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Preface

Space weather can be defined as a subtopic of solar–terrestrial physics, which deals with
the spatially and temporally variable conditions in the Sun, solar wind, magnetosphere, and
ionosphere that may disturb or damage technological systems in space and on the ground
and endanger human health. Space storms are the strongest and most harmful appearances
of space weather.

During the 1990s space weather grew to a prominent, if not the dominant, sector within
solar–terrestrial physics. Also a significant fraction of basic space plasma physics research
became motivated by its potential to contribute to useful space weather applications in-
cluding more accurate forecasts. A key reason for the evolution of space weather activities
is the growing understanding that a great number of systems in space, human beings in-
cluded, and on the ground are vulnerable to severe space weather conditions. In fact, due
to miniaturization and increasing complexity many technological systems are becoming
more sensitive to the radiation environment than before. At the same time modern society
is getting increasingly dependent on space infrastructure. In future the human presence
in space, including space tourism, is expected to become more prominent. Some day we
most likely will return to the Moon and, perhaps, initiate manned missions to Mars. On
the ground the effects of space storms, such as saturation of transformers in electric power
transmission networks or perturbations in telecommunication and global positioning sys-
tems, may be easier to handle, but this requires that the underlying physics be understood
much better than today.

The developers of space weather services have done their best to follow the needs,
sometimes real, sometimes imagined, of potential users of space weather applications.
There is growing activity to produce tools for modeling and forecasting space weather
conditions based on a limited set of observations, for specification of environmental condi-
tions during storms, and for after-the-fact analysis of anomalous behavior of technological
systems and hazards caused by severe space weather. Unfortunately, this activity is often
based on insufficient knowledge of the underlying physical systems, sometimes even at
the cost of basic research aiming at increasing this knowledge. This development is not
always healthy in the long-term perspective. Furthermore, it is not enough just to solve the
acute problems: the knowledge being gained today also needs to be maintained tomorrow.
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While a large number of research articles and review papers on space storms have been
published over the last several years, there is no comprehensive systematic textbook ap-
proach to the relevant physics of the entire chain of phenomena from the surface of the
Sun to the Earth. The goal of the present monograph is to fill this gap. The text is aimed
at doctoral students and post-doctoral researchers in space physics who are familiar with
elementary plasma physics and possess a good command of classical physics. The top-
ics reach from the storms in the solar atmosphere through the solar wind, magnetosphere,
and ionosphere to the production of the storm-related geoelectric field on the ground. In
the selection of material, preference has as much as possible been given to analytical and
quantitative presentation over handwaving, while keeping the volume of the book reason-
able.

Of course, several good plasma physics textbooks are available, which are useful in the
education of space physicists, e.g., the rewritten classic of Boyd and Sanderson [2003],
the little more challenging Sturrock [1994], or the recent volumes written by Gurnett and
Bhattacharjee [2004] and Bellan [2006]. However, these books are written for very wide
audiences from laboratory and fusion communities to space plasma physicists. Conse-
quently, many important issues in the physics of tenuous space plasmas have had to be
dealt with in a brief and cursory manner. For astrophysicists interested in the most abun-
dant form of conventional matter in the universe the book by Kulsrud [2005] is strongly
recommended, although quite demanding reading. There are also several textbooks with a
clear focus on fundamental space plasma physics [e.g., Baumjohann and Treumann, 1996;
Treumann and Baumjohann, 1996; Parks, 2003], but their approach too is more general
than the thematically focused topic of the present volume. The multi-authored textbook
edited by Kivelson and Russell [1995] covers large parts of the physical environment of
this book. However, it does not go very deeply into the plasma physics and suffers to some
extent from the different styles of the individually written chapters.

The rapid growth of space weather activities has led to a large number of compilation
works of highly variable quality. An inherent problem of multi-authored collections is that
each article is relatively short but at the same time written in a complete article style from
introduction to conclusions and often with individual reference lists. Thus the books easily
become thick but none of the articles can penetrate the basic physical principles. Some of
the most useful collections in the present context are those edited by Crooker et al [1997],
Tsurutani et al [1997], Daglis [2001], Song et al [2001], Scherer et al [2005], Baker et al
[2007], Bothmer and Daglis [2007], and Lilensten et al [2008]. These books contain many
excellent articles and provide students with a large body of study material with up-to-date
observational data. However, these volumes rather complement than compete with this
self-contained monograph.

This book can be interpreted to consist of three parts. The long Chapter 1 forms the first
part. It contains a phenomenological introduction to the scene, from the Sun to the Earth,
where space weather plays are performed. A reader familiar with basic physics of the Sun,
solar wind, magnetosphere and ionosphere can jump over this chapter and only return to
it when there is a need to check definitions or concepts introduced there.

The second part of the book consists of several chapters on fundamental space plasma
physics. While this part is written in a self-consistent way, it is aimed at readers who
already have been exposed to basic plasma physics. Chapter 2 briefly introduces the fun-
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damental concepts and tools of plasma physics inherited from both electrodynamics and
statistical physics. Chapter 3 reviews the classical guiding center approach to single par-
ticle motion and adiabatic invariants, including motion in the dipole field, near a current
sheet, and in a time-dependent electric field.

Common problems to all plasma physics texts are in what order the microscopic and
macroscopic pictures should be introduced and at what stage the waves and instabilities
be discussed. The strategy in the present volume is to start with the wave concepts in
the cold plasma approximation in Chapter 4. The chapter includes a discussion of radio
wave propagation in the ionosphere as an example of dealing with wave propagation in
inhomogeneous media in the WKB approximation, which is a powerful theoretical tool in
problems where the wavelength is short as compared to the gradient scale lengths of the
background parameters. Chapter 5 is a standard discussion of the Vlasov theory starting
from Landau’s solution and extending to the wave modes in uniformly magnetized plasma.
Only after these is magnetohydrodynamics (MHD) treated in Chapter 6. Here more em-
phasis is placed on the field-aligned currents (i.e., force-free fields) than in many other
plasma physics texts because they are of such great importance in the solar atmosphere,
solar wind, and magnetosphere and in magnetosphere–ionosphere coupling. The chapter
is concluded with a brief peek beyond the MHD approximation, including a quasi-neutral
hybrid approach and the introduction of kinetic Alfvén waves.

Space plasma instabilities are the topic of Chapter 7. In whatever way you approach
this complex, you end up being incomplete if you wish to keep the discussion within
reasonable limits and focused. Here the approach is to introduce the basic ideas, such as the
free-energy sources and stability criteria, behind several of the most important instabilities
studied in the context of space storms, but most of the long and tedious derivations of
the equations have been omitted. The reader interested in the details is recommended to
consult more advanced textbooks in plasma theory and relevant research articles. Another
choice motivated by the theme of this book is to discuss the magnetic reconnection and
the tearing modes separately from other instabilities in a dedicated Chapter 8. Whatever
the microphysical mechanisms associated with reconnection are, the understanding of its
basic characteristics is an essential part of literacy in space physics, regardless of whether
one is interested in solar flares, coronal mass ejections, solar wind interaction with the
magnetosphere, or the substorms therein. Unlike other textbooks, the concept of dynamo
is introduced in this chapter because the annihilation and generation of magnetic flux can
be seen as two faces of related physical processes.

The primary goal of this book is to bridge the gap between the fundamental plasma
physics and modern research on space storms. This is the challenge of the third part of
the book. As in modern concertos, transition from the second to the third movement is
not necessarily well-defined. In some sense Chapter 8 already opens the third part as here
the treatise begins to focus more on the key issues in space storm research. Chapter 9,
in turn, discusses the mechanisms giving rise to radiation that we see coming from the
solar atmosphere at the time of solar storms as well as the scattering of radio waves from
electrons and plasma fluctuations in the ionosphere. In Chapter 10 the adiabatic invariants
introduced in Chapter 3 are used in formulating the kinetic equations for studies of plasma
transport and acceleration in the inner magnetosphere.
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Fluid turbulence remains one of the toughest problems in classical physics and tur-
bulence in collisionless magnetized plasmas is an even harder problem. Particularly in-
teresting environments, where turbulence is critical, are the interplanetary and planetary
shocks with the associated sheath regions. Shocks and shock acceleration are discussed in
Chapter 11.

Finally the treatise returns to the more phenomenological treatment of space storms in
various parts of the solar–terrestrial system. Chapter 12 deals with the storms on the Sun
and their propagation into the solar wind. In Chapter 13 magnetospheric storms and sub-
storms and their drivers are investigated. As storm phenomena in the inner magnetosphere
are of particular practical interest, they are discussed separately in Chapter 14. At the end
of the journey some effects of space storms on the atmosphere and the current induction
on the ground during rapid ionospheric disturbances are briefly discussed in Chapter 15.

The great variety of phenomena from the Sun to the Earth and the vast amount of dif-
ferent theoretical and modeling approaches to explain them make some hard choices nec-
essary, in particular, the choice between a Sun–centered and an Earth–centered approach.
The solar atmosphere, in particular the corona, is a much more stormy place than the
Earth’s environment. The Sun is also the driver of practically all space storm phenomena
in the solar–terrestrial system. These facts would suggest adoption of the Sun–centered
view on space storms. On the other hand, we live on the Earth and here we have to learn
to handle the consequences of space storms. Thus the present choice is Earth-centered but
more emphasis is put on the entire space storm sequence than in traditional textbooks on
magnetospheric physics. There is a recent very comprehensive textbook on the physics
of solar corona by Aschwanden [2004]. Actually just browsing through that volume, con-
taining citations of about 2500 scientific articles, illustrates how difficult it is to compile
a concise text on that end of the space storm chain. The first decade of the 21st century
also forms a “golden age” of solar physics when several multi-wavelength spacecraft are
producing an enormous amount of new empirical information on the active Sun. To digest
all this will certainly take some time.

Another choice taken here is not to deal with space weather effects or practical mod-
eling approaches. Concerning these we point the interested reader to the recent volumes
by Bothmer and Daglis [2007] and Lilensten et al [2008] and references therein. In fact,
the present book and those by Aschwanden [2004] and Bothmer and Daglis [2007] are
strongly complementary to each other. They have quite different approaches but are deal-
ing with closely related issues.

As one of the goals of this book is to provide material for advanced students, exercise
problems of varying difficulty have been embedded within the text. They are grouped
into three categories: Problems labeled Train your brain are mostly straightforward, often
boring, derivations of expressions that are useful for students learning to master the basic
material of the book. The label Feed your brain refers to problems or tasks that add to the
reader’s knowledge beyond the actual text and can also be useful for testing the reader’s
understanding of the material. Problems identified as Challenge your brain are a little
harder (at least to the author), dealing also with unsolved or controversial issues. Creative
solutions to some of these may be worth publishing in peer-reviewed journals.

A textbook discussing basic physics necessarily borrows material from earlier sources.
The author was introduced to plasma physics through the classic texts by Boyd and Sander-
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son [1969], Krall and Trivelpiece [1973], and Schmidt [1979], which certainly can be rec-
ognized in the presentation of the fundamental plasma issues. When discussing “generally
known” (or believed to be known) topics, in particular in Chapter 1, references to the sci-
entific literature have been used sparsely. However, a number of references to some of the
truly classic reports have been included. New generations of scientists every now and then
tend to forget the original works with the risk of independent reinvention of the wheel. For
students it is sometimes useful to recall that there was intelligent life even before they were
born. In this respect the internet has actually made life much easier. We do no more need
to have physical access to the best equipped libraries to read many of the classic reports
in the scientific literature. Unfortunately, books like this are harder, or more expensive, to
access electronically.
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Units and Notation

SI units are used throughout the book. As a common exception energy and temperature
are often expressed in electronvolts (eV), but in equations involving the temperature the
Boltzmann constant kB is written explicitly, in which case the temperature is given in
kelvins (K). Furthermore, physical distance measures, such as the radius of the Sun (R�),
the radius of the Earth (RE ), or the astronomical unit (AU), are in frequent use. Also, when
dealing with densities of a few particles per cm3, or magnetic fields of a few nT, it is
preferable to use these as units in order to avoid unnecessary use of powers of ten.

A person working within theoretical plasma physics or solar physics must also master
the Gaussian cgs unit system, as much of the literature in these fields is still written in
these units. Transformation from grams to kilograms, from centimeters to meters, or ergs
to joules is trivial, but in formulas involving electrodynamic quantities the different unit
systems are a nuisance. This sometimes leads to erroneous calculations, not only by factors
of 10, but examples of errors by a factor of 3 or 4π are not too difficult to find in the
literature, peer-reviewed articles included.

Macroscopic quantities in the three-dimensional configuration space are denoted by
capital letters, e.g., electric current J, fluid velocity V, pressure P, etc., vectors in boldface
and scalars in italics. The lowercase v is reserved to denote particle velocity as a function
of time and the velocity coordinates in the phase space, e.g., in expressions as f (r,v,t),
whereas the lowercase p denotes the particle momentum p(t). In order to avoid conflict
electric potential is denoted by ϕ , whereas φ is an angular variable. Similarly volume is
denoted by in order not to mix up it in some expressions with speed V . The volume
differential in integral expressions is denoted by either d3r or d .

In an ideal world a textbook should have a unique system of symbols. However, this is
not a practical goal for a book that combines material from several different disciplines of
physics, all with their own and by no means common or unique notations. Thus the most
usual conventions are followed in the book, accepting that some symbols become heavily
overloaded. One of them is μ , that in this book may denote the magnetic permeability of a
medium, the magnetic moment of a charged particle, or the cosine of the pitch angle. J can
denote the second adiabatic invariant, the absolute value of electric current |J|, and omni-
directional particle flux. γ in turn appears as the polytropic index, as the Lorentz factor and
in some instances as the wave growth rate, n as the particle density, the index of refraction
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and in vector form the unit normal vector, σ as electrical conductivity and the collision
cross-section, etc. However, none of these ambiguities should lead to misunderstanding.
After all, physicists are expected see the forest for the trees.



 
 



1. Stormy Tour from the Sun to the Earth

In addition to light and other wavelengths of electromagnetic radiation the Sun affects our
environment through complicated plasma physical processes. The study of these interac-
tions is known as solar–terrestrial physics. Already long before the space era there were
indications that solar activity and geomagnetic perturbations must somehow be connected.
A remarkable event was the large flare on the Sun observed, independently, by Carrington
[1859] and Hodgson [1859] on September 1, 1859, after which a major magnetic storm
commenced only 17 hours later. Today we understand that the storm was caused by a
magnetic cloud associated with a coronal mass ejection (CME) that reached the Earth ex-
ceptionally quickly. The storm was very strong, evidently much stronger than any event
recorded during the present era of space weather sensitive equipment in space and on the
ground.

During the early 20th century the Sun was found to possess a highly variable magnetic
field and the violent solar eruptions were found to somehow be related to strong magnetic
variations observed on the Earth. But it was not until the dawn of spaceflight that the highly
variable but continuously blowing solar wind was shown to be the agent that carries the
perturbations from the Sun to the Earth. The variations in the solar wind shake the mag-
netic environment of the Earth, the magnetosphere. If the perturbations are strong enough,
we call them “storms”. We borrow terminology from atmospheric sciences and call the
short-term variations in the solar–terrestrial system “space weather” and the longer-term
behavior “space climate”. In this book the term “space storm” is not limited to storms in
the magnetosphere but includes stormy weather on the Sun, in the solar wind, and in the

and intriguing complex of physics issues, the discussion of which, however, is beyond the
scope of the present treatise.

1.1 Source of Space Storms: the Sun

Space weather and space climate are controlled by the temporal variability of the Sun in
different time scales from minutes to millennia. In fact, when looking at the Sun with the

Earth’s magnetosphere and ionosphere. Space storms at other planets form an interesting

1H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth,
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2 1. Stormy Tour from the Sun to the Earth

present observational tools, its surface and atmosphere are seen to be very stormy and
noisy environments. In this section we review some of the basic properties of our active
Sun. A modern introduction to the Sun itself is Stix [2002] and a wealth of material about
the corona and its activity can be found in the comprehensive volume by Aschwanden
[2004].

1.1.1 The Sun as a star

The physical picture of the Sun started to develop in the dawn of modern physical sciences
when Galileo, one of the first developers and users of the telescope, observed sunspots on
the solar disk. He showed in 1613 that they are structures on the surface of the Sun and
not small planets as Schreiner had argued a few years earlier. After this promising start
progress in solar physics remained slow. In 1802 Hyde discovered that solar spectrum
contained several absorption lines, which were later cataloged by Fraunhofer. In 1844
Schwabe showed that the sunspot activity varies in an 11-year cycle and in 1859 Carrington
and Hodgson observed a solar flare in white light. The second most common element in
the universe was identified as late as 1868 in the solar spectrum by Lockyer and was later
named helium.

Most of our present understanding of the Sun did not exist before the 20th century.
Among the first major advances were Hale’s measurements of intense magnetic fields in
the sunspots in 1908, showing that whatever generated the solar activity, it was closely
related to highly variable magnetism. An important enigma remained, however. In 1862
Sir William Thomson (later Lord Kelvin) had demonstrated that the largest imaginable
energy source for solar radiation, the gravitational binding energy of the Sun, would not,
at the present solar luminosity, be sufficient for more than 20 million years, which already
at that time was considered far too short a history for the solar system. The solution to
this problem required the development of quantum mechanics and finding of the nuclear
forces. In 1938 Bethe and Critchfield described the dominant proton–proton reaction chain
that powers the Sun. In this process 600 million tons of hydrogen is transformed to 596
million tons of helium, and the remaining 4 million tons is released as radiation.

After the revelation of nuclear fusion in the Sun an intensive puzzle work of fitting
solar models to the increasing amount of detailed observation started with the goal of
describing both the present structure and the past evolution of the Sun. From the mid-1970s
the observations of solar oscillations and their interpretation, known as helioseismology,
have become most important tools for reaching a very accurate description of the interior
of the Sun.

Today we know that the Sun is a typical cool magnetic star. Its mass (m�) is 1.99×1030

kg (330 000 times more massive than the Earth) and radius (R�) 696 000 km (109 times the
Earth’s radius, RE ). The present Sun irradiates with a luminosity of 3.84× 1026 W with
an effective black body temperature of 5778 K. The Sun was formed about 4.55× 109

years ago when an interstellar gas cloud with a mass of the order of 104 m� collapsed
due to some interstellar gravitational perturbation, probably a shock wave, and further
disintegrated, leading to the formation of the solar system. The collapse was not spherically
symmetrical due to the presence of angular momentum and magnetic flux of the cloud.
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While most of the angular momentum and magnetic flux were carried away by matter not
ending up in the solar system, rotation and magnetic field are still today essential elements
of the Sun and the solar system.

An intriguing obstacle on the road toward an acceptable solar model was the solar
neutrino problem. Ever since the first neutrino experiments by Davis and Bahcall in the
Homestake gold mine in 1967, observations based on different detection techniques indi-
cated that the Sun would produce only 30–50% of the neutrino flux that the standard solar
model predicts to arise from the fusion process in the core. Attempts to solve this problem,
e.g., by adjusting the temperature of the central core, lowering the relative abundance of
heavy elements, assuming a rapidly rotating core, or assuming a strong magnetic field in
the core, all led to contradictions elsewhere in the solar models.

Meanwhile developments in neutrino physics started to point toward another solution
based on the properties of the neutrinos themselves. Finally, strong evidence in favor of
the nuclear physics explanation was obtained at the beginning of the 21st century with
a Cherenkov experiment within a large water tank with a heavy water (D2O) core at the
Sudbury Neutrino Observatory [Ahmed and SNO Collaboration, 2004]. In that experiment
it is possible to observe both the electron neutrinos, which are produced by the fusion,
and the μ and τ neutrinos, to which a considerable fraction of the electron neutrinos are
transformed through neutrino oscillations during the propagation from the Sun to the Earth

Figure 1.1 illustrates the main regions of the Sun (for a detailed discussion of the solar
model, see Stix [2002]). The energy production takes place in the core within a radius
of 0.25R� from the center of the Sun where temperature is 1.57× 107 K and pressure
2.34× 1016 Pa. From the core energy propagates outward through a very slow process of
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Fig. 1.1 The structure of the Sun. (Figure by courtesy of R. Vainio.)
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radiative diffusion during which the photons are absorbed and re-emitted by the dense solar
matter over and over again. The energy propagation time of the distance of 2 light seconds
is of the order of 170 000 years. Due to collisions and absorption–emission processes in
this radiative zone the photons are redshifted toward the visible wavelengths.

At the distance of about 0.72R� the solar gas becomes opaque to the photons and the
energy transport toward the surface takes the form of turbulent convection, which is much
faster than the radiative transfer. The plasma motion in this convection zone is extremely
complex and of specific relevance to the topic of the present text, as the ever-changing
magnetic field of the Sun is created within this zone, according to the present understand-
ing close to its bottom. The radiation does not stop completely at the base of the convection
zone. About 0.05 R� into the convection zone the convective energy flux exceeds the ra-
diative flux and within the last 0.1 R� below the surface practically all energy transport is
convective.

While the radiation zone is stably stratified, the convection zone is unstable: gas parcels
move up, dissolve, and cool down, and the cool gas returns back along narrow lanes be-
tween the upward-moving gas parcels. The whole convection zone is continuously mixed,
which makes it chemically homogeneous. This does not make the mean molecular mass
constant because close to the surface the degree of ionization drops rapidly. However,
within most of the convection zone the mean molecular mass is about 0.61.1

Finally the convection reaches the solar surface and introduces a granular structure
on it. The intergranular lanes are about 100 K cooler than the regions of upward motion.
Granules appear in various sizes, diameters ranging from about 1000 km up to a few times
104 km, the latter being called supergranules. The smallest granules represent small con-
vection cells close to the surface, whereas the larger granules are related to larger convec-
tion cells reaching deeper into the convection zone.

Above the convection zone a thin surface, the photosphere, absorbs practically all
energy carried by convection from below and irradiates it as (almost) a thermal black
body at the temperature of 5778 K. The thickness of the photosphere is only 500 km. The
temperature at the bottom of the photosphere is about 6600 K and at its top 4300 K.

The total irradiance at the mean distance of the Earth (1 AU) is known as the solar
constant

S = 1367±3Wm−2 . (1.1)

It is related to the luminosity of the Sun L� by

L� = 4π AU2 S = (3.844±0.010)×1026 W . (1.2)

Accurate determination of S is challenging and the last digits and uncertainties in the
expressions above must not be taken as definitive. The total solar irradiance (TSI) must
be observed with accurately calibrated instruments above the dense atmosphere, which
absorbs most of the radiation in ultraviolet (UV) and infrared (IR) wavelengths. Early
in the 21st century a consensus of inter-calibrations between various space observations
was reached of an average S ≈ 1366 W m−2 near solar minima and S ≈ 1367 W m−2 near

1 In a plasma free electrons are counted as particles. Thus the mean molecular mass of electron–proton
plasma is 0.5.
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solar maxima. However, observations with the Total Irradiance Monitor (TIM) onboard the
The Solar Radiation and Climate Experiment (SORCE) satellite launched in 2003 indicate
that the actual TSI would be some 4–5 W m−2 smaller than previously thought [Kopp
et al, 2005]. By the time of writing this book the reason for this discrepancy had not been
clarified.

For space storms the exact total irradiance is not as important as its relative variations.
In particular, near solar maxima the irradiance varies by several W m−2 depending on the
sunspot activity (Sect. 1.1.5).

The luminosity can be given in terms of the effective temperature defined by

L� = 4πR2
� σ T 4

eff , (1.3)

where σ = 5.6704 × 10−8 Wm−2 K−4 is the Stefan–Boltzmann constant. The effective
temperature of the Sun is Teff = 5778± 3 K. The photospheric gas has this temperature
at the optical depth τ ≈ 2/3, which can be taken as the definition of the solar surface (for
the definition of τ , see, e.g., Stix [2002]).

“Solar constant” is actually one of many historical misnomers that we will encounter
in this book. The Sun is a variable star in both short and long time scales. Fortunately for
us, the variations are about a factor of three weaker than is typical for many other Sun-like
stars. In the longest time perspective the luminosity of the newly-born Sun was about 72%
of its present value. After some 2 billion years from now the Sun will have become so
bright that the Earth will turn too dry for the present type of life. The slow rise of solar
luminosity is due to the increase of the core temperature when more and more hydrogen is
fused to helium.

In space weather and space climate time scales, S varies by a factor of

• 10−6 over minutes
• 2×10−3 (0.2%) over several days
• 10−3 over a solar cycle (the number is quite uncertain because the solar cycles are

different)

The physical reasons and apparent periodicities for these variations are not fully under-
stood.

1.1.2 Solar spectrum

The solar spectrum from γ-rays to metric radio waves is given in Fig. 1.2. Most of the
solar energy is irradiated in the visible and near-infrared parts of the spectrum with peak
irradiance in yellow light around 450–500 nm. The red end of the spectrum is an almost
continuous black-body spectrum with some strong absorption lines, e.g., Hα at 656.3 nm
(not visible in the scale of Fig. 1.2). At the blue end there are more absorption lines.

About 44% of the electromagnetic energy is emitted at infrared wavelengths λ >
0.8μm. This part of the spectrum is approximately thermal and can be represented by
the Rayleigh–Jeans law

S(λ ) � 2ckBT λ−4 (R�/AU)2 . (1.4)
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Fig. 1.2 Solar spectrum from γ-rays to radio waves. The radio wave part of the spectrum is shifted up in
irradiance by 12 orders of magnitude. The irradiance is given in cgs units and ångström (1 Å = 0.1 nm) is
used below one 1 μm, which is common practice in solar physics. (From Aschwanden [2004].)

The infrared spectrum is absorbed mostly by water vapor in the Earth’s atmosphere.
At radio wavelengths (> 1 mm) the spectrum is commonly presented as a function of

frequency (recall the conversion: λ (m) = 300/ f (MHz); e.g., 1 mm ↔ 300 GHz). The Sun
is strongly variable at these wavelengths because the radio emissions originate from non-
thermal plasma processes in the chromosphere and corona (discussed in Sect. 1.1.3). As
indicated in Fig. 1.2, the radio emissions during strong solar storms can exceed the quiet
levels by several orders of magnitude. Note that there is an ankle in the slope of the quiet-
Sun spectrum at around 10 cm indicating higher temperatures (∼ 106 K) than the main
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black body radiation. This is a signature of the chromosphere and corona being much
hotter than the visible Sun.

In the ultraviolet side of the spectrum absorption lines are dominant down to 210 nm. At
shorter wavelengths the intensity is reduced to correspond to the temperature of 4700 K.
This reduction is due to absorption by the ionization of Al I. (Recall the notation: Al I
represents non-ionized aluminum, Al II is the same as Al+, Al III is Al2+, etc.) Below
150 nm emission lines start to dominate the spectrum. The strongest is the hydrogen Lyman
α line centered at 121.57 nm. Its average irradiance, 6 mW m−2, is as strong as all other
emissions below 150 nm together and the line is also clearly visible in Fig. 1.2 .

At shorter wavelengths the spectrum becomes highly variable, illustrating a nonuniform
distribution of the emission sources in the solar atmosphere. The nonuniformity is both
spatial and temporal. The wavelength band below 120 nm is called extreme ultraviolet
(EUV). These emissions come both from neutral atoms and from ions up to very high
ionization levels, e.g. Fe XVI (Fe15+) in the solar corona. This facilitates the observations
of the wide range of temperatures from 8000 K to 4×106 K, from the chromosphere to the
corona.

Solar flares increase the EUV and soft X-ray (0.1–10 nm) spectra quite considerably.
Also hard X-rays and γ-rays are emitted in these processes, as will be discussed in
Chap. 12.

1.1.3 Solar atmosphere

That there is an atmosphere above the photosphere is evident already visually. The irra-
diance decreases from the center of the disk to the limb by an order of magnitude due to
the absorption of the atmospheric gas, which is known as limb darkening. The tempera-
ture continues to decrease in the photosphere reaching its minimum at an altitude of about
500 km. Thereafter, the temperature starts to rise again in the chromosphere. The chromo-
sphere has got its name from the colorful flash seen just at the beginning and at the end of a
total solar eclipse. The most prominent color is the red Hα-line at 656.3 nm. Traditionally
the chromosphere was thought to be a layer of thickness of about 2000 km, but as illus-
trated in Fig. 1.3 the present view to the structure of the solar atmosphere is much more
complicated and dynamic than the old picture of a gravitationally stratified atmosphere.

At the upper end of the chromosphere the temperature begins to rise more rapidly.
The chromosphere is sometimes defined to end at the temperature of 25 000 K. Above
the chromosphere there is a thin transition region to coronal temperatures of the order of
106 K. The corona is a key region of many aspects of space storms to which we will return
in Sect. 1.1.6.

The steep temperature increase from the chromosphere to the corona remains one of
the major insufficiently understood topics in solar physics. As illustrated in Fig. 1.3 the
chromospheric and coronal plasmas partly overlap, flowing up and down with compli-
cated dynamic magnetic field structures involving waves, shocks, magnetic reconnection,
etc., which will be discussed in later chapters of this book. At the same time when this
dynamism complicates the picture, it also indicates that there free energy is available for
the heating. In fact, a steep temperature gradient in a gravitationally stratified atmosphere
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Fig. 1.3 Evolution of the concepts the solar atmosphere from gravitationally stratified layers in the 1950s
to a highly inhomogeneous mixing of the photosphere, chromosphere, and corona at the beginning of the
21st century. (From Schrijver [2001].)

might be much more difficult to explain than a spatially and temporally variable environ-
ment.

1.1.4 Rotation of the Sun

That the Sun rotates was discovered soon after the advent of telescope in about 1610.
Around 1630 it became clear that the rotation is not rigid, but the equatorial surface rotates
faster than the high-latitude regions. The origin of this differential rotation is not yet fully
understood. It is related to the transport of angular momentum inside the Sun and it also
plays a central role in the generation of the solar magnetic field. Differential rotation ap-
pears to be a general property of self-gravitating large gaseous bodies and is also observed
in the giant planets of the solar system.

The rotation axis of the Sun is given by two angles: the inclination i between the ecliptic
plane and the equatorial plane, and the angle of the ascending node α of the Sun’s equator,
i.e., the angle in the ecliptic plane between the direction of the vernal equinox and the
direction where the solar equator cuts the ecliptic from below. The Earth’s precession
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shifts the equinox direction by 0.0196◦, i.e., 50′′, per year, and thus α increases by the
same rate. Consequently, the epoch must be given when coordinates related to the equinox
are used. Carrington determined these angles in 1863 as i = 7.25◦ and α(1850) = 73.67◦.
The latter is still valid but the Greenwich sunspot data from the period 1874–1976 imply
i = 7.12◦ ±0.05◦.

We denote the heliographic latitude by ψ , thus the polar angle (co-latitude) is θ =
π/2−ψ . There is no physically unique way to define the longitude on the differentially
rotating surface. For this purpose Carrington introduced a notation that is still in use. He di-
vided time into intervals of 27.2753 days. These intervals are called Carrington rotations.
Carrington rotation 1 was defined to have commenced on 9 November 1853. In one year
of 365 days there are 13.38 Carrington rotations and thus the present rotation numbers are
well over 2000. At the commencement of a new rotation longitude φ = 0 is attached to the
center of the solar disk. Note that the Carrington rotations are related to the motion of the
Earth around the Sun, i.e., the “same place” at the solar equator is toward the Earth after
one Carrington rotation. This is known as the synodic period. The “true” rotation period
with respect to the stars is the sidereal period of about 25 days.

Carrington determined the surface rotation rate from sunspot data as a function of the
heliographic latitude in (sidereal) degrees per day

Ω(ψ) = 14.25−2.75 sin7/4 ψ . (1.5)

The power 7/4 is a bit awkward. A more modern approach is to expand the rotation rate as

Ω(ψ) = A+B sin2 ψ +C sin4 ψ + . . . (1.6)

and in most studies only coefficients A and B are determined. Here A is the equatorial
rotation rate.

In addition to sunspot data, Doppler shifts, edges of coronal holes and surface mag-
netograms are used in studies of the rotation rate. The different methods yield slightly
different results and there is some variability within the individual methods as well. Fur-
thermore, different sunspot cycles are different. For example, Pulkkinen and Tuominen
[1998] used the sunspot data from cycles 10–22 (years 1853–1996) and found that the
coefficients varied in the ranges A = (14.38 ,14.85) and B = (−3.19 ,−2.51).

It is interesting to note that the larger the structure used to determine the rotation, the
more uniform rotation is found. The extreme are observations of large coronal holes, which
sometimes show very little differential rotation at all. During the last decades helioseismol-
ogy has revolutionized the studies of differential rotation. Now it is possible to empirically
determine the rotation also inside the Sun, as illustrated in Fig. 1.4, which has been derived
from the observations of solar oscillations using the MDI instrument onboard the SOHO
spacecraft.

A rotating non-rigid body is not fully spherical. Even the Earth is elastic and has an
oblateness f = (req − rpol)/req ≈ 1/300. The fast-rotating gas giant planets Jupiter and
Saturn are much more oblate, fJ = 0.065 and fS = 0.098, which can be perceived already
in rather low-resolution pictures. But how oblate is the slowly rotating Sun, whose exact
diameter is difficult to measure?
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Fig. 1.4 The internal rotation rate of the Sun. The radial profiles are calculated for three different latitudes.
The grey regions indicate the estimated error in the inversion procedure. (From Kosovichev et al [1997].)

Neglecting the differential rotation and expanding the external gravitational field up to
the quadrupole term (the first non-zero correction)

Φext = − Gm�
r

[
1− J2

(
R�
r

)2

P2(θ)

]
(1.7)

the oblateness expressed as 	r/R� is

	r
R�

=
1
2

Ω 2R�
g�

+
3
2

J2 , (1.8)

where Ω is the angular velocity of the solar surface, J2 the quadrupole moment and P2(θ)
the second Legendre polynomial. Using the Carrington rotation rate, the first term in (1.8)
is about 10−5.

In the past the Sun has rotated faster than today. The specific angular momentum (i.e.,
the angular momentum per unit mass) of the cloud collapsing to form the Sun was much
larger than the angular momentum of the present solar system. Much of this was lost in a
very early phase of the solar evolution. We know that the so-called T Tauri stars, which
are in the early phase of their evolution, rotate much faster than the Sun. Their surface
velocities are about 15 km s−1 compared to 2 km s−1 of the present Sun.
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According to pre-main-sequence stellar models, the Sun was fully convective before
the hydrogen burning started. The convection was turbulent and the rapid exchange of
momentum between parcels of gas evened out the gradients in the angular velocity. The
total angular momentum J0 has been estimated to have been 8×1042 kg m2 s−1, whereas
it presently is 1.7×1041 kg m2 s−1.

Matter leaving the Sun carries angular momentum, but the material loss since the time
of large J0 has been negligible. The magnetic field, however, is a very efficient lever arm
for a torque. As we will discuss in the context of the solar wind (Sect. 1.2.2), the mag-
netic field forces the escaping material to rotate with the Sun out to the so-called Alfvén
radius rA ≈ 12R�. Thus the angular momentum density increases up to rA, and it is this
angular momentum that is conserved in the escaping flow beyond rA. The rate of angular
momentum loss is

dJ
dt

= Ω r2
A

dm
dt

. (1.9)

How much such magnetic braking really has taken place in the history is difficult to
estimate because we do not know the history of the magnetic field on which rA depends.
The magnetic field is generated by the solar dynamo (Sect. 8.3.2), which depends on Ω
and in particular on its gradient. As long as the Sun was fully convective the slowing
down affected the whole Sun. When the radiative core developed, the motion of the outer
convective zone was disconnected from the interior. The convective part continued to lose
angular momentum by magnetic braking, but what happened to the core? Because the
central core contracted further, the first guess would be that its rotation rate should have
increased.

However, the recent results of helioseismology (e.g., Fig. 1.4) do not support the idea
of a fast-rotating core. The central core may rotate somewhat faster than the radiative
zone but something seems to have slowed down the rotation also in the inner parts of the
Sun. A strong inward gradient dΩ/dr would mean strong shear flows. These could drive
instabilities, which, in turn, could transport the excess angular momentum, resulting in
smoother dΩ/dr. It has also been speculated that there could be an internal magnetic field
in the core. Indeed, already a relatively weak magnetic field would be sufficient to slow
down the core.

1.1.5 Sunspots and solar magnetism

The magnetic field of the Sun is very complicated both in time and in space. The existence
of solar magnetic fields was first found in sunspots by Hale in 1908. Although we can today
measure much weaker magnetic fields on the Sun, the sunspots have retained a central role
in studies of solar magnetism. The theory of magnetic field generation is a difficult topic
of plasma physics, and after a century of intensive study we still lack a fully satisfactory
physical description of the generation and evolution of the solar magnetic field.

A sunspot corresponds to an intense magnetic flux tube emerging from the convection
zone to the photosphere. Large spots can have diameters of about 20 000 km. The center
of the spot is called the umbra whose temperature is about 4100 K, and the largest ob-
served magnetic fields are about 0.3 T. The strong magnetic field is the cause of the low
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temperature and thus the relative darkness of the spot because it inhibits the hot plasma of
reaching the surface. Around the spot there may be a penumbra that consists of dark and
bright filaments. Young spots do not have penumbrae and in about 50% of the cases the
spot evolution stops before a penumbra has developed.

The magnetic field is measured by observing the Zeeman splitting of atomic spectral
lines. Because the Zeeman effect is weak, the observations have traditionally been lim-
ited to determination of the line-of-sight component of the magnetic field. However, the
state-of-the-art spectropolarimetric observations with the Japanese Hinode satellite have
contributed important advances in observations of the horizontal magnetic field in the pho-
tosphere [Lites et al, 2008]. This progress is important toward better understanding of the
role of the magnetic fields in the heating of the chromosphere and corona.

The cyclic appearance of the sunspots, with a quasi-period of about 11 years was found
by Schwabe in 1844. When a new cycle begins, spots start to appear at mid-latitudes
(around 30–40◦) on both hemispheres. The life-time of individual spots is relatively short,
from days to weeks, but with time more and more new spots appear. The new spots are
located closer and closer to the equator, resulting in the famous butterfly diagram (Fig. 1.5).
After the maximum occurrence the sunspot number starts to decrease to the solar minimum
of practically no sunspots at all.

Fig. 1.5 The butterfly diagram of sunspot appearance. The contours are ±20μT, ±60μT, ±100μT, . . .,
solid lines indicate positive polarity, dashed lines negative. (From Schlichenmaier and Stix [1995].)

The sunspots usually appear in pairs or in larger groups. The magnetic flux emerging
from one spot returns to another. In 1923 Hale was able to confirm the polarity rules of
sunspots that he had formulated with his colleagues in 1919:

• The magnetic orientation of leader and follower spots in bipolar groups remains the
same in each hemisphere over the whole 11-year cycle.
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• The bipolar groups in the two hemispheres have opposite magnetic orientation.
• The magnetic orientation of bipolar groups reverses from one cycle to the next.

As it takes two sunspot cycles to return to the same orientation, the length of the magnetic
cycle of the Sun is 22 years. This is known as the Hale cycle, whereas the 11-year sunspot
cycle is called the Schwabe cycle.

The mean magnetic field inside the Sun can be described as a sum of toroidal and
poloidal components. The systematic behavior of bipolar sunspot groups can be under-
stood in terms of a subsurface toroidal magnetic field. “Toroidal” means in this context
that the field lines form closed loops around the solar rotation axis. Locally this field may
be driven to the surface by convection and magnetic buoyancy, which forms a bipolar
sunspot pair. The total flux of the toroidal field is of the order of 1015 Wb. If we assume
that it is distributed within the latitudinal range of the sunspots and throughout the con-
vection zone, the mean toroidal field is Bt ≈ 0.02 T. It is possible that most of the flux
is concentrated in a thin overshooting layer at the bottom of the convective zone, where
the turbulent convective motion partially penetrates into the stable radiation zone. In that
region the mean field can be of the order of 1 T.

The field lines of the poloidal field are in the meridional planes in the same way as the
field lines of the familiar magnetic dipole. The differential rotation drags the poloidal field
lines to enhance the toroidal component. This takes place during the rising solar activity. In
order to establish the cyclic behavior there must be another process to return toward a more
poloidal configuration with reversed polarity during the decaying activity (see Sect. 8.3.2).

Daily sunspot observations were started in 1749 at the Zürich Observatory. With later
addition of observations from other observatories continuous sunspot data are available
from 1849. The intensity of sunspot activity is usually given by the relative sunspot number
R introduced by Wolf in 1848

R = k (10g+ f ) , (1.10)

where g is the number of spot groups and f is the total number of spots (an isolated
spot is calculated also as a group). The coefficient k is determined individually for each
observatory to take into account the instrument properties and local seeing conditions. R is
approximately proportional to the area of the Sun that is covered by the spots. Thus it is a
rough measure of the total absolute magnitude of the magnetic flux penetrating the visible
hemisphere within the sunspots.

The sunspot cycles are enumerated so that cycle 1 began in 1756. Figure 1.6 shows the
entire Zürich sunspot number time series from 1750 to the end of cycle 23 in 2008. While
the solar cycle is remarkably repetitive, it also shows great variability which cannot be
properly predicted yet. Both the intensity and the shape of the peaks in the sunspot time
series are different from one cycle to another. Also the length of the cycles varies up to
a few years. Most of the text of this book was written during a peculiarly long and deep
solar minimum after cycle 23, the recovery from which did not start until early 2010.

The strongest recorded maximum took place in 1957 (cycle 19). During the last century
there was an increasing trend of the peak sunspot numbers with the exception of cycle
20. However, the peak of cycle 23 in 2000 was weaker than the previous two. It may
be a sign of the so-called Gleissberg cycle of about 80 years superposed on the 22-year
Hale cycle. In that case the coming maxima would be smaller than the recent ones. The
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Fig. 1.6 The Zürich sunspot number time series. At the time of writing this book, the official record was
available to late 2009. The recovery from the last minimum was very slow and did not start until 2010. For
updated information see, e.g., http://sidc.oma.be

Gleissberg cycle superposed with the about 200-year de Vries cycle is consistent with
long-term minima in the 17th century (the Maunder minimum), around the year 1800 (the
Dalton minimum) and around the year 1900 (the Modern minimum) (Fig. 1.7).
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Fig. 1.7 Long-term sunspot number variation after the 11-year cycle has been filtered away (solid line)
and the superposition of the Gleissberg and de Vries cycles (dotted line). (Figure by courtesy of H. Nevan-
linna.)

The most remarkable feature in the long time series is that the solar activity seems to
have been almost nil during the Maunder minimum. This is not an artifact of poor obser-
vations; there simply were almost no spots on the Sun. This coincided with the so-called
little ice age when the climate in Europe was exceptionally cool. This may have been a
consequence of the fact that solar activity is related to the brightness of the Sun, lumi-
nosity being a factor of about 10−3 higher at the sunspot maximum than at the minimum.
However, the effects of the solar activity on the terrestrial climate, if any, are not really
understood.

What is the origin of the magnetic field of the Sun? In principle it could be a remnant
of the magnetic field in the interstellar cloud that once collapsed to form the Sun. If the
cloud’s weak field, less than 1 nT, were compressed with the matter without any losses,
the resulting flux density would be huge, some 106 T. Much of this was lost in the early
evolution of the Sun, but considering the fact that the Ohmic diffusion time τη for the Sun
is of the order of 1010 years, the mere existence of the field does not require its continuous
generation. The case is different for the planets, e.g., for the Earth τη ≈ 104 years, thus
the Earth must possess a dynamo of some type. Otherwise the only magnetism would be
remanence in magnetic materials in the ground, as appears to be the case in Mars.

Not even the 22-year magnetic cycle of the Sun is a fully convincing signature of an
active solar dynamo. It might be a sign of oscillatory behavior of a slowly decaying fossil
field. However, the detailed features of the differential rotation and its association to the
migration of the sunspots are considered as the strongest evidence of the dynamo. The
present Sun, the Earth, and other magnetized planets are able to manifold the pre-existing
flux through a dynamo process. In the Sun this takes place in the convection zone, most
likely close to its bottom. The excess magnetic energy is expelled away with the solar
wind. The energy sources for the magnetic field generation are the rotation and the heat
produced in the core.
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The induction equation of magnetohydrodynamics (Chap. 6)

∂ B

∂ t
= ∇× (V×B)+η∇2B (1.11)

gives a simple phenomenological description of the basic idea of magnetohydrodynamic
dynamos. The convective term ∇× (V×B) involves the plasma motion, which provides
free energy to generate new flux, whereas the diffusive term η∇2B describes how the field
is decaying. Note that both terms are needed in the description of a plasma dynamo. If
there were just diffusion, the field would simply disappear. If, on the other hand, there
were no diffusivity at all, (1.11) would describe the ideal MHD flow without creation of
new flux.

The problem of dynamo theory is to find solutions for the induction equation where
the convection and diffusion together result in creation of new magnetic flux, or more ex-
actly, manifolding of the existing flux. This is somewhat analogous to a traditional bicycle
dynamo. If you just have the dynamo rotating, not connected anywhere, the only effect
would be weak friction that would make the driving a little harder. But if you connect
the dynamo through a load, e.g., a lamp, a current flows in the cable and gives rise to a
magnetic field according to Ampère’s law. The energy to create the new flux is not drained
from the magnetic energy of the magnet but from the mechanical work you are doing to
keep the magnet rotating. This way we have natural roles for V, the rotation, and for η ,
the dissipation, in the cable and the lamp. Both are needed!

This analogy should not be taken too literally. Technological dynamos are multiply-
connected systems where the load is external to the dynamo itself. In MHD plasma there
are no cables nor circuits. The new flux is directly superposed on the pre-existing field in
the same simply-connected volume of fluid whose motion creates the flux and the flux is
also dissipated in the same volume.

An important property of cosmic dynamos is self-excitation. In a bicycle the seed mag-
netic field is provided by a permanent magnet. We can imagine setting up a self-exciting
dynamo by winding the wire connected to the load around the system so that it creates
a magnetic field that is in the same direction as the seed field. Thereafter we remove the
original magnet and the seed field is now provided by the field generated by the dynamo
itself. This is not a perpetuum mobile, as the energy source for the magnetic field genera-
tion is the motion that has to be strong enough to balance the dissipation. We will discuss
the dynamo processes in the Sun and in the magnetosphere in more detail in Chap. 8.

1.1.6 Coronal activity

The beauty and the dynamism of the corona is impossible to capture in the pages of a
textbook. The reader is strongly recommended to visit the web pages of various solar
spacecraft, in particular SOHO, TRACE, STEREO, and SDO. The two-spacecraft mission
STEREO took a number of 3D images from the early phase of the mission when the two
spacecraft were at optimal distance from each other. Unfortunately, the prime time of truly
stereoscopic STEREO observations took place during the particularly quiet solar minimum
after cycle 23.



1.1 Source of Space Storms: the Sun 17

The active, or indeed violent, processes in the solar corona are essential elements of
space storms. Of particular importance to space storms are the solar flares and coronal
mass ejections (CMEs), which will be discussed in detail in Chap. 12.

In the past the corona was possible to observe during solar eclipses only. The early
observations indicated two distinct components in the white-light corona: the K corona and
the F corona. K comes from the German word Kontinuum and F from the dark Fraunhofer
lines. The spectra of both components resemble the photospheric spectrum but in the K
corona the Fraunhofer lines are absent. The K component is also strongly polarized, which
indicates that it arises from Thomson scattering on free electrons (Chap. 9). Actually, there
are weak dips corresponding to the strongest Fraunhofer lines (H and K) also in the K
corona. The explanation for the filling of the lines is Doppler broadening due to the high
temperature of the scattering electrons. This was an early hint that the corona might be hot,
as first suggested by Grotrian as early as in 1931. Note that the white-light observations of
coronal mass ejections extending far beyond 3 R� are also based on Thomson scattering
on electrons in the dense plasma cloud.

The F corona shows the photospheric continuum with the Fraunhofer lines. The light
is unpolarized and it is explained as photospheric light scattered on dust particles. The K
corona decays faster than the F corona and the latter dominates beyond 2–3 R� . The K
corona is, in fact, the same phenomenon as the zodiacal light observed deep in interplane-
tary space.

The coronal structure is closely linked to the solar magnetism and illustrates the large-
scale structure of the magnetic field. At the solar minimum the poloidal component domi-
nates the large-scale structure of the magnetic field. Within the polar regions polar plumes
emerge from large coronal holes and represent the plasma flowing out with the solar wind.
At the solar maximum the polar coronal holes are not as easy to recognize because the
actual magnetic field is dominated by the irregular contributions from the toroidal com-
ponent. There can be several coronal holes and the magnetically closed regions often re-
semble Prussian helmets, and are called illustratively helmet streamers. Note that the word
streamer refers to the visible closed structures. It is not directly associated with the stream
of escaping plasma, the solar wind, which originates mostly, if not completely, from the
coronal holes.

The high temperature of the corona was not known at the time of first spectroscopic
observations, and the observed spectrum caused quite a lot of confusion. Recalling that
helium was once found for the first time in the Sun, a new element, coronium, was sug-
gested to explain some of the abundant but thus far unknown spectral features. In the years
1939–1941 Grotrian and Edlén, however, correctly identified several of the coronal lines
to be those of highly ionized atoms. Three of the most conspicuous visible lines represent
strong transitions of Fe XIV (530.3 nm), Ca XV (569.5 nm), and Fe X (637.5 nm). Of these
Fe X is formed at 106 K and Fe XIV at 2× 106 K. Thus it is evident that a cool star of a
temperature of about 6000 K can support a hot corona of millions of degrees.

The coronal spectrum is very rich in UV and X-ray lines. While the white-light ob-
servations require coronagraphs, i.e, devices where an occulting disk creates an artificial
eclipse, many of the short wavelength emissions can also be observed against the solar
surface as they emerge from the much hotter coronal gas. For example, the X-ray detec-
tor onboard the Japanese Yohkoh satellite was first to observe ionized iron up to Fe XXVI
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during solar flares. The emission is the Lyman α line of an iron ion with only one elec-
tron. Its wavelength is 178 pm and the required temperature is about 2×107 K. Such, and
even higher, temperatures are not uncommon in solar flares. The tenuous corona is not in
local thermodynamic equilibrium and particle populations of very different temperatures
are produced by the rapidly varying magnetic field configurations.

The X-ray images of the Sun have revealed the very active behavior of the corona. The
coronal holes are clearly seen as dark regions whereas the hot plasma radiating the X-rays
is confined in the magnetic bottles of the closed field lines. In addition there are numerous
small X-ray bright points arising from the bremsstrahlung of electrons being decelerated
by the surrounding plasma (Chap. 9). The coronal holes remain colder because they are on
open field lines, from which the plasma escapes as the solar wind before it is heated to the
same temperatures as plasmas in the closed field line regions.

Also radio waves reveal important information on the magnetically active corona. They
are emitted by electrons gyrating in the strong magnetic field (Chap. 9), and are particularly
important in studies of radio flares associated with solar activity (Chap. 12).

That there is some temperature increase in the chromosphere is not so difficult to under-
stand. The rarefied gas starts to deviate from local thermodynamic equilibrium and it does
not need to find equilibrium with the lower atmospheric levels if some processes keep on
heating it. There are two rich energy sources for the heating: the acoustic fluctuations and
the magnetic network. The energy flux density of the sound waves in the chromosphere has
been estimated to about 10 W m−2 . This would be sufficient to heat the chromosphere up
to 10 000 K, but this is not nearly enough for the coronal temperatures, which also require
practically continuous heating. If the heating were turned off, the chromosphere would
cool down in about 20 minutes.

The high temperature of the corona was once a great surprise and its heating is still
among the toughest problems in solar physics. The acoustic fluctuations do not reach the
coronal altitudes, but in principle there is no lack of energy. The energy flux needed to
power the magnetically active regions is of the order of 104 W m−2 , which on the average
is only a fraction of 10−4 of the power in electromagnetic radiation. But the corona is opti-
cally very thin and there is no known mechanism to absorb the electromagnetic radiation.
Thus the heating must be related to the magnetic field. Fortunately, there is enough energy
also in the solar magnetic field. The problem is how to convert it into heat, in particular in
the narrow transition region but also higher up where the mean temperature still increases
from 106 K to 2×106 K.

We can think of several mechanisms to dissipate the magnetic energy as heat, e.g.,
waves, instabilities, current sheet dissipation, and reconnection, which will all be discussed
in the later chapters. The energy balance in MHD (Chap. 6) can be expressed writing the
Poynting theorem in the form

−
∮

∂
E×H ·da =

∂
∂ t

∫ B2

2μ0
d +

∫ J2

σ
d +

∫
V ·J×Bd . (1.12)

The LHS describes the magnetic energy entering as Poynting flux through the surface ∂
of the volume where the energy may show up as increasing magnetic energy (first term
on the RHS) and be dissipated through ohmic heating (second term on the RHS) and me-
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chanical work (acceleration, third term on the RHS) by the magnetic force (J×B). Note
that the ohmic, or more accurately resistive, term does not need to be determined by clas-
sical collisional resistivity but may rise from turbulence and/or wave–particle interactions.

MHD waves (known also as Alfvén waves, see Chap. 6) are excited by the motion of
magnetic and acoustic disturbances in or near the photosphere. Spectral features in the
transition region are wider than could be expected for the hot gas. The excess Doppler
widening has been estimated to correspond to the velocity 104 m s−1, which may be a
signature of upgoing Alfvén waves. When these waves propagate outward they are damped
and part of their energy is transformed to heat. The linear damping of the Alfvén waves is,
however, a very slow process. Nevertheless, within the diverging coronal holes the wave
heating may be the only alternative, because there are no unstable flux tubes nor current
sheets. One proposal how the heating could take place has been phase-mixing of waves
of different wavelengths and speeds propagating in the same spatial volume. This can
lead to large spatial gradients where the effective resistivity increases and shows as ohmic
dissipation of the wave energy in the Poynting theorem. Phase-mixing is an example of
turbulent phenomena in space plasmas.

Another proposed explanation for damping of Alfvén waves is that the waves have
high enough frequencies to be damped by the cyclotron resonance with the plasma ions.
Alfvén waves become electromagnetic ion cyclotron waves at frequencies close to the
local ion cyclotron frequency (Chap. 4), and these waves are very efficiently damped by
resonant interaction with ions (Chap. 5). As the magnetic field and, therefore, the cyclotron
frequencies decrease with increasing radial distance, waves created at or near the solar
surface by micro-flaring and/or turbulent motions can propagate without damping until
they reach the distance at which the cyclotron frequency becomes comparable to the wave
frequency.

Observations of ion temperatures in coronal holes indicate that minor ion populations
(e.g., oxygen) can be very hot (up to 108 K) and that their temperatures are anisotropic,
being larger in the perpendicular direction relative to the magnetic field. This is a signa-
ture of cyclotron heating because the ions with the lowest cyclotron frequencies should be
heated most efficiently and because the heating is due to wave electric fields directed per-
pendicularly to the ambient magnetic field. However, some theoretical calculations predict
even too efficient wave damping by the heavy ions with lower cyclotron frequencies than
the proton gyro frequency, leaving almost no wave energy to heat the major species. As a
summary, cyclotron heating in the solar corona is not yet completely understood.

Even if the waves generated near the solar surface have small frequencies, the phe-
nomenon called turbulent cascading may allow short wavelength fluctuations to be gen-
erated from the long wavelegth ones. The large wavenumber fluctuations may again be
efficiently damped at scales close to the ion gyro radii. This turbulent heating mechanism
in a way combines the ideas of cyclotron heating and phase mixing.

We know from observations that flux tubes in different scales, such as coronal loops, are
continuously created and disrupted through various instabilities. The disrupting flux tubes
convert magnetic energy into heat and acceleration whenever the disruptions take place,
but the disruptions may be too sparse and localized to explain the heating of the whole
corona. These processes may be important during strong solar activity, but the corona is
hot also during quiet periods.
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The Skylab mission revealed in 1973 that there are X-ray bright points everywhere on
the Sun. Later it was demonstrated that their distribution is uniform over the whole Sun
and that they exist also during quiet phases of the solar activity. They resemble small flares
and the underlying particle acceleration is most likely due to continuous reconnection
processes of the ever-changing magnetic field structures in the low corona.

While large flares can release some 1025 J of energy in the time scale of 10 minutes,
they are too infrequent and can account for at most 1% of the heat to sustain the 106 K
temperature of the corona. Thus if small flares should explain the heating, they would
need to be very abundant, indeed. A direct scaling down from the large flares may not be
straightforward and the small flares may be relatively more dissipative.

The EUV observations at temperatures of 105 K (i.e., in the transition region) have
shown that there are localized hot spots that explode and shoot material upward at the
speeds of hundreds of km s−1. These hot upward plasma jets occur above the lanes of the
magnetic network. It has been claimed that the jets would carry enough energy to heat the
corona but the observations are inconclusive.

The UV and EUV observations of the SOHO and TRACE satellites have finally shown
that there are even larger numbers of (relatively) small explosive events than was previ-
ously thought all over the Sun, perhaps some 20 000 events per minute. The inner solar
atmosphere is very active also during the quiet phases of the solar cycle. The small ac-
tivations have been dubbed microflares or nanoflares. Although this terminology is a bit
inexact, “micro” can be associated with events of the order of 1019 J, which you need about
one million to correspond to a flare, and “nano” with events of 1016 J, which you need one
billion to one flare.

The brightest micro/nanoflares lie above regions of enhanced magnetic fields of the
magnetic network and the stronger events correspond to greater fluctuations. This suggests
that the lower corona is not only heated but continuously replenished by chromospheric
material that has been heated to coronal temperatures (see Fig. 1.3). Thus a substantial part
of the energy may come with the heated plasma from below. One scenario is that the new
magnetic field emerges from the Sun in the centers of supergranular cells and is carried to
their edges by the convective motion and finally reconnected with the magnetic field from
the neighboring cells. In this scenario the energy released by the reconnection powers the
microflares observed in the overlying low corona.

There has been some discussion whether the small-scale flares are abundant enough,
or not, to account for the coronal heating. Some observations support this interpretation,
others do not. However, observations have conclusively shown that there is a correlation
between the solar magnetic field and coronal heating. The variability of the small-scale
magnetic elements observed in the photosphere (so-called magnetic carpet) has been found
to correlate with temperature fluctuations in the corona. Furthermore, observations of the
temperature distribution of forming polar plumes within the coronal holes seem to corre-
late with photospheric fine-structure associated also with the supergranular structure and
magnetic network.
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1.2 The Carrier to the Earth: the Solar Wind

Toward the end of the 19th century it had become evident that there must be a connection
between the solar activity and magnetic disturbances on the Earth, which is not mediated
by electromagnetic radiation. There were still some very prominent sceptics, in particular
Lord Kelvin, because it was very difficult to explain how such a connection could be
established.

Lindemann [1919] seems to have been the first to suggest that quasi-neutral charged
particle ejections related to solar activity were responsible for non-recurrent magnetic
storms at the Earth. In 1929 Chapman proposed that the solar flares would emit plasma
clouds and if such a cloud were to hit the Earth’s magnetic field, it would cause magnetic
disturbances. But how could these clouds escape from the strong gravitational field of the
Sun? After all, the escape velocity on the solar surface is 618 km s−1. The kinetic energy
of a proton at that speed is 2 keV, corresponding to a temperature of 2×107 K, which was
too much to be believed in those days. Today we know that such temperatures really do
occur in coronal loops and flares, and the escape is no longer such a big mystery, although
we do not yet know the details of how the plasma is heated and accelerated.

During the 1950s Biermann [1951, 1957] demonstrated that the structures of cometary
tails were consistent with a continuous corpuscular outflow from the Sun, unrelated to
large flares. Later Alfvén pointed out that the flow must be magnetized plasma. The first
direct in situ observations of the solar wind came from the Russian Lunik III and Venus I
spacecraft in 1959, and the definitive proof of its continuous nature was provided by the
U.S. Mariner II in 1962–1967.

Today we know that there are two main types of solar wind, a fast (about 750 km s−1),
tenuous, and a denser but slower (about 350 km s−1) wind. The details of the source regions
and mechanisms are still under investigation, but the general view is that the fast wind
originates from large coronal holes at high solar latitudes whereas the slow wind emerges
from smaller and less permanent structures at lower latitudes. In addition to these, the
CME-related outflow can be considered as a third independent solar wind type. Solar wind
has never disappeared during the more than three decades it has been monitored. On May
11, 1999, the slow (300 km s−1) wind had for a short while an extremely low density of
0.2 cm−3 near the Earth.

1.2.1 Elements of solar wind expansion

Before direct spacecraft observations Chapman [1957] presented a static model to describe
the existence of the continuous solar wind. He considered a sphere around the Sun and
assumed that the thermal flux through the surface was constant. Assuming that T → 0
when r → ∞ he found the solution

T = T0(R�/r)2/7 . (1.13)

For a coronal temperature of T0 = 106 K this predicts a temperature of 105 K at 1 AU ,
which is quite good, although it was not known in 1957. An evident drawback of the
model was that far from the Sun the pressure approaches a constant that is much larger
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than the pressure of the interstellar gas. As the temperature decreases toward zero with
increasing distance, the density would have to increase without bound, which of course is
unphysical.

One year later Parker [1958] presented another solution to the problem. While this
solution was also based on strong simplifications, its basic idea is important. Parker noted
that the corona cannot be in static equilibrium; it must either expand or collapse. Guided
by this insight, he succeeded in predicting a supersonic solar wind just before the first
satellite observations showed that he was essentially right. Parker’s argumentation was the
following.

Assume time-independent spherically symmetric outward-directed flow. Neglect the
magnetic effects and write the continuity equation, momentum equation and equation of
state as

4πr2nV = const (1.14)

nmV
dV
dr

= −dP
dr

− Gm�mn
r2 (1.15)

P = nkBT . (1.16)

Let the expansion be isothermal. This is clearly not true, but it is interesting to see where
it leads. The solutions are of the form(
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Figure 1.8 illustrates these solutions. Solutions in regions I and II are unphysical and
those in III have too high (supersonic) a velocity at the source. The solution IV crossing
the critical point is Parker’s solution for the supersonic solar wind. The critical point fixes
the constant of integration to C = −3. Also V is a physically valid solution, called stellar
breeze. There are stars that produce subsonic stellar breezes.

Train your brain by calculating the details of Parker’s solution.

While elegant, Parker’s solution is too simple for the real solar wind. In fact, the isother-
mal polytropic index γ = 1 leads to a diverging enthalpy (see Eq. (1.25) below), whereas
for γ = 5/3 there is no critical point and thus the supersonic flow is not described correctly.
The wind cools, as it expands, and thus thermal conduction must be taken into account.
Because the solar wind plasma is effectively collisionless, ions and electrons cool with
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Fig. 1.8 Solutions of (1.18).

different cooling rates and the interaction of plasma with magnetic fluctuations plays a
different role in electron and ion expansion. Also the details of the fast and slow solar
wind are different because the physical processes in their source regions are different. The
observed solar wind properties at 1 AU are summarized in Table 1.1.

Table 1.1 Typical solar wind parameters at 1 AU . vA = B/
√μ0ρm is the Alfvén velocity.

slow wind fast wind
V (km s−1) 350 750
ne (m−3) 1×107 3×106

Te (K) 1.3×103 1×105

Tp(K) 3×104 2×105

B (nT) 3 6
vA (km s−1) 20 70

The solar wind transfers energy from the Sun. In the corona we must consider kinetic
energy, internal energy, gravitational energy, thermal conduction, radiation, and heating.
Most of these must also be taken into account in the description of the solar wind acceler-
ation beyond the sound and Alfvén velocities.

In a steady state the divergence of the total energy flux must be zero

∇ ·
[

V

(
1
2

ρV 2 +H − Gm�ρ
r

)
−κ∇T +FR +FH

]
= 0 (1.19)
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Here H is the internal energy (enthalpy) and κ the thermal conductivity. ∇ ·FR describes
the radiation and ∇ ·FH the heating of the upper solar atmosphere. There is a temperature
maximum somewhere in the corona. Inside this maximum thermal conduction is inwards,
toward the transition region and chromosphere, where it balances the radiative loss through
the strong Lyman α line. Outside the maximum thermal conduction is outwards. Chap-
man’s model had only this outward contribution, whereas the original isothermal Parker
solution did not take it into account at all.

The real solar wind departs from the one-fluid behavior already in the corona. Modern
model calculations show that ions are heated more efficiently and reach a higher maximum
temperature than electrons. Further out the ions cool faster than electrons, and at 1 AU the
ion temperature is no longer far from the electron temperature.

In the outer corona radiation and heating become unimportant for plasma dynamics, but
the internal energy of the plasma deserves further consideration. Assume that the coronal
gas consists of protons and electrons only, let n = n(r), T = T (r), ne ≈ ni ≈ n, and neglect,
for simplicity, the differences in the temperatures. Then the pressure is

P = nekBT +nikBT = 2nkBT (1.20)

and the thermal energy of the gas in a volume is

U =
3
2
(ne +ni)kBT = 3nkBT . (1.21)

The gravitational potential is given by

Φ = −Gm�mn
r

. (1.22)

The thermal energy lifts the gas up when the volume expands. At the same time
the internal pressure pushes new gas into this volume performing the work P . The free
energy is the enthalpy

H = U +P = 5nkBT . (1.23)

Assuming a temperature of T = 2×106 K we find

H
|Φ | ≈ 0.5 . (1.24)

This means that the heating of the corona to this “classical” temperature does not provide
enough free energy to exceed the gravitational potential and the corona should collapse, not
expand. Thus there must be some mechanism(s) doing extra work Q on the gas. Using the
actual solar wind observations the required energy can be estimated to be about H +Q =
1.25 |Φ |. There is no generally accepted theory yet to explain what powers the escape.
Most likely it is of magnetic origin and associated to the heating of the ions in the corona.
Once the ions escape, the more mobile electrons follow.

Assuming that there is enough energy available for the solar wind expansion and ne-
glecting details of ∇ · (FR +FH), the energy transport equation can be written as
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nmV r2
(

1
2

V 2 +
γ

γ −1
P

nm
− Gm�

r

)
= r2κ

dT
dr

+F∞ . (1.25)

Here κ = κ0T 5/2 (κ0 ≈ 10−11 W m−1 K−1) and F∞ is the energy flux far from the Sun.
This equation also takes the cooling of the expanding (single fluid) wind into account. The
internal energy is written in the form showing the polytropic index γ and we immediately
recognize the enthalpy problem with Parker’s isothermal (γ = 1) solution in the second
term of the LHS of (1.25).

There are three basically different classes of solutions, depending on the asymptotic
behavior of the temperature:

(1) T ∼ r−2/7 heat conduction dominates in the far region
(2) T ∼ r−2/5 kinetic flux dominates in the far region
(3) T ∼ r−2/3 adiabatic expansion

In the fluid picture stellar winds belong either to class 1 (cold, tenuous winds) or class
3 (hot, dense winds), whereas class 2 is a limiting case between these two. However, the
different particle species may fall into different categories. According to observations the
proton temperature at 1 AU behaves roughly as Tp ∼ r−2/3 being in the adiabatic class,
whereas Te ∼ r−1/3, which is closer to thermal conduction.

There are several reasons for the different cooling rates. The electrons are bound more
tightly to the magnetic field of the solar wind and electrons and ions react in different
ways to turbulence and plasma waves. Note that while any of these effects may be slow,
the spatial and temporal scales are vast compared, e.g., to gyro radii or gyro periods.

1.2.2 The interplanetary magnetic field

A critical element to carry the effects of solar activity to the heliosphere is the magnetic
field of the solar wind, the interplanetary magnetic field (IMF). In addition to its effects
on the local properties of the solar wind, the IMF also breaks the solar rotation and it is
critical to the dynamics of plasma environments of solar system bodies.

The observed structure of the IMF varies considerably from the ecliptic to the poles.
To begin, let us consider a cylindrically symmetric case in the equatorial plane. Assume
that the flow is radial and let Ω be the angular speed of the solar rotation. Let the angle
between the radial direction and the magnetic field be ψ and assume that the IMF is frozen
into the expanding solar wind. (The frozen-in concept will be introduced in Chap. 6.)
Close to the Sun the plasma rotates with the body but with the solar wind expansion the
field is wound to a spiral. Let V be the flow velocity assumed to be radial, for simplicity. Its
component perpendicular to the IMF is V⊥ = V sinψ . This can be imagined as the speed
of the field line in this direction. The high conductivity ties the field line to the surface of
the Sun, actually to the so-called source surface, where the magnetic field is, in the first
approximation, radial. Thus the speed of the field line perpendicular to the radial direction
is Ω(r−R�), and

V sinψ = Ω(r−R�)cosψ (1.26)
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⇒
tanψ =

Ω(r−R�)
V

. (1.27)

When r increases, this approaches the Archimedean spiral. In this context it is known as
the Parker spiral.

Feed your brain

With the help of literature discuss the description of the magnetic field in the solar
atmosphere in terms of spherical harmonics. What is the role of the source surface in
this description? What makes the magnetic field radial at the source surface?

We can calculate the magnetic field behavior as a function of distance from the Sun in
a simple way. Let B be radial and constant on the surface of the Sun and write B and V in
spherical coordinates with the origin in the center of the Sun (r,θ ,φ ), where θ is the polar
angle and φ the azimuthal angle,

B = (Br,0,Bφ ) , V = (Vr,0,Vφ ) . (1.28)

Note that the components of the vectors are functions of r. From ∇ ·B = 0 we get

Br = B0(R�/r)2 . (1.29)

Thus the radial component of the field decreases as r−2. To find the azimuthal behavior we
can write the steady state azimuthal force balance (see Chap. 2, Eq. (2.145)) as

ρ(V ·∇V)φ = (J×B)φ , (1.30)

where the plasma pressure is assumed to be azimuthally symmetric (∇P)φ = 0. Using
Ampère’s law and multiplying by r3 we obtain

r2ρVr
d
dr

(rVφ ) =
1
μ0

r2Br
d
dr

(rBφ ) . (1.31)

The mass flux r2ρVr and the magnetic flux r2Br are constants and we can integrate this
equation to get

L = rVφ − rBrBφ

μ0ρVr
. (1.32)

In the constant of integration L the first term is the angular momentum per unit mass and
the second term describes the integral of the torque corresponding to the change in the
angular momentum, known as magnetic braking.

To express Bφ in terms of Br we consider the frame that rotates with the angular speed
Ω . In this frame the velocity vector is (Vr,0,Vφ −rΩ). This vector is parallel to B and thus

Bφ =
Vφ − rΩ

Vr
Br . (1.33)
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At large distances Bφ ∝ r−1, i.e., it decreases more slowly than the radial component,
which explains the spiral formation.

Define now the radial Alfvén Mach number MA

MA =
Vr

vA
=

Vr
√μ0ρ
Br

(1.34)

⇒

Vφ = Ωr
M2

A

(
L

r2Ω

)
−1

M2
A −1

(1.35)

According to observations MA increases from ∼0.1 in the corona to ∼10 at 1AU . Thus
there is a critical point in the expression of Vφ where MA = 1 at a certain distance r =
rA, which is called the Alfvén radius. At this distance (about 12R�) the flow becomes
superalfvénic. As the azimuthal speed cannot be singular at that point we find the angular
momentum per unit mass

L = Ωr2
A . (1.36)

This is equal to the angular momentum for a solid body with the radius rA.
We can now write the azimuthal velocity as

Vφ =
Vr/vA −1

(Vrr2)/(vAr2
A)−1

Ωr . (1.37)

Close to the Sun this reduces to
Vφ � rΩ (1.38)

corresponding to rigid rotation with the Sun. On the other hand at large distances

Vφ � r2
AΩ/r , (1.39)

which expresses the conservation of angular momentum from the Alfvén radius outward.
Thus rA can be interpreted as a lever arm, with which the solar wind brakes the solar
rotation.

Out of the equatorial plane (θ �= π/2) the calculation is more complicated. The az-
imuthal component of the field turns out to be

Bφ ≈−B0R2�Ω sinθ
rVr

. (1.40)

Thus, far from the Sun the total magnetic field behaves as

• B → r−1 in the equatorial plane (the spiral becomes tightly wound)
• B → r−2 in the direction of the poles

Between the equatorial plane and the polar direction the field has a helical structure. At
1AU the equatorial spiral angle is typically about 44◦.
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Train your brain

1. Derive (1.40).

2. Show that the mass and angular momentum losses are related by

dJ
dt

=
2
3

Ωr2
A

dm
dt

(1.41)

Calculate this for the present Sun and estimate how much time the present magnetic
braking would need to stop the rotation. Compare the efficiency of the magnetic
braking for rA = 12 R� to rA = R�.

1.2.3 The observed structure of the solar wind

The real solar wind is much more structured in space and time than the simple model
calculations in the previous section suggest. The escaping flow originates from the coronal
holes whose shapes and locations change all the time. Space-borne observations looking
through the holes to the photosphere show further that the escape is highly structured
within individual holes. In addition to this variability the solar eruptions eject faster or
slower plasma and magnetic clouds to the background solar wind flow. These structures
can drive various shock phenomena in the wind to large distances beyond the Earth’s orbit.

When the solar activity is at its minimum, the solar magnetic field is as poloidal as
it ever gets and the coronal structure is dominated by two large polar holes with opposite
magnetic polarities. The almost radial solar wind flow escapes mostly from these holes and
drags the frozen-in magnetic field in such a way that a heliospheric current sheet forms
near the equatorial plane. However, as the holes have asymmetric shapes, the current sheet
is asymmetric as well (Fig. 1.9). When the Sun rotates, the current sheet moves up and
down, which led Alfvén to call this structure a ballerina’s skirt. The Earth is either above
or below the skirt. Depending on whether the field is pointing mostly toward or away from
the Sun, the Earth is said to be either in the toward sector or the away sector. Superposed
to this large-scale structure there are large variations in all components of the IMF.

Around the time of solar maximum the solar magnetic field structure is much less reg-
ular and the polar coronal holes are reduced in size. On the other hand, there are more
smaller-scale opening and closing structures at lower latitudes. This also makes the so-
lar wind structure more variable, which in turn drives magnetic activity in the terrestrial
environment.

While the structure and magnetic field behavior in the polar directions can be inferred
theoretically and even seen in pictures of polar plumes and in coronagraph images, it was
not until the 1990s when first direct observations of the off-ecliptic solar wind behavior
became available through the joint ESA and NASA spacecraft Ulysses, which was the
first spacecraft on a high-inclination orbit around the Sun. Jupiter’s gravitational field was
used to insert the spacecraft into a trajectory with the aphelion at 5.3 AU , the perihelion
at 1.3 AU , and the highest heliographic latitude 80◦. Ulysses reached this point for the
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Fig. 1.9 The ballerina skirt formation of the solar wind follows the shape and location of the dominating
polar coronal holes.

first time above the southern solar hemisphere in September 1994 and above the northern
hemisphere in March 1995. The next polar passages took place in 2000 and 2001. Early in
2004 Ulysses was again at its aphelion and began its third and last orbit until its radioiso-
tope generators had decayed so much that the spacecraft practically froze to death in the
summer of 2009.

Note that the large variability of the solar wind speed at 1 AU is partially due to the
variable vertical distance from the heliospheric current sheet. The slowest speeds of the
solar wind arise near the edges of the polar coronal holes and from intermittent coronal
holes at lower latitudes. This is nicely illustrated in the observations by the Ulysses space-
craft during its first passage from high southern heliographic latitudes through the ecliptic
plane to high northern latitudes (Fig. 1.10). When the spacecraft was within ±20◦ of the
ecliptic, it observed both slow and fast solar wind, but at higher latitudes it encountered
only fast, tenuous solar wind from the polar coronal holes.

1.2.4 Perturbed solar wind

While the steady fast solar wind with a sufficiently strong southward IMF component
can drive significant activity in the magnetosphere, strongly perturbed solar wind is of
particular interest to space storms. We will later discuss shocks (Chap. 11) and CMEs
(Chap. 12) in the solar wind in greater detail, but for the completeness of the discussion
on the solar wind a few words should be said here.

There are several types of shocks in the solar wind. Once a CME has left the vicinity of
the Sun, it is customary to rename it an interplanetary CME (ICME). High-speed ICMEs
drive shocks, the interaction regions between sectors of fast and slow solar wind evolve
to shock structures, planets are obstacles to the solar wind flow causing shocks, and fi-
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Fig. 1.10 Ulysses observations of solar wind speed (upper curve) and proton density (lower curve) as a
function of the heliographic latitude (From Phillips et al [1995].)

nally when the solar wind meets the interstellar plasma, it again becomes subsonic and a
termination shock structure is formed somewhere inward from the heliopause.

For space storms the most important class of solar wind shocks are those driven by the
fast ICMEs (Fig. 1.11). The ICMEs originate with different speeds, ranging from a few
tens of km s−1 up to about 2000 km s−1. The slowest ICMEs are soon accelerated close to
the speed of the ambient solar wind flow, whereas the fast ICMEs are decelerated. In order
to drive a shock ahead of it the ICME must have a supersonic, or actually super-Alfvénic,
velocity relative to the ambient plasma flow. Thus a slow ICME does not drive a shock,
except perhaps close to the Sun, whereas a fast ICME does, as is clearly the case with a
large number of ICMEs observed at 1 AU .

Close to the Sun the CME-related shocks are important in the acceleration of solar
energetic particles. When an ICME and the shock ahead of it hit the magnetosphere of the
Earth, they shake the system and, depending on the magnetic structure of the ICME–shock
system, they drive the most severe magnetic storms in the terrestrial environment.

Another important class of solar wind shocks developing during the outflow are the
corotating interaction regions (CIR). Figure 1.12 illustrates their formation. Consider a
given direction in the non-rotating frame. Assume that at first slow wind is blowing in this
direction. As the Sun rotates, a source region of fast wind turns into the same direction
and the faster and more tenuous flow catches the slower and denser flow. Because both
flows consist of ideal MHD plasma, they do not easily mix. As discussed in Chap. 11,
a steepening boundary structure begins to form. Close to the Sun the field lines are still
nearly radial and the boundary is more like a tangential discontinuity. Further out the
Parker spiral becomes wound more tightly in the slower flow ahead the structure than in
the fast flow behind. A fully developed CIR shock exhibits a forward shock ahead the
structure and a reverse shock behind it. Note that one must be careful with the frame
of reference: In the frame of the fast flow the reverse shock propagates backward, but
in the frame of, e.g., the Earth or a spacecraft making observations in the solar wind, it
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Fig. 1.11 A sketch of a shock driven by an ICME. Note that the magnetic field of the ICME can rotate in
different directions about the core, there can be a strong core field, and the whole structure can be strongly
tilted. (Adaptation from Gosling and McComas [1987] by E. Kilpua.)

Fig. 1.12 Formation of a corotating interaction region. The fast solar wind pushes toward slower wind and
compresses the flow. The compression is observable at 1 AU , but does not usually form a shock structure
until the compression has propagated beyond 2 AU .

propagates outward. The CIR-related shock formation usually takes place only beyond
the Earth’s orbit, whereas a CIR impinging upon the Earth’s magnetosphere is a smoother
structure of compressed plasma across which the speed changes from slow to fast.
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1.3 The Magnetosphere

The term magnetosphere was coined by Gold [1959] to describe the region around the
Earth where the geomagnetic field determines the motion of the charged particles. All
magnetic planets (Mercury, the Earth, Jupiter, Saturn, Uranus, Neptune) are known to have
a magnetosphere, which is essentially a magnetic cavity in the solar wind. The magnetic
force deflects the solar wind particles around this cavity before they hit the surface of the
planet. Planets with a dense enough atmosphere (Venus and Mars) and comets, when they
are active close to the Sun, form structures that are called induced magnetospheres. In that
case the deflection is due to the inability of the solar wind plasma to penetrate through the
ionized atmosphere or ionized cometary gas.

1.3.1 Formation of the Earth’s magnetosphere

When the supersonic solar wind approaches the magnetic field of the Earth, it pushes the
magnetic field on the dayside and stretches it to a long tail on the nightside. In the first
approximation the ideal solar wind and magnetospheric MHD plasmas cannot mix and a
well-defined magnetopause forms. The distance from the center of the Earth to the dayside
magnetopause can be estimated calculating the pressure balance between the magnetic
pressure inside the magnetopause and the solar wind dynamic pressure

KρmSWV 2
SW cos2 ψ =

B2
MS

2μ0
, (1.42)

where ψ is the angle between the magnetopause normal and the solar wind direction, SW
refers to the solar wind, and MS to the magnetosphere. K is a constant that would be 2 for
an elastic collision (pure reflection) and 1 for a purely inelastic collision (absorption). For
a fluid deflected around the obstacle K depends on the upstream Mach number and is in
the case of the Earth about 0.9. Typical subsolar distance of the magnetopause from the
center of the Earth is about 10 RE (the Earth radius, RE ≈ 6370 km).

Train your brain

Present a physical motivation why the thermal and magnetic pressures can be neglected
in the solar wind side and the particle pressure in the magnetospheric side of (1.42).

As the solar wind flow in the frame of reference of the Earth is supersonic and super-
Alfvénic, actually supermagnetosonic, a collisionless shock front called the bow shock is
formed upstream of the magnetosphere (Fig. 1.13). For typical solar wind parameters the
nose of the shock in the solar direction is about 3 RE upstream from the nose of the magne-
topause. The shock is a fast MHD shock (Chap. 11) and it converts a considerable amount
of solar wind kinetic energy to heat and electromagnetic energy. The region between the
bow shock and the magnetopause is called the magnetosheath.
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Fig. 1.13 A magnetosphere and its bow shock. Concepts of parallel and perpendicular shocks refer to the
angle between the shock normal and the direction of the upstream magnetic field (IMF). They will be
discussed in Chap. 11.

As the magnetopause shields the planetary magnetic field from the solar wind, the mag-
netopause is a current layer where the current is determined by Ampère’s law. Similarly
the stretching of the long magnetotail requires a strong current inside the magnetosphere.
Thus the solar wind–magnetosphere interaction must drive currents in the system. These
current systems and their stability belong to the key issues in magnetospheric physics.

The first description of the magnetic cavity shielded from the solar wind by a current
sheet was given by Chapman and Ferraro [1931] in their attempt to explain how magnetic
storms would be driven by corpuscular radiation from the Sun. They essentially solved an
image dipole problem of magnetostatics where the real dipole is inside the magnetosphere
and the image dipole is placed in the infinitely conductive medium (Fig. 1.14).

Using modern terminology a diamagnetic current (see Eq. 6.48))

JCF =
BMS

B2
MS

×∇PSW (1.43)

separates the vacuum dipole from the conductive medium. This current is known as the
Chapman–Ferraro current (Fig. 1.15). Because the IMF at 1 AU is only a few nanoteslas,
the magnetopause current must shield the magnetospheric field to almost zero just outside
the current sheet. Consequently, the field immediately inside the magnetopause increases
so that about one half of it comes from the Earth’s dipole and the other half from the
current sheet, as illustrated in Fig. 1.16.
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Fig. 1.14 Image dipole solution illustrating the formation of two magnetic neutral points, cusps (Q), dis-
cussed in the next section.

Fig. 1.15 a) Principle of the Chapman–Ferraro current formation in two dimensions. b) Three-dimensional
closure of the Chapman–Ferraro current.

The Chapman–Ferraro model describes a teardrop-shaped closed magnetosphere com-
pressed on the dayside and stretched on the nightside, but actually not very far. However,
in the 1960s spacecraft observations soon showed that the nightside magnetosphere, the
magnetotail is very long. This requires a mechanism to transfer energy from the solar wind
into the magnetosphere to keep up a current system that sustain the tail-like configuration.
The magnetospheric energy budget will be discussed in Sect. 13.6.

1.3.2 The outer magnetosphere

Figure 1.17 is a sketch of the magnetosphere and some of the large-scale magnetospheric
current systems. The overwhelming fraction of the volume consists of magnetic flux tubes
connected to the polar region ionospheres. We call these regions tail lobes. In the northern



1.3 The Magnetosphere 35

Fig. 1.16 Sketch of the dipole field modified by JCF .

lobe the magnetic field points toward the Earth, in the southern away from the Earth.
Consequently, there must be a current sheet between the lobes, where the cross-tail current
points from the dawn to the dusk. The current is embedded within the plasma sheet. The
current sheet can, in the first approximation, be described as the Harris sheet introduced
in Chap. 3. The cross-tail current closes around the tail lobes forming the nightside part
of the the magnetopause current. On the dayside magnetopause the magnetopause current
is the same as the Chapman–Ferraro current and the two current systems join each other
smoothly.

Plasma sheet

Tail lobe

Cross-tail
current

Ring current

Magnetopause
current

Fig. 1.17 The magnetosphere and the large scale magnetospheric current systems. (Figure by courtesy of
T. Mäkinen.)
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Practically the entire magnetic flux poleward of the northern and southern auroral re-
gions, the auroral ovals, extends to the tail lobes encircled by the cross-tail and magne-
topause currents. At noon, i.e., in the direction of the Sun, each oval has a peculiar point,
called the polar cusp, which is connected magnetically to the magnetopause. The forma-
tion of the cusp can be understood in terms of the image dipole description of Chapman
and Ferraro. In this idealized picture it is topologically unavoidable that two singular points
of zero magnetic field appear on the bounding surface in Figs. 1.14 and 1.15. If we follow
the magnetic field lines from these neutral points, they indeed meet the auroral oval at
noon.

In reality the geometry is not that ideal. Instead, the polar cusps are finite regions
through which solar wind plasma can flow directly to the ionosphere and ionospheric
plasma can escape to the solar wind. Figure 1.18 illustrates that both the cusp region
and the magnetospheric boundary layers immediately inside the magnetopause are filled
mostly by solar wind plasma that has entered through the cusps or across the magnetopause
as a consequence of reconnection and diffusion.

Fig. 1.18 Sketch of magnetospheric boundary layers. HLBL stands for the high-latitude boundary layer
and LLBL the low-latitude boundary layer.

The magnetotail, its stability and its connection to the auroral oval are particularly im-
portant issues in the physics of space storms. We can make a simple analysis of the size of
the auroral oval and the cross-tail current intensity. Assume that the auroral oval is a circle
around a region that we call the polar cap (PC). The magnetic flux in the polar cap is

ΦPC = π(RE sinθPC)2BPC , (1.44)
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where θPC is the co-latitude of the boundary, say, 15◦. The ionospheric magnetic field in
the polar region is about 60 μT. Thus ΦPC ≈ 5× 108 Wb. This must be the same as the
magnetic flux in the tail lobe

ΦT =
1
2

πR2
T BT , (1.45)

where the tail lobe has been assumed to be a semi-circle with the radius RT , and the average
field in the lobe BT . Equating the fluxes we get

RT

RE
=

(
2BPC

BT

)1/2

sinθPC . (1.46)

In the central tail the magnetic field is about 20 nT, yielding tail radius of 20 RE . Far in
the tail the field is only 10 nT, giving a radius of 28 RE . If the tail lobe magnetic flux in-
creases through energy transfer from the solar wind into the magnetosphere, the oval must
expand, because close to the surface of the Earth the magnetic flux density is determined
by the, in this time scale, constant geomagnetic field. Consequently, the changes in the
polar cap size are indicators of magnetospheric dynamics.

As the current sheet is embedded within a plasma sheet that is much more dense than
the tail lobes, we can go further and estimate the cross-tail current applying the simple
one-dimensional Harris model for the current sheet (Chap. 3). A rough balance between
the lobe magnetic pressure and plasma pressure in the central current sheet, where the
magnetic field changes sign, is

B2
T

2μ0
= nkB(Te +Ti) . (1.47)

Now a 20-nT lobe field corresponds to a pressure of 0.16 nPa, which is consistent with
typical observations in the tail (n = 0.1− 0.3cm−3, proton temperature about 5 keV and
electron temperature about 1 keV). Note that the plasma sheet is not homogeneous and
these are order of magnitude estimates only.

Ampère’s law across the current sheet is 2BT = μ0I, where I is the total current per
unit length (units A m−1). Thus turning a 20-nT field to the opposite direction requires a
current of 30 mA m−1 (i.e., 30 A km−1 or 2× 105 A R−1

E ). Consequently, a piece of tail
with a length of 5 RE carries a total current of 1 MA across the tail. At the magnetospheric
boundaries this current splits to two parts encircling the lobe. Because the tail is very long,
the total tail current is larger than 10 MA.

The plasma parameters in the tail vary with distance and magnetospheric activity. At
mid-tail (30−40 RE ) typical numbers are given in Table 1.2.

1.3.3 The inner magnetosphere

Figure 1.19 is one more sketch of different plasma domains in the magnetosphere. The
acronym PSBL stands for plasma sheet boundary layer. It is a transition layer between the
almost empty tail lobe and the dense plasma sheet. Mapped along the magnetic field to
the ionosphere, the PSBL forms a very thin strip at the poleward edge of the auroral oval,
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Table 1.2 Typical values of plasma parameters in the mid-tail. Plasma beta (β ) is the ratio between mag-
netic and kinetic pressures.

magneto- tail plasma sheet central
sheath lobe boundary plasma sheet

n(cm−3) 8 0.01 0.1 0.3
Ti (eV) 150 300 1000 4200
Te (eV) 25 50 150 600
B (nT) 15 20 20 10
β 2.5 3 ·10−3 0.1 6

whereas the rest of the oval maps to the plasma sheet, except at noon where the field lines
lead to the cusp.

Fig. 1.19 Sketch of magnetospheric plasma regions.

The inner magnetosphere is characterized by the corotation of the cool and dense upper
ionized atmosphere with the Earth and energetic particles trapped within the magnetic
bottle of the nearly dipolar magnetic field configuration (Chap. 3). The former is called
the plasmasphere (Fig. 1.19), whereas the energetic particles form the ring current (RC)
and the radiation belts (RB). The plasmasphere, ring current and radiation belts are not
spatially distinct regions. They partially overlap and their mutual interactions are critical
to the storm dynamics in the inner magnetosphere as discussed in detail in Chap. 14.

Approaching the inner magnetosphere from the tail the plasma sheet magnetic field
changes from the stretched Harris-type configuration to a more dipolar form. This takes
place somewhere near the geostationary distance (6.6 RE ), but the transition is strongly
dependent on the magnetospheric activity. During intense activity the cross-tail current
sheet can be strongly intensified and the stretched plasmasheet can intrude deeply inside
the geostationary distance. In the region of more dipolar configuration the tail current joins
the ring current encircling the Earth in the westward direction.

The westward current is due to the westward drift of positively and the eastward drift of
negatively charged energetic particles in the quasi-dipolar magnetic field (Chap. 3). As the
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drift currents are proportional to the energy density of the particles, the main ring current
carriers are ions in the energy range 10–200 keV. Note that at the earthward edge of the
ring current the negative pressure gradient may introduce a local eastward diamagnetic
current contribution, but the net ring current is westward. During magnetospheric activity
the ionosphere acts as a plasma source increasing the relative abundance of oxygen in the
magnetosphere and during large storms a significant fraction of the ring current can be
carried by oxygen ions.

Enhancement and decay of the ring current are the most characteristic elements in mag-
netospheric storm activity. The enhancement of the current requires efficient acceleration
and transport of ions into the right location through radial diffusion. After the activity the
current carriers slowly disappear through charge exchange with the low-energy neutral
atoms of the Earth’s exosphere, wave–particle interactions, and Coulomb collisions. These
issues will be discussed in detail in Chap. 14.

The radiation belts are partly co-located with the ring current. While not a complete
surprise, the detection of the radiation belts in 1958 was the first major discovery of the
satellite era. Explorer I carried a simple Geiger counter of James Van Allen. The instru-
ment was saturated when the satellite crossed the radiation belt. The observation was in-
terpreted to be due to high-energy particles trapped in the magnetic bottle formed by the
geomagnetic field (Chap. 3). To honor this observation the radiation belts are also known
as Van Allen belts. In the process of analyzing the data Carl McIlwain introduced the L
parameter to label the field lines crossing the equator at a given distance in the units of RE
(Chap. 3). In the inner belt (L ≈ 1.5−3) the energetic population is dominated by protons
in the energy range 0.1 MeV – 40 MeV with a substantial contribution of energetic elec-
trons, whereas in the outer belt (L > 4) the energetic component is mostly electrons in the
keV to MeV range. Note that while the energies of radiation belt ions are much higher than
those of the ring current ions, their density is much smaller and thus the radiation belts do
not contribute much to the total current around the Earth.

The electron belts, and also the slot region between them (Fig. 1.20) are highly variable.
The storms can both increase and decrease the electron fluxes in the outer radiation belts in
complicated ways that are not yet fully understood. The strongest storms may also inject
large particle fluxes into the slot region. Because the dipole field at these distances (2–
4 RE ) is a very stable magnetic magnetic bottle, it is very difficult to get particles there, but
once the slot is filled, the loss of these electrons takes a long time. We will return to this
important aspect of space storms in Chap. 14.

The plasmasphere is the innermost part of the magnetosphere. It consist of cold
(∼1 eV), dense (∼ 103 cm−3) plasma of ionospheric origin. The existence of the plas-
masphere was already known before the spaceflight era through the propagation studies
of whistler mode waves (Chap. 4). The domain has a very steep outer edge, the plasma-
pause somewhere inside the geostationary distance. The location and fine structure of the
plasmapause vary considerably as a function of magnetic activity. Figure 1.21 illustrates
that during magnetospheric quiescence the density decreases rather smoothly at distances
from 4–6 RE , whereas during strong activity the plasmapause is steep and much closer to
the Earth. This density gradient plays an important role in the generation and guidance
of plasma waves that, in turn, interact with the energetic particles in the ring current and
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Fig. 1.20 Fluxes of energetic protons and relativistic electrons in the radiation belts. The contours are
given in units of particles per square centimeter and second (cm−2 s−1). (Adapted from the textbook of
Kivelson and Russell [1995].)

radiation belts. Thus the coldest and hottest components of the inner magnetosphere are
intimately coupled to each other during the evolution of magnetospheric storms.

1.3.4 Magnetospheric convection

Magnetospheric plasma is in a continuous large-scale motion that is called convection.2

The convection is driven by solar wind energy input into the magnetosphere. The convec-
tive motion is most directly observable in the polar ionosphere using scatter radar observa-
tions (Chap. 9), or by electric field measurements onboard polar orbiting satellites utilizing
the fact that the motion-induced electric field E is related to the plasma flow velocity V by
the simple equation

E = −V×B . (1.48)

2 Actually, advection would be a better description, as the motion is not driven by a thermal force. Some-
times it is wiser to conform with widely used inaccurate terminology than to try to change it.
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Fig. 1.21 Plasma density in the night sector organized by the activity index K p. K p < 1+ corresponds to
a very quiet magnetosphere, whereas K p = 4−5 indicates a significant activity level, although not yet a
large magnetic storm. (Adapted from Chappell [1972].)

Plasma flows from the dayside to the nightside across the polar cap, where it is returned
back to the dayside through the morning and evening sectors. Convection is going on
all the time. It weakens when the IMF points toward the north and is enhanced during
southward-pointing IMF. Because ideal MHD (Chap. 6) is a very good description of
the large-scale plasma motion above the resistive ionosphere, the magnetic field lines are
electric equipotentials. Thus the convective motion, or alternatively the electric potential,
in the ionosphere can be mapped to the tail lobes and the plasma sheet along the magnetic
field lines.

If the magnetopause were fully closed, convection would circulate inside the magne-
tosphere so that the magnetic flux tubes crossing the polar cap from dayside to nightside
would at some moment be reaching to the magnetospheric outer boundary where some
kind of viscous interaction with the solar wind flow would sustain the circulation. This is
actually the picture proposed by Axford and Hines [1961] to explain the convection illus-
trated in Fig. 1.22. The classical (collisional) viscosity on the magnetopause is extremely
weak, but finite gyro radius effects and wave–particle interactions give rise to some level
of “anomalous” viscosity. It is estimated to provide about 10% of the momentum transfer
from the solar wind to the magnetosphere.

The magnetosphere is, however, not fully closed. In the same year when Axford and
Hines presented with the viscous interaction model, Dungey [1961] explained the convec-
tion in terms of reconnection (Chap. 8). His idea is illustrated in Fig. 1.23.

In this picture a magnetic field line in the solar wind is cut and reconnected with a
terrestrial field line on the dayside magnetopause. The solar wind flow drags the newly-
connected field line to the nightside and the part of the field line that is inside the magneto-
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Fig. 1.22 Convection in the equatorial plane of a closed magnetosphere. On the left the so-called Axford–
Hines model. On the right the mapping of the motion to the polar cap with open arrows indicating the
polar cap electric field E = −V×B.

sphere becomes a field line in the tail lobe. Consequently, more and more magnetic flux is
piling up in the lobe and pushing the flow toward the cross-tail current layer. Somewhere
100–200 RE down the tail the field lines piling up in the northern and southern lobes re-
connect again across the tail current layer. At this point the ionospheric end of the field
line has reached the nightside oval near midnight. Now the earthward outflow from the
reconnection site in the tail drags the newly-closed field line toward the Earth. The return
flow cannot penetrate to the corotating plasmasphere and must go around the Earth to the
dayside. The ionospheric end of the field line returns toward the dayside along either the
dawnside or the duskside auroral oval. Once approaching the dayside magnetopause the
magnetospheric plasma provides the inflow to the dayside reconnection from the inside.

If the dayside and nightside reconnection rates balance each other, a steady-state con-
vection may arise (Sect. 13.3.1). More typically the changes in the driver (solar wind) and
in the magnetospheric response are faster than the circulation time scale of a few hours.
Thus reconnection may cause significant erosion of the dayside magnetospheric magnetic
field pushing the magnetopause closer to the Earth than a simple pressure balance calcu-
lation would indicate. Furthermore, the changing magnetic flux in each tail lobe causes
expansion and contraction of the polar caps.

The reconnection is most efficient when the solar wind magnetic field (IMF) has a due
southward-pointing orientation. The increase in the tail lobe magnetic field and strength-
ening of plasma convection inside the magnetosphere during southward IMF has a strong
observational basis. If we calculate the (rectified) east-west component of the solar wind
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Fig. 1.23 Convection in the magnetosphere opened by reconnection. The lower picture illustrates the mo-
tion of the ionospheric end of the magnetic field line assuming that plasma and magnetic field are frozen-in
to each other. Note that the tail in this picture is strongly compressed in the horizontal direction. In reality
the far-tail neutral line is located somewhere at 100 RE or even further. (Adapted from the textbook of
Kivelson and Russell [1995].)

electric field (E = V Bsouth) incident on the magnetopause and the corresponding potential
drop over the magnetosphere, we find that some 10% of the electric field “penetrates” into
the magnetosphere corresponding to the convection electric field. Note, however, that in
the relationship E = −V×B there is no causal information, whether it is the electric field
that drives the magnetospheric convection, or convection that gives rise to the motion-
induced electric field. Of course, the ultimate driver is the solar wind flow against the
magnetosphere.

The increase of the magnetic flux in the lobes is a bit more sophisticated than the fre-
quently used sloppy phrase that reconnection transports solar wind magnetic flux to the
lobe. It is more appropriate to describe the process as energy transfer where solar wind
kinetic energy is converted to the magnetospheric magnetic field energy on the magne-
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topause. From Figure 1.23 it is evident that at the reconnection site magnetic energy is
transformed to kinetic energy as there J ·E > 0. On the other hand, in this steady state
picture the current loop around the tail lobes implies J ·E < 0 at the high-latitude tail
boundary. This corresponds to conversion of solar wind flow energy to magnetic energy,
i.e, a dynamo (Chap. 8). The main role of reconnection is to introduce a normal compo-
nent of the magnetic field Bn on the magnetopause. This leads to a finite magnetic stress
(∝ BnBt ) on the magnetopause surface and this stress is the key agent of energy transfer in
the MHD description (Sect. 13.6.5).

This discussion may give an impression of a smooth plasma circulation with a fairly
constant bulk velocity, which is not a very good impression at all. In reality, the convection
in the plasma sheet consists in large part of intermittent high-speed bursty bulk flows (BBF)
with almost stagnant flows in between [Angelopoulos et al, 1992]. The relatively small
average velocity corresponds to the high-latitude convection observed in the ionosphere.

1.3.5 Origins of magnetospheric plasma

Thus far we have discussed the magnetosphere from the magnetic field viewpoint without
addressing the question of the origin of the plasma convecting in concert with the magnetic
field. The origins and losses of magnetospheric plasma is a vast complex of physical phe-
nomena. A comprehensive discussion of the status of understanding of these issues in the
late 1990s can be found in the book Magnetospheric Plasma Sources and Losses edited
by Hultqvist et al [1999]. The book has also been published as vol. 88 (Nos. 1–2) of Space
Science Reviews, 1999.

Except for its innermost regions, the ionosphere and plasmasphere, the magnetosphere
is a magnetic cavity in the much denser solar wind. There are some 1029 ions s−1 incident
on the magnetopause, which provide a more than sufficient source population for magne-
tospheric plasmas. Until the 1980s it was generally assumed that the solar wind actually
was the main source. A good reason to believe so was the fact that the solar wind ion ener-
gies are in the keV range, which is not too far from the plasma sheet temperature, whereas
in the near-Earth plasma reservoir, the ionosphere, the ion energies range from below 1 eV
to a few tens of eV only.

The first indications that ionospheric plasma might escape in large amounts to the mag-
netosphere came with observations of heavy (m/q = 16) energetic (up to 17 keV) ions by
the polar orbiting satellite 1971-089A in the 1970s [Shelley et al, 1972]. These were pre-
sumed to be O+ ions, which could only come from the ionosphere, as the oxygen ions in
the solar wind have much higher charge states, typically O6+, as a consequence of their
origin in the hot solar corona. The first observations were made during magnetospheric
storms, but the subsequent satellite observations confirmed the existence of ionospheric
plasma in the magnetosphere also during magnetically quiet times. Chappell et al [1987]
finally suggested that the ionosphere is capable of supplying all magnetospheric plasma
under any magnetic conditions.

As so often, the truth lies somewhere between these two extremes. Both the solar wind
and ionospheric sources are highly variable. There is always some diffusion through the
magnetopause, but the rate at which solar wind plasma penetrates to the magnetosphere
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depends on how efficiently reconnection opens the magnetopause and, consequently, on
the direction of the IMF. The estimates of the dayside magnetopause source are in the
range 1026–1027 ions s−1, perhaps reaching 1028 ions s−1 during strong solar wind driving.
The ionospheric supply is somewhat smaller, peaking during strong geomagnetic activity,
when roughly the same amount of O+ ions and protons, 1026 each, escape per second.
Most of the ion upflow takes place from the auroral region including the polar cusp.

