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Preface

The present book Essential Spaceflight Dynamics and Magne-
tospherics describes, in the first instance, some of the key aspects of
celestial mechanics and spaceflight dynamics. We begin with classical
two and three body problems illustrative of the aesthetic aspects of
applying analytical methods of investigation to celestial mechanics.
Then, osculating orbital elements are introduced as well as analysis
techniques sufficient to evaluate the influence of various disturbing
forces on spacecraft. Next a theory of manoeuvres is outlined and the
methodology of making interplanetary trajectory corrections. Ideas
involving various approaches to orbital element determinations using
measured data are also considered.

The forces applied to a spacecraft can result in the development
of torques that influence attitude motion and the effects of the most
important of these are described in terms of equilibrium positions,
periodic motions, steady-state and transient motions. Also considered
is the problem of attitude control of a spacecraft using active and/or
passive methods of orientation and stabilization. In addition, a more
advanced treatment of the development of attitude control systems is
provided.

A description of the Earth’s magnetic and gravitational fields al-
lows us to clarify the relationship between natural features of the
Earth’s environment and the requirements of mission design, orbit
construction and approaches to attitude control. A detailed Adden-
dum provides an overview of circumstances on the Sun that render
interplanetary space a very hazardous environment for spacecraft and
for ‘man in space’. The influence of this environment on spacecraft
performance and survival is then presented, together with an outline
of some of the mitigating strategies that can be invoked. A feature of
the Addendum is the indication it provides of the challenges that the
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vi PREFACE

next generation of space experiments will pose to mission designers. It
is accompanied by a separate set of references since if refers to ongoing
work in space physics rather than to classical material.

A set of appendices contain mathematical tools useful in making
derivations and in obtaining formulae, but without the inclusion of
detailed numerical data. There are many suitable reference books
that provide material in this regard, some of which are listed in the
references to individual Chapters. Other references relevant to the
Chapters are contained in footnotes.

While it is assumed that readers of this book are familiar with
mathematical analysis, differential equation theory, analytical me-
chanics and the theory of stability, the intention of the authors in
Chapters 1 – 13 is to describe the main aspects of celestial mechanics
and spaceflight dynamics without the use of complex mathematical
formulae or the provision of examples of associated problem solving.
This approach (breadth as opposed to depth) is for those readers who
will deal in a general way only with space related topics. Chapters 14 –
22, which employ a more mathematically advanced treatment, are in-
tended for readers interested at a specialist level in attitude dynamics
and in the development of attitude control systems.

In the first fourteen chapters diagrams are frequently used to il-
lustrate features of introductory spaceflight and attitude dynamics in
lieu of complicated formula. In this regard, those innovative diagrams
that were drawn manually by our co-author Boris Rauschenbakh, who
died in 2001, are used in his memory with minimum changes. Only
their inscriptions were rendered into English and, in some cases, an
arrow over a letter or bold font was introduced to indicate a vector
symbol. We hope that these visual presentations, with the historical
dimension they provide through their association with Academician
Rauschenbakh, will be attractive to those who are beginners in the
area of astrodynamics, as well as to those who are already specialists,
for whom they can serve to illuminate subtle details and provide new
insights. The addition in footnotes of short historical biographies re-
flects the role of several centuries of international mathematicians in
the achievement of space navigation and control.

The content concerned with spaceflight dynamics sprang initially
from two courses of lectures for B.Sc., M.Sc. and Ph.D. students
presented at the Moscow Institute of Physics and Technology. This
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material has been significantly expanded here as well as modulated
by the practical experience of the authors in developing international
space projects in engineering, control, mechanics, and space physics
over a period extending from the early days of this discipline up to
the present time.

It is a pleasure to thank our associates, colleagues and friends
for their support during the preparation of this book, and for the
many important general discussions and personal contacts with them
that stimulated new ideas and contributed a depth of experience.
Among those we would particularly like to acknowledge in this regard
are D.Okhotsimsky, V.Sarychev, N.Trukhan, V.Pen’kov, V.Sazonov,
V.Rauschenbakh, I.Ritous and V.Kozminikh, all of whom made greatly
valued inputs. Also, we extend our thanks to V.Beletsky, F.Graziani,
M.Hapgood and M.Dryer who read our manuscript and made several
important remarks.

Michael Yu.Ovchinnikov,
Moscow, Russia
ovchinni@keldysh.ru

Susan McKenna-Lawlor
Maynooth, Ireland

stil@may.ie
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Chapter 1

Unperturbed Orbital

Motion. Two-Body Problem

As the two-body problem provides the classical basis for the analysis of
any perturbed motion, it is suitable to begin an exploration of prob-
lems in celestial mechanics by considering the two-body problem in
detail. Another name for this problem is the problem of Kepler*, who
formulated it based on precise astronomical observations by

1.1 Equations of Motion

In accordance with Newton’s Law of Gravitation, a force

acts on a particle with mass situated in the gravitational field of
a particle with mass where is the
universal gravitational constant and r is the the radius-vector of
with respect to A field where the force depends on distance in

*Kepler, Johannes (1571–1630), German astronomer who discovered that the
Earth and planets travel about the Sun in elliptical orbits. He deduced three
fundamental laws that govern planetary motion.

†Brahe, Tycho (1546–1601), Danish nobleman who made numerous accurate
astronomical observations used by Johannes Kepler in deducing his three funda-
mental laws of planetary motion.

1



2 CHAPTER 1. TWO-BODY PROBLEM

this way is called a Newtonian field. The equations of particle motion
are as follows

where and are the radius-vectors of the particles with respect to
an origin in inertial space (Fig. 1.1). Let us define the radius-vector

of the center of mass of this two-particle system using the formula

Differentiate this relationship twice with respect to time and substitute
the two first expressions from (1.1) on the left side of the relationship
obtained. Then, taking into account the last expression from (1.1),
we get on dividing by

Integrating this expression twice with respect to time we obtain

and
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where and are two vector constants of the first integrals (six
scalar first integrals) that describe the linear and uniform motion of
the center of mass of the two-particle system. A first integral of differ-
ential equations (or of a mechanical system the motion of which these
equations describe), is a function dependent, generally speaking, on
the coordinates, on the velocity of the mechanical system and on time.
This function remains constant for any motion of this system.

Obtain now the remaining first integrals of the two-particle system.
Locate a coordinate origin at its center of mass. Then, owing to the
definition (1.2) after the substitutions

the following relation is valid

where and are the radius-vectors of the particles with respect
to their joint center of mass. Consider now the motion of one of the
particles, for instance and rewrite the expression for the force
acting on it

where is a magnitude of the vector which,
as above, is the radius-vector of the first particle with respect to the
second. Transform this formula as follows

where Substituting this expression into the first equa-
tion of (1.1) we obtain

where ( is called the gravitational parameter) and (1.3) and
(1.4) are taken into account. Using relation (1.5) we get
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Consider next the mutual motion of the particles. Subtracting (1.6)
from (1.7) we write

Equations (1.6), (1.7) and (1.8) show that the motion of two particles
around their joint center of mass, is similar to the motion of either
particle relative to the other.

Let be  the  projections of  the vector r onto  the axes of
an inertial reference system (IRS) and write equation (1.8) in the
coordinate form

Six scalar first integrals thus remain to be obtained.
Note that all these results are valid for rigid bodies as well as

for particles if the rigid bodies concerned have a centrally symmetric
distribution of mass. In this sense the names ‘two-body problem’ and
‘two-particle problem’ are equivalent.

The word ’inertial’ used in the name of the inertial reference sys-
tem just introduced is conditional in nature because the possibility to
consider a reference system as inertial depends on the accuracy with
which the motions of the bodies (SC and celestial) considered here
should be described. Usually for interplanetary missions an inertial
reference system with its origin at the Sun’s center is used. Missions
around the Earth are frequently considered with respect to an inertial
reference system with its origin located at the Earth’s center.

1.2 Integral of Energy

Multiplying both sides of (1.8) by 2dr/dt we obtain the scalar expres-
sion

Using the obvious equality
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and integrating the previous equation we can write

Representing dr/dt by the vector V, which has magnitude V, we ob-
tain

which is the integral of energy. The motion is here seen to be de-
termined by a constant of energy such that at an infinite distance
between the two particles

if V is a real quantity

It follows from the third case that particles cannot reach an infinite
distance from each other (such motion is called ‘finite’).

1.3 The Area Integral

From (1.8) we write

Integrating this equation we obtain a first integral in vector form which
is called the area integral

This constant vector c is the angular momentum normalized by the
particle mass. Let i, j ,k be unit vectors of the IRS with origin at the
second particle (we already saw that it does not matter with respect
to which particle relative motion is considered). Then we write

and so that the first integral (1.11) has
the form

if V = 0
if V should be an imaginary quantity.
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Multiplying (1.11) by vector r we obtain the scalar product

This shows that the coordinates of the moving particle satisfy
the equation of a plane which passes through that particle where the
origin of the IRF is located. The trajectory of motion of the particle
lies in this plane.

If the unit vector k is aligned with vector c, then the expressions

are valid and Let us now introduce polar
coordinates and, using the formulae and
carry out the transformations

The area integral is then derived in the form

From this expression we may make two conclusions:

1. Since then the greater the distance between the par-
ticles, the less is the angular velocity of r.

2. In a small interval of time the radius-vector r turns through
a small angle covering a sector area (Fig. 1.2). To within an
accuracy of the order of the sector area is determined by
the expression From the limit

we obtain The derivative dS/dt which is called the
area velocity is a constant when the motion takes place in a central
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gravitational field. The area S swept out by the radius-vector during
the time interval to is determined by the integral

1.4 Laplace’s Integral

Next define the scalar

Then the equality

is valid. Taking into account the equation of motion (1.8) and the
energy integral (1.10), rewrite this equation in the following form

Differentiate this equality with respect to time and take into account

Then we get
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Equation (1.15) is formally similar to the scalar equations (1.9). Sub-
stituting from (1.15) in each of the three equations (1.9) we obtain

To integrate these equations the following auxiliary expressions can
be written

Substitute the components of vectors
these relations in (1.16) and integrate the resulting equations to obtain
three constant expressions

which may be interpreted as components of the constant vector

This is the vector form of Laplace’s integral‡ where vector f is Laplace’s

vector. The expression

provides another form of Laplace’s integral.
From the theory of differential equations it is known that a set

of autonomous differential equations of order has only first
integrals which are all independent of time. We obtained above the
scalar first integral of energy (1.10), three scalar first integrals of area

‡Laplace, Pierre-Simon (1749–1827), French mathematician, astronomer and
physicist, Professor of the École Militare. He studied applications of Newton’s
theory of gravitation to the Solar System and discovered the invariability of plan-
etary mean motions. Taking into account perturbations, he showed planetary
motions to be secular and that the overall Solar System is stable. Laplace intro-
duced the concept of potential — a function whose directional derivative at every
point is equal to the component of the field vector of intensity in a given direction.
Also, the term celestial mechanics was introduced by Laplace.

and from
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(1.12) and three scalar first integrals of Laplace. None of these depend
on time. Their total number is greater by 2 than is allowed for the
set of autonomous equations (1.8) of order 6. This means that the
seven first integrals are not all independent and we need to limit their
number to 5 independent integrals.

Laplace’s vector relates to the vector c and to the constant of
energy through the expressions

so, the magnitude of vector f is dependent on the constants of energy
and of angular momentum. Since vector f is perpendicular to vector
c and consequently lies in the plane of motion, and also its magnitude
is fixed, only its direction in this plane can be chosen.

Let us next consider a consequence of the existence of one inde-
pendent scalar Laplace integral

Using the Laplace identity and the integral
of energy, we derive

Extract the expression from this formula and put it in the previ-
ous equality to obtain the scalar product rf. Then, taking into account
(1.14) we get
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The trajectory of the particle can now be determined by combining
this relation with the equation of the plane (1.13)

Let us now introduce a new reference system where is
directed along the vector f, and along the vector c. This can
be done due to the validity of the relationship cf = 0. Then, since

and the previous system
assumes the form

where Employ next polar coordinates (radius-vector
and true anomaly ). Then, using the standard transformations

we obtain and resolve it
with respect to

where the expressions

define the parameter and the orbit eccentricity e.

Hence, particles in the framework of the two-body problem move
along conic, sections (hyperbola, parabola or ellipse) created by the
intersection of a plane with the surface of a cone. At the mag-
nitude of is a minimum. The corresponding point of the trajectory
is called pericenter while the furthermost point of the trajectory at

is called apocenter. The apocenter is pertinent only for ellipti-
cal trajectories. Since the vector r is directed along the vector
f. This is why one can say that Laplace’s vector is directed towards
the pericenter. The straight line coincident with the semi-major axis
of the orbit and directed along Laplace’s vector is called the line of

apsides.

The fact that any eccentricity e is determined by the magnitude of
Laplace’s vector follows from (1.20). As the
trajectory is an ellipse, a parabola and a hyperbolic curve respectively.
A closed elliptical trajectory is frequently called an orbit, although real
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orbits are never closed. In order to express through other parameters
one needs to use formulae (1.18) and (1.20) to obtain

and

The relationship between the coordinates and explicit time is de-
termined by the sixth first integral and we obtain it using the polar
reference system introduced above. As was already shown, the area
integral in this reference system has the form

Substituting here the expression for from (1.19) we obtain after
integration

where is a constant called the epoch (that is the moment of time when
a moving particle first passes the pericenter of its trajectory). Note,
that although the quadrature (1.24) provides a formal solution of the
problem, it is not convenient to use this expression in an analytical
treatment of motion.

Six first integrals and six constants corresponding to them have
now been obtained. Owing to our initial choice of a suitable reference
system, three of these constants are equal to zero, because the plane

is the plane of motion and the axis is directed along vector
f to the pericenter. These latter constants specify the position of the
orbital plane in space and also the orientation of the orbit in this
plane. The solution has thus only three non-zero constants and these
are

1.5 Kepler’s Laws

It was shown above that motion of a particle in the two-body problem
is executed along a conic section with the central attracting body
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placed at its focus. Such motion is called Keplerian and the path of
the particle is called a Keplerian orbit or a Keplerian trajectory. Also
it was shown that a radius-vector sweeps out equal areas during equal
intervals of time. Further to these results we may now consider the
period of revolution of a body moving along an elliptical orbit.
It is known that the area of an ellipse S is equal to where and

are the semi-major axis and the semi-minor axis respectively. Then,
from the formula for a ‘swept-out’ area

we get

Again, from the definition of an expression follows and so

From analytical geometry and Thus, the
relation

is valid. Hence, if two bodies move around any much larger central
body (in the absence of mutual attraction between the two orbiting
bodies) so that the value of is substantially determined by the mass
of the central body rather than by the masses of the orbiting bodies
(note that the expression for introduced in (1.6) is dependent on
both masses), then the orbital periods and are in accordance
with the equality

It is worth mentioning that this result and that concerning particle
motion along a conic section are valid only for a Newtonian field. The
result that the velocity with which a rotating vector sweeps out a
particular area is constant is valid for any central field.

These theoretical results can be compared with results published
by Kepler in the form of three laws
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Each planet moves around the Sun in an ellipse with the Sun at
one focus (a trajectory of motion lies in a plane).

The line from the Sun to a planet (the radius-vector r), sweeps
out equal areas in equal time intervals.

The ratio of the square of the period to the cube of the semi-
major axis, is the same for all planets in our solar system.

1.

2.

3.

derived on the basis of his analysis of accurate observations of plane-
tary motions made by Tycho Brahe. The first and second laws were
published in 1609 and the third in 1619.

1.6 Kepler’s Equation

Equation (1.24) provides a relationship between coordinates and time,
but it has a highly complicated form. This is a reason to use instead
Kepler’s equation. Fig.1.3 shows an ellipse with semi-axes and

constructed using concentric circles with radii and Introduce the
eccentric anomaly E to determine the coordinates of points which are
situated on the ellipse using
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Then the trigonometric expressions

are valid, and the formulae

are true in terms of Fig. 1.3. Squaring both parts of these equations
we obtain an equation in From this, an expression for follows

Now, going to half-angles and taking into account this expression for
we obtain

Dividing the second equation by the first, we obtain an expression for
The angle E uniquely determines commonly used coordi-

nates of the ellipse points
The integral of area (1.23) and the energy integral (2.1) have, using

(1.22), the forms

and

respectively. Excluding we obtain

Now introduce mean motion using
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where the orbital period is taken from (1.25). The mechanical sense
of is mean angular velocity of revolution around a central body.
Then the formulae

and

Integrating this equality, we obtain

Choose now a reference point corresponding to Then, as is
obvious from the second equation of (1.27), and consequently
the point corresponds to pericenter. Hence, can be used as
the epoch In this case the previous equation has the form

and

where is called the mean anomaly. This corresponds
to the turning angle of a radius-vector of a moving body which ro-
tates around an attracting body with a permanent angular velocity
equivalent to its mean motion

Equation (1.28) is called Kepler’s equation and it is noted that,
despite its simple form, it can not be solved using elementary func-
tions. This equation can, however, be used to obtain answers to the
following problems.

For a given position of a moving body (i.e. when and are
given), determine the corresponding time

For a given determine and

are valid.  Substitute E  for using (1.27), then
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The solution of the first problem is elementary since and de-
termine E by formula (1.27) and we can immediately obtain from
the mean anomaly M (1.28).

The second problem requires E to be determined for a specified M

which is related to the given through the expression
using (1.28). Solving this is possible employing approximate methods
(for instance, by a successive approximations method), such as that
described on page 260. Determining the relation of the (n + 1)-th
approximation of from the previous using Kepler’s equation
we may write

It can be shown that such a procedure converges to a unique solution
which is the root of the equation

In practice, when E increases from         to       the function
monotonically increases because its first derivative is always positive.
It follows that Kepler’s equation has a unique solution for every value
of M. If the magnitude of the eccentricity e is sufficiently small, it is
convenient to represent the variables and by a time series.



Chapter 2

Qualitative Analysis of the

Properties of Orbits

Next we employ the integral of energy when considering, and inter-
preting, the properties of elliptical orbits.

The expression for the energy constant (1.22) and the geometrical
relation allow us to express the energy integral in a form

also called the vis-viva equation [2]. Note that a comparison of the en-
ergy integral (1.10) with expression (2.1) gives so that the
semi-major axis actually provides a measure of the energy of elliptical
orbits. Let us consider now the evolution of such orbits based on an
analysis of formula (2.1).

2.1 Orbit Evolution due to an Instant

Velocity Pulse

If we accept the assumption that imparting an instantaneous velocity
increment (or instant velocity pulse) to a spacecraft (SC) does not
change its coordinates but only changes its velocity then, as shown
by (2.1), when changes instantly (due to an ‘instant pulse’),

2 occurs). It is shown in Fig.2.1 how an initially circular orbit is

17

also changes instantly (i.e. a transfer from orbit 1 to another orbit
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modified by the application of an instant pulse directed ‘along
the velocity’ and ‘opposite to the velocity’ vector (these are turned
acceleration and deceleration pulses respectively). As illustrated, the
greatest geometric difference in the orbits takes place in each case at
that location opposite to the point where the pulse was applied.

2.2 Orbital Transfer

Orbital transfer requires two pulses if the initial and final orbits do not
initially have any common points (for instance in the case of a transfer
from one circular orbit to another). In Fig.2.2, two-pulse transfer from
circular orbit to circular orbit via a transfer orbit using pulses

and is illustrated. It is assumed that all orbits lie in the
same plane. Transfer ellipse is called Hohmann’s ellipse*, and the
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associated orbital manoeuvre is called the Hohmann trasfer.

2.3 SC Braking in the Atmosphere

Consider a SC in an elliptical orbit about the Earth and suppose that
braking (which can be approximated by an instant ’braking pulse’),
takes place in the atmosphere at each pericenter passage, thereby pro-
ducing a progressive decrease in the altitude of the apocenter. In
consequence, the original orbit shrinks and becomes less elliptical
(Fig.2.3). It is easy to recognize this situation through the ongo-
ing reduction of the revolution period which is proportional (see
(1.25)) to the 3/2 power of the semi-major axis As the whole orbit
lies within the atmosphere, this braking is so intensive that a SC can
descend to the Earth’s surface from a critical altitude of ~ 100 km.

*Hohmann, Walter (1880–1945), German specialist in spaceflight mechanics.
He demonstrated (W.Hohmann, Die Erreichbarkeit der Himmelskorper, Olden-
bourg, Munich, 1925) that transfer from one circular orbit to another via an ellipse
tangential to both orbits provides, from the point of view of energy consumption,
the optimum optionIn the same period Russian researcher and engineer Tsander,
Fridrich Arturovich (1887–1933) analyzed interplanetary trajectories and obtained
a similar result (F.A.Tsander. Flights to Other Planets (Theory of Interplanetary

Voyages), 1924–1925. In the Selected Papers of the Pioneers of Rocket Engineer-
ing: Kibalchich, Tsiolkovsky, Tsander, Kondratyuk, Moscow, Nauka Publ., 1964,
pp.277–369).
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2.4 Energy Consumption Required

for Interplanetary Flight

The energy integral (2.1) may be rewritten in the form

If represents the distance from the center of gravity to the launch
site (i.e. the Earth’s radius) and is the distance from the Earth to
the orbit of a target planet (Fig.2.4), then it is clear that the velocity
V required for flight depends only slightly on For the Moon the
ratio is a negligible quantity in comparison with the
magnitude (2) of the first term in brackets. That is why according to
this formula, obtained within the framework of the two-body problem,
the velocities required for speeding-up a flight to the Moon and to Mars
have comparable values. However, in practice the values concerned
differ owing to the necessity, in each case, to take into consideration
the attraction of the Sun.

2.5 Circular Velocity

Substituting in (2.1) we obtain the velocity of circular
motion for orbits of arbitrary radius

Consequently, the velocity of circular motion changes according to the
inverse-square-root of the distance from the central attracting body.
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Hence, an infinite number of such velocities exist. One of these, which
corresponds to the minimum energy necessary for orbital injection, is
called in western technical literature the circular velocity,

where, in the case of motion around the Earth, is the Earth’s radius
and a gravitational parameter of the Earth. When motion around
other planets is considered, the appropriate parameters should be sub-
stituted in (2.3). Sometimes (mostly in Russian technical literature),
this circular velocity is called the first cosmic (circular) velocity which
is convenient in order to distinguish it from the velocity of a SC in
a circular orbit of arbitrary radius.

Compare two idealized schemes for the orbital injection of a SC
from an airless, spherical planet (Fig.2.5). In the first scheme the SC
is provided with an instant pulse in the horizontal direction, which
injects it into a circular orbit of infinitesimal altitude. In the second
case the SC is first launched vertically, then given a horizontal pulse
sufficient to produce a velocity that is less than the velocity of circular
motion attained in the first case and only just enough to maintain
an elliptical orbit. The first trajectory intersects points A and C

at an infinitesimal distance above the planet’s surface. The second
trajectory includes the lift from A to B. The resulting elliptical orbit
passes through the points B and C.
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Both orbits touch each other in the point C where they have the
same magnitude of Orbit II is characterized by a value of the semi-
major axis which is larger than that of the semi-major axis of orbit
I. Hence, the velocity of the body revolving in orbit II is greater than
the velocity of the body revolving in orbit I. Taking into account that
the beginning of speed-up (point A) is coincident for both orbits, it
is necessary to expend more energy to reach orbit II than to reach
orbit I. This means that minimum energy consumption corresponds
to circular motion around the planet at the infinitesimal altitude. The
circular velocity concerned is calculated using formula (2.3).

In practice, due to the presence of the Earth’s atmosphere, the
trajectory of injection into an orbit starts vertically from the launch
site in order to minimize passage through the atmosphere. Thereafter,
to reduce the carrying out of work against gravitational force during
the speed-up phase, the trajectory is turned gradually towards the
horizontal. The magnitudes of circular velocity for various planets
are presented in Table 2.1.

Rewriting (1.25), we obtain a relationship between the SC period
of revolution and the orbit size (semi-major axis)

Substituting for the sidereal day corresponding to the revolution
of a particular planet, provides us with the semi-major axis of the orbit
of a SC having an orbital period equal to the period of the planet’s
spin. A sidereal day is defined as the period required for one spin
revolution of the planet about its spin axis relative to inertial space.
One sidereal day on the Earth is 23 h 56 min 4 s, whereas one solar
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day is 24 h. We thereby obtain the semi-major axis of what is called
geo-synchronous orbit. Each geo-synchronous orbit is characterized by
a particular inclination. Generally, a SC moves relative to the Earth’s
surface in the same meridian plane (travelling from North to South,
then returning to the north across the equatorial plane). Among geo-
synchronous orbits there exists one characterized by a fixed position
of the SC relative to the Earth. This orbit is circular, lies in the
equatorial plane and is called the geo-stationary orbit. Its radius is
42 164 km.

