SPACE S]‘ORMS —

From the —
Solar Surface - e

to the Earth

(E’_j Sprihgér .- | - @



Physics of Space Storms

From the Solar Surface to the Earth







Hannu E. J. Koskinen

Physics of Space Storms

From the Solar Surface to the Earth

. Published in association with ¢
@ Springer  Praxis Publishing PR %

Chichester, UK



Professor Hannu E. J. Koskinen

University of Helsinki and Finnish Meteorological Institute
Helsinki

Finland

SPRINGER-PRAXIS BOOKS IN ENVIRONMENTAL SCIENCES
SUBJECT ADVISORY EDITOR: John Mason, M.B.E., B.Sc., M.Sc., Ph.D.

ISBN 978-3-642-00310-3 e-ISBN 978-3-642-00319-6
DOI 10.1007/978-3-642-00319-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010934386

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free
for general use.

Cover design: Jim Wilkie
Project copy editor: Mike Shardlow
Author-generated LaTex, processed by EDV-Beratung Herweg, Germany

Printed on acid-free paper

Springer is part of Springer Science + Business Media (www.springer.com)



Contents

Preface . . ... .. XI
Acknowledgements .. ........... ... .. XV
1. Stormy Tour from the SuntotheEarth................................ 1
1.1 Source of Space Storms: the Sun............ ... ... .. ... . ... 1
1.1.1 TheSunasastar.............oouuuieeeiuniineeeeinnnennn 2

1.1.2 Solar Spectrum .. ........et it e 5

1.1.3  Solar atmoSphere . ...........cuuiniiineiie i 7

1.1.4 Rotationofthe Sun........... . .. ... i i 8

1.1.5 Sunspots and solar magnetism . ...............coieiinnennn.. 11

1.1.6  Coronal actiVity . ..........euoiunine et 16

1.2 The Carrier to the Earth: the Solar Wind ............................ 21

1.2.1 Elements of solar wind expansion ........................... 21

1.2.2 The interplanetary magnetic field . ........................... 25

1.2.3  The observed structure of the solarwind ...................... 28

1.2.4 Perturbed solar wind .......... ... ... . i 29

1.3 The Magnetosphere . . . ...t ittt 32
1.3.1 Formation of the Earth’s magnetosphere ...................... 32

1.3.2  The outer magnetosphere. ............. . .ot 34

1.3.3 The inner magnetosphere. ............c.ovuuneirneennnennn . 37

1.3.4 Magnetospheric CoOnVeCtion . .........ouuveuineinneennnennn . 40

1.3.5 Origins of magnetospheric plasma ........................... 44

1.3.6 Convection and electric fields ............................... 45

1.4 The Upper Atmosphere and the Ionosphere . ......................... 48

1.4.1 The thermosphere and the exosphere ......................... 49

1.4.2  Structure of the ionosphere .................... ... ......... 50

1.4.3 Electric currents in the polar ionosphere ...................... 51

1.5 Space Storms Seen from the Ground. . ............... .. ... ... .... 54
1.5.1 Measuring the strength of space storms ....................... 55

1.5.2 Geomagnetically induced currents ........................... 57



VI

Contents

Physical Foundations ......... .. ... ... .. ... ... ... 59
2.1 Whatis Plasma? ........ ... o 59
2.1.1 Debyeshielding .............oiuiiiiiiiiiniiiiiiin 60

2.1.2 Plasmaoscillations . . ...t 61

2.1.3 GYromoOtion . .........uuniiiii i 62
214 COllISIONS .o vv ettt et e et e 63

2.2 Basic Electrodynamics .............. . ... i 64
2.2.1 Maxwell’s equations . .............coiiiiiiinneiiinaaaan. 64
222 LorentZforce. ...... ... 66

223 Potentials....... ... 66

224 Energy ConServation . ..............c.eeeeuuunneeeennnnneenens 70

2.2.5 Charged particles in electromagnetic fields . ................... 71

2.3 Tools of Statistical PhySicS .. ..., 73
2.3.1 Plasma in thermal equilibrium .............................. 73

2.3.2 Derivation of Vlasov and Boltzmann equations ................ 75

2.3.3 Macroscopic variables .......... ... i 78
2.3.4 Derivation of macroscopic equations . ........................ 80

2.3.5 Equations of magnetohydrodynamics ........................ 82

2.3.6 Double adiabatictheory .............c.ooiiiiiiiiniiinen... 86
Single Particle Motion . ....... ... ... ... ... . 89
3.1 Magnetic Drifts .. ... .. 89
3.2 Adiabatic Invariants ...............ii i 93
3.2.1 The first adiabaticinvariant . . ............ .. ... i ... 93

3.2.2 Magnetic mirror and magneticbottle . ........................ 95

3.2.3 The second adiabatic invariant ................... ... .. ...... 96

3.2.4 Betatron and Fermi acceleration . ............................ 96

3.2.5 The third adiabatic invariant .............. . ... .o ... 97

3.3 Motioninthe Dipole Field ......... ... ... .ot 98
3.4 Motion Neara Current Sheet . ........ ...t inniiniiinn.n 103
34.1 TheHarrismodel .......... ... . . . i 104

3.4.2 Neutral sheet with a constant electric field .................... 106

3.4.3 Current sheet with a small perpendicular magnetic field component 107

3.5 Motion in a Time-dependent Electric Field .......................... 108
3.5.1 Slow time variations . ... ........oouuiniiiiii . 108

3.5.2 Time variations in resonance with gyro motion ................ 108

3.5.3 High-frequency fields........... ... ... . . L. 109
Waves in Cold Plasma Approximation . ................................ 113
4.1 Basic CONCEPLS ..o vvv ettt et e et 113
4.1.1 Wavesinlinearmedia ............. .o, 113
4.1.2 Wave polarization . . ...........uuuiiiiiinn i, 117
4.1.3 Reflectionand refraction ............ . ... .. i, 118

4.2 Radio Wave Propagation in the Ionosphere .......................... 121

4.2.1 Isotropic, lossless ionosphere ...............c..oiivinn. .. 121



Contents VIl
4.2.2 Weakly inhomogeneous ionosphere . ......................... 124

4.2.3 Inclusion of collisions ...............ouuinieiiiinneennn.. 128

4.2.4 Inclusion of the magnetic field .............................. 129

4.3 General Treatment of Cold Plasma Waves ........................... 130
4.3.1 Dispersion equation for cold plasma waves.................... 130

4.3.2 Parallel propagation (0 =0) ............ccoiiiiiiiiiann... 133

4.3.3 Perpendicular propagation (0 = 7/2) ......... ... ... 136
4.3.4 Propagation at arbitrary angles ............... ... ... 137

5. VlasovTheory ........ ... 141
5.1 Properties of the Vlasov Equation .................................. 141
5.2 Landauw’s SOIution .. ...ttt 143
5.3 Normal Modes in a Maxwellian Plasma . ............................ 148
5.3.1 The plasma dispersion function ....................... .. .... 148

5.3.2 TheLangmuirwave ................ciiiiiiiiinneena.. 149

5.3.3 Theion—acoustiC Wave . . .......c.uviuneiuneennneneennnnn. 150

5.3.4 Macroscopic derivation of Langmuir and ion—acoustic modes . ... 151

5.4 Physics of Landau Damping ............ ... i 153
5.5 Vlasov Theory in a General Equilibrium ............................ 155
5.6 Uniformly Magnetized Plasma ............. ... ... .. it 157
5.6.1 Perpendicular propagation (0 =7T/2) .........coiiiiiiia... 159
5.6.2 Parallel propagation (0 =0) ..., 161

5.6.3 Propagation at arbitrary angles ........... ... ... ... oL 161

6. Magnetohydrodynamics ............. ... ... ... ... 163
6.1 From Hydrodynamics to Conservative MHD Equations................ 163
6.2 Convection and Diffusion.......... ... ... i 166
6.3 Frozen-inFieldLines ............ ... .. i, 168
6.4 Magnetohydrostatic Equilibrium . ........... ... ... . i 171
6.5 Field-aligned Currents ................iiiiiininneeeininneeeennnn. 173
6.5.1 Force-freefields ......... ... i 173

6.5.2 Grad—Shafranovequation .............. ... i, 176

6.5.3 General properties of force-free fields ........................ 177
6.5.4 FACs and the magnetosphere—ionosphere coupling ............. 178

6.5.5 Magnetichelicity ...t 180

6.6 AIfVEN Waves. . . ... .ot 183
6.6.1 Dispersion equation of MHD waves.......................... 183
6.6.2 MHD wave modes . ........couumuieiiinnneeeiiinneennnn. 184

6.7 Beyond MHD ....... ... . . . . . 186
6.7.1 Quasi-neutral hybrid approach ........................... ... 187

6.7.2 Kinetic AlfvEn waves . . ... 189



VIII

Contents

Space Plasma Instabilities . ... ................ . ... .. ... L. 191
7.1 Beam-plasmaModes ........ ... ... 192
7.1.1 Two-streaminstability .......... ... ... i, 193

7.1.2 Bunemaninstability ............ ... ... 195

7.2 Macroinstabilities . ... ..... ... i e 196
7.2.1 Rayleigh-Taylorinstability ............ ... ... .. ....... ... 196

7.2.2  Farley—-Buneman instability. ........... ... ... .. ... . . 199

7.2.3 Ballooning instability.......... ... ... o i 200

7.2.4 Kelvin—Helmholtz instability ............................ ... 202

7.2.5 Firehose and mirror instabilities . ............... ... ... ... 204

7.2.6  Flux tube instabilities. . .............. .. ... . L 206

7.3 Microinstabilities. . .. ... 207
7.3.1 Monotonically decreasing distribution function ................ 207

7.3.2 Multiple-peaked distributions . ........... ... ..., 208

7.3.3 Ton—acousticinstability ............. ... i 210

7.3.4 Electrostatic ion cyclotron instability . . ....................... 212

7.3.5 Current-driven instabilities perpendicularto B . ................ 213

7.3.6  Electromagnetic cyclotron instabilities ....................... 215

7.3.7 Tonbeam instabilities . ....... ...t 217
Magnetic Reconnection . ............. . ... .. ..., 219
8.1 Basics of Reconnection. .......... ...ttt 219
8.1.1 Classical MHD description of reconnection ................... 220

8.1.2 The Sweet—Parkermodel ............... .. ... .. ... .. 221

8.1.3 ThePetschekmodel ............ ... ... . ... 223

8.1.4 Asymmetric reCONNECtiON . ... .......uuueeeeuuunneeeennnnn.. 225

8.2 Collisionless Reconnection ............... ... iiiiiiiiiiinnaa.. 227
8.2.1 Thetearing mode . .........ouiiiiniiine i, 228

8.2.2 The collisionless tearingmode .................... ..., 229

8.2.3 Tearing mode or somethingelse? ............................ 231

824 TheHalleffect ......... ... . ... 232

8.3 Reconnectionand Dynamo ........... ... ... . i it 236
8.3.1 Current generation at the magnetospheric boundary ............ 236

8.3.2 Elements of solar dynamo theory ............................ 238

8.3.3 The kinematic @ dynamo ..., 241
Plasma Radiation and Scattering .................... .. ... ... ..., 245
9.1 Simple ANtennas .. ..........iiitinin e 245
9.2 Radiation of aMoving Charge .......... ... ... i, 248
9.3 Bremsstrahlung . ...... ... e 251
9.4 Cyclotron and Synchrotron Radiation....................... ... .... 255
9.5 Scattering from Plasma Fluctuations. ................. ... ... ..... 258

9.6 Thomson SCattering . ... ... ...ceeuuuuneeettine i, 261



Contents IX

10.

11.

12.

13.

Transport and Diffusion in Space Plasmas ............................. 267
10.1 Particle Flux and Phase Space Density ..................... .. 267
10.2 Coordinates for Particle Flux Description ........................... 269
10.3 Elements of Fokker—Planck Theory .............. ... ... oo iu... 271
10.4 Quasi-Linear Diffusion Through Wave—Particle Interaction ............ 273
10.5 Kinetic Equation with Fokker—Planck Terms . ..................... ... 276
Shocks and Shock Acceleration .............. ... .. ... ... 279
11.1 Basic Shock Formation........... ... ... .. 280
11.1.1 Steepening of continuous Structures . ......................... 280
11.1.2 Hydrodynamic shocks ......... ... ... . .. 282
11.2 Shocks in MHD . ... ... 283
11.2.1 Perpendicular shocks ........ ..., 283
11.2.2 Oblique shocks ........ ... i 285
11.2.3 Rotational and tangential discontinuities . ..................... 287
11.2.4 Thickness of the shock front . ........... ... ... ... . ...... 288
11.2.5 Collisionless shock wave structure . . ..................ooien.. 290
11.3 Particle Acceleration in Shock Waves........................ ... .... 293
11.3.1 Shockdriftacceleration............... ... ... ot 294
11.3.2 Diffusive shock acceleration .................... . .......... 295
11.3.3 Shock surfing acceleration. ............ ..., 297
StormsontheSun...... ... . .. ... 299
12.1 Prominences and Coronal Loops . ........... ... ... .. ... . ... 300
12.2 Radio Storms onthe Sun ........ ... .. i 302
12.2.1 Classification of radio emissions .....................oooo... 303
12.2.2 Physical mechanisms for solar radio emissions ................ 304
12.3 Solar Flares ..........oo oo 307
12.3.1 Observational characteristics of solar flares.................... 307
12.3.2 Physicsof solar flares. ......... ... ... o i i 311
12.4 Coronal Mass Ejections ..............oiiiiiiinniiiiiiinneennn.. 314
12.4.1 CMEsnearthe Sun.......... ...ttt iiinnnean. 315
12.4.2 Propagationtimeto L AU ...........c.cviiiiiiiniiinnnnn.. 317
12.4.3 Magnetic structure of ICMEs ......... ... ... ... ... ... 318
12.5 CMEs, Flares and Particle Acceleration . ..............ouuiueuen. .. 320
Magnetospheric Storms and Substorms. ........................... ... 323
13.1 What are Magnetic Storms and Substorms? .......................... 323
13.1.1 Storm basiCs ... ..oovuu et e 324
13.1.2 The conceptof substorm .............. .. ..ooiiiiiiiiiaa... 326
13.1.3 Observational signatures of substorms . ....................... 326
13.2 Physics of Substorm Onset. . .......c.oviuntin e 333
13.2.1 Theoutside—in VIEW ... ..ottt 334
13.2.2 The inside—0ut VIEW . . ... ....tttunin et iiiaaee e 339

13.2.3 External triggering of substorm expansion .................... 342



X Contents

13.2.4 Timing of substorm onset .................couieiiininnaa... 342

13.3 Storm-Time ACHVILY . . ..ottt e e 345
13.3.1 Steady magnetospheric convection.................c..oovun... 345
13.3.2 Substorm-like activations and sawtooth Events ................ 348

13.4 ICME-Storm Relationships . ............. .. .. ... . . i ... 350
13.4.1 Geoeffectivityof anICME ...... .. ... .. ... .. ... .. ... 350
13.4.2 Different response to differentdrivers ........................ 352

13.5 Storms Driven by Fast Solar Wind ................. .. ... ... .... 354
13.5.1 27-day recurrence of magnetospheric activity.................. 354
13.5.2 Differences from ICME-driven storms. ....................... 355

13.6 Energy Budgets of Storms and Substorms ........................... 357
13.6.1 Energy supply .. ...coounniii 357
13.6.2 Ring CUITENt ENEIZY .« v v v vt ettt et et eee e e ee 358
13.6.3 Tonospheric disSipation ..............c.cooiuieiinneenneennn.. 360
13.6.4 Energy consumption farther in the magnetosphere . ............. 362
13.6.5 Energy transfer across the magnetopause ..................... 362

13.7 Superstorms and Polar Cap Potential Saturation ...................... 365
13.7.1 Quantification of the saturation.............................. 366
13.7.2 Hill-Siscoe formulation. ................ oo, 366
13.7.3 The Alfvén wing approach .............. ... ... .. ... ... 368
13.7.4 Magnetosheath force balance ............................ ... 369

14. Storms in the Inner Magnetosphere .............. ... ... ... ... ... ..., 371
14.1 Dynamicsofthe Ring Current ........... ... it iiiiiiiinaion. 372
14.1.1 Asymmetric structure of the ringcurrent . . .................... 372
14.1.2 Sources of the enhanced ring current . ........................ 373
14.1.3 Role of substorms in storm evolution......................... 376
14.1.4 Loss of ring current through charge exchange collisions . ........ 376
14.1.5 Pitch angle scattering by wave—particle interactions ............ 379
14.1.6 ENA imaging of theringcurrent ............................ 381

14.2 Storm-Time Radiation Belts............... ... ... ... ... . ciiiin.. 382
14.2.1 Sources of radiation beltions ............................... 382
14.2.2 Losses of radiation beltions ................... .. ... 383
14.2.3 Transport and acceleration of electrons ....................... 384
14.2.4 Electron 1I0SSeS ... .....uuuittiiin i 390

15. Space Storms in the Atmosphere and onthe Ground .................... 393
15.1 Coupling to the Neutral Atmosphere................... ..ot 393
15.1.1 Heating of the thermosphere .............. ... ... ... ... ... 394
15.1.2 Solar proton events and the middle atmosphere ................ 394

15.2 Coupling to the Surface of the Earth . ............... .. ... ... .... 395
References . .. ... 399



Preface

Space weather can be defined as a subtopic of solar—terrestrial physics, which deals with
the spatially and temporally variable conditions in the Sun, solar wind, magnetosphere, and
ionosphere that may disturb or damage technological systems in space and on the ground
and endanger human health. Space storms are the strongest and most harmful appearances
of space weather.

During the 1990s space weather grew to a prominent, if not the dominant, sector within
solar—terrestrial physics. Also a significant fraction of basic space plasma physics research
became motivated by its potential to contribute to useful space weather applications in-
cluding more accurate forecasts. A key reason for the evolution of space weather activities
is the growing understanding that a great number of systems in space, human beings in-
cluded, and on the ground are vulnerable to severe space weather conditions. In fact, due
to miniaturization and increasing complexity many technological systems are becoming
more sensitive to the radiation environment than before. At the same time modern society
is getting increasingly dependent on space infrastructure. In future the human presence
in space, including space tourism, is expected to become more prominent. Some day we
most likely will return to the Moon and, perhaps, initiate manned missions to Mars. On
the ground the effects of space storms, such as saturation of transformers in electric power
transmission networks or perturbations in telecommunication and global positioning sys-
tems, may be easier to handle, but this requires that the underlying physics be understood
much better than today.

The developers of space weather services have done their best to follow the needs,
sometimes real, sometimes imagined, of potential users of space weather applications.
There is growing activity to produce tools for modeling and forecasting space weather
conditions based on a limited set of observations, for specification of environmental condi-
tions during storms, and for after-the-fact analysis of anomalous behavior of technological
systems and hazards caused by severe space weather. Unfortunately, this activity is often
based on insufficient knowledge of the underlying physical systems, sometimes even at
the cost of basic research aiming at increasing this knowledge. This development is not
always healthy in the long-term perspective. Furthermore, it is not enough just to solve the
acute problems: the knowledge being gained today also needs to be maintained tomorrow.
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While a large number of research articles and review papers on space storms have been
published over the last several years, there is no comprehensive systematic textbook ap-
proach to the relevant physics of the entire chain of phenomena from the surface of the
Sun to the Earth. The goal of the present monograph is to fill this gap. The text is aimed
at doctoral students and post-doctoral researchers in space physics who are familiar with
elementary plasma physics and possess a good command of classical physics. The top-
ics reach from the storms in the solar atmosphere through the solar wind, magnetosphere,
and ionosphere to the production of the storm-related geoelectric field on the ground. In
the selection of material, preference has as much as possible been given to analytical and
quantitative presentation over handwaving, while keeping the volume of the book reason-
able.

Of course, several good plasma physics textbooks are available, which are useful in the
education of space physicists, e.g., the rewritten classic of Boyd and Sanderson [2003],
the little more challenging Sturrock [1994], or the recent volumes written by Gurnett and
Bhattacharjee [2004] and Bellan [2006]. However, these books are written for very wide
audiences from laboratory and fusion communities to space plasma physicists. Conse-
quently, many important issues in the physics of tenuous space plasmas have had to be
dealt with in a brief and cursory manner. For astrophysicists interested in the most abun-
dant form of conventional matter in the universe the book by Kulsrud [2005] is strongly
recommended, although quite demanding reading. There are also several textbooks with a
clear focus on fundamental space plasma physics [e.g., Baumjohann and Treumann, 1996;
Treumann and Baumjohann, 1996; Parks, 2003], but their approach too is more general
than the thematically focused topic of the present volume. The multi-authored textbook
edited by Kivelson and Russell [1995] covers large parts of the physical environment of
this book. However, it does not go very deeply into the plasma physics and suffers to some
extent from the different styles of the individually written chapters.

The rapid growth of space weather activities has led to a large number of compilation
works of highly variable quality. An inherent problem of multi-authored collections is that
each article is relatively short but at the same time written in a complete article style from
introduction to conclusions and often with individual reference lists. Thus the books easily
become thick but none of the articles can penetrate the basic physical principles. Some of
the most useful collections in the present context are those edited by Crooker et al [1997],
Tsurutani et al [1997], Daglis [2001], Song et al [2001], Scherer et al [2005], Baker et al
[2007], Bothmer and Daglis [2007], and Lilensten et al [2008]. These books contain many
excellent articles and provide students with a large body of study material with up-to-date
observational data. However, these volumes rather complement than compete with this
self-contained monograph.

This book can be interpreted to consist of three parts. The long Chapter 1 forms the first
part. It contains a phenomenological introduction to the scene, from the Sun to the Earth,
where space weather plays are performed. A reader familiar with basic physics of the Sun,
solar wind, magnetosphere and ionosphere can jump over this chapter and only return to
it when there is a need to check definitions or concepts introduced there.

The second part of the book consists of several chapters on fundamental space plasma
physics. While this part is written in a self-consistent way, it is aimed at readers who
already have been exposed to basic plasma physics. Chapter 2 briefly introduces the fun-
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damental concepts and tools of plasma physics inherited from both electrodynamics and
statistical physics. Chapter 3 reviews the classical guiding center approach to single par-
ticle motion and adiabatic invariants, including motion in the dipole field, near a current
sheet, and in a time-dependent electric field.

Common problems to all plasma physics texts are in what order the microscopic and
macroscopic pictures should be introduced and at what stage the waves and instabilities
be discussed. The strategy in the present volume is to start with the wave concepts in
the cold plasma approximation in Chapter 4. The chapter includes a discussion of radio
wave propagation in the ionosphere as an example of dealing with wave propagation in
inhomogeneous media in the WKB approximation, which is a powerful theoretical tool in
problems where the wavelength is short as compared to the gradient scale lengths of the
background parameters. Chapter 5 is a standard discussion of the Vlasov theory starting
from Landau’s solution and extending to the wave modes in uniformly magnetized plasma.
Only after these is magnetohydrodynamics (MHD) treated in Chapter 6. Here more em-
phasis is placed on the field-aligned currents (i.e., force-free fields) than in many other
plasma physics texts because they are of such great importance in the solar atmosphere,
solar wind, and magnetosphere and in magnetosphere—ionosphere coupling. The chapter
is concluded with a brief peek beyond the MHD approximation, including a quasi-neutral
hybrid approach and the introduction of kinetic Alfvén waves.

Space plasma instabilities are the topic of Chapter 7. In whatever way you approach
this complex, you end up being incomplete if you wish to keep the discussion within
reasonable limits and focused. Here the approach is to introduce the basic ideas, such as the
free-energy sources and stability criteria, behind several of the most important instabilities
studied in the context of space storms, but most of the long and tedious derivations of
the equations have been omitted. The reader interested in the details is recommended to
consult more advanced textbooks in plasma theory and relevant research articles. Another
choice motivated by the theme of this book is to discuss the magnetic reconnection and
the tearing modes separately from other instabilities in a dedicated Chapter 8. Whatever
the microphysical mechanisms associated with reconnection are, the understanding of its
basic characteristics is an essential part of literacy in space physics, regardless of whether
one is interested in solar flares, coronal mass ejections, solar wind interaction with the
magnetosphere, or the substorms therein. Unlike other textbooks, the concept of dynamo
is introduced in this chapter because the annihilation and generation of magnetic flux can
be seen as two faces of related physical processes.

The primary goal of this book is to bridge the gap between the fundamental plasma
physics and modern research on space storms. This is the challenge of the third part of
the book. As in modern concertos, transition from the second to the third movement is
not necessarily well-defined. In some sense Chapter 8 already opens the third part as here
the treatise begins to focus more on the key issues in space storm research. Chapter 9,
in turn, discusses the mechanisms giving rise to radiation that we see coming from the
solar atmosphere at the time of solar storms as well as the scattering of radio waves from
electrons and plasma fluctuations in the ionosphere. In Chapter 10 the adiabatic invariants
introduced in Chapter 3 are used in formulating the kinetic equations for studies of plasma
transport and acceleration in the inner magnetosphere.
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Fluid turbulence remains one of the toughest problems in classical physics and tur-
bulence in collisionless magnetized plasmas is an even harder problem. Particularly in-
teresting environments, where turbulence is critical, are the interplanetary and planetary
shocks with the associated sheath regions. Shocks and shock acceleration are discussed in
Chapter 11.

Finally the treatise returns to the more phenomenological treatment of space storms in
various parts of the solar—terrestrial system. Chapter 12 deals with the storms on the Sun
and their propagation into the solar wind. In Chapter 13 magnetospheric storms and sub-
storms and their drivers are investigated. As storm phenomena in the inner magnetosphere
are of particular practical interest, they are discussed separately in Chapter 14. At the end
of the journey some effects of space storms on the atmosphere and the current induction
on the ground during rapid ionospheric disturbances are briefly discussed in Chapter 15.

The great variety of phenomena from the Sun to the Earth and the vast amount of dif-
ferent theoretical and modeling approaches to explain them make some hard choices nec-
essary, in particular, the choice between a Sun—centered and an Earth—centered approach.
The solar atmosphere, in particular the corona, is a much more stormy place than the
Earth’s environment. The Sun is also the driver of practically all space storm phenomena
in the solar—terrestrial system. These facts would suggest adoption of the Sun—centered
view on space storms. On the other hand, we live on the Earth and here we have to learn
to handle the consequences of space storms. Thus the present choice is Earth-centered but
more emphasis is put on the entire space storm sequence than in traditional textbooks on
magnetospheric physics. There is a recent very comprehensive textbook on the physics
of solar corona by Aschwanden [2004]. Actually just browsing through that volume, con-
taining citations of about 2500 scientific articles, illustrates how difficult it is to compile
a concise text on that end of the space storm chain. The first decade of the 21st century
also forms a “golden age” of solar physics when several multi-wavelength spacecraft are
producing an enormous amount of new empirical information on the active Sun. To digest
all this will certainly take some time.

Another choice taken here is not to deal with space weather effects or practical mod-
eling approaches. Concerning these we point the interested reader to the recent volumes
by Bothmer and Daglis [2007] and Lilensten et al [2008] and references therein. In fact,
the present book and those by Aschwanden [2004] and Bothmer and Daglis [2007] are
strongly complementary to each other. They have quite different approaches but are deal-
ing with closely related issues.

As one of the goals of this book is to provide material for advanced students, exercise
problems of varying difficulty have been embedded within the text. They are grouped
into three categories: Problems labeled Train your brain are mostly straightforward, often
boring, derivations of expressions that are useful for students learning to master the basic
material of the book. The label Feed your brain refers to problems or tasks that add to the
reader’s knowledge beyond the actual text and can also be useful for testing the reader’s
understanding of the material. Problems identified as Challenge your brain are a little
harder (at least to the author), dealing also with unsolved or controversial issues. Creative
solutions to some of these may be worth publishing in peer-reviewed journals.

A textbook discussing basic physics necessarily borrows material from earlier sources.
The author was introduced to plasma physics through the classic texts by Boyd and Sander-
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son [1969], Krall and Trivelpiece [1973], and Schmidt [1979], which certainly can be rec-
ognized in the presentation of the fundamental plasma issues. When discussing “generally
known” (or believed to be known) topics, in particular in Chapter 1, references to the sci-
entific literature have been used sparsely. However, a number of references to some of the
truly classic reports have been included. New generations of scientists every now and then
tend to forget the original works with the risk of independent reinvention of the wheel. For
students it is sometimes useful to recall that there was intelligent life even before they were
born. In this respect the internet has actually made life much easier. We do no more need
to have physical access to the best equipped libraries to read many of the classic reports
in the scientific literature. Unfortunately, books like this are harder, or more expensive, to
access electronically.
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Units and Notation

SI units are used throughout the book. As a common exception energy and temperature
are often expressed in electronvolts (eV), but in equations involving the temperature the
Boltzmann constant kg is written explicitly, in which case the temperature is given in
kelvins (K). Furthermore, physical distance measures, such as the radius of the Sun (Rp),
the radius of the Earth (Rg), or the astronomical unit (AU), are in frequent use. Also, when
dealing with densities of a few particles per cm?, or magnetic fields of a few nT, it is
preferable to use these as units in order to avoid unnecessary use of powers of ten.

A person working within theoretical plasma physics or solar physics must also master
the Gaussian cgs unit system, as much of the literature in these fields is still written in
these units. Transformation from grams to kilograms, from centimeters to meters, or ergs
to joules is trivial, but in formulas involving electrodynamic quantities the different unit
systems are a nuisance. This sometimes leads to erroneous calculations, not only by factors
of 10, but examples of errors by a factor of 3 or 47 are not too difficult to find in the
literature, peer-reviewed articles included.

Macroscopic quantities in the three-dimensional configuration space are denoted by
capital letters, e.g., electric current J, fluid velocity V, pressure P, etc., vectors in boldface
and scalars in italics. The lowercase v is reserved to denote particle velocity as a function
of time and the velocity coordinates in the phase space, e.g., in expressions as f(r,v,7),
whereas the lowercase p denotes the particle momentum p(z). In order to avoid conflict
electric potential is denoted by ¢, whereas ¢ is an angular variable. Similarly volume is
denoted by ¥ in order not to mix up it in some expressions with speed V. The volume
differential in integral expressions is denoted by either d*r or d¥".

In an ideal world a textbook should have a unique system of symbols. However, this is
not a practical goal for a book that combines material from several different disciplines of
physics, all with their own and by no means common or unique notations. Thus the most
usual conventions are followed in the book, accepting that some symbols become heavily
overloaded. One of them is U, that in this book may denote the magnetic permeability of a
medium, the magnetic moment of a charged particle, or the cosine of the pitch angle. J can
denote the second adiabatic invariant, the absolute value of electric current |J|, and omni-
directional particle flux. y in turn appears as the polytropic index, as the Lorentz factor and
in some instances as the wave growth rate, n as the particle density, the index of refraction
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and in vector form the unit normal vector, ¢ as electrical conductivity and the collision
cross-section, etc. However, none of these ambiguities should lead to misunderstanding.
After all, physicists are expected see the forest for the trees.






1. Stormy Tour from the Sun to the Earth

In addition to light and other wavelengths of electromagnetic radiation the Sun affects our
environment through complicated plasma physical processes. The study of these interac-
tions is known as solar—terrestrial physics. Already long before the space era there were
indications that solar activity and geomagnetic perturbations must somehow be connected.
A remarkable event was the large flare on the Sun observed, independently, by Carrington
[1859] and Hodgson [1859] on September 1, 1859, after which a major magnetic storm
commenced only 17 hours later. Today we understand that the storm was caused by a
magnetic cloud associated with a coronal mass ejection (CME) that reached the Earth ex-
ceptionally quickly. The storm was very strong, evidently much stronger than any event
recorded during the present era of space weather sensitive equipment in space and on the
ground.

During the early 20th century the Sun was found to possess a highly variable magnetic
field and the violent solar eruptions were found to somehow be related to strong magnetic
variations observed on the Earth. But it was not until the dawn of spaceflight that the highly
variable but continuously blowing solar wind was shown to be the agent that carries the
perturbations from the Sun to the Earth. The variations in the solar wind shake the mag-
netic environment of the Earth, the magnetosphere. If the perturbations are strong enough,
we call them “storms”. We borrow terminology from atmospheric sciences and call the
short-term variations in the solar—terrestrial system “space weather” and the longer-term
behavior “space climate”. In this book the term “space storm” is not limited to storms in
the magnetosphere but includes stormy weather on the Sun, in the solar wind, and in the
Earth’s magnetosphere and ionosphere. Space storms at other planets form an interesting
and intriguing complex of physics issues, the discussion of which, however, is beyond the
scope of the present treatise.

1.1 Source of Space Storms: the Sun
Space weather and space climate are controlled by the temporal variability of the Sun in

different time scales from minutes to millennia. In fact, when looking at the Sun with the
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2 1. Stormy Tour from the Sun to the Earth

present observational tools, its surface and atmosphere are seen to be very stormy and
noisy environments. In this section we review some of the basic properties of our active
Sun. A modern introduction to the Sun itself is Stix [2002] and a wealth of material about
the corona and its activity can be found in the comprehensive volume by Aschwanden
[2004].

1.1.1 The Sun as a star

The physical picture of the Sun started to develop in the dawn of modern physical sciences
when Galileo, one of the first developers and users of the telescope, observed sunspots on
the solar disk. He showed in 1613 that they are structures on the surface of the Sun and
not small planets as Schreiner had argued a few years earlier. After this promising start
progress in solar physics remained slow. In 1802 Hyde discovered that solar spectrum
contained several absorption lines, which were later cataloged by Fraunhofer. In 1844
Schwabe showed that the sunspot activity varies in an 11-year cycle and in 1859 Carrington
and Hodgson observed a solar flare in white light. The second most common element in
the universe was identified as late as 1868 in the solar spectrum by Lockyer and was later
named helium.

Most of our present understanding of the Sun did not exist before the 20th century.
Among the first major advances were Hale’s measurements of intense magnetic fields in
the sunspots in 1908, showing that whatever generated the solar activity, it was closely
related to highly variable magnetism. An important enigma remained, however. In 1862
Sir William Thomson (later Lord Kelvin) had demonstrated that the largest imaginable
energy source for solar radiation, the gravitational binding energy of the Sun, would not,
at the present solar luminosity, be sufficient for more than 20 million years, which already
at that time was considered far too short a history for the solar system. The solution to
this problem required the development of quantum mechanics and finding of the nuclear
forces. In 1938 Bethe and Critchfield described the dominant proton—proton reaction chain
that powers the Sun. In this process 600 million tons of hydrogen is transformed to 596
million tons of helium, and the remaining 4 million tons is released as radiation.

After the revelation of nuclear fusion in the Sun an intensive puzzle work of fitting
solar models to the increasing amount of detailed observation started with the goal of
describing both the present structure and the past evolution of the Sun. From the mid-1970s
the observations of solar oscillations and their interpretation, known as helioseismology,
have become most important tools for reaching a very accurate description of the interior
of the Sun.

Today we know that the Sun is a typical cool magnetic star. Its mass () is 1.99 x 103°
kg (330 000 times more massive than the Earth) and radius (R ) 696 000 km (109 times the
Earth’s radius, Rg). The present Sun irradiates with a luminosity of 3.84 x 10%6 W with
an effective black body temperature of 5778 K. The Sun was formed about 4.55 x 10°
years ago when an interstellar gas cloud with a mass of the order of 10* m., collapsed
due to some interstellar gravitational perturbation, probably a shock wave, and further
disintegrated, leading to the formation of the solar system. The collapse was not spherically
symmetrical due to the presence of angular momentum and magnetic flux of the cloud.
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While most of the angular momentum and magnetic flux were carried away by matter not
ending up in the solar system, rotation and magnetic field are still today essential elements
of the Sun and the solar system.

An intriguing obstacle on the road toward an acceptable solar model was the solar
neutrino problem. Ever since the first neutrino experiments by Davis and Bahcall in the
Homestake gold mine in 1967, observations based on different detection techniques indi-
cated that the Sun would produce only 30-50% of the neutrino flux that the standard solar
model predicts to arise from the fusion process in the core. Attempts to solve this problem,
e.g., by adjusting the temperature of the central core, lowering the relative abundance of
heavy elements, assuming a rapidly rotating core, or assuming a strong magnetic field in
the core, all led to contradictions elsewhere in the solar models.

Meanwhile developments in neutrino physics started to point toward another solution
based on the properties of the neutrinos themselves. Finally, strong evidence in favor of
the nuclear physics explanation was obtained at the beginning of the 21st century with
a Cherenkov experiment within a large water tank with a heavy water (D,0O) core at the
Sudbury Neutrino Observatory [Ahmed and SNO Collaboration, 2004]. In that experiment
it is possible to observe both the electron neutrinos, which are produced by the fusion,
and the p and 7 neutrinos, to which a considerable fraction of the electron neutrinos are
transformed through neutrino oscillations during the propagation from the Sun to the Earth

Figure 1.1 illustrates the main regions of the Sun (for a detailed discussion of the solar
model, see Stix [2002]). The energy production takes place in the core within a radius
of 0.25R., from the center of the Sun where temperature is 1.57 x 10’ K and pressure
2.34 x 10'® Pa. From the core energy propagates outward through a very slow process of

Corona ~ Chromosphere

Photosphere

Convection
zone

Radiative
zone

1.5x10 7K

Energy
production

4300 K

Convection

Fig. 1.1 The structure of the Sun. (Figure by courtesy of R. Vainio.)
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radiative diffusion during which the photons are absorbed and re-emitted by the dense solar
matter over and over again. The energy propagation time of the distance of 2 light seconds
is of the order of 170000 years. Due to collisions and absorption—emission processes in
this radiative zone the photons are redshifted toward the visible wavelengths.

At the distance of about 0.72 R, the solar gas becomes opaque to the photons and the
energy transport toward the surface takes the form of turbulent convection, which is much
faster than the radiative transfer. The plasma motion in this convection zone is extremely
complex and of specific relevance to the topic of the present text, as the ever-changing
magnetic field of the Sun is created within this zone, according to the present understand-
ing close to its bottom. The radiation does not stop completely at the base of the convection
zone. About 0.05 R, into the convection zone the convective energy flux exceeds the ra-
diative flux and within the last 0.1 R, below the surface practically all energy transport is
convective.

While the radiation zone is stably stratified, the convection zone is unstable: gas parcels
move up, dissolve, and cool down, and the cool gas returns back along narrow lanes be-
tween the upward-moving gas parcels. The whole convection zone is continuously mixed,
which makes it chemically homogeneous. This does not make the mean molecular mass
constant because close to the surface the degree of ionization drops rapidly. However,
within most of the convection zone the mean molecular mass is about 0.61.!

Finally the convection reaches the solar surface and introduces a granular structure
on it. The intergranular lanes are about 100 K cooler than the regions of upward motion.
Granules appear in various sizes, diameters ranging from about 1000 km up to a few times
10* km, the latter being called supergranules. The smallest granules represent small con-
vection cells close to the surface, whereas the larger granules are related to larger convec-
tion cells reaching deeper into the convection zone.

Above the convection zone a thin surface, the photosphere, absorbs practically all
energy carried by convection from below and irradiates it as (almost) a thermal black
body at the temperature of 5778 K. The thickness of the photosphere is only 500 km. The
temperature at the bottom of the photosphere is about 6600 K and at its top 4300 K.

The total irradiance at the mean distance of the Earth (1 AU) is known as the solar
constant

§=1367+3Wm™2. 1.1

It is related to the luminosity of the Sun L, by
Lo =4mAU?S = (3.84440.010) x 10°°W . (1.2)

Accurate determination of § is challenging and the last digits and uncertainties in the
expressions above must not be taken as definitive. The total solar irradiance (TSI) must
be observed with accurately calibrated instruments above the dense atmosphere, which
absorbs most of the radiation in ultraviolet (UV) and infrared (IR) wavelengths. Early
in the 21st century a consensus of inter-calibrations between various space observations
was reached of an average S ~ 1366 W m~2 near solar minima and S ~ 1367 W m 2 near

! In a plasma free electrons are counted as particles. Thus the mean molecular mass of electron—proton
plasma is 0.5.
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solar maxima. However, observations with the Total Irradiance Monitor (TIM) onboard the
The Solar Radiation and Climate Experiment (SORCE) satellite launched in 2003 indicate
that the actual TSI would be some 4—5 W m~2 smaller than previously thought [Kopp
et al, 2005]. By the time of writing this book the reason for this discrepancy had not been
clarified.

For space storms the exact total irradiance is not as important as its relative variations.
In particular, near solar maxima the irradiance varies by several W m~2 depending on the
sunspot activity (Sect. 1.1.5).

The luminosity can be given in terms of the effective temperature defined by

Lo =47nR: 0Ty, (1.3)

where 6 = 5.6704 x 107 3Wm 2K * is the Stefan—Boltzmann constant. The effective
temperature of the Sun is T,y = 5778 £ 3 K. The photospheric gas has this temperature
at the optical depth T & 2/3, which can be taken as the definition of the solar surface (for
the definition of 7, see, e.g., Stix [2002]).

“Solar constant” is actually one of many historical misnomers that we will encounter
in this book. The Sun is a variable star in both short and long time scales. Fortunately for
us, the variations are about a factor of three weaker than is typical for many other Sun-like
stars. In the longest time perspective the luminosity of the newly-born Sun was about 72%
of its present value. After some 2 billion years from now the Sun will have become so
bright that the Earth will turn too dry for the present type of life. The slow rise of solar
luminosity is due to the increase of the core temperature when more and more hydrogen is
fused to helium.

In space weather and space climate time scales, S varies by a factor of

e 107 over minutes

e 2x 1073 (0.2%) over several days

e 1073 over a solar cycle (the number is quite uncertain because the solar cycles are
different)

The physical reasons and apparent periodicities for these variations are not fully under-
stood.

1.1.2 Solar spectrum

The solar spectrum from 7-rays to metric radio waves is given in Fig. 1.2. Most of the
solar energy is irradiated in the visible and near-infrared parts of the spectrum with peak
irradiance in yellow light around 450-500 nm. The red end of the spectrum is an almost
continuous black-body spectrum with some strong absorption lines, e.g., Ha at 656.3 nm
(not visible in the scale of Fig. 1.2). At the blue end there are more absorption lines.
About 44% of the electromagnetic energy is emitted at infrared wavelengths A >
0.8 um. This part of the spectrum is approximately thermal and can be represented by
the Rayleigh—Jeans law
S(A) ~2ckgT A% (Ro /AU )? . (1.4)
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Fig. 1.2 Solar spectrum from 7-rays to radio waves. The radio wave part of the spectrum is shifted up in
irradiance by 12 orders of magnitude. The irradiance is given in cgs units and angstrém (1 A = 0.1 nm) is
used below one 1 um, which is common practice in solar physics. (From Aschwanden [2004].)

The infrared spectrum is absorbed mostly by water vapor in the Earth’s atmosphere.

At radio wavelengths (> 1 mm) the spectrum is commonly presented as a function of
frequency (recall the conversion: A (m) =300/ f(MHz); e.g., | mm < 300 GHz). The Sun
is strongly variable at these wavelengths because the radio emissions originate from non-
thermal plasma processes in the chromosphere and corona (discussed in Sect. 1.1.3). As
indicated in Fig. 1.2, the radio emissions during strong solar storms can exceed the quiet
levels by several orders of magnitude. Note that there is an ankle in the slope of the quiet-
Sun spectrum at around 10 cm indicating higher temperatures (~ 10°K) than the main
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black body radiation. This is a signature of the chromosphere and corona being much
hotter than the visible Sun.

In the ultraviolet side of the spectrum absorption lines are dominant down to 210 nm. At
shorter wavelengths the intensity is reduced to correspond to the temperature of 4700 K.
This reduction is due to absorption by the ionization of All. (Recall the notation: All
represents non-ionized aluminum, AlIl is the same as AlT, AT is Al”, etc.) Below
150 nm emission lines start to dominate the spectrum. The strongest is the hydrogen Lyman
« line centered at 121.57 nm. Its average irradiance, 6 mW m~2, is as strong as all other
emissions below 150 nm together and the line is also clearly visible in Fig. 1.2 .

At shorter wavelengths the spectrum becomes highly variable, illustrating a nonuniform
distribution of the emission sources in the solar atmosphere. The nonuniformity is both
spatial and temporal. The wavelength band below 120nm is called extreme ultraviolet
(EUV). These emissions come both from neutral atoms and from ions up to very high
ionization levels, e.g. Fe XVI (Fe!>*) in the solar corona. This facilitates the observations
of the wide range of temperatures from 8000 K to 4 x 10° K, from the chromosphere to the
corona.

Solar flares increase the EUV and soft X-ray (0.1-10nm) spectra quite considerably.
Also hard X-rays and 7y-rays are emitted in these processes, as will be discussed in
Chap. 12.