Note that the strong solar wind inflow when the magnetopause is most open does not
necessarily imply the most efficient net gain of plasma because the open magnetosphere is
at the same time most leaky. As discussed in Sect. 13.5.2 there are strong indications that
more plasma can accumulate in the plasma sheet during periods of northward than south-
ward IMF. The estimates of plasma outflow in the far tail indicate that some 1028 ions s−1

escape downstream. As neither the dayside magnetopause nor the ionosphere seem to be
able to provide that much plasma, most of the total solar wind plasma entrance likely takes
place along the tail magnetopause. Part of this plasma flows directly downwind but some
fraction of it is first convected to the plasma sheet earthward of the distant neutral line and
thereafter circulated toward the Earth.

1.3.6 Convection and electric fields

In ideal MHD the macroscopic plasma motion V and the electric field are coupled to each
other through E = −V×B. This electric field is always perpendicular to the magnetic
field. If the magnetic field is time-independent, the electric field is also curl-free and can
be expressed as the gradient of scalar potential

E = −∇ϕ . (1.49)

Of course, these assumptions are not always fulfilled in the magnetosphere and the induc-
tive fields given by Faraday’s law

∂ B

∂ t
= −∇×E (1.50)

must be taken into account during rapid changes of the magnetic field, which often occur
during space storms. Let us leave such intricacies, as well as the disturbing properties of
BBFs, aside for the time being and consider convection of plasma consisting of low-energy
particles in the equatorial plane within the plasma sheet and plasmasphere.

For simplicity we assume that the magnetospheric magnetic field points upward (north)
everywhere in the equatorial plane. Thus the return convection in the plasmasheet is equiv-
alent to a dawn-to-dusk directed electric field E0ey that we assume to be constant (we select
the coordinates such that the x-axis is toward the Sun, the y-axis toward the dusk, and thus
the magnetic field is in the direction of the z-axis). Let r be the distance to the center of the
Earth and φ the angle from the direction of the Sun. Then the electric field is given by

Econv = −∇(−E0r sinφ) (1.51)

and its potential is
ϕconv = −E0r sinφ . (1.52)
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The Earth with its atmosphere rotates in this frame of reference. The corotation extends
in the equatorial plane roughly up to the plasmapause. The angular velocity to the east is
evidently ΩE = 2π/24 h. In the fixed frame plasma thus moves with the velocity

Vrot = ΩE r eφ , (1.53)

where eφ is the unit vector pointing toward the east. Vrot = Erot ×B/B2 is the convection
velocity associated with the corotation electric field Erot , the potential of which is

ϕrot =
−ΩEk0

r
=

−ΩE B0R3
E

r
. (1.54)

Here k0 = 8×1015 Tm3 is the Earth’s dipole moment and B0 the dipole field on the surface
of the Earth at the equatorial plane ≈ 30μT. The convection and corotation electric fields
are illustrated in Fig. 1.24. The equipotential curves of the always earthward pointing
corotation field are circles.

Fig. 1.24 Equipotential lines of convection and corotation electric fields in the equatorial plane. The num-
bers at the faces of the panels give the local times.

As discussed in Chap. 3 the magnetic field gradients and curvature also affect the par-
ticle motion. Considering particles that move in the equatorial plane of the dipole (i.e.,
particles whose pitch angle α = 90◦) only the gradient drift needs to be taken into account
and the total drift velocity is

vD =
1

B2

[
Econv +Erot −∇

(
μB
q

)]
×B =

1
B2 B×∇ϕeff , (1.55)

where μ is the magnetic moment of the particles and the effective potential is

ϕeff = −E0r sinφ − ΩE B0R3
E

r
+

μB0R3
E

qr3 . (1.56)



1.3 The Magnetosphere 47

The particles move along streamlines ϕeff = constant. These streamlines depend on both
the charge and energy of the particles through their magnetic moments. For cold particles
(μ = 0) the streamlines are equipotential lines of the combined convection and corotation
fields (Fig. 1.25). In this case the motion is a pure E×B-drift and all particles move with
the same velocity.

Fig. 1.25 Orbits of low-energy particles (i.e, magnetic moment μ ≈ 0) in the equatorial plane assuming
E0 = 0.3 mV m−1. The distance between consecutive points is 10 min. (Adapted from Kavanagh et al
[1968].)

Figure 1.25 illustrates the formation of a separatrix that separates the cold corotating
plasmaspheric plasma from the cold plasma outside. In this model the separatrix is thus
the plasmapause. The separatrix has an electric neutral point at the distance

r =

√
ΩE B0R3

E
E0

(1.57)

in the direction of 18 h local time. The plasmasphere thus has a bulge in the evening sector.
There is a corresponding bulge in the real plasmapause, but its orientation and size depend
on the strength of the convection electric field. We will revisit the bulge when discussing
Fig. 14.4.

While this model for the plasmasphere is a strong simplification, it nevertheless ex-
plains why the plasmasphere is compressed during strong magnetic activity: the enhanced
energy input enhances the convection velocity and thus the dawn-to-dusk electric field. The
rotation of the Earth is constant and the corotation electric field is always the same. Conse-
quently the separatrix is pushed toward the Earth when the convection enhances. Note that
the real plasmapause reacts to the changing electric field with some delay, which leads to
observations of detached clouds of plasmaspheric plasma outside the plasmapause.

When the magnetic moments of the particles are increased, the magnetic gradients start
to separate the motion of positive and negative charges. To illustrate this effect consider
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particles whose magnetic moment is so strong that it supersedes corotation. Now the ef-
fective potential (still in the equatorial plane only) is

ϕeff = −E0r sinφ +
μB0R3

E
qr3 . (1.58)

This implies that far from the Earth the particles follow the convection electric field, but
closer in they drift according to the magnetic field gradient. This way the dipole field
shields the near-Earth space from the hot plasma sheet plasma and the cold plasmasphere
and hot plasmasheet are two separate plasma domains.

Fig. 1.26 The formation of Alfvén layers.

The positive and negative charges drift according to Fig. 1.26 and their separatrices,
called the Alfvén layers, are different. Because the plasma sheet is a finite particle source, a
larger fraction of positive charges pass the Earth in the evening sector and a larger fraction
of negative charges in the morning sector. This leads to piling of positive space charge in
the evening sector and negative charge in the morning sector. These charge accumulations
are discharged by magnetic field-aligned currents to the ionosphere from the evening sector
and from the ionosphere to the magnetosphere in the morning sector.

This picture also gives a qualitative explanation how very high-energy particles can get
access and become trapped in the magnetic bottle of the Earth’s dipole field during strong
magnetic activity. As the convective electric field grows rapidly, the particles E×B-drift
deeper into the ring current and radiation belts than in quiet times. Once the activity ceases,
the trapping boundary (i.e. the Alfvén layer) moves outward and thus particles that were
originally on open drift paths past the Earth find themselves trapped into the expanding
magnetic bottle.

1.4 The Upper Atmosphere and the Ionosphere

An ionosphere is formed around all planets having a neutral atmosphere. It is mainly pro-
duced by photoionization due to solar EUV radiation. Additional collisional ionization is
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provided by particle precipitation from the magnetosphere. At high enough energies elec-
trons produce X-rays through bremsstrahlung, when they are stopped in the atmosphere.
This leads to weak ionization at also lower altitudes. Another observable but dynamically
rather unimportant source of ionization associated with space storms is the so-called so-
lar flare effect caused by X-ray and EUV radiation from a large enough flare. It has a
crochet-like appearance in the ground-based magnetograms, its shape following the flare
evolution. The phenomenon has historical interest because it can be seen as a 110-nT per-
turbation in the Greenwich magnetogram during the Carrington flare in 1859 (e.g., Cliver
and Svalgaard [2004]).

Due to its origin in solar EUV radiation and magnetospheric particle precipitation the
ionospheric ion density depends strongly on the time of the day, the season, and solar
and magnetospheric activity. Although some low-latitude processes, e.g., the equatorial
spread-F caused by the Rayleigh–Taylor instability (Chap. 7), have some correlation with
space storms, for our theme the high-latitude ionosphere and its coupling to the magneto-
sphere are of the greatest interest. Therefore we limit the discussion here to some of the
key elements in high-latitude ionospheric electrodynamics. A thorough treatise on iono-
spheric physics is the textbook by Kelley [1989]. The textbook by Kivelson and Russell
[1995] provides a reader-friendly introduction to the formation of the ionosphere.

1.4.1 The thermosphere and the exosphere

The Earth’s atmosphere behaves as a collision-dominated gas up to altitudes of about 400–
500 km. The ionosphere is formed in the thermosphere at altitudes above 80–85 km, where
the neutral gas is in hydrostatic equilibrium

nnmng = − d
dh

(nnkBTn) . (1.59)

Here mn is the mass of the neutral gas molecules or atoms and h is the altitude. If the
temperature Tn of the gas is assumed to be altitude-independent, the density profile of the
atmosphere is

nn = n0 exp
(−(h−h0)

Hn

)
, (1.60)

where
Hn =

kBTn

mng
(1.61)

is the density scale height. The scale height is different for different molecules and atoms,
which thus have different density profiles. While the collisions bring all constituents into
the same temperature, they do not homogenize the composition of the gas. In reality also
the temperature is altitude-dependent and thus our simple discussion is not fully accurate.
Furthermore, strong solar and magnetospheric activity lead to heating of the thermosphere
and thus to enhanced scale height.
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Train your brain

Instead of density scale height, pressure scale height is often used. Find an expression
for it in terms of the gas constant = P /nT .

The nearly collisionless gas above the thermosphere is called the exosphere. The bot-
tom of the exosphere, the exobase, can be defined either as the altitude where the collisions
become negligible, or above which the constituents of the gas are on purely ballistic trajec-
tories. At the exobase the particle mean free path and the pressure scale height are equal.

The exosphere has a particular role in the physics of space storms. It extends as the
geocorona far into the near-Earth space and is a key element in the loss of ring current
carriers (Chap. 14).

1.4.2 Structure of the ionosphere

The existence of the ionosphere was revealed early in the 20th century by the first long-
distance radio communication experiments, including Marconi’s famous transmission of
electromagnetic signals across the Atlantic. During the years 1924–1926 Appleton and
Barnett and, independently, Breit and Tuve demonstrated mathematically and experimen-
tally that there is an ionized electrically conductive layer in the upper atmosphere from
which radio waves are reflected. This layer became to be called the E layer (or E region;
E for electric). Today we know that the E layer is within the altitude range 90–120 km
and it is ionized mostly by precipitating electrons. The global ionization maximum due
to the solar EUV radiation is higher up at about 250 km. The altitude range above the E
layer, reaching to about 800 km is called the F layer (or sometimes the Appleton layer).
Later also an ion density enhancement below the E layer was identified and became to be
called (logically?) the D layer. Figure 1.27 illustrates the altitude profiles of electron and
major ion and neutral atom densities in the ionosphere. Note that the ionization degree of
the ionosphere is very low at low altitudes, but nevertheless the gas behaves like a col-
lisional plasma, where the dominant collisions are with the thermospheric neutral atoms
and molecules.

As already discussed, the ionosphere is a significant source of magnetospheric plasma.
From the polar cap enclosed by the auroral oval a tenuous polar wind flows continuously
upward. Its escape resembles the outflow of solar wind from the Sun, as the outflow starts
as subsonic and is transformed to supersonic at higher altitudes. The strongest outflow,
however, takes place on magnetic field lines attached to the auroral oval. Plasma processes
associated with the electrodynamic coupling between the ionosphere and magnetosphere
heat ionospheric plasma, which starts to lift up, partly due to thermal energy, partly due
to the mirror force (Chap. 3). The acceleration and heating from the cold ionosphere up
to keV energies in the magnetosphere most likely takes place in several steps and involves
both quasi-static acceleration and wave–particle interaction mechanisms. When leaving
the ionosphere the typical ion energies are of the order of 1 eV, but already above 10 000 km
they may exceed 10 keV. Although there is also downward plasma motion, the ionosphere
and thus the atmosphere experience a net loss of matter. The estimates are uncertain, but
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Fig. 1.27 Dayside ionospheric electron (thick line), ion (thin lines) and neutral atom (dashed lines) density
profiles according to the definition of “International quiet solar year”. (From Johnson [1969].)

total upward flux is of the order of 2 kg s−1 or more (see, e.g., Chap. 2 of Hultqvist et al
[1999]).

1.4.3 Electric currents in the polar ionosphere

For the physics of space storms the most important property of the ionosphere is its finite
electric conductivity. Due to the anisotropy caused by the strong background magnetic
field and the vastly different relative gyro and collision frequencies between the ions and
electrons the conductivity is a tensor. The ionospheric Ohm’s law can be written in the
form

J =

⎛⎝ σP σH 0
−σH σP 0

0 0 σ‖

⎞⎠ ·E . (1.62)

Here the elements of the conductivity tensor, assuming for simplicity only one ion popu-
lation, are given by
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]
nee2 .

ναn are the electron and ion collision frequencies with neutrals and ωcα are the angular
frequencies of electron and ion gyro motions.
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The Pedersen conductivity σP is the conductivity in the direction of the ambient electric
field E⊥, which in turn is practically perpendicular to the magnetic field in the ionosphere.
The Hall conductivity σH is the conductivity perpendicular to both the ambient magnetic
and electric fields. The magnetic field-aligned conductivity σ‖ is the same as the classical
collisional conductivity in the absence of magnetic field. In the ionosphere it is several
orders of magnitude larger than the perpendicular conductivities. Consequently, the quasi-
static ionospheric electric field is practically perpendicular to the magnetic field.

The Pedersen conductivity peaks in a narrow layer above the altitude of 150 km,
whereas the peak of the Hall conductivity is at about 120 km. Due to diurnally and sea-
sonally variable solar illumination conditions at these altitudes the peak conductivities can
vary more than two orders of magnitude. In the low-latitude ionosphere the day–night
asymmetry is most pronounced, whereas the polar ionospheres have very strong seasonal
variability. From the magnetospheric viewpoint the ionospheric current layers are thin and
often treated as two-dimensional current layers in studies of magnetosphere–ionosphere
coupling. From the viewpoint of ionospheric processes the structure is, however, three-
dimensional.

Feed your brain

With the help of literature find out how the elements of the conductivity tensor (1.63)
are derived.

We have already encountered the plasma convection across the polar cap. Above the
dense ionosphere plasma is collision-free and both positive and negative charges E×B-
drift with the same velocity causing no net electric current perpendicular to the magnetic
field. In the E layer the ions are so strongly collisional that they cannot make full gyro
orbits between collisions with neutrals. Thus they drift predominantly in the direction of
the electric field and carry most of the Pedersen current (σPE). Electrons, on the other
hand, are still strongly magnetized and follow the E×B-drift, i.e., the convection, and carry
most of the Hall current (σHE), which thus is directed opposite to electron drift motion.
In the polar cap the current is distributed over a wide area, but in the evening and morning
sectors the current is squeezed into narrow channels, in which the current density is much
higher. These currents are called electrojets. In the evening sector the electrojet current is
eastward and in the morning sector westward. The currents can be monitored with ground-
based magnetometers. The eastward current gives a positive contribution to the northward
component of the magnetic field measured below the electrojet and the westward current
a negative contribution.

The high parallel conductivity allows for large electric current along the magnetic field
even for a very small parallel electric field. In fact, the ionospheric electrodynamics is
intimately coupled to the magnetospheric current systems through magnetic field-aligned
currents (FAC). We postpone the details to Sect. 6.5, as this discussion relies heavily on
concepts to be covered later in this book. Here we just illustrate the current systems with
the aid of two figures.

Figure 1.28 is a classic statistical presentation of upward and downward flowing FACs
during weak auroral activity. If we follow the magnetic field from the equatorward slices
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Fig. 1.28 Statistical pattern of FACs above the northern auroral oval during weak auroral activity orig-
inally presented by Iijima and Potemra [1976]. The grey domains illustrate the current away from the
ionosphere and the black areas the downward return current back to the ionosphere.

of the current pattern we end up at the ring current region in the magnetosphere. In the
evening sector this FAC flows from the magnetosphere to the ionosphere and in the morn-
ing sector from the ionosphere to the magnetosphere. This is the same sense of the currents
that is needed to discharge the excessive space charge of the Alfvén layers (Fig. 1.26). This
FAC system is called the Region 2 current system. Region 1 currents flow in turn in the
poleward slices in Fig. 1.28. They are directed opposite to Region 2 currents. The cur-
rent thus comes into the ionosphere in the morning sector and leaves it in the evening
sector. Region 1 is located close to the boundary between open and closed field lines. Con-
sequently a magnetic field-aligned mapping from this strip in the ionosphere leads to the
magnetospheric boundary layers. As the circuit closes through the resistive ionosphere, the
maintenance of the current requires an existence of a dynamo somewhere in the magneto-
spheric boundary. Figure 1.29 is a summary of the most important field-aligned currents
and their closures in the ionosphere and magnetosphere.
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Fig. 1.29 Sketch of the major FACs. The morning sector Region 1 current originates near the outer bound-
ary of the magnetosphere, likely in the LLBL, and flows to the poleward side of the auroral oval. There it
closes as Pedersen current partly through the polar cap and partly across the auroral oval. Current cross-
ing the polar cap rises in the evening sector again as Region 1 current and flows to the magnetospheric
boundary. Current crossing the morning sector oval as a Pedersen current continues as Region 2 current
to the inner magnetosphere, where it connects again to the perpendicular current flowing westward to the
evening sector and joins there to the evening sector Region 2 current. This current loop in the tail is called
partial ring current (JPR). The evening sector Region 2 FAC reaches the equatorward side of the oval and
closes through the oval to the evening side Region 1 as a Pedersen current. As discussed in Sect. 6.5, if the
height-integrated conductivities were constant, all FAC would connect to Pedersen currents. In reality the
Hall conductivity has gradients implying that also a part of the ionospheric Hall currents are involved in
the closure of FACs.

The overlapping current system in the time sector 22–24 of Fig. 1.28 is one of the key
regions in magnetosphere–ionosphere coupling. It is known as the Harang discontinuity
and it plays a special role in the dynamics of magnetospheric substorms to which we will
return in Chap. 13. Also in the noon sector there is a special current system poleward
of Region 1. This current system is observed during northward IMF and thought to be
connected to the high-latitude magnetopause tailward of the cusp region.

1.5 Space Storms Seen from the Ground

Effects of space storms reach all the way down to the surface of the Earth where the
storm development can be followed using various ground-based instruments, in particular,
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magnetometers. The Earth is not only an auditorium where we can watch the storms, but
the conductive ground is a part of the global space storm system.

1.5.1 Measuring the strength of space storms

Scientists use several different methods to characterize the strength of space storms. It is
understandable that those who are mostly interested in the storms on the Sun use different
metrics than those studying magnetic storms in the near-Earth space.

The most traditional method of describing solar activity is the sunspot number (e.g.,
Fig. 1.6). It does not actually tell us anything of individual storms, but it describes very
well the progress of the most important space climate cycle. Another widely used indicator
of solar activity is the 10.7-cm radio flux (F10.7). Radio emissions are created high in
the solar atmosphere by electrons gyrating in the solar magnetic field (Chap. 12) and are
strongly enhanced during strong magnetic activity. F10.7 follows the sunspot activity and
it has also been found to be a very good proxy for energy input to the upper atmosphere of
the Earth although the variations in the energy input itself mostly depends on the variations
in the EUV irradiance.

The solar flares to be discussed in Chap. 12 give rise to strongly enhanced X-ray emis-
sions. The emissions are today monitored regularly by geostationary satellites and their
intensity is readily available through the internet. The intensity is indexed into different
classes (A,B,C,M,X) according to the X-ray flux as given in Table 1.3. Within each class
the intensity is given in decimals, e.g., M7.5 indicates the flux 7.5× 10−5 W m−2. The
largest measured X-ray flare (till the end of cycle 23) took place on November 4, 2003. It
was classified as X27. This was close to the upper sensitivity limit of the GOES satellites
measuring the intensity and thus not necessarily fully accurate.

Table 1.3 Solar X-ray emission classes.

A 10−8 −10−7 W m−2

B 10−7 −10−6 W m−2

C 10−6 −10−5 W m−2

M 10−5 −10−4 W m−2

X ≥ 10−4 W m−2

In order to characterize the storms in the magnetosphere several activity indices have
been developed to measure the strength of the magnetic perturbations [Mayaud, 1980]. The
large number of useful indices illustrates the large variety of storm features; sometimes the
effects are stronger at high latitudes, sometimes at low; sometimes the background current
systems are already strong before the main perturbation; different current systems may
decay at different rates, etc. Furthermore, different time scales from minutes to annual
activity levels require different indexing methods. Instead of penetrating to the details of
the great variety of indices, we discuss briefly the most widely used indices for global
storm levels, Dst and K p, and for the activity at auroral latitudes, AE, which we will be
using in later chapters.
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The Dst index is a weighted average of the deviation from the quiet level of the hor-
izontal (H) magnetic field component measured at four low-latitude stations around the
globe. The westward ring current flowing around the Earth at the distance of about 3–4 RE
is the main source of the Dst index. During a magnetospheric storm the ring current is en-
hanced, which causes a negative deviation in H. Consequently, the more negative the peak
Dst index is, the stronger the storm is said to be. The threshold between weak and moder-
ate storms is typically set to −40 or −50 nT, moderate storms range from −50 to −100 nT.
Storms stronger than −100 nT can be called intense and those stronger than −200 nT big.
The Dst index is calculated once an hour. A similar 1-minute index derived from a partly
different set of six low-latitude stations (SYM–H) is also in use.

A magnetometer reacts to all current systems, including the magnetopause current,
cross-tail current and induced currents in the ground due to rapid changes in the iono-
spheric currents. Furthermore, high solar wind pressure pushes the magnetopause closer
to the Earth forcing the magnetopause current to increase because it must shield more of
the geomagnetic field from the solar wind. The effect is strongest on the dayside where
the geomagnetic field just inside the magnetopause is strongest. Here the magnetopause
current flows in the direction opposite to the ring current. Thus a pressure pulse causes a
positive deviation in the H-component measured on ground. In fact, this is an excellent
signature of an interplanetary shock hitting the magnetopause. If the solar wind parame-
ters are known, the pressure effect can be cleaned away from the Dst index. The so-called
pressure-corrected Dst index can be defined as

Dst∗ = Dst −b
√

Pdyn + c , (1.64)

where Pdyn is the solar wind dynamic pressure and b and c are empirical parameters. Ow-
ing to different statistical methods and different data sources, somewhat different values
of these parameters have been determined. For example, O’Brien and McPherron [2000]
obtained b = 7.26 nT nPa−1/2 and c = 11 nT.

The contribution from the dawn-to-dusk directed tail current is more difficult to com-
pensate. During strong activity this current intensifies and moves closer to the Earth, en-
hancing thus the Dst index. How to handle this effect is still a controversial issue. The
estimates of the effect vary in the range 25–50% [Turner et al, 2000; Alexeev et al, 1996].
During the fastest evolution of the storm main phase (Chap. 13) the temporal changes in
the ionospheric currents lead to induction currents in the ground, which may contribute up
to 25% to the Dst index [Langel and Estes, 1985; Häkkinen et al, 2002].

Another widely used index is the planetary K index, K p. Each magnetic observatory
has its own K index and K p is an average of K indices from 13 mid-latitude stations. It is
a quasi-logarithmic range index expressed in a scale of one-thirds: 0, 0+, 1−, 1, . . . , 8+,
9−, 9. As K p is based on mid-latitude observations, it is more sensitive to high-latitude
auroral current systems and substorm activity than the Dst index. As K p is a 3-hour index,
it does not reflect short-term changes in auroral activity.

The fastest variations in the current systems take place at auroral latitudes. To inves-
tigate the strength of the auroral currents the use of auroral electrojet indices (AE) is a
common method. The standard AE index is calculated from 11 or 12 magnetometer sta-
tions located under the average auroral oval on the northern hemisphere. It is derived from
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the magnetic north component of each station by taking the envelope of the largest nega-
tive deviation from the quiet time background, called the AL index, and the largest positive
deviation, called the AU index. The AE index itself is calculated as AE = AU −AL (all
in nT). Thus AL is the measure of the strongest westward current in the auroral oval, AU
is the measure of the strongest eastward current, and AE characterizes the total electrojet
activity. These indices are typically given with 1-minute time resolution, but for long-term
statistical studies longer cadences are also used.

As the auroral electrojets flow at much much lower altitudes than other magnetospheric
currents, the magnetic deviations due to auroral currents are larger than those used to cal-
culate Dst. For example, during typical substorm activations AE is about 200–400 nT and
during strong storms the deviations can exceed 2000 nT, whereas the equatorial perturba-
tions exceed −200 nT only during the largest storms.

There are some issues with the AE indices that their user must be aware of. During the
strongest activity the peak ionospheric currents move well equatorward of the AE stations
and thus the indices do not capture the real strength of the auroral currents. The same
applies to times of quiescence during prolonged northward IMF, when the oval contracts
to very high latitudes. Another problem is sparse, and during some periods of time, lacking
coverage in the Siberian sector. For case studies magnetometer data can be collected from
some 70 or 80 high- and mid-latitude stations giving a much better coverage during strong
magnetospheric activity. Furthermore, if the study is limited to a given local time sector,
long meridional magnetometer chains can be utilized, e.g., the IMAGE magnetometers of
the MIRACLE network in Fennoscandia (cf., Kauristie et al [1996]).

We will discuss the ground-based observations of magnetospheric storms, including the
auroras, and the evolution of different current systems in much greater detail in Chap. 13.

1.5.2 Geomagnetically induced currents

The rapidly varying ionospheric currents cause rapid time variations in the magnetic field
on the surface of the Earth. These give rise to the induced geoelectric field according to
Faraday’s law ∂ B/∂ t =−∇×E . This electric field drives electric currents in any conduc-
tive system upon which it is applied. When these currents flow in man-made conductive
networks they are called geomagnetically induced currents (GIC). As the electric field
penetrates into the soil and water, the induction effects are also felt in gas pipelines buried
under ground and in undersea telecommunication cables.

While the basic idea of current induction is elementary, its consequences are compli-
cated. The actual induced current depends on the conductivity structure of the medium
where the induced electric field is driving the current. Tanskanen et al [2001] concluded
from a study of 77 substorms that at the time of the substorm onset, i.e., when the mag-
netic field variation is most rapid, about 40% of the AL index comes from the currents
underneath and thus the index does not describe the real ionospheric currents correctly at
substorm onset. Furthermore, at the stations surrounded by the Arctic Ocean the deviations
are 10–20% larger than deviations at inland stations. In order to remove the induction ef-
fect from the AL index at other times than the onset the average correction needed for the
inland stations is 15–20% and for the stations close to the ocean 25–30%.
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There is considerable practical interest in the GIC effects, as the currents sometimes
reach harmful levels. In fact, the first reported space-weather-related problems on tech-
nological systems are from events around the year 1850 when electric telegraph com-
munications were disturbed and in some cases completely stopped during strong auroral
activations. As expected, the great magnetic storm following Carrington’s flare in 1859
also caused troubles to telegraph connections [Prescott, 1860]. For a long time telegraph
and, later, telephone communication lines were the most space-weather-sensitive systems.
The first reported effect on a power transmission network took place on March 24, 1940,
when a great geomagnetic storm caused voltage dips, large swings in reactive power, and
tripping of transformer banks in the United States and Canada [Davidson, 1940]. The ef-
fects of the storm were also felt on telephone lines. For example, 80% of long-distance
telephone connections from Minneapolis, Minnesota, were out of operation. As our focus
is in the physics of space storms themselves and not in their effects, we refer the interested
reader to the more thorough discussion of space weather effects in Bothmer and Daglis
[2007]. However, we will discuss some of the physics aspects of geomagnetic current in-
duction in Sect. 15.2.



2. Physical Foundations

Physics of space storms is founded on physics of hot tenuous space plasmas. While the
reader is assumed to be familiar with the basic concepts of plasma physics and master the
classical electrodynamics, the motivation for this chapter is to review some of the main
concepts, to introduce definitions and the notation to be used elsewhere in the book, and
to highlight some aspects that are specific to space plasma physics.

2.1 What is Plasma?

There is no rigorous way to define the plasma state. A good practical description for our
purposes is:

Plasma is quasi-neutral gas with so many free charges that collective electromagnetic
phenomena are important to its physical behavior.

In this treatise we discuss quasi-neutral plasmas only. This means that in a given plasma
element there is an equal amount of positive and negative charges. There is no clear thresh-
old for the required degree of ionization. Roughly 0.1% ionization already makes the gas
look like plasma, and 1% is sufficient for almost perfect conductivity.

Plasma is sometimes called the fourth state of matter because it arises as the next nat-
ural step in the sequence from solid to liquid to gas, when the temperature is increased.
There are two natural ways to produce plasma in space. The most common is to heat the
gas to a high enough temperature. Usually 105–106 K (10–100 eV) is sufficient (1 eV ↔
11 600 K). Also ionizing radiation is important because it creates and sustains the pho-
tospheric and ionospheric plasmas at lower temperatures where the electrons and ions
recombine if the radiation stops. The transition from gas to plasma is gradual and thus
different from, e.g., the phase transition from liquid to gas. The collective electromagnetic
behavior gives plasma liquid-like properties. We speak of fluid description of plasmas
when dealing with macroscopic plasma properties.

H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth,
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Three key concepts Debye shielding, plasma oscillations, and gyro motion of charged
particles in the magnetic field, lie at the heart of plasma physics. Let us review them briefly.

2.1.1 Debye shielding

The electrostatic Coulomb potential of charge q is ϕ = q/(4πε0r). In a fully ionized
plasma individual particles either attract or repel each other by the force due to the gradient
of this potential.

Quasi-neutrality implies that in equilibrium there is no net charge in a “large enough”
volume. If we introduce an extra test charge qT into the equilibrium plasma, the charges
must be redistributed to maintain the quasi-neutrality within certain volume around qT .
Let us denote the different plasma populations (e.g., ions and electrons) by α and assume
that each population is in a Boltzmann equilibrium

nα(r) = n0α exp
(
− qα ϕ

kBTα

)
, (2.1)

where kB is the Boltzmann constant (kB = 1.38×10−23 JK−1) and Tα is the temperature
of population α . The potential of qT becomes the shielded potential

ϕ =
qT

4πε0r
exp

(
− r

λD

)
, (2.2)

where

λ−2
D =

1
ε0

∑
α

n0αq2
α

kBTα
(2.3)

defines the Debye length λD. The rearrangement of the charges is called Debye shielding
and it is the most fundamental manifestation of the collective behavior of the plasma.
Intuitively λD is the limit beyond which the thermal speed of the plasma particles is high
enough to escape from the Coulomb potential of qT . Often the electron and ion Debye
lengths are given separately. Numerically the electron Debye length is

λD(m) ≈ 7.4

√
T (eV)

n(cm−3)
. (2.4)

Using the Debye length we can redefine the plasma state in a slightly more quantitative
way. That the collective properties really dominate the plasma behavior there must be a
large number of particles in the Debye sphere of radius λD, i.e., (4π/3)n0λ 3

D � 1. The
factor 4π/3 is often neglected and we call Λ = n0λ 3

D the plasma parameter. Because
plasma must also be quasi-neutral, its size L = V 1/3 must be larger than λD. Thus for a
plasma

1
3
√

n0
� λD � L . (2.5)
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Note that many sources [e.g., Boyd and Sanderson, 2003] call g = 1/n0λ 3
D plasma param-

eter.

Train your brain

Derive (2.2) for the shielded potential of a test charge qT in a plasma with Boltzmann’s
density distribution.

Hints:
(i) Use e−x � 1− x when substituting the densities into Coloumb’s law and make use of
quasi-neutrality.
(ii) Make also use of spherical symmetry to write

∇2ϕ =
1
r2

d
dr

(
r2 dϕ

dr

)
.

(iii) After solving the differential equation require that the solution approaches the
Coulomb potential of qT when r → 0 and remains finite at all distances.

2.1.2 Plasma oscillations

If plasma equilibrium is disturbed by a small perturbation, plasma starts to oscillate. Much
of space plasma physics concerns the great variety of plasma responses to perturbations.
The most fundamental example is the plasma oscillation.

Considering freely moving cold (Te = 0) electrons and fixed background ions it is an
easy exercise to show that a small perturbation in the electron density causes the plasma
oscillation at the plasma frequency

ω2
pe =

n0e2

ε0me
. (2.6)

Note that both the angular frequency ωpe and the corresponding oscillation frequency
fpe = ωpe/2π are usually called plasma frequency. So, be careful!

Plasma frequency is inversely proportional to the square root of the mass of the moving
particles, here electrons. Thus the ion plasma frequency is a much smaller quantity than
the electron plasma frequency. When we speak of plasma frequency, we usually mean the
electron plasma frequency. A useful rule of thumb is

fpe(Hz) ≈ 9.0
√

n(m−3) .

The plasma oscillation determines a natural length scale in the plasma known as the
electron inertial length c/ωpe, where c is the speed of light. Physically it gives the atten-
uation length scale of an electromagnetic wave with the frequency ωpe when it penetrates
to plasma (wave propagation in plasmas will be discussed in detail in Chaps. 4 and 5). It
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is analogous to the skin depth in classical electromagnetism defined in (4.26) and is thus
often called electron skin depth.

Similarly, the ion plasma frequency is defined by

ω2
pi =

n0e2

ε0mi
. (2.7)

The corresponding ion inertial length is c/ωpi. It is associated with damping of fluctua-
tions near the ion plasma frequency.

2.1.3 Gyro motion

Space plasmas are practically always embedded in a magnetic field. The magnetic field
may be due to external or internal current systems. The known magnetic flux densities in
space vary by more than 20 orders of magnitude. The interstellar magnetic field is typically
less than 1 nT, the magnetic field of the solar wind at the distance of the Earth (1 AU) is a
few nT, the field on the surface of the Earth varies 3–6×10−5 T (0.3–0.6 gauss) and in large
fusion devices the fields are several teslas. The largest known fields, exceeding 108 T, are
found at the rapidly rotating neutron stars (pulsars). Observations of slowly decelerating
pulsars emitting X- and soft gamma rays indicate even stronger magnetic fields, exceeding
1011 T.

A charged particle in a magnetic field performs a circular motion perpendicular to the
field. The angular frequency of this gyro motion for particle species α is

ωcα =
|qα |B
mα

. (2.8)

This is called the gyro frequency (or cyclotron frequency, Larmor frequency). The corre-
sponding oscillation frequencies fcα = ωcα/(2π) of electrons and protons are given by

fce(Hz) ≈ 28B(nT)
fcp(Hz) ≈ 1.5×10−2 B(nT) .

Again the same term is used for both ωc and fc.
As discussed later in this chapter the gyro motion determines another important length

scale, the electron or ion gyro radius, also known as cyclotron, or Larmor radius

rLα =
v⊥α
|qα | , (2.9)

where v⊥α is the speed of the particle perpendicular to the magnetic field.
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2.1.4 Collisions

Most of the volume where space storms take place is filled by fully ionized plasmas that
behave in a “collisionless” manner. However, there are two important exceptions: in the
solar photosphere and in the ionosphere collisions between charged particles and neu-
trals have a strong influence on the plasma properties, determining, e.g., the ionospheric
Ohm’s law. Furthermore, the charge exchange collisions between charged particles and the
Earth’s ring current are important to the dynamics of storms in the inner magnetosphere
(Chap. 14).

For the collisionless behavior of fully ionized plasmas the Coulomb interaction (Coulomb
collisions) between charged particles is essential. In a plasma the finite Debye length lim-
its the Coulomb interaction within the Debye sphere, but yet each particle sees Λ other
charges. If we can calculate the collisional cross-section σ , we can determine the mean
free path

lm f p = 1/(nσ) (2.10)

of the particles and their collision frequency

νc = nσ〈v〉 , (2.11)

where 〈v〉 is the average speed of the particles.
For Coulomb collisions it is sufficient to consider small-angle collisions, in which the

particles are just slightly deflected. The reason for this is that each particle interacts with
a large number of particles at long distance, whereas the probability for nearby collisions
with large deflection angles is much smaller. The rigorous calculation of collisional cross-
sections is rather challenging. For electron–ion collisions σ ∝ v−4

0 and

νc = νei =
2n0(Ze2)2 lnΛ

ε2
0 m2

ev3
0

, (2.12)

where v0 is the particle speed far from the collision and lnΛ is called the Coulomb loga-
rithm. Typical values of the Coulomb logarithm are in the range 10–20.

When the temperature of the plasma increases or the density decreases, g = Λ−1 de-
creases. At the limit g → 0 plasma becomes collisionless. Physically this means that the
time between individual collisions, or the mean free path, becomes longer than the tempo-
ral or spatial scales of the problems under study. This does not mean that the electromag-
netic interaction between plasma particles would become negligible. At the collisionless
limit it is, however, sufficient to consider the effect of average electromagnetic fields on
the particles instead of individual collisions.

Train your brain

Show that in a fully ionized plasma the frequency of small-angle Coulomb collisions is
much larger than the frequency of large-angle collisions. To what plasma parameter the
ratio of these frequencies is related?
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Feed your brain

Derive Equation (2.12). The derivation can be found in many textbooks, including some
listed in the References section of this book.

2.2 Basic Electrodynamics

In this section we review some of the basic concepts of classical electrodynamics that are
most important in plasma physics.

2.2.1 Maxwell’s equations

In plasma physics we usually write Maxwell’s equations in the vacuum form

∇ ·E = ρ/ε0 (2.13)
∇ ·B = 0 (2.14)

∇×E = −∂ B

∂ t
(2.15)

∇×B = μ0J+
1
c2

∂ E

∂ t
, (2.16)

where the source terms charge density ρ and current density J are determined by the
particle distribution functions (Sect. 2.3.3). We call E the electric field ([E] = V m−1) and
B magnetic field ([B] = V s m−2 ≡ T). It would be more orthodox to call B magnetic
induction, or more descriptively magnetic flux density, as the magnetic flux through a
surface S is

Φ =
∫

S
B ·dS . (2.17)

The SI units of the source terms in Maxwell’s equations are [ρ] = A s m−3 = C m−3 and
[J] = A m−2. The natural constants in SI units are

ε0 ≈ 8.854×10−12 AsV−1 m−1 , vacuum permittivity

μ0 = 4π ×10−7 VsA−1 m−1 , vacuum permeability

c = 1/
√ε0μ0 = 299792458 ms−1 definition of the speed of light.

In studies of electromagnetic media the electric displacement D and the magnetic field
intensity H (the “magnetic field” of engineering physics) are useful and Maxwell’s equa-
tions are written as

∇ ·D = ρ f (2.18)
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∇ ·B = 0 (2.19)

∇×E = −∂B

∂ t
(2.20)

∇×H = J f +
∂ D

∂ t
, (2.21)

where ρ f and J f are the source terms due to “free” charges. If the properties of the medium
can be described in terms of electric polarization P and magnetization M, fields D and H

are given by the constitutive equations

D = ε0E+P (2.22)
H = B/μ0 −M . (2.23)

In plasma physics the use of D and H is sometimes convenient notation, but the consti-
tutive relations may pose a problem. There is no unique way to define the polarization field
in a medium of free charges, although sometimes a useful P can be introduced formally
(e.g., Eq. 9.73). However, the change of polarization is a real plasma phenomenon and the
corresponding polarization current

JP =
∂P

∂ t
(2.24)

is well-defined (see., e.g., Sect. 3.5.1). Also the magnetization current

JM = ∇×M (2.25)

is a useful concept in plasma physics.
The Maxwell equations form a set of 8 partial differential equations. If we know the

source terms, we have more than enough equations to calculate the six unknown field
components. If we, however, want to treat all 10 variables (E, B, J, ρ) self-consistently,
we need more equations. In a conductive medium it is customary to use Ohm’s law

J = σ ·E , (2.26)

where the conductivity σ ([σ ] = A (V m)−1 = (Ω m)−1) is, in general, a tensor and may
also depend on E and B.

Recall that Ohm’s law is not a fundamental law in the same sense as Maxwell’s equa-
tions but merely an empirical relationship to describe the conductivity of the medium sim-
ilarly to the constitutive relations D = ε ·E and B = μ ·H where ε and μ are, in general,
tensors. The medium is called linear if ε , μ , and σ are scalars and constant in space and
time. Note that also in the linear media they usually are functions of the wave number and
frequency of electromagnetic fields penetrating into the medium. Much of plasma physics
deals with the properties of ε(ω ,k).
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2.2.2 Lorentz force

Experimental determination of E and B is based on the Lorentz force

F =
dp

dt
= q(E+v×B) (2.27)

on a particle with charge q and velocity v. Close to a body with strong gravity (e.g., the
Sun) also the gravitational force (mg) must be taken into account. In principle, a complete
description of plasma would mean solving the equation of motion (with gravitation if
needed) for all plasma particles. In practice, this is impossible.

Often it is useful, and in many problems sufficient, to trace the motion of individual
charges in a given electromagnetic field. Examples of this are the motion of cosmic rays,
or high-energy particles in the Earth’s radiation belts. These problems are often relativistic

F =
d
dt

(γmv) = q(E +v×B) , (2.28)

where γ = (1− β 2)−1/2 is the Lorentz factor with β = v/c. The time component of the
underlying four-force gives the power

dW
dt

=
d
dt

(γmc2) = qE ·v . (2.29)

Because the magnetic part of the Lorentz force is perpendicular to v, only the electric
field performs work (W ). Thus any “magnetic” acceleration of charged particles requires
the change in the magnetic field, which induces an electric field in the frame of reference
where the acceleration is observed.

2.2.3 Potentials

Equation ∇ ·B = 0 implies that there is a vector potential A, for which B = ∇×A. Inserting
A into Faraday’s law we find

∇× (E +∂ A/∂ t) = 0 (2.30)

⇒
E = −∂A/∂ t −∇ϕ , (2.31)

where ϕ is the scalar potential.
Thus we have expressed six variables (E, B) using four functions (A, ϕ). For this we

needed four components of Maxwell’s equations. The remaining four equations are now

∇2ϕ +
∂ (∇ ·A)

∂ t
= −ρ/ε0 (2.32)

∇2A− 1
c2

∂ 2A

∂ t2 −∇(∇ ·A+
1
c2

∂ϕ
∂ t

) = −μ0J . (2.33)
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At first these look more complicated than the original equations, but they are much easier
to solve analytically. The point is that E and B are derivatives of the scalar and vector
potentials and there is quite a lot of freedom to transform the potentials keeping their
derivatives unchanged. Such transformations are called gauge transformations. There are
several gauge functions Ψ to define the transformations

A → A′ = A+∇Ψ (2.34)
ϕ → ϕ ′ = ϕ −∂Ψ/∂ t . (2.35)

The Lorenz1 gauge is defined by

∇ ·A′ +
1
c2

∂ϕ ′

∂ t
= 0 . (2.36)

This gauge always exists but is not unique. It transforms the Maxwell equations to inho-
mogeneous wave equations

(∇2 − 1
c2

∂ 2

∂ t2 )ϕ = −ρ/ε0 (2.37)

(∇2 − 1
c2

∂ 2

∂ t2 )A = −μ0J . (2.38)

The solutions of which are the retarded potentials

ϕ(r,t) =
1

4πε0

∫ ρ(r′,t −R/c)
R

d3r′ (2.39)

A(r,t) =
μ0

4π

∫
J(r′,t −R/c)

R
d3r′ , (2.40)

where R = |r− r′| and integrations are over the volume where the source terms are not
zero. Thus we have solved Maxwell’s equations for given ρ and J.

In terms of special relativity the wave equations are actually the time and space com-
ponents of the wave equation for the four-vector Aα(ϕ/c,A)

∂ 2Aα ≡
(

∇2 − 1
c2

∂ 2

∂ t2

)
Aα = −μ0 jα , (2.41)

where jα = (cρ, J) is the four-current.

Feed your brain by deriving the expressions for the retarded potentials

1 This is not a spelling error. The first person to apply this method was Ludvig V. Lorenz (1829–1891) in
1867, not the much more famous Hendrik A. Lorentz (1853–1928).
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Example: The radiation terms of the electromagnetic fields

Denote the retarded quantities by brackets [ f ] = f (r′,t−R/c) and calculate the fields from
the potentials. This results in

E =
1

4πε0

{∫ [ρ]R
R3 d3r′ +

1
c

∫ (
2[J] ·RR

R4 − [J]
R2

)
d3r′

+
1
c2

∫ (
([J̇]×R)×R

R3

)
d3r′

}
(2.42)

B =
μ0

4π

{∫ [J]×R

R3 d3r′ +
1
c

∫ [J̇]×R

R2 d3r′
}

, (2.43)

where the dot above J denotes the time derivative. Far from the sources (R → ∞) the
radiation terms dominate

Erad =
1

4πε0c2

∫ ([J̇]×R)×R

R3 d3r′ (2.44)

Brad =
1

4πε0c3

∫ [J̇]×R

R2 d3r′ . (2.45)

Erad and Brad vanish as 1/R. The fields due to static currents and charges vanish as 1/R2

or faster. Radiation requires temporal variation of J and a charge moving with a constant
velocity does not radiate. We will discuss the electromagnetic radiation in more detail in
Chap. 9.

Another important gauge is the Coulomb gauge

∇ ·A′ = 0 . (2.46)

The vector potential is found by transformation

∇2Ψ = −∇ ·A , (2.47)

which defines Ψ uniquely (to an additive constant) when A and ϕ → 0 for r → ∞.
Now the scalar potential

ϕ =
1

4πε0

∫ ρ(r′,t)
R

d3r′ (2.48)

is not retarded but determined by the instantaneous value of ρ everywhere. Thus the
Coulomb gauge is not Lorentz2 covariant and one must be careful when transforming
between moving coordinate systems.

2 Now the credit goes to the right Lorentz
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The vector potential is obtained from the wave equation

∇2A− 1
c2

∂ 2A

∂ t2 =
1
c2 ∇

∂ϕ
∂ t

−μ0J . (2.49)

The first term on the RHS is curl-free. Applying the Helmholtz theorem of vector calculus
we can divide the current to curl-free and source-free components

J = Jl +Jt ; ∇×Jl = 0 ; ∇ ·Jt = 0 ,

where l stands for longitudinal (curl-free) and t for transversal (source-free). The conti-
nuity equation ∂ρ/∂ t +∇ ·J = 0 reduces (2.49) to

∇2A− 1
c2

∂ 2A

∂ t2 = −μ0Jt . (2.50)

Consequently, the Coulomb gauge is called transversal gauge. It is also called radiation
gauge because the vector potential calculated from the transversal current

A(r,t) =
μ0

4π

∫
Jt(r′, t −R/c)

R
d3r′ (2.51)

is sufficient for the calculation of the radiation fields. The Coulomb gauge separates the
electric field to its static (s) and inductive (i) parts

Es = −∇ϕ ; Ei = −∂A/∂ t , (2.52)

but this separation is not Lorentz covariant.
The Coulomb gauge is technically easier to use than the Lorenz gauge. It is particularly

useful when no sources are present. Then ϕ = 0 and

E = −∂ A/∂ t ; B = ∇×A . (2.53)

This is sometimes called the temporal gauge. It is useful, e.g., in studies of Alfvén waves
and wave–wave interactions.

For specific purposes there are several other useful potential presentations. Plasmas are
often embedded in a background magnetic field created by external currents (∇×B = 0,
e.g., the intrinsic magnetic field of a planet). Then the magnetic field can be expressed in
terms of the magnetic scalar potential as

B = −∇ψ . (2.54)

Because ∇ ·B = 0, ψ can be solved from the Laplace equation

∇2ψ = 0 (2.55)

using familiar potential theory methods.
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Another representation of the magnetic field is in terms of Euler potentials (α,β ,χ) as

A = α∇β +∇χ (2.56)

⇒
B = ∇×A = ∇× (α∇β +∇χ) = ∇α ×∇β . (2.57)

Note that B is perpendicular to both ∇α and ∇β , and α and β are constants along the
magnetic field. Thus the magnetic field line can be visualized as the intersection line of
α = const. and β = const. This presentation is particularly useful in problems where tracing
of magnetic field lines is required.

2.2.4 Energy conservation

The energy conservation of electromagnetic fields is expressed by the Poynting theorem.
In a linear medium the energy densities of electric and magnetic fields are given by

wE =
1
2

E ·D (2.58)

wM =
1
2

H ·B =
1
2

J ·A . (2.59)

Define the Poynting vector as S = E×H. From Maxwell’s equations we find

∇ ·S = −E ·J−E · ∂ D

∂ t
−H · ∂ B

∂ t
. (2.60)

The Poynting theorem is the integral of this expression over volume

−
∫

J ·Ed3r =
∫

∇ ·Sd3r +
∫ ∂

∂ t
(wE +wM)d3r . (2.61)

The LHS is the work performed by the electromagnetic field per unit time (i.e., power) in
volume . The first term on the RHS is

∮
∂ S·da, i.e., the energy flux per unit time through

the surface ∂ . Thus the Poynting vector gives the flux of electromagnetic energy density.
The last term on the RHS expresses the rate of change of the electromagnetic energy in
volume .

In the following we often assume that the fields have harmonic time or space depen-
dence (∝ exp(−iωt), exp(ik · r)), or both in the case of plane waves. For complex fields
one must be careful with products. We interpret the real part of the complex vector as the
physical field. For example, consider an electric field with harmonic time dependence

E(r,t) = Re{E(r)exp(−iωt)} =
1
2

[E(r)exp(−iωt)+E∗(r)exp(iωt)] .

Denote the complex conjugate by cc. The product of E and J is
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J ·E =
1
4

[J(r)exp(−iωt)+ cc] · [E(r)exp(−iωt)+ cc]

=
1
2

Re{J∗(r) ·E(r)+J(r) ·E∗(r)exp(−2iωt)} . (2.62)

The time average of this is

〈J ·E〉 =
1
2

Re{J∗ ·E} . (2.63)

The Poynting theorem now reads as

1
2

∫
J∗ ·Ed3r +

∮
∂

S ·da+2iω
∫

(wE +wM)d3r = 0 . (2.64)

Note that S = 1
2 E×H∗ ; wE = 1

4 E ·D∗ ; wM = 1
4 H ·B∗ .

Using the Poynting vector we can express the momentum density of the electromagnetic
field as

p̂ = D×B = μ0ε0S (2.65)

when the momentum of the field is

p f ield =
∫

D×Bd3r . (2.66)

The elements of the Maxwell stress tensor are

Ti j = EiD j +BiHj − 1
2

(E ·D+B ·H)δi j . (2.67)

With this we can express the conservation of momentum as

d
dt

(pmech +p f ield)i = ∑
j

∫ ∂
∂x j

Ti j d3r =
∮

∂
∑

j
Ti jn j da ; (2.68)

where the mechanical force is the Lorentz force

dpmech

dt
=

∫
(ρE+J×B)d3r . (2.69)

2.2.5 Charged particles in electromagnetic fields

In a homogeneous static magnetic field in absence of an electric field the equation of
motion of a charged particle

m
dv

dt
= q(v×B) (2.70)

has a solution with constant speed along the magnetic field and circular motion around the
magnetic field line with the angular frequency

ωc =
qB
m

. (2.71)
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The radius of the circular motion (Larmor radius, cyclotron radius, gyro radius) is

rL =
v⊥
|ωc| =

mv⊥
|q|B , (2.72)

where v⊥ =
√

v2
x + v2

y is the velocity perpendicular to the magnetic field. The gyro period
is

τL =
2π
|ωc| . (2.73)

Looking along the magnetic field, the particle rotating clockwise has a negative charge. In
plasma physics this is the convention of right-handedness.

This way we have decomposed the velocity to a constant speed v‖ along the field and
circular velocity v⊥ perpendicular to the field. The sum of these components is a helical
motion with the pitch angle α defined as

tanα = v⊥/v‖ . (2.74)

Hannes Alfvén realized that this decomposition is convenient even in temporally and
spatially varying fields if the variations are slow compared to the gyro motion. The method
is called guiding center approximation. The center of the gyro motion is the guiding center
(GC) and the frame of reference where v‖ = 0 is the guiding center system (GCS).

In the GCS the charge gives rise to a current I = q/τL with the associated magnetic
moment

μ = Iπr2
L =

1
2

q2r2
LB

m
=

1
2

mv2
⊥

B
=

W⊥
B

. (2.75)

The magnetic moment is actually a vector

μμμμμ =
1
2

qrL ×v⊥ , (2.76)

which is always opposite to the ambient magnetic field. Charged particles tend to weaken
the magnetic field and thus plasma can be considered as a diamagnetic medium.

If there is also a constant electric field, the GC drifts perpendicular to both the electric
and magnetic fields with the velocity

vE =
E×B

B2 . (2.77)

This is called electric drift or E×B drift. The drift velocity is independent of the charge
and mass of the particle.

The E×B drift corresponds to the Lorentz transformation to the frame co-moving with
the GC

E′ = E+v×B . (2.78)

In this frame E’ = 0 ⇒ E = −v×B, from which we find the solution (2.77) for v. This
coordinate transformation is possible for all sufficiently weak forces F⊥ resulting in a
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general expression for the drift velocity

vD =
F⊥×B

qB2 . (2.79)

This requires F/qB � c. If F � qcB, the GC approximation cannot be used.
From (2.79) we readily find the gravitational drift velocity

vg =
mg×B

qB2 ∝
m
q

. (2.80)

Gravity separates particles according to their m/q , not in the direction of the gravitational
force but perpendicular to it and to B.

The same formalism applies to a slowly time varying electric field if we assume the
magnetic field to be constant. This results in the polarization drift

vP =
1

ωcB
dE⊥
dt

. (2.81)

We will discuss inhomogeneous magnetic fields and rapidly time varying electric fields
in Chap. 3.

2.3 Tools of Statistical Physics

Plasma physics is sometimes considered as applied electrodynamics. Equally well it could
be characterized as statistical physics of charged particles. The computation of the motion
of all plasma particles from Maxwell’s equations and the Lorentz force is an impossible
task. Fortunately, we do not always need to know the details of individual particles, but we
are interested in the macroscopic properties of the gas or fluid (density, flux, flow velocity,
temperature, pressure, heat flux, etc.) and their evolution in space and time. To handle this
we need tools of statistical physics.

2.3.1 Plasma in thermal equilibrium

There are different ways to find the fundamental plasma equations. Here we start from
equilibrium statistical mechanics. Let there be N particles in the plasma (N/2 electrons,
N/2 singly-charged ions). Assume that the plasma is in thermal equilibrium at the tem-
perature T . The probability of finding the particles in locations (r1, ...,rN) is given by the
Gibbs distribution

D(r1, ...,rN) =
1
Z

exp
(
−∑k ∑i>k Wik

kBT

)
, (2.82)

where
Wik =

qiqk

4πε0|ri − rk| +ϕext



74 2. Physical Foundations

and

Z =
∫

exp
(
−∑k ∑i>k Wik

kBT

)
d3r1...d3rN .

Z is the partition function and ϕext describes the potential energy of all external fields.
The probability of finding particle 1 at r1 is

F1(r1) =
∫

D d3r2...d3rN . (2.83)

If there are no external forces, F1 = 1/ ( is the volume). Correspondingly, the proba-
bility of finding particle 1 at r1 and particle 2 at r2 is

F2(r1,r2) =
∫

D d3r3...d3rN (2.84)

and so on
Fs(r1, ...,rs) =

∫
D d3rs+1...d3rN . (2.85)

Functions F1, ...,Fs are called reduced distributions. At the limit of non-interacting parti-
cles (Wik → 0)

Fs → F1(r1)F1(r2) · · ·F1(rs) = 1/ s . (2.86)

The reduced distributions can be written using the Mayer cluster expansion (we use the
notation: r1 → 1 when there is no risk of confusion):

F2(1,2) = [1+P12(1,2)]F1(1)F1(2)
F3(1,2,3) = [1+P12(1,2)+P12(2,3)+P12(1,3)+T123(1,2,3)]×

F1(1)F1(2)F1(3) (2.87)

and so on. P12 is the two-particle (or pair) correlation function and T123 is the three-
particle correlation function. At the plasma limit (Λ � 1) the Coulomb interaction is
weak and T123 � P12 � 1. Thus it is usually sufficient to consider pair correlations only.
Note that P is symmetric: P12(1,2) = P12(|r1 − r2|).

The complete Gibbs distribution depends also on velocity:

D∗(r1, ...,rN ,v1, ...,vN) =
1

Z∗ exp
(
−∑k ∑i>k Wik

kBT

)
exp

(
−∑i

1
2 miv2

i

kBT

)
. (2.88)

In this book we will consider non-relativistic plasmas only and can neglect the velocity
correlations. The relativistic particles encountered in radiation belts or in solar energetic
particle events can be treated as test particles and are not assumed to have significant
effects on the macroscopic quantities. Of course, there are relativistic plasmas in the uni-
verse. For example, in the magnetospheres of pulsars not only relativistic but also quantum
effects become important. Quantum fluctuations produce electron–positron pairs, which
annihilate and radiate 511-keV gamma rays.
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Differentiating Fs, setting s = 2, and assuming T123 � P12 we can derive the equation
for P12

∂P12

∂ r1
+

1
4πε0kBT

∂
∂r1

(
q1q2

|r1 − r2|
)

+ (2.89)

1
4πε0kBT ∑

α

Nα

V

∫
[P12(2,α)+P12(1,α)]

∂
∂ r1

(
q1qα

|r1 − rα |
)

d3rα = 0 ,

where α indexes the particle species. This equation can be solved by Fourier transforma-
tion. The result is

P12(|r1 − r2|) = − q1q2

4πε0kBT
exp(−|r1 − r2|/λD)

|r1 − r2| , (2.90)

where we again encounter the Debye shielding. The assumption P12 � 1 is valid if
|r1 − r2| > λD . The Mayer expansion is valid also inside the Debye sphere, where
P12 ∝ 1/|r1 − r2| as long as the distance |r1 − r2| remains larger than the average distance
between particles in temperature T .

From this description it is possible to derive equilibrium thermodynamic properties of
the plasma. For example, in the plasma approximation (Λ � 1) the equation of state is
practically that of the ideal gas

P = nkBT +O
(

1
Λ

)
. (2.91)

Unfortunately, due to the small collision rates space plasmas seldom are in thermal
equilibrium and we must look for a more general approach.

2.3.2 Derivation of Vlasov and Boltzmann equations

There are two main roads to the Boltzmann equation for a plasma. Consider first the
Klimontovich approach. It starts from the exact density of particles in the six-dimensional
phase space (r,v). Consider a single particle whose orbit in this space is (R1(t),V1(t)).
The “density” of this particle is

N(r,v,t) = δ [r−R1(t)]δ [v−V1(t)] , (2.92)

where δ is Dirac’s delta function.3

Summing over all particles of a given species α we get the density function Nα for
the species. Writing the equation of motion under the Lorentz force for each particle and
summing over particles of a given species leads to the Klimontovich equation for Nα

∂Nα
∂ t

+v · ∂Nα
∂r

+
qα
mα

(E+v×B) · ∂ Nα
∂v

= 0 . (2.93)

3 Dirac’s delta is not really a function, being infinite at one point and zero elsewhere, but we prefer to use
in this context the sloppy language of physicists.
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This is still a very detailed equation containing exact information of the orbits of all par-
ticles. Nα is composed of sums of δ -functions, which makes practical calculations cum-
bersome. Because we are not interested in the orbits of individual particles, we can take
ensemble averages of Nα and of equation (2.93). Denoting the average of Nα(r,v,t) by
fα(r,v, t) and neglecting the particle collisions, the ensemble averaging of (2.93) leads to
the Vlasov equation for fα

∂ fα
∂ t

+v · ∂ fα
∂ r

+
qα
mα

(E +v×B) · ∂ fα
∂v

= 0 . (2.94)

Another route is the Liouville approach. It starts from distribution functions and
avoids δ -functions and ensemble averaging. Consider a general distribution of N parti-
cles F(r1, ...,rN ;v1, ...,vN ;t) , which is normalized as

∫
F d3r1 · · · d3rN d3v1 · · · d3vN = 1.

For a plasma of N/2 ions and N/2 electrons in thermodynamic equilibrium F = D, where
D is the Gibbs distribution of the previous section.

The penalty of avoiding δ -functions is to deal with a 6N-dimensional phase space. F
contains information of all particles and is again much too detailed for practical use. A set
of reduced distribution functions can be defined as follows. The one-particle distribution
function f (1)

α for species α is

f (1)
α (r1,v1,t) =

∫
F d3r2 · · ·d3rNd3v2 · · ·d3vN . (2.95)

is the finite spatial volume where F is nonzero for all r1,r2, ...,rN . The two-particle
distribution function is

f (2)
αβ (r1,r2,v1,v2,t) = 2

∫
F d3r3 · · ·d3rNd3v3 · · ·d3vN (2.96)

and so on. Statistical physics tells us that F fulfills the Liouville equation

∂ F
∂ t

+
N

∑
i=1

(
∂ F
∂ ri

·vi +
∂ F
∂ vi

·aT
i

)
= 0 , (2.97)

where aT
i is the acceleration by all interactions, including collisions.

The equation of motion for f (1)
α is found by integrating (2.97) over all coordinates

except (r1,v1)

∂ f (1)
α

∂ t
+v1 · ∂ f (1)

α
∂ r1

+
∫

aT
i · ∂ F

∂ v1
d3r2 · · ·d3rN d3v2 · · ·d3vN = 0 . (2.98)

Here the total number of particles was assumed to be conserved.
If there are external forces (aE

1 ) only, we again get the Liouville equation

∂ f (1)
α

∂ t
+v1 · ∂ f (1)

α
∂r1

+aE
1 · ∂ f (1)

α
∂ v1

= 0 . (2.99)



2.3 Tools of Statistical Physics 77

Denote the interactions between particles by ai j. Now the third term of (2.98) reduces to

aE
1 · ∂ f (1)

α
∂ v1

+∑
β

∫
a1β · ∂

∂ v1
f (2)
αβ (r1,rβ ,v1,vβ ,t)d3rβ d3vβ .

Note that (2.98) is not a closed equation for f (1), as it depends on f (2). We could write a
similar equation for f (2), which then depends on f (3), and so on. This is called the BBGKY
hierarchy (after Bogoliubov, Born, Green, Kirkwood, and Yvon). In higher orders this
hierarchy becomes intractable and the series must be truncated with physical arguments.
We do it by approximating f (2).

If the interactions between particles were strong and of short-range (as in ordinary
gases) we would end up with the Boltzmann equation

d f (1)
α

dt
≡ ∂ f (1)

α
∂ t

+v1 · ∂ f (1)
α

∂ r1
+aE

1 · ∂ f (1)
α

∂v1
=

(
∂ f (1)

α
∂ t

)
c

. (2.100)

However, in a plasma the dominating interaction is the long-range Coulomb force, which
is, in this context, weak. Fortunately, in a plasma the combined effect of remote charges
is, on the average, stronger than the acceleration due to the nearest neighbor. The average
acceleration 〈aint〉 is from the viewpoint of a single particle the same as the acceleration by
the external Coulomb force aE . Thus we can replace a1 = aE

1 + 〈aint〉. The effect of binary
collisions is (

∂ f (1)
α

∂ t

)
c

= −∑
β

∫ (
a1β −〈aint

1β 〉
)
· ∂

∂v1
f (2)
αβ d3rβ d3vβ . (2.101)

Assuming that the only external force is the Lorentz force we have the Boltzmann equation
for plasma

∂ f (1)
α

∂ t
+v1 · ∂ f (1)

α
∂ r1

+
qα

mα
〈E+v1 ×B〉 · ∂ f (1)

α
∂ v1

=

(
∂ f (1)

α
∂ t

)
c

, (2.102)

where the average fields 〈E〉 and 〈B〉 fulfill the average Maxwell equations

∇ · 〈E〉 =
ρ
ε0

; ∇×〈B〉 = μ0J+
1
c2

∂ 〈E〉
∂ t

. (2.103)

Note that the normalization of f (1)
α is different from the normalization of the distribution

function fα in the Vlasov equation (2.94). We retain the same plasma kinetic equation
by substitution fα = (Nα/ ) f (1)

α .
A thorough treatment of the collision term is a substantial task. The interested reader is

encouraged to consult advanced text-books on Balescu–Lenard and Fokker–Planck equa-
tions. We will discuss some elements of the Fokker–Planck theory in Chap. 10. Note that
the interparticle collisions may be of very variable nature. They may be elastic, but the
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kinetic energy of a colliding plasma particle may also be transferred to internal energy of
neutral particles or molecular ions of the plasma. Furthermore, there are collisions leading
to recombination, ionization, and charge exchange, which are important processes associ-
ated with space storms.

A simple and often sufficient first approximation for the collision term is the relaxation
time approximation, also called the Krook model where the average collision frequency is
approximated by a constant νc and(

∂ fα
∂ t

)
c
= −νc( f − f0) . (2.104)

where f0 is the equilibrium distribution and | f − f0| � f0 . Note that the equilibrium here
is a wider concept than a Maxwellian distribution. It is enough that f0 is a stable solution
of the Vlasov equation.

2.3.3 Macroscopic variables

The Vlasov and Boltzmann equations are equations of motion for the single particle dis-
tribution function f (r,v,t). The function expresses the number density of particles in a
volume element dxdydzdvx dvy dvz of a six-dimensional phase space (r,v) at the time t
(thus the SI units of f are m−6 s3). In the following we use the normalization∫ ∫

v
f (r,v, t)d3rd3v = N , (2.105)

where N is the number of all particles in the phase space volume considered.
The average density in volume is 〈n〉 = N/ . However, the particle density is usu-

ally a function of space and time. It is defined as the zero order velocity moment of the
distribution function

n(r, t) =
∫

f (r,v, t)d3v . (2.106)

We define the macroscopic quantities as velocity moments of the distribution function∫
f d3v ;

∫
v f d3v ;

∫
vv f d3v .

In a plasma different particle populations (labeled by α) may have different distribu-
tions and thus have different velocity moments (nα(r,t), etc.). If the particles of a species
are charged with charge qα , the charge density of the species

ρα = qαnα . (2.107)

The first-order moment yields the particle flux

Γα(r,t) =
∫

v fα(r,v,t)d3v . (2.108)

Dividing this by particle density we get the average velocity
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Vα(r,t) =
∫

v fα(r,v, t)d3v∫
fα(r,v, t)d3v

, (2.109)

from which we can further determine the current density

Jα(r,t) = qαΓα = qα nαVα . (2.110)

In the second order we find the pressure tensor

α(r,t) = mα

∫
(v−Vα)(v−Vα) fα(r,v, t)d3v , (2.111)

which in a spherically symmetric case reduces to the scalar pressure

Pα =
mα

3

∫
(v−Vα)2 fα(r,v,t)d3v = nαkBTα . (2.112)

Here we introduce the concept of temperature Tα . In the frame moving with the velocity
V the temperature is given by

3
2

kBTα(r,t) =
mα

2

∫
v2 fα(r,v,t)d3v∫

fα(r,v,t)d3v
, (2.113)

which for a Maxwellian distribution is the temperature of classical thermodynamics. In
collisionless plasmas equilibrium distributions may be far from Maxwellian. Thus temper-
ature is a non-trivial concept in plasma physics.

Train your brain

Show that a spherically symmetric (in the velocity space) distribution function fα(r,v,t)
yields an isotropic pressure Pα i j = pα δi j. What kind of distribution function yields the
diagonal gyrotropic form

Pα i j = p⊥δi j +(p‖ − p⊥)δ3iδ3 j ?

What is the value of scalar pressure p in this case? Here the “parallel” direction (e.g.,
the direction of background magnetic field) is assumed to be in the direction of the axis
number 3.

The relation between the particle pressure and magnetic pressure (magnetic energy den-
sity) is the plasma beta

β =
2μ0 ∑α nαkBTα

B2 . (2.114)

If β > 1, plasma governs the evolution of the magnetic field. If β � 1, the magnetic field
determines the plasma dynamics. Values of beta are very different and highly variable in
various landscapes of space storms. In the solar photosphere beta varies from 1 to 100.
In the lower corona it is of the order of 10−4–10−2 and higher up it starts rising again to
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be around 1 in the solar wind, but also there with large variations. In the Earth’s magne-
tosphere the lowest beta values (β ∼ 10−6) are found in the auroral region magnetic field
lines at altitudes of a few Earth radii. In the tail plasma sheet β ∼ 1, but in the tail lobes it
is some 4 orders of magnitude smaller.

The chain of moments continues to higher orders. The third order introduces the heat
flux , i.e., temperature multiplied by velocity. It can usually be neglected in the magneto-
sphere but is very important at the solar end of space storms.

2.3.4 Derivation of macroscopic equations

Next we derive macroscopic equations by taking velocity moments of the Boltzmann equa-
tion. For the needs of many space applications we could start from the Vlasov equation,
but retaining the collision term gives us a more complete macroscopic theory. When not
needed, the collision effects can be dropped at the macroscopic level.

We start from the Boltzmann equation for species α

∂ fα

∂ t
+v · ∂ fα

∂r
+

qα

mα
(E+v×B) · ∂ fα

∂ v
=

(
∂ fα

∂ t

)
c

. (2.115)

Zeroth moment

We first integrate (2.115) over the velocity space. For physical distributions fα → 0, when
|v| → ∞, and the force term vanishes in the integration. If there are no ionizing nor recom-
bining collisions, or charge-exchange collisions between ions and neutrals, the zero-order
moment of the collision term is also zero. The integral of the first term of (2.115) yields
the time derivative of density. The second term is of the first order in velocity∫

v · ∂ fα

∂ r
d3v = ∇ ·

∫
v fα d3v = ∇ · (nα Vα) (2.116)

and we have found the equation of continuity

∂ nα

∂ t
+∇ · (nα Vα) = 0 . (2.117)

Continuity equations for charge or mass densities are obtained by multiplying (2.117)
by qα or mα , respectively. The equation of continuity is an example of the general form of
a conservation law

∂F
∂ t

+∇ ·G = 0 , (2.118)

where F is the density of a physical quantity and G the associated flux.

First moment

Multiply (2.115) by mα v and integrate over v. This yields the momentum transport equa-
tion, which actually is the macroscopic equation of motion
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nα mα
∂ Vα

∂ t
+ nα mαVα ·∇Vα − nαqα〈E+Vα ×B〉 + ∇ · α

= mα

∫
v

(
∂ fα

∂ t

)
c

d3v . (2.119)

Train your brain

Make a careful derivation of Eq. (2.119). You need to apply the continuity equation.

The average electric and magnetic fields in (2.119) are determined by both internal and
external sources and fulfill the average Maxwell equations

∇ · 〈E〉 = ∑
α

nαqα

ε0
+ρext/ε0 (2.120)

∇×〈B〉 =
1
c2

∂ 〈E〉
∂ t

+ μ0 ∑
α

nαqα Vα + μ0Jext . (2.121)

Because collisions transport momentum between different plasma populations, the col-
lision integral does not vanish, except for collisions between the same type of particles.
The collision term is a complicated function of velocity. A useful approximation related to
the Krook model (2.104) is

mα

∫
v

(
∂ fα

∂ t

)
c

d3v = −∑
β

mα nα(Vα −Vβ )
〈
ναβ

〉
, (2.122)

where 〈ναβ 〉 is the average collision between particles of type α and β .
The second-order contributions Vα ·∇Vα and α arise from terms containing products

vv or v ·v. The divergence of α contains information of inhomogeneity and viscosity of
the plasma. Note that α is not independent of the collisions. For example, if the collisions
are frequent enough, the pressure tensor becomes diagonal, or even isotropic in which case
∇ · → ∇P.

Second moment

The second velocity moment yields the energy or heat transport equation (conservation
law of energy). We can write the equation in the form

3
2

nαkB

(
∂ Tα
∂ t

+Vα ·∇Tα

)
+Pα ∇ ·Vα =

−∇ ·Hα − ( ′
α ·∇) ·V+

∂
∂ t

(
nα mαV 2

α
2

)
c

, (2.123)
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where the isotropic part of the pressure Pα is written on the LHS and the non-isotropic
part ′

α on the RHS. The relation between the scalar pressure Pα and temperature Tα is
assumed to be that of an ideal gas Pα = nα kBTα .

The third-order term Hα describes the heat flux. An equation for it is found by taking the
third moment. This contains fourth-order contributions, and so on. The chain of equations
must again be truncated at some point, just as was done in the case of kinetic equations.
In many practical problems this is made in the second order, either by neglecting the heat
flux, or by substituting the energy equation by an equation of state. Here physical insight
is essential. Krall and Trivelpiece [1973] state this: “The fluid theory, though of great
practical use, relies heavily on the cunning of its user”. In collisional and Maxwellian
plasmas the truncation may be easy to motivate, but in collisionless space plasmas it is a
more subtle issue.

2.3.5 Equations of magnetohydrodynamics

Now we have macroscopic equations for each plasma species. In a real plasma several
species co-exist; in addition to electrons and protons, there may be a variety of heavier
ions, as well as neutral particles, which may contribute to plasma dynamics through colli-
sions, including charge-exchange processes (e.g., Sect. 14.1.4). Sometimes it is also nec-
essary to consider different species of the same type of particles; e.g., in the same spatial
volume there may be two electron populations of widely different temperatures or average
velocities. Such situations often give rise to plasma instabilities to be discussed in Chap. 7.

As the first step toward a single-fluid theory it is useful to consider all electrons as one
fluid and all ions as another. This is called a two-fluid model. The separate fluid components
interact through collisions and electromagnetic interaction. In the following derivation of
the single-fluid theory, it may be practical to think only two components although we have
written the expressions for an arbitrary number of species.

Magnetohydrodynamics (MHD) is probably the most widely known plasma theory. In
MHD the plasma is considered as a single fluid in the center-of-mass (CM) frame. This is
a well-motivated approach in collision-dominated plasmas, where the collisions constrain
the plasma particles to follow each other closely and thermalize the distribution toward a
Maxwellian, which makes the interpretation of velocity moments straightforward. MHD
works also remarkably well in collisionless tenuous space plasmas. However, great care
should be exercised both with interpretation and approximations.

The single-fluid variables are defined as:

mass density
ρm(r,t) = ∑

α
nα mα , (2.124)

charge density
ρq(r,t) = ∑

α
nα qα (2.125)

(= e(ni −ne) for singly charged ions and electrons) ,
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macroscopic velocity

V(r, t) = ∑α nα mαVα

∑α nαmα
, (2.126)

current density
J(r,t) = ∑

α
nαqα Vα , (2.127)

and pressure tensor in the CM frame

CM
α (r,t) = mα

∫
(v−V)(v−V) fα d3v , (2.128)

from which we get the total pressure

(r,t) = ∑
α

CM
α (r,t) . (2.129)

Summing the individual continuity and momentum transport equations over particle
species yields the continuity equations

∂ρm

∂ t
+∇ · (ρmV) = 0 (2.130)

∂ρq

∂ t
+∇ ·J = 0 (2.131)

and the momentum transport equation

ρm

(
∂ V

∂ t
+V ·∇V

)
= ρqE +J×B−∇ · . (2.132)

The momentum equation corresponds to the Navier–Stokes equation of hydrodynamics
(6.2) where the viscosity terms are written explicitly (here they are hidden in ∇ · ).
At macroscopic level the deviations from charge neutrality are small and ρqE is usually
negligible. The magnetic part of the Lorentz force J × B (sometimes called Ampère’s
force) is, however, essential in the theory of magnetic fluids.

Ohm’s law in fluid description is a more complicated issue. In the particle picture the
plasma current is the sum of all charged particle motions. In a single-fluid theory the
current transport equation is derived by multiplying the momentum transport equations
of each particle population by qα/mα and summing over all populations. In the two-fluid
case (e, i) we get

∂J

∂ t
+∇ · (VJ+JV−VVρq) = ∑

α

nα q2
α

mα
E

+
(

e2

me
+

e2

mi

)
ρmV×B

me +mi
−

(
emi

me
− eme

mi

)
J×B

me +mi
(2.133)

− e
me

∇ ·
(

CM
i

me

mi
− CM

e

)
+∑

α

∫
qα v

(
∂ fα

∂ t

)
c
d3v ,
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where the products VJ, etc., are cartesian tensors (dyads) with elements ViJk, and the
divergence of a dyad is a vector, e.g., with components ∑i ∂iViJk. This equation expresses
the relationship between the electric current and the electric field. Thus it can be called
generalized Ohm’s law.

The first step to simplify (2.133) is to approximate the collision integral introducing a
constant collision frequency ν

∑
α

∫
qα v

(
∂ fα

∂ t

)
c
d3v = −νJ . (2.134)

Defining the conductivity by σ = ne2/νme and neglecting all derivatives and the magnetic
field in (2.133) we get the familiar form of Ohm’s law J = σE.

Not all terms in the generalized Ohm’s law are equally important. There are some that
clearly are smaller than the others (e.g. ∝ me/mi). Furthermore, the derivatives of the
second-order terms VJ, JV and VV can usually be neglected. At this level we have the
generalized Ohm’s law in the form that contains the most important terms for space plas-
mas:

E+V×B =
J

σ
+

1
ne

J×B− 1
ne

∇ · e +
me

ne2
∂ J

∂ t
. (2.135)

Assume further so slow temporal changes and large spatial gradient scales that |J×B|,
|∂J/∂ t|, and |∇ · | are all smaller than |V×B|. This leaves us with the standard form of
Ohm’s law in MHD

J = σ(E +V×B) , (2.136)

which already familiar from elementary electrodynamics in cases when moving frames are
taken into account. Here the moving frame is attached to the fluid flow with the velocity
V. If the conductivity is very large, we find Ohm’s law of the ideal MHD

E+V×B = 0 . (2.137)

The road from the Liouville or Klimontovich equations to this simple equation is long
and there are several potholes on the road. For example, while the ideal MHD is a reason-
able starting point, it is not at all clear that the next term to take into account should be
J/σ . In many space applications the Hall term J×B/ne and the pressure term ∇ · /ne
are more important.

There are effects that originate at the microscopic level, which are not due to actual
interparticle collisions, but which may lead to “effective” resistivity or viscosity at the
macroscopic level. Various wave–particle interactions and microscopic instabilities tend to
inhibit the current flow. Often the macroscopic effect of these processes looks analogous
to finite ν and is called anomalous resistivity.4

Another issue is that plasma does not need to exhibit a local Ohm’s law at all. In tenuous
space plasmas it may happen that there are not enough current carriers to satisfy ∇ ·J = 0
without extra acceleration of the charges. An example is the magnetic field-aligned po-

4 This is one more example of unfortunate terminology. There is nothing anomalous in the physics behind
the non-collisional resistivity.
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tential drop above the discrete auroras. The coupling between the ionosphere and magne-
tosphere requires more upward field-aligned current to be drawn through this region than
there are electrons readily available from the magnetosphere. The global plasma system re-
acts to this by setting up an upward-directed electric field to accelerate electrons to so high
velocities that the current continuity is maintained. This results in a global current–voltage
relationship, which Knight [1973] derived into the form

J‖ = −en

√
kBTe

2πme

BI

BE

[
1−

(
1− BE

BI

)
exp

(
− e	ϕ

kBTe(BI/BE −1)

)]
. (2.138)

Here BI is the magnetic field in the ionosphere, BE in the equatorial plane in the mag-
netosphere and 	ϕ the potential difference between them. At the limit e	ϕ/kBT �
(BI/BE −1) this reduces to

J‖ = K
(
	ϕ +

kBTe

e

)
, (2.139)

which is often approximated as the direct linear relationship between the current and volt-
age of the form

J‖ = K	ϕ . (2.140)

This last form is known as the Knight relation. The coefficient K is a function of plasma
parameters and thus not a universal constant.

Feed your brain

The current–voltage relationship is actually not quite as simple as given above. Read
carefully the paper by Janhunen and Olsson [1998] and fill in the gaps in their deriva-
tions.

The next equation in the velocity moment chain is the energy transport equation. After
some tedious but straightforward calculation the energy equation can be written in the
conservation form

∂
∂ t

[
ρm

(
V 2

2
+w

)
+

B2

2μ0

]
= −∇ ·H . (2.141)

Here w is the enthalpy that is related to the the internal free energy (per unit mass) of the
plasma u by w = u+P/ρm. The RHS is the divergence of the heat flux vector H, which is
a third-order moment. After some reasonable approximations it can be written as

H =
(

V 2

2
+u+

P+B2/μ0

ρm

)
ρmV− B

μ0

(
V+

J

ne

)
·B

− J×B

σ μ0
+

JB2

μ0ne
+

meB

μ0ne2 × ∂ J

∂ t
. (2.142)

When integrated over a finite volume the LHS of (2.141) describes the temporal change
of the energy of the MHD plasma in that volume and the RHS the the energy flux through
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the boundary ∂ and energy losses due to resistivity. Thus we have found the MHD
equivalent of Poynting’s theorem of elementary electrodynamics.

Because the energy equation depends on third-order terms, we do not get a closed
set of MHD equations without some further approximations. Often the chain is cut by
selecting an equation of state. After this the energy equation can be written in a simpler
form. Another frequently adopted approach is to assume an isotropic pressure. We can
start from the ideal gas law P = nkBT and use some of the following equations of state
depending on what kind of processes we are considering:

• adiabatic process

T = T0

(
n
n0

)γ−1

; P = P0

(
n
n0

)γ
, (2.143)

where the polytropic index γ = cp/cv is 5/3 in a three-dimensional plasma and cp and cv
are the specific heat constants for constant pressure and constant volume, respectively.

• isothermal process
the above with γ = 1 ⇒ P = nkBT0

• isobaric process
the above with γ = 0, i.e., constant pressure

• isometric process
the above with γ = ∞, i.e., P ≈ 0, e.g. the case of β � 1 .

Using the equation of state we can write the equations of MHD in the form

∂ρm

∂ t
+∇ · (ρmV) = 0 (2.144)

ρm

(
∂
∂ t

+V ·∇
)

V+∇P−J×B = 0 (2.145)

E+V×B = J/σ (2.146)

P = P0

(
n
n0

)γ
(2.147)

∂ B

∂ t
= −∇×E (2.148)

∇×B = μ0J . (2.149)

2.3.6 Double adiabatic theory

Due to the presence of the magnetic field the particle distributions in space plasmas are
not always isotropic and the pressure tensor does not even need to be diagonal. To fully
appreciate the anisotropic effects we need to refer to some concepts to be investigated in
Chap. 3, but their macroscopic consequences are useful to introduce here for completeness
of the present discussion.
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Consider the ideal MHD equations

∂ρm

∂ t
+∇ · (ρmV) = 0 (2.150)

ρm

(
∂
∂ t

+V ·∇
)

V+∇ · −J×B = 0 (2.151)

E+V×B = 0 (2.152)

and assume that the pressure tensor is diagonal and gyrotropic

=

⎛⎝ P⊥ 0
0 P⊥ 0
0 0 P‖

⎞⎠ . (2.153)

Assume further that both the parallel and perpendicular pressures behave adiabatically and
fulfill the ideal gas equation of state

P‖ = nkBT‖ (2.154)
P⊥ = nkBT⊥ . (2.155)

There are one parallel and two perpendicular dimensions. From thermodynamics we
know that the polytropic index depends on the number of dimensions d as γ = (d +2)/d.
Setting γ⊥ = 2 and γ‖ = 3 is, however, wrong because the magnetic field not only breaks the
symmetry of the pressure tensor but also couples the perpendicular motion to the parallel
motion in inhomogeneous plasma (e.g, the mirror force, see Chap. 3).

Assume that the motion of the individual particles is adiabatic, which means that the
magnetic moment μ = W⊥/B is constant. Then the average magnetic moment 〈μ〉 =
kBT⊥/B = P⊥/nB is also constant. This yields the perpendicular equation of state

d
dt

(
P⊥

ρmB

)
= 0 . (2.156)

The parallel direction is more difficult. Chew, Goldberger, and Low developed a theory
[Chew et al, 1956] assuming that the heat flux parallel to the magnetic field is negligible.
This leads to the equation of state

d
dt

(
P2
⊥P‖
ρ5

m

)
=

d
dt

(
P‖B2

ρ3
m

)
= 0 . (2.157)

This anisotropic version of MHD is called double adiabatic theory or CGL theory. Now
the pressure tensor is of the form = P⊥ +(P‖ −P⊥)bb, where b = B/B and is the
unit tensor. The momentum equation separates into two equations

ρm

(
dV

dt

)
⊥

+∇⊥
(

P⊥ +
B2

2μ0

)
− (B ·∇)B

μ0

(
P⊥−P‖
B2/μ0

+1
)

= 0 (2.158)
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ρm

(
dV

dt

)
‖
+∇‖P‖ +(P⊥−P‖)

(
∇B
B

)
‖

= 0 . (2.159)

In the CGL theory the parallel and perpendicular polytropic indices are not constant
numbers. Assuming that p‖ ∝ nγ‖ and p⊥ ∝ nγ⊥ the following relations are found

γ⊥ = 1+
ln(B/B0)
ln(n/n0)

(2.160)

γ‖ = 3−2
ln(B/B0)
ln(n/n0)

, (2.161)

from which
γ‖ +2γ⊥ = 5 . (2.162)

While being related to each other, γ⊥ and γ‖ are spatially varying functions in an inhomo-
geneous plasma.

In space physics the CGL equations (2.158, 2.159) are sometimes useful, e.g., in the
studies of firehose and mirror instabilities (Chap. 7) related to shock waves. However, one
has to be careful with the validity of the approach. For example, the CGL theory predicts
that the temperature depends on the magnetic field as

T⊥ ∝ B ; T‖ ∝ (n/B)2 . (2.163)

For example, direct observations in the magnetic dipole field geometry above the auro-
ral ionosphere show that the perpendicular temperature does not scale as T⊥ ∝ B. Here,
and in many other practical examples, the CGL heat flux argument is not valid. In the
auroral case the particles precipitate to the upper atmosphere carrying energy (heat) with
them. This is actually one of the major sinks of energy associated with space storms in the
magnetosphere, as will be discussed in Chap. 13.



3. Single Particle Motion

In Chap. 2 we discussed the idea of the guiding center (GC) approximation and the solu-
tions of

dp

dt
= q(E+v×B)+Fnon−EM (3.1)

for homogeneous fields. Here we consider the motion in inhomogeneous fields, starting
for simplicity, at the non-relativistic limit (γ = 1, p = mv).

3.1 Magnetic Drifts

If the inhomogeneities of the magnetic field (∂t , ∇) are small as compared to the Larmor
motion

|∂B/∂ t| � ωcB ; |∇B|⊥ � B/rL ; |∇B|‖ � (ωc/v‖)B ,

we can use perturbation theory to solve the equation of motion [Northrop, 1963]. Note
that, in addition to field geometry, the validity of these conditions depends on the energy
and mass of the particles.

For weak inhomogeneities we can make a Taylor expansion around the GC. Let B0 be
the field at the GC and r the particle’s distance from it. Then

B(r) = B0 + r · (∇B)0 + ... . (3.2)

In general ∇B is a tensor whose components form the matrix (∂iB j). The tensor describes
two effects: the gradient of the field strength and the curvature of the field lines. These are
tied to each other because a gradient of the field implies curvature of the field lines some-
where in the global magnetic field configuration. Here we follow the standard textbook
approach and treat the gradients and the curvature separately.

To study the gradient effects we move to the frame of reference where v‖ = 0, which
often is not an inertial frame. The equation of motion is

dv

dt
=

q
m

(v×B0)+
q
m

(v× [r · (∇B)0])+ ... . (3.3)
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Let v0 be the solution of the “unperturbed” equation and write v = v0 + u, where u is a
small correction. Now (3.3) contains the second order term u× [r ·(∇B)0]. Because r ≈ rL,
the first-order equation is

dv

dt
=

q
m

(v×B0)+
q
m

(v0 × [rL · (∇B)0]) . (3.4)

This looks formally similar to the zero-order equation (2.79) with the external force F =
q(v0 × [rL · (∇B)0]), but now F is a function of B through rL and ∇B.

We are looking for the drift of the GC and thus we have to find the average effect over
one Larmor rotation, denoting the average by 〈 〉. We use cylindrical coordinates, where
ez ‖ B0 , eφ ‖ v0, B = Brer +Bφ eφ +Bzez. The unperturbed Larmor radius vector is given
by

rL = − m
qB2

0
(v0 ×B0) . (3.5)

A brief exercise yields

F =
〈
−qv0 × rL

(
∂ B

∂ r

)
0

〉
. (3.6)

Hereafter we leave out the subscript 0. F has both perpendicular and parallel compo-
nents

F‖ =
〈

qv× rL

(
∂Br

∂ r

)〉
(3.7)

F⊥ =
〈
−qv× rL

(
∂ Bz

∂ r

)
ez

〉
. (3.8)

Calculate first F‖. By definition v× rL = (2μ/q)ez. Thus

F‖ = 2μ
〈

∂ Br

∂ r

〉
ez = −μ

(
∂ Bz

∂ z

)
ez = −μ∇‖B . (3.9)

To calculate F⊥ we select the xy-plane as the plane of the gyro motion, when

v× ez = −rL

rL
v

∂
∂ r

= cosφ
∂
∂ x

+ sinφ
∂
∂ y

rL = −rL(cosφ ex + sinφ ey) .

Noting that 〈cos2 φ〉 = 〈sin2 φ〉 = 1/2 and 〈sinφ cosφ〉 = 0 we get

F⊥ = −qvrL

2

〈
∂ Bz

∂ x
ex +

∂ Bz

∂y
ey

〉
. (3.10)

As ∇⊥ = ex
∂
∂ x

+ ey
∂
∂ y

,
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F⊥ = −μ∇⊥B . (3.11)

Thus the total force is
F = −μ∇B . (3.12)

Train your brain

Write down the intermediate steps in the derivation of (3.12)

The force causes acceleration along the magnetic field

dv‖
dt

= −μ
m

∇‖B . (3.13)

In the perpendicular direction we find a drift across the magnetic field using the same
reasoning as in the zero-order case, i.e., the drift velocity vG must balance the force term

vG =
F⊥×B

qB2 (3.14)

⇒
vG =

μ
qB2 B× (∇B) =

W⊥
qB3 B× (∇B) . (3.15)

This is called the gradient drift. It depends both on the perpendicular energy and on the
charge of the particle. Thus the drift contributes to the net plasma current.

We assumed that v‖ = 0 but found dv‖/dt �= 0. Thus, depending on the force, the refer-
ence frame may be non-inertial. In a curved magnetic field also the GC motion is curved.
Denote the GC velocity by w (note that generally w‖ �= v‖). We let v‖ �= 0 and transform to
a frame co-moving with the GC. Let the orthogonal basis {ei} define the coordinate axes
and choose e3 ‖ v‖ ‖ B. Now v = ∑vi ei, and {ei} rotates when its origin moves with the
GC. The acceleration is

dv

dt
= ∑

i

(
dvi

dt
ei + vi

dei

dt

)
= ∑

i

(
dvi

dt
ei + vi (w‖ ·∇)ei

)
. (3.16)

The term ∑vi(w‖ ·∇)ei is due to the curvature and causes a centrifugal effect. Consider
again the averages over one Larmor rotation

FC = −
〈

m∑
i

vi(w‖ ·∇)ei

〉
. (3.17)

Due to the assumption of weak curvature (w‖ ·∇)ei can be approximated to be constant in
every point during one rotation. Because v1 and v2 oscillate, 〈v1e1〉 = 〈v2e2〉 = 0. Further-
more, during one rotation v‖ ≈ w‖ and thus

FC = −mw2
‖(e3 ·∇)e3 . (3.18)



92 3. Single Particle Motion

A little exercise in differential geometry yields

(e3 ·∇)e3 = RC/R2
C , (3.19)

where RC is the radius of curvature vector, pointing inward. Now

FC = −mw2
‖

RC

R2
C

. (3.20)

Because B = Be3,
(e3 ·∇)e3 = (B ·∇B)/B2 (3.21)

and we can write the curvature drift velocity as

vC =
−mw2

‖
qB2

RC ×B

R2
C

=
mw2

‖
qB4 B× (B ·∇)B . (3.22)

Now we can again approximate v‖ ≈ w‖ and express the curvature drift in terms of the
parallel energy W‖ ≈ (1/2)mw2

‖.

Train your brain

Fill in all steps leading to the curvature drift velocity (3.22)

If there are no local currents (∇×B = 0), the expression for the curvature drift velocity
simplifies to

vC =
2W‖
qB3 B×∇B (3.23)

and vG and vC can be combined to

vGC =
W⊥ +2W‖

qB3 B×∇B =
W

qBRC
(1+ cos2 α)n× t , (3.24)

where t ‖ B and n ‖ RC are unit vectors.
Drifting particles are often relativistic. The above drift velocities are easy to cast into

the relativistic form substituting m by γm.
The perturbation theory can be continued to higher orders. The recipe is the same as

above: First determine the force due to the higher-order perturbation and then calculate the
drift velocity to balance this effect.
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3.2 Adiabatic Invariants

Adiabatic invariants are quantities whose invariance depends on slow temporal or spa-
tial change of the parameters describing the motion. They have a close relationship with
general symmetry principles of physics:

complete periodicity ↔ conserved quantity
symmetry ↔ conservation law

If the motion is nearly-periodic, such as the Larmor rotation in the GC approximation, the
associated invariant may not be the same as in the strictly periodic case and its conservation
critically depends on the “slowness” of the variation.

In Hamiltonian mechanics it is shown that if q and p are the canonical coordinate and
momentum of the system and the motion is nearly periodic, then

I =
∮

pdq (3.25)

is an adiabatic invariant. This statement requires a proof that we will not discuss here (see,
e.g., classical mechanics textbooks by Goldstein or Landau and Lifshitz, or Bellan [2006]).

The momentum of a particle in an electromagnetic field is p = mv+qA and the canoni-
cal momentum and the coordinate perpendicular to the magnetic field are p⊥ and rL. Thus

I =
∮

p⊥ ·drL =
2πm
|q| μ , (3.26)

which shows that the magnetic moment is an adiabatic invariant.
A classic example of an adiabatic invariant is the Lorentz–Einstein pendulum whose

length (l) changes slowly. This causes a slow change of the frequency ω =
√

g/l. Chang-
ing the length means that work is done on the pendulum and thus the energy of the pendu-
lum per unit mass

W =
1
2

l2θ̇ 2 +
1
2

glθ 2 (3.27)

is not conserved. A legend tells that Lorentz asked Einstein in 1911, what is the conserved
quantity instead. Einstein’s reply was: W/ω . This example is closely analogous to the
magnetic moment

μ =
W⊥
B

=
q
m

W⊥
ωc

. (3.28)

Train your brain by proving that the slowness of the variation is essential in the
Lorentz–Einstein pendulum.

3.2.1 The first adiabatic invariant

To directly prove that the magnetic moment is an adiabatic invariant is not trivial. Text-
books usually treat some special cases; for a general treatment, see, Goldston and Ruther-
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ford [1995]. For our purposes it is instructive to see how the invariance follows from the
conservation of the total energy in a static magnetic field in the absence of electric fields:

W = W‖ +W⊥ = constant (3.29)

⇒
dW‖
dt

+
dW⊥

dt
= 0 (3.30)

W⊥ = μB ⇒
dW⊥

dt
= μ

dB
dt

+
dμ
dt

B . (3.31)

Now dB/dt = v‖dB/ds is the change of the magnetic field along the GC orbit. The parallel
energy is

m
dv‖
dt

= −μ∇‖B = −μ
dB
ds

. (3.32)

Multiplying this by v‖ = ds/dt we get

dW‖
dt

= −μ
dB
dt

. (3.33)

Thus
dW‖
dt

+
dW⊥

dt
= B

dμ
dt

= 0 , (3.34)

i.e., μ is constant if GC approximation is valid and the field is static.
Another case with general interest is when the particle is accelerated by a slow temporal

variation of the magnetic field (∂/∂ t �ωc). Faraday’s law implies a presence of an electric
field that leads to increase in perpendicular energy

dW⊥
dt

= q(E ·v⊥) . (3.35)

During one rotation the particle gains energy

	W⊥ = q
∫ 2π/ωc

0
E ·v⊥ dt . (3.36)

Assuming the slow temporal change we can replace the time integral by a line integral
over a closed loop and use Stokes’ law

	W⊥ = q
∮

C
E ·dl = q

∫
S
(∇×E) ·dS = −q

∫
S

∂ B

∂ t
·dS , (3.37)

where dS = ndS, n is the normal vector of the surface S with the direction defined by the
positive circulation of the loop C. For small variations of the field ∂B/∂ t →ωc	B/2π ⇒

	W⊥ =
1
2
|q|ωcr2

L	B = μ	B . (3.38)
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On the other hand
	W⊥ = μ	B+B	μ (3.39)

and thus 	μ = 0. For slow changes μ is conserved although the inductive electric field
accelerates the particle, analogously to the work done on the Lorentz–Einstein pendulum.

3.2.2 Magnetic mirror and magnetic bottle

Assume that the total energy W and μ =W⊥/B are conserved. Let the particle move toward
a weak positive gradient of B. Now W⊥ can increase until W‖ → 0. The perpendicular
velocity is v⊥ = vsinα and

μ =
mv2 sin2 α

2B
. (3.40)

On the other hand v2 ∝ W is also constant. Thus

sin2 α1

sin2 α2
=

B1

B2
. (3.41)

When W‖ → 0, α → 90◦. The slowing down of the GC motion is due to the mirror force
F = −μ∇‖B. The strength of the mirror field Bm depends on the particle’s pitch angle at
the reference point B0. For the mirror field (αm = 90◦) we get

sin2 α0 = B0/Bm . (3.42)

Because Bm is finite, every mirror field is leaky. Particles having a smaller pitch angle
than α0 in the field B0 get through the mirror. These particles are said to be in the loss
cone. Using two opposite mirrors we can build a magnetic bottle that confines particles
outside the loss cone(s).

The mirror force does not need to be the only force affecting the parallel motion of
the GC. The electric field may have a parallel component E‖ and the particle may be in a
gravitational field. The parallel equation of motion then reads

m
dv‖
dt

= qE‖ +mg‖ −μ∇‖B . (3.43)

Assuming that the non-magnetic forces can be derived from the potential U(s), we get

m
dv‖
dt

= − ∂
∂ s

[U(s)+ μB(s)] . (3.44)

Thus the GC moves in the effective potential U(s)+ μB(s). Examples of potentials com-
bined with a mirror force are the gravitational field in the solar atmosphere and parallel
electric fields above discrete auroral arcs.
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3.2.3 The second adiabatic invariant

The bounce motion in a magnetic bottle is nearly periodic if the field does not change
much during one bounce period τb

τb = 2
∫ s′m

sm

ds
v‖(s)

=
2
v

∫ s′m

sm

ds
(1−B(s)/Bm)1/2 , (3.45)

where s is the arc length along the GC orbit and sm and s′m are the coordinates of the mirror
points. The bounce period is defined over the whole bounce motion back and forth. This is
a sensible approach if τb � τL. Thus the condition to consider the bounce motion as nearly
periodic is more restrictive than in the case of Larmor motion

τb
dB/dt

B
� 1 . (3.46)

If this condition is fulfilled, there is an associated adiabatic invariant which turns out to be
the longitudinal invariant

J =
∮

p‖ ds . (3.47)

To directly prove the invariance of J in a general case is a formidable task. The com-
plete proof is given by Northrop [1963]. The textbook by Goldston and Rutherford [1995]
presents the proof for time-independent fields, which is long enough. In space plasmas it
is the time-dependence that typically breaks the conservation of J.

3.2.4 Betatron and Fermi acceleration

Consider the rate of change of the kinetic energy T of a charged particle in a general
time-dependent magnetic field B. The time derivative in a moving frame of reference is
d/dt = ∂/∂ t +w ·∇, where w is the velocity of the frame of reference. In the GCS

dTGCS

dt
= μ

dB
dt

= μ
(

∂B
∂ t

+w⊥ ·∇⊥B+w‖
∂B
∂ s

)
. (3.48)

In the frame of reference of the observer (OFR)

dTOFR

dt
=

dTGCS

dt
+

d
dt

(
1
2

mw2
‖

)
+

d
dt

(
1
2

mw2
⊥

)
. (3.49)

With some algebra we get
dTOFR

dt
= μ

∂B
∂ t

+qw ·E . (3.50)

The first term in the right-hand side of (3.50) gives the betatron acceleration due to the
increasing magnetic flux through the position of the GC. More specifically, we should call
this gyro betatron acceleration.
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The second term contains both magnetic field-aligned acceleration (if E‖ �= 0) and
another betatron effect, called drift-betatron acceleration. When the GC drifts adiabati-
cally across the magnetic field, e.g., due to E×B-drift toward increasing magnetic field
(B2 > B1), the invariance of μ implies

W⊥2

W⊥1
=

B2

B1
. (3.51)

Thus W⊥2 > W⊥1 .
A special case of drift-betatron acceleration is when a particle in a J conserving bounce

motion drifts toward a magnetic mirror. This is equivalent to moving the mirror points
closer to each other when

∮
ds decreases. To compensate this v‖ and thus W‖ must increase.

This mechanism is called Fermi acceleration.1

Fermi introduced this mechanism to explain the acceleration of cosmic rays to very high
energies (107 −1010 eV) in the magnetic fields of the universe. A typical galactic cosmic
ray has wandered around in the galaxy for millions of years. The radius of the Milky Way
is of the order of 100 000 light years, and thus the particle has had a lot of time to “collide”
with magnetic field structures in the galaxy that have a wide range of velocities. Note that
in a given reference frame (e.g., ours) the particle either gains or loses energy when it gets
deflected by a magnetic structure (e.g., mirror). As a result, the velocity distribution of the
seed population widens and finally some particles end up at very high energies.

The modern version of Fermi acceleration, believed to be responsible for the accelera-
tion of galactic cosmic rays, no longer relies on the conservation of the second adiabatic
invariant in a distribution of moving magnetic mirrors. Instead, particles are assumed to
be accelerated in shock waves generated in supernova explosions by a mechanism called
diffusive shock acceleration. In this model, particles gain energy by repeatedly crossing a
single shock front from one side to the other (Chap. 11).

The very highest energies of cosmic rays up to about 1020 eV remain unexplained. It
should not even be possible to observe particles with energies higher than this, unless they
are created not too far from the observing site. The reason for this is the quantum mechani-
cal interaction of the particles with the blue-shifted cosmic microwave background. Above
6× 1019 eV, known as the Greisen–Zatsepin–Kuzmin cut-off this interaction leads to the
production of pions that carry the excessive energy away.

