ky �
1/a) can be found in an analytical form (Markovskii and Somov, 1996).
These solutions are represented schematically in Figure 10.4.

Horizontal solid and dotted lines represent the solutions with ky 
 1/a
and ky � 1/a respectively. Inclined lines represent the solutions that do
not satisfy the WKB approximation. Superposition of perturbations on one
side of the bold line y = ± a transforms to superposition of perturbations
on the other side.

In the case of normal propagation the long waves, ky 
 1/a, do not
transform to the short ones, ky � 1/a, (see Figure 10.4a). In this case the
long waves interact with the RCL as with a tangential discontinuity, i.e. as if
vy equals zero. The amplitudes of the waves satisfy the linearized boundary
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Figure 10.4: Schematic representation of solutions of the linear MHD equa-
tions in the case of normal (a) and oblique (b) propagation.

conditions for magnetoacoustic waves at a tangential discontinuity with
vx1 = vx2: {

δp +
Bx δBx

4π

}
= 0 , { δvy } = 0 . (10.93)

There are thus two boundary equations and two outgoing waves (see
Section 10.2.2) regardless of the sign of vy. Moreover these equations always
have a unique solution, therefore the RCL is evolutionary with respect to
normally propagating waves.

Another situation arises in the case of oblique propagation. In this
case long waves outside the layer transform inside it to short waves. This
imposes two additional boundary conditions on the perturbations that in-
teract with the layer as with a discontinuity, because for such perturbations
the amplitudes of short waves must be equal zero. Therefore

the RCL behaves like a discontinuity only with respect to a specially
selected perturbation.

We emphasize that the conditions (10.93) appear as a result of the proper-
ties of the solutions of the linearized MHD equations, while the additional
conditions occur due to the fact that we consider the perturbation which is
not arbitrary. An otherwise additional condition generally does not hold.

With respect to these perturbations the problem of evolutionarity can
be posed. However, the conclusions on non-evolutionarity are different for
the domain of direct current, where the plasma flows into the RCL, and for
the domains of reverse current, where the plasma flows out.
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10.5.3 Evolutionarity and splitting of current layers

Thus we have obtained the criterion of evolutionarity for the RCL as a
discontinuity.

If the plasma flows into the layer (in the region DC of the direct current
in Figures 10.1b and 10.3) or if inequality (10.92) does not hold, then the
conclusion of non-evolutionarity cannot hold. In this case the current
layer either does not behave like a discontinuity or else the problem of
its infinitesimal perturbation has a single solution. The last is the case
when we can consider an ordinary problem of linear stability. For example,
the question on the linear tearing instability always exists concerning the
central part (the region of the direct current) of the RCL (see Chapter 11).

Let the relation (10.92) be valid, provided the plasma flows out from the
layer (in the regions RC of the reverse current in Figures 10.1b and 10.3),
and the outflow velocity is less than the projection of the group velocity
of a slow magnetoacoustic wave on the normal to the layer (see (10.92)).
Then the perturbation exists, for which, firstly, the boundary conditions
on the surface of the layer are true, and, secondly, the amplitudes of the
outgoing waves are as large as is wished, compared with the amplitudes of
the incident ones in the limit ε i → 0, i.e. when the conductivity is large
enough.

Such a perturbation inside the RCL is the solution of the set of Equa-
tions (10.32)–(10.37) proportional to C 0, and is characterized by the res-
onant angle θ ∗

0 from (10.25) outside it. Thus the perturbation is not de-
scribed by linear equations and the problem of its time evolution does not
have a single solution. Hence the current layer is non-evolutionary, as the
initial perturbation of the MHD flow is not small. This perturbation
may be the splitting of the RCL into shock waves that are observed in the
numerical experiments carried out by Brushlinskii et al. (1980), Podgornii
and Syrovarskii (1981), Biskamp (1986, 1997).

Therefore we have found a possible cause of splitting of the RCL into
a set of the one-dimensional MHD discontinuities observed in numerical
experiments. Moreover we have obtained the condition under which the
splitting takes place. This allows us to unify the two regimes of magnetic
reconnection in current layers: with attached shocks and without them.
Such a unified model can be used to describe unsteady phenomena in as-
trophysical plasma, which occur as a result of magnetic reconnection.
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10.6 Practice: Exercises and Answers

Exercise 10.1. Discuss basic properties of the Petschek-type recon-
necting region with the four slow MHD shocks shown in Figure 10.5
(Petschek, 1964).

α

S

S S

S

B

D

Figure 10.5: The Petschek-type reconnecting flow.

Answer. As shown in Figure 10.5, there is a diffusion region D which
occupies a small central part of the area under consideration. Two pairs of
the slow MHD shock waves S− propagate away from the diffusion region.
These shocks may be regarded loosely as current layers extending from the
reconnecting current layer (RCL) in Figure 10.2.

While plasma flow carries magnetic field through these shock waves,
the direction of the magnetic field vector rotates towards the normal, and
the strength of the field decreases in this process. When the inflow ve-
locity v0 is much less than the Alfvén velocity, the angle α becomes very
small, which makes the external flow almost uniform. As the inflow velocity
increases, the inclination of the waves increase, which in turn decreases the
field strength at the diffusion region.

Petschek (1964) estimated the maximum inflow velocity by assuming
that the magnetic field in the inflow regions is potential and uniform at
large distances. The reconnection rate turns out to be

v0

VA,0

≈ 1
log Rem

. (10.94)

When the magnetic Reynolds number Rem is sufficiently large, the Petschek
rate would still correspond to a much faster inflow compared to the Sweet-
Parker rate given by formula (6.21). In this sense, Petschek (1964) was the
first to propose a fast reconnection model.
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The elegance of this simple model has meant that it has been possible to
generalize it in several ways; this has been done by different authors. These
further developments cast even more serious doubt on the validity of the
Petschek model. Since the reconnection rate may depend sensitively on the
boundary conditions, building detailed and realistic models of reconnection
is an extremely challenging problem (see Biskamp, 1997).



 

 

 

 

 



Chapter 11

Tearing Instability of
Reconnecting Current
Layers

The tearing instability can play a significant role in reconnecting
current layers, but it is well stabilized in many cases of interest. For
this reason, quasi-stationary current layers can exist for a long time
in astrophysical plasma, for example in the solar corona, in the Earth
magnetospheric tail.

11.1 The origin of the tearing instability

11.1.1 Two necessary conditions

Among the host of instabilities appearing in a plasma with magnetic field,
the tearing mode is of fundamental value for processes which transform
‘free’ magnetic energy into other kinds of energy. In a sense, the tearing
instability is an integral part of magnetic reconnection. It is conceivable
that the instability can play the role of a triggering mechanism for many of
its essentially nonstationary manifestations in astrophysical plasma – flares
on the Sun and in magnetospheres of the Earth and other astrophysical
bodies.

The tearing instability has a universal character and arises in recon-
necting current layers over quite a wide range of their parameter values.
In fact, it is seen from the 2D picture of the magnetic field lines shown
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in Figure 11.1a, that this state with the neutral current layer at y = 0
is energetically high and hence it must tend to a lower one, depicted in
Figure 11.1b.

y

x

(a)

(b)

B
0

B
0

Figure 11.1: (a) Magnetic field ‘reversal’, a peculiarity of the configuration
of field lines in a neutral current layer. (b) Magnetic-field lines in the course
of the tearing instability; the arrows show the plasma velocity directions.

Such a transition may be interpreted as a process of coalescence of paral-
lel currents constituting the current layer. However, for ideally conducting
plasma, the process is impossible since it implies the displacement of field
lines, leading to their tearing and the formation of closed loops – magnetic
islands. This transition, i.e. the reconnection of field lines, is known to
be forbidden by the condition of magnetic lines freezing into plasma (see
vol. 1, Section 12.3.2). Such a restriction is removed given a finite (even if
very high) electric conductivity. Thus

for the tearing instability to develop, two conditions are necessary:
(1) magnetic field reversal and (2) the availability of a finite electric
conductivity.

The instability is called tearing because, as we have seen, its growth, once
unbounded, causes the current layer to tear into separate filaments.

11.1.2 Historical comments

Before giving an account of the theory of the tearing instability, let us
briefly describe the history of the question. Dungey (1958) supposed that
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the availability of a neutral line in a plasma with finite conductivity leads
to the instability giving rise to the current concentration. This hypothesis
was based on the consideration of a non-equilibrium configuration of the
magnetic field with an X-line whose separatrix (forming the letter X) lines
intersect at an angle not equal to π/2 (see also discussion of the paper by
Zwingmann et al. (1985) in Chapter 14).

The presence of the instability was experimentally found in configura-
tions of a pinch type (Colgate and Furth, 1960), for which stability had
been predicted by the ideal MHD theory. Using Dungey’s mechanism,
Furth (1961) qualitatively explained the current layer tearing instability.
Murty (1961) investigated the same process theoretically and found the
presence of the tearing mode in a resistive current layer for the low conduc-
tivity case. Finally, the theory of resistive MHD instabilities was thoroughly
developed for the case of the neutral current layer without plasma flows, in
the famous work of Furth et al. (1963).

In the framework of the kinetic approach the first fundamental results on
the tearing instability were obtained by Coppi et al. (1966). They showed
that the tearing instability arises from coupling between a negative energy
wave and a dissipative process. Landau resonance of electrons inside and
near the zero magnetic field plane was proposed to provide the appropriate
dissipation mechanism (Section 11.6).

In parallel with the investigation of the tearing instability, mechanisms
resulting in its stabilization were searched for. Why? – The point is that
laboratory and numerical experiments, as well as astrophysical observa-
tions, contrary to theoretical predictions, allowed one to conclude that
reconnecting current layers can be stable for a long time. The
appearance of such stable states is of paramount importance, in particular,
for the physics of reconnecting current layers (RCLs) in the cosmic plasma.

Furth (1967) proposed the hypothesis that the tearing mode is sup-
pressed by a small transversal magnetic field (i.e., perpendicular to the
current layer). As pointed out by Pneuman (1974),

such a non-neutral current layer, cannot be topologically affected
by an infinitesimal displacement,

as opposed to a neutral current layer that does not contain a transver-
sal field. This suggests that a disturbance of finite amplitude is neces-
sary to disturb the RCL, i.e. the configuration could be metastable (see
Section 11.6.3). The stabilizing effect of the transversal field was demon-
strated in the frame of the kinetic approach by Schindler (1974), Galeev
and Zelenyi (1975, 1976).

Janicke (1980, 1982) considered the same hypothesis in the context of
MHD and drew the conclusion that the stabilizing influence was absent.
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This is the reason why a fundamental indecision as to the role of the
transversal field remained for a long time. On the one hand, Somov and
Verneta (1988, 1989) demonstrated a considerable stabilizing effect within
the limits of the MHD approach. They also explained the reasons for neg-
ative results due to Janicke. Incidentally, on the other hand, Otto (1991),
Birk and Otto (1991) once again confirmed the conclusion that, in the con-
text of Janicke’s model, the transversal component of the magnetic field
does not change the tearing increment. A comparative review of alterna-
tive approaches is given, for example, in Somov and Verneta (1993). As we
shall also see in Section 11.4, the transversal component of the magnetic
field does modify the collisional tearing mode in such a way that it results
in its stabilization.

Having finished this brief introduction, we come now to an account of
the basic theory of the tearing instability.

11.2 The simplest problem and its solution

In Chapter 10, we obtained the criterion of evolutionarity for the RCL with
respect to magnetoacoustic waves. We saw that in the region of the direct
current, the current layer either does not behave like a discontinuity or else
the problem of its small perturbation has a single solution. Therefore, in
this region, we are well motivated to consider an ordinary problem of linear
stability.

11.2.1 The model and equations for small disturbances

We begin by obtaining an expression for the growth rate of a pure tear-
ing instability without additional stabilizing or destabilizing effects. For
this purpose, we consider the case when the instability increment is much
larger than the inverse time of magnetic diffusion τr. As will be shown
in Section 11.5, once these quantities are of the same order, the effect of
plasma compressibility becomes decisive. Provided diffusion may be ig-
nored, plasma drift into the reconnecting current layer (RCL) becomes
unimportant since its characteristic time is also τr. For the case ω � V/b
(ω is the instability increment, V is the speed of plasma outflow from the
RCL, b is its half-width, see Figure 1.5), the plasma flow along the current
layer is negligible as well.

Let us consider the instability in a linear approximation:

f (r, t) = f0 (r) + f1 (r, t) .
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Unperturbed quantities in the frame of the simplest model depend only
upon the y coordinate which is perpendicular to the current layer as shown
in Figure 11.1a:

f0 = f0 (y) .

Hence small perturbations are of the form

f1 (r, t) = f1 (y) exp [ i (kxx + kzz) + ωt ] , (11.1)

provided 1/kx 
 b.
The set of the MHD equations for an incompressible plasma with a finite

conductivity σ is reduced to the following one:

curl
(

ρ
dv
dt

)
= curl

(
1
4π

curl B × B
)

,

∂ B
∂t

= curl (v × B) − curl
( η

4π
curl B

)
,

∂ρ

∂t
+ v · ∇ρ = 0 ,

∂η

∂t
+ v · ∇η = 0 ,

div v = 0 , div B = 0 .

Here η = c2/σ is the value proportional to magnetic diffusivity (see Ap-
pendix 3); the other symbols are conventional. This set gives the following
equations for the perturbations:

ω curl ( ρ0 v1) = curl
{

1
4π

[ (B0 · ∇ )B1 + (B1 · ∇ )B0 ]
}

,

ω B1 = (B0 · ∇ )v1 − (v1 · ∇ )B0 − 1
4π

( ∇η0 × curl B1 −

− η0 ∆ B1 + ∇η1 × curl B0 − η1 ∆ B0) ,

ω ρ1 + v1 · ∇ρ0 = 0 , ω η1 + v1 · ∇η0 = 0 ,

div v1 = 0 , div B1 = 0 .

These dimensional equations are reduced to two dimensionless equations
containing y components of the velocity and magnetic field perturbations
as unknown variables:

( ρ̃ W ′ ) ′ = α2 ρ̃ 2 W − S 2α2

p
( α2F Ψ + F ′′ Ψ − F Ψ ′′ ) , (11.2)

Ψ ′′ =
(

α2 +
p

η̃

)
Ψ +

(
F

η̃
+

η̃ ′ F ′

p η̃

)
W. (11.3)
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Here

Ψ =
B 1y

B (a)
, W = −i v 1y k τr , µ =

y

a
,

F =
k · B0

k B (a)
, k =

(
k2)1/2

, α = k a , τr =
4πa2

〈 η 〉 ,

τA =
a (4π〈 ρ 〉)1/2

B (a)
, S =

τr

τA

, p = ω τr , η̃ =
η 0

〈 η 〉 , ρ̃ =
ρ 0

〈 ρ 〉 .

Thus we intend to solve Equations (11.2) and (11.3). As will be seen
from the final results, the tearing instability is a long-wave mode:

α2 
 1 . (11.4)

Hence this case is considered from the beginning. For definiteness, the
following distribution of the unperturbed field is chosen:

B0 = F (µ) ex ,

where

F (µ) =

⎧⎨⎩ −1 , µ < −1 ,
µ , −1 < µ < 1 ,
1 , µ > 1 .

Let us examine the instability mode with the fastest growth, for which
the condition

k ‖ B0

holds. Assume that
S � 1 , (11.5)

i.e., the plasma is highly-conductive (compare definition of S with definition
of the magnetic Reynolds number (Appendix 3) where v = VA , L = a).
What this means is that

dissipative processes in such a regime are not large in magnitude,
while they play a principle role in the tearing instability,

as was mentioned in the previous Section.

11.2.2 The external non-dissipative region

Starting from some distance y from the neutral plane y = 0 of the current
layer, the dissipative processes may be ignored. We shall call this region
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the external non-dissipative one. In the limiting case

S =
τr

τA

=
VAa

νm
→ ∞ ,

Equation (11.2) is simplified to

Ψ ′′ −
(

α2 +
F ′′

F

)
Ψ = 0 . (11.6)

The function Ψ should be even for reasons of symmetry:

Ψ (−µ) = Ψ (µ) . (11.7)

The boundary condition for the sought-after function must be formulated
for µ → ∞:

Ψ → 0 . (11.8)

Since µ = y/a �= 0, Equation (11.6), under conditions (11.7)–(11.8), has
the following solution:

Ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A exp [α(µ + 1) ] , µ < −1 ,

A
{[

cosh α +
(
1 − α−1

)
sinhα

]
cosh α µ+

+
[
sinhα +

(
1 − α−1

)
cosh α

]
sinhα µ

}
, −1 < µ < 0 ,

Ψ (−µ) , µ > 0 .
(11.9)

Here A is an arbitrary constant.
The derivative Ψ ′ suffers a rupture at the point µ = 0, with

∆ ′ =
Ψ ′

Ψ

∣∣∣∣+0

−0
≈ 2

α
(11.10)

for α2 
 1. This fact signifies that the solution applicable in the external
non-dissipative region corresponds to a singular current at the µ = 0 plane.

The approximation S → ∞ is not applicable in a neighbourhood of the
point µ = 0. This will be called the internal dissipative region. Outside
this region the solution is described by the function (11.9) which, for µ → 0
(once α2 
 1), gives the asymptotic expression

Ψ ∼ const
(

1 +
1
α

|µ |
)

. (11.11)
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11.2.3 The internal dissipative region

Let us consider now the neighbourhood of the point µ = 0 where the
condition S → ∞ does not hold. Since this region is sufficiently small, the
quantities ρ̃ and η̃ may be assumed to vary weakly inside it. On using this
assumption and making the change of variables

θ =
(

α2S 2

p

)1/4

µ , (11.12)

Z = Ψ ′′ , (11.13)

the set of Equations (11.2)–(11.3) results in the equation for the func-
tion Z = Z (θ)

Z ′′′ =
(
ν + θ2 )Z ′ + 4θZ . (11.14)

This equation must be supplemented by the conditions

Z (−θ) = Z (θ) ,
Z → 0 for θ → ∞ .

(11.15)

We find from (11.14)–(11.15) that the sought-after function Z (θ) has the
following asymptotic behaviour for θ � 1 (θ → ∞):

Z ∼ A1 exp
(
− θ 2/2

)
+ B θ −4 . (11.16)

For θ < 1 the function Z (θ) has no singularities and can be expanded in a
Taylor series.

In order to obtain the dispersion relation the integrals

I0 =

+∞∫
0

Ψ ′′ dµ , I1 =

+∞∫
0

Ψ ′′µ dµ (11.17)

have to be evaluated. On normalizing the function Z (θ) by the condition

Z (0) = 1 ,

we find from (11.16) that

Ĩ0 =

+∞∫
0

Z (θ) dθ ≈ 1 , Ĩ1 =

+∞∫
0

Z (θ) θ dθ ≈ 1 . (11.18)

The integrals (11.17) are expressed through (11.18).
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For the function Ψ (θ), we have

Ψ (θ) =

θ∫
0

dθ1

θ1∫
0

Z (θ2) dθ2 ,

whence

Ψ (µ) ∼ const
(

1 +
I0

(1/p) − I1
|µ |
)

(11.19)

for θ → ∞. Here it is taken into account that

Ψ ′′
µµ (0) = p Ψ (0) .

11.2.4 Matching of the solutions and the dispersion
relation

As is seen from the asymptotic solution (11.16), the approximation S → ∞
is valid once µ � ε0, where

ε0 =
( p

α2S 2

)1/4
. (11.20)

Hence the function (11.19) must coincide with (11.12). Equating them
results in the dispersion equation(

1 − p 3/2

αS

)
− p α

( p

α2S 2

)1/4
= 0 . (11.21)

There is no difficulty in understanding that, given the ratio

p 3/2

αS

 1 , (11.22)

the equation is reduced to

p ≈
(

S

α

)2/5

, (11.23)

while given

p α
( p

α2S 2

)1/4

 1 , (11.24)

it reduces to
p = (αS)2/3

. (11.25)
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Conditions (11.22) and (11.24) are equivalent to

p α2 � 1 (11.26)

and
p α2 
 1 , (11.27)

respectively. Region (11.26) may be termed that of ‘short’ waves, whereas
region (11.27) is that of ‘long’ waves. In the former the growth rate increases
with the increase of the wavelength, while decreasing in the latter.

At p α2 ∼ 1, i.e., when α ∼ S 1/4 , the growth rate reaches the maximum

pmax ∼ S 1/2 . (11.28)

Recall that the dimensionless parameters

α = ka =
2πa

λ
, p = ω τr .

Without using the condition α2 
 1, Equation (11.6) shows that ∆′ ≈ 0
for α ≈ 1. So the tearing instability completely disappears for α ≈ 1 and
exists in the region of the wave length

λ > 2πa .
(11.29)

That is why it is called a long-wave instability.

kS

ωS

0 2 4

0.2

0.6

0.4
Figure 11.2: The dependence
of the tearing instability incre-
ment ωs on the wave vector ks.

As α → S−1, the increment tends to τ −1
r . As was mentioned earlier, in

this case, i.e. in the region α < S−1, the effect of compressibility becomes
dominant. It will be discussed in Section 11.5.
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Expression (11.23) was obtained analitically by Furth et al. (1963); they
also obtained the dependence (11.25) numerically. The results of the nu-
merical solution of the general Equation (11.21) are given in Figure 11.2,
using the notation

ωs = ω τr S−1/2 , ks = ka S 1/4 . (11.30)

Recall that the dimensionless parameter S is the Lundquist number (6.22)
but determined with respect to the current-layer thickness a.

11.3 Physical interpretation of the instability

11.3.1 Acting forces of the tearing instability

We now present another derivation of the dispersion relations, based on the
consideration of the physical mechanism of the tearing instability (Furth et
al., 1963). Let us make use of the absolute system of units where the speed
of light c = 1. Besides, every coefficient of order unity will be set equal to
unity.

xF

F

d

L

v
v x

y

ε a a
0

y
B 0

y

Figure 11.3: The magnetic field lines and the velocity in the course of
the development of a tearing instability. The small arrows show velocity
directions. Forces are shown by thick empty arrows. ε0a is the internal
region thickness. The case ε0 < α is shown.

Let a small perturbation appear in the reconnecting current layer
(RCL). As a consequence of the magnetic field structure (namely, antipar-
allel directions of reconnecting components on either side of the neutral
plane), a driving force Fd of the instability arises, accelerating the plasma
along the x axis, i.e. along the width of the layer (see Figure 11.3). This
force corresponds to a simple fact:

parallel electric currents flowing inside the neutral layer attract each
other and tend to coalesce into separate current filaments.
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Thus the driving force of the instability generates plasma motions inside
the RCL, directed along the x axis, with a velocity v1x. As this takes place,
the surrounding plasma must, by virtue of the flow continuity, flow into the
internal region with a velocity v1y. As a consequence, the electric current js
arises, giving rise to the corresponding Lorentz force FLy, hindering the
plasma from flowing into the internal region:

js = σ v1y ε0B , FLy = js ε0B = σ v1y (ε0B)2.

Here we have taken into account that the reconnecting component of the
field at the boundary of the internal region is equal to Bx(y) = ε0B, where
ε0a is the thickness of the internal region.

The force FLy is directed against the plasma motion and is compa-
rable in magnitude with the driving force Fd of the instability.

Hence the power with which the driving force performs work on a unit
volume of the plasma is

P = v1yFLy = σ v 2
1y (ε0B)2. (11.31)

This power goes to acceleration of the plasma; that is why

P = K, (11.32)

where K is the kinetic energy acquired by the unit plasma volume in unit
time:

K = ωρ v 2
1x = ωρ

v 2
1y

(k ε0a)2
. (11.33)

Here use is made of the incompressibility condition div v = 0:

v1x =
v1y

k ε0a
.