1.1.3 Solar atmosphere

That there is an atmosphere above the photosphere is evident already visually. The irra-
diance decreases from the center of the disk to the limb by an order of magnitude due to
the absorption of the atmospheric gas, which is known as limb darkening. The tempera-
ture continues to decrease in the photosphere reaching its minimum at an altitude of about
500 km. Thereafter, the temperature starts to rise again in the chromosphere. The chromo-
sphere has got its name from the colorful flash seen just at the beginning and at the end of a
total solar eclipse. The most prominent color is the red Ha-line at 656.3 nm. Traditionally
the chromosphere was thought to be a layer of thickness of about 2000 km, but as illus-
trated in Fig. 1.3 the present view to the structure of the solar atmosphere is much more
complicated and dynamic than the old picture of a gravitationally stratified atmosphere.

At the upper end of the chromosphere the temperature begins to rise more rapidly.
The chromosphere is sometimes defined to end at the temperature of 25000 K. Above
the chromosphere there is a thin fransition region to coronal temperatures of the order of
10° K. The corona is a key region of many aspects of space storms to which we will return
in Sect. 1.1.6.

The steep temperature increase from the chromosphere to the corona remains one of
the major insufficiently understood topics in solar physics. As illustrated in Fig. 1.3 the
chromospheric and coronal plasmas partly overlap, flowing up and down with compli-
cated dynamic magnetic field structures involving waves, shocks, magnetic reconnection,
etc., which will be discussed in later chapters of this book. At the same time when this
dynamism complicates the picture, it also indicates that there free energy is available for
the heating. In fact, a steep temperature gradient in a gravitationally stratified atmosphere
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Fig. 1.3 Evolution of the concepts the solar atmosphere from gravitationally stratified layers in the 1950s
to a highly inhomogeneous mixing of the photosphere, chromosphere, and corona at the beginning of the
21st century. (From Schrijver [2001].)

might be much more difficult to explain than a spatially and temporally variable environ-
ment.

1.1.4 Rotation of the Sun

That the Sun rotates was discovered soon after the advent of telescope in about 1610.
Around 1630 it became clear that the rotation is not rigid, but the equatorial surface rotates
faster than the high-latitude regions. The origin of this differential rotation is not yet fully
understood. It is related to the transport of angular momentum inside the Sun and it also
plays a central role in the generation of the solar magnetic field. Differential rotation ap-
pears to be a general property of self-gravitating large gaseous bodies and is also observed
in the giant planets of the solar system.

The rotation axis of the Sun is given by two angles: the inclination i between the ecliptic
plane and the equatorial plane, and the angle of the ascending node o of the Sun’s equator,
i.e., the angle in the ecliptic plane between the direction of the vernal equinox and the
direction where the solar equator cuts the ecliptic from below. The Earth’s precession
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shifts the equinox direction by 0.0196°, i.e., 50", per year, and thus o increases by the
same rate. Consequently, the epoch must be given when coordinates related to the equinox
are used. Carrington determined these angles in 1863 as i = 7.25° and (1850) = 73.67°.
The latter is still valid but the Greenwich sunspot data from the period 1874—1976 imply
i=7.12°£0.05°.

We denote the heliographic latitude by y, thus the polar angle (co-latitude) is 68 =
/2 — y. There is no physically unique way to define the longitude on the differentially
rotating surface. For this purpose Carrington introduced a notation that is still in use. He di-
vided time into intervals of 27.2753 days. These intervals are called Carrington rotations.
Carrington rotation 1 was defined to have commenced on 9 November 1853. In one year
of 365 days there are 13.38 Carrington rotations and thus the present rotation numbers are
well over 2000. At the commencement of a new rotation longitude ¢ = 0 is attached to the
center of the solar disk. Note that the Carrington rotations are related to the motion of the
Earth around the Sun, i.e., the “same place” at the solar equator is toward the Earth after
one Carrington rotation. This is known as the synodic period. The “true” rotation period
with respect to the stars is the sidereal period of about 25 days.

Carrington determined the surface rotation rate from sunspot data as a function of the
heliographic latitude in (sidereal) degrees per day

Q(y)=14.25-2.75sin"*y . (1.5)
The power 7/4 is a bit awkward. A more modern approach is to expand the rotation rate as
Q(y)=A+Bsin> y+Csin*y+ ... (1.6)

and in most studies only coefficients A and B are determined. Here A is the equatorial
rotation rate.

In addition to sunspot data, Doppler shifts, edges of coronal holes and surface mag-
netograms are used in studies of the rotation rate. The different methods yield slightly
different results and there is some variability within the individual methods as well. Fur-
thermore, different sunspot cycles are different. For example, Pulkkinen and Tuominen
[1998] used the sunspot data from cycles 10-22 (years 1853-1996) and found that the
coefficients varied in the ranges A = (14.38,14.85) and B = (—3.19,—2.51).

It is interesting to note that the larger the structure used to determine the rotation, the
more uniform rotation is found. The extreme are observations of large coronal holes, which
sometimes show very little differential rotation at all. During the last decades helioseismol-
ogy has revolutionized the studies of differential rotation. Now it is possible to empirically
determine the rotation also inside the Sun, as illustrated in Fig. 1.4, which has been derived
from the observations of solar oscillations using the MDI instrument onboard the SOHO
spacecraft.

A rotating non-rigid body is not fully spherical. Even the Earth is elastic and has an
oblateness f = (reg — pot)/Teq = 1/300. The fast-rotating gas giant planets Jupiter and
Saturn are much more oblate, f; = 0.065 and fs = 0.098, which can be perceived already
in rather low-resolution pictures. But how oblate is the slowly rotating Sun, whose exact
diameter is difficult to measure?
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Fig. 1.4 The internal rotation rate of the Sun. The radial profiles are calculated for three different latitudes.
The grey regions indicate the estimated error in the inversion procedure. (From Kosovichev et al [1997].)

Neglecting the differential rotation and expanding the external gravitational field up to
the quadrupole term (the first non-zero correction)

2
1—J (Rr@> Pz(G)] (1.7)

Gmg,
q’ex = -

the oblateness expressed as Ar/Rg is

Ar 10QR. 3
— O 1.8
R, 2 2o + 272 (1.8)

where ( is the angular velocity of the solar surface, J, the quadrupole moment and P»(6)
the second Legendre polynomial. Using the Carrington rotation rate, the first term in (1.8)
is about 107>,

In the past the Sun has rotated faster than today. The specific angular momentum (i.e.,
the angular momentum per unit mass) of the cloud collapsing to form the Sun was much
larger than the angular momentum of the present solar system. Much of this was lost in a
very early phase of the solar evolution. We know that the so-called T Tauri stars, which
are in the early phase of their evolution, rotate much faster than the Sun. Their surface
velocities are about 15kms~! compared to 2kms~! of the present Sun.
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According to pre-main-sequence stellar models, the Sun was fully convective before
the hydrogen burning started. The convection was turbulent and the rapid exchange of
momentum between parcels of gas evened out the gradients in the angular velocity. The
total angular momentum Jj has been estimated to have been 8 x 10*> kgm?s~!, whereas
it presently is 1.7 x 10" kgm? s 1.

Matter leaving the Sun carries angular momentum, but the material loss since the time
of large Jy has been negligible. The magnetic field, however, is a very efficient lever arm
for a torque. As we will discuss in the context of the solar wind (Sect. 1.2.2), the mag-
netic field forces the escaping material to rotate with the Sun out to the so-called Alfvén
radius r4 =~ 12 R . Thus the angular momentum density increases up to r4, and it is this
angular momentum that is conserved in the escaping flow beyond r4. The rate of angular
momentum loss is

@ =0 rf‘ dm .
dt dt

How much such magnetic braking really has taken place in the history is difficult to
estimate because we do not know the history of the magnetic field on which r4 depends.
The magnetic field is generated by the solar dynamo (Sect. 8.3.2), which depends on 2
and in particular on its gradient. As long as the Sun was fully convective the slowing
down affected the whole Sun. When the radiative core developed, the motion of the outer
convective zone was disconnected from the interior. The convective part continued to lose
angular momentum by magnetic braking, but what happened to the core? Because the
central core contracted further, the first guess would be that its rotation rate should have
increased.

However, the recent results of helioseismology (e.g., Fig. 1.4) do not support the idea
of a fast-rotating core. The central core may rotate somewhat faster than the radiative
zone but something seems to have slowed down the rotation also in the inner parts of the
Sun. A strong inward gradient d€ /dr would mean strong shear flows. These could drive
instabilities, which, in turn, could transport the excess angular momentum, resulting in
smoother dQ /dr. It has also been speculated that there could be an internal magnetic field
in the core. Indeed, already a relatively weak magnetic field would be sufficient to slow
down the core.

(1.9

1.1.5 Sunspots and solar magnetism

The magnetic field of the Sun is very complicated both in time and in space. The existence
of solar magnetic fields was first found in sunspots by Hale in 1908. Although we can today
measure much weaker magnetic fields on the Sun, the sunspots have retained a central role
in studies of solar magnetism. The theory of magnetic field generation is a difficult topic
of plasma physics, and after a century of intensive study we still lack a fully satisfactory
physical description of the generation and evolution of the solar magnetic field.

A sunspot corresponds to an intense magnetic flux tube emerging from the convection
zone to the photosphere. Large spots can have diameters of about 20 000 km. The center
of the spot is called the umbra whose temperature is about 4100 K, and the largest ob-
served magnetic fields are about 0.3 T. The strong magnetic field is the cause of the low
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temperature and thus the relative darkness of the spot because it inhibits the hot plasma of
reaching the surface. Around the spot there may be a penumbra that consists of dark and
bright filaments. Young spots do not have penumbrae and in about 50% of the cases the
spot evolution stops before a penumbra has developed.

The magnetic field is measured by observing the Zeeman splitting of atomic spectral
lines. Because the Zeeman effect is weak, the observations have traditionally been lim-
ited to determination of the line-of-sight component of the magnetic field. However, the
state-of-the-art spectropolarimetric observations with the Japanese Hinode satellite have
contributed important advances in observations of the horizontal magnetic field in the pho-
tosphere [Lites et al, 2008]. This progress is important toward better understanding of the
role of the magnetic fields in the heating of the chromosphere and corona.

The cyclic appearance of the sunspots, with a quasi-period of about 11 years was found
by Schwabe in 1844. When a new cycle begins, spots start to appear at mid-latitudes
(around 30-40°) on both hemispheres. The life-time of individual spots is relatively short,
from days to weeks, but with time more and more new spots appear. The new spots are
located closer and closer to the equator, resulting in the famous butterfly diagram (Fig. 1.5).
After the maximum occurrence the sunspot number starts to decrease to the solar minimum
of practically no sunspots at all.
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Fig. 1.5 The butterfly diagram of sunspot appearance. The contours are +20uT, +60uT, +100uT,...,
solid lines indicate positive polarity, dashed lines negative. (From Schlichenmaier and Stix [1995].)

The sunspots usually appear in pairs or in larger groups. The magnetic flux emerging
from one spot returns to another. In 1923 Hale was able to confirm the polarity rules of
sunspots that he had formulated with his colleagues in 1919:

e The magnetic orientation of leader and follower spots in bipolar groups remains the
same in each hemisphere over the whole 11-year cycle.
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e The bipolar groups in the two hemispheres have opposite magnetic orientation.
e The magnetic orientation of bipolar groups reverses from one cycle to the next.

As it takes two sunspot cycles to return to the same orientation, the length of the magnetic
cycle of the Sun is 22 years. This is known as the Hale cycle, whereas the 11-year sunspot
cycle is called the Schwabe cycle.

The mean magnetic field inside the Sun can be described as a sum of toroidal and
poloidal components. The systematic behavior of bipolar sunspot groups can be under-
stood in terms of a subsurface toroidal magnetic field. “Toroidal” means in this context
that the field lines form closed loops around the solar rotation axis. Locally this field may
be driven to the surface by convection and magnetic buoyancy, which forms a bipolar
sunspot pair. The total flux of the toroidal field is of the order of 10!> Wb. If we assume
that it is distributed within the latitudinal range of the sunspots and throughout the con-
vection zone, the mean toroidal field is B; ~ 0.02T. It is possible that most of the flux
is concentrated in a thin overshooting layer at the bottom of the convective zone, where
the turbulent convective motion partially penetrates into the stable radiation zone. In that
region the mean field can be of the order of 1 T.

The field lines of the poloidal field are in the meridional planes in the same way as the
field lines of the familiar magnetic dipole. The differential rotation drags the poloidal field
lines to enhance the toroidal component. This takes place during the rising solar activity. In
order to establish the cyclic behavior there must be another process to return toward a more
poloidal configuration with reversed polarity during the decaying activity (see Sect. 8.3.2).

Daily sunspot observations were started in 1749 at the Ziirich Observatory. With later
addition of observations from other observatories continuous sunspot data are available
from 1849. The intensity of sunspot activity is usually given by the relative sunspot number
R introduced by Wolf in 1848

R=k(10g+f), (1.10)

where g is the number of spot groups and f is the total number of spots (an isolated
spot is calculated also as a group). The coefficient k is determined individually for each
observatory to take into account the instrument properties and local seeing conditions. R is
approximately proportional to the area of the Sun that is covered by the spots. Thus it is a
rough measure of the total absolute magnitude of the magnetic flux penetrating the visible
hemisphere within the sunspots.

The sunspot cycles are enumerated so that cycle 1 began in 1756. Figure 1.6 shows the
entire Ziirich sunspot number time series from 1750 to the end of cycle 23 in 2008. While
the solar cycle is remarkably repetitive, it also shows great variability which cannot be
properly predicted yet. Both the intensity and the shape of the peaks in the sunspot time
series are different from one cycle to another. Also the length of the cycles varies up to
a few years. Most of the text of this book was written during a peculiarly long and deep
solar minimum after cycle 23, the recovery from which did not start until early 2010.

The strongest recorded maximum took place in 1957 (cycle 19). During the last century
there was an increasing trend of the peak sunspot numbers with the exception of cycle
20. However, the peak of cycle 23 in 2000 was weaker than the previous two. It may
be a sign of the so-called Gleissberg cycle of about 80 years superposed on the 22-year
Hale cycle. In that case the coming maxima would be smaller than the recent ones. The
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Fig. 1.6 The Ziirich sunspot number time series. At the time of writing this book, the official record was
available to late 2009. The recovery from the last minimum was very slow and did not start until 2010. For
updated information see, e.g., http://sidc.oma.be

Gleissberg cycle superposed with the about 200-year de Vries cycle is consistent with
long-term minima in the 17th century (the Maunder minimum), around the year 1800 (the
Dalton minimum) and around the year 1900 (the Modern minimum) (Fig. 1.7).
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Fig. 1.7 Long-term sunspot number variation after the 11-year cycle has been filtered away (solid line)
and the superposition of the Gleissberg and de Vries cycles (dotted line). (Figure by courtesy of H. Nevan-
linna.)

The most remarkable feature in the long time series is that the solar activity seems to
have been almost nil during the Maunder minimum. This is not an artifact of poor obser-
vations; there simply were almost no spots on the Sun. This coincided with the so-called
little ice age when the climate in Europe was exceptionally cool. This may have been a
consequence of the fact that solar activity is related to the brightness of the Sun, lumi-
nosity being a factor of about 10~ higher at the sunspot maximum than at the minimum.
However, the effects of the solar activity on the terrestrial climate, if any, are not really
understood.

What is the origin of the magnetic field of the Sun? In principle it could be a remnant
of the magnetic field in the interstellar cloud that once collapsed to form the Sun. If the
cloud’s weak field, less than 1 nT, were compressed with the matter without any losses,
the resulting flux density would be huge, some 10° T. Much of this was lost in the early
evolution of the Sun, but considering the fact that the Ohmic diffusion time 7y for the Sun
is of the order of 10! years, the mere existence of the field does not require its continuous
generation. The case is different for the planets, e.g., for the Earth 7, ~ 10* years, thus
the Earth must possess a dynamo of some type. Otherwise the only magnetism would be
remanence in magnetic materials in the ground, as appears to be the case in Mars.

Not even the 22-year magnetic cycle of the Sun is a fully convincing signature of an
active solar dynamo. It might be a sign of oscillatory behavior of a slowly decaying fossil
field. However, the detailed features of the differential rotation and its association to the
migration of the sunspots are considered as the strongest evidence of the dynamo. The
present Sun, the Earth, and other magnetized planets are able to manifold the pre-existing
flux through a dynamo process. In the Sun this takes place in the convection zone, most
likely close to its bottom. The excess magnetic energy is expelled away with the solar
wind. The energy sources for the magnetic field generation are the rotation and the heat
produced in the core.
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The induction equation of magnetohydrodynamics (Chap. 6)

%—?:VX(VXB)—H]VZB (1.11)
gives a simple phenomenological description of the basic idea of magnetohydrodynamic
dynamos. The convective term V x (V x B) involves the plasma motion, which provides
free energy to generate new flux, whereas the diffusive term 1 V>B describes how the field
is decaying. Note that both terms are needed in the description of a plasma dynamo. If
there were just diffusion, the field would simply disappear. If, on the other hand, there
were no diffusivity at all, (1.11) would describe the ideal MHD flow without creation of
new flux.

The problem of dynamo theory is to find solutions for the induction equation where
the convection and diffusion together result in creation of new magnetic flux, or more ex-
actly, manifolding of the existing flux. This is somewhat analogous to a traditional bicycle
dynamo. If you just have the dynamo rotating, not connected anywhere, the only effect
would be weak friction that would make the driving a little harder. But if you connect
the dynamo through a load, e.g., a lamp, a current flows in the cable and gives rise to a
magnetic field according to Ampere’s law. The energy to create the new flux is not drained
from the magnetic energy of the magnet but from the mechanical work you are doing to
keep the magnet rotating. This way we have natural roles for V, the rotation, and for 1,
the dissipation, in the cable and the lamp. Both are needed!

This analogy should not be taken too literally. Technological dynamos are multiply-
connected systems where the load is external to the dynamo itself. In MHD plasma there
are no cables nor circuits. The new flux is directly superposed on the pre-existing field in
the same simply-connected volume of fluid whose motion creates the flux and the flux is
also dissipated in the same volume.

An important property of cosmic dynamos is self-excitation. In a bicycle the seed mag-
netic field is provided by a permanent magnet. We can imagine setting up a self-exciting
dynamo by winding the wire connected to the load around the system so that it creates
a magnetic field that is in the same direction as the seed field. Thereafter we remove the
original magnet and the seed field is now provided by the field generated by the dynamo
itself. This is not a perpetuum mobile, as the energy source for the magnetic field genera-
tion is the motion that has to be strong enough to balance the dissipation. We will discuss
the dynamo processes in the Sun and in the magnetosphere in more detail in Chap. 8.

1.1.6 Coronal activity

The beauty and the dynamism of the corona is impossible to capture in the pages of a
textbook. The reader is strongly recommended to visit the web pages of various solar
spacecraft, in particular SOHO, TRACE, STEREO, and SDO. The two-spacecraft mission
STEREO took a number of 3D images from the early phase of the mission when the two
spacecraft were at optimal distance from each other. Unfortunately, the prime time of truly
stereoscopic STEREO observations took place during the particularly quiet solar minimum
after cycle 23.
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The active, or indeed violent, processes in the solar corona are essential elements of
space storms. Of particular importance to space storms are the solar flares and coronal
mass ejections (CMEs), which will be discussed in detail in Chap. 12.

In the past the corona was possible to observe during solar eclipses only. The early
observations indicated two distinct components in the white-light corona: the K corona and
the F corona. K comes from the German word Kontinuum and F from the dark Fraunhofer
lines. The spectra of both components resemble the photospheric spectrum but in the K
corona the Fraunhofer lines are absent. The K component is also strongly polarized, which
indicates that it arises from Thomson scattering on free electrons (Chap. 9). Actually, there
are weak dips corresponding to the strongest Fraunhofer lines (H and K) also in the K
corona. The explanation for the filling of the lines is Doppler broadening due to the high
temperature of the scattering electrons. This was an early hint that the corona might be hot,
as first suggested by Grotrian as early as in 1931. Note that the white-light observations of
coronal mass ejections extending far beyond 3 R, are also based on Thomson scattering
on electrons in the dense plasma cloud.

The F corona shows the photospheric continuum with the Fraunhofer lines. The light
is unpolarized and it is explained as photospheric light scattered on dust particles. The K
corona decays faster than the F' corona and the latter dominates beyond 2-3 R . The K
corona is, in fact, the same phenomenon as the zodiacal light observed deep in interplane-
tary space.

The coronal structure is closely linked to the solar magnetism and illustrates the large-
scale structure of the magnetic field. At the solar minimum the poloidal component domi-
nates the large-scale structure of the magnetic field. Within the polar regions polar plumes
emerge from large coronal holes and represent the plasma flowing out with the solar wind.
At the solar maximum the polar coronal holes are not as easy to recognize because the
actual magnetic field is dominated by the irregular contributions from the toroidal com-
ponent. There can be several coronal holes and the magnetically closed regions often re-
semble Prussian helmets, and are called illustratively helmet streamers. Note that the word
streamer refers to the visible closed structures. It is not directly associated with the stream
of escaping plasma, the solar wind, which originates mostly, if not completely, from the
coronal holes.

The high temperature of the corona was not known at the time of first spectroscopic
observations, and the observed spectrum caused quite a lot of confusion. Recalling that
helium was once found for the first time in the Sun, a new element, coronium, was sug-
gested to explain some of the abundant but thus far unknown spectral features. In the years
1939-1941 Grotrian and Edlén, however, correctly identified several of the coronal lines
to be those of highly ionized atoms. Three of the most conspicuous visible lines represent
strong transitions of Fe XIV (530.3 nm), Ca XV (569.5 nm), and Fe X (637.5 nm). Of these
Fe X is formed at 10° K and Fe XIV at 2 x 10% K. Thus it is evident that a cool star of a
temperature of about 6000 K can support a hot corona of millions of degrees.

The coronal spectrum is very rich in UV and X-ray lines. While the white-light ob-
servations require coronagraphs, i.e, devices where an occulting disk creates an artificial
eclipse, many of the short wavelength emissions can also be observed against the solar
surface as they emerge from the much hotter coronal gas. For example, the X-ray detec-
tor onboard the Japanese Yohkoh satellite was first to observe ionized iron up to Fe XXVI
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during solar flares. The emission is the Lyman ¢ line of an iron ion with only one elec-
tron. Its wavelength is 178 pm and the required temperature is about 2 x 107 K. Such, and
even higher, temperatures are not uncommon in solar flares. The tenuous corona is not in
local thermodynamic equilibrium and particle populations of very different temperatures
are produced by the rapidly varying magnetic field configurations.

The X-ray images of the Sun have revealed the very active behavior of the corona. The
coronal holes are clearly seen as dark regions whereas the hot plasma radiating the X-rays
is confined in the magnetic bottles of the closed field lines. In addition there are numerous
small X-ray bright points arising from the bremsstrahlung of electrons being decelerated
by the surrounding plasma (Chap. 9). The coronal holes remain colder because they are on
open field lines, from which the plasma escapes as the solar wind before it is heated to the
same temperatures as plasmas in the closed field line regions.

Also radio waves reveal important information on the magnetically active corona. They
are emitted by electrons gyrating in the strong magnetic field (Chap. 9), and are particularly
important in studies of radio flares associated with solar activity (Chap. 12).

That there is some temperature increase in the chromosphere is not so difficult to under-
stand. The rarefied gas starts to deviate from local thermodynamic equilibrium and it does
not need to find equilibrium with the lower atmospheric levels if some processes keep on
heating it. There are two rich energy sources for the heating: the acoustic fluctuations and
the magnetic network. The energy flux density of the sound waves in the chromosphere has
been estimated to about 10 W m~2 . This would be sufficient to heat the chromosphere up
to 10000 K, but this is not nearly enough for the coronal temperatures, which also require
practically continuous heating. If the heating were turned off, the chromosphere would
cool down in about 20 minutes.

The high temperature of the corona was once a great surprise and its heating is still
among the toughest problems in solar physics. The acoustic fluctuations do not reach the
coronal altitudes, but in principle there is no lack of energy. The energy flux needed to
power the magnetically active regions is of the order of 10* Wm~2, which on the average
is only a fraction of 10~# of the power in electromagnetic radiation. But the corona is opti-
cally very thin and there is no known mechanism to absorb the electromagnetic radiation.
Thus the heating must be related to the magnetic field. Fortunately, there is enough energy
also in the solar magnetic field. The problem is how to convert it into heat, in particular in
the narrow transition region but also higher up where the mean temperature still increases
from 105K to 2 x 10° K.

We can think of several mechanisms to dissipate the magnetic energy as heat, e.g.,
waves, instabilities, current sheet dissipation, and reconnection, which will all be discussed
in the later chapters. The energy balance in MHD (Chap. 6) can be expressed writing the
Poynting theorem in the form
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The LHS describes the magnetic energy entering as Poynting flux through the surface 0%

of the volume ¥ where the energy may show up as increasing magnetic energy (first term

on the RHS) and be dissipated through ohmic heating (second term on the RHS) and me-
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chanical work (acceleration, third term on the RHS) by the magnetic force (J x B). Note
that the ohmic, or more accurately resistive, term does not need to be determined by clas-
sical collisional resistivity but may rise from turbulence and/or wave—particle interactions.

MHD waves (known also as Alfvén waves, see Chap. 6) are excited by the motion of
magnetic and acoustic disturbances in or near the photosphere. Spectral features in the
transition region are wider than could be expected for the hot gas. The excess Doppler
widening has been estimated to correspond to the velocity 10*ms~!, which may be a
signature of upgoing Alfvén waves. When these waves propagate outward they are damped
and part of their energy is transformed to heat. The linear damping of the Alfvén waves is,
however, a very slow process. Nevertheless, within the diverging coronal holes the wave
heating may be the only alternative, because there are no unstable flux tubes nor current
sheets. One proposal how the heating could take place has been phase-mixing of waves
of different wavelengths and speeds propagating in the same spatial volume. This can
lead to large spatial gradients where the effective resistivity increases and shows as ohmic
dissipation of the wave energy in the Poynting theorem. Phase-mixing is an example of
turbulent phenomena in space plasmas.

Another proposed explanation for damping of Alfvén waves is that the waves have
high enough frequencies to be damped by the cyclotron resonance with the plasma ions.
Alfvén waves become electromagnetic ion cyclotron waves at frequencies close to the
local ion cyclotron frequency (Chap. 4), and these waves are very efficiently damped by
resonant interaction with ions (Chap. 5). As the magnetic field and, therefore, the cyclotron
frequencies decrease with increasing radial distance, waves created at or near the solar
surface by micro-flaring and/or turbulent motions can propagate without damping until
they reach the distance at which the cyclotron frequency becomes comparable to the wave
frequency.

Observations of ion temperatures in coronal holes indicate that minor ion populations
(e.g., oxygen) can be very hot (up to 108 K) and that their temperatures are anisotropic,
being larger in the perpendicular direction relative to the magnetic field. This is a signa-
ture of cyclotron heating because the ions with the lowest cyclotron frequencies should be
heated most efficiently and because the heating is due to wave electric fields directed per-
pendicularly to the ambient magnetic field. However, some theoretical calculations predict
even too efficient wave damping by the heavy ions with lower cyclotron frequencies than
the proton gyro frequency, leaving almost no wave energy to heat the major species. As a
summary, cyclotron heating in the solar corona is not yet completely understood.

Even if the waves generated near the solar surface have small frequencies, the phe-
nomenon called rurbulent cascading may allow short wavelength fluctuations to be gen-
erated from the long wavelegth ones. The large wavenumber fluctuations may again be
efficiently damped at scales close to the ion gyro radii. This turbulent heating mechanism
in a way combines the ideas of cyclotron heating and phase mixing.

We know from observations that flux tubes in different scales, such as coronal loops, are
continuously created and disrupted through various instabilities. The disrupting flux tubes
convert magnetic energy into heat and acceleration whenever the disruptions take place,
but the disruptions may be too sparse and localized to explain the heating of the whole
corona. These processes may be important during strong solar activity, but the corona is
hot also during quiet periods.
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The Skylab mission revealed in 1973 that there are X-ray bright points everywhere on
the Sun. Later it was demonstrated that their distribution is uniform over the whole Sun
and that they exist also during quiet phases of the solar activity. They resemble small flares
and the underlying particle acceleration is most likely due to continuous reconnection
processes of the ever-changing magnetic field structures in the low corona.

While large flares can release some 102 J of energy in the time scale of 10 minutes,
they are too infrequent and can account for at most 1% of the heat to sustain the 10°® K
temperature of the corona. Thus if small flares should explain the heating, they would
need to be very abundant, indeed. A direct scaling down from the large flares may not be
straightforward and the small flares may be relatively more dissipative.

The EUV observations at temperatures of 10°K (i.e., in the transition region) have
shown that there are localized hot spots that explode and shoot material upward at the
speeds of hundreds of kms~!. These hot upward plasma jets occur above the lanes of the
magnetic network. It has been claimed that the jets would carry enough energy to heat the
corona but the observations are inconclusive.

The UV and EUV observations of the SOHO and TRACE satellites have finally shown
that there are even larger numbers of (relatively) small explosive events than was previ-
ously thought all over the Sun, perhaps some 20 000 events per minute. The inner solar
atmosphere is very active also during the quiet phases of the solar cycle. The small ac-
tivations have been dubbed microflares or nanoflares. Although this terminology is a bit
inexact, “micro” can be associated with events of the order of 10'° J, which you need about
one million to correspond to a flare, and “nano” with events of 10'® J, which you need one
billion to one flare.

The brightest micro/nanoflares lie above regions of enhanced magnetic fields of the
magnetic network and the stronger events correspond to greater fluctuations. This suggests
that the lower corona is not only heated but continuously replenished by chromospheric
material that has been heated to coronal temperatures (see Fig. 1.3). Thus a substantial part
of the energy may come with the heated plasma from below. One scenario is that the new
magnetic field emerges from the Sun in the centers of supergranular cells and is carried to
their edges by the convective motion and finally reconnected with the magnetic field from
the neighboring cells. In this scenario the energy released by the reconnection powers the
microflares observed in the overlying low corona.

There has been some discussion whether the small-scale flares are abundant enough,
or not, to account for the coronal heating. Some observations support this interpretation,
others do not. However, observations have conclusively shown that there is a correlation
between the solar magnetic field and coronal heating. The variability of the small-scale
magnetic elements observed in the photosphere (so-called magnetic carpet) has been found
to correlate with temperature fluctuations in the corona. Furthermore, observations of the
temperature distribution of forming polar plumes within the coronal holes seem to corre-
late with photospheric fine-structure associated also with the supergranular structure and
magnetic network.
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1.2 The Carrier to the Earth: the Solar Wind

Toward the end of the 19th century it had become evident that there must be a connection
between the solar activity and magnetic disturbances on the Earth, which is not mediated
by electromagnetic radiation. There were still some very prominent sceptics, in particular
Lord Kelvin, because it was very difficult to explain how such a connection could be
established.

Lindemann [1919] seems to have been the first to suggest that quasi-neutral charged
particle ejections related to solar activity were responsible for non-recurrent magnetic
storms at the Earth. In 1929 Chapman proposed that the solar flares would emit plasma
clouds and if such a cloud were to hit the Earth’s magnetic field, it would cause magnetic
disturbances. But how could these clouds escape from the strong gravitational field of the
Sun? After all, the escape velocity on the solar surface is 618 kms~!. The kinetic energy
of a proton at that speed is 2 keV, corresponding to a temperature of 2 x 107 K, which was
too much to be believed in those days. Today we know that such temperatures really do
occur in coronal loops and flares, and the escape is no longer such a big mystery, although
we do not yet know the details of how the plasma is heated and accelerated.

During the 1950s Biermann [1951, 1957] demonstrated that the structures of cometary
tails were consistent with a continuous corpuscular outflow from the Sun, unrelated to
large flares. Later Alfvén pointed out that the flow must be magnetized plasma. The first
direct in situ observations of the solar wind came from the Russian Lunik III and Venus 1
spacecraft in 1959, and the definitive proof of its continuous nature was provided by the
U.S. Mariner 11 in 1962—-1967.

Today we know that there are two main types of solar wind, a fast (about 750kms™!),
tenuous, and a denser but slower (about 350 km s~ 1) wind. The details of the source regions
and mechanisms are still under investigation, but the general view is that the fast wind
originates from large coronal holes at high solar latitudes whereas the slow wind emerges
from smaller and less permanent structures at lower latitudes. In addition to these, the
CME-related outflow can be considered as a third independent solar wind type. Solar wind
has never disappeared during the more than three decades it has been monitored. On May
11, 1999, the slow (300 kms~') wind had for a short while an extremely low density of
0.2 cm™3 near the Earth.

1.2.1 Elements of solar wind expansion

Before direct spacecraft observations Chapman [1957] presented a static model to describe
the existence of the continuous solar wind. He considered a sphere around the Sun and
assumed that the thermal flux through the surface was constant. Assuming that 7 — 0
when r — oo he found the solution

T =To(Ro/r)*" . (1.13)

For a coronal temperature of Ty = 10°K this predicts a temperature of 10° K at 1 AU,
which is quite good, although it was not known in 1957. An evident drawback of the
model was that far from the Sun the pressure approaches a constant that is much larger
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than the pressure of the interstellar gas. As the temperature decreases toward zero with
increasing distance, the density would have to increase without bound, which of course is
unphysical.

One year later Parker [1958] presented another solution to the problem. While this
solution was also based on strong simplifications, its basic idea is important. Parker noted
that the corona cannot be in static equilibrium; it must either expand or collapse. Guided
by this insight, he succeeded in predicting a supersonic solar wind just before the first
satellite observations showed that he was essentially right. Parker’s argumentation was the
following.

Assume time-independent spherically symmetric outward-directed flow. Neglect the
magnetic effects and write the continuity equation, momentum equation and equation of
state as

4mr’nV = const (1.14)

(1.15)

P = nksT . (1.16)

Let the expansion be isothermal. This is clearly not true, but it is interesting to see where
it leads. The solutions are of the form

( _Vf)d"_zvf_G’"@ (1.17)

v /)dr r r2 "’

where v, = \/kgT /m is the isothermal sound speed, i.e., the polytropic index is set y = 1.
This equation has a critical point: V = v, , r = r. = Gmg,/(2v?). Integration gives a family

of curves s )
% 2Gm.,
(V> _1n(> —4mn L+ G”;“Jrc. (1.18)
re rv

Ve Ve 2

Figure 1.8 illustrates these solutions. Solutions in regions I and II are unphysical and
those in III have too high (supersonic) a velocity at the source. The solution IV crossing
the critical point is Parker’s solution for the supersonic solar wind. The critical point fixes
the constant of integration to C = —3. Also V is a physically valid solution, called stellar
breeze. There are stars that produce subsonic stellar breezes.

Train your brain by calculating the details of Parker’s solution.

While elegant, Parker’s solution is too simple for the real solar wind. In fact, the isother-
mal polytropic index y = 1 leads to a diverging enthalpy (see Eq. (1.25) below), whereas
for y=5/3 there is no critical point and thus the supersonic flow is not described correctly.
The wind cools, as it expands, and thus thermal conduction must be taken into account.
Because the solar wind plasma is effectively collisionless, ions and electrons cool with
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Fig. 1.8 Solutions of (1.18).

different cooling rates and the interaction of plasma with magnetic fluctuations plays a
different role in electron and ion expansion. Also the details of the fast and slow solar
wind are different because the physical processes in their source regions are different. The
observed solar wind properties at 1 AU are summarized in Table 1.1.

Table 1.1 Typical solar wind parameters at 1 AU. v4 = B/\/HopPy is the Alfvén velocity.

slow wind|fast wind
V (kms™1) 350 750
e (m~3) 1x107 | 3x10°

T, (K) 13x10°| 1x10°
T,(K) 3x10* | 2x10°
B(nT) 3 6
va (kms~hH| 20 70

The solar wind transfers energy from the Sun. In the corona we must consider kinetic
energy, internal energy, gravitational energy, thermal conduction, radiation, and heating.
Most of these must also be taken into account in the description of the solar wind acceler-
ation beyond the sound and Alfvén velocities.

In a steady state the divergence of the total energy flux must be zero

Gmep
p

1
V-[V(va2+H— )—KVT—i—FR—i—FH =0 (1.19)
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Here H is the internal energy (enthalpy) and k the thermal conductivity. V - Fg describes
the radiation and V - Fg the heating of the upper solar atmosphere. There is a temperature
maximum somewhere in the corona. Inside this maximum thermal conduction is inwards,
toward the transition region and chromosphere, where it balances the radiative loss through
the strong Lyman ¢ line. Outside the maximum thermal conduction is outwards. Chap-
man’s model had only this outward contribution, whereas the original isothermal Parker
solution did not take it into account at all.

The real solar wind departs from the one-fluid behavior already in the corona. Modern
model calculations show that ions are heated more efficiently and reach a higher maximum
temperature than electrons. Further out the ions cool faster than electrons, and at 1 AU the
ion temperature is no longer far from the electron temperature.

In the outer corona radiation and heating become unimportant for plasma dynamics, but
the internal energy of the plasma deserves further consideration. Assume that the coronal
gas consists of protons and electrons only, letn =n(r), T = T(r), n, ~ n; ~ n, and neglect,
for simplicity, the differences in the temperatures. Then the pressure is

P= I’lekBT +I’likBT = 2l’lkBT (120)

and the thermal energy of the gas in a volume ¥ is
3 ' 3
U= E(ng—kn,')kBT”l =3nkpT ¥ . (1.21)

The gravitational potential is given by

Gmemn¥’

&= (1.22)

,
The thermal energy lifts the gas up when the volume ¥  expands. At the same time
the internal pressure pushes new gas into this volume performing the work P¥". The free

energy is the enthalpy
H=U+PY¥ =5nkgTV . (1.23)

Assuming a temperature of 7 = 2 x 10° K we find

H

@] 0.5. (1.24)
This means that the heating of the corona to this “classical” temperature does not provide
enough free energy to exceed the gravitational potential and the corona should collapse, not
expand. Thus there must be some mechanism(s) doing extra work Q on the gas. Using the
actual solar wind observations the required energy can be estimated to be about H +Q =
1.25|®|. There is no generally accepted theory yet to explain what powers the escape.
Most likely it is of magnetic origin and associated to the heating of the ions in the corona.
Once the ions escape, the more mobile electrons follow.

Assuming that there is enough energy available for the solar wind expansion and ne-

glecting details of V- (Fg 4+ Fp), the energy transport equation can be written as
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1 P Gmeg dT
nmVr? (VZ—&—Y _m) zrde— +F, . (1.25)
r

Here k = koT°/% (kg ~ 107" Wm~' K~') and F., is the energy flux far from the Sun.
This equation also takes the cooling of the expanding (single fluid) wind into account. The
internal energy is written in the form showing the polytropic index y and we immediately
recognize the enthalpy problem with Parker’s isothermal (y = 1) solution in the second
term of the LHS of (1.25).

There are three basically different classes of solutions, depending on the asymptotic
behavior of the temperature:

(1) T ~ r~2/7 heat conduction dominates in the far region
(2) T ~ r~2/3 kinetic flux dominates in the far region
3T~ r~2/3 adiabatic expansion

In the fluid picture stellar winds belong either to class 1 (cold, tenuous winds) or class
3 (hot, dense winds), whereas class 2 is a limiting case between these two. However, the
different particle species may fall into different categories. According to observations the
proton temperature at 1 AU behaves roughly as 7, ~ r2/3 being in the adiabatic class,
whereas T, ~ ol 3 which is closer to thermal conduction.

There are several reasons for the different cooling rates. The electrons are bound more
tightly to the magnetic field of the solar wind and electrons and ions react in different
ways to turbulence and plasma waves. Note that while any of these effects may be slow,

the spatial and temporal scales are vast compared, e.g., to gyro radii or gyro periods.

1.2.2 The interplanetary magnetic field

A critical element to carry the effects of solar activity to the heliosphere is the magnetic
field of the solar wind, the interplanetary magnetic field (IMF). In addition to its effects
on the local properties of the solar wind, the IMF also breaks the solar rotation and it is
critical to the dynamics of plasma environments of solar system bodies.

The observed structure of the IMF varies considerably from the ecliptic to the poles.
To begin, let us consider a cylindrically symmetric case in the equatorial plane. Assume
that the flow is radial and let 2 be the angular speed of the solar rotation. Let the angle
between the radial direction and the magnetic field be ¥ and assume that the IMF is frozen
into the expanding solar wind. (The frozen-in concept will be introduced in Chap. 6.)
Close to the Sun the plasma rotates with the body but with the solar wind expansion the
field is wound to a spiral. Let V be the flow velocity assumed to be radial, for simplicity. Its
component perpendicular to the IMF is V| = Vsin y. This can be imagined as the speed
of the field line in this direction. The high conductivity ties the field line to the surface of
the Sun, actually to the so-called source surface, where the magnetic field is, in the first
approximation, radial. Thus the speed of the field line perpendicular to the radial direction
is Q(r—Rg), and

Vsiny = Q(r—Rg)cos y (1.26)



26 1. Stormy Tour from the Sun to the Earth

Q(r—Ro)
7 )

When r increases, this approaches the Archimedean spiral. In this context it is known as
the Parker spiral.

tany = (1.27)

Feed your brain

With the help of literature discuss the description of the magnetic field in the solar
atmosphere in terms of spherical harmonics. What is the role of the source surface in
this description? What makes the magnetic field radial at the source surface?

We can calculate the magnetic field behavior as a function of distance from the Sun in
a simple way. Let B be radial and constant on the surface of the Sun and write B and V in
spherical coordinates with the origin in the center of the Sun (7, 0, ¢), where 0 is the polar
angle and ¢ the azimuthal angle,

B=(B,,0,By), V=(V,,0,Vy). (1.28)
Note that the components of the vectors are functions of 7. From V-B = 0 we get
B, =By(Ro/r)*. (1.29)

Thus the radial component of the field decreases as 2. To find the azimuthal behavior we
can write the steady state azimuthal force balance (see Chap. 2, Eq. (2.145)) as

p(V-VV)¢ = (J X B)¢ s (1.30)

where the plasma pressure is assumed to be azimuthally symmetric (VP)y = 0. Using
Ampere’s law and multiplying by > we obtain

d 1 d
2 2
Vi—(rVy) = —r°B,—(rBy) . 1.31
rpVe (V) s r () (1.31)
The mass flux >pV, and the magnetic flux 7>B, are constants and we can integrate this
equation to get
rB,B¢
.uOPVr .
In the constant of integration L the first term is the angular momentum per unit mass and
the second term describes the integral of the torque corresponding to the change in the
angular momentum, known as magnetic braking.

To express By in terms of B, we consider the frame that rotates with the angular speed
Q. In this frame the velocity vector is (V;,,0,Vy — rQ2). This vector is parallel to B and thus

LZI’V¢,—

(1.32)

Vo —r€2
oy

By v
>

. (1.33)
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At large distances By o< r~ 1, ie., it decreases more slowly than the radial component,

which explains the spiral formation.
Define now the radial Alfvén Mach number My

vV, V.Jiop
My = - = IrVHoP (1.34)
VA B,
- L
M3 <r29> —1
Voo Qr N2 ) (1.35)
M1

According to observations My increases from ~0.1 in the corona to ~10 at 1AU. Thus
there is a critical point in the expression of Vy where My = 1 at a certain distance r =
ra, which is called the Alfvén radius. At this distance (about 12Ry) the flow becomes
superalfvénic. As the azimuthal speed cannot be singular at that point we find the angular
momentum per unit mass

L=Qr}. (1.36)

This is equal to the angular momentum for a solid body with the radius r4.
We can now write the azimuthal velocity as

o V,/vA— 1
Vo = (Vor2)/(var2) — 1

Close to the Sun this reduces to

Qr. (1.37)

Vo ~rQ2 (1.38)

corresponding to rigid rotation with the Sun. On the other hand at large distances
Vo ~riQ/r, (1.39)

which expresses the conservation of angular momentum from the Alfvén radius outward.
Thus r4 can be interpreted as a lever arm, with which the solar wind brakes the solar
rotation.

Out of the equatorial plane (6 # 7/2) the calculation is more complicated. The az-
imuthal component of the field turns out to be

BoR2 Qsin6

By, ~
¢ rV,

(1.40)
Thus, far from the Sun the total magnetic field behaves as

1
2

e B—r
e B—r

in the equatorial plane (the spiral becomes tightly wound)
in the direction of the poles

Between the equatorial plane and the polar direction the field has a helical structure. At
1 AU the equatorial spiral angle is typically about 44°.
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Train your brain

1. Derive (1.40).

2. Show that the mass and angular momentum losses are related by

dl 2 _ ,dm
=~ _z - 1.41

dr 37 ar (14D
Calculate this for the present Sun and estimate how much time the present magnetic
braking would need to stop the rotation. Compare the efficiency of the magnetic
braking for ry = 12 Ry to rq4 = Re.