3.2.5 The third adiabatic invariant

Also the drift across the magnetic field may be nearly-periodic if the field is sufficiently
symmetric as, e.g., the quasi-dipolar planetary magnetic fields. The corresponding adia-
batic invariant is the magnetic flux through the closed contour defined by the GC drift

Φ =
∮

A ·ds , (3.52)

1 A mechanical analog of Fermi acceleration is hitting a tennis ball with a racket. In the audience’s frame
the ball is accelerated but in the racket’s frame it just mirrors (or actually loses energy due to the elasticity
of the ball and racket).
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where A is the vector potential of the field and ds is the arc element along the drift path of
the GC. The drift period τd has to fulfill τd � τb � τL. The invariant is weaker than μ and
J because much slower changes in the field can break the invariance of Φ .

In the Earth’s magnetosphere μ is often a good invariant. J is invariant for particles that
spend at least some time in the magnetic bottle defined by the nearly-dipolar field of the
Earth. Φ is constant for energetic particles in the trapped radiation belts. However, any or
all of the invariances can be broken by perturbations to the system.

Let us briefly return to the Hamiltonian mechanics. These three functions (μ,J,Φ),
whether invariant or not, form a particular set of canonical action variables or action
integrals

Ji =
1

2π

∮
i
(p+qA) ·dsi (3.53)

with associated phase angles φi, that in this case are the gyrophase, the bounce phase, and
the drift phase. We will return to these in Chap. 10 when we discuss the particle distribution
function, or phase-space density, expressed as a function of the action variables.

3.3 Motion in the Dipole Field

Charged particle motion in the dipole field is an important application of the orbit the-
ory. Within the distances 2–7 RE from the Earth’s center the dipole is a reasonably good
approximation of the geomagnetic field and all particles except high-energy cosmic rays
behave adiabatically as long as their orbits are not disturbed by collisions or time-varying
electromagnetic fields.

In the following we use “geomagnetically” defined spherical coordinates. The dipole
moment ME is in the origin and points toward the south. Latitude (λ ) is zero at the equa-
tor and increases toward the north. Longitude (φ ) increases toward the east from a given
reference longitude. The SI unit of ME is A m2. ME is often replaced by k0 = μ0ME/4π ,
which is also called dipole moment. The strength and orientation of the terrestrial dipole
moment varies slowly and must be taken into account in time scales of space climate. For
our purposes sufficiently accurate approximations are

ME = 8×1022 Am2

k0 = 8×1015 Wbm (SI : Wb = Tm2)
= 8×1025 Gcm3 (Gaussian units, G = 10−4 T)
= 0.3 GR3

E (RE � 6370km)

The last (non-SI) expression is useful in practice because the dipole field on the surface of
the Earth varies in the range 0.3–0.6 G.

The dipole field is an idealization where the source current is assumed to be shrunk
into a point at the origin. The source of a planetary or stellar magnetic field is actually a
finite, even large, region within the body giving rise to a whole sequence of higher mul-
tipoles. When moving away from the source the non-dipolar (quadrupole, octupole, etc.)
contributions vanish faster than the dipole. Outside the source the field is a potential field
(B = −∇Ψ ). The potential for the dipole is
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Ψ = −k0 ·∇1
r

= −k0
sinλ

r2 . (3.54)

It is a standard exercise in elementary electromagnetism to show that

B =
1
r3 [3(k0 · er)er −k0] , (3.55)

from which

Br = −2k0

r3 sinλ

Bλ =
k0

r3 cosλ (3.56)

Bφ = 0 .

The magnitude of the magnetic field is

B =
k0

r3 (1+3sin2 λ )1/2 (3.57)

and the equation for the field line is

r = r0 cos2 λ , (3.58)

where r0 is the distance from the dipole to the point where the field line crosses the dipole
equator. In dipole calculations we also need the length of the line element

ds = (dr2 + r2dλ 2)1/2 = r0 cosλ (1+3sin2 λ )1/2dλ . (3.59)

The geometric factor (1 + 3sin2 λ )1/2 = (4− 3cos2 λ )1/2 pops up here and there in the
dipole expressions.

Every dipole field line is uniquely determined by its (constant) longitude φ0 and the dis-
tance r0. A useful quantity is the L parameter L = r0/RE . For a given L the corresponding
field line reaches the surface of the Earth at the latitude

λe = arccos
1√
L

. (3.60)

The field magnitude along a given field line as a function of latitude is

B(λ ) = [Br(λ )2 +Bλ (λ )2]1/2 =
k0

r3
0

(1+3sin2 λ )1/2

cos6 λ
. (3.61)

For the Earth
k0

r3
0

=
0.3
L3 G =

3×10−5

L3 T . (3.62)
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At the equator on the surface of the Earth the dipole field is 0.3 G, at the poles 0.6 G (i.e.,
30 and 60 μT). The observable geomagnetic field has considerable deviations from this
because the dipole is not quite in the center of the Earth, the source is not a point, and the
conductivity of the Earth is not uniform.

The guiding center approximation can be applied if the particle’s Larmor radius is much
smaller than the curvature radius of the field defined by RC = |d2r/ds2|−1, which for a
static dipole field is

RC(λ ) =
r0

3
cosλ

(1+3sin2 λ )3/2

2− cos2 λ
. (3.63)

In terms of the particle’s rigidity mv⊥/|q| the condition is

rL

∣∣∣∣∇⊥B
B

∣∣∣∣ =
mv⊥

|q|RCB
∝

mv⊥
|q|r0B

, (3.64)

i.e., the GC approximation is valid if

mv⊥
|q| � r0B . (3.65)

The dipole field is a magnetic bottle and the energetic particles trapped in the bottle
around the Earth or magnetized planets are said to form trapped radiation. Let λm be the
mirror latitude of a trapped particle and let the subscript 0 refer to the equatorial plane.
Then the equatorial pitch angle of the particle is

sin2 α0 =
B0

B(λm)
=

cos6 λm

(1+3sin2 λ )1/2
. (3.66)

This shows that the mirror latitude does not depend on L, but the mirror altitude does.
If λe is the latitude where the field line intersects the surface of the Earth and if λe < λm,

the particle hits the Earth before mirroring and is lost from the bottle. In reality the loss
takes place in the upper atmosphere at an altitude that depends on the particle’s energy,
i.e., on how far it can penetrate before it is lost by collisions. The critical pitch angle in the
equatorial plane is

sin2 α0l = L−3(4−3/L)−1/2 = (4L6 −3L5)−1/2 . (3.67)

The particle is in the loss-cone, if α0 < α0l .
The bounce period in a dipolar bottle is

τb = 4
∫ λm

0

ds
v‖

= 4
∫ λm

0

ds
dλ

dλ
v‖

=
4r0

v

∫ λm

0

cosλ (1+3sin2 λ )1/2

1− sin2 α0(1+3sin2 λ )1/2/cos6 λ
dλ

=
4r0

v
f (α0) , (3.68)
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where
v‖(λ ) = vcosα = v(1− sin2 α)1/2 = v[1− sin2 α0B(λ )/B0]1/2 (3.69)

and (3.61) has been used. For 30◦ ≤ α0 ≤ 90◦

f (α0) ≈ 1.30−0.56sin2 α0 . (3.70)

The conservation of the second adiabatic invariant requires that the bounce period is
much shorter than the variations in the magnetic field. For example, in the inner magne-
tosphere the bounce times of 1-keV electrons are a few seconds and of 1-keV protons a
few minutes. During magnetospheric activity typical time scales of the field changes are
minutes. Thus under such conditions J is a good invariant for electrons but not for protons
or heavier ions.

Both the gradient and curvature of the dipole field are directed toward the planet. In the
dipole field of the Earth positively charged ions drift to the west and electrons to the east.

Because ∇×B = 0, we find for vGC

vGC =
W

qBRC
(1+ cos2 α) (3.71)

=
3mv2r2

0
2qk0

cos5 λ (1+ sin2 λ )
(1+3sin2 λ )2

[
2− sin2 α0

(1+3sin2 λ )1/2

cos6 λ

]
.

For the drift motion around the Earth, vGC is often less interesting than the angular speed
averaged over one bounce period

〈
φ̇
〉

= 〈vGC/r cosλ 〉, which gives the drift rate of the
guiding center around the dipole axis. A little exercise gives the result

〈
φ̇
〉

=
4

vτb

∫ λm

0

vGC(λ )(1+3sin2 λ )1/2

cos2 λ cosα(λ )
dλ

≡ 3mv2r0

2qk0
g(α0) =

3mv2RE L
2qk0

g(α0) , (3.72)

where

g(α0) =
1

f (α0)

∫ λm

0

cos3 λ (1+ sin2 λ )[1+ cos2 α(λ )]
(1+3sin2 λ )3/2 cosα(λ )

dλ . (3.73)

Within the pitch angle range 30◦ ≤ α0 ≤ 90◦

g(α0) � 0.7+0.3sin(α0) . (3.74)

For α0 = 90◦ 〈
φ̇0

〉
=

3mv2REL
2qk0

. (3.75)

In the relativistic form this formula is〈
φ̇0

〉
=

3mc2REL
2qk0

γβ 2 . (3.76)
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The average drift period 〈τd〉 is

τd =
2π
|〈φ̇〉| =

4π
3

|q|k0

mc2RE

1
Lγβ 2g(α0)

≈ 1.0×104 me

m
|q|
e

1
Lγβ 2g(α0)

, (3.77)

where the last line gives τd in seconds when the variables are given in SI units. The drift
period is inversely proportional to the energy of the particle. In the region where the ter-
restrial field is most dipolar (L � 2−7) the drift periods for 1-keV particles are hundreds
of hours whereas those for 1-MeV particles are some tens of minutes, depending on the
pitch angles.

In the inner radiation belt (L ≈ 1.5−3) the dominating trapped high-energy population
is protons in the energy range 0.1 MeV – 40 MeV, whereas in the outer belt (L > 4) the
energetic component is mostly electrons in the keV to MeV range. Thus radiation belt
protons are mostly non-relativistic whereas a considerable fraction of electrons can be
relativistic (Chap. 14).

Example: Penetration of cosmic rays to the atmosphere

Most of the galactic cosmic rays are relativistic. In studies of relativistic particles it is
common to write c = 1. Then energy (eV), momentum (eV c−1), and mass (eV c−2) are all
expressed in units of eV, or actually MeV or GeV. In these units rigidity, whose physical
dimension is momentum per charge, has the volt as its unit (in the ranges of MV or GV).
Rigidity is an important concept for cosmic ray penetration through the geomagnetic field,
as it describes which particles can reach the atmosphere.

The relationship between rigidity (R = |p/q|) and energy is found by solving the rela-
tivistic expression for the total energy WT

W 2
T = p2c2 +m2

0c4 , (3.78)

where m0 is the (rest) mass of the particle. The result is

R =
A
Z

[(γ2 −1)1/2]W0A , (3.79)

where W0A is the rest mass energy per nucleon, A is the atomic number and Z the charge
state, i.e. +n for n times charged ions. Conversely, if the rigidity is known, the Lorentz
factor γ , and thus the particle speed can be found from

γ =

[(
RZ

A/W0A

)2

+1

]1/2

. (3.80)

The ambient magnetic field deviates particles and allows only rigid enough particles to
penetrate to a given depth. Cosmic ray cut-off rigidity specifies the minimum rigidity that
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a charged particle must have to be observed at a given position in the geomagnetic field
coming from from a given direction.

Calculation of the cut-off rigidities is tedious, as the guiding center approximation can-
not be used and the incident direction has to be taken into account. In general the cut-off
is the higher the more perpendicularly to the magnetic field the particle moves.

In the early days of cosmic ray research Størmer derived the cut-off rigidity formula in
the dipole field

Rc = M
cos4 λ

r2[1+(1− sinε sinφ cos3 λ )1/2]2
, (3.81)

where M is the magnetic moment in the unit system used by Størmer, λ is the geomagnetic
latitude, ε the zenith angle, and φ the azimuthal angle measured from the direction of
geomagnetic north with respect to geographic north. Using the terrestrial dipole moment
and expressing r in RE from the dipole center, the numerical terms give the factor 59.6.
For vertical incidence in the terrestrial dipole field the cut-off rigidity is given by

Rc(GV) =
14.9 cos4 λ

r2 . (3.82)

Taking into account the deviations from the dipole field the cut-off rigidity for vertical
incidence at sea-level varies between 13 and 17 GV near the equator.

As the L-parameter for the dipole field is given by cos2 λ = r0/L, the cut-off rigidity in
the inner magnetosphere (up to L = 4) can be estimated by Rc ≈ 16L−2 GV. The numerical
factor is a little larger than the dipole value due to the external magnetic field contributions.
At auroral latitudes the cut-off rigidity is typically less than 1 GV. At the dipole magnetic
poles the cut-off rigidity is zero for a particle that has exactly field-aligned direction when
entering vertically. In the real magnetosphere the external magnetic field created by mag-
netospheric currents inhibits the direct entry of low-energy, or small-rigidity, particles.

The final stopping power against the cosmic rays is not the magnetic field but the atmo-
sphere of the Earth. The primary particles collide with atmospheric nuclei cascading first
typically to protons, neutrons, and pions, which further decay to photons and muons, etc.
Energetic enough photons may form electron-positron pairs. This was the process through
which Anderson first identified the positron in 1933. Very high-energy cosmic rays pro-
duce large amounts of particles in such cascades. These air showers produce Cherenkov
radiation in the air, which can be observed by optical means. The neutrons and muons
making their way down to the Earth can also be detected directly using ground-based in-
struments. In fact, neutron and muon fluxes observed on ground are standard means of
characterizing the intensity of cosmic ray events.

3.4 Motion Near a Current Sheet

The interaction between the terrestrial magnetic field and the solar wind stretches the
nightside magnetosphere to a long tail where the field geometry changes from dipolar
to that of a thin current sheet. This is just one example of the great variety of current sheets
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in space plasmas. The current must be there to account for the change of the magnetic field
orientation according to Ampère’s law ∇×B = μ0J .

3.4.1 The Harris model

A two-dimensional current sheet can be described by the Harris model whose magnetic
field is of the form

B = B0 tanh
( z

L

)
ex +Bnez , (3.83)

where B0 and Bn are constant, Bn � B0 and L is the characteristic thickness of the current
sheet. If Bn = 0, the field is one-dimensional. The electric current points toward the positive
y-axis and is

Jy =
(

B0

μ0L

)
sech2

( z
L

)
. (3.84)

In the one-dimensional case the magnetic field is in magnetohydrostatic equilibrium
(Chap. 6) with plasma in the current sheet, whose pressure is

P(z) = P0 sech2
( z

L

)
. (3.85)

The Harris field can be derived from a vector potential of the form

Ay(x,z) = −B0F(z)+Bnx . (3.86)

The particles move in an effective potential of the form

U(x,z) =
1

2m
[py −qAy(x,z)]2 , (3.87)

where py is the linear momentum in the y-direction.

Train your brain by calculating F(z) in (3.86).

In simple analytical calculations the Harris model is often approximated as

B = B0

( z
L

)
ex +Bn ez . (3.88)

In this approximation the field lines are parabolas

x =
B0

2BnL
z2 + constant . (3.89)
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In the one-dimensional case (Bn = 0) a useful approximation is

Bx = B0 ; z ≥ L

Bx =
B0z
L

; L ≥ z ≥−L

Bx = −B0 ; z ≤ L .

(3.90)

In this magnetic field model the components of the equation of motion are

ẍ = 0 (3.91)

ÿ =
(

qB0

mL

)
zż (3.92)

z̈ = −
(

qB0

mL

)
zẏ . (3.93)

The equation of motion perpendicular to the magnetic field can be cast into the form

d
dt

(ẏ2 + ż2) = 0 , (3.94)

which expresses the conservation of energy. After appropriate normalization of k and z the
motion in the z-direction can be found as a solution of the equation

ż2 = (1− k2 + k2z2)(1− z2) . (3.95)

The general solutions of (3.95) can be expressed in terms of elliptic integrals and Ja-
cobi’s elliptic functions. Examples of the orbits are given in Fig. 3.1. Outside the current
sheet the motion is normal gyro motion. Within the current sheet the motion is more com-
plicated. The monotonic motion in the ±y-direction is called Speiser motion. Particles in
the Speiser motion carry most of the current in the current sheet. They do not conserve the
magnetic moment but the motion is periodic in the z-direction, for which there is another
adiabatic invariant [e.g., Büchner and Zelenyi, 1989].

Jy

Jy

B

B

B B

B B

Fig. 3.1 Orbits of positively charged particles near a one-dimensional current sheet.
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3.4.2 Neutral sheet with a constant electric field

The earthward plasma convection in the magnetospheric tail induces a dawn-to-dusk di-
rected electric field E = E0 ey. This electric field has the same direction as the current,
i.e., E ·J > 0. Thus Poynting’s theorem implies particle energization at the expense of the
electromagnetic field. Under these circumstances the equations of motion are

ẍ = 0 (3.96)
ÿ = c1zż+ c2 (3.97)
z̈ = −c1zẏ , (3.98)

where c1 = qB0/mL and c2 = qE0/m. Due to the electric field the energy equation is more
complicated than above

1
2
(ẏ2 + ż2)− c2y =

1
2
(ẏ2

0 + ż2
0)− c2y0 , (3.99)

where zeros refer to the initial values. The equation in the z-direction becomes

z̈ = −c1z
[
ẏ0 +

(c1

2

)
(z2 − z2

0)+ c2t
]

. (3.100)

This is a nonlinear equation with chaotic solutions.
Assume that a particle remains in this current sheet for a long time (with respect to its

gyro period). For large t

z̈ ≈−c1c2zt = −
( q

m

)2
(

E0B0

L

)
zt . (3.101)

This equation has oscillatory solutions in terms of Bessel functions of the first and second
kind. For large t the solution can be approximated by

z ≈ − t−1/4

(E0B0/L)1/12(q/m)1/6 × (3.102){
Acos

[
2
3

( q
m

)(
B0E0

L

)1/2

t3/2

]
+Bsin

[
2
3

( q
m

)(
B0E0

L

)1/2

t3/2

]}

where A and B are constants that depend on initial conditions. For large t the amplitude of
the oscillation decays as t−1/4.

Now we can integrate y to get

y ≈ y0 +
[
ẏ0 −

(c1

2

)
z2

0

]
t +

c2t2

2
. (3.103)
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Inserting these in the energy equation we find that the kinetic energy increases as t2. Thus
all particles execute damped oscillations about z = 0, while the positive ions are accelerated
in the +y-direction and electrons in the −y-direction.

3.4.3 Current sheet with a small perpendicular magnetic field component

A real current sheet often has a small perpendicular magnetic field component. In the
Earth’s magnetotail the dipolar field is stretched to form a long current sheet that has a
small northward component to a distance of more than 100 RE , except during substorm
expansions when the current sheet disrupts closer to the Earth (Chap. 13). Consider the
particle dynamics in a 2D model of such a tail

B = B0

( z
L

)
ex +Bnez (3.104)

with the same electric field as above. Now the equations of motion become

ẍ = c3ẏ (3.105)
ÿ = −c3ẋ+ c1zż+ c2 (3.106)
z̈ = −c1zẏ , (3.107)

where c1 and c2 are the same as previously and c3 = qB0Bn/m. This leads to equations
requiring numerical intergration. The energy integral includes all coordinates

m
2

(ẋ2 + ẏ2 + ż2)+qϕ =
m
2

(ẋ2
0 + ẏ2

0 + ż2
0)+qϕ0 , (3.108)

where ϕ is the electrostatic potential E = −∇ϕ .
Let us then consider what happens to a proton that approaches the current sheet in

Larmor motion. If the energy of the particle is small enough, it starts to execute Speiser
motion in the current sheet while simultaneously turning around the weak Bn. If there is no
electric field, the situation is symmetric and the particle is ejected from the current sheet
in a symmetrical position with respect to the axis parallel to the x-axis passing through the
gyro center of motion in the xy-plane. In the presence of E = E0 ey the proton is accelerated,
which makes it progress farther in the current sheet and being finally ejected with a larger
energy.

The capture into Speiser motion and the ejection from the current sheet are very sen-
sitive to the initial conditions, characteristic to chaotic systems. Consider a dipole field
where the particle motion is adiabatic conserving μ . Stretch the field slowly to a tail-like
configuration. When the ratio RC/rL becomes smaller than about 10, the invariance of the
magnetic moment starts to break and the motion becomes non-adiabatic and the particle
loses the guidance of the magnetic field. When the field is stretched further the motion of
particles with smaller energies becomes irregular and chaotic. The chaotization changes
the pitch angles of the particles which can, for example, fill the loss cone. This is one
mechanism to precipitate particles from the magnetosphere to the ionosphere.
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3.5 Motion in a Time-dependent Electric Field

Understanding charged particles’ behavior in time-dependent electric fields is important,
as the response of plasma determines the properties of electromagnetic wave propagation
(Chap. 4) and time-dependent fields change the energy of the particles through wave–
particle interactions.

3.5.1 Slow time variations

If the magnetic field is static and homogeneous and the time-variation of the electric field
slow (∂/∂ t � ωc), we find the polarization drift

vP = − m
qB2

dvE

dt
×B =

1
ωcB

dE⊥
dt

. (3.109)

This drift separates charges and masses which gives a rise to a polarization current (JP =
nqvP) in the plasma. Due to the large mass ratio between electrons and ions this current is
carried mostly by the ion drift.

When E increases, JP ·E > 0 for both positive and negative charges, i.e., particles gain
energy. This energy gain is the same as the difference in the E×B-drift energy before and
after the increase of E. If, on the other hand, E decreases, the particles lose energy.

Note that vE and vP are of different order in magnitude

dE
dt

∼ ωE ⇒ vP

vE
∼ 1

ωcB
ωE

B
E

∼ ω
ωc

� 1 , (3.110)

where the last inequality is the basic condition for the existence of the polarization drift.

3.5.2 Time variations in resonance with gyro motion

We move now to the case where the rate of change in the electric field is of the same order
as the gyro frequency of the particle: E ∝ exp(−iωt) and ω ≈ ωc.

Assuming further a static and homogeneous B the equation of motion is

dv

dt
=

q
m

(Ee−iωt +v×B) . (3.111)

Seek a solution of the form v = ve exp(−iωt) + vm (e for electric and m for magnetic),
where ve is time-independent. The equation of motion is then

dvm

dt
− iωve e−iωt =

q
m

(Ee−iωt +vm ×B+ve ×Be−iωt ) . (3.112)

The magnetic part
dvm

dt
=

q
m

(vm ×B) (3.113)
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gives the Larmor rotation. The electric part is

q
m

E = (−iω +
q
m

B×)ve ≡−(iω +ωωωωω c×)ve . (3.114)

Now ωωωωω c is the vector ωωωωω c = −qB/m. Multiplying the above expression from the left by
(iω −ωωωωω c×) we get

q
m

(iω −ωωωωω c×)E = (ω2 −ω2
c )ve +(ωωωωω c ·ve)ωωωωω c . (3.115)

Decompose this into the parallel and perpendicular components

ve‖ =
i
ω

qE‖
m

(3.116)

ve⊥ =
q
m

(
iω −ωωωωω c×
ω2 −ω2

c

)
E⊥ . (3.117)

We see that ve‖ oscillates with the phase lagging 90◦ behind E‖. The perpendicular velocity
can be expressed as

veL =
q
m

i
ω −ωc

EL (3.118)

veR =
q
m

i
ω +ωc

ER , (3.119)

where

EL = −1
2

(
E⊥ + i

ωωωωω c ×E⊥
ωc

)
(3.120)

ER = −1
2

(
E⊥− i

ωωωωω c ×E⊥
ωc

)
(3.121)

are the left-hand (EL) and right-hand (ER) polarized components of the (wave) electric
field. They are in resonance with different particle species, the left-hand polarized wave
with positive charges, the right-hand polarized wave with negative charges.

NOTE: This is the convention of the sense of circular wave polarization in (modern)
plasma physics, i.e., the electric field of a right-hand polarized wave rotates around the
magnetic field in the same sense as an electron.

3.5.3 High-frequency fields

Assume next that ω � ωc. This allows the use of an approach resembling the GC approx-
imation, called oscillation center approximation.
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In the zero-order problem we assume that E is spatially homogeneous with the time
dependence of the form exp(−iωt). Write the equation of motion in the form

d2r

dt2 =
q
m

(Ee−iωt ) . (3.122)

This has the solution
r =

q
mω2 (Ee−iωt )+ c1t + c2 . (3.123)

Include B and let the fields be weakly inhomogeneous and proportional to exp(−iωt)

d2r

dt2 =
q
m

[E(r)+
dr

dt
×B(r)]e−iωt . (3.124)

Equation (3.122) is the zero-order approximation of (3.124) if both of the following con-
ditions are valid

1. in the Taylor series
E(r) = E(r0)+(r1 ·∇0)E+ . . . (3.125)

• E(r0) dominates
• r0 is the center of oscillation and r1 = r− r0 oscillates
• r0 moves slowly and E(r0) is almost a constant during one oscillation period:

|(ṙ0 ·∇)E|
ω

� E (3.126)

2. (dr/dt)×B is small, i.e., ωc � ω .

Because d2r/dt2 ∼ ω dr1/dt and the magnetic term is proportional to ωcdr/dt, the
speed dr/dt must not be much larger than dr1/dt. Under such circumstances we can ex-
pand (3.124) as

d2r0

dt2 +
d2r1

dt2

=
q
m

[
E(r0)+(r1 ·∇0)E+

dr0

dt
×B(r0)+

dr1

dt
×B(r0)

]
+

q
m

[
dr0

dt
× (r1 ·∇0)B+

dr1

dt
× (r ·∇0)B

]
, (3.127)

where the last line is of the second order.
The second term in the LHS is larger than the first. Thus the zero-order solution is

r1 = − q
mω2 E0 . (3.128)

For the first-order solution we consider only the time averages of the first-order terms
in the same way as in the GC approximation but in this case averaged over the oscillation
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period. 〈dr0/dt ×B0〉 can be neglected because dr0/dt is small and 〈B0〉 = 0. Now〈
d2r0

dt2

〉
=

q
m

{
〈(r1 ·∇0)E〉+

〈
dr1

dt
×B0

〉}
(3.129)

and 〈d2r0/dt2〉≈ d2r0/dt2. Inserting the zero-order solution for r1 to the expression above
a brief calculation yields

d2r0

dt2 = − q2

m2ω2

〈
∇0

E2

2

〉
− q2

m2ω2

〈
∂
∂ t

(E0 ×B0)
〉

. (3.130)

For a standing wave the last term is zero. Thus we have found that the oscillation center is
accelerated by the potential

Φ =
q2

m2ω2

〈
E2

2

〉
. (3.131)

This is called ponderomotive potential. The oscillation center is accelerated toward smaller
Φ . The ponderomotive force ∝ −∇Φ is a nonlinear function of the electric field. It can be
used to trap particles in the field of a standing wave. This effect appears in various prob-
lems of nonlinear plasma physics, e.g., in heating of plasma by intense electromagnetic
waves.



 
 



4. Waves in Cold Plasma Approximation

Plasmas are very rich in wave phenomena. If an equilibrium state of a plasma is perturbed,
plasma responds with wave-like behavior. The waves may carry the effects of the perturba-
tion far from their origin, or be damped through interactions with the surrounding plasma.
Sometimes the waves may grow to such large amplitudes that the entire plasma configu-
ration is destroyed. Waves are efficient in particle acceleration and plasma heating. Even
waves interacting weakly with the plasma can be distorted by the interaction, for example,
different frequencies sent at the same time through the plasma arrive at different times
and the polarization plane is rotated, as the background magnetic field makes the plasma
birefringent.

We start with the traditional introduction to the menagerie of plasma waves discussing
them in the cold plasma approximation,. The approach is valid when the phase velocities
of the waves are larger than the thermal velocity of the background plasma. This is quite
sufficient for a wide range of wave phenomena. As we will see, the approach has its natural
limitations, e.g., in the context of instabilities and wave–particle interactions, which are
discussed in subsequent chapters.

4.1 Basic Concepts

An advantage of the cold plasma approach is that it closely resembles the standard treat-
ment of electromagnetic wave propagation in dispersive media and thus the basic concepts
of electrodynamics are readily available. In this section we briefly review some of these
concepts that are central to plasma wave propagation.

4.1.1 Waves in linear media

We start the discussion of wave concepts in linear media, of which the vacuum (ρ = 0;
J = 0) is the simplest example. From Maxwell’s equations we get

113H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth,

© Springer-Verlag Berlin Heidelberg 2011
Springer Praxis Books, DOI 10.1007/978-3-642-00319-6_4,
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∇2H− 1
c2

∂ 2H

∂ t2 = 0 (4.1)

∇2E− 1
c2

∂ 2E

∂ t2 = 0 , (4.2)

where we introduced H = B/μ0 for notational convenience.
The solutions of these equations are waves propagating with the speed of light. Consider

a wave that propagates in the (±)z-direction of a Cartesian coordinate system (x,y,z). The
x-component of the wave electric field is

Ex(x,y,z, t) = g1(x,y) f1(z− ct)+g2(x,y) f2(z+ ct) , (4.3)

where ∇2g1 = ∇2g2 = 0. The most important special cases of these solutions are plane
waves and spherical waves.

For a plane wave propagating in the z-direction ∂/∂x = ∂/∂y = 0 and g1 and g2 are
constant. Consequently, there is a plane where E is constant. A plane wave can be repre-
sented by a sinusoidal function

Ex(z, t) = E0 cos(kz−ωt) , (4.4)

where E0 is the amplitude, ω = 2π f the angular frequency, and k = 2π/λ the wave num-
ber. The phase speed of the wave is ω/k = c. In vector form we write

E(r, t) = E0 cos(k · r−ωt) , (4.5)

where k is the wave vector.
Another important class of solutions to the wave equation are spherical waves, for

which electric field is constant on the surface of an expanding sphere. For example, the
field of a radiating electric dipole antenna far from the source is nearly spherical

E(r,θ ,φ , t) ≈ a
r

sinθ cos(kr−ωt)eθ . (4.6)

In space physics we often, but not always, assume that the source of the wave is so far
from the observation site that a plane wave is a good local representation of the wave
propagation.

Throughout this book we use the complex notation for plane waves with the following
sign convention for the exponentials:

E = E0ei(k·r−ωt) ; B = B0ei(k·r−ωt) . (4.7)

If E0 and B0 are constant, the temporal and spatial dependencies are said to be harmonic
and Maxwell’s equations can be transformed to an algebraic form

ik ·D = ρ
k ·B = 0

k×E = ωB

ik×H = J− iωD .

(4.8)
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Assume that ρ = 0, J = 0, σ = 0 and ε and μ are constant but not necessarily equal
to ε0 and μ0. The solution is modified by c → v = 1/

√εμ , i.e., the phase speed becomes
different from the speed of light. ω and k are related through a dispersion equation or
dispersion relation

k =
ω
v

=
√

εμ ω =
n
c

ω , (4.9)

where

n =
√

εμ
ε0μ0

(4.10)

is the refractive index of the medium. The phase velocity of the wave is defined by

vp =
ω
k

(4.11)

and the group velocity by

vg =
∂ω
∂k

. (4.12)

In this case vg = vp = c/n and both are independent of frequency and wave number, i.e.,
the medium is not dispersive.

As the wave number is the absolute value of the wave vector, the phase and group
velocities are also vector quantities. We write the wave vector as k = kn, where n is the
unit vector defining the wave normal. The wave normal is perpendicular to the surface of
constant wave phase. The wave normal direction is the direction of wave propagation and
it thus gives the direction of the phase velocity vector

vp =
ω
k

n . (4.13)

In isotropic media the direction of wave propagation is the same as the direction of
energy flux S = 1

2 E×H∗. In anisotropic media, e.g., in magnetized plasma, the electric
field may have a component ‖ k, implying that S ∦ k. The “ray” of the wave may thus
propagate in a different direction than k. Ray-tracing is a method of following the ray in
order to find the direction of energy and information propagation. The propagation velocity
of the ray is the group velocity, i.e., the velocity of wave packets

vg =
∂ω
∂k

, (4.14)

i.e., the gradient of frequency in the k-space.
The angle between the wave and ray propagation can be calculated by letting θ be the

angle between background magnetic field B and k, and the frequency ω a function of k
and θ . The group velocity is given by

vg =
∂ω
∂k

=
∂ω
∂k

∣∣∣∣∣
θ

ek +
1
k

∂ω
∂θ

∣∣∣∣∣
k

eθ . (4.15)
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Denoting the angle between vg and vp by δ we find that

tanδ = −1
k

∂k
∂θ

∣∣∣∣∣
ω

. (4.16)

As an example of a dispersive medium, consider a conductive medium whose ε , μ , and
σ are non-zero constants and ρ = 0. Maxwell’s equations and Ohm’s law (J = σE) lead
to

∇×E = −∂B

∂ t

∇×B = μσE+ με
∂E

∂ t
(4.17)

⇒
∇2E−μσ

∂E

∂ t
−με

∂ 2E

∂ t2 = 0 . (4.18)

This is equation is known as the telegraph equation. It is a standard example of how partial
differential equations are solved using Fourier transforms. In the plane wave approxima-
tion (4.18) is easy to solve in the (ω,k)-space, where Maxwell’s equations read

k ·E = 0
k ·H = 0

k×E = ωμH

ik×H = (σ − iωε)E .

(4.19)

Clearly k ⊥ E, k ⊥ H, and E ⊥ H. Such a wave is called transverse. In plasmas also lon-
gitudinal (k ‖ E) waves may propagate, e.g, the electrostatic waves discussed in Chap. 5.
Selecting the coordinates as k ‖ ez, E ‖ ex, and H ‖ ey, we get

kEx = ωμHy
ikHy = −(σ − iωε)Ex .

(4.20)

From these we get the dispersion equation

k2 = εμω2 + iσ μω . (4.21)

Denoting k = |k|exp(iα) we find

|k| =
√

μω
√

ε2ω2 +σ2 (4.22)

α =
1
2

arctan(
σ

εω
) . (4.23)

Inserting these into the expression for E

E = E0ex exp[i(|k|(cosα)z−ωt)]exp[−|k|(sinα)z] (4.24)
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we have found the plane wave solution for Maxwell’s equations in this particular medium.
The physical choice of α is given by sinα > 0, i.e., the wave is damped when it propagates
in the medium, i.e., e−|k|(sinα)z → 0 with increasing z .

Now the phase velocity is

vp =
ω

Re(k)
=

ω
|k|cosα

. (4.25)

The distance where the wave is damped by a factor of e is called the skin depth of the
medium

δ =
1

Im(k)
=

1
|k|sinα

. (4.26)

The wave impedance is defined by

Z =
Ex

Hy
=

μω
k

=
√

μω√
ε2ω2 +σ2

exp
[
− i

2
arctan

( σ
εω

)]
, (4.27)

where the argument of the exponential function describes the phase delay between E and
H. The SI unit of impedance is the ohm (Ω).

Examples

Good conductor: σ >> εω ⇒ α = 45◦; δ =

√
2

μσω
.

vp = δω tanα = δω

For copper (Cu):
{

f = 50 Hz δ = 1 cm vp = 3 m/s
f = 50 MHz δ = 10 μm vp = 3×103 m/s

Z =
√

μω
σ

e−iπ/4 ⇒ 45◦ phase shift between E and H.

Non-conductive medium: σ = 0, ε > 0, μ = μ0 ⇒ α = 0, i.e., the wave is not damped .

Z =
√

μ0

ε
≡ Z0

√
ε0

ε
,

Z0 is called vacuum impedance:
√

μ0

ε0
= 376.73 Ω.

Air is a good vacuum for high-frequency electromagnetic waves; plasma is not when
the wave frequency is in the vicinity of plasma or gyro frequencies of the plasma particles.

4.1.2 Wave polarization

Polarization is an important property of electromagnetic waves. We use definitions of the
right- and left-handedness following the modern plasma literature:
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The wave vector of a right-hand polarized wave, propagating along the magnetic field,
rotates in the same sense as an electron.

However, wave polarization must also be defined independently of the background
magnetic field. Let a plane wave propagate in the z-direction. Consider the plane z = 0
and denote ρ = Ey/Ex = −Hx/Hy . In general ρ = |ρ|eiα is a complex number.

1. If ρ is a real number, Ey and Ex are in the same phase and the direction of E is (1,ρ ,0)
(if ρ = ∞, E points along the y-axis). The wave is linearly polarized.

2. If ρ = +i, the phase shift between Ey and Ex is α = π/2. Looking along the +z-axis
the vector rotates clockwise. This is the right-hand circularly polarized wave. In optics
this is called the left-hand wave, sometimes it is said to have positive helicity. The wave
electric field is

E = E0(ex + iey)ei(kz−ωt) . (4.28)

3. If ρ =−i, α =−π/2. The wave vector rotates anti-clockwise and the wave is left-hand
circularly polarized (negative helicity). The electric field is

E = E0(ex − iey)ei(kz−ωt) . (4.29)

4. The linear and circular polarizations are special cases of elliptical polarization, for
which ρ ia a complex number.

All polarization states of a plane wave can be constructed as a linear superposition of
right-hand and left-hand circularly polarized waves, or of two linearly polarized waves
with different planes of polarization, by selecting appropriate amplitudes and phases of
the basic polarization components.

4.1.3 Reflection and refraction

When waves cross boundaries between different media or propagate in an inhomogeneous
medium, they are reflected and refracted. Figure 4.1 defines our notation. The incident
wave (i) comes from medium 1 and hits the boundary between media 1 and 2.

The properties of the reflected (r) and refracted (transmitted, t) waves depend on the
polarization. For simplicity, consider linear polarization only. Let the electric field Ei be in
the plane of incidence (xz-plane) and Hi perpendicular to this plane. This polarization is
called vertical. In the opposite case the polarization is horizontal. An arbitrary polarization
is a linear combination of these two polarization states. Let the medium be such that the
polarization state is conserved. If the medium were birefringent, the left- and right-hand
circularly polarized waves would behave differently. As the linear polarization can be ex-
pressed as a sum of left- and right-hand polarized waves, the birefringence results in the
rotation of the polarization direction, known as Faraday rotation.

Figure 4.1 illustrates the vertical polarization. Now

ki = ki(sinθi,0,cosθi)
kr = kr(sinθr,0,−cosθr) (4.30)
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Fig. 4.1 Reflection and refraction of a vertically polarized wave at the boundary between two different
linear media with impedances and refractive indices (Z1,n1), (Z2,n2).

kt = kt(sinθt ,0,cosθt) .

The boundary conditions at the surface z = 0 imply that the waves (i,r, t) must be in the
same phase at the same time. Thus ki, kr, and kt are in the same plane. A straightforward
calculation gives the fields

Ei = Ei(cosθi,0,−sinθi)exp[i(ki(sinθix+ cosθiz)−ωt)]

Hi =
Ei

Z1
(0,1,0)exp[i(ki(sinθix+ cosθiz)−ωt)]

Er = Er(−cosθr,0,−sinθr)exp[i(kr(sinθrx− cosθrz)−ωt)]

Hr =
Er

Z1
(0,1,0)exp[i(kr(sinθrx− cosθrz)−ωt)] (4.31)

Et = Et(cosθt ,0,−sinθt)exp[i(kt(sinθt x+ cosθt z)−ωt)]

Ht =
Et

Z2
(0,1,0)exp[i(kt(sinθtx+ cosθt z)−ωt)] ,

where the direction of the vectors is given by the triplets after the amplitude of the vector.
The boundary conditions derived from Maxwell’s equations are:

n12 × (E1 −E2) = 0
n12 × (H1 −H2) = K ,
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where K is a surface current induced by the wave. Assume that the current is zero. Then

Eix +Erx = Etx
Hiy +Hry = Hty

(4.32)

⇒

Ei cosθi exp[i(ki sinθix−ωt)]−Er cosθr exp[i(kr sinθrx−ωt)]
= Et cosθt exp[i(kt sinθt x−ωt)] (4.33)

and

Ei

Z1
exp[i(ki sinθix−ωt)]− Er

Z1
exp[i(kr sinθrx−ωt)]

=
Et

Z2
exp[i(kt sinθtx−ωt)] . (4.34)

These equations must be satisfied for all t and x ⇒

ωi = ωr = ωt = ω (4.35)
ki sinθi = kr sinθr = kt sinθt . (4.36)

The incident and reflected waves propagate in the same medium (n1) ⇒
c
ω

ki =
c
ω

kr ⇒ ki = kr ⇒ θi = θr (4.37)

In addition, we find Snell’s law for the angle of refraction

sinθt =
ki

kt
sinθi =

n1

n2
sinθi . (4.38)

Now we can calculate the reflection coefficient for vertical polarization

R‖ =
Er

Ei
=

Z1 cosθi −Z2 cosθt

Z1 cosθi +Z2 cosθt
. (4.39)

Often μ1 = μ2(= μ0). Then Z1/Z2 = n2/n1, which leads to Fresnel’s formulas

R‖ =
Er

Ei
=

n2 cosθi −n1 cosθt

n2 cosθi +n1 cosθt
(4.40)

T‖ =
Et

Ei
=

2n1 cosθi

n2 cosθi +n1 cosθt
. (4.41)

T‖ is the transmission coefficient for vertical polarization. These equations are often given
in the form where θt is eliminated using Snell’s law. Physically Fresnel’s formulas express
energy conservation at the reflecting boundary.
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In the same way we find Fresnel’s formulas for horizontal polarization

R⊥ =
n1 cosθi −n2 cosθt

n1 cosθi +n2 cosθt
(4.42)

T⊥ =
2n1 cosθi

n1 cosθi +n2 cosθt
. (4.43)

Example: Total reflection and transmission

Consider the Earth’s ionosphere as an isotropic non-conductive medium. This is a reason-
ably good approximation for radio waves with sufficiently high frequency (ω �ωce , ω �
νcoll , ω � ωp).

In the air below the ionosphere: σ = 0, μ = μ0, n1 = 1 .

In the ionosphere, (see 4.48): n2 =
ck
ω

=
√

ε
ε0

=

√
1− ω2

p

ω2 < 1.

Now Fresnel’s formulas imply: |R⊥| ≥ |R‖|, for all θi. Thus the horizontal polarization
has a larger reflection coefficient and is more efficient for radio wave communication via
the ionosphere.

For sufficiently large θi we find the total reflection: sinθt =(n1/n2)sinθi ≥ 1 ⇒ |R⊥|=
|R‖| = 1 .

For a certain angle of incidence, known a the Brewster angle (θB), the vertically polar-
ized wave is transmitted completely (R‖ = 0). Note that the horizontally polarized wave is
always partially reflected.

4.2 Radio Wave Propagation in the Ionosphere

As an example of wave propagation in a dispersive inhomogeneous medium we consider
radio wave propagation in the ionosphere. It has considerable practical interest for the
physics of space storms: radio waves can be used to probe the state of the ionosphere
and, on the other hand, radio communication systems, including satellite navigation, are
disturbed by the space storms.

4.2.1 Isotropic, lossless ionosphere

We begin with an assumption that the ionosphere is isotropic and neglect the Earth’s mag-
netic field. This requires ω � ωce ≈ 107 s−1. Let the medium be lossless, i.e., neglect
the effects of collisions; thus ω � νcoll . These requirements are fulfilled at frequencies
f � ωce/2π ≈ 1.6 MHz. We consider waves whose frequencies are so high that only elec-
trons respond to the wave electric field, whereas ions form an immobile background. We
need to determine the functions σ and ε . Here n refers to the refractive index and the
electron density is denoted by ne.
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Consider the problem again in the plane wave approximation. From the electron equa-
tion of motion we find

me
dv

dt
= −iωmev = −eE (4.44)

⇒
J = −neev =

ω2
pe

ω2 iωε0E (4.45)

⇒
σ =

ω2
pe

ω2 iωε0 . (4.46)

Assume that, except for conductivity, the medium has the electromagnetic properties of a
vacuum, i.e., ε = ε0 and μ = μ0. The Ampère–Maxwell law can now be written as

ik×H =
ω2

pe

ω2 iωε0E− iωε0E = −iω

(
1− ω2

pe

ω2

)
ε0E . (4.47)

Thus the medium looks like a dielectric with permittivity

ε =

(
1− ω2

pe

ω2

)
ε0 . (4.48)

In plasma physics we often write ω2
pe/ω2 ≡ X . Now the refractive index is

n =
√

1−X , (4.49)

which is the dispersion equation and can also be written as

c =
ω
k

√
1−X . (4.50)

The phase and group velocities are

vp =
ω
k

=
c√

1−X
(4.51)

vg =
∂ω
∂k

= c
√

1−X . (4.52)

When k increases (short wavelengths), the dispersion equation approaches that of an
electromagnetic wave in free space ω = ck. At long wavelengths the wave corresponds to
plasma oscillation ω = ωpe. If the frequency is smaller than the local plasma frequency
(X > 1), the wave does not propagate. In the ionosphere the maximum electron densities
are of the order of 1012 m−3. Because fpe(Hz) ≡ ωpe/2π ≈ 9

√
ne(m−3), the maximum

plasma frequency in the ionosphere is about 9 MHz.
Let us then then find out what happens to an electromagnetic wave pulse (wave packet)

when it propagates vertically toward the ionosphere modeled in this way and becomes re-
flected. The pulse returns after time T . The height h′ = cT/2 is called the virtual reflection
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height. In reality the wave packet moves with speed vg and

T = 2
∫ h

0

dz
vg

, (4.53)

where h is the real reflection height. That is the height where the group velocity becomes
zero and we get

h′ = c
∫ h

0

dz
vg

=
∫ h

0

dz√
1−X(z)

. (4.54)

If we know the density profile, we can compute the relation between h′ and h for different
frequencies.

The ionosonde is an instrument that is used to study the inverse problem. It transmits
radio waves at different frequencies and detects the reflected signal. By measuring h′ for
different frequencies we can attempt to find the frequency dependence of h, which would
yield the density profile of the ionosphere. The integral for the virtual height can be solved
analytically for sufficiently smooth profiles. The monotonic parts of the profile can be
approximated by a piecewise linear function composed of pieces

ne = a(z− z1) when z > z1
ne = 0 when z ≤ z1 .

(4.55)

The real reflection takes place at the altitude where ω2 = ω2
pe ⇒

h = z1 +
ε0m
ae2 ω2 , (4.56)

and the virtual reflection at

h′ =
h∫

0

dz√
1− a(z− z1)e2

ε0mω2

= z1 +
2ε0m
ae2 ω2 . (4.57)

Train your brain

Find the expression for the virtual reflection height for a parabolic density profile

ne = nm

[
1−

(
z− zm

a

)2
]

when |z− zm| < a

ne = 0 when |z− zm| ≥ a ,

where the subscript m denotes the peak density.
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Oblique propagation is important in radio wave communication between two locations.
Let θ0 be the angle between the vertical direction z and k in the atmosphere and let y
denote the horizontal distance. For the wave packet we have y = ct sinθ0. Vertical motion
is found from the expression for the virtual height replacing ω → ω cosθ0

h′(t) = ct cosθ0 =
z∫

0

dz′√
1− ω2

pe(z
′)

ω2 cos2 θ0

, (4.58)

where z is the real height at time t. Eliminating t we get

y = sinθ0

z∫
0

dz′√
cos2 θ0 −

ω2
pe(z

′)
ω2

. (4.59)

This gives the ray path. In an isotropic medium the ray propagates to the direction of the
wave normal.

4.2.2 Weakly inhomogeneous ionosphere

What happens to the wave when it approaches the reflection point? We assumed above that
the reflection takes place when the vertical component of vg is zero, i.e., n = sinθ0. On
the other hand, we know that some reflection always takes place at the interface between
media of different refractive indices, except for vertical polarization at the Brewster angle.

Consider a frequency twice the plasma frequency ω = 2ωpe. Now the wave should get
through the ionosphere. Let the incident angle be θi = 0. The refractive index is

n =
√

1−ω2
pe/ω2 .

This gives a reflection coefficient R = 0.07 and the reflection should be easily observable.
However, it is not, and the prediction that the wave gets through the ionosphere is correct.

To solve this apparent paradox construct a simple model for the ionosphere that consists
of thin layers of thickness 	z (Fig. 4.2). Let ne increase, and thus n decrease, upwards.
Assume, for simplicity, horizontal polarization and θi = θt = 0. At each layer

R =
n1 −n2

n1 +n2
≈ 	n

2n
. (4.60)

The relative phase of the signals reflected from different layers turns out to be the
key to the solution. Let E0 be the electric field of the incident wave and denote the field
after reflection by E = E(z). From each layer an amount of (	n/2n)E(z) is reflected
and (1− (	n/2n))E(z) refracted. In this model 	n < 0 and thus the electric field of the
refracted wave increases. We have, however, not found a perpetuum mobile that would
create wave energy from nothing. The wave propagates toward an increasing impedance
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y

z

n

z

z

n

Fig. 4.2 A model of layered ionosphere. That the electron density increases upward and thus the index of
refraction decreases from 1 at the bottom of the ionoshere. The figure is drawn for oblique incidence to be
more illustrative, whereas the calculation is simpler for θi = 0.

(Z = E/H) and for the wave magnetic field we find

Ht

Hi
= T

Z1

Z2
= T

n2

n1
≈ 1+

	n
2n

< 1 . (4.61)

At the limit 	z → 0

E +dE =
(

1− dn
2n

)
E (4.62)

⇒
E =

E0√
n

; H =
√

nH0 . (4.63)

At each layer the phase of the wave is shifted by kdz = nk0dz . At the altitude z the accu-
mulated retardation is given by the phase integral∫ z

0
n(z′)k0 dz′ .

This method is called the WKB approximation. It is best known from quantum me-
chanics where it was used independently by Wentzel, Kramers, and Brillouin in 1926. The
WKB method is useful in studies of wave propagation in (weakly) inhomogeneous me-
dia, and not restricted to Schrödinger equation or plasmas. In fact, Jeffreys had already
introduced it in his study of linear second order differential equations in 1923 and some
authors prefer to call the method the JWKB or WKBJ approximation. The fields in this
approximation are given by

Ex =
E0√

n
exp[i(k0

∫ z

0
ndz′ −ωt)] (4.64)

Hy =
√

nH0 exp[i(k0

∫ z

0
ndz′ −ωt)] . (4.65)
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Now the Poynting vector S = (E×H∗)/2 = (E0H0/2)ez is constant. Therefore no en-
ergy is carried by the partially reflected waves and the apparent inconsistency with the
non-reflection of waves is solved, provided that the inhomogeneity is such that the WKB
approximation is valid. We can estimate the validity in the following way.

The amplitude of each partial wave is (	n/2n)(E0/
√

n) and the phase difference be-
tween partial waves reflected from two consecutive layers is 2nk0	z. We can construct
a phase–amplitude diagram representing each partial wave by an arc element 	s and an
associated phase angle 	φ

	s =
	n
2n

E0√
n

; 	φ = 2nk0	z .

Add the arc elements graphically by turning them with respect to each other by the phase
angle. Let 	z → dz, 	n → dn, 	s → ds, 	φ → dφ . If no reflection were to take place,
the result would be a circle. However, the resulting curve is a spiral with an increasing
radius

	r = lim
	s
	φ

=
ds
dφ

=
E0

4n5/2k0

dn
dz

. (4.66)

Train your brain by drawing the phase–amplitude diagram described above.

The amplitude of the reflected wave is of the order of 	r and can thus be neglected if

1
4n5/2k0

∣∣∣∣dn
dz

∣∣∣∣ � 1 . (4.67)

Thus the WKB approximation is not good if k0 is small, i.e., the wavelength is long com-
pared to the gradient scale length, or if n ≈ 0, i.e., very close to the point where the wave
actually is reflected. Note that local density gradients can also reflect the waves in the case
of a smooth background profile.

The WKB approximation can also be used above the reflection region. There n2 < 0,
i.e., n is imaginary. The amplitude is

Ex =
E0√

n
exp(−iωt)exp(−k|n|z) ; Hy = i|n|Ex . (4.68)

This solution is overdamped and the wave is said to be evanescent.
When approaching the reflection point, n → 0 and the WKB approximation breaks

down. The problem is analytically tractable if the density profile can be assumed to be
linear in the vicinity of the reflection point. As the region where the WKB approximation
fails is narrow, this is a good assumption if the reflection does not take place very close to
a local density maximum. In the latter case a parabolic profile has to be used.

Close to the reflection point the wave is not a plane wave because the spatial dependence
is not harmonic. Write Maxwell’s equations as
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∇×E = −∂B

∂ t
⇒ dEx

dz
= μ0iωHy

∇×H = J+
∂D

∂ t
⇒ dHy

dz
= n2iωε0Ex

⇒
d2Ex

dz2 + k2
0n2Ex = 0

⇒
d2Ex

dz2 + k2
0

(
z0 − z

L

)
Ex = 0 , (4.69)

where the linear profile was assumed at the last step. With a change of the variable this can
be transformed to Airy’s differential equation

d2Ex

dζ 2 −ζ Ex = 0 , (4.70)

whose solutions are expressed in terms of the Airy integrals Ai and Bi.

Ex(ζ ) = C1Ai(ζ )+C2Bi(ζ ) . (4.71)

Asymptotic expansions for Ai and Bi above the reflection point (ζ > 0) are

Ai(ζ ) ≈ 1
2
√

π
ζ−1/4 exp(−2

3
ζ 3/2)

ζ→∞−→ 0

Bi(ζ ) ≈ 1√
π

ζ−1/4 exp(
2
3

ζ 3/2)
ζ→∞−→ ∞ .

Feed your brain

Look up from some mathematical handbook or from the internet the Airy integrals Ai
and Bi and sketch their graphs.

Because the wave must vanish above the reflection point, C2 must be zero. Thus the
electric field has the same form as Ai. Approaching the reflection point from the negative
side (ζ → 0−), its amplitude and period increase and above the reflection point the field
rapidly approaches 0. An integral form of Ai is

Ai(ζ ) =
1
π

∫ ∞

0
cos

(
ζ s+

s3

3

)
ds . (4.72)

The coefficient C1 is more difficult to determine. For large negative ζ the solution must
join the WKB solution. There are some technical difficulties in finding the asymptotic
behavior of Ai for negative argument (roots of negative numbers). A detailed treatment
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can be found in Budden [1985]. The result is

Ai(ζ ) ≈ 1
2
√

π
ζ−1/4

(
exp(−2

3
ζ 3/2)+ iexp(

2
3

ζ 3/2)
)

. (4.73)

Matching this with the WKB solution we get

C1 = 2
√

πE0(k0L)1/6 .

Finally the electric field is given by

Ex =
2E0√

n
cos

(
k0

∫ z0

z
ndz′ +

π
4

)
exp(−iωt)

=
E0√

n

{
exp

[
iπ
4

+ i
(

k0

∫ z0

z
ndz′ −ωt

)]
(4.74)

+ exp
[−iπ

4
+ i

(
−k0

∫ z0

z
ndz′ −ωt

)]}
.

This is a sum of upward- and downward-propagating WKB solutions. The phase shift
between them (π/2) comes from the non-WKB region, and it would be quite difficult to
guess without doing the actual calculation. This introduces a factor i into the reflection
coefficient

R = iexp
(

2ik0

∫ z0

z
ndz′

)
. (4.75)

The wave electric field in the reflection region is

Ex = 2
√

πE0(k0L)1/6Ai(ζ )exp(−iωt) . (4.76)

From this we can estimate how much the field differs from E0. Max[Ai] ≈ 0.55. Assuming
f = 5 MHz ⇒ k0 ≈ 0.1 m−1 and let L ≈ 100 km. This gives Ex,max ≈ 9E0. This can be
compared with a perfect mirror, for which Ex,max = 2E0. The wavelength grows in turn by
a factor of 14. If the incident wave is sufficiently strong, it can couple to the oscillation
modes of the plasma. These may be damped by the plasma particles, resulting in heating
of the plasma.

The solution is straightforward to generalize to oblique propagation by substitution
n2 → q2 = n2 − sin2 θi .

4.2.3 Inclusion of collisions

The interparticle collisions must sometimes be taken into account in radio wave prop-
agation problems, which is very difficult to do analytically. For simplicity, we consider
only the average collision frequency ν . This introduces a frictional term to the equation of
motion

m
dv

dt
= −eE−mνv . (4.77)
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Assuming again harmonic time dependence we get

v =
eE0 exp(−iωt)

m(iω −ν)
. (4.78)

The permittivity and the dispersion equation are modified as

ε =

(
1− ω2

pe

ω2(1+ iν/ω)

)
ε0 (4.79)

k2 = μ0ε0ω2

(
1− ω2

pe

ω2(1+ iν/ω)

)
. (4.80)

If we solve ω from this equation, we see that the collisions have introduced a negative
imaginary part to the frequency and the waves are damped. The collision frequency is
often denoted by Z = ν/ω . Now the refractive index is complex

n =

√
1− X

1+ iZ
. (4.81)

The WKB solution becomes somewhat different from the non-collisional case. The
collisions damp the waves, i.e., energy is lost, and this contributes to the phase shift.

A more complete treatment must start from the Boltzmann equation with an appropriate
collision model.

4.2.4 Inclusion of the magnetic field

Above the frequency was assumed to be much larger than the electron gyro frequency. In
the polar ionosphere fce ≈ 1.4 MHz, and in practical applications the unmagnetized theory
can be applied only for f > 5 MHz. The magnetic field makes the plasma anisotropic
and plasma becomes birefringent. We do not have any reason to discuss the details of
the rather tedious derivation of the dispersion equation resulting from inclusion of both
collisions and the magnetic field but give the basic equations of this magnetoionic theory
for completeness.

Introduce a new variable Y = ωce/ω . Select again k ‖ ez and denote the angle between
B0 and k by ψ . The magnetoionic theory gives the expressions for the polarization ρ and
the refractive index n

ρ =
1
2

⎛⎝−i
Y sin2 ψ/cosψ

1−X − iZ
±2i

√
1+

Y 2 sin4 ψ/cos2 ψ
4(1−X + iZ)

⎞⎠ (4.82)

n2 = (4.83)

1− X

1+ iZ − Y 2 sin2 ψ
2(1−X + iZ)

∓
√

Y 2 cos2 ψ +
Y 4 sin4 ψ

4(1−X + iZ)
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These equations are called Appleton–Hartree equations. They have two physically mean-
ingful pairs of solutions (ρ, n2), corresponding to two selections of signs of the square
roots: + and –, or – and +. They are the ordinary (O) and extraordinary (X) modes dis-
cussed using a more transparent formalism in the next section.

4.3 General Treatment of Cold Plasma Waves

In this section we present the general formalism for waves in magnetized plasma in the
cold plasma approximation. Recall that “cold” means here the assumption of the charac-
teristic velocities of the waves being much faster than the thermal velocity of the plasma√

2kBT/m. In this approximation thermal effects can be neglected.

4.3.1 Dispersion equation for cold plasma waves

To derive the general dispersion equation in a cold plasma we start from Maxwell’s equa-
tions and Ohm’s law where σ may be a tensor. In the plane wave approximation we obtain
the wave equation

k× (k×E)+
ω2

c2 ·E = 0 , (4.84)

where
= +

i
ωε0

σ (4.85)

is the dielectric tensor and the unit tensor. In case of no background fields (E0 = B0 = 0)
the dielectric tensor reduces to the already familiar scalar dielectric function

K = 1− ω2
pe

ω2 ≡ n2 . (4.86)

The dielectric tensor is a dimensionless quantity expressing the relationship between
the displacement and electric fields

D = ε ·E = ε0 ·E . (4.87)

Now the wave equation has particular solutions

k ‖ E ⇒ ω2 = ω2
pe plasma oscillation

k ⊥ E ⇒ ω2 = k2c2 +ω2
pe electromagnetic wave in plasma .

Include a homogeneous background magnetic field B0 and consider small perturbations
B1 (B1 � B0). The total plasma current is

J = ∑
α

nα qαVα . (4.88)
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Note that the assumption of cold plasma means that all particles (of species α) are moving
at their average velocity Vα(r,t). Assuming that Vα ∝ exp(−iωt) the first-order equation
of motion is

−iωVα = qα(E+Vα ×B0) . (4.89)

Let the background magnetic field be in the direction of the z-axis, i.e., B0 ‖ ez, treat
the xy-plane as a complex plane and use the coordinate system defined by the base
{√1/2(ex + iey),

√
1/2(ex − iey), ez}. Denote the components in this base by integers

d = {−1,1,0} and express the plasma and gyro frequencies as

Xα =
ω2

pα

ω2 , Yα =
sα ωcα

ω
. (4.90)

Here ωcα is a positive quantity and the sign of the charge is given explicitly by sα . Now
the components of the current are

Jd,α = iε0ω
Xα

1−dYα
Ed , (4.91)

and the dielectric tensor is diagonal

=

⎡⎢⎢⎢⎣
1−∑α

Xα

1−Yα
0 0

0 1−∑α
Xα

1+Yα
0

0 0 1−∑α Xα

⎤⎥⎥⎥⎦ . (4.92)

It is customary to denote the components of the tensor by R, L, and P

R = 1−∑
α

ω2
pα

ω2

(
ω

ω + sα ωcα

)
(4.93)

L = 1−∑
α

ω2
pα

ω2

(
ω

ω − sα ωcα

)
(4.94)

P = 1−∑
α

ω2
pα

ω2 . (4.95)

R has a singularity when ω = ωce. The corresponding wave mode, the R mode, can be in
resonance with electrons. R thus corresponds to the right-hand circularly polarized wave.
Similarly the L mode can be in resonance with positive ions and corresponds to the left-
hand circularly polarized wave. P corresponds to plasma oscillation, which is linearly
polarized.

Transforming back to the {x,y,z}-base we get

=

⎡⎣ S −iD 0
iD S 0
0 0 P

⎤⎦ , (4.96)

where S = (R+L)/2 and D = (R−L)/2.
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The wave equation can be written in terms of the wave normal vector n = ck/ω as

n× (n×E)+ ·E = 0 . (4.97)

Note that in the following discussion n consequently refers to the wave normal vector and
must not be mixed up with the unit normal vector elsewhere in the text! Recall that B0 is
in the z-direction. Select the x-coordinate so that n is in the xz-plane and let θ be the angle
between n and B0. Now the wave equation is⎡⎣ S−n2 cos2 θ −iD n2 cosθ sinθ

iD S−n2 0
n2 cosθ sinθ 0 P−n2 sin2 θ

⎤⎦⎡⎣ Ex
Ey
Ez

⎤⎦ = 0 . (4.98)

The non-trivial solutions of the wave equation are found from the dispersion equation

An4 −Bn2 +C = 0 , (4.99)

where

A = S sin2 θ +Pcos2 θ
B = RLsin2 θ +PS(1+ cos2 θ) (4.100)
C = PRL .

Solving n would give a generalization of the magnetoionic theory. However, it is more
instructive to study the dispersion equation for different angles θ

tan2 θ =
−P(n2 −R)(n2 −L)
(Sn2 −RL)(n2 −P)

. (4.101)

Now we can identify the wave modes in various directions. The modes propagating in the
direction of the magnetic field (θ = 0) and perpendicular to it (θ = π/2) are called the
principal modes

θ = 0 : P = 0, n2 = R, n2 = L
θ = π/2 : n2 = RL/S, n2 = P .

These modes have cut-offs

n2 → 0 (vp → ∞, k → 0, λ → ∞)
P = 0, R = 0, or L = 0

and resonances
n2 → ∞ (vp → 0, k → ∞, λ → 0)
tan2 θ = −P/S (provided P �= 0) .

When the wave approaches a region where it has a cut-off (n2 → 0), it cannot propagate
further and is reflected. At a resonance the wave energy is absorbed by the plasma.
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4.3.2 Parallel propagation (θ = 0)

The parallel propagating modes are the solutions of P = 0, n2 = R, n2 = L. The case P = 0
is the trivial plasma oscillation but the right- and left-hand polarized modes are important.

Right-hand polarized mode (R)

n2
R = R = 1− ω2

pi

ω(ω +ωci)
− ω2

pe

ω(ω −ωce)
. (4.102)

The resonance is with the electrons at the electron gyro frequency ω = ωce. The cut-off
frequency is

ωR ≈ ωce

2

[
1+

√
1+4ω2

pe/ω2
ce

]
. (4.103)

At the limit of low plasma density this reduces to

ωR ≈ ωce(1+ω2
pe/ω2

ce) (4.104)

and at the limit of high density to

ωR ≈ ωpe +ωce/2 . (4.105)

At low frequencies the mode approaches the Alfvén wave to be discussed in Chap. 6.
At the limit of high frequency the wave is the electromagnetic wave in an unmagnetized
plasma ω → ∞, n2 → 1−ω2

pe/ω2.

Left-hand polarized mode (L)

n2
L = L = 1− ω2

pi

ω(ω −ωci)
− ω2

pe

ω(ω +ωce)
. (4.106)

The resonance is with ions ω = ωci. The cut-off frequency is at low density

ωL = ωci(1+ω2
pi/ω2

ci) (4.107)

and at high density
ωL = ωpe −ωce/2 . (4.108)

The left-hand mode has a lower cut-off frequency than the right-hand mode. Both
modes propagate at all frequencies above their cut-off frequency. At high frequencies both
modes approach to the electromagnetic wave in free space (ω2

pe/ω2 → 0 ⇒ ω → ck)
(Fig. 4.3)

Faraday rotation

The Faraday rotation is a consequence of the different phase velocities of the left- and
right-hand modes. Consider a linearly polarized signal and represent it as a sum of R and
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k

R-mode

L-mode

electron cyclotron wave

ion cyclotron wave

Alfvén wave

b) pe << ce

ci

ce

a) pe >> ce

k

R-mode

L-mode

electron cyclotron wave

ion cyclotron wave

Afvén wave

ci

ce

Fig. 4.3 Parallel propagation for a) high plasma density (ωpe � ωce) and for b) low plasma density
(ωpe � ωce). The continuous line is the R-mode and the dashed line the L-mode. Cut-offs are found
where the dispersion curve meets the vertical axis (k = 0) and resonances are found at large k .

L modes
E = [ex(EReikRz +ELeikLz)+ iey(EReikRz −ELeikLz) ]e−iωt . (4.109)

The anisotropy introduced by the background magnetic field implies that the R and L
components of the wave have kR �= kL for the same ω and

Ex

Ey
= −i

1+(ExL/ExR)exp[i(kL − kR)z]
1− (ExL/ExR)exp[i(kL − kR)z]

. (4.110)
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Because the sum of the R and L modes is linear, ExL = ExR ⇒
Ex

Ey
= cot

(
kL − kR

2
z
)

. (4.111)

This means that the plane of polarization rotates when the wave propagates through an
anisotropic medium. The degree of rotation φ = (kL − kR)z/2 depends on the plasma den-
sity and the magnetic field. In astrophysical observations the plasma and gyro frequencies
are small compared to the observed electromagnetic signal. Thus the dispersion equations
for L and R modes can be approximated as

kL,R ≈ ω
k

[
1− ω2

pe

2ω2

(
1± ωce

ω

)]
. (4.112)

The differential rotation of the polarization plane is

dφ
dz

=
−ω2

peωce

2cω2 =
−e3

2m2
eε0cω2 neB0 . (4.113)

The total rotation from the source to the observer at the distance d is

φ =
−e3

2m2
eε0cω2

∫ d

0
neB ·ds , (4.114)

where the integral is taken along the path of the signal. In astrophysics the term rotation
measure (RM) is introduced by the formula

φ = −RM f−2 . (4.115)

Numerically

RM = 23.5
∫ d

0
neB ·ds , (4.116)

where f is measured in Hz, ne in cm−3, B in nT and ds in m. Because the direction of
rotation is determined modulo π , it has to be measured at several frequencies in order to
resolve how many times the polarization plane has turned during propagation from the
source to the receiver.

Whistler mode

In addition to the Alfvén wave there is another important wave mode that propagates only
in magnetized plasmas: the whistler mode. The R mode has real solutions also in the fre-
quency range between ωci and ωce. If ωci � ω � ωce the dispersion equation can be
approximated by

k =
ωpe

c

√
ω

ωce
(4.117)

⇒



136 4. Waves in Cold Plasma Approximation

vp =
ω
k

=
c
√

ωce

ωpe

√
ω (4.118)

vg =
∂ω
∂k

=
2c
√

ωce

ωpe

√
ω . (4.119)

This dispersive mode was found during the First World War as descending, whistling
tones heard on communication lines in the frequency band around 10 kHz. The correct
explanation for these whistles was not found until 1953 when Storey realized that the
waves originated as wide-band electric signals from lightning strokes. Part of the pulse is
guided by the magnetic field as a whistler wave to the other hemisphere where it can be
detected as a descending tone. The time of arrival depends on the frequency as

t(ω) =
∫ ds

vg
=

∫ ωpe(s)
2c
√

ωωce
ds . (4.120)

This explanation was not accepted immediately because it requires a higher plasma density
in the plasmasphere than was thought to exist at that time.

4.3.3 Perpendicular propagation (θ = π/2)

Modes propagating perpendicularly to the magnetic field are called, for historical reasons,
ordinary and extraordinary modes. Unfortunately, their definitions are different in different
fields of physics. Furthermore, there is nothing really extraordinary about the extraordinary
mode.

Ordinary mode (O)

The ordinary (O) mode is the mode whose index of refraction is

n2
O = P = 1− ω2

pi

ω2 − ω2
pe

ω2 ≈ 1− ω2
pe

ω2 . (4.121)

This corresponds to the “ordinary” electromagnetic wave in isotropic plasma. Its electric
field is in the direction of the background magnetic field (E ‖ B0). For exactly perpendic-
ular propagation the background magnetic field is not involved in the dispersion equation
of the mode. It has a cut-off at ω = ωpe.

Extraordinary mode (X)

For the extraordinary (X) mode n2
X = RL/S . With the obvious approximation ωce � ωci

two hybrid resonances are found. The upper hybrid resonance is

ω2
UH ≈ ω2

pe +ω2
ce (4.122)
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and the lower

ω2
LH ≈ ω2

ci +ω2
pi

1+(ω2
pe/ω2

ce)
≈ ωceωci

(
ω2

pe +ωceωci

ω2
pe +ω2

pi

)
. (4.123)

The lower hybrid frequency region is particularly important because waves propagating
there can be in resonance with both electrons and ions. At the low density limit ωLH → ωci
and in the high density regime ωLH → √

ωceωci . The cut-offs of the X mode are at low
density

ωX =
{

ωce + ω2
pe/ωce

ωci + ω2
pe/ωce

(4.124)

and at high density

ωX = ωpe ± 1
2

ωce . (4.125)

At the limit of low frequency

n2
X → 1+

ω2
pi

ω2
ci

= 1+
c2

v2
A

, (4.126)

where vA = B0/
√ρmμ0 is the Alfvén speed. This is the magnetosonic wave in cold plasma

approximation. In MHD (Chap. 6) its dispersion equation is found to be

ω2

k2 = v2
s + v2

A , (4.127)

where vs is the speed of sound. In cold plasma vs is small (→ 0), whereas in MHD c → ∞.
In tenuous space plasmas vA can be a considerable fraction of, or even larger than, c. Then
the dispersion equation is modified as

ω2

k2 =
v2

s + v2
A

1+ v2
A/c2 . (4.128)

4.3.4 Propagation at arbitrary angles

The principal modes R, L, O, X are defined for exactly parallel and perpendicular prop-
agation only, but waves also propagate at other angles. The principal modes are usually
illustrated as curves either in the (ω,k)- or (ω,n)-plane. The same can be done for an
arbitrary angle θ , or one may select a given mode and follow how it changes as a function
of θ .

One way to illustrate wave properties is to use wave normal surfaces. Consider the
vector n/n2 whose absolute value is vp/c. This is the phase velocity vector normalized to
the speed of light. Draw the tip of the vector as a function of θ from 0 to 2π and let the
curve rotate around the z-axis. The surface of the resulting 3D object is the wave normal
surface. In cold homogeneous plasmas there are three topologically different surfaces:
spheroid, dumbbell lemniscoid, and wheel lemniscoid. The waves have different wave
normal surfaces in different regions of the space parameterized by the plasma frequency
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(X) and the gyro frequency (Y ). Fig. 4.4 shows the wave normal properties in different
regions of this space in the form of a CMA (after Clemmow, Mullaly and Allis) diagram.

Let us look at a couple of examples in the CMA diagram. The frequency is highest in
the lower left corner (region 1 in Fig. 4.4) where the wave normal surfaces are spheroids.
The wave which is the R mode in the parallel direction goes continuously over to the X
mode in the perpendicular direction and the entire surface is often called RX mode. Its
phase velocity is in all directions greater than the phase velocity of the LO mode. In region

Fig. 4.4 The CMA diagram. The wave normal surfaces are drawn assuming that the background magnetic
field points upward. The principal modes are denoted at the side of each diagram. The variable on the
horizontal axis is X = ω2

pe/ω2 ∝ ne and on the vertical axis Y = ωce/ω ∝ B.
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2 there is no RX mode, whereas in region 3 the LO mode has greater phase velocity than the
X mode. Note that now the X mode is on a wheel lemniscoid, so there is no corresponding
parallel propagating mode. In region 7 the faster mode is LX and there is also an R mode.
Now R is on a dumbbell lemniscoid, meaning that there is no perpendicular propagating
solution. At the lowest frequencies (region 13) we find three MHD solutions, to which we
return in Chap. 6.

Another method of presenting the solutions of the dispersion equation is to display
them in a 3D (ω ,k‖,k⊥)-space as dispersion surfaces. One face of the cube in Fig. 4.5
represents the modes propagating parallel to the magnetic field, another those propagating
perpendicular, and the other propagation angles are inside the cube.

f/fce

Fig. 4.5 An example of how to represent the wave modes using dispersion surfaces. The figure illustrates
high-frequency waves at the high-density limit (ωpe > ωce). The horizontal axes show the perpendicular
and parallel wave numbers normalized to the electron Larmor radius and the vertical axis is the frequency
normalized to the electron gyro frequency. We identify the following solutions: a) whistler, b) the L mode,
c) the upper hybrid mode, d) plasma frequency, e) R mode and f) Bernstein modes. This figure was calcu-
lated using microscopic theory [see André, 1985] that gives more solutions than the cold plasma theory.
The Bernstein modes are examples of such. We will return to these modes in Chap. 5. (Figure by courtesy
of M. André.)



 
 



5. Vlasov Theory

The cold plasma approximation of Chap. 4 was based on the assumption that the phase
velocities of the waves are much larger than the thermal velocities of the particle popula-
tions. This is essentially the same as approximating the particle distribution functions by
delta functions, although taking the limit may be tricky and not necessarily mathemati-
cally rigorous. The approximation is evidently not valid at resonances and many aspects
of wave–particle interactions are lost. In this chapter we introduce the thermal (or kinetic)
effects starting from the Vlasov equation

∂ fα
∂ t

+v · ∂ fα
∂r

+
qα
mα

(E+v×B) · ∂ fα
∂ v

= 0 . (5.1)

The Vlasov theory is a quite complete description of fully ionized plasmas and it pro-
vides a solid foundation for wave–particle interactions. At the same time it often is much
too detailed for practical purposes. The theory has its own limitations, in particular in
weakly ionized plasmas (e.g., ionosphere, solar photosphere), where plasma–neutral col-
lisions cannot be neglected. The effects arising from the collision term of the Boltzmann
equation can be added to the Vlasov treatment, but that reduces the generality of the ap-
proach.

5.1 Properties of the Vlasov Equation

The Vlasov equation is sometimes regarded as the most important equation of plasma
physics. It has several useful properties:

• The Vlasov equation conserves particles. It is straightforward to show that

∂
∂ t

∫
nα fα d3r d3v = 0 (5.2)

by integrating (5.1) over the entire (r,v)-space. Here nα denotes the average density of
species α in the volume under consideration.

141H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth,
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• Positive probabilities remain positive in the Vlasov description. If fα(r,v,t = 0) > 0 for
all (r,v), then fα(r,v,t) > 0 for all t > 0 . This is an important property to be ensured
in numerical Vlasov simulations.

• The Vlasov equation conserves entropy. Entropy is defined by

S = −∑
α

∫
fα ln fα d3r d3v (5.3)

⇒
dS
dt

= −∑
α

∫ (
d fα

dt
ln fα +

d fα

dt

)
d3r d3v = 0 . (5.4)

This is an important issue in the interpretation of Landau’s solution of the Vlasov equa-
tion to which we turn in the next section.

• The Vlasov equation has many equilibrium solutions. In statistical physics Boltzmann’s
H-theorem states that there is a unique equilibrium in the collisional time scale, the
Maxwell distribution. The relevant time scales of the Vlasov theory are much shorter
than the collision periods due to the assumption ∂ f/∂ t|c → 0. Let fα0 be any Vlasov
equilibrium, then ∂ fα0/∂ t = 0 and thus[

v · ∂
∂ r

+
qα

mα
(E +v×B) · ∂

∂ v

]
fα0 = 0 . (5.5)

In order to generate a general solution to this equation let (r′(t ′),v′(t ′)) be the orbit of a
particle that intersects the point (r,v) at the time t ′ = t. If functions a(r′,v′), b(r′,v′), ...
are constants of motion for particles of species α , then any function fα0[a(r′,v′),
b(r′,v′), ...] satisfies (5.5) at the time t ′ = t, and thus any function fα0[a(r,v), b(r,v), ...]
of the constants of motion is a stationary-state solution of the Vlasov equation.

Examples of Vlasov equilibria

1. E0 = B0 = 0. In this case the constants of motion are

W =
mα

2
(v2

x + v2
y + v2

z )
p = mα v .

Examples of equilibrium solutions are now

fα0 =
(

mα

2πkBTα

)3/2

exp
(
− mα

2kBTα
v2

)
(5.6)

fα0 = C1
v0

2
1

v4 + v4
0

(5.7)

fα0 = C2 v0 δ (vx)δ (vy)δ (v2
z − v2

0) (5.8)

fα0 =
√

mα

2πkBTα
δ (vx)δ (vy) exp

(
−mα(v2

z − v2
α0)

2kBTα

)
, (5.9)
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where δ ’s are the Dirac delta functions and C1 and C2 are appropriate normalization
factors. Correct choice of an equilibrium distribution requires physical understanding
of the problem under consideration.

2. E0 = 0, B0 = B0(r)ez. A possible selection of constants of motion is

W =
mα

2
(v2

x + v2
y + v2

z )
p‖ = mα vz

L = mα(xvy − yvx)ez −qα rAφ (r)eφ ,

where Aφ is the azimuthal component of the vector potential, which is the only non-zero
component in this configuration. Another choice of constants of motion could be

ξx = vx − qα

mα

∫
B0(r)dy

ξy = vy +
qα

mα

∫
B0(r)dx .

One of several possible equilibria for a constant B0 is

fα0 = F
(

v2, vy +
qα B0

mα
x, vx − qαB0

mα
y
)

. (5.10)

5.2 Landau’s Solution

The Vlasov equation is not easy to solve. It must, of course, be done under the constraint
to fulfill Maxwell’s equations because the source terms of Maxwell’s equations (ρ,J) are
determined by the distribution function, which, in turn, evolves according to the Vlasov
equation. Furthermore, the force term in the Vlasov equation is nonlinear. Thus the Vlasov
equation can be solved analytically only for small perturbations when linearization is pos-
sible. We start by writing functions to be solved as sums of equilibirum solutions and small
perturbations

fα = fα0 + fα1

E = E0 +E1

B = B0 +B1

and consider the equations of the first-order terms. However, the problem remains difficult.
The general solution for homogeneous plasma in a homogeneous background magnetic
field was presented for the first time by Bernstein [1958] and inclusion of inhomogeneities
rapidly leads to problems that can be handled by numerical methods only. Landau [1946]
solved the field-free case in the following way.

Consider homogeneous plasma free of ambient electromagnetic fields (E0 = B0 = 0) in
electrostatic approximation: E1 = −∇ϕ1 ; B1 = 0. The linearized Vlasov equation is now
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∂ fα1

∂ t
+v · ∂ fα1

∂ r
− qα

mα

∂ϕ1

∂r
· ∂ fα0

∂v
= 0 , (5.11)

where
∇2ϕ1 = − 1

ε0
∑
α

nαqα

∫
fα1 d3v . (5.12)

Vlasov tried to solve these equations at the end of the 1930s using Fourier transforma-
tions in space and time. He ended up with an integral of type∫ ∞

−∞

∂ fα0/∂v
ω − kv

dv ,

which has a singularity along the path of integration. Vlasov did not find the correct way
of dealing with the singularity.

Landau realized that because the perturbation must begin at some instant, the problem
can be treated as an initial value problem and, instead of a Fourier transform, a Laplace
transform can be applied in time domain. Once the initial transients of the perturbation
have faded away, the asymptotic solution gives the intrinsic properties of the plasma, i.e.,
the dispersion equation.

Thus we write

fαk(v,t) =
1

(2π)3

∫
fα1(r,v,t)exp(−ik · r)d3r (5.13)

f̃αk(v, p) =
∫ ∞

0
fαk(v,t)exp(−pt)dt ; Re(p) ≥ p0 (5.14)

and similar transforms for ϕ(r,t). p0 has to be chosen to ensure the convergence of the
integral. After these transforms the equations for f̃αk and ϕ̃k become algebraic. After the
trivial solution of the algebraic equations the solution in the (r,v)-space is found by the
inverse transformations

fα1(r,v,t) =
∫

exp(ik · r)dk

p0+i∞∫
p0−i∞

exp(pt) f̃αk(v, p)
d p
2πi

(5.15)

ϕ1(r,t) =
∫

exp(ik · r)dk

p0+i∞∫
p0−i∞

exp(pt)ϕ̃k(p)
d p
2πi

. (5.16)

The transformed equations (5.11) and (5.12) are

(p+ ik ·v) f̃αk = fαk(v,t = 0)+
qα

mα

(
ik · ∂ fα0

∂v

)
ϕ̃k (5.17)

k2ϕ̃k =
1
ε0

∑
α

nα qα

∫
f̃αk d3v . (5.18)
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From these we find the transformed potential

k2ϕ̃k =

1
ε0

∑
α

nαqα

∫ fαk(t = 0)
p+ ik ·v d3v

1+
1
ε0

∑
α

nα q2
α

mα

1
k2

∫
k ·∂ fα0/∂ v

ip−k ·v d3v
; Re(p) ≥ p0 . (5.19)

If we now identify ω = ip, the denominator of the RHS corresponds to K(k,ω) in Chap. 4.
Multiplying (5.19) by the denominator and assuming that we would have performed the
inverse transform, we can write the equation formally as ∇ ·D1 = ρ1, where ρ1 is the initial
charge density perturbation.

Because K(k,ω) contains the information we are most interested in, we do not usually
need to make the inverse transformation of ϕ̃k. But we must know how it should be done
in order to calculate the integral in

K(k,ω) = 1+
1
ε0

∑
α

nα q2
α

mα

1
k2

∫
k ·∂ fα0/∂v

ω −k ·v d3v . (5.20)

We can simplify the notation by selecting k to be in the direction of one coordinate axis
and integrating

Fα0(u) ≡
∫

fα0(v)δ
(

u− k ·v
|k|

)
d3v (5.21)

F̃αk(u) ≡
∫

f̃αk(v)δ
(

u− k ·v
|k|

)
d3v (5.22)

⇒
K(k, ip) = 1−∑

α

ω2
pα

k2

∫ ∂ Fα0(u)/∂ u
u− ip/|k| du ; Re(p) ≥ p0 . (5.23)

Taking the inverse Laplace transform we get

k2ϕk(t) =

p0+i∞∫
p0−i∞

1
ε0

∑
α

nα qα

∫ Fαk(u,t = 0)
p+ i|k|u du

K(k, ip)
exp(pt)

d p
2πi

. (5.24)

This integral can be calculated in closed form for some specific equilibrium distribu-
tions Fα0 and initial perturbations Fαk(u,t = 0) only. Landau showed that it is possible to
find the asymptotic behavior of the potential when t → ∞, i.e., when the transients of the
initial perturbation have disappeared and the normal modes of the plasma determine the
plasma oscillations.

Before we can integrate (5.24) we need to know the analytic properties of ϕ̃k(p). By
definition it is analytic when Re(p) ≥ p0. In order to make use of residue calculus in the
p-integration we make an analytic continuation of ϕ̃k(p) to the entire complex p-plane.
The problem is how to continue the integral
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h(p) =
+∞∫

−∞

g(u)
u− ip/|k| du ; Re(p) ≥ p0 (5.25)

to Re(p) < p0. Assume that g(u) is analytic when |u| < ∞. If Re(p) > 0, the pole of the
integrand is above the integration path (the real u-axis). The analytic continuation requires
that the integration contour passes below the pole also in the case Re(p) ≤ 0

h(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

g(u)du
u− ip/|k| ; Re(p) > 0

P
+∞∫

−∞

g(u)du
u− ip/|k| +πig(ip/|k|) ; Re(p) = 0

+∞∫
−∞

g(u)du
u− ip/|k| +2πig(ip/|k|) ; Re(p) ≤ 0 ,

(5.26)

where P denotes the Cauchy principal value. The integration path is called the Landau
contour and denoted by

∫
L. Note that this does not yet define how the contour is to be

closed in the upper half plane. It is not always trivial to find a closure whose contribution
vanishes at the infinity. Already the Maxwellian distribution is tricky.

Feed your brain

Review the basics of analytical continuation from some textbook in complex analysis
and show that (5.26) is the correct analytical continuation in the present problem.

In (5.24) the only singularities are the poles at zeros of K(k, ip). In order to calculate the
p-integral we move the integration path (−i∞ → i∞) so far to the negative Re(p) (Fig. 5.1)
that the factor exp(pt) guarantees that the contribution from the vertical parts of the in-
tegration contour vanish and the only contributions come from the residues at the poles.

Denoting the residues at p j by Rj we have

ϕk(t) = ∑
j

R j exp(p j(k)t)+
−i∞−α∫

−i∞+p0

ϕ̃k(p)exp(pt)
d p
2πi

(5.27)

+
i∞−α∫

−i∞−α

ϕ̃k(p)exp(pt)
d p
2πi

+
i∞+p0∫

i∞−α

ϕ̃k(p)exp(pt)
d p
2πi

.

The second and fourth terms on the RHS are small because ϕ̃k → 0, as |p| → ∞ . The third
term vanishes exponentially as compared to the residue terms when t → ∞ . This yields the
asymptotic solution
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Fig. 5.1 Integration path in the p-plane.

ϕk(t → ∞) = ∑
j

R j exp(p j(k)t) = ∑
j

R j exp(−iω j(k)t) , (5.28)

where ω j = ωr + iωi are the solutions of the dispersion equation K(k,ω) = 0. This means
that a long time after the initial perturbation the plasma behavior is determined by the so-
lutions of the dispersion equation, provided that K is calculated along the Landau contour.

K(k,ω) ≡ 1−∑
α

ω2
pα

k2

∫
L

∂Fα0(u)/∂u
u−ω/|k| du = 0 . (5.29)

Now
Re(p j) < 0 ⇒ ωi < 0 ϕk is damped
Re(p j) > 0 ⇒ ωi > 0 ϕk grows (instability) .

For |ωi| � |ωr| the solution is called a normal mode. Note that the dispersion equation is
calculated only at the time-asymptotic limit.

Train your brain

An alternative way to solve the Vlasov equation is to follow Vlasov’s approach and end
up with the dispersion equation

1+∑
α

ω2
pα

k2

∫
k ·∂ fα0/∂v

ω −k ·v d3v = 0 .

Add weak collisions in the Vlasov equation in the form ∂ f/∂ t|c =−ν( f − f0) and show
that the Fourier transform method leads to the Landau prescription at the limit ν → 0+ .
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5.3 Normal Modes in a Maxwellian Plasma

Although space plasma distribution functions seldom are exactly Maxwellian, it is practi-
cal to start with the normal modes in the Maxwellian case and, if necessary, consider the
possible deviations on a case by case basis.

5.3.1 The plasma dispersion function

Assume E0 = B0 = 0 and consider the one-dimensional Maxwellian

Fα0 =
√

mα

2πkBTα
exp(−u2/v2

thα) , (5.30)

where the thermal speed is defined by

vthα =

√
2kBTα

mα
.

Now the Landau contour is a little problematic because the integrand of∫ ∂ Fα0/∂ u
u−ω/|k| du ≈

∫ uFα0

u−ω/|k| du

diverges with u → ∞, and the calculation of the closure of the integration path is not triv-
ial. This problem can be solved using methods of complex integration and the result be
expressed in terms of the plasma dispersion function

Z(ζ ) =
1√
π

∞∫
−∞

exp(−x2)
x−ζ

dx ; Im(ζ ) > 0 (5.31)

and its derivatives. The plasma dispersion function is related to the error function and
numerical routines to evaluate it are available. If we consider electron dynamics only,
assuming the ions as a fixed background, the dispersion equation reduces to

1− ω2
pe

k2v2
the

Z′
(

ω
kvthe

)
= 0 . (5.32)

For normal modes (|ωi|� |ωr|) the dispersion equation can be expanded around ω = ωr

1−∑
α

ω2
pα

k2

(
1+ iωi

∂
∂ωi

)[
P

∫ ∂ Fα0/∂ u
u−ωr/|k| du+πi

(
∂Fα0

∂u

)
u=ωr/|k|

]
= 0 . (5.33)

From this we can find solutions for the dispersion equation at long and short wavelengths.
These correspond to series expansions of Z for large and small arguments, respectively.
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5.3.2 The Langmuir wave

We start from the long wavelength limit (ω/k � vth), which is the same approximation as
made in the cold plasma theory (Chap. 4). Now

−P
∫ ∂ Fα0/∂ u

u−ωr/|k| du =
∫ ∂ Fα0

∂ u

(
1

ω/|k| +
u

(ω/|k|)2 +
u2

(ω/|k|)3 + ...

)
du . (5.34)

Using this expansion, neglecting the ion dynamics and inserting a Maxwellian distribution
for electrons (5.33) yields

ωr ≈ ωpe(1+3k2λ 2
De)

1/2 ≈ ωpe

(
1+

3
2

k2λ 2
De

)
(5.35)

as the real part of the frequency, and the imaginary part is1

ωi = −
√

π
8

ωpe

|k3λ 3
De|

exp
(
− 1

2k2λ 2
De

− 3
2

)
. (5.36)

This is the Langmuir wave. The finite temperature of the Maxwellian distribution makes
the standing cold plasma oscillation to propagate. Furthermore, the negative imaginary
part of the frequency indicates that the wave is damped at the rate ωi. This phenomenon is
known as the Landau damping. The damping is a genuine collective effect characteristic
for plasmas. Its interpretation will be discussed in Sect. 5.4.

We can find the same result by expanding K(ω ,k)

K(ω ,k) ≈ K(ωr,k)+ iωi
∂ K(ωr,k)

∂ωr
. (5.37)

Note that K(ωr,k) is a complex function containing an expression of the form

lim
ε→0+

∫ ∂ Fα0/∂ u
u−ωr/|k|− iε

du .

Thus we have

K(ωr,k) = Kr(ωr,k)+ iKi(ωr,k) (5.38)

Ki = −π ∑
α

ω2
pα

k2

(
∂Fα0

∂u

)
u=ωr/|k|

(5.39)

Kr = 1−∑
α

ω2
pα

k2 P
∫ ∂ Fα0/∂u

u−ωr/|k| du . (5.40)

Note that while the Landau contour is not given explicitly, it is taken care of by the limit
ε → 0+. Equating the imaginary parts we find

1 Here and in the following we replace ≈ by = once the initial approximation has been introduced.
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ωi =
−Ki(ωr,k)

∂Kr(ωr,k)/∂ωr
, (5.41)

where Kr fulfills the dispersion equation

Kr(ωr,k) = 0 . (5.42)

5.3.3 The ion–acoustic wave

Take then also the ion motion into account. Assume that Te � Ti and look for solutions of
the dispersion equation in the phase velocity range√

kBTi

mi
<

ω
k

<

√
kBTe

me
. (5.43)

At this limit we can use the same series expansion for the ions as above, but now the cold
plasma approximation is no more valid for electrons because vp < vthe. The appropriate
expansion is

P
∫ ∂Fα0/∂u

u−ωr/|k| du ≈ 2
∫ ∂ Fα0

∂ (u2)
du . (5.44)

Assuming Maxwellian distributions for both species we get

Kr = 1− ω2
pi

ω2
r

+
1

k2λ 2
De

(5.45)

Ki = π ∑
α

ω2
pα

k2

(
mα

2πkBTα

)1/2 mα

kBTα

ωr

|k| exp
(
− ω2

r mα

2k2kBTα

)
. (5.46)

By solving the dispersion equation the real part of the frequency is found to be

ω2
r =

k2c2
s

1+ k2λ 2
De

; cs =
√

kBTe

mi
(5.47)

and the damping rate is given by

ωi = − Ki

∂ Kr/∂ωr
(5.48)

= − |ωr|
√

π/8
(1+ k2λ 2

De)3/2

[(
Te

Ti

)3/2

exp
( −Te/Ti

2(1+ k2λ 2
De)

)
+

√
me

mi

]
.

This is the ion–acoustic wave and cs is called the ion–sound speed or ion–acoustic speed.
Note that the ion–sound speed is determined by the electron temperature and the ion

mass. If the ion temperature is to be taken into account, we should replace Te by Te +
Ti. However, this mode can be treated as a normal mode (|ωi| � |ωr|) only if Te � Ti,
which motivates that the ion temperature was neglected at the beginning. In many practical
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situations, for example in the auroral ionosphere this condition is not met and the mode
is strongly damped. As we will see in Chap. 9, the strongly damped ion–acoustic mode is
also important in the scattering of electromagnetic waves.

5.3.4 Macroscopic derivation of Langmuir and ion–acoustic modes

Finite temperature effects in plasmas do not always require a Vlasov theory treatment. For
example, in MHD (Chap. 6) the temperature is included through the equation of state and
energy equation. Thus the normal fluid sound wave, not the ion–acoustic wave, is a part of
the dispersion equation for MHD waves.

The Langmuir and ion–acoustic waves can be introduced in a warm unmagnetized
plasma description starting from simple electron and ion fluid equations, which is the
method applied in many introductory plasma physics textbooks. We sketch the procedure
here because the same approach is useful in the discussion of beam–plasma instabilities in
Chap. 7.

Assume that the plasma is homogeneous and that there are no background electromag-
netic fields. Let the pressure be isotropic, the average velocity zero, and the equation of
state or the form P/ρ−γ

m = constant. We are looking for plane wave solutions and linearize
the continuity equations (2.117) for ions and electrons. The first-order equations are

iωni1 − in0k ·Vi1 = 0 (5.49)
iωne1 − in0k ·Ve1 = 0 . (5.50)

In the momentum equation we retain the electron pressure gradient but neglect the ion
pressure effects due to the smaller ion mobility. Considering small mass density perturba-
tions ρm1 � ρm0 the equation of state can be written as

P1 = P0γ
ρm1

ρm0
. (5.51)

Now the momentum equations for ions and electrons are

−iωVi1 =
e

mi
E1 (5.52)

−iωVe1 = − e
mi

E1 − ikγP0

n0me

ne1

n0
. (5.53)

The first Maxwell equation ties these together

ik ·E1 = − e
ε0

(ne1 −ni1) . (5.54)

Combining these and writing P0 = nekBTe we get(
1− ω2

pi

ω2 − ω2
pe

ω2 − k2(γkBTe/me)

)
k ·E1 = 0 . (5.55)
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The expression in the parenthesis is now the dielectric function K(ω), whose zeros yield
the dispersion equation K(ω) = 0. This has 4 roots (or 2 roots for ω2). One pair of solutions
yields the dispersion equation

ω2 = ω2
pe + k2(γkBTe/me) . (5.56)

At zero temperature or for infinite wavelength (k = 0) this is the standing plasma oscilla-
tion. The finite temperature makes the wave propagating and dispersive for finite k. The
wave is electrostatic (longitudinal, k ‖ E).

To identify this mode with the Langmuir wave of the Vlasov theory, we must specify
the polytropic index γ , which requires some physical intuition. Let us consider the thermal
effect as a small correction to the cold plasma theory or, equivalently, the long wavelength
limit. Then we can assume that the thermal effect expands less than a wavelength during
one plasma oscillation. During one oscillation period there is thus no heat exchange be-
tween the wave and the plasma, and thus the process can be treated as adiabatic. Because
the field-free plasma is essentially one-dimensional, we have γ = (d +2)/d = 3 and

ω2 = ω2
pe

(
1+3k2λ 2

De
)

. (5.57)

As long as the thermal correction is small we can approximate the square root as

ω = ωpe

√
1+3k2λ 2

De ≈ ωpe

(
1+

3
2

k2λ 2
De

)
, (5.58)

which is the same solution we found in the Vlasov theory.
The second pair of solutions gives the ion–acoustic wave.

ω =
kcs√

1+ k2λ 2
De

, (5.59)

where we have introduced the ion–sound speed cs =
√

kBTe/mi. In this solution we have
set γ = 1, i.e., assumed an isothermal process. Its motivation is the small oscillation fre-
quency of the ions allowing the electrons to thermalize during one oscillation period.

Thus we have found both Langmuir and ion–acoustic modes without needing to invoke
the Vlasov theory or the Landau solution. The price to pay was to figure out the appropriate
polytropic indices, whereas in Vlasov theory the numerical factors are direct consequences
of assumed Maxwellian distributions and the wavelength regimes, where we looked for
the solutions. However, by far a more serious deficiency of this macroscopic warm plasma
treatment is that it does not give even a hint of the damping of the waves.
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5.4 Physics of Landau Damping

Landau’s original solution was not fully accepted before it was experimentally verified
in laboratories in the 1960s. A problem was that the Vlasov equation conserves entropy,
whereas the Landau solution does not appear to do so. Consider, e.g., the Langmuir waves.
The wave electric field interacts with the Maxwellian electrons accelerating those whose
velocity is slightly less than the phase speed of the wave, and decelerating those that move
a little faster. Because ∂ f /∂v < 0, there are more slower electrons than faster electrons
around the phase speed. Thus there is a net energy transfer from the wave to the particles,
i.e., the wave is damped and the particle distribution heated, which at the first sight looks
like a dissipative process.

To resolve this apparent contradiction consider the perturbed distribution function f1(t)
closer. Recall that

f̃αk(v, p) =
fαk(v,t = 0)
(p+ ik ·v)

+
qα

mα

iϕ̃kk ·∂ fα0/∂v

(p+ ik ·v)
(5.60)

fαk(v, t) =
1

2πi

p0+i∞∫
p0−i∞

f̃αk(v, p)exp(pt)d p . (5.61)

f̃αk(v, p) has the same poles as ϕ̃k(p), i.e., the solutions of K = 0. There is an additional
pole at p = −ik ·v. At the limit t → ∞ we find

fαk = f̂αB exp(−ik ·vt)+∑
ωk

f̂αk exp(−iωkt) , (5.62)

where ωk are the solutions of the dispersion equation and the sum is over these solutions.
f̂αB and f̂αk are time-independent amplitudes. The terms in the sum over ωk are damped at
the same rate as the perturbed field ϕk(t). In the first term on the RHS of (5.62) B stands for
ballistic. The ballistic term is there because the Vlasov equation is formally similar to the
Liouville equation and every particle remembers its initial perturbation wherever it goes
in the phase space. When t increases, the ballistic term becomes increasingly oscillatory
in the v-space (Fig. 5.2) and its contribution to ϕk(t) behaves as

k2ϕk =
1
ε0

∑
α

qα nα

∫
f̂αB exp(−ik ·vt)d3v → 0 , (5.63)

when t →∞. That is, at the time-asymptotic limit the ballistic terms contain the information
of the initial perturbation but they do not contribute to the observable electric field.

The existence of ballistic terms leads to a nonlinear phenomenon called the Landau
echo, the laboratory observation of which was an important step towards the acceptance
of Landau’s solution (Fig. 5.3) as the correct way to deal with the Vlasov equation.

Assume that an intial perturbation took place at time t1 and its spectrum was narrow
near k ≈ k1. Then

fα = fα0 + fαk1(u,t = t1)exp(ik1u(t − t1))+ ... . (5.64)
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Fig. 5.2 Evolution of the distribution function when the electrostatic perturbation becomes damped but
the ballistic term remains superposed on the equilibrium distribution.
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Fig. 5.3 The Landau echo.

Wait until the perturbation has been damped below the observable limit and only the bal-
listic term superposed on the equilibrium distribution remains. Then launch another wave
(k ≈ k2) at time t2 and wait until it also is damped. Add this to fα and do not linearize!
Thus

fα = fα0 + f (1)
αk1 exp(ik1u(t − t1))+ f (1)

αk2 exp(ik2u(t − t2))+ f (2)
α + ... . (5.65)

where (1) and (2) indicate the order of the terms. In the second-order term there is a
contribution of the form

f (2)
α ≈ f (1)

αk1 f (1)
αk2 exp(ik1u(t − t1))exp(−ik2u(t − t2)) ; t > t2 . (5.66)

At time t = t3 defined by
k1(t3 − t1)− k2(t3 − t2) = 0 (5.67)

the second-order term is no longer small, and the perturbed charge density
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ρq2 ≈
∫

duexp(ik1u(t − t1)− ik2u(t − t2)) f (2)
α(k2−k1) (5.68)

becomes finite and observable. Thus the “beating” of the ballistic terms of the first two per-
turbations has produced a new observable perturbation, the Landau echo, that is a damped
mode of the plasma. It is transient because the beat condition is satisfied only for a short
while and the Landau damping acts on this wave as well. The effect has been verified in
laboratories and shows that the Landau damping does not need to violate the conservation
of entropy in the time scale τ � τcoll .

As collisional time scales in tenuous space plasmas often are very long compared to the
relevant time scales of investigated phenomena, the existence of Landau echoes indicates
that even in the case of small-amplitude perturbations there can be nonlinear mixing of
wave modes at the microscopic level. This is one viewpoint to plasma turbulence. How-
ever, no satisfactory general method of calculating the transport coefficients (resistivity,
viscosity, etc.) from plasma kinetic theory has been found.