On comparing (11.31) and (11.33), an expression for the thickness of the
internal dissipative region is found,

ε0 =
( ωρ

k2a2B2σ

)1/4
, (11.34)

which coincides with expression (11.9), obtained earlier from the analytical
solution.
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11.3.2 Dispersion equation for tearing instability

Let us now find the dispersion relations. In the dissipative region, where
the flows of plasma and field lines are relatively independent, the first ad-
dendum on the right-hand side of Ohm’s law

η j = E + v × B

dominates the second one, though these two are of the same order of mag-
nitude. What this means is that ε0a must be taken in such a way that

η j1 ∼ E1 . (11.35)

However the plasma and magnetic field line motions are not completely
independent, even in the internal dissipative region. The electric field per-
turbation E1 is related with that of the magnetic field perturbation B1
through

E1 ∼ ωB1y

k
.

Using the Maxwell’s equations

curl B =
4π

c
j and divB = 0 ,

we obtain

j1 ∼ B ′′
1

4πk
(11.36)

once ka < 1. Relations (11.35) and (11.36) give rise to

ωB1y

η
∼

B ′′
1y

4π
. (11.37)

Now the quantity B ′′
1y has to be evaluated. As a consequence of a partial

freezing-in, magnetic field deviations during the plasma motion along the
layer in a region with a thickness

aε̃ ∼ a2k ,

since aε̃λ ∼ a2. For
aε̃ > aε0 (11.38)

this gives the estimate

B ′′
1y ∼

B ′
1y

ε0a
∼ B1y

ε0a ε̃a
∼ B1y

ε0ka3 , (11.39)
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whereas for
aε̃ < aε0 (11.40)

one has

B ′′
1y ∼

B ′
1y

ε0a
∼ B1y

(ε0a)2
. (11.41)

It is a simple matter to see that the inequality (11.38) is equivalent to
the inequality (11.26) determining the region of short-wave perturbations,
while the inequality (11.40) is equivalent to (11.27) which corresponds to the
long-wave region. Substituting the relations (11.39) and (11.41) in (11.37),
with care taken of (11.34), leads to the dispersion relations:

ω5 =
η3B3

a10ρ

1
k2 (11.42)

for the case (11.38), and

ω3 =
ηB2

a2ρ
k2 (11.43)

for the case (11.40). Equations (11.42) and (11.43) are easily shown to be
equivalent, respectively, to Equations (11.23) and (11.25), obtained analyt-
ically in Section 11.2.

11.4 The stabilizing effect of transversal field

While describing the effect of a transversal magnetic field, attention will be
centred on the physical picture of the phenomenon. In this way we are able
to understand the stabilization mechanism and easily obtain the dispersion
relations for the tearing instability with a transversal field.

Given the transversal field, the plasma moves along the width of the
RCL, overcoming the braking influence of the transversal field as shown in
Figure 11.4. Taking this fact into account, we have instead of (11.32) to
write down

P = K + Π . (11.44)

The second term on the right is the work done in a unit of time against the
force FB⊥ related to the transversal field B⊥, and it is given by

Π = v1x FB⊥ . (11.45)

Here
FB⊥ = jB⊥B⊥ and jB⊥ = σ v1x B⊥ . (11.46)
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ε a a
0

B 0
B⊥

Figure 11.4: The magnetic field lines and velocities for the tearing instabil-
ity in the RCL with a transversal magnetic field.

Using Equations (11.45)–(11.46) and divv = 0, the power Π is evaluated
to be

Π = σB 2
⊥

v 2
1y

(k ε0a)2
. (11.47)

Substituting the relations (11.31), (11.33), and (11.46) in the relation (11.44)
gives

σ v 2
1y (ε0B)2 =

ωρ v 2
1y

(k ε0a)2
+ σ B 2

⊥
v 2
1y

(k ε0a)2
.

From this there immediately follows an estimate for the thickness of the
internal dissipative region with the transversal field at hand:

ε0 =
( ωρ

k2a2B2σ

)1/4
(

1 +
σB 2

⊥
ωρ

)1/4

(11.48)

or

ε0(ξ⊥) = ε0(0)
(

1 +
ξ2
⊥S2

p

)1/4

.

Here ξ⊥ = B⊥/B and the internal region thickness for B⊥ = 0 is designated
as ε0(0). Now ε0(ξ⊥) is implied in the expressions (11.36) to (11.41) by ε0.
Substituting (11.48) in (11.36)–(11.41) gives the dispersion relations:

ω5 =
η3B3

a10ρ

1
k2 − B 2

⊥
ρη

ω4

in the short-wave region
ε0 < α , (11.49)
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and

ω3 =
ηB2

a2ρ
k2 − B 2

⊥
ρ η

ω2

in the long-wave region
ε0 > α . (11.50)

Let us rewrite the same dispersion relations in the dimensionless form

p5 =
(

S

α

)2

− ξ 2
⊥S2p4 (11.51)

and
p3 = α2S2 − ξ 2

⊥S2p2 (11.52)

for the cases (11.49) and (11.50), respectively. It is easy to comprehend
that

the transversal component of magnetic field decreases the tearing
mode increment over the whole wave range and also decreases the
wavelength at which the increment peaks.

The rigorous analytic solution (Somov and Verneta, 1989) gives us the
dispersion relation

∆1/4
(

α2S2

p

)1/4(
1 − p3/2

αS
∆−1/2

)
− p α

(π

2

)1/2
= 0 , (11.53)

where

∆ =
(

1 +
ξ 2
⊥S2

p

)−1

. (11.54)

From Equation (11.53) the dispersion relations (11.51) and (11.52) follow,
given the conditions (11.49) and (11.50), respectively.

The stabilizing influence of the transversal field is demonstrated by Fig-
ure 11.5 on which the graphs of the instability increment ω τr dependence
on the wave length λ/a are presented for S = 108 and three values of the
transversal field: ξ⊥0 = 0 , ξ⊥1 = 10−4 , and ξ⊥2 = 10−3 . The solutions of
the asymptotical Equations (11.51) and (11.52) are shown by the straight
dotted lines, the solutions of the exact Equation (11.53) are shown by solid
curves. The figure shows that,

as the transversal magnetic field increases, the increment of the
tearing instability in the reconnecting current layer (RCL) decreases
and its maximum moves to the short-wave region.
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Figure 11.5: The dependence of the collisional tearing instability increment
on the wavelength and the transversal component of magnetic field.

Nishikawa and Sakai (1982) have numerically solved a set of eigenmode
equations in a RCL with the transversal magnetic field. The mode associ-
ated with magnetic island formation was investigated. It was found that
the transversal component strongly modifies this mode and has a significant
stabilizing effect on the collisional tearing mode.

11.5 Compressibility and a longitudinal field

11.5.1 Neutral current layers

Let us find the conditions under which compressibility of plasma should be
taken care of and show the effect of compressibility on the tearing instabil-
ity of the reconnecting current layer (RCL). For simplicity’s sake, we first
restrict our attention to the case By = B⊥ = 0 and Bz = B ‖ = 0.

During development of the tearing instability, the plasma starts moving
along the width of the layer as shown in Figure 11.3. Given the finite value
of the sound velocity, Vs, the plasma in the neighbourhood | δx | < Vs / ω
of the reconnection point is drawn into the motion in a characteristic time
of the instability growth ω−1. Provided Vs / ω > λ, the plasma may be
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considered incompressible. In the opposite case

Vs

ω
< λ (11.55)

the compressibility of the plasma must be accounted for: divv �= 0. In this
case the estimate

v1x

(Vs / ω)
∼ v1y

ε0a
(11.56)

holds, where ε0a is the internal region dimension.
Let us compare the work done by the driving instability force (Sec-

tion 11.3) in unit time on unit volume,

P ∼ σv 2
1y (ε0B)2 ,

with the kinetic energy acquired in unit time by the unit plasma volume
drawn into the motion along the RCL within the neighbourhood | δx | <
Vs/ω of the reconnection point,

K ∼ ωρ0 v 2
1x ∼ ωρ0

(
Vs

ω

1
ε0a

)2

v 2
1y .

Here relation (11.56) is used. Equating P and K gives an estimate for ε0:

ε0 ∼
(

ρ0V
2

s

ωa2σB2

)1/4

∼
(

1
ωτr

V 2
s

V 2
Ax

)1/4

, (11.57)

where VAx = Bx/
√

4πρ is the Alfvén speed.
Now substituting the quantity (11.57) for ε0 in formulae (11.37)–(11.41)

immediately results in the dispersion relation

ω ≈ 1
τr

V 2
Ax

V 2
s

.

Thus it is seen that

because of compressibility of the plasma, a new branch of the tearing
instability arises in the reconnecting current layer

in the long-wave region

λ > λ0 ≈ V s

ω
∼ 2πa S

(
VAx

V s

)−3

, (11.58)

which was absent for an incompressible plasma (ω → 0 for λ > λ0). Recall
that so far we have treated the case B⊥ = 0, B ‖ = 0, i.e. the magnetically
neutral current layer.
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11.5.2 Non-neutral current layers

In the context of the above treatment, the role of a longitudinal field Bz =
B ‖ �= 0 (along the electric current in the RCL) becomes clear. While com-
pressing a plasma with a longitudinal magnetic field which is in fact frozen
into the plasma, the work is to be done to compress the longitu-
dinal field (Somov and Titov, 1985b). Thus, given the longitudinal field,
the plasma pressure is supressed by the sum of the plasma pressure and
the magnetic one (connected with the longitudinal field). This leads to the
change

Vs →
(
V 2

s + V 2
A‖
)1/2

, (11.59)

where VA‖ = B ‖/
√

4πρ , which describes the stabilizing influence of the
longitudinal field. Once

B ‖ > Bx(a) , (11.60)

the instability caused by the compressibility becomes suppressed.
Note that the values obtained for the growth rate of the instability

are comparable with the inverse time of magnetic diffusion τ−1
r . Magnetic

diffusion, however, is neutralized by the plasma drift into the RCL (see
Section 3.5 in Somov, 1992) and the stationary zero configuration persists
for a time ts � τr. If the condition

ρout 
 ρin (11.61)

is satisfied, where ρout and ρin are the plasma densities inside and out-
side the layer, respectively, the plasma drift into the RCL cannot usually
suppress the tearing instability (see, however, Pollard and Taylor, 1979).
Hence the tearing instability of the RCL can play an essential role as a
universal dynamic instability (Somov and Verneta, 1993).

The rigorous analytic solution of the problem concerning the compress-
ibility effect on the tearing mode development was given by Verneta and
Somov (1993).

In actual RCLs, the plasma continuously flows into the layer through
its wide surfaces and flows out through the narrow side boundaries (see
Figure 6.3).

The fast outflow of plasmas from the reconnecting current layer can
be of principal importance for its tearing stability

(Syrovatskii, 1981). The accelerating outflow along the main (Bx) magnetic
field, which is present in the configuration with the velocity stagnation
point, causes a substantial decrease in the magnitude of the linear growth
rate and, for some parameter ranges, stabilization (Ip and Sonnerup, 1996).
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11.6 The kinetic approach

11.6.1 The tearing instability of neutral layer

We now desribe the tearing instability in the framework of the collisionless
plasma model, starting from the Vlasov equation (see vol. 1, Section 3.1.2)

∂fk

∂t
+ v

∂fk

∂r
+

Fk

mk

∂fk

∂v
= 0 . (11.62)

Here

Fk = qk

(
E +

1
c

v × B
)

and symbols k = e, i denote electrons and ions, respectively.
As equilibrium distribution functions describing the reconnecting cur-

rent layer (RCL), it is appropriate to choose (Harris, 1962)

f
(0)

k (y) = n0 exp
{

− 1
kBTk

[
1
2

mkv2 − ϑk

(
mkvz +

1
c

qkA(0)
)]}

.

(11.63)
The notation is conventional. Here the vector potential A = ezA for a two-
dimensional magnetic field B = curl A is introduced. The scalar potential
is excluded by choosing ϑi/T i = −ϑe/Te. ϑe and ϑi are the flow velocities
of electrons and ions.

Such distribution functions (as can be shown using Maxwell’s equations)
specify a current layer with the following characteristics:
(a) the equilibrium magnetic field

B = B0 (y) ex ,

where

B0 (y) = B0 tanh
y

a
(11.64)

on choosing
A(0) (y) = const × ln cosh

y

a
;

(b) the plasma density in the RCL

n(0) (y) = n0 cosh−2 y

a
, (11.65)

where

n0 =
1

kB(Te + T i)
B 2

0

8π
;
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(c) the RCL half-thickness

a =
2ckB(Te + T i)
eB0 (ϑi − ϑe)

. (11.66)

Therefore a magnetically-neutral one-dimemsional current layer of the Har-
ris type is considered.

Near the plane y = 0 where B0 = 0, particle motion is almost free inside
a non-adiabatic region of thickness 2dk (cf. definition (9.28)). Outside this
region the particles are magnetized. The quantity dk can be evaluated as
follows (see also Section 9.1). The local Larmor radius of a particle at the
boundary of the region is

r(k)
L

(dk) =
VTk mk c

qk B0 (dk/a)
.

Equating it to the internal dissipative region thickness

r(k)
L

(dk) ≈ dk ,

we find

dk ≈
√

ar
(k)
L ,

(11.67)

where r(k)
L

is the Larmor radius in the B0 field. Thus the motion of particles
of kind k is assumed to be free inside the region | y | < dk, whereas they are
magnetized once | y | > dk.

� � �

Equations (11.62) will be solved in a linear approximation. The Fourier
components of the perturbations are of the form

f (1)(r, t) = f (1)(y) exp (ωt + ikx) . (11.68)

Recall that the case k ‖ B0 is considered. The initial Equations (11.62)
give, for perturbations,

(ω + ikvx) f
(1)

k = − 1
mk

F (1)
k · ∂f

(0)
k

∂v
.

These equations determine the approximate form of the perturbed distri-
bution function, the connection between f

(1)
k , E (1), and A(1):

f
(1)

k =
qkf

(0)
k

kBTk

{
ϑkA(1) + E (1) vz

ω + ikvx

}
. (11.69)
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The first term on the right-hand side represents the influence of
the magnetic field perturbation and the second one represents the
interaction between the electric field of a wave and particles.

The latter contribution is negligible outside the RCL as the particle motion
becomes adiabatic and there is no electric field along the magnetic field
lines.

From Maxwell’s equations, the perturbation electric field

E (1) = −1
c

ωA(1) .

(11.70)

Final results show that the instability growth rate complies with the con-
dition

ω < k VTk , (11.71)

where (different from the mean thermal velocity introduced in vol. 1, Sec-
tion 8.1.4)

VTk =
√

2k Tk

mk
. (11.72)

Therefore we consider a low-frequency mode of the instability. This is the
reason for assuming that

1
vx − i (ω/k)

≈ iπ δ (vx) + Vp
(

1
vx

)
(11.73)

(the Sokhotsky formula). Here Vp is the principal value of an integral (see
Vladimirov, 1971, Chapter 2, § 7).

� � �

If W is the total kinetic energy of the particles in the perturbation, then

dW

dt
=
∑

k

qk

∫
E (1) vz f

(1)
k d 3v dy . (11.74)

On the other hand, the energy conservation law gives

dW

dt
= − 1

8π

d

dt

∫ (
B (1)

)2
dy . (11.75)

Substituting (11.69) and (11.73) in formula (11.74), we get

dW

dt
=

π

k

∑
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qk

kBTk

+dk∫
−dk

[ ∫
f

(0)
k δ (vx)

(
E (1) vz

)2
d 3 v

]
dy −
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− 1
4π

d

dt

+∞∫
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n(y)
n(0)

(
A(1)

a

)2

dy
def=
∑

k

d

dt
W r

k − d

dt
W m . (11.76)

Here dW r
k /dt is the growth rate of the kinetic energy of the resonant parti-

cles of kind k in the region | y | < dk, whereas dW m/dt is the rate of energy
decrease of the remaining particles.

The electron resonance term is (r (i)
L

/r (e)
L

)1/2 times greater than the
ion one. Taking this fact into account, we find from formulae (11.75)
and (11.76) for electrons (k = e)

W r = ω

+de∫
−de
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f (0)
e δ (vx)
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)2
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= W m − 1
8π

∫ (
B (1)

)2
dy . (11.77)

From this it follows that the energy transfer to electrons exists in the region

ka < 1 or λ > 2πa (11.78)

(cf. condition (11.29)). This process constitutes the development of the
electron mode of the tearing instability.

The electron mode of the teraing instability arises from the coupling
of a negative energy perturbation (associated with filamentation
of the original magnetically-neutral current layer) to the electron
energization due to Landau resonance

(see vol. 1, Section 7.1.2).
Formula (11.77) gives us the following estimate for the growth rate of

the electron tearing instability:

ω ≈
(

a

r
(e)
L

)2
de

VTe
. (11.79)

Coppi et al. (1966) first proposed the electron tearing instability as a mech-
anism of explosive reconnection in the Earth magnetotail during substorm
break-up (Section 11.6.3).
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11.6.2 Stabilization by the transversal field

As we saw above, Landau resonance of electrons inside the neutral cur-
rent layer was proposed to provide the appropriate collisionless dissipation
necessary for the spontaneous reconnection in the geomagnetic tail during
a substorm (Coppi et al., 1966). However Schindler (1974) showed that
nonzero magnetic field component B⊥ normal to the current layer magne-
tizes the electrons and restricts them from being resonant. As a result,
the required dissipation relies upon the ions that are still unmagnetized.
So Schindler proposed the so called ion tearing instability, in which the
dissipation is due to ion Landau resonance. In this model the electrons act
only as a charge neutralizing background.

Galeev and Zelenyi (1975, 1976) found, however, that the magnetized
electrons can change the basic character of the tearing perturbation, thus
making the ion energization invalid as a driver for the instability. Therefore
the kinetic tearing instability can be suppressed by the transversal (i.e.
perpendicular to the current layer plane) magnetic field. Let us consider
this effect in some detail.

(a) We begin by considering sufficiently small values of the transversal
field B⊥, for which the inequality

ω(e)
L

=
eB⊥
mec

< ω (11.80)

holds. Here ω(e)
L

is the electron gyro-frequency in the transversal magnetic
field B⊥; recall that ω is the instability increment.

In this case electrons in the region | y | < de, where the reconnecting
magnetic field components tend to zero, are in Landau resonance with
the electric field perturbation (11.70). As a consequence, the electron
tearing mode develops in the reconnecting current layer (see above).

(b) As the transversal field increases, the Larmor frequency ω(e)
L

in-
creases as well. When ω(e)

L
> ω the electron resonance with the electric

field perturbation breaks down and the electron mode of the instability
becomes stabilized (Schindler, 1974). This takes place for

B⊥
B0

= ξ⊥ >

(
r(e)
L

a

)5/2(
1 +

T i

Te

)
. (11.81)

If the electron mode of the tearing is stabilized, there remains the pos-
sibility for ions to become the resonant particles, gaining energy. However
electron gyration also stabilizes the ion mode up to the values (Galeev and
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Zelenyi, 1976):

B⊥
B0

<

(
r(e)
L

a

)1/4(
1 +

T i

Te

)−1/2

. (11.82)

Thus there exists a ‘split’ – a range of values of the magnetic field transversal
component(

r(e)
L

a

)5/2(
1 +

T i

Te

)
<

B⊥
B0

= ξ⊥ <

(
r(e)
L

a

)1/4(
1 +

T i

Te

)−1/2

. (11.83)

Here the linear kinetic tearing instability becomes suppressed
(Galeev and Zelenyi, 1976). Somov and Verneta (1988) have shown that

the transversal magnetic field effect ensures the tearing stability of
high-temperature reconnecting turbulent-current layers

during the ‘main’ or ‘hot’ phase of solar flares (Somov and Verneta, 1993;
see also Section 3.5 in Somov, 1992).

11.6.3 The tearing instability of the geomagnetic tail

Although the tearing instability was first proposed as a clue mechanism of
magnetospheric substorms many years ago (Coppi et al., 1966), its prime
role among other substorm processes was persistently challenged. The main
theoretical reason was the proof by Lembege and Pellat (1982) that

the sign of the energy of the tearing mode perturbations can be
changed from negative to positive one due to the drift motion of
magnetized electrons inside the reconnecting current layer (RCL.

This conclusion is similar to that one of Galeev and Zelenyi (1976) but
Lembege and Pellat showed in particularly that this effect stabilizes the
tearing instability under the condition

ξ⊥ =
B⊥
B0

<
π

4
ka (11.84)

regardless the temperature ratio Te/T i. Here a corresponds to the current-
layer half-thickness according to the Harris formula (11.64).

Condition (11.84) shows that in the case of adiabatic electrons the tear-
ing instability can be stabilized only for very short wavelengths

λ < λmin =
π2

2
a

ξ⊥
. (11.85)
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They are too short to be relevant to the underlying spontaneous reconnec-
tion process in the geomagnetic tail current layer. In fact, condition (11.85)
coincides with that of the WKB approximation in the stability analysis and
as a result has made the linear tearing instability as the substorm mecha-
nism suspect.

There were many attempts to restore necessarily the linear ion insta-
bility as a clue substorm process. All of them look, however, pretty incon-
sistent with a general representation of the substorm as a relatively fast
unloading process in the tail of the magnetosphere. The substorm is usu-
ally preceded and prepared by the quasi-static changes in the tail during
the growth phase (Nagai et al., 1998; Kokubun and Kamide, 1998).

From a consideration of observational constraints on the onset mecha-
nism Sitnov et al. (1997), Sitnov and Sharma (1998) concluded that

the tearing instability must have a considerable initial stage when
the equilibrium magnetic field topology is still conserved.

Moreover the instability is shown to have no linear stage. Instead, either the
explicitly nonlinear or pseudolinear instability of negative energy eigenmode
can develope. So the unavoidable nonlinearity is a key element of the
substorm.

Sitnov et al. use the theory of catastrophes (Haken, 1978; Gucken-
heimer and Holmes, 1983) to consider a substorm as backward bifurcation
in an open nonlinear system. In general, the theory of catastrophes is widely
accepted as an appropriate mathematical tool to describe abrupt changes
in a low-dimensional system driven by quasi-stationary evolution of a set
of control parameters. The theory can be applied if we treat the tearing
instability as a process for the growth of a large-scale one-mode perturba-
tion.

NI

MS

LS

U

A

Figure 11.6: The effective poten-
tial U as a function of the state
parameter A.

In Figure 11.6 the effective potential U of the geomagnetic tail current
layer near the marginal state of a tearing instability is shown as a function
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of the state parameter A. A process of quasi-stationary transformation of
the potential minimum (LS) into the point of inflection (MS) is shown by
the dashed arrow.

Being located near the bottom of the potential U well before the catas-
trophe, the system is linearly stable (LS) because of positive energy of
small perturbations from the minimum. The transition to instability is pos-
sible only at the moment of the catastrophe or before the catastrophe under
the influence of a finite amplitude perturbation (the large solid arrow) nec-
essary to surmount the potential barrier. In both cases the destabilization
of the system proves to be nonlinear.

Many difficulties of the substorm theory have arisen presumably not
from the incorrect physics involved but rather from irrelevant mathemati-
cal treatment of the instability problem. Suitable treatment of the tearing
instability as a backward bifurcation can resolve some long-standing prob-
lems in the theory including the consistent description of both triggered and
spontaneous onsets. Much more can be done due to further elaboration of
this promising approach to the magnetospheric substorm mechanism.