1.2.3 The observed structure of the solar wind

The real solar wind is much more structured in space and time than the simple model
calculations in the previous section suggest. The escaping flow originates from the coronal
holes whose shapes and locations change all the time. Space-borne observations looking
through the holes to the photosphere show further that the escape is highly structured
within individual holes. In addition to this variability the solar eruptions eject faster or
slower plasma and magnetic clouds to the background solar wind flow. These structures
can drive various shock phenomena in the wind to large distances beyond the Earth’s orbit.

When the solar activity is at its minimum, the solar magnetic field is as poloidal as
it ever gets and the coronal structure is dominated by two large polar holes with opposite
magnetic polarities. The almost radial solar wind flow escapes mostly from these holes and
drags the frozen-in magnetic field in such a way that a heliospheric current sheet forms
near the equatorial plane. However, as the holes have asymmetric shapes, the current sheet
is asymmetric as well (Fig. 1.9). When the Sun rotates, the current sheet moves up and
down, which led Alfvén to call this structure a ballerina’s skirt. The Earth is either above
or below the skirt. Depending on whether the field is pointing mostly toward or away from
the Sun, the Earth is said to be either in the foward sector or the away sector. Superposed
to this large-scale structure there are large variations in all components of the IMF.

Around the time of solar maximum the solar magnetic field structure is much less reg-
ular and the polar coronal holes are reduced in size. On the other hand, there are more
smaller-scale opening and closing structures at lower latitudes. This also makes the so-
lar wind structure more variable, which in turn drives magnetic activity in the terrestrial
environment.

While the structure and magnetic field behavior in the polar directions can be inferred
theoretically and even seen in pictures of polar plumes and in coronagraph images, it was
not until the 1990s when first direct observations of the off-ecliptic solar wind behavior
became available through the joint ESA and NASA spacecraft Ulysses, which was the
first spacecraft on a high-inclination orbit around the Sun. Jupiter’s gravitational field was
used to insert the spacecraft into a trajectory with the aphelion at 5.3 AU, the perihelion
at 1.3AU, and the highest heliographic latitude 80°. Ulysses reached this point for the



1.2 The Carrier to the Earth: the Solar Wind 29

Solar equator

Magnetic
neutral sheet

Fig. 1.9 The ballerina skirt formation of the solar wind follows the shape and location of the dominating
polar coronal holes.

first time above the southern solar hemisphere in September 1994 and above the northern
hemisphere in March 1995. The next polar passages took place in 2000 and 2001. Early in
2004 Ulysses was again at its aphelion and began its third and last orbit until its radioiso-
tope generators had decayed so much that the spacecraft practically froze to death in the
summer of 2009.

Note that the large variability of the solar wind speed at 1 AU is partially due to the
variable vertical distance from the heliospheric current sheet. The slowest speeds of the
solar wind arise near the edges of the polar coronal holes and from intermittent coronal
holes at lower latitudes. This is nicely illustrated in the observations by the Ulysses space-
craft during its first passage from high southern heliographic latitudes through the ecliptic
plane to high northern latitudes (Fig. 1.10). When the spacecraft was within +=20° of the
ecliptic, it observed both slow and fast solar wind, but at higher latitudes it encountered
only fast, tenuous solar wind from the polar coronal holes.

1.2.4 Perturbed solar wind

While the steady fast solar wind with a sufficiently strong southward IMF component
can drive significant activity in the magnetosphere, strongly perturbed solar wind is of
particular interest to space storms. We will later discuss shocks (Chap. 11) and CMEs
(Chap. 12) in the solar wind in greater detail, but for the completeness of the discussion
on the solar wind a few words should be said here.

There are several types of shocks in the solar wind. Once a CME has left the vicinity of
the Sun, it is customary to rename it an interplanetary CME (ICME). High-speed ICMEs
drive shocks, the interaction regions between sectors of fast and slow solar wind evolve
to shock structures, planets are obstacles to the solar wind flow causing shocks, and fi-
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Fig. 1.10 Ulysses observations of solar wind speed (upper curve) and proton density (lower curve) as a
function of the heliographic latitude (From Phillips et al [1995].)

nally when the solar wind meets the interstellar plasma, it again becomes subsonic and a
termination shock structure is formed somewhere inward from the heliopause.

For space storms the most important class of solar wind shocks are those driven by the
fast ICMEs (Fig. 1.11). The ICMEs originate with different speeds, ranging from a few
tens of kms~! up to about 2000 km s~!. The slowest ICMEs are soon accelerated close to
the speed of the ambient solar wind flow, whereas the fast ICMEs are decelerated. In order
to drive a shock ahead of it the ICME must have a supersonic, or actually super-Alfvénic,
velocity relative to the ambient plasma flow. Thus a slow ICME does not drive a shock,
except perhaps close to the Sun, whereas a fast ICME does, as is clearly the case with a
large number of ICMESs observed at 1 AU.

Close to the Sun the CME-related shocks are important in the acceleration of solar
energetic particles. When an ICME and the shock ahead of it hit the magnetosphere of the
Earth, they shake the system and, depending on the magnetic structure of the ICME—shock
system, they drive the most severe magnetic storms in the terrestrial environment.

Another important class of solar wind shocks developing during the outflow are the
corotating interaction regions (CIR). Figure 1.12 illustrates their formation. Consider a
given direction in the non-rotating frame. Assume that at first slow wind is blowing in this
direction. As the Sun rotates, a source region of fast wind turns into the same direction
and the faster and more tenuous flow catches the slower and denser flow. Because both
flows consist of ideal MHD plasma, they do not easily mix. As discussed in Chap. 11,
a steepening boundary structure begins to form. Close to the Sun the field lines are still
nearly radial and the boundary is more like a tangential discontinuity. Further out the
Parker spiral becomes wound more tightly in the slower flow ahead the structure than in
the fast flow behind. A fully developed CIR shock exhibits a forward shock ahead the
structure and a reverse shock behind it. Note that one must be careful with the frame
of reference: In the frame of the fast flow the reverse shock propagates backward, but
in the frame of, e.g., the Earth or a spacecraft making observations in the solar wind, it
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Fig. 1.11 A sketch of a shock driven by an ICME. Note that the magnetic field of the ICME can rotate in
different directions about the core, there can be a strong core field, and the whole structure can be strongly
tilted. (Adaptation from Gosling and McComas [1987] by E. Kilpua.)
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Fig. 1.12 Formation of a corotating interaction region. The fast solar wind pushes toward slower wind and
compresses the flow. The compression is observable at 1 AU, but does not usually form a shock structure
until the compression has propagated beyond 2 AU .

propagates outward. The CIR-related shock formation usually takes place only beyond
the Earth’s orbit, whereas a CIR impinging upon the Earth’s magnetosphere is a smoother
structure of compressed plasma across which the speed changes from slow to fast.
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1.3 The Magnetosphere

The term magnetosphere was coined by Gold [1959] to describe the region around the
Earth where the geomagnetic field determines the motion of the charged particles. All
magnetic planets (Mercury, the Earth, Jupiter, Saturn, Uranus, Neptune) are known to have
a magnetosphere, which is essentially a magnetic cavity in the solar wind. The magnetic
force deflects the solar wind particles around this cavity before they hit the surface of the
planet. Planets with a dense enough atmosphere (Venus and Mars) and comets, when they
are active close to the Sun, form structures that are called induced magnetospheres. In that
case the deflection is due to the inability of the solar wind plasma to penetrate through the
ionized atmosphere or ionized cometary gas.

1.3.1 Formation of the Earth’s magnetosphere

When the supersonic solar wind approaches the magnetic field of the Earth, it pushes the
magnetic field on the dayside and stretches it to a long tail on the nightside. In the first
approximation the ideal solar wind and magnetospheric MHD plasmas cannot mix and a
well-defined magnetopause forms. The distance from the center of the Earth to the dayside
magnetopause can be estimated calculating the pressure balance between the magnetic
pressure inside the magnetopause and the solar wind dynamic pressure

2

KPumswVay cos> y = g—Zg , (1.42)
where  is the angle between the magnetopause normal and the solar wind direction, SW
refers to the solar wind, and MS to the magnetosphere. K is a constant that would be 2 for
an elastic collision (pure reflection) and 1 for a purely inelastic collision (absorption). For
a fluid deflected around the obstacle K depends on the upstream Mach number and is in
the case of the Earth about 0.9. Typical subsolar distance of the magnetopause from the
center of the Earth is about 10 Rg (the Earth radius, Rg ~ 6370 km).

Train your brain

Present a physical motivation why the thermal and magnetic pressures can be neglected
in the solar wind side and the particle pressure in the magnetospheric side of (1.42).

As the solar wind flow in the frame of reference of the Earth is supersonic and super-
Alfvénic, actually supermagnetosonic, a collisionless shock front called the bow shock is
formed upstream of the magnetosphere (Fig. 1.13). For typical solar wind parameters the
nose of the shock in the solar direction is about 3 Rg upstream from the nose of the magne-
topause. The shock is a fast MHD shock (Chap. 11) and it converts a considerable amount
of solar wind kinetic energy to heat and electromagnetic energy. The region between the
bow shock and the magnetopause is called the magnetosheath.
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Fig. 1.13 A magnetosphere and its bow shock. Concepts of parallel and perpendicular shocks refer to the
angle between the shock normal and the direction of the upstream magnetic field (IMF). They will be
discussed in Chap. 11.

As the magnetopause shields the planetary magnetic field from the solar wind, the mag-
netopause is a current layer where the current is determined by Ampere’s law. Similarly
the stretching of the long magnetotail requires a strong current inside the magnetosphere.
Thus the solar wind—magnetosphere interaction must drive currents in the system. These
current systems and their stability belong to the key issues in magnetospheric physics.

The first description of the magnetic cavity shielded from the solar wind by a current
sheet was given by Chapman and Ferraro [1931] in their attempt to explain how magnetic
storms would be driven by corpuscular radiation from the Sun. They essentially solved an
image dipole problem of magnetostatics where the real dipole is inside the magnetosphere
and the image dipole is placed in the infinitely conductive medium (Fig. 1.14).

Using modern terminology a diamagnetic current (see Eq. 6.48))

B
JCF = # X VPSW (143)
BMS

separates the vacuum dipole from the conductive medium. This current is known as the
Chapman—Ferraro current (Fig. 1.15). Because the IMF at 1 AU is only a few nanoteslas,
the magnetopause current must shield the magnetospheric field to almost zero just outside
the current sheet. Consequently, the field immediately inside the magnetopause increases
so that about one half of it comes from the Earth’s dipole and the other half from the
current sheet, as illustrated in Fig. 1.16.
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Fig. 1.14 Image dipole solution illustrating the formation of two magnetic neutral points, cusps (Q), dis-
cussed in the next section.
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Fig. 1.15 a) Principle of the Chapman—Ferraro current formation in two dimensions. b) Three-dimensional
closure of the Chapman—Ferraro current.

The Chapman-Ferraro model describes a teardrop-shaped closed magnetosphere com-
pressed on the dayside and stretched on the nightside, but actually not very far. However,
in the 1960s spacecraft observations soon showed that the nightside magnetosphere, the
magnetotail is very long. This requires a mechanism to transfer energy from the solar wind
into the magnetosphere to keep up a current system that sustain the tail-like configuration.
The magnetospheric energy budget will be discussed in Sect. 13.6.

1.3.2 The outer magnetosphere

Figure 1.17 is a sketch of the magnetosphere and some of the large-scale magnetospheric
current systems. The overwhelming fraction of the volume consists of magnetic flux tubes
connected to the polar region ionospheres. We call these regions tail lobes. In the northern
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Fig. 1.16 Sketch of the dipole field modified by Jcr.

lobe the magnetic field points toward the Earth, in the southern away from the Earth.
Consequently, there must be a current sheet between the lobes, where the cross-tail current
points from the dawn to the dusk. The current is embedded within the plasma sheet. The
current sheet can, in the first approximation, be described as the Harris sheet introduced
in Chap. 3. The cross-tail current closes around the tail lobes forming the nightside part
of the the magnetopause current. On the dayside magnetopause the magnetopause current
is the same as the Chapman—Ferraro current and the two current systems join each other
smoothly.

Magnetopause
current

Fig. 1.17 The magnetosphere and the large scale magnetospheric current systems. (Figure by courtesy of
T. Mékinen.)
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Practically the entire magnetic flux poleward of the northern and southern auroral re-
gions, the auroral ovals, extends to the tail lobes encircled by the cross-tail and magne-
topause currents. At noon, i.e., in the direction of the Sun, each oval has a peculiar point,
called the polar cusp, which is connected magnetically to the magnetopause. The forma-
tion of the cusp can be understood in terms of the image dipole description of Chapman
and Ferraro. In this idealized picture it is topologically unavoidable that two singular points
of zero magnetic field appear on the bounding surface in Figs. 1.14 and 1.15. If we follow
the magnetic field lines from these neutral points, they indeed meet the auroral oval at
noon.

In reality the geometry is not that ideal. Instead, the polar cusps are finite regions
through which solar wind plasma can flow directly to the ionosphere and ionospheric
plasma can escape to the solar wind. Figure 1.18 illustrates that both the cusp region
and the magnetospheric boundary layers immediately inside the magnetopause are filled
mostly by solar wind plasma that has entered through the cusps or across the magnetopause
as a consequence of reconnection and diffusion.

HLBL (mantle)

LLBL
polar cusp

bow shock

/

solar wind e -

Fig. 1.18 Sketch of magnetospheric boundary layers. HLBL stands for the high-latitude boundary layer
and LLBL the low-latitude boundary layer.

The magnetotail, its stability and its connection to the auroral oval are particularly im-
portant issues in the physics of space storms. We can make a simple analysis of the size of
the auroral oval and the cross-tail current intensity. Assume that the auroral oval is a circle
around a region that we call the polar cap (PC). The magnetic flux in the polar cap is

®pc = (R sin Opc)*Bpc (1.44)
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where Opc is the co-latitude of the boundary, say, 15°. The ionospheric magnetic field in
the polar region is about 60 uT. Thus ®pc ~ 5 x 108 Wb. This must be the same as the
magnetic flux in the tail lobe

1
& = 5nR%BT , (1.45)

where the tail lobe has been assumed to be a semi-circle with the radius Ry, and the average
field in the lobe Br. Equating the fluxes we get

Rt 2Bpc\'* .
- Opc . 1.46
b (185) e o

In the central tail the magnetic field is about 20 nT, yielding tail radius of 20 Rg. Far in
the tail the field is only 10nT, giving a radius of 28 Rg. If the tail lobe magnetic flux in-
creases through energy transfer from the solar wind into the magnetosphere, the oval must
expand, because close to the surface of the Earth the magnetic flux density is determined
by the, in this time scale, constant geomagnetic field. Consequently, the changes in the
polar cap size are indicators of magnetospheric dynamics.

As the current sheet is embedded within a plasma sheet that is much more dense than
the tail lobes, we can go further and estimate the cross-tail current applying the simple
one-dimensional Harris model for the current sheet (Chap. 3). A rough balance between
the lobe magnetic pressure and plasma pressure in the central current sheet, where the
magnetic field changes sign, is

B = nkp(T, +T;) (1.47)
2“07 B\1le i) - .

Now a 20-nT lobe field corresponds to a pressure of 0.16 nPa, which is consistent with
typical observations in the tail (n = 0.1 —0.3cm™, proton temperature about 5keV and
electron temperature about 1keV). Note that the plasma sheet is not homogeneous and
these are order of magnitude estimates only.

Ampere’s law across the current sheet is 2By = oI, where I is the total current per
unit length (units A m~"'). Thus turning a 20-nT field to the opposite direction requires a
current of 30 mAm~! (i.e., 30 Akm~! or 2 x 10> AR;'). Consequently, a piece of tail
with a length of 5 Rg carries a total current of 1 MA across the tail. At the magnetospheric
boundaries this current splits to two parts encircling the lobe. Because the tail is very long,
the total tail current is larger than 10 MA.

The plasma parameters in the tail vary with distance and magnetospheric activity. At
mid-tail (30 —40 Rg) typical numbers are given in Table 1.2.

1.3.3 The inner magnetosphere

Figure 1.19 is one more sketch of different plasma domains in the magnetosphere. The
acronym PSBL stands for plasma sheet boundary layer. It is a transition layer between the
almost empty tail lobe and the dense plasma sheet. Mapped along the magnetic field to
the ionosphere, the PSBL forms a very thin strip at the poleward edge of the auroral oval,
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Table 1.2 Typical values of plasma parameters in the mid-tail. Plasma beta (f) is the ratio between mag-

netic and kinetic pressures.

1. Stormy Tour from the Sun to the Earth

magneto- tail plasma sheet central
sheath lobe boundary | plasma sheet
n(cm™3) 8 0.01 0.1 0.3
T; (eV) 150 300 1000 4200
T, (eV) 25 50 150 600
B(nT) 15 20 20 10
B 2.5 3.1073 0.1 6

whereas the rest of the oval maps to the plasma sheet, except at noon where the field lines
lead to the cusp.

tail lobes

LLBL

plasmasphere

plasma sheet

Fig. 1.19 Sketch of magnetospheric plasma regions.

The inner magnetosphere is characterized by the corotation of the cool and dense upper
ionized atmosphere with the Earth and energetic particles trapped within the magnetic
bottle of the nearly dipolar magnetic field configuration (Chap. 3). The former is called
the plasmasphere (Fig. 1.19), whereas the energetic particles form the ring current (RC)
and the radiation belts (RB). The plasmasphere, ring current and radiation belts are not
spatially distinct regions. They partially overlap and their mutual interactions are critical
to the storm dynamics in the inner magnetosphere as discussed in detail in Chap. 14.

Approaching the inner magnetosphere from the tail the plasma sheet magnetic field
changes from the stretched Harris-type configuration to a more dipolar form. This takes
place somewhere near the geostationary distance (6.6 Rg), but the transition is strongly
dependent on the magnetospheric activity. During intense activity the cross-tail current
sheet can be strongly intensified and the stretched plasmasheet can intrude deeply inside
the geostationary distance. In the region of more dipolar configuration the tail current joins
the ring current encircling the Earth in the westward direction.

The westward current is due to the westward drift of positively and the eastward drift of
negatively charged energetic particles in the quasi-dipolar magnetic field (Chap. 3). As the
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drift currents are proportional to the energy density of the particles, the main ring current
carriers are ions in the energy range 10-200keV. Note that at the earthward edge of the
ring current the negative pressure gradient may introduce a local eastward diamagnetic
current contribution, but the net ring current is westward. During magnetospheric activity
the ionosphere acts as a plasma source increasing the relative abundance of oxygen in the
magnetosphere and during large storms a significant fraction of the ring current can be
carried by oxygen ions.

Enhancement and decay of the ring current are the most characteristic elements in mag-
netospheric storm activity. The enhancement of the current requires efficient acceleration
and transport of ions into the right location through radial diffusion. After the activity the
current carriers slowly disappear through charge exchange with the low-energy neutral
atoms of the Earth’s exosphere, wave—particle interactions, and Coulomb collisions. These
issues will be discussed in detail in Chap. 14.

The radiation belts are partly co-located with the ring current. While not a complete
surprise, the detection of the radiation belts in 1958 was the first major discovery of the
satellite era. Explorer 1 carried a simple Geiger counter of James Van Allen. The instru-
ment was saturated when the satellite crossed the radiation belt. The observation was in-
terpreted to be due to high-energy particles trapped in the magnetic bottle formed by the
geomagnetic field (Chap. 3). To honor this observation the radiation belts are also known
as Van Allen belts. In the process of analyzing the data Carl Mcllwain introduced the L
parameter to label the field lines crossing the equator at a given distance in the units of Rg
(Chap. 3). In the inner belt (L ~ 1.5 — 3) the energetic population is dominated by protons
in the energy range 0.1 MeV — 40 MeV with a substantial contribution of energetic elec-
trons, whereas in the outer belt (L > 4) the energetic component is mostly electrons in the
keV to MeV range. Note that while the energies of radiation belt ions are much higher than
those of the ring current ions, their density is much smaller and thus the radiation belts do
not contribute much to the total current around the Earth.

The electron belts, and also the slof region between them (Fig. 1.20) are highly variable.
The storms can both increase and decrease the electron fluxes in the outer radiation belts in
complicated ways that are not yet fully understood. The strongest storms may also inject
large particle fluxes into the slot region. Because the dipole field at these distances (2—
4 Rg) is a very stable magnetic magnetic bottle, it is very difficult to get particles there, but
once the slot is filled, the loss of these electrons takes a long time. We will return to this
important aspect of space storms in Chap. 14.

The plasmasphere is the innermost part of the magnetosphere. It consist of cold
(~1eV), dense (~ 10° cm™3) plasma of ionospheric origin. The existence of the plas-
masphere was already known before the spaceflight era through the propagation studies
of whistler mode waves (Chap. 4). The domain has a very steep outer edge, the plasma-
pause somewhere inside the geostationary distance. The location and fine structure of the
plasmapause vary considerably as a function of magnetic activity. Figure 1.21 illustrates
that during magnetospheric quiescence the density decreases rather smoothly at distances
from 4-6 R, whereas during strong activity the plasmapause is steep and much closer to
the Earth. This density gradient plays an important role in the generation and guidance
of plasma waves that, in turn, interact with the energetic particles in the ring current and
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Fig. 1.20 Fluxes of energetic protons and relativistic electrons in the radiation belts. The contours are
given in units of particles per square centimeter and second (cm~2s~!). (Adapted from the textbook of
Kivelson and Russell [1995].)

radiation belts. Thus the coldest and hottest components of the inner magnetosphere are
intimately coupled to each other during the evolution of magnetospheric storms.

1.3.4 Magnetospheric convection
Magnetospheric plasma is in a continuous large-scale motion that is called convection.>
The convection is driven by solar wind energy input into the magnetosphere. The convec-
tive motion is most directly observable in the polar ionosphere using scatter radar observa-
tions (Chap. 9), or by electric field measurements onboard polar orbiting satellites utilizing
the fact that the motion-induced electric field E is related to the plasma flow velocity V by
the simple equation

E=-VxB. (1.48)

2 Actually, advection would be a better description, as the motion is not driven by a thermal force. Some-
times it is wiser to conform with widely used inaccurate terminology than to try to change it.
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Fig. 1.21 Plasma density in the night sector organized by the activity index Kp. Kp < 1+ corresponds to
a very quiet magnetosphere, whereas Kp = 4 — 5 indicates a significant activity level, although not yet a
large magnetic storm. (Adapted from Chappell [1972].)

7

Plasma flows from the dayside to the nightside across the polar cap, where it is returned
back to the dayside through the morning and evening sectors. Convection is going on
all the time. It weakens when the IMF points toward the north and is enhanced during
southward-pointing IMF. Because ideal MHD (Chap. 6) is a very good description of
the large-scale plasma motion above the resistive ionosphere, the magnetic field lines are
electric equipotentials. Thus the convective motion, or alternatively the electric potential,
in the ionosphere can be mapped to the tail lobes and the plasma sheet along the magnetic
field lines.

If the magnetopause were fully closed, convection would circulate inside the magne-
tosphere so that the magnetic flux tubes crossing the polar cap from dayside to nightside
would at some moment be reaching to the magnetospheric outer boundary where some
kind of viscous interaction with the solar wind flow would sustain the circulation. This is
actually the picture proposed by Axford and Hines [1961] to explain the convection illus-
trated in Fig. 1.22. The classical (collisional) viscosity on the magnetopause is extremely
weak, but finite gyro radius effects and wave—particle interactions give rise to some level
of “anomalous” viscosity. It is estimated to provide about 10% of the momentum transfer
from the solar wind to the magnetosphere.

The magnetosphere is, however, not fully closed. In the same year when Axford and
Hines presented with the viscous interaction model, Dungey [1961] explained the convec-
tion in terms of reconnection (Chap. 8). His idea is illustrated in Fig. 1.23.

In this picture a magnetic field line in the solar wind is cut and reconnected with a
terrestrial field line on the dayside magnetopause. The solar wind flow drags the newly-
connected field line to the nightside and the part of the field line that is inside the magneto-
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Fig. 1.22 Convection in the equatorial plane of a closed magnetosphere. On the left the so-called Axford—
Hines model. On the right the mapping of the motion to the polar cap with open arrows indicating the
polar cap electric field E = —V x B.

sphere becomes a field line in the tail lobe. Consequently, more and more magnetic flux is
piling up in the lobe and pushing the flow toward the cross-tail current layer. Somewhere
100-200 Rg down the tail the field lines piling up in the northern and southern lobes re-
connect again across the tail current layer. At this point the ionospheric end of the field
line has reached the nightside oval near midnight. Now the earthward outflow from the
reconnection site in the tail drags the newly-closed field line toward the Earth. The return
flow cannot penetrate to the corotating plasmasphere and must go around the Earth to the
dayside. The ionospheric end of the field line returns toward the dayside along either the
dawnside or the duskside auroral oval. Once approaching the dayside magnetopause the
magnetospheric plasma provides the inflow to the dayside reconnection from the inside.

If the dayside and nightside reconnection rates balance each other, a steady-state con-
vection may arise (Sect. 13.3.1). More typically the changes in the driver (solar wind) and
in the magnetospheric response are faster than the circulation time scale of a few hours.
Thus reconnection may cause significant erosion of the dayside magnetospheric magnetic
field pushing the magnetopause closer to the Earth than a simple pressure balance calcu-
lation would indicate. Furthermore, the changing magnetic flux in each tail lobe causes
expansion and contraction of the polar caps.

The reconnection is most efficient when the solar wind magnetic field (IMF) has a due
southward-pointing orientation. The increase in the tail lobe magnetic field and strength-
ening of plasma convection inside the magnetosphere during southward IMF has a strong
observational basis. If we calculate the (rectified) east-west component of the solar wind
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Fig. 1.23 Convection in the magnetosphere opened by reconnection. The lower picture illustrates the mo-
tion of the ionospheric end of the magnetic field line assuming that plasma and magnetic field are frozen-in
to each other. Note that the tail in this picture is strongly compressed in the horizontal direction. In reality
the far-tail neutral line is located somewhere at 100 Rg or even further. (Adapted from the textbook of
Kivelson and Russell [1995].)

electric field (E = V By,,1,) incident on the magnetopause and the corresponding potential
drop over the magnetosphere, we find that some 10% of the electric field “penetrates” into
the magnetosphere corresponding to the convection electric field. Note, however, that in
the relationship E = —V x B there is no causal information, whether it is the electric field
that drives the magnetospheric convection, or convection that gives rise to the motion-
induced electric field. Of course, the ultimate driver is the solar wind flow against the
magnetosphere.

The increase of the magnetic flux in the lobes is a bit more sophisticated than the fre-
quently used sloppy phrase that reconnection transports solar wind magnetic flux to the
lobe. It is more appropriate to describe the process as energy transfer where solar wind
kinetic energy is converted to the magnetospheric magnetic field energy on the magne-
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topause. From Figure 1.23 it is evident that at the reconnection site magnetic energy is
transformed to kinetic energy as there J-E > 0. On the other hand, in this steady state
picture the current loop around the tail lobes implies J-E < O at the high-latitude tail
boundary. This corresponds to conversion of solar wind flow energy to magnetic energy,
i.e, a dynamo (Chap. 8). The main role of reconnection is to introduce a normal compo-
nent of the magnetic field B,, on the magnetopause. This leads to a finite magnetic stress
(< B, B;) on the magnetopause surface and this stress is the key agent of energy transfer in
the MHD description (Sect. 13.6.5).

This discussion may give an impression of a smooth plasma circulation with a fairly
constant bulk velocity, which is not a very good impression at all. In reality, the convection
in the plasma sheet consists in large part of intermittent high-speed bursty bulk flows (BBF)
with almost stagnant flows in between [Angelopoulos et al, 1992]. The relatively small
average velocity corresponds to the high-latitude convection observed in the ionosphere.

1.3.5 Origins of magnetospheric plasma

Thus far we have discussed the magnetosphere from the magnetic field viewpoint without
addressing the question of the origin of the plasma convecting in concert with the magnetic
field. The origins and losses of magnetospheric plasma is a vast complex of physical phe-
nomena. A comprehensive discussion of the status of understanding of these issues in the
late 1990s can be found in the book Magnetospheric Plasma Sources and Losses edited
by Hultqvist et al [1999]. The book has also been published as vol. 88 (Nos. 1-2) of Space
Science Reviews, 1999.

Except for its innermost regions, the ionosphere and plasmasphere, the magnetosphere
is a magnetic cavity in the much denser solar wind. There are some 10?° ions s~! incident
on the magnetopause, which provide a more than sufficient source population for magne-
tospheric plasmas. Until the 1980s it was generally assumed that the solar wind actually
was the main source. A good reason to believe so was the fact that the solar wind ion ener-
gies are in the keV range, which is not too far from the plasma sheet temperature, whereas
in the near-Earth plasma reservoir, the ionosphere, the ion energies range from below 1 eV
to a few tens of eV only.

The first indications that ionospheric plasma might escape in large amounts to the mag-
netosphere came with observations of heavy (m/q = 16) energetic (up to 17 keV) ions by
the polar orbiting satellite 1971-089A in the 1970s [Shelley et al, 1972]. These were pre-
sumed to be O ions, which could only come from the ionosphere, as the oxygen ions in
the solar wind have much higher charge states, typically O°*, as a consequence of their
origin in the hot solar corona. The first observations were made during magnetospheric
storms, but the subsequent satellite observations confirmed the existence of ionospheric
plasma in the magnetosphere also during magnetically quiet times. Chappell et al [1987]
finally suggested that the ionosphere is capable of supplying all magnetospheric plasma
under any magnetic conditions.

As so often, the truth lies somewhere between these two extremes. Both the solar wind
and ionospheric sources are highly variable. There is always some diffusion through the
magnetopause, but the rate at which solar wind plasma penetrates to the magnetosphere
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depends on how efficiently reconnection opens the magnetopause and, consequently, on
the direction of the IMF. The estimates of the dayside magnetopause source are in the
range 10%°~10%7 ions s~!, perhaps reaching 10?® ions s~! during strong solar wind driving.
The ionospheric supply is somewhat smaller, peaking during strong geomagnetic activity,
when roughly the same amount of OF ions and protons, 106 each, escape per second.
Most of the ion upflow takes place from the auroral region including the polar cusp.

Note that the strong solar wind inflow when the magnetopause is most open does not
necessarily imply the most efficient net gain of plasma because the open magnetosphere is
at the same time most leaky. As discussed in Sect. 13.5.2 there are strong indications that
more plasma can accumulate in the plasma sheet during periods of northward than south-
ward IMF. The estimates of plasma outflow in the far tail indicate that some 10?® ionss~!
escape downstream. As neither the dayside magnetopause nor the ionosphere seem to be
able to provide that much plasma, most of the total solar wind plasma entrance likely takes
place along the tail magnetopause. Part of this plasma flows directly downwind but some
fraction of it is first convected to the plasma sheet earthward of the distant neutral line and
thereafter circulated toward the Earth.

1.3.6 Convection and electric fields

In ideal MHD the macroscopic plasma motion V and the electric field are coupled to each
other through E = —V x B. This electric field is always perpendicular to the magnetic
field. If the magnetic field is time-independent, the electric field is also curl-free and can
be expressed as the gradient of scalar potential

E= V. (149)

Of course, these assumptions are not always fulfilled in the magnetosphere and the induc-
tive fields given by Faraday’s law

JB

Fri VxE (1.50)
must be taken into account during rapid changes of the magnetic field, which often occur
during space storms. Let us leave such intricacies, as well as the disturbing properties of
BBFs, aside for the time being and consider convection of plasma consisting of low-energy
particles in the equatorial plane within the plasma sheet and plasmasphere.

For simplicity we assume that the magnetospheric magnetic field points upward (north)
everywhere in the equatorial plane. Thus the return convection in the plasmasheet is equiv-
alent to a dawn-to-dusk directed electric field Epe, that we assume to be constant (we select
the coordinates such that the x-axis is toward the Sun, the y-axis toward the dusk, and thus
the magnetic field is in the direction of the z-axis). Let r be the distance to the center of the
Earth and ¢ the angle from the direction of the Sun. Then the electric field is given by

Econy = _V(_EOrSin ¢) (1.51)

and its potential is
Qcony = —Egrsin¢ . (1.52)
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The Earth with its atmosphere rotates in this frame of reference. The corotation extends
in the equatorial plane roughly up to the plasmapause. The angular velocity to the east is
evidently Qp = 27 /24 h. In the fixed frame plasma thus moves with the velocity

Vi = Qerey (1.53)

where ey is the unit vector pointing toward the east. V,,; = E,;o; X B / B2 is the convection
velocity associated with the corotation electric field E,,,, the potential of which is

—Qpky  —QpBoR},
r o r '

(1.54)

Oror =

Here ko = 8 x 10'3 Tm? is the Earth’s dipole moment and By the dipole field on the surface
of the Earth at the equatorial plane ~ 30 uT. The convection and corotation electric fields
are illustrated in Fig. 1.24. The equipotential curves of the always earthward pointing
corotation field are circles.
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Fig. 1.24 Equipotential lines of convection and corotation electric fields in the equatorial plane. The num-
bers at the faces of the panels give the local times.

As discussed in Chap. 3 the magnetic field gradients and curvature also affect the par-
ticle motion. Considering particles that move in the equatorial plane of the dipole (i.e.,
particles whose pitch angle ¢ = 90°) only the gradient drift needs to be taken into account
and the total drift velocity is

1 B 1
VD:ﬁ |:Econv+Erot_V<'uq>:| XB:ﬁBXV(’)ﬁff’ (155)

where U is the magnetic moment of the particles and the effective potential is

QpBoR} N UBoR;:

- o (1.56)

(Peﬁ' = —EorSiIl(P —
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The particles move along streamlines @5 = constant. These streamlines depend on both
the charge and energy of the particles through their magnetic moments. For cold particles
(1 = 0) the streamlines are equipotential lines of the combined convection and corotation
fields (Fig. 1.25). In this case the motion is a pure E xB-drift and all particles move with
the same velocity.

noon

equatorial plane

Fig. 1.25 Orbits of low-energy particles (i.e, magnetic moment it ~ 0) in the equatorial plane assuming
Eo = 0.3mVm~!. The distance between consecutive points is 10 min. (Adapted from Kavanagh et al
[1968].)

Figure 1.25 illustrates the formation of a separatrix that separates the cold corotating
plasmaspheric plasma from the cold plasma outside. In this model the separatrix is thus
the plasmapause. The separatrix has an electric neutral point at the distance

3
r=1/ LeBoRy (1.57)
Ey

in the direction of 18 h local time. The plasmasphere thus has a bulge in the evening sector.
There is a corresponding bulge in the real plasmapause, but its orientation and size depend
on the strength of the convection electric field. We will revisit the bulge when discussing
Fig. 14.4.

While this model for the plasmasphere is a strong simplification, it nevertheless ex-
plains why the plasmasphere is compressed during strong magnetic activity: the enhanced
energy input enhances the convection velocity and thus the dawn-to-dusk electric field. The
rotation of the Earth is constant and the corotation electric field is always the same. Conse-
quently the separatrix is pushed toward the Earth when the convection enhances. Note that
the real plasmapause reacts to the changing electric field with some delay, which leads to
observations of detached clouds of plasmaspheric plasma outside the plasmapause.

When the magnetic moments of the particles are increased, the magnetic gradients start
to separate the motion of positive and negative charges. To illustrate this effect consider
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particles whose magnetic moment is so strong that it supersedes corotation. Now the ef-
fective potential (still in the equatorial plane only) is

UBoR3
qr’

Qoff = —Eorsing + . (1.58)
This implies that far from the Earth the particles follow the convection electric field, but
closer in they drift according to the magnetic field gradient. This way the dipole field
shields the near-Earth space from the hot plasma sheet plasma and the cold plasmasphere
and hot plasmasheet are two separate plasma domains.

- Alfvén layer
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Fig. 1.26 The formation of Alfvén layers.

The positive and negative charges drift according to Fig. 1.26 and their separatrices,
called the Alfvén layers, are different. Because the plasma sheet is a finite particle source, a
larger fraction of positive charges pass the Earth in the evening sector and a larger fraction
of negative charges in the morning sector. This leads to piling of positive space charge in
the evening sector and negative charge in the morning sector. These charge accumulations
are discharged by magnetic field-aligned currents to the ionosphere from the evening sector
and from the ionosphere to the magnetosphere in the morning sector.

This picture also gives a qualitative explanation how very high-energy particles can get
access and become trapped in the magnetic bottle of the Earth’s dipole field during strong
magnetic activity. As the convective electric field grows rapidly, the particles ExB-drift
deeper into the ring current and radiation belts than in quiet times. Once the activity ceases,
the trapping boundary (i.e. the Alfvén layer) moves outward and thus particles that were
originally on open drift paths past the Earth find themselves trapped into the expanding
magnetic bottle.

1.4 The Upper Atmosphere and the Ionosphere

An ionosphere is formed around all planets having a neutral atmosphere. It is mainly pro-
duced by photoionization due to solar EUV radiation. Additional collisional ionization is
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provided by particle precipitation from the magnetosphere. At high enough energies elec-
trons produce X-rays through bremsstrahlung, when they are stopped in the atmosphere.
This leads to weak ionization at also lower altitudes. Another observable but dynamically
rather unimportant source of ionization associated with space storms is the so-called so-
lar flare effect caused by X-ray and EUV radiation from a large enough flare. It has a
crochet-like appearance in the ground-based magnetograms, its shape following the flare
evolution. The phenomenon has historical interest because it can be seen as a 110-nT per-
turbation in the Greenwich magnetogram during the Carrington flare in 1859 (e.g., Cliver
and Svalgaard [2004]).

Due to its origin in solar EUV radiation and magnetospheric particle precipitation the
ionospheric ion density depends strongly on the time of the day, the season, and solar
and magnetospheric activity. Although some low-latitude processes, e.g., the equatorial
spread-F caused by the Rayleigh—Taylor instability (Chap. 7), have some correlation with
space storms, for our theme the high-latitude ionosphere and its coupling to the magneto-
sphere are of the greatest interest. Therefore we limit the discussion here to some of the
key elements in high-latitude ionospheric electrodynamics. A thorough treatise on iono-
spheric physics is the textbook by Kelley [1989]. The textbook by Kivelson and Russell
[1995] provides a reader-friendly introduction to the formation of the ionosphere.

1.4.1 The thermosphere and the exosphere

The Earth’s atmosphere behaves as a collision-dominated gas up to altitudes of about 400—
500 km. The ionosphere is formed in the thermosphere at altitudes above 80-85 km, where
the neutral gas is in hydrostatic equilibrium

dh

nympg = (nnkgT,) . (1.59)
Here m, is the mass of the neutral gas molecules or atoms and # is the altitude. If the
temperature 7, of the gas is assumed to be altitude-independent, the density profile of the
atmosphere is

—(h—ho)
_ 1.
ny, noeXP( H, ) (1.60)
where T
H, =21 (1.61)
myg

is the density scale height. The scale height is different for different molecules and atoms,
which thus have different density profiles. While the collisions bring all constituents into
the same temperature, they do not homogenize the composition of the gas. In reality also
the temperature is altitude-dependent and thus our simple discussion is not fully accurate.
Furthermore, strong solar and magnetospheric activity lead to heating of the thermosphere
and thus to enhanced scale height.
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Train your brain

Instead of density scale height, pressure scale height is often used. Find an expression
for it in terms of the gas constant % = P¥ /nT.

The nearly collisionless gas above the thermosphere is called the exosphere. The bot-
tom of the exosphere, the exobase, can be defined either as the altitude where the collisions
become negligible, or above which the constituents of the gas are on purely ballistic trajec-
tories. At the exobase the particle mean free path and the pressure scale height are equal.

The exosphere has a particular role in the physics of space storms. It extends as the
geocorona far into the near-Earth space and is a key element in the loss of ring current
carriers (Chap. 14).

1.4.2 Structure of the ionosphere

The existence of the ionosphere was revealed early in the 20th century by the first long-
distance radio communication experiments, including Marconi’s famous transmission of
electromagnetic signals across the Atlantic. During the years 1924-1926 Appleton and
Barnett and, independently, Breit and Tuve demonstrated mathematically and experimen-
tally that there is an ionized electrically conductive layer in the upper atmosphere from
which radio waves are reflected. This layer became to be called the E layer (or E region;
E for electric). Today we know that the E layer is within the altitude range 90—120 km
and it is ionized mostly by precipitating electrons. The global ionization maximum due
to the solar EUV radiation is higher up at about 250 km. The altitude range above the E
layer, reaching to about 800 km is called the F layer (or sometimes the Appleton layer).
Later also an ion density enhancement below the E layer was identified and became to be
called (logically?) the D layer. Figure 1.27 illustrates the altitude profiles of electron and
major ion and neutral atom densities in the ionosphere. Note that the ionization degree of
the ionosphere is very low at low altitudes, but nevertheless the gas behaves like a col-
lisional plasma, where the dominant collisions are with the thermospheric neutral atoms
and molecules.

As already discussed, the ionosphere is a significant source of magnetospheric plasma.
From the polar cap enclosed by the auroral oval a tenuous polar wind flows continuously
upward. Its escape resembles the outflow of solar wind from the Sun, as the outflow starts
as subsonic and is transformed to supersonic at higher altitudes. The strongest outflow,
however, takes place on magnetic field lines attached to the auroral oval. Plasma processes
associated with the electrodynamic coupling between the ionosphere and magnetosphere
heat ionospheric plasma, which starts to lift up, partly due to thermal energy, partly due
to the mirror force (Chap. 3). The acceleration and heating from the cold ionosphere up
to keV energies in the magnetosphere most likely takes place in several steps and involves
both quasi-static acceleration and wave—particle interaction mechanisms. When leaving
the ionosphere the typical ion energies are of the order of 1 eV, but already above 10 000 km
they may exceed 10 keV. Although there is also downward plasma motion, the ionosphere
and thus the atmosphere experience a net loss of matter. The estimates are uncertain, but
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Fig. 1.27 Dayside ionospheric electron (thick line), ion (thin lines) and neutral atom (dashed lines) density
profiles according to the definition of “International quiet solar year”. (From Johnson [1969].)

total upward flux is of the order of 2kgs~! or more (see, e.g., Chap. 2 of Hultqvist et al
[1999]).

1.4.3 Electric currents in the polar ionosphere

For the physics of space storms the most important property of the ionosphere is its finite
electric conductivity. Due to the anisotropy caused by the strong background magnetic
field and the vastly different relative gyro and collision frequencies between the ions and
electrons the conductivity is a tensor. The ionospheric Ohm’s law can be written in the

form
Op Of 0

J=| -oyop 0 | -E. (1.62)
0 0 GH

Here the elements of the conductivity tensor, assuming for simplicity only one ion popu-
lation, are given by
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Von are the electron and ion collision frequencies with neutrals and ., are the angular
frequencies of electron and ion gyro motions.
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The Pedersen conductivity op is the conductivity in the direction of the ambient electric
field E | , which in turn is practically perpendicular to the magnetic field in the ionosphere.
The Hall conductivity oy is the conductivity perpendicular to both the ambient magnetic
and electric fields. The magnetic field-aligned conductivity o) is the same as the classical
collisional conductivity in the absence of magnetic field. In the ionosphere it is several
orders of magnitude larger than the perpendicular conductivities. Consequently, the quasi-
static ionospheric electric field is practically perpendicular to the magnetic field.

The Pedersen conductivity peaks in a narrow layer above the altitude of 150km,
whereas the peak of the Hall conductivity is at about 120 km. Due to diurnally and sea-
sonally variable solar illumination conditions at these altitudes the peak conductivities can
vary more than two orders of magnitude. In the low-latitude ionosphere the day—night
asymmetry is most pronounced, whereas the polar ionospheres have very strong seasonal
variability. From the magnetospheric viewpoint the ionospheric current layers are thin and
often treated as two-dimensional current layers in studies of magnetosphere—ionosphere
coupling. From the viewpoint of ionospheric processes the structure is, however, three-
dimensional.

Feed your brain

With the help of literature find out how the elements of the conductivity tensor (1.63)
are derived.

We have already encountered the plasma convection across the polar cap. Above the
dense ionosphere plasma is collision-free and both positive and negative charges ExB-
drift with the same velocity causing no net electric current perpendicular to the magnetic
field. In the E layer the ions are so strongly collisional that they cannot make full gyro
orbits between collisions with neutrals. Thus they drift predominantly in the direction of
the electric field and carry most of the Pedersen current (6pE). Electrons, on the other
hand, are still strongly magnetized and follow the E x B-drift, i.e., the convection, and carry
most of the Hall current (oyE), which thus is directed opposite to electron drift motion.
In the polar cap the current is distributed over a wide area, but in the evening and morning
sectors the current is squeezed into narrow channels, in which the current density is much
higher. These currents are called electrojets. In the evening sector the electrojet current is
eastward and in the morning sector westward. The currents can be monitored with ground-
based magnetometers. The eastward current gives a positive contribution to the northward
component of the magnetic field measured below the electrojet and the westward current
a negative contribution.