5.5 Vlasov Theory in a General Equilibrium

In space plasmas a background magnetic field is practically always present. Therefore we
must look for a more general description including the background fields. The linearized
Vlasov equation then reads as[

∂
∂ t

+v · ∂
∂ r

+
qα

mα
(E0 +v×B0) · ∂

∂v

]
fα1 = − qα

mα
(E1 +v×B1) · ∂ fα0

∂ v
. (5.69)

This can be solved employing the method of characteristics that can be described as “in-
tegration over unperturbed orbits”. Define new variables (r’,v’,t’)

dr′

dt ′
= v′ ;

dv′

dt ′
=

qα

mα

[
E0(r′,t ′)+v′ ×B0(r′,t ′)

]
(5.70)

with boundary conditions

r′(t ′ = t) = r ; v′(t ′ = t) = v . (5.71)

Consider fα1(r′,v′,t ′) and use (5.69) to calculate its total time derivative

d fα1(r′,v′,t ′)
dt ′

=
∂ fα1(r′,v′,t ′)

∂ t ′
+

dr′

dt ′
· ∂ fα1(r′,v′,t ′)

∂ r′
+

dv′

dt ′
· ∂ fα1(r′,v′,t ′)

∂ v′

= − qα

mα

[
E1(r′,t ′)+v′ ×B1(r′,t ′)

] · ∂ fα0(r′,v′)
∂v′

. (5.72)

The boundary conditions imply that fα1(r′,v′,t ′) = fα1(r,v,t) at time t ′ = t. Thus the
solution of (5.72) at t ′ = t is a solution of the Vlasov equation. The point is that (5.72) can
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be calculated by a direct integration because its LHS is an exact differential. The formal
solution is

fα1(r,v,t) = − qα

mα

t∫
−∞

[
E1(r′,t ′)+v′ ×B1(r′,t ′)

] · ∂ fα0(r′,v′)
∂ v′

dt ′

+ fα1(r′(−∞),v′(−∞),t ′(−∞)) . (5.73)

This procedure can be interpreted in the following way. fα1 has been found by integrating
the Vlasov equation from −∞ to t along the path in the (r,v)-space that at each individual
point coincides with the orbit of a charged particle in the equilibrium fields E0 and B0.
From fα1 we can calculate nα1(r,t) and Vα1(r,t), which are then inserted in Maxwell’s
equations

∇×E1 = −∂ B1

∂ t
(5.74)

∇ ·E1 =
1
ε0

∑
α

qα nα1 (5.75)

∇×B1 =
1
c2

∂E1

∂ t
+ μ0 ∑

α
qα(nαVα)1 . (5.76)

This set of equations could now (in principle) be solved as an initial value problem in the
same way as the Landau solution. However, we can also take a shortcut and accept that the
Landau solution is the correct way to deal with the resonant integrals, and assume that the
wave fields are of the form E1(r,t) = Ekω exp(ik · r− iωt) and that fα1(r′,v′,t →−∞) →
0. This yields for Im(ω) > 0

fαk = − qα
mα

0∫
−∞

(Ekω +v′ ×Bkω) · ∂ fα0(v′)
∂ v′

exp[i(k ·R−ωτ)]dτ , (5.77)

where τ = t ′ − t , R = r′ − r. The solutions for Im(ω) < 0 are found by analytic continu-
ation of fαk to the lower half-plane. Inserting this into Maxwell’s equations in the (ω ,k)
space and eliminating Bkω we get

·E = 0 , (5.78)

where is the dispersion tensor. The cold plasma theory is, in principle, found at the limit
f (v)→ δ (v), although some care must be exercised with the details of the limit procedure.

Example

Assume E0 = B0 = 0 and f0 = f0(v2). Define Fα0(u) =
∫

fα0δ (u−k · v/|k|)d3v, Ek =
(k ·E)/|k|, and E⊥ = (k×E)/|k| ⇒
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0 K⊥ 0
0 0 Kk

⎤⎦⎡⎣ E⊥1
E⊥2
Ek

⎤⎦ = 0 , (5.79)

where

K⊥ = 1− k2c2

ω2 −∑
α

ω2
pα

ω

∫ Fα0

ω −|k|u du (5.80)

Kk = 1+∑
α

ω2
pα

ω

∫
L

Fα0/∂u
ω/|k|−u

du . (5.81)

These give
electrostatic modes : Kk = 0 (E⊥ = 0)
electromagnetic modes : K⊥ = 0 (Ek = 0) .

The electrostatic solution is the Landau solution. The dispersion equation for the electro-
magnetic modes is

ω2 = k2c2 +∑
α

ω2
pα

∞∫
−∞

ωFα0

ω −|k|u du . (5.82)

This has solutions only if ω � kvthe and we find the familiar electromagnetic mode in
nonmagnetized cold plasma

ω2 ≈ k2c2 +ω2
pe . (5.83)

5.6 Uniformly Magnetized Plasma

Assume now that B0 = B0ez, E0 = 0, fα0 = fα0(v2
⊥,v‖). The derivation of the dielectric

tensor is a tedious procedure, which we only outline here. Denote

vx = v⊥ cosφ , vy = v⊥ sinφ , vz = v‖ .

Using these variables the particle orbit can be written as

v′x = v⊥ cos(φ −ωcτ) ; x′ = x− v⊥
ωc

sin(φ −ωcτ)+
v⊥
ωc

sinφ

v′y = v⊥ sin(φ −ωcτ) ; y′ = y+
v⊥
ωc

cos(φ −ωcτ)− v⊥
ωc

cosφ

v′z = v‖ ; z′ = v‖τ + z .

(5.84)

To integrate fαk from (5.77), we need the identity

exp
(

i
k⊥v⊥

ωc
sin(φ −ωcτ)

)
=

∞

∑
n=−∞

Jn

(
k⊥v⊥

ωc

)
exp[in(φ −ωcτ)] ,
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where Jn are the ordinary Bessel functions of the first kind. After a few pages of calculation
the dielectric tensor is written in the form

(ω ,k) =

(
1−∑

α

ω2
pα

ω2

)
−∑

α

∞

∑
n=−∞

2πω2
pα

nα0ω2 (5.85)

∞∫
0

∞∫
−∞

v⊥dv⊥dv‖

(
k‖

∂ fα0

∂ v‖
+

nωcα

v⊥
∂ fα0

∂v⊥

)
nα(v‖,v⊥)

k‖v‖ +nωcα −ω
.

The tensor nα is of the form

nα(v‖,v⊥) =

⎡⎢⎢⎢⎢⎢⎣
n2ω2

cα
k2
⊥

J2
n

inv⊥ωcα
k⊥

JnJ′n
nv‖ωcα

k⊥
J2

n

− inv⊥ωcα

k⊥
JnJ′n v2

⊥J′2n −iv‖v⊥JnJ′n
nv‖ωcα

k⊥
J2

n iv‖v⊥JnJ′n v2
‖J2

n

⎤⎥⎥⎥⎥⎥⎦ (5.86)

and J′n = dJn/d(k⊥v⊥/ωcα) .
B0 makes the plasma anisotropic. The temperature may now be different in parallel and

perpendicular directions as, e.g., in the case of bi-Maxwellian distribution

fα0 =
mα

2πkBTα⊥

√ mα

2πkBTα‖
exp

[
−mα

2kB

(
v2
⊥

Tα⊥
+

v2
‖

Tα‖

)]
. (5.87)

When it is inserted into the elements of , the resonant integrals in the direction of v‖ can
be expressed in terms of the plasma dispersion function Z. The wave modes are again the
non-trivial solutions of ·E = 0.

The mode structure has grown in complexity from the unmagnetized Landau solution:

• The distinction between electrostatic and electromagnetic modes is no more exact; E ‖ k

can be satisfied approximately but also the electromagnetic modes may have an electric
field component along k.

• The Bessel functions introduce harmonic mode structure organized according to ω ≈
nωcα for each species α .

• The resonance ω = k ·v in the isotropic plasma is replaced by

ω −nωcα = k‖v‖ . (5.88)

Thus only the velocity component ‖ B0 is associated with Landau damping and only
for waves with k‖ �= 0 .
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5.6.1 Perpendicular propagation (θ = π/2)

For perpendicular propagation k‖ = 0 and the wave equation reduces to⎡⎣ Kxx Kxy 0
Kyx Kyy 0
0 0 Kzz

⎤⎦ ·
⎡⎣ Ex

Ey
Ez

⎤⎦ = 0 . (5.89)

Assuming an isotropic distribution one of the solutions is

Kzz = 1− k2c2

ω2 − 2π
ω ∑

α
∑
n

ω2
pα

∞∫
−∞

dv‖

∞∫
0

J2
n fα0v⊥

ω −nωcα
dv⊥ = 0 . (5.90)

This is the the Vlasov theory counterpart of the O mode of Chap. 4

ω2 ≈ k2c2 +ω2
pe . (5.91)

An additional series of modes with narrow bands just above the harmonics of the cyclotron
frequency are found

ω = nωcα

{
1+O

[
ω2

pα

k2c2 (krLα)2n

]}
. (5.92)

These modes are electrostatic cyclotron waves. Both electrons and all ion species have
their own cyclotron mode families.

The remaining solutions are found from the determinant∣∣∣∣ Kxx Kxy
−Kxy Kyy

∣∣∣∣ = 0 . (5.93)

These equations express the mode for which E ·k � E×k, which is the X-mode. It has
all branches found in Sect. 4.3.3, including the high-frequency mode, the mode below
the upper hybrid resonance, and the mode below the lower hybrid resonance. The low-
est frequency mode is called the magnetosonic mode that at lowest frequencies (longest
wavelengths) is the same as the magnetosonic wave in MHD (Chap. 6).

In addition a new set of electrostatic (i.e., E ·k � E×k) modes are found in the Vlasov
theory. These modes are called Bernstein modes and they exist both for electrons (modes
labeled f in Fig. 4.5) and for all ion species (modes labeled C in Fig. 5.4). The exactly
perpendicular modes are not Landau damped, but they cannot propagate at the cyclotron
frequencies. If the modes have finite k‖, they experience damping, which for n �= 0 is called
cyclotron damping.

The Bernstein modes and electrostatic cyclotron modes have different characteristics.
At frequencies below the hybrid resonance frequencies (both for electron and ion modes)
the Bernstein modes can have any frequency within the band (nωcα ,(n+1)ωcα ), whereas
above the hybrid frequencies the modes are limited to frequencies above but near each
harmonic of the gyro frequency. The electrostatic cyclotron waves, on the other hand, are
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Fig. 5.4 Dispersion surfaces for low-frequency waves [André, 1985]. Frequencies are normalized to pro-
ton gyro frequency and wave numbers to proton gyro radius. A) ion–acoustic waves, B) electrostatic ion
cyclotron waves, C) ion–Bernstein modes, D) lower hybrid plateau, E) low-frequency part of the whistler
mode. The surface containing the electromagnetic ion cyclotron waves and Alfvén waves is shown sepa-
rately for the sake of clarity.
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always limited to frequencies relatively close to the gyro frequency. This is best illustrated
for the ion–Bernstein modes (C) and electrostatic ion cyclotron modes (B) in Fig. 5.4.
The figure also illustrates the fact that the electrostatic ion cyclotron modes predominantly
have a larger k‖ than the Bernstein modes.

5.6.2 Parallel propagation (θ = 0)

At the lowest frequencies (ω � ωci) we find the Alfvén wave

ωr =
k‖vA√

1+ v2
A/c2

(5.94)

that is the same as the MHD mode with the “cold plasma correction” in the denominator
arising from the inclusion of the displacement current into Ampère’s law. As the Vlasov
equation is solved for the full set of Maxwell’s equations, the solutions shall have both
cold and MHD approximations as limiting cases.

Note that the Vlasov theory introduces damping of Alfvén waves, which will not be
found in MHD (Chap. 6)

ωi = −ω2
pi

|k‖|
1

1+ c2/v2
A

√
πmi

8kBTi
exp

( −B2

2μ0nekBTi

ω2
ci

ω2
r

)
. (5.95)

The damping rate is very small at low frequencies. When ω → ωci, the mode approaches
the ion cyclotron resonance from below the same way as in the cold theory and the damp-
ing rate increases. At this limit the mode is called the electromagnetic ion cyclotron wave,
which is damped by the resonant ions. In Vlasov theory the cyclotron resonance is no more
a singularity, but becomes correctly described, including energy transfer from the waves
to the particles.

Other parallel modes are, of course, the electromagnetic R- and L-modes and the
whistler mode. Also the whistler mode is damped, although the damping rate is small
except at short wavelengths (large k). Near the electron gyro frequency the whistler mode
goes over to the electromagnetic electron cyclotron wave.

The most important differences between electrostatic and electromagnetic cyclotron
waves are their polarization and harmonic structures

Electromagnetic : k ‖ B0 ω ≈ ωcα no harmonic structure
Electrostatic : k ⊥ B0 ω ≈ nωcα harmonic structure

The electromagnetic cyclotron modes are below the gyro frequencies, whereas the electro-
static modes are above the harmonics of the gyro frequencies.

5.6.3 Propagation at arbitrary angles

As in cold plasmas, the waves can propagate at arbitrary angles between 0 and 90◦. The
dispersion surface description is a convenient way to illustrate the various wave modes
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(Fig. 5.4) The figure is similar to Fig. 4.5, but calculated for ion-related modes. Both
figures were produced by numerically solving the linearized Vlasov equation for homoge-
neously magnetized electron–ion plasma where both species have Maxwellian distribution
functions.

For example, the whistler mode is on the surface that joins a “plateau” at the lower
hybrid frequency in the perpendicular direction. Note that ωi varies strongly from one
point in the mode structure to another and some parts of the surfaces are strongly damped.
For example, the Bernstein modes propagate only close to the perpendicular direction.
The electrostatic ion cyclotron waves penetrate somewhat deeper into the cube, especially
if electrons are warmer than ions. The ion–acoustic surface is also strongly damped unless
Te � Ti. The entire mode structure is very sensitive to the actual shape of the velocity
distribution function, to the relative temperatures, and also to the ion composition.



6. Magnetohydrodynamics

In Chapter 2 we discussed the derivation of MHD equations in the hard way, starting from
the Vlasov equation, taking velocity moments and making several approximations. This is
not how MHD was first formulated. Instead the starting point was classical hydrodynamics
that was reformulated for electrically conductive fluids under the influence of the magnetic
field. We begin the discussion with a brief review of this procedure

6.1 From Hydrodynamics to Conservative MHD Equations

The equations of ordinary gas dynamics can be written as

∂ρ
∂ t

= −∇ · (ρV) (6.1)

ρ
dV

dt
= −∇P+νρ∇2V (6.2)

d
dt

(Pρ−γ ) = 0 , (6.3)

where d/dt = ∂/∂ t + V ·∇ and γ is the polytropic index. This is a set of five equations
for five unknowns: density ρ , pressure P, and three velocity components. Equations (6.2)
are known as the Navier–Stokes equations, where ν is the viscosity. If viscosity can be
neglected, as we often do in MHD, the equations are called the Euler equations.1

Of these equations (6.1) is given in the conservation form ∂ F/∂ t +∇ ·G = 0, where F
is the conserved quantity and G the corresponding flux quantity. Often, particularly when
doing numerical fluid simulations in conservative systems, it is convenient to write the
whole theory in terms of conserved quantities. In hydrodynamics this requires that Euler
equations can be used instead of Navier–Stokes equations (i.e., ν = 0) because viscosity
causes dissipation, making the system is non-conservative.

1 In mathematics and physics it is not so easy to keep track of all the equations that have been named in
honor of Leonhard Euler!

163H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth,
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The whole set of equations of conservative hydrodynamics can be formulated as

∂ρ
∂ t

= −∇ ·p (6.4)

∂ p

∂ t
= −∇ ·

(
pp

ρ
+P

)
(6.5)

∂u
∂ t

= −∇ ·
[
(u+P)

p

ρ

]
, (6.6)

where p = ρV is the momentum density (mass density flux), pp denotes the direct product
(dyad) with components pi p j , is the unit dyad, and u the total energy density related to
the pressure as

u =
P

γ −1
+

p2

2ρ
. (6.7)

P/(γ − 1) is the thermal energy density and p2/2ρ the kinetic energy density. Variables
(ρ,V,P) are called primitive variables, whereas (ρ,p,u) are conserved variables.

Train your brain by transforming (6.1)–(6.3) to (6.4)–(6.6)

In MHD we must add Ampère’s force J×B to the momentum equation

∂ p

∂ t
= −∇ ·

(
pp

ρ
+P

)
+J×B . (6.8)

This is not yet in the conservation form, but neglecting the displacement current as we
normally do in MHD we can express Ampère’s force as

J×B = − 1
μ0

B× (∇×B) = −∇
(

B2

2μ0

)
+

1
μ0

∇ · (BB) . (6.9)

With this the momentum equation can be written in the conservation form as

∂ p

∂ t
= −∇ ·

[
pp

ρ
+

(
P+

B2

2μ0

)
− 1

μ0
BB

]
. (6.10)

Thus the momentum of the magnetic field is taken care in a natural way.
The energy equation (6.3) is automatically conservative. However, it is instructive to

write it in the form that explicitly illustrates the conservation of total energy density u
in the same way as in gas dynamics. This is straightforward to do because the magnetic
energy density is B2/(2μ0). Thus

u =
P

γ −1
+

p2

2ρ
+

B2

2μ0
(6.11)

and the energy equation can be written as
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∂u
∂ t

= −∇ ·
[(

u+P− B2

2μ0

)
p

ρ
+

1
μ0ρ

B× (p×B)
]

. (6.12)

We need one more equation to describe the time evolution of the magnetic field. Be-
cause we are now interested in conservative MHD, we must limit the discussion to the
ideal MHD case, where E = −V×B . Inserting this into Faraday’s law we get

∂B

∂ t
= ∇× (V×B) , (6.13)

which after replacing V by the conserved quantity p reads

∂ B

∂ t
= ∇×

(
p

ρ
×B

)
. (6.14)

Now we have the complete set of 8 equations (6.4, 6.10, 6.12, 6.14) for 8 conservative
variables (ρ,p,u,B) of the ideal MHD.

Train your brain

Use MHD’s Ohm’s law with Ampère’s and Faraday’s laws to write the Poynting theorem
in the form

−
∮

∂
E×H ·da =

∂
∂ t

∫ B2

2μ0
d3r +

∫ J2

σ
d3r +

∫
V ·J×Bd3r ,

This has already been mentioned in Chap. 1, Eq. (1.12).

Then take the scalar product of V and the momentum equation

ρm

(
∂
∂ t

+V ·∇
)

V+∇ · −J×B = 0

and derive the energy equation of adiabatic ideal MHD in the form

∂
∂ t

(
ρmV 2

2
+

P
γ −1

+
B2

2μ0

)
+∇ ·

(
ρmV 2

2
V+

γP
γ −1

V+
E×B

μ0

)
= 0 , (6.15)

which may be slightly more transparent than (6.12).
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6.2 Convection and Diffusion

Let us go back to primitive variables without the assumption of ideal MHD. From Ohm’s
law in resistive MHD and Maxwell’s equations it is easy to derive the induction equation
for the magnetic field

∂B

∂ t
= ∇× (V×B)+

1
μ0σ

∇2B , (6.16)

where the magnetic diffusivity η = 1/μ0σ has been assumed to be spatially uniform.
In the frame of reference co-moving with the plasma (V = 0) the induction equation

reduces to the diffusion equation
∂ B

∂ t
= η∇2B . (6.17)

Thus if the resistivity is finite, the magnetic field diffuses smoothing out spatial inhomo-
geneities, local curvature, etc., expressed by the term ∇2B.

The characteristic diffusion time can be found by simple dimensional analysis. Let
LB be the characteristic gradient scale length of the magnetic field. The solution of the
diffusion equation is of the form

B = B0 exp(±t/τd) , (6.18)

where the magnetic diffusion time τd is

τd = μ0σL2
B . (6.19)

At the limit σ → ∞ (ideal MHD), the diffusion term is small and the plasma flow is
described by the convection equation, which ties the flow and the magnetic field to each
other

∂ B

∂ t
= ∇× (V×B) . (6.20)

In this case there is no diffusion of the magnetic field across the plasma, and the magnetic
field is said to be frozen-in to the plasma.

Let us consider the relative strengths of convection and diffusion. Let τ be the time scale
of temporal variations, V the typical velocity, LB the local gradient scale length, and τd the
diffusion time scale. Substituting ∂/∂ t → τ and ∇ → L−1

B , and neglecting directions, the
induction equation reduces to

B
τ

=
V B
LB

+
B
τd

. (6.21)

The ratio of the terms on the RHS is the dimensionless magnetic Reynolds number Rm

Rm = μ0σLBV = LBV/η . (6.22)

Rm has in MHD a role analogous to the Reynolds number in classical hydrodynamics
R = LV/ν , where ν is the viscosity of the fluid.

Although the diffusivity is often small, it is never exactly zero. As a simple example,
we can consider the one-dimensional current sheet B(z,t)ex in the frame of reference co-
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moving with the plasma (V = 0). Let the initial condition be

B(z,0) =
{

+B0 , z > 0
−B0 , z < 0 .

(6.23)

In one dimension the diffusion equation is

∂B
∂ t

= η
∂ 2B
∂ z2 (6.24)

with the solution

B(z,t) = B0 erf
(

z√
4ηt

)

=
2B0√

π

z/
√

4ηt∫
0

exp(−u2)du . (6.25)

The total magnetic flux remains constant (=0) but the energy of the field
∫

B2/2μ0 dz de-
creases with time. (Strictly speaking, this configuration is infinite, but we can think that
there is an outer boundary somewhere.) It is an easy exercise to show that

∂
∂ t

∫ B2

2μ0
dz = −

∫ J2

σ
dz . (6.26)

Thus the energy is dissipated through Ohmic heating, also known as Joule heating, in the
current sheet.

Example: Conductivity and diffusivity in the Sun

Almost everywhere in the Sun the classical resistivity is very small. Important exceptions
are the photosphere and lower chromosphere where the degree of ionization is low and
collisions with neutrals limit the current flow.

The photospheric conductivity is about 10 S m−1 ( = 10 Ω−1 m−1 = 10 mho m−1). This
yields η ≈ 105 m2 s−1. For photospheric granules LB ≈ 1000 km and V ≈ 2 km s−1). These
numbers give Rm ≈ 20000 � 1. This predicts very weak diffusion, indeed. This is not con-
sistent with the actually observed magnetic fields, whose evolution implies some 200 times
faster diffusivity and correspondingly smaller Rm. The explanation is that the turbulence
in the upper convection zone introduces turbulent diffusivity ηt ≈ 2×107 m2 s−1, but there
is no rigorous way to calculate this number.

The solar gas becomes fully ionized above 2000 km. The effective electron collision
time can be estimated using Spitzer’s formula

τei(s) = 0.266×106 T 3/2(K)
ne(m−3) lnΛ

, (6.27)



168 6. Magnetohydrodynamics

where lnΛ is the Coulomb logarithm (of the order of 20). Now the classical conductivity

σ =
nee2τei

me
(6.28)

has the numerical value

σ(Sm−1) = 1.53×10−2 T 3/2(K)
lnΛ

. (6.29)

Using lnΛ = 20 the diffusivity is given by

η(m2 s−1) = 109 ×T−3/2(K) . (6.30)

For a typical coronal temperature T = 106 K this yields diffusivity of only η = 1 m2 s−1.
In the corona the scale lengths and the characteristic speeds also become larger when
moving outward. Consequently, the expanding solar wind is an excellent example of ideal
MHD plasma.

However, even in the solar wind plasma deviations from the ideal conditions may arise.
The reason is that when plasmas originating from different sources convect toward each
other, their frozen-in configuration may be very different from each other, e.g., the mag-
netic field directions may be anti-parallel leading to formation of very thin current sheets.
In such cases the collective interactions can give rise to wave–wave and wave–particle
interactions resulting, e.g., in turbulent diffusivity or in effective (anomalous) resistivity.
Another non-ideal example is the formation of shocks in cases when the relative flow speed
is supersonic, or supermagnetosonic. We will return to these effects later.

6.3 Frozen-in Field Lines

Hannes Alfvén was the first to realize the importance of the convection of the plasma
and the magnetic field together and he introduced the concept of frozen-in field lines to
illustrate this. Later he denounced the concept as “pseudopedagogical”, which was his ex-
pression for something that makes us to think that we have understood a phenomenon,
whereas we actually have misunderstood it. Alfvén’s criticism was based on the picture
of moving magnetic field lines. According to Maxwell’s equations the magnetic field is a
fundamental physical entity that may change both in time and space. The magnetic field
line is just a mathematical abstraction and there is nothing physical in the motion of mag-
netic field lines. However, the frozen-in concept is quite useful in plasma physics when
interpreted correctly.

The frozen-in concept can be formulated both in differential and integral forms. We
start from the differential description assuming ideal MHD. Let two plasma elements move
according to Fig. 6.1. Let the elements be on the same field line B(t) at the time t. To be
on the same field line means that if we trace the field B from one plasma element, we end
up at the other. In this sense the plasma elements are magnetically connected to each other.
The (vector) distance between the elements is 	l. During the time dt the elements move
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udt

l+d( l)

l

(u+ u)dt

B(t)

Fig. 6.1 Illustration of the proof that two plasma elements originally on a common field line are also on a
common field line after time dt.

the distances udt and (u+	u)dt, where u(r, t) is the plasma flow velocity. Now we have
to show that the elements are on a common field line also at the time t +dt, i.e., the path
	l + d(	l) is along the field line of B(t +dt). Here the spatial differential is denoted by
	 and the total time differential by d.

Write d(	l) in terms of u. The first term in the Taylor series of u is

	u = (	l ·∇)u . (6.31)

From Fig. 6.1 we see that

	l+d(	l) = 	l+(u+	u)dt −udt , (6.32)

which leads to
d(	l)

dt
= 	u = (	l ·∇)u . (6.33)

The convection equation gives for the magnetic field

∂ B

∂ t
= ∇× (u×B)

= (B ·∇)u− (u ·∇)B−B(∇ ·u) , (6.34)

where ∇ ·B = 0 was used. In the frame moving with the plasma

dB

dt
=

∂B

∂ t
+(u ·∇)B = (B ·∇)u−B(∇ ·u) . (6.35)

Calculate next d(	l×B)/dt

d
dt

(	l×B) =
d(	l)

dt
×B +	l× dB

dt
(6.36)

= [(	l ·∇)u]×B +	l× [(B ·∇)u−B(∇ ·u)] .

Because 	l originally was parallel to B, 	l×B = 0, and the third term on the RHS is
zero. For the same reason 	l and B can be interchanged in the first term on the RHS. Thus
the first and the second term are the same except for their sign and we have

d
dt

(	l×B) = 0 . (6.37)
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Consequently, 	l remains parallel to B and plasma elements originally on a common field
line remain on a common field line.

This picture of the frozen-in concept is physically sound in the context of Maxwell’s
equations. We have shown only that the two plasma elements remain magnetically con-
nected at all times without an assumption of moving field lines, although the picture of
moving field lines is useful as long as the ideal MHD approximation is valid.

We can also analyze the frozen-in concept in the integral formulation by calculating
how well the magnetic flux is preserved when the plasma moves. We expect that in ideal
MHD the magnetic flux through a closed loop moving with plasma should remain constant

dΦ
dt

=
d
dt

∫
B ·dS = 0 . (6.38)

To prove this we consider a closed contour C at time t moving with the plasma velocity
V(r, t). At time t +	t the loop has moved, and possibly deformed, to C′. Let S and S′ be
the surfaces closed by C and C′. Let dl be an arc element on C. It moves in time 	t the
distance V	t and sweeps out the area dl×V	t. Form now the closed surface consisting
of S, S′ and of the surface swept out by V	t when dl is integrated along the closed contour
C. Because the magnetic field is divergence-free, the total flux through this closed surface
at time t +	t must vanish

−
∫

S
B(t +	t) ·dS+

∫
S′

B(t +	t) ·dS′ +
∮

C
B(t +	t) ·dl×V	t = 0 . (6.39)

The positive direction of dS is outward from the closed volume.
Now we can calculate dΦ/dt when the contour C moves with the fluid

dΦ
dt

= lim
	t→0

ΦC′(t +	t)−ΦC(t)
	t

= lim
	t→0

∫
B(t +	t) ·dS′ − ∫

B(t) ·dS

	t

= lim
	t→0

∫
[B(t +	t)−B(t)] ·dS

	t
−

∮
C

B(t +	t) ·dl×V

=
∫ ∂ B

∂ t
·dS−

∮
C
(V×B) ·dl

=
∫ [

∂B

∂ t
−∇× (V×B)

]
·dS

= −
∫

∇× (E+V×B) ·dS . (6.40)

Here (6.39) was used to transform
∫

B(t +	t) · dS′ to
∫

B(t +	t) · dS. The integrand
vanishes if

E+V×B = −∇Ψ , (6.41)
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where Ψ is a scalar. This is a necessary and sufficient condition to preserve the magnetic
flux. Thus clearly in ideal MHD where Ψ is a constant, the magnetic flux and plasma flow
together.

In ideal MHD the primary fields are B and V. The electric current and the electric
field are calculated from these using Ampère’s law and ideal-MHD Ohm’s law. In the
Maxwellian sense the current is the source of B. Thus the flow of the magnetic field, e.g.,
with the solar wind, means that plasma particles also carry the current system along the
flow.

In space plasmas the first correction to the ideal MHD is often not the resistive term but
the Hall term J×B/(ne)

E +V×B =
1
ne

J×B . (6.42)

This is expected to be the case, e.g., near current sheets separating magnetic fields of
different strength and direction. In this Hall MHD the magnetic field becomes frozen-in to
the electron flow

E = −Ve ×B . (6.43)

Physically this is a consequence of the fact that the electron gyro motion is more strongly
tied to the magnetic field than the ion motion. However, with this correction we have lost
much of the meaning of the frozen-in concept because the mass flow, determined by the
heavier ions, is separated from the evolution of the magnetic field, at least locally.

The breakdown of the frozen-in condition is one of the most important phenomena in
space plasmas. The change of interconnection between plasma elements can, in general,
be called reconnection. Reconnection is one of the most important concepts from the view-
point of space storms and will be discussed thoroughly in Chap. 8, where we also briefly
discuss the other non-ideal contributions to the generalized Ohm’s law (Eq. 2.135).

6.4 Magnetohydrostatic Equilibrium

Consider next MHD plasma in a time-independent (d/dt = 0) equilibrium. Assuming
scalar pressure (∇ · → ∇P) the momentum equation reduces to

J×B = ∇P . (6.44)

This gives B ·∇P = 0 and J ·∇P = 0 . Thus B and J are vector fields on surfaces of constant
pressure.

We have already seen in (6.9) that

J×B = −∇
(

B2

2μ0

)
+

1
μ0

∇ · (BB) .

The first term on the RHS is the gradient of the magnetic energy density, i.e., of the mag-
netic pressure B2/(2μ0). The second term is the divergence of the tensor BB/μ0, which
describes the stress and torsion arising from the inhomogeneities of the magnetic field. By
applying Ampère’s law we can eliminate the current and write the equation for magneto-
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hydrostatic equilibrium as

∇ · = − 1
μ0

B× (∇×B) . (6.45)

Assuming scalar pressure and negligible ∇ · (BB) the sum of the magnetic and plasma
pressures is constant

∇
(

P+
B2

2μ0

)
= 0 . (6.46)

The plasma beta

β =
2μ0P

B2 (6.47)

expresses the ratio of the plasma and magnetic pressures.
The current perpendicular to B is now

J⊥ =
B×∇P

B2 . (6.48)

This total current is often called diamagnetic current. It is the sum of all current elements
in the plasma. In addition to gradient and curvature currents an inhomogeneous plasma
density may cause net magnetization current

JM = ∇×M . (6.49)

Here the magnetization M is the density of magnetic moments μμμμμ .
The pressure and temperature of the plasma may be anisotropic, so β can also be dif-

ferent in the parallel and perpendicular directions (β⊥ �= β‖). Writing the perpendicular
and parallel pressures as P⊥ = nW⊥ and P‖ = 2nW‖, where n is the number density of
the plasma particles, we can express the curvature and gradient currents in terms of the
pressure

JC =
P‖
B

(∇×b)⊥ (6.50)

JG = P⊥∇
1
B
×b , (6.51)

where b = B/B is the unit vector in the direction of B. The magnetization is M = nμμμμμ =
−n(W⊥/B)b and

JM = ∇×M = −∇
(

P⊥
B

b

)
. (6.52)

Summing all currents we find

J =
B×∇P

B2 +
P‖ −P⊥

B
(∇×b)⊥ , (6.53)
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which yields magnetohydrostatic equilibrium equations for anisotropic plasma

J×B = ∇⊥P⊥ +(P‖ −P⊥)b ·∇b = (∇ · )⊥ (6.54)
(∇ · )‖ = 0 . (6.55)

Parker was the first to derive (6.53) from single particle motion and the equation is some-
times named after him.

In time-dependent problems we must include inertial currents, of which the first-order
term is the polarization current

JP =
ρm

B2
dE

dt
. (6.56)

6.5 Field-aligned Currents

The Parker equation (6.53) does not say anything of possible currents along the magnetic
field. If β � 1 in magnetohydrostatic equilibrium, the pressure gradient is negligible and
thus

J×B = 0 , (6.57)

i.e, the electric current must flow along the magnetic field. Because a current creates a
magnetic field around it, the self-consistent field-aligned current (FAC) consists of spiral-
ing magnetic field lines and the resulting structure is often characterized as a flux rope.
Another term is force-free field because the magnetic force on the plasma is zero. The
force-free equilibrium is an approximation, but often a very good one, to the momentum
equation.

6.5.1 Force-free fields

The innocent-looking equation J×B = 0 is actually pretty hard to solve. The problem lies
in its nonlinearity. Using Ampère’s law we can write it as

(∇×B)×B = 0 . (6.58)

That B1 and B2 are two solutions of this equation does not imply that B1 + B2 would be
another solution.

We can express the field-alignment as

∇×B = μ0J = α(r)B , (6.59)

where α is a function of position. Taking divergence of this we get

B ·∇α = 0 , (6.60)

i.e., α is constant along the magnetic field. If α is constant everywhere, the equation
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∇×B = αB (6.61)

is linear. Now the sum B1 +B2 of two solutions is also a solution for the force-free field.
Taking a curl of (6.61) we get the Helmholtz equation

∇2B +α2B = 0 (6.62)

that has known solutions. That the field fulfills the Helmholtz equation is a necessary but
not sufficient condition for the field to be force-free. Of course, the boundary conditions
must also be specified correctly.

A special case of force-free magnetic fields is the current-free configuration ∇×B = 0.
Then the magnetic field can be expressed as the gradient of a scalar potential B = ∇Ψ .
Because ∇ ·B = 0, the magnetic field can be found by solving the Laplace equation

∇2Ψ = 0 (6.63)

with appropriate boundary conditions. Thus we can use the well-developed methods of
potential theory.

Example: Linear force-free model of a coronal arcade

Let us consider a simple model for a coronal arcade above the surface of the Sun (for
further discussion of coronal loops, see Chap. 12). Let the configuration look like an arc in
the xz-plane and extend uniformly in the y-direction. Let the structure be sinusoidal in the
x-direction with wave number k. The Helmholtz equation has the second spatial derivative,
thus the same z-dependence is retained after two derivations for sinusoidal and exponential
functions. Because the field should vanish at high altitude, we choose the z-dependence as
exp(−lz). These choices fulfill the Helmholtz equation if α2 < k2. In order to have the
structure above the solar surface we consider z > 0. Let us then seek solutions of the form

Bx = Bx,0 sin(kx)e−lz

By = By,0 sin(kx)e−lz (6.64)

Bz = B0 cos(kx)e−lz .

Now the equation ∇×B = αB yields

lBy,0 = αBx,0

−lBx,0 + kB0 = αBy,0 (6.65)
kBy,0 = αB0

and the field can be expressed as

Bx = (l/k)B0 sin(kx)e−lz

By = (α/k)B0 sin(kx)e−lz (6.66)

Bz = B0 cos(kx)e−lz ,
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where k, l, and α must be related by

l2 = k2 −α2 . (6.67)

The projection of the magnetic field lines on the xy-plane are straight lines parallel to each
other

By =
α

(k2 −α2)1/2 Bx , (6.68)

whereas the projection to the xz-plane are arcs, which we were looking for. Visually the
arcade looks like a flux rope, one half of which is above the solar surface (Fig. 6.2).

The arcade is simpler if the current is so weak that we can neglect it and use po-
tential theory. We can look for separable solutions in 2D Cartesian space by writing
Ψ = X(x)Z(z). From the Laplace equation

∂ 2Ψ
∂x2 +

∂ 2Ψ
∂ z2 = 0 (6.69)

we find
1
X

d2X
dx2 = − 1

Z
d2Z
dz2 = −k2 , (6.70)

where k is a constant. This is fulfilled, e.g., by Ψ = (B0/k) sinkxe−kz, from which we find
the field configuration

Bx =
∂Ψ
∂x

= B0 coskxe−kz (6.71)

Bz =
∂Ψ
∂ z

= −B0 sinkxe−kz . (6.72)

Fig. 6.2 Sketch of the linear force-free arcade solution.
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In the xz-plane this looks the same as the force-free solution, but there is no distortion of
the arcs in the y-direction.

6.5.2 Grad–Shafranov equation

The linear force-free arcade magnetic field discussed above is essentially two-dimensional
because By is the same as Bx multiplied by a constant. Sometimes this kind of translation-
ally symmetric geometry is called 2 1

2 -dimensional.
Let us consider the general configuration with translational symmetry, e.g., a large flux

rope whose axis can be assumed to be locally straight and B is uniform in the z-direction,
retaining the scalar plasma pressure P in the calculation. Because ∇ ·B = 0, the magnetic
field can be written as

B =
(

∂A
∂ y

,−∂ A
∂ x

,Bz

)
, (6.73)

where A = A(x,y)ez is the vector potential. Assume that the magnetic field and the pressure
are in force balance, i.e.,

1
μ0

(∇×B)×B−∇P = 0 . (6.74)

Because none of the functions in (6.74) depends on z, its z-component reduces to

∂Bz

∂x
∂A
∂y

− ∂ Bz

∂ y
∂ A
∂ x

= 0 . (6.75)

Thus the gradients in the xy-plane ∇⊥Bz and ∇⊥A are parallel to each other and Bz can be
expressed as a function of A

Bz(x,y) = Bz(A(x,y)) . (6.76)

Using this we can write the x- and y-components of (6.74) as

1
μ0

(
BzB′

z +∇2
⊥A

) ∂A
∂x

+
∂ P
∂ x

= 0 (6.77)

1
μ0

(
BzB′

z −∇2
⊥A

) ∂A
∂y

+
∂P
∂ y

= 0 , (6.78)

where the prime indicates the derivative d/dA. Also ∇⊥P is parallel to ∇⊥A. Thus

P(x,y) = P(A(x,y)) . (6.79)

Now (6.77) and (6.78) are both satisfied if

1
μ0

(
∇2
⊥A+BzB′

z
)
+P′ = 0 . (6.80)

Writing the total pressure as

Pt =
B2

z

2μ0
+P (6.81)
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we have arrived to the Grad–Shafranov equation

1
μ0

∇2
⊥A+

dPt

dA
= 0 . (6.82)

Train your brain

The Grad–Shafranov method is not limited to translational symmetry. Find the corre-
sponding equation for azimuthal symmetry (∂/∂φ = 0).

Hint: Use cylindrical coordinates, and if you find the problem too hard, consult Boyd
and Sanderson [2003].

The Grad–Shafranov equation is a useful tool when looking for ideal MHD solutions
under the assumption of translational or rotational symmetries. While it is nonlinear (B2

z ),
it is a scalar equation and thus much easier to handle than nonlinear vector equations.

In the force-free case the solutions are found by setting P = 0. There is no underlying
constant-α assumption and thus equation

1
μ0

∇2
⊥A+

d
dA

(
B2

z

2μ0

)
= 0 (6.83)

is not limited to the linear force-free configurations.

6.5.3 General properties of force-free fields

It is possible to prove a number of useful theorems for force-free fields. For example:

1. A field with finite magnetic energy cannot be force-free everywhere.

Proof: Because B falls off faster than r−2 at large distances from the origin, the energy can
be written as

W =
∫ B2

2μ0
d =

1
μ0

∫
r ·J×Bd ,

which vanishes everywhere if the field is force-free everywhere. Thus a magnetic field
that is force-free everywhere must have a singularity. This is trivially true for potential
fields, e.g., a dipole has a singularity (the dipole itself) and being current-free it certainly
is force-free as well.

2. If J×B = 0 in a finite volume and on its boundary S, then B = 0 everywhere.

Train your brain by proving this statement.
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This theorem implies that if there is a finite FAC in a finite volume, it must be anchored
to the boundary of the volume. This is related to the continuity equation, which states that
the sources of parallel currents are sinks of perpendicular currents, and vice versa

∇ ·J = ∇‖ ·J‖ +∇⊥ ·J⊥ = 0 . (6.84)

3. An axisymmetric, force-free, poloidal magnetic field must be current-free.

Proof: A poloidal field written in cylindrical coordinates is given by

B = Brer +Bzez (6.85)

without any dependence on φ . Thus the current is according to Ampère’s law

J =
1
μ0

(
∂Br

∂ z
− ∂Bz

∂ r

)
eφ . (6.86)

Now the force is
J×B = |J|(Bzer −Brez) , (6.87)

which is zero only if J vanishes. This theorem warns us against trying to construct too
simple fields in polar coordinates. This is actually one formulation of the famous Cowling
anti-dynamo theorem that will be proven in Sect. 8.3.2.

6.5.4 FACs and the magnetosphere–ionosphere coupling

The continuity equation (6.84) governs the ionosphere–magnetosphere coupling where the
FACs above the auroral zone are connected to the horizontal currents in the ionosphere.
In the magnetospheric scale the ionosphere can be considered as a thin layer. In the mag-
netospheric end the transition from field-aligned to perpendicular current flow takes place
over a large volume. The current that is field-aligned in the low beta (of the order of 10−6)
plasma above the auroral region becomes more and more perpendicular as increasing β
allows ∇P to make J×B non-zero.

Let us discuss the coupling in a quasi-static idealized configuration. We start by calcu-
lating the current sources and sinks in the magnetosphere. Let the magnetospheric plasma
be anisotropic and use formulas from Sect. 6.4. Because the perpendicular magnetization
current (∇×M) is divergence-free, we get

∇⊥ ·J = ∇⊥ · (JC +JG)

= ∇⊥ · P‖ −P⊥
B

(∇×b)⊥−∇⊥P⊥ ·∇⊥× b

B
. (6.88)

Thus the pressure gradient in the direction of the particle drift causes divergence in the per-
pendicular current and thus acts as a source or sink of field-aligned current. If the pressure
is isotropic, this current arises directly from the divergence of the diamagnetic current
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∇⊥ ·J = ∇⊥ ·
(−∇P×b

B

)
. (6.89)

In a time-dependent case also the polarization current may have a divergence

∇⊥ ·JP = ∇⊥ ·
(

ρm

B2
dE

dt

)
=

ρm

B2
d
dt

(∇⊥ ·E)

=
ρm

B
b · d

dt
(∇⊥×V) =

ρm

B
dΩ
dt

, (6.90)

where we have assumed E = −V×B and introduced the vorticity Ω = b · (∇×V) in the
direction of the magnetic field. Finally, the FAC density is obtained by integrating along
the magnetic field

J‖ = −B
∫

∇⊥ ·J dl
B

= −B
∫ [

∇⊥P ·
(

∇× b

B

)
− ρm

B
dΩ
dt

]
dl
B

. (6.91)

Thus the sources of FACs are pressure gradients and time-dependent vorticity of the
plasma flow. Both are thought to be important in the magnetosphere.

The ionospheric end of the current circuit is a non-MHD regime where Ohm’s law is
given by Eq. (1.62), that is

J =

⎛⎝ σP σH 0
−σH σP 0

0 0 σ‖

⎞⎠ ·E .

In the following discussion we assume the parallel conductivity to be infinite, although
this is not always true above the auroral region (e.g., Eq. (2.138)).

Assume then that the magnetic field is perpendicular to the ionospheric layers, which
is, for the present purpose, a good enough approximation in the auroral region where the
FACs between the ionosphere and magnetosphere flow. Furthermore, let the magnetic field
be constant in the ionosphere. Representing the perpendicular ionospheric current as a sum
of Hall and Pedersen currents and integrating along the field line we get

J‖ = −
∫

∇⊥ ·
(

σPE−σH
E×B

B

)
dz . (6.92)

Approximating the ionosphere as a thin layer in the magnetospheric scale this equation
can be further integrated over the thickness h of the resistive ionosphere

J‖ ≈ −∇⊥ ·
(

ΣPE−ΣH
E×B

B

)
= −∇⊥ · (ΣPE)+

E×B

B
·∇ΣH . (6.93)

Here the height-integrated Pedersen and Hall conductivities are denoted by ΣP = hσP and
ΣH = hσH (SI unit A m−1). Thus the sources and sinks of FACs in the ionosphere are the
divergence of the Pedersen current and, in the case of non-uniform Hall conductivity, the
gradient of the Hall conductivity.
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It is not quite clear how the ionospheric and magnetospheric FACs close to each other
in detail. The only region from which we have detailed and statistically representative ob-
servations of FACs is above the auroral oval. Regardless of the actual closure mechanisms
or the current paths we can estimate the effect of the current system on the electric poten-
tial across the polar cap. It, in turn, is a quantity that can be determined by measuring the
ionospheric plasma flow using, e.g., ionospheric radars or polar-orbiting satellites.

Let us assume, for simplicity, isotropic magnetosphere and complete north-south sym-
metry. In that case (6.91) reduces to

JI‖
BI

≈ 1
2

∫ {
b · [∇P×∇(1/B2)

]− ρm

B2
dΩ
dt

}
dz , (6.94)

where I denotes the ionosphere and JI‖ is thus the ionospheric FAC density caused by the
magnetospheric vortices and pressure gradients. The integration extends from the southern
auroral ionosphere to the northern.

Because this current must be the same as the current calculated in the ionosphere, we
find an equation that ties the auroral and polar region electric field to the plasma flow in
the magnetosphere. As the last simplifying assumption let the ionospheric electric field
be a potential field (E = −∇ϕ). Then the coupling equation between the ionosphere and
magnetosphere becomes

∇⊥(ΣP∇ϕ) +
BI ×∇ϕ

BI
·∇ΣH

=
BI

2

∫ {
b · [∇P×∇(1/B2)

]− ρm

B2
dΩ
dt

}
dz . (6.95)

The resistive ionosphere continuously dissipates energy from the magnetosphere. To
maintain the coupling requires an external source of energy, which is the solar wind flow
and its interaction with the terrestrial magnetic field through mechanisms that we shall
discuss later.

6.5.5 Magnetic helicity

The magnetic helicity of a magnetic field configuration is defined by

H =
∫

A ·Bd , (6.96)

where A is the vector potential. Helicity is a measure of the structural complexity of the
magnetic field. Because the vector potential is defined only to within a gauge transforma-
tion A → A′ = A+∇χ, the helicity is gauge-independent only if the field extends over all
space and decreases sufficiently rapidly (and χ does not increase too rapidly). For mag-
netic field configurations of finite dimensions the helicity is well defined if and only if
B ·n = 0 on the bounding surface.

The helicity of a magnetic field configuration is conserved, if the field is confined within
a closed surface S, B ·n = 0 on S, and the field permeates a perfectly conducting medium
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that moves in such a way that B ·V = 0 on S. To show this we first note that from the
convection equation

∂B

∂ t
= ∇× (V×B)

we get, within the given gauge,
∂A

∂ t
= V×B . (6.97)

Calculate now dH/dt

dH
dt

=
∫ (

∂ A

∂ t
·B+A · ∂ B

∂ t

)
d

=
∫ [

∂ A

∂ t
· (∇×A)+A ·

(
∇× ∂ A

∂ t

)]
d

=
∫

∇ ·
(

∂ A

∂ t
×A

)
d

=
∫

n ·
(

∂A

∂ t
×A

)
dS

= 0 , (6.98)

where we have used the fact that ∂A/∂ t ⊥ B and that both B and V are normal to n on S.
Thus ∂A/∂ t ‖ n on S and the final integral is zero and H is a constant of motion.

Example: Helicity of two flux tubes linked together

Consider two flux tubes that have the shapes of tori (doughnuts) and that are linked together
through the annuli of each other. The total magnetic helicity is the sum of the contribution
from each tube separately H = H1 +H2. For thin flux tubes B = ∇×A is approximately
normal to the cross-section S of the tube and we can write for tube 1

H1 =
∫

A ·Bd =
∮

ds ·A
∫

dSn ·∇×A . (6.99)

The surface integral is thus the magnetic flux in tube 1: Φ1. The line integral goes around
tube 2 yielding Φ2. Thus the helicity contribution from tube 1 is H1 = Φ1Φ2. Tube 2 gives
the same contribution H2 = Φ1Φ2, and the total helicity is

H = 2Φ1Φ2 . (6.100)

If two flux tubes are wound around each other N times

H = ±2NΦ1Φ2 , (6.101)

where the sign depends on the relative orientation of the magnetic field in the flux tubes.
If there are more than two interlinked flux tubes, they each contribute by a factor of their
respective Φ .
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Woltjer’s theorem

Woltjer showed in 1958 an important property of ideal MHD:

For a perfectly conducting plasma in a closed volume 0 the integral∫
0

A ·Bd = H0 (6.102)

is invariant and the state of minimum magnetic energy is a linear, i.e., constant-α , force-
free field

Proof: The invariance was shown above. Consider the magnetic energy

W =
∫

0

B2

2μ0
d (6.103)

and small perturbations of A and B to A + δA and B + δ B such that δA = 0 on S and
δB = ∇×δA. By linearizing and subtracting α0δH0 ≡ 0, where α0 is constant, we get

2μ0δW =
∫

0

[2B ·δB−α0(δ A ·B+A ·δB)]d

=
∫

V0

∇ · (−2B×δ A+2α0A×δ A)d

+ 2
∫

V0

(∇×B−α0B) ·δ Ad . (6.104)

The first integral on the RHS of a divergence can be transformed to a surface integral
which vanishes because δB = ∇× δA, whereas the second integral shows that δW = 0
for all perturbations if and only if

∇×B = α0B . (6.105)

This states that if the energy is at minimum, the configuration must be force-free and we
have proven Woltjer’s theorem.

The converse statement of this result is not necessarily true. If the configuration is force-
free, we have shown that the energy has an extremum, but not that it would be minimum.

This result has been postulated to hold also for small but non-zero resistivity (known as
Taylor’s hypothesis) and thus it is a good starting point to assume that the state of minimum
energy in nearly-ideal MHD problems is a force-free configuration.

Note that, e.g., the magnetospheric configuration is determined by perpendicular cur-
rents and is thus not force-free although ideal MHD is a reasonable large-scale description
of magnetospheric plasma flow. The magnetosphere is not in a minimum energy equilib-
rium state.
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6.6 Alfvén Waves

In MHD there are two characteristic speeds: The speed of sound waves

vs =
√

γP/ρm =
√

γkBT/m (6.106)

and the speed of Alfvén waves in the direction of the magnetic field

vA =

√
B2

μ0ρm
. (6.107)

A combination of these speeds is the magnetosonic speed, which is the speed of magne-
tosonic waves perpendicular to the magnetic field

vms =
√

v2
s + v2

A . (6.108)

6.6.1 Dispersion equation of MHD waves

Elementary plasma physics textbooks often discuss the Alfvén waves starting from the the
modes propagating parallel and perpendicular to the ambient magnetic field. However, the
linearized MHD equations are straightforward and easy to solve for plane waves propagat-
ing at all angles at once. Consider a compressible, non-viscous, perfectly conductive fluid
in a magnetic field. This is described by the equations

∂ρm

∂ t
+∇ · (ρmV) = 0 (6.109)

ρm
∂V

∂ t
+ρm(V ·∇)V = −∇P+J×B (6.110)

∇P = v2
s ∇ρm (6.111)

∇×B = μ0J (6.112)

∇×E = −∂ B

∂ t
(6.113)

E +V×B = 0 . (6.114)

From these we can eliminate J, E, and P

∂ρm

∂ t
+∇ · (ρmV) = 0 (6.115)

ρm
∂V

∂ t
+ρm(V ·∇)V = −v2

s ∇ρm +(∇×B)×B/μ0 (6.116)

∇× (V×B) =
∂B

∂ t
. (6.117)
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Assume that in equilibrium the density ρm0 is constant and V = 0. Furthermore, let the
background magnetic field B0 be uniform. Considering small perturbations to the variables

B(r, t) = B0 +B1(r, t) (6.118)
ρm(r, t) = ρm0 +ρm1(r, t) (6.119)
V(r, t) = V1(r,t) (6.120)

we can linearize the equations by picking up the first-order terms

∂ρm1

∂ t
+ρm0(∇ ·V1) = 0 (6.121)

ρm0
∂ V1

∂ t
+ v2

s ∇ρm1 +B0 × (∇×B1)/μ0 = 0 (6.122)

∂B1

∂ t
−∇× (V1 ×B0) = 0 . (6.123)

From these we find an equation for the velocity perturbation V1

∂ 2V1

∂ t2 − v2
s ∇(∇ ·V1)+vA ×{∇× [∇× (V1 ×vA)]} = 0 , (6.124)

where we have introduced the Alfvén velocity as a vector

vA =
B0√μ0ρm0

. (6.125)

Looking for plane wave solutions in the form V1(r, t) = V1 exp[i(k · r−ωt)] we get an
algebraic equation

−ω2V1 + v2
s (k ·V1)k−vA ×{k× [k× (V1 ×vA)]} = 0 . (6.126)

It is convenient to expand the vector products. After straightforward vector manipulation
this leads to the dispersion equation for ideal MHD waves

−ω2V1 +(v2
s + v2

A)(k ·V1)k
+(k ·vA)[((k ·vA)V1 − (vA ·V1)k− (k ·V1)vA)] = 0 . (6.127)

6.6.2 MHD wave modes

Now it is a good time to look at the limiting cases of perpendicular and parallel propaga-
tion.

Perpendicular propagation

Let k ⊥ B0, which implies k ·vA = 0 , and the dispersion equation reduces to
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V1 = (v2
s + v2

A)(k ·V1)k/ω2 . (6.128)

Clearly k ‖ V1, and we have found the magnetosonic wave

ω
k

=
√

v2
s + v2

A . (6.129)

Assuming harmonic behavior also for the magnetic field the convection equation reduces
to

ωB1 +k× (V1 ×B0) = 0 , (6.130)

which yields the magnetic field of the wave

B1 =
V1

ω/k
B0 . (6.131)

The electric field can then be computed from the ideal MHD Ohm’s law E = −V1 ×B0.
This wave is known as the compressional (or fast) Alfvén (or MHD) wave.

Parallel propagation

For k ‖ B0, the dispersion equation reduces to

(k2v2
A −ω2)V1 +

(
v2

s

v2
A
−1

)
k2(V1 ·vA)vA = 0 . (6.132)

This describes two different wave modes. V1 ‖ B0 ‖ k yields the sound wave

ω
k

= vs . (6.133)

The second solution is a transversal wave with V1 ⊥ B0 ‖ k. Now V1 ·vA = 0 and we find
the Alfvén wave

ω
k

= vA . (6.134)

The wave magnetic field is

B1 = − V1

ω/k
B0 . (6.135)

The wave magnetic field is perpendicular to the background field. This mode does not
perturb the density or pressure. The mode causes shear stress on the magnetic field (∇ ·
(BB)/μ0) and is often called the shear Alfvén wave.

Propagation at oblique angles

The Alfvén waves are not limited to parallel and perpendicular propagation. To find the
dispersion equation in an arbitrary direction we denote the angle between k and B0 by θ
and insert it into the dot products of the dispersion equation. Select the z-axis parallel to
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B0 and the x-axis so that k is in the xz-plane. Then

k = k(ex sinθ + ez cosθ)
vA = vAez

V1 = V1xex +V1yey +V1zez

k ·vA = kvA cosθ
k ·V1 = k(V1x sinθ +V1z cosθ)

vA ·V1 = vAV1z

and the dispersion equation reads as

V1x(−ω2 + k2v2
A + k2v2

s sin2 θ )+V1z(k2v2
s sinθ cosθ) = 0 (6.136)

V1y(−ω2 + k2v2
A cos2 θ) = 0 (6.137)

V1x(k2v2
s sinθ cosθ)+V1z(−ω2 + k2v2

s cos2 θ) = 0 . (6.138)

The y-component yields a linearly polarized mode with the phase velocity

ω
k

= vA cosθ . (6.139)

This is the extension of the shear Alfvén wave to all directions. It does not propagate
perpendicularly to the magnetic field because its phase velocity becomes zero when θ →
π/2.

The non-trivial solutions of the remaining pair of equations are found setting the deter-
minant of the coefficients of V1x and V1z zero(ω

k

)2
=

1
2
(v2

s + v2
A)± 1

2
[(v2

s + v2
A)2 −4v2

s v2
A cos2 θ ]1/2 . (6.140)

The solutions with plus and minus signs are called fast and slow Alfvén (or MHD)
waves. The wave normal surface representation of these modes is given in Fig. 6.3.

6.7 Beyond MHD

It is clear that the MHD theory meets its limits when the scales of the investigated physical
phenomena become comparable to the scale sizes of individual particle motion, of which
the ion gyro radius is usually the first to be encountered in space physics, or when sev-
eral dynamically important particle species with different particle distribution functions
co-exist. In this section we discuss two topics that are closely related to MHD but require
different techniques: The hybrid approach to problems where non-fluid aspects of ion dy-
namics are included and the kinetic effects on Alfvén waves.



6.7 Beyond MHD 187

v
A

2+ vs
2)1/2

slow

fast

 shear

B0

vA

vS

b)

slow

fast

 shear

B0

vA

vS

a)

v
A

2+ vs
2)1/2

Fig. 6.3 Wave normal surfaces for slow, fast, and shear Alfvén waves, when a) vA > vs and b) vs > vA.

6.7.1 Quasi-neutral hybrid approach

Examples of problems where we need to go beyond the MHD description are shock phe-
nomena to be discussed in Chap. 11 and solar wind interaction with solar system bodies
whose size is not large as compared to the gyro radii of plasma particles. While the Vlasov
theory could in principle be applied to these problems, it is in turn so detailed that numer-
ical simulations easily require more computing resources than is available today.

A compromise approach utilized in shock and planetary plasma studies is known as the
quasi-neutral hybrid approach. The underlying idea is to treat the electrons as a macro-
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scopic fluid and represent ions either as individual particles, or in practice, as macroparti-
cles, i.e., reasonable-sized clumps of ions. The macroparticles can during the computation
be split and joined according to the practical requirements on resolution or computing
time. The treatment of electrons as a fluid is motivated by their much smaller length scales
(gyro radius and inertial length c/ωpe) than the corresponding lengths of the ions. Usu-
ally the electron scale sizes are much smaller than the gradient scale lengths of the shocks
or the plasma configuration around a planet. When these conditions are met, the method
brings major saving in computing resources, as there is no need to make the computing
grid so small that it could account for the individual electrons or the time step short enough
to correspond to the electron time scales.

Quasi-neutrality means that in a given volume there is (nearly) the same amount of
positive and negative charges. This requires that we are dealing with spatial scales much
larger than the Debye length λDe.

The plasma equations of a hybrid model include Faraday’s and Ampère’s laws. The
displacement current is not usually included in Ampère’s law, although we are interested
in faster processes than in MHD. It can be argued that the displacement current is not
dynamically important in the quasi-neutral hybrid approach, but this is something that
needs to be ensured in the problem being investigated.

Ohm’s law is used in the hybrid approach to provide the electric field. The V×B term
and the Hall term J×B/ne in the generalized Ohm’s law (Eq. 2.135) can be combined into
a single term −Ve ×B (cf. 6.43). In this respect the formulation resembles the Hall MHD.
As the generalized Ohm’s law was given in the single-fluid variables, the bulk velocity
V should be understood as the ion bulk velocity weighted with the electric charges of
each ion species i. This takes correctly into account any ion species that may have charges
different from the unit charge |qe| (e.g. He++). Thus Ohm’s law can be written in the form

E = −Ve ×B +
∇Pe

qene
+

J

σ
, (6.141)

where the electron inertial term has been neglected and isotropic pressure assumed.
The Lorentz force gives the acceleration of the ions. The equation closing the group of

hybrid equations is the expression for spatial propagation of ions according to their veloc-
ity obtained from the Lorentz acceleration. Now the hybrid equations for the propagation
of the field quantities and ions are

ne = |qe|−1 ∑
i

qini (6.142)

J = ∑
i

qinivi +qeneVe (6.143)

dri

dt
= vi (6.144)

dvi

dt
=

qi

mi
(E+vi ×B) (6.145)

E = −Ve ×B+
∇Pe

qene
+

J

σ
(6.146)
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∇×E = −∂ B

∂ t
(6.147)

∇×B = μ0J , (6.148)

where the quantities indexed by i’s refer to individual ion macroparticles and the sums are
over all macroparticles.

If other forces acting on the ions, e.g., gravitation, need to be considered, they can be
added to the Lorentz force term. For example, this may be required in studies of how
planetary low-temperature ions are picked up by the solar wind streaming past the planet.

The treatment of the electron pressure gradient in a hybrid model requires additional
assumptions, which may be hard to validate. Such assumptions typically include adiabatic
(or isothermal) behavior of the electron fluid and estimates for electron temperature. Also
the electron–ion coupling can be difficult to describe in a physically correct way.

The equations of the hybrid approach give a closed set of equations for propagation
of particle positions and velocities and the magnetic field from their initial values. This
allows ion kinetics to be modeled self-consistently with the dynamical electromagnetic
fields. The electrons play a secondary role following tightly the magnetic field lines and
obeying the assumed form of equation of state (e.g., adiabatic or isothermal).

Leaving the single-fluid MHD regime introduces some new concerns. The quasi-neutral
hybrid equations cannot be cast into a conservative form and one has to carefully monitor,
e.g., the conservation of energy during a numerical simulation. Furthermore, because the
Lorentz force must be solved for each macroparticle, the numerical simulations become
noisy.

An analogous hybrid approach can also be useful in the Vlasov picture. There elec-
trons are again treated as a single fluid, whereas the ion populations are represented by
distribution functions. If there is no need to resolve the physics at the electron scales, the
hybrid–Vlasov approach makes the equations simpler and brings in considerable savings
in computer time and memory requirements as compared to fully kinetic computations.

6.7.2 Kinetic Alfvén waves

We have so far seen how the Alfvén wave appears in the cold plasma theory, in the Vlasov
theory, and in particular in MHD. While the Vlasov theory would, in principle, be sufficient
for a kinetic description for these waves, it is sometimes useful to write the dispersion
equations in a form that shows the kinetic corrections to the MHD waves.

There are two types of kinetic Alfvén waves. For relatively large beta (β > me/mi), e.g.,
in the solar wind, at the magnetospheric boundary, or in the magnetotail plasma sheet, the
mode is called the oblique kinetic Alfvén wave with the phase velocity

v‖ = vA

[
1+ k2

⊥r2
Li

(
3
4

+
Te

Ti

)]1/2

(6.149)

v⊥ =
k‖vA

k⊥

[
1+ k2

⊥r2
Li

(
3
4

+
Te

Ti

)]1/2

.
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Kinetic Alfvén waves are important also in low-beta plasmas, e.g., on magnetic field
lines coupling the auroral ionosphere to outer parts of the magnetosphere. The kinetic
Alfvén waves are able to carry the field-aligned current and set up small-scale parallel
electric fields. For β � me/mi the electron thermal speed is smaller than the Alfvén speed
(vthe < vA) and the electron inertia needs to be taken into account. The wave is called the
shear kinetic Alfvén wave, inertial kinetic Alfvén wave, or just inertial Alfvén wave. Its
dispersion equation reads as

ω2 = k2
‖v2

A
1+ k2

⊥r2
Li

1+ k2
⊥c2/ω2

pe
, (6.150)

where the ratio c/ωpe is the electron inertial length.
These two limits (β � me/mi and β > me/mi) of the dispersion equation can be found,

with quite some effort, by considering the electron and ion continuation and momentum
equations. When moving from the auroral ionosphere out to the magnetosphere along a
magnetic field line, the limit β = me/mi is crossed somewhere at 4−5RE from the center
of the Earth, and the inertial wave becomes the oblique kinetic wave. Furthermore, the
kinetic Alfvén wave is subject to Landau damping, albeit small, as long as the wavelength
is long and β is small. All these facts call for kinetic treatment.

Lysak and Lotko [1996] derived such a dispersion equation for the low-frequency long-
wavelength modes in uniformly magnetized plasma with β � 1, but reaching to the regime
β > me/mi. The derivation starts writing the determinant of the dielectric tensor (5.85) for
a Maxwellian distribution function in a suitable coordinate system and equating it to zero

| | = 0 . (6.151)

A lengthy calculation finally gives the dispersion equation(
ω

k‖vA

)2

=
μi

1−Γ0(μi)
+

k2
⊥ρ2

s

Γ0(μe)[1+ζ Z(ζ )]
, (6.152)

where μα = k2
⊥r2

Lα , ρs is the gyro radius of an ion moving with the ion sound speed, i.e.,
ρ2

s = c2
s /ω2

ci, ζ = ω/k‖vthe is the argument of the plasma dispersion function Z (5.31) with
vthe =

√
2kBTe/me, Γ0(μ) = exp(−μ)I0(μ), and I0 is the modified Bessel function of the

first kind.

Challenge your brain

Read the article Lysak and Lotko [1996], fill in the steps leading to (6.152), and convince
yourself that you get at appropriate limits the expressions (6.149) and (6.150)



7. Space Plasma Instabilities

Space storms are extreme manifestations of space plasma instabilities. Onset of a solar
flare or a substorm expansion are examples of complex phenomena involving rapid pertur-
bations and system reconfigurations both at macroscopic and microscopic levels. Further-
more, the plasma waves discussed in previous chapters do not appear without reason. They
are driven either by an external “antenna” or by local instabilities somewhere in the sys-
tem. As there are several plasma wave modes, there is also a rich flora of different plasma
instabilities. The wave phenomena reach far beyond the family of linear wave modes. A
growing instability may develop to a nonlinear regime and cannot any more be described
in terms of normal modes. Shocks, to be discussed in Chap. 11, are examples of strongly
nonlinear wave phenomena.

Our ability to treat plasma stability analytically is in most cases limited to the linear
regime, where we can determine whether plasma is stable or unstable to small perturba-
tions, on not. If plasma is stable, the perturbation will eventually be damped. For a small
damping rate (|ωi| � ωr) the perturbation is a normal mode of the plasma, but often the
damping takes place very quickly and the mode is overdamped. If ωi > 0, the wave grows
and we have an instability. Without doing actual calculations it usually is impossible to say
to how large an amplitude a wave can grow. If nothing quenches the growth, the system
develops toward a major configurational change. The growth may also lead to a state in
which some plasma particles start to interact more strongly with the growing wave, e.g.,
by heating. This can sometimes be described in terms of quasi-linear saturation within the
Vlasov theory.

A way of categorizing plasma instabilities is to divide them between microscopic (ki-
netic) and macroscopic (configurational) instabilities. A macroinstability is something that
can be described by macroscopic equations in the configuration space. A microinstability
takes place in the (r,v)-space and depends on the actual shape of the distribution function.

Although it may sometimes look as if the plasma would become unstable without any
apparent reason, it is not true. The instabilities do not arise without free energy. The free
energy may be stored in the magnetic or plasma configuration, e.g., as magnetic tension in
the Harris current sheet, anisotropic plasma pressure, streaming of plasma particles with
respect to each other, etc. Identification of the free energy source is essential to understand
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a given instability because different forms of free energy can give rise to widely different
consequences.

In this chapter we discuss selected space plasma instabilities that are of interest in the
context of space storms. Unfortunately, it is impossible to penetrate deeply into the details
of all instabilities. The interested reader is encouraged to consult, e.g., the comprehensive
discussion of space plasma instabilities in the textbook by Treumann and Baumjohann
[1996], which has also inspired the following discussion.

7.1 Beam–plasma Modes

Perhaps the simplest electrostatic dispersion equation describing an instability can be con-
structed by considering an unmagnetized plasma consisting of ions as a non-moving back-
ground, a mobile electron background population (density n0, V0 = 0), and a cold electron
beam (nb, Vb) streaming through the background. Following the same procedure as in
Sect. 5.3.4, but neglecting thermal effects, it is an easy exercise to derive the dispersion
equation

ε(ω,k) = 1− ω2
p0

ω2 − ω2
pb

(ω −k ·Vb)2 = 0 . (7.1)

This equation describes standing Langmuir oscillations of both background electrons and
beam electrons, the latter being Doppler-shifted by the streaming velocity.

If we neglect the background plasma entirely (ω2
p0 = 0), the solutions of the dispersion

equation are
ω = k ·Vb ±ωpb . (7.2)

These solutions are called beam modes.
One way to analyze the stability properties of a plasma system is to investigate the

energy balance. The energy density of an electromagnetic wave in a plasma can be written
as

Ww = ε0δ E∗ · ε ·δE +
|δ B|2
2μ0

, (7.3)

where δE,δB indicate the wave electric and magnetic fields and ε is, in general, a tensor.
The magnetic permeability of the plasma is assumed to be constant μ0, which is usually
a good approximation in this context and thus the determination of magnetic energy is
straightforward. The electric energy is more complicated because it depends on the dielec-
tric properties of the plasma. Transforming into the (ω,k)-space the electric field spectral
energy density, can be expressed as

Ww(ω,k) =
ε0

2
〈|δE(ω,k)|2〉 ∂ [ωε(ω,k)]

∂ω
. (7.4)

Feed your brain by figuring out how expression (7.4) is derived.
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Because the energy density and the spectral energy density are real quantities, (7.4)
contains the real part of ε(ω ,k) only. The formula for Ww expresses both the energy density
of the electric field, WE = ε0|δ E|2/2 , and the energy in the wave motion of the particles.
This motion provides the polarization field, i.e., the energy that can formally be considered
to set up the displacement field D.

For the beam-plasma mode, the ratio of the total wave energy and the electric field
energy is

Ww

WE
=

∂ [ωε(ω ,k)]
∂ω

= ω
∂ε(ω,k)

∂ω
=

2ω2
p0

ω2 +
2ωω2

pb

(ω −k ·Vb)3 . (7.5)

The first term on the RHS comes from the Langmuir waves and the second is the contri-
bution of the beam mode. If the Doppler-shifted frequency of the beam mode is negative,
its energy is negative. When the beam moves through the plasma, it must be slowed down
by the electromagnetic interaction with the background. Then the negative energy mode
loses energy, i.e., its negative amplitude grows. Thus the beam–plasma system can have
growing solutions, depending on the actual plasma parameters.

Beam–plasma instabilities arise in many space storm relevant environments from beams
propagating into the upstream direction of shock fronts to drifts destabilizing waves in the
auroral ionosphere.

7.1.1 Two-stream instability

The most fundamental beam–plasma instability is the two-stream instability. Figure 7.1
illustrates the coupling between the Langmuir mode and the beam modes in the (ω ,k)-
space.
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Fig. 7.1 Coupling of Langmuir and beam–plasma modes.



194 7. Space Plasma Instabilities

The dispersion equation

1− ω2
p0

ω2 =
ω2

pb

(ω −k ·Vb)2 (7.6)

is a fourth-order polynomial equation for ω with four roots in the complex plane. The
solutions can be illustrated graphically by plotting both sides of the dispersion equation
separately, i.e., the εl (plasma oscillation) and 1− εb (1 – beam modes). Figure 7.2 shows
that there are two stable solutions in the real axis, whereas the second pair of solutions
are complex numbers. One of these is the unstable solution associated with the negative
energy mode.

p0

1

b

b

b

-

l l

- kvb kvbp0

Fig. 7.2 Graphical solution to illustrate the two-stream instability.

The analytical solution for the unstable mode can be found assuming that close to the
phase velocity of the beam (ω ≈±kVb) the beam term is much larger than one. Then

ω2
p0(ω − kVb)2 +ω2

pbω2 = 0 (7.7)

⇒
ω =

kVb

2+nb/n0

[
1± i

(
nb

n0

)1/2
]

. (7.8)

Thus the negative energy mode has the frequency

ωts =
kVb

2+nb/n0
(7.9)

and the growth rate (γ = ωi)
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γ = ωts

(
nb

n0

)1/2

. (7.10)

The source of free energy is in the motion of the beam. If the external energy source
ceases to feed the system, the instability quenches itself after the beam has slowed down to
a certain threshold. The threshold is determined by the damping through the background
particles, which is a microscopic process and thus beyond the present treatment.

7.1.2 Buneman instability

A special case of two-stream instability arises when the entire electron population is
streaming with respect to the ions in cold unmagnetized plasma. This is known as the
Buneman instability. It is an example of current-driven instabilities because the relative
motion of the particle populations corresponds to a net current in the plasma. If the elec-
trons and/or ions are so warm, that their distribution functions overlap, microscopic treat-
ment becomes necessary.

The instability is easiest to study in the rest frame of the ions. The cold plasma disper-
sion equation is

ε(ω ,k) = 1− ω2
pi

ω2 − ω2
pe

(ω − kV0)2 = 0 , (7.11)

where V0 is the relative velocity between the populations. Because ωpe �ωpi , the electron
term dominates. The slow negative energy mode ω− ≈ kV0 −ωpe is the unstable mode,
whereas the positive energy mode ω+ ≈ kV0 +ωpe is stable. Thus we can write

(ω −ω−)ω2 =
ω2

pi(ω − kV0)2

ω −ω+
. (7.12)

As in the two-stream case the interesting wave number is k ≈ ωpe/V0. Now, however,
ω � ωpe. With these approximations

ω3 ≈− me

2mi
ω3

pe . (7.13)

This has one real root

ω = −
(

me

2mi

)1/3

ωpe . (7.14)

Writing ω = ωr + iγ we obtain two equations

ωr(ω2
r −3γ2) = −meω3

pe

2mi
(7.15)

γ2 = 3ω2
r . (7.16)

From these we can solve the frequency for the Buneman mode at the maximum growth
rate
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ωbun =
(

me

16mi

)1/3

ωpe ≈ 0.03ωpe (7.17)

γbun =
√

3
(

me

16mi

)1/3

ωpe ≈ 0.05ωpe . (7.18)

The growth rate of the mode is of the same order as its frequency. The amplitude grows
rapidly and can lead to rapid change of the configuration, e.g., transforming the free energy
(current) to heat of the plasma. This is an example of anomalous resistivity where the
instability takes the role of collisions to resist the current flow.

Train your brain

Show that the unstable wave modes of the Buneman instability must have

k2V 2
0 < ω2

pe

[
1+

(
me

mi

)1/3
]3

. (7.19)

Thus the unstable wave must have a minimum wavelength. The frequency has its
maximum (ωbun) at this threshold and decreases toward longer waves. The instability
quenches itself through a nonlinear process where the growing electric field fluctuations
begin to trap electrons slowing them down to a velocity that is below the threshold for
the wave growth.

7.2 Macroinstabilities

Division between macro- and microinstabilities is mainly a technical matter. There are
instabilities that can be treated in macroscopic theory although velocity space effects may
become important in some stage of their evolution, in particular, at saturation.

7.2.1 Rayleigh–Taylor instability

The Rayleigh–Taylor (RT) instability, also known as the Kruskal–Schwarzschild insta-
bility, is an example of macroscopic instabilities arising from plasma inhomogeneity. It
describes the stability of a system in which heavier fluid is supported above lighter fluid,
e.g., by surface tension or magnetic field. The RT instability is also a neutral fluid phe-
nomenon, an example being a carefully prepared colorful cocktail drink, but we are not in
that business.

Consider instead a heavy plasma supported against the gravitational force by the mag-
netic field (Fig. 7.3). Let the boundary between the heavy and light plasmas, as well as
the magnetic field, be in the (x,y)-plane, B0 = B0ex. Let the gravitational acceleration
g =−gez act downward and the density gradient ∇n0 = [∂n0(z)/∂ z]ez point upward. Such
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Fig. 7.3 Principle of the Rayleigh–Taylor instability.

configurations appear, e.g., in the equatorial ionosphere and in the solar atmosphere. Let
the plasma be, for simplicity, collisionless and cold.

Consider a small sinusoidal perturbation to the boundary (Fig. 7.3). The gravitational
field causes an ion drift in the −y-direction. This leads to an electric field perturbation in
the +y-direction in the region where plasma perturbation is downward, and in the opposite
direction in the region where the perturbation is upward. In the downward perturbed region
the E×B drift is downward and in the upward perturbed region upward. Thus the E×B drift
enhances the perturbation and the system is unstable. The gravitationally supported plasma
falls down and the dilute bubbles rise.

The dispersion equation for the RT instability can be found starting from the cold ion
equation of motion including the gravitational force. Assuming harmonic perturbations we
find (

ω +
gk⊥
ωci

)
δVi⊥ =

e
mi

(k⊥δϕ − iB0ex ×δVi⊥) . (7.20)

In order to the E×B drift to be effective the frequency of the disturbance must be much
smaller than ωci . Consequently, the expression for the velocity disturbance is

δVi⊥ = −δϕ
[

ik⊥× ex +
k⊥

ωciB0

(
ω +

gk⊥
ωci

)]
. (7.21)

The ion continuity equation is now

ωδni = n0k ·δVi − iδ Vi ·∇n0 . (7.22)

Eliminating δVi we get an expression for the density disturbance

δ ni = n0δϕ

[
e

mi

(
k2
‖

ω2 − k2
⊥

ω2
ci

)
+

k⊥
B0Ln

(
ω +

gk⊥
ωci

)−1
]

, (7.23)

where Ln is the undisturbed density scale length

L−1
n =

d lnn0(z)
dz

> 0 . (7.24)

Assuming that the electrons are cold and do not drift (the gravitational drift of electrons is a
factor me/mi slower than the ion drift), we get from the electron continuity and momentum
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equations the relation

δne = −δϕ
n0

B0

(
ωce

ω
k2
‖

ω
− k⊥

Lnω

)
. (7.25)

Because the frequency is small, the charge neutrality is maintained and we can equate
δne = δni. Eliminating the fluctuating potential we finally find the dispersion equation

ωci

ω
1

k⊥Ln

(
1− ω

ω +gk⊥/ωci

)
−

(
1+

mi

me

)
ω2

ci
ω2

k2
‖

k2
⊥

+1 = 0 . (7.26)

To find exact solutions to this equation is a little tedious. The highest growth rate is
found for exactly perpendicular propagation (k‖ = 0) because in that case the electric field
will lead to the largest vertical drift. Assuming further a weak gravitational effect (ω �
k⊥g/ωci) the first-order solution is

ω2 = − g
Ln

, (7.27)

which has a purely growing branch with the growth rate

γ0rt =
(

g
Ln

)1/2

. (7.28)

This is the same growth rate as is found for the RT instability in non-magnetic fluids.
Expanding the dispersion equation to the second order in k⊥g/(ωciω) we could find an

oscillating solution, but still the growth rate would be much larger than the oscillation fre-
quency. Letting k‖ �= 0, solutions remain limited in a narrow cone around the perpendicular
direction.

The gravitational acceleration decreases with increasing distance as r−2. At the Earth
this implies that the RT instability is important only in the ionosphere, and because the
magnetic field must be horizontal, only in the equatorial ionosphere. In fact, radar and
satellite observations have verified the existence of rising low-density bubbles from the
nightside F-region above 200 km within the latitude range from 20◦S to 20◦N. This effect
is known as equatorial spread-F. The bubbles can rise up to about 1000 km altitude with
upward velocities of about 100 m s−1.

Neither the ionosphere nor the partially ionized parts of the solar atmosphere are fully
collisionless. Electrons can still be taken as collision-free but the ion–neutral collision rate
νin and the pressure force must be taken into account. The collisional growth rate is found
to be

γrt = γ0rt

[
1− exp

(
−γ0rt

νin

)]
, (7.29)

which at the limit of vanishing collisions yields γ0rt of (7.28). At the limit of large collision
frequency the growth rate becomes

γrtn =
g

νinLn
=

γ2
0rt

νin
. (7.30)
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7.2.2 Farley–Buneman instability

The Farley–Buneman (FB) instability is somewhat analogous to the RT instability. It is
also driven by the horizontal currents, but the currents are not of gravitational origin.

The magnetic field does not need to be horizontal for the FB instability to appear, but
it is most transparent to consider it in the equatorial ionosphere, where the magnetic field
is horizontal and the electric field points vertically downward E0 =−E0 ez. Consequently,
the E×B drift is eastward VE = −E0/B0 and the linearized electron continuity equation
can be written as

δVey =
(

ω
k⊥

−VE

)
δ n
n0

, (7.31)

where quasi-neutrality has been assumed. Neglecting the electron inertia and the gravita-
tion but retaining the electron–neutral collisions, the linearized electron momentum equa-
tion has two components

ωceδVey +νenδVez = 0 (7.32)

νenδVey −ωceδVez = −ik⊥
(

e
me

δϕ − kBTe

me

δn
n0

)
. (7.33)

Due to high νin the ions do not move in the vertical direction and thus the ion continuity
and momentum equations are

δViy − ω
k⊥

δn
n0

= 0 (7.34)

(ω − iνin)δViy − k⊥v2
thi

δn
n0

=
e

mi
k⊥δϕ . (7.35)

This set of five linear equations has nontrivial solutions when the determinant of the coef-
ficient matrix is zero. This gives us the dispersion equation

ω
(

1+ iψ0
ω − iνin

νin

)
= k⊥VE + iψ0

k2
⊥c2

s

νin
, (7.36)

where
ψ0 =

νenνin

ωceωci

and the ion temperature is retained in the expression for the ion–sound speed c2
s = kB(Te +

Ti)/mi .
For a weakly unstable solution the frequency is

ω f b =
k⊥VE

1+ψ0
(7.37)

and the growth rate

γ f b =
ψ0

νin

ω2
f b − k2

⊥c2
s

1+ψ0
. (7.38)
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Thus the FB instability sets in when the wave phase speed exceeds the ion–sound speed,
or equivalently, when the drift speed exceeds the threshold

VE > (1+ψ0)cs . (7.39)

The collision frequencies depend on the neutral density that follows the barometric
law nn(z) ∝ exp(−z/H) . In the equatorial ionosphere ψ0 ≈ 0.22 at the altitude of 105 km
and decreases rapidly upward making the growth rate negligible above altitudes of 130–
150 km. Thus the FB instability is limited to the E-region ionosphere.

The FB instability takes place also in the auroral ionosphere, where the geometry is
different and there are other mechanisms to make the observed spectra more complicated.
The FB fluctuations are useful in diagnostics of ionosphere properties because they scatter
electromagnetic waves (Chap. 9). A coherent ionospheric scatter radar transmits waves
of a few meter’s wavelength and receives the backscattered signal. The backscattering
occurs when the wave front crosses the background magnetic field at right angles. From the
Doppler shift of the backscattered signal it is possible to derive the component of the drift
speed in the direction of the wave. Using two such radars pointing to the same scattering
volume from to different locations it is possible to determine the two-dimensional velocity
field V and thus the electric field as E = −V×B, assuming that it is perpendicular to the
background magnetic field.

7.2.3 Ballooning instability

Another analog of the RT instability is the ballooning instability, in which the critical
forces are the ion pressure gradient and the magnetic tension due to curvature. Ballooning
is of particular interest for the theme of this book, as it is one of the instabilities that has
been considered to facilitate the current diversion from the Earth’s magnetotail through the
ionosphere at the time of the substorm onset (Chap. 13). The ballooning instability is also
of the interest in the context of prominence eruptions on the Sun (Chap. 12), where it is
linked to the traditional RT instability through the gravitational effect.

While the mathematical analysis of the ballooning instability is challenging, its basic
idea in the magnetospheric context can be illustrated by Fig. 7.4, which describes an in-
terpretation of observations of the ESA GEOS-2 spacecraft. The figure is drawn on the
equatorial plane close to midnight near the geostationary distance, which is known to be
the interface region where the near-Earth dipole-like magnetic configuration changes to a
highly-stretched tail-like configuration prior to the onset substorm expansion.

In this region both ∇P and ∇B point earthward. Let the configuration be perturbed by a
wave moving in the azimuthal direction. Now electrons and ions located in the earthward
side of the wave, i.e., in the region where the pressure is greater will undergo faster drifts
to the east and to the west, respectively, than the particles in the tailward side. This leads
to a similar polarization field δ E as in the case of RT instability and thus to a δE×B drift.
This drift enhances the initial perturbation and the system is unstable.

The growing positive and negative space charges can act as sinks and sources of field-
aligned currents, which tends to stabilize the instability. These FACs have been suggested
to build up the substorm current wedge [Roux, 1985], which will be discussed in Chap. 13.
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Fig. 7.4 The idea of the ballooning instability at the interface between the stretched tail-like magnetic
field configuration and the near-Earth dipole-like field lines. The structure on the left (a) shows the local
growth of the instability analogous to the RT instability. In the structure on the right (b) a westward motion
has been added. This leads to a phase shift between the electron and ion dominated regions. The excessive
charges are then expected to be neutralized either by sending electrons along the magnetic field line to
the ionosphere from the negative charge regions or drawing electrons from the ionosphere to the positive
charge regions. The {H,V,D} coordinate system indicated in the figure is frequently used to organize
data obtained close to the geostationary equatorial orbit. H is northward (the direction of B at magnetic
equator), V points outward from the Earth, and D to the east. The time line on the right refers to the
motion of the GEOS-2 satellite, the observations of which were used in the analysis of an event that was
simultaneously well covered by ground-based observations in the Scandinavian sector. (Adapted from
Roux [1985].)

The actual stability analysis of the ballooning mode in this context has turned out to be
a complicated issue. On the tail-like side the magnetic field close to the current sheet is
very small and plasma beta larger than 1. Thus the theory must include high-β effects and
finding out the actual growth rates requires extensive computer simulations.
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Challenge your brain

Read the paper Liu [1997] presenting an analytical treatment of the ballooning mode
associated with the sudden thinning of the cross-tail current prior to the substorm onset.
Fill in the details of Liu’s analytic treatment. Thereafter search in the scientific journals
to find out how far the understanding of the ballooning mode analysis has progressed
until the time when you are reading this text.

7.2.4 Kelvin–Helmholtz instability

The Kelvin–Helmholtz (KH) instability is basically a neutral fluid phenomenon arising,
e.g., from the wind blowing over water and causing ripples on the surface. Very beautiful
KH vortices can often be seen in clouds due to shear wind flows.

As a space plasma physics example, we consider the solar wind flow along the Earth’s
magnetopause in the ideal-MHD scale following the presentation by Treumann and
Baumjohann [1996]. At the narrow magnetospheric boundary layer kinetic effects lead
to anomalous viscosity through wave–particle interactions, but we neglect them as higher-
order corrections to our discussion. However, this non-MHD aspect of the KH instability
is also of great interest to our topic, as it is one of the key mechanisms how solar wind
plasma gets access into the magnetosphere when the dayside reconnection is weak, i.e.,
during the northward IMF conditions. The KH vortices may grow to really giant structures
as demonstrated by Hasegawa et al [2004] using Cluster observations on the low-latitude
flank of the magnetopause.

Let the magnetic field and the flow be tangential to the boundary and let the velocities
be different on each side of the boundary. Assume scalar pressure, linearize around the
background B0 and n0, and consider small displacements δx defined by δV = dδ x/dt. The
strategy is to linearize the induction and momentum equations leading to an expression for
δx. The linearized equations are

δ B = ∇× (δ x×B0) (7.40)
= B0 ·∇δ x−δx ·∇B0 −B0∇ ·δ x

μ0min0d2δx/dt2 = −μ0∇δP+ (7.41)
−δ B× (∇×B0)−B0 × (∇×δ B) ,

where the induction equation has been integrated with respect to t. Define the first-order
perturbation of the total pressure by

μ0δ Ptot = μ0δP+B0 ·δB . (7.42)

Eliminating the magnetic field perturbation we get

min0

[
(vA ·∇)2 − ∂ 2

∂ t2

]
δ x = ∇δ Ptot +C . (7.43)
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The Alfvén velocity is calculated using the background parameters and the vector C con-
tains the remaining terms. This equation illustrates that the Alfvén wave is coupled to
pressure fluctuations. Because ∇ ·B = 0 and ∇ · δB = 0 , (7.40) and (7.41) yield another
equation for the total pressure perturbation

∇2δ Ptot = −mi∇ ·
(

n0
d2δx

dt2

)
+

1
μ0

∇× (δ B ·∇B0 +B0 ·∇δ B) . (7.44)

Assume now that the the plasma and the flow are homogeneous on both sides of the
boundary. This implies that the plasma perturbation is incompressible (∇ ·δ V = 0). Thus
the RHS of (7.44) vanishes as does C, and what remains is a Laplace equation for the
pressure perturbation

∇2δ Ptot = 0 . (7.45)

The pressure disturbance δ Ptot is limited at the thin boundary and fades out with increasing
distance from the boundary. Let the boundary be in the (x,z)-plane and assume plane wave
solutions for both δx and δPtot with wave number k = kxex + kzez and frequency ω . Now
we can solve the displacement of the boundary

δx =
δPtot

min0[ω2 − (k ·vA)2]
(7.46)

and the solution of the Laplace equation for δ Ptot is

δ Ptot = P0 exp(−k|y|)exp[−i(ωt − kxx− kzz)] , (7.47)

where k2 = k2
x +k2

z . The exponential y-dependence is introduced to make the wave evanes-
cent outside the boundary because free energy is available only at the boundary.

We consider the boundary as a tangential discontinuity, i.e., a boundary through which
there is no plasma flow and Bn = 0, but where Vt ,Bt ,n, and P may jump. (This and other
MHD discontinuities will be discussed more thoroughly in Chap. 11.) We further require
that the normal component of the displacement is continuous. Denote the two sides of the
boundary by 1 and 2 and let the plasma stream with velocity V0 in region 1 and the fluid in
region 2 be in rest. Because the total pressure P+ B2/(2μ0) is continuous, the continuity
of the normal component of the displacement yields the dispersion equation for the KH
waves

1
n02[ω2 − (k ·vA2)2]

+
1

n01[(ω −k ·V0)2 − (k ·vA1)2]
= 0 . (7.48)

This equation has some formal similarity to the equations for streaming instabilities dis-
cussed earlier, but now the unstable modes are the Alfvén waves. The dispersion equation
has an unstable solution

ωkh =
n01k ·V0

n01 +n02
(7.49)

corresponding to the complex root for which

(k ·V0)2 >
n01 +n02

n01n02
[n01(k ·VA1)2 +n02(k ·VA2)2] . (7.50)
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The KH instability occurs thus for sufficiently large V0. For small V0 the wave number
k would have to be too large, i.e., the wavelength too short, for the MHD description to be
valid.

At the limit where the spatial scale becomes comparable to the ion gyro radius the
finite gyro radius effects introduce the kinetic Alfvén waves discussed in Sect. 6.7.2. For
relatively large beta (β > me/mi), e.g., at the magnetospheric boundary, the relevant mode
is the oblique kinetic Alfvén wave(6.149) with the phase velocity

v‖ = vA

[
1+ k2

⊥r2
Li

(
3
4

+
Te

Ti

)]1/2

(7.51)

v⊥ =
k‖vA

k⊥

[
1+ k2

⊥r2
Li

(
3
4

+
Te

Ti

)]1/2

.

Referring to the KH unstable configuration, we can expect that λ‖ � λ⊥, i.e., k‖ � k⊥.
The KH instability is important also in low-β plasmas. Above auroral arcs the electric

field points toward the arc on both sides. Thus there is a strong shear in the plasma flow.
The KH instability arising from this shear is a popular explanation why auroral arcs evolve
to folds and spirals.

7.2.5 Firehose and mirror instabilities

The firehose instability has an analog in a familiar firehose or garden hose with a rapid
water flow, in which a small perturbation can cause a violent motion of the loose end of
the hose. In ideal anisotropic MHD a magnetic flux tube corresponds to the hose and the
parallel pressure to the flowing water.

We can start the analysis from the momentum equation of the CGL theory (2.158)

ρm

(
dV

dt

)
⊥

+∇⊥
(

P⊥ +
B2

2μ0

)
− (B ·∇)B

μ0

(
P⊥−P‖
B2/μ0

+1
)

= 0 .

Assuming V0 = 0 and B = B0 + B1, where B1 is a small perturbation, and performing
the standard linearization procedure with this momentum equation, we get the dispersion
equation

ω2 =
k2

2ρm0

{(
B2

0
μ0

+P⊥ +2P‖ cos2 θ +P⊥ sin2 θ
)

+ (7.52)

±
√(

B2
0

μ0
+P⊥(1+ sin2 θ)−4P‖ cos2 θ

)2

+4P2
⊥ sin2 θ cos2 θ

⎫⎬⎭ .

Challenge your brain by deriving (7.52). It is not the easiest linearization exercise you
will encounter in plasma physics.
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For perpendicular propagation (θ = π/2) (7.52) reduces to

ω2

k2
⊥

=
2

ρm0

(
B2

0
2μ0

+P⊥
)

. (7.53)

This is the stable magnetosonic of MHD mode with the phase velocity
√

v2
A + v2

s .
For parallel propagation there are two solutions. The sound wave

ω2 =
3k2

‖
ρm0

P‖ (7.54)

and another mode with the dispersion equation

ω2 =
k2
‖

ρm0

(
B2

0
μ0

+P⊥−P‖

)
. (7.55)

At the isotropic limit this is the shear Alfvén wave (ω/k = vA). If P‖ > P⊥ + B2
0/μ0, the

wave has an unstable solution, which is the firehose instability. The dispersion equation can
be written in terms of parallel and perpendicular beta and the growth rate thus becomes

γ =
k‖vA√

2

(
β0‖ −β0⊥−2

)1/2 (7.56)

and the threshold for the instability can be expressed as

β0‖ > β0⊥ +2 . (7.57)

This implies that β > 2 and the firehose instability requires very weak magnetic field or
strong pressure. This is possible, e.g., in the solar wind and in the magnetotail neutral
sheet. Once excited the instability is strong.

The mirror instability is complementary to the firehose instability and propagates nearly
perpendicular to the magnetic field. Its dispersion equation is straightforward (but not easy)
to derive from kinetic theory retaining contributions from all particle species. This proce-
dure yields unstable solutions for both parallel and perpendicular directions. In the parallel
direction the firehose threshold is found again, now in the form

∑
α

βα‖ > 2+∑
α

βα⊥ . (7.58)

For perpendicular propagation the threshold for the mirror instability is

∑
α

β 2
α⊥

βα‖
> 1+∑

α
βα⊥ . (7.59)

Figure 7.5 illustrates how a mirror unstable region looks in satellite data and explains
why the mode is called the mirror mode. Part of the plasma is trapped in the local magnetic
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|B|

n

Satellite path

Satellite path

Magnetic
field lines

Fig. 7.5 Sketch of satellite observations of plasma density and magnetic field fluctuations through a mirror
unstable region.

bottles of the wave. The mode has been frequently observed in the dayside magnetosheath.
The shocked solar wind plasma is adiabatically heated in the perpendicular direction. At
the same time the field-aligned flow around the magnetopause lowers the parallel temper-
ature, leading to favorable conditions for the mirror instability to develop. The particle
trapping in the mirror structures and the heat flux along the magnetic field are reasons why
the mode is difficult to treat at the fluid limit. In particular, the latter violates the assump-
tions of the CGL theory, which gives a correct description of the firehose branch but not
of the mirror branch.

7.2.6 Flux tube instabilities

Flux tube instabilities are particularly important in solar physics, as well as in laboratory
devices. A powerful method for the stability analysis is based on the energy principle.
The energy content of the system is calculated in the presence of small perturbations. If
the energy variation 	W is negative, the system is unstable. The calculations are usually
pretty cumbersome.

There are three basic modes of instabilities in flux tubes carrying a longitudinal cur-
rent. The magnetohydrostatic equilibrium (J×B = ∇P) is in all cases maintained by the
azimuthal magnetic field. This arrangement is known as the linear pinch.

The pinch instability arises from squeezing (pinching) the flux tube. The azimuthal field
increases in regions where the tube is pinched and decreases outside. Thus the pinching
self-amplifies the instability. This instability is important in certain laboratory settings and
it may take place in the active regions of the solar corona.
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The kink instability resembles the pinch effect. If the tube is kinked, there is an inward
pressure gradient in the inner edge of the kink and outward pressure gradient in the outer
edge. Again the perturbation is self-amplifying and thus unstable. This process may be
excited in the solar corona or in the magnetospheric tail current sheet.

Finally, the helical instability is probably very common in strongly twisted, nearly
force-free, flux tubes in the solar corona. The instability requires strong enough field-
aligned current to flow through the structure. Solar prominences and coronal loops are
examples of helical magnetic field structures (Chap. 12).

7.3 Microinstabilities

The microinstabilities require a Vlasov theory approach and the practical calculations
quickly become intractable with analytical methods and require extensive computer sim-
ulations. Here we introduce the topic by looking for growing solutions to the electrostatic
dispersion equation.

7.3.1 Monotonically decreasing distribution function

Let fα0(v) decrease monotonically and consider an electrostatic perturbation in the form

fα = fα0 + fα1(v)exp[i(k · r−ωt)] , (7.60)

where ω is a solution of the dispersion equation

1− ω2
pe

k2

∞∫
−∞

1
u−ω/|k|

∂
∂u

[
Fe0(u)+

me

mi
Fi0(u)

]
du = 0 . (7.61)

Here we have assumed two populations (electrons and ions) and Fα0 is the one-dimensional
distribution function. If the dispersion equation implies ωi > 0 , the distribution function
is unstable, otherwise it is stable.

Assume now that there are unstable solutions ωi > 0 . Thus the pole in (7.61) is in the
upper half plane and the integral can be taken along the real u-axis. Denote F = Fe0 +
(me/mi)Fi0. The dispersion equation reduces to

1 − ω2
pe

k2

∞∫
−∞

u−ωr/|k|
(u−ωr/|k|)2 +ω2

i /k2
∂ F
∂u

du+ (7.62)

− iωi

|k|
ω2

pe

k2

∞∫
−∞

∂F/∂ u
(u−ωr/|k|)2 +ω2

i /k2 du = 0 .
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These integrals do not contain any singularities. Because the real and imaginary parts both
must be zero, we have

∞∫
−∞

∂ F/∂ u
(u−ωr/|k|)2 +ω2

i /k2 du = 0 (7.63)

1− ω2
pe

k2

∞∫
−∞

u(∂ F/∂ u)
(u−ωr/|k|)2 +ω2

i /k2 du = 0 . (7.64)

For a distribution function that decreases monotonically in each direction from the ori-
gin u(∂F/∂ u) ≤ 0. In that case the integral in (7.64) is negative definite and the equation
has no solutions. Thus we have found a contradiction with the assumption ωi > 0. This
applies to all monotonic functions and the result is independent of the frame of reference.
The result that a monotonic function is stable is known as Gardner’s theorem.

7.3.2 Multiple-peaked distributions

The cold two-stream instability of Sect. 7.1.1 was produced by a multiple-peaked distri-
bution. To include thermal effects in the analysis we consider the so-called gentle-bump
distribution for the electrons

fe0 =
n1

ne

(
me

2πkBT1

)3/2

exp
(
− mev2

2kBT1

)
+

n2

ne
δ (vx)δ (vy)

(
me

2πkBT2

)1/2

×

1
2

{
exp

(
−me(vz −V0)2

2kBT2

)
+ exp

(
me(vz +V0)2

2kBT2

)}
. (7.65)

where ne = n1 +n2 � n2 , T2 � T1 , V0 � 2kBT1/me. We assume that the ions form a cold
background fi0 ∼ δ (vx)δ (vy)δ (vz). Furthermore, in order to neglect the current driven by
the bump we consider an electron distribution that is symmetric about vz = 0 (thus the
argument of fe0 in Fig. 7.6 is v2

z ). This way the problem remains strictly electrostatic.
In the absence of the bump the solution would be the damped Langmuir wave. Now the

calculation of Kr and Ki is considerably more tedious than for the Maxwellian distribution.
The procedure is, however, straightforward. Start with (5.39) and (5.40). Insert the distri-
bution function (7.65) and consider long wavelengths. With the gentleness assumptions
n1 � n2 and T1 � T2 for the bump the solution of the dispersion equation has the real part
corresponding to the Langmuir wave

ωr = ωpe(1+3k2λ 2
De)

1/2 ≈ ωpe(1+
3
2

k2λ 2
De) . (7.66)

The imaginary part is modified by a term depending on the relative number densities
and temperatures of the bump and the background
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Fig. 7.6 Gentle-bump distribution.

ωi = −
√

π
8

ωp1

|k3λ 3
D1|

exp
(
− 1

2k2λ 2
D1

− 3
2

)
+ (7.67)

+
n2

n1

(
T1

T2

)3/2 k3

k3
z

(
kzV0

ωr
−1

)
exp

{
− T1/T2

2k2λ 2
D1

(
1− kzV0

ωr

)2
}

.

The first term is the Landau damping of the background. The second term is stabilizing to
the right from the bump (vz > v0) where the distribution is decreasing, but it may desta-
bilize (ωi > 0) plasma oscillations to the left from the bump between the two peaks of
the distribution function. The essential condition for the instability is whether or not the
derivative of the total distribution function is positive ∂ fe0/∂v > 0 and large enough to
overcome the damping by the background. If it is, we have the gentle-bump instability.
The instability is enhanced if

• the number of particles in the bump is increased,
• the bump becomes sharper (colder),
• the speed of the bump (V0) increases, i.e., the configuration approaches the cold two-

stream case.

Note that Gardner’s theorem does not imply that a non-monotonic distribution would
automatically be unstable. If the bump is too gentle, it is not powerful enough to drive
an instability. The only way of finding this out is to calculate the imaginary part of the
frequency.



210 7. Space Plasma Instabilities

Feed your brain

There is a more powerful stability criterion than Gardner’s theorem known as the Penrose
criterion. It states that for a double-peaked one-dimensional distribution function F(u)
with a local minimum at u0, instability is possible if and only if

∞∫
−∞

F(u0)−F(u)
(u−u0)2 du < 0 . (7.68)

Using the literature find out how this result can be derived with the so-called Nyquist
method by considering the analytical properties of the function

G =
1

K(ω ,k)
dK(ω,k)

dω
. (7.69)

Note that both Gardner’s theorem and the Penrose criterion apply to electrostatic
problems only.

7.3.3 Ion–acoustic instability

In Chapter 5 we found that the damping rate of the ion–acoustic (IAC) wave depends on
the ratio Te/Ti. But what happens if the electron and ion distributions are in motion with
respect to each other, thus making the total distribution function double-peaked (Fig. 7.7).

F (u)

ions, F  (u)

electrons, F  (u)

u

0

e0

i0

0u

Fig. 7.7 Maxwellian electron distribution streaming through a Maxwellian ion distribution with velocity
u0.
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Let the one-dimensional distribution functions be

Fe0 =
√

me

2πkBTe
exp

(
−me(u−u0)2

2kBTe

)
(7.70)

Fi0 =
√

mi

2πkBTi
exp

(
− miu2

2kBTi

)
. (7.71)

Using the Penrose criterion we can show that

• for Ti = Te the plasma is stable if

u0 < 1.3

√
kBTe

me
, (7.72)

• for Ti � Te the plasma is stable if

u0 <

√
kBTi

mi
, (7.73)

otherwise instability is possible. Note that in the cold ion case the stability limit is much
smaller than in the case of Ti = Te. This appears reasonable for the IAC mode, but the
Penrose criterion does not tell anything of the unstable modes. To find the modes the
dispersion equation must be solved.