2.6 Escape Velocity

If at speed-up the SC velocity reached is sufficiently large, then the
resulting trajectory will not be finite. The minimum velocity in this
case corresponds to that which provides motion along a parabola.
Considering the parabola as an extreme case of an ellipse with semi-
major axis then, in terms of formulae (2.1) and (2.3), we
obtain

Comparing this velocity with circular velocity we can define the escape

velocity as

Thus, the escape velocity (sometimes called the parabolic velocity) or
the second cosmic velocity is that minimum velocity sufficient to move
a SC (in the framework of the two-body problem) to an infinite dis-
tance from its attracting body. The magnitudes of the escape velocity

for various planets are presented in Table 2.2. In actuality, speed-
up to does not mean the removal of a SC to infinity as, besides the
Earth, the Sun exerts an influence and forces the SC to move around
it in an ellipse.

2.7 Hyperbolic Escape Velocity

The minimum velocity required to allow a SC to exit the Solar Sys-
tem can be calculated using integrals of energy for the motion of the
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SC in the gravitational fields of the Sun and the Earth. To leave
the Solar System the SC has to be provided with the escape ve-
locity Using (2.1) we obtain the magnitude of this velocity
for the Earth’s orbit where
is the gravitational parameter of the Sun and is the radius of
the Earth’s orbit around the Sun (a circular approximation to the
Earth’s orbit is considered). The velocity of the Earth’s orbital mo-
tion The value of the additional
velocity required to achieve escape from the Solar System de-
pends on its direction with respect to the direction of The
minimum value can be enough if

is aligned with the velocity of the Earth’s orbital motion. The
SC should already have this ‘extra’ velocity when leaving the gravita-
tional field of the Earth so that the integral of energy for the SC in
the Earth’s field has the form

To determine the total velocity required when starting from the Earth
and acquiring we derive from this formula a set of

expressions for the minimum magnitude of this velocity

which is called the hyperbolic escape velocity (sometimes the third cos-

mic velocity). The maximum magnitude of the velocity required to
leave the Solar System is obtained when the additional velocity
is oppositely directed to the orbital velocity of the Earth. In this case,
about 72.8 km/s is required overall to achieve escape from the Solar
System.
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Perturbed Motion

In celestial mechanics when two massive particles move in orbits under
their mutual gravitation (two-body problem), the motion is considered
to be unperturbed and is called Keplerian. All cases of motion which
deviate from Keplerian are associated with perturbed motion. The

problem provides a classical example of perturbed motion.

3.1 The Problem

Let particles interact according to Newton’s Law of Universal Gravi-
tation and obtain the first integral of their motion. Denote the particle
masses by and their radius-vectors with respect to
an origin in inertial space by Then the force exerted
on the particle by the one is determined by the expression

Therefore, we may write

Here is the sum from except

for the term with We are able to rewrite equation (3.1) in

25

to
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scalar form through making projections onto the axes of the inertial
reference system

Introduce now a function

where S represents a sum of terms with indices and but with
absent and Then, (3.2) may be rewritten as

Multiplying equations (3.3) consequtively by and then
combining them we get

or

where

is the kinetic energy of the system; V is a force function which coin-
cides with potential energy in value but differs from it in sign, while

is a constant of the energy integral represented by (3.4). A further
nine first integrals can be obtained using the following arguments. The
system of particles is acted on by internal forces only and, there-
fore, the resultant of these forces is equal to zero. A similar comment
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can be made about the resultant torque of the internal forces. The
relations

follow from (3.1). Integrating these equations we get

These expressions each contain three vector constants so that nine
scalar first integrals are obtained. It is easy to interpret them in
terms of mechanics. The first two relationships imply that the center
of mass of the system moves rectilinearly and uniformly. The third
relationship indicates that the angular momentum of the system is
conserved.

Further the third integral (3.5) allows us to specify a convenient
reference system with its origin situated at the center of mass
of the system O with its axis directed along vector c. A plane

is thereby fixed in space with respect to the inertial reference
system that moves with the system’s center of mass. This plane is
usually called Laplace’s plane. In the two-body problem it coincides
with that plane containing the trajectory of particle motion.

Thus, ten first integrals, including the integral of energy, are ob-
tained. Generally, these are referred to as classical. Numerous at-
tempts to find other first integrals pertaining to the problem
have been made but without success. In this connection, in the XIX-th
century Bruns* (1887), Poincaré† (1889), and Painlevé‡ (1898) proved
that the equations of motion (3.1) have neither other independent al-
gebraic first integrals, or first integrals expressed in terms of unique
transcendental functions if

*Bruns, Henry Ernst (1848–1919), German astronomer, geodesist and mathe-
matician, Member of the Berlin Academy of Science.

Poincaré, Jules Henri (1854–1912), French mathematician, mechanician, the-
oretical astronomer, and philosopher of science. He introduced the concept of au-
tomorphic functions, made a contribution to the theory of orbits, developed new
mathematical models in astronomy and methods for the investigation of periodic
motions.

‡Painlevé, Paul (1863–1933), French mathematician. His main work was de-
voted to differential equations and to the theory of functions of complex variables.

†
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First integrals allow us to reduce the order of a system of equations.
The classical first integrals allow us to reduce the order of system (3.1)
by 10. Moreover, it is possible to reduce this order by a further 2,
using the fact that the internal forces acting do not depend on the
coordinates of the particles but only on their mutual separations. In
order to achieve this, we can eliminate time  from the system by
introducing a new independent variable and adding a quadrature

One of the problem variables can be used as variable We
may then divide the equations in (3.2) by, for instance, the last equa-
tion from (3.2), thereby reducing by 12 the order of the equations de-
scribing the problem. If we consider the Solar System, which
is composed of 10 large bodies, then the order of the equations is equal
to 60 (because the number of two-order vector equations of motion is
equal to 10 and each radius-vector has dimension 3). The order can
thereby be reduced to 48. However, in practice, to study a system of 60
simple-form equations is easier than to deal with 48 non-symmetrical
equations.

3.2 Planetocentric Form of the Relative

Motion Equations

Let the relative motion of a system of particles be studied in the
framework of the problem and let the mass of one particle be
much greater than that of the others. We have here an analog of the
motion of the planets around the Sun.

Let the particle with mass be the largest one. Impose on this
particle the origin of a reference system with axes which are
parallel to the corresponding axes of the reference system and
obtain the formulae

of coordinate transformation from Equations (3.2) after di-



3.2. Planetocentric Form of Equations 29

viding by have the form

where these representative equations are written for coordinate only.
In the second equation the term is highlighted by extract-
ing it from the total sum and writing it individually. This term is
indicated by superscript index in the sum notation For
brevity we assume that Subtracting now the second equation
from the first one we get

Let us now introduce the perturbation function where

In this case, the equations of motion can be written in what is called
planetocentric form

If we assume then system (3.7) decomposes into
independent equations, where each equation has a form similar to
the equation of motion in the two-body problem. The mechanical
interpretation of this result is as follows. Equality means
that there is no gravitational attraction acting between the planets
orbiting the Sun. Thus, the problem decomposes into
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separated two-body problems. The inequality is valid but, for
the Solar System, the derivatives of with respect to the coordinates
are small. Therefore, the motion of the planets around the Sun can,
on the whole, be correctly described in the framework of the two-
body problem, and the effect of mutual planetary attraction can be
considered to comprise a weak perturbation. The weakness of is a
result of the large inequality

3.3 The Three-Body Problem

As the problem is not in general solved, it is natural to investi-
gate the first case for which (namely In 1913§ Sundman¶

obtained a complete solution of the three-body problem in the form
of a convergent series. However, its rate of convergence is so slow
that it is not possible to use this series in practical calculations. Al-
ready in 1933 estimations showed that to carry out calculations with
a precision acceptable for astronomical year-books, about
terms would have to be employed. Thus, Sundman’s solution is of
theoretical rather than of practical interest. More easily visualized
results can be obtained through imposing additional restrictions on
the initial motion and on the relationships between particle masses.
The restrictions on the initial motion lead us to Lagrange’s case and
Euler’s case.

3.3.1 The Lagrange and Euler Cases

Euler and Lagrange addressed the problem as to whether initial con-
ditions of motion exist in respect of three mutually attracting bodies
with arbitrary masses which move along Keplerian orbits.

Let the three bodies have finite masses Radius-vectors
join these particles (Fig.3.1). The relationship

Mémoire sur le problèm des trois corps. Acta Math., 1913,
Vol.36, pp.105–179.

Karl Fritiof (1873–1949), astronomer and mathematician of Swedish
origin. Longtime Professor of Astronomy at the University of Helsinki. Studied
collisions between particles.

§K.F.Sundman.

Sundman,¶
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is evident.

The equations of relative motion in planetocentric form for parti-
cles with masses and with respect to and of with respect
to are, respectively

In order that the motion be Keplerian, it has to satisfy the following
equations
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must be valid. With regard to we get the equalities

which are relevant to the following cases.

If the expressions contained in parenthesis are equal to zero.

If the magnitudes contained in parenthesis are not equal to zero
but the vectors are collinear.

Lagrange’s Case

In the first case, the condition provides three pairs of equations

From these, we obtain the equalities and, consequently,
Let us now differentiate the equality

(3.8) with respect to time

where are unknown constants. In other words, the three identities
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It is clear that if, at an arbitrary time, the vectors of particle velocities
compose an equilateral triangle (Fig.3.1) then, at the next moment of
time, the equalities are satisfied again (i.e. at any time
this equality is true). Thus, (see equations (3.9), (3.8)) the condition
that the motion of each of the three bodies be Keplerian is always
fulfilled.

Since three particles can be situated at the vertices of an equilat-
eral triangle in two ways and two
solutions of the formulated problem exist. Both of these solutions and
their corresponding mass configurations were obtained by Lagrange
in while studying Eulerian solutions and they are called La-

grangian.

Euler’s Case

In the second case, three particles must always be situated
in a straight line. This is possible if their mutual separations and initial
velocities are appropriately chosen. There are three particle sets with
the following sequences

These particle configurations and corresponding solutions were ob-
tained by Euler in 1767** and now are called Eulerian.

In 1951 K.Stumpff†† showed that, for three-body motion, there are
no initial conditions which produce Keplerian trajectories other then
those described above.

3.4 Restricted Three-Body Problem

The next simplification is to assume that the mass of one body is
negligible with respect to the others. In this case two ‘large’ bodies

||J.L.Lagrange. Oeuvres. Paris, 1873, Vol.6, pp.272–292.
** L.Euler. De moto rectilineo trium corporumse mutio attrahentium. Novo

Comm. Acad. Sci. Imp. Petrop., 1767, Vol.11, pp.144–151.
Stumpff, Karl (1895–1970), German by birth, he was appointed a Professor

of Astronomy at Graz and later at G’ottingen. His first book ’Foundations of
Periodic Research’ (1937) anticipates by nearly thirty years part of Colley and
Tukey’s work on ’Fast Fourier Transforms’. Also, he analyzed the orbits of SC in
the gravitational fields of the Earth, Moon and Sun.

††
'
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are not affected by a ‘small’ one. Therefore, the relative motion of
large bodies is completely described within the framework of the two-
body problem. The third small body moves along a non-Keplerian
orbit and follows a complex trajectory under the effect of the two
attracting bodies. This specific case of the three-body problem is
named the restricted three-body problem.

This method was initially used by astronomers to study the motion
of the Sun–Earth–Moon system. More recently it has been applied
in the development and study of interplanetary trajectories because
SC motion in the vicinity of a planet may be considered to fit the
framework of a three-body problem involving the Sun, a planet and a
SC.

3.4.1 Hill’s Surface

Let bodies S, J, P have the respective masses and
suppose the two large bodies S and J to move along circular orbits.
This specific case is called the circular restricted three-body problem.

It is convenient to assume that m is negligible i.e. tends to zero.
Locate the origin of a reference system at the center of mass
of the two bodies S and J. Situate the plane in the plane of
motion of the two bodies. The axis is aligned with a vector from
S to J (Fig.3.2). Let and be the distances of the bodies S and J

from the origin of the reference system so that their coordinates in this
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system are and Let be the angular
velocity of the axis with respect to inertial space, and align axis

along the vector of angular velocity so that is a positive number.
An axis with the two axes defined above completes the Cartesian
reference system. According to Kepler’s law (1.25), and taking into
consideration the relation we obtain the expressions

Consider the motion of a particle P using coordinates. The
absolute angular velocity components of this particle are determined

by the formulae The kinetic energy of the
particle is

Write Lagrange’s equation of motion

denoting differentiation with respect to time t by a dot and a
generalized coordinate by q. The force function V now has the form

The last term, which is a constant, may be dropped. Let us introduce
potential

and write Lagrange’s equations in the form

Introduce now a function
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Then the equations of motion of the particle P are given by

Multiplying these equations by respectively, combining them
and integrating, we get Jacobi’s integral *

where C' is a constant. This integral is reminiscent of an energy inte-
gral but it should not be forgotten that on the left-hand side appears
the relative velocity of particle P rather than its absolute value. The
first integral of motion allows us to carry out a qualitative analysis of
the motion of particle P.

Surface separates areas in which the relative
velocity is, respectively, real and imaginary. From (3.14) it follows
that the equation of this surface is

To simplify the analysis we now select an appropriate system of units.
Let this be chosen so that and Then, from equality
(3.12), the expression

follows. Equation (3.15), having regard to (3.13), can now be written
in the form

Equation (3.16) defines a zero-velocity surface located in the reference
system rotating with bodies S and J. Sometimes a zero-velocity
surface is referred to as a zero-relative velocity surface in order to
emphasize that a relative velocity is considered.

* Jacobi, Karl Gustav Jacob (1804-1851), German mathematician. Professor at
Königsberg who, with Niels Henrik Abel, established the theory of elliptic func-
tions. He invented the functional determinant that bears his name. Also, he
studied partial differential equations of the first order and their applications in
dynamics and in celestial mechanics.
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Comparison of equations (3.14) and (3.13) shows that a decrease in
the constant C' at a given point (in coordinates corresponds
to an increase in the relative velocity magnitude. We may use this
fact to analyze the variation of the zero-velocity surface configuration
in accordance with the variation of the relative velocity magnitude
of particle P. We begin this analysis for the case of slow relative
velocities (which corresponds to large C' ).

If C' is large, then one can see from equation (3.16) that this is
true in three areas of space where, respectively, large values of

(large and simultaneously); small or small occur. It
is convenient for these three cases to rewrite equation (3.16) in three
different forms

where are functions of (x,y,z) with relatively small magni-
tudes.

Putting functions equal to zero, the first equation from (3.17) is
the equation of a circular cylinder with axis coincident with the axis

The second and third equations in (3.17) are the equations of
spheres with their respective centers situated at S and J. Thus, the
zero-velocity surface (3.16) disintegrates into three separate surfaces.
Since the terms are small they slightly deform these surfaces which,
in consequence, are respectively described as constituting a quasicylin-
der and quasispheres. The quasicylinder has its least diameter in the
plane and the quasispheres have an egg-shaped form, with the
sharp end directed towards the origin of the reference system.

In response to an increase in relative velocity (that is of a reduction
in C' ), the quasicylinder diameter decreases and the sizes of the qua-
sispheres grow. Thus, originally separated surfaces begin to approach
each other and to merge. This process is shown in Fig.3.3 where the
evolution of the sections of zero relative velocity surface (3.16) which
occur in planes and are represented. Drawings from left to
right correspond to successive reductions in C'. Areas, where motion
is impossible are hatched.

To explain the mechanical sense of what is represented in Fig.3.3,
it is recalled that, in accordance with a reduction in C', there is an
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increase in the relative velocity of particle P and the area of its ac-
cessibility increases. At very small relative velocities (left diagram),
the particle P remains close to the powerful attractive centers S and
J. An increase in the relative velocity of P is accompanied by an in-
crease in its area of accessibility so that, for example, in the right-hand
diagram the particle ‘starting’ from both S and J can go to infinity.

This method was originally used by Hill† in 1878 to analyze the
motion of the Moon with respect to the Sun and the Earth, assuming
the mass of the Moon to be negligible relative to the other bodies.
Hill showed that the two left diagrams in Fig.3.3 correspond to the
Moon moving deeply inside the quasisphere centered at the Earth. It
can then be said, following Hill, that the motion of the Moon relative
to the Earth is stable.

Jacobi’s integral has sometimes been used to identify periodic co-

Hill, George William (1838–1914), American astronomer. In 1877–1878 he
published two papers on lunar motion in which the theory of linear differential
equations with periodic coefficients was established.

†
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mets. Assuming that the Solar System is composed of the Sun, Jupiter
and a new comet, the constant C' is obtained by observation. At the
next appearance of this comet a necessary condition of its identity
with the earlier apparition, is the closeness of the magnitude of C' to
the previous value.

3.4.2 Singular Points of a Zero-Velocity Surface

As is well-known, the singular point of a surface should
satisfy the conditions Consider now the
properties of the singular points of surface (3.15). On this surface
the equality is valid by definition and, con-
sequently, At the singular points, the equalities

are additionally satisfied, and from (3.14) we
obtain equalities

Having regard to

Hence, the particle P if it is situated at the singular point of surface
(3.15) and characterized by a constant C' of  appropriate magnitude,
is not only motionless in the reference system but, also, its
acceleration in this system is equal to zero. Thus, they are points
where particle P is, relatively, in an equilibrium position. Under the
conditions formulated above, particle P can remain forever at such
points.

A search for equilibrium points can be carried out using standard
methods of analysis associated with lengthy calculations. However,
we choose here another way to obtain them based on already derived
results. Since in the singular points of surface (3.15) particle P is
motionless with respect to the bodies S and J, and since also the
distance between bodies S and J is constant, all three rotate around
their common center of mass in a plane For bodies S and J this
follows from the definition of plane For particle P it follows from
the condition that otherwise non-compensated acceleration ap-
pears along the axis Also, as the orbits of S and J are circular
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and the orbit of particle P is circular, all three orbits are Keplerian.
It was already shown in Section 3.3.1 that when three bodies with
arbitrary masses move along Keplerian orbits, only two cases corre-
sponding to mutually motionless configurations exist (Lagrange and
Euler’s cases). Thus the singular points of surface (3.15) belong to
those configurations described by Lagrange‡ and Euler§.

If particle P is in the vicinity of a singular point of the zero-velocity
surface and if it has a small relative velocity, then its later behaviour
depends on the character of the acceleration field It may be
such that acceleration will ‘withdraw’particle P from the singular
point or, conversely, it will bring P towards the singular point. Thus,
in the first case the equilibrium position is unstable and in the second
case it is a steady-state position. In the case of stability, a deviation of
P from an equilibrium position (due to the presence of small relative
velocity and/or small coordinate deviation) results, owing to the ab-
sence of mechanical energy dissipation, in non-damped librations of P

in the vicinity of the singular point. These singular points are usually
called points of libration.

Denote the coordinates of a libration point in a rotating reference
system by and the small deviations of P from this
libration point by Then, on applying usual linearization tech-
niques, it is possible to formulate and to solve the following problem
concerning the stability of the motion of P in the vicinity of the li-
bration point [16]. Motion of particle P in the plane is here our

‡ Lagrange, Joseph-Louis (1736–1813). Born in Italy, worked at the Berlin
Academy but eventually settled in Paris where he was a Professor at the École
Polytechnique. He introduced key concepts and developed innovative methods in
mathematical analysis, differential equations, variational computation and number
theory. He mathematically formalized mechanics, reducing statics to the virtual

displacement principle and reducing dynamics to this principle combined with the
principle of D’Alembert. Also, he proved the theorem of equilibrium stability now
called the Lagrange–Dirichlet’s theorem and derived equations of motion using
generalized variables ( Lagrange’s equations of the second kind).

§ Euler, Leonard (1707–1783). Eminent mathematician, mechanician, physi-
cist and astronomer. Of Swiss origin, he worked primarily at the St.Petersburg
Academy of Sciences and at the Berlin Academy. He made outstanding contribu-
tions inter alia to geometry, calculus, analysis, celestial mechanics, mathematical
physics, optics, ship-building and the theory of music. He was author of more
than 850 publications, and his influence on mathematics and theoretical physics
has been immense.
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main interest. The corresponding linear equations of motion have the
form

and, hence, the characteristic equation of the system is of the fourth
order

where factors a and b depend on the ratio of the masses and
Analysis of this equation shows that collinear points of libra-

tion (Euler’s case) are always unstable but triagonal points
of libration (Lagrange’s case) are stable when

The stable points of libration are remarkable in that, on being
placed in their vicinity, a particle will remain always situated there
if the corresponding constant C' is of an appropriate magnitude. No
energy is required to maintain this position. For example, these prop-
erties can be used in designing a scheme to transmit signals from the
invisible side of the Moon (A) to the Earth (C), (see Fig.3.4). Here

since the re-transmission point (B) is fixed relative to bodies A and C,
the antennae at A and B can maintain permanent directions, thus ob-
viating the need for tracking. The stability of configuration (A, B, C)
follows from (3.18) since the magnitude is 0.01.
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Stable points of libration also act as ‘debris baskets’ in space where
dust and other fine colliding particles with a suitable value of the
constant C' collect.



Chapter 4

Gravispheres

In a number of applications the -body problem can be broken down
into two-body problems if one of the bodies is very large
and the others are very small. We will illustrate this situation using
the example of an interplanetary mission. In this connection, let the
trajectory of a SC starting from the Earth pass planet Mars. Assume
that the SC does not affect the motion of the planets around the Sun
and that motion is determined at the beginning of the flight by the
system pair (SC–Earth); thereafter by the pair (SC–Sun) and near the
planet by the pair (SC–Mars). If the mission proceeds further we have
again the pair (SC–Sun) etc.

The actual trajectory may be represented by an approximate one
composed of pieces of conic sections, constructed by deriving solutions
of individual two-body problems in the sequence indicated above. The
procedure for joining the segments is as follows. The parameters of
a terminal point of the trajectory created in the system (SC–Earth)
should coincide with the parameters of the initial point of a segment
created in the system (SC–Sun) and so on. The parameters concerned
are the positions of the SC and the vectors of its absolute velocity. This
approach makes it necessary to determine the joining points of the seg-
ments introduced above in order to compose the required trajectory.
This approximate method of modeling interplanetary trajectories by
joining up pieces of conic sections is referred to either as the method

of conjugated conic sections or the patched conic method.

Suppose that each planet is surrounded by a hypothetical, non-
geometric, sphere separating area of space, in which the gravitational

43



44 CHAPTER 4.  GRAVISPHERES

fields of the planet and the Sun are, respectively, dominant. There are
several different approaches to constructing these gravitational spheres
which are called gravispheres. We present below three of them namely,
the sphere of attraction, the sphere of influence and Kislik’s sphere.

For all three, we consider that the Sun’s mass is that of the
planet is and the SC’s mass is m, subject to the condition
while mass m is negligible with respect to both and

4.1 Sphere of Attraction

The most natural definition of a gravisphere is that surface where the
values of the attracting forces on a SC exerted by the Sun and by
a particular planet are equal each other. This criterion is used in
defining the sphere of attraction. Determine now the radius of this
sphere.

a planet lies at a small distance from it and, hence, Let the
values of the attracting forces of the Sun and of the planet acting on
the SC m be equal to each other,

of the condition the border of the sphere of attraction of

Let R and s be the respective heliocentric radius-vectors of and
m and let r be the geocentric radius-vector of m (Fig.4.1), By virtue
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Then, after reduction, we obtain

and

Expression (4.1) for the radius of the sphere of attraction shows that
the inequality is valid (i.e. the border of the sphere of attraction
lies near the planet).

Although the above considerations appear to be very natural they
contain a gross blunder. This proceeds from the inherent assumption
that and are mutually motionless. Actually, not only m is
under the influence of gravitational fields but so also are and
which are mutually attracted. Therefore, the problem of gravispheres
should be handled using a dynamic rather than a static approach.

4.2 Sphere of Influence (Laplace’s

Gravisphere)

Laplace considered the problem of the motion of a small body in the
gravitational fields of bodies and and solved it through numer-
ical integration of the equations of motion. This raised the question
of choosing a reference system in which such integration requires the
least effort. Suppose that in any point of space a body is under
the gravitational attraction of two bodies and We can then
choose either a heliocentric or a planetocentric reference system. We
designate here values referred to in the heliocentric system by index 1

and in the planetocentric system by index 2. The total acceleration of
m can be represented by either Here, denotes
the ‘main’ acceleration developed by a body which is at the origin of
the  reference system Similarly, denotes acceleration
developed by another body which is considered to be the perturbing
one. It is obvious that the smaller the perturbing acceleration and,
hence, the closer the problem considered is to the two-body problem,
the more convenient it is to carry out the calculations. Hence, between
two possible reference systems, it is necessary to choose that in which
the perturbing acceleration is the lesser.
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In practice, as the body moves, it can go from an area where use
of the heliocentric reference system is preferred to an area where it is
better to employ the planetocentric system (or visa versa). Laplace
suggested that the relative perturbing acceleration (i.e. the ratio of the
perturbing to the main acceleration) be employed as a ‘key’ parameter
and, thence, defined a border between the two areas mentioned above
using the equality

That surface surrounding a planet, on which condition (4.2) is satisfied
is called the sphere of influence.