The high parallel conductivity allows for large electric current along the magnetic field
even for a very small parallel electric field. In fact, the ionospheric electrodynamics is
intimately coupled to the magnetospheric current systems through magnetic field-aligned
currents (FAC). We postpone the details to Sect. 6.5, as this discussion relies heavily on
concepts to be covered later in this book. Here we just illustrate the current systems with
the aid of two figures.

Figure 1.28 is a classic statistical presentation of upward and downward flowing FACs
during weak auroral activity. If we follow the magnetic field from the equatorward slices
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Fig. 1.28 Statistical pattern of FACs above the northern auroral oval during weak auroral activity orig-
inally presented by lijima and Potemra [1976]. The grey domains illustrate the current away from the
ionosphere and the black areas the downward return current back to the ionosphere.

of the current pattern we end up at the ring current region in the magnetosphere. In the
evening sector this FAC flows from the magnetosphere to the ionosphere and in the morn-
ing sector from the ionosphere to the magnetosphere. This is the same sense of the currents
that is needed to discharge the excessive space charge of the Alfvén layers (Fig. 1.26). This
FAC system is called the Region 2 current system. Region I currents flow in turn in the
poleward slices in Fig. 1.28. They are directed opposite to Region 2 currents. The cur-
rent thus comes into the ionosphere in the morning sector and leaves it in the evening
sector. Region 1 is located close to the boundary between open and closed field lines. Con-
sequently a magnetic field-aligned mapping from this strip in the ionosphere leads to the
magnetospheric boundary layers. As the circuit closes through the resistive ionosphere, the
maintenance of the current requires an existence of a dynamo somewhere in the magneto-
spheric boundary. Figure 1.29 is a summary of the most important field-aligned currents
and their closures in the ionosphere and magnetosphere.
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Fig. 1.29 Sketch of the major FACs. The morning sector Region 1 current originates near the outer bound-
ary of the magnetosphere, likely in the LLBL, and flows to the poleward side of the auroral oval. There it
closes as Pedersen current partly through the polar cap and partly across the auroral oval. Current cross-
ing the polar cap rises in the evening sector again as Region 1 current and flows to the magnetospheric
boundary. Current crossing the morning sector oval as a Pedersen current continues as Region 2 current
to the inner magnetosphere, where it connects again to the perpendicular current flowing westward to the
evening sector and joins there to the evening sector Region 2 current. This current loop in the tail is called
partial ring current (Jpg). The evening sector Region 2 FAC reaches the equatorward side of the oval and
closes through the oval to the evening side Region 1 as a Pedersen current. As discussed in Sect. 6.5, if the
height-integrated conductivities were constant, all FAC would connect to Pedersen currents. In reality the
Hall conductivity has gradients implying that also a part of the ionospheric Hall currents are involved in
the closure of FACs.

The overlapping current system in the time sector 2224 of Fig. 1.28 is one of the key
regions in magnetosphere—ionosphere coupling. It is known as the Harang discontinuity
and it plays a special role in the dynamics of magnetospheric substorms to which we will
return in Chap. 13. Also in the noon sector there is a special current system poleward
of Region 1. This current system is observed during northward IMF and thought to be
connected to the high-latitude magnetopause tailward of the cusp region.

1.5 Space Storms Seen from the Ground

Effects of space storms reach all the way down to the surface of the Earth where the
storm development can be followed using various ground-based instruments, in particular,
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magnetometers. The Earth is not only an auditorium where we can watch the storms, but
the conductive ground is a part of the global space storm system.

1.5.1 Measuring the strength of space storms

Scientists use several different methods to characterize the strength of space storms. It is
understandable that those who are mostly interested in the storms on the Sun use different
metrics than those studying magnetic storms in the near-Earth space.

The most traditional method of describing solar activity is the sunspot number (e.g.,
Fig. 1.6). It does not actually tell us anything of individual storms, but it describes very
well the progress of the most important space climate cycle. Another widely used indicator
of solar activity is the 10.7-cm radio flux (F10.7). Radio emissions are created high in
the solar atmosphere by electrons gyrating in the solar magnetic field (Chap. 12) and are
strongly enhanced during strong magnetic activity. F10.7 follows the sunspot activity and
it has also been found to be a very good proxy for energy input to the upper atmosphere of
the Earth although the variations in the energy input itself mostly depends on the variations
in the EUV irradiance.

The solar flares to be discussed in Chap. 12 give rise to strongly enhanced X-ray emis-
sions. The emissions are today monitored regularly by geostationary satellites and their
intensity is readily available through the internet. The intensity is indexed into different
classes (A,B,C,M,X) according to the X-ray flux as given in Table 1.3. Within each class
the intensity is given in decimals, e.g., M7.5 indicates the flux 7.5 x 107> W m~2. The
largest measured X-ray flare (till the end of cycle 23) took place on November 4, 2003. It
was classified as X27. This was close to the upper sensitivity limit of the GOES satellites
measuring the intensity and thus not necessarily fully accurate.

Table 1.3 Solar X-ray emission classes.
1078 —1077Wm2
1077 —10°Wm2
1076 —107>Wm2
107 - 104 Wm™2

> 104 Wm2

X Z 0w >

In order to characterize the storms in the magnetosphere several activity indices have
been developed to measure the strength of the magnetic perturbations [Mayaud, 1980]. The
large number of useful indices illustrates the large variety of storm features; sometimes the
effects are stronger at high latitudes, sometimes at low; sometimes the background current
systems are already strong before the main perturbation; different current systems may
decay at different rates, etc. Furthermore, different time scales from minutes to annual
activity levels require different indexing methods. Instead of penetrating to the details of
the great variety of indices, we discuss briefly the most widely used indices for global
storm levels, Dst and Kp, and for the activity at auroral latitudes, AE, which we will be
using in later chapters.
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The Dst index is a weighted average of the deviation from the quiet level of the hor-
izontal (H) magnetic field component measured at four low-latitude stations around the
globe. The westward ring current flowing around the Earth at the distance of about 3—4 Rg
is the main source of the Dst index. During a magnetospheric storm the ring current is en-
hanced, which causes a negative deviation in H. Consequently, the more negative the peak
Dst index is, the stronger the storm is said to be. The threshold between weak and moder-
ate storms is typically set to —40 or —50 nT, moderate storms range from —50 to —100nT.
Storms stronger than —100nT can be called intense and those stronger than —200 nT big.
The Dst index is calculated once an hour. A similar 1-minute index derived from a partly
different set of six low-latitude stations (SYM—H) is also in use.

A magnetometer reacts to all current systems, including the magnetopause current,
cross-tail current and induced currents in the ground due to rapid changes in the iono-
spheric currents. Furthermore, high solar wind pressure pushes the magnetopause closer
to the Earth forcing the magnetopause current to increase because it must shield more of
the geomagnetic field from the solar wind. The effect is strongest on the dayside where
the geomagnetic field just inside the magnetopause is strongest. Here the magnetopause
current flows in the direction opposite to the ring current. Thus a pressure pulse causes a
positive deviation in the H-component measured on ground. In fact, this is an excellent
signature of an interplanetary shock hitting the magnetopause. If the solar wind parame-
ters are known, the pressure effect can be cleaned away from the Dst index. The so-called
pressure-corrected Dst index can be defined as

Dst* = Dst —b\/Pyy, 4 , (1.64)

where Fyy, is the solar wind dynamic pressure and b and ¢ are empirical parameters. Ow-
ing to different statistical methods and different data sources, somewhat different values
of these parameters have been determined. For example, O’Brien and McPherron [2000]
obtained b = 7.26 nTnPa~'/? and ¢ = 11 nT.

The contribution from the dawn-to-dusk directed tail current is more difficult to com-
pensate. During strong activity this current intensifies and moves closer to the Earth, en-
hancing thus the Dst index. How to handle this effect is still a controversial issue. The
estimates of the effect vary in the range 25-50% [Turner et al, 2000; Alexeev et al, 1996].
During the fastest evolution of the storm main phase (Chap. 13) the temporal changes in
the ionospheric currents lead to induction currents in the ground, which may contribute up
to 25% to the Dst index [Langel and Estes, 1985; Hikkinen et al, 2002].

Another widely used index is the planetary K index, Kp. Each magnetic observatory
has its own K index and Kp is an average of K indices from 13 mid-latitude stations. It is
a quasi-logarithmic range index expressed in a scale of one-thirds: 0, 0+, 1—, 1,..., 8+,
9—,9. As Kp is based on mid-latitude observations, it is more sensitive to high-latitude
auroral current systems and substorm activity than the Dst index. As Kp is a 3-hour index,
it does not reflect short-term changes in auroral activity.

The fastest variations in the current systems take place at auroral latitudes. To inves-
tigate the strength of the auroral currents the use of auroral electrojet indices (AE) is a
common method. The standard AE index is calculated from 11 or 12 magnetometer sta-
tions located under the average auroral oval on the northern hemisphere. It is derived from
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the magnetic north component of each station by taking the envelope of the largest nega-
tive deviation from the quiet time background, called the AL index, and the largest positive
deviation, called the AU index. The AFE index itself is calculated as AE = AU — AL (all
in nT). Thus AL is the measure of the strongest westward current in the auroral oval, AU
is the measure of the strongest eastward current, and AE characterizes the total electrojet
activity. These indices are typically given with 1-minute time resolution, but for long-term
statistical studies longer cadences are also used.

As the auroral electrojets flow at much much lower altitudes than other magnetospheric
currents, the magnetic deviations due to auroral currents are larger than those used to cal-
culate Dst. For example, during typical substorm activations AE is about 200400 nT and
during strong storms the deviations can exceed 2000 nT, whereas the equatorial perturba-
tions exceed —200 nT only during the largest storms.

There are some issues with the AE indices that their user must be aware of. During the
strongest activity the peak ionospheric currents move well equatorward of the AE stations
and thus the indices do not capture the real strength of the auroral currents. The same
applies to times of quiescence during prolonged northward IMF, when the oval contracts
to very high latitudes. Another problem is sparse, and during some periods of time, lacking
coverage in the Siberian sector. For case studies magnetometer data can be collected from
some 70 or 80 high- and mid-latitude stations giving a much better coverage during strong
magnetospheric activity. Furthermore, if the study is limited to a given local time sector,
long meridional magnetometer chains can be utilized, e.g., the IMAGE magnetometers of
the MIRACLE network in Fennoscandia (cf., Kauristie et al [1996]).

We will discuss the ground-based observations of magnetospheric storms, including the
auroras, and the evolution of different current systems in much greater detail in Chap. 13.

1.5.2 Geomagnetically induced currents

The rapidly varying ionospheric currents cause rapid time variations in the magnetic field
on the surface of the Earth. These give rise to the induced geoelectric field according to
Faraday’s law dB/df = —V x E . This electric field drives electric currents in any conduc-
tive system upon which it is applied. When these currents flow in man-made conductive
networks they are called geomagnetically induced currents (GIC). As the electric field
penetrates into the soil and water, the induction effects are also felt in gas pipelines buried
under ground and in undersea telecommunication cables.

While the basic idea of current induction is elementary, its consequences are compli-
cated. The actual induced current depends on the conductivity structure of the medium
where the induced electric field is driving the current. Tanskanen et al [2001] concluded
from a study of 77 substorms that at the time of the substorm onset, i.e., when the mag-
netic field variation is most rapid, about 40% of the AL index comes from the currents
underneath and thus the index does not describe the real ionospheric currents correctly at
substorm onset. Furthermore, at the stations surrounded by the Arctic Ocean the deviations
are 10-20% larger than deviations at inland stations. In order to remove the induction ef-
fect from the AL index at other times than the onset the average correction needed for the
inland stations is 15-20% and for the stations close to the ocean 25-30%.
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There is considerable practical interest in the GIC effects, as the currents sometimes
reach harmful levels. In fact, the first reported space-weather-related problems on tech-
nological systems are from events around the year 1850 when electric telegraph com-
munications were disturbed and in some cases completely stopped during strong auroral
activations. As expected, the great magnetic storm following Carrington’s flare in 1859
also caused troubles to telegraph connections [Prescott, 1860]. For a long time telegraph
and, later, telephone communication lines were the most space-weather-sensitive systems.
The first reported effect on a power transmission network took place on March 24, 1940,
when a great geomagnetic storm caused voltage dips, large swings in reactive power, and
tripping of transformer banks in the United States and Canada [Davidson, 1940]. The ef-
fects of the storm were also felt on telephone lines. For example, 80% of long-distance
telephone connections from Minneapolis, Minnesota, were out of operation. As our focus
is in the physics of space storms themselves and not in their effects, we refer the interested
reader to the more thorough discussion of space weather effects in Bothmer and Daglis
[2007]. However, we will discuss some of the physics aspects of geomagnetic current in-
duction in Sect. 15.2.



2. Physical Foundations

Physics of space storms is founded on physics of hot tenuous space plasmas. While the
reader is assumed to be familiar with the basic concepts of plasma physics and master the
classical electrodynamics, the motivation for this chapter is to review some of the main
concepts, to introduce definitions and the notation to be used elsewhere in the book, and
to highlight some aspects that are specific to space plasma physics.

2.1 What is Plasma?

There is no rigorous way to define the plasma state. A good practical description for our
purposes is:

Plasma is quasi-neutral gas with so many free charges that collective electromagnetic
phenomena are important to its physical behavior.

In this treatise we discuss quasi-neutral plasmas only. This means that in a given plasma
element there is an equal amount of positive and negative charges. There is no clear thresh-
old for the required degree of ionization. Roughly 0.1% ionization already makes the gas
look like plasma, and 1% is sufficient for almost perfect conductivity.

Plasma is sometimes called the fourth state of matter because it arises as the next nat-
ural step in the sequence from solid to liquid to gas, when the temperature is increased.
There are two natural ways to produce plasma in space. The most common is to heat the
gas to a high enough temperature. Usually 10°-10° K (10-100eV) is sufficient (1 eV «
11600 K). Also ionizing radiation is important because it creates and sustains the pho-
tospheric and ionospheric plasmas at lower temperatures where the electrons and ions
recombine if the radiation stops. The transition from gas to plasma is gradual and thus
different from, e.g., the phase transition from liquid to gas. The collective electromagnetic
behavior gives plasma liquid-like properties. We speak of fluid description of plasmas
when dealing with macroscopic plasma properties.

H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth, 59
Springer Praxis Books, DOI 10.1007/978-3-642-00319-6 2,
© Springer-Verlag Berlin Heidelberg 2011
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Three key concepts Debye shielding, plasma oscillations, and gyro motion of charged
particles in the magnetic field, lie at the heart of plasma physics. Let us review them briefly.

2.1.1 Debye shielding

The electrostatic Coulomb potential of charge ¢ is ¢ = g/(4rwepr). In a fully ionized
plasma individual particles either attract or repel each other by the force due to the gradient
of this potential.

Quasi-neutrality implies that in equilibrium there is no net charge in a “large enough”
volume. If we introduce an extra test charge gr into the equilibrium plasma, the charges
must be redistributed to maintain the quasi-neutrality within certain volume around gr.
Let us denote the different plasma populations (e.g., ions and electrons) by « and assume
that each population is in a Boltzmann equilibrium

ng (r) = nog €xp (— z:;p ) ; 2.1)
o

where kg is the Boltzmann constant (kg = 1.38 x 10723] K’l) and Ty, is the temperature
of population . The potential of g7 becomes the shielded potential
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defines the Debye length Ap. The rearrangement of the charges is called Debye shielding
and it is the most fundamental manifestation of the collective behavior of the plasma.
Intuitively Ap is the limit beyond which the thermal speed of the plasma particles is high
enough to escape from the Coulomb potential of g7. Often the electron and ion Debye
lengths are given separately. Numerically the electron Debye length is

T(eV)

Ap(m) ~ 7.4 n(em ) °

(2.4)

Using the Debye length we can redefine the plasma state in a slightly more quantitative
way. That the collective properties really dominate the plasma behavior there must be a
large number of particles in the Debye sphere of radius Ap, i.e., (47/3)ngA7 > 1. The
factor 47 /3 is often neglected and we call A = nolg the plasma parameter. Because
plasma must also be quasi-neutral, its size L = V'/3 must be larger than Ap. Thus for a
plasma

1
— <A <L. 2.5)

V/no
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Note that many sources [e.g., Boyd and Sanderson, 2003] call g =1/ nolg plasma param-
eter.

Train your brain

Derive (2.2) for the shielded potential of a test charge g7 in a plasma with Boltzmann’s
density distribution.

Hints:

(i) Use e ~ 1 — x when substituting the densities into Coloumb’s law and make use of
quasi-neutrality.

(i1) Make also use of spherical symmetry to write

1 d do
Vip=——(r=-).
¢ rdr (r dr)
(iii) After solving the differential equation require that the solution approaches the
Coulomb potential of g7 when r — 0 and remains finite at all distances.

2.1.2 Plasma oscillations

If plasma equilibrium is disturbed by a small perturbation, plasma starts to oscillate. Much
of space plasma physics concerns the great variety of plasma responses to perturbations.
The most fundamental example is the plasma oscillation.

Considering freely moving cold (7, = 0) electrons and fixed background ions it is an
easy exercise to show that a small perturbation in the electron density causes the plasma
oscillation at the plasma frequency

2
2 o I’l()e
0, = . (2.6)

Note that both the angular frequency . and the corresponding oscillation frequency
fpe = 0y /27 are usually called plasma frequency. So, be careful!

Plasma frequency is inversely proportional to the square root of the mass of the moving
particles, here electrons. Thus the ion plasma frequency is a much smaller quantity than
the electron plasma frequency. When we speak of plasma frequency, we usually mean the
electron plasma frequency. A useful rule of thumb is

fre(Hz) 2 9.04/n(m=3) .

The plasma oscillation determines a natural length scale in the plasma known as the
electron inertial length ¢/ ®,., where c is the speed of light. Physically it gives the atten-
uation length scale of an electromagnetic wave with the frequency @y, when it penetrates
to plasma (wave propagation in plasmas will be discussed in detail in Chaps. 4 and 5). It
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is analogous to the skin depth in classical electromagnetism defined in (4.26) and is thus
often called electron skin depth.
Similarly, the ion plasma frequency is defined by

2
npe
(1)2 —

pi :
&m;

2.7)

The corresponding ion inertial length is c/@,;. It is associated with damping of fluctua-
tions near the ion plasma frequency.

2.1.3 Gyro motion

Space plasmas are practically always embedded in a magnetic field. The magnetic field
may be due to external or internal current systems. The known magnetic flux densities in
space vary by more than 20 orders of magnitude. The interstellar magnetic field is typically
less than 1 nT, the magnetic field of the solar wind at the distance of the Earth (1 AU) is a
few nT, the field on the surface of the Earth varies 3-6x 10~ T (0.3-0.6 gauss) and in large
fusion devices the fields are several teslas. The largest known fields, exceeding 103 T, are
found at the rapidly rotating neutron stars (pulsars). Observations of slowly decelerating
pulsars emitting X- and soft gamma rays indicate even stronger magnetic fields, exceeding
10" T.

A charged particle in a magnetic field performs a circular motion perpendicular to the
field. The angular frequency of this gyro motion for particle species « is

_ |9a|B
Mgy ’

(2.8)

co

This is called the gyro frequency (or cyclotron frequency, Larmor frequency). The corre-
sponding oscillation frequencies feq = @cq/(27) of electrons and protons are given by

fee(Hz) =~ 28 B(nT)
fep(Hz) = 1.5 1072B(nT) .

Again the same term is used for both @, and f..

As discussed later in this chapter the gyro motion determines another important length

scale, the electron or ion gyro radius, also known as cyclotron, or Larmor radius
Via

"La = 77—

) 2.9)
|‘I¢x|

where v  is the speed of the particle perpendicular to the magnetic field.
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2.1.4 Collisions

Most of the volume where space storms take place is filled by fully ionized plasmas that
behave in a “collisionless” manner. However, there are two important exceptions: in the
solar photosphere and in the ionosphere collisions between charged particles and neu-
trals have a strong influence on the plasma properties, determining, e.g., the ionospheric
Ohm’s law. Furthermore, the charge exchange collisions between charged particles and the
Earth’s ring current are important to the dynamics of storms in the inner magnetosphere
(Chap. 14).

For the collisionless behavior of fully ionized plasmas the Coulomb interaction (Coulomb
collisions) between charged particles is essential. In a plasma the finite Debye length lim-
its the Coulomb interaction within the Debye sphere, but yet each particle sees A other
charges. If we can calculate the collisional cross-section &, we can determine the mean
free path

lnfp =1/(no) (2.10)

of the particles and their collision frequency
Ve =no(v), (2.11)

where (v) is the average speed of the particles.

For Coulomb collisions it is sufficient to consider small-angle collisions, in which the
particles are just slightly deflected. The reason for this is that each particle interacts with
a large number of particles at long distance, whereas the probability for nearby collisions

with large deflection angles is much smaller. The rigorous calculation of collisional cross-
4

sections is rather challenging. For electron—ion collisions ¢ o< v, and
2n9(Ze*)* InA
Ve = Vei = 2723 (2]2)
gymgvy

where vy is the particle speed far from the collision and InA is called the Coulomb loga-
rithm. Typical values of the Coulomb logarithm are in the range 10-20.

When the temperature of the plasma increases or the density decreases, g = A~! de-
creases. At the limit g — 0 plasma becomes collisionless. Physically this means that the
time between individual collisions, or the mean free path, becomes longer than the tempo-
ral or spatial scales of the problems under study. This does not mean that the electromag-
netic interaction between plasma particles would become negligible. At the collisionless
limit it is, however, sufficient to consider the effect of average electromagnetic fields on
the particles instead of individual collisions.

Train your brain

Show that in a fully ionized plasma the frequency of small-angle Coulomb collisions is
much larger than the frequency of large-angle collisions. To what plasma parameter the
ratio of these frequencies is related?
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Feed your brain

Derive Equation (2.12). The derivation can be found in many textbooks, including some
listed in the References section of this book.

2.2 Basic Electrodynamics

In this section we review some of the basic concepts of classical electrodynamics that are
most important in plasma physics.

2.2.1 Maxwell’s equations

In plasma physics we usually write Maxwell’s equations in the vacuum form

V-E=p/e (2.13)
V.B=0 (2.14)
B
VxE=-2" 2.15)
1 JE
VxB =)t 5o (2.16)

where the source terms charge density p and current density J are determined by the
particle distribution functions (Sect. 2.3.3). We call E the electric field ((E] = Vm™!) and
B magnetic field ([B] = Vsm~2 = T). It would be more orthodox to call B magnetic
induction, or more descriptively magnetic flux density, as the magnetic flux through a
surface S is

<;D:/SB-dS. 2.17)

The SI units of the source terms in Maxwell’s equations are [p] = Asm™3 = Cm > and
[J] = Am~2. The natural constants in SI units are

g ~ 8.854x 10712 AsV-Im!, vacuum permittivity
o =4 x 1077 VsA~Im™!, vacuum permeability

c =1//&My = 299792458 ms~! definition of the speed of light.

In studies of electromagnetic media the electric displacement D and the magnetic field
intensity H (the “magnetic field” of engineering physics) are useful and Maxwell’s equa-
tions are written as

V-D=p, (2.18)
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V.B=0 (2.19)
B

VxE=—>" (2.20)

V xH :J,~+%—?, 2.21)

where py and J 7 are the source terms due to “free” charges. If the properties of the medium
can be described in terms of electric polarization P and magnetization M, fields D and H
are given by the constitutive equations

D= gE+P (2.22)
H=B/u—M. (2.23)

In plasma physics the use of D and H is sometimes convenient notation, but the consti-
tutive relations may pose a problem. There is no unique way to define the polarization field
in a medium of free charges, although sometimes a useful P can be introduced formally
(e.g., Eq. 9.73). However, the change of polarization is a real plasma phenomenon and the
corresponding polarization current

JdP
= 2.24
Jpr 5 (2.24)
is well-defined (see., e.g., Sect. 3.5.1). Also the magnetization current
Ju=VxM (2.25)

is a useful concept in plasma physics.

The Maxwell equations form a set of 8 partial differential equations. If we know the
source terms, we have more than enough equations to calculate the six unknown field
components. If we, however, want to treat all 10 variables (E, B, J, p) self-consistently,
we need more equations. In a conductive medium it is customary to use Ohm’s law

J=0E, (2.26)

where the conductivity 6 ([6] = A(Vm)~! = (Qm)~!) is, in general, a tensor and may
also depend on E and B.

Recall that Ohm’s law is not a fundamental law in the same sense as Maxwell’s equa-
tions but merely an empirical relationship to describe the conductivity of the medium sim-
ilarly to the constitutive relations D = €-E and B = u - H where € and u are, in general,
tensors. The medium is called linear if €, i, and o are scalars and constant in space and
time. Note that also in the linear media they usually are functions of the wave number and
frequency of electromagnetic fields penetrating into the medium. Much of plasma physics
deals with the properties of (o, k).
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2.2.2 Lorentz force

Experimental determination of E and B is based on the Lorentz force

F= Z—[t) =qg(E+vxB) (2.27)
on a particle with charge ¢ and velocity v. Close to a body with strong gravity (e.g., the
Sun) also the gravitational force (mg) must be taken into account. In principle, a complete
description of plasma would mean solving the equation of motion (with gravitation if
needed) for all plasma particles. In practice, this is impossible.

Often it is useful, and in many problems sufficient, to trace the motion of individual
charges in a given electromagnetic field. Examples of this are the motion of cosmic rays,
or high-energy particles in the Earth’s radiation belts. These problems are often relativistic

F= %(}/mv) =g(E+vxB), (2.28)

where ¥ = (1 — B2)~'/2 is the Lorentz factor with B = v/c. The time component of the
underlying four-force gives the power

aw d ’

= =qgE-v. 2.2

o = e =akv (2.29)
Because the magnetic part of the Lorentz force is perpendicular to v, only the electric
field performs work (W). Thus any “magnetic” acceleration of charged particles requires
the change in the magnetic field, which induces an electric field in the frame of reference
where the acceleration is observed.

2.2.3 Potentials

Equation V-B = 0 implies that there is a vector potential A, for which B =V x A. Inserting
A into Faraday’s law we find

V x (E+0dA/dt) =0 (2.30)

E=—0A/0t—Vg, (2.31)

where @ is the scalar potential.
Thus we have expressed six variables (E, B) using four functions (A, ¢). For this we
needed four components of Maxwell’s equations. The remaining four equations are now

2(V-A
Vip+ (at ):—p/so (2.32)
,. 19°A 1dp,
VAA-Goa VYV AT G5 = —Hl. 233
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At first these look more complicated than the original equations, but they are much easier
to solve analytically. The point is that E and B are derivatives of the scalar and vector
potentials and there is quite a lot of freedom to transform the potentials keeping their
derivatives unchanged. Such transformations are called gauge transformations. There are
several gauge functions ¥ to define the transformations

A—A=A+V¥ (2.34)
Q0 — ¢ =¢p—0¥/ot. (2.35)
The Lorenz' gauge is defined by

A LL‘P
VA =0 (2.36)

This gauge always exists but is not unique. It transforms the Maxwell equations to inho-
mogeneous wave equations

1 92

(V2= 553)0=—p/e (2.37)
, 192
(V2= 535)A = —pol. (238)

The solutions of which are the retarded potentials

P r I_R/C) 3.7
o(r,1) = 471'8() / &r (2.39)
_ Ho J( ) _R/C) 3.7
Alry) = £ [RE 2 3y, (2.40)

where R = |[r —r’| and integrations are over the volume where the source terms are not
zero. Thus we have solved Maxwell’s equations for given p and J.

In terms of special relativity the wave equations are actually the time and space com-
ponents of the wave equation for the four-vector A%*(¢/c,A)

0°A% = (V2 — CZ&IZ) A% = —ppj* (2.41)

where j* = (cp, J) is the four-current.

Feed your brain by deriving the expressions for the retarded potentials

! This is not a spelling error. The first person to apply this method was Ludvig V. Lorenz (1829-1891) in
1867, not the much more famous Hendrik A. Lorentz (1853-1928).
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Example: The radiation terms of the electromagnetic fields

Denote the retarded quantities by brackets [f] = f (¢, — R/c) and calculate the fields from
the potentials. This results in

E:47r80{/ R S /( 3 _[J])dg/
L /( I xR) XR)W} (2.42)

HUo [J] x 37 JI xR 5,
4”{/ e d + - / a’r } (2.43)

where the dot above J denotes the time derivative. Far from the sources (R — oo) the
radiation terms dominate

! (W] xR) xR 5,
Ew= 2.44
rad 477,'8()62/ R3 ar (244)
1 JIxR 5,
Braa = 71— P / o4 (2.45)

E,.s and B, vanish as 1/R. The fields due to static currents and charges vanish as 1/ R?
or faster. Radiation requires temporal variation of J and a charge moving with a constant
velocity does not radiate. We will discuss the electromagnetic radiation in more detail in
Chap. 9.

Another important gauge is the Coulomb gauge
V-A'=0. (2.46)
The vector potential is found by transformation
V¥ =_V.A, (2.47)

which defines ¥ uniquely (to an additive constant) when A and @ — 0 for r — co.
Now the scalar potential

_ 1 p(r’,t) 3./
Q= 747&90 /7R d’r (2.48)

is not retarded but determined by the instantaneous value of p everywhere. Thus the
Coulomb gauge is not Lorentz> covariant and one must be careful when transforming
between moving coordinate systems.

2 Now the credit goes to the right Lorentz
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The vector potential is obtained from the wave equation

10°A 1 _do

VA- -2 = vV~
c? 01?2 ¢z ot

— HoJ - (2.49)

The first term on the RHS is curl-free. Applying the Helmholtz theorem of vector calculus
we can divide the current to curl-free and source-free components

J=1+J:; VxJ;=0; V-], =0,
where [ stands for longitudinal (curl-free) and ¢ for transversal (source-free). The conti-

nuity equation dp /dt + V- J = 0 reduces (2.49) to

VA — v —HoJ: (2.50)

Consequently, the Coulomb gauge is called transversal gauge. It is also called radiation
gauge because the vector potential calculated from the transversal current

_ Mo [Ji(r,t—R/c)

= I & (2.51)

A(r,t)

is sufficient for the calculation of the radiation fields. The Coulomb gauge separates the
electric field to its static (s) and inductive (i) parts

E,=-V¢:E =-0A/0t, (2.52)

but this separation is not Lorentz covariant.
The Coulomb gauge is technically easier to use than the Lorenz gauge. It is particularly
useful when no sources are present. Then ¢ = 0 and

E=-0A/dt;B=VxA. (2.53)

This is sometimes called the temporal gauge. It is useful, e.g., in studies of Alfvén waves
and wave—wave interactions.

For specific purposes there are several other useful potential presentations. Plasmas are
often embedded in a background magnetic field created by external currents (V x B =0,
e.g., the intrinsic magnetic field of a planet). Then the magnetic field can be expressed in
terms of the magnetic scalar potential as

B=-Vy. (2.54)
Because V- B = 0, y can be solved from the Laplace equation
Viy=0 (2.55)

using familiar potential theory methods.
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Another representation of the magnetic field is in terms of Euler potentials (o, B, %) as
A=aVp+Vy (2.56)

=
B=VxA=Vx(aVB+Vy)=VaxVp. (2.57)

Note that B is perpendicular to both Va and Vf, and o and 8 are constants along the
magnetic field. Thus the magnetic field line can be visualized as the intersection line of
o = const. and 3 = const. This presentation is particularly useful in problems where tracing
of magnetic field lines is required.

2.2.4 Energy conservation

The energy conservation of electromagnetic fields is expressed by the Poynting theorem.
In a linear medium the energy densities of electric and magnetic fields are given by

1
wg = SE-D (2.58)

"me=lya (2.59)
Wy = — . =—1. . .
M= 2

Define the Poynting vector as S = E x H. From Maxwell’s equations we find

JD B
V'S:_E'J_E'W_H'W' (2.60)

The Poynting theorem is the integral of this expression over volume %"

/J Ed3r*/ V. Sd3r+/ (wg +war) dr . (2.61)

The LHS is the work performed by the electromagnetic field per unit time (i.e., power) in
volume ¥". The first term on the RHS is ¢, S-da, i.e., the energy flux per unit time through
the surface 0 ¥". Thus the Poynting vector gives the flux of electromagnetic energy density.
The last term on the RHS expresses the rate of change of the electromagnetic energy in
volume ¥

In the following we often assume that the fields have harmonic time or space depen-
dence (< exp(—ior), exp(ik -r)), or both in the case of plane waves. For complex fields
one must be careful with products. We interpret the real part of the complex vector as the
physical field. For example, consider an electric field with harmonic time dependence

E(r,7) = Re{E(r)exp(—iot)} = % [E(r)exp(—ior) + E*(r)exp(iot)] .

Denote the complex conjugate by cc. The product of E and J is
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J-E = — [J(r)exp(—iowr) 4 cc] - [E(r) exp(—it) + cc]

i

=5 Re{J*(r)-E(r) +J(r) -E*(r)exp(—2iet)} . (2.62)

The time average of this is

J-E) = %Re{J* E}. (2.63)

The Poynting theorem now reads as
1
5/ J*-Ed3r+7g S-da+2ia)/(wE+wM)d3r:O. (2.64)
¥ ¥ ¥

Note that S = JEx H* ; wg = {E-D* ; wy = 1 H-B*.
Using the Poynting vector we can express the momentum density of the electromagnetic
field as
P=D xB = &S (2.65)

when the momentum of the field is
Picld = /} DxBdr. (2.66)
The elements of the Maxwell stress tensor are
Tij:EiDj+BiHj—%(E-D+B~H)6,~j. (2.67)

With this we can express the conservation of momentum as

d PR
- \Pmec ield )i — —T;jd’r= Tiinida; 2.68
d[(p htPr ld)l ;/r‘ ij ijar fiﬂ; ijnjaa ( )

where the mechanical force is the Lorentz force

d Pmech _

o A (PE+JxB)dr. (2.69)

2.2.5 Charged particles in electromagnetic fields

In a homogeneous static magnetic field in absence of an electric field the equation of

motion of a charged particle

m% =q(vxB) (2.70)

has a solution with constant speed along the magnetic field and circular motion around the
magnetic field line with the angular frequency
qB

0= @2.71)
m
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The radius of the circular motion (Larmor radius, cyclotron radius, gyro radius) is

V] o my
o] |q|B”

rp = (2.72)

where v, = /v + vg is the velocity perpendicular to the magnetic field. The gyro period

is

2z
||

T (2.73)
Looking along the magnetic field, the particle rotating clockwise has a negative charge. In
plasma physics this is the convention of right-handedness.

This way we have decomposed the velocity to a constant speed v along the field and
circular velocity v, perpendicular to the field. The sum of these components is a helical
motion with the pitch angle o defined as

tano = VJ_/VH . 2.74)

Hannes Alfvén realized that this decomposition is convenient even in temporally and
spatially varying fields if the variations are slow compared to the gyro motion. The method
is called guiding center approximation. The center of the gyro motion is the guiding center
(GC) and the frame of reference where v = 0 is the guiding center system (GCS).

In the GCS the charge gives rise to a current [ = g/, with the associated magnetic

moment - )

1 B 1 W
S B AR P 2.75)
2 m 2 B B

The magnetic moment is actually a vector

u :Iirr%:

1
B=SqrLxvy, (2.76)

which is always opposite to the ambient magnetic field. Charged particles tend to weaken
the magnetic field and thus plasma can be considered as a diamagnetic medium.

If there is also a constant electric field, the GC drifts perpendicular to both the electric
and magnetic fields with the velocity

ExB
VE=—py - 2.77)
This is called electric drift or ExB drift. The drift velocity is independent of the charge
and mass of the particle.

The ExB drift corresponds to the Lorentz transformation to the frame co-moving with
the GC

E=E+vxB. (2.78)

In this frame E’ = 0 = E = —v x B, from which we find the solution (2.77) for v. This
coordinate transformation is possible for all sufficiently weak forces F,| resulting in a
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general expression for the drift velocity

FJ_ x B
= 2.79
VD B (2.79)
This requires F /gB < ¢. If F 2 qcB, the GC approximation cannot be used.
From (2.79) we readily find the gravitational drift velocity
x B
v = 8 M (2.80)

qB? q

Gravity separates particles according to their m/q, not in the direction of the gravitational
force but perpendicular to it and to B.

The same formalism applies to a slowly time varying electric field if we assume the
magnetic field to be constant. This results in the polarization drift

1 dE,
T @B dt

vp (2.81)
We will discuss inhomogeneous magnetic fields and rapidly time varying electric fields
in Chap. 3.

2.3 Tools of Statistical Physics

Plasma physics is sometimes considered as applied electrodynamics. Equally well it could
be characterized as statistical physics of charged particles. The computation of the motion
of all plasma particles from Maxwell’s equations and the Lorentz force is an impossible
task. Fortunately, we do not always need to know the details of individual particles, but we
are interested in the macroscopic properties of the gas or fluid (density, flux, flow velocity,
temperature, pressure, heat flux, etc.) and their evolution in space and time. To handle this
we need tools of statistical physics.

2.3.1 Plasma in thermal equilibrium

There are different ways to find the fundamental plasma equations. Here we start from
equilibrium statistical mechanics. Let there be N particles in the plasma (N/2 electrons,
N/2 singly-charged ions). Assume that the plasma is in thermal equilibrium at the tem-
perature 7. The probability of finding the particles in locations (ry,...,ry) is given by the
Gibbs distribution

1 st Wi
D(ri,....,ty) = exp <_Zk%:rklk) , (2.82)
where it
VVik - + Dext

B 4meg|r; — 1y
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and

Z= /exp( ZkaZTk 'k> &ry..dry .

Z is the partition function and @, describes the potential energy of all external fields.
The probability of finding particle 1 at r; is

Fi(r) = /D &ry..dry . (2.83)

If there are no external forces, F; = 1/% (¥ is the volume). Correspondingly, the proba-
bility of finding particle 1 at r; and particle 2 at r; is

By(ry,r) = /D &ri..dry (2.84)

and so on
Fy(ry,...,r5) = /D Bror..dry . (2.85)

Functions Fy,..., Fy are called reduced distributions. At the limit of non-interacting parti-
cles (Wy, — 0)
F, —)F](I‘[)F[ (r2)~-~F1 (I‘S) = 1/7’“. (2.86)
The reduced distributions can be written using the Mayer cluster expansion (we use the
notation: r; — 1 when there is no risk of confusion):

B(1,2) = [1+Pi(1,2)|F(1)F(2)
F5(1,2,3) = [14+ Pi2(1,2) + P12(2,3) + P12(1,3) + T123(1,2,3)] x
F(DF(2)R(3)

and so on. Pyy is the two-particle (or pair) correlation function and Tiy3 is the three-
particle correlation function. At the plasma limit (A > 1) the Coulomb interaction is
weak and 7123 < Py < 1. Thus it is usually sufficient to consider pair correlations only.
Note that P is symmetric: P2(1,2) = Pi2(|r; —r2|).

The complete Gibbs distribution depends also on velocity:

1 i Wi mv;
D*(ry,...,tN,V],...,VN) = — €Xp <—):kz'>klk) exp (—lemlvl> . (2.88)

(2.87)

z* kgT kT

In this book we will consider non-relativistic plasmas only and can neglect the velocity
correlations. The relativistic particles encountered in radiation belts or in solar energetic
particle events can be treated as test particles and are not assumed to have significant
effects on the macroscopic quantities. Of course, there are relativistic plasmas in the uni-
verse. For example, in the magnetospheres of pulsars not only relativistic but also quantum
effects become important. Quantum fluctuations produce electron—positron pairs, which
annihilate and radiate 511-keV gamma rays.
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Differentiating F, setting s = 2, and assuming 773 < Pj» we can derive the equation
for P>

9P ! 5’<4W2>+ (2.89)

al‘l + 47T€0kBT 81‘1 |I‘] — I‘2|
1

Ny, d qd19a 3
IneT & ) / 12(2,00) + Pro(1, oc)]arl ( &rq =0,

Iri —rel

where o indexes the particle species. This equation can be solved by Fourier transforma-
tion. The result is

q192  exp(—|r1 —r2|/Ap)

P - =
12([r1 —r2f) 4neoksT r| — 13|

, (2.90)

where we again encounter the Debye shielding. The assumption P < 1 is valid if
|ri —rp| > Ap. The Mayer expansion is valid also inside the Debye sphere, where
Pi =< 1/|r; — | as long as the distance |r; — r»| remains larger than the average distance
between particles in temperature 7.

From this description it is possible to derive equilibrium thermodynamic properties of
the plasma. For example, in the plasma approximation (A > 1) the equation of state is
practically that of the ideal gas

P:n@T+0<i>. (2.91)

Unfortunately, due to the small collision rates space plasmas seldom are in thermal
equilibrium and we must look for a more general approach.

2.3.2 Derivation of Vlasov and Boltzmann equations

There are two main roads to the Boltzmann equation for a plasma. Consider first the
Klimontovich approach. It starts from the exact density of particles in the six-dimensional
phase space (r,v). Consider a single particle whose orbit in this space is (Ry(¢),Vi(¢)).
The “density” of this particle is

N, v,) = 8l — Ry (1)]8[v— V1 (1)), (2.92)

where § is Dirac’s delta function.’

Summing over all particles of a given species o we get the density function Ny, for
the species. Writing the equation of motion under the Lorentz force for each particle and
summing over particles of a given species leads to the Klimontovich equation for Ny

ONg 8Na

aNa
ot ¥ or

ov

3 Dirac’s delta is not really a function, being infinite at one point and zero elsewhere, but we prefer to use
in this context the sloppy language of physicists.

+—(E+V><B) =0. (2.93)
M
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This is still a very detailed equation containing exact information of the orbits of all par-
ticles. Ny is composed of sums of §-functions, which makes practical calculations cum-
bersome. Because we are not interested in the orbits of individual particles, we can take
ensemble averages of Ny, and of equation (2.93). Denoting the average of Ny(r,v,?) by
fa(r,v,t) and neglecting the particle collisions, the ensemble averaging of (2.93) leads to
the Viasov equation for fy

9fa 9 fa

+v. He e gy yxB). 9/

ot TV or T oy O (2.94)

Another route is the Liouville approach. It starts from distribution functions and
avoids O-functions and ensemble averaging. Consider a general distribution of N parti-
cles F(ry,...,xN; V1, ..., Vy;t ), which is normalized as [Fd3ry - d3ryd®vy - dPvy = 1.
For a plasma of N/2 ions and N /2 electrons in thermodynamic equilibrium F = D, where
D is the Gibbs distribution of the previous section.

The penalty of avoiding §-functions is to deal with a 6N-dimensional phase space. F
contains information of all particles and is again much too detailed for practical use. A set
of reduced distribution functions can be defined as follows. The one-particle distribution

function fo(,l) for species a is
f(l) (r1,vi,t) /Fd3r2 rNd3V2 . --d3vN . (2.95)

¥ is the finite spatial volume where F is nonzero for all ry,ry,...,ry. The two-particle
distribution function is

SO = 1’2/Fd3r3 o Drydvs - dPyy (2.96)

and so on. Statistical physics tells us that F fulfills the Liouville equation

oF X (0F oF

vi+—-al | =0 2.97
ot +;(8ri Vit oy, a,) ! @97
where a! is the acceleration by all interactions, including collisions.

The equation of motion for fé” is found by integrating (2.97) over all coordinates
except (ry,vy)

0 d JdF
fa +vi- fa +¢’/a? e’y dPryd®vy - dPvy =0 (2.98)
ot 81'1 8V1
Here the total number of particles was assumed to be conserved.

If there are external forces (a ) only, we again get the Liouville equation

ors) ord g oard
or VU or TR Gy,

—0. (2.99)
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Denote the interactions between particles by a;;. Now the third term of (2.98) reduces to

af e 3.3
al . 8\?1 —&—%/alﬁ-(Mfaﬁ(rhrﬁ,vl,vﬁ,t)d rgd’vg .