 

 

 

 

 



Chapter 12

Magnetic Reconnection
and Turbulence

The open issues focused on in this Chapter presumably will determine
the nearest future as well as the most interesting perspectives of plasma
astrophysics.

12.1 Reconnection and magnetic helicity

12.1.1 General properties of complex MHD systems

We are going to consider some properties of the reconnection process in
complex magnetic field configurations containing many places (points or
lines) where reconnection occurs. Such a situation frequently appears in
space plasmas, for example in a set of closely packed flux tubes suggested
by Parker (1972). The tubes tend to form many reconnecting current layers
(RCLs) at their interfaces. This may be the case of active regions on the
Sun when the field-line footpoint motions are slow enough to consider the
evolution of the coronal magnetic field as a series of equilibria, but fast
enough to explain coronal heating (see Sections 12.2.1 and 12.4.2).

Another example of a similar complex structure is the ‘spaghetti’ model
of solar flares suggested by de Jager (1986) or the ‘avalanche’ model of
them (Parker, 1988; Lu and Hamilton, 1991; Zirker and Cleveland, 1993).
The last assumes that the energy release process in flares can be under-
stood as avalanches of many small reconnection events. LaRosa and
Moore (1993) propose that the large production rate of energetic electrons
in solar flares (Section 9.1) is achieved through MHD turbulent cascade (see
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vol. 1, Section 7.2.3) of the bulk kinetic energy of the outflows from many
separate reconnecting current layers (see also Antonucci et al., 1996).

How can we estimate the rate of magnetic energy release due to re-
connection in such a very complex system of flux tubes? – The inherent
complexity of the field configuration which can be used as a model does not
allow any optimism in an attempt to solve the dissipative MHD problem
numerically.

An alternative approach to that of solving the MHD equations as
they stand is to reformulate them in terms of invariant quantities.

As we have seen in vol. 1, Section 9.4, the mass, momentum and energy
are conserving quantities and can be used to construct invariants. For
example, the total energy of a system before reconnection is equal to the
total energy after reconnection plus dissipation. A less familiar invariant
in ideal MHD is the magnetic helicity or, more exactly, the global magnetic
helicity (see Exercise 12.1):

H =
∫
V

A · B d 3r . (12.1)

Here A is a vector potential for field B, and V is the plasma volume bounded
by a magnetic surface S, i.e.

B · n
∣∣

S
= 0 . (12.2)

Woltjer (1958) showed that

in ideal magnetohydrodynamic motions the global magnetic helicity
H is conserved in any closed magnetic flux tube.

Woltjer’s theorem may be extended to open-end flux tubes as well, pro-
vided the ends do not suffer any motion. In order to explain the observed
toroidal field reversal in reversed-field pinches, Taylor (1974) generalized
the ideal MHD result derived by Woltjer to a class of dissipative motions.
Woltjer’s theorem can also be used to show that the fields which minimize
the magnetic energy subject to given initial and boundary conditions are
in general force-free fields (Exercise 12.2).

The magnetic helicity, defined by definition (12.1), provides a measure
of the linkage or knottedness of field lines (e.g., Berger, 1988a and 1988b).
The helicity is a topological property of a magnetic field (see, for
example, Exercise 12.1). In ideal MHD there is no reconnection. For this
reason, the magnetic helicity is conserved.

If we do not have ideal MHD there is some reconnection, and helicity is
not conserved. However
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reconnection at a large magnetic Reynolds number generally con-
serves the global magnetic helicity to a great extent.

In laboratory (Taylor, 1974, 1986), solar (Berger, 1984) and magnetospheric
(Wright and Berger, 1989) plasmas the fraction of helicity dissipated is
normally very small.

The approximate conservation of magnetic helicity has been success-
ful in calculating heating rates in the solar corona (Section 12.2.1). The
main idea here is that the magnetic field tends to minimize its energy,
subject to the constraint that its topological characteristic – helicity – is
fixed. Reconnection gives the fastest way for this relaxation. The magnetic
configuration in the region which is subject to reconnection should relax
towards a constant-α force-free field. Such a field is also called the linear
force-free field. Taylor (1974) used this conjecture – Taylor’s hypothesis –
to predict the formation of a Lundquist field in actively reconnecting fusion
devices.

Interestingly, however, it is observed in some laboratory experiments
that the relaxation can take place without the conservation of global mag-
netic helicity. Presumably such unexpected loss of helicity may be related
to a self-organization effect in a reversed field plasma (Hirano et al., 1997).
Even if the value of H is null at the initial stage, the plasma relaxes to a
certain field configuration by producing the toroidal magnetic field and H.

12.1.2 Two types of MHD turbulence

Turbulence in ordinary fluids has great consequences: it changes the proper-
ties of flow and changes large-scale flow pattern, even under time averaging.
Turbulence introduses eddy diffusion and eddy viscosity, and it increases
momentum coupling and drag forces by orders of magnitude (see Mathieu
and Scott, 2000; Pope, 2000). It should obviously have a wide variety of
consequences in magnetized cosmic plasmas, even in the MHD approxima-
tion.

There are at least two distinct types of MHD driven turbulence. First,
when the external large-scale magnetic field is strong, the resulting
turbulence can be described as the nonlinear interactions of Alfvén waves
(e.g., Goldreich and Sridhar, 1997). Early works by Iroshnikov (1964) and
Kraichnan (1965) obtained a k−3/2 spectrum for both magnetic energy and
kinetic energy in the presence of a dynamically significant magnetic field.

However these works were based on the assumption of isotropy in
wavenumber space (see vol. 1, Section 7.2.2), which is difficult to justify
unless the magnetic field is very weak. Goldreich and Sridhar (1997) as-
sume a critical level of anysotropy, such that magnetic and hydrodynamic
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forces are comparable, and predict a k−5/3 spectrum for strong external
field turbulence. Solar wind observations (see Leamon et al., 1998), which
are well within the strong magnetized regime, and numerical studies (Cho
and Vishniac, 2000a) seem to support the Kolmogorov type scaling law.

Second, when the external magnetic field is weak, the MHD turbu-
lence near the scale of the largest energy-containing eddies or vortices will
be more or less like ordinary hydrodynamic turbulence with a small mag-
netic back reaction. In this regime, the turbulent eddy turnover time at
the large scale L/V is less than the Alfvénic time of the scale L/B. Here
V and B are rms velocity and magnetic field strength divided by (4πρ)1/2

respectively, and L is the scale of energy injection (recall that we consider
driven turbulence) or the largest energy-containing eddies.

Various aspects of the weak external field MHD turbulence have been
studied both theoretically and numerically. Since large-scale magnetic fields
are observed in almost all astrophysical objects, the generation and main-
tenance of such fields is one of the most important issues in this regime. In
the mean field dynamo theory (Moffatt, 1978; Parker, 1979),

turbulent motions at small scales are biased to create an electromo-
tive force along the direction of the large-scale magnetic field.

This effect, called the α-effect, works to amplify and maintain large-scale
magnetic fields.

Whether or not the α-effect actually works depends on the structure
of the MHD turbulence, especially on the mobility of the field lines. For
example, when equipartition between magnetic and kinetic energy densities
occurs at any scale larger than the dissipative scale, the mobility of the field
lines and the α-effect may be greatly reduced.

In the case of hydrodynamical turbulence, the energy cascades to smaller
scales (see vol. 1, Figure 7.3). If we introduce an uniform weak magnetic
field, turbulent motions will stretch the magnetic field lines and divert
energy to the small-scale magnetic field.

As the field lines are stretched, the magnetic energy density in-
creases rapidly, untill the generation of small-scale magnetic struc-
tures is balanced by the magnetic back reaction

at some scale between L and the dissipation scale lmin.
This will happen when the magnetic and kinetic energy densities asso-

ciated with a scale l (l > lmin) are comparable so the Lorentz forces resist
further stretching at or below that scale. However stretching at scales
larger than l is still possible, and the magnetic energy density will continue
to grow if l (l < L) can increase. Eventually, a final stationary state will
be reached.
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What is the scale of energy equipartition? What is the magnetic field
structure? – The answer to the later question depends on the nature of
diffusive processes acting on the magnetic field.

Suppose that magnetic field lines are unable to smooth the tangled fields
at small scales. Then, as a result of the turbulent energy cascade and the
subsequent stretching of field lines,

magnetic fields may have thin fibril structures with many polarity
reversals within the energy equipartition scale l.

Consequently, magnetic structures on the equipartition scale are highly
elongated along the external magnetic field direction (Batchelor, 1950).
This is the kind of picture one obtains by considering passive advection of
magnetic fields in a chaotic flow (for a review see Ott, 1998).

On the other hand, if we assume that MHD turbulence is always capable
of relaxing tangled field lines at small scales, then we expect eddies at the
final equipartition scale to be nearly isotropic (Cho and Vishniac, 2000b).

12.1.3 Helical scaling in MHD turbulence

The turbulent flows and tangled magnetic fields seem to be observed, for
example, in the Earth’s plasma sheet (see Borovsky and Furnsten, 2003).
Here the turbulence appears to be a turbulence of eddies rather than a
turbulence of Alfvén or other MHD waves. In this dynamical respect, it is
similar to the turbulence observed in the solar wind. As for dissipation, two
mechanisms appear to be important. One of them is electric coupling of
the turbulent flows to the resistive ionosphere. The second one is a direct
cascade of energy in the turbulence to small scales (see vol. 1, Section 7.2.2)
where internal dissipation should occur at non-MHD scales.

The possibility of the self-similar cascade transfer of the hydrodynamic
helicity flux over the spectrum was first introduced by Brissaud et al. (1973).
The following two scenarios were analyzed from the standpoint of the di-
mensionality method: (a) the simultaneous transfer of energy and helicity
with constant fluxes over the spectra of both parameters, (b) a constant
helicity flux determining the energy distribution.

The influence of the hydrodynamic helicity is obvious from a physical
standpoint:

two helical vortices with strong axial motion in one direction have
a tendency to merge because of the Bernoulli effect.

In other words, helicity should result in redistribution of the chaotic energy.
Moreover a helicity flux that characterizes the variation of the mean helicity
should also appear. Above all, helicity has an effect on the spectral features
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of turbulence. As for the spectra, variations occur in incompressible, com-
pressible, and stratified media, as shown by Moiseev and Chkhetiani (1996).
One of the tendencies inherent in helical media is the energy transfer to
the long-wavelength region due to the tendency of helical vortices to
merge.

According to Moiseev and Chkhetiani (1996), the mechanism that gen-
erates the mean hydrodynamic helicity leads to a second cascade range in
addition to the Kolmogorov range (vol. 1, Section 7.2.2). The constant that
does not depend on the scale of the helicity here is its flux. Nevertheless
this requirement, like the requirement that the energy flux F be constant
in the Kolmogorov range, is not inflexible. The spectral characteristics un-
dergo significant changes. They are associated, as we understand, with at
least a partial inverse cascade into the large-scale region.

There is a broad class of effects that generate both hydrodynamic helic-
ity itself and large helicity fluctuations under terrestrial and astrophysical
conditions. In particular, the simultaneous presence of such factors as tem-
perature and density gradients, shearing flows, and nonuniform rotation is
sufficient.

Like the direct cascade in the Kolmogorov turbulence, the inverse cas-
cade is accomplished by nonlinear interactions, suggesting that nonlin-
earity is important. However a spectral type of inverse cascade is the
strongly nonlocal inverse cascade process, which is usually referred to as
the α-effect (Moffatt, 1978; Krause and Rädler, 1980). This effect exists
already in linear kinematic problems.

A strong indication, that the α-effect is responsible for large-scale mag-
netic field generation, comes from detailed analysis of three-dimensional
simulations of forced MHD turbulence (Brandenburg, 2001). This may
seem rather surprising at the first glance, if one pictures large-scale field
generation as the result of an inverse cascade process, that (Brandenburg
and Subramanian, 2000)

the exact type of nonlinearity in the MHD equations is unessential
as far as the nature of large-scale field generation is concerned.

However, magnetic helicity can only change on a resistive timescale. So the
time it takes to organize the field into large scales increases with magnetic
Reynolds number.

12.1.4 Large-scale solar dynamo

Magnetic activity in the Sun occurs on a wide range of spatial and tem-
poral scales. Small-scale photospheric fields are highly intermittent (see
Section 12.4). The large-scale magnetic fields display remarkably ordered
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dynamics, involving cycles of activity with well-defined rules. There is an
eleven year period for sunspot activity. At the beginning of a cycle, sunspot
first appear in pairs at midlatitudes. Then subsequently the sites of emer-
gence migrate towards the equator over the course of the cycle.

The magnetic orientation of the sunspot pairs reverses from one cycle
to the next. So the full magnetic cycle has a mean period of 22 years. The
exact period of magnetic activity varies slightly and is a useful measure
of the strength of solar activity, with shorter periods corresponding to a
more active Sun. The magnetic cycle is also chaotically modulated on a
longer timescales and exhibits intervals of reduced sunspot activity known
as grand minima with a characteristic period of about 2000 years.

Such organized dynamics on time-scales that are short compared to
diffusive times requires the systematic regeneration of magnetic fields by
the MHD dynamo.

The smaller scale photospheric field is believed to result from local dy-
namo action in the convective flows at or near the solar surface (e.g., Cat-
taneo, 1999; see also Section 13.5). It is likely that the large-scale (global)
magnetic field is generated deeper within the Sun, probably at the interface
between the solar convective zone and the radiative zone. The sunspot ob-
servations are most straightforwardly interpreted as the surface emergence
of a large-scale toroidal field. The generation of such a field relies on the
presence of differential rotation which stretches out poloidal field lines into
strong regular toroidal field (see vol. 1, Section 20.1.5).

Helioseismology, which can assess the internal differential rotation by
using frequency splitting of acoustic modes, has revealed the existence of a
large radial shear below the convective zone (see vol. 1, Figure 20.4), now
known as the solar tachocline. Here the angular velocity profile changes
from being largely constant on radial lines in the convective zone to nearly
solid body rotation in the radiative interior. This radial shear layer is
certainly suitable for generating a strong toroidal field from any poloidal
field there.

Parker (1993) postulated that the toroidal field results from the action
of the shear on any poloidal component of the field in the tachocline region,
while the weaker poloidal field is generated throughout the convection zone
by the action of cyclonic (helical) turbulence. The key to this model is that

the transport of magnetic fields in the convective zone is enhanced
relative to that in the stable layer as a result of the turbulent con-
vective flows.

The poloidal magnetic flux that is generated in the convective zone is read-
ily transported by the enhanced diffusivity there, and some of it is then
expelled into the region below.
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However strong toroidal fields produced in the tachocline are not trans-
ported away from their region of generation because of the relatively low
turbulent diffusivity there. Hence the strong toroidal field may be stored
successfully in the radiative region without significantly modifying the con-
vection in the separate layer above. Recent dynamo models have built on
this interface concept.

12.2 Coronal heating and flares

12.2.1 Coronal heating in solar active regions

Heyvaerts and Priest (1984), Browning (1988) developed the model of cur-
rent dissipation by reconnection, adapting Taylor’s hypothesis to the con-
ditions in a solar active region. They assumed that at any time the most
relaxed accessible magnetic configuration is a linear force-free field which
can be determined from the evolution of magnetic helicity. By so doing,
Heyvaerts and Priest illustrated the role of the velocity v of photospheric
motions in coronal heating. No heating is produced if these motions are
very slow, and negligible heating is also produced when they are very fast.
So

coronal heating presumably results from photospheric motions
which build up magnetic stresses in the corona at a rate compa-
rable to that at which reconnection relaxes them.

The corresponding heating rate can be estimated in order of magnitude by:

F ≈ B2

4π
v

(
lb

lb + lv

) (
τd v

lb

)
, (12.3)

where τd is the effective dissipative time, lb and lv are scale lengths for the
magnetic field and velocity at the boundary. (Terms in brackets are limiting
factors smaller than 1.) The results showed that a substantial contribution
to coronal heating can come from current dissipation by reconnection.

Reconnection with a small magnetic Reynolds number can produce
significant dissipation of helicity, of course.

Wright and Berger (1991) proved that helicity dissipation in two-dimentional
configurations is associated with the retention of some of the inflowing mag-
netic flux by the reconnection region R r. When the reconnection site is a
simple Ohmic conductor, all the field parallel to the reconnection line (the
longitudinal component of magnetic field) that is swept into the region R r
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is retained (Somov and Titov, 1985a and 1985b). In contrast, the inflow-
ing magnetic field perpendicular to the line is annihilated. Wright and
Berger (1991) relate the amount of helicity dissipation to the retained mag-
netic flux.

12.2.2 Helicity and reconnection in solar flares

Flares in a solar or stellar atmosphere predominantly arise from the re-
lease of coronal magnetic energy. Since magnetic field lines may have fixed
endpoints in the photosphere, observations of photospheric quantities such
as shear and twist become important diagnostics for energy storage in the
corona.

The magnetic energy of an equilibrium field in the corona can be related
to measures of its net shear and twist. For example,

the magnetic energy of a linear force-free field is proportional to its
magnetic helicity

(see Exercise 12.2). Berger (1988b) presented a formula for the energy
of a non-linear force-free field in terms of linking field lines and electric
currents. This allows us to partition the magnetic energy among different
current sources in a well-defined way. For example, energy due to reconnect-
ing current layers (RCLs) may be compared to energy due to field-aligned
currents (see Chapter 14).

Pre-flare magnetic fields are often modeled as a twisted flux tube asso-
ciated with a solar prominence. Twisting can be introduced either by pho-
tospheric twisting flows (presumably due to Coriolis forces) at the locations
where the base of the arch enters the photosphere (Gold and Hoyle, 1960),
or by flux cancellation, i.e. by the shear flows along the photospheric neutral
line and the converging flows in direction to the neutral line (e.g., Somov
et al., 2002a).

If one assumes that the magnetic field of a pre-flare prominence can be
modeled as a flux tube which is uniformly twisted and force-free, then it
is possible to compute a relative energy, for example, the energy difference
between a twisted arch and a similar arch described by a potential field.
However in order to make realistic estimates of the energy available from
a twisted tube for a flare, one must address the issue of the post-flare
magnetic configuration. If it is assumed that the total helicity is conserved,
it might be well that a linear force-free field, rather than a potential field,
represents the post-flare configuration of the flux tube.

In general, estimates of the energy available in terms of the topological
complexity of the magnetic field have been made by Berger (1994). The
argument that the post-flare configuration should be a linear force-free field
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is based on the work of Woltjer and requires that the Taylor conjecture be
true (Section 12.1). The key point is that, in deriving the result that a
linear force-free field is the lowest energy state that can reach when helicity
is conserved, Woltier used the approximation of ideal MHD. But this means
that

the constant α or linear force-free state is topologically inaccessible
from most initial configurations of a magnetic field.

While Taylor’s conjecture, that the global helicity is conserved while finite
diffusivity effects are invoked to allow the field to relax to a linear one,
gives one way out of this conundrum, it is not entirely satisfactory from a
theoretical point of view (Marsh, 1996).

It is believed that the excess energy, which is the energy difference
between the contained energy and the minimum energy predicted by the
Taylor hypothesis, is more rapidly dissipated than the magnetic he-
licity. It is also believed that reconnection may lead to the fast MHD
relaxation process to the minimum energy state, creating flares. However
this theoretical preposition should be subject to careful observational ex-
amination.

In principle, there may be an application in observational models of the
field structure of an active region with vector magnetogram data supplying
information on the force-free field parameter α. This would provide a check
on the model’s insight as to the true topology of the field.

Using vector magnetograms and X-ray morfology, Pevtsov et al. (1996)
determine the helicity density of the magnetic field in active region NOAA
7154 during 1992 May 5–12. The observations show that a long, twisted
X-ray structure retained the same helicity density as the two shorter struc-
tures, but its greater length implies a higher coronal twist. The measured
length and α value combine to imply a twist that exceeds the threshold for
the MHD kink instability. It appears that such simple models, which have
found that the kink instability does not lead to the global dissipation, do
not adequately address the physical processes that govern coronal fields.

Numerical integration of the 3D dissipative MHD equations, in those the
pressure gradient force and the density variation are neglected, shows that
magnetic reconnection driven by the resistive tearing instability growing on
the magnetic shear inversion layer can cause the spontaneous formation of
sigmoidal structure (Kusano, 2005). This process could be understood as a
manifestation of the minimum energy state, which has the excess magnetic
helicity compared to the bifurcation criterion for the linear force-free field
(Taylor, 1974). It is also numerically demonstrated that the formation of
the sigmoids can be followed by an explosive energy liberation.
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12.3 Stochastic acceleration in solar flares

Modern observations of solar energetic particles (SEPs) and hard electro-
magnetic radiations produced by solar flares indicate that stochastic accel-
eration of charged particles by waves or wave turbulence, a second-order
Fermi-type acceleration mechanism (see vol. 1, Section 7.2), may play an
important role in understanding the energy release processes and the con-
sequent plasma heating and particle acceleration. At first, this theory was
applied to the acceleration of nonthermal electrons which are responsible for
the microwave and hard X-ray emissions and for the type III radio bursts
during the impulsive phase of solar flares.

12.3.1 Stochastic acceleration of electrons

LaRosa et al. (1996), Miller et al. (1996) presented a model for the ac-
celeration of electrons from thermal to relativistic energies in solar flares.
They assume that fast outflows from the sites of reconnection generate a
cascading MHD turbulence. The ratio of the gas pressure to the magnetic
one is presumably small in this cascade. Thus the MHD turbulence has a
small parameter β (our parameter γ2) and mainly comprises of two low-
amplitude wave modes: (a) Alfvén waves and (b) fast magnetoacoustic
waves (see vol. 1, Section 15.2). The authors do not consider a possible role
of slow magnetoacoustic waves in the acceleration of protons.

LaRosa et al. assume that in the reconnection-driven turbulence there
is an equipartition between these two modes. About half of the energy
of the turbulence resides in Alfvén waves and about half in fast magneto-
acoustic waves (FMW). The threshold speed of the resonance determines
the selectivity of the wave-particle interaction. Assuming B(0) ≈ 500 G,
T (0) ≈ 3 × 106 K, and n(0) ≈ 1010 cm−3, they found that the Alfvén
speed VA ≈ 0.036 c, the electron thermal speed VTe ≈ 0.032 c, and the
proton thermal speed VTe ≈ 7.4 × 10−4 c. Therefore the threshold speed is
far in the tail of the proton distribution, and a negligible number of protons
could be accelerated by FMW or Alfvén waves. Consequently protons or
other ions are a negligible dissipation source for these waves, but not for
slow magnetoacoustic waves (SMW) ignored by LaRosa et al.

On the other hand, VA is only slightly above VTe, and a significant
number of the ambient electrons can resonate with the waves. Thus FMW
almost exclusively accelerate electrons under the solar flare conditions
accepted above. (They strongly differ from the conditions typical for the
model of super-hot turbulent-current layers considered in Chapter 7.) The
process under consideration could be called a small-amplitude Fermi accel-
eration or a resonant Fermi acceleration of second order (Miller et al., 1996)



308 Chapter 12. Reconnection and Turbulence

to denote the resonant character of the wave-particle interaction.

If we can ignore the gyroresonant part of the interaction, then only
the parallel energy would systematically increase,

leading to a velocity-space anisotropy in the electron distribution function.
So, beyond the main question of the origin and actual properties of the

turbulence under consideration, an interesting question challenging electron
energization by the Fermi process is pitch-angle scattering. In the absence
of ancillary scattering, acceleration by FMW would lead to a systematic
decrease of particle pitch-angles. Acceleration would then become less effi-
cient, since only those waves with very high parallel phase speed would be
able to resonate with the particles. However, as a tail is formed in the par-
allel direction, there would appear one or another instability which excites
waves (for example, the fire-hose instability; see Paesold and Benz, 1999)
that can scatter the electrons back to a nearly isotropic state.