We now write down the equations of motion of the Sun the
planet and a body in a certain reference system with origin
O (Fig.4.2)), taking into account that the mass of is vanishingly
small.

Writing next the obvious geometrical equality
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we can use these formulae to re-write (4.3) as follows

Subtracting the first from the second and the third equations and
using (4.4), we obtain

The first equation is simple and implies that a planet moves
around the Sun in a Keplerian orbit. The second equation de-
scribes motion of the body with respect to the Sun under the
influence of a perturbation. It thus can be said that both orbit in
a heliocentric reference system. The first term contained in square
brackets describes the ‘main’ part of the acceleration generated by
the Sun. The second term represents the perturbation caused by the
gravitational field of the planet.

To write down an expression for the motion of the body (m) in the
planetocentric reference system, it is necessary to subtract the first
from the second equation in (4.5) and this results in the expression

The first term contained in square brackets describes the acceleration
generated by the planet and the second the perturbing acceleration
generated by the Sun.

The second equation of (4.5) and equation (4.6) describe the same
motion and are completely equivalent to each other. The choice as to
which equation is better to use in a particular situation is consequent
on the simplicity of the associated computations. To determine the
radius of the sphere of influence, substitute the corresponding terms
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from (4.5) and (4.6) in equation (4.2) to obtain

To simplify the terms contained in this expression we introduce the
following approximations, under the assumption that is small

Also,

Since

then, retaining only magnitudes with order up to we obtain an
approximation for the term (4.10) contained in (4.7)

Hence, we can now write a simplified form of equation (4.7) having
regard to (4.8) and (4.11) and omitting the symbol of approximation

If we designate the angle between vectors and by then, from
the last equality, we obtain an expression for the radius of the sphere
of influence

where
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Expression (4.13) is composed of two unit vectors and and,
due to the theorem of cosines, the equality is
valid. Then we can write Thus, function
is close to unity. Hence, the surface called the sphere of influence is
indeed close to being a geometric sphere (radius variation 15 %) and
an approximate expression for its radius is

Sometimes we use the term ‘gravisphere’ instead of ‘sphere’ in order
to emphasize that the accelerations generated by gravitational attrac-
tions are the main reasons to introduce this sphere.

It is seen that the size of the sphere of influence depends on two
factors, namely the distance of a particular planet from the Sun and
the relevant mass ratio. We present in Table 4.1 the radii of the
planetary spheres of influence of a number of planets. The radius of
the sphere of influence surrounding the Moon within the pair Earth-
Moon is 66 200 km.

We now estimate the magnitude of the expression at the
border of a particular sphere of influence. Using expressions already
obtained above we can write

Using relation (4.12) to substitute for we obtain
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The magnitudes of this ratio for several planets, taking F = 1, are
given in Table 4.2. Thus, for the terrestrial planets, the value of the
relative perturbing acceleration caused by gravitational attraction is
estimated to be only a few percent at the borders of their relevant
spheres of influence. For large planets like Jupiter, these values can
reach 25%.

The value of the relative perturbing acceleration of the Sun is es-
timated to be of the order of 8% at a distance of 900 000 km from
the Earth. The Moon is located at a distance of about 380 000 km
from the Earth. The relative perturbing acceleration varies in propor-
tion to the cube of the distance from a planet (see (4.14)). Thus, the
perturbing acceleration of the Sun near the Moon is of the order of
less than 1% while, at the trajectory of a SC orbiting the Earth, it
vanishes.

4.3 Kislik Gravisphere

The sphere of influence considered above does not provide a perfect so-
lution to the problem of finding the best surface of separation between
regions dominated, respectively, by ‘solar’ and ‘planetary’ influences.
Laplace searched for the best surface, having regard to the conve-
nience of performing numerical integration of the motion equations.
The sphere of influence method fulfills this requirement. However, this
method proceeds from a local approach where a point on a trajectory
that satisfies (4.2) is sought. An integral approach which takes into
account the properties of the whole trajectory rather then those of
individual points, is preferable. On adopting an integral approach,
the real trajectory is approximated by joining together a sequence of
segments of conic sections. The problem of defining the ‘goodness of
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fit’ between the real and the approximated trajectories then needs to
be addressed.

At the border of separation of regions dominated, respectively, by
‘solar’ and ‘planetary’ influences, it is necessary to take into account
the effect on the motion of a SC of the Sun and the planets. Thus,
a sequence of restricted three-body problems appears, made-up from
individual trios composed of the elements SC-Sun-planet.

Taking into account the real properties of planetary orbits in the
Solar System, it is possible to use the solution of the circular restricted
three-body problem (see Section 3.4.1). The first integral of this sys-
tem is Jacobi’s integral. Consequently, to use this integral for finding
a new gravisphere* is reasonable because the first integral constant
describes the trajectory as a whole rather than its local properties at
particular points.

Consider a model trajectory of SC motion which is at once simple,
admits analytical treatment and, at the same time, closely approxi-
mates the basic properties peculiar to real trajectories. For this pur-
pose we introduce the simple trajectory of a SC that lies in the plane
of the Sun and the Earth. The approximate trajectory is vertical at
its beginning (rocket launch) and directed through the centre of the
Earth. On leaving the Earth’s gravisphere, the trajectory is an ellipse
with a focus situated in the Sun. Let us find on this model trajectory
a point A which marks the transformation from rectilinear lifting to
elliptical motion around the Sun. This composite trajectory should
be as close as possible to the real one which is executed at all times
under the influence of both the Earth and the Sun.

Consider the trajectory of vertical lifting within the framework of
a two-body problem (Earth–SC). The integral of energy (1.10) then
has a form

where is the absolute velocity of the SC, is the distance from
the Earth to the SC and we neglect the mass of the SC in comparison
with the mass of the Earth

Within the framework of a circular restricted three-body problem
(Sun–Earth–SC), we introduce a new system of units

*M.D.Kislik. Spheres of Influence of Large Planets and the Moon, Cosmic

Research. 1964, Vol.2, Issue 6, pp.853–858.
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appropriate for our consideration, where and are the masses of
the Sun and the Earth respectively; and are the corresponding
distances of the Sun and the Earth to their center of mass and is
the heliocentric velocity of the Earth. In our existing notation =
d (see Section 3.4.1).

In the new scale of units the angular velocity of the system Sun–
Earth since Taking into account that the Earth
moves around the Sun in a circular orbit, its velocity is defined by
(2.3). Recalling further that and having regard
to the newly introduced units we obtain This allows us to
transform the integral of energy for the point of start (supposed to be
instantaneous) to the following form

where

is the distance of the SC from the center of the Earth at the initial
moment of starting and V* is the corresponding value of the SC’s
absolute velocity in the framework of a two-body problem.

The constant C' of Jacobi’s integral due to the equalities (3.13)
and (3.14) has the form

Vrel is the relative velocity of the SC and, in the new system of units,

Here V is the unitless relative velocity of the SC and the transforma-
tion from is made owing to the fact that the trajectory
of the SC lies in the plane

Let us now obtain a relationship between V * and the relative ve-
locity V at the moment of starting. At this initial moment
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and from the triangle of velocities illustrated in Fig.4.3 it is seen that,
as n = 1

Hence, for the initial moment of time denoted by index “zero” , the
constant of Jacobi’s integral (4.18) has the form

We make the assumption that the start is executed from a particle
and not from the surface of a planet with non-zero radius. Using

the integral of energy (4.16) and letting we get

and also and The above magnitude of (4.19)
corresponds to the moment of starting under idealized conditions.
Along the real trajectory at each point the equality

pertains. If we consider the real trajectory and the model one (com-
posed from a rectilinear line and the arc of an ellipse) again and cal-
culate the magnitude of using (4.18) for points along the model
trajectory, then we at once meet an invalidity of (4.20). This is quite
natural because the composed trajectory does not coincide with the
trajectory which an exact solution of the circular restricted three-body
problem would provide.

Construct a function
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based on the expression (4.18) for points along an elliptical part of the
model trajectory, which is an approximate trajectory of SC motion in
the region dominated by the Sun. Let us now find the deviation of
this function from the exact value of Jacobi’s integral constant

The value of depends on parameters that include and The
parameter mentioned determines a position of the point A at which
the rectilinear and elliptical parts of the trajectory are joined. The
angle determines the direction of start from the Earth (Fig.4.4).

To minimize the contribution of the relatively minor parameter
we introduce a function

which provides a value of averaged by We seek now a point
A where the function J has a minimum

The magnitude of obtained from equation (4.24) corresponds
to a location of A where the initial part of the elliptical trajectory has
that value of Jacobi’s integral constant which is closest to the value of

at the moment of start. We can expect that, using such an initial
value, the elliptical model trajectory will be closest to the real one.
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Omitted here are detailed calculations which give the following
solution for (4.24)

It was supposed above that start from the Earth is performed in
the plane and, indeed, practically all interplanetary missions are
executed in the ecliptic plane. If this is not the case the final conclusion
will not be substantially changed since, averaging by angle and
additionally by the angle between vector V and the plane we
get

Approximating the magnitudes of the factor, neglecting in com-
parison with in the parameter and returning to the dimensional
variable, we finally obtain

where is the radius of a sphere called the Kislik gravisphere.

The assumption concerning minimum insures that the approxi-
mate trajectory is the best among those obtained above. Comparative
calculations can demonstrate that this is the case. In Fig.4.5 errors
in the determination of the semi-major axis and in the mag-
nitude of the eccentricity obtained as a difference between the
approximated and the real values, are shown. In the neighbourhood of
II an obvious minimum is observed where the numerical magnitudes
of are close to the magnitudes determined using formula (4.25).
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The neighbourhood of I corresponds to the radius of Laplace’s gravi-
sphere (4.12). It is seem from the diagram that joining-up trajectory
segments using Laplace’s local approach gives a worse approximation
than is obtained using an integral approach. Values of the radii of the
Kislik gravispheres of the planets are presented in Table 4.3. These
radii are a factor of 2–3 times larger than the radii of the corresponding
spheres of influence.

Since Jacobi’s integral constant depends on the orbital parameters
of a SC in the restricted three-body problem, the use of Kislik’s gravi-
sphere can increase the accuracy of trajectory determination and also
result in a more accurate computation of various parameters of SC
motion.



Chapter 5

Equations of Motion in

Terms of Osculating

Elements

5.1 Reference System

and Orbital Elements

Although Cartesian reference systems have, hitherto, been employed
in this text, in celestial mechanics it is useful to utilize a spherical
reference system based on a representation of the celestial sphere.

Take first a rectangular Cartesian reference system with ori-
gin O at the center of the Earth (Fig.5.1). (All Cartesian reference
systems which will be introduced later are rectangular also). Let the
plane coincide with the plane of the Earth’s equator and let the
axis be directed to the Vernal equinox. The straight line of this
direction is created by the intersection of the ecliptic with the Earth’s
equatorial plane. If a celestial body M considered as a particle, moves
around the Earth then, within the framework of the two-body prob-
lem, its trajectory lies in a plane called an orbital plane that passes
through the center of the Earth. The point of crossing of the plane

by the body as it moves along its orbit from the southern to
the northern hemisphere is termed an ascending node. Similarly, the
point of transition from the northern to the southern hemisphere is
termed a descending node. A straight line through the ascending and
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descending nodes is called the line of nodes. The angle between the
axis and that segment of the line of nodes to which the ascending
node belongs is called the longitude of the ascending node, or the right

ascension of the ascending node and it is designated by The angle
between the equatorial plane and the orbital plane is called the incli-

nation of the orbital plane and it is designated by Straight lines from
the origin O to the pericenter and to the instantaneous position of
the body in its orbit, provide the following angles in the orbital plane:
the angular distance of pericenter from the ascending node which
is called the argument of pericenter (or the argument of perigee if we
consider the orbit around the Earth), and the angular distance of the
body from pericenter, which is called the true anomaly The sum of
these two angles

is termed the argument of latitude.

The angles and completely define the position of the orbital
plane with respect to the reference system Angle provides
the direction to the instantaneous position of the body. The magni-
tude of the radius-vector r of the body with respect to the Earth
provides the distance of the body from the center of the Earth. The
two parameters and completely define the position of the body.

Next consider a sphere of unit radius which surrounds the origin
O. Let the arcs of two great circles be inscribed on this sphere through
crossing it by the equatorial plane and by the orbital plane (Fig.5.2).
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The intersection point of these two arcs in the segment of the ascending

node we designate by
Let us now establish a relationship between Cartesian coordinates

and the spherical coordinates introduced above. The radius-vector r

of the body (line OM in Fig.5.1) intersects the arc of unit radius in a
point (Fig.5.2). It is obvious that

where the arguments of cosines are the angles with apices at the origin
O.

Apply now the cosine formula of spherical trigonometry

where the lower case letters represent the sides of spherical triangles
(i.e. the arcs of great circles defined by angles with apices at the point
O), and capital letters represent dihedral angles between planes of
great circles. Oppositely situated sides and angles that correspond to
each other are designated by identical letters. Applying the cosine law
to spherical triangles and using the equalities
(5.2) we obtain the relations
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On combining (5.4) with

which we obtained before, (see (1.19), (5.1), and (1.24)), the Cartesian
coordinates of a celestial body can be expressed as explicit functions
of time

The values of are constants of the first integrals of
motion. Expressions (5.5) constitute a general solution of (1.9).

5.2 Equations of Perturbed Motion

The general solution of (1.9) corresponds to the classical case involving
two particles moving under the influence of their mutually attractive
forces. It was shown above that the introduction of a third particle
or of particles results, generally speaking, in considerably more
complex motions. The problem becomes yet further complicated if
we take into account that planets may not always be represented by
particles (quite often it is necessary to consider them as rigid bodies)
and if we include not only the influence of gravitational force but also
of solar radiation pressure, the resistive effect of the upper atmospheres
of planets, the action of SC thrusters etc. Assume that a SC moves
about a body not only under the action of that body’s attractive
force, but also under the action of a variety of disturbing forces. The
equations of motion (1.9) may then be presented in the following form

where

are accelerations produced by the central body considered as a particle,
and X, Y, Z are accelerations exerted on the SC as a result of all
the external forces acting on it (excluding the force of central body
attraction).
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5.2.1 Introduction of Osculating Elements

The expressions (5.5) are not a solution of (5.6). However, we may
use them to convert the six original variables to six
new variables On performing these transformations
we obtain

The original variables determine at each moment
the position of the SC and its velocity vector (i.e. each combination
defines a point along the trajectory and also the tangent to that point).
The overall trajectory is the envelope of a set of tangents.

Thus the use of allows us to obtain an
approximation to the SC trajectory over a large interval of time. The
original six variables for any yield only instantaneous
coordinates and the corresponding velocity vector and do not provide
any indication of prior or subsequent SC motion. The transition from
rather simple equations (5.6) to the more bulky system (5.7) is useful
only in the case of small perturbing accelerations. Since the actual
trajectory is obtained as an envelope of instantaneous conic sections,
each such conic section is called an osculating (or tangential) section;
the six elements are correspondingly termed osculating

elements and the time is termed the moment or epoch of osculation.

Further, using the formulae for Keplerian motion, the variables
provide the position and velocity of a SC at time

Use of equalities (5.5) to transfer from system (5.6) to (5.7) results
in unreasonably bulky calculations. To overcome this, equations of

The new variables give at each moment an instan-
taneous conic section; the position of the SC and its velocity vector.
The trajectory of the SC is thus the envelope of a set of conic sec-
tions. This representation of the trajectory is meaningful since the
perturbing accelerations X, Y, Z are much less than the accelerations
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motion (5.7) can be derived in an explicit form using the first integrals
of motion.

5.2.2 Definition of the ‘Main Operation’

Let

be one of the first integrals of Keplerian motion. In this case the
equations

are valid.
If the motion is perturbed, equality (5.8) remains valid since we

consider the value of C not to be a constant but, rather, a function of
time. Thus, taking into account equation (5.6), we obtain the equality

Since at any moment of time the coordinates and velocities of true
and osculating motions coincide, by subtracting, termwise, the last
equality from the previous one we obtain

This formula is sometimes called the main operation. It is obtained in
practice by initially differentiating the first integrals (5.8) with respect
to (assuming that the coordinates and time contained in function F

are constants) and, thereafter, substituting the perturbing accelera-
tions for the derivatives of velocities.

5.2.3 Equations for Osculating Elements

Apply now the main operation to the scalar area integrals for Keple-
rian motion (1.12)
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Here are the components of the perturbing accelerations
and are the corresponding components of the torque due
to these perturbing accelerations.

Let us now make a transformation from the coordinates to
those coordinates corresponding directly to an instantaneous
osculating conic section. We direct axis along the line of nodes
(towards the point axis along the vector of momentum c,
and suitably align axis so that a right handed reference system is
created (Fig.5.3).

In this new reference system equations (5.10) are written as

The projections arise due to variations of the vector c,
occasioned by its elementary turns around axis and axis and
to the variation of its module (see (1.22)).

Consider the increment An elementary turn of vector c around
the axis through an angle gives (Fig.5.4). In asso-
ciation with the turning of vector c, the plane turns to a new
position Thus, in the fixed plane the ascending node is
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displaced (with a displacement magnitude to a new position
This gives the relation Therefore, the formula

is valid. Similarly, the component is associated with an elementary
turn of vector c around the axis through an angle (Fig.5.5) and
it is evident that the following relationship

is true. The component concerns the variation of the magnitude
of vector c and is determined by differentiating the expression for this
magnitude

Let us obtain now the vector components of the perturbing ac-
celerations torque (Fig.5.6). Let the SC be situated at a point M

in the plane It is recalled that this plane coincides with the
instantaneous plane of the osculating orbit. Thus, the position of
M is determined by the angle and the radius-vector r. Let the per-
turbing acceleration be decomposed into three orthogonal components
S, T, W directed respectively: along r; perpendicular to r within the
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plane in the direction of body motion and perpendicular to the
latter plane; parallel to the axis Positive directions of S, T and W

are assigned along the radius-vector r, the vector of motion of M and
along the vector of momentum respectively. It is now obvious that

Substituting the values obtained from (5.12), (5.13), (5.14) and (5.15)
in (5.11) we get

These equations are three of the six required equations of motion writ-
ten in terms of osculating elements.

Let us next derive equations for and Variations in originate,
generally speaking, in two sources: displacement of the direction to
the pericenter and displacement of the ascending node from
which the angle is measured. Consider initially the consequence
of the first mentioned displacement. The angular distance from the
ascending node to the direction of a celestial body M is determined
by the expression
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In the case considered = is constant since the ascending node is
assumed not to be displaced while M is taken to be fixed within the
framework of the main operation (see (5.9)). Thus we get

It is necessary to stress that the value does not describe motion
of the SC itself but rather represents a variation owing to the motion
of that direction with respect to which the angle is measured (the
direction to pericenter).

The second reason for a variation in is displacement of the as-
cending node giving (see Fig.5.7) the relationship
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The fixing of M (by virtue of the main operation) makes the displace-
ment of consequent only on turning of the orbital plane. Let the
orbital plane originally be intersected by the plane of the equator
at a point A then, owing to an elementary turn of the orbital plane,
the intersection occurs at point B. The resulting change in the angu-
lar distance of M from the node corresponds to the difference between
AM and BM. The combination of both variations in (5.17) and
(5.18) results finally in the expression

Let us continue now our steps to obtain equations for and by
deriving the two components of the SC velocity vector

in the orbital plane. In the chosen reference system
by virtue of the area integral gives

Then, using equalities (1.19) and (5.20) we may write

and

The resulting expressions (5.21) and (5.22) are first integrals of system
(1.9) as they link the constants and of these integrals with the
variables and

Let us now apply the main operation (see (5.9)) to the first inte-
grals of Keplerian motion (5.21) and (5.22), having written, instead
of the derivatives and the corresponding perturbing
accelerations S and T so that
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Next, having substituted in these equations from (5.16) and
derived, thereby, the derivatives and we get

and

Using (5.19) and (5.23), we then obtain

Equalities (5.24) and (5.25) together with (5.16) make up five equa-
tions of motion written in terms of osculating elements. To complete
the system it is still necessary to derive an equation for This is
not done here because this equation plays no role in what follows and
the expression for is only quoted. Now we write the complete
set of equations of motion through osculating elements as follows

where

Usually, the dependence of the osculating elements on is of minor
interest because, as a rule, the perturbing accelerations S, T, W are
not explicit functions of time. More often, instead of a new inde-
pendent variable corresponding to the angular coordinate of orbital
motion (in many cases is introduced.
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5.2.4 Transformation to the Argument

of Latitude

Consider now the area integral. To avoid already used notations we
employ the symbol to denote the length of an arc on the unit sphere
(Fig.5.8). Then the area integral takes the form

Starting at a time a point on the unit sphere representing the
instantaneous position of a celestial body moves through an angular
distance to point during interval Consider the variation in
the argument of latitude accompanying this displacement. Firstly, it
increases along and, secondly, the reference point varies as it passes
from to The result is that we get

Then the first integral (5.27) assumes the form

Taking the value from (5.26), we obtain the relationship
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Using expression (5.28) we now change the independent variable in
(5.26) to the independent variable In this process the right-hand
terms that are linear functions of S, T, W become fractional, thereby
causing considerable difficulties in integrating the resulting equations.
We may neglect several terms by taking into account that W is small.
Thus, instead of the exact equality (5.28) we can use the approximate
equation

Next, instead of the exact system (5.26) we can write approximate
equations of motion in terms of osculating elements

These equations are valid when
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Braking of a SC in the

Earth’s Atmosphere

In the upper atmosphere at an altitude of several hundred kilometers
above the surface of the Earth, slow braking of a SC occurs. Consider
the change of the SC’s orbit during such braking.

6.1 Qualitative Analysis of Osculating

Element Evolution

Assume that the Earth is spherical and that the atmospheric density
decreases with increasing altitude in an identical way at all geographic
locations (i.e. that the configuration concerned has the property of
central symmetry). Suppose also that motion of the SC in the at-
mosphere is affected only by the force of resistance, so that there is
no lifting aerodynamic force. Then, the force of aerodynamic drag is
subject to the law

where is a drag coefficient, is the relevant atmospheric density,
V is the velocity of the SC with respect to the atmosphere and F

the square of the cross-sectional area of the SC. From Fig.6.1 we get
expressions for components S and T of the acceleration

71
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As we suppose an aerodynamic lifting force to be absent

Components S and T of the total acceleration of braking can be eas-
ily calculated using the relations (6.2), (6.3), (5.21), and (5.22). To
integrate (5.30) it is necessary to define a relation Different
models of this relation exist. However, to use them requires extensive
calculation. We therefore confine ourselves to a qualitative analysis of
the solution of system (5.30).

Equality (6.4) results from the first two equations of (5.30) in the
form

whence it at once follows that

This means that the orbital plane does not change its position in
space. Therefore, aerodynamic braking can be deduced to involve the
problem of planar, rather than of spatial, motion.

We now introduce

where C is called the ballistic parameter. Then the third equation of
(5.30) gives the following change in the orbital parameter for one



6.1.  Qualitative Analysis 73

revolution of the SC around the Earth

All the variables in this integral are positive (for this follows from
(5.22) because the inequality e < 1 is valid for elliptical trajectories
around the Earth and the assertion is obvious for the other variables).
Therefore, during aerodynamic braking, there is a monotonic decrease
of the parameter,

This corresponds to a decrease in the size of the orbit of the SC.
Let us analyze the variation in the eccentricity of the orbit for one

revolution of the SC around the Earth. The fourth equation of (5.30)
after suitable transformations gives

The factor before the round brackets inside the integral is certainly
positive, while the first term within the round brackets is also positive
and the second is alternating. Let us consider in more detail the
expression

Suppose the perturbing accelerations S and T are sufficiently small
that, in some particular time interval, the alternating values e and

can be neglected. Let this time interval be of the order of the
orbital revolution time. In this case, during one revolution

Consequently, omitting the approximation sign
we write the equality
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Then, substituting (6.11) in (6.10) we obtain

In the latter integral, the parameter is assumed to be constant. For
typical orbits the ellipticity is usually small and, consequently, we
consider the values and V to be functions that weakly depend on
On the other hand, the atmospheric density varies strongly with
(as an exponential function). The value varies for one turn around
the planet by Therefore, the value of the integral (6.12) depends
primarily on the term

The profiles of the functions and are shown in Fig.6.2.
When constructing the plot of it was taken into account that

at perigee reaches its maximum value, while at apogee is at its
minimum. Clearly, the sign of (6.13) depends on those where has
its greatest value and thus may be considered to act as a weight
function. Therefore, it is possible to write
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and, consequently,

Overall, the right-hand side of equality (6.9) is negative and, therefore,

This corresponds to a monotonic reduction of the eccentricity of the
SC’s orbit (i.e. the shape of the orbit tends to become circular).