Note that (2.98) is not a closed equation for f M), asit depends on f (2). We could write a
similar equation for f (2), which then depends on f (3), and so on. This is called the BBGKY
hierarchy (after Bogoliubov, Born, Green, Kirkwood, and Yvon). In higher orders this
hierarchy becomes intractable and the series must be truncated with physical arguments.
We do it by approximating f()

If the interactions between particles were strong and of short-range (as in ordinary
gases) we would end up with the Boltzmann equation

dfe) _ 3t ot v af _ (315
di— o o 9w a ) -

(2.100)

However, in a plasma the dominating interaction is the long-range Coulomb force, which
is, in this context, weak. Fortunately, in a plasma the combined effect of remote charges
is, on the average, stronger than the acceleration due to the nearest neighbor. The average
acceleration (a™) is from the viewpoint of a single particle the same as the acceleration by
the external Coulomb force af. Thus we can replace a; = a¥ + (a™). The effect of binary
collisions is

9f i) .92
( “) Z/ aip — (alf)) aVlfégd3rﬁd3vﬁ. (2.101)

Assuming that the only external force is the Lorentz force we have the Boltzmann equation
for plasma

o of  qa afs)  (ars
5 TV +m—a<E+v1xB>- v\ o) (2.102)

where the average fields (E) and (B) fulfill the average Maxwell equations

1 9(E
V~<E>:5—O VX <B>:qu+c—2%. (2.103)

Note that the normalization of fél) is different from the normalization of the distribution
function f, in the Vlasov equation (2.94). We retain the same plasma kinetic equation
by substitution fy = (Net/# )£

A thorough treatment of the collision term is a substantial task. The interested reader is
encouraged to consult advanced text-books on Balescu—Lenard and Fokker—Planck equa-
tions. We will discuss some elements of the Fokker—Planck theory in Chap. 10. Note that
the interparticle collisions may be of very variable nature. They may be elastic, but the
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kinetic energy of a colliding plasma particle may also be transferred to internal energy of
neutral particles or molecular ions of the plasma. Furthermore, there are collisions leading
to recombination, ionization, and charge exchange, which are important processes associ-
ated with space storms.

A simple and often sufficient first approximation for the collision term is the relaxation
time approximation, also called the Krook model where the average collision frequency is
approximated by a constant v, and

ofa) _
(al)c = _Vc(f_fO) : (2.104)

where fj is the equilibrium distribution and |f — fo| < fo . Note that the equilibrium here
is a wider concept than a Maxwellian distribution. It is enough that fj is a stable solution
of the Vlasov equation.

2.3.3 Macroscopic variables

The Vlasov and Boltzmann equations are equations of motion for the single particle dis-
tribution function f(r,v,t). The function expresses the number density of particles in a
volume element dxdydzdv,dv,dv; of a six-dimensional phase space (r,v) at the time ¢
(thus the ST units of f are m—®s?). In the following we use the normalization

//f(r,v,t)d3rd3v:N, (2.105)
¥ Jv

where N is the number of all particles in the phase space volume considered.

The average density in volume ¥ is (n) = N/¥ . However, the particle density is usu-
ally a function of space and time. It is defined as the zero order velocity moment of the
distribution function

n(r,t) = /‘f(r,v,t)d3v. (2.106)

We define the macroscopic quantities as velocity moments of the distribution function
[fd® 5 [vfd®v ; [vwfd?v.

In a plasma different particle populations (labeled by o) may have different distribu-

tions and thus have different velocity moments (n4/(r,?), etc.). If the particles of a species
are charged with charge g, the charge density of the species

Po = qala - (2.107)

The first-order moment yields the particle flux

Iy(r,t) = /vfa(r,v,t)d3v. (2.108)

Dividing this by particle density we get the average velocity
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fvfa(r,v,t)d3v

v 1) = 2.109
Ot(r; ) ff(x(r7v7t) d3v 9 ( )
from which we can further determine the current density
Ja(rJ)ZCI(xFa:C]ocnaVoc . (2.110)
In the second order we find the pressure tensor
Po(r,1) = mg /(v ~Vo)(V=Vo)fa(r,v,0)d*v, (2.111)
which in a spherically symmetric case reduces to the scalar pressure
Py = % (V= Vo) Lo (0, V,0) d3v = nckpTy . 2.112)

Here we introduce the concept of temperature Ty. In the frame moving with the velocity
V the temperature is given by

mg [V fo(r,v,t)d>y
2 [ falr,v,t)d3y
which for a Maxwellian distribution is the temperature of classical thermodynamics. In

collisionless plasmas equilibrium distributions may be far from Maxwellian. Thus temper-
ature is a non-trivial concept in plasma physics.

3
7kBTOC(r7t) =

5 (2.113)

Train your brain

Show that a spherically symmetric (in the velocity space) distribution function fy(r,v,?)
yields an isotropic pressure Py;j = po&;j. What kind of distribution function yields the
diagonal gyrotropic form

Poij = p10ij+(p) —pL)0363; ?

What is the value of scalar pressure p in this case? Here the “parallel” direction (e.g.,
the direction of background magnetic field) is assumed to be in the direction of the axis
number 3.

The relation between the particle pressure and magnetic pressure (magnetic energy den-

sity) is the plasma beta
B 2Up Y o nokpTy

B2 '

If B > 1, plasma governs the evolution of the magnetic field. If § < 1, the magnetic field

determines the plasma dynamics. Values of beta are very different and highly variable in

various landscapes of space storms. In the solar photosphere beta varies from 1 to 100.

In the lower corona it is of the order of 10~#~10~2 and higher up it starts rising again to

(2.114)
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be around 1 in the solar wind, but also there with large variations. In the Earth’s magne-
tosphere the lowest beta values (8 ~ 107°) are found in the auroral region magnetic field
lines at altitudes of a few Earth radii. In the tail plasma sheet 3 ~ 1, but in the tail lobes it
is some 4 orders of magnitude smaller.

The chain of moments continues to higher orders. The third order introduces the heat
flux , i.e., temperature multiplied by velocity. It can usually be neglected in the magneto-
sphere but is very important at the solar end of space storms.

2.3.4 Derivation of macroscopic equations

Next we derive macroscopic equations by taking velocity moments of the Boltzmann equa-
tion. For the needs of many space applications we could start from the Vlasov equation,
but retaining the collision term gives us a more complete macroscopic theory. When not
needed, the collision effects can be dropped at the macroscopic level.

We start from the Boltzmann equation for species o

afa afoc da afai afa

Zeroth moment

We first integrate (2.115) over the velocity space. For physical distributions f, — 0, when
|[v| — oo, and the force term vanishes in the integration. If there are no ionizing nor recom-
bining collisions, or charge-exchange collisions between ions and neutrals, the zero-order
moment of the collision term is also zero. The integral of the first term of (2.115) yields
the time derivative of density. The second term is of the first order in velocity

/V-%d:;\/:v- Vfad3V:V'(l’l(xVa) (2116)

and we have found the equation of continuity

8”&
ot
Continuity equations for charge or mass densities are obtained by multiplying (2.117)

by g or mg, respectively. The equation of continuity is an example of the general form of
a conservation law

+V-(naVg) =0. (2.117)

oF
V.G = :
5, G=0, (2.118)

where F is the density of a physical quantity and G the associated flux.

First moment

Multiply (2.115) by mqyv and integrate over v. This yields the momentum transport equa-
tion, which actually is the macroscopic equation of motion
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A )
namaTl‘a + ngmoVe - VVaq — ngqa(E+Ve xB) + V- Py
(0
:mal/v<afta)cd3v. (2.119)

Train your brain

Make a careful derivation of Eq. (2.119). You need to apply the continuity equation.

The average electric and magnetic fields in (2.119) are determined by both internal and
external sources and fulfill the average Maxwell equations

n
V-(E) =Y ‘;q“ + Pext /€0 (2.120)
o 0
1 9(E
Vx(B) = sziy + 10 Y nagaVa+ HoJe - (2.121)
o

Because collisions transport momentum between different plasma populations, the col-
lision integral does not vanish, except for collisions between the same type of particles.
The collision term is a complicated function of velocity. A useful approximation related to
the Krook model (2.104) is

9 fa
ma/V ((%)C d3V = _§mana(va _Vﬁ) <VaB> ) (2.122)

where (Vv,p) is the average collision between particles of type « and 3.

The second-order contributions V¢ - VV and .2, arise from terms containing products
vv or v-v. The divergence of # contains information of inhomogeneity and viscosity of
the plasma. Note that £, is not independent of the collisions. For example, if the collisions
are frequent enough, the pressure tensor becomes diagonal, or even isotropic in which case
V.% - VP,

Second moment

The second velocity moment yields the energy or heat transport equation (conservation
law of energy). We can write the equation in the form

3 aT,
E”akB (ata + Vg 'VTtx) +PoyV- Vg =

2
—V~Ha—(£ﬁd(’x~V)-V+§t(’W;Va) : (2.123)
C
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where the isotropic part of the pressure P, is written on the LHS and the non-isotropic
part #*), on the RHS. The relation between the scalar pressure Py and temperature Ty, is
assumed to be that of an ideal gas Py = ngkpTy, .

The third-order term Hy, describes the heat flux. An equation for it is found by taking the
third moment. This contains fourth-order contributions, and so on. The chain of equations
must again be truncated at some point, just as was done in the case of kinetic equations.
In many practical problems this is made in the second order, either by neglecting the heat
flux, or by substituting the energy equation by an equation of state. Here physical insight
is essential. Krall and Trivelpiece [1973] state this: “The fluid theory, though of great
practical use, relies heavily on the cunning of its user”. In collisional and Maxwellian
plasmas the truncation may be easy to motivate, but in collisionless space plasmas it is a
more subtle issue.

2.3.5 Equations of magnetohydrodynamics

Now we have macroscopic equations for each plasma species. In a real plasma several
species co-exist; in addition to electrons and protons, there may be a variety of heavier
ions, as well as neutral particles, which may contribute to plasma dynamics through colli-
sions, including charge-exchange processes (e.g., Sect. 14.1.4). Sometimes it is also nec-
essary to consider different species of the same type of particles; e.g., in the same spatial
volume there may be two electron populations of widely different temperatures or average
velocities. Such situations often give rise to plasma instabilities to be discussed in Chap. 7.

As the first step toward a single-fluid theory it is useful to consider all electrons as one
fluid and all ions as another. This is called a two-fluid model. The separate fluid components
interact through collisions and electromagnetic interaction. In the following derivation of
the single-fluid theory, it may be practical to think only two components although we have
written the expressions for an arbitrary number of species.

Magnetohydrodynamics (MHD) is probably the most widely known plasma theory. In
MHD the plasma is considered as a single fluid in the center-of-mass (CM) frame. This is
a well-motivated approach in collision-dominated plasmas, where the collisions constrain
the plasma particles to follow each other closely and thermalize the distribution toward a
Maxwellian, which makes the interpretation of velocity moments straightforward. MHD
works also remarkably well in collisionless tenuous space plasmas. However, great care
should be exercised both with interpretation and approximations.

The single-fluid variables are defined as:

mass density
Pm(r,0) =Y nagme, (2.124)
[0

charge density
Pqy(r,1) =Y naqa (2.125)
a

(= e(n; — n,) for singly charged ions and electrons),
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macroscopic velocity
o YonamaVa

V(r,z (2.126)
(r,1) Y nog
current density
J(r,1) = Z”aCI(xVou (2.127)
o
and pressure tensor in the CM frame
PM(r1) :ma/(v—V)(v—V)facPv, (2.128)
from which we get the total pressure
Pa)=Y #Mrr). (2.129)
o

Summing the individual continuity and momentum transport equations over particle
species yields the continuity equations

IPpm
5; +V-(pwV) =0 (2.130)
d
a/’tq 1V.J=0 (2.131)
and the momentum transport equation
12AY .
Pm W—&-V-VV =p,E+JxB-V.#. (2.132)

The momentum equation corresponds to the Navier—Stokes equation of hydrodynamics
(6.2) where the viscosity terms are written explicitly (here they are hidden in V- &),
At macroscopic level the deviations from charge neutrality are small and p,E is usually
negligible. The magnetic part of the Lorentz force J x B (sometimes called Ampere’s
force) is, however, essential in the theory of magnetic fluids.

Ohm’s law in fluid description is a more complicated issue. In the particle picture the
plasma current is the sum of all charged particle motions. In a single-fluid theory the
current transport equation is derived by multiplying the momentum transport equations
of each particle population by g4 /mq and summing over all populations. In the two-fluid
case (e,i) we get

9 2

—J+v-(VJ+JV—Vqu)=Z”°“’“E

8t a My

+<e2+ez> pmVxB_<emi_eme> JxB (2.133)
me, mi) me,+m; M, m; ) me+m;

€ cpCM M pCM dfa 3
——V. <L'//Ji Ej—gﬁe >+Za:/qO¢V <at>cd v,

me
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where the products V], etc., are cartesian tensors (dyads) with elements V;J;, and the
divergence of a dyad is a vector, e.g., with components }; d;V;Jy. This equation expresses
the relationship between the electric current and the electric field. Thus it can be called
generalized Ohm’s law.

The first step to simplify (2.133) is to approximate the collision integral introducing a
constant collision frequency v

Z/%ﬂ(%%)d%Vl (2.134)

Defining the conductivity by ¢ = ne? /vm, and neglecting all derivatives and the magnetic
field in (2.133) we get the familiar form of Ohm’s law J = cE.

Not all terms in the generalized Ohm’s law are equally important. There are some that
clearly are smaller than the others (e.g. o< m,/m;). Furthermore, the derivatives of the
second-order terms VJ, JV and VV can usually be neglected. At this level we have the
generalized Ohm’s law in the form that contains the most important terms for space plas-
mas:

1 1 _ d
E+VxB:£+—JxB——Vf%+ﬁ%JL (2.135)
c ne ne ne? dt
Assume further so slow temporal changes and large spatial gradient scales that |J x B|,
|0J/dt], and |V - #| are all smaller than |V x B|. This leaves us with the standard form of
Ohm’s law in MHD

J=0(E+VxB), (2.136)

which already familiar from elementary electrodynamics in cases when moving frames are
taken into account. Here the moving frame is attached to the fluid flow with the velocity
V. If the conductivity is very large, we find Ohm’s law of the ideal MHD

E+VxB=0. (2.137)

The road from the Liouville or Klimontovich equations to this simple equation is long
and there are several potholes on the road. For example, while the ideal MHD is a reason-
able starting point, it is not at all clear that the next term to take into account should be
J/o. In many space applications the Hall term J x B/ne and the pressure term V - # /ne
are more important.

There are effects that originate at the microscopic level, which are not due to actual
interparticle collisions, but which may lead to “effective” resistivity or viscosity at the
macroscopic level. Various wave—particle interactions and microscopic instabilities tend to
inhibit the current flow. Often the macroscopic effect of these processes looks analogous
to finite v and is called anomalous resistivity.*

Another issue is that plasma does not need to exhibit a local Ohm’s law at all. In tenuous
space plasmas it may happen that there are not enough current carriers to satisfy V-J =0
without extra acceleration of the charges. An example is the magnetic field-aligned po-

4 This is one more example of unfortunate terminology. There is nothing anomalous in the physics behind
the non-collisional resistivity.
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tential drop above the discrete auroras. The coupling between the ionosphere and magne-
tosphere requires more upward field-aligned current to be drawn through this region than
there are electrons readily available from the magnetosphere. The global plasma system re-
acts to this by setting up an upward-directed electric field to accelerate electrons to so high
velocities that the current continuity is maintained. This results in a global current—voltage
relationship, which Knight [1973] derived into the form

. kgT, Bj Bg eA(p
i 1= (-5 ) (Grmm )] @1

Here By is the magnetic field in the ionosphere, Bg in the equatorial plane in the mag-
netosphere and A¢ the potential difference between them. At the limit eA@/kpT <
(Br/Bg — 1) this reduces to

JH =K (A(p—l— kBTe) s (2.139)
e

which is often approximated as the direct linear relationship between the current and volt-
age of the form
Jy=KAg. (2.140)

This last form is known as the Knight relation. The coefficient K is a function of plasma
parameters and thus not a universal constant.

Feed your brain

The current—voltage relationship is actually not quite as simple as given above. Read
carefully the paper by Janhunen and Olsson [1998] and fill in the gaps in their deriva-
tions.

The next equation in the velocity moment chain is the energy transport equation. After
some tedious but straightforward calculation the energy equation can be written in the

conservation form 5 2 2
\% B
. — | =-V.H. 2.141

3 [p ( > er) + ) ] ( )

Here w is the enthalpy that is related to the the internal free energy (per unit mass) of the
plasma u by w = u+ P/p,,. The RHS is the divergence of the heat flux vector H, which is
a third-order moment. After some reasonable approximations it can be written as

2 2
2 Pm Uo ne

JxB JB> mB 9]
- + X == .
OlUy  Uone  Hone? Ot

(2.142)

When integrated over a finite volume ¥ the LHS of (2.141) describes the temporal change
of the energy of the MHD plasma in that volume and the RHS the the energy flux through
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the boundary 07 and energy losses due to resistivity. Thus we have found the MHD
equivalent of Poynting’s theorem of elementary electrodynamics.

Because the energy equation depends on third-order terms, we do not get a closed
set of MHD equations without some further approximations. Often the chain is cut by
selecting an equation of state. After this the energy equation can be written in a simpler
form. Another frequently adopted approach is to assume an isotropic pressure. We can
start from the ideal gas law P = nkgT and use some of the following equations of state
depending on what kind of processes we are considering:

n\ 7! n\’
T="T <> i P=P <) , (2.143)
no no

where the polytropic index y = cp/c, is 5/3 in a three-dimensional plasma and ¢, and ¢,
are the specific heat constants for constant pressure and constant volume, respectively.

e adiabatic process

e isothermal process
the above with y =1 = P =nkgTy

e isobaric process
the above with ¥ =0, i.e., constant pressure

® isometric process
the above with y = o, i.e., P~ 0, e.g. the case of § < 1.

Using the equation of state we can write the equations of MHD in the form

a;;m +V(va) =0 (2.144)
. <§t+v.v>v+VPJxB0 (2.145)
E+VxB=]J/c (2.146)
n\7
P="p () (2.147)
no
oB
5 = ~VxE (2.148)
VxB=puplJ. (2.149)

2.3.6 Double adiabatic theory

Due to the presence of the magnetic field the particle distributions in space plasmas are
not always isotropic and the pressure tensor does not even need to be diagonal. To fully
appreciate the anisotropic effects we need to refer to some concepts to be investigated in
Chap. 3, but their macroscopic consequences are useful to introduce here for completeness
of the present discussion.
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Consider the ideal MHD equations

%Ltrmrv.(pmv) —0 (2.150)
pm<§t+V~V>V+V~3—"—JxB—O (2.151)

E+VxB=0 (2.152)
and assume that the pressure tensor is diagonal and gyrotropic

PO
#=loprP 0]. (2.153)
0 0P

Assume further that both the parallel and perpendicular pressures behave adiabatically and
fulfill the ideal gas equation of state

P = nkpT| . (2.155)

There are one parallel and two perpendicular dimensions. From thermodynamics we
know that the polytropic index depends on the number of dimensions d as y = (d +2)/d.
Setting ¥, =2 and ¥ = 3 is, however, wrong because the magnetic field not only breaks the
symmetry of the pressure tensor but also couples the perpendicular motion to the parallel
motion in inhomogeneous plasma (e.g, the mirror force, see Chap. 3).

Assume that the motion of the individual particles is adiabatic, which means that the
magnetic moment ¢t = W, /B is constant. Then the average magnetic moment (i) =
kgT| /B = P, /nB is also constant. This yields the perpendicular equation of state

d P\
4 (me) _o0. (2.156)

The parallel direction is more difficult. Chew, Goldberger, and Low developed a theory
[Chew et al, 1956] assuming that the heat flux parallel to the magnetic field is negligible.
This leads to the equation of state

d (PIR\ _d (RB

—|—==]=—|—%]=0. 2.157

dt ( Pi dt \ py 157
This anisotropic version of MHD is called double adiabatic theory or CGL theory. Now

the pressure tensor is of the form & = P, .# + (P| — P. )bb, where b = B/B and .# is the
unit tensor. The momentum equation separates into two equations

dv B>\ (B-V)B (PL el )
wl — ) +V, (P +— ) — +1)=0 2.158
P (dt>L L(L 2#0) o \ B/ (2159
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dv VB
P (dt) H +V) P+ (PL—Fy) (B) = 0. (@159

In the CGL theory the parallel and perpendicular polytropic indices are not constant
numbers. Assuming that p)| o< n'l and p | o n”: the following relations are found

_+, In(B/By)
YL=1+ In(n/no) (2.160)
. ln(B/Bo)
Y= 3 2ln(n/no) , (2.161)
from which
Y +2r.=5. (2.162)

While being related to each other, ¥, and ¥) are spatially varying functions in an inhomo-
geneous plasma.

In space physics the CGL equations (2.158, 2.159) are sometimes useful, e.g., in the
studies of firehose and mirror instabilities (Chap. 7) related to shock waves. However, one
has to be careful with the validity of the approach. For example, the CGL theory predicts
that the temperature depends on the magnetic field as

T <B ; T (n/B)*. (2.163)

For example, direct observations in the magnetic dipole field geometry above the auro-
ral ionosphere show that the perpendicular temperature does not scale as 7', o< B. Here,
and in many other practical examples, the CGL heat flux argument is not valid. In the
auroral case the particles precipitate to the upper atmosphere carrying energy (heat) with
them. This is actually one of the major sinks of energy associated with space storms in the
magnetosphere, as will be discussed in Chap. 13.



3. Single Particle Motion

In Chap. 2 we discussed the idea of the guiding center (GC) approximation and the solu-
tions of
dp
E :CI(E'FVXB)"‘Fn(meM 3.D
for homogeneous fields. Here we consider the motion in inhomogeneous fields, starting
for simplicity, at the non-relativistic limit (y =1, p = mv).

3.1 Magnetic Drifts

If the inhomogeneities of the magnetic field (d;, V) are small as compared to the Larmor

motion
|0B/dt| < @B ; |VB|L < B/r. ; |VB|| < (a/v|)B,

we can use perturbation theory to solve the equation of motion [Northrop, 1963]. Note
that, in addition to field geometry, the validity of these conditions depends on the energy
and mass of the particles.

For weak inhomogeneities we can make a Taylor expansion around the GC. Let By be
the field at the GC and r the particle’s distance from it. Then

B(r)=By+r-(VB)o+.... (3.2)

In general VB is a tensor whose components form the matrix (d;B;). The tensor describes
two effects: the gradient of the field strength and the curvature of the field lines. These are
tied to each other because a gradient of the field implies curvature of the field lines some-
where in the global magnetic field configuration. Here we follow the standard textbook
approach and treat the gradients and the curvature separately.

To study the gradient effects we move to the frame of reference where v = 0, which
often is not an inertial frame. The equation of motion is

dv ¢ q

— = —(vxBg)+ —=(vx[r-(VB)o])+.... 33

27 = o (VX Bo) (v [r- (VB)o]) (3.3)
H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth, 89

Springer Praxis Books, DOI 10.1007/978-3-642-00319-6_3,
© Springer-Verlag Berlin Heidelberg 2011



90 3. Single Particle Motion

Let v be the solution of the “unperturbed” equation and write v = v + u, where u is a
small correction. Now (3.3) contains the second order term u X [r- (VB)g]. Because r ~ry,
the first-order equation is

d
= L (v xBo)+ L (vo x re- (VB)o)) - (3.4)

This looks formally similar to the zero-order equation (2.79) with the external force F =
q(vo X [r1,- (VB)g]), but now F is a function of B through r;, and VB.

We are looking for the drift of the GC and thus we have to find the average effect over
one Larmor rotation, denoting the average by ( ). We use cylindrical coordinates, where
e || Bo, ey || vo, B=B,e,+Byey + B.e.. The unperturbed Larmor radius vector is given
by

m
ry = —7(V0 X Bo) . (35)
qB;

JoB
F= <—qu XL () > . (3.6)
ar ),
Hereafter we leave out the subscript 0. F has both perpendicular and parallel compo-
nents
0B,
FH = <qV XTIy, ( ) > (37)
or

F, = <—qV X rr (aaBrZ> ez> . 3.9)

Calculate first ). By definition v x r, = (2u/q)e,. Thus

B, 9B,

To calculate F; we select the xy-plane as the plane of the gyro motion, when

A brief exercise yields

ry
vxe, = ——v
rL
d 0 . . d
E = COS(P% +Sln¢aiy
r, = —ri(cosPe,+singe,) .

Noting that (cos? @) = (sin* ) = 1/2 and (sin¢ cos ¢) = 0 we get

_ v /B, 0B
FL=-"3 <ax et 3y ey>. (3.10)

d d
As VL = exa +eya7y,
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F, =—uV,B. (3.11)

Thus the total force is
F=—-uVB. (3.12)

Train your brain

Write down the intermediate steps in the derivation of (3.12)

The force causes acceleration along the magnetic field

Tﬂ:—ﬁw@. (3.13)
dt m

In the perpendicular direction we find a drift across the magnetic field using the same
reasoning as in the zero-order case, i.e., the drift velocity v must balance the force term

_FLxB (3.14)
VG = qu .
1

This is called the gradient drift. It depends both on the perpendicular energy and on the
charge of the particle. Thus the drift contributes to the net plasma current.

We assumed that v| = 0 but found dv| /dt # 0. Thus, depending on the force, the refer-
ence frame may be non-inertial. In a curved magnetic field also the GC motion is curved.
Denote the GC velocity by w (note that generally w) # v|). We let v| # 0 and transform to
a frame co-moving with the GC. Let the orthogonal basis {e;} define the coordinate axes
and choose e3 || vj || B. Now v = Y v;e;, and {e;} rotates when its origin moves with the
GC. The acceleration is

dv dv; de; dv;
w:Zi‘(dte;—&-vidt):;(dte;—i—v,-(w-V)e,-) . (3.16)

The term Y v;(w - V)e; is due to the curvature and causes a centrifugal effect. Consider
again the averages over one Larmor rotation

Fc:—<mZv,~(w~V)ei> . (3.17)

Due to the assumption of weak curvature (w| - V) e; can be approximated to be constant in
every point during one rotation. Because v; and v; oscillate, (vie;) = (ve;) = 0. Further-
more, during one rotation v ~ w) and thus

szzgﬂnwﬁ@3~V)e3. (3.18)
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A little exercise in differential geometry yields
(e3-V)es =R¢/R%, (3.19)
where Rc is the radius of curvature vector, pointing inward. Now

R
Fc= —mwz—c . (3.20)
I R%

Because B = Bejs,
(e3-V)es = (B-VB)/B? (3.21)

and we can write the curvature drift velocity as

2 2
—mw mw
vo= TR XB_"™ig, B.v)B. (3.22)
qB Rz qB

Now we can again approximate v &~ w)| and express the curvature drift in terms of the
parallel energy W) = (1/ 2)mwﬁ.

Train your brain

Fill in all steps leading to the curvature drift velocity (3.22)

If there are no local currents (V x B = 0), the expression for the curvature drift velocity
simplifies to

W

and v and v¢ can be combined to

WL+ 2,
=— " BxVB=

Voo = (1+cos>a)nxt, (3.24)

4BRc
where t || B and n || R¢ are unit vectors.

Drifting particles are often relativistic. The above drift velocities are easy to cast into
the relativistic form substituting m by ym.

The perturbation theory can be continued to higher orders. The recipe is the same as
above: First determine the force due to the higher-order perturbation and then calculate the
drift velocity to balance this effect.
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3.2 Adiabatic Invariants

Adiabatic invariants are quantities whose invariance depends on slow temporal or spa-
tial change of the parameters describing the motion. They have a close relationship with
general symmetry principles of physics:

complete periodicity < conserved quantity
symmetry < conservation law

If the motion is nearly-periodic, such as the Larmor rotation in the GC approximation, the
associated invariant may not be the same as in the strictly periodic case and its conservation
critically depends on the “slowness” of the variation.

In Hamiltonian mechanics it is shown that if g and p are the canonical coordinate and
momentum of the system and the motion is nearly periodic, then

I— ?{pdq (3.25)

is an adiabatic invariant. This statement requires a proof that we will not discuss here (see,
e.g., classical mechanics textbooks by Goldstein or Landau and Lifshitz, or Bellan [2006]).

The momentum of a particle in an electromagnetic field is p = mv + gA and the canoni-
cal momentum and the coordinate perpendicular to the magnetic field are p, and ry. Thus

2nm
szm-erzwu, (3.26)

which shows that the magnetic moment is an adiabatic invariant.

A classic example of an adiabatic invariant is the Lorentz—FEinstein pendulum whose
length (1) changes slowly. This causes a slow change of the frequency @ = \/gTZ . Chang-
ing the length means that work is done on the pendulum and thus the energy of the pendu-
lum per unit mass
1
2
is not conserved. A legend tells that Lorentz asked Einstein in 1911, what is the conserved
quantity instead. Einstein’s reply was: W/@. This example is closely analogous to the
magnetic moment

1.
W:51292+ gl6? (3.27)

W, gqW,
W _aW 3.8
h=—4=- o, (3.28)

Train your brain by proving that the slowness of the variation is essential in the
Lorentz—Einstein pendulum.

3.2.1 The first adiabatic invariant

To directly prove that the magnetic moment is an adiabatic invariant is not trivial. Text-
books usually treat some special cases; for a general treatment, see, Goldston and Ruther-
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ford [1995]. For our purposes it is instructive to see how the invariance follows from the
conservation of the total energy in a static magnetic field in the absence of electric fields:

W =W, + W, = constant (3.29)
~ dwW) dw
l L
— 4+ —=0 3.30
dt dt ( )
W, =uB =
aw, dB du
—— =u—+—2_B. 31
dt H dt * dt (3-31)

Now dB/dt = v|dB/ds is the change of the magnetic field along the GC orbit. The parallel
energy is

dv” dB
— =—uVB=—u—. 32
o T THIEE TR (3:32)
Multiplying this by v = ds/dt we get

aw, dB
— =—u—. 3.33
dt Har (3-33)

Thus aw, 4 J

W

S pH (3.34)

dt dr T dt

i.e., 1 is constant if GC approximation is valid and the field is static.

Another case with general interest is when the particle is accelerated by a slow temporal
variation of the magnetic field (d /dt < ®,). Faraday’s law implies a presence of an electric
field that leads to increase in perpendicular energy

aw,

=By (3.35)

During one rotation the particle gains energy
21/ @
AWL:q/ E-v, dr. (3.36)
0

Assuming the slow temporal change we can replace the time integral by a line integral
over a closed loop and use Stokes’ law

AWL:q}{Edl:q/(VxE)-dS:—q/a—sz’S, (3.37)
fo s Js ot

where dS = ndS, n is the normal vector of the surface S with the direction defined by the
positive circulation of the loop C. For small variations of the field 9B/dtr — w0, AB/2n =

1
AW, = §|q|a)criAB = uAB. (3.38)
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On the other hand
AW, = uAB+BAu (3.39)

and thus Au = 0. For slow changes u is conserved although the inductive electric field
accelerates the particle, analogously to the work done on the Lorentz—Einstein pendulum.

3.2.2 Magnetic mirror and magnetic bottle

Assume that the total energy W and p = W /B are conserved. Let the particle move toward
a weak positive gradient of B. Now W, can increase until W — 0. The perpendicular
velocity is v) = vsino and

22
my=-sin” o
= 3.40
u 2B (3.40)
On the other hand v? o< W is also constant. Thus
)

sin“o; B
—_— = 3.41
sinfay, B G4

When W — 0, oc — 90°. The slowing down of the GC motion is due to the mirror force
F = —uV B. The strength of the mirror field B, depends on the particle’s pitch angle at
the reference point By. For the mirror field (o, = 90°) we get

sin ctg = By /B, - (3.42)

Because By, is finite, every mirror field is leaky. Particles having a smaller pitch angle
than o in the field By get through the mirror. These particles are said to be in the loss
cone. Using two opposite mirrors we can build a magnetic bottle that confines particles
outside the loss cone(s).

The mirror force does not need to be the only force affecting the parallel motion of
the GC. The electric field may have a parallel component E|| and the particle may be in a
gravitational field. The parallel equation of motion then reads

dv
mT) =qE|+mg —uv,B. (3.43)

Assuming that the non-magnetic forces can be derived from the potential U (s), we get

mM = —i[U(s) + uB(s)] (3.44)
dt  Os # ' ’
Thus the GC moves in the effective potential U (s) + uB(s). Examples of potentials com-
bined with a mirror force are the gravitational field in the solar atmosphere and parallel
electric fields above discrete auroral arcs.
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3.2.3 The second adiabatic invariant

The bounce motion in a magnetic bottle is nearly periodic if the field does not change
much during one bounce period T,

S;n ds 2 si'l ds
=2 — = _ 3.45
b /s,,, VH(S) % /sm (1 —B(s)/Bm)1/2 ’ ( )

where s is the arc length along the GC orbit and s, and s/, are the coordinates of the mirror
points. The bounce period is defined over the whole bounce motion back and forth. This is
a sensible approach if 7, > 7;.. Thus the condition to consider the bounce motion as nearly
periodic is more restrictive than in the case of Larmor motion

dB/dt
7, 4B/

1. 4
B < (3.46)

If this condition is fulfilled, there is an associated adiabatic invariant which turns out to be
the longitudinal invariant

J= 7{,;” ds. (3.47)

To directly prove the invariance of J in a general case is a formidable task. The com-
plete proof is given by Northrop [1963]. The textbook by Goldston and Rutherford [1995]
presents the proof for time-independent fields, which is long enough. In space plasmas it
is the time-dependence that typically breaks the conservation of J.

3.2.4 Betatron and Fermi acceleration

Consider the rate of change of the kinetic energy T of a charged particle in a general
time-dependent magnetic field B. The time derivative in a moving frame of reference is
d/dt = d/dt+w-V, where w is the velocity of the frame of reference. In the GCS

dT, dB JdB JdB

a P

In the frame of reference of the observer (OFR)

dTorr  dIges d (1 5 d (1 5
— (= —( = ) 3.49
dt a ar (2’"W Ta ™ (349)
With some algebra we get
dTOFR 0B
=U—= ‘E. 3.50
o R tav (3.50)

The first term in the right-hand side of (3.50) gives the betatron acceleration due to the
increasing magnetic flux through the position of the GC. More specifically, we should call
this gyro betatron acceleration.
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The second term contains both magnetic field-aligned acceleration (if || # 0) and
another betatron effect, called drift-betatron acceleration. When the GC drifts adiabati-
cally across the magnetic field, e.g., due to ExB-drift toward increasing magnetic field
(B2 > By), the invariance of u implies

Wiz = B, . (3.51)
Wi By
Thus Wi, > W, .

A special case of drift-betatron acceleration is when a particle in a J conserving bounce
motion drifts toward a magnetic mirror. This is equivalent to moving the mirror points
closer to each other when § ds decreases. To compensate this v and thus W) must increase.
This mechanism is called Fermi acceleration.!

Fermi introduced this mechanism to explain the acceleration of cosmic rays to very high
energies (107 — 10'9eV) in the magnetic fields of the universe. A typical galactic cosmic
ray has wandered around in the galaxy for millions of years. The radius of the Milky Way
is of the order of 100 000 light years, and thus the particle has had a lot of time to “collide”
with magnetic field structures in the galaxy that have a wide range of velocities. Note that
in a given reference frame (e.g., ours) the particle either gains or loses energy when it gets
deflected by a magnetic structure (e.g., mirror). As a result, the velocity distribution of the
seed population widens and finally some particles end up at very high energies.

The modern version of Fermi acceleration, believed to be responsible for the accelera-
tion of galactic cosmic rays, no longer relies on the conservation of the second adiabatic
invariant in a distribution of moving magnetic mirrors. Instead, particles are assumed to
be accelerated in shock waves generated in supernova explosions by a mechanism called
diffusive shock acceleration. In this model, particles gain energy by repeatedly crossing a
single shock front from one side to the other (Chap. 11).

The very highest energies of cosmic rays up to about 10%° eV remain unexplained. Tt
should not even be possible to observe particles with energies higher than this, unless they
are created not too far from the observing site. The reason for this is the quantum mechani-
cal interaction of the particles with the blue-shifted cosmic microwave background. Above
6 x 10'% eV, known as the Greisen—Zatsepin—Kuzmin cut-off this interaction leads to the
production of pions that carry the excessive energy away.

3.2.5 The third adiabatic invariant
Also the drift across the magnetic field may be nearly-periodic if the field is sufficiently

symmetric as, e.g., the quasi-dipolar planetary magnetic fields. The corresponding adia-
batic invariant is the magnetic flux through the closed contour defined by the GC drift

qb:fA-ds, (3.52)

! A mechanical analog of Fermi acceleration is hitting a tennis ball with a racket. In the audience’s frame
the ball is accelerated but in the racket’s frame it just mirrors (or actually loses energy due to the elasticity
of the ball and racket).
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where A is the vector potential of the field and ds is the arc element along the drift path of
the GC. The drift period 7, has to fulfill t; > 1, > 7. The invariant is weaker than g and
J because much slower changes in the field can break the invariance of ®.

In the Earth’s magnetosphere u is often a good invariant. J is invariant for particles that
spend at least some time in the magnetic bottle defined by the nearly-dipolar field of the
Earth. @ is constant for energetic particles in the trapped radiation belts. However, any or
all of the invariances can be broken by perturbations to the system.

Let us briefly return to the Hamiltonian mechanics. These three functions (u,J, @),
whether invariant or not, form a particular set of canonical action variables or action
integrals

1
=L A)-ds; 3.53
Ji= 5= fip-+aa)-ds (359

with associated phase angles ¢;, that in this case are the gyrophase, the bounce phase, and
the drift phase. We will return to these in Chap. 10 when we discuss the particle distribution
function, or phase-space density, expressed as a function of the action variables.

3.3 Motion in the Dipole Field

Charged particle motion in the dipole field is an important application of the orbit the-
ory. Within the distances 2—7 Rg from the Earth’s center the dipole is a reasonably good
approximation of the geomagnetic field and all particles except high-energy cosmic rays
behave adiabatically as long as their orbits are not disturbed by collisions or time-varying
electromagnetic fields.

In the following we use “geomagnetically” defined spherical coordinates. The dipole
moment Mg is in the origin and points toward the south. Latitude (A) is zero at the equa-
tor and increases toward the north. Longitude (¢) increases toward the east from a given
reference longitude. The SI unit of Mg is Am?. Mg is often replaced by ko = poME /4,
which is also called dipole moment. The strength and orientation of the terrestrial dipole
moment varies slowly and must be taken into account in time scales of space climate. For
our purposes sufficiently accurate approximations are

Mg = 8 x 102 Am?

ko = 8x 10" Wbm (SI: Wb = Tm?)
= 8 x 10 Gem?® (Gaussian units, G =10"%T)
=0.3GR; (Rg ~ 6370km)

The last (non-SI) expression is useful in practice because the dipole field on the surface of
the Earth varies in the range 0.3-0.6 G.

The dipole field is an idealization where the source current is assumed to be shrunk
into a point at the origin. The source of a planetary or stellar magnetic field is actually a
finite, even large, region within the body giving rise to a whole sequence of higher mul-
tipoles. When moving away from the source the non-dipolar (quadrupole, octupole, etc.)
contributions vanish faster than the dipole. Outside the source the field is a potential field
(B = —VW¥). The potential for the dipole is
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1 sinA

¥=-ko-V-=—ko—5. (3.54)
r r
It is a standard exercise in elementary electromagnetism to show that
1
B = —=[3(ko-e e, —ko|, (3.55)
I
from which
2k
B, = ——30 sinA
r
ko
By = —cosA (3.56)
r
By =0.
The magnitude of the magnetic field is
ko :2931/2
B:r—3(1+3s1n A1) (3.57)
and the equation for the field line is
r=rocos’ A , (3.58)

where ry is the distance from the dipole to the point where the field line crosses the dipole
equator. In dipole calculations we also need the length of the line element

ds = (dr* +r*dA?)'/? = rycos A (14 3sin® 1) /2dA . (3.59)

The geometric factor (1 + 3sin’A)!/2 = (4 —3cos?>A)'/2 pops up here and there in the
dipole expressions.

Every dipole field line is uniquely determined by its (constant) longitude ¢ and the dis-
tance ro. A useful quantity is the L parameter L = ro/Rg. For a given L the corresponding
field line reaches the surface of the Earth at the latitude

1
Ae = arccos — . 3.60
VL (5:60)

The field magnitude along a given field line as a function of latitude is

ko (143sin®1)!/2
_ 2 211/2 _ %0
B(1) = [B,(A)* +B; (1) R (3.61)

For the Earth
=" T. (3.62)
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At the equator on the surface of the Earth the dipole field is 0.3 G, at the poles 0.6 G (i.e.,
30 and 60 uT). The observable geomagnetic field has considerable deviations from this
because the dipole is not quite in the center of the Earth, the source is not a point, and the
conductivity of the Earth is not uniform.

The guiding center approximation can be applied if the particle’s Larmor radius is much
smaller than the curvature radius of the field defined by Rc = |d°r/ds*|~!, which for a
static dipole field is

0 oo U +3sin?1)3/2

Rc(A) = 3.63
c(®) 3 % 2 —cos?A (3.63)
In terms of the particle’s rigidity mv, /|q| the condition is

V.B

ry | ’ = ML L (3.64)
B | |qlRcB  |q|roB

i.e., the GC approximation is valid if

% < 10B. (3.65)
q

The dipole field is a magnetic bottle and the energetic particles trapped in the bottle
around the Earth or magnetized planets are said to form trapped radiation. Let A,, be the
mirror latitude of a trapped particle and let the subscript O refer to the equatorial plane.
Then the equatorial pitch angle of the particle is

. By cos® A,
_ _ . 3.66
S B ) T (14352 A) 12 (5.00)

This shows that the mirror latitude does not depend on L, but the mirror altitude does.

If A, is the latitude where the field line intersects the surface of the Earth and if A, < A,,,,
the particle hits the Earth before mirroring and is lost from the bottle. In reality the loss
takes place in the upper atmosphere at an altitude that depends on the particle’s energy,
i.e., on how far it can penetrate before it is lost by collisions. The critical pitch angle in the
equatorial plane is

sin o = L3 (4—3/L)"1/? = (4L° —31°)" /2. (3.67)

The particle is in the loss-cone, if oy < 0y .
The bounce period in a dipolar bottle is

A‘"’I lm
- / ds _, [P ds da
0V 0

A
_drg [P cosA(143sin>A)!'/?
v Jo 1—sin®ap(143sin>A)1/2/cos6 A
4r
= —2f(00)., (3.68)

v
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where
v(A) =vecoso = v(1 - sin? a)'/? = y[1 —sin ayB(A) /By)'/? (3.69)

and (3.61) has been used. For 30° < ap < 90°
f(ao) =~ 1.30—0.565in” ot . (3.70)

The conservation of the second adiabatic invariant requires that the bounce period is
much shorter than the variations in the magnetic field. For example, in the inner magne-
tosphere the bounce times of 1-keV electrons are a few seconds and of 1-keV protons a
few minutes. During magnetospheric activity typical time scales of the field changes are
minutes. Thus under such conditions J is a good invariant for electrons but not for protons
or heavier ions.

Both the gradient and curvature of the dipole field are directed toward the planet. In the
dipole field of the Earth positively charged ions drift to the west and electrons to the east.

Because V x B = 0, we find for vg¢

(1+cos® ar) (3.71)

VGe = ¢BR¢

3mv?rg cos® A(1+sin’ 1) 5 i (1+3sin?1)!/2
= — S1 _—
2gko  (1+3sin*2)2 cos® A

For the drift motion around the Earth, vge is often less interesting than the angular speed
averaged over one bounce period (¢) = (vGc/rcosA), which gives the drift rate of the
guiding center around the dipole axis. A little exercise gives the result

m 1 2 /
<¢>:4/07L vee(A)(1+3sin Mlzdl

VT, cos2 Acos ot (R)
3mvir 3mv2RgL
= ay) = ——g(o 3.72
20k g(ao) 20k g(o) , (3.72)
where N 5 ) 5
1 m c0os® A(1+sin“A)[1 +cos” ot (A
8(00) = | (1 +sin )1 QN (3.73)
flao) Jo (143sin*1)3/2cos (1)
Within the pitch angle range 30° < o < 90°
g(ap) ~0.7+0.3sin(cyp) . (3.74)
For oy = 90°
. 3mv2RgL
= — 3.75
) == (3.75)
In the relativistic form this formula is
3mc?RgL

(9o) = “ak B (3.76)
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The average drift period (1) is

— 27 _ 41 \q|k0 1
T 3 mcRe LyBg(on)
1
~ 1.0 x 10¢ ™ 14l (3.77)

m e LyB*g(op) ’

where the last line gives 7, in seconds when the variables are given in SI units. The drift
period is inversely proportional to the energy of the particle. In the region where the ter-
restrial field is most dipolar (L ~ 2 —7) the drift periods for 1-keV particles are hundreds
of hours whereas those for 1-MeV particles are some tens of minutes, depending on the
pitch angles.

In the inner radiation belt (L ~ 1.5 — 3) the dominating trapped high-energy population
is protons in the energy range 0.1 MeV — 40 MeV, whereas in the outer belt (L > 4) the
energetic component is mostly electrons in the keV to MeV range. Thus radiation belt
protons are mostly non-relativistic whereas a considerable fraction of electrons can be
relativistic (Chap. 14).