We should not forget, of course, that the usual Coulomb collisions (see
vol. 1, Chapters 8 and 4), even being very rare, can well affect forma-
tion of the accelerated-electron distribution. The Coulomb scattering of
anisotropic accelerated electrons leads to their isotropization. As a result,
the acceleration efficiency can significantly rise like in the case of accelera-
tion in solar-flare collapsing magnetic traps (Kovalev and Somov, 2003).

With the introduction of isotropizing scattering of any origin, we
can avarage the momentum diffusion equation in spherical coordinates over
the pitch-angle θ and obtain the isotropic momentum diffusion equation

∂f

∂t
=

1
p2

∂

∂p

(
p2D(p)

∂f

∂p

)
. (12.4)

Here

D(p) =
1
2

+1∫
−1

Dpp dµ , (12.5)

p is the magnitude of the momentum vector p, µ = cos θ, and Dpp is
the µ-dependent momentum diffusion coefficient (see Miller et al., 1996).
The quantity f is the phase-space distribution function, normalized such
that f(p, t) 4πp2dp equals the number of particles per unit volume with
momentum in the interval dp about p.

Electron acceleration and wave evolution are thus described by the two
coupled partial differential equations: Equation (12.4) and the diffusion
equation in the wave-number space (see vol. 1, Equation(7.28)). Their
solution allows to evaluate the bulk energization of electrons by Fermi ac-
celeration from the MHD turbulence expected in solar flares.
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LaRosa et al. (1996) has found that the Fermi acceleration acts fast
enough to be the damping mechanism for the FMW turbulence. This means
that Fermi acceleration becomes fast enough at short enough scales λ ∼
λmin in the turbulent cascade of fast magnetoacoustic waves to end the
cascade by dissipating the cascading turbulent energy into random-velocity
kinetic energy of electrons. Practically all of the energy of the FMW tur-
bulence is absorbed by the electrons while the protons get practically none.

12.3.2 Acceleration of protons and heavy ions

As we saw above, fast magnetoacoustic waves (FMW) can cascade to higher
frequencies, eventually Landau resonate with the thermal electrons and
accelerate them by the small-amplitude Fermi-type mechanism. In this
Section we shall discuss the acceleration of protons and heavy ions by Alfvén
waves that are a part of the same MHD turbulent cascade but cyclotron
resonate with particles.

Let us consider for simplicity only the Alfvén waves with phase velocities
parallel and antiparallel to the background field B (0). These waves have
left-hand circular polarization relative to B (0) and occupy the frequency
range below the cyclotron frequency (see Appendix 3) of Hydrogen, i.e.,
protons:

ω < ω
(H)

B
=

ecB

EH

. (12.6)

As the waves increase in frequency, they resonate with protons of progres-
sively lower energies.

For simplicity we also take the low-frequency limit for the dispersion
relation of the Alfvén waves under consideration:

ω = VA | k‖ | . (12.7)

In a multi-ion astrophysical plasma, there are resonances and cutoffs in the
dispersion relation corresponding to each kind i of ions. However, because
of their small abundance, Fe and the Ne group do not affect the dispersion
relation. The He group will produce a resonance at ω

(He)

B
and a cutoff

at a slightly higher frequency. We shall take, however, the Alfvén wave
dispersion relation (12.7) for all

ω < ω
(He)

B
.

In general, a low-frequency Alfvén wave propagating obliquely with re-
spect to the ambient field B (0) has a linearly polarized magnetic field B (1)

normal to both B (0) and k (see vol. 1, Figure 15.1). The wave electric
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field E (1) is normal to B (0) and B (1). A low-frequency FMW (vol. 1, Sec-
tion 15.2.3) has a linearly polarized electric field E (1) normal to both B (0)

and k. In each case the electric field can be decomposed into left- and right-
handed components. However, for parallel propagation, all Alfvén waves
are left-handed, while all the FMWs are right-handed.

Since we consider the Alfvén waves which phase velocities are strictly
parallel and antiparallel to the background field, there is only one resonant
wave and it is the backward-moving Alfvén wave (Miller and Reames, 1996).
Applying the cyclotron resonance condition (see vol. 1, formula (7.16)) for
this wave with s = 1, we find its wavenumber

k‖ = −
ω (i)

B

γL

(
VA + v‖

) . (12.8)

Hence

when the Alfvén wave frequency becomes close to the ion-cyclotron
frequency ω (i)

B
, the thermal ions of the kind i would be accelerated

out of the background energies.

The first kind of ions encountered by the Alfvén waves will be the one
with the lowest cyclotron frequency, namely Fe. This is well visualized by
Figure 1 in Miller and Reames. However, due to the low Fe abundance,
the waves will not be completely damped and will continue to cascade up
the group of ions with the next higher cyclotron frequency, namely Ne, Mg,
and Si. These ions will be also accelerated but the waves will not be totally
damped again. They encounter 4He, C, N, and O. These ions do complitely
dissipate the waves and halt the turbulent cascade.

Miller and Reames (1996) showed that abundance ratios similar to those
observed in the interplanetary space after solar flares can result from the
stochastic acceleration by cascading Alfvén waves in impulsive flares.

12.3.3 Acceleration of 3He and 4He in solar flares

The most crucial challenge to the models including the stochastic accelera-
tion arises from the extreme enhancement of 3He observed in some impul-
sive solar events. Nonrelativistic 3He and 4He ions resonate mostly with
waves with frequencies close to the α-particle gyrofrequency. To study the
stochastic acceleration of these ions, the exact dispersion relation for the
relevant wave modes must be used, resulting in more efficient acceleration
than scattering that could lead to anisotropic particle distributions. Liu et
al. (2006) have carried out a quantitave study and have showed that the
interplay of the acceleration, Coulomb energy loss, and the escape processes
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in the stochastic acceleration of 3He and 4He by parallel-propagating waves
can account for the 3He enhancement, its varied range, and the spectral
shape as observed with the Advanced Composition Explorer (ACE).

In general, stochastic acceleration is attractive on several points. One
of them is that the stochastic interaction of particles with cascading waves
in astrophysical plasma offers, in principle, the opportunity to unify elec-
tron and ion acceleration within the context of a single model. Specifically
the picture that is emerging is one in which resonant wave-particle inter-
actions are able to account for acceleration of particles out of the thermal
background and to relativistic energies.

12.3.4 Electron-dominated solar flares

Hard X- and gamma-ray observations of solar flares have a wide range of
energy from about 10 keV to about 10 GeV with relatively high spectral
and temporal resolutions. Photon spectra over this range show signifi-
cant deviations from the simple power law (e.g., Park et al., 1997). The
study of these deviations can provide information about the acceleration
mechanism. There is, however, some ambiguity in the analysis of the obser-
vational data because both accelerated electrons and protons contribute to
the hard electromagnetic emission. Fortunately, there exist impulsive flares
which have little or no evidence of nuclear exitation lines in the gamma-ray
range. Such ‘electron-dominated’ events are uncontaminated by the pro-
ton processes and provide direct insights into the nature of the electron
acceleration.

Park et al. (1997) use a model consisting of a finite-size region in the
solar corona near the flare-loop top which contains a high-density of turbu-
lence. Here the electrons are accelerated. Because of the rapid scattering
by waves, the electrons trapped in this region have a nearly isotropic dis-
tribution. They emit bremsstrahlung photons which can be considered in a
thin-target approximation. However electrons eventually escape this region
after an escape time of τesc(E) and lose most of their energy E in the chro-
mosphere at the footpoints where they also emit hard X- and gamma-rays.
This is called the thick-target source (see vol. 1, Section 4.4.2).

Instead of the simplified Equation (12.4), the Fokker-Planck equation
(vol. 1, Section 3.1.4) re-written in energy space is used to describe the
spectrum of electrons assuming isotropy and homogeneity:

∂N

∂t
= − ∂

∂E { [ A(E) − |B(E) | ] N } +
∂2

∂E2 [ D(E) N ] −

− N

τes(E)
+ Q(E) . (12.9)
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Here N(E , t) dE is the number of electrons per unit volume in the energy
interval dE , A(E) is the systematic acceleration rate, D(E) is the diffusion
coefficient, Q(E) is a source term. The energy loss term

B(E) =
(

dE
dt

)
L

(12.10)

includes both Coulomb collision and synchrotron radiation losses.
Take the Maxwellian distribution as the source term

Q(E) = Q0
2√
π

(
E

kBT

)1/2

exp
(

− E
kBT

)
, (12.11)

where Q0 is the rate at which the ambient plasma electrons of tempera-
ture T are accelerated. At steady state, the number of escaping particles
is equal to the number of accelerated electrons:∫

N

τes(E)
dE =

∫
Q(E) dE = Q0 . (12.12)

The temperature T of about 17 MK is taken. The coefficients A(E), D(E),
and τes(E) of the Fokker-Planck equation are determined by the particle
acceleration mechanism. They can be written in the form:

A(E) = D (q + 2) (γLβ) q−1, (12.13)

D(E) = D β (γLβ) q, (12.14)

τes(E) = Tes
(γLβ) s

β
. (12.15)

Here D, Tes, q, and s are independent of the kinetic energy E = γL − 1
measured in units of mec

2, and βc is the velocity of electrons.
The acceleration time τa, which is also the timescale for reaching the

steady state in Equation (12.9), can be estimated as

τa(E) ≈ τ
D

(E) ≈ E2

D(E)
. (12.16)

This should be less than the rise time of a flare. For three of four flares
described by Park et al. (1997), the overall rise time τr of the hard X-rays is
about 10 s and the total duration of the flare τf is about 100 s. For the most
impulsive flare τr < 2 s and τf ≈ 8 s. Hence the steady state approximation
is justified. After setting ∂/∂t = 0, we can divide Equation (12.9) by one of
the parameters, say the diffusion coefficient D, without changing the steady
state solution.
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The acceleration time for an electron with energy E = 1 is approximately
D−1. Therefore, for three flares with the rise time τr ≈ 10 s, Park et
al. (1997) estimate D ≈ 0.15 s−1. For the shortest flare D ≈ 1 s−1. Shorter
rise times are possible, but these require higher values of the turbulence
energy density and the magnetic field. With D fixed, the number of free
parameters in the general stochastic model described above is reduced by
one.

The numerical solutions show that the wistler wave resonant accelera-
tion of electrons fits the observed spectra over the entire range of energy
in four flares. The high-energy cutoff in the two flares can be attributed to
synchrotron radiation losses in the presence of a 500 G magnetic field at the
acceleration site. The observed break in the photon spectra of all four flares
around 1 MeV can be attributed to a combination of the energy dependence
of the escape time τes(E) of particles out of the acceleration region and the
change in the energy dependence of the bremsstrahlung cross-section be-
tween the nonrelativistic and relativistic regimes. Further steepening of the
spectrum at even lower energies is caused by Coulomb losses.

12.4 Mechanisms of coronal heating

12.4.1 Heating of the quiet solar corona

The high temperature of the solar corona was originally interpreted as due
to the steady dissipation of various kinds of waves coming from the lower
layers (see Ulmschneider et al., 1991). Later on, heating by a myriad of very
small flares releasing magnetic energy by reconnection has also been pro-
posed (Gold, 1964; Priest, 1982; Parker, 1988). However these microflares
or nanoflares have not yet been well identified.

It is difficult to detect the smallest flares in active regions, but in the
quiet corona the background flux and stray light are smaller, and sensitive
observations, for example, by the EIT (the Extreme ultraviolet Imaging
Telescope) on SOHO can be used (Benz and Krucker, 1998). The thermal
radiation of the quiet corona in high-temperature iron lines is found to
fluctuate significantly, even on the shortest time scale as short as 2 min
and in the faintest pixels. These observations give us an evidence that

a significant fraction of the ‘steady heating’ in the quiet coronal
regions is, in fact, impulsive.

The most prominent enhancements are identified with the X-ray flares
above the network of the quiet chromosphere. Presumably, these X-ray
flares above network elements are caused by additional plasma injected
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from below and heated to slightly higher temperatures than the preexisting
corona.

Magnetic flux tubes in the photosphere are subject to constant buffet-
ing by convective motions, and as a result, flux tubes experience random
walk through the photosphere. From time to time, these motions will have
the effect that a flux tube will come into contact with another tube of op-
posite polarity. We refer to this process as reconnection in weakly-ionized
plasma (Chapter 13). Another possibility is the photospheric dynamo effect
(Section 13.5) which, in an initially weak field, generates thin flux tubes of
strong magnetic fields. Such tubes extend high into the chromosphere and
can contribute to the mass and energy balance of the quiet corona.

SOHO ’s MDI (the Michelson Doppler Imager) observations show that
the magnetic field in the quiet network of the solar photosphere is organized
into relatively small ‘concentrations’ (magnetic elements, small loops etc.)
with fluxes in the range of 1018 Mx up to a few times 1019 Mx, and an
intrinsic field strength of the order of a kilogauss. These concentrations are
embedded in a superposion of flows, including the granulation and super-
granulation. They fragment in response to sheared flows, merge when they
collide with others of the same polarity, or cancel against concentrations of
opposite polarity. Newly emerging fluxes replace the canceled ones.

Schrijver et al. (1997) present a quantitative statistical model that is
consistent with the histogram of fluxes contained in concentrations of mag-
netic flux in the quiet network as well as with estimated collision frequencies
and fragmentation rates. Based on the model, Schrijver et al. estimate that
as much flux is cancelled as is present in quiet-network elements in 1.5 to
3 days. This time scale is close to the timescale for flux replacement by
emergence in ephemeral regions. So that this appears to be the most im-
portant source of flux for the quiet network. Schrijver et al. (1997) point
out that the reconnection process appears to be an important source of
outer-atmosphere heating.

Direct evidence that the ‘magnetic carpet’ (Day, 1998), an ensemble
of magnetic concentrations in the photosphere, really can heat the corona
comes from the two other SOHO instruments, the Coronal Diagnostic Spec-
trometer (CDS) and the Extreme ultraviolet Imaging Telescope (EIT). Both
instruments have recorded local brightenings of hot plasma that coincide
with disappearaces of the carpet’s elements. This indicates that just about
all the elements reconnect and cancel, thereby releasing magnetic energy,
rather than simply sick back beneath the photosphere.

The coronal transition region and chromospheric lines observed by
SOHO together with centimeter radio emission of the quiet Sun simul-
taneously observed by the VLA show that the corona above the magnetic
network has a higher pressure and is more variable than that above the in-
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terior of supergranular cells. Comparison of multiwavelength observations
of quiet Sun emission shows good spatial correlations between enhanced
radiations originating from the chromosphere to the corona. Furthermore

the coronal heating events follow the basic properties of regular solar
flares

and thus may be interpreted as microflares and nanoflares (Benz and
Krucker, 1999). The differences seem to be mainly quantitative (Krucker
and Benz, 2000).

∗ ∗ ∗

What do we need to replenish the entire magnetic carpet quickly, say
1-3 days (Schrijver et al., 1997; Moore et al., 1999) ? – A rapid replenish-
ment, including the entire cancelation of magnetic fluxes inside the carpet,
requires the fundamental assumption of a two-level reconnection in the solar
atmosphere (e.g., Somov, 1999).

First, we may apply the concept of fast reconnection of electric cur-
rents as the source of energy for microflares to explain coronal heating in
quiet regions (Somov and Hénoux, 1999). Second, in addition to coronal
reconnection, we need an efficient mechanism of magnetic field and current
dissipation in the photosphere and chromosphere. The presence of a huge
amount of neutrals in the weakly ionized plasma in the temperature min-
imum region makes its electrodynamical properties very different from an
ideal MHD medium. Dissipative collisional reconnection is very efficient
here (Litvinenko and Somov, 1994b; Litvinenko, 1999; Roald et al., 2000).
Presumably the same mechanism can be responsible for the heating of the
chromosphere.

12.4.2 Coronal heating in active regions

The soft X-ray observations of the Sun from Yohkoh have revealed that
roughly half of the X-ray luminosity comes from a tiny fraction (∼ 2 %) of
the solar disk (Acton, 1996). Virtually all of the X-ray luminosity is con-
centrated within active regions, where the magnetic field is the strongest.
While the corona is evidently heated everywhere, there is no question that
it is heated most intensively within active regions. So this Section will focus
entirely on active regions.

The energy that heats the corona almost certainly propagates upward
across the photosphere. Since the magnetic field plays a dominant role,
the required energy flux can be expessed in terms of the electromagnetic
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Poynting vector in an ideal MHD medium (see vol. 1, Exercise 13.5):

GP =
1
4π

B × (v × B ) . (12.17)

Assuming that the plasma vertical velocity vz vanishes, we have the follow-
ing expression for the vertical component of the energy flux:

Gz = − 1
4π

(v · B ) Bz . (12.18)

A value of Gz ∼ 107 erg cm−2 s−1 is frequently used to account for the
X-ray flux from active regions.

Detailed models of coronal heating in active regions typically invoke
mechanisms belonging to one of the two broadly defined categories:
wave (AC) or stress (DC) heating.

In wave heating, the large-scale magnetic field surves essentially as a
conductor for small-scale Alfvén waves propagating into the corona. So the
average flux of wave energy can be written as

< Gz > = −
√

ρ

4π
< v2 > Bz . (12.19)

Here Bz is the large-scale, stationary field, and < v2 > is the mean square
velocity amplitude of the Alfvén waves. If the AC heating is the case, one
expects to find some kind of correlation between the mean photospheric
field strength and the heating flux.

In stress heating, the coronal magnetic field stores energy in the form
of DC electric currents until it can be dissipated through, for example,
nanoflares (e.g., Parker, 1988). Estimating the rate of energy storage results
in a Poynting flux of the form

Gz = cd | v |B 2
z . (12.20)

Here the constant cd describes the efficiency of magnetic dissipation, which
might involve the random velocity v or the magnetic field geometry. Any-
way, the Poynting flux in Equations (12.19) and (12.20) scales differently
with the magnetic field Bz. While the constants of proportionality in each
case may vary due to numerous other factors,

we might expect a large enough sample to be capable of distinguish-
ing between the two mechanisms of coronal heating.

To analyze whether active region heating is dominated by slow (DC) or
rapid (AC) photospheric motions of magnetic footpoints, the so-called re-
duced magnetohydrodynamic (RMHD) equations are used. They describe
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the dynamic evolution of the macroscopic structures of coronal loops as-
suming a fully turbulent state in the coronal plasma (Milano et al., 1997).
The boundary condition for these equations is the subphotospheric velocity
field which stresses the magnetic field lines, thus replenishing the magnetic
energy that is continuously being dissipated inside the corona. In a tur-
bulent scenario, energy is efficiently transferred by a direct cascade to the
‘microscale’, where viscous and Joule dissipation take place (see, however,
Section 12.1.3).

Therefore, for the macroscopic dynamics of the fields, the net effect of
turbulence is to produce a dramatic enhancement of the dissipation rate.
Milano et al. (1997) integrated the large-scale evolution of a coronal loop
and computed the effective dissipation coefficients by applying the eddy-
damped closure model. They conclude that

for broadband power-law photospheric power spectra, the heating
of coronal loops is DC dominated.

Nonetheless a better knowledge of the photospheric power spectrum as a
function of both frequency and wavenumber will allow for more accurate
predictions of the heating rate from the theory.

12.5 Practice: Exercises and Answers

Exercise 12.1. Consider two interconnected ring-tubes C1 and C1 with
magnetic fluxes Φ1 and Φ2 inside of them but without a magnetic field
outside (Figure 12.1).

C
C

1
2

2
1

Φ
Φ

Figure 12.1: Two interconnected
magnetic flux tubes.

Show that the global magnetic helicity of the system is given by the
formula (Moffatt, 1978):

H = 2Φ1Φ2 . (12.21)

Answer. First, we calculate the helicity of the tube C1 by integrating
formula (12.1) over the volume V1 of the tube C1 and replacing B d 3r by
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Φ1 d r where dr is the length along the circuit C1:

H1 =
∫
V1

A · B d 3r = Φ1

∮
C1

A · d r . (12.22)

By virtue of the Stokes theorem

H1 = Φ1

∫
S1

curlA · dS = Φ1

∫
S1

B · dS = Φ1Φ2 . (12.23)

Since the other tube C2 makes the same contribution to the helicity, we
obtain the Moffatt formula (12.21).

Therefore

the global magnetic helicity depends only on the fact that the two
magnetic fluxes are interlinked.

The value of the helicity does not change if we deform the flux tubes as
long as the linkage remains the same.

If, however, by magnetic reconnection the tubes would be cut and re-
moved so that the linkage between them were broken, then the global he-
licity would go to zero. So we conclude that

as long as the topology of magnetic fluxes does not change, the
magnetic helicity is an invariant.

Exercise 12.2. Show that for the force-free fields with constant α, the
magnetic energy is proportional to the global helicity (Woltjer, 1959):

M = α H 1
8π

. (12.24)

Here

M =
∫
V

B2

8π
dV , (12.25)

V is the volume of a simply connected region bounded by a magnetic surface
S where B · n = 0 (see Section 12.1.1).

Discuss a kind of a surface integral which must be added to expres-
sion (12.24) in the case of a multiply connected volume such as a torus (see
Reiman, 1980).



Chapter 13

Reconnection in
Weakly-Ionized Plasma

Magnetic reconnection, while being well established in the solar corona,
is successfully invoked for explanation of many phenomena in the low-
temperature weakly-ionized plasma in the solar atmosphere.

13.1 Early observations and classical models

Magnetic reconnection, while being firmly established as a means of en-
ergy release in the high-temperature corona of the Sun during solar flares,
is frequently invoked for explanation of various phenomena in the low-
temperature plasma of the solar atmosphere. A particular example of
these is the prominence phenomenon. Prominences are defined as dense
(≈ 1011 cm−3) and cool (≈ 6000 K) plasma ‘clouds’ visible in Hα above
the solar surface (Tandberg-Hanssen, 1995). Pneuman (1983) suggested
that both the material necessary for their formation and the magnetic field
topology supporting them are the result of reconnection.

According to Pneuman (see also Syrovatskii, 1982) a neutral line of the
magnetic field is produced in the corona owing to some kind of plasma flow
in the photosphere. Reconnection at this line gives rise to a helical magnetic
field configuration. As this takes place, chromospheric material flows into
the reconnection region and is then carried up by the reconnected field lines
which are concave upward. The material is thereupon radiatively cooled to
form a prominence that nests in the helical field topology.

An interesting modification of this model is due to van Ballegooijen and

319
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Martens (1989, 1990) who conjectured that the reconnection place is in fact
located at the photospheric boundary. The point is that

if reconnection takes place deep enough in the solar atmosphere, a
sufficient quantity of material can easily be supplied to the corona,

thus facilitating the process of prominence formation. On the observational
side this conjecture is substantiated by the fact (Martin, 1986) that for
several hours before the formation of a filament, small-scale fragments of
opposite polarity flux were seen to cancel in the region below the eventual
filament.

So the model accounts for the cancelling magnetic features that are
usually observed to be present in the photosphere below prominences. The
scenario of the phenomenon has three phases: (a) a pre-interaction phase
in which two opposite polarity photospheric magnetic fragments are uncon-
nected magnetically, (b) an interaction phase when the fragments reconnect
in the corona and create a filament, (c) a flux cancellation phase when re-
connection in the photosphere produces the cancelling magnetic features.