The inequalities (6.5), (6.8) and (6.14) show that SC braking by
virtue of atmospheric drag results in the orbit decreasing in size and
approaching a circular shape, without changing its orientation in space.
It is evident that, if the original orbit is circular (e = 0), this circularity
will be maintained during orbit evolution due to braking. It is perti-
nent to recall here that the conclusions stated above are based on the
use of an approximate relationship. Thus, the SC’s orbit in actuality
reduces along a spiral which, in each orbit, is close to a circle.

These results allow us to make a qualitative analysis of the lifetime
of a SC. Rough estimates show that a body moving in a circular orbit
at an altitude near 100 km is effected by such strong atmospheric
braking that the SC reaches the surface of the Earth in less than one
revolution. Therefore, it is possible to say within the framework of
osculating element techniques that the SC ceases to exist after the
altitude of its trajectory becomes less than a critical altitude

From (1.19) it follows that for perigee

Therefore, for orbits close to a circle we can take
Simultaneously, the altitude change for one orbit is determined
by

The sum for N orbits characterizes the altitude change in perigee
for these N revolutions. Also, is proportional to the ballistic co-
efficient C and to the density where is strongly dependent on the
altitude of the orbit (see (6.7)). The relationship between and N
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for a range of values of C at some initial altitude of perigee is illus-
trated in Fig.6.3. This diagram shows that, at first, changes rather
slowly and, consequently, the altitude at perigee does not substantially
decrease in the process of orbiting around the Earth. Later, begins
to sharply increase. The perigee is then quickly lowered and, after a
number of revolutions, the SC reaches a critical value beyond
which the model of motion based on the use of osculating elements
no longer applies. The number of revolutions executed by
the SC before is reached (i.e. the lifetime of the SC) decreases
as C increases (Fig.6.3).

6.2 The Descending SC ‘Paradox’

It appears evident that the velocity of a SC should decrease due to
the effect of atmospheric drag. Consider the case of a SC moving in
an orbit that is close to circular where, due to the braking effect of the
rarefied atmosphere, the SC is slowly descending to the Earth along
a spiral trajectory. Assume that the angle between the vector V of
SC velocity and the transverse orbit direction does not vary (i.e. that

which is valid in a rarefied atmosphere), where is the
polar angle of the radius-vector r of the SC center of mass (Fig.6.4).
Introduce the gravitational force on the SC
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where is the SC mass. Let the braking force, which is in opposition
to V, be designated by    Project the vector equation of motion of
the SC

onto the direction of the vector V

and onto the perpendicular to this direction

The acceleration vector is represented as the resultant of a vector
with magnitude along vector V in (6.17) and a vector with magni-
tude in the perpendicular direction in (6.18).

On substituting for in(6.18) using the equality and
the expression for P, we obtain a relationship between the variables
V and

Taking into account the geometric relationship        and the
expression for P, we may now write
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Combining this final expression for with (6.17), we get
and, consequently,

This indicates that the velocity V increases with the braking force    
thus giving rise to what is called the descending SC ‘paradox’ (namely
that although the SC is affected by a braking force, its velocity in-
creases). Actually, there is no paradox here because more detailed
consideration shows that a component of the gravitational force acts
along the velocity vector (see (6.17)) and, since the magnitude of the
braking force is twice less than this component, SC acceleration oc-
curs.

Let us now consider SC motion in the deep atmosphere along the
final segment of its trajectory (at altitudes less than approximately
100 km), where the assumption that is no longer valid
since increases faster than does It can be qualitatively shown [1]
that, in these circumstances

where is the gravitational acceleration, which is taken to be constant
near the Earth. Substituting for V in (6.21) its value averaged along
the final trajectory segment and integrating this equation, we can
obtain a relationship between angle and time t which indicates that
the final descent is almost along a plumb-line. This is because the
averaged value of V is typically several tens of times less than the
orbital velocity of the SC.
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Terrestrial Nonsphericity

and SC Motion

To analyze the effects of the nonsphericity of the Earth’s gravitational
field on SC motion requires initial consideration of the theory of grav-
itational potential.

7.1 Introduction to Models of the Earth’s

Gravitational Field

The Earth’s gravitational field lacks exact spherical symmetry because
this body is not itself spherical, while also the mass in its interior is
not symmetrically distributed. The largest contributor to the Earth’s
asymmetry is its equatorial bulge, which is such that the polar radius
differs from the equatorial radii by about 21 km. The equatorial radii
differ from one another by a few hundred meters.

We now introduce the potential U of the Earth’s gravitational
field using a spherical harmonic expansion and spherical coordinates

where is the geocentric distance, is the geographic longi-
tude measured from the Greenwich meridian and is the geocentric
latitude

79
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Here is a gravitational parameter of the Earth and the mean
equatorial radius; are associated Legendre’s functions of degree

and order are Legendre polynomials of order are
harmonic coefficients, are phase angles corresponding to The
relationships between and are

The coefficients are called zonal harmonic coefficients. If
and are called tesseral harmonic coefficients. If they

are called sectoral harmonic coefficients.
We need to mention here that a force F exerted on a particle of

mass at an external point of space is represented by

where the potential is given by (7.1).

Zonal Harmonics

Zonal harmonics are defined by the polynomials, where the depen-
dence of the potential on longitude vanishes and the field is symmet-
rical about the polar axis. For any there are circles of
latitude along which is zero and hence zones in which the
function is alternately increasing and decreasing. Term accounts
for most of the Earth’s gravitational departure from a perfect sphere
and thus reflects the Earth’s oblateness. Representative low-order
zonal harmonic coefficients are

It can be seen that is about 400 times larger
than the next largest value

Sectoral Harmonics

Sectoral harmonics occur when Whereas the polynomi-
als are constant, the terms and are zero for

different values of Hence the lines along which the functions
and vanish, are meridians of longi-

tude which divide the sphere into sectors, alternately positive and
negative.
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Tesseral Harmonics

The functions and are referred to
as tesseral harmonics when since the Earth is associatively
divided into a mosaic of domains which are alternately positive and
negative. There are circles of latitude along which
is zero, whereas the terms and vanish along merid-
ians of longitude. The tesseral and sectoral harmonics take into ac-
count anomalous mass distributions in longitudinal regions. Although
their effect is much smaller than that associated with zonal harmon-
ics, this contribution becomes important when it is not averaged out
over a long period of SC motion. This occurs in the case for a SC
in geosynchronous orbit. For SC in other orbits, the effect vanishes
due to averaging over revolutions around the Earth and only zonal
harmonics then need to be taken into account. The cross section of
the Earth in its equatorial plane is not a circle but an ellipse. The
primary tesseral harmonic is designated by and the corresponding
longitude of symmetry, which is denoted by has a value of –14.7°
relative to the Greenwich meridian.

7.2 Oblateness of the Gravitational Field

Now we may start to analyze the effects of nonsphericity of the Earth’s
gravitational field. Introduce a reference system Its origin O is
placed at the Earth’s center of mass (Fig.7.1).
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The partial derivatives with respect to the coordinates determine
the gravitational acceleration of particle P with mass

A common representation of the potential of the Earth’s gravitational
field is given by (7.1). Taking onto account the notations adopted in
(5.6) we may write

Following the geometric method of MacCullagh* which gives an
intuitive feeling for gravity and inertia† and using Fig.7.1, we can
represent the cosine of the angle constructed by vectors and r

from the Earth’s origin to an element and to an attracted particle
P, using the scalar product of the vectors (i.e. The
distance l between P and dm is calculated through the expression

Consider the general formula for the potential of an attracting body

Using the expression

which is valid for Legendre’s polynomials we can rewrite
(7.3) in the following form

*McCullagh, James (1809-1847). Irish mathematician, Professor at Trinity
College Dublin. Fellow of the Royal Society. An outstanding geometer, he was
especially interested in the ellipsoid and other surfaces of the second order. Also,
he studied the physical problem of light propagation.

J .MacCullagh. On the Attraction of Ellipsoids with a New Demonstration
of Clairut’s Theorem. Transactions of the Royal Irish Academy. Dublin, 1855,
Vol.22, Part 1, pp.379–395.

†
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The first three terms of the potential expansion (7.4) have the specific
form

Integrating over the Earth’s body allows us to write the expression for
the potential as

where are the principal central moments of inertia of the
Earth and its moment of inertia about the axis OP. The form of
the potential (7.5) is called MacCullagh’s approximation.

The first term in (7.5) represents the potential of the Earth consid-
ered as a particle and determines These components obey
an inverse square relationship with respect to The second term in
(7.5) determines the perturbing accelerations X, Y, Z.

Consider within the framework of (7.5) the conditions under which
the Earth has a gravitational field equivalent to that of a particle. Such
a situation is realized in the following two cases.

If since at a large distance, the shape of the Earth may
be neglected, it can be treated as a particle.

If the Earth is spherical, for any direction
OP.

Only nonsphericity of the Earth can result in the appearance of
non-zero perturbing accelerations. Nonsphericity is made evident thro-
ugh two effects.

The force of attraction on a particle P by the Earth is not gov-
erned by a relation proportional to but includes a term of
order

The equipotential surfaces cease to be spheres with centers at
a particular origin as the potential U can, generally speaking,
depend on a direction OP on which also depends. This ex-
presses the noncentrality of the gravitational field (the force of
the attraction on P by the Earth does not pass through the ori-
gin because the derivatives of U along directions normal to OP

cease to be zero).
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These conclusions are based on an analysis of the first two terms in
the series expansion. However, they continue to be valid when the
other terms in the series are taken into account.

7.3 Calculation of Perturbing

Accelerations

The next approximation after a sphere to the shape of the Earth, is
an ellipsoid of rotation. In this case, the potential can be expressed
by

where is the geographic latitude and is a constant
which is proportional to the oblateness of the ellipsoid.

The first term in (7.6) gives the potential of the Earth considered
as a particle or as a uniform sphere. The second term determines the
contribution of the component defined by the difference between the
Earth’s true shape and that of a sphere.

Let us obtain, using equality (7.6), the components S, T, W of a
perturbing acceleration. Differentiating U along the radius and per-
pendicular to it in a meridional plane along a length we determine
the radial and meridional components of the perturbing acceleration

The latitude component is equal to zero by virtue of symmetry. The
second term of equality (7.7) is a perturbing acceleration directed
along This is the component S of the acceleration, so that

To obtain the equality (7.8) the obvious relationship was
used.

To derive W and T it is necessary to calculate the projections of the
meridional acceleration (7.8). Let an orbital plane intersect the plane
of the equator at an angle (Fig.7.2). Consider a spherical triangle
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formed by three arcs of great circles corresponding to the planes of
the equator, the orbit, and the meridian. The dihedral angles of this
spherical triangle are and angle The ‘sides’ of this triangle
are the arcs and some arc

Let us denote by lower case letters the arcs forming the sides of the
spherical triangle and by capital letters the dihedral angles between
the planes in which these arcs lie. Then, using the theorem for a
spherical triangle

we obtain for the case considered

whence we get

Using the cosine theorems for a spherical triangle, we obtain the
following formulae for cosines of a spherical right triangle

Then, in  view  of  (7.9)  the  formula for  the  acceleration  component S

is
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These expressions give three required relationships

For a point on a unit sphere corresponding to the intersection of
orbital and meridional planes, the components of the acceleration
are shown in Fig.7.3, namely

Using now the expressions (7.8), (7.11), and (7.13), we obtain

7.4 Evolution of the Equatorial Orbit

To demonstrate the effect of central, but not Newtonian, gravitational
attraction we will first analyze the evolution of that orbit in which a
perturbing acceleration is directed towards the Earth’s center of mass.
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This kind of acceleration takes place in equatorial orbits and illustrates
a difference between the attraction of a particle by a rigid body and
the mutual attraction of two particles. This difference is due to the
appearance in the former case of a term proportional to in the
expression for the acceleration.

If the orbit is equatorial we get from (7.12), (7.14), and
(7.15)

Again assuming, as we did earlier, the presence of only weak distur-
bances, we now further suppose that, during one orbit, the values

are essentially constant and that their actual variations
are described by discontinuous changes at the
end of each revolution of the Earth. This corresponds to the replace-
ment of a smooth curve by a, closely related, step-function.

Equations (5.30) and (7.16) at once give expressions for the deriva-
tives of the first three variables

reflecting the constancy of these values. Consequently,

From (5.30) and (7.16) using (1.19) and (6.11) we can write

Therefore, a particle on being perturbed by a central force does not
change its plane of motion and there is no change
in the shape and size of its orbit The orbital plane
does not turn because the perturbing acceleration W normal to this
plane is equal to zero. The orbit does not change its size and shape
because the total energy of the SC moving along a closed curve in a
conservative field can not change and also the central force can not
change the momentum of the SC and e are the constants, see (1.20)
and (1.21)).
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Let us write a formula for the variation of using (5.30) and (7.16)

The angle which defines the angular position of perigee with respect
to the ascending node, is the single perturbed osculating element which
varies. Its variation is constant in each orbit and related to the
rotation of Laplace’s vector, which is directed along the line of apsides.
The trajectory of SC motion under our assumption that the changing
of osculating element values follows a step-function has the form shown
in Fig.7.4.

7.5 Precession of the Inclined Orbit

If the perturbing acceleration contains components caused by noncen-
trality of the gravitational field, motion occurs which is called preces-

sion of the orbit. Let us consider a case arising due to the oblateness
of the Earth, which provides an example of such precession.

Let the inclination of the orbital plane satisfy the inequality
Then, substituting the magnitudes of S, T, W taken from (7.12),

(7.14), and (7.15) into system (5.30), and integrating them using ap-
propriate assumptions (in particular, keeping the osculating elements
as constants during integration over one revolution), gives us the ex-
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pressions

Reasons for the invariance of the shape and size of the ellipse
are the same as those already discussed in Section 7.4,

where the variation of the direction to pericenter was also
described. In contrast to the previously discussed cases (braking of a
SC in the atmosphere and evolution of the equatorial SC orbit), the
orbital plane now rotates while preserving its initial orbital
inclination Such a rotation of the orbital plane is called
precession. The use of this term suggests a relationship between the
phenomenon considered and the theory of the gyroscope. We will next
demonstrate this relationship using qualitative reasoning.

Suppose that a SC moves around the Earth in a circular orbit. In a
gedanken (thought) experiment, spread the mass of that SC along its
orbit to produce a rotating ring having angular momentum (Fig.7.5).
This rotating ring can act like a gyroscope. Let the orbital plane of
the ring AB make an angle with the plane of the equator CD. Thus,
the angular momentum vector is inclined at an angle with respect
to the axis of symmetry of the Earth NS.

As was already stated, the spherical Earth can be deemed equiva-
lent to a particle. Therefore, new effects can be expected if the Earth
is considered to be extended by an axisymmetric body that forms a
belt around the sphere which ‘fills it out’ to the shape of an ellip-
soid of revolution. In Fig.7.5 the resulting extension in cross-section
is indicated by shading.

Consider now the gravitational interaction between the ‘belt’ and
the gyroscopic ring. In this connection, (see the diagram) the point
A of the ring is mainly attracted by area C of the belt (force
A similar relation exists with respect to point B and area D (force

These forces produce a torque M, which causes the ring to
precess. The vector of angular momentum resultingly moves on a
cone preserving a constant angle The rotation of plane caused
by the precession, is characterized by not equal to 0 while
Both of these results follow from (7.21).
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Let us now consider the dependence between orbital precession
and the angle The first expression in (7.21) shows that at
there is no precession of the orbit This is because, for polar
orbits which are located in a meridional plane, due to the axisymmetric
model of the Earth considered, the resultant of forces similar to
and (Fig.7.5) pass through the origin and no torque is developed.

If now we put (i.e. motion is executed in the plane of the
equator), the first expression in (7.21) gives a maximum value of the
displacement and this corresponds to the fastest
realizable precession. However, this formal result is contradicted by
the circumstance that, in this case, the resultant of forces like and

pass through the origin so that there is actually no precession. Let
us consider this inconsistency in more detail.

7.6 Clarification of ‘Inconsistency’

A monotonic increase in the velocity of orbital precession as the orbit
of a SC approaches ever closer to the equatorial plane, results from
the fact that this precession is measured by At the node

disappears as, in this case, the orbital plane does not intersect the
plane of the equator but coincides with it. To avoid the complications
attending the use of an approach based on spherical geometry we
will consider this situation qualitatively (Fig.7.6). Let represents
the dihedral angle between two consecutive positions of the orbital
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plane. With the reduction of angle measured in the plane of
the equator increases while remains constant. In the planar case

If we measure the precession by then, on combining the relation

In conformity with common sense, for polar and equatorial
orbits while reaches a maximum value for

At

which obviously contradicts formula (7.20) where the same element
has half this magnitude. However, the mismatch obtained is only ap-
parent. The angle is measured from the node In the case of
an equatorial orbit, the angles describing the longitude of an ascend-
ing node and the direction to pericenter lie in the same plane and
consequently can be added algebraically. If we chose in this plane
any direction fixed in inertial space, then the change in the direction
to pericenter relative to the fixed direction is determined by the sum

at as On a sphere the limiting value
is finite.

sin with the first formula in (7.21), we obtain
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The change in the direction to pericenter in inertial space is
equal, in the already considered case (7.21) to
while in the case discussed in (7.18) and (7.20) it is
Therefore, both solutions give similar motion in inertial space. A dif-
ference between the two values relates to the fact that in the first
case the value was obtained in a reference system fixed in inertial
space and in the second case it was obtained with respect
to a rotating system (In the first case we put

and in the second case we assumed that
It is now a proper time to return to (7.17). It is instructive to pay

attention to the singularity of equation for from (5.30) at
which was not considered before. If the limit is approached
in this equation for and also in the expression (7.15) for W,

we again reach the result obtained above for (i.e. through
using formulae for the arbitrary values of and proceeding to the
limit This implies that (7.18) corresponds to the case of a
reference system fixed in inertial space.

Overall, it can be said that the Earth’s oblateness results in a
precession of the orbital plane of a SC around the axis of symmetry
of the Earth, as well as rotation of the orbit in this plane. Depending
on the inclination of the orbit different cases can arise.

7.7 Orbits with Specific Inclinations

The precession of the orbital plane is an essential feature of spaceflight
dynamics. At the orbital inclination typical of the majority of Russian
SC, the value of precession is of the order of 4° per day (equivalent to
approximately 400 km at the equator). This effect has both negative
and positive consequences. We will consider here a positive conse-
quence for star map creation. Let a SC be oriented so that the optical
axis of an on-board telescope is always directed to the zenith. Conse-
quently, a photograph of the sky around the zenith can be made. Over
one orbit the SC has the capability to photograph the stars located
in a zone forming a narrow ring which is symmetrical relative to the
orbital plane. If precession of the orbit did not exist, the same stars
would be photographed during every orbit. However, at the above
mentioned rate of precession, all parts of the sky are photographed

.
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within 45 days without the expenditure of thruster fuel to turn the
orbital plane. Later it will be shown that such a manoeuvre would be
‘expensive’ in terms of the expenditure of energy.

The last equality in (7.21) indicates how the direction to pericenter
varies. This change depends on the inclination of the orbital plane
For a value of satisfying the condition the magnitude

At this value of the orbital plane precesses but the line
of apsides does not turn in this plane. The value of satisfying this
condition is 63.4°.

Orbits with this inclination are widely used for communications
SC. In particular, the series of Russian communications SC Molnia

uses with typical apogee and perigee altitudes of about
39 400 km and 1000 km respectively; eccentricity 0.72 and argument
of perigee 270°. Such a highly elliptical orbit has a period of revolution
of 12 hours. Due to this choice of parameters the SC remains above the
northern hemisphere for approximately 11 hours. Once a day, in every
two revolutions the SC occupies a position in the orbit with the same
sub-satellite point. The duration of an uninterrupted communications
session is about 8 hours. Three satellites launched into orbits with

differing by 120° ensures a continuous communications service over
the territory of Russia. About one hundred and forty Molnia type SC
were launched [30] in this series.

Elliptical orbits with the same inclination (63.4°) but twice the
period of revolution (i.e. 24 hours); apogee and perigee altitude about
46 300 km and 25 300 km, respectively, eccentricity 0.25, argument of
perigee 270° are used by the communications SC series Tundra.

Another orbit widely used by designers of space systems is the sun-

synchronous (SSO) or sun-stationary orbit. Again, the oblateness of
the Earth is a key factor in providing the useful evolution of this orbit.
The inclination is such that the rate of evolution of the ascending node
is equal and opposite to the angular rate of the Earth’s radius-vector
with respect to the Sun in its yearly revolution. The angular position
of the Sun relative to the orbital plane thus remains the same for a long
time. This type of orbit is suitable for meteorological applications and
for Earth observations since the same conditions of illumination are
maintained from one revolution to another. Meteorological SC in the
Meteor series (since Meteor-28 which was orbited in 1977) have em-
ployed sun-synchronous orbits. SC in the LANDSAT series (the first
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launched in 1972) and in the SPOT series (the first launched in 1986),
also have used sun-synchronous orbits for long term remote sensing.
From the first formula in (7.21) it can be seen that the inclination
required depends on the altitude of the orbit. For orbits with altitude
about 650 km the inclination should be near 98°. For higher orbits
with altitudes about 1 500 km, the required inclination increases up
to approximately 102°.

In Section 2.5 it is mentioned that a specific circular orbit (called
a geo-stationary orbit) exists for which the period of SC revolution
is equal to the Earth’s spin rotation period and the sub-SC point is
consequently ‘fixed’ on the Earth’s surface. Further to our analysis
of the effect of the non sphericity of the Earth on the dynamics of a
SC (illustrated in Fig.7.5), we will consider next in a similar manner
the effect of terrestrial nonsphericity on a SC in geo-stationary orbit.
The oblateness of the Earth, which is represented by the second zonal
harmonic in the expansion of the potential of the gravity field,
does not result in asymmetry in the Earth’s equatorial plane. The
second tesseral harmonic however, confers on the equatorial cross
section a slight ellipticity. In consequence of these two harmonics,
the Earth is approximated by a ellipsoid with the following principal
semiaxes: two equatorial (6 378 266.30 m and 6 378 053.70 m), and
polar (6 356 774.72 m) [19]. The difference between the equatorial
semiaxes is less by, almost, an order of two than the difference between
the equatorial and polar semiaxes. Of course, there are a number of
other representations of the figure of the Earth and we quoted here
values for the semiaxes adopted in but one of these models.

The ellipticity of the Earth’s equatorial cross section can be indi-
cated diagrammatically (as in the case of polar oblateness in Fig.7.5)
by shading. The nonuniformity of the Earth associated with the sec-
ond tesseral harmonic can be represented by a belt around the
axis lying in the equatorial plane, thereby creating the maximum axis
of the Earth’s ellipsoid. In Fig.7.7 and in Fig.7.8 this belt is indi-
cated by shading at A and B. We consider A and B to be, in effect,
attracting particles. Due to the symmetry of the gravitational field
in the equatorial plane, four equilibrium positions in geo-stationary
orbit exist designated in Fig.7.7 and Fig.7.8 by the numbers

Consider first the stability of point (Fig.7.7). In a reference sys-
tem spinning with the Earth, equilibrium is determined by equating
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attracting and inertial forces applied to a SC. In the case illustrated,
the null-resultant of the centrifugal force directed outside the cen-
ter of spinning and three representative attracting forces and

provide SC equilibrium. Now suppose the SC to be displaced along

to A. Therefore, the magnitude of is greater than the magnitude

center and to A (Fig.7.7). Thus, the projection is greater then

unstable (and similarly position 3).
Consider next the situation in the vicinity of position 2 (see Fig.7.8).

For simplicity, the attractingforces and are only shown at point

its orbit to the position 1’. The projection of the resultant on the line
joining the center of mass of the SC and the center of the Earth is
equal to zero but the projection of the resultant on the tangent to the
orbit is not equal to zero. This is because point 1’ is closer to B than

the projection Their resultant causes the SC situated at 1’ to
move away from equilibrium position 1. Consequently, position 1 is

2’, which is slightly displaced along the orbit from point 2. Stability is
provided by the projection of the resultant of these forces on a tangent
directed to equilibrium position 2 which causes the SC at 2’ to move

of and, also, the angle between the direction to the Earth’s center
and to B is greater than the angle between the direction to the Earth’s

towards it. A similar situation pertains at 4. Hence, equilibrium po-
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sitions 2 and 4 located at the intersection of the geo-stationary orbit
and the extension of the minimum axis of the Earth’s ellipsoid are sta-
ble. These two stable points, which are situated at 75° E and 255° E
geographic longitude, are called gravitational valleys and they are used
for providing stable locations for geostationary SC. For instance, the
Russian Geo-stationary Operational Meteorological Satellite GOMS

which was launched in 1994 utilizes the 76°50' E stationary point at
an altitude of about 36 000 km. Positioning of SC at other points
along the geostationary orbit requires station-keeping manoeuvres to
maintain a given location.