It is physically reasonable to look for solutions in the range∣∣∣ωr

k

∣∣∣ � √
2kBTi

mi∣∣∣ωr

k
−u0

∣∣∣ � √
2kBTe

me
.

A lengthy but straightforward calculation yields

ω2
r =

k2c2
s

1+ k2λ 2
De

; cs =
√

kBTe

mi
(7.74)

and

ωi = − |ωr|
√

π/8
(1+ k2λ 2

De)3/2 × (7.75){(
Te

Ti

)3/2

exp
( −Te/Ti

2(1+ k2λ 2
De)

)
+

√
me

mi

(
1− u0

cs

√
1+ k2λ 2

De

)}
.

If u0 = 0 , this reduces to the IAC wave introduced in Chap. 5. When Te � Ti, the instability
condition can be found from the last term in (7.75). Close to the instability threshold the
electron streaming and ion damping compete with each other. Again, the positive slope of
the distribution must be positive enough to win the damping by the background.
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The IAC instability is an example of current-driven instabilities. In this setting the
current is in the relative drift between electron and ion populations. IAC waves can also
be driven by a current carried by an ion beam moving through a warm electron–ion back-
ground. In either case, it is not sufficient to consider the net current alone. Both the temper-
atures and the relative speeds of the populations are critical parameters for the instability
to occur.

The Langmuir and the ion–acoustic waves are the most fundamental modes in non-
magnetized plasmas. In magnetized plasmas the conditions for the current-driven IAC
instability can be met for propagation parallel to the background magnetic field if the
field-aligned current is strong enough. The IAC wave is strongly damped for propagation
deviating from the direction of the magnetic field.

7.3.4 Electrostatic ion cyclotron instability

Strong field-aligned currents can be found, e.g., above the auroral oval, where the ion–
acoustic instability competes with other unstable wave modes, the most important of these
being the the electrostatic ion cyclotron (EIC) wave (Fig. 5.4). Its dispersion equation can
be derived from the general dispersion equation of Chap. 5. We are not going into the
details of the analytically complicated calculations, but it is instructive to give a look at the
dielectric function in the case of superposition of a Maxwellian electron background and
possibly several ion distributions f0i that may be drifting and also have a loss cone around
the magnetic field direction

K(ω,k) = 1+
ω2

pe

ω2
ce

k2
⊥

k2 − 1
k2λ 2

D
Z′(ζe)+ (7.76)

∑
i

ω2
pi

k2

n=∞

∑
n=−∞

∫ ∞

−∞
dv‖

Ĝni f0i(v‖,v⊥;Δ ,Σ)
ω − k‖v‖ −nωci

.

Here the perpendicular integral and the Bessel functions in (5.85) are collected into the
operator Ĝni

Ĝni = 2π
∫ ∞

0
v⊥dv⊥J2

n (k⊥rLi)
(

k⊥
∂

∂ v‖
+

nωci

v⊥
∂

∂ v⊥

)
(7.77)

and Δ and Σ are parameters to describe the filling ratio of the loss cone and the shape of
the distribution within the loss cone.

It is evident that the general solutions of K(ω,k) = 0 require numerical computations,
but there are two motivations for writing these equations down. First, they illustrate that
now the combination of parallel and perpendicular derivatives in (7.77) can give rise to a
positive growth rate depending on the detailed shape of the ion distribution function. Sec-
ond, the harmonic structure becomes important and different harmonics of the cyclotron
modes have different growth rates.

The classical field-aligned current-driven EIC wave can be found by assuming that the
ion distribution function is a Maxwellian drifting along the magnetic field with respect to
the electron population. In the first approximation the loss cone is assumed to be filled,
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thus the parameters Δ and Σ need not to be considered. After a bit of tedious calculation
the real part of the frequency turns out to be

ωr ≈ nωci

[
1+

Te

Ti
Γn(bi)

]
; n = 1,2, ... (7.78)

where bi = k2
⊥r2

Li/2 , Γn(b) = In(b)exp(−b), and In is the modified Bessel function of the
first kind.

When Te ≈ Ti , the solution for the marginally stable fundamental mode (n = 1) yields
ω ≈ 1.2ωci , k‖/k⊥ ≈ 1/10 , and the critical speed is u0c ≈ 13vthi . For higher harmonics
the critical speed is larger and thus the fundamental mode is easiest to destabilize. The
EIC mode is particularly important when Te ≈ Ti making the IAC mode strongly damped.
However, once the IAC is destabilized, it grows faster than the EIC mode.

Feed your brain

Read the classic paper by Kindel and Kennel [1971] on current-driven electrostatic
instabilities to learn how these results were obtained for the first time.

A loss cone distribution function may have steep enough perpendicular slope
(∂ f0α/∂v⊥) to lead to positive growth of electrostatic electron and ion cyclotron modes as
well as the Bernstein modes at short wavelengths. Loss cone distributions are common in
magnetic bottle configurations, e.g., in the quasi-dipolar magnetic field of the inner mag-
netosphere and thus the loss-cone-related instabilities are of considerable interest to the
magnetospheric dynamics during strongly disturbed conditions, i.e., storms.

In a loss cone distribution there is more energy in the perpendicular than in the parallel
direction, which provides perpendicular free energy for instability. When a wave mode
is excited, particles driving the wave lose part of their perpendicular energy and some of
them move into the loss cone. This is process is known as pitch angle scattering through
wave–particle interaction. Particles scattered to the loss cone are removed from the particle
distribution through the end of the bottle. For example, the magnetospheric bottle is leaky
and particles precipitate into the upper atmosphere. Another pitch angle scattering mech-
anism was met in Chap. 3 where we discussed non-conservation of the magnetic moment
near a current sheet, which also can move particles into the loss cone.

7.3.5 Current-driven instabilities perpendicular to B

Perpendicular currents can also lead to various instabilities, both electromagnetic and elec-
trostatic. In fact, the distinction between electrostatic and electromagnetic becomes less
meaningful, in particular if plasma β is not small, as is the case near the thin current
sheets where reconnection or other mechanisms for current sheet disruption are expected
to take place (Chaps. 8, 12, 13). The perpendicular current is often associated with a spa-
tial inhomogeneity, which adds to the difficulties in treating the instabilities. Usually heavy
numerical computations with clever physical approximations are needed.
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We start this discussion with the modified two-stream instability (MTSI), because it is
the easiest to discuss in analytical terms resembling the treatment of the unmagnetized two-
stream instability (Sect. 7.1.1). MTSI is an electromagnetic instability leading to whistler
mode waves propagating oblique to the ambient magnetic field at frequencies above the ion
gyro frequency. MTSI is one of the instabilities that have been suggested to be responsible
for the disruption of the cross-tail current at the substorm onset (Chap. 13).

The MTSI differs from the unmagnetized two-stream instability by the effect of the
ambient magnetic field that constrains more strongly the motion of the electrons than of the
ions, e.g., in the stretched magnetic field configuration in the magnetotail. This introduces
an “effective” mass to the electrons and the interaction becomes more similar to an ion–ion
two-stream instability than the electron–ion Buneman instability.

For strongly magnetized electrons and drifting Maxwellian ions the dispersion equation
can be written in a quasi-electrostatic approximation as

1+
ω2

pe

ω2
ce

−
k2
‖

k2

ω2
pe

ω2 +
2ω2

pi

k2
⊥v2

thi
[1+ζiZ(ζi)] = 0 , (7.79)

where ζi = (ω − k⊥vd)/(k⊥vthi), in which vd and vthi are the ion drift and thermal speeds.
Assuming ζi � 1 the dispersion equation becomes

1− ω2
lh

(ω − k⊥vd)2 −
mik2

‖
mek2

ω2
lh

ω2 = 0 , (7.80)

where the lower hybrid frequency is given in the approximation

ωlh =
ωpi√

1+ω2
pe/ω2

ce

. (7.81)

The dispersion equation is formally the same as (7.11) and can be solved in the same way.
Both the frequency and the maximum growth rate turn out to be close to the lower hybrid
frequency.

Train your brain by calculating the maximum growth rate and the frequency at the
maximum growth for the MTSI.

The ion Weibel instability (IWI) is another mode that has been studied in the context
of the cross-tail current sheet distribution. IWI is more characteristically electromagnetic
than MTSI. It is related to the whistler mode propagating along the magnetic field (denoted
as the x direction in the coordinates we are using when we describe the current sheet in
terms of the Harris model). Again the electrons are considered to be strongly tied to the
magnetic field. Assuming that the ions drift perpendicular to B in the y-direction, the wave
magnetic field δBz is perpendicular to both the ambient magnetic field and the ion drift
direction. Now the ions become bunched between the wave crests. The bunching enhances
the the original ion current within the bunches and enhances δ Bz. This feedback leads to
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an unstable current filamentation and reduces the total current, as free energy is transferred
from the current sheet to the growing wave.

Particle drifts perpendicular to the magnetic field can drive drift modes related to prac-
tically any plasma oscillations (drift–cyclotron, drift–Alfvén, etc.). The lower hybrid drift
instability (LHDI) is a particularly important example. It has been thoroughly investigated
in various contexts from fusion to space plasmas, because the lower hybrid waves are ubiq-
uitous in all kinds plasmas due to their capability to interact with both electrons and ions,
and even simultaneously. For example, a field-aligned auroral electron beam can have a
Landau resonance with a lower hybrid wave, which simultaneously is in gyro resonance
with the local ion population. Depending on the details of the actual distribution functions
and the magnetic field configuration the energy and momentum transfer may be from the
electrons to the ions, or vice versa.

The driver of the LHDI is usually considered to be the diamagnetic drift current
J⊥ = B×∇P/B2. In space physics the LHDI has been used to explain the broadband elec-
trostatic noise frequently observed in the boundary of the magnetospheric plasma sheet.
The mode has also been invoked to explain the current sheet instability at the time of sub-
storm onset (Chap. 13). However, it is unclear whether or not the relatively high plasma β
of the order of one quenches the instability in the mid-tail current sheet.

7.3.6 Electromagnetic cyclotron instabilities

The parallel propagating electromagnetic R and L modes are of special importance for
space physics because they can be in cyclotron resonance with the charged particles. The
real part of the dispersion equation can be taken from the cold plasma theory (Chap. 4)
and written in a form that covers both R and L modes

c2k2

ω2 = 1− ω2
pe

ω(ω ±ωce)
−∑

i

ω2
pi

ω(ω ∓ωci)
. (7.82)

We treat the gyro frequencies here as unsigned (positive) quantities. Thus the upper signs
correspond to the L mode and the lower signs to the R mode.

However, the cold plasma theory does not give the complete description near the res-
onances and we need to turn to the tools of Chap. 5, where the resonance condition in a
magnetized plasma was found to be

k‖v‖ = ω −nωcα . (7.83)

The case n = 0 is the Landau resonance whose contribution to the wave growth or damping
is easy to picture in terms of positive or negative gradients of the distribution function in
the v‖ direction.

For n �= 0 the resonance condition is more difficult to illustrate because it involves both
the parallel (v‖) and gyro (ωcα ) motion of the particles. When n = 1 and k‖ = 0, we have
the resonance condition ω = ωcα in the rest frame of the wave. Thus a particle sees the
wave all the time in the same phase. Depending on the relative phase between the wave
and a particle the wave electric field either accelerates or decelerates the particle. The net
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damping or growth, i.e., whether there are more particles to be accelerated or decelerated,
thus depends on velocity gradients of the distribution function in both parallel and perpen-
dicular directions. Even a distribution that is monotonic in all directions in the velocity
space can still be unstable if the distribution is anisotropic enough. Consequently, neither
the Gardner theorem nor the Penrose criterion discussed in the context of electrostatic
instabilities are applicable to electromagnetic instabilities.

Exact resonances with the R and L modes always lead to damping of the waves. Con-
sider an electron moving at perfect resonance close to the phase speed of the R mode wave.
If it is slower than the wave, it rotates in the same sense as the wave and sees the electric
field which accelerates the particle to catch up with the wave and the wave is damped.
On the other hand, if the electron moves faster than the wave, the wave seems to move
backward in the electron frame and the electron sees the wave vector rotating in the op-
posite sense and there is no interaction between the wave and the particle and thus no
amplification of the wave. The same reasoning applies to ions and the L-mode resonance.

Both loss cone distributions and temperature anisotropies with larger perpendicular than
parallel temperature (“pancake” distributions) can lead to wave growth, but the required
anisotropy threshold for the instability

Aα =
Tα⊥
Tα‖

−1 > 0 (7.84)

must be determined case by case from the microscopic theory. The parallel resonant energy
of the particles Wα‖res can be found directly from (7.82). For the electrons it is

We‖res

WB
=

ωce

ω

(
1− ω

ωce

)3

(7.85)

and for the ions
Wi‖res

WB
=

ω2
ci

ω2

(
1− ω

ωci

)3

, (7.86)

where WB = B2/(2μ0 n) is the magnetic energy per particle.
Below the electron cyclotron frequency the R-mode has the whistler branch that can be

driven unstable by anisotropic distribution functions. In terms of the resonant energy and
the anisotropy parameter Ae the threshold for the instability can now be shown to be

We‖res >
WB

Ae(Ae +1)2 . (7.87)

Similarly, electromagnetic ion cyclotron (EMIC) waves below the ion cyclotron fre-
quency are driven unstable if the threshold of

Wi‖res >
WB

A2
i (Ai +1)

(7.88)

is exceeded



7.3 Microinstabilities 217

Feed your brain

Read the classic paper by Kennel and Engelmann [1966], in which both the whistler
mode and EMIC wave growth due to temperature anisotropies were introduced and
applied to the loss of particles from the magnetosphere. In particular, derive the
threshold expressions (7.87) and (7.88) with the help of this article. Before penetrating
to the details of the diffusion theory discussed in the article, it may be useful to read
Chap. 10 of this book.

Both the whistler mode and EMIC waves are important in the physics of space storms
throughout the sequence from the Sun to the inner magnetosphere. We will meet the
whistler waves in Chap. 14 where they are discussed in the context of loss of radiation
belt electrons due to pitch angle scattering into the ionospheric loss cones. The EMIC
waves, on the other hand, are not limited to the loss of ions from the ring current and inner
radiation belt, but they can also scatter relativistic electrons. For large enough energies
the increasing Lorentz factor γ increases the “effective” mass of the electrons thus low-
ering their gyro frequency toward the frequency of the EMIC waves. Of course, here the
damping is due to the “backward” propagation of the wave with respect to the particles as
discussed above.

One reason why the EMIC waves are important in many domains of space plasma
physics is that, once generated, they can propagate as Alfvén waves over long distances.
For example, ion cyclotron waves generated in the equatorial magnetosphere propagate
along the magnetic field down to the Earth where they are observable in form of magnetic
pulsations. As they are generated in the region where the ion cyclotron frequency is of the
order of 1 Hz, the pulsation periods span from about 1 s to longer periods. In the solar con-
text we already have encountered EMIC waves when discussing the Alfvén waves as one
of the possible mechanisms to heat the solar corona in Chap. 1, and we will return to them
when discussing the energetic particle events associated with solar storms in Chap. 12.

7.3.7 Ion beam instabilities

Finally, distribution functions with negative anisotropy (A < 0) can also drive electromag-
netic instabilities. Figure 7.8 illustrates an ion distribution that, when superposed with a
hot background electron distribution, can be unstable for both R and L modes.

For the R mode the resonance condition is

ω = k‖Vb −ωci . (7.89)

The excited mode is the right-hand polarized component of an Alfvén wave, sometimes
called the Alfvén whistler. For increasing angle of propagation it goes over to the magne-
tosonic mode.

The excited L mode is the mode approaching the electromagnetic ion gyro frequency
from below. At frequencies well below ωci the mode is sometimes called the ion whistler.
Note that calling these waves Alfvén and ion whistlers is just terminology based on the
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Fig. 7.8 Ion beam resonances with R and L modes.

similar whistling characteristics to the mode usually called whistler. Physically they are
the same wave modes as discussed in Chaps. 4 and 6.

Ion beams can also drive non-resonant instabilities that propagate against the direction
of the beam. The non-resonant mode is not a normal mode of a plasma but a purely growing
perturbation resembling the firehose instability. These non-resonant modes are supposed
to be important in the excitation of the observed turbulent fluctuations of the solar wind
upstream of the bow shock.



8. Magnetic Reconnection

Magnetic reconnection is a key concept in some of the most important processes associated
with space storms, including solar flares, detachment of CMEs from the Sun, interaction
between the solar wind and the magnetosphere, and substorm onsets. The idea of recon-
nection, although not the term, was introduced by Giovanelli [1946] and developed further
by Dungey [1953] to explain rapid energy release in solar coronal loops. Later Dungey
[1961] applied reconnection to describe magnetospheric convection as a result of interac-
tion between the magnetic field of the solar wind and the magnetosphere.

Over the years a large selection of textbooks and proceedings volumes on magnetic
reconnection have been published. Quite interestingly, the first decade of the 21st century
has been a period of significant progress in our knowledge of reconnection. Both in situ
observations in the magnetosphere and the solar wind together with the remote images of
solar coronal processes of unprecedented resolution have strengthened the empirical basis
of the concept and encouraged new theoretical and numerical investigations on various
scales from the microscopic mechanisms to their macroscopic consequences. A recom-
mendable and modern source for readers wanting to learn more of reconnection is Birn
and Priest [2007].

8.1 Basics of Reconnection

In collisionless space plasmas described by ideal MHD the magnetic field and plasma flow
are frozen-in to each other (Sect. 6.3). This means that plasma elements on the same mag-
netic field line remain magnetically connected to each other, whereas plasma elements not
magnetically connected to each other continue to be so when the system evolves in time.
Whenever this connectivity changes, we can literally speak about reconnection, which is
the most general view on the process. As a local electric field along the magnetic field,
arising for any reason, can break the frozen-in flow, this “definition” of reconnection does
not require the existence of a current sheet between the reconnecting fields.

Being closely associated with the frozen-in flow the reconnection is usually described
in terms of moving magnetic field lines that become cut and reconnected by some, at the
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microscopic level unspecified, in fact unknown, physical mechanism. While the picture of
spaghetti-like moving field lines often is a powerful picture, it may lead to misunderstand-
ing of the underlying physics. This led Alfvén to denounce his own frozen-in concept
as “pseudopedagogical”. He noted that there is no reason to assume moving field lines
because in the single-particle picture all particles drift across the magnetic field lines. If
the magnetic field configuration changes, this should instead be expressed in terms of
changing sources of the magnetic field, the currents. This is, of course, a valid but rather
extreme view. It is more pragmatic to use the frozen-in picture where it works and inter-
pret reconnection as the change of magnetic connectivity. In the end, what is essential is
to understand when, where and how the frozen-in flow is violated.

8.1.1 Classical MHD description of reconnection

We start from the induction equation in resistive MHD (Chap. 6)

∂ B

∂ t
= ∇× (V×B)+η∇2B , (8.1)

where the magnetic diffusivity η is inversely proportional to conductivity η = 1/(μ0σ).
In collisionless space plasmas the classical diffusivity is extremely small. However, the
diffusivity does not need to be determined by classical collisions, as wave–particle inter-
actions or microscopic plasma turbulence can give rise to finite η to allow diffusion. How
this actually happens is a difficult question, to which we do not always have a good answer.

The induction equation written in the form (8.1) is based on an assumption of the simple
MHD form of Ohm’s law with uniform conductivity. In case of strong fluctuations the
anomalous resistivity may creep into the macroscopic equations, e.g., through the off-
diagonal terms of the pressure tensor . If the non-resistive terms in the generalized
Ohm’s law

E+V×B =
J

σ
+

1
ne

J×B− 1
ne

∇ · e +
me

ne2
∂J

∂ t
(8.2)

are taken into account, the induction equation also becomes more complicated. The Hall
term J×B/(ne) de-freezes the ions but not electrons whereas the electron flow may thaw
due to electron pressure gradients ∇ · e or inertial effects ∝ ∂ J/∂ t.

In the induction equation the convective term ∇× (V×B) describes the ideal frozen-in
flow, but the magnetic flux is rearranged by the diffusion process. The diffusion time is
given by τd = L2/η , where L is the gradient scale length. In space plasmas L is in general
very large and η very small making the diffusion a very slow process. However, when
two ideal plasma systems flow toward each other with different magnetic field orienta-
tions, a thin current sheet develops over which the gradient increases and thus L decreases.
Consequently, the diffusion rate increases. If, furthermore, some microscopic process si-
multaneously enhances the diffusion coefficient η , the magnetic field can be rearranged
very quickly. This is what is usually understood by reconnection. In this sense reconnec-
tion is a special diffusion process that can break a thin current sheet separating plasmas
of different magnetic connectivity. Of course, this viewpoint on reconnection is more lim-
ited than the general concept of any mechanism that breaks the frozen-in flow. However,
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current sheets are ubiquitous configurations is space plasmas and play a central role in the
physics space storms. Thus we limit our discussion to current-sheet-related processes.

Empirically it is clear that reconnection can take place in an explosive manner both in
solar eruptions (flares) and in the geomagnetic tail (substorm onsets). The transition from
slow diffusion to fast reconnection is among the most challenging problems in theoretical
space plasma physics.

8.1.2 The Sweet–Parker model

Assuming oppositely (±x) directed straight magnetic fields on both sides of a current layer
it is easy to find the steady-state plasma flow speed toward the boundary for a given diffu-
sivity η . We use a coordinate system in which the current is directed in the +y direction.
In a steady state ∂ B/∂ t = 0 and thus

∇×E =
∂ Ey

∂ z
= 0 , (8.3)

i.e., Ey constant. Far from the diffusion region

Ey = V B0 , (8.4)

where B0 is the constant magnetic field outside the diffusion region. At the current sheet
B = 0 and Ohm’s law gives

Ey = Jy/σ . (8.5)

Let the thickness of the current sheet be 2l. Ampère’s law yields now

Jy =
B0

μ0l
(8.6)

and thus
l =

1
μ0σV

=
η
V

. (8.7)

With increasing inflow speed the current layer finally becomes so thin that the MHD
picture is no more valid. However, there is another problem. Even if the diffusion were
able to consume the magnetic flux, what happens to the plasma piling up at the current
sheet?

The first attempts to solve this question were made, independently, by Sweet [1958]
and Parker [1957].1 They considered the geometry given in Fig. 8.1. The length of the
reconnection region 2L is assumed to be much longer than its thickness 2l. Assume, for
simplicity, that the inflow (index i) and outflow (index o) regions are symmetric. This
applies, with some reservations that we will discuss later, to the magnetospheric tail current
sheet, but, e.g., at the magnetopause the asymmetry is an essential factor and increases the

1 While Parker’s paper was published faster, Sweet was the first to present the model at an IAU Symposium
in 1957, which explains the commonly used name of the model.
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Fig. 8.1 The Sweet–Parker model of reconnection.

complexity of the problem. In the solar corona the current sheets can be both symmetric
and very asymmetric.

In steady state the electric fields in the inflow and outflow regions are the same

E = ViBi = VoBo . (8.8)

Assume further an incompressible flow ρi = ρo = ρ . Then conservation of mass implies

ViL = Vol . (8.9)

Assume next that all inflowing electromagnetic energy is converted to the kinetic energy
of the outflow. The inflowing Poynting flux is

|S| = |E×H| = EBi

μ0
=

ViB2
i

μ0
. (8.10)

The mass flowing into the diffusion region in unit time ρVi is accelerated to the outflow
velocity Vo. Thus the energy change per unit surface in unit time is

	W =
1
2

ρVi(V 2
o −V 2

i ) . (8.11)

Equating the energy increase and the Poynting flux and noting that Vo �Vi we get

ViB2
i

μ0
=

1
2

ρViV 2
o (8.12)

⇒
V 2

o =
2B2

i
μ0ρ

= 2v2
Ai . (8.13)

Thus the outflow speed is of the order of the Alfvén speed in the inflowing plasma. The
factor

√
2 must not be taken literally due to the simplifying assumptions in the derivation
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of the result. For example, not all electromagnetic energy is converted to kinetic energy in
the process.

The inflow speed is found from the width of the diffusion region 2l = 2/μ0σV

Vi = vAi(
√

2/RmA)1/2 , (8.14)

where RmA = μ0σvAiL is the magnetic Reynolds number calculated for the inflow Alfvén
speed, also known as the Lundquist number. In space plasmas RmA is very large and thus
the inflow speed in the Sweet–Parker model is very slow. For example, in solar flares the
energy release through such a slow process would take several days, not a few minutes as
is observed.

The amount of magnetic flux reconnected in unit time per unit length along the recon-
nection line or X-line in the y-direction is equal to the reconnection electric field E and
it is called reconnection rate. In this two-dimensional picture the reconnection rate is the
same as the electric field at the reconnection point. As the inflow Alfvén Mach number can
be written as MAi = Vi/vAi = E/(vAiBi), it can be used as a measure of the reconnection
rate normalized by the characteristic electric field vAiBi. In the Sweet–Parker model the
reconnection rate is thus of the order of (RmA)−1/2.

8.1.3 The Petschek model

A few years after the original works by Sweet and Parker, Petschek [1964] improved the
reconnection model by noting that all plasma moving from the inflow region to the outflow
region does not need to pass through the diffusion region. In his model, illustrated in
Fig. 8.2, the flow deviates also outside the diffusion region at slow mode shocks (Chap. 11)
connected to the diffusion region.

x
z

Bvv

Bvv

Fig. 8.2 Petschek model of reconnection. Most of the plasma is accelerated at the slow mode shocks that
make an angle ξ with respect to x-axis, whereas χ gives the angle between the x-axis and the inflowing
magnetic field direction immediately upstream of the shock.
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The diffusion region is essential also in Petschek’s model because the actual magnetic
reconnection with the formation of the X-type magnetic neutral line takes place only in that
region. However, now the length of the diffusion region (2L in the Sweet–Parker picture
above) is microscopic, that is, smaller than the MHD scale. What is “microscopic” is
different for ions and electrons and their dynamics play different roles in the actual process
breaking the magnetic connection.

As will be discussed in Chap. 11, the slow mode shocks accelerate plasma and the ac-
celeration rate can be calculated from MHD jump conditions at the shocks. As shown in
Fig. 8.2 the magnetic field decreases across the shock but the flow field is intensified. As-
suming incompressibility this implies the increase of the flow speed in the outflow region.
The acceleration depends on the angle ξ between the shock front and the x-axis. An alter-
native viewpoint on acceleration is that since the magnetic field turns at the shock, there is
a current and the acceleration is due to the J×B force.

In the coordinate system of Fig. 8.2 the shock is stationary but in the plasma frame
the shock propagates at the inflow Alfvén speed. This allows us to calculate the angle χ
between the x-axis and the inflowing magnetic field just upstream of the shock. In order to
have a standing shock in the coordinates of the figure, the component of the inflow velocity
in the direction of the shock normal must be the same as the shock velocity in the direction
of its own normal in the plasma frame. This implies

Vi cosξ = vAi sin(χ −ξ ) . (8.15)

Assuming a steady state (Ey = constant) a brief calculation gives the outflow speed

Vo = vAi cos χ , (8.16)

which is again of the order of the inflow Alfvén speed, this time slightly less. A detailed
analysis shows that the ratio between the inflow and outflow speeds is

Vi

Vo
≈ π

8lnRmA
. (8.17)

Now the dependence on the Lundquist number is logarithmic and thus much weaker than in
the Sweet–Parker model. The estimates for the maximum inflow speed vary 0.01−0.1vAi,
which is much larger than in the Sweet–Parker model. Consequently, the reconnection pro-
cess can handle much more magnetic flux in the Petschek model than in the Sweet–Parker
model. The Petschek model was the first description of fast reconnection, fast enough to
address the rapid release of magnetic energy in form of plasma acceleration and heating.

Train your brain by making a detailed analysis leading to (8.17).

Sonnerup [1970] developed the Petschek model further by adding two fast shocks out-
side the slow shocks. The fast shocks deflect the plasma flow in the same way as the bow
shock in front of a magnetosphere (Chap. 11). In this way reconnection could handle even
more incoming flux and thus be faster than in the original Petschek model.
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There has been some controversy over whether the Petschek model describes the
physics correctly. It gives a description of reconnection that is only weakly dependent
on the properties of the reconnection region, in particular η . At the limit of very low η
the Petschek and Petschek–Sonnerup models predict that if the inflows were pushed more
strongly toward each other (larger Ey), the outflow cone would widen, not flatten as obser-
vations indicate. However, it is possible that in reality microscopic physics enhances the
effective η enough to make the macroscopic Petschek picture qualitatively correct.

Priest and Forbes [1986] constructed a general mathematical description of MHD re-
connection structures of which the Sweet–Parker and Petschek–Sonnerup models are spe-
cial cases. In their analysis and in various numerical simulations the boundary conditions
have been found to play a decisive role. It is possible that the external circumstances dic-
tate if and how the reconnection will take place, whereas the local physics of the diffusion
region mostly adjusts to tear the current sheet and dissipate as much magnetic energy as is
required.

To produce the Petschek-type reconnection in numerical simulations is not trivial. In
practice a numerical MHD code always has some diffusivity due to a finite computing
grid and finite time-steps. In order to make, e.g., a realistic magnetotail simulation the re-
sistivity in the inflow region must be as small as possible. However, this may make the
current sheet region too ideal and too hard to reconnect, unless the resistivity (or η) is
artificially enhanced in the diffusion region. Thus the developers and users of simulations
have somewhat contradictory requirements: in order to describe Petschek-type reconnec-
tion, physics that is different from the assumptions of the model needs to be introduced.
Even if we found from the observations a shock pattern predicted by the Petschek descrip-
tion, it would not tell us much of the microphysical mechanism(s) of reconnection because
the Petschek approach is practically independent of the physics of the diffusion region. In
fact the importance of determining what causes the enhanced η in the diffusion region, or
alternatively the role of other terms in the generalized Ohm’s law, becomes more urgent.

8.1.4 Asymmetric reconnection

The symmetric 2D Sweet–Parker and Petschek cartoons give an oversimplified picture
of various relevant realizations of reconnection. Important sites of manifestly asymmetric
reconnection are the dayside magnetopause of the Earth and the solar coronal configura-
tions where flux tubes of different plasma content and magnetic field magnitudes interact.
Also in the geomagnetic tail the reconnecting magnetic field lines may seldom be exactly
antiparallel and the plasma density may not be symmetric on each side of the current sheet.

Cassak and Shay [2007] extended the Sweet–Parker scaling laws to asymmetric 2D
reconnection allowing both the inflow densities and inflow magnetic field magnitudes to
be different on either side of the current sheet. The outflow speed was found to scale as

V 2
o ∼ B1B2

μ0

B1 +B2

ρ1B2 +ρ2B1
, (8.18)
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where subscripts 1 and 2 refer to the different inflow regions. At the symmetric limit
(ρ1 = ρ2 and B1 = B2) this reduces, apart from the undetermined numerical factor, to
the Sweet–Parker–Petschek outflow speed.

Without specifying the dissipation mechanism, and thus how fast the reconnection re-
ally is, the reconnection rate expressed as the electric field scales as

E ∼
(

B1B2

B1 +B2

)
Vo

2l
L

, (8.19)

where l and L are the half-thickness and half-length of the diffusion region as in our dis-
cussion of the Sweet–Parker reconnection. Thus the aspect ratio l/L finally determines
how fast reconnection proceeds in the similar manner as it makes the distinction between
the reconnection rates in the Sweet–Parker and Petschek models.

A particularly interesting result of this analysis is that the X-line and the plasma stag-
nation line do not need to be at the same location. Under steady-state conditions Faraday’s
law (∇×E = 0) implies that the inflow velocities are related as

V1B1 = V2B2 , (8.20)

where Ohm’s law of the ideal MHD is assumed to be valid outside the diffusion region.
While according to (8.20) the inflow velocity on the weaker magnetic field side is larger
than on the stronger field side, the flux of magnetic energy (∝V B2) is larger on the stronger
field side. By definition there is no flux of magnetic energy across the X-line from one
inflow region to the other, and the outflow of kinetic energy is assumed to be relatively
evenly distributed across the outflow edge of the diffusion region. Consequently the X-
line is shifted toward the weak field side. On the other hand, the plasma stagnation line
turns out to be located on that side of the X-line where the Alfvén speed is higher, because
there is more mass flux from the side of the lower Alfvén speed. As these results were
found independently of the dissipation mechanism, Cassak and Shay [2007] concluded
that the separation of the magnetic neutral line and plasma stagnation line is a generic
feature of asymmetric reconnection.

At the Earth’s dayside magnetopause the inflow from the solar wind side, actually the
shocked magnetosheath plasma, has higher density and weaker magnetic field than the
inflow from the magnetosphere. Applying the Cassak–Shay reconnection model to the
magnetopause, the X-line is shifted toward the solar wind side, whereas the plasma stag-
nation line is on the magnetosphere side of the X-line, i.e., on closed magnetic field lines.
This means that there is plasma flow across the X-line from the open field lines of the
magnetosheath to the closed field lines of the magnetosphere.

While it is somewhat outside of the scope of this book, we note that the source mech-
anisms of the magnetospheric boundary layers illustrated in Fig. 1.18 are among the most
complicated and debated issues in magnetospheric physics (e.g., Hultqvist et al [1999] and
references therein). Reasons for this complexity are both the highly variable structure of
the boundaries, as known from observations, as well as the large variety of physical pro-
cesses, including reconnection, diffusion through wave–particle interactions, gyroviscous
interaction, the direct entry through the cusp regions, etc., that can contribute to the plasma
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composition of the boundaries. The Cassak–Shay model suggests that even a steady-state
dayside reconnection can inject magnetosheath plasma to the magnetospheric boundary
layers both on open field lines through the conventional Sweet–Parker outflow region and
on the closed field lines made accessible by the separation of the X-line and the plasma
stagnation line.

Pritchett [2008] compared the analytical results of Cassak and Shay [2007] with his
asymmetric particle-in-cell (PIC) simulations. He noted that for spontaneous reconnection
the reconnection rate was considerably smaller than the fast reconnection rates obtained in
the symmetric simulations of the so-called GEM Reconnection Challenge to be discussed
further in Sect. 8.2.4 below. Introduction of an additional driving electric field on the mag-
netosheath side, which may be a more realistic assumption for the dayside magnetopause
reconnection, led to a sufficiently enhanced reconnection rate consistent with recently es-
timated reconnection rates from the observations [e.g., Mozer and Retinò, 2007]. Further-
more, the driving electric field strongly changed the structure across the magnetopause.
It produced a magnetic field component in the third direction (By), which led to strong
outward Poynting flux (∝ ExBy) on the magnetosphere side.

On the magnetopause the magnetic fields are antiparallel within limited regions only,
and there may be a relatively strong magnetic field component in the current sheet, called
the guide field. Also the observations in the otherwise rather symmetric magnetotail current
sheet indicate that the magnetic field can have a significant y component. Cassak and Shay
[2007] claimed that in the case of uniform density the guide field would not considerably
change the results of their symmetric analysis, which was also the conclusion by Pritchett
[2008] based on the PIC simulations. However, at the magnetopause there is also a strong
density gradient, which complicates the issue of the guide field, as it can lead to the lower
hybrid drift instability (Sect. 7.3.5) associated with the reconnection process. The role of
the guide field is actually an important issue that has turned out to introduce a serious
headache for those searching for a theory of collisionless reconnection, to which we turn
in the next section.

A more general discussion of 3D magnetic reconnection is beyond the scope of the
present book. A good starting point for an interested reader is the book by Birn and Priest
[2007] containing an extensive list of references to original works.

8.2 Collisionless Reconnection

The previous discussion was implicitly based on resistive diffusion, either collisional or
anomalous, in the macroscopic one-fluid MHD picture. However, a thorough understand-
ing of the phenomenon in the context of space storms requires consideration of collision-
less microscopic processes. This is presently an active area of research and a satisfactory
description of the microscopic aspects of reconnection is yet to come. Various particle
and Vlasov simulations yield roughly similar outflow characteristics as the Sweet–Parker
or Petschek–Sonnerup models. The inflow speed and the reconnection rate appear to be
determined mainly by ion inertia and we should like to find an explanation why it is so.
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8.2.1 The tearing mode

The most intensively studied instability for the formation of the magnetic X-line and re-
connection has been the tearing mode. There are both collisional and collisionless tearing
mode theories. The concept of “tearing” is very suggestive because it literally refers to
tearing the current sheet apart. In resistive reconnection the status of tearing as the fun-
damental concept is strong, although obtaining large enough reconnection rates remains a
problem, but the collisionless reconnection is more murky. It is not clear whether the col-
lisionless tearing mode can supply enough (anomalous) resistivity, whether there are some
other and faster instabilities involved in the determination of η and/or ∇ · e, after which
the macroscopic process could look like resistive tearing, or whether we should look for
something else to solve the problem.

We begin the discussion of the tearing mode from the resistive case. The basic idea is
simple. Imagine that the current sheet consists of thin current filaments and perturb their
distribution slightly. Because the force between currents flowing in the same direction is
attractive and weakens with distance, the force between the filaments that come closer to
each other is stronger than the force between those that are moved farther from each other
due to the perturbation. This is clearly an unstable configuration and the current filaments
tend to bunch, forming magnetic islands as illustrated in Fig. 8.3. The free energy for the
instability comes from the tension in the strongly sheared magnetic field. This is one more
example of the negative energy modes introduced in Chap. 7: while the perturbation grows,
the energy of the magnetic configuration decreases.

Fig. 8.3 Formation of magnetic islands in a current sheet.

The growth rate can be found by considering small perturbations to the induction equa-
tion

∂ (B+δ B)
∂ t

= ∇× [δ V× (B +δB)]+η∇2(B+δB) . (8.21)

This is quite difficult to analyze in a general case. Assuming the two-dimensional config-
uration of Fig. 8.3 and linearizing the equations, a lengthy analysis (see, e.g., Treumann
and Baumjohann [1996]) leads to the maximum growth rate of the resistive tearing mode

γtea,max ≈ (2τAτd)−1/2 , (8.22)

where τA is the Alfvén travel time across the current layer, i.e., the time during which
the Alfvén wave propagates the distance L = |B/∇B|, and τd is the diffusion time. In the
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solar wind and in the magnetosphere both Alfvén and diffusion times are very long and
the growth rate thus very small. Consequently, the resistive tearing mode cannot explain
reconnection under conditions relevant to the physics of space storms without strongly
enhanced η .

8.2.2 The collisionless tearing mode

In order to analyze collisionless tearing we consider a 2D current sheet described by a
vector potential with only one non-vanishing component Ay . This gives the magnetic field

B = ∇×A =
(
−∂ Ay

∂ z
,0,

∂Ay

∂x

)
. (8.23)

Starting from a 1D Harris-type current sheet the tearing mode produces periodic varia-
tions along the x-axis introducing a finite Bz. We represent the perturbed scalar and vector
potentials as plane waves

δAy(x,z,t) = δA(z)exp(−iωt + ikx) (8.24)
δϕ(x,z,t) = δΦ(z)exp(−iωt + ikx) . (8.25)

The stability is analyzed by considering the energy balance between the magnetic field
perturbation and the energy dissipated by the current in the current sheet

1
2μ0

∂
∂ t

∫
|δ B|2 dz = −

∫
δ J ·δE∗ dz . (8.26)

If we now find a growing magnetic perturbation when energy is dissipated in the current
sheet, we have an instability.

The electron tearing instability

According to the current filament argumentation the 1D Harris sheet is always unstable.
However, the instability may soon saturate because the perturbation introduces a normal
component to the magnetic field. As the electrons are magnetized, they introduce stiffness
to the magnetic field and thus provide a stabilizing effect against tearing.

In order to understand this effect let us first consider the simple 2D Harris equilibrium
with a small normal component B0z

B0 = B0 tanh(z/d)ex +B0z ez . (8.27)

B0z is assumed to be so small that the ions behave unmagnetized but large enough to keep
electrons magnetized, i.e.,

rLe

d
<

(
B0z

B0

)2

<
rLi

d
. (8.28)
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In the Harris model the parameter d is the gradient scale length of both the magnetic field
and the pressure, whereas in reality the layer carrying most of the current may be much
narrower than the plasma sheet.

Now the zero-order undisturbed but inhomogeneous particle distribution functions can
be written as

fα0(v,z) =
n0

π3/2v3
thα

exp
(
−v2 +V 2

dα
v2

thα
+

2mαVdα(vy +qαA0y)
kBTα

− qα ϕ0

kBTα

)
, (8.29)

where the diamagnetic drift velocity due to the density gradient has been introduced as
Vdα = −kBTα/qα B0d . The solution of the linearized Vlasov equation can be written as

δ fα(v,z,t) =
qα f0α

kBTα

⎛⎝vdα δAy −δϕ + iω
t∫

−∞

(vyδAy −δϕ)dt ′

⎞⎠ . (8.30)

The integral over t ′ must be calculated along the unperturbed orbits (cf. the general solution
of the Vlasov equation in Sect. 5.5). The integral represents the non-adiabatic correction
to the first-order distribution function, whereas the terms outside the integral describe the
adiabatic particle response. After some non-trivial calculation (8.26) can be rewritten as

∂
∂ t

{∫
dz

[∣∣∣∣dδA
dz

∣∣∣∣2

+
(

k2 − 2
d2 cosh2(z/d)

)
|δ A|2

]}
= −2μ0 Re

∫
dzδ Jy,adδE∗

y , (8.31)

where Jy,ad is the current carried by the adiabatically moving particles.
For sufficiently narrow current sheets (k2d2 � 1) the electron tearing mode energy

becomes negative and any perturbation leads to instability. Fundamentally the growth of
the tearing mode is due to the Landau mechanism. It is sometimes called inverse Landau
damping but, due to the negative energy of the mode, the word “inverse” may give a false
impression. In the “normal” Landau mechanism the particles are energized at the expense
of the electromagnetic field of the wave. Here, the particles are also energized by the
electromagnetic field, but, due to the fact that the current sheet with tearing islands has
lower energy than without the islands, the amplitude of the mode increases until the whole
structure goes to the nonlinear regime and something beyond the present description takes
place.

The condition k2d2 � 1 is a long-wavelength approximation for the forming of mag-
netic islands. This has the advantage that the configuration can be analyzed using the WKB
method (Sect. 4.2.2). The flip side of the coin is that the current sheet must be very long in
the x-direction for the mode to develop.

The growth rate of the electron tearing mode is rather more difficult to calculate (or
even to estimate). The result is

γe,tea =
√

π
(

1+
Ti

Te

)( rLe

d

)5/2
(1− k2d2)ωce . (8.32)
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Challenge your brain

Derive the electron tearing mode growth rate (8.32). This is not a task for a beginner.
You are recommended to consult the original scientific articles, some of which are
referred to in the following discussion.

The original electron tearing mode solution [Coppi et al, 1966] did not take into account
the effect of the magnetic normal component. A finite Bz was soon found to exert a strongly
stabilizing effect on the electron tearing mode by making the electron orbits adiabatic.
Reducing the normal component to zero removes this effect, but then the instability has a
very small growth rate. Thus the linear electron tearing mode turned out to be too slow to
initiate such explosive events as flares or magnetospheric substorms.

The ion tearing mode

While the electrons are magnetized, ions remain unmagnetized for much larger B0z. This
suggests that the ion inertia might drive the tearing mode [Schindler, 1974]. The ion tear-
ing mode growth rate is found to be of the same form as the electron tearing with the
substitution mi → me and interchanging the ion and electron temperatures:

γi,tea =
√

π
(

1+
Te

Ti

)( rLi

d

)5/2
(1− k2d2)ωci . (8.33)

Assuming that the ions and electrons are at the same temperature and both modes have
the same wavelength, the ion mode grows faster than the electron mode by a factor of
(mi/me)1/4, which for electron–proton plasma is about 6.5. In the magnetotail current
sheet the thermal ions are some 5 times warmer than electrons, which further favors ion
tearing. The ion tearing mode can also grow when the electron mode is stable. But again,
further analyses showed that the stabilization by adiabatic electrons still is too strong and
quenches the growth of the ion mode [Galeev and Zelenyj, 1976].

8.2.3 Tearing mode or something else?

After these first failures with the collisionless tearing mode various attempts were made
to go around the electron stabilization by looking for mechanisms that would make the
electron motion non-adiabatic by microscopic turbulence or wave–particle interactions
[e.g., Coroniti, 1980]. In the 1980s chaos theory became popular in many fields of physics,
including some problems in space plasma physics. Büchner and Zelenyi [1987] argued
that the electron motion in the very stretched tail-like configuration just prior to onset
of reconnection would become chaotic and when the electrons lose the guidance of the
field, they would no more be able to provide stiffness to the magnetic field configuration.
The chaotization was estimated to become significant when the curvature radius of the
magnetic field becomes smaller than about 10rLe.



232 8. Magnetic Reconnection

A detailed analysis of microscopic collisionless tearing is a difficult exercise in non-
linear plasma physics. It requires extensive numerical simulations, which have not led to
conclusive results. Also here, addition of the guide field introduces complications because
it provides another agent to make the electron motion adiabatic. Although the cutting of the
plasma sheet looks macroscopically like an evolution of a large tearing island, there is no
logical imperative that the microscopic process should be a tearing mode. Even if the sce-
nario assuming anomalous resistivity and thus the growth of a resistive tearing mode were
correct, the microscopic instability leading to a finite η does not need to be an electron or
ion tearing mode.

It is possible that the reconnection process is patchy with numerous overlapping tearing
islands percolating the whole current sheet (for a review, see Galeev et al [1986]). A mag-
netic flux tube could migrate through such a percolation, connecting, for example, solar
wind and magnetospheric field lines. The percolation may, or may not, lead to a complete
collapse of the current sheet by the coalescence of the tearing islands, depending on the
external and internal parameters that control the formation of the current sheet.

8.2.4 The Hall effect

While the Hall term J×B/(ne) in Ohm’s law does not lead to the thawing of the field from
the electrons that still remain frozen-in the field, its inclusion in Ohm’s law in plasma sim-
ulations has turned out to lead into a significant increase of the reconnection rate. In a
collaborative study called GEM Reconnection Challenge discussed in several articles in
the Journal of Geophysical Research, vol 106(A3), 2001, different models including the
physics of the Hall term (Hall MHD, two-fluid, hybrid models with fluid electrons and
kinetic ions, and fully kinetic models) were compared in a 2D Harris current configuration
under consistent initial and boundary conditions. All models addressing the Hall physics
resulted in practically indistinguishable reconnection rates, with inflow speeds exceeding
0.2 vA (Fig. 8.4). The resistive models without the Hall effect yield much smaller recon-
nection rates, unless large localized η , possibly as a function of current density η = η(J),
is assumed.

While the reconnection rate seems to be of the same order of magnitude in the various
models involving the Hall effect, the actual structure of the reconnection region and the
resulting outflows are different in different models. This suggests that the Hall effect is
critical in determining the rate of the reconnection of the magnetic flux, but it does not
describe the details of the magnetic diffusion process. This seems logical, as the electrons
remain frozen-in long after the J×B effect has thawed the ions and finally the breakdown
of the magnetic field geometry takes place in the electron scale. The ion dynamics de-
termines the reconnection rate, but the electron dynamics is essential to the microscopic
process.

It is not quite clear why Hall MHD results in faster reconnection than basic MHD.
A suggested explanation is based on the observation that the Hall term J×B/(ne) adds
the whistler mode to the slow, intermediate and fast modes of MHD by decoupling the
electron and ion motions from each other. The phase speed of the whistler mode (4.118) is
inversely proportional to the scale length
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Fig. 8.4 GEM Reconnection Challenge results. The MHD case was calculated for a small resistivity. The
time is normalized to ion gyrofrequency, the length scale to ion inertial length c/ωpi, and the magnetic
field and plasma density to unity. (From Birn et al [2001].)

vph ∝ k ∝ 1/l . (8.34)

In MHD the outflow speed is of the order of the inflow Alfvén speed, whereas in Hall
MHD the electron outflow speed, and thus the removal of magnetic flux from the diffusion
region, scales as the whistler mode speed. The electron flux out from the dissipation region
in a 2D model is vph · l = constant, i.e., independent of the width of the current layer.
Consequently, the reconnection rate has been argued to become insensitive to the (slow)
electron dissipation and thus the ion dynamics would control the reconnection rate. This is
somewhat analogous to the above discussion that the ion tearing mode would control the
reconnection rate if electrons are chaotic, but this analogy may be just a coincidence.

The GEM Challenge model comparison was done for a 2D configuration only. The
reconnection rates for the various models were calculated for a relatively strong initial
magnetic perturbation (“tearing island”) to a 1D Harris model. This was done to put the
system into the nonlinear regime from the beginning because the linear tearing mode is
known to lead to different results in different models.

The introduction of the Hall term actually destroys the 2D picture as illustrated in
Fig. 8.5. The difference in the electron and ion flows sets up current loops near the edges
of the ion dissipation region that give rise to a quadrupolar magnetic field structure out of
the plane of the original 2D magnetic field configuration. Multipoint observations with the
four Cluster satellites have confirmed the formation of the Hall fields in some fortunate
cases when the spacecraft have passed the ion diffusion region in the magnetotail [e.g.,
Runov et al, 2003].

Adding the Hall term alone to the ideal MHD equations may not be quite sufficient
because in reality the electron pressure term ∇ · e/(ne) can be of the same order of
magnitude as the Hall term. Malyshkin [2008] presented a Sweet–Parker–Petschek-type
analysis of Hall reconnection including both the Hall and electron pressure terms and
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Fig. 8.5 The quadrupolar magnetic field configuration due to the Hall effect.

considered the generalized Ohm’s law in the form

E+V×B = ηJ+
1
ne

J×B− 1
ne

∇ · e . (8.35)

The assumptions are similar to the classic reconnection models. Inside the reconnection
layer plasma is assumed incompressible, resistivity η constant and very small, and the
Lundquist number RmA very large. The situation is kept quasi-stationary (∂/∂ t = 0) and
quasi-two-dimensional with constant quadrupolar magnetic field components in the third
direction (±By) corresponding to Fig. 8.5.

With these assumptions the outflow velocity is again of the order of vA and the inflow
velocity depends on the Lundquist number as

Vi ≈
√

3vA

(√
3RmA +

2R2
mAd2

i
L2

)−1/2

, (8.36)

where di = c/ωpi is the ion inertial length and L is the external magnetic field scale length
defined by

L2 = − 2Bi

(∂ 2Bx/∂ x2)i
(8.37)

and calculated at the edge of the reconnection layer at the x coordinate of the X-line.
At the first sight (8.36) appears to indicate that just a slight modification of the slow

Sweet–Parker reconnection has been found and the inflow remains very small for very
large RmA. In fact, at the limit di � L/

√
RmA the solution is the Sweet–Parker solution.

However, Malyshkin [2008] pointed out that the calculation has been made in the inflow
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region within an infinitesimal environment of a line cutting through the current sheet and
crossing the X-line, where L and Bi are calculated. If one calculates the reconnection rate,
i.e., the electric field, at the opposite limit di � L/

√
RmA it turns out to be independent of

the resistivity and thus of RmA, i.e.,

Ey = vABi
di

L
. (8.38)

Thus we can think that the velocity with which the magnetic field lines are drawn to the
process is

VR ≈ Ey

Bi
≈ di

L
vA . (8.39)

In Malyshkin’s model L is a given parameter and its value needs to be determined either
from observations or by numerical simulations. However, various Hall MHD simulations
suggest that the ratio di/L can be of the order of 0.1, i.e., a fast reconnection rate Ey ≈
0.1vABi would be obtained in this model.

As the electric field has become independent of collisions, something else than ηJ

must balance it at the X-line, where the Hall term is zero by definition. It is here the
electron pressure term, and possibly the electron inertial term ∝ ∂ J/∂ t in the case of
time-dependent reconnection, become important. While the J×B/(ne) term decouples
the electron and ion motion near the current layer in a rather straightforward way, the
∇ · e/(ne) term appears to act as the agent to let the electrons to diffuse. The off-diagonal
elements of e, rising from non-gyrotropic particle distributions are of particular interest
(e.g., Kuznetsova et al [2007] and references therein).

Both the GEM Reconnection Challenge and Malyshkin’s theoretical analysis were two-
dimensional and it is not fully clear how much of the conclusions can be carried over to
a 3D geometry, in particular when the deviations from two-dimensionality become large.
Some 3D PIC simulations [e.g., Pritchett and Coroniti, 2004] suggest that a strong enough
guide field, i.e., a pre-existing magnetic field component out of the plane of Fig. 8.5 would
strongly reduce the Hall effect. Thus the applicability of Hall reconnection may be limited
to rather symmetric current sheets only.

It is also possible that electromagnetic fluctuations may provide sufficient anomalous
resistivity that could take the role of ηJ and the generalized Ohm’s law should be written
in the form

E+V×B =
1
ne

J×B− 1
ne

∇ · e +
me

ne2
∂ J

∂ t
− 1

n
[〈δEδn〉+ 〈δ (nVe)×δB〉] , (8.40)

where the last term describing the anomalous resistivity was derived by Yoon and Lui
[2006].

Challenge your brain

Study carefully the paper by Yoon and Lui [2006] and fill the gaps in the derivation of
the anomalous resistivity term in (8.40).
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8.3 Reconnection and Dynamo

Reconnection annihilates magnetic flux converting magnetic energy to kinetic energy of
the plasma and thus causes decay of the current systems. On the other hand, plasma motion
associated with reconnection can also lead to creation of magnetic flux through a dynamo
action, either in the vicinity of reconnection or further away from it. Let us return to the
cartoon of the reconnecting magnetosphere (Fig. 8.6). For the southward directed IMF the
electric field E = −V×B points from the dawn to the dusk and consequently the dayside
and tail reconnection regions are loads in the electromagnetic system (J ·E > 0), whereas
the tail magnetopause is a dynamo (J ·E < 0). But how does this dynamo work?
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Fig. 8.6 Reconnecting magnetosphere.

8.3.1 Current generation at the magnetospheric boundary

A simple mechanical analogue for the boundary layer current generation is the MHD gen-
erator of Fig. 8.7. Let plasma flow across the magnetic field (B and u in the figure). The
Lorentz force qu×B deflects positive charges toward the upper electrode and negative
toward the lower. If the electrodes are connected through an external load, the plasma cur-
rent flows upward. Now Ampère’s force J×B decelerates the plasma flow u. Thus the
external current and the magnetic field associated with it are driven at the expense of the
kinetic energy of the plasma.

Consider next plasma that has penetrated to the magnetospheric LLBL, e.g., by dayside
reconnection or diffusion through the magnetopause (Fig. 8.8). The flow is decelerated in
the same way as in the toy model of Fig. 8.7 and the LLBL feeds magnetospheric current
systems. The outer “electrode” is now coupled to the magnetopause current and the inner
to the Region 1 field-aligned current.
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Fig. 8.7 The basic principle of an MHD generator. In reality MHD generators are more complicated
structures and the connection of the external load can be arranged in many different ways.

Fig. 8.8 A model for a dynamo in the LLBL. The open arrows describe the plasma flow and the black
arrows the electric currents. Note that the magnetopause current (JMP) and the FAC J‖ are not in the
plane of the figure, which should be imagined as a projection seen from the tail. (From Lundin and Evans
[1985].)
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Note that this is just a phenomenological description that is consistent with magne-
tospheric current systems discussed in Chap. 1. To obtain quantitative description of the
generation of the magnetospheric currents by the boundary layer dynamo, more rigorous
analysis, requiring numerical simulations, is necessary. It is actually quite remarkable how
little is known of the local physics of this dynamo and of its efficiency under various solar
wind conditions and within different parts of the magnetopause.

8.3.2 Elements of solar dynamo theory

The generation of solar and stellar magnetic fields is a central and difficult problem in
MHD. While the hard-core dynamo theory is outside the scope of this book, it is possible
to look at some aspects that are essential to the 22-year magnetic cycle of the Sun, which
determines the basic climatic period of space storms.

The existence of MHD dynamos is not trivial. A special class of MHD theorems, some
of which were discussed in Chap. 6, are the anti-dynamo theorems that constrain the con-
figurations where the dynamo action is possible. Some of the most famous are

• Cowling’s theorem: A steady axisymmetric magnetic field cannot be maintained. This
means that a dynamo must produce a more complicated configuration than the simple
dipole.

• A two-dimensional magnetic field cannot be maintained by dynamo action. This means
that in any 3D coordinate system (x,y,z) B cannot be independent of any of the coordi-
nates.

• An incompressible motion in a spherical volume having a zero radial component every-
where cannot maintain a magnetic field.

• Zeldovich’s theorem: An incompressible motion in which Vz ≡ 0 in some Cartesian
coordinate system cannot maintain a magnetic field.

Proof of Cowling’s theorem: Write a steady axisymmetric magnetic field as a sum of a
toroidal component (Bφ ) and a poloidal vector Bp, the latter of which is a sum of the radial
and axial components in the cylindrical coordinates (r,θ ,φ)

B = Bφ eφ +Bp . (8.41)

Due to the axisymmetry the projections of field lines to any meridional plane must look
the same and form closed loops. On each meridional plane there must be an O-type neutral
point, where poloidal field vanishes and thus the field is purely azimuthal (or zero). The
neutral points form a closed circle C around the symmetry axis. Integrate the MHD Ohm’s
law along this circle ∮

C

J

σ
·dl =

∮
C

E ·dl+
∮

C
V×B ·dl . (8.42)

Using Stoke’s law and noting that the current has only the φ component, this can be written
as ∮

C

Jφ

σ
dl =

∫
S

∇×E ·dS +
∮

C
V×B ·dl . (8.43)
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For a steady magnetic field ∇×E = 0. Along C the magnetic field is in the direction of
the line element B ‖ dl, which also makes the last term in (8.43) vanish. However, Jφ does
not vanish on C and thus the LHS of (8.43) cannot be zero. We have found a contradiction
that proves Cowling’s theorem.

We leave the proof of the other theorems as exercises for the interested reader. The
main point of these theorems is that it is useless to look for oversimple dynamo solutions.
As we will see, e.g., the αω dynamo discussed below is far from the symmetries of these
theorems.

To construct a model for the solar dynamo let us again start from the induction equation

∂ B

∂ t
= ∇× (V×B)+η∇2B . (8.44)

The plasma dynamo is easiest to describe at the kinematic level where the velocity field
V is assumed to be given and not affected by the evolution of the magnetic field. This
is a reasonable starting point in a hydrostatic object like the Sun where the pressure and
gravitation balance each other and the Lorentz force J×B is negligible. In this case the
induction equation is linear, which makes an analytical approach feasible.

In reality the magnetic force may not be negligible and V may be a function of B

making the induction equation nonlinear. In that case the analysis requires a simultaneous
solution of the momentum equation and we have to solve a dynamic problem, which in
the case of the Sun means a combined solution of the convective motion and magnetic
field generation. This is evidently possible only through numerical simulations. Due to
the wide range of scales such computations easily reach beyond the limits of present-day
computers.

Figure 8.9 illustrates our understanding of the differential rotation before and after the
analysis of solar oscillations. In the older picture the rotation was assumed to resemble
concentric cylinders, the outer of which would rotate faster. In this case there would be
considerable velocity shear throughout the convection zone. The analysis of rotational
modes of solar oscillations has, however, shown that the isocontours of the rotation speed
are almost radial in the convection zone and the main shear takes place close to the bottom
of the convection zone. Unfortunately, the kinematic approach does not seem be a quite
sufficient description of the actual situation, where the field generation is likely to take
place within a narrow region at the bottom of the convection zone.

Regardless of these reservations, we discuss the dynamo mechanism at the kinematic
level within the mean-field electrodynamics approach. While this does not provide a com-
plete description of the solar dynamo, it illustrates some of the basic principles and intro-
duces the alpha effect that belongs to the basic jargon of the physics of MHD dynamos.

We assume the velocity field given and write the magnetic and velocity fields as sums
of the average fields (〈B〉,〈V〉) and the fluctuating parts (b,u)

B = 〈B〉+b (8.45)
V = 〈V〉+u . (8.46)
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Fig. 8.9 Isocontours of differential rotation as assumed before helioseismological results (left) and the
present view (right). The dashed circle illustrates the boundary between the inner radiative zone and the
convective zone at about 0.72R�.

Now the field u represents the turbulent motion. In the context of turbulent motion “av-
erage” often means an ensemble average. Here we can think that the mean values are
taken over longitudes (φ ) but not over latitudes (θ ), because the differential rotation is an
essential part of the problem.

If the total velocity field were known, we could solve the kinematic problem directly.
However, we cannot express the turbulent motion in an analytical form. Instead we have
to be satisfied with knowing 〈V〉 and assuming reasonable statistical properties of u. Sub-
stituting the above expressions into the induction equation and separating the mean and
fluctuating parts we obtain

∂ 〈B〉
∂ t

= ∇× (〈V〉×〈B〉+ −η∇×〈B〉) (8.47)

∂ b

∂ t
= ∇× (〈V〉×b+u×〈B〉+G−η∇×b) , (8.48)

where

= 〈u×b〉 (8.49)
G = u×b−〈u×b〉 . (8.50)

is the mean electric field induced by the fluctuating motion. If we could calculate it, we
would have a solution for the mean magnetic field 〈B〉, but the calculation is, in general,
too difficult. However, we assume a linear relationship between b and 〈B〉 and, thus, also
between and 〈B〉. Thus we can expand this relationship to the first order as

i = αi j〈B j〉+βi jk∂k〈B j〉+ . . . , (8.51)

where the summation over the repeated indices is assumed. In mathematical language the
coefficients αi j and βi jk are pseudotensors, which relate an axial vector 〈B〉 to a polar
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vector . In the kinematic approach the coefficients represent the statistical properties of
u and are independent of B.

The mean electric field is possible to calculate explicitly if the vector G defined by
(8.50) can be neglected. Unfortunately, this requires that either the magnetic Reynolds
number must be small or uτ � l, where (u, τ, l) are the characteristic scales of u and
b. In the Sun, Rm is large and uτ ∼ l. In this respect the geodynamo is easier, because
in the Earth’s liquid core Rm is relatively small. This does not mean that the geodynamo
would in any absolute terms be an easier problem. Both are hard and far from being fully
understood.

In order to proceed, we make a first-order smoothing approximation and neglect G.
Assume further that the turbulence is isotropic, which reduces the coefficients to the form
αi j = α δi j and βi jk = β εi jk , where εi jk is the antisymmetric permutation symbol. Under
these approximations the mean electric field is

= α〈B〉−β ∇×〈B〉+ . . . . (8.52)

α and β are determined by the statistical properties (correlations) of the field u as

α = −1
3

∞∫
0

〈u(t) ·∇×u(t − t ′)〉dt ′ (8.53)

β =
1
3

∞∫
0

〈u(t) ·u(t − t ′)〉dt ′ . (8.54)

Thus α describes the correlation of u to its own vorticity and β its autocorrelation. Substi-
tuting these into (8.47) we find

∂ 〈B〉
∂ t

= ∇× (〈V〉×〈B〉+α〈B〉−ηt∇×〈B〉) , (8.55)

where the total diffusivity is ηt = η +β . The turbulent contribution

β ≈ 1
3

u2τ ≈ 1
3

ul � η (8.56)

dominates over the classical diffusion. In the solar convective zone ηt ≈ β ≈ 108 −
109 m2 s−1. This reduces the global time scale of diffusive decay to the order of 10–100
years. This is a quite reasonable number considering that the entire solar cycle is 22 years!

An essential feature of this description is that the rate of change of the mean magnetic
field is related to the field itself through the coefficient α . This is the alpha effect.

8.3.3 The kinematic αω dynamo

The correlation of the turbulent motion to its own vorticity (8.53) implies that the motion
is helical. The helical motion can sustain a dynamo alone; such processes are called α2
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dynamos. When the helical motion is combined with rotation, as in the Sun, the dynamo
is known as αω dynamo. The αω dynamo can be described as follows.

Use spherical polar coordinates and assume known α(r,θ) and angular speed of the
differential rotation Ω(r,θ ). Let α be asymmetric with respect to the equatorial plane

α(r,π −θ ) = −α(r,θ) (8.57)

and the angular velocity symmetric

Ω(r,π −θ ) = Ω(r,θ ) . (8.58)

Furthermore, assume that besides rotation there is no other mean motion

〈V〉 = (0,0,Ωr sinθ) . (8.59)

Separate the mean field into poloidal and toroidal parts 〈B〉 = Bp +Bt where

Bp = ∇× (0,0,A(r,θ ,t)) (8.60)
Bt = (0,0,B(r,θ ,t)) . (8.61)

The mean-field induction equation can also be separated into its poloidal and toroidal parts.
Assuming, for simplicity, constant ηt we get

∂A
∂ t

= αB+ηt∇2
1A (8.62)

∂B
∂ t

=
∂Ω
∂ r

∂
∂θ

(Asinθ )− 1
r

∂Ω
∂θ

∂
∂ r

(rAsinθ)− 1
r

∂
∂ r

[
α

∂
∂ r

(rA)
]

− 1
r2

∂
∂θ

[
α

sinθ
∂

∂θ
(Asinθ )

]
+ηt∇2

1B , (8.63)

where ∇2
1 = ∇2 − (r sinθ )−2 .

Now the role of the alpha effect becomes clear. With α = 0 the vector potential deter-
mining the poloidal field would decay exponentially and with the disappearance of A, the
same would happen to B. The alpha effect generates a poloidal field from the toroidal field,
whereas the differential rotation (∇Ω , only the derivatives of Ω are involved) produces a
toroidal field from the poloidal field, etc.:

. . . Bt
α→ Bp

∇Ω→ Bt . . . .

This is the αω dynamo.
The αω cycle qualitatively corresponds to the solar cycle. At the solar minimum there

are no sunspots and the large-scale magnetic field is as poloidal as possible. The differen-
tial rotation destroys this by winding the magnetic field lines around the Sun thus creating a
toroidal component of the magnetic flux in the convection zone. Some of the toroidal field
lines penetrate through the solar surface and produce sunspot pairs. As a consequence of
this the magnetic polarity of the spots follows a consequent pattern. Because the wound-up
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magnetic field lines point in opposite azimuthal directions on the opposite hemispheres,
the leading spots on one hemisphere have positive polarity and the following spots negative
polarity, whereas on the other hemisphere the polarities are reversed.

After the maximum epoch the alpha effect becomes more efficient than the omega effect
and starts to reorganize the poloidal field. During this process upward convection, rotation
and meridional circulation together lead to a helical twisting of the magnetic field (the al-
pha effect). After a twist of about 180◦ the magnetic loops become detached through local
reconnection and form new poloidal loops with a magnetic field orientation opposite to the
poloidal field of the past minimum. These loops merge (again reconnection!) and produce
a new minimum configuration of the poloidal field opposite to the previous minimum.

After the new minimum differential rotation starts again to wind the toroidal compo-
nent, but the now-emerging sunspot pairs have reversed polarities as compared to the pre-
vious cycle. A new cycle is determined by the appearance of sunspot pairs with the new
polarity and has a length of about 11 years, whereas the complete magnetic cycle is 22
years. Thus we can understand the Hale’s polarity law discussed in Chap. 1.

Train your brain

Sketch the evolution of the mean magnetic field in the convective zone following to the
description given above. If you have difficulties with this, you can certainly find both
good and bad pictures of this on the internet!

Although the kinematic approach does not provide a complete description of the solar
dynamo, it is possible to adjust the parameters so that the oscillatory behavior of the solar
cycle can be reproduced. For a more complete, or correct, description of solar magnetic
field generation and the solar cycle, more complicated nonlinear methods are needed.

An alert reader may wonder if the αω description violates the anti-dynamo theorem
according to which the magnetic field should depend on all three coordinates. While the
average magnetic field is two-dimensional, the underlying turbulence giving rise to the
alpha effect is assumed to be three-dimensional. Note further that the alpha effect is a
result of the phenomenological mean-field description of the turbulent convection. It is not
a property of the exact equations.



 
 



9. Plasma Radiation and Scattering

Understanding of radiation and scattering processes in space plasmas is essential to cor-
rectly interpret the storm signatures in the solar spectrum. Radar scattering is also a pow-
erful tool to probe the properties of the ionosphere.

9.1 Simple Antennas

In Chap. 2 we found that the expressions for radiation electric and magnetic fields are
proportional to the inverse distance from the source R−1. Because the field of a static
electric charge decays as R−2 and the fields of static electric and magnetic dipoles as R−3,
the radiation fields far from the source are much stronger than the fields of static charge
and current configurations.

Assume that the radiation source is much smaller than the wavelength of the radiation
(d � λ ) and consider the region far from the source. In the Lorenz gauge the potentials
are

ϕ =
1

4πε0

∫ [ρ]
R

d3r′ ; A =
μ0

4π

∫ [J]
R

d3r′ ,

where the brackets indicate that the functions are evaluated at the retarded time. For radi-
ation is enough to consider A alone, because the electrostatic field vanishes as R−2. In the
far region J = 0 but [J(r′)] �= 0 because the integral is taken over the volume including the
source. Assuming harmonic time dependence we get

A(r,ω) =
μ0

4π

∫
J(r′,ω)

exp(ik|r− r′|)
|r− r′| d3r′ . (9.1)

Far from the source |r− r′| ≈ r− er · r′ ⇒

A(r,ω) =
μ0

4π
exp(ikr)

r

∫
J(r′,ω)exp(−iker · r′)d3r′ . (9.2)
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The exponential in the integral is convenient to expand as a power series

A(r,ω) =
μ0

4π
exp(ikr)

r ∑
n

(−ik)n

n!

∫
J(r′,ω)(er · r′)n d3r′ . (9.3)

Under the assumptions kr → ∞ and kd � 1 the series converges rapidly and the first non-
zero term dominates far from the source.

Electric dipole

For an electric dipole n = 0 in (9.3). The current in the source region is found from the
continuity equation iωρ = ∇ ·J ⇒∫

Jd3r′ = −
∫

r′(∇′ ·J)d3r′ = −iω
∫

r′ρ(r′)d3r′ . (9.4)

The dipole moment is p =
∫

r′ρ(r′)d3r′ ⇒

A(r,ω) = −i
μ0ω
4π

p(ω)
exp(ikr)

r
. (9.5)

The fields are now easy to calculate

B = ∇×A =
k2

4πε0c
er ×p

exp(ikr)
r

(
1− 1

ikr

)
kr�1−→ k2

4πε0c
er ×p

exp(ikr)
r

(9.6)

E =
ic
k

∇×B
kr�1−→ cB× er . (9.7)

To estimate the average radiated power we use the definition of the Poynting vector S.
The power dP radiated into the solid angle dΩ is dP = S ·da = S · err2 dΩ ⇒

dP
dΩ

=
1

2μ0
Re{r2er ·E×B∗} =

ck4

2(4π)2ε0
|(er ×p)× er|2 . (9.8)

The cross product contains phase information. If all Fourier components of p are in the
same phase, the intensity as a function of angle θ measured from the direction of the
dipole axis is

dP
dΩ

=
ck4

32π2ε0
|p|2 sin2 θ . (9.9)

The total radiated power is now

P =
ck4

12πε0
|p|2 . (9.10)
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Magnetic dipole and electric quadrupole

These multipoles correspond to the n = 1 term in (9.3). Now

A(r,ω) =
μ0

4π
(−ik)

exp(ikr)
r

∫
J(r′,ω)(er · r′)d3r′ . (9.11)

Write the integrand as a sum of symmetric and asymmetric terms

(er · r′)J =
1
2
[(er · r′)J+(er ·J)r′]+

1
2
(r′ ×J)× er .

The asymmetric part corresponds to the magnetization due to J

M =
1
2
(r×J) (9.12)

and the magnetic dipole moment is

m =
∫

Md3r . (9.13)

The asymmetric part of the vector potential is

AA(r,ω) =
μ0

4π
ik

exp(ikr)
r

er ×m . (9.14)

This gives the radiation field of a magnetic dipole. It is of the same form as the field of the
electric dipole if we substitute

B → E/c, E →−cB, m → p .

The difference between the electric and magnetic dipole radiation is the different polar-
ization. The electric dipole radiation is called TM mode (transverse magnetic). Its electric
field vector is in the plane defined by p and er. The magnetic dipole radiates in the TE mode
(transverse electric). Its electric field is perpendicular to the plane defined by m and er.

Train your brain

Sketch the radiation patterns of electric and magnetic dipole and indicate the electric
and magnetic field polarization in both cases.

The symmetric part of the vector potential is found to be

AS(r,ω) = −μ0c
4π

k2

2
exp(ikr)

r

∫
r′(er · r′)ρ(r′)d3r′ (9.15)

⇒
B = ∇×A −→ −iμ0c

8π
k3 exp(ikr)

r

∫
(er × r′)(er · r′)ρ(r′)d3r′ . (9.16)
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This magnetic field can be expressed in terms of the quadrupole moment tensor

=
∫

(3r′r′ − r′2 )ρ(r′)d3r′ (9.17)

⇒
B =

μ0c
4π

−ik3

6
exp(ikr)

r
er × ( · er) . (9.18)

The power radiated to the angle dΩ is found to be

dP
dΩ

=
ck6

1152π2ε0

4π
5 ∑

i, j
|Qi j|2 , (9.19)

where Qi j’s are the elements of tensor .

9.2 Radiation of a Moving Charge

In the radiation by a moving charge relativistic effects need to be taken into account. We
use the standard notation

βββββ = v/c ; γ = 1/
√

1−β 2 .

Let r′ = r0(t) denote the orbit of a point-like charge. The sources of the electromagnetic
fields are

ρ = qδ (r− r0(t)) (9.20)
J = qṙ0δ (r− r0(t)) . (9.21)

Green’s function for the retarded potential is

G(r,r′;t,t ′) =
1

4π
δ (t ′ +R/c− t)

R
, (9.22)

where R = |R| = |r− r′|. G fulfills the wave equation(
∂ 2

∂ t2

)
G = δ (3)(r− r′)δ (t − t ′) . (9.23)

Green’s function can be used to integrate over r′, and in the integration over t the identity∫
f (x)δ (g(x))dx = ∑

i

f (xi)
|g′(xi)| , (9.24)

where g(xi) = 0 , is useful. Denoting n = R/R this procedure leads to the Liénard–Wiechert
potentials:
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ϕ(r, t) =
q

4πε0

[
1

(1−n ·βββββ )R

]
ret

(9.25)

A(r, t) =
q

4πε0c

[
βββββ

(1−n ·βββββ )R

]
ret

. (9.26)

The radiation fields are found by straightforward derivation. They are, of course, the
same as found in Chap. 2. Using the notation of the present section we write the fields as

E(r, t) =
q

4πε0

[
(n−βββββ )(1−β 2)
(1−n ·βββββ )3R2 +

1
c

n× ((n−βββββ )× β̇ββββ )
(1−n ·βββββ )3R

]
ret

(9.27)

B(r, t) =
n×E

c
. (9.28)

At the non-relativistic limit (β � 1) the radiation fields are

E(r, t) =
q

4πε0c2
n× (n× v̇)

R
(9.29)

B(r, t) =
q

4πε0c3
v̇×n

R
, (9.30)

from which we get the Poynting vector

S =
1

μ0c
E× (n×E) = ε0c|E|2n =

1
Z0

|E|2n . (9.31)

Here Z0 is the vacuum impedance ≈ 120π ohm.
The power radiated to the angle dΩ is

dP
dΩ

=
q2

16π2ε0c

∣∣∣n× (n× β̇ββββ )
∣∣∣2

=
q2|v̇|2

16π2ε0c3 sin2 θ , (9.32)

where θ is the angle between v̇ and n. The electric field is in the plane of v̇ and n. Inte-
grating over dΩ we get the Larmor formula for the total power

P =
q2v̇2

6πε0c3 . (9.33)

For relativistic particles the distinction between t and t ′ is essential. Define the radiated
power as the power radiated in the particle’s own time (t ′) and own position (r′)

dP
dΩ

= ε0c|RE|2 dt
dt ′

=
1−n ·βββββ

Z0
|RE|2

=
q2

16π2ε0c

∣∣∣n× ((n−βββββ )× β̇ββββ )
∣∣∣2

(1−n ·βββββ )5 . (9.34)
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The total power is found either by integrating this expression or making a Lorentz trans-
formation of the Larmor formula. The result is

P =
q2

6πε0c
γ6(β̇ 2 − (βββββ × β̇ββββ )2) . (9.35)

When β → 1, the significance of the denominator of dP/dΩ increases and the radiation
lobes start to stretch into the direction of the particle’s motion. The maximum intensity
is obtained when θ → 1/(2γ) and the width of the lobe is ≈ 1/γ . These formulas are
applicable both to the bremsstrahlung and to the cyclotron and synchrotron radiation to be
discussed shortly.

In addition to the radiated power we often want to know the spectrum of the radiation.
We discuss this using the observer’s time t. Denote

dP(t)
dΩ

= |G(t)|2 . (9.36)

The total energy radiated into the angle dΩ is

dW
dΩ

=
∞∫

−∞

|G(t)|2 dt . (9.37)

Define the Fourier transform of G as

Ĝ(ω) =
1√
2π

∞∫
−∞

G(t)exp(iωt)dt . (9.38)

When t and G(t) are real we can apply Parseval’s formula to write

dW
dΩ

=
∞∫

−∞

|Ĝ(ω)|2 dω . (9.39)

The negative frequencies can be eliminated by using the identity Ĝ(−ω) = Ĝ∗(ω). Define
now the energy spectrum per solid angle as d2W/(dΩ dω). This tells how much energy is
radiated into the angle element dΩ within the frequency interval dω . Writing

dW
dΩ

=
∞∫

0

d2W
dΩ dω

dω (9.40)

we can identify
d2W

dΩ dω
= |Ĝ(ω)|2 + |Ĝ(−ω)|2 = 2|Ĝ(ω)|2 . (9.41)

To evaluate this for a point charge is straightforward but tedious (see, e.g., the classic
textbook on electrodynamics by Jackson [1999]). The result is
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d2W
dΩ dω

=
q2

16π3ε0c

∣∣∣∣∣∣
∞∫

−∞

n× ((n−βββββ )× β̇ββββ )
(1−n ·βββββ )2 exp

[
iω

(
t ′ − n · r0(t ′)

c

)]
dt ′

∣∣∣∣∣∣
2

(9.42)

or, after a partial integration,

d2W
dΩ dω

=
q2ω2

16π3ε0c

∣∣∣∣∣∣
∞∫

−∞

n× (n×βββββ )exp
[

iω
(

t′ − n · r0(t ′)
c

)]
dt ′

∣∣∣∣∣∣
2

. (9.43)

At the non-relativistic limit

d2W
dΩ dω

=
q2ω2

16π3ε0c3

∣∣∣∣∣∣
∞∫

−∞

n× (n×v)exp(iωt)dt

∣∣∣∣∣∣
2

. (9.44)

Integrated over all angles this yields the Larmor formula in the form

dW
dω

=
q2

6π2ε0c3

∣∣∣∣∣∣
∞∫

−∞

v̇exp(iωt)dt

∣∣∣∣∣∣
2

. (9.45)

Thus we can calculate the radiation of the particle, once we know its orbit.

9.3 Bremsstrahlung

Let us apply the above results to the bremsstrahlung of electrons moving in a plasma.
Space storm related examples of this are flare-accelerated electrons being decelerated in
the solar atmosphere or energetic electrons precipitating into the ionosphere. For sim-
plicity, we neglect the background magnetic field. This is actually a good approximation
except close to the multiples of the electron gyro frequency.

Assume that the plasma is so tenuous that the electron’s motion at each moment of time
can be regarded to take place in the Coulomb field of a single stationary ion

|v̇| = Ze2

4πε0mer2 . (9.46)

Now the Larmor formula yields the power radiated by one electron

Pe =
e2

6πε0c3

(
Ze2

4πε0mer2

)2

. (9.47)

Assume that the electrons arrive the plasma as a beam with number density n−. Calculate
first he total radiation in the field of one ion as
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P =
2
3

Z2
(

e2

4πε0

)3 n−

m2
ec3

∞∫
rmin

4πr2

r4 dr

=
8π
3

Z2
(

e2

4πε0

)3 n−

m2
ec3rmin

. (9.48)

Based on quantum mechanical reasoning we set the lower limit of the integral to the elec-
tron’s de Broglie wavelength

rmin ∼= h̄
〈p〉 =

h̄√
mekBT

. (9.49)

Introducing the fine structure constant α = e2/(4πε0h̄c) ≈ 1/137 and the electron’s clas-
sical radius r0 = e2/(4πε0mec2) ≈ 2.82×10−15 m, we can write the radiated power as

P =
8π
3

Z2αr2
0mec2

√
kBT
me

n− . (9.50)

Finally, to find the radiated power per unit volume, we multiply this by the ion number
density n+

Pvol =
8π
3

Z2αr2
0mec2

√
kBT
me

n−n+ . (9.51)

For a fundamentally quantum mechanical phenomenon, this quasi-classical analysis gives
a remarkably good result. A more rigorous analysis introduces a correction factor of about
1.1 to (9.51).

To find out the energy spectrum we must know the orbit of the particle. Because in
plasma small angle collisions dominate, we may approximate the orbit as a straight line
and calculate the acceleration at each point on this line due to the forces acting on the
particle (cf. the Born approximation in quantum mechanics). The closest distance of this
line to the scattering center is called the impact parameter and we denote it by b. Let L
be the effective range of the interaction. The collision time is τ ∼ L/v ⇒ ω ∼ v/L. Let
L� bmin, where bmin is the smallest value of the impact parameter, for which the rectilinear
motion is a good approximation. Now ω � v/bmin, which limits the applicability of our
analysis to radio and microwave frequencies (kHz–GHz).

The equation for the orbit is
r2

0(t) = b2 + v2t2 (9.52)

and the acceleration is given by

v̇⊥(t) =
Ze2

4πε0me

b
(b2 + v2t2)3/2 (9.53)

v̇‖(t) =
Ze2

4πε0me

vt
(b2 + v2t2)3/2 . (9.54)
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Substitution of these into (9.45) gives

dW
dω

=
e2

6π2ε0c3

(
Ze2

4πε0me

)2
∣∣∣∣∣∣

∞∫
−∞

be⊥ + vte‖
(b2 + v2t2)3/2 exp(iωt)dt

∣∣∣∣∣∣
2

. (9.55)

The integration can be performed with the help of modified Bessel functions of the second
kind K0 and K1

∞∫
−∞

xsin(ax)
(b2 + x2)3/2 dx = aK0(ab)

∞∫
−∞

cos(ax)
(b2 + x2)3/2 dx =

a
b

K1(ab)

K′
0(x) = −K1(x)

⇒
dW
dω

=
e2

6π2ε0c3

(
Ze2

4πε0me

)2 ∣∣∣∣2
v

(
be⊥

ω
vb

K1(ωb/v)+ e‖
ω
v

K0(ωb/v)
)∣∣∣∣2

=
2
3

(Ze)2ω2c
π2ε0

r2
0

v4

[
K2

0(ωb/v)+K2
1(ωb/v)

]
. (9.56)

The energy spectrum of a single collision is sketched in Fig. 9.1.

b
v

1 2 3

dW
d

Fig. 9.1 The shape of the energy spectrum of a single collision.

In the parameter range b → b + db there are 2πbdbn+v collisions per unit time. Thus
a single electron radiates in the frequency range dω the power

Pe = 2π
∞∫

bmin

dW
dω

n+vbdb . (9.57)
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Next we must sum over all electrons. Assume an isotropic distribution f = f (v) which
implies that in the velocity interval v → v + dv there are 4πv2 f (v)dv electrons per unit
volume. This gives the power spectrum

dPtot

dω
= 8π2

∞∫
0

f (v)

⎛⎝ ∞∫
bmin

dW
dω

n+vbdb

⎞⎠v2 dv (9.58)

=
16
3

n+ (Ze)2cr2
0

ε0

∞∫
0

f (v)ωbminK0

(
ωbmin

v

)
K1

(
ωbmin

v

)
dv ,

where the identity d(xK0K1)/dx = x(K2
0 +K2

1) was used. At small frequencies K0 ∼− lnx,
K1 ∼ 1/x ⇒

dPtot

dω
=

16
3

n+ (Ze)2cr2
0

ε0

∞∫
0

f (v)v ln
(

v
ωbmin

)
dv . (9.59)

For a Maxwellian electron distribution the integral is possible to calculate in a closed form
using the formula

∞∫
0

exp(−μx2)x lnxdx = − 1
4μ

(γ + ln μ) ,

where γ ≈ 0.577... is known as the Euler constant. The total power spectrum is thus

dPtot

dω
=

4
3

n+n−
(Ze)2cr2

0
ε0π

(
me

2πkBT

)1/2 [
ln

(
2kBT

meω2b2
min

)
− γ

]
. (9.60)

The dependence on bmin is logarithmic and as such not very sensitive to the actual value of
bmin.

In this particular example “low frequency” means radio waves and microwaves (kHz–
GHz). For these frequencies the classical treatment is good enough. For higher frequencies
(X- or γ-rays) quantum mechanical calculation becomes necessary.

The derivation did not include plasma effects. Thus the above result is valid in the
frequency range

ωp � ω �
√

2kBT
meb2

min
. (9.61)

Due to the Debye shielding the upper limit of the b integration is not really infinity and we
have not included multiple scattering, nor large-angle collisions. However, (9.60) is good
enough for many practical purposes.
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9.4 Cyclotron and Synchrotron Radiation

In magnetized space plasmas the radiation due to the curved path of Larmor motion is
important. In the non-relativistic case this is called cyclotron radiation and the relativistic
version is called synchrotron radiation. In solar physics and astrophysics the synchrotron
radiation from electrons with a relatively small Lorentz factor (γ ∼2–3) is sometimes
called gyrosynchrotron radiation and the term synchrotron is reserved for radiation by
ultrarelativistic electrons.

Consider first the Larmor motion of an electron at the non-relativistic limit in the coor-
dinate system where B is along the z axis, n is the direction toward the observer in the xz
plane and θ is the angle between B and n. Denote the gyro frequency by ω0. Now

n = ex sinθ + ez cosθ
r = rL(ex sinω0t + ey cosω0t)
v = v⊥(ex cosω0t − ey sinω0t)

v‖ = 0 .

For a non-relativistic particle the loss of energy during one Larmor period is negligible. To
find the radiated energy we note first that

n× (n×v) = v⊥(−ex cosω0t cos2 θ + ey sinω0t + ez cosω0t sinθ cosθ)

and
∞∫

−∞

(
sinω0t
cosω0t

)
exp(−iωt)dt = π ×

{−iδ (ω −ω0)+ iδ (ω +ω0)
δ (ω −ω0)+δ (ω +ω0) .

The energy spectrum radiated into the angle dΩ is then

d2W
dΩ dω

=
e2ω2

0 v2
⊥

16πε0c3 |ex cos2 θ + eyi+ ez sinθ cosθ |2[δ (ω −ω0)]2

=
e2ω2

0 v2
⊥

16πε0c3 (1+ cos2 θ)[δ (ω −ω0)]2 . (9.62)

The square of the delta function is a nasty singularity. We can handle it using the same
trick as in quantum mechanics by introducing a finite radiation time T and writing δ 2 as

[δ (ω −ω0)]2 = δ (ω −ω0)
1

2π
lim

T→∞

T/2∫
−T/2

exp(−i(ω −ω0)t)dt

= lim
T→∞

T
2π

δ (ω −ω0) . (9.63)
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Dividing the energy spectrum by T we get the power spectrum per unit solid angle dΩ

d2P
dΩ dω

=
e2ω2

0 v2
⊥

32π2ε0c3 (1+ cos2 θ)δ (ω −ω0) . (9.64)

The remaining delta function is important because it tells that there is exactly one spectral
line at the gyro frequency. The total power is now

P =
e2ω2

0 v2
⊥

6πε0c3 , (9.65)

which is again the Larmor formula (replace ω0v⊥ → dv/dt). Because P ∝ ω2
0 ∝ 1/m2,

electrons radiate much more efficiently than ions.
Next we take into account the relativistic corrections and include v‖, but still neglect

energy losses. Replace ω0/γ → ω0. The energy spectrum must be computed using either
(9.42) or (9.43). The integrand contains the factor

exp
[

iω
(

t − n · r0(t)
c

)]
= (9.66)

exp
[

iω
(

t − β⊥
ω0/γ

sinθ sin
(

ω0

γ
t
)
−β‖t cosθ

)]
.

Using the well-known property of the Bessel functions

exp(ixsiny) =
∞

∑
l=−∞

Jl(x)exp(ily)

we get

exp
[

iω
(

t − n · r0(t)
c

)]
= (9.67)

∞

∑
l=−∞

Jl

(
ωβ⊥
ω0/γ

sinθ
)

exp
[

i(ω − lω0

γ
−ωβ‖ cosθ)t

]
.

Next we expand the product n× (n×βββββ ). We denote x = (ωβ⊥)/(ω0/γ)sinθ and make
use of formulas

Jl−1(x)− Jl+1(x) = 2J′l(x)

Jl−1(x)+ Jl+1(x) =
2l
x

Jl(x) .

After integration we again encounter the δ 2 singularity, of which we get rid with the same
T -trick as before. The result is

d2P
dΩ dω

=
e2ω2

8π2ε0c
δ

(
lω0

γ
−ω(1−β‖ cosθ)

)
× (9.68)
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∞

∑
l=1

[(
cosθ −β‖

sinθ

)2

J2
l

(
ωβ⊥
ω0/γ

sinθ
)

+β 2
⊥J

′2
l

(
ωβ⊥
ω0/γ

sinθ
)]

.

The spectrum is composed of peaks at frequencies

ωl =
lω0

√
1−β 2

1−β‖ cosθ
; l = 1,2, . . . . (9.69)

2 3

d d
d W2

0 0 0

Fig. 9.2 Spectral lines of cyclotron (or gyrosynchrotron) radiation.

Thus the peaks are shifted from the harmonics of ω0 due to relativistic mass increase
(γ) and Doppler shift (1−β‖ cosθ ). Integrations over dω and dΩ and sum over l finally
yield the total power

∞

∑
l=1

Pl = Ptot =
e2ω2

0
6πε0c

(
β 2
⊥

1−β 2

)
. (9.70)

Train your brain

1. The spectrum (9.69) consists of discrete peaks at single frequencies. What physical
reasons lie behind the broadening of the spectral lines of Fig. 9.2

2. Show that the energy radiated during one Larmor period is vanishingly small com-
pared to the total energy of the electron.

At the non-relativistic limit (β � 1) but still retaining v‖ �= 0 it is possible to show that
Pl+1/Pl ∼ β 2 for large l. Thus it is sufficient to consider a few of the first peaks in Fig. 9.2.
Most of the power is emitted at the fundamental frequency giving rise to the cyclotron
emission line

dP
dΩ

≈ e2ω2
0

32π2ε0c
β 2
⊥(1+ cos2 θ) . (9.71)

This result is calculated for a single electron. Multiplying by the electron number density
and writing v2

⊥ = kBT/m we find that dP/dΩ ∝ Pe , i.e., the intensity of the cyclotron
line is proportional to the electron pressure. The cosine factor tells that the intensity in
the direction of B is twice the intensity in the perpendicular direction. At the limit β → 1
the line separation ω0(1−β 2) → 0 and highly relativistic electrons radiate a continuous
spectrum (Fig. 9.3).
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Fig. 9.3 Continuous synchrotron spectrum of ultrarelativistic electrons.

For a long time it was thought that the cosmic radio emissions were mostly broad-
banded bremsstrahlung. In the mid-1950s Ginzburg argued that the strong radio emissions
from, e.g., the Crab nebula must actually be synchrotron emission [see Ginzburg, 1959].
This was an important milestone in the growing appreciation of the role of the magnetic
fields in cosmic plasma systems.

9.5 Scattering from Plasma Fluctuations

The basic principles of reflection and refraction of electromagnetic waves at the inter-
face between two macroscopic media with different refractive indices were introduced in
Chap. 4. These were applied to the ionosphere where the refractive index was allowed to
change smoothly. The problem of partial reflection was swept under the rug at the WKB
limit, which was found to be valid when

1
4n5/2k0

∣∣∣∣dn
dz

∣∣∣∣ � 1 . (9.72)

Thus the wavelength (λ = 2π/k0) must be shorter than the density scale length. However,
at the microscopic limit the electromagnetic wave (i.e., the photons) may scatter both from
individual electrons and from collective fluctuations. Thus even a high-frequency wave,
which can penetrate through the plasma, is partially scattered and this scattering is ob-
servable using sufficiently powerful tools, e.g., ionospheric scatter radars. Our discussion
follows closely the presentation by Nygrén [1996].

We start the discussion from the macroscopic picture assuming that there are spatial
and/or temporal fluctuations in the refractive index (n) and thus in the permittivity (ε).
The fluctuations may be thermal (damped Langmuir or ion–acoustic modes), they may be
characterized as turbulence, or they may be waves driven by plasma instabilities (e.g., ion–
acoustic, electrostatic ion cyclotron, two-stream, Rayleigh–Taylor, or Farley–Buneman
modes).

Let us consider, for simplicity, an isotropic medium with scalar ε . For high enough
frequencies this is a good approximation also in magnetized plasmas because the terms
proportional to Y = ωca/ω in the dispersion equation are small enough to be neglected.
Formally, we can relate the permittivity and the polarization



9.5 Scattering from Plasma Fluctuations 259

P = (ε − ε0)E . (9.73)

Denote the spatial and temporal average of ε by 〈ε〉 and write

ε(r,t) = 〈ε〉+	ε(r,t) , (9.74)

where 	ε is the fluctuation of the permittivity. Now

P = (〈ε〉− ε0)E+	εE = P〈ε〉 +	P , (9.75)

where 	P is the fluctuation of the polarization. When the electromagnetic wave propa-
gates in ideal homogeneous medium, there is no reflection and the displacement current is
Ḋ = 〈ε〉Ė , where the dot denotes the time derivative. The fluctuations introduce another
displacement current contribution

	Ḋ = 	Ṗ = 	εĖ . (9.76)

Thus the fluctuations emit radiation through this current in the presence of the electromag-
netic wave. This emission is scattered radiation.

Consider again the plane waves E = E0 exp[i(k · r−ω0t)] . The displacement current is
given by

	J = 	Ṗ = −iω0	ε(r,t)E0 exp[i(k · r−ω0t)] . (9.77)

Let 	Jd3r′ be a current element in the volume element d3r′. The retarded vector potential
element is now

dA(r,t) = (9.78)
−iω0μ0E0

4π
	ε(r′,t −|r− r′|/c)

|r− r′| exp[ik · r′ − iω0(t −|r− r′|/c)]d3r′ .

Assume that the scattering volume is small compared to the distance R from the observer
and that the fluctuations are so slow that ε changes only little during the time the wave
propagates through the scattering volume. Then the retarded time from all points within
can be replaced by a single time t ′ ≈ t −R/c , and |r− r′| in the denominator by R. Now

ω0|r− r′|/c = k|r− r′| = ks · (r− r′) , (9.79)

where ks is the wave vector of radiation scattered into the direction of r−r′. Inserting this
into the expression for A and integrating over we get

A(r,t) = (9.80)
−iω0μ0E0

4πR
exp[iks · r− iω0(t)]

∫
	ε(r′,t ′)exp[i(k−ks) · r′]d3r′ .

This is a plane wave propagating into the direction of r− r′ . Its amplitude is proportional
to the three-dimensional spatial Fourier transform of 	ε , i.e., 	ε(K), where K = k−ks .
Thus we can write



260 9. Plasma Radiation and Scattering

A(r, t) =
−iω0μ0E0

4πR
	ε(K)exp[iks · r− iω0(t)] . (9.81)

From this it is straightforward to calculate the electric and magnetic fields of the scattered
wave.

Let S be the intensity (i.e., the absolute value of the Poynting vector) of the incident
wave. Then the intensity of the scattered wave is

Ss ∝ |	ε(K)|2S . (9.82)

In isotropic plasma the refractive index is n =
√

1−ω2
p/ω2

0 . This allows us to interpret
the above result in terms of density fluctuations 	ne(K)

Ss ∝ |	ne(K)|2S . (9.83)

Thus the wave vector spectrum of density fluctuations determines the intensity of scattered
radiation. Now a little exercise in geometry tells that |k|= |ks|= 2π/λ ⇒ |K|= 2k cosφ ,
where 2φ is the angle between the incident and scattered radiation, divided to equal halves
by the normal direction. The corresponding wavelength is Λ = λ/(2cosφ). If the wave
scattered from parallel planes separated by a distance d, the difference in the path lengths
would be δ = 2d cosφ . Thus there will be constructive interference of waves scattered
from two consecutive planes if

d =
λ

2cosφ
= Λ . (9.84)

Train your brain by sketching the geometric construction that proves (9.84)

Now we can give a physical interpretation to the dependence of scattered intensity on
the density fluctuations. The fluctuation is composed of plane waves propagating in all di-
rections as determined by its spatial Fourier transform. The scattering process selects from
this wave spectrum the component that gives constructive interference in the direction of
the observer, i.e., the scattering of exactly those waves whose wave vector K is enhanced.
The constructive interference requires that the direction of the wave normal (n = K/K)
divides the angle between the incident and scattered waves to equal halves and the wave-
length is Λ = λ/(2cosφ). This is analogous to the Bragg scattering in a crystal lattice.
The case φ = 0 (i.e., Λ = λ/2) is called backscattering.

Typical ionospheric backscatter radars transmit waves at frequencies from 10 MHz
to 200 MHz. Frequencies around 150 MHz (2 m) are particularly important because they
backscatter from 1-m density fluctuations, which happens to be a typical length of Farley–
Buneman waves in the auroral E-region ionosphere.
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9.6 Thomson Scattering

The scattering of an electromagnetic wave off an electron is known as Thomson scatter-
ing. Thomson scattering is of particular interest in physics of space storms because it is
responsible for the white light that we see in the coronagraph images of CMEs. Also the
incoherent scatter radars utilize Thomson scattering.

Let an electron oscillate in the field of an electromagnetic wave with the frequency ω0:
Ei = E0 exp(−iω0t). The acceleration of the electron is d2re/d2t =−(e/m)Ei, from which
we obtain the velocity

ve = − e
m

∫
Ei dt =

−ieE0

mω0
exp(−iω0t) . (9.85)

The current of a single electron is

J(r, t) = −eve(t)δ [r− re(t)] =
ie2E0

mω0
exp(−iω0t)δ [r− re(t)] . (9.86)

Thus the vector potential can be written as

A(r, t) =
μ0

4π

∫
J(r′, t ′)
|r− r′|

3r′

=
iμ0e2E0

4πmω0

∫ exp(−iω0t ′)
|r− r′| δ [r′ − re(t ′)]d3r′

=
iμ0e2E0

4πmω0

exp[−iω0(t −|r− re|/c)
|r− r′| . (9.87)

This can be simplified by letting the electron oscillate about the origin of the frame of
reference

A(r, t) =
iμ0e2E0

4πmω0

exp[−i(ω0t −ks · r)]
|r| . (9.88)

Thus the oscillating electron radiates a spherical wave whose amplitude decreases as 1/r.
Again the radiation is due to the incident wave, i.e, this is another example of scattering of
radiation. The scattered magnetic field is

Bs = ∇×A = −μ0e2(ks ×E0)
4πmω0

exp[−i(ω0t −ks · r)]
|r| (9.89)

and the scattered electric field is found using Faraday’s law, which gives

|Es| = c|Bs| . (9.90)

The average of the scattered Poynting flux is

〈|Ss|〉 =
ε0c
2

r2
0

E2
0 sin2 χ

r2 , (9.91)
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where r0 = e2/(4πε0mc2) is the electron classical radius and χ the angle between ks and
E0. The relation between the incident and scattered Poynting vectors is

〈|Ss|〉 =
r2

0
r2 sin2 χ〈|Si|〉 . (9.92)

Train your brain

Calculate the average of scattered Poynting flux (9.91).

The total scattered power is

PT =
∫
〈|Ss|〉r2dΩ = 2π

π∫
0

〈|Ss|〉r2 sin χ dχ

= 2πr2
0〈|Si|〉

π∫
0

sin3 χ dχ =
8π
3

r2
0〈|Si|〉 , (9.93)

where (8/3)πr2
0 ≈ 6.65×10−29 m2 is the Thomson cross-section. It is quite a small area,

and one may wonder if it really is possible to detect Thomson scattering, e.g., from iono-
spheric electrons.

Let us consider an experimental setting where a powerful transmitter sends electromag-
netic radiation into the ionosphere and another antenna listens to the scattered signal. Let
the frequency of the transmitted signal be 1 GHz (λ = 30 cm). The transmitted signal is
amplified by an antenna consisting of a large parabolic dish (say, with a diameter of 32 m).
The antenna gain G is an important factor. In our case it is G ≈ 4πA/λ 2, where A is the
cross-section area of the paraboloid. Let the distance from the transmitter to the scattering
electron be r1 and the distance from the electron to the receiver be r2. The incident signal
at the electron is

Si =
PtG
4πr2

1
, (9.94)

where Pt is the transmitted power. The signal at the receiver with effective aperture Ar is

Sr = 4πr2
0 sin2 χ

PtG
4πr2

1

Ar

4πr2
2

. (9.95)

This relation is known as the radar equation. The quantity

σ0 = 4πr2
0 sin2 χ ≈ 10−28 sin2 χ m2 (9.96)

is the electron’s radar cross-section.



9.6 Thomson Scattering 263

Example: EISCAT

In the northern auroral zone there is a powerful radar system EISCAT (European Incoher-
ent Scatter Radar Facility) located in Tromsø, Kiruna, and Sodankylä with an extension
to Longyearbyen in Svalbard. One of the radars, transmitting from Tromsø and receiving
in Tromsø, Kiruna, and Sodankylä, operates at the frequency of 930 MHz. Assume that
the transmitter power is 1 MW and the cross-section of the radiated beam at the location
where the scattering takes place at the distance of 300 km is 103 m × 103 m = 106 m2. Thus
the incident intensity is 1 W/m2. A typical electron density in the F-layer is ne ≈ 1012 m−3

and the scattering volume ≈ 103 ×103 ×104 m3 = 1010 m3 (the width of the beam mul-
tiplied by a height of 10 km). The total scattering cross-section from volume is thus
σtot = ne σ0 ≈ 10−6 m2. Assume that the receiver is also at the distance of 300 km from
the scattering volume and its effective aperture is 100 m2. Using the equations above we
find that the received power is only of the order of 10−16 W. That is a factor of 1022 less
than the transmitted power.