Roumeliotis and Moore (1993) have developed a linear, analytical model
for reconnection at an X-type neutral line (cf. Chapter 2). The reconnec-
tion process is assumed to be driven by converging or diverging motions
applied at the photosphere. The gas pressure has been ignored (without
much justifications) in the vicinity of the neutral line, and only small per-
turbations have been considered. The model relates the flows around the
diffusion region, where dissipative effects are important, to the photospheric
driving motions. The calculations based on this linear theory support the
possibility of the laminar, slow reconnection occuring low in the solar at-
mosphere.

None of the above-mentioned authors considered the details of the re-
connection process. Therefore it is still unclear whether the process can
occur effectively enough in low-temperature plasma to ensure the upward
flux of matter that is sufficient for prominence formation in the corona. In
this Chapter we shall treat the reconnection process in the chromosphere
and the photosphere in greater detail.

The reconnecting current layer (RCL) is envisaged to be formed in con-
sequence of centre-to-boundary flows of weakly ionized plasma in convective
cells. It is in such a current layer that field lines reconnect to change the field
topology in the way suggested by Syrovatskii (1982) and Pneuman (1983).
As distinct from the coronal case, we treat the current layer in the chro-
mosphere and photosphere. We shall find that the reconnection efficiency
is highest in the temperature minimum region, where the classical electric
conductivity of weakly ionized plasma reaches its minimum.
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13.2 Model of reconnecting current layer

13.2.1 Simplest balance equations

Let us consider a stationary reconnecting current layer (RCL) in the chro-
mosphere and photosphere (Litvinenko and Somov, 1994b; Litvinenko, 1999).
To find its characteristics, let us write down the order-of-magnitude rela-
tions stemming from the one-fluid equations of continuity, momentum con-
servation (both across and along the layer) and magnetic field diffusion into
the layer:

n0v0 b = nv1a , (13.1)

(1 + x (T0)) n0 kBT0 +
B0

2

8π
= (1 + x (T )) nkBT , (13.2)

(1 + x (T )) n kBT = mp n
v2
1

2
+ (1 + x (T0)) n0 kBT0 , (13.3)

c2

4π σ (T ) a
= v0 . (13.4)

Here a and b are the layer half-thickness and half-width. n0 and n are
the plasma concentrations outside and inside the layer, x is the ionisation
degree, v0 and v1 are the plasma inflow and outflow velocities, mp is the
proton mass (hydrogen being assumed to be the main component of the
medium), T0 and T are the temperatures outside and inside the RCL. σ is
the collisional conductivity in the layer where the magnetic field perpen-
dicular to the electric current is zero. B0 is the field in the vicinity of the
RCL.

The set of Equations (13.1)–(13.4) should be supplemented by the en-
ergy balance equation. However it is not an easy matter to do this. On the
one hand, thermal conductivity is unlikely to play a significant role in the
energy balance of the low-temperature RCL. On the other hand, there are
no reliable calculations for the radiative loss function L (T ) in the temper-
ature domain < 104 K. An attempt to solve the radiative transfer equation
for such a thin layer in the dense plasma of the low solar atmosphere would
be an unjustified procedure given the order-of-magnitude character of the
model at hand.

Let us adhere to the simplest assumption, namely that the cooling pro-
cesses are effective enough to ensure the approximate equality of plasma
temperatures inside and outside the RCL. Hence we postulate that

T ≈ T0 . (13.5)
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This means that we do not expect an abrupt temperature enhancement
in the RCL as in the fully ionized case. Note that the photospheric den-
sity is about 108 times as large as that of the corona. Roughly speaking,
if the same amount of magnetic free energy is released in the corona and
photosphere into heat in the same volume, each particle of the photosphere
would receive approximately 10−8 of the energy given to each particle of the
corona. For example, the so-called type II white-light flares (Mauas, 1990;
Fang and Ding, 1995) are supposed to be the dissipation of magnetic field
by reconnection in the photosphere. Such flares bring a temperature en-
hancement only of 150–200 K.

13.2.2 Solution of the balance equations

Now the sought-after quantities (the RCL parameters a, b etc.) can be ex-
pressed with the aid of Equations (13.1)–(13.5) via the external parameters
n0, T, x, σ, v0, and B0 :

a =
c2

4π σ (T ) v0
, (13.6)

b = (1 + β−1) a
v1

v0
, (13.7)

n = n0 (1 + β−1) , (13.8)

v1 = VA,s ≡ B0
[
4π mp n0 (1 + β−1)

]−1/2
. (13.9)

Here
β = (1 + x (T )) n0 kBT

8π

B0
2 (13.10)

and VA,s is the Alfvén speed defined by formula (6.7).
Returning to the question posed in the introduction of this Section, it

is now straightforward to calculate the mass flux into the corona through
the RCL, assuming the latter to be vertically orientated:

F = 2mp nv1 al = 2mp n0 (1 + β−1)
c2 l VA,s

4π σv0
, (13.11)

l ∼ 109 cm being a typical value of the current layer length.
To find numerical values of the current layer parameters, we make use

of the chromosphere model due to Vernazza et al. (1981). This model gives
us the input parameters n0, x and T as functions of the height h above
the lower photospheric boundary, i.e. the level where the optical column
depth in continuum τ5000 = 1. The collisional conductivity, σ, for this
model was calculated by Kubát and Karlický (1986). A typical value of the
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field is assumed to be B0 ≈ 100 G. As for the inflow velocity, it is a free
parameter. Its magnitude is of the order of the photospheric convective flow
velocity ≈ 100 m/s. Table 13.1 presents the RCL characteristics predicted
by our model using these data and the layer length l ≈ 109 cm.

Table 13.1: Parameters of the reconnecting current layer in the chromo-
sphere and photosphere

Height h, km 0 0 350 350 2110 2110

Temperature T, 103 K 6.4 6.4 4.5 4.5 18.5 18.5

Conductivity σ, 1011 s−1 6 6 1.5 1.5 140 140

Inflow v0, 10 m s−1 1 10 1 10 1 10
velocity

Half-thickness a, 104 cm 10 1 50 5 0.5 0.05

Half-width b, 107 cm 0.8 10−2 10 0.1 3000 30

Concentration n, 1016 cm−3 10 10 1 1 0.02 0.02

Outflow v1, km s−1 0.6 0.6 2 2 20 20
velocity
Mass flux F, 1010 g s−1 300 30 300 30 0.4 0.04

13.2.3 Characteristics of the reconnecting current layer

Apart from variation of the inflow velocity, we consider three levels in the
solar atmosphere, in an attempt to clarify the physical picture of the recon-
nection process. These are the lower photosphere (h = 0 km), the tempera-
ture minimum (h = 350 km), and the upper chromosphere (h = 2113 km).
The properties of the reconnection process drastically differ at these lev-
els. Different regimes of linear reconnection (Craig and McClymont, 1993;
Priest et al., 1994) seem to be possible, including very slow (very small
magnetic Reynolds number) reconnection.
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The remarkable thing is that reconnection is predicted to effectively
occur only in a thin layer (not thicker than several hundred km), coinciding
with the temperature minimum region. Here

a relatively thick current layer can be formed, where reconnection
proceeds at a rate imposed by the converging plasma flows.

Since the magnetic field is relatively weak, the flow is practically incom-
pressible. Magnetic energy is transformed into the thermal and kinetic
energy of the resulting plasma motion. The upward flux of matter through
the current layer into the corona is capable of supplying 1016 g of cold
chromospheric material in a time of 104 s. This is amply sufficient for the
formation of a huge prominence.

An interesting peculiarity of the solution obtained is the inverse pro-
portionality of the mass flux to the inflow velocity. The physical reason for
this is that decreasing v0 leads to a decrease of the electric current in the
current layer and hence the magnetic field gradient. Since B0 is kept fixed,
the layer thickness 2a has to increase, thus augmenting the matter flux.

Below the temperature minimum, the RCL does not form; a ≈ b be-
cause the plasma density is very high there. That diminishes the Alfvén
speed and prevents the magnetic field from playing a significant role in the
plasma dynamics. The overall geometry of the field is that of an X-point,
so that the inflow magnetic field is highly nonuniform. This regime cor-
responds to the ‘nonuniform’ reconnection class according to classification
given by Priest et al. (1994).

As for reconnection in the upper chromosphere, it is not efficient either.
The reason for this is the relatively high temperature, resulting in the high
conductivity (Table 13.1), which makes magnetic diffusion into the RCL
too slow for any observable consequences related to the mass flux into the
corona.

∗ ∗ ∗

Several remarks are in order here, concerning our initial assumptions.
First, we have assumed the RCL to be purely neutral, that is no magnetic
field perpendicular to the layer has been taken into account. Allowing for
a non-zero transversal field ξ⊥ B0 , Equation (13.1) might be rewritten as
follows:

n0v0 b = nv1 (a + ξ⊥ b) . (13.12)

Since our model predicts the layer to be rather thick (a / b > 10−2 ) this
correction is of no importance: a small transversal field does not consid-
erably increase the effective cross-section of the matter outflow from the
current layer.
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Second, formula (13.5) needs some justification. By way of example,
let us suppose that the influx of magnetic energy is balanced by radiative
losses:

B0
2

4π
v0 b = L (T ) xn2 ab . (13.13)

A crude estimate for the loss function L (T ) = χ Tα has been given by, for
example, Peres et al. (1982). Using this estimate together with the above
RCL characteristics, one could find T ≈ 104 K (for h = 350 km). Given the
order-of-magnitude character of our model, it seems reasonable to presume
that radiative losses can balance the Joule heating, so that (13.5) is valid
as a first approximation. Anyway, although we expect the plasma heating
to have some impact on our results, it is not likely to considerably alter
the conclusions concerning reconnection efficiency. This is well supported
by numerical results obtained in the more accurate model by Oreshina and
Somov (1998).

Finally, we have implicitly assumed the plasma flow in the reconnec-
tion region to be well coupled. What this means is that both neutral and
charged plasma components participate in the plasma flow (see, however,
Section 13.4). As a consequence, the total density appears in the expres-
sion for the Alfvén speed determining the outflow velocity. If the coupling
were weak, the ion Alfvén speed would have to be used in Equation (13.9),
giving a faster outflow of ions.

Zweibel (1989) investigated reconnection in partially ionized plasmas
and introduced the parameter Q defining the degree of coupling:

Q =
v0

a νni
, (13.14)

νni being the frequency of neutral-ion collisions. The smaller Q is, the
stronger is the coupling. It is easy to check that for the RCL in the tem-
perature minimum region Q ≈ 10−5 − 10−1 for v0 = 103 − 105 cm s−1.
This value of Q substantiates the assumption of strong coupling for rea-
sonably slow inflows. In fact, a more self-consistent consideration of the
reconnection region is necessary to take account of the generalized Ohm’s
law in a weakly-ionized plasma with a magnetic field near the temperature
minimum.

13.3 Reconnection in solar prominences

The idea that reconnection in the dense cool plasma of the solar atmosphere
is a mechanism of the so-called quiescent prominence (filament) formation
was put forward many years ago. The model of prominence formation
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by dint of the reconnection process was shown to predict realistic field
topologies near filaments. However no investigation were performed on the
value of the upward flux of plasma into the corona. As were proved in
the previous Section, the flux can be high enough to explain the filament
formation in a reasonable time: F ≈ 1011 − 1012 g s−1. This seems to
be a strong argument in favour of the Pneuman–van Ballegooijen–Martens
model. However there were only circumstantial pieces of evidence in its
favour.

Compared with the corona,

the solar photosphere provides us with a unique place to observe
the magnetic reconnection process directly,

since the magnetic fields can be measured with high resolution.
Direct indications of reconnection in the temperature minimum have

been found on the basis of the study of photospheric and chromospheric
magnetograms together with dopplergrams in the same spectral lines. Liu
et al. (1995) have obtained magnetograms in the Hβ (λ4861.34 A) and
FeI (λ5324.19 A) lines. A comparative study of such magnetograms has
revealed the existence of reverse polarity features. The appearance and
behaviour of these features can be explained by the twisting of the magnetic
flux tubes and reconnection of them in the layer between the photosphere
and the chromosphere, i.e. in the temperature minimum region.

Observations show that reverse polarity cancellation is supposed to be
a slow magnetic reconnection in the photosphere. Certainly we can adjust
the parameters to account for observed flux canceling. It has been also
revealed (Wang, 1999) that in all well-observed events there is no connecting
transversal field between two canceling component. So observation support
the reconnection explanation.

We have seen that current layers can be formed in the temperature
minimum region in response to photospheric flows. Reconnection efficiency
is determined by the high collisinal resistivity rather than by the turbulent
one, as opposed to the coronal case. As a final speculation, high-speed
flows which are predicted by our model in regions of strong magnetic fields
(B0 > 300 G) might be identified with spicules.

∗ ∗ ∗

Optical observations reviewed by Martin (1998) confirm the necessary
conditions for the formation and maintenance of the filaments: (a) loca-
tion of filaments at a boundary between opposite-polarity magnetic fields,
(b) a system of overlying coronal loops, (c) a magnetically-defined channel
beneath, (d) the convergence of the opposite-polarity network of magnetic
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fields towards their common boundary within the channel, and (e) cance-
lation of magnetic flux at the common polarity boundary.

Evidence is put forth for three additional conditions associated with
fully developed filaments: (A) field-aligned mass flows parallel with their
fine structure, (B) a multi-polar background source of a small-scale mag-
netic field necessary for the formation of the filament barbs, and (C) a
handedness property known as chirality which requires them to be either
of two types, dextral or sinistral.

In the northern hemisphere most quiescent filaments are dextral ,
and in the southern hemisphere most are sinistral .

This refers to the direction of the magnetic field when standing on the
positive polarity and gives the two possible orientations for the axial field:
namely to the right for a dextral structure and to the left for a sinistral
one.

One-to-one relationships have been established between the chirality of
filaments and the chirality of their filament channels and overlying coro-
nal arcades. These findings reinforce either evidence that every filament
magnetic field is separate from the magnetic field of the overlying arcade
but both are parts of a larger magnetic field system. The larger system
has at least quadrupolar footprints in the photosphere (cf. Fig-
ure 14.1) and includes the filament channel and subphotospheric magnetic
fields (Martin, 1998).

To explain the hemispheric pattern, Mackay et al. (1998) consider the
emergence of a sheared activity complex. The complex interacts with a
remnant flux and, after convergence and flux cancellation, the filament
forms in the channel. A key feature of the model is the net magnetic
helicity of the complex. With the correct sign a filament channel can form,
but with the opposite sign no filament channel forms after convergence
because a transversal structure of the field is obtained across the polarity
inversion line. This situation is quite similar to that one which will be
shown in Figure 14.3.

Three-dimensional quasi-dissipative MHD simulations (Galsgaard and
Longbottom, 1999) show that a thin RCL is created above the polarity
inversion line. When the current becomes strong enough, magnetic recon-
nection starts. In the right parameter regime,

with the correct sign of helicity, the reconnected field lines are able
to lift plasma several pressure scale heights against solar gravity.

The lifted plasma forms a region with an enhanced density above the RCL
along the polarity inversion line.
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13.4 Element fractionation by reconnection

It is observationally established that element abundances of the solar corona
and solar wind obey a systematic fractionation pattern with respect to
their original photospheric abundances. This pattern is organized in such a
way that elements with a low first ionization potential (FIP), the so-called
low-FIP elements, are enriched by a factor of about four. Apparently the
elements are enriched or depleted by a process that depends on the FIP
or perhaps even more clearly on the characteristic first ionization time and
the relative diffusion length for the neutrals of the minor species colliding
with the dominant hydrogen atoms.

When two regions of opposite magnetic polarity come into contact with
each other in a partially ionized plasma, ions drifting in response to the
Lorentz force fall into the minimum of the magnetic field, and then the
drifting ions force the neutrals to take part in the flow. This is the case
considered by Arge and Mullan (1998). An essential aspect of reconnection
in weakly-ionized plasma is that

the atoms have no trouble flowing accross the magnetic field lines;
the ions are not entirely constrained to follow the field lines as this
should be in ideal MHD.

Instead, they have a significant component across the field lines. The reason
is dissipation in the form of ion-atom collisions. In view of the
fact that the atoms move across field lines freely, and in the view of the
fact that collisional coupling connects the atom fluid and the ion fluid, it
is not surprising that ions are not tied strictly to the field lines. As a
result, departures from ideal MHD behaviour are an inevitable feature of
the process we discuss here.

Because of the finite time required for ion-atom collisions to occur, the
plasma which emerges from the RCL has an ion/atom ratio which may
be altered relative to that in the ambient medium. Arge and Mullan show
that in chromospheric conditions, outflowing plasma exhibits enhancements
in ion/atom ratios which may be as large as a factor of ten or more. The
results are relevant in the context of the Sun, where the coronal abundances
of elements with low FIP are systematically enhanced in certain magnetic
structures.

The first ionization potential gives the energy scale of an atomic species,
hence many atomic parameters and the chemical behaviour of elements are
closely related to it. Thus, in principle,

very different physical mechanisms could be imagined which would
produce an FIP dependence of elemental abundance
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(see Section 13.5.3). It is important that the observed FIP enhancement
varies from one type of solar magnetic features to another, ranging from
unity (i.e., no enhancement) in impulsive flares to as much as 10 in diverging
field structures. The last suggests that magnetic field topology plays
a role in creating the FIP effect in the Sun.

If the magnetic field can trap the solar material and confine it (such as
in a loop), the FIP effect apparently does not occur. On the other hand, if
the field is such that a free outflow of material is allowed (e.g., in divergent
field), then the FIP effect develops to a large amplitude. For this reason,
when we model magnetic interactions in the chromosphere, for example
the fine magnetic-flux tube formation (Section 13.5.3) we have to choose a
topology which allows material to flow out freely.

In stars other than the Sun, EUV data have allowed to search for the FIP
effect. Some stars with magnetic activity levels significantly higher than the
Sun show evedence for FIP enhancement. This is consistent with a magnetic
origin of FIP enhancement. Moreover the same FIP-based compositional
fractionation mechanism at work in the solar atmosphere is presumably
operational in the coronae of significantly more active stars (Laming and
Drake, 1999).

13.5 The photospheric dynamo

13.5.1 Current generation mechanisms

In the deep photosphere, under the temperature minimum, particles are
well coupled by collisions. That is why the physics of the deep photo-
sphere, including the physics of magnetic flux tubes, is often described by
the resistive one-fluid MHD approach. The same is valid even more for
under-photospheric layers.

In the temperature minimum region, there are many neutral atoms
which collide with ions and bring them into macroscopic motion. However
the electrons remain frozen in the magnetic field. Therefore a treatment of
this region as

an ensemble of three fluids (electrons, ions and neutrals) is neces-
sary to give a clear physical insight on the mechanisms of current
generation near the temperature minimum

in the photosphere – the photospheric dynamo effect. Moreover, higher in
the solar chromosphere, significant effects arise due to the density decrease
that leads to a decoupling of the motions of ions and neutrals, that cannot
be described by the one-fluid approximation.
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For an axially symmetrical magnetic field, the horizontal velocities of
electrons, ions and neutrals can be found analytically by solving the equa-
tions which describe the balance of the horizontal forces acting on each
particle fluid (Hénoux and Somov, 1991). The horizontal velocities of ions
and neutrals derived from these equations are relative to the horizontal ve-
locities in the convective zone – the primary source of motion. It has been
shown that, in an initially weak magnetic field,

a radial inflow of neutrals can generate azimuthal DC currents, and
an azimuthal velocity field can create radial DC currents leading to
the circulation of vertical currents.

The effects of such velocity fields on the intensity and topology of electric
currents flowing in thin magnetic flux tubes will be discussed below.

13.5.2 Physics of thin magnetic flux tubes

A schematic representation of an open flux tube S is given in Figure 13.1,
which shows the location of the solar chromosphere Ch and photosphere Ph
with the temperature minimum region T . Such a semi-empirical model
follows, for example, from the He I (λ10830 A) triplet observations (Somov
and Kozlova, 1998).

Let us consider the electric currents generated by azimuthal flows with
the velocity vϕ in a partially ionized plasma in the region T . Since it is the
relative azimuthal velocity between the magnetic field lines and the plasma,
these currents can result either from azimuthal motions of the photosheric
plasma around a fixed magnetic field or from the rotation around the flux
tube axis of the magnetic field inserted in a static partially ionized atmo-
sphere. Anyway the azimuthal flows generate the radial currents jr.

An inflow of the radial current density jr is related to the vertical current
density jz by continuity equation

∂jz

∂z
= −1

r

∂ (rjr)
∂r

. (13.15)

The vertical electric current

Jz =
∫

2π rjz(r) dr (13.16)

cannot be derived locally, i.e. independently of the contribution of the other
neighbouring (in height z) layers in the solar atmosphere. Every layer in
the temperature minimum region T acts as a current generator in a circuit
that extends above and below this layer. So a circuit model is necessary to
relate the total current Jz to the current densities. However, in all cases the
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Figure 13.1: A simplified model of an open flux tube in the solar atmo-
sphere. (a) The generation of electric currents and the pinch effect. (b)
The motion of neutrals and their diffusion across the magnetic field lines
in the chromosphere.

contributions of every layer to the circuit regions placed above and below
it are proportional to the inverse ratio of the resistances of these parts of
the circuit.

The magnetic forces produced by these currents play a significant role
in the structure and dynamics of flux tubes. Even for moderate values of
the azimuthal photospheric velocities vϕ, the current Jz created is strong
enough to prevent by the pinch effect (an action of the Lorentz force compo-
nent Fr) an opening of the flux tube with height (Hénoux and Somov, 1997).

Despite the decrease of the ambient gas pressure with height, the
thin magnetic flux tube extends into the solar atmosphere high
above the temperature minimum.

In the internal part of the tube, the rise from the photosphere of a
partially ionized plasma is found to have four effects.

First, the upflow of this plasma is associated to a leak of neutrals across
the field lines as shown in Figure 13.1b and leads to an increase of the
ionization degree with altitude typical for the chromosphere. Moreover the
upflow brings above the temperature minimum an energy flux comparable
to the flux required for chromospheric heating.

Second, the outflow of neutrals takes place at the chromospheric level
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across the field lines. Here the neutrals occupy an extensive area shown
by the shadow in Figure 13.1b outside the tube. This outflow of neutrals
leads to ion-neutral separation and may explain the observed abundance
anomalies in the corona by enhancing in the upper part of the tube the
abundances of elements of a low ionization potential (Section 13.5.3).

Third, the upward motion velocities are high enough to lift the matter
to an altitude characteristic of spicules or even macrospicules.

Fourth, if the footpoints of the flux tubes are twisted by the photo-
sphere, then when they emerge into the transition region and release their
magnetic energy some rotational component is retained. Strong evidence
has been found from SOHO ’s CDS (the Coronal Diagnostic Spectrometer)
observations to support the hypothesis that rotation plays a role in the dy-
namics of transition region features. These observations are interpreted as
indicating the presence of a rotating plasma, a sort of solar tornado (Pike
and Mason, 1998).

13.5.3 FIP fractionation theory

The flux-tube model predicts the formation of closed or open structures
with higher-temperature ionization state and higher low FIP to high FIP
elements abundance ratios than the surrounding. A strong pressure gradi-
ent across the field lines can be present in the flux tubes where electric cur-
rents are circulating (Hénoux and Somov, 1991, 1997). Since they produce
two of the ingredients that are required for ion-neutral fraction-
ation by magnetic fields, i.e. small scales and strong pressure gradients
perpendicular to the field lines (Hénoux and Somov, 1992), these currents
can lead to the efficient ion-neutral fractionation.