Example: Penetration of cosmic rays to the atmosphere

Most of the galactic cosmic rays are relativistic. In studies of relativistic particles it is
common to write ¢ = 1. Then energy (eV), momentum (eV ¢~'), and mass (eV ¢2) are all
expressed in units of eV, or actually MeV or GeV. In these units rigidity, whose physical
dimension is momentum per charge, has the volt as its unit (in the ranges of MV or GV).
Rigidity is an important concept for cosmic ray penetration through the geomagnetic field,
as it describes which particles can reach the atmosphere.

The relationship between rigidity (R = |p/q|) and energy is found by solving the rela-
tivistic expression for the total energy Wr

Wi = p*c® +mic*, (3.78)

where my is the (rest) mass of the particle. The result is

R= E[(;/271)‘/2]121/%, (3.79)

where Wy, is the rest mass energy per nucleon, A is the atomic number and Z the charge
state, i.e. +n for n times charged ions. Conversely, if the rigidity is known, the Lorentz
factor v, and thus the particle speed can be found from

[(Af;m)al

The ambient magnetic field deviates particles and allows only rigid enough particles to
penetrate to a given depth. Cosmic ray cut-off rigidity specifies the minimum rigidity that

1/2

(3.80)
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a charged particle must have to be observed at a given position in the geomagnetic field
coming from from a given direction.

Calculation of the cut-off rigidities is tedious, as the guiding center approximation can-
not be used and the incident direction has to be taken into account. In general the cut-off
is the higher the more perpendicularly to the magnetic field the particle moves.

In the early days of cosmic ray research Stgrmer derived the cut-off rigidity formula in
the dipole field

cos* A

fe ’ 3.81
r2[1+ (1 —sin€ sin¢ cos3 A)1/2]2 (3.81)

where M is the magnetic moment in the unit system used by Stgrmer, A is the geomagnetic
latitude, € the zenith angle, and ¢ the azimuthal angle measured from the direction of
geomagnetic north with respect to geographic north. Using the terrestrial dipole moment
and expressing r in Rg from the dipole center, the numerical terms give the factor 59.6.
For vertical incidence in the terrestrial dipole field the cut-off rigidity is given by

14.9 cos* A

R(GV) = ——

(3.82)
Taking into account the deviations from the dipole field the cut-off rigidity for vertical
incidence at sea-level varies between 13 and 17 GV near the equator.

As the L-parameter for the dipole field is given by cos? A = rq/L, the cut-off rigidity in
the inner magnetosphere (up to L = 4) can be estimated by R, =~ 16 L~2 GV. The numerical
factor is a little larger than the dipole value due to the external magnetic field contributions.
At auroral latitudes the cut-off rigidity is typically less than 1 GV. At the dipole magnetic
poles the cut-off rigidity is zero for a particle that has exactly field-aligned direction when
entering vertically. In the real magnetosphere the external magnetic field created by mag-
netospheric currents inhibits the direct entry of low-energy, or small-rigidity, particles.

The final stopping power against the cosmic rays is not the magnetic field but the atmo-
sphere of the Earth. The primary particles collide with atmospheric nuclei cascading first
typically to protons, neutrons, and pions, which further decay to photons and muons, etc.
Energetic enough photons may form electron-positron pairs. This was the process through
which Anderson first identified the positron in 1933. Very high-energy cosmic rays pro-
duce large amounts of particles in such cascades. These air showers produce Cherenkov
radiation in the air, which can be observed by optical means. The neutrons and muons
making their way down to the Earth can also be detected directly using ground-based in-
struments. In fact, neutron and muon fluxes observed on ground are standard means of
characterizing the intensity of cosmic ray events.

3.4 Motion Near a Current Sheet

The interaction between the terrestrial magnetic field and the solar wind stretches the
nightside magnetosphere to a long tail where the field geometry changes from dipolar
to that of a thin current sheet. This is just one example of the great variety of current sheets
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in space plasmas. The current must be there to account for the change of the magnetic field
orientation according to Ampere’s law V x B = upJ .

3.4.1 The Harris model

A two-dimensional current sheet can be described by the Harris model whose magnetic
field is of the form Z

B = By tanh (Z) e +Be, , (3.83)
where By and B,, are constant, B,, << By and L is the characteristic thickness of the current
sheet. If B,, = 0, the field is one-dimensional. The electric current points toward the positive

y-axis and is
B
Jy= <uOL> sech? (%) . (3.84)
0

In the one-dimensional case the magnetic field is in magnetohydrostatic equilibrium
(Chap. 6) with plasma in the current sheet, whose pressure is

P(z) = Pysech? (%) : (3.85)
The Harris field can be derived from a vector potential of the form
Ay(x,z) = —BoF (z) + Byx . (3.86)

The particles move in an effective potential of the form

1
—[py—qAy(x,2)), (3.87)

Ul(x,z) = .

where p, is the linear momentum in the y-direction.

Train your brain by calculating F(z) in (3.86).

In simple analytical calculations the Harris model is often approximated as

B =B, (g) e+ Bye,. (3.88)

In this approximation the field lines are parabolas

B
x= 2B:L 7% + constant . (3.89)
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In the one-dimensional case (B, = 0) a useful approximation is

B, = By ; 22 L

B
BXZTOZ CL>z> L (3.90)
By=-By ; z<L.

In this magnetic field model the components of the equation of motion are

=0 (3.91)
B,
y= (“) z (3.92)
mL
B
i=— (“) 2. (3.93)
mL
The equation of motion perpendicular to the magnetic field can be cast into the form
L@ i2)=0 (3.94)
dt ’ '

which expresses the conservation of energy. After appropriate normalization of k and z the
motion in the z-direction can be found as a solution of the equation

P=(1-+*P1-2). (3.95)

The general solutions of (3.95) can be expressed in terms of elliptic integrals and Ja-
cobi’s elliptic functions. Examples of the orbits are given in Fig. 3.1. Outside the current
sheet the motion is normal gyro motion. Within the current sheet the motion is more com-
plicated. The monotonic motion in the +y-direction is called Speiser motion. Particles in
the Speiser motion carry most of the current in the current sheet. They do not conserve the
magnetic moment but the motion is periodic in the z-direction, for which there is another
adiabatic invariant [e.g., Biichner and Zelenyi, 1989].

Fig. 3.1 Orbits of positively charged particles near a one-dimensional current sheet.
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3.4.2 Neutral sheet with a constant electric field

The earthward plasma convection in the magnetospheric tail induces a dawn-to-dusk di-
rected electric field E = Ege,. This electric field has the same direction as the current,
i.e., E-J > 0. Thus Poynting’s theorem implies particle energization at the expense of the
electromagnetic field. Under these circumstances the equations of motion are

i=0 (3.96)
y=caz+ce 3.97)
i=—c1zy, (3.98)

where ¢; = gBy/mL and ¢, = gEy/m. Due to the electric field the energy equation is more
complicated than above

1 1
507 +2%) —cay = 5 (55 +4) — eavo, (3.99)

where zeros refer to the initial values. The equation in the z-direction becomes

c
i=—cizfjo+ (5) @ —z) +ex] (3.100)
This is a nonlinear equation with chaotic solutions.

Assume that a particle remains in this current sheet for a long time (with respect to its
gyro period). For large ¢

2 (EyB
P —croggt = — (1> (00) i (3.101)
m L

This equation has oscillatory solutions in terms of Bessel functions of the first and second
kind. For large ¢ the solution can be approximated by

/4
1A — x (3.102)

(EoBo/L)"/'2(q/m)"/¢
1/2
i) () )

2/q BoEy 12 3/2
{A""S 5Gn) <L> !

where A and B are constants that depend on initial conditions. For large ¢ the amplitude of
the oscillation decays as r~1/4.
Now we can integrate y to get

. t2
yzy0+[yo—(%)z(2)}t+%. (3.103)
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Inserting these in the energy equation we find that the kinetic energy increases as 2. Thus
all particles execute damped oscillations about z = 0, while the positive ions are accelerated
in the +y-direction and electrons in the —y-direction.

3.4.3 Current sheet with a small perpendicular magnetic field component

A real current sheet often has a small perpendicular magnetic field component. In the
Earth’s magnetotail the dipolar field is stretched to form a long current sheet that has a
small northward component to a distance of more than 100 Rg, except during substorm
expansions when the current sheet disrupts closer to the Earth (Chap. 13). Consider the
particle dynamics in a 2D model of such a tail

B=B, (%) e+ Bue, (3.104)

with the same electric field as above. Now the equations of motion become

X =c3y (3.105)
V= —c3x+c1zz+c (3.106)
I=—c1zy, (3.107)

where ¢; and c¢; are the same as previously and ¢z = ¢gBoB,/m. This leads to equations
requiring numerical intergration. The energy integral includes all coordinates

T +2) 99 = T (@ +33+3) +am, (3.108)
where ¢ is the electrostatic potential E= —V¢.

Let us then consider what happens to a proton that approaches the current sheet in
Larmor motion. If the energy of the particle is small enough, it starts to execute Speiser
motion in the current sheet while simultaneously turning around the weak B,,. If there is no
electric field, the situation is symmetric and the particle is ejected from the current sheet
in a symmetrical position with respect to the axis parallel to the x-axis passing through the
gyro center of motion in the xy-plane. In the presence of E = Ej e, the proton is accelerated,
which makes it progress farther in the current sheet and being finally ejected with a larger
energy.

The capture into Speiser motion and the ejection from the current sheet are very sen-
sitive to the initial conditions, characteristic to chaotic systems. Consider a dipole field
where the particle motion is adiabatic conserving p. Stretch the field slowly to a tail-like
configuration. When the ratio R¢/r; becomes smaller than about 10, the invariance of the
magnetic moment starts to break and the motion becomes non-adiabatic and the particle
loses the guidance of the magnetic field. When the field is stretched further the motion of
particles with smaller energies becomes irregular and chaotic. The chaotization changes
the pitch angles of the particles which can, for example, fill the loss cone. This is one
mechanism to precipitate particles from the magnetosphere to the ionosphere.
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3.5 Motion in a Time-dependent Electric Field

Understanding charged particles’ behavior in time-dependent electric fields is important,
as the response of plasma determines the properties of electromagnetic wave propagation
(Chap. 4) and time-dependent fields change the energy of the particles through wave—
particle interactions.

3.5.1 Slow time variations

If the magnetic field is static and homogeneous and the time-variation of the electric field
slow (d/dt < ®,), we find the polarization drift
m dvg 1 dE;

__mdve p_ 1 4Bl 3.109
v qB? dt X w.B dt ( )

This drift separates charges and masses which gives a rise to a polarization current (Jp =
ngvp) in the plasma. Due to the large mass ratio between electrons and ions this current is
carried mostly by the ion drift.

When E increases, Jp - E > 0 for both positive and negative charges, i.e., particles gain
energy. This energy gain is the same as the difference in the ExB-drift energy before and
after the increase of E. If, on the other hand, E decreases, the particles lose energy.

Note that vg and vp are of different order in magnitude

dE vp 1

B 0]
— ~0FE = —~ oFE — ~ — 1 3.110
dt vE B E o <b ( )

where the last inequality is the basic condition for the existence of the polarization drift.

3.5.2 Time variations in resonance with gyro motion

We move now to the case where the rate of change in the electric field is of the same order
as the gyro frequency of the particle: E o< exp(—i®t) and @ ~ @,.
Assuming further a static and homogeneous B the equation of motion is

dv ¢ _j

— =2(Ee '™ 1 yxB). 3.111
o=, (Ee T TvxB) (3.111)
Seek a solution of the form v = v,exp(—i@t) + v,, (e for electric and m for magnetic),
where v, is time-independent. The equation of motion is then

D v, e 100 = Lm0 {y B iy, xBe 1O (3.112)
dt m
The magnetic part
dv
= %@m x B) (3.113)
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gives the Larmor rotation. The electric part is
9o/ q _ s
ZE=(—-io+=Bx)v,=—(i0+ @ X)V, . (3.114)
m m

Now @, is the vector @, = —gB/m. Multiplying the above expression from the left by
(io — w.x) we get

%(iwfa)cx)E: (02— O2)Ve + (@ Vo) OO . (3.115)

Decompose this into the parallel and perpendicular components

i gE
Vo = 67” (3.116)
i — @ X
Vd’i(aﬂ_;ﬂ)EL. (3.117)

We see that v, oscillates with the phase lagging 90° behind E . The perpendicular velocity
can be expressed as

q I
=2 E 3.118
VeL mo— , L ( )
q I
R = — Ez, 3.119
R m @+ R ( )
where
1 0. xE
B =3 (El+z‘wc l> (3.120)
1 0. <E
Ep=—> (EL—szL_L) (3.121)

are the left-hand (Er) and right-hand (Eg) polarized components of the (wave) electric
field. They are in resonance with different particle species, the left-hand polarized wave
with positive charges, the right-hand polarized wave with negative charges.

NOTE: This is the convention of the sense of circular wave polarization in (modern)
plasma physics, i.e., the electric field of a right-hand polarized wave rotates around the
magnetic field in the same sense as an electron.

3.5.3 High-frequency fields

Assume next that @ >> @,... This allows the use of an approach resembling the GC approx-
imation, called oscillation center approximation.
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In the zero-order problem we assume that E is spatially homogeneous with the time
dependence of the form exp(—iwr). Write the equation of motion in the form

d*r

q —imt
— =—(E . 3.122
This has the solution )
r=-—1 (Ee ) feirte. (3.123)
me

Include B and let the fields be weakly inhomogeneous and proportional to exp(—i?)

d’r ¢ dr —iot

pri %[E(r) + m x B(r)]e . (3.124)
Equation (3.122) is the zero-order approximation of (3.124) if both of the following con-
ditions are valid

1. in the Taylor series
E(r) =E(ro) + (r1-Vo)E+... (3.125)

e E(rp) dominates
e T is the center of oscillation and r; = r — ry oscillates
e r( moves slowly and E(ry) is almost a constant during one oscillation period:

io-V)E
% <E (3.126)

2. (dr/dt) x B is small, i.e., 0, < ©.

Because d’r/dt*> ~ wdr/dt and the magnetic term is proportional to w.dr/dt, the
speed dr/dt must not be much larger than dr; /dt. Under such circumstances we can ex-
pand (3.124) as

d*rog  d’r
dr? dr?
= 9 B(rg) + (1 - Vo)E+ T« B(rg) + I B(ro)
_m 0 1 0 dt 0 dt 0
q dl‘() dl‘l
— | — -Vo)B+ — -Vo)B 127
+m{dt><(r1 0)+dt><(l’ o)], (3.127)

where the last line is of the second order.
The second term in the LHS is larger than the first. Thus the zero-order solution is

q
=———Ep. 3.128
r| m? 0 ( )

For the first-order solution we consider only the time averages of the first-order terms
in the same way as in the GC approximation but in this case averaged over the oscillation
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period. {(dro/dt x Bp) can be neglected because dry/dt is small and (Bg) = 0. Now

<‘Z‘;}’>:i{<(rl.vo)1«:>+<‘2‘:xlso>} (3.129)

and (d*ro/dt?) = d’r(/dt?. Inserting the zero-order solution for ry to the expression above
a brief calculation yields

4*r 7 E2 7 9
— =———(Vg— Y= ——( —(EgxB . 3.130
dt? m2@? < o) > m2@? <8t( 0 O)> ( )

For a standing wave the last term is zero. Thus we have found that the oscillation center is
accelerated by the potential
qZ E2
P=——(—). 3.131
m2@? < 2 > ( )

This is called ponderomotive potential. The oscillation center is accelerated toward smaller
@. The ponderomotive force «« —V @ is a nonlinear function of the electric field. It can be
used to trap particles in the field of a standing wave. This effect appears in various prob-
lems of nonlinear plasma physics, e.g., in heating of plasma by intense electromagnetic
waves.






4. Waves in Cold Plasma Approximation

Plasmas are very rich in wave phenomena. If an equilibrium state of a plasma is perturbed,
plasma responds with wave-like behavior. The waves may carry the effects of the perturba-
tion far from their origin, or be damped through interactions with the surrounding plasma.
Sometimes the waves may grow to such large amplitudes that the entire plasma configu-
ration is destroyed. Waves are efficient in particle acceleration and plasma heating. Even
waves interacting weakly with the plasma can be distorted by the interaction, for example,
different frequencies sent at the same time through the plasma arrive at different times
and the polarization plane is rotated, as the background magnetic field makes the plasma
birefringent.

We start with the traditional introduction to the menagerie of plasma waves discussing
them in the cold plasma approximation,. The approach is valid when the phase velocities
of the waves are larger than the thermal velocity of the background plasma. This is quite
sufficient for a wide range of wave phenomena. As we will see, the approach has its natural
limitations, e.g., in the context of instabilities and wave—particle interactions, which are
discussed in subsequent chapters.

4.1 Basic Concepts

An advantage of the cold plasma approach is that it closely resembles the standard treat-
ment of electromagnetic wave propagation in dispersive media and thus the basic concepts
of electrodynamics are readily available. In this section we briefly review some of these
concepts that are central to plasma wave propagation.

4.1.1 Waves in linear media

We start the discussion of wave concepts in linear media, of which the vacuum (p = 0;
J = 0) is the simplest example. From Maxwell’s equations we get

H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth, 113
Springer Praxis Books, DOI 10.1007/978-3-642-00319-6_4,
© Springer-Verlag Berlin Heidelberg 2011
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2 _
v H—C2 P =0 4.1
1 9%E
2 _

where we introduced H = B/ for notational convenience.

The solutions of these equations are waves propagating with the speed of light. Consider
a wave that propagates in the (+)z-direction of a Cartesian coordinate system (x, y, z). The
x-component of the wave electric field is

Ec(x,y,2,t) = g1(x, ) fi(z —ct) + g2(x,y) fa(z+ct) (4.3)

where V2g; = V?g; = 0. The most important special cases of these solutions are plane
waves and spherical waves.

For a plane wave propagating in the z-direction d/dx = d/dy = 0 and g; and g, are
constant. Consequently, there is a plane where E is constant. A plane wave can be repre-
sented by a sinusoidal function

E,(z,t) = Egcos(kz — ot) , (4.4)

where Ey is the amplitude, ® = 2nf the angular frequency, and k = 21 /A the wave num-
ber. The phase speed of the wave is ®/k = c. In vector form we write

E(r,t) =Epcos(k-r— wr) , 4.5)

where k is the wave vector.

Another important class of solutions to the wave equation are spherical waves, for
which electric field is constant on the surface of an expanding sphere. For example, the
field of a radiating electric dipole antenna far from the source is nearly spherical

E(1,0,0,1) ~ gsinecos(kr—a)t)ee. (4.6)

In space physics we often, but not always, assume that the source of the wave is so far
from the observation site that a plane wave is a good local representation of the wave
propagation.

Throughout this book we use the complex notation for plane waves with the following
sign convention for the exponentials:

E = Ege/®70) ; B = Byt | 4.7)

If Eg and By are constant, the temporal and spatial dependencies are said to be harmonic
and Maxwell’s equations can be transformed to an algebraic form

ik-D=p
k-B=0
kxE = oB (4.8)

ikxH=J—-ioD.
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Assume that p =0, J =0, 0 =0 and € and u are constant but not necessarily equal
to & and pp. The solution is modified by ¢ — v =1/,/€L, i.e., the phase speed becomes
different from the speed of light. @ and k are related through a dispersion equation or
dispersion relation

k:E:\/suw:ﬁau “4.9)
v C

el
— ./ 4.10
n Zollo (4.10)

is the refractive index of the medium. The phase velocity of the wave is defined by

where

(0]
vy = n 4.11)
and the group velocity by
Jdw

In this case vy = v, = ¢/n and both are independent of frequency and wave number, i.e.,
the medium is not dispersive.

As the wave number is the absolute value of the wave vector, the phase and group
velocities are also vector quantities. We write the wave vector as k = kn, where n is the
unit vector defining the wave normal. The wave normal is perpendicular to the surface of
constant wave phase. The wave normal direction is the direction of wave propagation and
it thus gives the direction of the phase velocity vector

W:%m (4.13)

In isotropic media the direction of wave propagation is the same as the direction of

energy flux S = %E x H*. In anisotropic media, e.g., in magnetized plasma, the electric

field may have a component || k, implying that S }f k. The “ray” of the wave may thus

propagate in a different direction than k. Ray-tracing is a method of following the ray in

order to find the direction of energy and information propagation. The propagation velocity
of the ray is the group velocity, i.e., the velocity of wave packets

dw

e 4.14)

Vg =

i.e., the gradient of frequency in the k-space.

The angle between the wave and ray propagation can be calculated by letting 6 be the

angle between background magnetic field B and k, and the frequency @ a function of k
and 6. The group velocity is given by

0 _d
- dk  dk

1w

Vg Gek—f—z%

e . (4.15)
k
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Denoting the angle between v, and v, by 8 we find that

1ok
koo

[0}

tand = — (4.16)

As an example of a dispersive medium, consider a conductive medium whose &, tt, and
o are non-zero constants and p = 0. Maxwell’s equations and Ohm’s law (J = oE) lead
to

VXE = —aa—I:
VxB :,uGE—&—us%—ltE 4.17)
- 2 JE J’E
\% E—HGW—MSW:O. (4.18)

This is equation is known as the telegraph equation. It is a standard example of how partial
differential equations are solved using Fourier transforms. In the plane wave approxima-
tion (4.18) is easy to solve in the (®,k)-space, where Maxwell’s equations read

k-E=0
k-H=0
kxE = ouH (4.19)

ikxH=(oc—iw¢)E.

Clearly k L E, k | H, and E | H. Such a wave is called transverse. In plasmas also lon-
gitudinal (k || E) waves may propagate, e.g, the electrostatic waves discussed in Chap. 5.
Selecting the coordinates as k || e, E || e, and H || e, we get

kE, = ouH,
ikHy = —(0 —iw€)E, . (4.20)
From these we get the dispersion equation
K =enw®+iocuo. 4.21)

Denoting k = |k|exp(ia) we find

k| = \/ nov e2w?+ o2 (4.22)

1 c
= —arctan(—) . 4.23
a = 5arc an(ew) (4.23)

Inserting these into the expression for E

E = Epe, exp[i(|k|(cos o)z — ot )] exp[— |k| (sin &)Z] (4.24)
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we have found the plane wave solution for Maxwell’s equations in this particular medium.
The physical choice of ¢ is given by sin ¢ > 0, i.e., the wave is damped when it propagates
in the medium, i.e., e K@)z _ () with increasing z.

Now the phase velocity is

o ()

Yp = Re(k) - |k|cosa (4-25)

The distance where the wave is damped by a factor of e is called the skin depth of the
medium

1 1
o0=——=—1—. 4.26
Im(k)  |k|sino (4-26)
The wave impedance is defined by
z-E_po_ [ RO ex —iarctan (—6 ) (4.27)
“H  t VVZorror P2 ew/]’ ‘

where the argument of the exponential function describes the phase delay between E and
H. The ST unit of impedance is the ohm ().

Examples

2
Good conductor: 0 >> €0 = =45, 6 =,/ ——.
\/ Uow

vp=00tana = d®

[ f=50Hz &é=1lcm v,=3m/s
For copper (Cu): {f =50 MHz & = 10 um v, =3 x 103 m/s
Z= %e*m/ 4 = 45° phase shift between E and H.

Non-conductive medium: 6 =0, € > 0, u = Yy = a =0, i.e., the wave is not damped .

Z= &EZ() @,
V € \/8

Zy is called vacuum impedance: | % =376.73 Q.

Air is a good vacuum for high-frequency electromagnetic waves; plasma is not when
the wave frequency is in the vicinity of plasma or gyro frequencies of the plasma particles.

4.1.2 Wave polarization

Polarization is an important property of electromagnetic waves. We use definitions of the
right- and left-handedness following the modern plasma literature:
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The wave vector of a right-hand polarized wave, propagating along the magnetic field,
rotates in the same sense as an electron.

However, wave polarization must also be defined independently of the background
magnetic field. Let a plane wave propagate in the z-direction. Consider the plane z = 0
and denote p = Ey/E, = —H,/H, . In general p = |p|e'* is a complex number.

1. If p is a real number, E, and E, are in the same phase and the direction of E is (1,0,0)
(if p = oo, E points along the y-axis). The wave is linearly polarized.

2. If p = +i, the phase shift between E, and Ey is oo = /2. Looking along the +z-axis
the vector rotates clockwise. This is the right-hand circularly polarized wave. In optics
this is called the left-hand wave, sometimes it is said to have positive helicity. The wave
electric field is

E = Ey(e, + ie,) /1) (4.28)

3. If p = —i, & = —m/2. The wave vector rotates anti-clockwise and the wave is left-hand
circularly polarized (negative helicity). The electric field is

E = Ey(e, — ie,) /1) (4.29)

4. The linear and circular polarizations are special cases of elliptical polarization, for
which p ia a complex number.

All polarization states of a plane wave can be constructed as a linear superposition of
right-hand and left-hand circularly polarized waves, or of two linearly polarized waves
with different planes of polarization, by selecting appropriate amplitudes and phases of
the basic polarization components.

4.1.3 Reflection and refraction

When waves cross boundaries between different media or propagate in an inhomogeneous
medium, they are reflected and refracted. Figure 4.1 defines our notation. The incident
wave (i) comes from medium 1 and hits the boundary between media 1 and 2.

The properties of the reflected (r) and refracted (transmitted, 7) waves depend on the
polarization. For simplicity, consider linear polarization only. Let the electric field E; be in
the plane of incidence (xz-plane) and H; perpendicular to this plane. This polarization is
called vertical. In the opposite case the polarization is horizontal. An arbitrary polarization
is a linear combination of these two polarization states. Let the medium be such that the
polarization state is conserved. If the medium were birefringent, the left- and right-hand
circularly polarized waves would behave differently. As the linear polarization can be ex-
pressed as a sum of left- and right-hand polarized waves, the birefringence results in the
rotation of the polarization direction, known as Faraday rotation.

Figure 4.1 illustrates the vertical polarization. Now

k; = k;(sin 6;,0,cos 6;)
k, = k,(sin6,,0,—cos 6,) (4.30)
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Fig. 4.1 Reflection and refraction of a vertically polarized wave at the boundary between two different
linear media with impedances and refractive indices (Z;,n1), (Z2,n2).

k; = k(sin6,,0,cos 6;) .

The boundary conditions at the surface z = 0 imply that the waves (i,r,¢) must be in the
same phase at the same time. Thus k;, k,, and k; are in the same plane. A straightforward
calculation gives the fields

E; = Ei(cos 6,0, —sin 6;) exp[i(k;(sin O;x + cos 6;z) — ot)]

H; = %(0, 1,0) expli(k;(sin 6;x 4 cos 6;z) — @t )]

E, = E,(—cos 6,,0,—sin 6,) exp[i(k,(sin 6,x — cos 6,z) — @t )]

H, = 5—:(0, 1,0) exp[i(kr(sin 6,x — cos 6,z) — @t )] 4.31)
E; = E,(cos 6;,0,—sin 6;) exp[i(k; (sin 6;x + cos 6;z) — wr)]

H, = %(0, 1,0) exp[i(k; (sin O,x + cos 6,z) — @t)] ,

where the direction of the vectors is given by the triplets after the amplitude of the vector.
The boundary conditions derived from Maxwell’s equations are:

np X (E1 —Ez) =0
n12><(H1—H2) :K,
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where K is a surface current induced by the wave. Assume that the current is zero. Then

Eix+Epc = Epy
4.32
Hiy+ Hyy = Hi, (4.32)
=
E;cos 0;expli(k; sin 6;x — wr)] — E, cos 0, expli(k, sin 6,x — o))
= E; cos B, expli(k; sin O,.x — @1)] (4.33)
and
E; E, .
— expli(k; sin Ox — ot )] — =" expli(k, sin 6,x — ot )]
Z1 Z
E; s
= —expli(k; sin 6,x — 0t)] . (4.34)
Y2)
These equations must be satisfied for all # and x =
W=0=0=0 (4.35)
kisin0; = k,sin 6, = k; sin 6; . (4.36)
The incident and reflected waves propagate in the same medium (n;) =
c c
—ki=—k = ki=k, = 6,=06, (4.37)
(0] o
In addition, we find Snell’s law for the angle of refraction
ki . .
sinfG; = —sin6; = n sin 6; . (4.38)
kt ny
Now we can calculate the reflection coefficient for vertical polarization
E. Z 6, —Z 6,
| = o = S1COS AT 220087 (4.39)
E;  Zicos6;+Z,cos6;
Often p; = (= Ho). Then Zy /Z, = ny/ny, which leads to Fresnel’s formulas
E, npcosO; —njcosb6;
Ry = = — 4.40
I E; npycosB;+njcosb; ( )
E 2 6
T =t = 1P 4.41)

E;  npcosB;+n;cos,

1) is the transmission coefficient for vertical polarization. These equations are often given
in the form where 6, is eliminated using Snell’s law. Physically Fresnel’s formulas express
energy conservation at the reflecting boundary.
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In the same way we find Fresnel’s formulas for horizontal polarization

R, — ny cos 6; —ny cos 6; (4.42)
nycos 6; +ny cos 6,

2 .
T, = meos (4.43)
ny cos 6; 4+ ny cos 6;

Example: Total reflection and transmission

Consider the Earth’s ionosphere as an isotropic non-conductive medium. This is a reason-
ably good approximation for radio waves with sufficiently high frequency (@ > @, , © >
Veoil ; O 2> wp)~

In the air below the ionosphere: ¢ =0, u = pp, nj =1.

ko [ w2
In the ionosphere, (see 4.48): n, = c_ JE_ 1-— —g < 1.
0} & w

Now Fresnel’s formulas imply: [R [ > |Ry|, for all ;. Thus the horizontal polarization
has a larger reflection coefficient and is more efficient for radio wave communication via
the ionosphere.

For sufficiently large 6; we find the total reflection: sin 6, = (n; /ny)sin6; > 1 = |R | =
IR |=1.

HFor a certain angle of incidence, known a the Brewster angle (0p), the vertically polar-
ized wave is transmitted completely (R = 0). Note that the horizontally polarized wave is
always partially reflected.

4.2 Radio Wave Propagation in the Ionosphere

As an example of wave propagation in a dispersive inhomogeneous medium we consider
radio wave propagation in the ionosphere. It has considerable practical interest for the
physics of space storms: radio waves can be used to probe the state of the ionosphere
and, on the other hand, radio communication systems, including satellite navigation, are
disturbed by the space storms.

4.2.1 Isotropic, lossless ionosphere

We begin with an assumption that the ionosphere is isotropic and neglect the Earth’s mag-
netic field. This requires ® >> @ ~ 107 s~ !, Let the medium be lossless, i.e., neglect
the effects of collisions; thus ® > v,,;;. These requirements are fulfilled at frequencies
f > @ /27 = 1.6 MHz. We consider waves whose frequencies are so high that only elec-
trons respond to the wave electric field, whereas ions form an immobile background. We
need to determine the functions ¢ and €. Here n refers to the refractive index and the
electron density is denoted by ..
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Consider the problem again in the plane wave approximation. From the electron equa-
tion of motion we find

dv .
meg = —iowm,v=—cE (4.44)
=
@2
pe .
J=—nev=—"=ingE (4.45)
w
= 2
o
c= %iwso ) (4.46)

Assume that, except for conductivity, the medium has the electromagnetic properties of a
vacuum, i.e., € = & and i = Up. The Ampere-Maxwell law can now be written as

w? w?
ik xH=—"LliogE —iogE = —io [ 1 - —5 | &E. (4.47)
() (O]

Thus the medium looks like a dielectric with permittivity

a)z
€= 1—w”; . (4.48)

In plasma physics we often write a)ge /®* = X. Now the refractive index is

n=v1-X, (4.49)

which is the dispersion equation and can also be written as

c= %m (4.50)

The phase and group velocities are

0] c
_ 0 _ 451
T T /ToX “51)
0
vgza—f:c —X. (4.52)

When £ increases (short wavelengths), the dispersion equation approaches that of an
electromagnetic wave in free space @ = ck. At long wavelengths the wave corresponds to
plasma oscillation @ = @p,. If the frequency is smaller than the local plasma frequency
(X > 1), the wave does not propagate. In the ionosphere the maximum electron densities
are of the order of 10> m~3. Because f,.(Hz) = . /27 ~ 9 /n.(m3), the maximum
plasma frequency in the ionosphere is about 9 MHz.

Let us then then find out what happens to an electromagnetic wave pulse (wave packet)
when it propagates vertically toward the ionosphere modeled in this way and becomes re-
flected. The pulse returns after time 7'. The height A’ = ¢T /2 is called the virtual reflection
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height. In reality the wave packet moves with speed v, and

h
r—a2f % (4.53)
0 Vg

where £ is the real reflection height. That is the height where the group velocity becomes
zero and we get

h
h’:c/%:/hL. (4.54)
o ve Jo /1-X(z)
If we know the density profile, we can compute the relation between A’ and h for different
frequencies.

The ionosonde is an instrument that is used to study the inverse problem. It transmits
radio waves at different frequencies and detects the reflected signal. By measuring 4’ for
different frequencies we can attempt to find the frequency dependence of i, which would
yield the density profile of the ionosphere. The integral for the virtual height can be solved
analytically for sufficiently smooth profiles. The monotonic parts of the profile can be
approximated by a piecewise linear function composed of pieces

ne=a(z—z1) whenz >z

n.=0 when z < zp . (4.55)

The real reflection takes place at the altitude where ©* = @7, =
h=z+ 2002, (4.56)

ae
and the virtual reflection at
; d 2
K= /—Z — 2 (4.57)
0 /1= a(z—z1)€ ae
gm?

Train your brain
Find the expression for the virtual reflection height for a parabolic density profile

2
77—z
He = My [1 - (m) when |z —z,| < a
a

ne =0 when |z —z,| > a,

where the subscript m denotes the peak density.
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Oblique propagation is important in radio wave communication between two locations.
Let 6y be the angle between the vertical direction z and k in the atmosphere and let y
denote the horizontal distance. For the wave packet we have y = ctsin 6. Vertical motion
is found from the expression for the virtual height replacing @ — @ cos 6y

7
Z

d /
H () = ct cos 6 — / L — (4.58)
0 1— w]%e(zl)
®? cos? By

where z is the real height at time ¢. Eliminating t we get

Z

/
y = sin 6y / 4z . (4.59)

2 ()
0 2 wpe (Z )
cos” 0y — )

This gives the ray path. In an isotropic medium the ray propagates to the direction of the
wave normal.

4.2.2 Weakly inhomogeneous ionosphere

What happens to the wave when it approaches the reflection point? We assumed above that
the reflection takes place when the vertical component of v, is zero, i.e., n = sin6y. On
the other hand, we know that some reflection always takes place at the interface between
media of different refractive indices, except for vertical polarization at the Brewster angle.

Consider a frequency twice the plasma frequency ® = 2 @p,.. Now the wave should get
through the ionosphere. Let the incident angle be 6; = 0. The refractive index is

n=/1-aw} /0.

This gives a reflection coefficient R = 0.07 and the reflection should be easily observable.
However, it is not, and the prediction that the wave gets through the ionosphere is correct.

To solve this apparent paradox construct a simple model for the ionosphere that consists
of thin layers of thickness Az (Fig. 4.2). Let n, increase, and thus n decrease, upwards.
Assume, for simplicity, horizontal polarization and 6; = 6, = 0. At each layer

n—n An

R— ~ T .
ny+ny 2n

(4.60)

The relative phase of the signals reflected from different layers turns out to be the
key to the solution. Let E( be the electric field of the incident wave and denote the field
after reflection by E = E(z). From each layer an amount of (An/2n)E(z) is reflected
and (1 — (An/2n))E(z) refracted. In this model An < 0 and thus the electric field of the
refracted wave increases. We have, however, not found a perpetuum mobile that would
create wave energy from nothing. The wave propagates toward an increasing impedance
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3
Z Z

| — SR W

An n o Yy

Fig. 4.2 A model of layered ionosphere. That the electron density increases upward and thus the index of
refraction decreases from 1 at the bottom of the ionoshere. The figure is drawn for oblique incidence to be
more illustrative, whereas the calculation is simpler for 6; = 0.

(Z = E/H) and for the wave magnetic field we find
A

H, Z] ny n
— =T—=T—==~14+—<1. 4.61
H; > ni + 2n < ( )
At the limit Az — 0
E+dE = (1—”[")E (4.62)
2n
- E
E=-"2:H=\/nHy. (4.63)

vn
At each layer the phase of the wave is shifted by kdz = nkodz . At the altitude z the accu-
mulated retardation is given by the phase integral

Z
/ n(Zkodz .
0

This method is called the WKB approximation. It is best known from quantum me-
chanics where it was used independently by Wentzel, Kramers, and Brillouin in 1926. The
WKB method is useful in studies of wave propagation in (weakly) inhomogeneous me-
dia, and not restricted to Schrodinger equation or plasmas. In fact, Jeffreys had already
introduced it in his study of linear second order differential equations in 1923 and some
authors prefer to call the method the JWKB or WKBIJ approximation. The fields in this
approximation are given by

_ B . o
E, = ﬁexp[z(ko/0 ndz — )] (4.64)

H, = v/nHoexpli(ko /O “nd7 —ot)] . 4.65)
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Now the Poynting vector S = (E x H*)/2 = (EgHy/2)e; is constant. Therefore no en-
ergy is carried by the partially reflected waves and the apparent inconsistency with the
non-reflection of waves is solved, provided that the inhomogeneity is such that the WKB
approximation is valid. We can estimate the validity in the following way.

The amplitude of each partial wave is (An/2n)(Ey/+/n) and the phase difference be-
tween partial waves reflected from two consecutive layers is 2nkg/Az. We can construct
a phase—amplitude diagram representing each partial wave by an arc element As and an
associated phase angle A¢

o An E() .
C 2nn
Add the arc elements graphically by turning them with respect to each other by the phase
angle. Let Az — dz, An — dn, As — ds, A¢ — d¢. If no reflection were to take place,

the result would be a circle. However, the resulting curve is a spiral with an increasing
radius

As AQ =2nkoAz .

Ar—1lim 2S5 — Ey dn

=220 9 4.66
AD dd 4ndl?kg dz (4.66)

Train your brain by drawing the phase—amplitude diagram described above.

The amplitude of the reflected wave is of the order of Ar and can thus be neglected if

1
41’15/2](0

dn

— 1. 4.67
dz < ( )

Thus the WKB approximation is not good if kg is small, i.e., the wavelength is long com-
pared to the gradient scale length, or if n = 0, i.e., very close to the point where the wave
actually is reflected. Note that local density gradients can also reflect the waves in the case
of a smooth background profile.

The WKB approximation can also be used above the reflection region. There n* < 0,
i.e., n is imaginary. The amplitude is

E, = % exp(—ioor) exp(—klnlz) ; Hy = iln|Ex . (4.68)
This solution is overdamped and the wave is said to be evanescent.

When approaching the reflection point, n — 0 and the WKB approximation breaks
down. The problem is analytically tractable if the density profile can be assumed to be
linear in the vicinity of the reflection point. As the region where the WKB approximation
fails is narrow, this is a good assumption if the reflection does not take place very close to
a local density maximum. In the latter case a parabolic profile has to be used.

Close to the reflection point the wave is not a plane wave because the spatial dependence
is not harmonic. Write Maxwell’s equations as
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JB  dE,

VxE=—-2 = poioH,
X ot = dz Hor®@y
oD dH,
VxH=J+—— = —2 =i%iogE
I+ ot dz OO
= 2
d°E
dz2)C Jrk(Z)"zEX =0
= 2
d°Ey 2 (R0—2Z
i +k0< - )EX:O, (4.69)

where the linear profile was assumed at the last step. With a change of the variable this can
be transformed to Airy’s differential equation
d*E,
d{?

—{E, =0, (4.70)

whose solutions are expressed in terms of the Airy integrals Ai and Bi.
E(() = C1AI(S) + CBI(E). 4.71)
Asymptotic expansions for Ai and Bi above the reflection point ({ > 0) are

1

Nz

Bi({) ~ ﬁc-“‘*expéc% gy

AI(0) Wexp(~2¢72) 70

Feed your brain

Look up from some mathematical handbook or from the internet the Airy integrals Ai
and Bi and sketch their graphs.

Because the wave must vanish above the reflection point, C; must be zero. Thus the
electric field has the same form as Ai. Approaching the reflection point from the negative
side (§{ — 07), its amplitude and period increase and above the reflection point the field
rapidly approaches 0. An integral form of Ai is

oo 3
Ai(l) = %/0 cos (§s+s3> ds . 4.72)

The coefficient C; is more difficult to determine. For large negative { the solution must
join the WKB solution. There are some technical difficulties in finding the asymptotic
behavior of Ai for negative argument (roots of negative numbers). A detailed treatment
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can be found in Budden [1985]. The result is

1
Nz

Matching this with the WKB solution we get

M) 3= (e300 oG @73

C1 = 2v/TEy(koL)'/® .

Finally the electric field is given by

2E, 20 T .
E, = Tn cos <k0/Z nd7 + 4) exp(—iot)

E [ z
= 7% {exp {IZ +i (ko/Z Ondz/ — (Dtﬂ 4.74)

— ~Z
+ exp [in—l-i(—ko/ Ondz/—a)t)]} .
z

This is a sum of upward- and downward-propagating WKB solutions. The phase shift
between them (7/2) comes from the non-WKB region, and it would be quite difficult to
guess without doing the actual calculation. This introduces a factor i into the reflection
coefficient

20
R =iexp <2ik0 / ndz’) . 4.75)
z

The wave electric field in the reflection region is
Ey = 2/TEy(koL)/®Ai({) exp(—ioot) . (4.76)

From this we can estimate how much the field differs from Ey. Max[Ai] ~ 0.55. Assuming
f=5MHz = ko~ 0.1m~! and let L ~ 100 km. This gives Ex max = 9Ey. This can be
compared with a perfect mirror, for which E, ;4. = 2 Ey. The wavelength grows in turn by
a factor of 14. If the incident wave is sufficiently strong, it can couple to the oscillation
modes of the plasma. These may be damped by the plasma particles, resulting in heating
of the plasma.

The solution is straightforward to generalize to oblique propagation by substitution

2 2 _sin%6; .

n”—q¢*=n

4.2.3 Inclusion of collisions

The interparticle collisions must sometimes be taken into account in radio wave prop-
agation problems, which is very difficult to do analytically. For simplicity, we consider
only the average collision frequency V. This introduces a frictional term to the equation of

motion 4
v

— = —¢E—mvv. 4.77

mdt e mvv ( )
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Assuming again harmonic time dependence we get

_ eEgexp(—iot)

4.78
m(io—v) (478)
The permittivity and the dispersion equation are modified as
2
()
e=(1-—5—-"2—— 4.79
( w2(1+iv/a))>80 .79
2
)
K = pogow? [ 1— ——2—— | . 4.80
Ho% ( 0*(1+iv/w) (4.80)

If we solve w from this equation, we see that the collisions have introduced a negative
imaginary part to the frequency and the waves are damped. The collision frequency is
often denoted by Z = v/®. Now the refractive index is complex

X
1 . 481
" 1+iZ “.81)

The WKB solution becomes somewhat different from the non-collisional case. The
collisions damp the waves, i.e., energy is lost, and this contributes to the phase shift.

A more complete treatment must start from the Boltzmann equation with an appropriate
collision model.

4.2.4 Inclusion of the magnetic field

Above the frequency was assumed to be much larger than the electron gyro frequency. In
the polar ionosphere f,. ~ 1.4 MHz, and in practical applications the unmagnetized theory
can be applied only for f > 5 MHz. The magnetic field makes the plasma anisotropic
and plasma becomes birefringent. We do not have any reason to discuss the details of
the rather tedious derivation of the dispersion equation resulting from inclusion of both
collisions and the magnetic field but give the basic equations of this magnetoionic theory
for completeness.

Introduce a new variable ¥ = @,./®. Select again k || e; and denote the angle between
By and k by y. The magnetoionic theory gives the expressions for the polarization p and
the refractive index n

-2 2 ol 4 2
p—l _iYsm W/COSW:l:Zi\/1+Y sin” y/ cos? y 4.82)

2 1-X—iz 41X +iZ)
= (4.83)
1_

X

Y2sin® y Y4sin*y
1+iZ— ———M T Y2 cos2 —_—
i 2(1—X+iZ):F\/ R G Te
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These equations are called Appleton—Hartree equations. They have two physically mean-
ingful pairs of solutions (p, n?), corresponding to two selections of signs of the square
roots: + and —, or — and +. They are the ordinary (O) and extraordinary (X) modes dis-
cussed using a more transparent formalism in the next section.