Chapter 8

SC Motion in the Field of

Two Attracting Centers

We again consider here the planetary form of equations in the frame-
work of the three-body problem. In contrast to previous considera-
tions, however, we show how quantitative estimates can be obtained
through analysis of the equations written using osculating elements.

To establish the problem, assume that two celestial bodies (say the
Sun and the Earth) in the gravitational field of which the SC moves are
particles (spherically uniform bodies), and that there is no atmosphere
around them. Further suppose that the SC moves inside the Earth’s
sphere of influence and that, consequently, the Sun develops a weak
acceleration with components S, T, W.

The equation (4.6) of SC motion in a geocentric reference system
contains the expression

representing perturbation acceleration. By virtue of equality (4.11)
this can be rewritten as follows

Let us now obtain expressions for S, T and W. We assume that
the motion is planar (i.e. that the trajectory of the SC lies in the plane
of the Earth’s orbit). Let the SC which has a negligibly small mass
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move along an elliptical orbit around the Earth, which has mass
(Fig.8.1). The Sun with mass is so far away that the disturbances
developed by it at can be considered to be small. As is well known,

the angle which determines the direction to the Sun changes by
approximately one angular degree in one day. We can regard such a
change in as unimportant when time intervals comparable with the
duration of SC revolution around the Earth are considered. In what
follows, we will assume that is constant. Further, for simplicity but
without loosing generality, we will confine our analysis to the case
where the Sun, the Earth and the SC are co-planar.

By virtue of our assumption of the planar character of the motion
we can write

The perturbing acceleration S is the projection of vector b on the
direction r

which can be rewritten using the expression obtained
from Fig.8.1
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As the perturbation acceleration T is the projection of b on the direc-
tion of a unit vector normal to r

After simple trigonometric transformations using the relation
from Fig.8.1, we get

The values obtained W (8.2), S (8.3) and T (8.4) allow us to find
the variations of all osculating elements after one revolution of the SC
around the Earth using the techniques discussed in Section 6.1. The
equality (8.2) at once gives

If now, instead of parameter we use the related semi-major axis of
the ellipse it is easy to show that

The latter equality can be explained as follows. Since the Sun is
assumed to be fixed the joint gravitational field of the
two attracting centers considered is conservative. In this case, motion
along a closed elliptical trajectory cannot change the energy of the SC
and, consequently, semi-major axis is constant since it is an indicator
of energy (see the comments following formula (2.1)).

Bulky calculations allow us to obtain

Thus, as a result of the Sun’s perturbation, the orbit does not change
either its plane of motion or its size (semi-major axis) but it changes
its shape (eccentricity). This effect does not appear in the case of a
circular orbit (e = 0), or for strongly elongated orbits that approach
being parabolic (e = 1).  The greatest effect, as follows from relation
(8.7), is particular to orbits with that is orbits with
significant ellipticity.
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A change in the ellipticity of its orbit can result in a SC colliding
with the Earth. Let us consider this process. As illustrated in Fig.8.2
the altitude H of the SC’s orbit over the surface of the spherical Earth
with radius is equal to

If the increment of altitude

has the proper sign and satisfies the inequality

then the SC impacts the Earth (we exclude here from consideration
the braking effect of the Earth’s atmosphere).

It should be noted that the character of this process is that altitude
increases or decreases depending on the sign of (see (8.7)) which,
in turn, depends on the angle which describes the angular position
of the Earth with respect to the Sun.

If we do not assume that the motion is planar, the component W
of the perturbing acceleration is not equal to zero. This makes the
investigation more complicated but the general conclusion does not
vary.
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Detailed analysis of the perturbing effect of a second attracting
body was performed by Lidov* who showed, as a dramatic example,
that if the Moon were placed in an orbit at a 90° inclination to the
ecliptic plane, it would fall to Earth within four and a half years†. This
example provides insight as to why the planets in the Solar System
occupy a plane. (The highly inclined orbits of the satellites of Uranus
are a consequence of the oblateness of the planet).

A practical example of the effect is provided by the unexpected
reentry of the Soviet SC Luna-3 in 1959 (which took the first picture
of the reverse side of the Moon). Its geocentric orbit was inclined
at 80° relative to the ecliptic plane and it initially had altitude of
apogee 480 000 km and altitude of perigee 47 000 km. After 11 orbits
around the Earth this SC re-entered the Earth’s atmosphere due to
the perturbing effects exerted by the Moon and the Sun [19].

Another example is provided by the reduced life time of the Amer-
ican SC Explorer-6 from an initially expected 20 to 2 years. This
SC executed a highly elliptical orbit.However, due to the perturbation
of the Moon’s attraction, its perigee varied between 250 and 160 km
every three months (angle in (8.7)), thereby causing the orbit to
rapidly degrade.

*Lidov, Mikhail L’vovich (1926–1993), Principal Researcher at the Keldysh In-
stitute of Applied Mathematics of the Russian Academy of Sciences and a professor
at the Lomonosov Moscow State University. He made estimates of the Earth’s at-
mospheric density through processing the tracking data of Sputnik-1; made an
input to the three-body problem and performed multiple applied investigations
in the field of spaceflight dynamics under the aegis of the Keldysh-Okhotsimsky
Scientific School of Applied Celestial Mechanics.

†M.L.Lidov. The Evolution of Orbits of Artificial Satellites of Planets under
the Action of Gravitational Perturbations of External Bodies. Planet. Space Sci.,

1962, Vol.9, pp.719–759.





Statement of the Problem9.1

Chapter 9

Elements of SC

Manoeuvring Theory

Next we consider SC manoeuvres, that is the making of deliberate
changes in a SC trajectory. Such manoeuvres are necessary in cases
such as the following:

to correct a SC’s interplanetary trajectory on its approach to a
target plane;

to change the parameters of the orbit of a SC around a planet;

to achieve rendezvous with another SC;

to use a landing pulse to transfer a SC to a landing trajectory.

Manoeuvres are achieved by activating thrusters to vary the velocity
vector of motion. The ‘cost’ of a pulse that enables particular orbital
elements to change, is evaluated in terms of propellant consumption.
Here not absolute, but relative, propellant consumption with respect,
for example, to the total mass of the SC is of interest. Usually the
relative propellant consumption is estimated in terms of characteristic

velocity or (that is the velocity imparted by the thrusters
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to the SC in field-free space). In this case the formula of Tsiolkovsky*

is valid

where is the current value of the characteristic velocity; is the
exhaust velocity; is the initial mass of the wet SC and is the
current value of SC mass.

It is obvious that the relative mass of the fuel spent at a par-
ticular moment of time T is determined by the expression

From (9.1) and (9.2) we obtain

This relationship allows us, instead of speaking about fuel expenditure
to speak about the quantity of characteristic velocity expended.

Also, instead of the content of the fuel tanks we can refer to ‘a reserve
of characteristic velocity’ etc. This way of estimating the propellant
reserve is appropriate as the manoeuvring of a SC involves changing
its velocity. Consequently it is more informative to say, for example,
that a SC still has a reserve 100 m/s of characteristic velocity than to
say that it still has 200 kg of fuel available.

Let us assume that a change in the velocity vector caused by the
thruster takes place during a short time interval This interval

is understood to be short in comparison with some typical time
scale of the motion, for example, the period of SC revolution. The
shortness of allows us to consider the manoeuvre to be produced by
the application of an instantaneous pulse. This assumption is realized
in practice since the duration of thruster activity is usually measured
in terms of tens of seconds to minutes, while the SC revolution period
is not less than one and half hours. (The relatively long boosts required
to achieve interplanetary velocity or to land successfully on the surface

* Tsiolkovsky, Konstantin Eduardovitch (1857–1935), Russian scientist and in-
ventor. He provided the first proof that it is possible to use a rocket for interplan-
etary missions and is regarded as the founder of present day cosmonautics.
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of an atmosphereless planet are excluded here from consideration since
these cases are more pertinent to studies in rocket dynamics.)

The instantaneous character of the SC velocity change has the
consequence that, in the equations of motion, the change of velocity
is not related to a change of coordinates, of the true anomaly or of
the argument of latitude

Consider now the equations of SC motion in osculating elements,
choosing time as the independent variable (5.26). Integrate this sys-
tem assuming to be short and the characteristic velocity change
imparted to the SC to be small. These assumptions allow us to sup-
pose that, during the interval of thruster firing   the osculating el-
ements do not change continuously but, rather, jump at the moment
of thruster switch off. Thus, for example, the change of element is
determined by the expression

as per the first equation of (5.26), where the symbol denotes a
linear increment. Since now the perturbing acceleration W (more
exactly a component of the acceleration associated with thruster firing
which perturbs the initial trajectory) is small and is short, the
change in the SC velocity vector components is small and can
be represented by

A small results in a small change in As already men-
tioned above, we consider a control pulse imparted to the SC to
be an instantaneous one. The reaction of the SC to this pulse is an
instantaneous change in the angle by an amount

Completely similar reasoning can be used in considering changes
in the other osculating elements Thus, as in the case
of the non-zero components and of instantaneous
change in the velocity vector associated with the acceleration compo-
nents S and T can be represented in a form similar to that used in
(9.4). The full vector of instantaneous change of SC velocity with
components produces an instantaneous change in
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the individual osculating elements given by the increments
We will confine further consideration of SC ma-

noeuvres to those geometrical parameters of SC motion representing
the position of the orbital plane and the size and shape of the
orbit

The smallness of both the magnitude of and the increments
of osculating elements allows us to use the
superposition principle and write

The coefficients of this linear transformation have the
following notations

can write

The relation between an increment of an osculating element and a
component of the vector is given by formulae such as (9.3) from
which it, in particular, follows that

It also follows from the first equality in (9.7) and from (9.8) that
coincides with the coefficient of the perturbing acceleration W in the

To obtain, for example, the value let then we
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first equation of (5.26). Other values of the coefficients in (9.6) can be
similarly obtained.

A matrix of these coefficients

giving a complete representation of the properties intrinsic to the ma-
noeuvre considered can be written in the explicit form

which is consequently named the matrix of manoeuvre. In particular,
for a circular orbit the matrix of manoeuvre has the
form

An analysis of certain manoeuvres (below) made initially for the case
of a circular orbit, allows us to derive a number of analytical expres-
sions that provide estimations which are also valid for elliptical orbit
evolution.
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9.2 Manoeuvre of Changing the Orbital

Plane Orientation

This manoeuvre involves changing and Therefore, we may con-
sider now the two first rows of matrix A. Using the expressions (9.5)
and (9.11) we get

Recall that for a circular orbit of arbitrary radius the equalities

are valid (see Section 1.5 and Section 2.5, formulae (1.25) and (2.2)
respectively). Using equalities (9.14), we now rewrite the relations
(9.12) and (9.13) as follows

These formulae allow us to specify two important aspects of manoeu-
vres (namely their efficiency and their ‘cost’). The efficiency of a
manoeuvre is strongly associated with the coordinate which de-
termines that point along a SC trajectory at which the manoeuvre
’instant pulse’ is injected. Let us consider first this factor.

At the longitude of the ascending node     can not be
changed (see (9.15)), while the inclination undergoes its greatest
change (see (9.16)). At the inverse of this situation occurs.
These effects can be explained as follows.

Consider first the case The appropriate scheme of manoeu-
vre is illustrated in Fig.9.1. The initial position of the orbital plane
is represented by the straight line AA which passes through the as-
cending node Let the SC have a velocity V when crossing the
equatorial plane and, at this moment, allow an additional velocity

to be injected perpendicular to the initial orbital plane. The



9.2. Orbital Plane Orientation Changing 109

resultant vector of SC velocity is the sum of V and and it defines
the position of the resulting new orbital plane, which is represented by
the line BB. The ascending node is not shifted (i.e. the equality

is satisfied. The orbit inclination is changed so that

Consider next the case and that the pulse of velocity
is imparted to the SC at this point in the orbit. For simplicity, we
assume that (i.e. we consider the initial orbit of the SC to be
in the plane of the meridian). When the SC is situated over
the North Pole (designated by N in Fig.9.2). The additional velocity
pulse is injected perpendicular to the SC’s orbital plane AA.

The resultant vector of SC velocity defines the position of the new
orbital plane which is represented by the line BB. The intersection of
the two orbital planes occurs in a straight line connecting the poles of
the Earth (the line of nodes). The new orbit again lies in the plane of
the meridian, so that again the angle However,
the ascending node moves along the equator to a new position
corresponding to the new meridian plane in which the SC orbits. In
Fig.9.2 this angular displacement is designated by

Consider now a second important factor to be taken into account in
choosing a manoeuvre strategy, namely the associated ‘cost’. In the
beginning of this Chapter it was shown that characteristic velocity
provides an appropriate measure of expenditure.

If a SC is launched into an equatorial orbit from either Russia or
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Kazakhstan, manoeuvres must be performed to change the inclina-
tion of its orbital plane because the angle of inclination cannot be less
than the geographic latitude at the point of launch and the inclina-
tion of SC orbits launched from either of these locations is not less
than, roughly, one radian (the latitude of the more southerly cosmod-
rome (Baikonur) is 46° N). Formula (9.16) shows that is
required to change the orbital plane inclination by one radian, even
if the manoeuvre is executed at the optimal point with The
manoeuvre required in this case can not be regarded as minor. Due to
inherent nonlinearity, formula (9.16) does not provide quantitatively
correct results for but demonstrates only a trend. However, it can
be deduced that to transfer a SC from LEO (low Earth orbit) to an
equatorial orbit, the characteristic velocity required is of the same or-
der of magnitude as that expended to launch the SC into its initial
orbit. Thus, to achieve such an orbit transfer using on-board thrusters
is impractical since it would require a booster with equivalent capa-
bility to that of the launcher. In this respect, Russian astronautics
operates under more severe constraints than American because the
most southerly site available to launch Russian rockets is situated at
Baikonur in Kazakhstan (46° N, 63° E) while the American Kennedy
Space Flight Center is located on Cape Canaveral at 28° N, 80° W.
A new Russian launch facility established at Svobodny after the dis-
solution of the former Soviet Union (51° N, 128° E), although more
favorably sited than Plesetsk (63° N, 41° E), can only partially solve
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this problem.
If we confine the discussion to small changes in inclination then,

to turn the orbital plane by one degree at the equator, the magnitude

of the ascending node The large increase in as is a
mathematical artifact and does not concern the reality of the process.
This effect we already met when considering orbital precession due to
the oblateness of the Earth (see Section 7.6). When planning space
missions it is important, because of the cost factor, to avoid situations
involving the manoeuvre of changing the orbital plane orientation.

An example of avoiding the re-orientation orbit manoeuvre is pro-
vided by history’s first international spaceflight, when an American
SC Apollo with a three man crew docked with the Soviet two man SC
Soyuz in July 1975. The launches of these two SC were not carried out
simultaneously in both countries since, in this case, the planes of their
orbits would not have coincided. Rather, the SC Soyuz was orbited
from Baikonur first. Then, when the rotating Earth had carried the SC
Apollo located at Cape Canaveral to the orbital plane of the SC Soyuz

(which to a first approximation was fixed in inertial space), Apollo

was launched into the orbital plane of Soyuz. Due to this technique
the precise rendezvous process could, thereafter, be realized without
any requirement to change either the orbital plane inclination or the
argument of the ascending node.

We will next consider manoeuvring in an orbital plane.

9.3 In-plane Manoeuvres

Consider now those parameters of a SC trajectory describing its size
(parameter p) and shape (eccentricity e). The third row of the matrix
of manoeuvre A in (9.11) shows that a change in p is consequent
only on the component noting that If we
assume that the orbit is circular it can be shown using (9.14) that

of should be 140 m/s (formula (9.16)). Formula (9.15), which
is similar to (9.16), shows that a high ‘cost’ (measured again in terms
of characteristic velocity), is also involved in changing the argument
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A typical SC revolution period min so that

Thus, an instant, velocity pulse of 1 m/s increases the orbital param-
eter by 1.7 km. In fact, a pulse of approximately 140 m/s, which
would suffice only for a hardly noticeable turn in the orbital plane of
1°, enables the altitude of the orbit to be changed by approximately
240 km. This is a significant amount if we take into account that the
altitude of a SC in LEO is typically only several hundred kilometers
above the surface of the Earth.

Consider next the change in shape of the orbit produced by varying
the parameter e starting from the case of a circular orbit. As follows
from the lowest line of the matrix of manoeuvre A (9.11) corresponding
to transformation (9.5), a change in e is related to both a pulse
and a pulse The total effect is their superposition. We will next
study the effects of these pulses individually.

9.3.1   Effect of a Tangent Pulse

The change in eccentricity produced by a pulse is described
by the corresponding element of the matrix of manoeuvre and can be
calculated using

A difficulty that arises in attempting to utilize this pulse relates to
the associated difficulty of recognizing the true anomaly This is
measured from the direction to pericenter but, for a SC moving in a
circular orbit, this direction is not defined. A way to overcome the
problem is to change the shape of the orbit using a two-step process.
In the first step, an infinitesimal pulse immediately precedes the main
pulse. As it is infinitesimal, the first pulse deforms the circular orbit
into an, infinitely close, elliptical orbit. This elliptical orbit, irrespec-
tive of its value of e, has already a direction to pericenter. In Fig.9.3
the initial circular orbit I and infinitesimally close elliptical orbit II

are shown, where orbit II results from the application of the pulse
at an arbitrary point of the orbit.

It is seen in the figure that the point where the infinitesimal pulse is
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applied becomes a pericenter and, therefore, Then, via (9.19)
and (9.14) we get an expression for the finite increment attained
under the application of the main, finite, pulse

The absolute value of is used to make this formula valid when
both pulses (the infinitesimal and the main one) are either pos-
itive or negative (i.e. are parallel or antiparallel respectively to the
vector of SC velocity). In the second case when such pulses are ap-
plied in the negative direction, the kinetic energy of the SC decreases
and the total energy decreases. The semi-major axis of the orbit then
also decreases, since it provides a measure of the total energy (see
Section 2). In this situation the point of pulse application becomes
an apocenter and should be substituted in formula (9.19). It
is a point worth mentioning that, whatever the direction of a
positive increment is produced because we started from a circular
orbit (as was stated in the beginning of this Section). To analyze the
effect of applying to transform an elliptical orbit, formula (9.19)
can be used. However, in this case the sign of depends at what
point of the elliptical orbit, and in what direction the pulse is applied.
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9.3.2   Effect of a Normal Pulse

If a pulse is imparted to a SC moving in a circular orbit, then the
corresponding element of the manoeuvre matrix A (9.11) is equal to

sin and the uncertainty regarding recognizing the angle in
circular orbits is overcome using a similar technique to that adopted
above (Section 9.3.1). Let an infinitesimal pulse directed to-
wards an attracting center (Fig.9.4) be imparted to a SC at the point
B. Then the vector of velocity of the SC turns through an infinitesi-
mal angle without changing its magnitude, if we neglect the terms
of higher order in the expansion with respect to Therefore, the
semi-major axis of the orbit, which provides a measure of the total
energy, is not changed. Thus, in this approximation, a new trajectory
infinitesimally close to a circle II is obtained from the initial circle
I by turning about the point B through the angle Consequently,
point D becomes the nearest point to the attracting center and can
be considered to represent pericenter. This means that a direction to
pericenter is available (from the attracting center to point D) and the
position of point B on the initial orbit is characterized by
Thus we can write

The absolute value is used here because sin and (the
latter since the imparted pulse of velocity was directed towards the
attracting center). If the pulse were oppositely directed

formula (9.21) would remain valid as in this case the circular orbit
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would turn clockwise and the point B is characterized by so
that

Expressions (9.20) and (9.21) do not provide any insight into the
characteristic velocity change required to carry out realistic SC ma-
noeuvres. To gain this insight, we will consider now the important
manoeuvre of landing a SC on the Earth.

9.3.3     Manoeuvre of Landing a SC

To land a SC on the surface of an atmosphereless planet, a pulse should
be applied to lower the pericenter of the orbit to the surface of the
planet. In the case of a planet with an atmosphere (the Earth), to
land a SC on its surface it is sufficient to push it out of its orbit into an
elliptical trajectory passing through the top of the dense atmosphere.
Braking then results from air resistance. An altitude in the dense
atmosphere can be defined which corresponds to that altitude resulting
in landing the SC after less than one revolution around the Earth. In
practice the altitude of this upper boundary of the dense atmosphere
is of the order of 100 km. In what follows, we will assume that the
lowering of any point of the orbit to an altitude less than 100 km means
that the SC has landed. Entrance into the dense atmosphere should be
performed using a sloped trajectory (such that the entry angle between
the local horizontal and the tangent to the trajectory is less than a
few degrees). Otherwise the aerodynamic braking will be too vigorous
and the fatal to any on-board astronauts. For unmanned SC
the value of the is not such a critical factor but too steep an
entry angle may mean that too large a landing pulse was imparted to
the SC and, in consequence, the expenditure of characteristic velocity
was too high.

Let a SC move around the Earth along a circular orbit. By im-
parting a suitable landing pulse it can be transferred to an ellip-
tical orbit with an appropriate conditional perigee, where conditional

perigee is the perigee of a SC orbit corresponding to the case of an
atmosphereless Earth. Clearly, it should be low enough to ensure that
effective braking of the SC in the atmosphere occurs. Its value is natu-
rally associated with the upper boundary of the dense atmosphere. It
is evident that, after imparting the pulse to the SC in any direc-
tion, its new trajectory will have a segment that is situated below the
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initial circular orbit. Therefore, the SC can be lowered by the pulse
imparted in any arbitrary direction. The single exception is when a
SC is given a pulse in the direction of its velocity. Then all points of
the new orbit lie above the initial circular orbit except for that point
at which the SC received this pulse. This latter point is a common one
for both orbits. Therefore, in this case the perigee of the new orbit
has the same value as the initial radius and landing is not achieved.
Usually landing pulses apply ‘braking’. Such pulses, for example, are
used in landing the Russian Soyuz series of manned SC.

Let us consider a pulse directed against the SC velocity vector
that is, which is called a pure braking pulse. In this

case the SC is given a pulse which produces a change in both
and e as the matrix of manoeuvre A shows (see (9.9)). The corre-

sponding elements of the matrix A are obtained in an explicit form
from (9.11). An altitude reduction in the vicinity of the conditional
perigee is now sought. At this point and equation (1.19) gives

Let the lowering of the altitude have a value sufficient to land the
SC. Then, the change of at the perigee or

This expression was obtained using a linear approximation, taking into
account that for the initial orbit. The use of a linear approxi-
mation is justified by the fact that, usually the SC to be landed moves
above the Earth’s surface at an altitude of a few hundred kilometers
whereas the radius of the Earth is almost 6 400 km.

Let us compare both terms on the right side of (9.22). The first
of them is equal to and the second is equal
to (see 9.20). Since it is obvious that their
absolute values coincide. This means that the altitude changes in
the vicinity of perigee owing to changes in and are of similar
order for nearly circular orbits and exactly coincide for circular orbits.
We can conclude from the above that the cost expressed in terms
of characteristic velocity of changing H through is equivalent to
changing H through and, thus, manoeuvring through changing e

is reasonable.
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To arrive at a numerical estimate of the cost in terms of charac-
teristic velocity of carrying out the manoeuvre of perigee lowering by
braking, estimation (9.18) can be combined with the conclusion ob-
tained immediately above to show that, at the following
expression is valid

where is measured in units of
Expression (9.23) allows us to estimate the value of the character-

istic velocity required to achieve landing. Let, for example, the initial
altitude of the orbit be 400 km. To reach conditional perigee (which
is lower than 100 km and therefore lies inside the dense atmosphere),
it is necessary to achieve The formula (9.23) for pure

braking gives a numerical value Practical experi-
ence confirms that the required landing pulse is indeed of the order of
100 m/s. This value is low compared with the pulse required to exe-
cute a significant orbital plane turn. Therefore, in mission planning, a
strategy of manoeuvring should be developed to avoid or to decrease
as much as possible, the necessity to change the angular position of
the orbital plane.