Gordon [1958] proposed that Thomson scattering from the ionosphere should be possi-
ble to detect with such large antennas. He suggested also that the thermal motion of elec-
trons would broaden the scattered spectrum, which would yield a measurement of electron
temperature.

Let us assume that the frequency of the incident radiation is f0. According to the rela-
tivistic formula for the Doppler effect the electron moving at speed v relative to the radar
“sees” the radiation at frequency

f ′ = f0

√
c+ v
c− v

. (9.97)

The electron emits this frequency in its own frame of reference and finally the receiver
detects the frequency

f = f ′
√

c+ v
c− v

= f0
c+ v
c− v

≈ f0

(
1+

2v
c

)
. (9.98)

Thus the radar measures the Doppler shift δ f = 2v/λ0 .
If we assume that the electron velocity distribution is Maxwellian

dne

dv
∝ exp

(
− v2

v2
th

)
; vth =

√
2kBT

me
, (9.99)

the half-width of the spectrum is approximately

	 f ≈ 4
λ0

√
kBT
me

. (9.100)

Inserting values corresponding to a typical EISCAT measurement at 930 MHz and as-
suming T = 1000 K we get a half-width of about 1.5 MHz. However, already the first
incoherent scatter radar observations in Long Branch, Illinois, indicated that the actually
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scattered radiation had a much narrower spectrum, the observed Doppler shifts being in
the kilohertz range only. What was wrong in Gordon’s suggestion?

The explanation lies in the plasma physics of the scattering volume. As long as the
radar wavelength is longer than the Debye length of the plasma, as is the case in the iono-
sphere with 30-cm waves, the observed signal actually rises from the density fluctuations
of the plasma. While the basic scattering process is the incoherent Thomson scattering
off electrons, the Doppler-broadened shape of the scattered signal is determined by col-
lective fluctuations in the electron density. The density fluctuations have the phase speed
determined by the dispersion equations for electron plasma waves and ion–acoustic waves.
The scattering process picks up the wavelength according to formula (9.84). In the case
of backscattering this is λ0/2. Assuming that there are waves propagating in all directions
the radar sees both an upshifted and a downshifted Doppler-broadened signal. For the ion
waves the phase speed is smaller, thus the peaks are closer to f0 whereas the electron
(Langmuir) lines are further away from f0.

The larger mass of the ions dominates the density fluctuations making the ion line much
stronger than the electron line. It is actually very difficult to observe the electron plasma
oscillation at all, except when there is another, more energetic, electron population present,
which can enhance the electron oscillation by the Landau mechanism. These waves are
known as the electron–acoustic waves and are analogous to the ion–acoustic waves. In
the dispersion equation the cool electron background replaces the ions and the electron
population of the ion–acoustic case is replaced by the hot electron population.

From the ion lines it is possible to derive a surprising amount of information. The
total electron density determines how much of the radiation is scattered, thus the total
power yields an estimate for ne . The ion acoustic oscillations are strongly damped by
the Landau mechanism. This deviates the waveform from its ideal sinusoidal form and
broadens the spectrum. The upward and downward Doppler-shifted ion lines merge to a
double-humped spectrum (Fig. 9.4). The total width from one hump to the other is relative
to the ion thermal speed (∝ 4vth,i/λ0). If we know the ion species, we can determine
the ion temperature. The width of the spectrum together with the depth of the minimum
between the humps is determined by the Landau damping and thus depends on Te/Ti . If
the entire ion line (both humps) is Doppler-shifted, the plasma is in motion with a speed
corresponding to the velocity component in the direction of the scattering k vector.

Furthermore, the sharpness of the edges of the ion line is a measure of the ion–neutral
collision frequency. Careful fitting of the observed spectra into the models of different rel-
ative ion abundances gives information of the relative ion concentration. In fact, extracting
physical parameters from a backscattered signal of 10−16 W is a pretty challenging task of
scientific data analysis, which can be performed with astonishing success.
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Fig. 9.4 Dependence of radar power spectrum on various parameters. The ion mass in the top three panels
is 30.5 amu, corresponding to an ionospheric mixture of O+

2 and NO+ ions. The top panel is calculated
for Te = Ti and illustrates the effect of the variation of changing ion temperature. The second panel is
calculated for Ti = 300 K and illustrates the effect of varying electron to ion temperature ratio. The third
panel, in turn, shows the effect of ion–neutral collisions. The increasing collision frequency tends to fill
the gap between the Doppler-shifted humps. Finally, the bottom panel demonstrates the effect of ion mass
in the spectrum. (Figure by courtesy of T. Nygrén.)



 
 



10. Transport and Diffusion in Space Plasmas

We have already encountered diffusion several times when applying the induction equation
of MHD. In this chapter we introduce the Fokker–Planck equation, which is a general
kinetic equation to deal with diffusion due to collisions or wave–particle interactions at
the level of plasma distribution function. We start by redefining the phase space density
and discuss the appropriate coordinates for particle flux calculations.

10.1 Particle Flux and Phase Space Density

In Chaps. 2 and 5 we studied “the plasma theorist’s” distribution function f (r,p, t) and
defined the particle flux as the first-order velocity moment of f by (2.108). Here we con-
sider a more practical approach to the particle flux, namely, how it is determined from
observations and how it is related to the distribution function.

We start by defining the differential unidirectional flux j as the number of particles dN
coming from a given incident direction (unit vector i) that hit a surface of unit area dA,
oriented perpendicular to the particles’ direction of incidence, per unit time dt, unit solid
angle dΩ and unit kinetic energy dW . Hence we can write

dN = j dAdt dΩ dW . (10.1)

In general
j = j(r, i,W, t) (10.2)

contains full information on the particles’ spatial (r), angular (i) and energy (W ) distribu-
tion at a given time. The flux j is a quantity measured by an ideal directional instrument.
It is traditionally given in units cm−2 s−1 ster−1 keV−1, even in literature otherwise using
SI units.

In reality particle detectors are only seldom simple surface plates. Instead they may
consist of a complicated network of time-of-flight measuring arrangements, electric and
magnetic deflectors, stacks of detector plates, etc. Furthermore, real detectors do not sam-
ple infinitesimal solid angles or energy intervals. Thus the conversion from the detector
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counting rate to j requires careful consideration of sensitivity, resolution and configura-
tion of the individual instrument. A real detector has a low-energy cut-off and the flux is
often convenient to represent as an integral directional flux as

j>E =
∫ ∞

E
j dW . (10.3)

Other important concepts are the omnidirectional flux J defined by

J =
∫

4π
j dΩ (10.4)

and the corresponding integral flux

J>E =
∫ ∞

E
J dW . (10.5)

Assume next that the particle distribution function is smooth and free of interactions in
a locally homogeneous magnetic field B. The magnetic field gives a natural axis for the
frame of reference. The direction of incidence i can be given by the pitch angle α and
the azimuthal angle φ around B. If particles are uniformly distributed in the gyro phase,
the angle of incidence, and thus j, will depend only on α . Thus the number of particles,
whose pitch angles lie within the interval from α to α + dα crossing a given point per
second from all azimuthal directions φ per unit perpendicular area and energy, can be
expressed as

dN
dAdW dt

= 2π j sinα dα = −2π j d(cosα) . (10.6)

The flux is called isotropic if the number of incoming particles depends only on the size
of the solid angle of acceptance and is independent of the direction of incidence, i.e., j is
constant with respect to α

dN
d(cosα)

= const . (10.7)

Consequently, in an isotropic distribution equal numbers of particles arrive at the detector
from equal intervals of pitch angle cosines. For this reason the flux is often written as a
function of μ = cosα1

j = j(r,μ ,W,t) . (10.8)

For an isotropic flux

J = 4π
∫ 1

0
j dμ = 4π j . (10.9)

In the absence of sources and losses the Liouville equation states that the density of
particles in the phase space fp(r,p), the phase space density, is constant along the particle
trajectory, i.e.,

fp =
dN

dxdydzd px d py d pz
= const . (10.10)

1 This is an example of the unfortunate overloading of the symbol μ . In this context, the magnetic moment
is usually given by some other symbol, e.g., M.
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Let the z axis be along the velocity vector. Then dxdy = dA, dz = vdt , and d px d py d pz =
p2 d p sinθ dθ dφ = p2 d pdΩ . Now vd p = dW and

fp =
dN

p2 dAdt dΩ dW
=

j
p2 . (10.11)

Thus we have found the relationship between the differential unidirectional flux and the
phase space density. For nonrelativistic particles fp ≈ j/2mW . Note that the SI units of
fp are kg−3 s3 m−6. We retain the familiar velocity space distribution function by writing
f = m3

0 fp, where m0 is the particle’s rest mass.

10.2 Coordinates for Particle Flux Description

The action integrals in the electromagnetic field were defined in Chap. 3 by (3.53) as

Ji =
1

2π

∮
(pi +qA) ·dsi

with associated phase angles φi. We already are familiar with one set of these from Chap. 3,
namely {μ,J,Φ}, the phase angles of which are the gyro phase, the bounce phase, and the
drift phase. From here on μ again denotes the magnetic moment.

If all action variables μ , J and Φ are conserved, i.e., adiabatic invariants, we can av-
erage over the corresponding phase angles and reduce the 6-dimensional phase space to
3-dimensional space with coordinates {μ ,J,Φ}. Let us denote the averaged phase space
density, for the time being, by

f = f (μ ,J,Φ ;t) . (10.12)

Note that this function does not in general satisfy the Liouville equation because it repre-
sents an average over particles that have followed different dynamical trajectories before
reaching the point of observation.

While the triplet {μ ,J,Φ} can be seen as the most natural set of coordinates in the
nearly dipolar magnetic field of the inner magnetosphere, it is not always the most conve-
nient. Both μ and J depend on particle momentum, which is not quite efficient for compu-
tational purposes, as in a general time-dependent field all three coordinates of p must be
given.

J is often convenient to replace by the purely field-geometrical quantities K or I defined
by

K =
J√

8m0μ
= I

√
Bm =

∫ s′m

sm
[Bm −B(s)]1/2 ds , (10.13)

where m0 is the rest mass of the particle and Bm the mirror field. The integral I is thus

I =
∫ s′m

sm

[
1− B(s)

Bm

]1/2

ds (10.14)

and J = 2pI.



270 10. Transport and Diffusion in Space Plasmas

Note that for a static field in the absence of external forces the drift shell of the particle
is completely specified by the pair {I,Bm}. Now the differential directional flux for a given
energy can be expressed as a function of these shell parameters only

j = j(I,Bm,W,t) . (10.15)

However, in an azimuthally asymmetric field particles on a joint drift shell at some longi-
tude are not on the same drift shell elsewhere as they mirror at different field strengths Bm
and, consequently, their I integrals are different. This is known as drift shell splitting.

In a symmetric or nearly symmetric field such as the Earth’s quasi-dipolar field in the
inner magnetosphere, the shell splitting disappears, which is known as shell degeneracy.
For a pure dipole field I can be replaced by the L parameter and we can map the omnidi-
rectional flux J (do not mix up with the longitudinal invariant J) everywhere writing

J = J(L,Bm,W,t) . (10.16)

These (Bm,L) coordinates are frequently used in studies of particle fluxes in the inner mag-
netosphere. The point of this description is that if we can determine the omnidirectional
flux at a point in space, we can map it everywhere with the same L shell and same mirror
magnetic field Bm as long as the adiabatic invariants are conserved in the mapping process.

Train your brain

Show that the relationship L = L(I,Bm) in the dipole field is of the form

L3R3
E Bm

k0
= F

(
I3Bm

k0

)
, (10.17)

where the function F must be integrated numerically.

Further out in the magnetosphere mapping of particle fluxes from one place to another
becomes increasingly complicated, as the field begins to deviate from the dipolar configu-
ration. It is possible to generalize [cf., Roederer, 1970] the L parameter defining

L∗ =
2πk0

ΦRE
. (10.18)

For the dipole field L∗ = L. Physically L∗ is the radial distance to the equatorial points
of the symmetric L shell on which the particles would be found if all nondipolar perturba-
tions of the magnetic field were turned off adiabatically. This method can be applied also
to the internal field perturbations close to the Earth. To make practical use of L∗ is com-
putationally much more demanding than just to trace one field line for a given L, but with
modern computers this is no more such a problem as it was when Roederer introduced the
concept.

However, as Schulz [1996] has pointed out, L∗ depends on the Earth’s dipole moment
and thus it is not invariant over long time periods due to the secular variation of the ge-
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omagnetic field. This is an effect that can, in fact, already be seen in radiation belt data
from the life-time of an individual satellite, e.g., SAMPEX, that was launched in 1992 and
returned data for longer than one full solar cycle. Consequently, Schulz [1996] gives a
clear preference to the triplet {μ ,K,Φ} as the basic coordinate system for radiation belt
models.

10.3 Elements of Fokker–Planck Theory

In practical space physics problems we are often interested in the temporal evolution of
the particle distribution at a given location, or several locations, in the phase space, i.e.,
∂ f/∂ t. If the distribution function is not far from thermal equilibrium, it may be sufficient
to use the Krook model (2.104) (

∂ f
∂ t

)
c
= −νc( f − f0) .

While this is a computationally simple approach, it has some serious drawbacks. First of
all, the Krook model does not conserve particles, momentum or energy. Furthermore, there
usually is more than one collision frequency that affects the distribution function. As we
will discuss in Chap. 14, even in the almost collisionless inner magnetosphere Coulomb
collisions, charge exchange collisions and various wave–particle “collisions” need to be
included at the same time in computations of the ring current and radiation belt dynamics.

Neither is the classical Boltzmann collision integral for (∂ f/∂ t)c satisfactory. In a
plasma the collisions are not binary short-range interactions, but a plasma particle interacts
simultaneously with all particles within its Debye sphere through the long-range Coulomb
force. For Coulomb interactions the Fokker–Planck approach is more suitable. In simple
terms the Fokker–Planck theory is a method to include frictional and diffusion effects in
the RHS of the Boltzmann equation.

Before going into the details it may be instructive to recall the diffusion equation for
the magnetic field introduced in Chap. 6

∂B/∂ t = η∇2B .

This is the simplest form of diffusion equations in physics. Here the magnetic diffusivity
η is the diffusion coefficient D, which in this case was assumed spatially homogeneous.
Here the diffusion takes place in the configuration space and its SI units are m2 s−1. In
general the diffusion coefficient has the form

Dxx ∝
〈δxδx〉

τ
, (10.19)

where x is the coordinate in which the diffusion takes place, e.g, α , L, W , etc., and δx
gives its deviation during the diffusion time τ .

To formally derive the Fokker–Planck equation consider the function ψ(v,	v) that
gives the probability that a particle’s velocity v is deflected by a small increment 	v in
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time 	t. Integrating over all possible deflections likely to occur during 	t before the time
t gives

f (r,v,t) =
∫

f (r,v−	v,t −	t)ψ(v−	v,	v)d(	v) . (10.20)

As ψ is independent of t, the collisional process has no memory of earlier collisions. Thus
the collisions are treated as a Markovian random walk.

Next we Taylor expand the integral in (10.20) in powers of 	v

f (r,v,t) =∫
d(	v)

[
f (r,v,t −	t)ψ(v,	v)−	v · ∂

∂v
( f (r,v, t −	t)ψ(v,	v))

+
1
2
	v	v :

∂ 2

∂ v∂v
( f (r,v,t −	t)ψ(v,	v))+ . . .

]
, (10.21)

where : indicates tensor product (summing over both indices). The total probability of all
deflections is unity

∫
ψ(	v) = 1 and we can calculate the rate of change due to collisions

to be (
∂ f
∂ t

)
c
≡ f (r,v,t)− f (r,v,t −	t)

	t
(10.22)

= − ∂
∂ v

·
(

f 〈	v〉
	t

)
+

1
2

∂ 2

∂v∂ v
:
(

f 〈	v	v〉
	t

)
,

where the averages 〈	v〉 and 〈	v	v〉 are defined as

〈. . .〉 =
∫

ψ(v,	v)(. . .)d(	v) (10.23)

and the terms of second or higher order in 	t have been dropped. Note that both of the
retained averages really are proportional to 	t because in a random walk process the mean
square displacements increase linearly with time.

Using (10.22) as the collision term in the Boltzmann equation we have the Fokker–
Planck equation. Thus far we have nothing more than a formal equation and the hard
task is to determine the correct form of the probability function ψ . The diffusion through
Coulomb collisions is treated in many advanced plasma physics textbooks [e.g., Boyd
and Sanderson, 2003]. We skip the technical derivation here but note that the first term
in (10.22) describes the deceleration (∝ 	〈v〉/	t) of a test particle due to collisions,
i.e., dynamical friction. The second term is the diffusion term. This time the diffusion
coefficient is Dvv ∝ 〈	v	v〉/	t because the diffusion takes place in the velocity space.
Note further that the diffusion can take place both in the direction of the velocity, which
in magnetized plasmas corresponds to pitch angle diffusion and in the absolute value of v
corresponding to energy diffusion.
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10.4 Quasi-Linear Diffusion Through Wave–Particle Interaction

The Fokker–Planck theory is fundamentally a collisional theory but also the wave–particle
interactions can be casted to the same formulation in the framework of quasi-linear theory.
Quasi-linear theory is an intermediate stage between the linear kinetic theory discussed in
Chap. 5 and a fully nonlinear plasma physics (e.g., shocks discussed in Chap. 11). In this
context also the term weak turbulence is often used. The basic idea of the quasi-linear
theory is to separate the wave growth or damping and the particle diffusion form each
other. This is facilitated by considering the space-independent and fluctuating parts of the
distribution function separately.

This separation is easiest to illustrate within the same model as used in the derivation
of the Landau solution in Chap. 5, i.e., by considering electrostatic waves in unmagnetized
plasma. The critical assumption is that evolution of the (electron) distribution function
f (r,v, t) takes place much more slowly than the oscillations of the growing waves. Thus
we can separate f to a slowly varying part f0, which is the average of f over the fluctua-
tions, and to the fluctuating part f1. We further assume that f0 is spatially uniform. Thus
we write

f (r,v,t) = f0(v,t)+ f1(r,v,t) . (10.24)

Now the Vlasov equation is

∂ f0

∂ t
+

∂ f1

∂ t
+v · ∂ f1

∂ r
− e

m
E · ∂ f0

∂v
− e

m
E · ∂ f1

∂v
= 0 (10.25)

and we need also the first Maxwell equation

∇ ·E = − e
ε0

∫
f1 dv . (10.26)

The electron charge due to the slow variation of f0 is assumed to be neutralized by the
given background ion population.

The average of (10.25) over the rapid fluctuations, denoted by 〈. . .〉 is

∂ f0

∂ t
=

e
m

〈
E · ∂ f1

∂ v

〉
. (10.27)

Only the nonlinear term has been retained because the averages of functions linear in f1,
including E, are assumed to vanish. Thus (10.27) is the equation describing the evolution
of f0.

By subtracting (10.27) from (10.25) we get an equation for the rapid variations of f1

∂ f1

∂ t
+v · ∂ f1

∂ r
− e

m
E · ∂ f0

∂v
=

e
m

(
E · ∂ f1

∂v
−

〈
E · ∂ f1

∂v

〉)
. (10.28)

In this equation we neglect the second-order nonlinear terms on the RHS as smaller than
the linear terms on the LHS, which leads to
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∂ f1

∂ t
+v · ∂ f1

∂ r
− e

m
E · ∂ f0

∂v
= 0 . (10.29)

This is formally the same equation as the linearized Vlasov equation (5.11) with the ex-
ception that now f0 is time-dependent according to (10.27).

From here on we continue in the same way as in the derivation of the Landau solution.
Assuming, for simplicity, that there is only one pole in the complex p-plane corresponding
to the (complex) frequency ω0 we find the fluctuating part of the distribution function in
the k-space

f1(k,v,t) =
i eE(k,t)

m(ω0 −k ·v)
· ∂ f0

∂v
, (10.30)

where

E(k,t) =
i ek exp(−iω0t)

ε0k2(∂K(k,ω)/∂ω)ω0

∫ f1(k,v,0)
(ω0 −k ·v)

dv . (10.31)

Finally, by substituting (10.30) and (10.31) to (10.27) and making the inverse Fourier trans-
formation back to the r-space the evolution of f0 is obtained from the diffusion equation

∂ f0

∂ t
=

∂
∂ vi

Di j
∂ f0

∂ v j
. (10.32)

The components of the diffusion matrix Di j are given by

Di j =
i e2

m2

∫ 〈Ei(−k,t)E j(k,t)〉
(ω0 −k ·v)

dk , (10.33)

where is the volume of the plasma.
Thus we have found how to calculate the diffusion of the distribution function in the ve-

locity space if we can determine the spectrum of electric field fluctuations for a given wave
mode (ω0,k). In practical diffusion problems the calculations must be done numerically
with realistic estimates for the wave amplitudes, preferably based on direct observations.

Train your brain by filling in the details of the derivation of (10.32).

For the physics of space storms the virtue of this academic electrostatic example is
in its transparency. Space plasmas are magnetized, which makes the analytical treatment
considerably more complicated. The general quasi-linear theory of velocity space diffu-
sion due to small-amplitude waves in a magnetized plasma was presented by Kennel and
Engelmann [1966]. A somewhat more reader-friendly discussion is given in the textbook
by Lyons and Williams [1984].

After some rather tedious calculations Kennel and Engelmann [1966] ended up with
the diffusion equation for f0

∂ f0

∂ t
=

∂
∂ v

·
(

· ∂ f0

∂ v

)
, (10.34)
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where the diffusion tensor is defined by

= lim
→∞

1
(2π)3 ∑

n

q2

m2

∫
d3k

i
ωk − k‖v‖ −nωc

(an,k)∗(an,k) . (10.35)

Here the vectors an,k contain information on the amplitude of the wave electric field and
the polarization, the asterisk indicates the complex conjugate, ωk is the complex frequency
corresponding to the wave vector k, and ‖ refers to the direction of the background mag-
netic field. Of course, finding out the polarizations and the frequencies ωk requires a nu-
merical solution of the dispersion equation.

Challenge your brain

Perform the calculations in Kennel and Engelmann [1966] and derive (10.35). If you
find it too challenging, at least write out the vectors an,k using the expressions given in
the paper but transforming them to the notations and units of this book.

Kennel and Engelmann [1966] went further to define a positive definite functional

H =
1
2 ∑

β

∫
d3v f 2

0β , (10.36)

where β is over the particle species, and proved that dH/dt ≤ 0, which indicates that the
diffusion brings the system to a marginally stable state for all wave modes. There was no
assumption of a small growth rate and thus the same formalism describes both the non-
resonant adiabatic diffusion and the resonant diffusion at the limit where the imaginary
part of the frequency ωki → 0. At this limit the singularity in the denominator of (10.35)
is replaced by a delta function that picks up the waves for which

ωkr − k‖v‖ +nωcα = 0 (10.37)

for some integer n, i.e., particles that are either in Landau resonance (n = 0) or in gyro
harmonic resonance (n �= 0) with the waves. All naturally occurring nearly linear waves in
the magnetosphere can in practice be treated under the assumption of resonant diffusion.

A common assumption is that the particle distributions are gyrotropic and thus the
problem can be formulated in the two-dimensional (v⊥,v‖)-space. As discussed, e.g., in
Chap. 5 of Lyons and Williams [1984], it is a straightforward exercise to transform the
diffusion equation to the (v,α)-space, where it reads

∂ f
∂ t

= ∇ · ( ·∇ f )

=
1

vsinα
∂

∂α
sinα

(
Dαα

1
v

∂ f
∂α

+Dαv
∂ f
∂ v

)
(10.38)

+
1
v2

∂
∂v

v2
(

Dvα
1
v

∂ f
∂α

+Dvv
∂ f
∂v

)
,
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where we have dropped the subscript 0 and denote the velocity distribution function by f .
Thus the wave–particle interactions can cause diffusion both in the absolute value of the
velocity, i.e., in energy (W = mv2/2) and in pitch angle similar to the diffusion by Coulomb
collisions. The details of the diffusion depend on the characteristics of the waves and the
velocities of the particles. Generally the pitch angle scattering is the dominant effect.

10.5 Kinetic Equation with Fokker–Planck Terms

If all action integrals {Ji} are adiabatic invariants, the kinetic equation for the phase space
density averaged over the phase angles f ({Ji}) (10.12) reduces to

∂ f
∂ t

+∑
i

∂
∂ Ji

[〈
dJi

dt

〉
ν

f
]

= ∑
i j

∂
∂Ji

[
Di j

∂ f
∂Ji

]
− f

τq
+S , (10.39)

where 〈dJi/dt〉ν are the frictional transport coefficients and Di j the elements of the dif-
fusion tensor, and we have added terms describing source and loss processes. τq is the
lifetime of immediate loss processes (e.g., charge exchange) and S represents the drift-
averaged sources of f , e.g., beta decay or the process called CRAND (cosmic ray albedo
neutron decay, see Sect. 14.2.1).

From here on we simplify the notation by dropping the bar above f and S. Sometimes
it is convenient to write the kinetic equation in some other coordinates {Qi} than the
action integrals {Ji}. For example, we may want to use a coordinate system where the Di j
becomes diagonal. A straightforward coordinate transformation results in

∂ f
∂ t

+
1 ∑

i

∂
∂ Qi

[ 〈
dQi

dt

〉
ν

f
]

=
1 ∑

i j

∂
∂ Qi

[
D̃i j

∂ f
∂ Q j

]
− f

τq
+S , (10.40)

where = det{∂ Jk/∂Ql} is the Jacobian of the transformation from the coordinates {Jk}
to coordinates {Ql} and D̃i j denotes the transformed diffusion coefficients.

Train your brain

Show that the Jacobian for the transformation from {Ji}= {μ ,J,Φ} to {Qi}= {μ,K,Φ}
is = 4π(2m3

0μ)1/2 ∝ μ1/2. Thus, if the magnetic moment is conserved, is
constant and can be canceled from (10.40).

In practice the first two action integrals are often adiabatic invariants but the third is
not. In such cases the kinetic equation can still be averaged over the angular variables φ1
and φ2 but the convective derivative with respect to (J3,φ3) must be retained

∂ f
∂ t

+
dJ3

dt
∂ f
∂J3

+
dφ3

dt
∂ f
∂φ3

(10.41)

= −∑
i

∂
∂Ji

(Di f )+∑
i, j

∂
∂Ji

(
Di j

∂ f
∂Ji

)
+S−Lo ,
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where the friction coefficients Di, diffusion coefficients Di j, radial transport ∂J3/∂ t and
azimuthal transport ∂ϕ3/∂ t are averaged over the gyration and bounce motion and Lo
indicates the loss processes.

In problems associated with space storms the kinetic equation appears in different dis-
guises. For example the evolution of the proton distribution function in the inner radiation
belt is sometimes given in the form

∂ f
∂ t

= L2 ∂
∂L

(
DLL

L2
∂ f
∂ L

)
+

G(L)
μ1/2

∂ f
∂ μ

−Λ f +S , (10.42)

where terms on the RHS are: radial diffusion, Coulomb collisions, charge exchange and
CRAND. Thus effect of Coulomb collisions is treated as friction, whereas the wave–
particle interactions are embedded in DLL.

Example: The RAM model

One of the most advanced kinetic models of plasma transport at the time of writing this
book is the ring current–atmosphere interactions model (RAM) (see Jordanova et al [2008]
and references therein). The model solves the kinetic equation for relativistic electrons and
major ion species (H+, He+, O+) as a function of radial distance, magnetic local time,
energy and pitch angle. It can handle time-dependent convective transport, radial diffu-
sion and all major loss processes. As we will see in Chap. 14, among the most important
wave modes for the dynamics of the inner magnetosphere are the plasmaspheric hiss and
whistler mode chorus waves, which both depend on the plasma parameters in the plasma-
sphere. To address this RAM is coupled to a dynamical plasmasphere model.

RAM is a four-dimensional model the coordinates of which are the radial distance in
the equatorial plane (R0), geomagnetic east longitude (φ ), energy (W ), and pitch angle
at the equatorial plane (α0) represented in the following by its cosine (μ0 = cosα0). The
model is bounce-averaged (R and α given in the equatorial plane) but not drift-averaged
(φ -dependence). The kinetic equation for the distribution function f in these variables
taking into account the relativistic effects is

∂ f
∂ t

+
1

R2
0

∂
∂R0

(
R2

0

〈
dR0

dt

〉
f
)

+
∂

∂φ

(〈
dφ
dt

〉
f
)

+
1

γ p
∂

∂W

(
γ p

〈
dW
dt

〉
f
)

+
1

h(μ0)μ0

∂
∂ μ0

(
h(μ0)μ0

〈
dμ0

dt

〉
f
)

=
〈(

∂ f
∂ t

)
rd

〉
+

〈(
∂ f
∂ t

)
loss

〉
. (10.43)

Here p is the relativistic momentum of the particle and γ the Lorentz factor. The averages
〈. . .〉 are taken between the mirror points and h(μ0) = lb/(2R0), where lb is the half-bounce
path length.

The LHS of (10.43) describes the adiabatic drift of the charged particles and the RHS
the diffusive transport 〈(∂ f/∂ t)rd〉 and the loss processes. In practice the determination
of the wave–particle diffusion coefficients is a major task when the model is applied, e.g.,
to the radiation belt or ring current problems. This is similarly true with other models
attempting to model the wave–particle interactions properly.
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Shock waves are common phenomena in fluid dynamics. When an obstacle moves faster
than the velocity of the wave mode that transfers information in the medium, a shock is
formed ahead of the obstacle. An example known to everyone is the sonic shock wave in
the air caused by an aircraft moving faster than the speed of sound. This example exam-
ples is from the domain of collision-dominated neutral fluids, where the shocks are very
thin, only a few collisional mean-free paths, and thus can be described as infinitesimal
discontinuities in the mathematical description of the fluid flow.

In the collisionless space plasmas the question of shocks is much more subtle. For ex-
ample, the collisional mean-free path in the solar wind at 1 AU is of the order of 1 AU .
A bow shock forming in front of a planetary magnetosphere cannot be that thick. Thus,
while the solar wind was expected to be supersonic and super-Alfvénic, it remained un-
clear whether a bow shock would form, or not, until the first spacecraft observations. To-
day we know that there is a bow shock in front of all solar system bodies with either
a magnetosphere or atmosphere exposed to the solar wind flow. Furthermore, there are
shock structures within the solar wind itself when a fast enough interplanetary coronal
mass ejection (ICME) propagates through the background wind, or when fast solar wind
catches up slower solar wind and the corotating interaction region (CIR) steepens.

The existence of collisionless shocks is an example of collective electromagnetic be-
havior of the plasma. The microphysical description of shocks is difficult because they are
inherently nonlinear phenomena. It is not evident what physical processes take the role
of collisions in collisionless plasmas. If the ambient magnetic field is strong enough, the
Larmor radii of the particles give characteristic length scales, but this works only perpen-
dicular to the magnetic field. Along the magnetic field and in weakly magnetized plasmas
the electron and ion inertial lengths (c/ωpα ) are natural scale lengths. As these are dif-
ferent for different particle species, charge separation electric fields and electric currents
arise and further complicate the physics of collisionless shocks.

While difficult to treat theoretically and extremely challenging for numerical simula-
tions, shocks are of utmost importance for the physics of space storms. They are responsi-
ble for the most effective particle acceleration in the solar corona and solar wind, they are
essential to the interaction of the solar wind with the magnetosphere, and they also have
an important role in macroscopic reconnection models as we saw in Chap. 8.

279H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth,

© Springer-Verlag Berlin Heidelberg 2011
Springer Praxis Books, DOI 10.1007/978-3-642-00319-6_11,



280 11. Shocks and Shock Acceleration

11.1 Basic Shock Formation

Before going to shock formation in magnetized plasmas it is useful introduce some of the
basic concepts within the framework of neutral fluids.

11.1.1 Steepening of continuous structures

The shock waves are generated by steepening of large-amplitude compressive distur-
bances. We start by studying the steepening in a simple model describing a neutral gas.
Assume that the system has a one-dimensional geometry, i.e., the spatial changes are in
the x-direction and the velocity of the gas is also directed along the x-axis. Thus, we can
write the continuity and momentum equations as

∂ρ
∂ t

+
∂
∂x

(ρV ) = 0 (11.1)

ρ
(

∂V
∂ t

+V
∂V
∂x

)
+

∂P
∂x

= 0 . (11.2)

Let us close this set of equations by considering a cold gas (P = 0). The effect we are
going to demonstrate exists also in a finite temperature, but the treatment is mathemati-
cally a bit more cumbersome. For isothermal gas the assumption of a negligible pressure
gradient is equivalent to the assumption of high sonic Mach number, Ms = V/vs, of the
flow. The assumption of negligible J×B force, on the other hand, is realized in many
magnetized plasma configurations as well. Both assumptions are reasonable, e.g., in the
solar wind, so this simple example is of direct relevance to our topic.

Under these assumptions the flow speed fulfills the equation

∂V
∂ t

+V
∂V
∂x

= 0 . (11.3)

This equation can be solved in the closed form. Consider the curves

dx
dt

= V (11.4)

in the (x, t)-plane. The total time derivative of V along these curves is

dV
dt

=
∂V
∂ t

+
dx
dt

∂V
∂x

=
∂V
∂ t

+V
∂V
∂x

. (11.5)

Thus, if V is a solution of (11.3), we know that V is a constant along the characteristic
curves given by (11.4). Because V is a constant along the curves, the integral of the equa-
tion is trivially x = x0 +Vt, where x0 is the position of the fluid element at time t = 0 . x0
labels the characteristic curves. The solution of (11.3) can now be written as

V = V0(x0) = V0(x−Vt) , (11.6)

where V0(x) = V (x,0) is the initial velocity profile as a function of x.
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Consider, as an example, an initial velocity profile (Fig. 11.1)

V0(x) =

⎧⎪⎨⎪⎩
V1, x < −L
〈V 〉−	V

x
2L

, −L ≤ x ≤ L

V2, x > L ,

(11.7)

where V1 > V2 , ΔV = V1 −V2 , and 〈V 〉 = (V1 +V2)/2 .

t = 0

V

V1

V2

V t xx0 L−L

V V 2t =    L/ V

Fig. 11.1 Steepening of an initially continuous velocity profile to a discontinuity.

The originally continuous profile describes two homogeneous parts of the fluid in rel-
ative motion combined with a linearly decreasing part of the velocity profile. The profile
evolves as

V (x, t) =

⎧⎪⎨⎪⎩
V1 , x < V1t −L

〈V 〉−	V
x−〈V 〉t

2L−ΔV t
, V1t −L ≤ x ≤V2t +L

V2 , x > V2t +L .

(11.8)

The wave structure separating the two parts of the fluid moves at speed 〈V 〉, while its width
2L−	V t decreases linearly with time. Thus the wave steepens until at time t∗ = 2L/	V
a discontinuity forms at

x = V2t∗ +L = V1t∗ −L = L
V1 +V2

V1 −V2
. (11.9)

The discontinuity separates two parts of the fluid with speeds V1 and V2. From that point on
our toy model is no more adequate to describe the wave because effects neglected at the
beginning (pressure gradient, heat conduction, and viscosity) become important at large
gradients.

Note that the initial velocity profile is not critical for the result. If we had used, e.g.,
a sinusoidal wave, we would have found that after some time the profile would have an
infinite x derivative at its steepest points and from that point on discontinuities would
develop in the flow. The crucial point is that fluid elements retain their velocities during
the propagation. Thus, if the initial velocity profile has high-speed elements following
elements of lower speeds, the faster are bound to overtake the slower after long enough
time. Consequently, hydrodynamic equations have a built-in tendency for large-amplitude
perturbations to develop shock waves due to the nonlinear character of the Euler equation
(11.2).
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11.1.2 Hydrodynamic shocks

In shock studies the choice of an appropriate frame of reference is critical. A shock in the
solar wind may propagate either backward or forward in the solar wind frame. Because
the solar wind is supersonic, the shock in both cases most likely passes an observer into
the downwind direction. On the other hand, a planetary bow shock is stationary in the rest
frame of the planet and thus propagates fast against the solar wind flow.

In hydrodynamics the basic mode of propagation is the sound wave. As seen in the
previous section, if the wave amplitude for some reason becomes large, the nonlinear term
in the Euler equation makes the crest of the wave move faster than the trough. The wave
steepens and finally the excess energy of the wave is dissipated as heat. The steepening
is due to the convective term. If the convection and the dispersive properties of the wave
balance each other, a shock wave can propagate long distances in form of a soliton.

Let us consider the hydrodynamic shock in the frame of reference of the shock itself.
Assume the shock to be very thin in the relevant hydrodynamical scales. The “ahead”
or “upstream” region is denoted by subscript 1 and the “behind” or “downstream” by 2.
The thermal energy per unit mass is denoted by U = P/[(γ −1)ρ]. Conservation of mass,
momentum, and energy gives the relationships

ρ2V2 = ρ1V1 (11.10)
P2 +ρ2V 2

2 = P1 +ρ1V 2
1 (11.11)

P2V2 +
(

ρ2U2 +
1
2

ρ2V 2
2

)
V2 = P1V1 +

(
ρ1U1 +

1
2

ρ1V 2
1

)
V1 . (11.12)

These equations are often written using the notation [ f ] = f1 − f2, e.g., [ρV ] = 0. They are
known as Rankine–Hugoniot relations and they can be expressed as jumps of the parame-
ters over the shock layer, such as

ρ2

ρ1
=

(γ +1)M2
1

2+(γ −1)M2
1

(11.13)

V2

V1
=

2+(γ −1)M2
1

(γ +1)M2
1

(11.14)

P2

P1
=

2γM2
1 − (γ −1)
γ +1

, (11.15)

where M1 = V1/vs1 is the sonic Mach number on the upstream side vs1 =
√

γP1/ρ1 and
γ is the polytropic index. Thermodynamics tells us that the entropy S = cV log(P/ργ)
cannot decrease, S2 ≥ S1. The equality holds for same conditions on both sides, i.e., when
there actually is no shock. From these conditions we can infer the following properties of
hydrodynamic shocks

1. M1 ≥ 1, i.e., V1 ≥ vs1 ahead of the shock
2. V2 ≤ vs2, flow is subsonic behind the shock
3. P2 ≥ P1 and ρ2 ≥ ρ1, the shock is compressive
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4. V2 ≤V1 and T2 ≥ T1, the flow is slowed down and the gas heated up
5. 1 ≤ ρ2/ρ1 < (γ +1)/(γ −1), the maximum compression ratio is

(γ +1)/(γ −1), but the pressure increases ∝ M2
1 due to heating .

11.2 Shocks in MHD

In a collisional fluid the steepening of the wave front continues until dissipation balances
the convection. The waves in collisionless plasmas are not dissipative and the balance
must be obtained between the convective and dispersive properties of the waves. As we
shall see below different dispersion properties of different wave modes lead to the escape
of fluctuations from the shock front into both the upstream and the downstream direction,
which makes the shock structures both complicated and spatially extended. And in fact,
the individual wave modes with associated particle dynamics also limit the applicability
of the MHD theory in detailed shock studies.

As we have seen in Chap. 6, there are three different MHD wave modes: the slow, the
intermediate (shear Alfvén), and the fast mode. The shear Alfvén mode is not compressive
and can thus have a large amplitude without steepening. Consequently, it does not form
shocks, whereas the compressive slow and fast modes do.

11.2.1 Perpendicular shocks

The angle θ between the shock normal and the magnetic field is important. The simplest
case is the perpendicular shock (θ = π/2). In that case the magnetic field lines are in a
plane parallel to the shock (Fig. 11.2) and the flow arrives along the direction of the shock
normal. This shock resembles the hydrodynamic case.

AheadBehind

Fig. 11.2 Perpendicular shock. The thick arrows indicate the flow direction and the thinner lines the mag-
netic field direction.
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Now the Rankine–Hugoniot relations describing the mass, momentum, energy, and
magnetic flux conservation are

ρ2V2 = ρ1V1 (11.16)

P2 +ρ2V 2
2 +

B2
2

2μ0
= P1 +ρ1V 2

1 +
B2

1
2μ0

(11.17)(
P2 +

B2
2

2μ0

)
V2 +

(
ρ2U2 +

1
2

ρ2V 2
2 +

B2
2

2μ0

)
V2 =(

P1 +
B2

1
2μ0

)
V1 +

(
ρ1U1 +

1
2

ρ1V 2
1 +

B2
1

2μ0

)
V1 (11.18)

B2V2 = B1V1 . (11.19)

From these we find the jumps

V2

V1
=

ρ1

ρ2
=

1
X

(11.20)

B2

B1
= X (11.21)

P2

P1
= γM2

1

(
1− 1

X

)
− 1−X2

β1
, (11.22)

where the compression ratio X = ρ2/ρ1 is the positive root of

2(2−X)X2 +[2β1 +(γ −1)β1M2
1 +2]γX − γ(γ +1)β1M2

1 = 0 (11.23)

and the upstream plasma beta β1 is given by

β1 =
2μ0P1

B2
1

=
2v2

s1

γv2
A1

. (11.24)

Thus in addition to the upstream Mach number the upstream β is a characteristic parameter
of a shock.

The properties of perpendicular shocks can be summarized as

1. Because 1 < γ < 2, (11.23) has only one positive root.
2. The magnetic field reduces X below the hydrodynamic value.
3. The shock is compressive (X ≥ 1).

4. V1 ≥ vms ≡
√

v2
s1 + v2

A1 .
5. The magnetic compression is limited to 1 < B2/B1 < (γ +1)/(γ −1) .
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11.2.2 Oblique shocks

In case of oblique propagation the upstream V and B can be at any angle with respect
to each other. Thus it is convenient to transform to a coordinate system known as the de
Hoffmann–Teller (dHT) frame [de Hoffmann and Teller, 1950]. It is a frame moving on the
shock plane with such a velocity that the upstream convective electric field disappears, i.e.,
V1 ×B1 = 0. Such a coordinate transformation generally exists, except in the case of the
exactly perpendicular shock discussed above. In reality, space plasma shocks are seldom,
if ever, exactly perpendicular.

In the dHT frame the problem is two-dimensional and we denote the component normal
to the the shock front by x and the component on the shock plane by y (Fig. 11.3).

v1

v2
y

x

Fig. 11.3 The shock geometry for arbitrary orientation.

The jump conditions for the oblique shock become

V2x

V1x
=

ρ1

ρ2
=

1
X

(11.25)

V2y

V1y
=

V 2
1 − v2

A1

V 2
1 −Xv2

A1
(11.26)

B2x

B1x
= 1 (11.27)

B2y

B1y
=

(V 2
1 − v2

A1)X
V 2

1 −Xv2
A1

(11.28)

P2

P1
= X +

(γ −1)XV 2
1

2v2
s1

(
1− V 2

2
V 2

1

)
. (11.29)
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Now the compression ratio X = ρ2/ρ1 is found as a solution of

(V 2
1 −Xv2

A1)
2
[

Xv2
s1 +

1
2

V 2
1 cos2 θ(X(γ −1)− (γ +1))

]
(11.30)

+
1
2

v2
A1V 2

1 sin2 θ X
[
(γ +X(2− γ))V 2

1 −Xv2
A1((γ +1)−X(γ −1))

]
= 0 .

Train your brain by deriving the jump conditions for an oblique shock.

The shocks associated with slow, Alfvén, and fast modes look different (Fig. 11.4). It is
important to note that the parallel (to the shock normal) component of the magnetic field
(Bx) does not change over the shock. As already noted above the shear Alfvén wave is not
compressive and thus does not steepen to a shock. This case is known as the rotational
discontinuity.

fast shockAlfvén “shock”slow shock

Fig. 11.4 The magnetic field lines through MHD shocks.

The slow and fast shocks have following properties

1. They are compressive.
2. Bx remains unchanged over the shock.
3. They conserve the sign of By .
4. At the slow shock B2 < B1 .
5. At the fast shock B2 > B1 .
6. V1x exceeds the slow/fast speed ahead the shock while V2x is smaller than the slow/fast

speed behind the shock.
7. V2x < V1x
8. At the limit Bx → 0, the fast shock becomes a perpendicular shock whereas the slow

shock becomes a tangential discontinuity (Vx → 0) with arbitrary jumps in Vy and By
subject to total pressure balance over the shock (see discussion below).
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The shock at the limit θ → 0 is called the parallel shock. The arbitrary directions are of-
ten described as quasi-parallel and quasi-perpendicular depending on whether they are
closer to parallel or perpendicular. The quasi-parallel shocks are more complicated than
the quasi-perpendicular shocks because individual particles can be reflected from the shock
and, in the quasi-parallel case, move long distances upstream leading to instabilities be-
yond the MHD description.

There are two special cases of the shocks.

1. If, in the case of the slow shock, the upstream speed is equal to Alfvén speed (V 2
1 = v2

A1)
but X �= 1, the tangential component (By) of the downstream magnetic field vanishes.
Such a shock is called a switch-off shock as it “switches off” the tangential component.

2. As for the fast parallel shock X = V 2
1 /v2

A1 > 1, the magnetic field becomes compressed
behind the shock and, in order to keep the field divergence-free, it must bend. A parallel
fast shock “switches on” the tangential component and is called a switch-on shock.

11.2.3 Rotational and tangential discontinuities

Not all MHD discontinuities satisfying the jump conditions are shocks. What is character-
istic for a shock, is the mass flux and compression across the discontinuity.

At the rotational discontinuity (Fig. 11.4) there is no jump in the mass density ([ρm] =
0), nor in the velocity normal to the shock front ([Vn] = 0). Because Vn =±Bn/

√μ0ρm �= 0,
there is, however, mass flux through the discontinuity. The tangential component of the
magnetic field changes its sign Bt1 = −Bt2 and thus the magnetic field rotates across the
discontinuity. Mass flux, magnetic rotation, and propagation at the speed vA are character-
istic to reconnection when it tears the current sheet (Chap. 8).

A non-reconnecting current sheet is also a discontinuity. In such a case Bt , Vt , ρm and P
can all be discontinuous, but there is no mass flux across the boundary, which now forms a
tangential discontinuity. If the magnetosphere were completely closed, the magnetopause
would be an ideal tangential discontinuity. This is, however, topologically impossible, and
the formation of the polar cusps (Fig. 1.14) is unavoidable. When reconnection opens the
magnetopause, it becomes a rotational discontinuity, also when reconnection takes place
tailward of the cusps in the case of northward IMF. Recall, however, that the concepts of
tangential and rotational discontinuities are introduced within ideal MHD and, as we have
seen in Chap. 8, the actual structure of the reconnection region is already more complicated
in the fluid picture.

For completeness, there is an even more simple MHD discontinuity called a contact
discontinuity, where only the density of the plasmas on each side is different but the plasma
flows on on both sides are identical. Contact discontinuities are of little interest to our
study.



288 11. Shocks and Shock Acceleration

11.2.4 Thickness of the shock front

The thickness of a shock front δx in a neutral gas scales as the collisional particle mean
free path λ . Because this is far too large to account for the shock thickness in the interplan-
etary medium, there must be other means besides binary collisions to dissipate the ordered
kinetic energy as heat at the solar system shocks and in astrophysical shocks in general.

In plasma dissipation is also provided by ohmic heating, in which the electromagnetic
field does work on the particles and heats the population. The heating rate (i.e., heat input
per unit time and unit volume) can be approximated according to (6.26) as

δW
δ t

≈ J2

σ
, (11.31)

where δ ’s denote small increments. The current density in a shock wave is according to
Ampère’s law (μ0J = ∇×B)

J ≈ B2t −B1t

μ0 δx
≈ 3B1t

μ0 δx
. (11.32)

The last approximation holds for a strong shock (MA � 1) in a non-relativistic mono-
atomic gas, where the compression ratio is X ≈ 4. For a strong shock we can estimate
the dissipated energy density to be δW ≈ ρ1V 2

1x/2, and the time available to dissipate it
δ t ≈ δx/V1x. Thus

1
2 ρ1V 2

1x

δx/V1x
≈ 9B2

1 sin2 θ
σ μ2

0 (δx)2 (11.33)

⇒
δx ≈ 18B2

1 sin2 θ
μ2

0 σ ρ1V 3
1x

=
18 tan2 θ

MA
2

η
V1x

, (11.34)

where η = 1/μ0σ is the magnetic diffusivity of the plasma. Classical resistivity (1/σ ) can
be related to the electron mean free path λe as

1
σ

=
me vthe

ne e2λe
. (11.35)

Thus

δx ≈ 18 tan2 θ
MA

2
λDe

λe

c
V1x

c
ωpe

. (11.36)

Because the mean free path in a collisionless plasma is always several orders of mag-
nitude larger than the Debye length, this equation predicts a shock thickness that is much
smaller than the electron inertial length (skin depth) c/ωpe of the plasma. It is thus much
too small to describe real shocks. Ohmic heating can therefore be considered as a relevant
dissipation mechanism only if resistivity is substantially larger than its classical value.
Such anomalous resistivity may be provided by wave–particle interactions or turbulence.

A simple way of obtaining a minimum thickness of a strong collisionless quasi-perpen-
dicular shock is to consider particle orbits. We may argue that the shock front cannot be
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much thinner than the Larmor radius of the downstream ions, which have a thermal speed
of about

vthi ∼
√

P2

ρ2
=

√
γ −1

γ
V 2

1 −V 2
2

2
≈ V1x√

5

√
1− 1

X2 ≈
√

3
4

V1x (11.37)

giving

δx �
√

3V1x

4ωci
, (11.38)

where ωci is the ion cyclotron frequency in the downstream field. Note that this argument
only applies to the thickness of the density structure and, in fact, assumes that the magnetic
field structure will be thinner.

A model for weak collisionless shocks is obtained by considering nonlinear steepening
of normal wave modes of the collisionless plasma. Relevant low-frequency wave modes
propagating parallel to the magnetic field are the ion whistler waves, i.e., L mode waves
below the ion cyclotron frequency. The dispersion equation can be written at the limit
ω � ωce as

k2v2
A = ω2 ωci

ωci +ω
. (11.39)

These waves are dispersionless at small wavenumbers, but become strongly dispersive as
the wave frequency approaches ωci, i.e., at kvA ∼ ωci. The waves compress the magnetic
field and are subject to nonlinear steepening.

Train your brain

Derive the dispersion equation (11.39) and show that it becomes dispersive at the limit
kvA ∼ ωci.

For wave numbers k > ωci/vA the phase and group speeds of the waves are increasing
functions of the wave number. This implies that the steepening of a large-amplitude (small
k) wave stops at k ∼ ωci/vA because the Fourier components with larger k propagate faster
than the rest of the structure and escape from it. This means that the main shock transition
is preceded by small-amplitude small-wavelength fluctuations in the flow. This predicts
the shock thickness in the direction parallel to the magnetic field to be approximately

δx ∼ vA

ωci
, (11.40)

if it results from steepening of an ion whistler wave (Fig. 11.5).
In the perpendicular direction, the relevant wave mode is the magnetosonic wave (fast

Alfvén wave). In that case, dispersion becomes significant at kvA ∼ √
ωciωce, i.e., the

magnetic field profile of the shock has the thickness of

δx ∼ vA√
ωciωce

∼ c
ωpe

. (11.41)
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Fig. 11.5 The transverse magnetic field profile across a quasi-parallel (left) and quasi-perpendicular (right)
collisionless shock wave according to our qualitative model. (Figure by courtesy of R. Vainio.)

Thus, magnetic shock structures are predicted to be thinner in the perpendicular than in the
parallel direction and, in fact, much thinner than the ion Larmor radius, as was required
in the discussion of the density structure above. Another difference between the shock
structures obtained this way is that the large-k magnetosonic waves propagate slower than
the small-k waves, which means that steepening results in the large-k small-amplitude
waves trailing the perpendicular shock (Fig. 11.5).

Finally, we note that in order for a collisionless shock wave to represent a super- to sub-
magnetosonic transition between two uniform states, there has to be a collisionless (mi-
croscopic) dissipation process operating at the shock front because entropy has to increase
and this is not possible without dissipation. Dispersion and steepening together without
dissipation lead typically to soliton-like waves.

11.2.5 Collisionless shock wave structure

Collisionless shocks have many features that are beyond the MHD description. In the
absence of collisions the ion and electron populations may have different temperatures
downstream of the shock. They may equilibrate, at least partially, via collisionless interac-
tions with fluctuating electromagnetic fields (plasma waves or turbulence) that are always
present behind strong shocks. Strong collisionless shocks can also be very efficient par-
ticle accelerators, indicating that a major fraction of particle pressure can be carried by
non-thermal particles that do not obey fluid equations.

Intuitively, a proton incident on a shock front can penetrate much deeper into the shock
structure than an electron due to its much larger inertia. This leads to charge separation
close to the thin magnetic front, called the shock ramp. The charge separation corresponds
to an electric field in the ramp. It decelerates the ions and accelerates the electrons to
counteract the effect of inertia. The charge separation field is electrostatic

Ex = −dϕ
dx

, (11.42)

where the potential ϕ is constant outside the shock front. The potential difference Δϕ =
ϕ2 −ϕ1 across the shock structure can be expressed as a fraction a of the incident ion
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kinetic energy,
eΔϕ =

a
2

mpV 2
1x . (11.43)

If the effect of the electric field is to slow down the ions, the fraction a is notable.
When such an electric field is present in the ramp, some of the protons incident on the

shock from the upstream region may be reflected by the electric field, i.e., those whose
velocity component along the shock normal is less than

√
aV1x . A quasi-perpendicular

shock front can reflect ions at large numbers if its Mach number exceeds a critical value at
which the downstream plasma becomes subsonic. Thus, if V1x/vA > Mc , where the critical
Mach number Mc is between 1.1 and 2.2, depending on the upstream plasma parameters,
the shock front reflects ions back to the upstream medium. Such a shock is said to be su-
percritical. The reflected ions drag electrons along with them and create a shock foot ahead
of the ramp, where the magnetic field already starts to increase. The thickness of the foot
is typically of the order of the ion Larmor radius as discussed above. On the downstream
side the collisionless dissipation process operates on the large-k fluctuations trailing the
shock wave (Fig. 11.5) and the amplitude of these fluctuations decreases. Thus, the mag-
netic field typically overshoots just behind the shock front, i.e., it exceeds the downstream
B2 far from the shock. This is also the prediction of the fully nonlinear calculation of the
shock structure.

Example: The Earth’s bow shock

When the supermagnetosonic solar wind hits the magnetosphere of the Earth, a collision-
less shock front is formed in the solar wind ahead of the magnetopause (Fig. 11.6). All
magnetized planets have essentially similar bow shocks. A corresponding structure can
also be found in interplanetary shocks, but not all features listed below accompany all
interplanetary shocks. During the early years of the 21st century the Cluster mission has
produced a large amount of very detailed observations of the bow shock. We have to skip
any systematic discussion of these, but the interested reader is referred to the reviews by
Bale et al [2005] on the quasi-perpendicular and Burgess et al [2005] on the quasi-parallel
shocks.

The shock wave has a large overall structure. In most regions the shock is supercritical.
About 1% of the incident solar wind energy flux on the shock is transferred to supra-
thermal particles, and the reflected ions take most of this energy. The reflected ions are
observed as beams propagating sunward along the magnetic field lines at a velocity of
about

|Vb‖| �
V1x

cosθ
= Vsw

cos(θ −ψ)
cosθ

. (11.44)

Here Vsw is the radial solar wind speed, ψ is the angle between the radial direction and
the direction of the magnetic field and θ is the angle between the shock normal and the
flow direction, and we have assumed, for simplicity, that the shock normal is in the plane
defined by the radial direction and the magnetic field (region F in Fig. 11.6). Note that the
beam velocity is measured in the upstream plasma frame. The ions escape from the shock
approximately tangentially in the shock frame. Ion reflection from the bow shock seems
to switch on at regions, where the shock normal angle falls below ∼70◦. Thus, the ion
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Fig. 11.6 Structure of a planetary bow shock. Thin solid curves depict magnetic field lines. The thick curve
labeled ’A’ is the magnetopause. The thick curve labeled ’B’ is the bow shock ahead of the magnetopause
in the solar wind, which flows with velocity Vsw at an angle of ψ relative to the IMF. In the region near
point ’C’ the shock is quasi-parallel, and in the region near point ’D’ it is quasi-perpendicular. Upstream
of the bow shock there are regions ’E’ and ’F’ bounded by the bow shock and the dashed–dotted and the
dashed curves. These are the electron and the ion foreshock regions, respectively. The arrow inside region
E indicates that the electron foreshock can extend to very large distances from the bow shock. (Adapted
from Benz [2002] by R. Vainio.)

foreshock extends from this point of the bow shock tangentially outward to the solar wind.
The ion beam velocities correspond to proton energies of a few keV.

Also a diffuse ion population can be observed in the foreshock with a broad energy
spectrum extending beyond 100 keV. These ions either are accelerated at the shock wave
or they may be originally foreshock ions that have undergone stochastic acceleration in the
upstream fluctuations.

Electron beams are also observed upstream of the bow shock. They originate from the
quasi-perpendicular region of the shock and have plasma frame velocities much larger than
Vsw, corresponding to proton energies of 1–2 keV. As a 1-keV electron is 43 times faster
than a 1-keV proton, the electrons move upstream in an almost field-aligned direction, and
the boundary of the electron foreshock is almost tangential to the upstream field lines. The
region is limited to the field lines connecting to quasi-perpendicular regions of the shock
(region E in Fig. 11.6). These electrons are probably accelerated at the shock wave by the
shock drift mechanism, discussed in the next section.

The supra-thermal particle populations upstream the bow shock are a source of free en-
ergy and can drive a variety of plasma waves unstable. The exact relationship between the
different plasma wave and particle populations is, however, far from clear. Low-frequency
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MHD waves (magnetosonic and Alfvén waves) observed in the foreshock region are
probably produced by the diffuse ion population through streaming instabilities. Whistler
waves are produced by the ion beams and/or electron populations having large temperature
anisotropies (T⊥ > T‖). Also various electrostatic waves, e.g., Langmuir waves generated
by electron beams and ion–acoustic waves caused by the diffuse ions, are observed in the
foreshock region.

11.3 Particle Acceleration in Shock Waves

Particle acceleration in shock waves is the most widely accepted model to account for cos-
mic rays, i.e., relativistic charged particles bombarding the Earth’s atmosphere from space.
The cosmic ray spectrum at energies below ∼1015 eV in the near-Earth space has three
main components, all of which are believed to be accelerated in shock waves: (1) galac-
tic cosmic rays (GCR) are accelerated most likely in supernova remnant shock waves in
our galaxy; (2) anomalous cosmic rays (ACR) are accelerated in the heliospheric termina-
tion shock; and (3) solar cosmic rays (SCR) are accelerated in coronal and interplanetary
shocks related to solar eruptions.

Below ∼10 GeV GCR and ACR fluxes are modulated by the 11- and 22-year solar
cycles, so they are quasi-stationary cosmic-ray components in the time scales of space
storms. SCRs, in contrast, are observed in transient events related to solar flares and coro-
nal mass ejections. GCRs and SCRs are mainly protons whereas ACRs mainly consist of
heavier nuclei, such as helium and oxygen.

Feed your brain by finding out what literature or internet sources tell about the origin
of ACRs.

There are also three types of cosmic-ray electrons: GCR and SCR electrons, and the
Jovian electrons that originate from the magnetosphere of Jupiter and can be observed
near the Earth at intervals of about 13 months when the Earth and Jupiter are magnetically
connected by the Parker spiral structure. Supernova shock waves are most probably the
source of the accelerated GCR electrons, whereas in the acceleration of SCR and Jovian
electrons other mechanisms than shocks are also important, in particular inductive electric
fields associated with solar flares and reconnection in the Jovian magnetosphere.

In addition to in situ observations, energetic electrons can be observed remotely through
the radiation they produce. Radiating accelerated electron populations can be found in
almost all astrophysical objects where we expect violent processes to occur. For example,
solar flares, supernova remnants, and astrophysical jets are strong sources of non-thermal
radiation generated by accelerated electrons.

Particle acceleration in shock waves takes places through the Fermi mechanism
(Sect. 3.2.4). In this process, particles gain energy by reflecting off magnetic irregulari-
ties carried by the plasma flow that converges at the shock. There are two main forms of
this acceleration process, the shock drift acceleration, known also a fast Fermi accelera-
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tion and diffusive shock acceleration. In addition, there is a rapid acceleration mechanism
that relies on the cross-shock electric potential called shock surfing mechanism.

11.3.1 Shock drift acceleration

Shock drift acceleration occurs, when a particle interacts once with a quasi-perpendicular
shock front (Fig. 11.7). The particle drifts due to the electric field E = −V1 ×B1 with
the upstream speed V1x toward the shock. When the ion or electron hits the shock front,
it starts to gyrate in the stronger downstream magnetic field. This means that its Larmor
radius is smaller in the downstream side than in the upstream side and its guiding center
drifts parallel (ion) or anti-parallel (electron) to the electric field, and the particle gains
energy. When interacting with the shock wave, the particle conserves its first adiabatic
invariant1 ∝ p2

⊥/B. The maximum gain in energy is obtained when p‖ vanishes. For a
perpendicular shock

p2 = p1

√
B2

B1
= p1

√
X , (11.45)

where X is the shock compression ratio. So the particle momentum increases by a factor
of approximately

√
X across the shock.

E

A B

E

Fig. 11.7 Shock drift acceleration. An energetic charged particle is convected to a quasi-perpendicular
shock from upstream by the electric-field drift. In the shock front ions drift parallel (A) and electrons drift
anti-parallel (B) to the electric field and both gain energy. (Figure by courtesy of R. Vainio.)

In a parallel shock the magnetic field is not compressed, so there is no shock drift
acceleration. In oblique shocks, particle interaction with the shock wave is most easily
treated in the dHT frame, where the electric field vanishes. In that frame the particle energy
is constant, but changes in the direction of the particle motion can lead to substantial
energy gain when viewed in the upstream rest frame (recall that the dHT frame is a moving
frame). Conservation of the first adiabatic invariant requires p2

⊥/B to be constant. If the

1 As cosmic rays often are relativistic particles, it is more appropriate to use momentum than velocity in
the mathematical expressions.
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total momentum p is also constant, sin2 α/B is constant. Clearly, if sin2 α > B1/B2, the
particle cannot get into the downstream region, and such particles are reflected back to the
upstream region. Thus the particle momentum parallel to the magnetic field changes by

|Δ p‖| = 2p|cosα| ≤ 2p

√
B2 −B1

B2
. (11.46)

In the upstream rest frame the change in the parallel momentum is

|Δ p′‖| = |Δ p‖|/
√

1− (V1x/cosθ1)2/c2 (11.47)

≤ 2p

√
B2 −B1

B2(1− (V1x/cosθ1)2/c2)
.

The momentum gain in this case can be shown to be at most of the same order as in the
perpendicular shock. Thus shock drift acceleration produces Δ p′ � p′. From (11.47) it
is evident that slow shocks with B1 > B2 do not accelerate particles by the shock drift
acceleration mechanism.

11.3.2 Diffusive shock acceleration

One encounter with the shock does not lead to a substantial particle acceleration. If, how-
ever, particles can interact with the shock many times, acceleration becomes more effi-
cient. The particle’s interaction with magnetic irregularities in the plasma flow can change
its propagation direction relative to the shock front enabling several encounters with the
shock. As particle propagation in this case resembles diffusion relative to the local plasma
flow, the mechanism is called diffusive shock acceleration.

Diffusive shock acceleration is easiest to understand by considering parallel shock
waves because then the particle’s velocity vector does not change when it crosses the shock
front. When the particle is moving relative to the plasma under the influence of frozen-in
magnetic scattering centers, its energy is conserved in the local plasma frame while simul-
taneously its pitch angle changes. Upstream (downstream) particles are thus confined in
the velocity space on semicircles centered at (v‖,v⊥) = (V1(2),0) (Fig. 11.8) Due to pitch
angle scattering energetic (v′ > V ) particles can propagate in either direction relative to
the shock. When the flow speed at the shock decreases (V2 < V1), particles crossing the
shock many times systematically gain speed as shown in Fig. 11.8. The figure is drawn for
a non-relativistic particle, but the mechanism is valid also for relativistic particles.

At large energies (v � V ) the scattering leads to almost isotropic distribution. This
enables us to obtain the energy spectrum of accelerated particles resulting from diffusive
shock acceleration by calculating the mean particle momentum

〈pn〉 = p0 exp

(
4
3

n

∑
j=1

ΔV
v j

)
(11.48)

after n shock crossings and the probability



296 11. Shocks and Shock Acceleration

1
2

3

V2 1V

v

v||

Fig. 11.8 Diffusive shock acceleration. An energetic charged particle scatters off magnetic irregularities
frozen-in to the local plasma flow. The numbered points depict successive crossings of the shock front,
where the speed of the scattering centers changes. Because points with odd numbers must have v‖ > 0
and points with even numbers must have v‖ < 0, the shock crossings lead to a systematic gain of energy
W ∝ v2. (Figure by courtesy of R. Vainio)

Pn = exp

(
−4

n

∑
j=1

V2

v j

)
(11.49)

of a particle performing at least n crossings of the shock (for details, see Drury [1983]).
By combining these, the differential momentum spectrum can be given as

dN
d p

=
3N0

(X −1)p0

(
p0

p

)(X+2)/(X−1)

, (11.50)

where N0 is the total number of particles injected to the acceleration process and p0 �mV1
is the injection momentum. Thus, shock-accelerated particles have a power law spectrum
(in momentum) with the spectral index

σ =
d lnN
d ln p

=
(X +2)
(X −1)

, (11.51)

which is determined by the compression ratio only. Note that this result applies to oblique
shocks as well [Drury, 1983]. The energy spectrum of accelerated particles behind the
shock wave is

dN
dε

=
1
v

dN
d p

=
3N0

(X −1)p0c

( p0

mc

)σ Γ
(Γ 2 −1)(σ+1)/2 , (11.52)

where ε = Γ mc2 is the total energy of the particle. We denote here the Lorentz factor by
Γ in order not to mix up with the polytropic index. At relativistic energies, therefore,
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dN
dε

∝ ε−σ , (11.53)

which is the result often applied to electron spectra, when calculating their emission.
The spectral index σ is actually determined by the shock’s compression ratio only if

M � 1. If the Mach number of the shock is of the order of unity, the magnetic scattering
centers in the flow (MHD waves) can no more be seen as static magnetic fluctuations, but
have substantial phase speeds vp ∼ vA relative to the flow. Thus these phase speeds need
to be taken into account when determining the compression ratio of the actual scattering
centers

σ =
Xsc +2
Xsc −1

, (11.54)

where
Xsc =

V1x + vp1

V2x + vp2

M→∞−→ V1x

V2x
= X . (11.55)

In parallel fast-mode shocks, for which 1 < MA < 2, this may lead to extremely large
compression ratios and flat (σ ≈ 1) particle spectra. In slow-mode shocks, the scattering
centers always have larger phase speeds than the fluid speeds. Thus the scattering centers
do not converge in slow shocks under many circumstances and then the Fermi mechanism
is not effective.

Finally, the power-law spectrum does not extend to infinite energies, but is cut-off at
some energy determined by the age and the size of the system. Obviously, if the time τ to
accelerate the particles is limited, they cannot be accelerated beyond energies determined
by ṗ ∼ p/τ , where ṗ is the rate of momentum gain related to the scattering rates and flow
velocities in the system. Similarly, when the particle’s Larmor radius (v⊥/ωc) becomes of
the order of the system size, the particle cannot be accelerated any further.

11.3.3 Shock surfing acceleration

In addition to the Fermi-acceleration models discussed above we mention, for complete-
ness, the shock surfing acceleration as another mechanism that has been proposed to ac-
count for the acceleration of ions in quasi-perpendicular collisionless shocks. This relies
on the existence of a cross-shock potential, which tends to decelerate the incident ions in
the shock normal direction (x axis). If an ion has a small velocity component along the
shock normal 0 < vx �V1x, it will be reflected by the cross-shock electric field. But once
it is moving back into the upstream magnetic field, the Lorentz force will turn it around
as in the shock drift acceleration. The ion will be trapped between the upstream magnetic
field and the cross-shock electric field, drift along the upstream convective electric field
and gain energy. The ions appear to surf along the shock wave.

Let the y-axis point to the direction of the upstream electric field E1 = −V1 × B1 .
Assume, that vz = 0 and B1x = B1y = 0. The equation of motion in the y-direction is

v̇y = q(Ey − vxBz) , (11.56)
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where the right-hand side is equal to qV1xB1z for small vx. Thus, the particle experiences
linear acceleration along the y-direction as long as it stays trapped between the cross-shock
potential and the upstream magnetic field. On the other hand, the equation of motion for
vx in the shock ramp is

v̇x = q(Ex + vyBz) = q(−δϕ/δx+ vyBz) . (11.57)

Obviously the particle will no longer stay trapped, once vy ≈−Ex/Bz = δϕ/Bzδx , where
δx is the thickness of the shock. Assuming δx ∼ c/ωpe we get

vy ≈ ampV 2
1xωpe

2eBzc
≈ aV 2

1xωpe

2ωcic
≈ aV 2

1x
2VA

√
mi

me
, (11.58)

amounting to a velocity gain by a factor of the order of 100 for typical perpendicular
shocks in the interplanetary medium. While potentially efficient, this mechanism is very
sensitive to the thickness of the shock and thus limited to magnetic fields oriented very
closely perpendicular to the shock normal.

Acceleration of electrons is not possible with the simple shock surfing mechanism,
but particle simulations have revealed that the electric potential in the shock ramp is not
monotonic. There appear to be structures inside the ramp, where the electric field points
towards downstream, thus being capable of trapping electrons and rapidly accelerating
them to relativistic energies. Whether shock surfing is a relevant acceleration mechanism
in the solar system shocks is unclear.
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Solar flares and coronal mass ejections are the most important storm phenomena in the
atmosphere of the Sun. The observation that a geomagnetic storm commenced only some
17 hours after the flare observed by Carrington and Hodgson in 1859, and many subse-
quent events suggesting a similar flare–storm relationship, led to the hypothesis that the
flares were the drivers of the nonrecurrent magnetic storms at the Earth. The evidence
for a causal connection from flares to storms was, however, not particularly good. Large
flares can be observed without ensuing magnetic storms and storms, also nonrecurrent
ones, often occur without any notable preceding flare activity on the Sun. But if it is not a
flare, what would be the driver? The answer came with the first CME-observations using
a space-borne coronagraph [Tousey, 1973]. The misconception of addressing the flares as
primary storm drivers prevailed in some parts of the solar–terrestrial physics community
for a long time, even after subsequent spacecraft observations of CMEs and their in situ
characteristics in the solar wind had convincingly shown that CMEs are the main drivers
of nonrecurrent magnetic storms. (For a discussion of this “solar flare myth”, see Gosling
[1993].) Finally, the excellent SOHO coronagraph images of CMEs during solar cycle 23
brought the real storm drivers to the attention of the entire community concerned with
severe space weather.

Although solar flares have lost some of their status in the studies of magnetospheric
storms, they are the most dramatic storm phenomena on the Sun. The flares also accelerate
charged particles that arrive to the Earth much faster than the CMEs and thus affect the
near-Earth environment practically immediately after the storm onset on the Sun. What-
ever the association is, flares are often, but not always, associated with CMEs and this
relationship needs to be understood better than is the case today. New high-resolution im-
ages of flares and eruptive prominences provide fresh views of the reconnection process,
making it almost visual. As the strength of the solar flares can be routinely monitored
using space-borne X-ray detectors, they provide a useful, though an incomplete, warning
method of approaching stormy weather in the geospace.
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12.1 Prominences and Coronal Loops

Before starting discussion of the solar eruptions we briefly discuss solar prominences and
coronal loops. While these structures may look similar and be related to each other, the
prominences are relatively cold, whereas the word “loop” usually refers to hot structures
of a variety of shapes seen typically in EUV or X-ray pictures of the Sun.

The prominences are giant gas clouds traditionally observed on the limb of the Sun.
They consist of plasma that is much more dense (n ≈ 0.5 − 1.0 × 1017 m−3, i.e., by a
factor of 500) than the ambient coronal density and much cooler (5000–10 000 K) than the
surrounding corona. Consequently, they can be seen on the limb as bright arcs, or arcades,
against the tenuous background. Due to the lower temperature than in the chromosphere,
the prominences look like dark filaments in Hα images of the chromosphere.

The prominence clouds typically have the form of vertical sheets. The sheets are re-
markably stable, surviving up to 300 days, and thus they can be used in studies of solar ro-
tation. There are two basic types of prominences, quiescent and active-region prominences.
The quiescent prominences are typically larger and extend higher up (above 30 000 km).
The magnetic field of a quiescent prominence is 0.5–1 mT. In the active regions the promi-
nences are smaller and mostly below 30 000 km, but their density is somewhat higher and
the magnetic field is stronger (2–20 mT). The prominences often fade away, but in active
regions they can erupt in association with solar flares and/or CME releases. In fact, a rapid
disappearance of a filament is a frequently used method of determining the location where
a CME originated and about 70% of CMEs originating from the visible disk have been
associated with prominence/filament disappearance.

The line-of-sight (i.e., the nearly vertical) component of the magnetic field reverses
over a filament but the direction in which the field passes through the prominence may
be the same as we would expect for a simple arcade (normal polarity, about 25% of all
prominences) or opposite to it (inverse polarity, about 75% of all prominences) as indicated
in Fig. 12.1. The stability of the prominences is not directly related to the polarity. The
high-latitude quiescent prominences mostly have the inverse polarity, whereas the active-
region prominences can have either of the polarities. The filament itself is a plasma sheet
carrying a sheet current (A m−1) directed either away from the page (normal polarity) or
into the page (inverse polarity) in Fig. 12.1.

The formation of prominences is still an active area of research. The process starts with
a magnetic flux tube rising through the solar surface as an arc. Priest et al [1989] suggested
that when the distance between the footpoints of the flux tube becomes sufficiently long,
a radiative instability sets in and the cool plasma starts to accumulate in the central part of
the arc. Also twisting of the flux tube plays a role in the process by forming a magnetic
dip in the lower part of the horizontal portion of the flux-tube where cool plasma starts to
accumulate (panes (b) and (c) in Fig. 12.2). If the flux tube becomes too long or the twist
too strong, the prominence becomes unstable and erupts.

The coronal loops are magnetic flux tubes filled with hot plasma reaching out to the
corona. They are much hotter than prototypical prominences, which makes them observ-
able at the wavelengths from EUV to soft X-rays. The loops are not in pressure balance
with the surrounding corona, but they are confined by the strong magnetic field in the flux
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Fig. 12.1 Magnetic field configuration in association with prominences. On the left the polarity of the
prominence is normal, on the right it is inverse. (From Anzer and Priest [1985].)

Fig. 12.2 The formation of a prominence in a twisted-flux-tube model by Priest et al [1989].

tube that keeps the cross-field diffusion small. The filling and heating of the plasma in the
coronal loops belong to important problems among coronal processes.

In addition to the large variety of temperatures, the spatial structures of the coronal
loops are also variable. They can form long arcades, have an S-shaped appearance known
as a sigmoid, create structures looking like a bow-tie, etc. The evolution toward the differ-
ent shapes is related to the motion of the footpoints of the magnetic flux tubes forming the
structures in the photosphere and to their expansion associated with the filling and heating
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of the plasma. When looking at coronal EUV/X-ray pictures, one cannot avoid the impres-
sion that the active corona is composed of a web of many loops at different temperatures.
(For more details on coronal loops, see Aschwanden [2004]).

At some point of time in some location of the coronal magnetic web the conditions
become conducive for a large-scale magnetic reconnection process and a flare erupts
(Sect. 12.3). The flare may or may not be associated with an eruptive prominence, and
it may or may not be associated with a CME. It is quite clear that there is still much to
learn at this end of the space storm sequence.

12.2 Radio Storms on the Sun

During World War II amateur radio operators noticed radio noise (or hiss) that occurred
only in daytime, and the first radar systems at meter wavelengths were occasionally
jammed by radio interference apparently coming from the direction of the Sun. Soon after
the war intense solar radio bursts were also detected.

The value of radio wave observations in solar research is based on two factors. First,
the solar spectrum at these wavelengths is highly variable (Fig. 1.2) reflecting both high
coronal temperatures and strong activity. Second, the Earth’s atmosphere is transparent to
electromagnetic waves that are longer than a few mm (i.e., frequencies below 100 GHz).
The low-frequency cut-off, in turn, is determined by the ionospheric plasma frequency,
which, depending on the peak plasma density, is 4–10 MHz. However, already below 20
MHz there is so much terrestrial interference that detailed observations from the ground
are difficult, and space-borne observations are called for.

As is evident from Fig. 1.2, the energy density of solar radio waves is extremely small
compared to visible wavelengths. To cope with small energy fluxes radioastronomers have
introduced a particular unit, the Jansky, equal to 10−26 W Hz−1 m−2. The Sun as seen
from the Earth is a much brighter radio source than other astronomical sources and, con-
sequently, in solar radio astronomy a four orders of magnitude larger unit, the solar flux
unit (SFU) is used

1SFU = 10−22 WHz−1 m−2 . (12.1)

The thermal emission from the quiet Sun at 40 MHz is about 3 SFU , whereas typical radio
bursts at the same frequency amount to 105 SFU .

Train your brain

Estimate the total power of solar radio waves hitting the surface of the Earth in the
wavelength range 10 cm – 1 m.
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12.2.1 Classification of radio emissions

There is a whole zoo of different types of solar radio emissions. They are named mostly
according to their observed properties, which may be a nuisance to a student but practical
for scientific study because the terminology is free from evolving physical interpretation.
The most important emissions are known as Types I–IV (Fig. 12.3).

Fig. 12.3 Schematic signatures of solar radio events in a dynamic spectrum. The timing is relative to the
flash phase of a typical solar flare. On the vertical axis the frequency decreases upward to correspond to
the increasing altitude of the emission region from the surface of the Sun. (From Lang [2000].)

Type I bursts are very short (< 1 s) emissions but they appear in large numbers to form
irregular emission structures called Type I noise storms. These storms last from hours to
days. The brightness temperatures (i.e., the temperature that the source would have if
the emission would be thermal radiation from a hot gas) of Type I bursts are 107 − 109

K. The bursts are believed to be generated by electrons accelerated to a few times their
thermal energies by energy release in closed coronal loops. In the tenuous solar corona the
particles emitting electromagnetic waves do not need to be in thermal equilibrium with the
surrounding plasma, nor need the radiation mechanism be thermal.
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Type II bursts are narrow-band emissions at frequencies 0.1–100 MHz. They drift
slowly to lower frequencies at a rate of about 0.1–1 MHz per second suggesting an out-
ward motion at the speed of about 1000 km s−1 (see the discussion in Sect. 12.2.2 below),
which has been attributed to outward propagating shock waves. The lowest frequencies
(kilometer wavelengths) are emitted farther out from the Sun and often called interplane-
tary Type II bursts. Type II bursts can be associated with both flares and CMEs, but there
is no one-to-one correspondence with either of them.

Type III bursts are the most common flare-associated radio bursts at meter wavelengths,
but they can be observed within a wide frequency range of 10 kHz – 1 GHz, the lowest
frequencies being emitted and observed beyond 1 AU . Type III bursts are characterized
by a fast drift from high to low frequencies at a rate of up to 100 MHz per second. They
are attributed to beams of electrons thrown out from the Sun by the flare process with
kinetic energies of 10–100 keV, or velocities up to 0.5c. This type of emission is clearly
non-thermal, the kinetic energies of the emitting electrons being much above the thermal
energy of the surrounding plasma.

Type IV bursts are the most common type of activity at meter wavelengths. The emission
is broad-band continuum radiation lasting for up to one hour after an impulsive flare onset.
The radiation from a Type IV burst is partly circularly polarized, and has been attributed to
gyro synchrotron emission from energetic electrons trapped within magnetic clouds that
travel into the interplanetary space with velocities from several hundreds of km s−1 to
about one thousand km s−1.

As precursors of solar flares microwave impulsive bursts lasting only a few millisec-
onds are observed. Their radiation temperatures can reach up to 1015 K, which requires a
coherent radiation mechanism, e.g., a synchrotron maser.

Feed your brain by finding out from the literature what a synchrotron maser is.
What takes the place of population inversion of normal atomic masers or lasers in a
synchrotron maser?

In addition to the intensity, frequency, and frequency drift rate, it is important to de-
termine the polarization type and polarization degree of the radiation, as these depend on
the emission mechanism and geometry. For example, the electron plasma emission is un-
polarized whereas cyclotron and synchrotron emissions in the strong magnetic fields are
circularly polarized.

12.2.2 Physical mechanisms for solar radio emissions

Radio emissions occur in perturbed plasma layers of the solar atmosphere and are mainly
due to free electrons moving in the magnetized plasma. An important lesson from basic
plasma physics is that a free-space electromagnetic wave can propagate only if its fre-
quency is higher than the local (electron) plasma frequency

fp =
1

2π

√
nee2

ε0me
, (12.2)
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whose approximate numerical value is given by

fp(Hz) ≈ 9
√

ne(m−3) . (12.3)

In the chromosphere the electron density drops from 2.5× 1017 m−3 to 1016 m−3, which
corresponds to the plasma frequency range 4.5–0.9 GHz, or wavelengths 6.7–33.3 cm. To
calculate the plasma frequency in the corona there are several density models. For our
purposes good enough is the Baumbach-Allen formula

ne(m−3) = (0.036 r−1.5 +1.55 r−6 +2.99 r−16)×1014 , (12.4)

where the distance is in solar radii (from the center of the Sun). At 2R� the plasma fre-
quency is about 14 MHz corresponding to the wavelength of 21 m. If we observe waves
longer than 21 m, we know that they must have been emitted at least 2R� from the center
of the Sun (see Fig. 12.3).

In the interplanetary space, the solar wind velocity does not vary much as a function of
distance. Thus the density decreases like r−2 and we can scale the density to the distance of
1 AU . The scaled density is typically 3–10×106 m−3, corresponding to plasma frequencies
of 15–30 kHz. Thus, e.g., interplanetary Type III emissions at lower frequencies than these
must be created and observed beyond the Earth’s orbit.

The basic radiation mechanisms discussed in Chap. 9, thermal bremsstrahlung and cy-
clotron and gyro synchrotron radiation, are incoherent radiation processes where all elec-
trons radiate independently. Thus the observed brightness temperatures are of the order
of the kinetic temperature of the electrons (e.g., Type I bursts). However, electrons can
also radiate coherently (cf. coherent scattering in Chap. 9). Coherent emissions can have
brightness temperatures up to 1015 K.

The main coherent radiation mechanism in the corona and the solar wind is the plasma
emission of which Type II and III emissions are examples. They have been interpreted
to originate from warm beam–plasma instability at frequencies slightly above the local
plasma frequency. When the source of the radiation moves outward from the Sun, the fre-
quency of the emission decreases with the decreasing plasma frequency. Consequently, we
can calculate the source velocity vsrc from the drift rate d f /dt of the frequency assuming
that we have a reliable density model.

Train your brain

Derive an expression for the relationship between the frequency drift rate d f /dt and the
source velocity vsrc.

The mode driven by the beam–plasma instability is the Langmuir wave (Eq. 7.66).
However, the Langmuir wave is an electrostatic mode and becomes rapidly Landau-
damped outside the unstable plasma region. Thus it must somehow convert to a trans-
verse electromagnetic wave. To illustrate the mode conversion let us first consider Type
III because it has a simpler generation mechanism than Type II. In Type III emission the
Langmuir wave is driven by an energetic electron beam accelerated by a solar flare. As the
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electrons move along the magnetic field line with a very high velocity, they move rapidly
toward lower plasma density and the frequency drift rate is very high, up to 100 MHz
per second. Ginzburg and Zhelezniakov suggested in 1958 that the mode conversion from
the electrostatic Langmuir wave to a transverse electromagnetic wave was due to a non-
linear wave–wave interaction mechanism. The idea was later confirmed through in situ
observations with the Helios spacecraft by Gurnett and Anderson [1976], who identified
both the locally generated Langmuir wave and the escaping electromagnetic wave at the
appropriate frequencies.

Fig. 12.4 Energetic electrons streaming from the Sun excite Langmuir waves at the local plasma density.
The electromagnetic radiation is produced at the plasma frequency fp and at 2 fp by mode conversion from
the Langmuir waves. (From Gurnett [1995].)

The details of the mode conversion require a more thorough discussion of nonlinear
wave–wave interactions than is possible in the present text. The underlying idea can, how-
ever, be illustrated in terms of elementary coupled oscillators and conservation laws. The
Langmuir wave (L) can couple to a low-frequency ion–acoustic wave (IAC) and produce a
transverse electromagnetic wave (T ), a process that we formally describe as L+ IAC → T ,
under the condition that the frequencies and wave vectors fulfill the matching relations

ωL +ωIAC = ωT (12.5)
kL +kIAC = kT . (12.6)

These relations are actually expressions of conservation of energy and momentum in the
mode coupling process (note the analogy to quantum mechanics by multiplying both equa-
tions by h̄). Recall from Chap. 5 that ωIA � ωL and kL � kT . Thus the transverse wave
has a frequency somewhat above the plasma frequency fp, and can thus escape into the
directions of non-increasing plasma density. On the other hand the Langmuir wave and the
ion–acoustic wave must have roughly the same wavelength with wave vectors pointing in
opposite directions. The detailed investigation to find out how efficient the process is to
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transfer energy to the electromagnetic mode requires complicated calculations involving
the solution of the dispersion equations for appropriate plasma parameters under realistic
plasma conditions in the corona and the solar wind.

The emission at 2 fp is believed to result from another wave–wave coupling process
involving two Langmuir waves (or wave “quanta”): L +L′ → T . The energy conservation
requires that ωT � 2ωp and the momentum conservation that the Langmuir waves must
propagate to opposite directions. Thus, while often called a “harmonic” of the fundamental
plasma emission, it actually arises from a different physical process.

Type II bursts are associated with shock waves propagating outward through the solar
corona and the interplanetary space. As the shock waves propagate much more slowly than
the flare-accelerated electrons, the frequency drift rates are also slower. Close to the Sun
the shock waves can be driven both by the flares and CMEs but the flare-associated shocks
do not propagate to the interplanetary space. Again the primary emission is the Langmuir
wave, which is converted to the transverse electromagnetic wave by a similar process as in
the case of Type III bursts. What is different here, is the origin of the Langmuir waves that
are now due to electrons accelerated upstream of the shock as discussed in Chap. 11. (For
further description of these wave emissions, see Gurnett [1995] and references therein.)

12.3 Solar Flares

A solar flare is a huge magnetic energy release process on the Sun. The total power of
a flare is about 1020 − 1022 W and the total energy release may be up to 1025 J within
about 10 min. This is a considerable amount of energy, corresponding to 300 million years’
energy production of a 1000-MW power plant. While large, this is not unreasonable when
compared to the energy stored in coronal loops. The total magnetic energy of an arcade
with a radius of 20 000 km, length 100 000 km, and shear angle 45◦, is about 6× 1025 J,
which is enough for a large flare.

12.3.1 Observational characteristics of solar flares

Only very large flares, such as the Carrington flare, can be seen in white light from the
Earth. More characteristic for flares are certain line emissions (e.g., Hα) and the conse-
quences of the rapid magnetic energy release in form of particle acceleration. In a flare
electrons are typically accelerated to energies of 10–100 keV, sometimes up to 10 MeV,
and the highest energy nuclei reach to hundreds of MeV. These particles emit electromag-
netic radiation throughout the spectrum from radio waves to X- and γ-rays. Figure 12.5
shows the development of a typical flare as seen at various wavelengths.

Characterization of a flare sequence is somewhat non-trivial because the different sig-
natures evolve in different ways. The chromospheric eruption is easiest to observe using
the Hα line, in which a “flash” of the flare lasting a few minutes is seen. In the early part of
the flash γ-rays, hard X-rays, EUV radiation, and microwaves indicate an impulsive phase
of the flare. This is followed by the main phase (or decay phase), which lasts from 30 min
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Fig. 12.5 Various observational indicators of a flare from radio waves to hard X-rays. The flare-accelerated
energetic particles arrive to 1 AU 20–30 min after the electromagnetic signals. (From Lang [2000], adapted
from Kane [1974].)
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to 1 h. Just before the flash there is a brief precursor characterized by thermal radiation
corresponding to a temperature up to 107 K.

There are no reliable methods of predicting flares in advance. Because the flare accel-
erated particles are of concern for spaceflight, the development of the active regions is
monitored continuously and information of possible flare activity is spread throughout the
world. However, the quality of these predictions compared to the statistical appearance of
flares (so-called skill) is still modest.

Flares and radio waves

The most important flare emissions at radio wavelengths are Type II and III bursts. Type
III emission drifts rapidly down in frequency, which is interpreted to indicate a fast mo-
tion (107–108 m s−1) of electrons in the 10–100-keV energy range. This is consistent with
the energy required to produce the hard X-rays observed simultaneously. Type II emission
appears somewhat later and indicates a lower velocity of 106 m s−1. The emission is inter-
preted as being emitted by a shock wave generated by the flare, or by an associated CME
that propagates outward through the corona.

X-ray flares

The solar X-rays are absorbed completely by the Earth’s atmosphere and can thus be ob-
served only in space. The first observation of flare X-rays was made by Peterson and
Winckler [1959] using a high-altitude balloon in 1958. They observed radiation in the en-
ergy range 200–500 keV, lasting less than a minute, coincident with a solar radio burst and
an Hα flare.

Today solar X-rays are monitored regularly and their intensity as measured by geosta-
tionary satellites is readily available on the internet from the NOAA website
(http://www.swpc.noaa.gov/). The intensity is indexed as A, B, C, M, and X as given
in Chap. 1, Table 1.3.

There are two main components in the solar X-ray spectrum: soft X-rays between 1
and 10 keV, which are mainly due to thermal radiation of hot electrons, and hard X-rays
in the range 10–100 keV, originating from non-thermal radiation of electrons accelerated
to velocities of a sizable fraction of the speed of light. The energy range is not the only
difference between soft and hard X-rays, also the spectra are different. The soft X-ray
spectrum has an exponential shape, whereas the non-thermal hard X-ray spectrum has a
power law spectrum at large energies. In both cases the dominant radiation mechanism
is bremsstrahlung of electrons moving among ions (mostly protons) of the ambient gas
(Chap. 9). As a 1-keV photon has a wavelength of 1.24 nm, the X-ray spectra are in the
wavelength range 0.01–1 nm.

The soft X-ray flux builds up gradually and peaks a few minutes after the impulsive
emission. The Skylab observations in 1973 produced first clear pictures of soft X-ray loops
of a million-degree coronal gas. These loops are associated with dynamical magnetic field
structures during the flare activity.

The temperatures of flaring soft X-ray loops are about ten times hotter than the qui-
escent non-flaring coronal loops. The temperature up to several times 107 K is enough
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to strip almost all electrons from the iron atoms. Consequently the X-ray spectra also
contain line emissions from the inner shells of multiple times ionized elements, e.g.,
at 0.1778 nm (Fe XXVI), 0.185 nm (Fe XXV), 0.3177 nm (Ca XIX), 0.5039 nm (S XV),
0.917 nm (Mg XI), 1.346 nm (Ne IX). The plasma densities of the loops have been esti-
mated from the density-sensitive lines to be 1017–1018 electrons per m3.

The hard X-rays often have a double source which is nearly co-located with the mag-
netic footpoints of the soft X-ray loops and Hα emission in the chromosphere. The two
spots flash within 10 s of each other. This indicates that the hard X-rays are produced in
the low corona and dense chromosphere by non-thermal electrons injected down along the
legs of the coronal loop. This is further supported by the similar time profile of radio waves
at centimeter wavelengths also produced by the non-thermal electrons.

Flares and γ-rays

γ-rays have energies above 100 keV. Nuclear interactions of flare-accelerated protons and
helium nuclei (energies 1–100 MeV) with nuclei in the dense solar atmosphere below
the acceleration site produce γ-rays at energies between 0.4 and 7.1 MeV. Furthermore,
protons with energies above 300 MeV interact with hydrogen in the solar atmosphere
and produce mesons. The decay of neutral mesons produces a broad γ-ray peak around
70 MeV, whereas the decay of charged mesons leads to bremsstrahlung with a continuum
γ-emission extending to several MeV. Also neutrons with energies above 1 GeV are pro-
duced through nuclear interactions associated with the flare process.

There are two particularly strong γ-ray lines in the solar spectrum: 511 keV and
2.223 MeV. The former is due to electron-positron annihilation

e+ + e− → γ + γ (511keVeach) , (12.7)

where the positrons originate from decay of radioactive nuclei. The latter is a stronger line
and results from the capture of a neutron by a proton

n+p → d+ γ (2.223MeV) . (12.8)

Two important spallation reactions lead to γ-ray emission through a transition from an
excited state to the ground state of one of the spallation products

p+ 16O → 12C∗ +α +p
12C∗ → 12C+ γ (4.438MeV) (12.9)

and

p+ 20Ne → 16O∗ +α +p
16O∗ → 16O+ γ (6.129MeV) . (12.10)

In the latter reaction γ-lines at 6.917 and 7.117 MeV are also prominent.
The heated flaring loops are at a temperature corresponding to that of the center of the

Sun. Although the corona is much more tenuous, there is a sufficient amount of fusion
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reaction to lead to observable γ emissions, e.g.,

4He+α → 7Be∗ +n
7Be∗ → 7Be+ γ (0.431MeV) (12.11)

and

4He+α → 7Li∗ +n
7Li∗ → 7Li+ γ (0.478MeV) . (12.12)

Furthermore, there are several emission lines of nuclei excited by protons, e.g., 14N
(5.105 MeV), 20Ne (1.634 MeV), 24Mg (1.369 MeV), 28Si (1.779 MeV), and 56Fe (0.847
and 1.238 MeV).

12.3.2 Physics of solar flares

A large number of models describing the flare process have been discussed in the liter-
ature. Since the Yohkoh mission in the 1990s the improved observations have put tighter
constraints to the models, but there is still much room for theorizing and speculations.
Any proposed flare mechanism must explain the release of magnetic energy arising from
an active region. The energy release cannot be simple diffusion because the magnetic dif-
fusion times (τ = l2/η) are very long, of the order of hundreds of years for scale sizes of
10 000 km. However, by compressing the gradient scale length to 1 km or below the diffu-
sion times are reduced to minutes. Thus the formation and stability of thin current sheets
belong to central issues in flare research.

People familiar with reconnection in the terrestrial magnetosphere may think that the
case for reconnection would be easier in the solar atmosphere, but, in fact, it may actually
be the opposite. The flux tube structure in the solar atmosphere is much more complicated
than the configuration of the magnetosphere, and there are hardly any such relatively sim-
ple structures as the magnetotail current sheet. Another important feature is the line-tying,
i.e., tying the feet of the flux tubes to the photosphere at both ends. On the one hand, line-
tying is a strongly stabilizing feature, but on the other, it facilitates large-scale motion of
the flux tubes following the plasma motion in the photosphere. This leads to a complicated
web of current sheets and magnetic null-points (or at least nearly null), strongly limiting
the applicability of two-dimensional reconnection models discussed in Chap. 8.

Possibilities for observational characterization of solar reconnection are different from
magnetospheric observations. The high-resolution images of X- and γ-ray emissions from
several spacecraft during the early 21st century have made the reconnection almost visible.
These observations together with radio emissions give us important information on the
particles energized in the process and also about the temperature evolution. On the other
hand, we can never obtain such detailed in situ plasma and field information at and near
the reconnection regions as we have from the Earth’s magnetosphere.

There are some features that make the comparison of flares and magnetospheric sub-
storms (to be discussed in Chap. 13) meaningful. In both cases the magnetic Reynolds
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number is large, so the magnetic field evolution is convection-dominated. While the plasma
is much denser in the solar atmosphere than in the magnetosphere, also the magnetic field
is stronger. Consequently, the Alfvén speeds in both environments are of the same order
of magnitude. This is important because vA determines the outflow velocity from the re-
connection region (Chap. 8). Neither are the scale sizes too different in these two regimes.
Typical lengths of prominences or coronal loop flux tubes are of the order of 105–106 km,
i.e., 16–160 RE , which is not far from length of the magnetotail involved in the substorm
process (Chap. 13). The time-scale of the process is proportional to the size divided by vA
and, consequently, a typical flare has somewhat shorter time span than a typical substorm.
Of course, the released energy in a flare is some ten orders of magnitude larger because
there is much more magnetic energy stored in the system. Furthermore, the flare scale sizes
are much more variable than is possible within the magnetosphere.

The present understanding is that in the flare process magnetic energy is released by
explosive reconnection above the top of a coronal loop. The heated loop radiates soft X-
rays whereas the hard X-rays and γ-rays and most of the intense radio waves are due to the
more energetic non-thermal particles. As there are several possible configurations leading
to thin current sheets to facilitate reconnection in the corona, several models have been
proposed to explain the observed structures.

Figure 12.6 illustrates Shibata’s attempt at a “unified” flare model [Shibata et al, 1995;
Shibata, 1999]. This model includes an upward release of a magnetic structure, known as
a plasmoid, which suggest that the release of a CME is an essential part of the process.
In Shibata’s model the flux rope footpoints in the photosphere are at some distance from
the underlying soft X-ray loop. The twisted flux rope acts like a piston that stretches the
field below. This enforces the plasma flow toward the current sheet leading to explosive
reconnection. In this sense the formation and ejection of the plasmoid enhances the re-
connection rate. The reconnection then both heats the plasma and accelerates electrons.
Electrons accelerated toward the Sun are finally decelerated closer to the surface and emit
hard X-rays.

Figure 12.7 is another representation of the same scenario in the case where the re-
connection takes place between a prominence (filament) above and a long arcade below
the reconnection region. Such a configuration is easy to imagine as a CME with a core
of prominence matter as is often seen in coronagraph images (e.g., Fig. 12.8 in the next
section). The Hα emission emerges mostly from two ribbons in the chromosphere along
the footpoints of the coronal arcade.

If we rotate Fig. 12.6 90 degrees, it is somewhat analogous to a plasmoid or flux rope
release from the terrestrial magnetotail in a substorm process (Fig. 13.5 in the next chapter)
although the line-tying into the photosphere may be much more rigid than the connection
of the core field of a terrestrial flux rope to the ionosphere. Also the footpoints have much
more freedom to move in the photosphere than is possible in the terrestrial ionosphere.
While the plasmoid formation in the magnetosphere is usually seen as a consequence
of near-Earth reconnection, in Shibata’s model it drives the reconnection process. This
driving must be powered externally. One can imagine that this is a result of magnetic
buoyancy of the flux rope in the core of the plasmoid.

While this is a suggestive picture, it is only one of many proposed scenarios. In fact,
the solar corona exhibits such a richness of magnetic structures and can support so many
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Fig. 12.6 Shibata’s plasmoid-driven reconnection model for flares. Hard X-rays can be produced both
at the top of the loop and near its footpoints (the cross-hatched areas). Also γ-rays are produced at low
altitudes where very energetic protons hit the nuclei as discussed above. (From Shibata et al [1995].)

different instabilities [see, e.g., Aschwanden, 2004], that it may not be really fruitful to
look for the flare model. Instead the magnetic energy release can, most likely, find several
structurally different ways of taking place. Nor is there a one-to-one association between
CMEs and flares. During some CMEs no large flares are observed; on the other hand,
flaring is a much more common phenomenon in a great variety of sizes. Recall that, in
addition to the energy scale of 1021–1025 J, we discussed briefly in Sect. 1.1.6 microflares
(of the order of 1019 J) and nanoflares (of the order of 1016 J) as possible mechanisms to
heat the corona. How similar to or different from these large-scale flares they are, is not
known. From the viewpoint of space storms in the Earth’s environment the large flares
associated with CMEs are of the highest interest.

Of course, flares cannot be completely described by the MHD flow theory alone. In
the simple quasi-static current sheet models the reconnection appears to be very much
driven by the external boundary conditions, i.e., by the plasma flow toward the current
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Fig. 12.7 Schematic picture showing essentially the Shibata flare–CME model in case of an arcade below
the eruptive prominence. The shaded domain below the reconnection line is the source of soft X-ray
radiation, the hatched region emits EUV and the dotted regions Hα . (From Shiota et al [2005].)

sheet. But what finally determines when the reconnection can set in, is the microscopic
physics of the reconnecting region. In the case of more complicated geometries this issue
may be even more important than in the effectively two-dimensional examples discussed
in Chap. 8. Consequently, the interplay between microscopic and macroscopic physics
needs to be understood much better than is the case today. Furthermore, the beautiful
pictures of coronal activity need to be interpreted with care. What we see there is not the
magnetic field but emissions from hot plasma being frozen-in to the magnetic field. The
actual current sheets probably are much thinner than the visual plasma sheets, as we know
from the in situ observations of the Earth’s magnetotail current sheet.

12.4 Coronal Mass Ejections

Coronal mass ejections are large plasma and magnetic clouds leaving the Sun. The termi-
nology needs to be interpreted with some care. Most of the matter in the mass ejections
originates from the lower solar atmosphere and thus is not “coronal mass”. The word
“coronal” refers to the observation of the mass ejections in the corona. Typical CME
masses are in the range 5×1012 −5×1013 kg and angular sizes are in the range 40–50◦.

It is of some interest to note that the kinetic energy leaving the Sun with a CME is of the
same order of magnitude as the flare energy, of the order of 1024 − 1025 J. Thus from the
total energy viewpoint the flares and CMEs look rather similar. However, most of the flare
energy is released as electromagnetic radiation and radiated to a wide angle. The reasons,
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why fast CMEs are much more effective as drivers of magnetospheric activity than the
flares, are the mass flux and strong magnetic field carried with a high speed to the vicinity
of the Earth. The fast magnetic flux transport leads to a large motion-induced electric field
to become imposed on the magnetosphere.

12.4.1 CMEs near the Sun

Although they are huge, CMEs are difficult to observe. They remained undiscovered until
the early 1970s when they were found with white-light coronagraphs onboard OSO 7, the
first one on December 14, 1971 [Tousey, 1973], and Skylab. A coronagraph produces an
artificial occultation of the Sun, which allows the faint scattered sunlight from the CME to
be observed around the occulting disk. Coronagraphs are also used at terrestrial observato-
ries, but there is always lot of straylight in the atmosphere that makes detailed observations
more difficult than with space-borne instruments.

A CME itself does not radiate. The observed light is produced by Thomson scattering
(Chap. 9) of the solar photons from the electrons in the cloud. CME coronagraphs are
typically designed to use white light because most of the solar photons are in the visible
range. The white-light brightness of the scattered emission varies in proportion to the
electron density of the CME but not to the temperature. Thus the brightness can be used
to estimate the density structure of the ejected plasma cloud.