4.3 General Treatment of Cold Plasma Waves

In this section we present the general formalism for waves in magnetized plasma in the
cold plasma approximation. Recall that “cold” means here the assumption of the charac-
teristic velocities of the waves being much faster than the thermal velocity of the plasma
\/2kpT /m. In this approximation thermal effects can be neglected.

4.3.1 Dispersion equation for cold plasma waves

To derive the general dispersion equation in a cold plasma we start from Maxwell’s equa-
tions and Ohm’s law where ¢ may be a tensor. In the plane wave approximation we obtain

the wave equation
2

o
kx (kxE)+ — 4 E=0, (4.84)
C
where .
H=F+ ¢ (4.85)
weéy

is the dielectric tensor and .# the unit tensor. In case of no background fields (Ey = By = 0)
the dielectric tensor reduces to the already familiar scalar dielectric function

2
(O]
Kzlfﬁznz. (4.86)

The dielectric tensor %" is a dimensionless quantity expressing the relationship between
the displacement and electric fields

D=¢-E=¢. " -E. (4.87)
Now the wave equation has particular solutions

k|E = 0’= a)zl%e plasma oscillation
k LE = 0® =K+ m;%e electromagnetic wave in plasma.

Include a homogeneous background magnetic field By and consider small perturbations
B; (B; < By). The total plasma current is

J=Y naqaVa . (4.88)
a
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Note that the assumption of cold plasma means that all particles (of species o) are moving
at their average velocity Vg (r,?). Assuming that V4, o< exp(—i@t) the first-order equation
of motion is
—ioVy =go(E+ Vo xBy) . (4.89)
Let the background magnetic field be in the direction of the z-axis, i.e., Bo | e, treat
the xy-plane as a complex plane and use the coordinate system defined by the base
{\/1/2(e, + iey), \/1/2(e, — iey), e, }. Denote the components in this base by integers
d ={—1,1,0} and express the plasma and gyro frequencies as

2
() S O
oL o Wco

Xo= 22 ¥y = . (4.90)

Here @, is a positive quantity and the sign of the charge is given explicitly by sq. Now
the components of the current are

Xo
=i ———F, 491
Jao 180(01 v, d s 4.91)

and the dielectric tensor is diagonal

Xa

1— 0 0
Zal—Ya .

— . 4.92
A 0 ]_ZaHaY 0 (4.92)
o

0 0 1-Y 0 X

It is customary to denote the components of the tensor by R, L, and P

2
[0) o
R=1-V 2 — _ 4.93
; w? <w+saa)ca> (4.93)
? ®
L=1-Y 2 —— 4.94
; w? (a)—saa)ca> (4.94)
2
()
p=1-yY 2 4.95
; o2 (4.95)

R has a singularity when @ = @,,. The corresponding wave mode, the R mode, can be in
resonance with electrons. R thus corresponds to the right-hand circularly polarized wave.
Similarly the L mode can be in resonance with positive ions and corresponds to the left-
hand circularly polarized wave. P corresponds to plasma oscillation, which is linearly
polarized.

Transforming %" back to the {x,y,z}-base we get

S —iD 0
¥ =D s o], (4.96)
0 0 P

where S = (R+L)/2and D= (R—L)/2.
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The wave equation can be written in terms of the wave normal vector n = ck/o as
nx (nxE)+# -E=0. (4.97)

Note that in the following discussion n consequently refers to the wave normal vector and
must not be mixed up with the unit normal vector elsewhere in the text! Recall that B is
in the z-direction. Select the x-coordinate so that n is in the xz-plane and let 8 be the angle
between n and By. Now the wave equation is

S—n*cos20® —iD ncosBsind E,
iD S —n? 0 E, | =0. (4.98)
n*cos@sin® 0O P—n’sin®6 E,

The non-trivial solutions of the wave equation are found from the dispersion equation
An*—Br*+C=0, (4.99)
where

A = Ssin? 0 + Pcos2 0
B = RLsin? 6 + PS(1+cos’ 6) (4.100)
C = PRL.

Solving n would give a generalization of the magnetoionic theory. However, it is more
instructive to study the dispersion equation for different angles 0
—P(n* —R)(n* —L
tan® @ = (n )(n ) .
(Sn? —RL)(n> — P)

(4.101)

Now we can identify the wave modes in various directions. The modes propagating in the
direction of the magnetic field (6 = 0) and perpendicular to it (6 = 7/2) are called the
principal modes

0=0: P=0,n"=R n*=L

0=m/2:n>=RL/S, n>=P.

These modes have cut-offs

n?—0 (v, — oo, k—0, L — o)
P=0,R=0,0orL=0

and resonances

n? — oo (v, —0, k— o0, A —0)

tan’ @ = —P/S (provided P # 0) .

When the wave approaches a region where it has a cut-off (n> — 0), it cannot propagate
further and is reflected. At a resonance the wave energy is absorbed by the plasma.
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4.3.2 Parallel propagation (6 = 0)

The parallel propagating modes are the solutions of P =0, n”> =R, n> = L. The case P =0
is the trivial plasma oscillation but the right- and left-hand polarized modes are important.

Right-hand polarized mode (R)

2 2
(O w
ng=R=1- r__ pe (4.102)
(D((D-FCOci) (D((D—(Dce)

The resonance is with the electrons at the electron gyro frequency @ = w... The cut-off

frequency is
@,
o~ [1+\/1+4a)1%e/w§€ . (4.103)

At the limit of low plasma density this reduces to
g & Oce(1+ @07,/ 0F,) (4.104)
and at the limit of high density to
OR R Wpe + Dce /2 . (4.105)

At low frequencies the mode approaches the Alfvén wave to be discussed in Chap. 6.
At the limit of high frequency the wave is the electromagnetic wave in an unmagnetized
plasma @ — o0, n* — 1 — @7, /@*.

Left-hand polarized mode (L)

wz‘ w2
n=L=1- P _ pe | (4.106)
o(0—0;) oo+ o)

The resonance is with ions @ = @,;. The cut-off frequency is at low density
o = 0ci(1+ 05/ o) (4.107)
and at high density
O = Ope — Ve /2 . (4.108)

The left-hand mode has a lower cut-off frequency than the right-hand mode. Both
modes propagate at all frequencies above their cut-off frequency. At high frequencies both
modes approach to the electromagnetic wave in free space (coge / 0> —0 = o— ck)
(Fig. 4.3)

Faraday rotation

The Faraday rotation is a consequence of the different phase velocities of the left- and
right-hand modes. Consider a linearly polarized signal and represent it as a sum of R and
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O [ electron cyclotron wave

O -/ ----= ion cyclotron wave

Z

+— Afvén wave

k
a) Wpe>> O ce
electron cyclotron wave
O R
-7 ion cyclotron wave
- "\ .
Alfvén wave
k

b) Wpe<< O ce

Fig. 4.3 Parallel propagation for a) high plasma density (@, > @c.) and for b) low plasma density
(@pe <K @y,). The continuous line is the R-mode and the dashed line the L-mode. Cut-offs are found
where the dispersion curve meets the vertical axis (k = 0) and resonances are found at large k .

L modes ' . . . '
E = [e,(Ege™® + Epe?) + je, (Ege™®* — Epel*t?) e~ (4.109)

The anisotropy introduced by the background magnetic field implies that the R and L
components of the wave have kg # ki, for the same @ and

Ex . 1 + (ExL/ExR) exp[i(kL — kR)Z]
o _ . 4.110
E, - (Exr/Exg)expli(ky, — kg)z] ( )
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Because the sum of the R and L modes is linear, E,;, = Exp =

Ex:cot(kL;kRz> . 4.111)

This means that the plane of polarization rotates when the wave propagates through an
anisotropic medium. The degree of rotation ¢ = (k;, — kg)z/2 depends on the plasma den-
sity and the magnetic field. In astrophysical observations the plasma and gyro frequencies
are small compared to the observed electromagnetic signal. Thus the dispersion equations
for L and R modes can be approximated as

2
(0] [ ),
kn = 7 [12(5; (1 ;)] . 4.112)
The differential rotation of the polarization plane is
d¢ 7(1)[%ng€ —63
& 2ot " amiaed? neBy . (4.113)

The total rotation from the source to the observer at the distance d is

3 d

= B-ds 4.114

0= teca? | neB-as. (“.114)

where the integral is taken along the path of the signal. In astrophysics the term rotation
measure (RM) is introduced by the formula

¢=-RM[f>. (4.115)

Numerically

d
RM = 23.5/ n,B-ds, 4.116)
0

where f is measured in Hz, n, in cm 3, B in nT and ds in m. Because the direction of
rotation is determined modulo 7, it has to be measured at several frequencies in order to
resolve how many times the polarization plane has turned during propagation from the
source to the receiver.

Whistler mode

In addition to the Alfvén wave there is another important wave mode that propagates only
in magnetized plasmas: the whistler mode. The R mode has real solutions also in the fre-
quency range between ®,; and . If 0,; < ® < o, the dispersion equation can be
approximated by

Wpe [ ©
oc (%%

k

4.117)
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y, = L= NV g (4.118)
k Wpe

vy = 90 _ 200 o (4.119)
k Wpe

This dispersive mode was found during the First World War as descending, whistling
tones heard on communication lines in the frequency band around 10kHz. The correct
explanation for these whistles was not found until 1953 when Storey realized that the
waves originated as wide-band electric signals from lightning strokes. Part of the pulse is
guided by the magnetic field as a whistler wave to the other hemisphere where it can be
detected as a descending tone. The time of arrival depends on the frequency as

/ _Opels) ds . (4.120)

2¢/0Wce
This explanation was not accepted immediately because it requires a higher plasma density

in the plasmasphere than was thought to exist at that time.

4.3.3 Perpendicular propagation (6 = 7/2)

Modes propagating perpendicularly to the magnetic field are called, for historical reasons,
ordinary and extraordinary modes. Unfortunately, their definitions are different in different
fields of physics. Furthermore, there is nothing really extraordinary about the extraordinary
mode.

Ordinary mode (0)

The ordinary (O) mode is the mode whose index of refraction is

2 2 2
: Q) ()
2 pi e pe
npy=P=1-—2_ 21 B 4.121)

This corresponds to the “ordinary” electromagnetic wave in isotropic plasma. Its electric
field is in the direction of the background magnetic field (E || By). For exactly perpendic-
ular propagation the background magnetic field is not involved in the dispersion equation
of the mode. It has a cut-off at @ = wp,.

Extraordinary mode (X)

For the extraordinary (X) mode n)z( = RL/S . With the obvious approximation @, >> @;
two hybrid resonances are found. The upper hybrid resonance is

O ~ O, + 0, (4.122)
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and the lower

2 2 2

2 wci + wpi wpe + Wee Wi

Ol R ey oy~ Oeelei | —25—— o | (4.123)
+ (wpe/wce) mpe + wpi

The lower hybrid frequency region is particularly important because waves propagating
there can be in resonance with both electrons and ions. At the low density limit @,y — @.;
and in the high density regime Wy g — /. ®; . The cut-offs of the X mode are at low

density
2
a)ce ce
wx = { + Ope/ O (4.124)
Wi + O/ Oce
and at high density
1
Ox = Wpe £ 5 ce- (4.125)
At the limit of low frequency
2 2
.
T R S R (4.126)
@ VA

where v4 = By/+/PmMo is the Alfvén speed. This is the magnetosonic wave in cold plasma
approximation. In MHD (Chap. 6) its dispersion equation is found to be

© 5,
2 =V +Vi, (4.127)
where vy is the speed of sound. In cold plasma vy is small (— 0), whereas in MHD ¢ — oo.
In tenuous space plasmas v4 can be a considerable fraction of, or even larger than, c¢. Then
the dispersion equation is modified as

? v? + vf1

- = . 4.128
K2 1+vi/c? ¢ )

4.3.4 Propagation at arbitrary angles

The principal modes R, L, O, X are defined for exactly parallel and perpendicular prop-
agation only, but waves also propagate at other angles. The principal modes are usually
illustrated as curves either in the (®,k)- or (,n)-plane. The same can be done for an
arbitrary angle 68, or one may select a given mode and follow how it changes as a function
of 6.

One way to illustrate wave properties is to use wave normal surfaces. Consider the
vector n/n*> whose absolute value is v, /c. This is the phase velocity vector normalized to
the speed of light. Draw the tip of the vector as a function of 8 from O to 27 and let the
curve rotate around the z-axis. The surface of the resulting 3D object is the wave normal
surface. In cold homogeneous plasmas there are three topologically different surfaces:
spheroid, dumbbell lemniscoid, and wheel lemniscoid. The waves have different wave
normal surfaces in different regions of the space parameterized by the plasma frequency
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(X) and the gyro frequency (Y). Fig. 4.4 shows the wave normal properties in different
regions of this space in the form of a CMA (after Clemmow, Mullaly and Allis) diagram.

Let us look at a couple of examples in the CMA diagram. The frequency is highest in
the lower left corner (region 1 in Fig. 4.4) where the wave normal surfaces are spheroids.
The wave which is the R mode in the parallel direction goes continuously over to the X
mode in the perpendicular direction and the entire surface is often called RX mode. Its
phase velocity is in all directions greater than the phase velocity of the LO mode. In region

Wee I low frequencies
W P=0 (cut-oll) (MHD)
ellipsoids lemniscate L
LR,O,X ellipsoid R, X
R R
O X
m; 12]13
m, B 10]11 L - (res.) —
¢ (Oo%o ellipsoid R
1. 1 == R,X /.\7_7{_‘,‘ X
........... R,O _ ‘
.............. o . S=0(res.) ____

lemniscate R

R
| PR N
ellipsoids - .
LR,0.X 0 o
emn. R ".,‘
Ga| 7 C”lpb L, 8a * N 8b
: T 3 g R les) —
N2 ooxolemn. X .‘.
< ellips. L..d 3
ellipsoids o Eli)[zmids
F:LO M . L =0 (cut-off) -
cut-o L . - _
ellipsoids R [ o - ‘K ;
LROX st o
CL)O X (res) no ellipsoids :
high frequences
1 >

2
(l)D

w?

Fig. 4.4 The CMA diagram. The wave normal surfaces are drawn assuming that the background magnetic
field points upward. The principal modes are denoted at the side of each diagram. The variable on the
horizontal axis is X = wge / ®? « n, and on the vertical axis ¥ = @, /@ o< B.
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2 there is no RX mode, whereas in region 3 the LO mode has greater phase velocity than the
X mode. Note that now the X mode is on a wheel lemniscoid, so there is no corresponding
parallel propagating mode. In region 7 the faster mode is LX and there is also an R mode.
Now R is on a dumbbell lemniscoid, meaning that there is no perpendicular propagating
solution. At the lowest frequencies (region 13) we find three MHD solutions, to which we
return in Chap. 6.

Another method of presenting the solutions of the dispersion equation is to display
them in a 3D (a),kH7kl)-space as dispersion surfaces. One face of the cube in Fig. 4.5
represents the modes propagating parallel to the magnetic field, another those propagating
perpendicular, and the other propagation angles are inside the cube.

; \ \ |
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Fig. 4.5 An example of how to represent the wave modes using dispersion surfaces. The figure illustrates
high-frequency waves at the high-density limit (@p, > ®c.). The horizontal axes show the perpendicular
and parallel wave numbers normalized to the electron Larmor radius and the vertical axis is the frequency
normalized to the electron gyro frequency. We identify the following solutions: a) whistler, b) the L mode,
c) the upper hybrid mode, d) plasma frequency, ) R mode and f) Bernstein modes. This figure was calcu-
lated using microscopic theory [see André, 1985] that gives more solutions than the cold plasma theory.
The Bernstein modes are examples of such. We will return to these modes in Chap. 5. (Figure by courtesy
of M. André.)






5. Vlasov Theory

The cold plasma approximation of Chap. 4 was based on the assumption that the phase
velocities of the waves are much larger than the thermal velocities of the particle popula-
tions. This is essentially the same as approximating the particle distribution functions by
delta functions, although taking the limit may be tricky and not necessarily mathemati-
cally rigorous. The approximation is evidently not valid at resonances and many aspects
of wave—particle interactions are lost. In this chapter we introduce the thermal (or kinetic)
effects starting from the Vlasov equation
%+V¢%+%(E+vxm‘%:o. (5.1)
The Vlasov theory is a quite complete description of fully ionized plasmas and it pro-
vides a solid foundation for wave—particle interactions. At the same time it often is much
too detailed for practical purposes. The theory has its own limitations, in particular in
weakly ionized plasmas (e.g., ionosphere, solar photosphere), where plasma—neutral col-
lisions cannot be neglected. The effects arising from the collision term of the Boltzmann
equation can be added to the Vlasov treatment, but that reduces the generality of the ap-
proach.

5.1 Properties of the Vlasov Equation

The Vlasov equation is sometimes regarded as the most important equation of plasma
physics. It has several useful properties:

e The Vlasov equation conserves particles. It is straightforward to show that

% [nadudirav=0 52)

by integrating (5.1) over the entire (r,v)-space. Here ny denotes the average density of
species & in the volume under consideration.
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e Positive probabilities remain positive in the Vlasov description. If f(r,v,# =0) > 0 for
all (r,v), then fo(r,v,t) > 0 for all # > 0. This is an important property to be ensured
in numerical Vlasov simulations.

e The Vlasov equation conserves entropy. Entropy is defined by

—Z/fa Infodrd®v (5.3)

__Z/<df‘"1 nfy+ e >d3 dBv=0. (5.4)

This is an important issue in the interpretation of Landau’s solution of the Vlasov equa-
tion to which we turn in the next section.

e The Vlasov equation has many equilibrium solutions. In statistical physics Boltzmann’s
H-theorem states that there is a unique equilibrium in the collisional time scale, the
Maxwell distribution. The relevant time scales of the Vlasov theory are much shorter
than the collision periods due to the assumption d f/dt|. — 0. Let foo be any Vlasov
equilibrium, then d fo0/dt = 0 and thus

%er—a(EJr xB): = fan =0. (5.5)
In order to generate a general solution to this equation let (r'(¢'),v/(¢')) be the orbit of a
particle that intersects the point (r, v) at the time ¢’ =¢. If functions a(r’,v'), b(r',v'), ...
are constants of motion for particles of species @, then any function fuola(r’,v'),
b(r',v'),...] satisfies (5.5) at the time ¢’ =, and thus any function fuola(r,v), b(r,v),...]
of the constants of motion is a stationary-state solution of the Vlasov equation.

Examples of Vlasov equilibria

1. Eg = By = 0. In this case the constants of motion are

W= 2(v+v+v)

p=mgVv.

Examples of equilibrium solutions are now

3/2
o Mg o Mgy 2
fao = <2nk3Ta) e"p( 2Ty ) 60
g
Jao =Ci 5 R (5.7
fao = Cavo 8(vy) 8(vy) §(v2 —v}) (5.8)

2

N Mgy, . ma(vz — V(ZXO)
fao = ks T O(vx) 8(vy) exp( T, ) (5.9)
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where 8’s are the Dirac delta functions and C; and C, are appropriate normalization
factors. Correct choice of an equilibrium distribution requires physical understanding
of the problem under consideration.

2. Ey =0, By = By(r)e,. A possible selection of constants of motion is

m
W= 7a(v§+v§+vf)
p| = mav;

L = mq(xvy —yvi) e, —qarAg(r) ey ,

where Ay is the azimuthal component of the vector potential, which is the only non-zero
component in this configuration. Another choice of constants of motion could be

gx:Vx_iqa /Bo(r)dy
Mg .
qa
L= — | B .
&=+ 2% [Bo(r)ax

One of several possible equilibria for a constant B is

qaBo qaBo )
X, Vy — v .

(5.10)

» VX

fao=F (vz, vy +
Mgy Mgy

5.2 Landau’s Solution

The Vlasov equation is not easy to solve. It must, of course, be done under the constraint
to fulfill Maxwell’s equations because the source terms of Maxwell’s equations (p,J) are
determined by the distribution function, which, in turn, evolves according to the Vlasov
equation. Furthermore, the force term in the Vlasov equation is nonlinear. Thus the Vlasov
equation can be solved analytically only for small perturbations when linearization is pos-
sible. We start by writing functions to be solved as sums of equilibirum solutions and small
perturbations

foc = fa0+fa1
E=Ey+E,
B =By +B;

and consider the equations of the first-order terms. However, the problem remains difficult.
The general solution for homogeneous plasma in a homogeneous background magnetic
field was presented for the first time by Bernstein [1958] and inclusion of inhomogeneities
rapidly leads to problems that can be handled by numerical methods only. Landau [1946]
solved the field-free case in the following way.

Consider homogeneous plasma free of ambient electromagnetic fields (Eg = Bg = 0) in
electrostatic approximation: E| = —V @y ; By = 0. The linearized Vlasov equation is now
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afocl_|_ _afal _qi%.afao _

ot "V or mg or v

0, .11

where

1
V2o, :—S—OZnaqa/fald3v. (5.12)
o

Vlasov tried to solve these equations at the end of the 1930s using Fourier transforma-
tions in space and time. He ended up with an integral of type

/°° A fa0/0Vv v

—eo W — kv

b

which has a singularity along the path of integration. Vlasov did not find the correct way
of dealing with the singularity.

Landau realized that because the perturbation must begin at some instant, the problem
can be treated as an initial value problem and, instead of a Fourier transform, a Laplace
transform can be applied in time domain. Once the initial transients of the perturbation
have faded away, the asymptotic solution gives the intrinsic properties of the plasma, i.e.,
the dispersion equation.

Thus we write

far(v,1) = @ [ faaev.exp(—ikor)dr (5.13)
Foc(¥,p) = /0 " fur(v.t)exp(—pt)dt . Re(p) > po (5.14)

and similar transforms for @(r,t). po has to be chosen to ensure the convergence of the
integral. After these transforms the equations for fu and @ become algebraic. After the
trivial solution of the algebraic equations the solution in the (r,v)-space is found by the
inverse transformations

potico

~ d

So1(r,v,t) = /exp(ik-r)dk / exp(pt)fak(v,p)z—ifi (5.15)

. po—ieo

potiee d

or(r.1) = [explikriak [ exp(pr)pulp) 5L (5.16)

po—iee

The transformed equations (5.11) and (5.12) are
- d
(p+ik-V) fox = fok(V,t =0)+qi <ik' fa0> Pk (5.17)
Mg ov

_ 1 =
Ko = anaqa/fakd%. (5.18)
[0
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From these we find the transformed potential

72 Nada fak(f—o)d3v

9 p+ik-v
ko = ; Re(p) > po - (5.19)
1+iz”oﬂa /k afaO/aV
€& mg k? ip—Kk-v

If we now identify @ = ip, the denominator of the RHS corresponds to K(k, ®) in Chap. 4.
Multiplying (5.19) by the denominator and assuming that we would have performed the
inverse transform, we can write the equation formally as V-D; = p;, where p; is the initial
charge density perturbation.

Because K(k, ®) contains the information we are most interested in, we do not usually
need to make the inverse transformation of @x. But we must know how it should be done
in order to calculate the integral in

1 naqa k- afao/av
K(k =14+—
K(k, ) +£0; me k2 w—k-v

(5.20)

We can simplify the notation by selecting k to be in the direction of one coordinate axis

and integrating
Fao(u /focO (u_|k|> dv (5.21)

N . k-v
Fox(u) = / Fox (V)8 (u— |k> d*v (5.22)
=
OFan(u)/9u
K(k,ip)=1-— Z / u:)lp/|k\ du ; Re(p)>po. (5.23)

Taking the inverse Laplace transform we get

1 F, t=0
Ppo-Fioo *Z%&M/Mdu
2 & p+ilklu dp
k* k(1) = Kk.ip) exp(pt) oy (5.24)

po—iee

This integral can be calculated in closed form for some specific equilibrium distribu-
tions Fyo and initial perturbations Fok(u,# = 0) only. Landau showed that it is possible to
find the asymptotic behavior of the potential when ¢ — oo, i.e., when the transients of the
initial perturbation have disappeared and the normal modes of the plasma determine the
plasma oscillations.

Before we can integrate (5.24) we need to know the analytic properties of @ (p). By
definition it is analytic when Re(p) > pg. In order to make use of residue calculus in the
p-integration we make an analytic continuation of @x(p) to the entire complex p-plane.
The problem is how to continue the integral
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~+o0

h(P)=Z}%du 5 Re(p) > po (5.25)

to Re(p) < po. Assume that g(u) is analytic when |u| < co. If Re(p) > 0, the pole of the
integrand is above the integration path (the real u-axis). The analytic continuation requires
that the integration contour passes below the pole also in the case Re(p) <0

' glwdu
J m ; Re(p) >0
T sluydu
Wp) =4 P / i T islin/ ) : Re(p) =0 (526)
J O origln/ ) Re(r) <0,

where P denotes the Cauchy principal value. The integration path is called the Landau
contour and denoted by [;. Note that this does not yet define how the contour is to be
closed in the upper half plane. It is not always trivial to find a closure whose contribution
vanishes at the infinity. Already the Maxwellian distribution is tricky.

Feed your brain

Review the basics of analytical continuation from some textbook in complex analysis
and show that (5.26) is the correct analytical continuation in the present problem.

In (5.24) the only singularities are the poles at zeros of K (K, ip). In order to calculate the
p-integral we move the integration path (—ieo — ico) so far to the negative Re(p) (Fig. 5.1)
that the factor exp(pt) guarantees that the contribution from the vertical parts of the in-
tegration contour vanish and the only contributions come from the residues at the poles.

Denoting the residues at p; by R; we have

—joco—(t

N d
() = Y_Rjexp(p;(k)r) + / %(p)exp(pt)zjfi (5.27)
! —ieotpy
feo—0t ieo+pg
dp
+ / Px(p) exp(pt) 7_’_ / P)exp pt)2 =
—leo— ico—Q

The second and fourth terms on the RHS are small because @x — 0, as |p| — oo. The third
term vanishes exponentially as compared to the residue terms when ¢ — oo . This yields the
asymptotic solution
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4 Im(p) 4 Imp) 4H=+Ro
p-integration
Polesof g — [ =9
\\X x
) I S D
N, =)
deformed path
X %S of p-integration
Py o Po _,IL
-foo + P,
Fig. 5.1 Integration path in the p-plane.
ot — o2) = ) Rjexp(p;(K)r) = } Rexp(—ia;(K)r) , (5.28)
J J

where ®; = o, + io; are the solutions of the dispersion equation K (k, @) = 0. This means
that a long time after the initial perturbation the plasma behavior is determined by the so-
lutions of the dispersion equation, provided that K is calculated along the Landau contour.

B Wy [ IFgo(uw)/du ,
K(k,a))zl—; L /Liuf(u/vd du=0. (5.29)

Now

Re(pj) <0 = ;<0 ¢ is damped

Re(pj)>0= ;>0 ¢ grows (instability).
For |@;| < |@,| the solution is called a normal mode. Note that the dispersion equation is
calculated only at the time-asymptotic limit.

Train your brain

An alternative way to solve the Vlasov equation is to follow Vlasov’s approach and end
up with the dispersion equation
/k 8.}(‘(Z()/av 0

Add weak collisions in the Vlasov equation in the form d f/dt|. = —v(f — fp) and show
that the Fourier transform method leads to the Landau prescription at the limit v — 0% .
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5.3 Normal Modes in a Maxwellian Plasma
Although space plasma distribution functions seldom are exactly Maxwellian, it is practi-

cal to start with the normal modes in the Maxwellian case and, if necessary, consider the
possible deviations on a case by case basis.

5.3.1 The plasma dispersion function

Assume E¢y = By = 0 and consider the one-dimensional Maxwellian

m
Foo = ZEkZTa exp(—u* /i) s (5.30)

where the thermal speed is defined by

szTa

My

Vtha =

Now the Landau contour is a little problematic because the integrand of

8Fa0/au - MFa()
/u—w/|k| du~ / o/l ™

diverges with u — oo, and the calculation of the closure of the integration path is not triv-

ial. This problem can be solved using methods of complex integration and the result be
expressed in terms of the plasma dispersion function

f/eXp . Im($) >0 (5.31)

and its derivatives. The plasma dispersion function is related to the error function and
numerical routines to evaluate it are available. If we consider electron dynamics only,
assuming the ions as a fixed background, the dispersion equation reduces to

2
1= Gbe (DN . (5.32)
kzvtzl’[e kvthe

For normal modes (|@;| < |@,|) the dispersion equation can be expanded around ® = @,

02, P FTINE [ IF0 B
]—Zkz< +lwl(9a)l> [P/Wdu+ﬂl <au>u:wr/k —0 (533)

From this we can find solutions for the dispersion equation at long and short wavelengths.
These correspond to series expansions of Z for large and small arguments, respectively.
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5.3.2 The Langmuir wave

We start from the long wavelength limit (w/k > v;;,), which is the same approximation as
made in the cold plasma theory (Chap. 4). Now

_p [ 9Faw/ou [ OFa (1 u u? )
P/u—(or/|k\du_./ S (w/|k|+((o/k|)2+(a)/|k|)3+"' du . (5.34)

Using this expansion, neglecting the ion dynamics and inserting a Maxwellian distribution
for electrons (5.33) yields

3
@, ~ 0pe(1+3k°A3,)"? ~ @pe <1 + 2k21,38> (5.35)

as the real part of the frequency, and the imaginary part is!

T Ope 1 3
w=—/ 2 exp(———5—2 . 5.36
’ AT EN R ( 20202, 2) (5-36)

This is the Langmuir wave. The finite temperature of the Maxwellian distribution makes
the standing cold plasma oscillation to propagate. Furthermore, the negative imaginary
part of the frequency indicates that the wave is damped at the rate ;. This phenomenon is
known as the Landau damping. The damping is a genuine collective effect characteristic
for plasmas. Its interpretation will be discussed in Sect. 5.4.

We can find the same result by expanding K (w, k)

oK (w,,k
K(0,k) ~ K(w,,k) +iwi¥ . (5.37)
00,
Note that K (@,,k) is a complex function containing an expression of the form
. / dFu0/du
Im [ —————du
e—0t) u— . /lk|—ie
Thus we have
K(oy,k) = K(0,K) + iK;( 0, k) (5.38)
2, ([ JF,
K = —n) -2 ( ao) (5.39)
Za: o\ ou ) e
2
Q) oF, 0/8u
K =1- —”‘*Pfio‘ du . 5.40
" =2 ) u— o " (>.40)

Note that while the Landau contour is not given explicitly, it is taken care of by the limit
€ — 0*. Equating the imaginary parts we find

! Here and in the following we replace ~ by = once the initial approximation has been introduced.
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_I(t(a)ﬁk)

==, 5.41
dK,(w,,k)/dw, >4D)
where K, fulfills the dispersion equation
K. (0, k)=0. (5.42)

5.3.3 The ion—-acoustic wave

Take then also the ion motion into account. Assume that 7, > T; and look for solutions of
the dispersion equation in the phase velocity range

ko T, kT,
LN i (5.43)
m; k me

At this limit we can use the same series expansion for the ions as above, but now the cold
plasma approximation is no more valid for electrons because v, < v;.. The appropriate

expansion is
P / IFao/OU ;. > / aFO‘O (5.44)
Uu— r/IkI

Assuming Maxwellian distributions for both species we get

2

1
5.45
i (5.45)
1/2 2
Mgy (J)r CO, Mgy
= — — . 5.46
”Z (ZﬂkBTa> ksTy k] <P ( 22Ty ) (5.46)
By solving the dispersion equation the real part of the frequency is found to be
K*c? kgT,
2 s Ble
0 =——— = 547
r 1 + kzlge CS mi ( )
and the damping rate is given by
K;
o = — _ 5.48
9K, Jow, (548)

_ o] Va8 (T)/ (i) o e
T+ |\ T, Pl2(+.22) mi |

This is the ion—acoustic wave and c is called the ion—sound speed or ion—acoustic speed.

Note that the ion—sound speed is determined by the electron temperature and the ion
mass. If the ion temperature is to be taken into account, we should replace T, by T, +
T;. However, this mode can be treated as a normal mode (|@;| < |@;|) only if T, > T;,
which motivates that the ion temperature was neglected at the beginning. In many practical
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situations, for example in the auroral ionosphere this condition is not met and the mode
is strongly damped. As we will see in Chap. 9, the strongly damped ion—acoustic mode is
also important in the scattering of electromagnetic waves.

5.3.4 Macroscopic derivation of Langmuir and ion-acoustic modes

Finite temperature effects in plasmas do not always require a Vlasov theory treatment. For
example, in MHD (Chap. 6) the temperature is included through the equation of state and
energy equation. Thus the normal fluid sound wave, not the ion—acoustic wave, is a part of
the dispersion equation for MHD waves.

The Langmuir and ion—acoustic waves can be introduced in a warm unmagnetized
plasma description starting from simple electron and ion fluid equations, which is the
method applied in many introductory plasma physics textbooks. We sketch the procedure
here because the same approach is useful in the discussion of beam—plasma instabilities in
Chap. 7.

Assume that the plasma is homogeneous and that there are no background electromag-
netic fields. Let the pressure be isotropic, the average velocity zero, and the equation of
state or the form P/p,,” = constant. We are looking for plane wave solutions and linearize
the continuity equations (2.117) for ions and electrons. The first-order equations are

ioni —ingk-Viy =0 (5.49)
ion., —ingk-V,; =0. (5.50)

In the momentum equation we retain the electron pressure gradient but neglect the ion
pressure effects due to the smaller ion mobility. Considering small mass density perturba-
tions P, <K Pmo the equation of state can be written as

P = PyPmL (5.51)

Pmo

Now the momentum equations for ions and electrons are

—ioV; = 2K, (5.52)
mi
kyP
—iOVy = — Sy — V0Tl (5.53)
m; nome no

The first Maxwell equation ties these together

) e
lk-El = ——(nel —I’l,’1) . (5.54)

&

Combining these and writing Py = n.kgT, we get

> >
-2 pe k-E, =0. 5.55
( ©?  ©?—k*(ykgT,/m,) ! (5.55)
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The expression in the parenthesis is now the dielectric function K(®), whose zeros yield
the dispersion equation K (@) = 0. This has 4 roots (or 2 roots for ®?). One pair of solutions
yields the dispersion equation

o = w;, + K (YksT./m.) . (5.56)

At zero temperature or for infinite wavelength (k = 0) this is the standing plasma oscilla-
tion. The finite temperature makes the wave propagating and dispersive for finite k. The
wave is electrostatic (longitudinal, k || E).

To identify this mode with the Langmuir wave of the Vlasov theory, we must specify
the polytropic index 7y, which requires some physical intuition. Let us consider the thermal
effect as a small correction to the cold plasma theory or, equivalently, the long wavelength
limit. Then we can assume that the thermal effect expands less than a wavelength during
one plasma oscillation. During one oscillation period there is thus no heat exchange be-
tween the wave and the plasma, and thus the process can be treated as adiabatic. Because
the field-free plasma is essentially one-dimensional, we have y = (d +2)/d = 3 and

o* = w;, (143K°45,) - (5.57)

As long as the thermal correction is small we can approximate the square root as

3
O = Wper/ 1 +3K2A3, ~ 0pe (1 + 2k2158) : (5.58)

which is the same solution we found in the Vlasov theory.
The second pair of solutions gives the ion—acoustic wave.

o K (5.59)

\/1+K223,

where we have introduced the ion—sound speed ¢ = +/kgT,/m;. In this solution we have
set Y =1, i.e., assumed an isothermal process. Its motivation is the small oscillation fre-
quency of the ions allowing the electrons to thermalize during one oscillation period.

Thus we have found both Langmuir and ion—acoustic modes without needing to invoke
the Vlasov theory or the Landau solution. The price to pay was to figure out the appropriate
polytropic indices, whereas in Vlasov theory the numerical factors are direct consequences
of assumed Maxwellian distributions and the wavelength regimes, where we looked for
the solutions. However, by far a more serious deficiency of this macroscopic warm plasma
treatment is that it does not give even a hint of the damping of the waves.
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5.4 Physics of Landau Damping

Landau’s original solution was not fully accepted before it was experimentally verified
in laboratories in the 1960s. A problem was that the Vlasov equation conserves entropy,
whereas the Landau solution does not appear to do so. Consider, e.g., the Langmuir waves.
The wave electric field interacts with the Maxwellian electrons accelerating those whose
velocity is slightly less than the phase speed of the wave, and decelerating those that move
a little faster. Because df/dv < 0, there are more slower electrons than faster electrons
around the phase speed. Thus there is a net energy transfer from the wave to the particles,
i.e., the wave is damped and the particle distribution heated, which at the first sight looks
like a dissipative process.
To resolve this apparent contradiction consider the perturbed distribution function fi (¢)

closer. Recall that

z Jox(v,t=0)  qq i¢kk‘9fao/9V

Jak(v.p) = (p+ik-v) + mg (p+ik-v) (5.60)

potico

1 ~
fav.) = 5= [ Falvp)exp(pr)dp. (561)

po—ice

fax (v, p) has the same poles as @ (p), i.e., the solutions of K = 0. There is an additional
pole at p = —ik - v. At the limit # — oo we find

fox = fapexp(—ik-vr) +Zfakexp(—ia)kt) ) (5.62)
oK

where @ are the solutions of the dispersion equation and the sum is over these solutions.
faB and fak are time-independent amplitudes. The terms in the sum over @y are damped at
the same rate as the perturbed field @ (¢). In the first term on the RHS of (5.62) B stands for
ballistic. The ballistic term is there because the Vlasov equation is formally similar to the
Liouville equation and every particle remembers its initial perturbation wherever it goes
in the phase space. When ¢ increases, the ballistic term becomes increasingly oscillatory
in the v-space (Fig. 5.2) and its contribution to @ (¢) behaves as

! .
=Y gana /fagexp(—ik-vt)d3v -0, (5.63)
o

when t — co. That is, at the time-asymptotic limit the ballistic terms contain the information
of the initial perturbation but they do not contribute to the observable electric field.

The existence of ballistic terms leads to a nonlinear phenomenon called the Landau
echo, the laboratory observation of which was an important step towards the acceptance
of Landau’s solution (Fig. 5.3) as the correct way to deal with the Vlasov equation.

Assume that an intial perturbation took place at time #; and its spectrum was narrow
near k ~ k;. Then

fa Zfa() —|—fak1(u,t :tl)exp(iklu(t—tl))—l—... . (5.64)
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fo + £y fo + £,

u
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Fig. 5.2 Evolution of the distribution function when the electrostatic perturbation becomes damped but
the ballistic term remains superposed on the equilibrium distribution.

Electric field

first wave second wave echo

ll U 12 U ItU ~ t

Fig. 5.3 The Landau echo.

Wait until the perturbation has been damped below the observable limit and only the bal-
listic term superposed on the equilibrium distribution remains. Then launch another wave
(k =~ kp) at time t, and wait until it also is damped. Add this to f; and do not linearize!
Thus

fo = fao+ F explikiu(t — 1)) + £ explikau(t — ) + f&) + ... . (5.65)

where (1) and (2) indicate the order of the terms. In the second-order term there is a
contribution of the form

12~ 1O F 0 explikiu(t — 1)) exp(—ikpu(t — 1)) s t > 1o . (5.66)

At time ¢t = t3 defined by
k](t3—t1)—k2(t3—t2) =0 5.67)

the second-order term is no longer small, and the perturbed charge density
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P~ / duexp(ikiu(t —11) — ikou(t — 1)) fole ) (5.68)

becomes finite and observable. Thus the “beating” of the ballistic terms of the first two per-
turbations has produced a new observable perturbation, the Landau echo, that is a damped
mode of the plasma. It is transient because the beat condition is satisfied only for a short
while and the Landau damping acts on this wave as well. The effect has been verified in
laboratories and shows that the Landau damping does not need to violate the conservation
of entropy in the time scale T < T.y;.

As collisional time scales in tenuous space plasmas often are very long compared to the
relevant time scales of investigated phenomena, the existence of Landau echoes indicates
that even in the case of small-amplitude perturbations there can be nonlinear mixing of
wave modes at the microscopic level. This is one viewpoint to plasma turbulence. How-
ever, no satisfactory general method of calculating the transport coefficients (resistivity,
viscosity, etc.) from plasma kinetic theory has been found.

5.5 Vlasov Theory in a General Equilibrium
In space plasmas a background magnetic field is practically always present. Therefore we

must look for a more general description including the background fields. The linearized
Vlasov equation then reads as

2 Vo g

J J | 4o (5.69)
(04

0 J
(E0+VXBO)'$ Jai :_%(E] +vxBj)- afzo .

This can be solved employing the method of characteristics that can be described as “in-
tegration over unperturbed orbits”. Define new variables (r’,v’,t’)

dr’ dav'
o =v; 7= ;]Ta [Eo(r',¢") +V xBo(r',1")] (5.70)
o

with boundary conditions
v(i'=t)=r;vV({'=t)=v. (5.71)

Consider fq(r',v',") and use (5.69) to calculate its total time derivative

dfeur1(x' V1)

dr’
(V) A (V) Y fer (Y1)
h ar’ dr' or’ dr' ov'

fuldV)

o (5.72)

o /o / ’o
=——1E t B t
9 (B, (1) +V 5 By ()

The boundary conditions imply that fo (¥',v',t') = fo1(r,v,t) at time ¢’ = ¢. Thus the
solution of (5.72) at ' =t is a solution of the Vlasov equation. The point is that (5.72) can
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be calculated by a direct integration because its LHS is an exact differential. The formal
solution is

! —
fa1(r,v,1) :fq—a/[El(r’,t’)Jrv’xBl(r’,t’)}~W(h’

mg,

—o0

+ fo1 (F(—=00), ¥ (—00),t'(—o0)) . (5.73)

This procedure can be interpreted in the following way. f; has been found by integrating
the Vlasov equation from —eo to # along the path in the (r,v)-space that at each individual
point coincides with the orbit of a charged particle in the equilibrium fields Ey and By.
From fy1 we can calculate ng;(r,t) and Vi (r,t), which are then inserted in Maxwell’s
equations

oB

VXE| = _Tzl (5.74)
1

V-Ei = —) qana (5.75)
& a
1 9E

VxBi = 5=+ 10Y dalnaVa)i - (5.76)
c? ot =~

This set of equations could now (in principle) be solved as an initial value problem in the
same way as the Landau solution. However, we can also take a shortcut and accept that the
Landau solution is the correct way to deal with the resonant integrals, and assume that the
wave fields are of the form E (r,7) = Exgp exp(ik-r—iot) and that fo(r', v/t — —o0) —
0. This yields for Im(®@) >0

0
fa =22 /(Ekw+v’ % Bio) -

mg,

—o0

a /
ﬁxa#(lv)exp[i(kR— ot)|drt, (5.77)
\
where T =1"—1, R=1r' —r. The solutions for Im(®) < 0 are found by analytic continu-
ation of fuk to the lower half-plane. Inserting this into Maxwell’s equations in the (®,Kk)

space and eliminating Bg, we get
A E=0, (5.78)

where %" is the dispersion tensor. The cold plasma theory is, in principle, found at the limit
f(v) — 8(v), although some care must be exercised with the details of the limit procedure.

Example

Assume Eg = By = 0 and fy = fo(v?). Define Foo(u) = [ foo8(u—k-v/|k|)dv, Ex =
(k-E)/|k|,and E; = (kxE)/|k| =
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0K 0||EL|=0, (5.79)

where
k> w; Foo
K =1-— -y 2 = —d 5.80
+ ? Za: o J o-—|klu ! (5-:80)
2
(0] F, 0/8u
Ke=1+Y 2% [ 2 ——du. 5.81
K ; o JLo/lk—u G50
These give
electrostatic modes:  Kx =0 (E; =0)

electromagnetic modes: K| =0 (Ex =0) .

The electrostatic solution is the Landau solution. The dispersion equation for the electro-
magnetic modes is

=

2 22 2 0Fy
o’ = k¢ +Za:w”°‘ mdu. (5.82)

This has solutions only if @ > kv, and we find the familiar electromagnetic mode in
nonmagnetized cold plasma
0 R+, . (5.83)

5.6 Uniformly Magnetized Plasma

Assum.e now Fhat By = Bye;, EO.: 0, fao = fa().(vzl, v||)- The derivation of the dielectric
tensor is a tedious procedure, which we only outline here. Denote

Vx =V, COSP, vy =V, sing, v, =v|.
Using these variables the particle orbit can be written as

vi=v,cos(¢p —w.T) ;X =x— v sin(¢ — @, 7) + % sing

C C
vV, =vosin(¢ —0.1) 5y =y+ V—Lcos((]) —W:.T) — V—Lcosd) (5.84)
o, o,
v;:vH ;z':vH‘c—i-z.