An example of the possibility to substitute an orbital plane turn
manoeuvre by an in-plane manoeuvre is provided by the case where it
is necessary to make a given location on the Earth’s surface a sub-SC
point, when that point passes the orbital plane concerned either too
late or too early when the SC is at the required latitude. Here, we
use the fact that the orbital plane of the SC is fixed in inertial space
(excluding a precession effect, which can be easily taken into account),
while the Earth performs diurnal rotation beneath. Coincidence can
be achieved by suitably adjusting the period of rotation of the SC.
The same adjustment can be achieved in a short time by applying one
‘large’ pulse or, over a longer time, by accumulating, during several
revolutions, the displacements produced by several relatively small
pulses (see below).

9.3.4   Change of the Period of SC Revolution

The expression for (1.25) shows that, in order to change
it is necessary to change the semi-major axis a of the orbit. Taking
into account that depends only on SC energy, it follows that the SC
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velocity V can be most effectively changed by applying a pulse
Using again a linear approximation we may write

From geometry and, therefore,

For a circular orbit we get

and, using equalities (9.14) and (9.17)

Assume, as an example, that we need a SC to transit a particular
geographic point situated at the equator but that this point is located
at 160 km to the East at the moment when the SC crosses the equator
(i.e the SC crosses the equator too early). Suppose that
7 900 m/s, min and Apply a pulse
to increase the velocity of the SC. This produces an increase in of
20 s which corresponds to a delay in the time of crossing the equator by
the SC in each revolution. The lateral displacement of the geographic
point with respect to the orbital plane of the SC at the moment when
it crosses the equator is 10 km in these 20 s. It follows that, by
accumulating the displacements of this point with respect to the SC
orbit over one day the point is successfully traversed after
some 16 orbits.

The technique described above can be used to rendezvous two SC
since it takes into account the time when the SC launched first passes
the SC launched second and then provides for the synchronization of
their orbital planes.



Chapter 10

Interplanetary Trajectory

Corrections

The correction of a SC trajectory is a particular case of manoeuvring.
In a broad sense a correction to the trajectory is made with the aim of
achieving long-term targeting whereas a manoeuvre, generally speak-
ing, results in a significant trajectory change. Among the cases previ-
ously considered, correction of the period of revolution of a SC may
be considered to be of the first type while the manoeuvre of landing
can be associated with the second type.

In the present Chapter the correction of an interplanetary SC tra-
jectory through reducing inherent start errors will be considered with
the purpose of establishing a trajectory configuration in the vicinity
of a target planet, suitable to either land the SC on its surface or per-
form a flyby at a given distance. The accuracy of targeting required
in a planetary neighbourhood is rather high. Thus, when placing a
SC in orbit around Mars using the Martian atmosphere for braking,
adherence to the nominal (precalculated) trajectory near the planet
should be maintained to an accuracy of the order of tens of kilometers.
On the other hand, the velocity error at the moment of shutting down
a booster engine near the Earth, is about 1 m/s and this results in a
large error near Mars of several tens of thousands of kilometers. This
example shows the practical requirement for interplanetary trajectory
correction.

Since the on-board propulsion reserve for thruster correction is al-
ways rather limited, the pulses available for correction are not large

119
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and, consequently, they are applied using a linear approximation tech-
nique. The gross error of tens of thousands of kilometers mentioned
above which should be corrected for can, however, be considered small
in terms of the overall length (hundreds of millions of kilometers) of
the trajectory.

The distances which are dealt with in correcting interplanetary
trajectories close to a planet are small in comparison with typical
heliocentric distances, but they cease to be small when considered in
a reference system centered on a target planet. In this framework, the
change of the gravitational field of the Sun in the neighbourhood of
a target planet is small whereas the gravitational field of the planet
itself changes very significantly at the same location. The task of
correcting an interplanetary trajectory can thus be greatly simplified
if it is possible to neglect the role of the gravitational field of the
planet. To implement this approach, a special technique is used which
is described below.

10.1 SC Motion Close to a Target Planet

Consider the motion of a SC in the immediate proximity of a target
planet, for example inside its gravisphere (in Fig. 10.1 the boundary
of the gravisphere of the target planet is indicated by a dashed semi-
circle). Let the trajectories which would be followed by a SC in the

absence of the planet be denoted by straight lines AA. A narrow,
short, bundle of trajectories is considered which, by virtue of the local
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conditions far from the Sun, can be deemed to comprise mutually par-
allel segments of straight lines. If now we take into account the gravi-
tational field of the planet, the influence of this field on the trajectory
is exerted after the SC transits the boundary of the gravisphere. In
Fig.10.1 the resulting SC trajectories are designated by the lines AB.

All trajectories, which lie inside that area bounded by the lines AB

impact the surface of the planet. The trajectories illustrated allow us
to differentiate between a family of impacting trajectories and a family
of flyby ones.

Each trajectory in the vicinity of the planet corresponds, on a one-
to-one basis, to that unperturbed trajectory followed in the absence
of the planet’s gravitational field (for example, impacting trajectory
DE corresponds with trajectory DD). In this circumstance, we may
introduce a target plane FF passing through the center of the planet
and normal to the bundle of trajectories that would be present in
the absence of the planet’s gravitational field. In Fig.10.1 this family
of ‘fictitious’ unperturbed trajectories (unperturbed means that they
are built without taking into account the planet’s attraction), which
corresponds with the family of ‘real’ impacting trajectories, intersects
the target plane FF in the points C, thereby defining the boundary of
an area on the target plane. This is the area through which fictitious
nonperturbed trajectories must pass in order that ‘real’ trajectories
impact the surface of the planet. It is noted that other geometrical
features of the real trajectories which are of interest, for example,
impact at a particular planetary location; flyby at a given distance;
the position of pericenter etc., can be mapped onto this target plane.

The technique described above allows us to consider, instead of
real trajectories, fictitious trajectories constructed without taking into
account the gravitational field of the planet. Thus, the problem of de-
termining the position of a fictitious trajectory crossing a point within
the target plane is now required to be solved instead of the problem
of the location of a real trajectory relative to a real planet. This ap-
proach is designed to allow us to select the terminal parameters of the
problem so that it can be solved using a linear approximation. Local
non-linear effects, such as attraction by the planet, can be considered
separately, for example using non-linear Keplerian relationships which
give a good approximation to the actual motion of a SC inside the grav-
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isphere*. The initial conditions defining such planet-centered motion
coincide with the corresponding parameters of heliocentric motion in a
regime unperturbed by the planet at the boundary of the gravisphere.
Thus, the dashed semi-circle in Fig. 10.1 defines a location at which
heliocentric and planet-centered motions can be merged.

10.2 Segment of a Nominal Heliocentric

SC Trajectory

Consider a heliocentric segment of a nominal SC trajectory passing
through the center O of a planet which is considered to be a massless
point (Fig. 10.2). Let another point B be placed on the trajectory at

some distance from the point of mission start (to correspond with
the end of the active segment of the start). The flight time corre-
sponds to the distance from the end of the active start. Introduce
a Cartesian reference system with its origin situated at point
B. The axes of this system are appropriately oriented relative to the
stars. Such a system is convenient from the practical point of view
since the orientation of the SC before its correcting thrusters are fired
is defined using certain stars (including the Sun) as reference points.

Let a pulse of velocity be imparted to the SC at point B.

Without loss of generality, let such pulses satisfy the equality
1. This defines a sphere of unit pulses with its center situated at B

and denoted in Fig. 10.2 by a dashed sphere. Each point on the unit

*An example of such motion inside a gravisphere is given in Chapter 12, where
a gravity-assist manoeuvre is described.
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sphere corresponds to an individual pulse, and is associated with a
particular, subsequent, SC trajectory. Let the SC takes a time
to reach the point O from B along its nominal trajectory. Consider
those points along a set of trajectories originating at point B which
individually correspond to a distance reached in a time Introduce
a Cartesian reference system at point O (Fig. 10.2). Axis is
directed along the velocity vector of a SC moving along its nominal

with the plane
If the SC moves along its nominal trajectory without a pulse

being applied, the coordinates of the SC are at the
moment If a pulse with components is imparted,
then the coordinates of the SC have other values at the moment
Under the assumptions of a small velocity pulse and the admissibil-
ity of adopting a linear approximation, we may write expressions for
coordinates at the moment in the following way

We do not assume in this procedure that Before going
further, it is necessary to pay attention to the following basic cir-
cumstance. A SC trajectory is described by six parameters and it is
possible to choose them for in different ways (for example using
six osculating elements or using six values Correction
of the trajectory is made by imparting a pulse Only three inde-
pendent components for correcting a trajectory are, thereby, available.
It is, thus, possible to define properly only three of the six parameters
describing the new trajectory obtained after the pulse is applied.
Formulae (10.1) show that if the correction is performed for coordi-
nates the components of velocity are not controlled. By
properly selecting a pulse it is possible to reach the target plane’s
coordinates at the moment but it is not
possible, generally speaking, to simultaneously provide the prescribed
values of SC velocity at the moment

trajectory. Axis is directed to the center of the Sun and axis
completes the right-hand system. Thus, the target plane coincides
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Imparting a unit pulse of velocity to a SC (10.1) results,
generally speaking, in an affine transformation of a sphere

into an ellipsoid. Therefore, points on the SC
trajectories at the moment are situated on the surface of an
ellipsoid with origin at the point O. This ellipsoid was obtained by
transformation of the sphere of unit pulses and it is named an ellipsoid

of influence. In Fig.10.2 the outline of this ellipsoid is designated by
dashes. The matrix of affine transformation (10.1)

is called the matrix of correction.

Matrix (10.2) is a function of the location of the center B of the
sphere of unit pulses along the trajectory. It can be denoted by
or by where is the flight time. The relation of the matrix of
correction A to the location where a correction is performed, raises
the issue of selecting an optimum location for the correction point B,

having regard to minimizing propellant consumption. To solve this
problem we will consider the properties of the required correction in
more detail.

10.3 Properties of the Correction

If the determinant of the matrix A is not equal to zero then, in re-
sponse to an affine transformation, a straight line is transformed into
a straight line and a plane into a plane. Consider now some special
directions (straight lines) and special planes related respectively to the
sphere of unit pulses and to the ellipsoid of influence.

Among the directions of unit pulses there is a direction which
provides values by virtue of the nonsingularity
of (10.1). Strictly speaking, there are two such directions lying on
one straight line that correspond to and respectively.
We do not distinguish between them but, rather, speak about one
direction, taking into account that both directions belong to the same
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straight line. This direction for unit pulses is named the null-direction,

meaning that such pulses do not change the position of the point where
the SC trajectory crosses the target plane. In particular, the nominal
trajectory, which intersects the target plane at remains
nominal after a pulse is imparted to the SC along the null-direction.

Let us now direct one axis of a new Cartesian reference system
with origin at the center of the sphere of unit pulses along the null-
direction, and designate this axis by Any other direction of the
vector with unit magnitude has a projection onto the axis
that is less than unity. This means that the corresponding points on
the ellipsoid of influence have coordinates where is the
absolute value of this coordinate for a pulse applied in the direction

Therefore, one of the principal central axes of the ellipsoid of
influence coincides with the axis and the two other principal axes
lie in a plane perpendicular to that passes through the center of
the ellipsoid (that is they lie in a plane Let us designate the
directions coincident with these latter principal axes of the ellipsoid by

and Then, the axes of the planet-centered reference system
are directed along the principal central axes of the ellipsoid of

influence.

The system which was obtained by an affine transforma-
tion from the unit sphere, corresponds to a Cartesian system of axes
installed in the sphere. Let us designate this reference system by

Then the plane perpendicular to the null-direction
corresponds to the target plane (or equivalently to the plane

Usually, the plane is named the plane of optimal cor-

rection. This name is associated with the fact that, since the vector
of the pulse is located precisely in this plane, the corresponding
points of the ellipsoid of influence are located precisely in the target
plane. Thus, the or characteristic velocity of correction is
expended only in producing a lateral displacement of the trajectory.
If the purpose of correction is only to displace the trajectory in a lat-
eral direction (for example, to cause a trajectory to pass through a
particular point in the target plane), this is the most budget-effective
way to achieve that aim. This is because any additional component
of along the null-direction requires budget expenditure, but does
not produce lateral displacement in the target plane.

The above discussion suggests that the application of correcting



126 CHAPTER 10.  TRAJECTORY CORRECTIONS

pulses along the null-direction is always undesirable. However, this is
not correct. A pulse directed along the axis changes the coordi-
nate of the SC, that is the distance from the SC up to the target
plane Therefore, a pulse along the null-direction corrects the
time of arrival of the SC at a prescribed point in the vicinity of the
planet. Correction of the arrival time of a SC is sometimes extremely
important. For example, suppose that it is required to land a SC on
the surface of Venus. Owing to the high temperature of the atmo-
sphere, the life time of the scientific instruments on-board is limited
by the time they take to heat up to a destructive value. This time
is of the order of one hour. Therefore, the process of landing in the
Venusian atmosphere should be monitored using direct transmissions
to the Earth. Such monitoring is only possible if Venus is above the
horizon of the Earth with respect to the location of the ground based
mission control center. If the trajectory measurements predict that the
SC will reach the planet when it will be under the horizon during the
data transmission session, correction of the arrival time is mandatory.

By virtue of what has been said above, two kinds of basic manoeu-
vre can be distinguished. In the first, the position of crossing a target
plane by the SC trajectory is corrected. This is called two-parameter

correction. In the second case, the time of intercepting the target
plane is corrected also. This is called three-parameter correction. Let
us consider further two-parameter correction.

10.4 Two-parameter Correction

The crossing of the sphere of unit pulses by the plane of optimal cor-
rection and the crossing of the ellipsoid of influence by the target
plane create, respectively, a circle of unit pulses in the plane of opti-
mal correction and an ellipse of influence in the target plane that are
related to each other. Both of these curves are represented in Fig.10.3.
Elongation of the ellipse of influence informs us about the nonequiv-
alence (in the sense of the expenditure of characteristic velocity), of
directions in the target plane.

Let the actual trajectory of the SC pass through some point E in
the target plane instead of through the origin. The vector of displace-
ment OE intersects the ellipse of influence in a point F. A point P
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corresponds to the point F on the circle of unit pulses. Therefore, to
obtain a vector of correction equal to OE, it is necessary to impart
a pulse to the SC in the direction BP. A correcting pulse does
not, generally speaking, have a magnitude equal to unity. Owing to
the linearity of the transformation this is expressed by

The inverse proportionality of to the value of OF, characterizes
the nonequivalence of directions in the target plane. Equalities (10.3)
and Fig. 10.3 show that less power expenditure is required to make
corrections in the general direction of the axis than in the general
direction of the axis These considerations allow us to develop an
optimum strategy for interplanetary trajectory correction.

Up until now, the position of the point of correction on the inter-
planetary trajectory was always considered to be given. We will next
study how to choose the optimum location of this point.

10.5 Optimum Location

of the Correction Point

on Interplanetary Trajectories

It is possible to argue that the longer a SC trajectory is tracked, the
greater is the accuracy of determining the relevant trajectory parame-
ters and that corrections to the trajectory should, therefore, be carried
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out as late as is possible. Consequently, the distance from the start
point should be as long as possible. On the other hand, the longer is

the closer the SC is to the target planet and the larger is the charac-
teristic velocity required to realize a particular correction manoeuvre.
To choose the correction point appropriately, it is necessary to find
an optimum value of that combines the required accuracy of both
trajectory measurements and manoeuvre execution. In what follows,
we will assume that these requirements are already fulfilled, thereby
allowing us to regard the problem of locating the point of correction
as a task in celestial mechanics.

Let us consider ellipses of influence for different positions of a SC
on a nominal trajectory to Mars, as the duration of the flight increases
(Fig.10.4). These ellipses are presented for the first day of the flight
and for intervals thereafter separated by one month based on a tra-
jectory planned in advance. As the actual trajectory was close to
nominal, the ellipses could be used for flight control. It is seen that

if, for example, the actual trajectory is characterized by a point B in
the target plane (gross error OB), correction should be carried out as
early as possible. If it is characterized by point C, correction should
be carried out during the second or third month of flight. The figure
demonstrates that postponement of correction until the sixth month,
would increase the required propellant budget by approximately a fac-
tor of three. This example illustrates an important aspect of opera-
tional decision making with respect to choosing the time of in-flight
correction manoeuvres.
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The analysis presented above was performed on the assumption
that the rank of the matrix of correction A (10.2) is equal to three.
We will next consider a situation where this matrix is of rank two.

10.6 Singularity of the Correction

Matrix

Consider the circumstance of executing a trajectory correction when
the affine transformation (10.1) is singular and the rank of matrix
(9.26) is equal to two. In this affine transformation, three-dimensional
space is mapped onto a plane. Thus, the sphere of unit pulses is trans-
formed, not into an ellipsoid, but into an ellipse (formally the mag-
nitude of one of the principal axes of the ellipsoid reduces to zero).
In consequence, the cross-section of this ‘ellipsoid’ (now it is degen-
erated to an ellipse) obtained through crossing it by the target plane
provides, generally speaking†, not an ellipse of influence but a straight
line ’segment of influence’. Formally, one semi-axis of the ellipse of
influence reduces to zero and, in consequence, trajectory correction in
a direction perpendicular to this straight line is impossible (since the
value representing distance OD in (10.3) is equal to zero). Thus, on
reducing the rank of the matrix of correction to two, situations arise
in which the implementation of an arbitrary correction is impossible‡.
We will illustrate this by an example.

Let a SC moving along a circular, heliocentric, orbit be situated at
point B and it is required to correct the trajectory in the target plane
passing through point O (Fig.10.5). The angular distance between
points B and O is equal to Construct at the point B a sphere
of unit pulses, choosing three mutually orthogonal directions defined
by the vectors (see also Section 9.1). It follows
from matrix (9.10) when that a pulse applied in the plane
defined by and can change the trajectory of the SC without
changing the angular position of this plane. In the target plane, the

†We exclude here the case where this ellipse coincides with the target plane.
‡If the rank of the matrix of correction is equal to unity, the sphere of unit

pulses is mapped into a segment of a straight line (now two semi-axes of the
ellipsoid reduce to zero). Crossing of this segment by the target plane produces a
point ‘of influence’ and trajectory correction is impossible.
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pulse provides a displacement of the trajectory along the axis
Then, any satisfying the equality on being applied in
the orbital plane provides the displacement of a bundle
of trajectories in the target plane along the straight line segment CD.

Assume that it is required to make the SC trajectory pass through
the point E. It was shown immediately above that this cannot be
achieved by any pulse applied in the orbital plane. Let us now use
the last remaining possibility and impart the pulse to the SC as
it moves along its orbit I (Fig.10.6). In this case, the orbital plane
turns by virtue of the second row of the manoeuvre matrix (9.10) and a
new orbit II is followed. Considering the correspondence between this
manoeuvre and our previous analysis of (9.12) and (9.13), the point
of imparting the pulse can be deemed to lie on a line of nodes
BO, and the angle (argument of latitude in the formulae mentioned
above) is measured from this line. Thus, this pulse is able to turn
the orbital plane through an angle (the analog of in (9.13))
around the line BO, but it can not produce an angular displacement
of the line BO (the analog of in (9.12)). Consequently, there is
no displacement of the crossing point of orbit II in the target plane
along the axis Indeed, no pulse imparted to the SC at point B

can produce a displacement of the trajectory along axis and it is
thus, in particular, impossible to pass a trajectory through point E.
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This is a consequence of the degeneration of the ellipse of influence
into the line segment CD under the constraint of the singularity of
the matrix (10.2). Singularity of (10.2) derives from the fact that all
the elements situated in its second row are equal to zero.

We will next outline what it is necessary to do to obtain a trajec-
tory that passes through point E.

10.7 Correction Using the Singular

Matrix

Consider first a strategy to traverse a point on the axis in the tar-
get plane under the constraint of singularity of the correction matrix.
The strategy may be designed to be optimum in terms of minimum
expenditure of characteristic velocity. Traversal of can be achieved
by transferring the correction point B to a new position It is ge-
ometrically obvious, that the greatest displacement in the direction
is realized if the angular distance between the point of correction and
the target plane is (Fig.10.6). Here the new and initial planes
have the greatest linear displacement as measured along ‘a vertical’
(in the Figure) between corresponding points on the two considered
trajectories.

Next consider the problem of traversing the point E (Fig.10.6)
under the constraint of singularity of the correction matrix. It should
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be noted that transfer of the correction point to is not optimal with
respect to achieving displacement of the trajectory along the axis
In relation to landing pulses, it was shown that the most effective
pulse for displacing a SC trajectory in its orbital plane is the
pulse, directed along the SC velocity vector, and that the greatest
displacement takes place at an angular distance from where the
pulse is imparted.

Apply first a pulse parallel to the SC velocity vector at B, an
angular distance from the target plane, to obtain a required coor-
dinate A second pulse in the direction is then imparted
at the point an angular distance of from the target plane,
to obtain a displacement along the axis to point E (see Fig.10.7
where I is the initial orbit, II is the orbit obtained after the first

correction, and III is the orbit obtained after the second correction).
The example considered testifies that, in some cases, multiple cor-

rections provide the optimum effect (neglecting inherent errors in orbit
prediction and in the execution of individual correction manoeuvres).
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Rendezvous Manoeuvring

Let a rendezvous between two SC occur in the gravitational field of a
planet (for example the Earth). Assume that one SC is ‘passive’(i.e. it
moves in a geocentric orbit without manoeuvring), and that another
‘active’ SC performs the rendezvous manoeuvre. This latter situation
is typical when two SC rendezvous. We will discuss first control-free
relative motion of the two SC.

11.1 Control-Free Relative Motion

Consider the motion of the active SC relative to the passive one. We
define their positions in space through radius-vectors and respec-
tively. The motion of both SC is governed by the central Newtonian
gravitational field of the Earth. Also a control force is applied to the
active SC to provide the control acceleration The equations of SC
motion thus have the form

Introduce a vector s to describe the position of the active SC with
respect to the passive one so that and assume that the
magnitudes of vectors and s satisfy the inequality since
close relative motion of the SC pair is considered. The inequality
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134 CHAPTER 11. RENDEZVOUS MANOEUVRING

allows us to write a set of formulae

Terms of order and higher are neglected. Then the first equation
in (11.1) due to the second equation can be written, using s as

where, on the right side of the equation, the terms of order
and the control acceleration are kept and the symbol of equality is
used instead of the symbol of approximation. This equation describes
the motion of the active SC in the neighbourhood of the passive SC
in inertial space. If we consider their mutual motion in a reference
system that rotates with respect to inertial space with angular velocity

then equation (11.2) attains another form

where the derivative of s means its ‘local’ variation relative to the
rotating reference system. Sometimes this is called the local derivative.

Define the vector s through its projections on the axes of a
Cartesian reference system with its origin at the center of mass of
the passive SC. The third axis aligns with the second aligns with

velocity (denote this by ) and the vector equation (11.3) can then
be written in the form of scalar equations as follows

*We will introduce this reference system in more detail in Section 15.2 and call
it the orbital reference system

Laplace’s vector c and the first axis completes the reference system*.
In circular orbit this reference system rotates with constant angular
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These are called either Hill’s equations or the Clohessy-Wiltshire
†

equations.

In the absence of control acceleration when the components
in the above reference system, the third equation in (11.4)

transforms to the equation of a linear oscillator

Substituting

expressed from this equation into the first equation in (11.4) we obtain

which can also be transformed to a linear oscillator equation with
respect to This means that, in a circular orbit containing a
pair of active and passive SC, one can oscillate (given appropriate
initial conditions) relative to the other. There is no inconsistency here
with regard to one SC following a Keplerian orbit while the other does
not since what is considered is relative motion.

11.2 Approaches to Rendezvous

Manoeuvring

It is helpful now to use the approach already adopted when considering
interplanetary trajectory correction (Chapter 10) since, in both cases,
one body (a planet or a passive SC) moves in an unknown Keplerian
orbit and the active SC moves along a trajectory designed to intercept
it. Also, both bodies should reach the interception point at the same
moment. These requirements can result either in the arrival of a SC
at a planet or in the docking of two SC. In each of these cases, the
trajectory of the manoeuvring SC is calculated to ensure interception

†W.H.Clohessy and R.S.Wiltshire. Terminal Guidance System for Satellite
Rendezvous. Journal of Aerospace Science, 1960, Vol.27, Sept., pp.653–658.
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and, in both cases, manoeuvring is reduced to correcting those er-
rors inevitably introduced when injecting a SC along a pre-calculated
trajectory.

Consider next that phase of the rendezvous of two SC when they
are only a few kilometers apart so that on-board means of guidance
can be employed. Let measurements made aboard the active SC be
sufficient to provide adequate information concerning the relative mo-
tion of the SC, and also concerning the motion of the active SC with
respect to the Earth. It is then possible to design a target plane
at the center of mass of the passive SC, and to calculate the matrix
manoeuvre of the active SC so as to perform those corrections nec-
essary to realize a rendezvous. This task is easier than the problem
of interplanetary manoeuvring already considered (using simplifying
assumptions) in Chapter 10 because the passive SC does not have a
significant gravitational field producing non-linear effects.