Azimutal motions of the partially ionized photospheric plasma, with
velocity vϕ at the boundary of the tube, r = r0, generate a system of two
current shells: Sin and Sout in Figure 13.2 (Hénoux and Somov, 1992, 1999).
The vertical currents jz in these shells flow in opposite directions, such that
the azimutal component of the field, Bϕ, vanishes at infinity. This result
can be easily understood in the case of a fully ionized atmosphere where
the field lines are frozen in the plasma. However the study of a partially
ionized atmosphere gives insight into questions that cannot be tackled in the
hypothesis of a fully ionized plasma, i.e. the possible difference in velocities
perpendicular to the field lines of ions and neutrals.

The internal current system and the azimutal component of the mag-
netic field, Bϕ, create an inward radial force Bϕjz that enhances, by the
pinch effect discussed in Section 13.5.2, the pressure inside the internal part
of the tube.
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Figure 13.2: A simplified model of a thin magnetic flux tube in the solar
atmosphere. (a) The vertical current density jz and azimutal component
of field Bϕ create the pinch effect in the internal part of the tube. (b)
The radial current density jr and azimutal magnetic field Bϕ produce the
upward force in the photosphere.

The pinch effect is present from the photosphere to the chromo-
sphere but its consequences are different in these two regions.

In the photosphere, collisions couple ions and neutrals; so they do not cross
the field lines. Above the photosphere, due to the exponential decrease of
the density and, as a result, of the ion-neutral friction force with height,
the difference in radial velocities of neutrals and ions increases with height.

The current densities and magnetic fields in the flux tube are such that,
at hydrogen densities lower than 1013 cm−3, the collisional coupling is low
enough to allow the neutrals to cross the field lines and to escape from
the internal current shell with high velocities. In usual plane-parallel-
atmosphere models, the fractionation starts in the temperature minimum
region T in Figure 13.2a at a temperature of about 4000 K. So the popu-
lation of ionized low FIP species begin to be enhanced inside the internal
current shell just at heights where the usual models place the chromospheric
temperature rise and where the separation between the hot and cool com-
ponents of the Ayres (1996) bifurcation model starts to take place.

Between the two opposite currents flowing vertically, the upwards
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Lorentz force component Bϕjr is present. Since the change of the direction
of the vertical currents goes with the change of direction, from the photo-
sphere to the chromosphere, of the transversal current jr carried by ions,
the Bϕjr force always produces a net ascending action. The intensity of
this force is compatible with an ejection of matter up to heights of about
10 000 km, and therefore with the formation of spicules. This force acts in
a shell, between the two neutralizing currents, where the gas pressure and
collisional friction forces are reduced; it acts on ions and may then lead
to a FIP effect in spicules by rising up preferentially the ionized low FIP
species. A quantitative study of all these effects remains to be done.

13.6 Practice: Exercises and Answers

Exercise 13.1. Consider basic features of the magnetic flux-tube twist by
a vortex-type motion of the fully ionized plasma.

Answer. Let us consider first the twisting action of a fully ionized
plasma motion on a magnetic flux tube with Br = 0 everywhere as this is
shown in Figure 13.3a.
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Figure 13.3: Twisting flow of a fully ionized plasma inside a flux-tube. (a)
Azimutal velocity distribution at the surface r = const, 2δz is the thickness
of a twisting zone. (b) A field line on this surface and the associated radial
and vertical components of electric current densities jr and jz in the twisting
zone. (c) The vertical component fz of the Lorentz force compresses plasma
in a central part of the twisting zone, but in outer parts it makes the twisted
field line move outwards.
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The tube consists of vertical magnetic field lines. Each surface r =
const rotates with the constant velocity vϕ,0 but there is an excess of the
azimuthal velocity δvϕ in the layer (z0 − δz, zo + δz) with a maximum at
z = z0. In this case, the radial component of electric current density, jr,
reverses twice with the height z according to formula:

jr = − 1
r

∂

∂z
(rBϕ) . (13.17)

This is shown in Figure 13.3b in the plane (z, r).
The existence of a maximum of the azimutal angular velocity at a given

radial distance r0 makes the vertical component of the electric current den-
sity, jz, to reverse also with height as well as with the radial distance r
because

jz = +
1
r

∂

∂r
(rBϕ) . (13.18)

A Lorentz force tends to compensate for the twist of the field lines by
the detwisting motions of the plasma (Figure 13.3c). The azimuthal and
vertical components of this force are respectively:

fϕ = − jrBz and fz = + jrBϕ . (13.19)

The vertical component creates some compression of the plasma in the
central part of the twisting zone, but it will also act in the outer parts of
the twisting zone. This will preferentially result in a propagation of the
twist and plasma along the tube.

Exercise 13.2. Discuss basic features of the magnetic flux-tube generation
by vortex-type flows of the weakly ionized plasma near the temperature
minimum in the solar atmosphere.

Answer. Let V c
ϕ be the azimutal component of the velocity field at the

boundary between the convective zone and the photosphere as shown in
Figure 13.4.

Strong collisional coupling occurs in the low photosphere because of
high collisional frequencies ν i and νe in comparison with gyrofrequen-
cies ω (i)

B
and ω (e)

B
. So the electric conductivity can be considered as

isotropic. Moreover at the boundary with the convective zone the con-
ductivity is so high that the ideal MHD approximation can be accepted,
and the electric field acting on particles is null:

E c
r − εV c

ϕ B = 0 . (13.20)

So, in the steady case considered here, the radial electric field is continuous
from the convective zone to the photosphere:

Er = E c
r = εV c

ϕ B . (13.21)
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Figure 13.4: Twisting flow of a partially ionized plasma inside a magnetic
flux-tube in the temperature minimum region, generated by a vortex flow
in the convective zone under the photosphere. (a) Azimutal velocity distri-
bution at the surface r = const, 2δz is the thickness of a generator zone. (b)
A field line on this surface together with the radial and vertical components
of the electric current density in the generator zone. (c) The Lorentz force
components. The radial component fr which is responsible for the pinch
effect appears.

Strong electromagnetic coupling between electrons and ions occurs in
the upper chromosphere because of low collisional frequencies ν i and νe
in comparison with gyrofrequencies ω (i)

B
and ω (e)

B
. At temperatures above

104 K, the ideal MHD approximation can be taken again. So we can put
the same boundary condition (13.21) in the upper chromosphere and lower
layers.

This means that the upper part of the twisted tube in the steady case
must rotate with the same azimutal velocity as the lowest part at the bound-
ary with the convective zone (see Figure 13.4).

In the generator region, the poloidal electric current, jr + jz, is gener-
ated as well as in a fully ionized plasma, except with an opposite direction
of circulation. Additionaly, another electric current is present; this is an
azimuthal current jϕ. In a partially ionized plasma, the difference in the
amplitude of the friction forces between neutrals and ions, between neutrals
and electrons (Hénoux and Somov, 1991) leads to the generation of an az-
imuthal current jϕ with the same sign as the azimuthal velocity of neutrals
relative to the azimuthal velocity of the electrons that are practically frozen
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in the magnetic fields.
The flow of neutrals across the magnetic field B generates a motion of

ions in the same direction. So

jϕ ≈ ne
(
vϕ,n − V c

ϕ

)
+ j H

ϕ , (13.22)

where j H
ϕ is the Hall current related with the electric field component Er.



 

 

 

 

 



Chapter 14

Magnetic Reconnection of
Electric Currents

Magnetic reconnection reconnects field lines together with field-aligned
electric currents. This process may play a significant role in the dy-
namics of astrophysical plasma because of a topological interruption
of the electric currents.

14.1 Introductory comments

We shall consider the general idea of interruption and redistribution of elec-
tric currents which are aligned with magnetic-field lines (the field-aligned
currents in what follows), for example in the solar atmosphere. The cur-
rents are created under the photosphere and/or inside it, as well as they
are generated in the corona. However, independently of their origin, elec-
tric currents distributed in the solar atmosphere reconnect together with
magnetic field lines. So the currents are interrupted and redistributed in a
topological way.

This phenomenon will be discussed in the classical example of a 2D con-
figuration with four magnetic sources of interchanging polarity and with the
3D topological model described in Section 3.2.1. Converging or diverging
flows in the photosphere create a thin reconnecting current layer (RCL) at
the separator – the line where separatrix surfaces are crossing. Shearing
flows generate highly concentrated currents at the separatrices. We discuss
their properties and point out that

339
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the interruption of field-aligned electric currents by the magnetic
reconnection process at the separator can be responsible for fast
energy release in astrophysical plasma,

for example, in solar flares, in active regions with observed large shear as
well as in quiet regions above the ‘magnetic carpet’ responsible for heating
of the quiet corona.

14.2 Flare energy storage and release

14.2.1 From early models to future investigations

It has for a long time been clear that the energy released in flares is stored
originally as magnetic energy of electric currents in the solar atmosphere.
At least, there do not appear to be any other sources of energy which are
adequate. Simple estimates of the free magnetic energy content in typical
active regions (e.g., Den and Somov, 1989) show that it generally exceeds
the observed energy of flares as well as the energy which is necessary for
coronal heating in active regions. Free magnetic energy can, in principle,
be converted into kinetic and thermal energy of the solar plasma with par-
ticle acceleration to high energies and other things that can be observed in
the solar atmosphere and interplanetary space. This is the flare or, more
exactly, the solar flare problem.

Jacobsen and Carlqvist (1964), Alfvén and Carlqvist (1967) were the
first to suggest that

the interruption of electric currents in the solar corona creates strong
electric fields that accelerate particles during flares.

This mechanism of magnetic energy release and its conversion into ther-
mal and supra-thermal energies of particles has been considered and well
developed by many authors (e.g., Baum et al., 1978). The interruption
of current was described as the formation of an electrostatic double layer
within a current system – an electric circuit – storing the flare energy.

The formation of the double layer locally leads to a direct acceleration
of particles. However, because the potential (which gives this acceleration)
must be maintained by the external system, the global effects of the double
layers are not small. In general, they lead to an MHD relaxation of the sur-
rouding magnetic field-plasma configuration providing the influx of energy
which is dissipated by the double layers (Raadu, 1984).

∗ ∗ ∗
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An alternative approach to the solar flare problem was introduced by
Giovanelli (1946, 1947, 1948), Dungey (1958) and Sweet (1958). After
them, it was believed that

the solar flare energy can be accumulated as magnetic energy of a
reconnecting current layer (RCL)

in the place of magnetic flux interaction and redistribution, more exactly,
at the separators (Sweet, 1958). This idea was well supported by many
analytical investigations, by laboratory and numerical experiments (for a
review see Syrovatskii, 1981; Priest, 1982; Somov, 1992), by observations
of the reconnection process in space plasmas (Hones, 1984; Berger, 1988a)
and especially on the Sun (Tsuneta, 1993; Demoulin et al., 1993; Bagalá et
al., 1995).

In fact, the laboratory experiment by Stenzel and Gekelman (1984)
clearly indicated the appearance of double layers in the RCL. This means
that local interruptions of the electric current, induced by reconnection, can
exist in the place of magnetic-field line reconnection. In what follows, we
will consider another effect – magnetic reconnection of electric currents –
the physical phenomenon which is different from the creation of an ordinary
double layer in the reconnecting current layer or in the field-aligned current.

N S
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J
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2

X

Ph

B1

B
2

Figure 14.1: A model of
the coronal magnetic field
in an active complex with
four magnetic sources in
the photosphere.

Hénoux and Somov (1987) considered two systems of large-scale coronal
currents J1 and J2 distributed inside two different magnetic cells interacting
along the separator X as shown in Figure 14.1. Such a model for an active
region complex is, in fact, the case of the magnetic topology described
in Section 3.2.1. The two field lines B1 and B2 connect the ‘old’ (N, S)
and ‘new’ (n, s) centres of activity (active regions). The coronal currents
that flow from one magnetic flux region to the other (from the old region
to the new one) are distributed inside the two different cells and shown
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schematically as the total currents J1 and J2 along the field lines B1 and
B2.

N S sn
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2J
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Figure 14.2: Coronal currents for the aligned old and new bipolar regions.

For simplicity, in Figure 14.2 the geometry of the same magnetic field
lines and currents is illustrated in the case where the old and new bipolar
regions are aligned. The field lines B1 and B2 near the RCL along the sep-
arator (cf. Figure 3.4) have an opposite direction and can be reconnected.
The two current systems J1 and J2 can be close to each other near the
separator. Moreover, in the case under consideration, the currents flow in
the same direction. Therefore, as in Gold and Hoyle (1960), Sakai and de
Jager (1996), they attract each other. So the field-aligned electric currents
have to modify the equilibrium conditions for the RCL along the separator
(Hénoux and Somov, 1987).

The components of the magnetic field transversal to the separator
reconnect together with electric currents flowing along them.

In this way, with a perpendicular magnetic field inside the place of inter-
ruption, magnetic reconnection creates local interruptions of the electric
currents in the solar atmosphere. If these currents are highly concentrated,
their interruption can give rise to strong electric fields accelerating particles
and can contribute significantly to the flare energetics.

Let us consider the magnetic fields created by the currents. These ad-
ditional or secondary fields are perpendicular to the currents; hence they
are parallel to the separator. Therefore they play the role of the longi-
tudinal magnetic field near the RCL (Section 6.2.2). Being superimposed
on the potential magnetic field, the additional field components Bϕ create
two field line spirals: left-handed and right-handed (Figure 14.3a). When
looking along the positive direction of the main field lines B1 and B2, we
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see the two opposite orientations for the spirals: namely to the right for
the dextral structure (for example, filament) and to the left for the sinistral
one.
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Figure 14.3: Two possible orientations of twist in two interacting magnetic
flux-tubes with field-aligned electric currents.

When the currents flow in the same direction, as was shown in Fig-
ure 14.2, the azimuthal components Bϕ1 and Bϕ2 have the same direction
of rotation. Being opposite inside the RCL, they reconnect well: fully or
partially. At the same time, the Lorentz force FL pushes the parallel cur-
rents one to another. Therefore the case shown in Figure 14.3a is the most
favourable for reconnection of magnetic fields and field-aligned electric cur-
rents.

On the contrary, if the currents are antiparallel, as shown in Fig-
ure 14.3b, the azimuthal components Bϕ1 and Bϕ2 cannot be reconnected.
They are compressed and they decrease the reconnection rate for the main
components of the magnetic fields B1 and B2, as it was discussed in Sec-
tion 6.2.2. Hence a handedness property known as chirality does influence
upon the magnetic reconnection of electric currents.

This is a qualitative picture of reconnection of the field-aligned electric
current according to Hénoux and Somov (1987). Physical properties of the
electric current reconnection in a highly-magnitized plasma have not been
investigated yet. Many of them remain to be understood, in particular, the
role of Hall’s and perpendicular conductivities (see Appendix 3) at the place
of the electric current rupture and the role of plasma motions generated
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there. However it is clear that magnetic reconnection changes the path of
an electric current circuit . Because of large dimensions, the current circuit
in the corona has a huge inductance. So a large inductive voltage can be
generated locally, leading to a complex electrodynamic phenomenon with
particle acceleration to high energies.

The review of the present situation in the solar flare theory will help
us to understand the basic features of the electric current reconnection
phenomenon in Section 14.4, see also Somov and Hénoux (1999).

14.2.2 Some alternative trends in the flare theory

A potential field in an active region contains a minimal energy which cannot
be extracted from the plasma-magnetic field system. It was a question
whether or not it is possible to explain the pre-flare energy storage in the
force-free approximation, i.e only with electric currents aligned with the
magnetic field. This idea never looked too promissing, except in some
investigations (see Sturrock, 1991) that suggested that the energy of a force-
free field (FFF) generated by footpoint shearing flows can exceed the energy
of the ‘completely open’ field having the same boundary condition (the
same vertical component) in the photospheric plane. If this were true, we
could expect an explosive opening of such an FFF configuration with a fast
release of excess energy. Then spontaneous eruptive opening could be a
good model for coronal transients or coronal mass ejections (CMEs).

Aly (1984), by using the virial theorem (vol. 1, Section 19.1), as well as
without it (Aly, 1991), has shown that the energy of any FFF occupying a
‘coronal half-space’ is either infinite or smaller than the energy of the open
field. So obviously the opening costs energy and cannot occur sponta-
neously. The initial field must have free energy in excess of the threshold
set by the open field limit. Only that excess is available to lift and drive
the expelled plasma in CMEs or other similar phenomena (Sturrock, 1991).

This conclusion seems to be natural and could actually have impor-
tant consequences for our understanding of non-steady phenomena with
the opening of the coronal magnetic fields. Let us mention some of these
consequences, bearing in mind, however, that coronal fields are never com-
pletely open or completely closed (see Low and Smith, 1993).

Generally, the electric currents flowing across the field allow the corona
to have a magnetic energy in excess of the Aly’s limit. These currents can
be generated by any non-magnetic forces; for example, the gravity force,
the gradient of gas pressure or inertia forces. The problem arises because
such forces are normally relatively weak in comparison with the magnetic
force in the corona. Therefore the related effects can be considered as small
corrections to the FFF (see vol. 1, Section 13.1.3).
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Another possibility is that the real currents in the corona comprise two
different types: (i) smoothly distributed currents that are necessarily
parallel or nearly parallel to the magnetic field lines, so that the field is
locally force-free or nearly force-free; (ii) thin current layers of different
origin, in which the gas pressure gradient or other forces are significant.
If, following Aly (1984, 1991), we could recognize the low efficiency of the
smooth FFF (i) in energetics and dynamics of global eruptive events in
the corona, we could well replace them by potential fields in evolution
and action (e.g., Syrovatskii and Somov, 1980). This means that, to some
extent, it is possible to neglect the field-aligned current in (i); we may call
this approximation the minimum current corona. However, at least one
exception can be important. It will be discussed in the next Section.

If we do not consider flares or other flare-like events that open coronal
fields, and if we do not investigate how to extract the accumulated energy
from the FFF, then it is easy to conclude that the free magnetic energy
can well be accumulated in FFFs, even if they are smoothly distributed.
The basic idea here, used by many authors, is that photospheric footpoint
motions stress the coronal field lines, inflate them, thereby producing free
magnetic energy. For example, Porter et al. (1992) have studied the energy
build-up in the stressed coronal fields possessing cylindrical symmetry. In
the non-linear FFF approximation (α �= const), they have shown that

a reasonable amount of the photospheric twist can produce enough
free magnetic energy to power of a typical solar flare.

The rate of the energy build-up is enhanced if the greatest twist and/or the
magnetic flux is concentrated closer to the photospheric neutral line.

14.2.3 Current layers at separatrices

Analytically, by using the Grad-Shafranov equation, and numerically, by
quasi-static MHD computations, Zwingmann et al. (1985) have shown the
occurence of current layers near the separatrix in sheared field structures
containing an X-type neutral point – the place where the separatrices cross.
They interpret the break-down of the quasi-static theory near the separatrix
as evidence for the appearance of a boundary layer with the current flowing
parallel to the poloidal (Section 14.3) magnetic field.

Low (1991), Vekstein and Priest (1992) demonstrated analytically, in
the force-free approximation, that shearing flows can produce current lay-
ers along separatrices with or without neutral points. Numerical solutions
of the time-dependent MHD equations by Karpen et al. (1991), generally,
confirmed the formation of currents in the frame of the line tying approxi-
mation. They concluded, however, that true (reconnecting) current layers
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(RCL) do not form in the solar corona when a more realistic atmospheric
model is considered without a null point present in the initial potential field.
These authors found more distributed currents, related to plasma inertia
and the absence of a true static equilibrium, that cannot be considered as
thin current layers.

Therefore

shearing flows in the photosphere generate highly-concentrated elec-
tric currents flowing along and near separatrices.

In this context, we suggest a new mechanism of flare energy release – the
topological interruption of electric currents in the solar atmosphere and
their redistribution (Section 14.4). We shall consider two stages of its de-
velopment. In the first, the electric currents are produced by photospheric
shearing motions and the magnetic energy is stored in the system of concen-
trated field-aligned currents. In the second stage, the flare energy release
takes place because a strong electric current system is approaching the sep-
arator and disrupted by the magnetic field line reconnection process in the
separator region.

14.3 Current layer formation mechanisms

14.3.1 Magnetic footpoints and their displacements

Let us discuss the topological interruption of coronal electric currents by
using the classical example of a potential field in the plane (x, y) shown
in Figure 14.4. Here ei are the ‘magnetic charges’ placed on the x axis at
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Figure 14.4: A 2D model of the magnetic field of four sources of interchang-
ing polarities.
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the points with coordinates (xi , 0) , i = 1, 2, 3, and 4 at the underphoto-
spheric plane y = 0. For simplicity we assume that they have interchanging
balanced polarities: e1 = − e4 = Q and − e2 = e3 = q . So these are the
same magnetic charges as in Figure 3.2 but placed along a straight line –
the x axis. This relative position of magnetic sources corresponds to the
idealized case shown in Figure 3.1.

The solid curves show two separatrices crossing at the neutral point X
(cf. Figure 1.3) which is the special topological line in the z direction – the
separator. Two field lines are shown by the dashed curves A1 and A2. They
start from the magnetic charge e1, go near the neutral point but arrive at
different charges: e2 and e4 respectively. So they have different magnetic
connectivity.

This is the initial configuration of a magnetic field. Just to keep the
same notation as in the early works related with the controlled nuclear
fusion (Morozov and Solov’ev, 1966a; Shafranov, 1966), we refer to a mag-
netic field in the plane (x, y) as the poloidal one. This part of the magnetic
field B(0)

p (x, y) is described by the z component of the vector potential A:

B(0)
p (x, y) =

(
∂A(0)

∂y
, −∂A(0)

∂x
, 0
)

, (14.1)

where
A(0) (x, y) =

(
0, 0, A(0) (x, y)

)
.

In the case under consideration

A(0) (x, y) =
4∑

i=1

ln ri , (14.2)

where
ri =

[
(x − xi)2 + y2 ]1/2

(see Lavrent’ev and Shabat, 1973, Chapter 3, § 2).
Near the X-type point, where the field equals zero, the vector-potential

can be written as (cf. formula (2.23)):

A(0) (x, y) =
1
2

h0
[
−(x − x0)2 + (y − y0)2

]
, (14.3)

with x0 and y0 being the coordinates of the neutral point. The constant
which can be added to the vector-potential is selected in such a way that
A = 0 on the sepatrices – the lines that separate the magnetic fluxes of
different linkage (or connectivity).
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The main aim of our treatment is to understand the relative efficiency
in generation and dissipation of electric currents of different origin. Bearing
this aim in mind we will consider different motions in the photosperic plane,
i.d. different displacements of field line footpoints.

Following Low (1991), we will consider three classes of displace-
ments. The displacements of the first class are strictly on the line of the
magnetic charges – the x axis in Figure 14.4. These displacements model
the converging, diverging or emerging motions of the magnetic sources in
the photosphere. They keep the magnetic field lines in the plane of the
initial field – the plane (x, y).

Shearing flows in the z direction belong to the second and third classes.
The displacements of the second class are only ‘antisymmetric in x’, i.e.
the photospheric velocity in the z direction is an odd function of x. No
symmetry is prescribed for the third class of displacements.

14.3.2 Classical 2D reconnection

The displacements of the first class defined above do not create RCLs in
the absence of a neutral point X shown in Figure 14.4. The appearance
of such a point on the boundary (for example, in the photosheric plane)
is a necessary condition for the creation of a RCL. A sufficient condition
is the existence of a non-zero electric field in this point (Section 2.1.2).
The magnetic field remains potential above the photospheric plane if the
boundary conditions prohibit the appearance of a neutral point. In general,
however, ‘a neutral point begins to appear’ on the boundary surface (Somov
and Syrovatskii, 1972; Low, 1991) and the reconnecting current layer is
generated in it by the electric field.