To integrate fuk from (5.77), we need the identity

exp (ikz)vL sin(¢ — a)cr)) = i Jn (ktun> explin(¢ — 0. 7)],

c n=—oo




158 5. Vlasov Theory

where J,, are the ordinary Bessel functions of the first kind. After a few pages of calculation
the dielectric tensor is written in the form

, W < 21w,
H(@,k) = (1-2) -y )Y nao(fﬂ (5.85)

[0 o n=—oo

[T afoco nOcq 9 fao L(/Tna(VHWJ_)
VLdvldVH
0 —oo

k .
I 8vH v, dvy kHV” +nWeg — O

The tensor .5, is of the form

I’l(J)

a2 nvy Wcq .7 ) Oca 5
kL kL n kL n
[ — , .
Fna (V1) = "mb T IR v dad) (5.86)
ny) Weq .
‘]‘Qc Roivpihd, AR

and J;z = d]n/d(kJ_VJ_/wca) .
B makes the plasma anisotropic. The temperature may now be different in parallel and
perpendicular directions as, e.g., in the case of bi-Maxwellian distribution

2 V2

Mgy Mgy My VL I
_ _ Ly ) 5.87
Joo 2mkpTy anBTaH exp [ 2kp (TozL + T(XH )] ( :

When it is inserted into the elements of %", the resonant integrals in the direction of V|| can
be expressed in terms of the plasma dispersion function Z. The wave modes are again the
non-trivial solutions of £ -E = 0.

The mode structure has grown in complexity from the unmagnetized Landau solution:

e The distinction between electrostatic and electromagnetic modes is no more exact; E || k
can be satisfied approximately but also the electromagnetic modes may have an electric
field component along k.

e The Bessel functions introduce harmonic mode structure organized according to @ ~
nw.q for each species .

e The resonance @ = k- v in the isotropic plasma is replaced by

O —neg = kHv” . (5.88)

Thus only the velocity component || By is associated with Landau damping and only
for waves with k| # 0.
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5.6.1 Perpendicular propagation (6 = 7/2)
For perpendicular propagation k| = 0 and the wave equation reduces to
Ky« ny 0 E,
K,K, 0| -|E|=0. (5.89)
0 0 K E,

Assuming an isotropic distribution one of the solutions is
k2 2 J?
Ko—1--¢ _ 2% /de / f“(’” ~0. (5.90)

This is the the Vlasov theory counterpart of the O mode of Chap. 4
[ORES) SR (5.91)

An additional series of modes with narrow bands just above the harmonics of the cyclotron
frequency are found

w:nwca{l—&-o

(D2
2.2 2 (kry a)Z”] } : (5.92)

These modes are electrostatic cyclotron waves. Both electrons and all ion species have
their own cyclotron mode families.
The remaining solutions are found from the determinant

‘ K Ky =0. (5.93)

- ny Kyy

These equations express the mode for which E - k < E x k, which is the X-mode. It has
all branches found in Sect. 4.3.3, including the high-frequency mode, the mode below
the upper hybrid resonance, and the mode below the lower hybrid resonance. The low-
est frequency mode is called the magnetosonic mode that at lowest frequencies (longest
wavelengths) is the same as the magnetosonic wave in MHD (Chap. 6).

In addition a new set of electrostatic (i.e., E -k > E x k) modes are found in the Vlasov
theory. These modes are called Bernstein modes and they exist both for electrons (modes
labeled f in Fig. 4.5) and for all ion species (modes labeled C in Fig. 5.4). The exactly
perpendicular modes are not Landau damped, but they cannot propagate at the cyclotron
frequencies. If the modes have finite k|, they experience damping, which for n # 0 is called
cyclotron damping.

The Bernstein modes and electrostatic cyclotron modes have different characteristics.
At frequencies below the hybrid resonance frequencies (both for electron and ion modes)
the Bernstein modes can have any frequency within the band (n@.q, (n+ 1) ®.¢), whereas
above the hybrid frequencies the modes are limited to frequencies above but near each
harmonic of the gyro frequency. The electrostatic cyclotron waves, on the other hand, are



160 5. Vlasov Theory

i

LRR AN
LAY

VA

L T
A T TR
M ST e
‘\\"“‘3\“\3\}%&“:‘%\{&\3“{\\
SRR
SR

T T

b
<
S
b
e

Tl
“ AR
\\\\\\\\\\x\
R
SRR

o,
A

-
=

Y

—
[rl?!ll?r
Py j

Fig. 5.4 Dispersion surfaces for low-frequency waves [André, 1985]. Frequencies are normalized to pro-
ton gyro frequency and wave numbers to proton gyro radius. A) ion—acoustic waves, B) electrostatic ion
cyclotron waves, C) ion—Bernstein modes, D) lower hybrid plateau, E) low-frequency part of the whistler
mode. The surface containing the electromagnetic ion cyclotron waves and Alfvén waves is shown sepa-
rately for the sake of clarity.
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always limited to frequencies relatively close to the gyro frequency. This is best illustrated
for the ion—Bernstein modes (C) and electrostatic ion cyclotron modes (B) in Fig. 5.4.
The figure also illustrates the fact that the electrostatic ion cyclotron modes predominantly
have a larger k| than the Bernstein modes.

5.6.2 Parallel propagation (6 = 0)

At the lowest frequencies (@ < @,;) we find the Alfvén wave

kjva

\/1+v3/c?

that is the same as the MHD mode with the “cold plasma correction” in the denominator
arising from the inclusion of the displacement current into Ampere’s law. As the Vlasov
equation is solved for the full set of Maxwell’s equations, the solutions shall have both
cold and MHD approximations as limiting cases.

Note that the Vlasov theory introduces damping of Alfvén waves, which will not be
found in MHD (Chap. 6)

o2 1 o B o
Lol ! Cl
== e <. 5.95
S Rl vy Y 8ksT Xp(%mkﬂi w3> 599

@, = (5.94)

The damping rate is very small at low frequencies. When @ — ,;, the mode approaches
the ion cyclotron resonance from below the same way as in the cold theory and the damp-
ing rate increases. At this limit the mode is called the electromagnetic ion cyclotron wave,
which is damped by the resonant ions. In Vlasov theory the cyclotron resonance is no more
a singularity, but becomes correctly described, including energy transfer from the waves
to the particles.

Other parallel modes are, of course, the electromagnetic R- and L-modes and the
whistler mode. Also the whistler mode is damped, although the damping rate is small
except at short wavelengths (large k). Near the electron gyro frequency the whistler mode
goes over to the electromagnetic electron cyclotron wave.

The most important differences between electrostatic and electromagnetic cyclotron
waves are their polarization and harmonic structures

Electromagnetic : k || By ® =~ @w,q no harmonic structure
Electrostatic : k | By @ = nw.q harmonic structure

The electromagnetic cyclotron modes are below the gyro frequencies, whereas the electro-
static modes are above the harmonics of the gyro frequencies.

5.6.3 Propagation at arbitrary angles

As in cold plasmas, the waves can propagate at arbitrary angles between 0 and 90°. The
dispersion surface description is a convenient way to illustrate the various wave modes



162 5. Vlasov Theory

(Fig. 5.4) The figure is similar to Fig. 4.5, but calculated for ion-related modes. Both
figures were produced by numerically solving the linearized Vlasov equation for homoge-
neously magnetized electron—ion plasma where both species have Maxwellian distribution
functions.

For example, the whistler mode is on the surface that joins a “plateau” at the lower
hybrid frequency in the perpendicular direction. Note that ®; varies strongly from one
point in the mode structure to another and some parts of the surfaces are strongly damped.
For example, the Bernstein modes propagate only close to the perpendicular direction.
The electrostatic ion cyclotron waves penetrate somewhat deeper into the cube, especially
if electrons are warmer than ions. The ion—acoustic surface is also strongly damped unless
T, > T;. The entire mode structure is very sensitive to the actual shape of the velocity
distribution function, to the relative temperatures, and also to the ion composition.



6. Magnetohydrodynamics

In Chapter 2 we discussed the derivation of MHD equations in the hard way, starting from
the Vlasov equation, taking velocity moments and making several approximations. This is
not how MHD was first formulated. Instead the starting point was classical hydrodynamics
that was reformulated for electrically conductive fluids under the influence of the magnetic
field. We begin the discussion with a brief review of this procedure

6.1 From Hydrodynamics to Conservative MHD Equations

The equations of ordinary gas dynamics can be written as

P
P = -V-(pV) ©.1)
p‘% = —VP+vpV?V (6.2)
d
E(Pp”’) =0, (6.3)

where d/dt = d/dt+ V-V and 7y is the polytropic index. This is a set of five equations
for five unknowns: density p, pressure P, and three velocity components. Equations (6.2)
are known as the Navier—Stokes equations, where Vv is the viscosity. If viscosity can be
neglected, as we often do in MHD, the equations are called the Euler equations.!

Of these equations (6.1) is given in the conservation form dF /dt +V -G = 0, where F
is the conserved quantity and G the corresponding flux quantity. Often, particularly when
doing numerical fluid simulations in conservative systems, it is convenient to write the
whole theory in terms of conserved quantities. In hydrodynamics this requires that Euler
equations can be used instead of Navier—Stokes equations (i.e., v = 0) because viscosity
causes dissipation, making the system is non-conservative.

! In mathematics and physics it is not so easy to keep track of all the equations that have been named in
honor of Leonhard Euler!

H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth, 163
Springer Praxis Books, DOI 10.1007/978-3-642-00319-6_6,
© Springer-Verlag Berlin Heidelberg 2011
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The whole set of equations of conservative hydrodynamics can be formulated as

ap

5 ="V0p (6.4)
dp (PP

= = v(p +Pf> (6.5)
du p

= = -V [(u+P)p] , (6.6)

where p = pV is the momentum density (mass density flux), pp denotes the direct product
(dyad) with components p;p;, -# is the unit dyad, and u the total energy density related to
the pressure as
P p’
=—4—. 6.7

u 7—1 + 2p (6.7)
P/(y—1) is the thermal energy density and p?>/2p the kinetic energy density. Variables
(p,V,P) are called primitive variables, whereas (p,p,u) are conserved variables.

Train your brain by transforming (6.1)—(6.3) to (6.4)—(6.6)

In MHD we must add Ampere’s force J x B to the momentum equation

d
p:—V~<pp+Pf> +IxB. 6.8)
dt p
This is not yet in the conservation form, but neglecting the displacement current as we
normally do in MHD we can express Ampere’s force as

B? 1

1
B=-—Bx(VxB)=-V(5—|+—V-(BB). 6.9
1 w VB <2uo>uo() ©2

With this the momentum equation can be written in the conservation form as

2
(h’:_v[f’l’+<p+3)f_lw] . 6.10)
ot P 210 Ho

Thus the momentum of the magnetic field is taken care in a natural way.

The energy equation (6.3) is automatically conservative. However, it is instructive to
write it in the form that explicitly illustrates the conservation of total energy density u
in the same way as in gas dynamics. This is straightforward to do because the magnetic
energy density is B> /(24). Thus

P p2 B2
SR S - 11
u Y—1+2P+2ﬂo (6.11)

and the energy equation can be written as
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du { < B2 ) p 1
—=-V.-|(u+P—— | =+—Bx(pxB)| . (6.12)
ot 2u0 ) p - Hop (o >B)

We need one more equation to describe the time evolution of the magnetic field. Be-
cause we are now interested in conservative MHD, we must limit the discussion to the
ideal MHD case, where E = —V x B . Inserting this into Faraday’s law we get

JB
— =Vx(VxB), (6.13)
ot
which after replacing V by the conserved quantity p reads
JB
Vx(pr> . (6.14)
ot P

Now we have the complete set of 8 equations (6.4, 6.10, 6.12, 6.14) for 8 conservative
variables (p,p, u,B) of the ideal MHD.

Train your brain

Use MHD’s Ohm’s law with Ampere’s and Faraday’s laws to write the Poynting theorem
in the form

Jd [ B® ; 72 s 3
— ExH-da=— —dr+/ —dr—|—/V-J><Bdr,
¥ ot J¥ 2up ¥ O ¥

This has already been mentioned in Chap. 1, Eq. (1.12).

Then take the scalar product of V and the momentum equation

. (i+v-v)v+v-3«’—JxB=0

and derive the energy equation of adiabatic ideal MHD in the form

d (pmV> P B? pmV? yP ExB
at( 5 +y_l+2“0>+ ( 5 V+Y_1V+ " ) 0, (6.15)

which may be slightly more transparent than (6.12).
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6.2 Convection and Diffusion

Let us go back to primitive variables without the assumption of ideal MHD. From Ohm’s
law in resistive MHD and Maxwell’s equations it is easy to derive the induction equation

for the magnetic field
JB

o
where the magnetic diffusivity 1 = 1/11p0 has been assumed to be spatially uniform.

In the frame of reference co-moving with the plasma (V = 0) the induction equation
reduces to the diffusion equation

:Vx(VxB)JerzB, (6.16)
UoO

JB 2
3 = V°B. (6.17)
Thus if the resistivity is finite, the magnetic field diffuses smoothing out spatial inhomo-
geneities, local curvature, etc., expressed by the term V2B.
The characteristic diffusion time can be found by simple dimensional analysis. Let
Lp be the characteristic gradient scale length of the magnetic field. The solution of the

diffusion equation is of the form
B = Byexp(+t/14), (6.18)
where the magnetic diffusion time T, is
7y = UooLy . (6.19)

At the limit 6 — oo (ideal MHD), the diffusion term is small and the plasma flow is
described by the convection equation, which ties the flow and the magnetic field to each

other
JB

ot
In this case there is no diffusion of the magnetic field across the plasma, and the magnetic
field is said to be frozen-in to the plasma.

Let us consider the relative strengths of convection and diffusion. Let 7 be the time scale
of temporal variations, V' the typical velocity, Lp the local gradient scale length, and 7, the
diffusion time scale. Substituting d /9 — 7 and V — L', and neglecting directions, the
induction equation reduces to

—Vx(VxB). (6.20)

B VB B
—=—4—. 6.21
T Lp + T4 ( )
The ratio of the terms on the RHS is the dimensionless magnetic Reynolds number R,,
Ry = wooLgV =LgV /7 . (6.22)

R, has in MHD a role analogous to the Reynolds number in classical hydrodynamics
R =LV /v, where v is the viscosity of the fluid.

Although the diffusivity is often small, it is never exactly zero. As a simple example,
we can consider the one-dimensional current sheet B(z,7) e, in the frame of reference co-
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moving with the plasma (V = 0). Let the initial condition be

. +By,z>0
B(z,0) = { _By.z<0. (6.23)
In one dimension the diffusion equation is
oB  J’B
=z _pnZZ 6.24
o 92 (624
with the solution
B(z,t) = Bygerf <
S A
B /At
_ Tf(r) 0/ exp(—u?)du . (6.25)

The total magnetic flux remains constant (=0) but the energy of the field [ B?/2udz de-
creases with time. (Strictly speaking, this configuration is infinite, but we can think that
there is an outer boundary somewhere.) It is an easy exercise to show that

& . 32 .J2
E/dez_—/gdz. (6.26)

Thus the energy is dissipated through Ohmic heating, also known as Joule heating, in the
current sheet.

Example: Conductivity and diffusivity in the Sun

Almost everywhere in the Sun the classical resistivity is very small. Important exceptions
are the photosphere and lower chromosphere where the degree of ionization is low and
collisions with neutrals limit the current flow.

The photospheric conductivity is about 10Sm~! (=10Q ' m~!' = 10mhom™"). This
yields n = 10° m? s~!. For photospheric granules Lg ~ 1000 km and V ~ 2kms~!). These
numbers give R, ~ 20000 > 1. This predicts very weak diffusion, indeed. This is not con-
sistent with the actually observed magnetic fields, whose evolution implies some 200 times
faster diffusivity and correspondingly smaller R,,. The explanation is that the turbulence
in the upper convection zone introduces turbulent diffusivity 1, ~2 x 10’ m*> s~ !, but there
is no rigorous way to calculate this number.

The solar gas becomes fully ionized above 2000 km. The effective electron collision
time can be estimated using Spitzer’s formula

T3/2(K
Toi(s) = 0.266 x 106n (K) (6.27)

(m=3)InA’
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where In A is the Coulomb logarithm (of the order of 20). Now the classical conductivity

c= @ (6.28)
me
has the numerical value
T32(K
o(Sm™')=1.53x 10*2T/(\>. (6.29)
Using InA = 20 the diffusivity is given by
n(m?s™ 1) =10° x T3/2(K). (6.30)

For a typical coronal temperature T = 10° K this yields diffusivity of only = 1 m?s~!.

In the corona the scale lengths and the characteristic speeds also become larger when
moving outward. Consequently, the expanding solar wind is an excellent example of ideal
MHD plasma.

However, even in the solar wind plasma deviations from the ideal conditions may arise.
The reason is that when plasmas originating from different sources convect toward each
other, their frozen-in configuration may be very different from each other, e.g., the mag-
netic field directions may be anti-parallel leading to formation of very thin current sheets.
In such cases the collective interactions can give rise to wave—wave and wave—particle
interactions resulting, e.g., in turbulent diffusivity or in effective (anomalous) resistivity.
Another non-ideal example is the formation of shocks in cases when the relative flow speed
is supersonic, or supermagnetosonic. We will return to these effects later.

6.3 Frozen-in Field Lines

Hannes Alfvén was the first to realize the importance of the convection of the plasma
and the magnetic field together and he introduced the concept of frozen-in field lines to
illustrate this. Later he denounced the concept as “pseudopedagogical”’, which was his ex-
pression for something that makes us to think that we have understood a phenomenon,
whereas we actually have misunderstood it. Alfvén’s criticism was based on the picture
of moving magnetic field lines. According to Maxwell’s equations the magnetic field is a
fundamental physical entity that may change both in time and space. The magnetic field
line is just a mathematical abstraction and there is nothing physical in the motion of mag-
netic field lines. However, the frozen-in concept is quite useful in plasma physics when
interpreted correctly.

The frozen-in concept can be formulated both in differential and integral forms. We
start from the differential description assuming ideal MHD. Let two plasma elements move
according to Fig. 6.1. Let the elements be on the same field line B(¢) at the time ¢. To be
on the same field line means that if we trace the field B from one plasma element, we end
up at the other. In this sense the plasma elements are magnetically connected to each other.
The (vector) distance between the elements is Al During the time df the elements move
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Al+d(Al)

(u+Au)dt

Al B(®)

Fig. 6.1 Illustration of the proof that two plasma elements originally on a common field line are also on a
common field line after time dt.

the distances udt and (u+ Au)dt, where u(r, ) is the plasma flow velocity. Now we have
to show that the elements are on a common field line also at the time ¢ + dft, i.e., the path
Al+d(Al) is along the field line of B(z + dr). Here the spatial differential is denoted by
A and the total time differential by d.

Write d(Al) in terms of u. The first term in the Taylor series of u is

Au=(Al-V)u. (6.31)
From Fig. 6.1 we see that
Al+d(Al) = Al+ (u+ Au)dr —udt (6.32)
which leads to JHAL
Ldt ) _ Au= (ALY, (633)
The convection equation gives for the magnetic field
JB
5 = V x (uxB)
=B-V)u—(u-V) B-B(V-u), (6.34)

where V- B = 0 was used. In the frame moving with the plasma

dB 0B
E:§+(u.v)B:(B-V)u—B(V-u). (6.35)

Calculate next d(Al x B) /dt

d d(Al) dB
—(AlxB) = B+ Alx — .
= (Alx B) = x B+ Al x ’ (6.36)

= [(ALl-V)u] x B+ Al x [(B-V)u—B(V-u)] .

Because Al originally was parallel to B, Al x B =0, and the third term on the RHS is
zero. For the same reason Al and B can be interchanged in the first term on the RHS. Thus
the first and the second term are the same except for their sign and we have

%(Al xB)=0. (6.37)
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Consequently, Al remains parallel to B and plasma elements originally on a common field
line remain on a common field line.

This picture of the frozen-in concept is physically sound in the context of Maxwell’s
equations. We have shown only that the two plasma elements remain magnetically con-
nected at all times without an assumption of moving field lines, although the picture of
moving field lines is useful as long as the ideal MHD approximation is valid.

We can also analyze the frozen-in concept in the integral formulation by calculating
how well the magnetic flux is preserved when the plasma moves. We expect that in ideal
MHD the magnetic flux through a closed loop moving with plasma should remain constant

dd d
= [B-dS=0. 6.38
dt dt/ S ( )

To prove this we consider a closed contour C at time ¢ moving with the plasma velocity
V(r,t). At time ¢ + At the loop has moved, and possibly deformed, to C'. Let S and S’ be
the surfaces closed by C and C'. Let dl be an arc element on C. It moves in time At the
distance VAr and sweeps out the area dl x VAt. Form now the closed surface consisting
of S, §" and of the surface swept out by VAt when dl is integrated along the closed contour
C. Because the magnetic field is divergence-free, the total flux through this closed surface
at time 7 4+ /At must vanish

—/B(t+At)~dS+/ B(I—I—At)~dS/+j§B(t+At)-dleAt:0. (6.39)
S A C

The positive direction of dS is outward from the closed volume.
Now we can calculate d® /dt when the contour C moves with the fluid

do _ | Polt+ L) - del)

I At—0 I\t
/
_ lim IB(t+At)-dS" — [B(t)-dS
At—0 At
— lim HB(”A’)_B(’”'”{S_fB(HAz)-dle
At—0 At Cc
JB
- g?ﬁ—inmdl
JB
:/{at—Vx(VxB)}dS
— —/Vx(E+V><B)-dS. (6.40)

Here (6.39) was used to transform [B(r + Ar) -dS' to [B(t + At) - dS. The integrand
vanishes if
E+VxB=_V¥, (6.41)
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where ¥ is a scalar. This is a necessary and sufficient condition to preserve the magnetic
flux. Thus clearly in ideal MHD where ¥ is a constant, the magnetic flux and plasma flow
together.

In ideal MHD the primary fields are B and V. The electric current and the electric
field are calculated from these using Ampere’s law and ideal-MHD Ohm’s law. In the
Maxwellian sense the current is the source of B. Thus the flow of the magnetic field, e.g.,
with the solar wind, means that plasma particles also carry the current system along the
flow.

In space plasmas the first correction to the ideal MHD is often not the resistive term but
the Hall term J x B/(ne)

E+V><B=iJ><B. (6.42)
ne

This is expected to be the case, e.g., near current sheets separating magnetic fields of
different strength and direction. In this Hall MHD the magnetic field becomes frozen-in to
the electron flow

E=-V,xB. (6.43)

Physically this is a consequence of the fact that the electron gyro motion is more strongly
tied to the magnetic field than the ion motion. However, with this correction we have lost
much of the meaning of the frozen-in concept because the mass flow, determined by the
heavier ions, is separated from the evolution of the magnetic field, at least locally.

The breakdown of the frozen-in condition is one of the most important phenomena in
space plasmas. The change of interconnection between plasma elements can, in general,
be called reconnection. Reconnection is one of the most important concepts from the view-
point of space storms and will be discussed thoroughly in Chap. 8, where we also briefly
discuss the other non-ideal contributions to the generalized Ohm’s law (Eq. 2.135).

6.4 Magnetohydrostatic Equilibrium

Consider next MHD plasma in a time-independent (d/dt = 0) equilibrium. Assuming
scalar pressure (V- .2 — VP) the momentum equation reduces to

JxB=vVP. (6.44)

This gives B-VP=0and J- VP =0. Thus B and J are vector fields on surfaces of constant
pressure.
We have already seen in (6.9) that

B? 1
JxB=-V|(— |+—V-(BB).
2u0 ) Ho

The first term on the RHS is the gradient of the magnetic energy density, i.e., of the mag-
netic pressure B%/(2u). The second term is the divergence of the tensor BB/ Ly, which
describes the stress and torsion arising from the inhomogeneities of the magnetic field. By
applying Ampere’s law we can eliminate the current and write the equation for magneto-
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hydrostatic equilibrium as

V-ﬁ?’:—in(VXB). (6.45)
Ho

Assuming scalar pressure and negligible V - (BB) the sum of the magnetic and plasma
pressures is constant

BZ
V(P—i—) =0. (6.46)
21
The plasma beta
2upP
B= % (6.47)
expresses the ratio of the plasma and magnetic pressures.
The current perpendicular to B is now
BxVvp
JL = T (6.48)

This total current is often called diamagnetic current. It is the sum of all current elements
in the plasma. In addition to gradient and curvature currents an inhomogeneous plasma
density may cause net magnetization current

Ju=VxM. (6.49)

Here the magnetization M is the density of magnetic moments Q.

The pressure and temperature of the plasma may be anisotropic, so 8 can also be dif-
ferent in the parallel and perpendicular directions (3, # BH). Writing the perpendicular
and parallel pressures as P| = nW, and P| = 2nW, where n is the number density of
the plasma particles, we can express the curvature and gradient currents in terms of the
pressure

P
Jo =5 (Vxb). (6.50)
Jo :PLV% xb, (6.51)

where b = B/B is the unit vector in the direction of B. The magnetization is M = nj =
—n(W, /B)b and

P
Ju=VxM=-V (;b) . (6.52)
Summing all currents we find
BxVP P —P
J=" 2 T gy, (6.53)

B2
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which yields magnetohydrostatic equilibrium equations for anisotropic plasma

JXxB=V,P +(P—P)b-Vb= (V- %), (6.54)
(V-2) =0. (6.55)

Parker was the first to derive (6.53) from single particle motion and the equation is some-
times named after him.

In time-dependent problems we must include inertial currents, of which the first-order
term is the polarization current
_ PpmdE

6.5 Field-aligned Currents

The Parker equation (6.53) does not say anything of possible currents along the magnetic
field. If B < 1 in magnetohydrostatic equilibrium, the pressure gradient is negligible and
thus

JxB=0, (6.57)

i.e, the electric current must flow along the magnetic field. Because a current creates a
magnetic field around it, the self-consistent field-aligned current (FAC) consists of spiral-
ing magnetic field lines and the resulting structure is often characterized as a flux rope.
Another term is force-free field because the magnetic force on the plasma is zero. The
force-free equilibrium is an approximation, but often a very good one, to the momentum
equation.

6.5.1 Force-free fields

The innocent-looking equation J x B = 0 is actually pretty hard to solve. The problem lies
in its nonlinearity. Using Ampere’s law we can write it as

(VxB)xB=0. (6.58)

That By and B; are two solutions of this equation does not imply that By + B, would be
another solution.
We can express the field-alignment as

VxB=puJ=o(r)B, (6.59)
where « is a function of position. Taking divergence of this we get
B-Va=0, (6.60)

i.e., o is constant along the magnetic field. If ¢ is constant everywhere, the equation
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VxB=aB 6.61)

is linear. Now the sum B + B, of two solutions is also a solution for the force-free field.
Taking a curl of (6.61) we get the Helmholtz equation

V’B+a’B=0 (6.62)

that has known solutions. That the field fulfills the Helmholtz equation is a necessary but
not sufficient condition for the field to be force-free. Of course, the boundary conditions
must also be specified correctly.

A special case of force-free magnetic fields is the current-free configuration V x B = 0.
Then the magnetic field can be expressed as the gradient of a scalar potential B = VW&.
Because V - B = 0, the magnetic field can be found by solving the Laplace equation

V2@ =0 (6.63)

with appropriate boundary conditions. Thus we can use the well-developed methods of
potential theory.

Example: Linear force-free model of a coronal arcade

Let us consider a simple model for a coronal arcade above the surface of the Sun (for
further discussion of coronal loops, see Chap. 12). Let the configuration look like an arc in
the xz-plane and extend uniformly in the y-direction. Let the structure be sinusoidal in the
x-direction with wave number k. The Helmholtz equation has the second spatial derivative,
thus the same z-dependence is retained after two derivations for sinusoidal and exponential
functions. Because the field should vanish at high altitude, we choose the z-dependence as
exp(—Iz). These choices fulfill the Helmholtz equation if &> < k2. In order to have the
structure above the solar surface we consider z > 0. Let us then seek solutions of the form

B, = By sin(kx) e
—lz

By, = Bysin(kx)e (6.64)
B. = Bycos(kx)e 7.
Now the equation V x B = o/B yields
[Byg = 0By
—IB,o+kBy = 0By (6.65)
kByy = 0By

and the field can be expressed as

= (I/k)Bysin(kx) e
o /k)Bysin(kx) e (6.66)

B,
By = (
B. = Bycos(kx)e "%,
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where k, [, and @ must be related by
P=K-o. (6.67)

The projection of the magnetic field lines on the xy-plane are straight lines parallel to each

other o

RO

(6.68)
whereas the projection to the xz-plane are arcs, which we were looking for. Visually the
arcade looks like a flux rope, one half of which is above the solar surface (Fig. 6.2).

The arcade is simpler if the current is so weak that we can neglect it and use po-
tential theory. We can look for separable solutions in 2D Cartesian space by writing
¥ = X (x)Z(z). From the Laplace equation

h a4
—+—=5 =0 6.69
o 022 (6:69)

we find 1d°X 1d°Z
4 Sfe 2 6.70
X dx? Z dz? (6.70)
where k is a constant. This is fulfilled, e.g., by ¥ = (By/k) sinkxe %%, from which we find
the field configuration

oY
By =~ = Bycoskxe © 6.71)
oY
B, = 5 = —Bysinkxe ¥ (6.72)
A A

ARARANAN

Y
ol |

Fig. 6.2 Sketch of the linear force-free arcade solution.
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In the xz-plane this looks the same as the force-free solution, but there is no distortion of
the arcs in the y-direction.

6.5.2 Grad-Shafranov equation

The linear force-free arcade magnetic field discussed above is essentially two-dimensional
because B, is the same as B, multiplied by a constant. Sometimes this kind of translation-
ally symmetric geometry is called 2 %-dimensional.

Let us consider the general configuration with translational symmetry, e.g., a large flux
rope whose axis can be assumed to be locally straight and B is uniform in the z-direction,
retaining the scalar plasma pressure P in the calculation. Because V - B = 0, the magnetic

field can be written as
< dy’ ox’ Z) ’ ( )

where A = A(x,y) e is the vector potential. Assume that the magnetic field and the pressure
are in force balance, i.e.,

1
—(VxB)xB—-VP=0. (6.74)
Ho

Because none of the functions in (6.74) depends on z, its z-component reduces to

9B 0A 9B 0A _ (6.75)

Thus the gradients in the xy-plane V| B, and V| A are parallel to each other and B, can be
expressed as a function of A
B (x,y) = B:(A(x,y)) - (6.76)

Using this we can write the x- and y-components of (6.74) as

L ppaveia) A of
" (BB, +V7A) o + 5 = 0 (6.77)
g v 24 9P
%(BZBZ ViA) 8y+ R =0, (6.78)

where the prime indicates the derivative d /dA. Also V| P is parallel to V| A. Thus
P(x,y) = P(A(x,y)) - (6.79)

Now (6.77) and (6.78) are both satisfied if

1
m (VAA+B.B,)+P =0. (6.80)
Writing the total pressure as
B2
P=_*+P (6.81)

20
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we have arrived to the Grad—Shafranov equation

=0. (6.82)

Train your brain

The Grad-Shafranov method is not limited to translational symmetry. Find the corre-
sponding equation for azimuthal symmetry (d/d¢ = 0).

Hint: Use cylindrical coordinates, and if you find the problem too hard, consult Boyd
and Sanderson [2003].

The Grad—Shafranov equation is a useful tool when looking for ideal MHD solutions
under the assumption of translational or rotational symmetries. While it is nonlinear (B%),
it is a scalar equation and thus much easier to handle than nonlinear vector equations.

In the force-free case the solutions are found by setting P = 0. There is no underlying
constant- assumption and thus equation

1 d [ B?
—V? — =)= .
” lA+dA (2#0) 0 (6.83)

is not limited to the linear force-free configurations.

6.5.3 General properties of force-free fields

It is possible to prove a number of useful theorems for force-free fields. For example:
1. A field with finite magnetic energy cannot be force-free everywhere.

Proof: Because B falls off faster than »~2 at large distances from the origin, the energy can

be written as
W= / / r-JxBd¥
2#0

which vanishes everywhere if the field is force-free everywhere. Thus a magnetic field
that is force-free everywhere must have a singularity. This is trivially true for potential
fields, e.g., a dipole has a singularity (the dipole itself) and being current-free it certainly
is force-free as well.

2. If J x B =0 in a finite volume ¥ and on its boundary S, then B = 0 everywhere.

Train your brain by proving this statement.
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This theorem implies that if there is a finite FAC in a finite volume, it must be anchored
to the boundary of the volume. This is related to the continuity equation, which states that
the sources of parallel currents are sinks of perpendicular currents, and vice versa

V=V J+VL I =0. (6.84)

3. An axisymmetric, force-free, poloidal magnetic field must be current-free.

Proof: A poloidal field written in cylindrical coordinates is given by
B =B,e, + B.e; (6.85)

without any dependence on ¢. Thus the current is according to Ampere’s law

1 (dB, JB,
J_uo(az_ar>e¢‘ (6.86)
Now the force is
JxB=|J|(B.e,—Be;), (6.87)

which is zero only if J vanishes. This theorem warns us against trying to construct too
simple fields in polar coordinates. This is actually one formulation of the famous Cowling
anti-dynamo theorem that will be proven in Sect. 8.3.2.

6.5.4 FACs and the magnetosphere—ionosphere coupling

The continuity equation (6.84) governs the ionosphere—magnetosphere coupling where the
FACs above the auroral zone are connected to the horizontal currents in the ionosphere.
In the magnetospheric scale the ionosphere can be considered as a thin layer. In the mag-
netospheric end the transition from field-aligned to perpendicular current flow takes place
over a large volume. The current that is field-aligned in the low beta (of the order of 10~¢)
plasma above the auroral region becomes more and more perpendicular as increasing f3
allows VP to make J x B non-zero.

Let us discuss the coupling in a quasi-static idealized configuration. We start by calcu-
lating the current sources and sinks in the magnetosphere. Let the magnetospheric plasma
be anisotropic and use formulas from Sect. 6.4. Because the perpendicular magnetization
current (V x M) is divergence-free, we get

Vi-J=V.-(Jc+Js)
P—P b
7(VXb)l—VLPL'VLX*. (688)

:VL' B

Thus the pressure gradient in the direction of the particle drift causes divergence in the per-
pendicular current and thus acts as a source or sink of field-aligned current. If the pressure
is isotropic, this current arises directly from the divergence of the diamagnetic current
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—VPxb
VL-J:VL-<X). (6.89)
B
In a time-dependent case also the polarization current may have a divergence
pndE\  p, d
V, - Jp=V, 2= )=2"(V,.E
1-Jp L (Bzdt> B dt< 1-E)
Pm d Pm aQ

= p. —(V, xV)=2"2 6.90
B dt( LxV) B dt’ (650)

where we have assumed E = —V x B and introduced the vorticity @ =b- (V x V) in the
direction of the magnetic field. Finally, the FAC density is obtained by integrating along
the magnetic field

) a_ bY pude]
Jy= B/VL-JEf B/{VLP <V><B> B dt]B. 6.91)

Thus the sources of FACs are pressure gradients and time-dependent vorticity of the
plasma flow. Both are thought to be important in the magnetosphere.
The ionospheric end of the current circuit is a non-MHD regime where Ohm’s law is
given by Eq. (1.62), that is
Op Oy 0
J=| —oygop 0 | E.
0 0 o I

In the following discussion we assume the parallel conductivity to be infinite, although
this is not always true above the auroral region (e.g., Eq. (2.138)).

Assume then that the magnetic field is perpendicular to the ionospheric layers, which
is, for the present purpose, a good enough approximation in the auroral region where the
FACs between the ionosphere and magnetosphere flow. Furthermore, let the magnetic field
be constant in the ionosphere. Representing the perpendicular ionospheric current as a sum
of Hall and Pedersen currents and integrating along the field line we get

ExB
-/ VL-(GPE—GH - >dz. (6.92)

Approximating the ionosphere as a thin layer in the magnetospheric scale this equation
can be further integrated over the thickness / of the resistive ionosphere

ExB ExB
Jz—VL(EpE—EH - ) .

= V. (ZpE)+ =4~ VIn. (6.93)

Here the height-integrated Pedersen and Hall conductivities are denoted by Xp = hop and
Xy = hoy (SLunit Am~"). Thus the sources and sinks of FACs in the ionosphere are the
divergence of the Pedersen current and, in the case of non-uniform Hall conductivity, the
gradient of the Hall conductivity.
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It is not quite clear how the ionospheric and magnetospheric FACs close to each other
in detail. The only region from which we have detailed and statistically representative ob-
servations of FACs is above the auroral oval. Regardless of the actual closure mechanisms
or the current paths we can estimate the effect of the current system on the electric poten-
tial across the polar cap. It, in turn, is a quantity that can be determined by measuring the
ionospheric plasma flow using, e.g., ionospheric radars or polar-orbiting satellites.

Let us assume, for simplicity, isotropic magnetosphere and complete north-south sym-
metry. In that case (6.91) reduces to

I

2 pmd'Q
5 2/{ VPle/B)]—}du (6.94)

B? dt

where I denotes the ionosphere and Jj is thus the ionospheric FAC density caused by the
magnetospheric vortices and pressure gradients. The integration extends from the southern
auroral ionosphere to the northern.

Because this current must be the same as the current calculated in the ionosphere, we
find an equation that ties the auroral and polar region electric field to the plasma flow in
the magnetosphere. As the last simplifying assumption let the ionospheric electric field
be a potential field (E = —V¢). Then the coupling equation between the ionosphere and
magnetosphere becomes

B; xV
VL(ZPV(P) + ITI(p'VZH
_B . 2y]_ Pm dQ
) {b [VPx V(1/B)] 2 i dz. (6.95)

The resistive ionosphere continuously dissipates energy from the magnetosphere. To
maintain the coupling requires an external source of energy, which is the solar wind flow
and its interaction with the terrestrial magnetic field through mechanisms that we shall
discuss later.

6.5.5 Magnetic helicity

The magnetic helicity of a magnetic field configuration is defined by
H— / A-BdV (6.96)

where A is the vector potential. Helicity is a measure of the structural complexity of the
magnetic field. Because the vector potential is defined only to within a gauge transforma-
tion A — A’ = A 4V, the helicity is gauge-independent only if the field extends over all
space and decreases sufficiently rapidly (and ) does not increase too rapidly). For mag-
netic field configurations of finite dimensions the helicity is well defined if and only if
B -n = 0 on the bounding surface.

The helicity of a magnetic field configuration is conserved, if the field is confined within
a closed surface S, B-n =0 on S, and the field permeates a perfectly conducting medium
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that moves in such a way that B-V =0 on S. To show this we first note that from the

convection equation
JoB

5 = x (VxB)

we get, within the given gauge,

22 _VxB. (6.97)

Calculate now dH /dt
dH A 9B\
_/[ (VXA)+A- <V><3A>}W
ot
:/V(MXA)d“ﬁ“
—/ <><A> ds

where we have used the fact that JA/Jd¢ L B and that both B and V are normal to n on S.
Thus dA/dt || non S and the final integral is zero and H is a constant of motion.

(6.98)

Example: Helicity of two flux tubes linked together

Consider two flux tubes that have the shapes of tori (doughnuts) and that are linked together
through the annuli of each other. The total magnetic helicity is the sum of the contribution
from each tube separately H = H| + H,. For thin flux tubes B =V X A is approximately
normal to the cross-section S of the tube and we can write for tube 1

Hl:/A-Bdwzfds-A/dSn-VxA. (6.99)

The surface integral is thus the magnetic flux in tube 1: @;. The line integral goes around
tube 2 yielding @,. Thus the helicity contribution from tube 1 is H; = & P,. Tube 2 gives
the same contribution Hy = P P,, and the total helicity is

H=20,P,. (6.100)
If two flux tubes are wound around each other N times
H=4+2NP D, , (6.101)

where the sign depends on the relative orientation of the magnetic field in the flux tubes.
If there are more than two interlinked flux tubes, they each contribute by a factor of their
respective P.
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Woltjer’s theorem

Woltjer showed in 1958 an important property of ideal MHD:

For a perfectly conducting plasma in a closed volume ¥ the integral

A-Bd¥ =H, (6.102)

o

is invariant and the state of minimum magnetic energy is a linear, i.e., constant-o, force-

free field
Proof: The invariance was shown above. Consider the magnetic energy

BZ
w=| Z_av (6.103)
*0 2/.L()
and small perturbations of A and B to A + 6A and B + 6B such that A =0 on S and
OB =V x §A. By linearizing and subtracting a5 Hy = 0, where 0 is constant, we get

2up6W = | [2B-0B—0g(6A-B+A-6B)|d¥

*o

= [ V- (2B x A +200A x SA)d¥
Vo

+ 2 (VxB—opB)-0Ad¥ . (6.104)
Vo

The first integral on the RHS of a divergence can be transformed to a surface integral
which vanishes because 6B = V x §A, whereas the second integral shows that W =0
for all perturbations if and only if

VxB=aB. (6.105)

This states that if the energy is at minimum, the configuration must be force-free and we
have proven Woltjer’s theorem.

The converse statement of this result is not necessarily true. If the configuration is force-
free, we have shown that the energy has an extremum, but not that it would be minimum.

This result has been postulated to hold also for small but non-zero resistivity (known as
Taylor’s hypothesis) and thus it is a good starting point to assume that the state of minimum
energy in nearly-ideal MHD problems is a force-free configuration.

Note that, e.g., the magnetospheric configuration is determined by perpendicular cur-
rents and is thus not force-free although ideal MHD is a reasonable large-scale description
of magnetospheric plasma flow. The magnetosphere is not in a minimum energy equilib-
rium state.
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6.6 Alfvén Waves

In MHD there are two characteristic speeds: The speed of sound waves

Vs = \/YP/Pm = \/VkgT /m (6.106)

and the speed of Alfvén waves in the direction of the magnetic field

2
VA = B . (6.107)
HoPm

A combination of these speeds is the magnetosonic speed, which is the speed of magne-
tosonic waves perpendicular to the magnetic field

Vs = \/VE+ V3 . (6.108)

6.6.1 Dispersion equation of MHD waves

Elementary plasma physics textbooks often discuss the Alfvén waves starting from the the
modes propagating parallel and perpendicular to the ambient magnetic field. However, the
linearized MHD equations are straightforward and easy to solve for plane waves propagat-
ing at all angles at once. Consider a compressible, non-viscous, perfectly conductive fluid
in a magnetic field. This is described by the equations

%Jrv.(pmv) —0 (6.109)

PAY
me—kpm(VV)V: ~VP+JxB (6.110)
VP =12Vp, 6.111)
VxB = ol 6.112)

B

VxE= =5 (6.113)
E+VxB=0. (6.114)

From these we can eliminate J, E, and P

%+V~(pmV) —0 (6.115)
v 2

pmy-ﬁ-l)m(V'V)V: —viVpu+ (V xB) x B/ o (6.116)

Vx(VxB):a—B. (6.117)

ot
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Assume that in equilibrium the density py,o is constant and V = 0. Furthermore, let the
background magnetic field By be uniform. Considering small perturbations to the variables

B(r,1) = Bo+ B (r,1) (6.118)
Pm(l'J) = pm()"’pm](rat) (6.119)
V(r,7) = Vi(r,1) (6.120)

we can linearize the equations by picking up the first-order terms

apml

ot +pn10(V'V1) =0 (6121)
Pro—5=+V;VPmi +Bo x (VxB1)/to = 0 (6.122)
%—VX(WXBO):O. (6.123)

From these we find an equation for the velocity perturbation V|

*V,

W—viV(V-Vl)HAx{Vx[Vx(levA)]}zo, (6.124)
where we have introduced the Alfvén velocity as a vector
By
V4= . (6.125)
4 VHoPmo

Looking for plane wave solutions in the form V;(r,z) = Vyexpli(k-r — ot)] we get an
algebraic equation

—@?Vi +v2(k-V)k — v x {kx [k x (V] xv4)]} =0. (6.126)

It is convenient to expand the vector products. After straightforward vector manipulation
this leads to the dispersion equation for ideal MHD waves

—@0*Vi+ (2 +v3)(k-V)k
+(k-va)[((k-va)Vi—(va-Vi)k— (k- Vi)va)] =0. (6.127)

6.6.2 MHD wave modes

Now it is a good time to look at the limiting cases of perpendicular and parallel propaga-
tion.

Perpendicular propagation

Let k L By, which implies k-v4 = 0, and the dispersion equation reduces to
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Vi =02 4+v7) (k- Vk/o? . (6.128)

Clearly k || Vi, and we have found the magnetosonic wave

0]
2=, (6.129)

Assuming harmonic behavior also for the magnetic field the convection equation reduces
to
0B +kx (Vi xBy) =0, (6.130)

which yields the magnetic field of the wave

Vi

B, =—Bo.
L= k0

(6.131)

The electric field can then be computed from the ideal MHD Ohm’s law E = —V | x By.
This wave is known as the compressional (or fast) Alfvén (or MHD) wave.

Parallel propagation
For k || B, the dispersion equation reduces to
2
(kv — 0*)V, + (; - 1) K*(Vi-vaA)va=0. (6.132)
VA
This describes two different wave modes. Vi || By 