Figure 12.8 is a prototypical picture of a CME observed with the LASCO instrument
on SOHO. The bright structure in the core of the cloud is interpreted to be matter from the
eruptive prominence, whereas the surrounding structure is shocked plasma driven by the
fast expansion of the magnetic flux rope around the core just as Fig. 12.7 suggests.

CMEs are quite common. According to the LASCO CME data base at the CDAW data
service of the NASA Goddard Space Flight Center [Gopalswamy et al, 2009] the whole-
Sun occurrence-rate averaged over Carrington rotation periods during solar cycle 23 was
slightly less than one event per day at solar minimum and 4–6 events per day around the
maximum years 2000–2003. The latter number is about a factor of two larger than esti-
mates from previous maxima. This is more likely to be due to the improved sensitivity of
LASCO to weak CMEs as compared to earlier observations than actually increased CME
activity. Similar to many other space storm related phenomena, different selection criteria
at the limit of weak events give different statistical results. For example, the automated
LASCO CME catalog presented by Robbrecht et al [2009] contains about 2 events per day
at minimum and 8–10 events at maximum. The automatic procedure used to compile this
catalog includes a large number of bright but spatially narrow radially outward moving
structures that traditionally have not been identified as CMEs.

Feed your brain by familiarizing yourself with the LASCO CME lists at
http://cdaw.gsfc.nasa.gov/CME list/ [Gopalswamy et al, 2009] and
http://sidc.be/cactus/
With these data bases you can easily initiate your own studies of various properties of
CMEs.
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Fig. 12.8 White-light observation of a CME by the LASCO C2 coronagraph. The occulting disk hides the
Sun, which is indicated by the little circle in the middle of the disk. (Courtesy of ESA.)

The CME rate increases with the increasing sunspot activity during the solar cycle, but
their latitudinal evolution is different. The first sunspots after the solar minimum appear
at mid-latitudes (about 30–40◦) and the sunspot belt moves toward the equator, becom-
ing more latitudinally narrower during the cycle as indicated by the butterfly diagram
(Fig. 1.5). Conversely, the minimum-time CMEs originate close to the equator and the
source region widens toward the maximum. Furthermore, the structure of the CMEs be-
comes more complicated with increasing activity reflecting the more complicated mag-
netic structure of the active Sun.

The CMEs may actually play an important role in the total magnetic flux budget of
the Sun, as they carry away excessive magnetic flux and helicity produced by the solar
dynamo. When the differential rotation creates toroidal field, the field accumulates at low
latitudes in the regions of closed magnetic loops. While the persistent solar wind carries
magnetic flux only from the regions of open field lines, the ejection of large magnetic
clouds contribute to getting rid of excessive closed flux.

That the CMEs originate from the closed field line regions determines their magnetic
topology. However, as the magnetic structure has to be torn off from the Sun, the field must
open locally. Yohkoh soft X-ray images have produced numerous examples of the escaping
cloud, after which a soft X-ray arcade remains for several hours like a wound on the Sun
at the place from which the CME was ejected. This phenomenon is called a gradual flare
and it is associated with the restructuring of the magnetic field after the major ejection.

Already the early observations established that CMEs are more often associated with
eruptive prominences than with impulsive flares. The exact relationship between the flares
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and CMEs is unknown but only some 40% of CMEs have an associated flare close to the
site of the ejection. However, a flare may take place before, simultaneously with, or after
the lift-off of the CME. On the other hand, for some 70% of ejections a disappearance
of a dark filament or eruptive prominence has been identified. The prominence material
can often be identified in the coronagraph images but only very rarely in direct plasma
observations in the solar wind close to the Earth. Thus the interaction between CMEs and
the ambient solar wind belongs to the central problems in solar wind physics.

12.4.2 Propagation time to 1 AU

When a CME leaves the Sun, its speed at 5 R� varies from less than 200 km s−1 to more
than 2000 km s−1. At 1 AU the speed only seldom is larger than 750 km s−1 and most likely
never smaller than the minimum solar wind speed of about 280 km s−1. The originally
slow CMEs are accelerated toward the ambient solar wind speed, whereas the very high-
speed CMEs are decelerated. The energy carried by a CME is of the order of 1024 J, which
is comparable to large flares. The released energy is mostly in the kinetic energy of the
plasma cloud with a small fraction in high-energy particles.

The determination of the CME speed from a coronal observation is a non-trivial task,
particularly in the most interesting cases when the CME is heading toward the Earth, when
only an expanding faint halo is seen in the coronagraph images. These events are known
as halo CMEs. The determination of the speed in the corona is critical to ascertain that
an interplanetary CME (ICME) observed in situ at 1 AU can be associated with the right
CME appearing in the corona. For practical space storm forecasting an early estimate of
the travel time is evidently of utmost importance.

There have been quite a few attempts to estimate the interplanetary propagation speeds
and transit times to the Earth (cf., Schwenn et al [2005] and the extensive list of references
therein). Based on a small number of first LASCO observations just after the solar mini-
mum 1996–97 Brueckner et al [1998] noted that most ICMEs arrive in about 80 h, which
is sometimes referred to as Brueckner’s 80-hour rule. This seems to work pretty well near
solar minima, whereas the fastest ICMEs around solar maxima arrive much more quickly.
Thus something more accurate is needed.

In whatever direction a CME is released, a coronagraph gives only a projection of its
motion at the plane of the sky. Estimation of the propagation speed of the front of a CME,
including halo CMEs ejected toward (or away from) the Earth, is always subject to the
projection effect. Schwenn et al [2005] noted that the only parameter that can be measured
uniquely for any CME is the lateral expansion speed Vexp. By inspecting a large number of
CMEs on the limb of the Sun they were able to establish a fairly good relationship (linear
correlation coefficient 0.86) between Vexp and the radial speed Vr as

Vr = 0.88×Vexp . (12.13)

The formula seems to be equally good for both fast and slow CMEs in the field-of-view of
the LASCO coronagraph.

This does not yet give the transit time to the Earth accurately enough because the in-
teraction between the ejecta and the ambient solar wind is poorly known. By comparing
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CMEs with measured Vexp to ICMEs at 1 AU when one-to-one association could safely be
demonstrated, Schwenn et al [2005] found that the transit time follows the law

Ttr (h) = 203−20.77× ln Vexp (kms−1) . (12.14)

The scattering in the data was, however, quite significant. Standard deviation was 14 h and
the 95% certainty margin was defined to be two standard deviations, i.e., a little more than
±1 day from the transit time predicted by (12.14). The measured transit times were within
30–105 h.

Consequently, the determination of the transit times based on LASCO observations
leaves a rather large uncertainty to the transit time predictions. In addition to this Schwenn
et al [2005] warned that 15% of front side halo events, of which half were full halos,
i.e., halos encircling the entire coronagraph occulting plate, were not observed near the
Earth, which would lead to false alarms. On the other hand 20% of ICME events, e.g., an
ICME-driven shock, were not preceded by a halo, not even even a partial one, which in
this study was defined to encompass at least 120◦ of the occulting plate. Magnetospheric
storms driven by these events would not have been warned for, based on these criteria.

Siscoe and Schwenn [2006] compared the empirical propagation time estimates to var-
ious physics-based numerical propagation schemes in use at that time. The best models
had marginally smaller errors in the arrival time predictions, about 12 h instead of 14 h.
However, what is more serious from a space weather forecaster’s viewpoint is that these
models led to 50% false alarm rates and missed about 25% of shocks that that actually hit
the magnetosphere. Thus significant progress in shock propagation modeling and simula-
tions is required before they can replace the actual ICME observations in situ upstream of
the Earth’s magnetosphere.

12.4.3 Magnetic structure of ICMEs

At the distance of 1 AU from the Sun the ICMEs are huge structures with sizes of a signifi-
cant fraction of 1 AU . With a single or even with two spacecraft it is practically impossible
to determine the global structure an ICME (Fig. 12.9). Sometimes an ICME looks like an
almost ideal force-free flux rope, sometimes the magnetic structure is quite unclear [e.g.,
Cane and Richardson, 2003]. Also the plasma parameters vary largely, and the cool dense
prominence material often visible in coronagraph images (e.g., Fig. 12.8) can only seldom
be recognized in in situ observations.

The magnetic structure of an ICME is particularly important for its efficiency to drive
magnetospheric storms (Chap. 13). As determined from observations of counter streaming
electrons along the magnetic field lines, an ICME may reach 1 AU with both ends of the
magnetic fields still tied to the Sun. A more typical topology seems to be such that only one
end is tied to the Sun, and structures completely detached from the Sun are also observed.

At least one-third of all ICMEs can be represented as magnetic flux ropes with orga-
nized magnetic field rotation, almost 100% at solar minimum and about 15% near maxi-
mum [Cane and Richardson, 2003]. However, it has been suggested that when leaving the
Sun all CMEs would be flux ropes [Krall, 2007] and the failure to recognize that in the
ICMEs at 1 AU might be due to observations made too far from the center of the flux rope.
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Fig. 12.9 ICME as a flux rope. The arrows A and B illustrate the projection of two different spacecraft
tracks when the ICME passes by. It is challenging to reconstruct the global structure from in situ spacecraft
observations even in the case of an ideal force-free flux rope. (Adapted from Marubashi [1997].)

Considerable effort has been paid to reconstruct the magnetic structure from spacecraft
observations with variable tools reaching from global MHD simulations to local analysis
based on simplifying assumptions on flux rope geometries (for a review, see Riley et al
[2004]).

The traditional method of studying the flux rope structure of the magnetic clouds [e.g.,
Lepping et al, 1990; Bothmer and Schwenn, 1998; Huttunen et al, 2005] is based on fitting
in situ spacecraft observations to the solution to the cylindrically symmetric constant-α
force-free configuration introduced by Lundquist [1950]

BR = 0
BA = B0 J0(αr) (12.15)
BT = H B0 J1(αr) .

Here BR, BA and BT are the radial, axial and tangential components of the magnetic field,
B0 is the maximum magnetic field, r is the radial distance from the flux rope axis, α is a
constant related to the size of the flux rope, J0 and J1 are Bessel functions and H = ±1
defines the sense of the magnetic helicity.

The linear force-free fitting applying minimum variance techniques gives good results
only when the spacecraft passes close to the flux rope axis. There is also no guarantee how
good an approximation the force-free configuration is and several non-force-free models
have been developed to study the flux ropes without this assumption. For example Hidalgo
et al [2002] described the magnetic field as a sum of toroidal (Bφ , corresponding to BA in
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(12.15)) and poloidal (Bψ , BT in (12.15)) magnetic field components, which are expressed
in terms of poloidal (Jψ ) and torodial (Jφ ) currents

Bφ =
1
2

μ0 Jψ r

Bψ = μ0 Jφ (R− r) , (12.16)

where R is the radius of the flux rope and r is the distance from the flux rope axis.
Another non-force-free method was presented by Hu and Sonnerup [2002] who de-

scribed the magnetohydrostatic pressure balance using the Grad–Shafranov equation
(6.82)

∂ 2A
∂x2 +

∂ 2A
∂y2 = −μ0

d
dA

(
P(A)+

B2
z (A)
2μ0

)
, (12.17)

where A = A(x,y)ez is the vector potential, the magnetic field is

B =
[

∂A
∂y

,−∂A
∂x

,Bz(A)
]

(12.18)

and the left-hand side of the equation is the axial current density −μ0 Jz(A).
Riley et al [2004] performed a blind test to compare various methods, including

force-free models, Hidalgo’s model and the Grad–Shafranov approach, for a given 2 1
2 -

dimensional flux rope structure calculated with an MHD simulation. The “data” given to
independent analysis teams was created by letting a hypothetical spacecraft cross the same
structure at two different locations, one closer to the center of the rope, the other closer
to the flank. That it actually was the same structure, was not told to the teams in advance.
Fitting of the data to different flux rope models gave quite different results. However, Riley
et al [2004] concluded that “it is how the technique is applied, rather than which technique
is applied” that impacts the results of the fit most significantly. At the time of writing this
book the methods of determining the magnetic structure of ICMEs are still in their infancy.

12.5 CMEs, Flares and Particle Acceleration

Both flares and CMEs accelerate charged particles to high energies. Typical flare-accelerat-
ed protons have energies of the order of 10 MeV, but can reach 1 GeV. Electrons are less
energetic, typically 100 keV, but may in rare events reach 100 MeV. Particles are accel-
erated in all directions, some of them give rise to X- and γ-rays when they interact with
solar plasma, some produce radio waves in the strong magnetic field structures, and some
escape from the Sun and become observable in the heliosphere. In this section we discuss
particle acceleration from the terrestrial point of view.

Note that the fluxes of energetic particles are much less than the flux of the ambient
solar wind. A typical flare causes at 1 AU a flux of 107 particles m−2 s−1, whereas typical
solar wind flux is 5× 1012 particles m−2 s−1. The galactic cosmic ray fluxes at 1 AU are
even smaller, about 6×102 particles m−2 s−1.
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When considering the propagation of energetic particles from the Sun to the helio-
sphere, the Parker spiral has to be understood properly. The bulk solar wind plasma ex-
pands almost radially out from the Sun and causes the spiraling magnetic field because the
magnetic field lines are tied to the surface of the rotating Sun. However, this is an integral
picture of all particles in the energy range of the bulk solar wind. Each individual particle,
of any energy, is bound to the Larmor motion around the bent magnetic field lines with an
individual speed along the magnetic field. Thus high-energy particles reaching the Earth
in a short time mostly originate from the western half of the solar surface, which is the
most typical footpoint of a solar wind field line intersecting the Earth’s orbit.

The solar energetic particle events (SEPs) are divided into two main categories: impul-
sive and gradual. The impulsive events are much more common than the gradual events.
Table 12.1 lists the main observational characteristics of these two classes.

Table 12.1 Properties of impulsive and gradual solar energetic particle events (according to Lang [2000]).

impulsive gradual
Particles: electron-rich proton-rich
3He/4He ≈ 1 ≈ 0.0005
Fe/O ≈ 1 ≈ 0.1
H/He ≈ 10 ≈ 100
Duration of X-ray flare impulsive (minutes) gradual (hours)

(hard & soft X-rays) (soft X-rays only)
Duration of particle event hours days
Radio bursts Types III and IV Types II and IV
Coronagraph observations typically nothing CME in 96% of cases
Solar wind observations energetic particles very energ. particles
Longitudinal extent < 30◦ ≈ 180◦

Events/year (solar max.) ≈ 1000 ≈ 100

Particles in impulsive events are thought to be accelerated close to the Sun both by the
rapid energy release in the impulsive phase of a flare and by strong wave activity associ-
ated with the process. The very high abundance of 3He in impulsive events is a curious fact
because the fraction of 3He nuclei of all helium in the solar atmosphere is about 5×10−4.
This indicates that, whatever the acceleration mechanisms are, at least one of them must
be very efficient in accelerating this particular species. The same acceleration mechanism
may accelerate also 4He, as the time profiles of both species are similar. This points to gyro
resonant wave–particle interaction with waves having frequencies below the proton gyro
frequency ( fcp), as the gyro frequencies of 3He++ and 4He++ are 2/3 fcp and 1/2 fcp, re-
spectively. In their high-frequency domain the Alfvén waves propagate as electromagnetic
ion cyclotron waves at frequencies below fcp and are potential candidates for acceleration.
Note that modern instruments have also found 3He/4He-ratios of the order of 0.01–0.05
also in several gradual events, which supports the case for a similar mechanism in at least
some gradual events.
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The very strong association of gradual solar energetic particle events with CMEs sug-
gests that in gradual events particles are most likely accelerated by the shock wave that the
ICME drives in the solar wind plasma. This also explains the much longer duration of the
gradual events than the impulsive flare-associated events. One might, furthermore, expect
that the long duration could explain the acceleration to higher energies. However, it is un-
likely that shock acceleration could lift the ambient solar wind temperature so much. Thus
pre-acceleration in the corona is an obvious requirement for particles reaching energies of
several tens or hundreds of MeV.

Again the common jargon may mislead an uninitiated reader. One must not mix up the
gradual flares and gradual particle events. The gradual flares are post-CME phenomena
in the corona and they are not responsible for particle acceleration in the gradual particle
events.

The details of SEP acceleration belong to the many unsolved questions in solar physics.
From particle observations we know that very efficient acceleration must take place and
it is quite clear that the energy must have magnetic origin. In fact, only the very strongly
stressed and sheared magnetic field structures have enough energy to explain the rapid
acceleration. But the road from these conditions to a satisfactory physical explanation of
acceleration in the great variety of explosive phenomena is long and winding. For example,
a direct acceleration in a reconnecting current sheet cannot explain the high energies, as
the outflow speed is limited to the order of the Alfvén speed in the inflowing plasma. It
is more likely that stochastic acceleration by strongly fluctuating fields, including shocks,
ion cyclotron waves, turbulence, etc., provides the main routes to particle energization.
Several of these mechanisms may need to be combined before a particle is lifted from the
quasi-thermal background to the observed energy level.



13. Magnetospheric Storms and Substorms

Strongly perturbed conditions in the magnetosphere form a class of phenomena that we
call magnetospheric storms. Historically, they have been observed as strong perturbations
of the Earth’s magnetic field, and thus they are often referred to as magnetic storms. Storms
are truly global and can be seen in magnetic recordings all over the Earth. During a mag-
netic storm a number of more localized substorms may take place. Despite their sugges-
tive name substorms should not be seen just as building blocks of storms. A storm is more
than the sum of substorms. On the other hand, isolated substorms, i.e., non-storm-time
substorms, are actually much more common than substorms occurring during strong mag-
netospheric perturbations.

The main drivers of the magnetospheric storms are the interplanetary coronal mass
ejections (ICMEs, Chap. 12) and the fast solar wind coming from the coronal holes. As the
ICMEs are intermittent events, they give rise to non-recurrent storms. Another major class
of storms are recurrent storms driven by high-speed solar wind and reappearing after about
27 days, when the same coronal hole is facing the Earth. The strongest global magnetic
perturbations take place during ICME-driven stroms, whereas the high-speed wind is more
strongly related to enhanced radiation belt electron fluxes and substorm activity.

13.1 What are Magnetic Storms and Substorms?

Depending on which signatures we are considering magnetospheric storms can look quite
different from one event to another. A colleague of the author once remarked, “if you
have seen one storm, you have seen one storm”. Due to this variability and the actually
relatively small number of storm events during, say, one solar cycle the results of very
popular “statistical” studies must be interpreted with great care. In this section we review
some of the major characteristics that most storms and substorms have.
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13.1.1 Storm basics

A magnetic storm is a period of strongly disturbed magnetic field in the magnetosphere
and on the ground. The storm conditions can last from several hours to a few days, and
sometimes a new storm commences before the magnetosphere has fully recovered from
the previous perturbation. There is no unique lower threshold for the magnetic perturba-
tion above which it should be called a storm. In Sect. 1.5.1 we adopted the convention that
low-latitude magnetic perturbation yielding the minimum Dst of –50 nT represents the
threshold between weak and moderate storms. Identification of weak storms from obser-
vational data is often ambiguous, which in practice leads to somewhat different statistical
results in studies that start from, say –30, –40, or –50 nT. In this book we call storms
with Dst from –50 to –100 nT moderate, from –100 to –200 nT intense, and those with
Dst < −200 nT big. There is no commonly agreed terminology here and storm classifica-
tions based on other indices, e.g. K p, can place a given storm into a different category.

Figure 13.1 illustrates an intense storm as seen in magnetograms from four low-latitude
stations. If the storm is driven by an ICME with a shock, as in this particular case, the storm
begins with a rapid positive deviation of the magnetic north component (H), here at about
02 UT. This storm sudden commencement (SSC) is a signature of an ICME shock hitting
the Earth’s magnetopause. As the ICME pushes the magnetopause closer to the Earth, the
Chapman–Ferraro current must increase to shield the enhanced geomagnetic flux density

San Juan

Hermanus

Honolulu

Kakioka

10
0 

nT

15.5.1997 16.5.1997

Fig. 13.1 The horizontal component (H) of the magnetic field measured at four low-latitude stations dur-
ing a magnetic storm on May 15, 1997. The sudden commencement took place on May 15 at about 02 UT,
which is indicated by a sudden positive jump of the H component at all stations. The main phase of the
storm started after 06 UT as indicated by the strong negative deviation of the H component. The solid ver-
tical lines indicate the change of UT day and the horizontal tick-marks are given for each 3 hours. (Figure
by courtesy of L. Häkkinen)
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from the solar wind. Because the direction of the dayside JCF is eastward, i.e., opposite to
the ring current, the enhanced current, which is at the same time pushed closer to the Earth,
causes a positive deviation in the H component. This is the effect that is removed from the
pressure corrected index Dst∗ using the formula (1.64). The SSC is a global phenomenon
and the shaking of the magnetosphere is visible also in auroral region magnetometers and
even in the nightside.

Magnetic storms can also be driven by low-speed ICMEs and by fast solar wind without
a preceding shock. Thus there are storms without a sudden commencement signature. On
the other hand, a shock wave hitting the magnetopause does not necessarily lead to a storm
development. In such cases the positive deviation in the magnetograms is called a sudden
impulse (SI).

After the SSC a period called the initial phase begins, which in Fig. 13.1 is best seen in
the Honolulu magnetogram. The initial phase can have a very variable length depending
on the structure of the solar wind driver (Sect. 13.4). If the IMF in the the sheath region
between the shock and the ejecta is southward, the initial phase may be very short and
the main phase commences as soon as the energy transfer into the ring current, and at
the same time also to the tail current, has become strong enough. If the sheath IMF is
northward, the main phase will not begin until a southward field of the ejecta enhances
reconnection on the dayside magnetopause. If there is no southward IMF within the part
of the ICME interacting with the magnetosphere, no regular global storm is expected to
take place, unless the event is followed by fast and long-duration enough fast solar wind
with southward component of IMF capable of driving a storm on its own. However, a
pressure pulse also with northward IMF can shake the magnetosphere enough to trigger a
substorm sequence.

The main phase is characterized by a rapid decrease of the H component. This is due
to strong enhancement of the westward ring current. The enhanced energy input from the
solar wind leads both to energization of the current carriers and to increase of their num-
ber in the inner magnetosphere. Note that the ring current enhancement is typically not
quite symmetric because a major fraction of the current carrying energetic ions are not
necessarily on closed drift shells but pass the Earth in the evening sector and continue to-
ward the dayside magnetopause. This is consistent with Fig. 13.1, in which the Honolulu
and Kakioka magnetometers show steepest main phase development between 0630 and
0800 UT. Storms have also strong effects on the electron energy and content in the radia-
tion belts. We will discuss the storm-time ring current and radiation belt dynamics more
thoroughly in Chap. 14.

At some point in time the energy input from the solar wind ceases and the losses of
energetic ring current carriers exceed their sources. Consequently, the Dst index starts to
return toward the background level. This phase is called the recovery phase. It is typically
much slower than the main phase because the loss processes of the current carriers are
much slower than the enhancement of the ring current. During the main phase and around
the minimum Dst several substorms may occur.
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13.1.2 The concept of substorm

So what are the substorms? The evolution of the magnetic H component during a storm
can be quite irregular and, in particular in the auroral zone magnetograms, significant
shorter-term activity can be seen. Birkeland [1908] called these activations polar elemen-
tary storms. The term substorm (more exactly, DP substorm, where DP stands for polar
disturbances) was introduced by Akasofu and Chapman [1961]. A few years later Akasofu
published the landmark paper [Akasofu, 1964] in which he used the term auroral substorm
and described the process in terms of visual auroras using a large number of auroral all-sky
images. While these polar elementary storms or auroral substorms are most pronounced
within the night sector ionosphere, they involve large parts of the magnetosphere and the
electrodynamic coupling between the ionosphere and the magnetosphere is an essential
element in the process.

Similarly to storms the substorms can be divided into three distinct phases. The first one
is called the growth phase, during which one or more quiet auroral arcs in the midnight
sector slowly drift equatorward and the auroral electrojets enhance. Akasofu [1964] actu-
ally did not consider the growth phase as part of the substorm but defined the beginning
of the substorm, the substorm onset, to take place when the most equatorward auroral arc
suddenly brightens and the activation starts to expand to the west, to the east, and pole-
ward. This auroral breakup signals the beginning of the substorm expansion phase. The
growth phase was introduced later by McPherron et al [1973] to describe the phase when
the magnetotail field becomes stretched until it breaks at the expansion phase onset. The
growth phase may not necessarily lead to an auroral breakup and the expansion phase. Dur-
ing the growth phase also smaller localized activations called pseudobreakups, not leading
to a full-fledged expansion phase evolution, may take place [e.g., Koskinen et al, 1993].
Sometimes the process stops at a pseudobreakup, but often the growth phase continues
after the pseudobreakup to the expansion phase onset. The expansion phase lasts typically
for a half-hour, after which the magnetosphere and ionosphere return to quiet conditions
during the recovery phase. The whole substorm sequence takes typically 2–4 hours.

This basic sequence describes quite well typical isolated substorms. As we shall see
later, the storm-time auroral activations are more complicated: new expansions may start
before the previous ones have recovered and no growth phase is necessary, and also the
observational characteristics both in space and on the ground may be different.

13.1.3 Observational signatures of substorms

Let us begin with the definition of the coordinate system that we use in the discussion of
magnetospheric dynamics, the Geocentric Solar Magnetospheric coordinates (GSM). In
this system X points toward the Sun and the Earth’s dipole axis is in the XZ-plane. Thus Z
points nearly northward and Y is roughly opposite to the Earth’s orbital motion around the
Sun. As the Earth rotates, the XZ-plane flaps about the X-axis such that the dipole remains
in that plane but can be tilted maximally 34◦ from the Z-direction (the sum of the angles
of rotation and dipole axes).
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Solar wind

We start the discussion of substorm observations from the driver of the system, the solar
wind. Fairfield and Cahill [1966] were the first to establish a clear statistical correlation
between the direction of the IMF and auroral activity. This is consistent with the picture of
reconnecting magnetosphere (Fig. 1.23). The southward IMF facilitates the dayside recon-
nection and, consequently, enhances the dynamo action over the nightside magnetopause,
which in turn leads to enhanced convection. As we have seen in Chap. 8, the convective
electric field gives a measure of how effective the reconnection process is. As the mag-
netospheric magnetic field on the dayside magnetopause points to the north, the rectified
dawn-to-dusk pointing component of the interplanetary electric field EY = V Bs, where V
is the solar wind speed and Bs is the southward component of IMF (zero if the IMF north-
south component points toward the north), is an essential parameter. In fact, V Bs is one of
the most popular functions in studies on the dependence of the Dst index on the solar wind
[Burton et al, 1975].

Another, a bit more sophisticated, widely used solar wind–magnetosphere coupling
function is Akasofu’s epsilon parameter [Perreault and Akasofu, 1978; Akasofu, 1981]
given in SI units as

ε =
4π
μ0

V B2 sin4
(

θ
2

)
l2
0 , (13.1)

where l0 is an empirically determined scale length, set to 7 RE , B the magnitude of the
IMF, V the solar wind speed and θ the “clock angle” between Z-axis and the projection of
IMF onto the Y Z-plane in the GSM coordinates. Thus the gate function sin4(θ/2) is zero,
when the IMF projection in the Y Z-plane points directly to the north (BY = 0), and one,
when it points directly to the south.

We will discuss the physics behind the epsilon parameter in Sect. 13.6 but note already
here that it is given in units of power (W), scaled empirically to estimated energy trans-
fer to the inner magnetosphere, and its dependence on the clock angle allows for weak
energy transfer also during northward IMF. During northward IMF epsilon is typically
less than 1010 W. When the IMF turns toward the south, epsilon increases rapidly. As a
rule of thumb, when epsilon exceeds 1011 W, a substorm is expected to break up. During
a strong substorm epsilon can exceed 1012 W, and during intense storms 1013 W. While
these are rough estimates only and the actual energy input is an integral over finite time,
we can conclude that the magnitude and direction, in particular the southward and north-
ward turnings, of the IMF and the solar wind speed belong to the critical parameters of the
substorm process.

Ionosphere

Let us then jump to the low-altitude end of the system, the ionosphere. During the sub-
storm growth phase the energy input from the solar wind to the magnetosphere increases,
which enhances the magnetospheric convection (Chap. 1). Mapped along the magnetic
field lines into the ionosphere the motion is across the polar cap from the dayside to the
nightside and returns back to the dayside through the evening and morning sector auroral
zones. Recall that in the ionospheric E-layer the ion motion is constrained by collisions
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with neutrals, whereas the electrons follow the convection pattern yielding the electrojet
currents directed opposite to the convective flow. During the growth phase the electrojet
currents are enhanced and the AE index (Sect. 1.5.1) rises, although slowly. Note that, in-
stead of the electrojets, it is also possible to measure the convection across the polar cap
using a magnetometer close to the magnetic pole. This is actually done to calculate the
so-called PC index, which has a good correlation with the AE index [Troshichev et al,
1988].

Another ionospheric signature of the growth phase is the enhancement of energetic
(>30 keV) electron precipitation from the magnetosphere. The ionization caused by these
electrons attenuates interstellar radio noise at 30 MHz, which can be observed from the
ground using a special radio receiver called riometer. When stopped in the atmosphere,
the electrons emit bremsstrahlung, which is possible to measure with high-altitude balloon-
borne X-ray detectors.

At the time of the substorm onset (and auroral breakup) a strong westward current,
substorm electrojet, appears in the ionosphere around the magnetic midnight. This leads
to a rapid negative drop of the AL index (and enhanced AE). The AE network is quite
sparse and thus the index does not give an accurate timing for the onset, unless one of the
magnetometers happens to be located just below the newly established substorm electro-
jet. There are also more global methods to time the onset. One is to measure magnetic
micropulsations with periods of 40–150 s, known as Pi2 pulsations (i stands for “irreg-
ular” and 2 indicates the frequency range). The pulsations are a response of the global
magnetohydrodynamic system to the establishment of a new field-aligned current loop,
the substorm current wedge (SCW), that connects the substorm electrojet to the current
sheet in the magnetotail (Fig. 13.2). These ionospheric signatures of the onset take place
within 1–2 min of each other, which is comparable to the period of Pi2 pulsations and thus
to their temporal resolution. Accurate timing is, however, one of the most critical issues
in substorm research. The onset signatures in different parts of the magnetosphere and
ionosphere have different time constants and the observational tools have different time
resolutions, which often complicate the analysis.

The expansion phase is the visually most impressive and physically most strongly dis-
turbed part of the substorm process. The auroral activity expands from the original breakup
close to the local magnetic midnight to the east, to the west and poleward (Fig. 13.3).
The western edge of the expansion, associated with the upward current part of the SCW,
is known as the westward traveling surge (WTS). There has, however, been some debate
whether the surge really propagates in the ionosphere, or whether the propagation is merely
an illusion arising from the formation of consecutive new fronts ahead of the previous ones
as long as the expansion takes place.

During the expansion phase the ionospheric currents and electric fields behave in much
more complicated ways than the sketch in Fig. 13.2 would suggest. The upward current has
filamentary small-scale structure and it does not need to be in full balance with the current
flowing down at the eastern edge of the wedge. Some of the upward current filaments
appear to have a closure to local downward filaments in the near vicinity of the WTS [e.g.,
Marklund et al, 1998]. Note that the optical auroras also display fine-structuring that most
likely is caused by local low-altitude processes and does not necessarily have any direct
connection to the processes in the outer parts of magnetosphere. The total ionospheric
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Fig. 13.2 The establishment of the substorm current wedge according to McPherron et al [1973]. Note
that the picture is highly idealized. The coupling of the FAC to the tail current is not as sharp as the figure
suggests but takes place within a much larger volume. Recall from Chap. 6 that, in the steady state, current
flows field-aligned only in the region where ∇P is negligible.

Fig. 13.3 A part of the original illustration by Akasofu [1964] of the expansion of the auroral substorm in
the ionosphere. Times are relative to T = 0 that refers to the onset of the expansion phase.

current in the horizontal part of the SCW is of the order of 1 MA, but a part of the observed
current can be due to the enhanced ionospheric electric field, i.e., the enhanced convection,
and does not need to be deviated from the tail current.

At some moment the substorm has exhausted the energy stored during the growth phase.
When the direct energy input from the solar wind ceases, the recovery phase commences.
Note that while the term is the same, the substorm recovery is different from the recovery
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of a storm. The auroral substorm phenomena are coupled more strongly to processes in
the mid-tail, where the system does not have as long a memory as the ring current. The
substorm recovery in the tail is a rather rapid process, whereas the more inert ionosphere
remains in an active state much longer. At the beginning of the recovery phase the oval in
the night and morning sectors is broad in latitude exhibiting bright auroral forms. Most of
the activity moves to the post-midnight sector, and toward the end of the recovery large
eastward traveling forms, called omega bands according to their spatial appearance, can
sometimes be recognized.

Geostationary orbit magnetosphere

It is a fortunate coincidence that the geostationary orbit at 6.6RE from the center of the
Earth is a favorable region for substorm observations in the magnetosphere. Thus numer-
ous geostationary satellites, having their main objectives from meteorology to military
applications, have carried space physics instrumentation as secondary payloads.

Figure 13.4 is a classic illustration of such a dual-use of a military satellite equipped
with energetic particle detectors for investigation of the substorm process. Before the sub-
storm onset the magnetic field became increasingly stretched (θB in the figure increased
toward 90◦). In the same time the positive anisotropy parameter indicated a cigar-shaped
electron distribution function with T‖ > T⊥. These are signatures of the growth phase. The
energetic electron fluxes first decreased and then disappeared just prior to the onset. This
did not mean that the particles had disappeared from the plasma sheet. Instead the thinning
plasma sheet moved away from the spacecraft. Note that the spacecraft was not quite at

Fig. 13.4 Observations of energetic (> 30 keV) electrons on the geostationary orbit. The top panel shows
differential electron fluxes in 6 energy channels from >30 keV to >200 keV. The second panel gives the
direction of the magnetic field that in this case was determined from the direction of the atmospheric loss
cone (θB is the angle from the GSM Z-direction). The curve in the bottom panel indicates the anisotropy
of the electron distribution. (Adapted from Baker and McPherron [1990].)



13.1 What are Magnetic Storms and Substorms? 331

the center of the sheet even before or after the event as indicated by θB ≈ 45◦ during these
periods.

The stretching of the magnetic field configuration also explains the previously men-
tioned enhanced energetic electron precipitation causing the attenuation of cosmic radio
noise and X-ray emissions. As the field is stretched, its curvature radius approaches the
gyro radii of the electrons. The electron motion across the current sheet becomes chaotic
and some of the electrons jump into the atmospheric loss cone in the velocity space as
discussed at the end of Sect. 3.4.

Soon after the expansion phase onset the spacecraft observed an almost dispersionless
electron injection with particles at all energies arriving simultaneously. Thus the parti-
cles had not experienced much energy-dependent eastward gradient and curvature drifts
(Chap. 3) and were likely injected from farther in the tail in the time sector where the
spacecraft was located.

The two later injections indicated in Fig. 13.4 were dispersive, i.e., electrons with high-
est energies arrived before those with lower energies. At these times the satellite had moved
toward the east with the rotation of the Earth, and the energetic electrons reaching the satel-
lite had gradient and curvature drifted some distance eastward before reaching the satellite
instrument. If the observing spacecraft had been in the evening sector, i.e., west of the
injection longitude, similar behavior would be seen in energetic ion data. These injections
are strongly correlated with expansion phase onset signatures in the ionosphere. The in-
jected particles reach the geostationary orbit from the tail, but the distance to the origin
of the injection is difficult to determine. Consequently, we have one more substorm onset
signature whose exact timing is difficult.

Another important observation within the vicinity of the geostationary orbit is a rapid
dipolarization of the magnetic field after the onset, i.e, the stretched magnetic field config-
uration returns toward a more dipole-like configuration. This is evidence of the relaxation
of the magnetic tension accumulated during the growth phase. Dipolarization is generally
thought to be associated with the establishment of the substorm current wedge through the
midnight ionosphere.

Magnetotail

The thinning of the tail plasma and current sheets during the substorm growth phase can
also be seen farther out. The most popular view of the substorm process is that the near-
Earth particle injections and the dipolarization as well as the establishment of the substorm
current wedge are consequences of magnetic reconnection taking place somewhere at the
distance of 8–30 RE from the Earth. This view is known as the near-Earth neutral line
(NENL) model (for a review, see Baker et al [1996]). The word “near” refers to the creation
of a new neutral line much closer to the Earth than the distant X-line somewhere beyond
100RE in the steady-state Dungey picture.

Once the near-Earth reconnection starts to evolve the NENL cuts the magnetic connec-
tion between the near-Earth and far-tail plasmas with outflow jets toward the Earth and into
the downwind direction (T = 0 in Fig. 13.5. Tailward of the NENL the large-scale mag-
netic structure known as a plasmoid looks in a two dimensional cut like an island bounded
by the distant X-line). The reconnection outflow pushes the plasmoid to the downwind di-
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Fig. 13.5 Formation of the near-Earth neutral line and the tailward motion of the associated plasmoid
according to Hones et al [1984].

rection and eventually the plasmoid becomes detached from the magnetosphere . In reality
plasmoids hardly are as symmetric as the two-dimensional cartoon of Fig. 13.5 suggests,
but rather look like large flux ropes as discussed in the next section.

For a long time the empirical evidence for reconnection and NENL formation was indi-
rect and based on observations of theoretically inferred consequences, such as outflow jets,
or magnetic field perturbations known as traveling compression regions (TCR) in the far-
tail being interpreted as bypassing plasmoids. However, in some fortunate cases spacecraft
have passed through the ion diffusion region in such a way that it has been possible to infer
even the Hall fields (Fig. 8.5) from the data. The first reports came from single-spacecraft
observations by Geotail [Nagai et al, 2001] and Wind [Øieroset et al, 2001]. Using the
four-spacecraft Cluster observations Runov et al [2003] were able to determine also the
gradient scale size of the Hall-structure to be about 1500–2500 km, which according to the
basic reconnection models should be of the order of the local ion inertial length c/ωpi.

While the Hall-type quadrupolar magnetic field structure has been recognized in some
cases, the actual structure of the region where the tail is cut off may be more complicated
and also different from one substorm to another. For example, Lui et al [2007] studied
Cluster tail observations during a substorm expansion at the distance of about 19 RE
downtail. They estimated the terms of the generalized Ohm’s law written in the form
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(8.40), where the resistive term ηJ was replaced by anomalous resistivity arising from
the electromagnetic and plasma fluctuations as

ηJ = −1
n

[〈δEδn〉+ 〈δ (nVe)×δB〉] . (13.2)

Within the uncertainties of the procedures for estimating the terms on the right hand side
of this expression from Cluster observations the anomalous resistivity term was found to
be the largest, the next was the Hall term, then electron pressure, and smallest was the
inertial term. Furthermore, the electron diffusion region, where the anomalous resistivity
was dominating, was much larger than suggested by the Hall MHD model in which the
electron diffusion region is very small compared to the diversion of the ion flow by the
Hall effect. Lui et al [2007] thus concluded that their observations were not consistent
with X-line formation in the MHD theory but, instead, turbulence was the cause of the
breakdown of the frozen-in condition.

In this context it is also worthwhile recalling from the discussion of the Hall effect in
Chap. 8 that the 3D simulation results by Pritchett and Coroniti [2004] suggest that the
Hall fields are strongly reduced, if there is strong enough guide field By. On the other
hand, in an event study based on Cluster observations by Eastwood et al [2007] clear Hall
structures in both the electric and magnetic fields were found around the reconnection site.
In that event a strong guide field was observed within a small flux rope forming earthward
of the diffusion region, but there was no significant guide field outside of the flux rope.

The signatures discussed in this section describe quite well an isolated substorm of a
moderate size. However, not all of them are observed in all substorms and their relation-
ships can be quite complicated. For example, there can be several expansion phase onsets
following each other without clear growth phase signatures in between; there may not be
a one-to-one correspondence between plasmoid release and near-tail dipolarization or en-
hancement of the substorm electrojet; and, as said earlier, storm-time substorms are even
more intricate.

13.2 Physics of Substorm Onset

The NENL model is a comprehensive attempt to organize a wide variety of observations
rather than a detailed description of the physical processes associated with the substorm
process. Over the years several competing models have also been proposed. Most of the
models focus on the onset mechanism, the tail current disruption, and early expansion,
whereas less consideration has been given to the relaxation processes during the recovery
phase. In this book we do not want to dwell on the history of the, sometimes quite heated,
debate between the different models, nor on the large amount of observational details that
have been brought to support the different views. As a starting point for an interested
reader we suggest two comprehensive reviews that appeared in the same issue of the Jour-
nal of Geophysical Research in 1996 by Baker et al [1996] on the NENL model and by
Lui [1996] on the current disruption (CD) model. The main difference between these ap-
proaches today concerns whether the reconnection at the NENL is the primary process,
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as discussed above, or is the near-tail current disruption an independent process that may
or may not lead to the mid-tail X-line formation. These two views have more recently
been termed as “outside–in” and “inside–out” views. There are several other approaches,
in particular, the attempts to explain the onset as a result of a global instability in the cur-
rent system coupling the magnetosphere and ionosphere together, termed magnetosphere–
ionosphere coupling (MIC) model [e.g., Kan, 1993]. While the MIC model has not gained
as much support as the NENL and CD models, the communication between the magneto-
sphere and ionosphere is an important issue in any approach to the substorm process.

We can think the initiation of the substorm expansion as a global instability of the mag-
netospheric configuration, or rather a complex of several instabilities from the microscopic
to the macroscopic level. The auroral breakup, the establishment of the substorm current
wedge and the release of a plasmoid are macroscopic phenomena, whereas the details of
breaking the magnetic connection between the plasmoid and the inner magnetosphere, tail
current disruption, or wave–particle interactions in the auroral acceleration region are es-
sentially microphysical phenomena, of which we still, after more than 40 years of intense
studies, can say remarkably little that is definitive.

The main physical building blocks, whose causal relationships need to be understood,
are the large-scale flows in the magnetosphere and the ionosphere (the focus of the NENL
model), the local instability mechanisms (the focus of the CD model), and the dynam-
ics of the current systems between the magnetosphere and ionosphere (the focus of the
MIC model). These elements may be causally dependent on each other or develop inde-
pendently in different parts of the magnetosphere–ionosphere system. While they may be
independent at some phase of the substorm sequence, they can become coupled to each
other at a later stage.

13.2.1 The outside–in view

The NENL model is based on the dynamics of large-scale MHD flows where the tail
reconnection plays the key role. The model invokes in a natural way the plasma sheet
thinning during the growth phase, the earthward and tailward flows from the reconnection
site after the expansion onset, and the plasmoid release. The modern versions of the model
are more sophisticated than the original two-dimensional cartoons (e.g., Fig. 13.5). This
is important, for example, for the description of the current diversion from the tail current
sheet into the ionosphere as the substorm current wedge.

In the NENL model large-scale reconnection is assumed to start when the current sheet
thinning has reached an unspecified threshold determined by local plasma parameters.
Thus the onset of reconnection is an example of a global instability driven by external
input, i.e., piling of magnetic flux to the tail lobes. However, the reconnection cannot start
until the local parameters become conducive to the process. Traditionally the local (micro-
scopic) instability process has been assumed to be the collisionless tearing instability, but
as discussed in Chap. 8 the microphysics of collisionless tearing is a complicated issue.
One should again be careful not to hook up on terminology of poorly understood phenom-
ena. “Tearing” may be an attractive descriptive term, but the underlying physics is another
matter.
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An early problem with the NENL model was that it, at least implicitly, assumed that
the substorm onset takes place when the tailward part of the plasma sheet becomes mag-
netically disconnected from the Earth. In that case the NENL would map to the boundary
of open and closed field lines in the ionosphere, i.e., on the poleward edge of the auroral
oval. As Akasofu [1964] has already noted, the auroral breakup usually takes place on the
most equatorward auroral arc, poleward of which there often is a wide band of precipitat-
ing plasma sheet particles. Magnetic mapping of the breakup signatures and the location
of the substorm electrojet, even assuming a considerable stretching of the near-tail mag-
netic configuration during the growth phase, suggested that both the source of the particle
precipitation and the SCW were on the closed field lines not far beyond the geostationary
distance. This is much closer to the Earth than the statistically determined location of the
X-line at or beyond −20RE based on observations of reconnection outflows.

Fig. 13.6 A schematic of how the SCW generation is described in the modern NENL picture according to
Baker et al [1993]. The FAC rises from shear flows at the dawn and dusk flanks of the reconnection region.
In addition to the SCW this picture addresses the brightening of the breakup auroral arc. In the domain
labeled “thermal electron chaotization region” the current sheet is so thin that the adiabatic invariance
of the magnetic moment of thermal electrons is broken. A fraction of these particles is scattered to the
atmospheric loss cone leading to enhanced precipitation along the equatorward edge of the auroral oval.
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As discussed by Baker et al [1996], by the mid-1990s overwhelming observational ev-
idence from space-borne and ground-based observations indicated that the reconnection
process must start within closed magnetic field lines and eat itself up to the open–closed
field line boundary during the expansion phase within, say 30 min, consistent with the
poleward expansion of the auroral bulge in the ionosphere. Figure 13.6 shows how both
the generation of the SCW and the brightening of the equatormost auroral arc at the sub-
storm onset can be reconciled with the NENL model. The SCW is explained to rise from
the flow shears due to the fast outflows from the reconnection line, whereas the auroral
brightening is due to enhanced particle scattering into the atmospheric loss cone through
the chaotization of particle motion in the thin current sheet earthward of the reconnection
line.

In the original NENL view when the cross-tail current in the vicinity of the X-line is cut
off, the current has to find another way to maintain current continuity, which would give
rise to the SCW. One can expect that the current must take the route of least resistance,
but it is not evident that such a route would be through the resistive ionosphere. This is
actually a problem pertinent to the CD model as well.

To explain the current closure through the ionosphere, at least heuristically, it is useful
to recall that the “field-alignedness”, i.e., how close to zero J×B is, depends in the steady
state on the pressure gradient. By whichever mechanism current is fed from the current
sheet toward a region of lower β , it becomes more field-aligned the farther it is from the
high-β region. We do not need to think of the formation of the SCW as just a passive
current diversion. Instead, we should look for an active mechanism of generating the FAC,
of course still maintaining that the large scale current is continuous, i.e., ∇ · J = 0. In
Chapter 6 we found that time-dependent vorticity may provide a source and a sink for
the FAC from and to the magnetosphere. In the NENL model suitable flow shears exist
at the dawnward and duskward edges of the earthward-flowing plasma from the X-line.
These shears are in the right sense to feed the SCW. At first the X-line has a limited dawn-
to-dusk extent and the flow channel is narrow. During the expansion phase the earthward
flow channel widens corresponding to the widening of the ionospheric part of the current
wedge. In this view the current diversion to the ionosphere takes place somewhat earthward
of the actual X-line (Fig. 13.6) and the brightening breakup arc is evidently on the closed
field lines.

Another scenario for how the earthward outflow from the NENL can lead to the SCW
was advocated by Shiokawa et al [1998] based on a multi-point case study of an isolated
substorm on March 1, 1985 (Fig. 13.7). They argued that when the earthward flow ap-
proaches the boundary region between dipolar and tail-like magnetic field configurations,
it is slowed down by the total (i.e., magnetic plus plasma) tailward pressure force ∇Ptot .
Piling up of the magnetic flux at this interface expands the dipolar configuration outward
and thus corresponds to an inertial current directed dawnward, i.e., opposite to the tail cur-
rent. In order to maintain total current continuity FACs in the sense of the SCW must be
created. This can be called current disruption, but here it is a consequence of the NENL
farther out. Shiokawa et al [1998] note that this scenario can explain the establishing of
the SCW, but later in the expansion phase something else must sustain the current, as the
initial fast flow lasts only about 10 min.
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Train your brain

Show that both Fig. 13.6 and Fig. 13.7 are consistent with the current directions of the
SCW, i.e., the source of the FAC flowing into the ionosphere is in the dawnward part
and the sink of FAC on the duskward part of the wedge. Show further that the pattern is
the same for both hemispheres.

The mechanisms suggested in Figs. 13.6 and 13.7 appear to create the FAC at somewhat
different distances in the tail. Which one of them is closer to reality, or whether both of
them can have a role in the substorm process, has not yet been firmly established. The
braking mechanism may be important at the early phase of the SCW development whereas
the shear flow can sustain the current system throughout the expansion phase.

Whatever the mechanism of current diversion is, building up the current loop through
the ionosphere takes a finite time. The earthward flow creates a dawn-to-dusk directed po-
larization electric field E = −V×B. In ideal MHD the magnetic field lines are equipoten-
tials and can be mapped to the ionosphere as discussed in Chap. 1. In reality this mapping
is not established immediately but the electric field must be propagated along the mag-
netic field lines as an Alfvén wave, which is the fastest mode of propagating information
of large-scale changes in the tail magnetic field configuration to the ionosphere. The polar-
ization electric field in front of the wave sustains a current that is closed behind the wave
by FACs in the same sense as the SCW. In the ionosphere, the electric field initiates an
equatorward plasma flow. However, the inertia of the ionospheric plasma retards the flow

Fig. 13.7 Schematic view of how the braking of fast earthward flow at the interface between the dipolar
and tail-like field leads to the SCW through the dawnward inertial current. The numbering indicates the
temporal sequence of different phenomena. (From Shiokawa et al [1998].)
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and most of the electric field is reflected back to the magnetosphere. In the plasma sheet
the wave is again bounced back to the ionosphere, and so on. At each bounce the total
amount of FAC and ionospheric electric field grows until the tail flow and the ionospheric
flow correspond to each other.

Thus the magnetosphere–ionosphere coupling is a natural and important part of the
NENL model. The difference from the MIC model, to which we return in the context of
the inside–out picture, is that in the NENL model the expansion phase onset is driven by
the near-tail reconnection and the magnetosphere–ionosphere current system responds to
it, whereas in the MIC model the onset is a consequence of the enhanced coupling.

Another important issue to understand is the plasmoid release. The early 2D picture
where the entire tail is cut in a symmetric fashion is easy to criticize. The reconnection
starts locally, potentially at several sites independently of each other associated with initi-
ation of bursty bulk flows (Chap. 1) within closed field lines. Thereafter the system slowly
evolves toward the large-scale plasmoid release. Furthermore, any finite background mag-
netic field component in the Y -direction superposed on a closed loop of magnetic field
lines leads to a helical flux rope structure. The local BY can be due to the stress imposed
by the IMF Y component on the magnetosphere or associated with the bending of the
field-lines due to the local structure of the expanding reconnection region.

Assume that the flux rope begins to develop on closed field lines and BY > 0, i.e.,
pointing from dawn to dusk. Now the field is wound such that a field line originating from
the southern hemisphere in the dawn sector connects through the flux rope to the northern
hemisphere in the dusk. Such a flux rope can be called “right-handed”, and for BY < 0 the
helical structure is the opposite, “left-handed”. Thus the ionospheric footpoints may have a
considerable shift in the local time and during the process the ionospheric connection may
be lost at different times in different sectors, which should cause a considerable azimuthal
rotation of the flux rope axis. In fact, the first analysis of flux rope observations in the
magnetotail [Sibeck et al, 1984] had already come to the conclusion that the flux rope axis
can be nearly parallel to the tail axis, a result that the 2D space cartoonists seem to have
often forgotten.

Slavin et al [2003] investigated Geotail observations of flux-ropes during the satellite’s
nightside season between November 1998 and April 1999 within X distances from about
–14 RE to about –30 RE . They identified 73 flux ropes of which 35 were moving earthward
and 38 tailward. The earthward-moving structures were associated with bursty bulk flows
and thus named BBF flux ropes, whereas the tailward structures were named plasmoid
flux ropes. The BBF flux ropes had smaller mean diameters (1.4RE ) and larger mean core
fields (20 nT) than the plasmoid flux ropes (4.4RE and 14 nT). The azimuthal orientation of
the flux ropes varied strongly, emphasizing the uneven detachment from Earth. Only 60%
of the flux ropes could be described as cylindrical force-free (J×B = 0) configuration.
Note that while a force-free field tends to form a flux rope structure, the converse does not
need to be true. Thus not finding a force-free configuration does not invalidate the MHD
reconnection-based description of flux rope formation as sometimes has been claimed.
Slavin et al [2003] interpreted the relatively large observation frequency of the BBF flux
ropes as a signature of multiple X-line reconnection going on simultaneously at separated
locations.
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These features can also be found in numerical MHD simulations. Farr et al [2008]
simulated a substorm event on August 11, 2002, which had been well-observed by several
spacecraft and thus the simulation results could be benchmarked with actual data. The
simulation produced initially two spatially separated plasmoid flux ropes, which coalesced
after about 20 min. The process started within closed field lines and continued there for
about 30 min, after which a complicated web of intertwined open and closed field lines
emerged. After about 5 more minutes the flux rope finally consisted of open field lines
predominantly detached from the Earth. The disconnection took place earlier in the dawn
sector and the flux rope rotated towards an almost tail-axis-aligned orientation so that the
duskward edge of the rope was much closer to the Earth when the structure was finally
detached. Both the statistical results by Slavin et al [2003] and the event simulation study
by Farr et al [2008] indicate that spacecraft observations of an individual substorm in the
tail can look very different depending on at what time in what part of the evolving flux
rope they have been made.

The NENL model is a flexible framework within which it is possible to embed new
theoretical and observational elements along the way. Perhaps the most critical issue today
is whether or not the outside–in concept is possible to confirm beyond reasonable doubt.
Of course, it is quite possible, perhaps even likely, that there are substorms progressing
from the outside in, while in other events the sequence may be the reverse.

13.2.2 The inside–out view

The inside–out view is advocated by the supporters of the CD model and also by many
auroral researchers using ground-based instrumentation who are concerned by the fact that
the auroral breakup takes place on the equatorwardmost auroral arc that is problematic to
map along the magnetic field lines far into the magnetotail. According to the CD model
the substorm process is initiated in the inner magnetosphere, not far from the geostationary
orbit, and the mid-tail reconnection is a possible consequence of this process. The basic
idea is that some current sheet instability in the near-Earth tail inhibits the current flow
and forces its closure through the ionosphere as the SCW. The current disruption means
also disappearance of cross-tail current and dipolarization of the stretched magnetic field
structure.

An acceptable substorm model, even if limited to the onset and the early expansion
phase, must also explain the observations of plasmoid release and mid-tail reconnection.
In the CD model the disruption process is assumed to launch a rarefaction wave tailward.
This tailward propagating rarefaction both induces earthward flow behind the rarefaction
front and leads to the thinning of the current sheet to an unstable level and finally lets the
reconnection go off (Fig. 13.8).

As discussed by Lui [1996] there are quite a few intriguing observations in the near-
Earth tail that call for physical explanation and are not immediately related to the NENL
model. These include the sometimes very turbulent magnetic field behavior close to the
interface of dipolar and tail-like field lines [Takahashi et al, 1987] (Fig. 13.9) and very
strong inductive electric fields associated with the rapid field line dipolarization [Aggson
et al, 1983].
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Fig. 13.8 Figure 13.7 adapted to conform with the inside–out view of substorm expansion. The numbers
indicate the expected temporal sequence.

Also the MIC model belongs to the inside–out family. In the MIC model the Alfvén
waves bouncing between the ionosphere and magnetosphere during the growth phase lead
to a feedback instability [cf., Lysak, 1991]. At the time when the system goes unstable,
the SCW grows rapidly and reduces the cross-tail current leading to the dipolarization of
the near-Earth field. In this picture no local instability process in the magnetospheric end
of the current circuit is needed. The exchange of Alfvén waves during the growth phase is
observable as magnetic pulsations because the strengthening of the magnetospheric con-
vection must be communicated to the ionosphere. What is critical to the MIC model is
whether it drives the substorm expansion, or not.

Another macroscopic instability proposed to explain the setting up the SCW is the bal-
looning instability [Roux, 1985]. As discussed in Chap. 7 (Fig. 7.4) a perturbation in the
interface region between dipolar and tail-like field lines leads to an unstable undulation
of the magnetic field configuration. The instability causes a build-up of space charge re-
gions of alternating sign that are neutralized by electrons moving along the magnetic field
lines, i.e., FACs. These elementary FAC loops coalesce and finally create the SCW. In the
MHD picture this can be interpreted as enhanced Alfvén wave activity leading to the SCW
formation.

Considerable effort has been given to finding out local microscopic current sheet insta-
bilities that could be responsible for the current disruption spontaneously once the current
sheet has reached an unstable state. Physically this is actually not so different from the
search for the mechanism for setting up the reconnection process on closed field lines fur-
ther out in the tail, although the proponents of the CD model sometimes wish to stress the
difference of their approach from the microscopic studies of the reconnection process.

In the microscopic picture the free energy for the investigated instabilities is in the dif-
ferent velocity distribution functions of the particle species near the current sheet. For the
current disruption, in particular, the different streaming of electrons and ions across the
magnetic field is important. Some of the candidate instabilities are the ion Weibel insta-
bility (IWI), modified two-stream instability (MTSI), and the lower hybrid drift instability
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Fig. 13.9 Illustration of turbulent magnetic field observations by AMPTE/CCE spacecraft around the inter-
face region between dipolar and tail-like fields. The upper figure illustrates the interpretation by Takahashi
et al [1987] according to which a neutral line was sloshing back and forth around the spacecraft. The lower
figure describes the CD-model interpretation by Lui et al [1988], according to which the magnetic field
fluctuations are associated with the current sheet disruption instability. (The figure is from Lui [1996].)

(LHDI) (Chap. 7). The unstable waves are electromagnetic modes on the whistler–lower
hybrid surface of Fig. 5.4. The waves driven by IWI and MTSI can be called oblique
whistler modes at frequencies above the ion gyro frequency, whereas the lower hybrid
drift wave is an almost electrostatic mode propagating nearly perpendicular to the mag-
netic field. These modes are different from the tearing mode in that their wave vectors
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are perpendicular to the tail axis, whereas the tearing wave vector is approximately in the
direction of the tail. So the physics of the instabilities is different.

In addition to the issue of what comes first and what follows, the supporters of the CD
model tend to criticize the NENL model because of its foundations in the MHD description
of magnetospheric plasma physics. Of course, MHD has its physical limitations, many of
which are discussed in various parts of this book. In particular, we must not forget that the
frozen-in picture is not always valid, neither is reconnection a magic wand that solves all
problems in space plasma physics. On the other hand, when MHD picture is valid, it also
is very powerful. Thus an open mind is needed on both sides of the debate.

13.2.3 External triggering of substorm expansion

Both the NENL and CD models explain the substorm expansion onset as a result of an
internal instability in the magnetotail that goes off spontaneously once the appropriate
conditions are obtained. However, the triggering of the onset can also be a consequence of
an external perturbation, e.g., a change in the solar wind magnetic field or pressure that is
strong enough to cause a sufficient change in the magnetotail.

Both a rapid reduction of the southward component (sometimes called a northward
turning) of the IMF direction or a reduction of IMF Y -component have been found to
often take place just before the expansion phase onset. In both cases the solar wind electric
field is reduced. Lyons [1995] suggested a substorm theory in which this reduction is
propagated into the magnetotail. In this theory the reduction of the magnetospheric electric
field weakens the earthward convection in the magnetotail from the enhanced growth phase
level. This reduces the cross-tail current and leads to the creation of the SCW.

While the theory has remained in the shadow of the NENL and CD models, the question
of external triggering has also received considerable attention in studies of solar wind–
magnetosphere interactions more recently. It is quite possible that the magnetosphere–
ionosphere system is driven toward a marginal large-scale stability after a sufficiently long
growth phase. Under such conditions even a weak external push might drive the system
unstable. But how weak is strong enough, and what role does the preconditioning have in
determining the threshold for the triggering to be effective? Evidently, the criterion, of how
small solar wind perturbations are included in studies searching for possible triggers, may
lead to different conclusions on how large fraction of substorms are triggered. As we do
not yet know very well the transmission of the triggering signal from the solar wind to the
nightside magnetosphere, finding potential triggers in the solar wind does not necessarily
mean that they also act as triggers for the substorms. Correlation does not always imply a
causal relationship.

13.2.4 Timing of substorm onset

The major disagreement between the supporters of the “outside–in” and “inside–out”
views is in the timing between observations of different substorm-associated phenomena
and, consequently, their causal relationships.
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For example, Liou et al [2002] investigated dipolarization events observed at geosta-
tionary orbit together with auroral breakup observations using UV images from the Polar
spacecraft. They required that the dipolarization had to take place within a longitude range
of 2 hours in magnetic local time from the auroral breakup in the ionosphere in order to
minimize the propagation delays in their analysis. They identified 32 clear dipolarization
events suitable for the analysis.

The result of this study was that the auroral expansion preceded the geostationary dipo-
larization on the average by 1.7± 2.7 min (note that there were also negative time lags).
Liou et al [2002] argued that this delay was mostly a propagation time effect within the
auroral bulge latitudes and longitudes. They estimated that the location of the initiation of
substorm process was at about X = −8.3RE . Based on this they argued that the observa-
tions were inconsistent with the assumption that the substorm process would be initiated
at the reconnection X-line, because the X-line has been statistically found considerably
further down the tail.

In addition to the temporal resolution and the cadence of critical observations a serious
problem has been the lack of comprehensive enough data sets of simultaneous observations
of the mid-tail reconnection effects, the near-tail dipolarization events and ionospheric
signatures. Thus the scientists performing very careful data analysis focusing on some
part(s) of the issue have had to rely on statistical results on data not directly available
simultaneously [e.g., Liou et al, 2002].

To address this problem NASA launched the five-satellite constellation Time History of
Events and Macroscale Interactions during Substorms (THEMIS) in February 2007 [An-
gelopoulos, 2008]. The orbital periods of the individual spacecraft were selected so that
they, during the northern winter, become recurrently aligned along a common nightside
meridian above the North American continent, where an extensive ground-based network
of optical and magnetic instruments for ionospheric observations was established to sup-
port the mission. One of the first contributions of the THEMIS mission was to provide
a very detailed temporal sequence of a substorm that took place on 26 February 2008
[Angelopoulos et al, 2008]. At the time of the substorm onset the five THEMIS satellites
were nearly aligned along a common meridian in the tail at X distances from −5.5RE to
−21.5RE and less than 1 RE from the nominal current sheet center.

This particular substorm was not particularly strong. The auroral electrojet index calcu-
lated using specific magnetometer stations for the THEMIS mission reached about 200 nT
at its maximum. The magnetometers showed the appearance of the substorm electrojet at
0454:00 UT. Before this Pi2 pulsations had already been observed to start at an auroral sta-
tion at 0452:00 UT and at a mid-latitude station at 0453:05 UT. The auroral intensification
was observed for the first time at 0451:39 UT at 67.9◦ geomagnetic latitude and expanded
poleward of 68.2◦ at 0452:21 UT, which is the time that Angelopoulos et al [2008] inter-
preted as the time of the substorm expansion onset.

The outermost THEMIS spacecraft (P1, X = −21.5RE ) observed at 0450:28 UT a tail-
ward flow that was interpreted as the reconnection outflow, whereas the second farthest
spacecraft (P2, X =−17.2RE ) observed an earthward flow at 0450:38 UT. From the obser-
vations of the flow speeds the reconnection onset was inferred to have taken place between
the spacecraft at about X = −20RE at 0450:03 UT. This was 96 s before the auroral inten-
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sification, 117 s before the high-latitude Pi2 onset and 138 s before the auroral expansion
onset.

The third THEMIS spacecraft (P3, X =−10.9RE ) observed the earthward flow onset at
0452:27 UT and and a transient magnetic field dipolarization at the same time as the mid-
latitude Pi2 pulsations were observed on the ground (0453:05 UT). The more permanent
dipolarization was not observed until 0454:50 UT.

This study together with a somewhat more detailed analysis of a substorm on 16 Febru-
ary by Gabrielse et al [2009] represent good evidence that the tail reconnection can precede
both the auroral intensification and the dipolarization in the near-Earth magnetosphere.
While these are strong cases for the NENL model, also the opposite inside–out view has
been supported by analysis of other substorm events observed by the very same satellite
constellation.

Lui et al [2008] analyzed a series of three activations that took place on 29 January
2008. The THEMIS spacecraft were aligned close to the XGSM axis from −8 to −30RE .
Furthermore, data from the geostationary GOES 11 and 12 satellites, which nicely brack-
eted the meridian of THEMIS, and from the ground-based all-sky camera network were
used.

The first auroral activation took place at 0714 UT and was interpreted as a small sub-
storm. The minimum AL was only about –120 nT and the activation lasted about 25 min.
The activation was evidently confined into the closed field lines and never progressed to
the open-close field line boundary. This activation might be better to describe as a pseudo-
breakup than a full-fledged substorm onset.

The second activation at 0742 UT started a rather complicated sequence of a multiple-
onset substorm. Lui et al [2008] interpreted the observed data to be inconsistent with the
outside–in view until the activation at 0833 UT, which if analyzed alone would give support
to the NENL initiation of the substorm process. This sequence of events was certainly
more complicated than the 26 February event analyzed by Angelopoulos et al [2008].
The different activations did not produce well-defined signatures at all spacecraft and the
timing of different elements could not be made as rigorously as in the 26 February case.
However, it is clear that these data are difficult to interpret in terms of the NENL model or
outside–in picture.

Thus to give the definitive answer to the inside–out versus outside–in question with the
THEMIS constellation has not turned out to be as straightforward as some may have hoped.
Instead, it looks like the magnetosphere would be capable of organizing the substorm
energy release in many different ways. Furthermore, while the multipoint approach of
THEMIS is very useful, each individual spacecraft makes observations only in a tiny little
spot in the magnetotail. During substorm activity the tail bends, the spatial distribution of
BBFs most likely is inhomogeneous, the role of the guide field is an issue, the plasmoid
release can be very asymmetric, and, of course, there may be various localized instabilities
that sometimes lead to current disruption, sometimes to reconnection, but may often just
settle down without leading to observable large-scale signatures. Consequently, it may
finally turn out to be hopeless to squeeze the substorm process into any unifying picture
of the type of Figs. 13.7 or 13.8, very much analogous to the solar corona where the flares
may take place in several different ways.
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Feed your brain

Read carefully the articles Angelopoulos et al [2008] and Lui et al [2008] and think
how you would reconcile two such opposite conclusions. When thinking about the
problem, pay attention to the propagation speeds of the onset signatures between the
different observations and consider your conclusions in terms of Alfvén velocity in the
magnetosphere.

13.3 Storm-Time Activity

From the second half of the 1990s an increasing amount of interest has been paid to
problems in the relationship between storms and substorms. While we can identify clear
connections between substorm elements and fundamental plasma physics, such as recon-
nection, current sheet instabilities, Alfvén wave propagation, sources and sinks of field-
aligned currents, etc., the situation with storm-time phenomena is more complicated, in
particular if we want to make some sense of the great variety of activations taking place
during magnetospheric storms. In fact, by the time of writing this book there have been
remarkably few studies on storm-time activations that would in a comprehensive way ad-
dress all relevant issues from the solar wind driver properties to phenomena in far- and
mid-tail, and in the ionosphere.

Common to all storm-time processes is that they take place during strong solar wind
driving and the ring current is at an enhanced level. Because we cannot deal with all
observational details here, we group the strongly driven activity into three main cate-
gories: substorm-like activations, sawtooth events, and steady magnetospheric convection.
Substorm-like activations share many of the observational characteristics of prototypical
isolated substorms discussed above. The sawtooth events form a particular class of quasi-
periodic global oscillations that are typically identified through particle injections observed
by geostationary satellites. Steady magnetospheric convection is not characteristically a
storm phenomenon because it is not associated with particularly strong ring current.

13.3.1 Steady magnetospheric convection

Sustained southward IMF driving of the magnetosphere leads in most cases to a sequence
of substorm activations, but sometimes the system finds a quasi-steady state during which
the convection stays at high level and the auroral electrojets remain strong and steady for a
long time, from several hours to a half day or so. This state of the magnetosphere has been
named as convection bay [Pytte et al, 1978] or steady magnetospheric convection (SMC)
(for a review, see Sergeev et al [1996]).

There are theoretical arguments claiming that steady convection should be impossible
and continuous IMF driving should always lead to substorm expansions in order to resolve
the so-called pressure balance inconsistency [Erickson and Wolf, 1980; Erickson, 1992].
In simple terms the pressure balance inconsistency arises from two reasonable assump-
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tions, namely that the magnetic field and the plasma are frozen-in to each other and that
the convection on closed field lines is adiabatic. The latter assumption can be expressed as

d
dt

P γ = 0 , (13.3)

where γ = 5/3 for 3D adiabatic transport, P is pressure and the flux tube volume

=
∫ ds

B
. (13.4)

Here the integral is taken along the magnetic field line from the ionosphere on one hemi-
sphere to the ionosphere on the other hemisphere. Due to the 1/B dependence is very
large for flux tubes crossing the current sheet in mid-tail but becomes much smaller when
the flux tube is convected to the near-Earth region. In order to conserve P γ the pres-
sure must grow to an unreasonable level unless the system is relaxed episodically, e.g., by
substorms.

Feed your brain

P γ is sometimes called the entropy function and (13.3) is interpreted as conservation
of entropy. Figure out the connection to the definition of entropy given by (5.3) and
explain when P γ is a valid measure of entropy.

However, as discussed by Sergeev et al [1996], there are, although relatively rarely,
SMC events, during which there is no pressure release in form of substorms up to about
10 hours. During these events the auroral oval is very wide indicating that the amount of
closed magnetic flux through the plasma sheet is particularly large. Based on low-altitude
signatures of precipitating particles of solar wind origin Sergeev et al [1996] argued that
the distant neutral line during SMC events lies somewhere at the distance of 50–100 RE .
According to ionospheric observations the corresponding open–closed field line boundary
is located at 70–72◦ corrected geomagnetic latitude.

Feed your brain

Find from the literature the definitions of magnetic local time (MLT) and corrected
geomagnetic latitude (CGL). Under what conditions there is no unique way to determine
CGL?

To find out the near-Earth tail configuration, observations of the boundaries of isotropic
precipitation of ions and electrons are useful. As discussed in Sect. 3.4, the motion of
charged particles becomes chaotic when the field line curvature radius (RC) becomes com-
parable to the gyro radii of the particles (rL). The particles are effectively scattered and fill
the atmospheric loss cone when

RC

rL
� 8 . (13.5)
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Using this criterion observations of precipitating isotropic 30-keV ions during SMC
events indicate that an equatorial field of 5 nT, i.e., quite a thin current sheet, reaches as
close as 6–8 RE geocentric distance. This is not too far from the isotropic boundary of 30-
keV electrons, corresponding in turn to a 40-nT field. Thus there must be strong gradient
in the magnetic field at these distances and the field goes over from dipolar to tail-like
within a relatively narrow region in the X-direction. This conclusion is consistent with
direct magnetic field observations. Thus the near-tail configuration is rather similar to a
substorm growth phase.

On the other hand, farther out in the mid-tail region relatively large equatorial fields of
Bz > 6 nT have been observed during SMC events. Thus the mid-tail configuration resem-
bles more the recovery phase than the growth phase. This “hybrid state” of tail magnetic
configuration was modeled by Sergeev et al [1994] using the Tsyganenko 89 magnetic
field model [Tsyganenko, 1989] modified to fit to actual in situ magnetic field observa-
tions during the SMC event on November 24, 1981 (Fig. 13.10).

Fig. 13.10 Model of the hybrid state magnetic field configuration during the SMC event on November 24,
1981. (From Sergeev et al [1994].)

According to this modeling exercise there is a magnetic field minimum at the distance
of about 12RE . This allows steady convection to reach this distance without too strong
compression. Closer to the Earth the strong magnetic gradient causes rapid azimuthal drift.
Sergeev et al [1994] argued that this helps to remove the particles to the dayside before
excessive pressure can build up. Another factor limiting the pressure build-up is the devi-
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ation of a part of the plasma sheet flow toward the flanks of the magnetosphere already at
the distance of about 20RE [Sergeev and Lennartsson, 1988].

In fact a magnetic field configuration with a mid-tail magnetic field minimum capable
of sustaining SMC was independently found as a result of 2D MHD calculation by Hau
et al [1989]. They, however, questioned the realism of their solution expecting it to be
tearing-unstable. While this magnetic field configuration may be able to avoid the pressure
balance inconsistency, it remains unclear how such a peculiar magnetic field structure can
be sustained over the long SMC period.

In order to avoid misunderstanding we wish to stress that the steadiness of the con-
vection refers to the average large-scale convection. Also during SMC periods the actual
plasma flow consists of intermittent bursty bulk flows (BBF). Furthermore, small auroral
activations do take place during SMC events, mostly near the poleward boundary of the
auroral oval. They resemble substorm onsets but their effects on, e.g., the AL index remain
weak and the large-scale convection continues in a quasi-steady manner.

13.3.2 Substorm-like activations and sawtooth Events

Sawtooth events are examples of magnetospheric dynamics during strong external driv-
ing, but they are completely different from steady magnetospheric convection. Sawtooth
events are large quasi-periodic oscillations of energetic particle fluxes and the magnetic
field observed at geostationary orbit (for a detailed data description, see Henderson et al
[2006]). The period of the oscillations is 2–4 h, which is in the same range as the recur-
rence rate of quasi-periodic substorms. In fact, it is not clear if the sawtooth oscillations
are a phenomenon different from other recurrent storm-time activations, of which many
exhibit several, but not necessarily all, characteristics of prototypical isolated substorms
[e.g., Henderson et al, 2006; Pulkkinen et al, 2007b].

Pulkkinen et al [2007b] conducted a statistical analysis of 150 storm-time activation
events during 10 storms with the peak Dst < −75 nT in 2004. The activations were iden-
tified as rapid enhancements (onsets) of westward electrojet signatures (about 200 nT or
more) in ground-based magnetometer observations in the Scandinavian and Canadian sec-
tors. The onset was taken as the epoch time in superposed epoch analysis of various ob-
servables in the solar wind, geostationary magnetosphere, and ionosphere.

About 48% of the ground onsets were associated with energetic particle injections and
67% with simultaneous magnetic field dipolarizations at geostationary orbit. 45% of the
events were preceded by decreasing inclination of the geostationary distance magnetic
field, which can be interpreted as intensification of the cross-tail current sheet resembling
the substorm growth phase. However, the growth phase signatures were weak and they
could not be recognized in the AL index, which may not be so surprising, as these acti-
vations took place during moderate, intense, and big storms. The electron fluxes and the
magnetic field inclination recovered within 1.5–2 h after the onset, and the periodicity of
the activations was 2–3 h. Regardless of possible selection effects (e.g., the phase of the
solar cycle, a small total number of storms), it is fair to say that about half of the activa-
tions identified in the ionospheric current systems show clear substorm onset and recovery
signatures at geostationary orbit.
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In order to compare the substorm-like activations with sawtooth events Pulkkinen et al
[2007b] made a similar analysis of an independent data set of 138 individual sawtooth
oscillations during 1999–2002. In this case the zero epoch time was the proton injection at
geostationary orbit. The magnetic field inclination was found to behave quite similarly to
that during substorm-like activations. The sawtooth events were associated with slightly
weaker auroral activity (in terms of AL), but the ring current was quite similar in both
cases. Also the periodicity of 2–3 h was the same as in substorm-like activations.

When comparing the solar wind properties during sawtooth events and other storm-time
activations Pulkkinen et al [2007b] found that the solar wind electric field is comparable
in both cases EY ∼3–4 mV m−1 as is also BZ � −5 nT. However, when the solar wind
velocity is considered separately, the sawtooth events tend to take place during, on the av-
erage, slower solar wind (<500 km s−1) than other storm-time activations (on the average
∼600 km s−1). Both of these are faster than typical solar wind velocities driving steady
magnetospheric convection.

Concerning the possible triggering of storm-time activity by sudden changes in solar
wind parameters Pulkkinen et al [2007b] found that of all storm-time activations 30% had
signatures in solar wind parameters that were interpreted as potential triggers, whereas the
fraction for sawtooth events was only 20%. However, at the geostationary orbit the poten-
tially triggered storm-time activations show clear injection features only in the midnight
sector and do not have associated dipolarizations. Thus if the triggering is due to a pressure
pulse or IMF turning, its magnetic consequences do not reach the inner magnetosphere.
The process releasing the injection takes place farther out and only the injected particles
reach the geostationary orbit. For the sawtooth events the situation was similar but the
injections were stronger, which may have been a selection effect of the sawtooth events
based on the injections.

When the level of fluctuations in the IMF was measured in terms of either δB =
(σ 2

BX
+σ2

BY
+σ2

BZ
)−1/2 or of δB/〈B〉, where σ ’s are the standard deviations and 〈B〉 is the

average magnetic field, both triggered storm-time activations and sawtooth events showed
markedly stronger fluctuations than events without identified triggers. During periods of
stronger solar wind fluctuations there are more potential triggers.

As a conclusion, the differences between recurrent substorm-like storm-time activations
and sawtooth events are not so significant that they should be considered to belong to dif-
ferent classes of magnetospheric activity. This view was also expressed by Henderson et al
[2006] and several other investigators. However, what determines the 2–3-hour recurrence
time of magnetospheric activity, remains unclear. This recurrence issue may, in fact, be a
key to an improved understanding of the whole solar wind–magnetosphere system.

The reader may now wonder what are the remaining about 50% of stormtime activa-
tions that do not exhibit clear substorm characteristics. There have not been too many
investigations to address this question. Pulkkinen et al [2004] analyzed 6 storms in the
range from intense to very large during 2000–2001. One of the storms (21–22 October,
2001) exhibited evident sawtooth oscillations, although the authors did not yet use this, at
that time emerging, terminology. During the other 5 storms 3 classes of events were identi-
fied: There were typical substorm-like events of poleward electrojet expansion associated
with geostationary injection. The second class was called “non-substorm” events, in which
the electrojet expansion was equatorward and there were no geostationary injections. The
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third class consisted of triggered events that lacked clear geostationary injections. Note
that about 50% of the substorm-like events also had potential IMF triggers.

As a possible scenario to account for at least some of the non-substorm events Pulkki-
nen et al [2004] suggested that the tail current sheet was much thicker during these than
during the substorm-like events. A fast flow channel intrudes to the inner magnetosphere,
possibly as a large BBF, but it does not necessarily reach the geostationary distance. The
ionospheric current is associated with the earthward edge of the flow channel with down-
ward current originating from the dawn flank and upward current joining the dusk flank
of the channel to a westward Hall current in the ionosphere. The same scenario on the
coupling of BBFs to the ionosphere was discussed by Kauristie et al [2000], although not
in the storm context.

13.4 ICME–Storm Relationships

In this section we turn to the drivers of magnetospheric storms. Based on observations of
10 storms in 1978–1979 Gonzalez and Tsurutani [1987] presented a useful rule-of-thumb
on when to expect a strong storm to occur. According to them the IMF must have a long-
duration (more than 3 h), large negative (<–10 nT) southward component associated with
duskward electric field E = V Bs > 5 mV m−1. As fast ICMEs and their shocked sheath
regions can enhance both V and Bs and expose the magnetosphere to these conditions for
several hours, they are by far the most efficient drivers of the strongest magnetospheric
activity. The response of the magnetosphere is complicated and depends on the detailed
structure of the driver.

13.4.1 Geoeffectivity of an ICME

The speeds of the ICMEs, their shocks, and the post-shock streams at 1 AU can easily be
larger than twice the background solar wind speed. The IMF in the sheath region between
the shock and the ejecta is strongly compressed and if the IMF ahead of a fast ICME
has a southward component, the sheath region can drive a strong storm even if the ICME
itself passes by the magnetosphere not actually hitting it. The southward IMF component
may be further amplified by draping the magnetic field around the ICME [Gosling and
McComas, 1987], which can lead to a southward IMF component even in cases where the
pre-existing IMF is slightly northward.

Depending on the background solar wind conditions and on the magnetic structure of
the ICME a large number of different storm evolutions can take place. In the following we
define a magnetic storm as sheath-associated if 85% of the Dst minimum occurs while
the dayside magnetosphere is embedded in the ICME sheath region. For a magnetic cloud-
associated storm we require that during a magnetic cloud passing the magnetosphere Dst
reaches the intense storm level of −100 nT. There are storms that do not fall into either of
these categories because not all ejecta exhibit the magnetic cloud structure.

The different storm sequences are most illustrative to consider for cases where the
ICME has a well-defined flux rope configuration, which is the case for at least 30% of
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all ICMEs. If the inclination of the flux-rope from the ecliptic plane is small, the north-
south magnetic structure is bipolar and the magnetic cloud can arrive with northward (NS)
or southward (SN) magnetic field ahead, which give different temporal storm evolutions.
For example, if a southward sheath field is followed by an NS-type cloud with sufficiently
strong and long-lasting northward IMF, a double-peaked Dst-storm or even two separate
storms may follow. Double- or multiple-peaked storms may also take place when several
ICMEs from the same active region on the Sun are heading toward the Earth.

A flux rope can also have a large inclination with respect to the ecliptic. In such cases the
IMF can have a unipolar, either northward (N) or southward (S), orientation throughout
the passage of the flux rope. In the northward case the ICME will most likely pass the
Earth with only minor perturbations, whereas the southward case may lead to a particularly
strong and long-lasting storm because the Earth may remain within the southward pointing
flux rope much longer than in a bipolar case.

Figure 13.11 shows the results of an analysis of 73 magnetic cloud events identified
in Wind and ACE observations during solar cycle 23 [Huttunen et al, 2005]. Unipolar
southward clouds always caused at least a medium-size storm (Dst < −50 nT), whereas
in northward cases only sheath regions caused storms. Note that about one-third of the
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Fig. 13.11 The effect of the flux rope type on the geoeffectivity. Numbers in the parenthesis indicate the
total number of magnetic clouds in each category. Color codes are: black – no medium-size or larger
storms (Dst > −50 nT), dark gray – sheath region storm, light gray – moderate magnetic cloud storm,
white – intense magnetic cloud storm. (From Huttunen et al [2005].)
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bipolar, either NS or SN, clouds did not lead to a medium-size or larger storm, which
evidently is a nuisance for space weather forecasters.

The importance of the sheath regions as efficient storm drivers was demonstrated by
Tsurutani et al [1988], but their significance was not fully appreciated before the more
extensive analyses of in situ observations from solar cycle 23. Huttunen and Koskinen
[2004] showed that during the ascending phase of the cycle (1997–2002) 45% of 53 intense
(Dst <−100 nT) storms were caused by a sheath region. When the threshold was changed
to Dst < −150 nT, already 60% of the remaining storms were sheath-driven (Fig. 13.12).
The number of events in that study was too small to make statistical conclusions, but
the importance of sheath regions as storm drivers was clear. A more complete catalog
of intense storms during 1996–2005, consistent with these results, was compiled later by
Zhang et al [2007].

|Dst| > 100 nT |Dst| > 150 nT |Dst| > 200 nT
0

10

20

30

40

50

60
shock/sheath
MC
ejecta
other

(53)

(20)

(11)

Fig. 13.12 Drivers of intense Dst-storms. (From Huttunen and Koskinen [2004].)

13.4.2 Different response to different drivers

Selecting just one activity index to represent the magnetosphere’s response to the solar
wind driving gives a too narrow perspective to magnetospheric storms. Huttunen et al
[2002] investigated the difference of the K p and Dst responses to different solar wind
drivers during 1996–1999. They found that the fast post-shock streams and sheath regions
had a relatively stronger effect on K p, whereas the effects of ejecta favored Dst. This
tendency was emphasized further by Huttunen and Koskinen [2004] who compared the
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evolution of several magnetic indices (Dst, SY M-H, ASY -H, AE, and K p) during magnetic
cloud and sheath region storms. The difference in the response of magnetic indices is
most most evident when comparing sheath regions and magnetic clouds, excluding ejecta
without a well-organized magnetic structure, because solar wind dynamic pressure and the
magnetic field configuration are most different under these two types of storm drivers.

Figure 13.13 shows the maximum K p and minimum Dst indices of all intense storms
(K pmax ≥ 7− or Dstmin < −100 nT) during 1997–2003 that were possible to associate
uniquely with a sheath region or with a magnetic cloud. From these data it is evident that
most of the large K p storms were sheath storms as were all large-K p – smaller-Dst events;
whereas large-Dst – smaller-K p events were mostly associated with magnetic clouds.

A proximate explanation for this behavior is that K p is more sensitive to auroral zone
current systems than Dst. This is supported by the investigation of the storm response in the
SY M–H and auroral electrojet indices by Huttunen and Koskinen [2004], who illustrated
using four sample events that the high K p-activity really was due to strongly enhanced
auroral activity and not just an artifact produced by the procedure to derive the K p index.
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Fig. 13.13 K p and Dst indices for all intense storms (K pmax ≥ 7− or Dstmin < −100 nT) during 1997–
2003 that were possible to associate clearly with a sheath region (asterisks) or with a magnetic cloud
(crosses). The rectangles identify storms that did not fulfill the additional condition: K p ≥ 6− over three
3-h intervals.
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While the ultimate explanation for the sheath regions favoring high-latitude activity is
unknown, a possible scenario is the following. The irregularities in the sheath region cause
perturbations in the low-latitude boundary layer of the magnetosphere. These enhance the
Region 1 current system, which couples to the auroral current systems in the ionosphere.
Consequently the auroral activity is enhanced and it shows up more strongly in K p than
in Dst. On the other hand, the smooth rotation of the magnetic cloud field does not cause
the same effect on the high-latitude current systems but strengthens the large-scale magne-
tospheric convection, resulting in a relatively stronger ring current build-up and enhanced
Dst effect.

This is, of course, not an either–or question because we are dealing with relatively large
storms where both ring current and auroral current systems are activated. The large-scale
convection also enhances the auroral currents. In fact, Dst storms without significant high-
latitude activity seem to be very exceptional (if there are any), but there are examples of
K p storms with very weak Dst response (Fig. 13.13).

Another viewpoint on this question was given by Pulkkinen et al [2007a]. They con-
ducted a superposed epoch analysis of 14 sheath storms and 14 cloud storms, including
solar wind data, activity indices and geostationary particle observations. Their conclusion
was that the solar wind driving at the beginning of a sheath storm is harder and leads to
more stretched magnetic field configuration in the near-tail region. This leads to stronger
auroral substorm activity and to more particle injections into the geostationary distance,
whereas a smaller amount of ions ends up on closed trajectories to form the symmetric ring
current as compared to cloud-driven storms. We will return to this issue when discussing
storms in the inner magnetosphere in Chap. 14. Pulkkinen et al [2007a] also noted that the
strong fluctuations in the sheath region provide more potential substorm triggers than the
much more smoothly rotating IMF of a magnetic cloud.

13.5 Storms Driven by Fast Solar Wind

Another mechanism for imposing enough EY on the magnetosphere is provided by fast
solar wind with a southward component of IMF for a long enough time. In the context of
the 3D heliosphere, the fast solar wind can be considered as the “ground state”, whereas the
slow wind is limited to the relatively narrow region around the ballerina’s skirt (Fig. 1.9).
However, we live on a planet that is most of the time under the influence of the slow wind,
whereas the fast wind periods are more limited but at the same time more important to the
theme of this book.

13.5.1 27-day recurrence of magnetospheric activity

As discussed in Chap. 1, a corotating interaction region (CIR) forms in the interface region
where fast solar wind is overtaking slow wind, and gradually steepens to a shock typically
somewhere beyond 1AU . If the Z-component of the IMF in the fast wind is southward, the
passing of a CIR is a signal of enhanced magnetospheric activity to follow. Consequently,
the fast wind-driven storms are often called CIR-driven storms [e.g., Borovsky and Denton,
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2006]. This terminology is a little misleading because the storm driver in most cases is
the fast wind following the CIR, not the CIR itself. However, as the interaction region
is relatively wide, the solar wind already during the passage of the CIR itself often is
sufficiently strong driver for a storm in the magnetosphere. We prefer to call these storms
CIR-related storms, but remind the reader again that instead of hanging on to terminology
we should focus on physics.

The appearance of CIR-related storms have a strong 27-day periodicity. This periodicity
in the geomagnetic activity was already known long before the solar wind was found
[Chree and Stagg, 1927]. Bartels [1932] interpreted it to be due to magnetically active
regions on the solar surface, which he called M-regions. Today we know that more or less
the opposite is true. The fast wind originates from the coronal holes, which are actually
the magnetically most quiet regions on the Sun, whereas the intermittent ICME-related
storms originate from more active regions. The large coronal holes are also the most stable
regions of the corona and extend to low solar latitudes during the declining phase of the
solar activity cycle. The stability is the cause of the recurrence. The same hole returns
toward the direction of the Earth with the 27.3-day synodic period of the solar rotation.
Thus the fast solar wind episodes have a 27-day periodicity and the recurrent storms take
place preferentially during the declining phase of the solar cycle.

There are also non-recurrent high-speed episodes throughout the solar cycle, but they
often are of shorter duration and lead to weaker storms or to one or several substorms.

13.5.2 Differences from ICME-driven storms

Borovsky and Denton [2006] listed 21 differences between ICME-driven and CIR-related
storms. In this section we discuss briefly some of these but, for more details, refer to that
study and references therein.

At the start of a CIR-related storm there usually is no SSC. The reason is that while
the CIR is characterized by a pressure enhancement, this enhancement has not yet grown
to a shock and thus the effect of the fast wind upon the magnetopause grows much more
smoothly than in the case of a fast ICME. Of course, as not all ICMEs are fast, there are
also ICME-driven storms without the SSC signature.

The CIR-related storms typically follow a period of slow solar wind lasting a few days.
The CIRs are usually associated with an IMF transit from an away sector to a toward
sector, or vice versa. Thus if the IMF in the fast wind region has a southward component,
as required for the storm to occur, it most likely had a northward component in the leading
region of slow wind. Thus before a CIR-related storm there often has been a long period
of very weak solar wind driving, during which the magnetosphere has had time to reach a
particularly calm state.

This “calm before the storm” is a time when so called cold dense plasma sheet (CDPS)
is known to form. This may, at first, sound contradictory because there is no dayside re-
connection to let solar wind plasma to flow into the magnetosphere. However, a practically
closed magnetosphere is also less leaky than a strongly reconnecting open magnetosphere.
As noted by Lavraud et al [2006], there is ample evidence that both high-latitude recon-
nection beyond the cusps and viscous interaction, e.g., in form of Kelvin–Helmholtz insta-
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bility (Chap. 7), can contribute to the filling of the plasma sheet with low-energy plasma.
As the magnetosheath is denser than the magnetosphere, any diffusive process across the
boundary should have a net inward flux of plasma.

Calm before the storm can also take place before CME-related storms, and the CDPS
can form before them as well, but less frequently than is the case with CIR-related storms.
Lavraud et al [2006] analyzed the consequences of the CDPS for the storm development.
They found that the models commonly used to calculate Dst, e.g., (1.64):

Dst∗ = Dst −b
√

Pdyn + c

tend to underestimate the ring current after long quiescence by 10–20% during the early
part of the storm main phase. Lavraud et al [2006] suggested that the CDPS provides an
enhanced seed population for ring current carriers when pushed closer to the Earth by
the enhanced convection. During the storm the cold plasma is removed and the remain-
ing storm-time plasma sheet is hot, actually hotter during CIR-related storms than during
ICME-related storms. In both cases the plasma sheet density is a factor of 2 or more larger
than the average non-storm plasma sheet density with ICME-related storms being more
“superdense” than CIR-related storms. In the CIR cases the solar wind supply is large only
during the brief passage of the CIR itself, whereas the fast solar wind density is relatively
small.

EY in a fast solar wind stream does not become as large as can be the case within a
strongly compressed ICME sheath plasma or in a strong magnetic cloud. Consequently,
Dst remains smaller, but because the fast stream with southward IMF may last much
longer, the CIR-related storms are of longer duration. Thus, the cumulative effects of the
fast wind-driven storms may become more severe than the effects of ICME storms with
larger peak Dst. We will discuss the processes leading to large relativistic electron fluxes
in the radiation belts more deeply in Chap. 14, but already note here that the CIR-related
storms are known to produce much larger relativistic electron fluxes in the inner magneto-
sphere than ICME storms. These, together with the hotter plasma sheet temperature, lead
to enhanced risks for spacecraft charging problems. On the other hand, as the CIRs are
related to neither flares nor CMEs, there is no direct association with solar energetic par-
ticle events. Thus there is no enhanced risk of single-event upsets due to high solar proton
fluxes. Also the most severe GIC events have been associated with ICMEs but not with
CIR-related storms.

As will be discussed in Chap. 14, the large-scale magnetic ULF oscillations in the Pc5
range (150–600 s) are an important candidate for the radiation belt electron acceleration.
The ULF power is high during both fast wind and fast ICMEs, which is consistent with
the observations that the ULF wave amplitude is proportional to the solar wind speed. Due
to the longer duration of fast flows the ULF oscillations have a longer duration during
CIR-related storms.

Finally, both most dramatic auroral displays and global sawtooth oscillations are char-
acteristically ICME-related phenomena. However, this does not mean weaker auroral ac-
tivity during fast solar wind episodes. On the contrary, Tanskanen et al [2005] found in
an analysis extending over the 11-year period 1993–2003 that substorms occurring during
years of large occurrence of high-speed solar wind were 32% more intense (in terms of
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the AE index) and transferred twice as much energy to the polar ionosphere as substorms
during years when the Earth was less exposed to fast solar wind flow.

Physical explanations for these differences are, for the time being, mostly speculative
and underline our lack of understanding of the solar wind-driven magnetosphere. For ex-
ample, Borovsky and Denton [2006] associated the appearance of global sawtooth oscil-
lations during magnetic cloud events with the fact that in those cases, due to the strong
IMF, the magnetosonic Mach number (Mms ∼ 1–3) and the magnetosheath plasma beta
(β < 1) are much smaller than normally. The low Mms reduces the plasma compression
ratio at the bow shock from the maximal 4 toward slightly over 1 (cf. Chap. 6). It is
fair to say that the role of the magnetosheath, the different plasma behavior behind the
quasi-parallel and quasi-perpendicular sectors of the bow shock, and the turbulent flow
that actually interacts with the magnetopause belong to the most critical unknowns in the
solar wind–magnetosphere interaction at the time of writing of this book.

13.6 Energy Budgets of Storms and Substorms

Magnetospheric storms and substorms can be seen as energy transfer processes in which
the solar wind is the primary energy source and the magnetosphere is an engine that re-
processes the incoming energy and distributes it to the different domains of the system
where it is dissipated by various mechanisms. Both energy input and output are difficult to
measure because the entire system as well as its different parts are large and in continuous
interaction with their surroundings.

Furthermore, it is useful to keep in mind that electromagnetic energy cannot be local-
ized. An illustrative example of this is a simple capacitor consisting of two circular plates.
When the capacitor is being charged, the charge to the capacitor comes along the wires
connected to the plates. But if you calculate the Poynting vector during the charging, it
points radially into the capacitor from the direction perpendicular to the electric field be-
ing created between the plates.

13.6.1 Energy supply

Let us start with order of magnitude estimates of how much energy is available in the solar
wind for magnetospheric activity. Assume, for simplicity, that the solar wind at 1AU con-
sists of protons with the density of 5 cm−3, that its velocity is 400 km s−1 and the interplan-
etary magnetic field 10 nT. Assume further, that the magnetospheric obstacle has a radius
of 15 RE . Now the solar wind kinetic power flux density is about 5×10−4 W m−2 and the
total power over the obstacle about 1.4× 1013 W, i.e., 14 TW. Assuming that B ⊥ V, the
electromagnetic power flux density is about 3× 10−5 W m−2, yielding the corresponding
power of 0.8×1012 W. Note that

kinetic energy flux
electromagnetic energy flux

∼ V ρV 2

V B2/μ0
=

V 2

v2
A

= M2
A . (13.6)
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As the solar wind at 1AU is practically always super-Alfvénic, the solar wind kinetic
energy flux is larger than the electromagnetic energy flux, typically a few tens of times
larger.

These numbers can be compared with the estimated power needed for the maintenance
of the magnetosphere, which was estimated to be 1.2×1012 W by Siscoe and Cummings
[1969]. As noted by Koskinen and Tanskanen [2002] this may be a slight underestimate,
but for our discussion the right order of magnitude is sufficient.

The velocity of a fast ICME and its magnetic field intensity can be several times larger
than in the example above. For example, on November 20, 2003, the north–south mag-
netic field component of an ICME reached −53 nT. Thus the total kinetic power over the
magnetospheric obstacle can easily exceed 3×1015 W and the electromagnetic power be
of the order of 5× 1013 W. As we will see below, these numbers are much larger than
the estimates for the energy dissipation in the strongly disturbed magnetosphere. There is
sufficient amount of energy available for magnetospheric activity, but the question is how
does the magnetospheric engine process this energy.

From simplified cartoons of reconnecting magnetosphere one may get the impression
that reconnection simply transports solar wind magnetic energy to the magnetosphere.
According to the numbers above this would imply that, except in cases of very fast so-
lar wind with strongly southward IMF, practically all magnetic energy incident on the
magnetopause would need to be transported, and even then the input would be marginal.
However, as discussed in Chap. 8, the solar wind flow supplies kinetic energy to a dynamo
on the magnetopause, which is responsible for the increase of magnetic energy inside
the magnetosphere. The solar wind kinetic energy flux is always more than sufficient to
maintain the magnetosphere and fully capable of powering the magnetospheric processes,
energy requirements of which will be discussed next.

13.6.2 Ring current energy

When Perreault and Akasofu [1978] introduced the epsilon parameter (13.1) to quanti-
tatively describe the energy input into the inner magnetosphere and ionosphere, they es-
timated the ring current to be the largest energy sink, considerably larger than the polar
ionosphere. Subsequent studies turned this picture around (see, e.g., the reviews by Stern
[1984] and Weiss et al [1992]). The overestimation of the ring current energy may have
been partly due to the focus of Perreault and Akasofu [1978] on magnetic storms but
equally well to the, at that time, underestimated power of ionospheric Joule heating and
electron precipitation.

Without dwelling on the details of the ring current dynamics, to be discussed in
Chap. 14, we can take the traditional approach and estimate the ring current energy from
the Dst index. Assuming that the current is carried by particles trapped in the dipole field,
the magnetic deviation observed 	B on ground is associated with the energy of the current
carriers WRC through the Dessler–Parker–Sckopke (DPS) relationship [Dessler and Parker,
1959; Sckopke, 1966]

	B

B0
= −2

3
WRC

Wdip
ez , (13.7)
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where B0 is the dipole field strength on the equatorial surface of the Earth, Wdip is the total
energy of the dipole field above the Earth’s surface, and ez indicates the horizontal (north)
direction at the equator. Denoting the deviation of the north component by 	H we can
write this as

	H = − μ0

2π
WRC

B0R3
E

. (13.8)

Train your brain

Derive the DPS relation (13.8) assuming a single ion species drifting in the dipole
field in the equatorial plane. If you feel like a more challenging exercise, perform the
calculations in Sckopke [1966].

Because 	H essentially gives Dst, we have in (13.8) the zeroth order relationship be-
tween the ring current energy WRC and Dst, the first correction to which is the pressure-
corrected index Dst∗ (1.64). The numerical relationship between WRC and Dst∗ is accord-
ing to (13.8)

WRC(J) ≈−4×1013 Dst∗(nT) . (13.9)

Let us denote the energy injection rate into the ring current by PRC and the loss rate by
LRC with a time constant τ and write LRC = Dst∗/τ . Thus the rate of change of the ring
current energy is given by

∂WRC

∂ t
= PRC −LRC . (13.10)

Now we get for the energy injection rate, i.e., the power into the ring current

PRC(W) ≈−4×1013
(

∂Dst∗(nT)
∂ t

+
Dst∗(nT)

τ

)
. (13.11)

While this equation is simple, Akasofu [1981] had already warned about its uncritical
use. The real ring current dynamics is more complicated than this. The decay time is not
a constant but varies during the progress of the actual loss mechanisms. The decay also
takes place during the main phase when it is hidden behind the rapid increase of the current.
For example, Lu et al [1998] used different time constants τ = 4–20 h for different levels
of Dst. Note that τ = 20 h is between the ring current H+ and O+ lifetimes as will be
discussed in the context of Fig. 14.3.

An even more serious problem is the simple fact that the magnetometers used to deter-
mine the ring current are also sensitive to a variety of other currents. The pressure correc-
tion (1.64) is the easiest to take into account. As already discussed in Chap. 1, the estimates
of the tail current contribution vary from 25% to 50% and the ground induced currents due
to large ∂B/∂ t during the main phase may contribute up to 25% of the observed Dst. Thus
(13.11) most likely overestimates the power into the ring current by a factor of about 2.
This is one of the reasons why the relative role of the ring current was overemphasized in
early energy budget studies.

The most straightforward way of determining the energy of the ring current would be to
measure the energy of the current carriers. While all particles throughout the vast ring cur-
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rent region cannot ever be observed, this method has been useful in some fortunate cases
when suitably equipped spacecraft, e.g., AMPTE/CCE and CRRES, have been traversing
the most important L-shells in the magnetosphere. Turner et al [2001] used the ion com-
position instrument data onboard the Polar satellite together with a ring current model and
concluded that the “real” ring current energy actually was about 50% of that given by the
DPS relation. For example, during a storm in May 1998 with a peak Dst ≈ −250 nT on
May 4 the peak ring current energy was found to be about 4× 1015 J, i.e., 40% of the
prediction of (13.9).

13.6.3 Ionospheric dissipation

The energy dissipation into the ionosphere takes place mostly through two main mech-
anisms: Joule heating and auroral electron precipitation. As both of these are enhanced
during substorms, the data base for statistical studies is much larger than is the case with
the energetics of the ring current, which is mostly a storm-time phenomenon. Also here we
need to turn to activity index-based proxies if we want to statistically determine the global
energy input into the ionosphere. However, there are several means of benchmarking the
proxies, including magnetic and radar observations of the ionospheric electrodynamics,
multi-wavelength auroral imaging and spectroscopy from both space and ground, and di-
rect observations of particle precipitation, electric field and field-aligned currents above
the auroral zone,

The Joule heating occurs when field-aligned currents close through the resistive iono-
sphere. The Pedersen current associated with this current loop is in the same direction as
the ionospheric electric field and thus energy dissipation is given by∫

J ·Ed3r =
∫

σPE2 d3r . (13.12)

The Pedersen current associated with the FACs is hard to determine from ground-based
magnetic effects, in the case of a homogeneous ionosphere even impossible [Fukushima,
1976]. However, the ratio between Hall and Pedersen conductances (i.e., height-integrated
conductivities) is typically about 2. Thus, the ground-based measurements of Hall currents
give us a fairly good picture of the Pedersen currents as well, and we can calibrate, e.g., the
AE indices as proxies for the Joule heating [e.g., Ahn et al, 1983] using a simple formula

PJ(W) = C×108 AL(nT) . (13.13)

Different studies have resulted in slightly different factors of the proportionality C. It is
in the range 2–5 with C = 3 as a good rule-of-thumb value for statistical studies (e.g.,
Lu et al [1998] and references therein). Thus a 500-nT substorm dissipates energy at the
rate of 150 GW per hemisphere. While the energy dissipation may be not be equal on
both hemispheres, considering all other uncertainties multiplication of the power given by
(13.13) by 2 is a reasonable assumption.