Let us consider, as the simplest example, a symmetrical initial distribu-
tion of magnetic charges shown in Figure 14.5a and the small symmetrical
displacements of footpoints x2 and x3 as follows

δx2 = −δx3 = δx(t) .

They are shown in Figure 14.5b. In the presence of the neutral line X, in
its vicinity, the electromagnetic field can be expressed through the vector-
potential (Syrovatskii, 1966a, 1971)

A (x, y, t) = A(0) (x, y) + δA(t) . (14.4)

Here δA(t) is the value of the magnetic flux which has to be reconnected
in the current layer at the neutral point. Then, after the reconnection time
τr, the magnetic field will be potential one again, but with new positions
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Figure 14.5: (a) The initial field configuration; (b) the formation of the re-
connecting current layer RCL under the converging motion of footpoints x2
and x3 ; (c) the disappearance of the RCL when the field relaxes to the new
potential state.
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of the footpoints x2 + δx , x3 − δx. The value δA(t) is proportional to the
displacement δx.

It is clear from formula (14.4) that in the vicinity of the neutral line
there is a uniform electric field directed along the line:

E = −1
c

∂

∂t
A = ( 0, 0, Ez) , (14.5)

where

Ez = −1
c

∂ δA(t)
∂t

. (14.6)

It is just this field which produces an electric current J along the neutral
line (Figure 1.4b) as well as a drift motion of plasma outside the line (Fig-
ure 1.4a). In a time of the order of the Alfvén time τA , the current layer is
formed along the neutral line.

Figure 14.5b schematically illustrates the process of the current layer
formation induced by the photospheric displacements δx of the first class.
The relaxation of the magnetic field which contains the current layer to the
potential field corresponding to the new boundary conditions is shown in
Figure 14.5c.

14.3.3 Creation of current layers by shearing flows

Let us consider some general properties of the field component Bz from
the initial field (Figure 14.4) generated by a shearing displacement δz (x)
in the FFF approximation. To study plasma equilibrium and stability, it is
convenient to use the specific volume of the magnetic flux tube (see vol. 1,
Section 19.3.2) or simply the specific magnetic volume. This is the ratio
of the geometrical volume of the flux tube d V to the enclosed magnetic
flux d Φ, i.e.

U =
d V

d Φ
. (14.7)

For a field line specified by a given value of vector-potential A, by invoking
the conservation of magnetic flux inside the tube, the specific volume is

U (A) =
∫

d l

B
. (14.8)

The integral in (14.8) is taken along the field line between two certain
appropriate points corresponding to the beginning and the end of the tube.
For the example considered in Figure 14.4, the beginning and the end of
a tube are defined by the photospheric points x1 and x2 for all field lines
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connecting these points above the photospheric plane:

U (A) =

x2∫
x1

d l

B
(0)
p (x, y)

. (14.9)

By integrating the differential equation for a magnetic field line

dz

Bz
=

d l

B
(0)
p (x, y)

, (14.10)

taking account of (14.9), we see that the toroidal component Bz is given
by the displacement of field line footpoints at the boundary plane y = 0:

Bz (A) =
δz (A)
U (A)

. (14.11)

We see from (14.11) that, even if the displacement δz is a continuous func-
tion of x, a problem may arise for the following reason. In the presence of
topological features like X-type points, the different field lines, by having
different footpoints xi in the photosphere and different footpoint displace-
ments δxi, may have the same values of A. Therefore discontinuities of Bz

may appear above the photospheric plane.
Zwingmann et al. (1985) have illustrated this important feature of

sheared magnetic fields analytically by considering the FFF locally near
a hyperbolic X-point of the form (cf. formula (14.3)):

A(0) (x, y) = −ax2

2
+

by2

2
with a �= b . (14.12)

They showed that the specific volume has a logarithmic divergence for A
corresponding to the separatrices that cross at the X-point, i.e. for A = 0.
This means, first of all, that one of the diverging physical quantities is the
poloidal current density

j p = curlBz =
dBz (A)

dA
· B(0)

p ∝ 1
A ln2A

. (14.13)

The total current integrated in the direction perpendicular to the initial
poloidal field B(0)

p is finite:

Jt =

A2∫
A1

dBz (A)
dA

dA = Bz (A2) − Bz (A1) . (14.14)

We are therefore led to the conclusion that
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shearing flows do induce the current layers extending along the se-
paratrices, with the current flowing parallel to the poloidal field.

This theoretical conclusion was also tested by numerical computations
(Zwingmann et al., 1985) which take into account the physical effects that
in real plasmas keep the current density from becoming infinitely large (see
also Section 14.4).

14.3.4 Antisymmetrical shearing flows

The conclusion made above is valid even in the cases of very high symmetry,
e.g. if the displacements are antisymmetric, and the initial potential field
is symmetric (Figure 14.5) with respect to the y axis. This is clear from
the following example. Let

x1 = −x4 , x2 = −x3 ,

and
δz1 = − δz4 = δZ , δz2 = − δz3 = δz ,

as shown in Figure 14.6.
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Figure 14.6: A 2D initial magnetic field configuration and the antisymmet-
ric shearing motions of footpoints δZ and δz.

The specific volume of the magnetic flux tube which goes along the field
line A1 from the point x1 very near the neutral X-point to the point x2
consists of two terms

U (A1) =

X∫
x1

d l

B
(0)
p (x, y)

+

x2∫
X

d l

B
(0)
p (x, y)

≡ U1,X + UX,2 . (14.15)
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According to (14.11) the toroidal (or longitudinal) component of the mag-
netic field is equal to

Bz (A1) =
δz2 − δz1

U1,X + UX,2
. (14.16)

For the field line A2 which goes from x1 to x4 very near the X-point, with
account of the symmetry described above, we find the specific volume

U (A2) = U1,X + UX,4 = 2U1,X (14.17)

and the relative displacement δz = δz4 − δz1 = − 2 δz1. So

Bz (A2) = − δz1

U1X
�= Bz (A1) . (14.18)

Hence an antisymmetric shear creates the discontinuity of the toroidal field,
i.e. the current layer with total current (14.14) along the separatrices, in
the presence of X-type point even if the initial potential field is symmetric.

Consider another example. Let the shearing motions be antisymmet-
ric and the initial magnetic field be symmetric, but with the neutral point
placed below the level of the photosheric plane (Low, 1991). In this case
the separatrix surface separates two ‘magnetic islands’ from each other at
the point x = 0 and y = 0 as well as separating them from the surrounding
field at the total separatrix surface in Figure 14.7. In this way the con-

y

x

x

1

40

δ

x

zZ

δZ-

A2

Figure 14.7: A 2D potential magnetic field of the quadrupole type without
a neutral point above the photospheric plane.

nectivity of the magnetic field is discontinuous, and one may in principal
expect the creation of magnetic field discontinuities. However, because of
the symmetry, the specific volume is

U (A2) = U1,O + UO,4 = 2U1,O (14.19)
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with a relative displacement

δz = δz4 − δz1 = − 2 δz1 .

Therefore

Bz (A2) = Bz (A1) . (14.20)

We see that the second class of boundary motions cannot create current
layers in the absence of neutral points (Figure 14.7). However an antisym-
metric shear creates current layers with the currents flowing along sepa-
ratrices in the plane (x, y) in the presence of a neutral point, even if the
initial potential field is symmetrical one (Figure 14.6).

All the other shearing boundary displacements directed in the z direc-
tion are called the third class, according to the classification by Low (1991),
and are discussed in the next Section.

14.3.5 The third class of displacements

Several examples of the third class displacements, including those which are
symmetrical in x, were studied by Low (1991), Vekstein and Priest (1992).
It was shown that these shearing displacements can create discontinuities
of the Bz component which are related with electric currents along sepa-
ratrices. The displacements can generate such current layers even in the
absence of a neutral point, but the separatrices are necessary of course.

The general boundary displacement is a superposition of displacements
from all these three classes. Titov et al. (1993) demonstrated the existence
of sections of the photospheric polarity inversion line where the overlying
field lines are parallel to the photosphere (like in Figure 14.7). Such sec-
tions, called ‘bald patches’, may exist for a wide range of fields created by
four concentrated sources of magnetic flux (Gorbachev and Somov, 1989,
1990; Lau, 1993). Bald patches appear, for example, when the photospheric
neutral line is bent too much in an S-like manner, because this is the case
of the separator appearance (Somov, 1985; Somov and Merenkova, 1999;
Somov et al., 2001). The field lines touching a patch belong to a separatrix
surface along which a current layer may be formed by shearing motions of
magnetic footpoints at the photosphere.

In the next Section we will discuss the mechanisms which determine the
real thickness and other properties of the current layers.
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14.4 The shear and reconnection of currents

14.4.1 Physical processes related to shear and recon-
nection

Let us start by discussing the second and third classes of displacements.
Since the current density jp is parallel to the poloidal field B (0)

p (see for-
mula (14.13)), the plasma velocity vz and the total magnetic field

B t = B (0)
p + Bz

are parallel to the discontinuity surface which coincides locally with the
plane tangential to the separatrix. In this case, all the MHD boundary
conditions are satisfied identically except one:

p1 +
B 2

1

8π
= p2 +

B 2
2

8π
. (14.21)

This means that the velocity and the magnetic field may experience arbi-
trary jumps in magnitude and direction, being parallel to the discontinuity
surface. The only requirement is that the total pressure, i.e. the sum of the
gas pressure and the magnetic one, remains continuous at the discontinuity
surface.

According to the general classification of MHD discontinuities given
in vol. 1, Section 16.2, these discontinuities, generated by shearing flows,
are usual tangetial discontinuities, except that the plasma velocities in the
z direction are small in comparison with the Alfvén speed in the solar
corona because the magnetic field is strong there. Therefore, until we take
into account the effect discussed at the end of Section 14.4.3,

we consider MHD tangential discontinuities as a good model for
highly concentrated currents at separatrices, generated by shearing
flows in the photosphere.

As treated in MHD, tangential discontinuities have several remarkable
properties. One of them is important for what follows. Even in astophysical
plasma of very low resistivity, such as the solar coronal plasma, a tangential
discontinuity is a non-evolutionary discontinuity (vol. 1, Section 17.1). In
contrast to the behaviour of the RCL, there is not a steady solution, the
stability of which can be considered in the linear approximation.

The origin of this effect lies in the fact that the thickness of a tangential
discontinuity is a continuously growing value if the electrical resistivity is
finite. After its creation the Bz component starts to evolve in accordance
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with the diffusion equation

∂Bz

∂t
=

∂

∂s

(
νm

∂Bz

∂s

)
. (14.22)

Here νm is the magnetic diffusivity, s is the coordinate ortogonal to the
discontinuity surface. By virtue of Equation (14.22), the total magnetic
flux of Bz does not change:

∂

∂t

+∞∫
−∞

Bz ds = νm
∂Bz

∂s

∣∣∣∣∣
+∞

−∞
= 0 . (14.23)

The thickness of a tangential discontinuity is increasing, but a part of the
excess magnetic energy related with a tangential discontinuity is released
in the continuous process in the form of Joule heating at a rate

∂

∂t

+∞∫
−∞

Bz
2

8π
ds = − 1

4π

+∞∫
−∞

νm

(
∂Bz

∂s

)2

ds �= 0 . (14.24)

Magnetic diffusion always acts to smooth out gradients in both the mag-
netic field and the electric current density, not to concentrate them. This
property has been well demonstrated by many numerical computations.

In the RCL, however, the process of magnetic diffusion away from the
discontinuity is compensated by the plasma drift motions into the layer.
That is why the steady state for the RCL can exist with the layer width

a = νm v −1
d , (14.25)

where vd is the drift velocity, and the RCL at separator can be considered
as an evolutionary discontinuity (Chapter 10). So

there is a principal difference between the reconnecting current layer
at the separator and the current layers at separatrices.

It is important that it is not possible to consider the RCL as a one-
dimensional discontinuity because the plasma coming into the layer has
to be compensated by plasma outflow from it. These two conditions are
necessary for the existence of steady states for the RCL.

As for tangential discontinuities generated by shearing flows in the pho-
tosphere, their electric currents are always spreading out in both directions
from sepatrix surfaces into the surrounding coronal plasma. By doing so,
a part of the electric current flowing along the separatrices appears on the
field lines which have already been reconnected (see Figure 14.4), but the
remaining
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part of the electric current will be reconnected later on together
with the field lines which have not been reconnected yet.

Hence we have to consider how electric currents flowing along the magnetic
field lines reconnect with them.

We shall not discuss here all other mechanisms (except presumably the
most important one in Section 14.4.3) which make the tangential disconti-
nuity currents more distributed rather than concentrated. Neither will we
discuss the generation of the electric currents of different origin in the solar
corona, for example, currents due to variations in plasma response time
(because of plasma inertia) at different heights in the solar atmosphere,
nor currents related to the absence of a true static equilibrium (Karpen et
al., 1991). We only would like to point out that electric currents of dif-
ferent origin, being field-aligned after their generation (Spicer, 1982), may
participate in the process of magnetic field line reconnection.

14.4.2 Topological interruption of electric currents

The magnetic reconnection process does the same with electric currents
as with magnetic field lines, i.e. it disrupts them and connects them in a
different way. Physical consequences of the phenomenon have not yet been
well investigated, but some of them look clear and unavoidable.

The first of these, an interruption of the electric current, produces an
electric field. It is neccesary to note here that if reconnection of magnetic
field lines would create symmetrical reconnection of currents, then one elec-
tric current, J1 , should replace another one, J2 , which is equal to the first
current, and no electric field could be induced in such a way. Such coinci-
dence has zero probalility.

In general, the reconnected currents are not equal among themselves;
hence the current (J1 − J2 ) is actually interrupted at the X point of
reconnection. This process creates an electric field at the separator.

The simplest but realistic example is the case where we neglect one of the
currents; e.g., J2 = 0 . Figure 14.8 shows such example. A new emerging
magnetic flux (s, n) moves upward together with electric current J . This
current is disrupted by the magnetic reconnection process in the RCL and
appears to be connected into new electric circuits.

14.4.3 The inductive change of energy

The second consequence of non-symmetrical reconnection of electric cur-
rents is related to the fact that the current (J1 − J2 ) is connected in
another electric circuit which, in general, has another self-inductance L.
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Figure 14.8: A reconnecting field
with electric currents: (a) the ini-
tial state is mainly potential but
contains a loop of emerging flux
which carries a current J , (b) the
pre-reconnection state, (c) the final
state after reconnection of the field
lines and field-aligned currents.

Hence the magnetic reconnection of the current ( J1 − J2 ) changes the
energy of the current system

W
L

=
LJ2

2
(14.26)

and its inductive time scale

τ
L

= L/R . (14.27)

A larger circuit implies a larger energy but a longer inductive time scale.
Zuccarello et al. (1987) pointed out that the magnetic energy release

in a flare should not be attributed to current dissipation but rather to
a change in the current pattern that reduces the stored magnetic energy.
They introduced an example of how self-inductance and energy storage can
be changed in a sheared FFF arcade. In fact, the inductive change of energy
can be reversed, with the stored energy being resupplied on the inductive
time scale. In terms of MHD, the inductive energy W

L
is the energy of the

azimuthal magnetic field Bϕ related to the field-aligned current J .
There is an essential advantage in our model of reconnecting electric cur-

rents. The topological interruption of large-scale electric currents flowing
along and near separatrix surfaces does not require an increase of the total
resistivity R everywhere the currents flow but only in the place where these
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surfaces cross, i.e. along the separator line. More exactly, the plasma resis-
tivity must be increased, for example by excitation of plasma turbulence,
only inside the very thin RCL at the separator. Otherwise the reconnec-
tion process will be too slow and the rate of energy release insufficient for
a typical flare.

Another important property of the model under consideration is that
magnetic reconnection, when it is fast enough, restricts the current den-
sity jp of electric currents flowing along the separatrix surfaces and near
them. The mechanism of this restriction is the same topological one.

If the characteristic time τx of the δx displacements which drive recon-
nection is comparable with the reconnection time scale τr, then the field
lines connecting the footpoints xi with the X-type point (see Figure 14.5a)
will not play the role of separatrices anylonger after the time τr. New
magnetic field lines, shown by the dashed curves in Figure 14.5c, with foot-
points x ′

i = xi + δxi will be the place where a new portion of shearing
motions will produce a new portion of highly concentrated currents along
these field lines, but not the previous ones. Therefore the real velocities of
the footpoint displacements and the real reconnection rate determine the
real distribution of concentrated electric currents generated by shearing
flows in the photosphere.

14.5 Potential and non-potential fields

14.5.1 Properties of potential fields

To sum up what we can agree concerning the role of a magnetic field in
solar flares, let us classify the magnetic fields in an active region, as shown
in Figure 14.9. The field is divided broadly into two categories: (a) the
potential or current-free part and (b) the non-potential part related to
electric currents flowing in an active region.

Starting from the photosphere up to some significant height in the
corona, the magnetic energy density greatly exceeds that of the thermal,
kinetic and gravitational energy of the solar plasma. So the magnetic field
can be considered in the strong field approximation. This means that the
coronal field is mainly potential. At least, it is potential in a large scale, in
which the field determines the global structure of an active region.

However the potential field, which satisfies the given boundary condi-
tions in the photosphere and in the solar wind, has the minimum of energy
because the potential field is current-free by definition. Two important
consequences for the physics of large flares follow from this fact.

First, being disrupted, for example by an eruptive prominence, the field
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Figure 14.9: Main types of the magnetic field in an active region according
to their physical properties.

lines of the potential field are connected back again via reconnection. This
behaviour is important for understanding the so-called eruptive flares. In
the strong field approximation, the magnetic field, changing in time, sets
the solar plasma in motion. Such a motion can be described by the set of
the ordinary differential equations. They are much simpler than the partial
derivative equations of the usual MHD. This is a natural simplicity of the
actual conditions in the solar atmosphere. In order to solve the simplified
MHD equations, we have to find the potential field as a function of time.
This is not difficult.

Second, since no energy can be taken from the current-free field, the
current-carring components have to be unavoidably introduced in the large-
flare modeling to explain accumulation of energy before a flare and its
release in the flare process. We assume here that the solar flare is the
phenomenon which takes its energy during the flare from some volume in
the corona.

14.5.2 Classification of non-potential fields

The non-potential parts of the field are related to electric currents in the
solar corona. It is of principal importance to distinguish the currents of
different origin (Figure 14.9) because they have different physical proper-
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ties and, as a consequence, different behaviours in the pre-flare and flare
processes. The actual currents conventionally comprise two different types:

(a) the smoothly-distributed currents that are necessarily parallel or
nearly parallel to the field lines, so the magnetic field is locally force-free
(FFF) or nearly force-free;

(b) the strongly-concentrated electric currents like a RCL at separators
and a current layer (CL) at separatrices.

It was a question whether or not it is possible to explain the pre-flare
energy storage in a FFF, i.e. only with electric currents aligned with the
magnetic field lines. If this could be true, we would expect an explosive
opening of such a configuration with fast release of the excess energy. As
mentioned above, the coronal fields can be considered as strong (and as a
consequence the FFF or potential) only in some range of heights: starting
from the photosphere up to a height in the corona where solar wind be-
comes fast enough to influence the magnetic field. Hence the corona has
an upper boundary which is essential for the coronal field structure (Somov
and Syrovatskii, 1972). The coronal fields are never completely open or
completely closed (Low and Smith, 1993). Their energy is always lower
than the Aly-Sturrock limit but higher than the energy of a potential field
(Antiochos et al., 1999).

If we recognize the low efficiency of the FFF in eruptive solar flares,
we have to assume that the currents flowing across the field lines allow
the corona to have a magnetic energy in excess of some limit (lower than
the Aly-Sturrock limit) to drive an eruptive flare. These currents can, in
principle, be generated by any non-magnetic force – for example, the gravity
force, the gradient of gas pressure or forces of the inertia origin.

Two problems arise, however, in this aspect: (a) in the strong mag-
netic field, such forces are normally relatively weak in comparison with the
magnetic force in the corona, at least in large scales; (b) the smoothly-
distributed currents dissipate too slowly in a low-resistivity plasma. So the
highly-concentrated currents are necessary to explain an extremely high
power of energy release in the impulsive phase of a flare. The RCLs may
allow an active region to overcome both difficulties.

In a low-resistivity plasma, the thin CLs appear to hinder a redistri-
bution of interacting magnetic fluxes (see the fourth line in Figure 14.9).
They appear at separators in the corona, where reconnection redistributes
the fluxes so that the field remains nearly potential. Since resistivity is
extremely low, only very slow reconnection proceeds in such a RCL which
we call it a slowly-reconnecting RCL. The wider the layer, the larger the
magnetic energy is accumulated in the region of the interacting fluxes.

There is a principal difference between the RCL at a separator and
the CL at separatrices. It is impossible to consider the RCL as a one-
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dimensional discontinuity because the plasma coming into the RCL has to
be compensated by plasma outflow from it. As for the CL generated at sep-
aratrices, it represents the current distribution typical for the MHD tangen-
tial discontinuities which are non-evolutionary; they are always spreading
out in both directions from separatrix surfaces into surrounding plasma. On
the contrary, the current density inside the RCL usually grows with time
and reaches one or another limit. For example, wave excitation begins and
wave-particle interaction becomes efficient to produce high resistivity, or
the collisionless dynamic dissipation allows the fast process of collisionless
reconnection.

Therefore the potential field determines a large-scale structure of the
flare-active regions while the RCL at separators together with the other
non-potential components of magnetic field determine energetics and dy-
namics of a large eruptive flare.

14.6 To the future observations by Solar-B

Magnetic reconnection of electric currents generated by shearing flows in
the photosphere may play significant role in the energetics of solar flares
related to observed photospheric shear. Thanks to a huge database collected
by Yohkoh, TRACE , RHESSI , and othe satellites, it was found that an
active region creates the large two-ribbon flares as well as it is the most
eruptive when the active region grows in size and exhibit an S-shaped loop
structure or sigmoid structure (see Sections 3.2.3 and 3.2.4). On the other
hand, other flares may be not so large and may not have any significant
shear. So they have a different kind of electric currents related, for example,
to diverging and converging flows in the photosphere near the region of a
newly emerging flux, which we called the first class displacements.

To understand the relative role of different electric currents in the en-
ergetics and dynamics of an active region,

it is necessary to study the evolution of its magnetic structure in
and above the photosphere.

This would allow us to determine not only the magnetic fluxes of certain
magnetic links but also their changes – redistribution and reconnection.
Such a study would also give us an information, at least qualitative, about
the structure and evolution of the electric field in an active region.

Three experiments will be flown on the Japan Institute of Space and As-
tronautical Science (ISAS) Solar-B mission planned for launch in 2006. The
objective of Solar-B is to study the origin of the corona and the coupling
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between the fine magnetic structure in the photosphere and the dynamic
processes occuring in the corona.

The Solar-B payload consists of three high-resolution solar telescopes in
visible light, soft X-ray, and extreme ultra-violet (EUV) wavelengths: (a) a
50-cm optical telescope, the Solar Optical Telescope (SOT), with sophisti-
cated focal plane instrumentation, the Focal Plane Package (FPP); (b) an
X-ray telescope (XRT) for imaging the high-temperature coronal plasma
with a wide field of view covering the whole Sun and with an improved
angular resolution, approximately 1 arcsec, i.e. a few times better than
Yohkoh’s SXR telescope; and (c) an EUV imaging spectrometer (EIS) for
diagnosing events observed.