The task of rendezvous manoeuvring, however, differs from those
manoeuvres considered earlier in that, for interplanetary transfers, ei-
ther two or three-parameter correction of the trajectory is sufficient
whereas, when two SC rendezvous, a six-parameter correction is re-
quired. For example, to dock two SC it is necessary not only to bring
both SC to one point, but also to balance their velocities. Therefore,
it is necessary to correct three linear coordinates (or two coordinates
in the target plane and the time of plane interception), and also three
components of the active SC velocity.

It was already shown in Section 10.2 that, since the velocity vector
pulse has three components, it is possible to correct only three
parameters using this pulse. Therefore, to achieve six-parameter cor-
rection, at least double correction of the trajectory is required. The
easiest way to represent the double correction theoretically is as fol-
lows. First, a pulse is applied so that, at some subsequent mo-
ment the active SC reaches the passive SC. At this moment an
instantaneous pulse is imparted to the active SC. This pulse
cannot result in an instantaneous change in the coordinates of the ac-
tive SC but, rather, provides an instantaneous change in its velocity.
The pulse is chosen so as to balance the velocities of both SC.
The task of making an active SC rendezvous with a passive SC is thus
reduced to imparting a ‘pursuit’ pulse to the active SC and then,
in the immediate proximity of the passive SC, imparting a ‘braking’
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pulse to the active SC to neutralize the relative velocity. It can
be shown using control theory that such a rendezvous technique is op-
timum in that it minimizes the expenditure of characteristic velocity
and it is named the method of free trajectories.

A disadvantage of the above method is that, in addition to requir-
ing information on the relative motion of the two SC, it is necessary to
also have information on the motion of the active SC with respect to
the Earth. This means that we need to know the orbit of the active SC
prior to the beginning of the rendezvous manoeuvre and also its orien-
tation relative to the inertial reference system, in order to be able to
impart to the SC a with the necessary magnitude and direction.
Obtaining such information about the SC motion to the required level
of accuracy is a complex technical and mathematical problem and,
therefore, a more simple technique of manoeuvring (presented below),
based only on knowledge of the relative motion of the two SC has been
developed.

Let B be the passive SC and C the active one (Fig. 11.1). Choose
B as the origin of the relative reference system in which the motion
of C with respect to B is described. Then, the position C of the ac-

tive SC is defined by the distance and by the angle which
is formed by the straight lines BC and The latter line, which
contains B, moves in inertial space parallel to itself and comprises
one axis of the relative reference system (here only the planar case is
considered). Radar or gyroscopic devices mounted on the active SC
measure and If now we force the active SC to manoeuvre so
that is always satisfied, then the SC moves along a straight
line BC with respect to the relative reference system. To implement
a rendezvous, it is necessary to impart a ‘pulling’ pulse to the active
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SC so that and to impart a braking pulse which gives
immediately before the two SC can touch. This basically simple ren-
dezvous procedure is complicated by the need to satisfy the condition

‘Natural’ motion in the period between the pulling and braking
pulses is along a curved trajectory because both SC move at this time
in Keplerian orbits around the Earth. To straighten the natural cur-
vature of the trajectory of relative motion, it is required to maintain
the condition by imparting to the active SC, using a thruster,
a force perpendicular to BC. This force does not change and it is,
thus, a ‘spurious’ one, requiring extra expenditure of fuel that does
not contribute to the rendezvous manoeuvre purpose — which is to
reduce The corresponding consumption of characteristic velocity
is the price paid for simplifying the guidance control system of the
active SC. Also, knowledge of the geocentric orbit and SC orientation
is not necessary and the control algorithm is very simple (in the early
days of space flight, no on-board computer was thus required). This
manoeuvring method (where the vector of relative velocity of the ac-
tive SC remains parallel to itself all the time), is called the method

of parallel sighting and it was used when docking the Soviet experi-
mental SC Cosmos-186 with Cosmos-188 (30th of October, 1967) and
also when docking manned missions of the SC Soyuz with the orbital
station Salyut [11].

The consumption of characteristic velocity using the method of
parallel sighting approaches that consumption inherent in the method
of free trajectories ever more closely, the ‘straighter’ is the trajectory
of uncontrolled SC motion between the pulses of pulling and braking.
Obviously, the degree of ‘straightness’ increases as the initial distance
BC is reduced. Therefore, at rather small initial distances (a few kilo-
meters), use of a rather simple method of parallel sighting is preferable
while, at initial distances of tens of kilometers where the method of
free trajectories is employed, more sophisticated instrumentation is
required. The procedure of rendezvous maneuvering described above,
in which at the moment of termination the coordinates of both SC
centers of mass coincide, is certainly idealized. This process begins
when the distance between both SC is of the order of tens of meters.
After that, the phase of docking starts which is realized by thrusters
that provide translational and angular displacement of the active SC
required for accurate soft contact and docking with the passive SC.



Gravity-Assist Manoeuvre

All the manoeuvres considered previously are based on changing a SC
trajectory through thruster ignition. However, there is also a possibil-
ity to change the orbit of a SC by utilizing the gravitational field of a
celestial body, as was suggested first by Kondratyuk* in 1918†.

If a SC moves along some heliocentric elliptical orbit then, within
the framework of the two-body problem, this elliptical orbit never
changes. If, however, the SC flies by a planet, the gravitational field
of that planet can significantly alter the heliocentric orbit followed
by the SC. That change in the trajectory and velocity of a SC pro-
duced during a planetary flyby due to the ambient gravitational field,
constitutes what is called a gravity-assist manoeuvre.

12.1 Description of the Manoeuvre

Let us suppose as was already done in Chapter 4 that, inside the grav-
isphere of a planet, SC motion is determined by the planet’s gravita-
tional field while outside the boundary its motion is determined by
the gravitational field of the Sun. Consider the motion of the SC
inside the gravisphere of a planet in a planet-centered reference sys-
tem. As will be shown below, introducing the gravisphere allows us to

*Kondratyuk, Yury Vasiljevich (1897–1941). Russian inventor who carried out
research in astronautics and rocket engineering.

†Yu.V.Kondratyuk. For Those Who Are Studying to Build (1918-1919). In the
Selected Papers of the Pioneers of Rocket Engineering: Kibalchich, Tsiolkovsky,
Tsander and Kondratyuk, Moscow, Nauka Publ., 1964, pp.501-536.
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treat the motion of the SC in the neighbourhood of the planet in the
framework of a two-body problem and to associate the gravispheric
boundary with infinity.

We start from a determination of SC velocity at the gravispheric
boundary. When the SC enters the gravisphere, its planetocentric
velocity at the boundary is greater than zero. If the velocity had
been zero at the boundary, the SC would have ‘dropped’ to the Earth
while gaining the planetary escape velocity — zero velocity at infinity
corresponds to the escape velocity at the surface of a planet.

Since the velocity of the SC in a planet-centered reference system
at the gravispheric boundary is greater than zero, it follows (from
the two-body problem), that the SC moves relative to the planet with
hyperbolic velocity. Thus, when considering SC motion in the vicinity
of a planet, we may use relationships that are valid for hyperbolic
trajectories. For hyperbolic motion the constant of energy in the
integral of energy (1.10) is positive and, at infinity, where and

this formula reduces to

By definition the gravitational field of the planet vanishes outside its
gravisphere. Thus, acceleration of the moving SC by the planet’s grav-
itational field begins only when it intercepts the gravispheric bound-
ary. The velocity at the boundary of the gravisphere can be denoted
by and determined using formula (12.1). On the other hand, for
any orbit defined by a conic section, equality (1.22), that is,

is valid. Substituting in this formula an expression for the eccentricity
of a hyperbola with semi-major axis and semi-minor axis and

for the parameter (which is valid for any conic section)

we obtain
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Combining this with formula (12.1) gives

The trajectory of SC motion is illustrated in Fig. 12.1. The planet is

deemed to be located at the point P, and the boundary of its grav-
isphere is represented by the dashed line BC. The SC enters the
gravisphere parallel to the asymptote (because this is its theoretical
direction as with a velocity which is equal to After
flyby the SC. following an hyperbolic trajectory, exits the gravisphere
along another asymptote at point C, with a velocity which is also
equal to by virtue of the law of energy conservation. During this
overall process, there has been a turn of the velocity vector through
an angle defined by the asymptotes of the hyperbola.

Let us denote this angle by From geometry, the relationship
OE = FO is known, since point F is obtained through the orthogonal
projection of P onto BO. Also, from the diagram

The value is named the aiming distance
‡
.

‡ This name is associated with the fact that is the distance between the direc-
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Combining equalities (12.2) and (12.3) we get the expression

which relates the turn of the vector of velocity relative to the plane-
tocentric reference system (angle with the aiming distance (c); the
velocity at the boundary of the gravisphere and the gravitational
parameter of the planet.

Expression (12.4) shows that one can effectively vary angle by
changing the aiming distance which is determined by the point F at
which the nonperturbed trajectory of the SC crosses the target plane.
To change is usually inconvenient. This latter velocity derives from
previous requirements in composing the segments of the heliocentric
trajectory. Also, to change by rocket-engine ignition requires the
expenditure of characteristic velocity, whereas the main purpose of a
gravity-assist manoeuvre is to change a trajectory without employing
rocket engine thrust.

The maximum value of the angle is which corresponds to
c = 0. Therefore, considering the planet as a particle, it is theoretically
possible for a SC to be ‘turned back’ in a planetocentric reference
system. The maximum value of the turn angle is obtained at

where is the radius of the planet. Taking now into account
the expression for circular velocity (2.3), we obtain, using (12.4), the
expression

where is the circular velocity associated with the gravitational
field of the planet (Section 2.5) and is the maximum accessi-
ble value of the turn angle of the SC velocity vector. This value is
large because the planetocentric velocity of the SC ‘at infinity’ is
significantly less than its circular velocity at the planet.

tions of the velocity vector at infinity and the center of the planet. The asymptotes
of the hyperbola in this case each looks like the sighting line of a gun which, as is
well known, does not coincide with the flight trajectory of a bullet.
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12.2 Application of the Gravity-Assist

Manoeuvre for Interplanetary

Missions

Consider first the application of the gravity-assist manoeuvre for in-
terplanetary transfer. Fig.12.2 shows a part of the Solar System con-
taining the trajectories of three planets. Circle I corresponds to the
orbit of the Earth. A SC is required to reach the orbit of a planet
represented by circle III. This task, however, requires the SC to be
boosted at its start from the Earth to such a high velocity that this
cannot be technically achieved. Suppose a launcher to be only capable
of speeding up the SC to such a velocity that its trajectory becomes
an ellipse (denoted in Fig.12.2 by C) tangent to the point B in the
orbit II of an intermediate planet, which is itself also called II. If
the time of liftoff is chosen so that both the SC and planet II appear
in the vicinity of point B simultaneously, the planet will overtake the
SC. This follows from the fact that the total energy of a body in Ke-
plerian motion is proportional to the semi-major axis of its orbit and,
here, the semi-major axis of the planetary orbit II is greater than the
semi-major axis of the SC’s elliptical orbit C.

For simplicity, suppose that planet II is a particle, and that the
aiming distance chosen for rendezvous of the SC with the planet is
zero. At the beginning of the rendezvous (i.e. when the planet is
‘overtaking’ the SC), the heliocentric velocity of the planet is repre-
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sented by and the heliocentric velocity of the SC by The
vector of the relative velocity of the SC,

is then directed to the right side, as per Fig.12.2. The vector is,
meanwhile, directed to the left side (see the upper diagram in Fig12.3).
During the manoeuvre the vector of planetocentric velocity of the SC

is reversed (i.e. it turns through an angle Thus, after the
SC has passed the planet the vector is directed to the left and the
relative velocity of the SC is given by

This means that the SC speeded up in the vicinity of the planet by
such that its heliocentric velocity

attained a magnitude greater than i.e. it became greater than the
heliocentric velocity of planet II (see the lower diagram in Fig12.3).
As a result, the SC transfers to elliptical orbit D which intersects the
orbit III of the third planet in point E. The transfer problem to reach
orbit III has thus been solved through using the gravitational field of
an intermediate planet to speed up the SC. This example provides only
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the concept of a manoeuvre with because an aiming distance
of zero cannot be realized in practice.

Another application of the gravity-assist manoeuvre involves chang-
ing the direction of SC motion. Formulae (12.4) and (12.5) allow us
to choose the aiming distance c which provides a required value of
the trajectory turn angle in a planetocentric reference system (with
the limitation It is especially noted, that the parameter
providing the trajectory turn angle (i.e. aiming distance c) should be
accurately realized in order to obtain a particular desired value of
This implies the necessity to make precise three-parameter corrections
to the trajectory along the segment between planets I and II.

12.3 Inclination Change

of the Heliocentric Orbit of a SC

The gravity-assist manoeuvre is also capable of producing a change in
the inclination of the heliocentric orbit of a SC. Consider an example.
Let plane be the target plane of a planet which is used for a
gravity-assist manoeuvre (Fig. 12.4), and let axis lie in the plane
of the SC orbit. The aiming distance c is such that the turn angle
of the SC trajectory is Suppose that the SC crosses the target
plane at a point B lying on the axis After turning around the
planet, the SC displays a planetocentric velocity directed parallel
to the axis while the original plane of the SC orbit is maintained.
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If, instead, the SC crosses the target plane at point D (after a
preliminary manoeuvre), then the SC velocity on its exit from the
planetary gravisphere is and directed parallel to the axis In
this case, the inclination of the plane of the SC orbit is changed by

with respect to the initial one.
Thus, depending on where we choose the crossing point of the tar-

get plane to be, it is possible to turn the planetocentric velocity vector
of the SC in any direction and, consequently, turn the heliocentric ve-
locity vector and the plane of heliocentric motion.

Gravity-assist manoeuvres are widely, and effectively, used for in-
terplanetary missions. The first time such a manoeuvre was realized
was during the flight of the Soviet SC Luna-3 in 1959, when a pio-
neering picture of the reverse side of the Moon was taken. The simple
transfer trajectory shown in Fig. 12.5 presents an obvious candidate
orbit. In this scenario the SC would move along an elliptical trans-

fer orbit and at point B a picture of the Moon could be taken. In
1959 a disadvantage of this trajectory was that, on returning to the
Earth, the SC would approach from the South and could not, along
the orbit segment CD closest to the Earth, be contacted from the
territory of the former Soviet Union. To overcome this a trajectory
was chosen involving a gravity-assist manoeuvre. Detailed analysis
of such trajectories was performed by Egorov§. First, the semi-major

§Egorov, Vsevolod Alexandrovich (1930–2001), Principal Researcher at the
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
and a professor at the Lomonosov Moscow State University. In the framework of
the restricted three-body problem he classified trajectories of direct approach to
the Moon and researched fundamental properties of these trajectories under the
aegis of the Keldysh-Okhotsimsky Scientific School of Applied Celestial Mechanics

(V.A.Egorov. Specific Problems of a Flight to the Moon. Physics–Uspekhi, 1957,

Vol.63, N 1a, pp.73–117).
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axis of the elliptical transfer orbit of the SC was lowered ‘under’ the
Moon’s orbit around the Earth (see Fig. 12.6 where the transfer orbit
is shown in a plane perpendicular to the orbit of the Moon). Without
the gravitational field of the Moon the SC would have proceeded, af-
ter point D, along an orbit represented by the dashed line. However,
under the effect of the Moon’s gravitational field, the trajectory could
follow the segment DC (with picture taking at the point B). As a
result of adopting this scheme, the SC approached the Earth from the
North and, during practically all the time of its return flight, data
were transmitted to the Soviet mission control stations.

Without the use of gravity-assist manoeuvres, in particular for
speeding up SC, it would be impossible to realize the interplanetary
missions of today. The first use of this manoeuvre in the vicinity of
Venus was made by the U.S. SC Mariner-10 while en route from the
Earth to Mercury in 1974. Also, U.S. SC Pioneer-11 was the first to
execute a gravity-assist manoeuvre at Jupiter in 1974 while on the way
to Saturn. The European SC Giotto performed the first gravity-assist
manoeuvre at the Earth of an observing SC coming from deep space
in 1990.





Chapter 13

About Orbit Determination

Using Measured Data

To control a SC during flight, it is necessary to know its orbit accu-
rately. An orbit is determined using computer processing of trajec-
tory measurements. The measurements concerned usually comprise
the distance to the SC and its radial velocity at appropriate moments
of time Such measurements may be made using radio or
laser instruments installed at different locations on the Earth. Their
coordination and processing would be an elementary task if they were
absolutely accurate and independent and their number were equal to
six, the number of osculating elements determining a Keplerian or-
bit which can be used to approximate an actual orbit for a certain
time interval. Since, however, SC motion is always perturbed, such
measurements should be made frequently in order to monitor orbit
evolution.

Overall, the problem of orbit determination is complicated by the
fact that, with the purpose of increasing accuracy, the number of mea-
surements made considerably exceeds the necessary minimum of six,
so that a problem of processing large quantities of data arises. If there
are no constraints on computer memory and on the duration of the
calculations, a classical least square method of data processing devel-
oped by Gauss* can be used for orbit determination. Consider an

*Gauss, Carl Frederich (1777–1855), outstanding German mathematician and
astronomer who made major inputs to mathematics, physics and astronomy. He
invented the method of least squares. A renowned memoir on potential theory was
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outline of this method.

13.1 Least Square Method

Let parameters of SC motion be measured. They can
be presented as known unique functions of orbital elements
and time

where a bar over the numbers indicates that index varies from 1 to
running through all intermediate integer values.
If and the measurements have been made at known mo-

ments of time, we can resolve this system with respect to unknown
orbital elements and obtain the Keplerian orbit of the
SC (although of course with some inaccuracy).

If then using equalities (13.1) we can write equations

example, distances, angles, velocities) at times . . . can be taken
into account. The problem to be solved is as follows. We need to find
values of the variables that satisfy equations (13.2),
assuming an initial approximation to the values to be available,

Denote the differences between the approximated and true
values of the orbital elements by the symbol

If the functions are differentiated, we can write the approximate
equality

just one of his many significant contributions to the field of applied mathematics.

where are known functions, and are measured values
containing measurement errors. Different kinds of measurements (for
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where the partial derivatives are calculated

at the point Then, substituting (13.5) in (13.2), we
obtain

where

and
The number of equations in (13.6) is more than the number of

variables contained there. Thus, we cannot solve (13.6) with re-
spect to using regular mathematical methods. It is necessary to
introduce another formulation of the problem which will allow us to
obtain a solution. Since we can select initial values of the variables

we may choose them so that the measured magnitudes are close to
the calculated values. Calculated means that we substitute the ini-
tial values of the variables in the mathematical model of motion of
the SC and compute quantities corresponding to the measured ones

In our case the mathematical model comprises a set of functions
but also, it may, for example, be a set of

differential equations).
Introduce the loss function

which is the sum of the squares of the differences between the measured

and calculated quantities. The other condition for solving (13.6) is that
the loss function should be a minimum. This corresponds to obtaining
variables which provide minimum error in the determination of
the variables

Necessary conditions for minimum are
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In contrast to (13.6), the number of equations (13.8) is equal to the
number of variables which refine the initial approximation

by

This approximation could, in turn, be improved by repeating the
procedure described above using instead of The process of
iterating refinements ceases when the difference between two consec-
utive values of the calculated elements becomes less than some
assigned value. A proof of convergence of the method described and
presentation of different available versions of the method are omitted
here.

The least square method is widely used in science and engineering
because of its simplicity and universality. However, it has inherent
disadvantages. In the discipline of astronautics, the main disadvan-
tage is its ‘static’ character. It is well adapted to processing a fixed
array of measurements. Let us suppose that this array is continu-
ously being filled up with new measurements but we are not allowed
to wait for the end of the measurements. Then the task is as follows.
Let, at the moment measurements be available. We determine
the orbital elements provided by these measurements. At the mo-
ment we get the next measurement and the total quantity
of measurements is now Generally speaking, determination
of the orbital elements can then be performed with higher accuracy
because the quantity of measurements has increased. Therefore, after
each new measurement session, the orbital elements should again be
determined. Using the least square (or some similar) method, after
each new measurement session it is necessary to perform the awkward
calculation procedure described above. It is thus desirable, having ob-
tained the orbital elements by processing previous measurements,
to update them, taking into account the next measurement only, and
not process all the previous measurements again. This motivation
gave rise to the concept of recurrent methods.

13.2 Concept of Recurrent Methods

Let some vector of state a have components which are
obtained by processing an array of measurements. We indicate
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this by the index in the notation of vector a. Let the
measurement be accomplished and denoted by Then, to

implement the idea mentioned above, it is necessary to construct an
algorithm such that the equality

is valid. Such methods have been developed. They are usually called
recurrent filtering algorithms. We will consider next an elementary
task that illustrates the essence of the related procedures.

Suppose that it is necessary to find the most probable value of
a length of which multiple measured values are available. The al-
gorithm to calculate the most probable value is first reduced to the
computation of the mean value of this length over a number of
measurements

Here the index of the length indicates that its magnitude is ob-
tained by processing measurements. Let the measure-
ment be made. Then the improved value of a is as follows

Taking the difference and performing simple transforma-
tions, we can express the next improved approximation of the length

using the previous approximation and the next measurement
by

This latter expression is similar to (13.10). The efficiency of the recur-
rent algorithm (13.13) in determining the length is demonstrated as
follows. Let be equal to 1000. Then to obtain using (13.12)
requires the fulfillment of about 1000 elementary operations, while the
use of (13.13) needs only four operations. In astronautics and space-
flight dynamics where the processing of large scale arrays of contin-
uously accumulating measurements is necessary, recurrent algorithms
are widely used. This allows, for example, at any moment of time,
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the most probable value of a SC vector of state a to be continuously
updated, practically at the rate of measurement.

A version of the recurrent method called Kalman filtering is very
common for on-board determination of the attitude and orbital pa-
rameters of SC. To use this method a model of measurements and a
model of SC motion are each required [32].



Chapter 14

Introduction to Attitude

Control

In previous chapters, spaceflight dynamics were considered using the
assumption that a SC is a particle. Nevertheless, the importance of
controlling the angular position (attitude) of the SC was implied. In
considering manoeuvring problems, it was always assumed that a pulse
of velocity could be imparted to a SC in a necessary direction. Since
such a pulse is provided by a thruster, capability is implied to turn
the SC to a required attitude.

A change in the angular position of a SC with respect to an exter-
nal reference system is called attitude motion. The introduction of a
deliberate change in the position of the body-fixed axes of a SC rela-
tive to an external reference system, is called attitude control. Main-
tenance of a given angular position to a required accuracy is called
stabilization of the SC. The system providing either a change in, or
maintenance of, SC attitude is called either the attitude control system

or the stabilization system.

14.1   Active, Passive and Combined

Attitude Control Systems

The mode of SC attitude motion is determined by tasks to be solved
by various payload and auxiliary systems during the mission. For
instance, during a radio-transmission session, an antenna is required to
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point towards a control station; to another SC or to a mobile, ground
based, facility. For remote sensing of the Earth’s surface, pointing a
camera towards a chosen surface area is required. The observation
of stars or other remote celestial objects requires pointing towards
these objects and stabilization of the SC relative to inertial space.
Again, to increase the power output of solar arrays, or to maintain
a temperature regime, it may be necessary to orient the SC relative
to the Sun. Thus, the problem of SC orientation and stabilization
belongs among the basic tasks to be solved during SC development,
design and operation.

Orientation of a SC can be achieved using methods of active or
passive control, or through their combination. This depends on the
mission concerned. Attitude control systems may thus be divided into
three main classes, namely active, passive and combined systems.

Active attitude control systems require an on-board power supply;
a computer; attitude sensors; attitude determination and control soft-
ware and actuators. Magnetometers, sun-sensors, star-sensors, mea-
suring gyroscopes, infrared-sensors etc, are used to make measure-
ments providing information about the actual attitude motion of a
SC. Control gyroscopes, thrusters, flywheels, magnetic coils, magne-
torquers, gimbaled control booms etc, are used as actuators to provide
a control torque.

Passive attitude control systems do not require on-board sources
of energy, sensors, software or actuators. Their operation is based on
the development of restoring and damping torques, achieved through
designing an appropriate shape for the SC body, a suitable tensor of
inertia and through installing special elements on the SC (for instance,
a permanent magnet).

Attitude control systems variously utilize the interactions of the
SC with the Earth’s gravitational and magnetic fields; solar radiation
pressure; the aerodynamic drag created through movement of the SC
in the ambient atmosphere and the property of a rigid body spin-
ning about its axis of maximum moment of inertia to maintain the
orientation of this axis relative to inertial space.