The energy carried by the precipitating electrons can be estimated using direct particle
measurements by polar-orbiting spacecraft. A commonly used formula derived by Spiro
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et al [1982] is
PA(W) = (1.75AE(nT)+160)×108 , (13.14)

which for a 500-nT substorm yields the power of about 100 GW per hemisphere. Ac-
cording to (13.13) with C ≈ 3 and (13.14) the Joule heating power is somewhat larger
than the power precipitated by the electrons, except during very weak electrojet activity
(AE � 30 nT). The reason for the 16-GW offset in (13.14) is the ever-present soft electron
precipitation from the central plasma sheet.

The worst weakness of the standard AE index in storm studies is its limited latitudi-
nal coverage. Fortunately, there are several more widely distributed magnetometers in the
northern polar region that can be utilized in case studies. An example of a method using
global magnetometer observations supplemented with particle precipitation, electric field,
ionosonde and radar data is the so-called assimilative mapping of ionospheric electrody-
namics (AMIE) technique (for practical examples, see e.g., Knipp et al [1998] and Lu et al
[1998]). For statistical studies the collection of large amounts of data is impractical. A
useful compromise is to use data from the local networks with longitudinally more limited
but latitudinally sufficient extent, e.g., the IMAGE chain in the Scandinavian sector or the
CARISMA network in Canada.

Tanskanen et al [2002] used the IMAGE chain to investigate the Joule heating during
all 352 substorms in 1997 that took place during the time interval 1600–2000 UT. In this
time sector the westward electrojet index IL derived from the IMAGE observations is a
good surrogate for AL rising from the SCW-related electrojet with the advantage of suffi-
cient latitudinal coverage [Kauristie et al, 1996]. The conversion factor in (13.13) was set
to C = 3. Tanskanen et al [2002] integrated the dissipation power from the beginning of
the substorm growth phase to the end of the recovery phase. The events were, furthermore,
divided into storm-time substorms (Dst ≤−40 nT, 60 events) and isolated substorms (292
events). Multiplying the obtained median values of energy deposition in the northern hemi-
sphere by a factor of 2, the median Joule heating over isolated substorms was 0.6×1015 J
and over the storm-time substorms 2×1015 J. As the substorms and solar flares share many
similar physical features, it may be of interest to note that a typical solar flare energy is of
the order of 1010 larger than a typical substorm energy.

There usually are several substorms during a storm and the electrojet activity remains
large even between the substorms. Thus the ionospheric Joule heating over a long storm
period can exceed 1017 J. For example, Knipp et al [1998] examined an 8-day CIR-related
storm period in November 1993 using a large amount of satellite and ground-based data.
Using the AMIE technique they found the total Joule heating to have been 13.7×1016 J. It
was 60% of the total dissipation and about 4×1016 J of it took place during the first 24 h
after the storm onset.

Storms driven by large ICMEs are of shorter duration and thus the total dissipation
may remain smaller, but at the time of maximum driving the energy numbers can be much
larger. A recent study by Rosenqvist et al [2006] of the “Halloween storm” focused on the
3-h period 1900–2200 on 30 October 2003. The proxies used in this study indicated that
0.9×1016 J was deposited into the ring current and 1.2×1016 J dissipated as Joule heating.
However, the AMIE technique produced an even larger Joule heating of 4.5×1016 J. Thus
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the Joule heating in 3 h was more than during the entire most intense day of the November
1993 storm.

Adding to these numbers the electron precipitation, it is clear that the ionosphere is the
main energy sink in the inner magnetosphere, not only for isolated substorms but also for
strong storms. All other physical processes in the ionosphere and on the auroral field lines
contribute much less to the energy budget. These include ion precipitation, acceleration of
ionospheric ions away from the ionosphere, auroral kilometric radiation, etc. The largest
of these is the power required to sustain the ion outflow, which is of the order of 1010 W.

Feed your brain

Find from the literature relevant data on the ions escaping from the ionosphere (number
flux, typical energy) to substantiate the power estimate 1010 W.

13.6.4 Energy consumption farther in the magnetosphere

The epsilon parameter was scaled only to the energy output into the inner magnetosphere
and thus does not represent the total energy input through the magnetopause. We have
already noted that sustaining the magnetosphere requires power of the order of 1012 W,
which over a 2-h substorm period means an energy of some 1016 J, and over a one-day
storm 1017 J, which actually corresponds to substantial storm-time dissipation in the iono-
sphere.

Most of the tail energy dissipation takes place in the plasma sheet and a significant
fraction of it is delivered to particles being injected into the ring current and precipitated
in the ionosphere, but not all. When Akasofu introduced the epsilon parameter, the role of
plasmoids in substorm dynamics was not yet known. According to the statistical analysis
by Ieda et al [1998] based on Geotail observations of 824 plasmoids the average energy
carried by individual plasmoids in the mid-tail region was 0.16× 1015 J. There are, on
average, 1.8 plasmoids per substorm; thus the plasmoids can be estimated to carry about
0.3×1015 J during a typical substorm. In addition the post-plasmoid plasma sheet outflow
was estimated to carry twice as much energy as the plasmoid itself. Summing up all these,
Ieda et al [1998] concluded that the fast tailward flow amounts to 1015 J per substorm, i.e.
it is of the same order of magnitude as the ionospheric Joule heating.

13.6.5 Energy transfer across the magnetopause

Even after the estimates discussed above, we still have a rather vague picture of total
energy transfer through the magnetopause to the magnetosphere. The main mechanisms
are thought to be processes leading to anomalous resistivity on the magnetopause and the
magnetopause dynamo driven by the opening of the dayside magnetopause as discussed
in Chap. 8. Of these the latter is generally thought to be the dominant process responsible
for some 90% of the energy transfer.
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In the MHD picture the magnetic stress at the magnetopause extracts the flow energy
in the magnetosheath and deposits it as magnetic energy inside the magnetopause. We can
use elementary electrodynamics to describe this process quantitatively. The components
of the magnetic part of Maxwell’s stress tensor (2.67) are

Ti j =
1
μ0

(
BiB j − 1

2
δi jB2

)
. (13.15)

The divergence of integrated over a volume gives us the force in the volume, which
can be written as surface integral using Gauss’s law

F =
∫

∇ · d3r =
∮

A
·da . (13.16)

The force density ∇ · is, of course, J×B. Denoting the magnetosheath flow velocity by
V the force F performs work with power

P = V ·F =
∮

A
V · ·da , (13.17)

which is in the component form

P =
∮

A
∑
i j

Vi Ti j da j =
∮

A

BnBt

μ0
Vt dan , (13.18)

where the subscripts t and n denote the tangential and normal components. The integrand
of the surface integral is the normal component of the Poynting vector Sn. Thus both the
opening of the magnetopause giving a finite Bn and the magnetosheath flow Vt are essential
to produce energy flux through the magnetopause.

If we follow the Poynting vector from the upstream solar wind to the magnetosphere,
the bow shock, being a fast shock compressing the magnetic field, already begins to con-
vert solar wind kinetic energy to electromagnetic energy. Thus ∇ ·S > 0 at the bow shock.
Closer to the magnetopause the Poynting vector field lines begin to bend toward the mag-
netopause in the plane of the IMF, whereas they are deviated around the magnetopause
in the plane perpendicular to the IMF [Papadopoulos et al, 1999; Palmroth et al, 2003].
This is in itself a trivial consequence of the definition of the Poynting vector. What is more
interesting is that only in the case of open magnetopause (Bn �= 0) the Poynting vector
has component through the magnetopause and electromagnetic energy can flow into the
magnetosphere through the high-latitude magnetopause (Fig. 13.14) as predicted by the
classical Dungey picture of reconnecting magnetosphere.

Palmroth et al [2003] calculated the energy flow through the magnetopause directly
from an MHD simulation of a magnetospheric storm on 6–7 April, 2000. Correct deter-
mination of the magnetopause from an MHD simulation output is a critical but non-trivial
task. Palmroth et al [2003] found that identification of solar wind streamlines encompass-
ing the magnetosphere suited best for their simulation data. Thereafter they divided the
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Fig. 13.14 A schematic view of the Poynting vector on the magnetopause in the plane of the IMF for
purely southward (a) and purely northward (b) IMF orientation. In the southward case S has a component
through the high-latitude magnetopause, whereas in the northward case S · n ≈ 0 on the magnetopause.
(Figure by courtesy of M. Palmroth.)

surface into quadrangular surface elements and calculated the energy flux dEq across each
element as

dEq = K ·da , (13.19)

where da is the vector surface element (positive outward from the magnetopause) and K

the total energy flux (W m−2). Noting the total energy density by u and the pressure by P
the energy flux can be written in the form (Chap. 6)

K =
(

u+P− B2

2μ0

)
V+

1
μ0

E×B . (13.20)

This is evaluated from the simulation data at every surface element and the total power
over any domain of interest can be calculated by simple integration.

The results presented by Palmroth et al [2003] illustrate that the energy influx is in
the regions where the Poynting vector has a component across the magnetopause. When
the energy influx was integrated over the magnetopause surface to the tailward distance
of X = −30RE followed surprisingly well the epsilon parameter during the storm main
phase but was about 4 times larger. This supports the view that the epsilon parameter
underestimates the energy input but otherwise is a parameter consistent with the MHD
picture, at least during the period of southward-pointing IMF.

However, it is important to understand that while Fig. 13.14 indicates electromagnetic
energy flux penetration through the magnetopause, it is not the upstream solar wind elec-
tromagnetic energy flux nor the electromagnetic energy flux enhanced by the bow shock
that turns out as the enhanced magnetic energy in the tail lobes. Instead the energy transfer
mechanism is the dynamo driven by the magnetosheath flow that works against the open
magnetic flux producing power according to (13.18) to enhance the magnetopause current
system. This in turn means enhanced tail lobe magnetic flux, and thus enhanced magnetic
energy density.

This all means that the magnetopause acts as a Poynting vector source ∇ ·S > 0 when
moving inward, which cannot be seen by simply following the Poynting vector field lines
in an MHD simulation [e.g., Papadopoulos et al, 1999], but one has to actually calculate
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∇ ·S. However, calculating ∇ ·S from the simulation output is very sensitive to small inac-
curacies in the determination of the magnetopause or, in case of reconnection, to numerical
effects within the diffusion region. In order to avoid these problems Laitinen et al [2006]
introduced the concept of energy conversion surface density. It is a line integral of ∇ ·S

across the boundary surface being investigated

σEc = −
∫ l2

l1
∇ ·Sdl . (13.21)

The integration limits must be chosen to enclose the entire energy conversion region to
ensure that σEc really gives the correct energy conversion, i.e., the conversion due to the
divergence of the Poynting vector. The units of σEc are readily W m−2 and it can be ap-
plied to both magnetic energy annihilation (reconnection) and magnetic energy creation
(dynamo). Note that the sign in (13.21) has been selected to give a positive number for the
reconnection power, i.e., annihilation of the magnetic energy.

To actually measure the energy flux across the magnetopause boundary is very chal-
lenging because the magnetopause is always moving with respect to a spacecraft and it is
necessary to separate the temporal and spatial changes in physical parameters. Rosenqvist
et al [2006] utilized the four-satellite constellation Cluster to determine both the J×B

force and the velocity field to calculate the energy flux locally during the very strong Hal-
loween storm in October 2003. They found the local energy flux rate of 0.25 mW m−2,
which they integrated over a simple model magnetopause. Depending on the distance to
the neutral line this resulted in total power of 17–40×1012 W, of which the lower end was
argued to be more plausible.

A curious fact is that the epsilon parameter calculated from the upstream parameters
was at the time of the Cluster observations 37× 1012 W. This is a factor of 8 larger than
the epsilon parameter during the April 2000 storm investigated by Palmroth et al [2003].
On the other hand the energy input derived from the MHD simulation was of the same
order of magnitude as the Cluster-derived input rate above. These rather different relations
between the epsilon parameter and other ways of determining the energy input may well
result from uncertainties in the various methods of calculating the energy input, but they
may also indicate a saturation of the system. After some threshold the magnetosphere
may not be able to acquire more energy from the solar wind even if the solar wind driver
parameters continue to increase. We conclude this chapter with a brief discussion of the
saturation, which has become quite a popular topic during the first decade of the 21st
century.

13.7 Superstorms and Polar Cap Potential Saturation

The saturation of the solar wind energy input into the magnetosphere at very strong driving
is most clearly seen in the response of the polar cap potential to the increased solar wind
electric field E = −V×B . Indications of such a saturation were found already some time
ago, for example, from the spacecraft data discussed by Reiff et al [1981]. However, the
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quantification and, in particular, the theoretical explanation of the saturation has turned out
to be very difficult (for a review, see, Shepherd [2007]).

13.7.1 Quantification of the saturation

The main methods of estimating the polar cap potential are either to integrate the V×B

electric field along the orbit of a polar cap traversing spacecraft, utilizing direct electric
field or plasma drift observations, or to determine it from ground-based ionospheric radar
observations of the plasma flow. Unfortunately, these methods are subject to significant
observational uncertainties because they provide spatially incomplete maps of the poten-
tial distribution and finding the maximum and minimum potentials require fitting the data
to models. The observations can be supplemented by other ionospheric data, e.g., as is
done in the AMIE modeling discussed in Sect. 13.6.3, but also in this process the error
bars remain large. Another problem is that the saturation takes place only during particu-
larly strong solar wind driving, sometimes called superstorms, which makes the number
of useful events small. During strong storms the polar cap expands moving the auroral
oval equatorward of the view of polar cap monitoring radars, which further increases the
uncertainty in the determination of the actual polar cap potential. Consequently, even the
existence of the saturation was questioned for a long time.

The first determinations of the saturated polar cap potential underestimated the actual
potential. The estimates for the associated solar wind electric field, at which the satu-
ration becomes observable, varied from 0.5 to 10 mV m−1. After the extensive study by
Hairston et al [2005], including several storm events from 1998–2002 and the superstorms
of October and November 2003, the best estimates for the maximum potential are about
200± 65 kV, within a wide range of solar wind electric fields from below 10 mV m−1 to
about 40 mV m−1. In fact, Hairston et al [2005] claim that “it is unlikely that we will ever
observe potential drop much (if any) in excess of 260 kV.”

While there is no longer much doubt that the saturation, or at least a nonlinear response,
of the polar cap potential is a real phenomenon during very strong solar wind driving,
no generally accepted physical explanation has emerged. Shepherd [2007] and Borovsky
et al [2009] list several theories, or models, attempting to explain the potential saturation.
Concerning the great scatter in the data and the rarity of the events, it is no surprise that
there is little observational evidence to distinguish between the different approaches. We
will discuss two of the established theories and a recent proposal, which all highlight, from
somewhat different angles, the critical physical questions that need to be understood in this
context.

13.7.2 Hill–Siscoe formulation

One of the most popular approaches to the saturation problem can be named as the Hill–
Siscoe formulation [Hill et al, 1976; Siscoe et al, 2002a,b]. Its basic idea is that the Region
1 current system closing the ionospheric current associated with the polar cap potential
to the magnetopause does not produce a magnetic field that would exceed a significant
fraction of the Earth’s dipole field near the reconnection site. This is a reasonable argument
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because these magnetic fields are oppositely directed and tend to cancel each other. Once
the maximum available current is reached, the maximum potential is determined by the
height-integrated Pedersen current across the polar cap.

Let ΦPC be the polar cap potential, ΦM the potential over the dayside reconnection line,
which in the classical MHD reconnection picture without saturation is the magnetospheric
convection potential, and ΦS the “saturation potential”. In the Hill–Siscoe model these
potentials are related to each other as

ΦPC =
ΦMΦS

ΦM +ΦS
. (13.22)

The argumentation behind this formula is the following. If ΦM � ΦS, the polar cap po-
tential corresponds to the magnetospheric convection potential ΦPC ≈ ΦM , i.e., there is no
saturation. At the other limit ΦM � ΦS we get ΦPC ≈ ΦS, i.e., if the driver of the magne-
tospheric convection tries to impose a larger potential than ΦS on the polar cap, the polar
cap potential saturates. If ΦM = ΦS, half of the saturation level is reached.

The total current in the polar cap driven by the potential is ΣPΦPC, where ΣP is the
height-integrated Pedersen conductivity, assumed to be uniform, for simplicity. This is
related to the Region 1 field-aligned current driven by the magnetopause generator as

I1 = ξ ΣPΦPC , (13.23)

where ξ is a numerical factor depending on the actual geometry of the current systems.
Similarly

IS = ξ ΣPΦS . (13.24)

With these (13.22) can be rewritten as

ΦPC = ΦM − ΦM

IS
I1 . (13.25)

If we think in terms of equivalent current circuits, ΦM/IS represents the effective in-
ternal resistance of the current generator. Its role is to regulate the amount of ΦM that is
imposed over the polar cap. At some level of driving the generator becomes current lim-
ited, i.e, it cannot deliver an increasing amount of current to the magnetosphere even if
the solar wind driver, represented here by the solar wind electric field, increases. Thus the
amount of magnetic flux in the tail lobe saturates.

Next, the expressions for ΦM and IS need to be found. It is a somewhat nontrivial task
and requires assumptions about the reconnection process and the Region 1 current system.
After some calculations Siscoe et al [2002a] find the expression that we call the Hill–
Siscoe formulation of the polar cap potential

ΦPC =
57.6ESW P1/3

SW F(θ)

P1/2
SW +0.0124ξ ΣP ESW F(θ)

, (13.26)
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where ESW is in mV m−1, PSW is the solar wind dynamic pressure in nPa, F(θ) is the IMF
clock angle dependence (e.g., F(θ) = sin2(θ/2)), ξ has a value between 3 and 4. Note
that we have omitted the scaling factor between the present dipole field and an arbitrary
dipole field included in Siscoe et al [2002a].

Feed your brain

With the help of Siscoe et al [2002a] find out how (13.26) is obtained.

There have been several attempts to explain the physics behind the internal resistance of
the current generator, but there is lack of good enough experimental data to judge between
different approaches. Borovsky et al [2009] criticize the current limited model based on
their global MHD simulations of the polar cap potential saturation. However, the validity
of the simulation models in such extreme conditions as is the case here is of some concern.
Generally, our understanding of the physics of the boundary layer dynamo driving the
Region 1 current system is yet insufficient.

13.7.3 The Alfvén wing approach

Another, from the fundamental plasma physics viewpoint, rather interesting idea is related
to one of the problems with the global MHD models for the solar wind – magnetosphere
interaction during very strong driving. The models usually assume, implicitly or explicitly,
super-Alfvénic flows, which can be motivated by the typical Alfvén Mach numbers MA of
the order of 8 or larger. Furthermore, the boundary conditions for MHD simulations are
much easier in the case of super-Alfvénic solar wind. However, the solar wind electric field
EY = V Bz of, say, 20 mV m−1 can result, e.g., from V = 1000 km s−1 and Bz = −20 nT.
Usually these numbers are obtained within magnetic clouds, where the plasma density is
very small, making the Alfvén speed large. Thus while 1000 km s−1 is a high velocity, the
Alfvén Mach number MA may approach unity, or be even smaller, making the solar wind
interaction with the magnetopause temporarily sub-Alfvénic.

We can look at the low MA case from the reverse viewpoint. If you place a magnetic
obstacle with a quasi-dipolar field and an open polar cap into a sub-Alfvénic flow, the polar
cap flux tubes do not fold to form the tail lobes of a prototypical magnetosphere. Instead
they become tilted toward the downwind direction forming so-called Alfvén wings, one
above (north) and one below (south) the obstacle. The tilting depends on MA and for large
enough MA we obtain the familiar magnetospheric configuration with tail lobes separated
by the cross-tail current sheet.

The formation of Alfvén wings is actually independent of the magnetic field of the
obstacle. In fact, the concept was applied already long time ago to the sub-Alfvénic motion
of the non-magnetic Io in the Jovian low-density but strong magnetosphere [Neubauer,
1980]. An example of sub-Alfvénic magnetized object with Alfvén wings in the Jovian
system is Ganymede.

Ridley [2007] investigated with MHD simulations the formation of Alfvén wings in the
Earth’s magnetosphere during conditions of low MA and showed how the Alfvén wings
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evolved from the tail lobes when MA is decreased from 8 to 0.7. What makes this idea
interesting is that while the solar wind electric field ESW increases, the electric field within
the Alfvén wing does not change much. In other words the Alfvén wing shields the polar
cap from ESW . Ridley [2007] found that as long as MA > 1 the simulated polar cap potential
rose until it quickly saturated, and slightly decreased when MA decreased below 1. That the
saturation depends on MA may partly explain the large variation in the observed threshold
ESW for the saturation, because

MA =
V
vA

=
V
B
√

μ0ρm (13.27)

in addition to V and B also depends on the solar wind density.
According to the Io-study by Neubauer [1980] the shielding depends only on the con-

ductivity of the shielded body, in our case ΣP in the polar cap ionosphere, and on the Alfvén
conductivity

ΣA =
1

μ0vA
(13.28)

in the solar wind. Actually it might be a little more appropriate to discuss this in terms of
the Alfvén wave impedance Σ−1

A , since it makes the idea of the shielding more transparent.
Namely, the transmission of the perturbed potential from the solar wind to the polar cap
ionosphere takes place as an Alfvén wave. If the wave impedance in the solar wind is larger
than the impedance in the ionosphere Σ−1

P , the wave is partially reflected, which limits the
potential in the ionosphere.

Kivelson and Ridley [2008] modified the Io-specific analysis of Neubauer [1980] to the
Earth’s polar cap potential problem and found the expression

ΦPC =
2ESW F(θ)d ΣA

ΣP +ΣA
. (13.29)

Here ESW F(θ) is the same expression for the reconnection electric field as in (13.26) and
d is the distance across the unperturbed solar wind that contains field lines that reconnect
at the dayside magnetosphere.

While (13.29) is formally not very different from (13.26), the underlying physical ar-
gumentation is. The saturation is a natural product of information transfer in MHD plasma
and there is no need to refer to artificial current circuits. According to Borovsky et al
[2009] this model was the only one that did not contradict their simulation results among
the nine models they considered.

13.7.4 Magnetosheath force balance

It should always be kept in mind that it is not the upstream solar wind plasma flow with its
electric field but the magnetosheath plasma that interacts with the magnetopause. While an
argumentation based on forces in the magnetosheath has already been introduced by Siscoe
et al [2002b] considering the roles of the current systems and solar wind ram pressure in the
Hill–Siscoe formulation, we discuss it separately because Lopez et al [2010] have recently
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made the argument more explicit and related it to the magnetosheath plasma parameters
during strong solar wind driving.

The magnetosheath force balance argument is based on the change in the relative mag-
nitude of the pressure force (∇P) and magnetic force (J×B) when the upstream Alfvén
Mach number and, as a consequence, the magnetosheath plasma beta decrease. During
typical high MA conditions the magnetosheath flow is controlled by the pressure force and
the length of the reconnection line is independent of the changes in the solar wind parame-
ters. Thus a larger solar wind electric field leads to a larger potential over the reconnection
line. However, when the IMF becomes large enough, the magnetosheath plasma beta just
behind the shock becomes less than 1 and the magnetic force begins to dominate over the
pressure force causing increasingly efficient deviation of the plasma flow around the mag-
netopause. Consequently, the fraction of the solar wind electric field that is imposed on the
reconnection line decreases. In other words, the length of the reconnection line mapped
along the magnetic field lines back to the upstream solar wind becomes shorter and the
geoeffective length of the reconnection line is reduced in the solar wind. Correspondingly,
the potential over the reconnection line does no more grow linearly with the solar wind
V×B electric field.

The magnetosheath force balance argument as stated by Lopez et al [2010] is differ-
ent from the Hill–Siscoe model, as it is independent of the Region 1 current dynamics.
However, these two approaches certainly are closely related to each other. An interesting
property of the Region 1 current closure pointed out by Siscoe et al [2002b] and consistent
with the magnetosheath force balance argument is that near the saturation level the magne-
topause Chapman–Ferraro current can no longer close the entire Region 1 current. Instead
the MHD simulations indicate that part of the current closes to the current at the bow
shock. For southward IMF the direction of the current in the magnetosheath is outward
from the magnetopause in the duskward side of the subsolar direction and inward in the
dawnward side, consistent with the Region 1 system. It should be no surprise that there is a
current system at the bow shock, as its role is to compress the magnetic field. However, this
current system has received surprisingly little attention in the solar wind–magnetosphere
interaction investigations.



14. Storms in the Inner Magnetosphere

The inner magnetosphere containing the plasmasphere, ring current and radiation belts is
a key domain of magnetospheric storms from both physical and practical viewpoints. The
growth, decay and asymmetries of the ring current are considered as main indicators of the
large-scale storm evolution and the electron belts respond strongly to the storm evolution
leading to the most hazardous conditions for spacecraft in orbit. The outer electron belt
reaches beyond the geostationary orbit, which contains the largest number of satellites.
The growing importance of global navigation satellite systems also brings the even more
hazardous conditions deeper inside the electron belt (L � 4) into focus.

A particular feature of the physics of the inner magnetosphere is the overlapping plasma
populations of widely different and variable temperatures, densities and particle contents:
the cold but dense plasmasphere, the highly variable ring current carried by ions with en-
ergies up to about 200 keV, and the ion and electron radiation belts where electron energies
reach relativistic levels. These populations do not only overlap spatially, but they also af-
fect each other through wave–particle interactions. For example, the plasma gradients at
the plasmapause provide free energy for wave modes that interact with both ring current
and radiation belt particles. Furthermore, the energetic ions interact with the cold tenu-
ous neutral hydrogen atom exosphere through charge exchange collisions, which leads to
enhanced loss cone in the ion population. The enhanced anisotropy further amplifies the
waves that are also capable of interacting with relativistic electrons, and so on.

These properties of the inner magnetosphere pose significant challenges to observa-
tions, theories and modeling. The scientific instruments need to cover a wide range of
physical parameters and operate in a very hostile radiation environment. Theoretical treat-
ment of multicomponent, non-Maxwellian, inhomogeneous plasmas is nontrivial indeed
and requires use of computationally demanding numerical methods. For example, inclu-
sion of the ring current and its coupling to the ionosphere in MHD simulation schemes
has turned out to be a tough challenge. The particle tracing and diffusion models must, so
far, rely on prescribed background electric and magnetic field models and the treatment
of transport, acceleration and loss of energetic particles due to different mechanisms from
wave–particle interactions to charge exchange collisions requires ingenious solutions to
calculate the applicable diffusion coefficients.
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14.1 Dynamics of the Ring Current

The ring current is the key element of storm evolution in the magnetosphere. The main ring
current carriers are protons in the energy range 10–200 keV, which during storm periods
are supplemented by significant amounts of oxygen ions originating from the ionosphere.

Because substorms and other activations are frequent during the storm main phase, the
original idea was that the substorm particle injections would be the main source of en-
ergetic plasma of the ring current (for an early review, see Akasofu [1966]). However, it
has turned out to be difficult to find a straightforward relationship between individual in-
jections and the enhancement of the ring current [see, e.g., Kamide, 1992]. Consequently,
the question was turned around and quite some effort was put on trying to understand
the ring current evolution based on the enhanced large-scale convection alone. But this
approach does not address properly the question of how the relatively low-temperature
plasma sheet ions gain energies to the order of 100 keV. Thus transient perturbations ad-
dressed to substorm-like activations are again called for [e.g., Fok et al, 1999; Ganushkina
et al, 2005].

14.1.1 Asymmetric structure of the ring current

Before going to the physical mechanisms of ring current growth and decay, let us consider
the large-scale interpretation of the magnetic deviations measured on the ground.

The Dst index and its high-time resolution variant SYM-H are constructed to describe
the average westward ring current using ground-based observations of magnetic deviation
at low latitudes.1 As discussed in Chaps. 1 and 13, Dst and SYM-H are strongly contam-
inated by other magnetospheric current systems and by induction effects during the rapid
main phase evolution. A direct observation of 10–200-keV ions on trapped orbits would
be a preferable method to determine the real ring current. Unfortunately, such observations
are only seldom available. Observations of energetic neutral atoms to be discussed shortly
may, in the future, give quantitative information of the ring current, but so far their role
has been to provide supplementary information with rather large uncertainties.

During magnetic storms the asymmetry of the ring current becomes an essential part
of the story. The asymmetry can be estimated from the differences between the recordings
at low-latitude magnetometer stations on different longitudes and indexed by the Asym
or ASY-H indices. The reason for asymmetry is usually described in terms of partial ring
current, but again the terminology is not unique. There is a persistent partial ring cur-
rent corresponding to the closure of the ever-present Region 2 FAC system. The Region
2 FAC enters the ring current region in the dawn sector and closes across midnight to the
FAC toward the ionosphere in the dusk sector. This partial ring current strengthens with
the strengthening FACs during magnetospheric activity, but in ground-based magnetic ob-
servations this evolution is overshadowed by simultaneous strengthening of the cross-tail
current.

1 While the acronym SYM-H suggests that it is the symmetric part of the ring current, it actually is a
weighted average over the longitudes of the observed magnetic deflections at low-latitude stations similar
to Dst.
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A more direct storm-time asymmetry rises, however, from ions drifting on open tra-
jectories around the dusk toward the dayside magnetopause. Also this large-scale current
must be continuous and any divergence of the perpendicular current be compensated by
a divergence of a FAC. However, as the current is carried by fresh ions approaching from
the plasma sheet and departing toward the magnetopause, the closure current does not
need to connect to the ionosphere at low L shells. In fact, during enhanced convection
there is an upward FAC emerging from the Harang discontinuity near the magnetic mid-
night (Fig. 1.28) on field lines that connect to the pre-midnight sector plasma sheet beyond
10RE [Koskinen and Pulkkinen, 1995]. On the dayside there is a downward current to the
poleward edge of the polar cusp region slightly past noon (Fig. 1.28). Whether these iono-
spheric source and sink regions are connected to the partial ring current in the dusk sector
or not, is not fully clear.

The different magnetospheric response to magnetic clouds and ICME sheath regions
discussed in Sect. 13.4 is evident also in the ring current asymmetry. Huttunen et al [2006]
found that during intense sheath-driven storms the asymmetric component (ASY-H) domi-
nates the symmetric component (SYM-H) while during most cloud-driven storms the situ-
ation is the opposite. Furthermore, throughout the main phase of a sheath storm the asym-
metry is highly variable with variations related to auroral activity.

14.1.2 Sources of the enhanced ring current

The ring current never disappears because there always are charged particles in the near-
Earth space drifting around the Earth. For our topic it is important to understand the pro-
cesses that lead to the growth and decay of the storm-time ring current.

Both the ionosphere and the solar wind are sources of magnetospheric plasma and
thus of ring current as well. The two main ring-current-carrying ion populations are en-
ergetic H+ and O+ ions. While singly charged oxygen must be of ionospheric origin,
the protons may come from both sources. Table 14.1 summarizing conclusions based on
the AMPTE/CCE and CRRES satellite observations has been adapted from the review by
Daglis et al [1999]. Note that the data are based on a relatively small number of storm-time
observations and thus there are considerable uncertainties in the numbers and individual
storms can show large deviations from these values.

Furthermore, the ion composition does not vary due to the variability of the source
alone but also due to the very different lifetimes of the different ion species in the ring
current. As discussed in Sect. 14.1.4 below, the main mechanism causing the decay of the
current, the charge exchange with the neutral hydrogen in the geocorona, has very different
consequences for the evolution of the H+ and O+ contents at different energies.

The ion energies in the ionosphere and the solar wind are much smaller than the energies
of the main carriers of the ring current. While the solar wind seed population already is
in the keV-range, the ionospheric plasma has to be accelerated all the way from a few eV
to the ring current energies. On the other hand, the current carriers do not arrive directly
at the ring current but are first transported to the plasma sheet where they undergo quite
significant acceleration before the injection into the ring current.
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Table 14.1 Relative abundances of different ion species and total ion energy densities at L = 5 in the
ring current during quiet times and under different levels of storm activity based on AMPTE/CCE and
observations [Daglis et al, 1999]. Note that in experimental space physics it is customary to give the
particle energy density in units of keV cm−3.

Small &
Source and species Quiet medium Intense

times storms storms
Solar wind H+ (%) ≥ 60 ∼ 50 ≤ 20
Solar wind He++ (%) ∼ 2 ≤ 5 ≥ 10
Ionospheric H+ (%) ≥ 30 ∼ 20 ≤ 10
Ionospheric O+ (%) ≤ 5 ∼ 30 ≥ 60
Solar wind total (%) ∼ 65 ∼ 50 ∼ 30
Ionosphere total (%) ∼ 35 ∼ 50 ∼ 70
Total energy density (keV cm−3) ∼ 10 ≥ 50 ≥ 100

The acceleration and heating of the outflowing ionospheric plasma is likely to take
place in several steps (see, e.g., Chap. 2 of Hultqvist et al [1999]). The strongest out-
flow occurs along the field lines connected to the auroral oval. Some heating of plasma
by fluctuating electric fields already takes place in the ionosphere. The more energy the
ions gain, the more efficiently the magnetic mirror force pushes them up. Further acceler-
ation is provided by the same electric potential structures that accelerate auroral electrons
downward in the range of 1–10 keV. Due to the strong FACs and particles moving up and
down and drifting across the magnetic field lines the regions above the auroras host a large
variety of plasma waves, including electrostatic ion cyclotron waves, lower hybrid waves,
ion–Bernstein waves, whistler mode waves, etc., many of which can contribute to the en-
ergization of the ionospheric plasma to the keV-range, i.e., to the same level as the plasma
coming from the solar wind.

In the magnetotail current sheet electromagnetic energy is transferred to particles
(J ·E > 0), which is the main reason why the power of some 1012 W is needed to maintain
the magnetotail, as discussed in Sect. 13.6. While transient processes like reconnection can
be very effective particle accelerators, the energy transfer also takes place during quies-
cence. Ions crossing the current sheet with a finite but small normal magnetic field compo-
nent (Bn) are transported for a short while in the direction of the electric field and thus gain
energy [see, e.g., Lyons and Speiser, 1982]. This is essentially a diffusion process in pitch
angle and energy, which is due to the loss of exact guiding center motion, i.e., breaking of
the first adiabatic invariant and chaotization particle motion [Chen and Palmadesso, 1986;
Büchner and Zelenyi, 1989].

Figure 14.1 illustrates how a low-energy ion entering the nightside magnetosphere from
the high-latitude mantle is transported first to the distant tail and from there earthward with
the large-scale convection. The closer to the Earth it comes, the more frequently it crosses
the current sheet. Numerical test-particle simulation results by Ashour-Abdalla et al [1993]
together with an analytic estimate based on the analysis by Lyons and Speiser [1982] for
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Fig. 14.1 Schematic picture of transport of a solar wind particle from two different source locations in the
mantle to the inner plasma sheet. (From Ashour-Abdalla et al [1993].)

the maximum energy gained in such a model

W1(x) =
mi

2

[(
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2Ey

Bn(x)

)2

+ v2
y + v2

z

]
(14.1)

are shown in Fig. 14.2. Note that sometimes the particle gains energy, sometimes it loses
energy when crossing the current sheet. This leads to a complicated spatial structuring of
the distribution functions (for more details, see Ashour-Abdalla et al [1993]).

Because the stretching is strongest in the distant tail, the particle motion is most chaotic
there and, consequently, the acceleration is most efficient for particles entering the plasma

Fig. 14.2 Results of test-particle simulation by Ashour-Abdalla et al [1993]. The scale on the right gives
the energy gain, that is proportional to the convection velocity V = Ey/Bn given on the right. The horizontal
scale illustrates the distance from the Earth to the point where the first current sheet crossing has taken
place.
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sheet furthest out. Figure 14.2 indicates that the current sheet heating is capable of pro-
ducing ions of several keV from a sheet population with energies well below 1 keV.

Because Bn increases toward the Earth, the current sheet heating is less efficient in the
near-Earth space. In the absence of inductive electric fields or wave–particle interactions
the particles convected adiabatically to the inner magnetosphere still gain energy by the
drift betatron mechanism (3.51). However, this is not sufficient to account for ion energies
above 100 keV.

14.1.3 Role of substorms in storm evolution

It has been difficult to establish direct connection between storm development and sub-
storm expansions, at least if we focus on magnetic indices such as Dst and AL. On the
other hand, if we look at the storms from the particle viewpoint, it is difficult to neglect
the role of substorms. After all, substorm onsets are associated with energetic particle in-
jections into the inner magnetosphere (Chap. 13), a fraction of which are bound to end
up in the ring current. Furthermore, substorm activity both heats up the plasma sheet and
enhances ionospheric ion outflows.

Baumjohann et al [1996] showed that the average ion temperature in the near-Earth
plasma sheet (radial distances 10–19 RE ) is significantly higher around storm-time sub-
storm onsets (about 7 keV) than around onsets of isolated substorms (about 3 keV). In both
cases the substorm onset was found to lead, on the average, to heating of the ions by about
2 keV. Thus a sequence of substorm expansion phase onsets during a storm main phase
increases the temperature of the ring current seed population and most likely contributes
to the enhancement of the current. As this mechanism also takes place during isolated sub-
storms, they also can contribute to the source population for a storm-time ring current to
be enhanced at some later time.

Enhanced O+ ion ouflows are observed during substorm growth and expansion phases
in the ionosphere by ground-based radars and directly by satellites traversing the auroral
field-lines. Thus the observed high storm-time O+ fluxes (Table 14.1) are not surprising.
Substorm dipolarizations contribute further to ion acceleration through strong transient
inductive electric fields, whose role in reaching 100-keV energies may be critical [e.g.,
Pellinen and Heikkila, 1984; Ganushkina et al, 2005]. The inductive electric fields are
likely to lead to preferential acceleration of O+ over H+ because all adiabatic invariants of
O+ can be violated while the magnetic moment of H+ may remain conserved. This idea is
consistent with test-particle simulation results of Delcourt et al [1990].

In conclusion, while magnetospheric storms are not built up by substorms, substorms
and other storm-time activations are intimately tied to the storm evolution. Substorms con-
tribute to the storms and storms affect the characteristics of substorms.

14.1.4 Loss of ring current through charge exchange collisions

The actual level of ring current is determined by a balance between the current carrier
sources and losses. The loss of current takes place all the time, but is overshadowed by
the injection of new current carriers during the storm main phase. The energy relationship
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(13.11) illustrates this balance. The term Dst∗/τ is always negative describing the average
energy loss with time constant τ . The slope ∂Dst∗/∂ t is negative during the main phase
describing the increase of ring current energy. During the recovery phase, the derivative is
smaller and positive. Note that neither of these terms is directly associated with a single
physical source or loss process. Furthermore, τ is not a constant because different loss
processes evolve differently during the progress of a storm.

The main loss processes for the ions are charge exchange and Coulomb collisions, as
well as interaction with electromagnetic ion cyclotron waves. Of these the most important
is the charge exchange between the ring current ions and the neutral hydrogen atoms of
the geocorona that is an extension of the Earth’s exosphere [e.g., Chamberlain, 1963].

Charge exchange collisions are ubiquitous in the solar system. The most typical charge
exchange reaction is a collision between an ion and a neutral atom, in which the ion ac-
quires an electron from the atom. After the process the charge state of the ion is reduced
by one and the neutral particle becomes positively charged

Xn+ +Y → X(n−1)+ +Y+ . (14.2)

There are more complicated reactions, including charging of dust particles, but they are
not essential to our topic.

An example of charge exchange is the interaction between solar wind ions and inter-
stellar hydrogen flowing through the heliosphere. Although the collision frequency is very
small, the volume is huge and the process has an observable effect. Measuring the solar
Lyman-α radiation scattered from the interstellar hydrogen atoms it is possible to map the
large-scale structure of the solar wind. The more there is solar wind in some direction,
the larger the fraction of interstellar hydrogen atoms that become ionized and no longer
scatter the solar Lyman-α photons. Most of the incident ions are protons, which are con-
verted to neutral hydrogen. However, their speeds are the same as the solar wind speed,
i.e., of the order of 20 times greater than the speed of the incoming interstellar matter
(about 25 km s−1) and thus the Lyman-α radiation scattered by the newly-born neutrals is
Doppler-shifted and the two hydrogen populations can be distinguished from each other.
Such an instrument, called SWAN, is actually a part of the payload of SOHO. Other ex-
traterrestrial examples are the interaction of the solar wind with the upper atmospheres of
non-magnetized planets, Venus and Mars, as well as with the comets.

Dessler and Parker [1959] suggested that charge exchange between ring current ions
and the cool hydrogen geocorona would be an efficient mechanism for the ring current
decay. At ring current altitudes the collisionless exosphere consists almost purely of hy-
drogen atoms and the main charge exchange processes are

H+ +H → H+H+

O+ +H → O+H+ (14.3)
He++ +H → He+ +H+

He+ +H → He+H+ .

Note that ions mirroring at low altitudes also undergo charge exchange with oxygen atoms,
which must be included in detailed model calculations.
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The temperature of the geocorona is about 1000 K (0.1 eV). Thus when charge ex-
change with a ring current ion of tens or hundreds of keV takes place, the emerging par-
ticles are a very slow ion and an energetic neutral atom (ENA). Charge exchange does
not directly decrease the number of current carriers, but transports the charge from effi-
cient current carriers to very inefficient ones, as the current carried by a drifting particle is
directly proportional to its energy (Chap. 3).

The efficiency of charge exchange as a loss mechanism depends on the lifetimes of
the current carriers. These in turn depend on the density profile of the geocorona and
are different for different ion species at different energies. Furthermore, the L shells and
pitch angles of the incident ions need to be considered because ions mirroring at different
altitudes encounter different exospheric densities. The atomic hydrogen density is almost
spherically symmetric and drops from more than 1000 atoms cm−3 at 2RE (geocentric)
to less than 50 at the geostationary distance 6.6RE [Rairden et al, 1986]. For equatorial
particles (α = 90◦) the lifetime can be given as

τe =
1

n(r)σchev
, (14.4)

where n(r) is the neutral hydrogen density in the equatorial plane, σche is the energy- and
mass-dependent charge exchange cross-section and v is the ion velocity. Ions mirroring
at off-equatorial latitudes are lost more quickly. The lifetimes can be estimated using the
formula

τm = τe cosδ λm , (14.5)

where λm is the mirror latitude and δ has been found to be in the range 3–4 at ring current
altitudes. Thus charge exchange leads to an anisotropic ion pitch angle distribution that is
strongly peaked at 90◦, in particular at low L shells where the process is strongest due to
the largest neutral density.

Unfortunately, the collisional cross-sections cannot be determined theoretically and
also experimental determination of the charge exchange cross-sections σche is difficult
because the exosphere is a much better vacuum than can be created in laboratories. Figure
14.3 illustrates predicted ion lifetimes together with lifetimes inferred from Explorer 45
observations during a geomagnetic storm in February 1972. The very different energy-
dependence of H+ and O+ is evident. High-energy O+ disappears by charge exchange
much faster than high-energy H+. At larger L shells the lifetimes are longer, at smaller
shells shorter. For more details see Smith et al [1981].

From these considerations it is clear that the inclusion of charge exchange collisions
in numerical ring current models is a challenging task. However, it has been done quite
successfully during a long process since the mid-1990s, for example in the RAM code
described in Sect. 10.5. There is a consensus that charge exchange is the dominant ring
current loss process; but the wave–particle interactions are also of great importance.
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Fig. 14.3 Theoretically predicted (solid lines) and observationally inferred (crosses) lifetimes of ions in
the energy range 1–100 keV at L = 4.25 during a geomagnetic storm in February 1972. The mirror latitude
λm = 14◦ has been assumed. (From Smith et al [1981].)

14.1.5 Pitch angle scattering by wave–particle interactions

Ring current is also lost by direct removal of current carriers to the atmospheric loss
cone by pitch angle scattering. Part of this scattering takes place through Coulomb col-
lisions, which are most efficient at lower energies (<10 keV). However, charge exchange
and Coulomb collisions jointly do not remove enough ions with energies over a few tens
of keV and above 100 keV they lead to too flat pitch angle distributions, i.e., smaller loss
cones than observed [Fok et al, 1996].

These problems point to the role of wave–particle interactions, which can result in very
efficient pitch angle scattering. Waves on the whistler mode surface (see Fig. 5.4) and
electromagnetic ion cyclotron (EMIC) waves are capable of interacting with ring current
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ions. Whistler mode chorus emissions or magnetosonic waves at very oblique propagation
angles between the proton gyro frequency and the lower hybrid frequency have been ob-
served both inside and outside the plasmapause (Fig. 14.4). Another whistler mode emis-
sion is the plasmaspheric hiss, which is present throughout the plasmasphere. For oblique
propagation angles both modes can interact with ring current ions and provide an important
loss-mechanism, in particular, at energies above 80 keV.

During quiet times EMIC waves occur mostly beyond L = 7 but during magnetic storms
the temperature anisotropy (T⊥ > T‖) is strongly enhanced at smaller L shells near the
plasmapause providing sufficient amount of free energy for the EMIC waves to grow
(Fig. 14.4). The anisotropy evolves due to drift-betatron acceleration when the ions adia-
batically drift toward the larger magnetic field (Chap. 3). The anisotropy is further ampli-
fied by the deepening of the loss cone due to the preferential charge exchange loss of ions
with small equatorial pitch angles.

Proper inclusion of wave–particle interactions in numerical ring current models is even
more challenging than the charge exchange losses because both the growth and decay of
the waves must be modeled self-consistently with the evolution of the particle populations.
For example, in the RAM model the growth rate of EMIC waves is calculated solving the
hot plasma dispersion equation simultaneously with the kinetic equation (10.43). From
the growth rate the wave amplitudes are calculated using an empirical relation. The effect
of the wave–particle interactions on the ions is thereafter treated as a diffusion process

Fig. 14.4 Schematic picture of the storm-time inner magnetospheric waves and key particle populations.
During storms the afternoon bulge of the plasmasphere, introduced in Chap. 1, is shifted towards noon
by the strong convection, which affects the location of EMIC wave generation region. EMIC waves can
interact both ring current ions and relativistic electrons. (From Summers et al [1998].)
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where the diffusion coefficients are determined using the calculated wave amplitudes (see
Jordanova et al [2006] and references therein).

14.1.6 ENA imaging of the ring current

Imaging of energetic neutral atoms (ENAs) produced by charge exchange collisions was
introduced in the 1990s as a new observational tool for studies of the inner magnetosphere.
While the ions are confined to helical paths around the magnetic field lines, a newly-born
ENA moves along a straight line in the direction of its momentum at the time of its for-
mation. Thus, an appropriately designed instrument looking to the ring current could in
principle form an image of the ring current. The ENA flux at the detector is a line-of-sight
integral over the ion intensity and the neutral gas number density in the exosphere and
upper atmosphere. Methods have been devised to deconvolve the ion intensity distribu-
tion from the ENA images [e.g., DeMajistre et al, 2004; Perez et al, 2004]. Most useful
information on the ring current evolution can likely be inferred from the ENA data when
they are analyzed in combination with data assimilation methods and good numerical ring
current models [e.g., Nakano et al, 2008].

The first space-borne ENA observations were made using ion instruments. The counts
caused by ENAs penetrating to the detector can to some extent be distinguished from
ion counts because the ENAs arrive from the direction of the Earth and their fluxes do
not reflect the changing relative directions of the magnetic field and the Earth when the
spacecraft moves. Evidently, such observations based on the doctrine “one man’s noise
is other man’s data” do not tell much more than indicate the ENA production in the ring
current region. However, the relative changes in the ENA fluxes obtained this way from
the ion instruments onboard Geotail and Polar spacecraft (see, e.g., Daglis et al [1999]
and references therein) have actually provided useful information on the dynamics of the
ring current.

The first dedicated ENA instrument was PIPPI2 onboard the Swedish low-altitude mi-
crosatellite Astrid in 1995 [Barabash et al, 1997]. Its further evolution versions have been
sent to make ENA observations around Mars and Venus onboard ESA’s Mars Express
and Venus Express spacecraft. While PIPPI demonstrated that it is also possible to make
ENA observations from a low-altitude vantage point [Brandt et al, 2001], an ENA instru-
ment well above the ring current region gives a more global view. The IMAGE satellite of
NASA launched in 2000 was designed for global magnetospheric imaging utilizing several
different techniques, including ENA imagery [Burch, 2000].

As an example of results relevant to the understanding of magnetic storms in the inner
magnetosphere Brandt et al [2002] studied IMAGE ENA observations from several storm
main phases in 2000 and 2001. They found that the peak ion concentration in the energy
range 27–198 keV was near midnight or slightly skewed toward the post-midnight region.
This skewing was strongest during large positive IMF By. This suggests that under such
conditions the near-Earth electric field is strong enough for the E×B drift to overcome the

2 PIPPI is an acronym for Prelude in Planetary Particle Imaging. It was carefully selected to honor Pippi
Långstrump who was a child heroine created by the Swedish writer Astrid Lindgren.
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magnetic drift in the sector east of the midnight meridian until the ions are transported to
relatively low L �4–5.

An important goal of the ENA imagery is to convert the ENA spectra to represent the
ring current more directly than the Dst or SYM-H indices. Ohtani et al [2005] investigated
ENA data of the IMAGE satellite together with the SYM-H index and magnetic observa-
tions from geostationary orbit in order to assess the role of substorm dipolarizations in the
storm evolution. The substorm onset can be expected to have a two-fold effect on the storm
progress as indicated by the SYM-H index. The original picture was that the substorms
would inject current carrying particles to the ring current and thus enhance the current and
lead to the (negative) enhancement of SYM-H. On the other hand, the substorm dipolar-
ization leads to a substantial weakening of the cross-tail current in the near-Earth region,
which has an opposite effect on SYM-H. In fact, it is the latter that Ohtani et al [2005]
found in their analysis. But this is not the whole story. The ENA emission was found to
enhance, suggesting an increase of the “true” ring current, which was overcompensated
by the decrease of the tail current contribution to the ground-based observations. While
the interpretation of ENA data is still far from complete, ENA imaging is the only tool
to image the ring current ion distribution from which the plasma pressure can be derived.
It therefore has a promise to become a diagnostic tool for investigating the 3D pressure-
driven current system that makes up the Region 2 currents and the partial ring current that
close through the sub-auroral ionosphere.

Feed your brain

Read carefully the articles by Ohtani et al [2005] and Nakano et al [2008]. Pay particular
attention to the difficulties in interpreting the ENA intensity as ring current intensity
pointed out in section 4 of Ohtani et al [2005].

14.2 Storm-Time Radiation Belts

In principle the trapped part of the ring current could be considered as a low-energy tail
of the radiation belts. However, it is convenient to distinguish the ring current and the
radiation belts from each other because their sources, composition, and spatial structures
are different, as are their roles in storm processes. Furthermore, the theoretical and model
studies of radiation belts require relativistic formulation, in particular for the electrons. We
start this discussion from the radiation belt ions.

14.2.1 Sources of radiation belt ions

As discussed in Chap. 1 (Fig. 1.20) the energetic particle content of the inner radiation belt
(L �1.5–3) is dominated by protons in the energy range 0.1–40 MeV. While the spectrum
of trapped ions at energies larger than 100 keV appears to turn quite smoothly from the ring
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current carriers to radiation belt protons, it is important to understand that the histories of
the ions are different.

As discussed in the previous section, most protons up to about 100–200 keV are be-
lieved to originate from the much lower-energy ionosphere and solar wind, and accelerated
by internal magnetospheric processes. Substorm onset-related inductive electric fields may
be able to energize particles to ∼1 MeV, depending on the actual X–O-line geometry and
∂B/∂ t, which define the integral

∫
E · ds along the path of the particle being accelerated

(see Pellinen and Heikkila [1984] and references therein). However, the number of such
particles ending up in closed drift paths in the inner radiation belt is most likely very small.
Therefore other mechanisms are needed to produce ions up to tens of MeV.

The solar flares and CMEs (Chap. 12) produce large fluxes of solar energetic particles
(SEP), of which most are shielded beyond L ≈ 4 by the geomagnetic field. The innermost
magnetosphere is a relatively steady magnetic bottle, which is equally difficult to get into
as to escape from. SEPs arriving at the region with pitch angles within the atmospheric
loss cone are lost, whereas most ions are deflected by the magnetic field. At geostationary
orbit particle spectra are rather consistent with the solar wind source. There the field is
also more variable than closer to the Earth, which allows a small fraction of the ions
to experience sufficient amount of pitch angle scattering by inductive electric fields or
wave–particle interactions that can move them to trapped orbits. Thereafter they can be
transported radially inward through diffusion determined by wave–particle interactions
and due to spatial/temporal inhomogeneities of the electromagnetic field along their orbits.

Consequently, the solar storms have a two-fold role in the radiation belt ion dynam-
ics. They provide intermittent source populations and the solar wind perturbations drive
perturbations in the magnetosphere that are necessary for trapping the particles. The re-
sponse of the inner magnetosphere does not need to be immediate. The populations persist
in the geostationary region for a few days after a major SEP event and thus provide a long-
lasting source for inward transport. On the other hand the energetic solar particles arrive at
the Earth much faster than the associated ICME and are already waiting for major pertur-
bation leading to enhanced trapping and transport during the commencing magnetospheric
storm.

The mechanism for introducing the highest energy protons that can be confined within
the inner radiation belt is called CRAND (cosmic ray albedo neutron decay). The cos-
mic ray bombardment of the atmosphere produces neutrons that move in all directions.
Although the average neutron lifetime is about 14 min 38 s, during which a multi-MeV
neutron escapes far from the Earth, a small fraction of them decay to protons while still
in the magnetosphere. At energies below 30–50 MeV the proton spectra are too intense
and variable to be explained by the CRAND mechanism. Note also that CRAND is too
inefficient by far to account for the observed electron fluxes discussed below.

14.2.2 Losses of radiation belt ions

The charge exchange cross-sections decrease rapidly for energies above 100 keV. Thus
charge exchange can remove radiation belt ions only after some other mechanisms, e.g.,
Coulomb collisions have first decreased their energies. In fact, the main effect of Coulomb
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collisions on the inner belt ions is to transfer them in the phase space toward lower energies
when they are finally lost through charge exchange. This is an important loss mechanism
for protons at energies >10 MeV.

Wave–particle interactions lead the ion loss through pitch angle scattering them into
the atmospheric loss cone. The most important wave modes are EMIC waves and plasma-
spheric hiss. Because the inner belt region is an excellent magnetic bottle, the lifetimes of
radiation belt ions are long and their loss is much less important to the storm dynamics
than the loss of ring current ions.

14.2.3 Transport and acceleration of electrons

Some of the most challenging theoretical and most important practical questions in magne-
tospheric dynamics are the source and loss processes of relativistic radiation belt electrons.
The appearance of the electrons is strongly correlated with fast solar wind speed, but the
physical mechanisms for the particle transport and acceleration are surprisingly poorly un-
derstood (see, e.g., Baker and Kanekal [2008]). The practical side of the problem is that
some of the most fatal space weather related spacecraft anomalies have taken place during
large relativistic electron fluxes. Consequently, relativistic electrons inside the magneto-
sphere have earned the nickname “killer electrons”.

Energetic electrons populate both the inner and outer belts (Fig. 1.20). Between the
belts there normally is a slot region, where energetic electron fluxes are very low, ex-
cept after some major storms, when even the slot region may become filled by electrons.
The weakly relativistic electrons respond to weaker storms, whereas the enhancements of
ultrarelativistic electrons are related with the strongest storms. However, there is no one-
to-one correspondence between relativistic electrons and geomagnetic storms. Reeves et al
[2003] investigated the fluxes of 1.8–3.5-MeV electrons measured by geostationary space-
craft and of 1.2–2.4-MeV electrons observed at a polar orbit of the Polar satellite during
276 moderate to strong geomagnetic storms in 1989–2000. Of these storms only 53% in-
creased the relativistic electron fluxes by more than a factor of 2, whereas 19% actually
decreased the fluxes by the same amount. This trend was found to be independent of the L
shell and the storm strength determined by the Dst minimum. Furthermore, no correlation
was found between the pre-storm and post-storm fluxes.

The most dramatic increases of relativistic electrons, including the inner belt and the
slot region follow strong ICME events, but it is noteworthy that even relatively modest
geomagnetic storms can lead to rapid enhancements of the electron belts during periods
of high solar wind speeds. As discussed by, e.g., Baker and Kanekal [2008], whenever the
solar wind speed substantially exceeds 500 km s−1, the relativistic electron population at
L ∼2.5–6.0 is enhanced, whereas if the solar wind speed is below 500 km s−1, the elec-
tron fluxes remain small. In fact, the periods of recurrent high solar wind speed streams
from large coronal holes during the declining phase of the solar cycle produce much larger
average fluxes of relativistic electrons than the ICME-dominated storms around solar max-
ima. It is quite likely that different mechanisms may lead to electron acceleration under
different driver conditions, or at least their relative importance is different.
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But where do the electrons that are accelerated come from? The ionospheric electrons
have temperatures of about 1 eV and the solar wind electrons about 10 eV. There are also
high-energy electrons in the solar wind, but their phase space density is not sufficient to
account for large fluxes within the magnetosphere without substantial acceleration inside
the magnetosphere [Li et al, 1997]. The electron temperature in the plasma sheet is some-
what smaller than the ion temperature, about 1 keV. However, as discussed in Chap. 13
the substorm activations inject hot electrons into the vicinity of the geostationary orbit.
These electrons provide a sufficient seed population of about 10–300 keV, which resides
in the inner magnetosphere long enough to be accelerated to MeV-energies by, e.g., strong
shock waves or wave–particle interactions [Baker et al, 1998]. That electron acceleration
really takes place in the inner magnetosphere was demonstrated by the phase space density
distribution analysis based on observations at several different locations during two storm
periods by Chen et al [2006]. However, the authors did not exclude some contribution from
an external source, i.e., that part of the acceleration to very high energies would also take
place in the plasma sheet before the particles are injected to the inner magnetosphere.

A strong ICME-driven shock hitting the magnetosphere may lead to immediate acceler-
ation of electrons from relatively low energies of 0.1–1.0 MeV to more than 10–20 MeV, as
was the case of the largest storm during the CRRES observations on March 24, 1991. The
storm led to a formation of a new relativistic radiation belt within the slot region, whose
remains were detectable several years later. The storm sudden commencement launched
a very strong electromagnetic pulse inside the magnetosphere. The peak-to-peak electric
field of the bipolar pulse was about 80 mV m−1 and the unipolar magnetic field reached
about 140 nT lasting 120 s at the location of CRRES (L = 2.5, magnetic local time 0300).
It was likely that the pulse was even stronger in the dayside magnetosphere. The pulse was
modeled by Li et al [1993], who were able to demonstrate that such a pulse could energize
electrons up to 50 MeV in less than 100 s (Fig. 14.5).

While it is plausible that strong transient inductive electric fields play a decisive role
during these shock-driven “superstorms”, they cannot explain the more typical evolution of
relativistic electron fluxes that decrease during the storm main phase and increase during
several hours in the recovery phase finally reaching a higher level than before the storm.
Thus the relativistic electron fluxes often behave opposite to the ring current evolution. Ob-
viously the loss mechanisms, e.g., loss to the dayside magnetopause during strong main
phase compression of the magnetopause or to the atmosphere due to enhanced pitch angle
scattering into the loss cone, may become stronger than any available source is able to sup-
ply new electrons. The imbalance between the source and loss mechanisms is consistent
with the findings by Reeves et al [2003] cited above.

The enhancement of relativistic electron fluxes during the storm recovery phase may
well have the same origin as the creation of high electron fluxes during fast solar wind-
driven storms because the post-ICME solar wind velocity may remain high for an extended
period. For the time being the physical mechanisms to lead to strong electron acceleration
during fast solar wind remain to be explained. For this purpose various wave modes, in
particular whistler mode chorus waves and ultra low-frequency (ULF) waves, have been
invoked. These two wave modes act on electrons quite differently.

The classical theory of electron belt formation is based on inward radial diffusion due to
some large-scale low-frequency electromagnetic fluctuations. It was developed during the
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Fig. 14.5 Electron, electric field and magnetic field data from the CRRES satellite at the time following
the SSC on March 24, 1991 (left) and simulated electron counts with a model electromagnetic pulse
corresponding to the electric and magnetic field observations. Note that only one component of the electric
field magnitude is given and thus the amplitude is smaller than the total electric field referred to in the text.
(From Li et al [1993].)

1960s (see, e.g., the textbook by Schulz and Lanzerotti [1974]). The fluctuations conserve
the first and second adiabatic invariants but break the third invariant, which in radiation
belt calculations usually is L or L∗ (Chap. 10). Thus the diffusion equation can be written
as

∂ f
∂ t

= L2 ∂
∂L

(
DLL

L2
∂ f
∂L

)
−Λ f +S , (14.6)

where some average electromagnetic fluctuations determine the radial diffusion coefficient
DLL, and Λ f and S describe the losses and sources of the particles. When the seed popula-
tion is transported adiabatically toward larger magnetic field, the particles gain energy due
to the conservation of μ = W⊥/B.

The challenge is to determine DLL . It requires understanding of both the nature of
the fluctuations and reasonably good background electric and magnetic field models. In
practice one has to make quite a few assumptions and approximations. Already a slightly
distorted dipole field geometry together with standard convection electric field models
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lead to complicated calculations and in order to verify the results of the calculations it is
necessary to look for empirical estimates for the diffusion coefficients using direct satellite
observations (e.g., Elkington et al [2003] and references therein).

For radial diffusion to be efficient the fluctuations should be global and take place in the
time scales of the electron drift period, of the order of 103 s. Thus global large-amplitude
ULF waves in the Pc4–Pc5 frequency band (0.5–15 mHz) are natural candidates for inward
diffusion. Ground-based observations of ULF waves in association with high relativistic
electron fluxes during geomagnetic storms [Rostoker et al, 1998] further support this idea.

Elkington et al [2003] came to the conclusion that the Pc5 waves are capable of adi-
abatically accelerating electrons from about 100 keV to MeV energies and transporting
them inward in the magnetosphere. They considered equatorial electrons (α = 90◦) in a
magnetic field of the form

B(r,φ) =
B0R3

E
r3 +b1(1+b2 cosφ) , (14.7)

where the first term is the dipole field in the equatorial plane and the coefficients b1 and b2
describe the distortion of the magnetic field and thus depend on the applied field model.
The drift contours (2D drift shells) are determined by the constant magnetic field strength,
i.e., the L parameter is replaced by

=
(

R3
E

r3 +
b1b2

B0
cosφ

)−1/3

. (14.8)

Train your brain

Calculate the relationship between (14.8) and L∗ (10.18) and show that for b1 � B0,
≈ L∗ within the range of relevant to radiation belt studies.

The electric field of the ULF waves was written by Elkington et al [2003] as

E(r,φ ,t) = E0(r,φ) +
∞

∑
m=0

δErm sin(mφ ±ωt +ξrm)er

+
∞

∑
m=0

δEφm sin(mφ ±ωt +ξφm)eφ . (14.9)

Here E0(r,φ) is the time-independent convection electric field. δErm are the amplitudes of
the toroidal modes and δ Eφm of the poloidal modes, and ξrm and ξφm represent their phase
lags.

According to Eq. (3.50) the adiabatic acceleration is given by

dW
dt

= qE ·vd + μ
∂ B
∂ t

. (14.10)
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The magnetic perturbation of the toroidal mode δBφ and the dominant magnetic field
component of the poloidal mode δBr both have a node at the equator and the compres-
sional component δB‖ of the poloidal mode is so small that the pure betatron acceleration
μ∂B/∂ t can be neglected and the energization is due to the drift-betatron term only.

Figure 14.6 illustrates how a drift resonant (ω = ωd) electron is accelerated by the
toroidal m = 2 mode in a distorted dipole. When the electron has a maximal outward
radial velocity, it sees an inward electric field, whereas when it has a maximal inward radial
velocity, it sees an outward electric field. Thus the electron gains energy twice during one
drift period. For arbitrary m the resonance condition is

ω − (m±1)ωd = 0 . (14.11)

The asymmetric compression of the inner magnetospheric magnetic field is an essential
factor in the process. The increasing distortion increases vr on the dawn and dusk sectors

Fig. 14.6 Electron drift path in a compressed dipole. Er is the m = 2 toroidal mode electric field and vr
is the radial component of the drift velocity. The curves are drawn for an electron whose drift period is in
resonance with the oscillation. (From Elkington et al [2003].)
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and thus increases the energy gain which is proportional to Ervr. Also the convection
electric field contributes to the acceleration, allowing particles with energies below the
resonant energy to be accelerated.

The poloidal mode can also lead to efficient acceleration. In this case a resonant electron
that encounters an electric field opposing the drift motion on the nightside, and is acceler-
ated, encounters an electric field with the same direction as its velocity on the dayside, and
is thus decelerated. In a distorted dipole the deceleration is weaker than the acceleration,
leading to net energization over the course of a drift orbit. In contrast to the toroidal mode,
a static convection electric field imposed on a single frequency poloidal mode will cause
electrons to lose energy. However, if the poloidal modes are distributed over a range of
frequencies or there is an additional non-static convection electric field acting on an elec-
tron, the dominant component of the electron’s drift velocity in the azimuthal direction
will permit more efficient acceleration than interaction with purely toroidal modes of the
same amplitude.

The numerical calculations with a continuum of frequencies by Elkington et al [2003]
show that the resonant mechanism can lead to very efficient radial diffusion. However,
the analysis was limited to equatorial particles and the results are model-dependent. More
theoretical work and, in particular, more comprehensive observations of both electrons and
ULF waves are needed before we can be sure how much of the acceleration and transport
finally is attributed to this mechanism.

The acceleration by radial diffusion alone may not be efficient enough to establish the
observed high relativistic electron fluxes in the radiation belts. It has been suggested that
interaction with whistler mode chorus waves in the kHz frequency range can increase the
electron flux in the inner magnetosphere by more than three orders of magnitude within
one or two days [Summers et al, 1998]. The process is quite different from the ULF interac-
tion because it takes place through the gyro resonance between the waves and the electrons
in regions where the waves have finite amplitude (Fig. 14.4). Thus the mechanism already
breaks the first adiabatic invariance.

The right-hand polarized whistler mode chorus waves are driven by an unstable aniso-
tropic ∼10 keV electron population [Kennel and Petschek, 1966]. They interact with a
small fraction of more energetic electrons through the Doppler-shifted gyro resonance,
which must now be written relativistically

ω − k‖v‖ =
nωce

γ
, (14.12)

where γ is the Lorentz factor and ωce the non-relativistic gyrofrequency calculated for the
electron rest mass. Of these variables ω , v‖ and, ωce are straightforward to measure but
k‖ must, in practice, be determined by solving the relevant dispersion equation, which in
turn depends on plasma density and ion composition. This is actually how the low-energy
background plasmasphere is coupled to the evolution of very high-energy electrons.

The whistler mode interaction is efficient in regions where ωpe/ωce is small (�4). This
usually is not the case at low L shells, but, e.g., during the Halloween storm in the autumn
2003, the high-density plasmasphere was confined inside L = 2 on October 31, and re-
mained inside L = 2.5 in the pre-noon sector (06–12 MLT) until November 4. Horne et al
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[2005] analyzed this event using relativistic electron data from the SAMPEX satellite, K p
and Dst indices, ground-based ULF observations and kHz-range wave observations from
the Cluster spacecraft. They argued that the radial diffusion due to the ULF waves could
not explain the strong increase of 2–6-MeV electron fluxes between L shells from 2 to 3 at
the late phase of the storm from November 1 onward. Instead, the Fokker–Planck calcula-
tions by Horne et al [2005] based on diffusion rates calculated for chorus wave amplitudes
measured by Cluster at somewhat higher L shell (L = 4.3) suggest that the gyro resonant
interaction really was sufficient to explain the establishment of exceptionally high electron
fluxes in the exceptional location, i.e., the slot region, during an exceptionally strong storm
period.

14.2.4 Electron losses

Several physical mechanisms contribute to the loss of radiation belt electrons, which takes
place mainly through pitch angle scattering into the atmospheric loss cone. Figure 14.7
illustrates the most important of these mechanisms [Abel and Thorne, 1998].

Fig. 14.7 Theoretical results of electron lifetimes as a function of L shell for radiation belt electrons from
weakly to strongly relativistic energies. The uppermost curve in each pane is calculated for Coulomb
collision only. The indicate the lifetimes when the plasmaspheric hiss (C/H), lightning-induced whistlers
(C/H/W), and man-made VLF emissions (C/H/W/VLF) are included. (From Abel and Thorne [1998].)
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The uppermost curve in each pane of Fig. 14.7 gives the electron lifetimes if Coulomb
collisions alone are considered. The 100-keV electron lifetime exceeds 1 year beyond
L = 1.8 and is about 30 years at L = 5. Thus it is clear that the Coulomb collisions are
inefficient in removing electrons from the radiation belts. The symbol C/H in Fig. 14.7
indicates the lifetimes when the whistler mode plasmaspheric hiss is included. This leads
to a significant reduction of the lifetimes, to the order of a few tens of days, around and
beyond the plasmapause. Adding lightning-induced whistlers (symbol W) and man-made
VLF signals reduces the lifetimes at low L shells as well.

Writing (14.12) in the form

ω − k‖v‖ = ±|ωce|
γ

, (14.13)

where n has been limited to ±1, it becomes evident that electrons can be in resonance
both with right-hand (R; +) and left-hand (L; −) polarized waves. Modes considered in
Fig. 14.7, as well as the chorus waves discussed above, are all R mode waves in the fre-
quency range ωci < ω < ωce. As discussed in Chaps. 4 and 5 the EMIC waves are left-hand
polarized waves with ω < ωci, which in multi-ion plasmas appear in the frequency bands
below the gyro frequency of each ion species. The gyro resonance of EMIC waves with
electrons requires that the Lorentz factors γ of the electrons are large enough. According
to the calculations by Summers and Thorne [2003] the minimum resonant energies can un-
der suitable conditions reach below 1 MeV but this requires that the ratio between electron
gyro and plasma frequencies be very small (ω2

ce/ω2
pe ∼ 10−3).

Based on wave and particle analysis of CRRES observations Meredith et al [2003] con-
cluded that conditions could be suitable for strong diffusion of electrons at energies from
less than 2 MeV upward during about 1% of the electron drift periods around the Earth.
While this may seem quite restrictive, it actually is in favor of the explanation since it keeps
the diffusion time scale in the range from hours to one day. If the interaction were to take
place within a much wider region, the electrons would disappear too quickly compared to
the observations.

Also the comprehensive model computations by Jordanova et al [2008] of the intense
storm on 21 October 2001 came to similar conclusions. The model was the up-to-date ver-
sion of the RAM code (Eq. 10.43). It contained all major loss processes and was coupled
with a dynamic plasmasphere model, including 77% H+, 20% He+ and 3% O+. The EMIC
wave amplitudes were calculated self-consistently with evolving plasma populations. The
calculations were performed considering separately EMIC scattering only, all processes
except EMIC waves, and all scattering processes including EMIC waves. The conclusion
was that scattering by EMIC waves enhances the loss relativistic (>1 MeV) electrons and
can cause significant electron precipitation during the storm main phases.

In conclusion there are several wave–particle interaction mechanisms that can explain
both the decrease of relativistic electron fluxes during the main phase and subsequent
increase of electron fluxes during the recovery phase. Thus the previously cited result
[Reeves et al, 2003] that some storms decrease electron fluxes whereas others increase
them, no longer looks so surprising. However, it is still unclear why any individual storm
behaves as it does.



 
 



15. Space Storms in the Atmosphere and

on the Ground

Space storm effects reach all the way through the atmosphere to the ground. In the Sun–
Earth system the storms take place in the weather time scales, lasting maximally a few
days from the release of the CME to the time when the ICME has passed the Earth. On the
other hand, the effects of solar proton events can last in the middle atmosphere months and
thus become coupled to the atmospheric climate cycles. This is further amplified through
the solar cycle variability both in the total solar irradiance and at EUV wavelengths. To
have any intelligent discussion of the climate issues would require extensive treatment of
middle atmospheric ion and neutral chemistry and atmospheric circulation patterns, and
lead us too far from the topic of this book. Therefore we limit our discussion to a short
description of some immediate signatures of space storms in the middle atmosphere.

The physical manifestations of space storms on the ground are, in turn, short-term phe-
nomena caused by electromagnetic induction due to rapid changes in the magnetospheric
and ionospheric current systems. They are most interesting for their effects on techno-
logical systems. While the technological consequences are also beyond the context of the
present book, some of the basic principles of geomagnetically induced currents belong to
the fundamental knowledge base on physics of space storms.

15.1 Coupling to the Neutral Atmosphere

In Sect. 1.4 our discussion of the neutral atmosphere did not reach below the bottom of
the thermosphere, i.e., the upper boundary of the mesosphere known as the mesopause.
The mesosphere is located at altitudes of about 50–85 km. Below the mesosphere is the
stratosphere reaching down to altitudes of about 8 km at high geographic latitudes, and to
12–15 km at low latitudes. The stratosphere and mesosphere form the region that is called
here the middle atmosphere, although again the terminology is not unique. Finally, below
the stratosphere is the troposphere, where the familiar atmospheric weather phenomena
take place.

The boundary between the troposphere and stratosphere is called the tropopause. At the
tropopause the atmospheric temperature is at its minimum of about −60◦ C. Water vapor
cannot lift through the tropopause to the cold dry stratosphere, where it would dissociate by
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solar irradiation. This would lead to rapid hydrogen escape, dehydration of the atmosphere,
and finally disappearance of the oceans.

In the stratosphere the temperature slowly increases with altitude. Most of the atmo-
spheric ozone (O3), which protects us from the solar UV radiation lies in the altitude
range 15–40 km. The boundary between the stratosphere and mesosphere is called the
stratopause. Above the stratopause the temperature starts again to decrease with altitude
up to the mesopause. In the thermosphere the altitude-dependence of the temperature turns
once more as the gas becomes more tenuous and the degree of ionization due to the solar
EUV irradiance begins to increase, to which we turn next.

15.1.1 Heating of the thermosphere

We have already discussed the ionosphere (Sect. 1.4) and the increase of Joule heating dur-
ing storms and substorms (Chap. 13). The ionospheric E-layer, where the horizontal iono-
spheric currents flow, is a weakly ionized domain within the thermosphere and the Joule
heating is essentially frictional heating of thermospheric neutral atoms and molecules.
Also the energy deposited by electron precipitation shows as heat in the thermosphere,
whereas the energy density of the auroral light emissions is very small.

Heating of the thermosphere leads to increased scale height (Eq. 1.61) and thus ex-
pansion of the neutral atmosphere. This increases the atmospheric drag of low-altitude
spacecraft, whose orbital lifetimes are strongly affected by the solar activity. In fact the
neutral density at 500 km altitude may increase by a factor of 10 during a strong storm.
This must also be taken carefully into account in order to safely de-orbit large structures
that do not burn in the atmosphere. For example, in March 2001 the space weather was
“better” than expected during the solar maximum epoch. This prolonged the natural orbital
decay of the MIR station for several days. The increased drag also has a positive effect by
cleaning off a fraction of low-altitude space debris.

During solar maximum years the EUV radiation at wavelengths below 100 nm also
increases by a factor of three from solar minimum. This energy is stopped through ioniza-
tion at higher altitudes, in particular around the F-region maximum. Thus the effects are
two-fold: increased thermospheric temperature and enhanced ionization.

15.1.2 Solar proton events and the middle atmosphere

The strongest solar proton events last a few days (Table 12.1) and produce high energy
particles that precipitate into the upper atmosphere, mostly at high latitudes in the auro-
ral regions and the polar caps. As discussed in Chap. 3 the penetration of cosmic rays
through the geomagnetic field is proportional to the latitude as cos4 λ . At auroral latitudes
particles with rigidities of 1 GV or higher can reach the atmosphere. Also a fraction of
solar energetic particles at lower energies entering the magnetosphere are scattered into
the atmospheric loss cone and precipitate to the middle atmosphere. Precipitating 3-MeV
protons deposit their energy and are stopped around 80 km in the mesosphere, whereas
protons in excess of 30 MeV reach down to the stratosphere. Protons at these energies are
abundant in solar particle events.
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Protons penetrating to the mesosphere cause ionization and dissociation of atmospheric
gases leading to enhancements of odd-hydrogen (HOx: H, OH, HO2) and odd-nitrogen
(NOx: N, NO, NO2) constituents. NOx can also be produced in the lower thermosphere
by precipitation of electrons with energies in the 100-keV range and transported down
to the mesosphere. Also this population is enhanced during space storms and it is not
easy to distinguish between NOx populations of different origin. Other constituents of
importance to ozone chemistry, being enhanced by solar proton events, include HNO3,
N2O5, ClONO2, HOCl, and ClO.

HOx and NOx molecules produced by solar proton events lead to both short- and long-
term catalytic ozone destruction in the lower mesosphere and stratosphere. During large
proton events NOx abundances of a factor of ten larger than normally have been observed
and included model calculations (Jackman et al [2008] and references therein). The life-
times of HOx molecules are not longer than hours, and thus they induce only short-period,
but still large, ozone depletions above 50 km. NOx lifetimes are longer and there is a large
difference between the summer and winter hemispheres. In the sunlit mesosphere pho-
todissociation

NO+hν → N+O followed by
N+NO → N2 +O (15.1)

reduces significantly the number of odd-hydrogen constituents and their transport to the
stratosphere. In the dark hemisphere NOx enhancements can survive months and end up
being transported to the middle and lower stratosphere. Consequently, they have similarly
long-term effects on ozone dynamics.

For a more detailed discussion we refer to the extensive modeling study by Jackman
et al [2008] of strong solar proton events in 1963–2005. They used the Whole Atmosphere
Community Climate Model (WACCM3) and compared the results with various data sets
available from the different times. WACCM3 includes interactive dynamics, radiation and
chemistry. Its dynamics is not limited to the neutral atmosphere because it is coupled
the Thermosphere–Ionosphere–Mesosphere–Electrodynamics General Circulation Model
(TIME-GCM). Another module keeps track of ozone and other trace gases. Many of the
major features of the solar proton effects in the middle atmosphere can presently be mod-
eled fairly well. However, discrepancies between observed and modeled enhancements
of HNO3, N2O5, ClONO2, and ClO still are considerable. According to Jackman et al
[2008] the underlying causes for these discrepancies are difficult to identify in the global
WACCM3 studies. Instead, more detailed studies with simpler models are needed to under-
stand the fundamental physical and chemical processes behind the complex global system.

15.2 Coupling to the Surface of the Earth

The basic idea behind the geomagnetically induced current (GIC) phenomenon is simple.
A time-variable ionospheric current gives rise to a finite ∂B/∂ t, which propagates to the
ground. According to Faraday’s law there is an associated rotational electric field ∇×E,
the geoelectric field, at the same location. The geoelectric field causes a voltage between
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two points a and b in any conductor embedded in the field

ϕab =
∫ b

a
E ·dl , (15.2)

which in turn drives a current, the GIC, in the conductor.
There are thus two different parts in the GIC problem: the geophysical problem to

determine the geoelectric field and the engineering problem to calculate the current in
the conductor system one is interested in. As the electric field is not a potential field, the
integral (15.2) depends on the path along which it is calculated. The configuration and also
the topology of the conductor system, e.g., the electric power transmission network, are
important to the engineering problem because they determine where in the network the
current actually flows. Because we are not dealing with the technological effects of space
storms in this book, we limit our discussion to the geophysical problem.

To find out the geoelectric field requires knowledge not only of the ionospheric and
magnetospheric currents but also of the conductivity structure in the ground. The Earth is
a conductor and the changing primary currents in space induce secondary currents in the
ground. In fact, the Earth is such a good conductor that the contributions from the primary
and secondary currents to the horizontal electric field on the surface have almost the same
magnitude but the opposite sign. Thus the practical numerical computations of the electric
field need to be accurate enough and be based on a good enough model for the conductivity
structure of the ground.

To keep the discussion simple consider the primary field as a plane wave with frequency
ω propagating vertically downward (taken as the positive z-direction) and assume the con-
ductivity structure of the ground to be homogeneous. Denote the horizontal component
of the electric field by Ey and the horizontal component of the magnetic field perpendic-
ular to Ey by Bx. Assuming μ = μ0 and that the ground is a good conductor in the sense
σ � εω , the equation for the wave impedance (4.27) gives us the electric field in terms of
the magnetic field as

Ey(ω) = −
√

ω
μ0σ

exp
(− iπ

4

)
Bx(ω) . (15.3)

Note that in (4.27) the magnetic field was assumed to be in the y-direction, thus here Ex is
replaced by −Ey.

In practice we are interested in the time series E(t) as a function of the observed mag-
netic field. This can be calculated taking the inverse Fourier transform of (15.3)

Ey(t) =
−1√πμ0σ

∫ ∞

0

B′
x(t −u)√

u
du , (15.4)

where the prime denotes the time derivative d/dt. Thus the past values of dBx/dt affect
the geoelectric field but their weight decreases with increasing time interval u.

This calculation can be generalized to inhomogeneous conductivities and general three-
dimensional current systems. The practical computations are tedious and time-consuming.
Pirjola and Viljanen [1998] showed that the so-called complex image method (CIM) is a
very accurate approximation when the geoelectric field is caused by an auroral (substorm)
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electrojet with a finite length connected to the magnetosphere through vertical currents at
its ends, which clearly is the case of most interest for our purposes. The CIM provides
analytical solutions that are much faster to compute than applying the exact approach.

Feed your brain

Read carefully the article Pirjola and Viljanen [1998] and perform the calculations
indicated therein. Note that their sign convention in the plane wave approximation is
opposite to ours, thus be careful, e.g., in the derivation of (15.3).

For an introduction to the solution of the engineering problem in electric transmission
networks, see Chapter 10 written by R. Pirjola in Bothmer and Daglis [2007]. The treat-
ment of GIC effects on pipelines buried in the ground requires somewhat different meth-
ods, e.g., the distributed source transmission line (DSTL) theory [Pulkkinen et al, 2001].

Figure 15.1 shows an example of measured GIC in the natural gas pipeline at Mäntsälä in
southern Finland at the beginning of the so-called Halloween storm on October 29, 2003.
At the measurement site the pipeline is nearly east–west-aligned. Consequently, −dX/dt
measured at the nearby magnetometer station in Nurmijärvi correlates well with the GIC
along the pipe.
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Fig. 15.1 Upper panel: Geomagnetically induced current flowing along the Finnish natural gas pipeline
at the Mäntsälä compressor station of the natural gas company Gasum Oy on 29 October 2003. The peak
value (–57 A) is the largest during the measurement period since November 1998. Lower panel: Negative
of the time derivative of the northward magnetic field at the nearby Nurmijärvi Geophysical Observatory
of the Finnish Meteorological Institute. (Figure by courtesy of A. Viljanen.)
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Ashour-Abdalla M., Berchem J.P., Büchner J., and Zelenyi L.M. (1993) Shaping of the magnetotail from

the mantle: Global and local structuring. J. Geophys. Res., 98:5651–5676.
Axford W.I. and Hines C.O. (1961) A unifying theory of high-latitude geophysical phenomena and geo-

magnetic storms. Can. J. Phys., 39:1433–1464.
Baker D.N. and Kanekal S.G. (2008) Solar cycle changes, geomagnetic variations, and energetic particle

properties in the inner magnetosphere. J. Atm. Sol. Terr. Phys., 70:195–206.

399H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth,

© Springer-Verlag Berlin Heidelberg 2011
Springer Praxis Books, DOI 10.1007/978-3-642-00319-6,



400 References

Baker D.N. and McPherron R.L. (1990) Extreme energetic particle decreases near geostationary orbit: A
manifestation of current diversion within the inner plasma sheet. J. Geophys. Res., 95:6591–6599.

Baker D.N., Pulkkinen T.I., McPherron R.L., Crave J.D., Frank L.A., Elphinstone R.D., Murphree J.S.,
Fennell J.F., Lopez R.E., and Nagai T. (1993) CDAW 9 analysis of magnetospheric events on May 3,
1986: Event C. J. Geophys. Res., 98:3815–3834.

Baker D.N., Pulkkinen T.I., Angelopoulos V., Baumjohann W., and McPherron R.L. (1996) Neutral line
model of substorms: Past results and present view. J. Geophys. Res., 101:12,975–13,010.

Baker D.N., Pulkkinen T.I., Li X., Kanekal S.G., Blake J.B., Selesnick R.S., Henderson M.G., Reeves
G.D., Spence H.E., and Rostoker G. (1998) Coronal mass ejections, magnetic clouds, and relativistic
magnetospheric electron events: ISTP. J. Geophys. Res., 103:17,279–17,291.

Baker D.N., Klecker B., Schwartz S.J., Schwenn R., and von Steiger R. (eds) (2007) Solar Dynamics and
its Effects on the Heliosphere and Earth, Space Sciences Series of ISSI, Vol. 22. Springer, Dordrecht,
Holland.

Bale S.D., Balikhin M.A., Horbury T.S., Krasnoselskikh V.V., Kucharek H., Mobius E., Walker BA S N,
Burgess D., Lembege B., Lucek E.A., Scholer M., Schwartz S.J., and Thomsen M.F. (2005) Quasi-
perpendicular shock structure and processes. Space Sci. Rev. 118:161–203.

Barabash S., Brandt P.C., Norberg O., Lundin R., Roelof E.C., Chase C.J., Mauk B.H., and Koskinen H.
(1997) Energetic neutral atom imaging by the Astrid microsatellite. Adv. Space Res., 20:1055–1060.

Bartels J. (1932) Terrestrial-magnetic activity and its relations to solar phenomena. Terr. Mag. Atmos.
Elec., 37:1–52.

Baumjohann W. and Treumann R.A. (1996) Basic Space Plasma Physics. Imperial College Press, London,
U.K..

Baumjohann W., Kamide Y., and Nakamura R. (1996) Substorms, storms, and the near-earth tail. J. Geo-
magn. Geoelectr., 48:177–185.

Bellan P.M. (2006) Fundamentals of Plasma Physics. Cambridge University Press, Cambridge, U.K..
Benz A.O. (2002) Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae. Kluwer, Dor-

drecht.
Bernstein I.B. (1958) Waves in a plasma in a magnetic field. Phys. Rev., 109:10–21.
Biermann L. (1951) Kometenschweife und solare Korpuscular-strahlung. Z. Astrophys., 29:274–286.
Biermann L. (1957) Solar corpuscular radiation and the interplanetary gas. Observatory, 109:109–110.
Birkeland K. (1908) The Norwegian Aurora Polaris Expedition 1902–1903, Volume I. A.W. Brøggers

Printing Office, Christiania, Norway.
Birn J. and Priest E.R. (eds) (2007) Reconnection of Magnetic Fields. Cambridge University Press, Cam-

bridge, U.K..
Birn J., Drake J.F., Shay M.A., Rogers B.N., Denton R.E., Hesse M., Kuznetsova M., Ma Z.W., Bhat-

tacharjee A., Otto A., and Pritchett P.L. (2001) Geospace environmental modeling (GEM) magnetic
reconnection challenge. J. Geophys. Res., 106:3715–3719.

Borovsky J.E. and Denton M.H. (2006) Differences between CME-driven storms and CIR-driven storms.
J. Geophys. Res., 111, DOI 10.1029/2005JA011447.

Borovsky J.E., Lavraud B., and Kuznetsova M.M. (2009) Polar cap potential saturation, dayside recon-
nection and changes to the magnetosphere. J. Geophys. Res., 114, DOI 10.1029/2005JA014058.

Bothmer V. and Daglis I.A. (eds) (2007) Space Weather, Physics and Effects. Springer, Praxis Publishing,
Chichester, UK.

Bothmer V. and Schwenn R. (1998) The structure and origin of magnetic clouds in the solar wind. Ann.
Geophys., 16:1–24.

Boyd T.J.M. and Sanderson J.J. (1969) Plasma Dynamics. Barnes and Noble, New York, NY.
Boyd T.J.M. and Sanderson J.J. (2003) The Physics of Plasmas. Cambridge University Press, Cambridge,

U.K..
Brandt P.C., Barabash S., Roelof E.C., and Chase C.J. (2001) Energetic neutral atom imaging at low alti-

tudes from the Swedish microsatellite Astrid: Extraction of the equatorial ion distribution. J. Geophys.
Res., 106:25,731–25,744.

Brandt P.C., Ohtani S., Mitchell D.G., Fok M.C., Roelof E.C., and Demajstre R. (2002) Global ENA
observations of the storm mainphase ring current: Implications for skewed electric field in the inner
magnetosphere. Geophys. Res. Lett., 29, DOI 10.1029/2002GL015160.



References 401

Brueckner G.E., Delaboudinière J.P., Howard R.A., Paswaters S.E., St Cyr O.C., Schwenn R., Lamy P.,
Simnett G.M., Thompson B., and Wang D. (1998) Geomagnetic storms caused by coronal mass ejec-
tions (CMEs): March 1996 through June 1997. Geophys. Res. Lett., 25:3019–3022.
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D., Li X., Nosé M., and Fillingim M.O. (2008) Determination of the substorm initiation region from a
major conjunction interval of THEMIS satellites. J. Geophys. Res., 113, DOI 10.1029/2008JA013424.

Lundin R. and Evans D.S. (1985) Boundary layer plasmas as a source for high-latitude, early afternoon,
auroral arcs. Planet. Space Sci., 33:1389–1406.



406 References

Lundquist S. (1950) Magneto-hydrostatic fields. Ark. Fys., 2:316–365.
Lyons L.R. (1995) A new theory for magnetospheric substorms. J. Geophys. Res., 100:19,069–19,081.
Lyons L.R. and Speiser T.W. (1982) Evidence of current sheet acceleration in the geomagnetic tail. J.

Geophys. Res., 87:2276–2286.
Lyons L.R. and Williams D.J. (1984) Quantitative Aspects of Magnetospheric Physics. D. Reidel, Dor-

drecht, NL.
Lysak R.L. (1991) Feedback instability of the ionospheric resonant cavity. J. Geophys. Res., 96:1553–

1568.
Lysak R.L. and Lotko W. (1996) On the kinetic dispersion relation for shear Alfvén waves. J. Geophys.

Res., 101:5085–5094.
Malyshkin L.M. (2008) A model of Hall reconnection. Phys. Rev. Lett., 101, DOI 10.1103/

PhysRevLett.101.225001.
Marklund G.T., Karlsson T., Blomberg L.G., Lindqvist P.A., Fälthammar C.G., Johnson M.L., Murphree

J.S., Andersson L., Eliasson L., Opgenoorth H.J., and Zanetti L.J. (1998) Observations of the elec-
tric field fine structure associated with the westward traveling surge and large-scale auroral spirals. J.
Geophys. Res., 103:4125–4144.

Marubashi K. (1997) Interplanetary magnetic flux ropes and solar filaments. In: Crooker N., Josely J.A.,
Feynman J. (eds) Coronal Mass Ejections, American Geophysical Union, Washington, DC, Geophysi-
cal Monograph, Vol. 99, pp. 147–156.

Mayaud P.N. (1980) Derivation, Meaning, and Use of Geomagnetic Indices, Geophysical Monograph,
Vol. 22. American Geophysical Union, Washington, DC.

McPherron R.L., Russell C.T., and Aubry M.A. (1973) Satellite studies of magnetospheric substorms on
August 15, 1968; 9. Phenomenological model for substorms. J. Geophys. Res., 78:3131–3149.

Meredith N.P., Thorne R.M., Horne R.B., Summers D., Fraser B.J., and Anderson R.R. (2003) Statistical
analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES.
J. Geophys. Res., 108, DOI 10.1029/2002JA009700.
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Sonnerup B.U.Ö. (1970) Magnetic-field reconnection in a highly conducting incompressible fluid. J.
Plasma Phys., 4:161–174.

Spiro R.W., Reiff P.H., and Maher L.J. Jr. (1982) Precipitating electron energy flux and auroral zone
conductances – an empirical model. J. Geophys. Res., 87:8215–8227.

Stern D.P. (1984) Energetics of the magnetosphere. Space Sci. Rev., 39:193–213.
Stix M. (2002) The Sun: An Introduction, 2nd edn. Springer, Berlin, Germany.
Sturrock P.A. (1994) Plasma Physics, An introduction to the theory of astrophysical, geophysical & labo-

ratory plasmas. Cambridge University Press, Cambridge, U.K..
Summers D. and Thorne R.M. (2003) Relativistic pitch-angle scattering by electromagnetic ion cyclotron

waves during geomagnetic storms. J. Geophys. Res., 108, DOI 10.1029/2002JA009489.
Summers D., Thorne R.M., and Xiao F. (1998) Relativistic theory of wave-particle resonant diffusion with

application to electron acceleration in the magnetosphere. J. Geophys. Res., 103:20,487–20,500.
Sweet P.A. (1958) The neutral point theory of solar flares. In: Lehnert B. (ed) Electromagnetic Phenomena

in Cosmical Physics, Gambridge University Press, Gambridge, U.K., pp. 123–134.
Takahashi K., Zanetti L.J., Lopez R.E., McEntire R.W., Potemra T.A., and Yumoto K. (1987) Disruption

of the magnetotail current sheet observed by AMPTE/CCE. Geophys. Res. Lett., 14:1019–1022.
Tanskanen E.I., Viljanen A., Pulkkinen T.I., Pirjola R., Häkkinen L., Pulkkinen A., and Amm O. (2001)
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nanoflares, 20
Navier–Stokes equations, 163
neutrino oscillations, 3
non-adiabatic motion, 107
normal mode, 147
Nyquist method, 210

odd-hydrogen, 395
odd-nitrogen, 395
Ohm’s law, 65

generalized, 84
MHD, 84

Ohmic heating, 167
omega band, 330
oscillation center approximation, 109
oxygen outflow, 376

Parker, 22
equation, 173
solar wind solution, 22
spiral, 26

particle
density, 78
differential flux, 267
flux, 78
integral flux, 268

Penrose criterion, 210
percolation, 232
phase space density, 268, 385
phase velocity, 115
photosphere, 4
pitch angle, 72

scattering, 213, 276
plane wave, 70, 114
plasma

“definition”, 59
beta, 79, 172
collisionless, 63
frequency, 61
oscillation, 61, 130
parameter, 60
temperature, 79

plasma dispersion function, 148
plasma sheet, 35
plasmapause, 39
plasmasphere, 38

bulge, 47
plasmoid, 312, 331, 338
polar cap (PC), 36

potential, 180
potential saturation, 365

polar cusp, 36
polar wind, 50
polytropic index, 86
potential

ponderomotive, 111
retarded, 67
scalar, 66
vector, 66

Poynting
theorem, 18, 70, 86, 165
vector, 70

pressure
CM frame, 83
magnetic, 79
scalar, 79
tensor, 79
total, 83

pressure balance inconsistency, 345
primitive variables, 164
principal modes, 132
prominence, 300
pseudobreakup, 326
pulsations

Pc4, 387
Pc5, 356, 387
Pi2, 328

quasi-linear saturation, 191
quasi-linear theory, 273

radar
coherent scatter, 200
EISCAT, 263
equation, 262
incoherent scatter, 261
scatter, 258

radiation
backscattering, 260
bremsstrahlung, 251
cyclotron, 255
electric dipole, 246
electric quadrupole, 248
gyrosynchrotron, 255
magnetic dipole, 247
moving charge, 248
scattered, 259
synchrotron, 255
terms, 68

radiation belts (RB), 38
inner, 39
outer, 39
slot region, 39, 384



Index 417

storm-time, 382
radius

cyclotron, 62, 72
gyro, 62, 72
Larmor, 62, 72

radius of curvature, 92
Rankine–Hugoniot relations, 282
Rayleigh–Jeans law, 5
reconnection, 41, 171, 219

associated with dynamo, 243
asymmetric, 225
collisionless, 227
explosive, 312
fast, 224
Hall, 232
high-latitude, 355
Petschek, 223
rate, 223
Sweet–Parker, 221

refractive index, 115
resistivity

anomalous, 84, 168, 196
turbulent, 168

resonance, 132
gyro harmonic, 275
Landau, 275
lower hybrid, 137
upper hybrid, 136

resonant energy, 216
rigidity, 100
ring current (RC), 38

energy, 358
partial, 54, 372
storm-time, 372

ring current–atmosphere interactions model
(RAM), 277

riometer, 328
rotational discontinuity, 286

sawtooth events, 348
scale height

density, 49
pressure, 50

Schwabe, 2
shock, 29

bow shock, 32, 291
collisionless, 283
compression ratio, 284
electron foreshock, 292
fast, 286
foot, 291
forward, 30
hydrodynamic, 282
ICME-driven, 30

ion foreshock, 292
oblique, 285
parallel, 287
perpendicular, 283
quasi-parallel, 287
quasi-perpendicular, 287
ramp, 290
reverse, 30
slow, 223, 286
strong, 288
supercritical, 291
switch-off, 287
switch-on, 287
termination, 30

sidereal period, 9
skin depth, 117

electron, 62
solar

age, 2
black body temperature, 2
chromosphere, 7
constant, 4
convective zone, 4
core, 3
corona, 7
cycle, 2
differential rotation, 8
flare, 2, 17, 307
flare γ-rays, 310
flare impulsive phase, 307
flare main phase, 307
flare radio emissions, 309
flare X-rays, 309
flux unit (SFU), 302
granules, 4
irradiance, total (TSI), 4
luminosity, 2, 4
magnetic field, 2
magnetism, 11
mass, 2
microwave impulsive bursts, 304
neutrino problem, 3
nuclear fusion, 2
photosphere, 4
prominence, 300
proton event, 394
radiative zone, 4
radio emissions, 303
radius, 2
rotation, 8
spectrum, 5
temperature, 5
transition region, 7
Type I bursts, 303
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Type I noise storms, 303
Type II bursts, 304
Type III bursts, 304
Type IV bursts, 304

solar cycle
de Vries, 14
Gleissberg, 13
Hale, 13
Schwabe, 13

solar energetic particle event (SEP), 321
solar flare effect, 49
solar wind, 17
soliton, 282
sound wave, 185
source surface, 25
space

climate, 1
storm, 1
weather, 1

spallation, 310
spectral energy density, 192
speed of light, 64
speed of sound, 183
Speiser motion, 105
Spitzer formula, 167
steady magnetospheric convection (SMC), 345
Stefan–Boltzmann constant, 5
storm

CIR-related, 355
cloud-associated, 350
energy budget, 357
fast solar wind-driven, 354
ICME-driven, 350
initial phase, 325
magnetic, 323
magnetospheric, 323
main phase, 325
non-recurrent, 323
recovery phase, 325
recurrent, 323
sheath-associated, 350
storm sudden commencement (SSC), 324
superstorm, 366

storm indices
AE,AL,AU , 56
Dst, 56
K p, 56
SYM–H, 56
PC, 328
pressure-corrected Dst, 56
X-ray classification, 55

substorm, 326
auroral, 326
current disruption (CD) model, 339

current wedge (SCW), 328
dipolarization, 331
electrojet, 328
energy budget, 357
expansion phase, 326
growth phase, 326
magnetosphere–ionosphere coupling (MIC)

model, 340
near-Earth neutral line (NENL) model, 331, 334
onset, 326
onset triggering, 342
polar elementary storms, 326

sudden impulse (SI), 325
sunspot, 2, 11

cycle, 13
number, 13
umbra and penumbra, 11

synodic period, 9

T Tauri stars, 10
tail lobes, 34
tangential discontinuity, 203, 287
Taylor’s hypothesis, 182
tearing mode, 228

collisionless, 229
electron, 230
ion, 231
resistive, 228

temperature, 79
temperature anisotropy, 380
thermosphere, 49
Thomson cross-section, 262
Thomson scattering, 17, 261
transport, 39
traveling compression regions (TCR), 332
turbulent cascading, 19

ULF oscillations, 356

vacuum
permeability, 64
permittivity, 64

Van Allen, 39
radiation belts, 39

velocity moment, 78
viscous interaction, 41
Vlasov equation, 76, 141
vorticity, 179

wave impedance, 117
wave normal, 115

surface, 137
vector, 132

wave polarization
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elliptical, 118
extraordinary mode, 136
handedness in plasma physics, 109, 118
horizontal, 118
left-hand circular, 118, 131
linear, 118
ordinary mode, 136
right-hand circular, 118, 131
vertical, 118

wave steepening, 280
wave–particle interactions, 141, 271
wave–wave coupling, 306
wave–wave interaction, 306
waves

Alfvén, 19, 161, 183, 293, 340
Alfvén whistler, 217
beam modes, 192
Bernstein modes, 159
cold plasma approximation, 113
electromagnetic, 130
electromagnetic electron cyclotron, 161
electromagnetic ion cyclotron (EMIC), 161,

216, 379, 384, 391
electron–acoustic, 264
electron–Bernstein, 139
electrostatic, 116, 152
electrostatic cyclotron, 159
electrostatic ion cyclotron (EIC), 161, 212, 374
Farley–Buneman, 260
fast MHD, 185, 186
inertial Alfvén, 190
ion whistler, 217, 289
ion–acoustic (IAC), 150, 210, 264, 293, 306

ion–Bernstein, 161, 374
Kelvin–Helmholtz, 203
kinetic Alfvén, 189, 204
Langmuir, 149, 208, 293, 305
lightning-induced whistler, 136, 391
longitudinal, 116
lower hybrid, 215, 374
lower hybrid drift, 341
magnetosonic, 137, 159, 185, 293, 380
negative energy mode, 193
plasmaspheric hiss, 277, 380, 391
shear Alfvén, 185, 186
slow MHD, 186
solar radio, 302
sound, 185
transverse, 116, 306
ULF, 385, 387
upper hybrid, 139
VLF, 391
whistler mode, 39, 135, 214, 293, 374
whistler mode chorus, 277, 380, 389

weak turbulence, 273
westward traveling surge (WTS), 328
WKB approximation, 125
Wolf, 13
Woltjer’s theorem, 182

X-line, 223
X-ray bright points, 20

Zeeman effect, 12
zodiacal light, 17
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