The telescope SOT will give quantitative measurements of the magnetic
fields in features as small as 100 km in size thereby providing 10 times bet-
ter resolution than other space- and ground-based magnetic field measure-
ments. So the SOT instrument will give us opportunity to observe the Sun
continuously with the level of resolution that ground-based observations can
match only under exceptionally good conditions. SOT aims at measuring
the magnetic field and the Doppler velocity field in the photosphere.

Placed in a sun-synchronous circular orbit with altitude 600 km and
inclination 97.9 degrees, which will keep the instruments in continuous
sunlight with no day/night cycle for nine months each year, the Solar-B
satellite will carry out multi-wavelength observation in optical, EUV, and
X-ray ranges. This will give an important contribution to the main goal of
the Solar-B project: understanding the origin and dynamics of the basic
magnetic structures and their effects on the solar corona. So we shall be
able to understand comprehensively the solar photosphere and the corona,
as a system.



 

 

 

 

 



Epilogue

Most of the known matter in the Universe is in an ionized state, and many
naturally occuring plasmas, such as the atmosphere of the Sun and mag-
netic stars, the magnetospheres of the Earth and other planets, the magne-
tospheres of pulsars and other relativistic objects, galactic and extragalactic
jets, exibit distinctively plasma-dynamical phenomena arising from the ef-
fects of magnetic and electric forces. The science of plasma astrophysics
was born and developed to provide an understanding of these naturally
occurring plasmas and those which will be discovered and investigated in
future space observations. With this aim, from the very beginning, many
of the conceptual tools and many different approaches were introduced
and developed in the course of general fundamental research on the plasma
state or independently. How can we understand the interconnection be-
tween different descriptions of astrophysical plasma behavior?

I was frequently asked by my students to give them a quick introduc-
tion to the theory of astrophysical plasma. It turned out that it is not easy
to do for many reasons. The most important of them is that the usual
way of such an introduction is generalization. This means that we go from
simple well-known things to more complicated ones, for example, we gener-
alize the ordinary hydrodynamics to magnetohydrodynamics. Though this
way certainly makes a textbook easier to read, it does not give the reader
complete knowledge of the subject, the tools esspecially. For a long time,
my goal was to write a book which I would myself had liked when I first
took up the subject, plasma astrophysics, and which I could recommend
to my students to provide them an accessible introduction to plasma
astrophysics at least at an intuitive level of the basic concepts.

We began a long journey together, when we first started such a book,
“Plasma Astrophysics. I. Fundamentals and Practice” (referred in the text
as vol. 1), and we are now almost at that journey’s end, book “Plasma
Astrophysics. 2. Reconnection and Flares”.

A unifying theme of the first book (vol. 1) was the attempt at a deeper
understanding of the underlying physics. Starting from the most general
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physical principles, we have seen the consecutive simplifications of them and
of simplifying assumptions which allowed us to obtain a simpler description
of plasma under cosmic conditions. In so doing, the boundaries of the
domain of applicability for the approximation at hand were well outlined
from the viewpoint of physics and possible applications.

On the basis of this approach we can find the answers to the key ques-
tions: (1) what approximation is the simplest but a sufficient one for a
description of a phenomenon in astrophysical plasma; (2) how to build an
adequate model for the phenomenon, for example, a solar flare.

Practice is really important in the theory of astrophysical plasma;
related exercises (problems and answers supplemented to each chapter)
surved to better understanding of its physics. Most of the problems for
students have been used as homework in the lecture course. A particular
feature of the problems is that they widely range in difficulty from fairly
straightforward (useful for an exam) to quite challenging. This property is
not an advantage or disadvantage of the book but rather a current state
of modern astrophysics.

As for applications, evidently preference was given to physical processes
in the solar plasma. The Sun is unique in the astrophysical realm for the
great diversity of the diagnostic data that are available. Much attention to
solar plasma physics was and will be conditioned by the possibility of the
all-round observational test of theoretical models.

Some fourty-fourty five years ago it was still possible, as Alfvén and
Fälthammar (1963) so ably demonstrated, to write a single book on cos-
mic plasma theory concerning practically everything worth knowing of the
subject. The subsequent development has been explosive, and today a
corresponding comprehensive coverage would require a hole library. The
present book is an earnest attempt to a general overview of the whole area
but big gaps unavoidably appear. Important and interesting effects and
problems have been skipped because I either felt to go too far beyond an
introductory text for students or, worse, I have not been aware of them.

There would be infinitely more to say about new space observa-
tions, modern numerical simulations, and analytical investigations
of astrophysical plasma.

Any reader who, after having read this book, would like to become ac-
quainted with profound results of astrophysical plasma should keep this
fact in mind. I hope, however, that he/she, having learned sufficiently
many topics of this textbook, will willingly and easily fill the gaps. Good
luck!



Appendix 1. Acronyms

Acronym Meaning

ACE Advanced Composition Explorer
CME coronal mass ejection
CDS Coronal Diagnostic Spectrometer
EIT Extreme ultraviolet Imaging Telescope
FFF force free (magnetic) field
FIP first ionization potential
GOES Geostationary Operational Environmental Satellite
GONG Global Oscillation Network Group
LDE long duration event
MDI Michelson Doppler Imager
PNL polarity inversion line (of the photospheric magnetic field)
RCL reconnecting current layer
RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager
SHTCL super-hot turbulent-current layer
SNL simplified neutral line (of the photospheric magnetic field)
SOHO Solar and Heliospheric Observatory
SEPs solar energetic particles
TRACE Transition Region and Coronal Explorer
VLA Very Large Array
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Appendix 2. Notation

Latin alphabet

Symbol Description Introduced
in Section
(Formula)

A vector potential of a magnetic field 1.1
d thickness of non-adiabatic region 9.1
h magnetic field gradient 1.1
H Hamiltonian 9.2
H magnetic helicity 12.1
K curvature of a magnetic field line 9.2
l current layer length 13
L (T ) radiative loss function 13
u electric current velocity 2.3
V velocity of the plasma flow 13
Va gradient of the Alfvén speed 2.1
x ionisation degree 13
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Greek alphabet

Symbol Description Introduced
in Section
(Formula)

ε dimensionless electric field 9.1
εα small parameter of expansion 10.3
νni neutral-ion mean collisional frequency 13
ξ displacement of a current layer 10.3
ξ ‖ dimensionless longitudinal magnetic field 9.1
ξ⊥ dimensionless transverse magnetic field 9.1
ξ displacement of the medium 2.1
Π work against the Lorentz force 11.4
τr reconnection time scale 14.4



Appendix 3
Useful Formulae

The most important characteristics of astrophysical plasmas (for more
detail see vol. 1, Plasma Astrophysics: Fundamental and Practice)

Alfvén speed

VA =
B√
4πρ

≈ 2.18 × 1011 B√
n

, cm s−1 .

Conductivity of magnetized plasma

σ ‖ = σ =
e2n

me
τei ≈ 2.53 × 108 n (cm−3) τei (s) , s−1 ,

σ⊥ = σ
1

1 +
(
ω

(e)
B τei

)2 , σH = σ
ω(e)

B
τei

1 +
(
ω

(e)
B τei

)2 .

Coulomb logarithm

ln Λ = ln

[(
3k 3/2

B

2π1/2 e3

)(
T 3

e

ne

)1/2
]

≈ ln

[
1.25 × 104

(
T 3

e

ne

)1/2
]

.

Cyclotron frequency (or gyrofrequency)

ωB =
ecB

E .

Debye radius (Te = T , T i = 0 or Te � Ti)

rD =
(

kBT

4π ne2

)1/2

.

371



372 Appendix 3

Debye radius in electron-proton thermal plasma (Te = Tp = T )

rD =
(

kBT

8π e2 n

)1/2

≈ 4.9
(

T

n

)1/2

, cm .

Dreicer electric field

EDr =
4πe3 ln Λ

kB

ne

Te
≈ 6.54 × 10−8 ne

Te
, V cm−1 .

Drift velocity

vd =
c

e

F × B
B 2 .

Electric drift velocity

vd = c
E × B

B 2 .

Electric field in magnetized plasma

E ≈ 1
c

vB ≈ 10−8 v (cm s−1) B (G) , V cm−1 .

Electron plasma frequency

ω
(e)
pl =

(
4π e2 ne

me

)1/2

≈ 5.64 × 104 √
ne , rad s−1 .

Electron-ion collision (energy exchange) time

τei (E) =
memi [ 3kB (Te/me + T i/mi) ]3/2

e 2
e e 2

i (6π)1/2 8 ln Λ
.

Gradient drift velocity

vd =
Mc

eB
n × ∇B .

Larmor frequency of a non-relativistic electron

ω (e)
B

=
eB

mec
≈ 1.76 × 107 B (G) , rad s−1 .

Larmor frequency of a non-relativistic proton

ω (p)
B

≈ 9.58 × 103 B (G) , rad s−1 .

Larmor radius of a non-relativistic electron

r (e)
L

=
c p⊥
eB

≈ 5.69 × 10−8 v (cm s−1)
B (G)

, cm .
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Larmor radius of a non-relativistic proton

r (p)
L

≈ 1.04 × 10−4 v (cm s−1)
B (G)

, cm .

Larmor radius of a non-relativistic thermal electrons

r (e)
L

=
VTe

ω
(e)
B

≈ 3.83 × 10−2

√
Te (K)

B (G)
, cm .

Larmor radius of a non-relativistic thermal protons

r (p)
L

=
VTp

ω
(p)
B

≈ 1.64

√
Tp (K)

B (G)
, cm .

Lundquist number

NL = Rem(VA , L) =
VAL

νm
.

Magnetic diffusivity (or viscosity)

νm =
c2

4πσ
≈ 7.2 × 1019 1

σ
, cm2 s−1 .

Magnetic moment of a particle on the Larmor orbit

M =
1
c

JS =
e ωB r 2

L

2c
=

p 2
⊥

2mB
=

E⊥
B

.

Magnetic Reynolds number

Rem =
L2

νm τ
=

vL

νm

Mean thermal velocity of electrons

VTe =
(

3kB T e

me

)1/2

≈ 6.74 × 105
√

Te (K) , cm s−1 .

Mean thermal velocity of protons

VTp ≈ 1.57 × 104
√

Tp (K) , cm s−1 .

Sound speed in electron-proton plasma

Vs =
(

γg
p

ρ

)1/2

≈ 1.66 × 104
√

T (K) , cm s−1 .
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Thermal electron collisional time

τee =
m 2

e

0.714 e4 8π ln Λ
V 3

Te

ne
≈ 4.04 × 10−20 V 3

Te

ne
, s .

Thermal proton collisional time

τpp =
m 2

p

0.714 e4 8π ln Λ
V 3

Tp

np
≈ 1.36 × 10−13 V 3

Tp

np
, s .

Time of energy exchange between electrons and protons

τep (E) ≈ 22 τpp ≈ 950 τee .



Appendix 4. Constants

Fundamental physical constants

Speed of light c 2.998 × 1010 cm s−1

Electron charge e 4.802 × 10−10 CGSE
Electron mass me 9.109 × 10−28 g
Proton mass mp 1.673 × 10−24 g
Boltzmann constant kB 1.381 × 10−16 erg K−1

Gravitational constant G 6.673 × 10−8 dyne cm2 g−2

Planck’s constant h 6.625 × 10−27 erg s

Some useful constants and units

Ampere (current) A 3 × 109 CGSE
Angström (length) A 10−8 cm
Electron Volt (energy) eV 1.602 × 10−12 erg

eV 11605 K
Gauss (magnetic induction) G 3 × 1010 CGSE
Henry (inductance) H 1.111 × 10−12 s2 cm−1

Ionization potential of
hydrogen 13.60 eV

Joule (energy) J 107 erg
Maxwell (magnetic flux) M 3 × 1010 CGSE
Ohm (resistance) Ω 1.111 × 10−12 s cm−1

Tesla (magnetic induction) 104 Gauss
Volt (potential) V 3.333 × 10−3 CGSE
Watt (power) W 107 erg s−1

Weber (magnetic flux) Wb 108 Maxwell
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Some astrophysical constants

Astronomical unit AU 1.496 × 1013 cm
Mass of the Sun M	 1.989 × 1033 g
Mass of the Earth ME 5.98 × 1027 g
Solar radius R	 6.960 × 1010 cm
Solar surface gravity g	 2.740 × 104 cm s−2

Solar luminosity L	 3.827 × 1033 erg s−1

Mass loss rate Ṁ	 1012 g s−1

Rotation period of the Sun T	 26 days (at equator)
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adiabatic or drift, 9, 219
collisionless, 288
force free, 350
ideal MHD, 27
large mag. Reynolds number,

299
line tying, 345
magnetostatic, 243
non-relativistic, 16

one-fluid, 321, 329
small mag. Reynolds number,

304, 323
stationary, 321
strong magnetic field, 22, 141,

154
strong-field-cold-plasma, 23, 30
three-fluid, 329
two-dimensional, 346
WKB, 244, 257, 294

atmosphere
solar, 5, 19

bald patch, 354
bifurcation, 63, 237, 294
black hole, 236
boundary conditions

on current layer, 260
boundary layer, 345

catastrophe theory, 294
chirality, 327, 343
collapse

magnetic, 44
collapsing magnetic trap, 235
collision

between neutrals and ions, 325
conditions

initial, 24
conductivity

electric, 270, 322
Hall, 343
perpendicular, 343

407



408 Index

conservation law
magnetic flux, 350
magnetic helicity, 299

continuity equation
for plasma, 31
Lagrangian form, 31

cooling
radiative, 319

coordinates
generalized, 220
Lagrangian, 31

Coriolis force, 305
coronal heating, 297, 304, 313
coronal mass ejection, 2, 5, 62, 170,

201, 227, 232, 344
coronal transient, 2, 5, 62, 235, 344
cosmic rays, 236
cumulative effect, 22, 29, 38
current

conductive, 36
direct, 9
displacement, 36
field-aligned, 339
interruption, 340
reverse, 9, 34, 241

current layer
energy, 54
evolutionarity, 265
formation, 54
interplanetary, 136
neutral, 19, 25, 129, 270, 285,

324
non-adiabatic thickness, 219
non-neutral, 136, 271

electrically, 19, 228
magnetically, 19, 212, 223

reconnecting, 9, 24, 237, 269
splitting, 237
super-hot turbulent-current, 168,

211

density

change, 31
magnetic field energy, 169

differential rotation, 303
diffusion

turbulent, 303
diffusivity

magnetic, 242
direct current, 9
discontinuity

evolutionary, 239, 356
non-evolutionary, 239, 355
tangential, 355

dispersion equation, 244, 277, 283
displacement

antisymmetric, 348
magnetic footpoints, 297, 348

dissipation
dynamic, 37, 45, 160
Joule, 37
magnetic helicity, 304

dissipative wave, 246
double layer, 340
Dreicer field, 45
drift

electric, 9, 14, 215
gradient, 14

Dungey, 21
dynamic chaos, 219
dynamic dissipation, 34, 45, 160
dynamo

photospheric, 329
solar, 302
turbulent, 300

Earth
plasma sheet, 301

electric circuit, 340
electric conductivity

isotropic, 270
electric drift, 9, 14
electric field, 19

Dreicer, 194
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generation, 8, 54
electric runaway, 45
electron resonance, 291
energy conservation law, 290
energy surface, 222
entropy wave, 245
equation

continuity, 31
diffusion, 356
dispersion, 244, 277
Fokker-Planck, 311
freezing-in, 31
Grad-Shafranov, 345
kinetic, 288
linear oscillator, 19
motion, 16
oscillator, 216
Vlasov, 288
wave, 28

equations
ideal MHD

linearized, 27
magnetic field line, 351

equipartition, 300
evolutionarity

conditions, 240
criterion, 260
current layer, 240, 265
fast shock wave, 240
slow shock wave, 240

Fermi acceleration, 172, 307
filament

channel, 326
dextral, 327, 343
formation, 320
sinistral, 327, 343

fireball, 209
flare

avalanche model, 297
chromospheric, 3
electron-dominated, 311

eruptive, 361, 362
giant, 208
homologous, 74
in astrophysical plasma, 1
solar, 1, 5, 21, 46, 54, 147, 201,

211, 217, 305, 307, 311, 361
spaghetti model, 297
standard model, 82, 117, 166
stellar, 1
topological trigger, 224
turbulent cascade, 298, 307
white, 322

flow
shear, 50

fluid particle, 31
flux cancellation, 305, 320, 326
Fokker-Planck equation, 311
force

Coriolis, 305
magnetic, 19

force-free field
helicity, 298
linear, 299, 305, 354
non-linear, 305

fractionation
elements, 328
FIP effect, 328, 332

free magnetic energy, 13, 340
freezing-in equation, 31
frequency

neutral-ion collisions, 325

galaxy
spiral, 1

geomagnetic tail, 8, 225, 227, 291,
293

geospace, 4
giant flare, 208
Giovanelli, 21
gradient drift, 14
group velocity, 245



410 Index

Hall current, 337
Hamiltonian

transformed, 221
usual, 220

heating
coronal, 297

helicity
global, 317

helioseismology, 303
Hinotori, 159

ideal MHD, 27
initial conditions, 24
instability

fire-hose, 308
structural, 64, 239
tearing, 9, 64, 269
thermal, 64

interaction
magnetic fluxes, 5
wave-particle, 45, 140, 160, 214

interface dynamo, 304
invariant

adiabatic, 172
motion, 220

inverse cascade, 302
involution, 221
ion resonance, 292

Joule heating, 325, 356

kinematic problems, 302
kinetic energy, 290
Kolmogorov turbulence, 302

Lagrangian coordinates, 31
Landau resonance, 291
Larmor radius, 9, 16, 219, 289
law

Ohm’s, 281
layer

boundary, 345

double, 340
Lundquist number, 135

magnetar, 1, 236
magnetic collapse, 44
magnetic diffusivity, 242, 273, 356
magnetic dynamo, 300
magnetic field

bald patch, 354
completely open, 344
cumulative effect, 29
force free, 298, 344
galactic, 1
linkage, 298, 347
longitudinal, 19, 136, 212, 220,

353
poloidal, 303, 347
potential or current free, 7, 344
separator, 137
strong, 299
toroidal, 303, 351
transversal, 19, 46, 136, 212,

220, 271
weak, 300
zeroth point or line, 5, 21, 24,

237, 271, 345
peculiar, 24, 237

magnetic field line
equations, 351
separator, 3, 341, 347
separatrix, 7, 271, 345, 347

magnetic flux, 347
emerging, 6

magnetic flux conservation, 350
magnetic flux tube

closely packed, 297
specific volume, 350

magnetic force, 19
magnetic helicity, 58, 305, 327

change, 302
conservation, 299
dissipation, 304
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global, 298, 317
magnetic mirror, 172
magnetic obstacle, 169
magnetic reconnection, 3, 8, 21, 200,

269, 297
collisionless, 139
of electric currents, 341
Petschek’s regime, 238, 266

magnetic Reynolds number, 302
magnetic storm, 1
magnetic stresses, 304
magnetoacoustic wave

fast, 246
slow, 245

magnetosphere
Earth, 1, 171, 201

magnetospheric substorm, 1, 291, 293
magnetospheric tail, 136
mean field, 300
MHD turbulence, 299
minimum current corona, 64, 74, 345
momentum

generalized, 220
longitudinal, 172

motion
shear, 346

nanoflare, 313
near space, 3
neutron star, 1, 236

Ohm’s law
generalized, 325
in MHD, 281

particle
fluid, 31

peculiar zeroth point, 24, 237
phase space, 222
phase trajectory, 222
pinch effect, 331
pitch-angle, 172

plasma
collisionless, 37
super-hot, 158
weakly-ionized, 319, 328

plasma motion
continuous, 24

plasma sheet, 301
plasma turbulence

marginal regime, 145
saturated regime, 145

Poisson brackets, 221
potential

magnetic field, 7
vector, 8, 23

Poynting vector, 316
prominence, 319

filament, 320
quiescent, 325

pulsar
magnetosphere, 203
millisecond, 208

quasar, 1

radiative losses, 325
reconnecting current layer, 9, 320
reconnection

collisionless, 8, 37, 46, 168
fast, 266
in vacuum, 8
linear, 30, 320, 323
magnetic, 3, 8, 21, 200
two-level, 315
weakly-ionized plasma, 314, 319,

328
resonance

Landau, 291
reverse current, 9, 34, 241
RHESSI, 2, 97, 162, 362
runaway

electric, 38, 45, 66

self-inductance, 63



412 Index

self-organization, 299
self-similar solution, 38
separator, 52, 142
separatrix, 7, 52, 345
shear, 50, 107, 305, 346, 355
shear relaxation, 109, 121
shock wave

oblique
fast, 171

sigmoid structure, 362
SMM, 159
SOHO, 2, 62, 67, 74, 78, 126, 170,

313, 332
solar activity, 302
solar atmosphere, 5
solar corona, 8, 311, 328
solar cycle, 303
solar wind, 3, 201, 300, 328
Solar-B, 362
space

near, 3
phase, 222
pseudo-phase, 224

space weather, 3, 201
specific magnetic volume, 350
splitting

current layer, 238
star

cataclysmic variable, 208
magnetar, 208
neutron, 1, 202, 207, 208
Sun, 1
supernova, 1
T Tauri, 208

stochastic acceleration, 307
stress heating, 316
structural instability, 239
Sun

active region, 2, 6, 243, 297
atmosphere, 2
chromosphere, 3, 6, 320
corona, 243

photosphere, 2, 6, 320, 339
surface wave, 248
Syrovatskii, 22, 131, 134

tachocline, 303
tangential discontinuity, 242, 355
Taylor hypothesis, 299
tearing instability, 9, 64, 269

electron, 291
ion, 292
nonlinear, 294

theorem
virial, 344
Woltjer, 298

thick target, 311
thin target, 311
topological interruption, 339, 346,

357
topological trigger, 107
TRACE, 2, 67, 68, 75, 78, 103, 126,

362
trigger

tearing instability, 269
thermal, 134
topological, 107, 224

turbulence
current-driven, 193
fluid, 299
helical, 303
ion-acoustic, 145, 211, 214
ion-cyclotron, 145
Langmuir, 235
MHD, 299
plasma, 213
reconnection-driven, 307
strong, 300

twist, 305, 334, 345

vector potential, 8, 11, 23
velocity

group, 245
virial theorem, 344
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viscosity
ion, 160

Vlasov equation, 288

wave
dissipative, 246
entropy, 245
magnetoacoustic

fast, 246
slow, 245

surface, 248
wistler, 313

wave heating, 316
white flare

type II, 322
Woltjer theorem, 298

X-ray emission
hard, 69

X-type zeroth point, 7, 21, 53, 137,
142, 240, 271, 345

Yohkoh, 2, 62, 68, 69, 74, 77, 126,
158, 168, 199, 315, 362



Color Plates

Fig. 4.2. The HXR source contours (blue curves) at the HXR maximum of the
Bastille day flare overlaid on the MDI magnetogram. The green curve PNL repre-
sents the photospheric neutral line. SNL is the simplified neutral line.



Fig. 4.3. The HXR source positions in the beginning of the first HXR spike S1
(yellow contours) and near its end (blue contours).



Fig. 4.4. The position and motion of the strongest HXR sources K1 and K2 relative
to the SMFT magnetogram on 14 July.



Fig. 4.5. H-band images of the brightest kernel K1 in the rise and decay of the first
HXR spike S1 overlaid on the SMFT magnetogram on July 14.
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