A system using the interaction between a SC and the gravitational
field of the Earth is called a gravity-gradient attitude control system.

Due to the difference in the gravitational force exerted on elements of
the SC situated at different distances from the center of the Earth,
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and to the presence of a centrifugal force produced due to the rotation
of the SC relative to inertial space, a gravity-gradient torque is devel-
oped. This torque depends on the tensor of inertia of the SC, and also
on its orientation relative to the local vertical and to the orbit normal.
If the torque returns the SC to a required stable position, it is called
a restoring torque. If the torque causes the SC to assume an unde-
sired stable position it is called a tumbling torque. A damping device
should be installed on-board a SC to provide asymptotic stability for
its required stable position.

A system using the interaction between the magnetic dipole mo-
ment of a SC and the Earth’s magnetic field to develop a restoring
torque, is called a magnetic attitude control system. This torque causes
the SC to follow the direction of the local vector of intensity of the
geomagnetic field (as the arrow in a compass follows the ambient mag-
netic field). Damping elements are also required on-board to provide
asymptotic stability.

The pressure exerted on different parts of a SC surface due to
incident solar photons, or to the molecules of the atmosphere, results
in each case, in the development of a restoring torque when the axis
of orientation of the SC does not coincide with the direction of the
photon, or of the molecular, flow. The behaviour of a SC equipped
with attitude control systems that interact either with solar radiation
or with the ambient atmosphere, is similar to that of a vane in windy
weather. Such installations are called solar radiation attitude control

systems and aerodynamic attitude control systems respectively. The
associated damping effect is very weak in both cases and, to achieve
asymptotic stability, other physical principles are applied.

The capability of a spinning SC to keep the orientation of its axis
of spin fixed in inertial space is based on the ‘internal’ properties of
a spinning rigid body. Any interactions with external fields or with
the environment, produce perturbing torques that adversely affect this
orientation. A damping device has to damp out nutation motion that
displaces the spin-axis from its position while, at the same time, not
affecting the rate of SC spin. The required damping device is called a
nutation damper. It exploits that friction between moving parts of a
SC body that pertains when the SC rotates about an axis that is not
coincident with its axis of spin.

Sensors are not needed to provide attitude control. However, they
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are often installed to make attitude determinations, in order to support
the interpretation of certain payload measurements. Another reason
to make attitude determinations is to identify proper times at which
to change the configuration of the attitude control system.

It is next useful to compare the advantages and disadvantages of
passive and active attitude control systems.
— An active system can provide both a high precision of orientation
and a fast time-response. A passive system cannot do this. To seek
from a passive control system both high precision and a fast time-
response is to impose contradictory requirements. However, due to
the long life time of a SC, the inherently slow time-response of passive
systems is not a significant defect.
— An active system can develop a large control torque and perform
complex, pre-programmed, rotation and re-orientation procedures. A
passive attitude control system develops a weak restoring torque. This
results in their being rather strong constraints on the initial conditions
of SC motion under which a required orientation can be achieved. In
consequence, accurate pre-calculation and a judicious choice of rele-
vant structural parameters is required.
— The reliability of active attitude control systems containing nu-
merous active elements is usually provided through redundancy. This
results in an increase in the total mass, as well as in the cost of, the
SC. Passive systems are light, have a simple design and, consequently,
are characterized by low cost, high reliability, practically unlimited life
time and parameter stability.
— Passive systems are ecologically clean in comparison with the active
systems provided by gas thrusters (the discharge of spent gases can
result in the degradation of optical surfaces and lenses, thus making
it impossible to execute some experiments). Also, spinning elements
of active systems can give rise to vibrations that are deterimental to
some experiments.
— Passive attitude control systems are preferred for certain applica-
tions. These include small, low-cost, SC with long life times, dedicated
to space exploration. The exploration missions concerned do not re-
quire the performance of complex, pre-programmed, angular manoeu-
vres or the attainment of precise orientation. For such SC, strong con-
strains on the total mass, dimensions, power resources and life time
usually make passive attitude control systems the single acceptable
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choice.
An orientation precision of several degrees is sufficient for, non-

complex, space based, communication systems. This precision is also
acceptable for environmental monitoring and for making observations
of the Earth’s surface from space if a suitable technology for the man-
ufacture of the sensing instruments is adopted. For example, tunable
acousto-optical filters with microchannel plates* as the recording de-
vices require, due to their high sensitivity, only short exposure times.
They can thus be substituted for CCD-cameras, with a consequent
reduction in the required accuracy and stability of SC orientation.

Attempts of SC designers to avoid the individual disadvantages
of active and passive attitude control systems, have resulted in the
development of combined systems. Examples of such systems include:
— a gravity-gradient attitude control system with a gimbal controlled
boom;
— a fixed (post deployment) boom with active magnetorquers, to
provide damping and uniqueness in the orientation of a SC;
— a system with a pitch flywheel spinning at a constant angular rate
so as to maintain the SC pitch axis perpendicular to the orbital plane,
and active magnetorquers to turn the SC about the flywheel spin axis.

Combined attitude control systems can also be used for multi-body
SC to appropriately orient their individual units with the accuracy
each requires. These systems foster an increase in the working life
of a SC because some elements remain in operation all the time (for
example passive or active elements working in ‘save mode’). Other
elements that provide higher accuracy but require more energy can be
stimulated from time to time for short intervals.

Such control systems foster an increase in the working life of a
SC because elements of the attitude control system can operate at
reduced to minimum strength, generating only a weak control torque
and operating during short time intervals. To increase the duration of
active operation of a particular space system, we may use a low cost

SC which can be readily replaced in case of failure. The emergence on
the market of low cost SC, has radically altered the approach of users
to mission planning and to SC development.

With respect to low cost SC, which sometimes also are called small

*I.D.Rodionov and M.Yu.Ovchinnikov. Optical Tomograph of the Universe.
Acta Astronautica, April 1999, Vol.44, Issue 2-3, pp.211-213.
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SC, it is proper to clarify what is implied. There are presently two
trends in the development of small SC.

The first trend is characterized by the low cost of such SC. This
is achieved through the use of: off-the-shelf technologies; a short time
required for development and fabrication and the use of a piggy-back
launch. This approach results in cost reductions that make small SC
especially attractive for companies embarking on space activity and
for universities.

The second trend is to use payload and on-board systems developed
with the aid of modern high (micro and nano) technology. Cost in this
case is not a critical criterion for designers and ‘smallness’ is only an
external attribute.

For small SC, passive and combined attitude control systems are
widely used because of their inherent simplicity, reliability, short du-
ration of development and fabrication and low cost.

Let us next review some particular aspects of attitude operations
and, thereafter, consider the general background of SC attitude dy-
namics required for the development of passive systems.

14.2   Scheme for SC Active Attitude

Control

Let be a body-fixed reference system such that its axes are
the principal central axes of the tensor of inertia of a SC. Then, the
attitude motion of the SC assuming that it does not contain any in-
ternal moving elements (i.e. the SC is a rigid body), can be described
using Euler’s dynamical equations
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Here, represent projections of the SC absolute angular ve-
locity vector onto the respective axes Also

are projections of the torque M onto the same axes; A, B, C are
moments of inertia relative to the introduced axes. In practice, the
angular velocity of the SC and, consequently of its projections, are
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small (the reason for this will be made clear later). Thus, we can
neglect terms containing products of the angular velocity projections.
Euler’s dynamical equations then have the simple form

The projections of the torque at the right side of equations (14.2)
are of two kinds, namely, the active control torque generated by
the attitude control system and the external perturbing torque
developed by the interaction between the SC and its environment.
Let the torque vanish so that Then, we can choose a
variant of that simplifies the logic of the attitude control process.
If it is assumed that the angles of turn about the introduced
axes of the body-fixed reference system are small, we may write the
kinematic relationships in the following form

Next, the logic of the attitude control algorithm is selected using
the formulae

assuming that on-board sensors measure the angles and also
the components of angular velocity. In this way, Euler’s
equations (14.2) become mutually independent. In the mechanical
sense, this means that the spatial attitude motion of the SC can be
described it terms of a combination of three planar motions. As all
three of these planar motions are completely similar, we may study
any one of them

omitting indexing for simplification. Here J denotes the moment of
inertia of the SC around its axis of rotation. The dependence of on

and is inherently non-linear and, because of this, analytical solving



of (14.5) is difficult. The non-linearity of the expression is
related, in particular, to the fact that active attitude control is often
exerted using a thruster. Such an engine can be in one of two states,
either off or at full thrust. The torque is, thus, a discontinuous
function.

Let us assume that the torque causes the values of and
to be close to zero, and that these values endure for a long time.

In other words, the attitude control procedure, starting at a moment
t = 0 with arbitrary, but finite, values of and is described at the
moment by the relationships and where
and are small positive values. For any these constraints on
the magnitudes of and are valid. Thus, at the kinematic
equations (14.3) and, following from them, the dynamical equations
(14.5), are also valid.
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14.2.1 Estimation of Propellant Consumption

We estimate next the consumption of propellant necessary for the
maintenance of SC attitude motion with small values of and
First, we pay attention to an important feature of attitude control in
space, namely that the absence of a dense ambient atmosphere results
in practically no dissipation of the energy of SC attitude motion during
the orientation process. Consequently, even having directed the axis of
the SC in the necessary direction with or more realistically with

and having also reduced the angular velocity of rotation to a
minimum value satisfying the inequality (generally speaking,

is not equal to zero), we still cannot expect the condition
to be maintained. Rather, the residual angular velocity such that

results in a slow drift of the SC axis of orientation
from its position with leading to a violation of the condition

The presence of residual angular velocity is inevitable because nei-
ther exact measuring of nor provision of an exact value of the
pulse of the thruster reducing to zero, is possible. Thus, permanent
angular positioning in a given direction with is, in practice,
replaced by oscillations about this position with amplitude This
is because, when the magnitude of the angle reaches its extreme
allowed value a thruster ‘pushes’ the SC in a direction to reduce
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to zero. These thruster pulses should, of course, be minimized to
avoid excessive consumption of propellant.

Next, we analyze the above mentioned oscillations of the SC about
the position using the phase-plane method. Here, and are
plotted along the abscissa and ordinate respectively. Let an ‘instant’
pulse developed by a thruster have its minimum possible magnitude

Then, assuming that the SC is maintained in the neighbourhood
of by such pulses, oscillations occur as illustrated in Fig. 14.1.

The logic of control illustrated by Fig. 14.1 is very simple. The
thrusters are activated to impart instant pulses to the SC when
the phase-plane trajectory reaches change-over lines described by the
equations and On the left, vertical, change-over
line, a pulse is applied and, on the right vertical line, a pulse

is imparted. The change-over lines are represented by dashed
lines. Motion along the horizontal straight lines is free. Along the
vertical lines it is forced by thruster action and, therefore, propellant
consumption is required. We will now estimate this consumption.

Let a thrust P be developed by a thruster with arm L (L is the
distance between the center of mass of the SC and the line of thrust),
so that the torque developed is PL. Because the thrust
where is the exhaust velocity of a propulsive mass expelled from
the nozzle of the thruster, and is the specific consumption of the
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propellant (i.e. the consumption of propellant per unit time), then

Here is the firing time of the thruster. The assumption that the
pulse is instantaneous was already made above. This is a reasonable
idealization as is small compared with the period of oscillation

However, now it is necessary to take into account that is finite,
because the process of imparting the pulse to the SC is considered,
and which represents the consumption of propellant during one
firing of the thruster, is given by

Thus, using equality (14.7) we can transform (14.6) as follows

This expression shows that the value is proportional to the quan-
tity of consumed propellant but the duration of firing is not
relevant. The assumption concerning the application of an instant
pulse, made when constructing the phase-plane diagram (Fig. 14.1) is
thus a reasonable one.

Obviously, during a complete cycle of oscillation with period
two firings of the thruster are made and the total consumption of
propellant is

The specific consumption of propellant averaged over the cycle (i.e.
the time-averaged specific consumption), is determined by

It is seen from Fig. 14.1 that the value is determined by
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when the equality is taken into account. Substitution
of (14.9) and (14.11) in (14.10) allows us to write

The time-averaged specific consumption depends on the mag-
nitudes of the angular velocities and over the oscillation
period It is easy to show, taking into account the relationship

that the maximum value of is reached
when Thus, from (14.12) we obtain a formula
for

In practice, the ratio between and is a random value
because it is a result of transient motion preceding the oscillation
phase. SC designers should provide a reserve of propellant to allow
for possible variations in this ratio and, thus, calculation of the re-
quired propellant load should be based on (14.13). This relationship
indicates the strategy of attitude control in the absence of an external
perturbing torque. It is seen that the maximum time-averaged spe-
cific consumption of propellant decreases in inverse proportion to the
orientation accuracy and in proportion to the square of the instant
pulse

Designers of SC should, generally speaking, develop the attitude
control system so that (a) it does not provide more precise orientation
than is required and (b) the control pulses are as weak as possible.

14.2.2 Effect of a Constant Perturbing Torque

Consider attitude control in the presence of an external perturbing
torque Introduce, to simplify the calculations, two assumptions,
namely that (a) the external perturbing torque is constant (
const) and (b) that its magnitude is ‘large’. The reason for the second
assumption will become clear further on. At nonzero equation
(14.5) attains the following form
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Suppose that the magnitude of the control torque is much greater
than the magnitude of the perturbing torque when the thruster
is fired. Then it is possible to use our previous assumption that, on
firing a thruster, there is an instant change in the angular velocity
of the SC. The attitude motion of the SC is in consequence composed
of two types of motion. The first is the instant change of angular
velocity produced on firing the thruster (the action of the torque
is associatively negligible). The second is motion under the action of
the torque when the thruster is switched off.

Let the state correspond to a point A (called a phase-plane

point), in the phase plane shown in Fig. 14.2. Point A results from
imparting an instant pulse to the SC which then reaches an
angle of orientation After this, the phase-plane point moves

to the right along a parabola with its axis of symmetry coincident with
the abscissa†

. If the magnitude of is ‘small’, the phase-plane point
reaches the change-over line at B, where the SC receives
a pulse If the magnitude of is ‘large’, it can return to
the change-over line without reaching the change-over line

(i.e. it follows the parabola ACD).
Consider next the period of SC oscillation for the case of a large

torque The parabola ACD returns the phase-plane point to the
†To show that, under the action of a constant torque the phase-plane point

follows this trajectory, one needs to integrate equation (14.14) with then
to exclude explicit time from the expressions for and in order
to obtain the relationship between shown in Fig.14.2 for
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change-over line However, point D is located, generally
speaking, at a distance from A which is not equal to Therefore,
the application of this pulse at D does not return the SC to A and
so the cycle of oscillation is not completed. To complete the cycle,
sequential motion along two parabolas is required.

Let the sequence start at point A with SC angular velocity
(Fig. 14.3). At the point D, by virtue of parabolic symmetry, the

relation is valid. Pulse transfers the phase-plane
point along the vertical change-over line to point with ordinate

Moving along the second parabola, the phase-plane point
reaches a point on the change-over line which is symmetrical with
respect to point again by virtue of parabolic symmetry. Then, the
ordinate of point is Finally, a pulse returns the
phase-plane point to A with ordinate and the cycle is completed.

Let us next compute the period of a complete cycle of oscillation
of the SC. First, we compute the duration of motion along the first
parabola. In this case, equation (14.14) has the form

Integrating, we obtain the solution

where c is a constant of integration. Taking into account that at t = 0
the velocity we obtain Next, considering half of
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the arc AC of the parabola (Fig.14.3) and denoting the duration of
motion along the first parabola by on substituting from (14.15),
we can write

Again, denoting the duration of motion along the second parabola by
we similarly obtain

We can now write an expression for the total period of oscillation
that is,

Here again the inequality was taken into account.
During a complete cycle of oscillation of the SC, two pulses

were imparted and, therefore, the same quantity of propulsion pro-
pellant discussed in Section 14.2.1 was expended, (see (14.9)). The
time-averaged specific consumption defined by expression (14.10) on
substituting from (14.16), is given by

On comparing (14.17) with the relationship (14.12) we derived earlier,
basic differences between them immediately emerge. In the absence of
an external perturbing torque, the consumption of propellant (14.13)
depends on the orientation accuracy and on the pulse In the
case of a ‘large’ perturbing torque, the consumption of propulsion pro-
pellant (14.17) is determined only by this torque and does not depend
on the characteristics of the attitude control system (the orientation
accuracy, the applied pulses etc.).

Experience shows that, for a large SC, the counteraction of exter-
nal perturbing torques is a major task of the attitude control system
requiring the expenditure of most of the propellant. Consequently, the
reduction of such propellant expenditure is a key problem for SC de-
signers. Such a reduction can be achieved (see above) by customizing
the design of the SC to combat but not by changing the parameters
of the attitude control system.
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Two specific cases have already been considered, that is, when the
external torque was absent and when it was ‘large’. Analysis of a
more general case, the details of which are omitted here owing to its
complexity, shows that the consumption combines the two terms
represented by (14.17) and (14.13).

Finally, it is necessary to note that the two terms of the propel-
lant consumption discussed above have each a completely different na-
ture. The consumption required to compensate for external perturbing
torques cannot be avoided. On the other hand, the consumption when

is due to the absence of a ‘natural’ dissipation of mechanical
energy in space. In other words, if one could provide asymptotic sta-
bility of the equilibrium position, there would be no need to impart
a pulse to ensure an accuracy A method to achieve this in
practice involves the use of gyroscopes.

14.3 SC Gyros for Attitude Control

Spinning rotors installed on a SC to change or to maintain its orienta-
tion, or to determine the attitude and angular velocity of the SC, are
called gyroscopes or gyros. We will consider here only the application
of generating a control torque. Gyros have angular momentum. By
changing their vector of angular momentum, we can apply a reaction
torque to a SC to turn its body, thereby providing attitude control.
We will discuss next the general properties of gyros without referring
to their specific design.

Let G be the vector of total angular momentum of a SC and let
be its initial value. Then, the attitude motion of the SC can be

described by

where is the total vector of the external perturbing torques. The
orientation thrusters are considered to be switched off. In analyzing
(14.18), it is necessary to distinguish between two cases:

• the torque changes with time so that G is a bounded function
(for example, either is a periodic function of

time with a zero average value, or );



• the torque changes so that with time (for example,
either is a periodic function of time with a nonzero average

value, or ).

The angular momentum G of the SC consists of two components,
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where K represents the angular momentum of the SC body and H is
the angular momentum of the gyros. The moments of inertia of the
SC body necessary for determining K are calculated assuming that
(a) the axes of the gyros are fixed relative to the SC body and (b) the
angular momentum H is calculated with respect to the SC body.

The task of the attitude control system is to implement a required
attitude motion of the SC. This motion is completely specified by K.
Therefore, suppose that the vectors K(t) and G(t) are given. The
first vector is determined by the required orientation of the SC, the
second by the external torques using (14.18). Thus, the value of H

necessary to provide the required attitude motion of a SC affected by
known external torques is determined by

Consider attitude motion of a SC in the vicinity of its steady-state
orientation. Then, K(t) is variable but bounded in magnitude. There
are two ways (see above) in which the vector G(t) changes.

14.3.1 Bounded Angular Momentum of a SC

In the first way, the magnitude of the vector G(t) is bounded. The
task of the SC designer is to choose a combination of gyros with a mag-
nitude of H(t) that exceeds the necessary magnitude of H(t) defined
by (14.20) so that there is spare capability.

In general, the set of n control gyros has total angular momentum

where represents the angular momentum; the angular velocity
and the moment of inertia of the gyro. The equality (14.21)



shows that, by varying change of the vector H and, consequently,
attitude control of the SC can be achieved. This is realized by changing
the magnitude of through either accelerating or braking the spin
rotation of the gyro, or by turning the vector as a result of turning
the spin axis of the gyro.

The first method (i.e. changing the magnitude of ), although it
is sometimes used to control a SC, is not economical. This is because
changing the spin rate requires an expenditure of energy which in-
creases in proportion to the square of the spin rate, whereas the useful
effect (changing the angular momentum), is only proportional to the
spin rate itself. The advantage of the method lies in the simplicity of
the gyro design, due to the fact that the spin axis is fixed with respect
to the SC body and, thus, no gimbal is used. This method because of
its simplicity, coupled with the reliability and low cost of the gyros, is
frequently utilized aboard small SC.

The second method is to turn the spin axis of the gyro. This
requires, for its realization, more complex hardware and software than
the first. Its advantage lies in the rather small associated consumption
of energy, which is lost only in overcoming friction in the bearings of
the spin axis to maintain a constant spin rate, and in compensating
for other such losses. Irrespective of the design of the gyros, attitude
control of a SC can be achieved if the magnitude of vector G(t) is
bounded and if vector H(t) satisfies (14.20).

14.3.2 Unbounded Angular Momentum of a SC

If the magnitude of vector G(t) is unbounded, the necessary condition
(14.20) for achieving control is, generally speaking, not satisfied. As
the number of gyros, their moments of inertia and maximum spin
rates, are limited, the magnitude of the vector H is limited also. To
maintain the validity of (14.20) during an unbounded increase in the
magnitude of vector G, the magnitude of vector K has to similarly
increase. This leads to an unbounded increase in the angular velocity
of the SC so that its original orientation is lost. There is then no
possibility to control the SC and it is governed by the perturbing
torque

The case where perturbing torques have a constant component is
practically always met with and designers should build capability into
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the attitude control systems to counteract this effect. A way to do this
is to apply an external control torque. The reaction torque developed
by a gyro can redistribute the composite angular momentum of the
SC between its parts (the gyros and SC body), but cannot change the
total value (this follows from the theorem of mechanics concerning
the effect of internal forces). It is, therefore, necessary to install a
dedicated control loop which applies an external control torque to
the SC. Actuators of the control loop could comprise thrusters or
magnetorquers that interact with the magnetic field of the Earth.

It might be inferred that the necessity to utilize thrusters as well as
gyros makes the use of gyros unattractive. However, that is not true. If
gyros are installed on a SC, the large consumption of propellant (14.12)
required to provide the SC with precise orientation using thrusters is
not called upon. This is because the task can be accomplished by
the gyros themselves using not on-board propellant but, rather, the
renewable electrical energy resource provided by solar arrays.

Consider next the consumption of propellant determined by (14.18)
for overcoming the perturbing torque, taking into account in this for-
mula only the constant component of because its periodic compo-
nent is compensated for by the gyros. In practice the constant compo-
nent is significantly less than the periodic component, and so the use
of control gyros considerably reduces the consumption of propellant.

This discussion results in the conclusion that, for SC which are
required to have a long life time and accurate orientation, the use
of gyros is unavoidable. This is because gyros spend regeneratable
energy, in contrast to the propellant consumed by thrusters. Also,
the electrical energy consumed by gyros does not, in general, depend
on the accuracy of orientation or on the angular velocity of the SC.
Further, the electrical energy expended is, in practice, rather modest.
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Chapter 15

SC Affected by a

Gravity-Gradient Torque

To describe the angular motion of a SC affected by a torque due to the
gravitational field of the Earth, we need to introduce several reference
systems; to derive an expression for the gravity-gradient torque and
to obtain the associated equations of motion. We also should consider
how to determine angular equilibrium positions and periodic motions
of SC under the influence of such a torque and provide ways to analyze
their stability. Before this, however, we will introduce several general
assumptions that will also be applied in subsequent Chapters.

15.1 General Assumptions

We assume that a SC is a rigid body. This is the case if the natural
frequencies of the SC structure are much higher than the lower fre-
quencies of the external torques affecting the SC (which is true, in
particular, for small SC). Also, we assume that the center of mass of
the SC moves in a Keplerian orbit (i.e. the orbit is fixed in inertial
space), and that the gravitational field of the Earth is central and New-
tonian. To show the validity of these two latter assumptions, consider
SC motion in the Earth’s gravitational field. The associated equations
of motion written in terms of osculating elements and averaged over
the true anomaly, where the second term of the geopotential is taken
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into account, have the following first integrals (see Section 7.5)

only of a change of longitude -of the ascending node of the orbit and
of its perigee argument The equations with right parts averaged
over the true anomaly describing this evolution are as follows

where is mean motion (compare with Section 1.6),
denotes the gravitational parameter of the Earth, is the equatorial
radius of the Earth and is a zonal harmonic
coefficient.

As a result of the Earth’s oblateness, the plane of the orbit pre-
cesses with angular velocity (15.2), while the orbit itself rotates within
this plane with angular velocity (15.3). For a sun-synchronous, low
Earth, orbit with altitude less than 1 000 km, the angular velocity of

the line of nodes (sometimes called the angular velocity of the ascend-

ing node) is about 0.06 deg/orbit and the angular velocity of the line
of apsides (sometimes called the angular velocity of perigee), is about
0.2 deg/orbit. These values which are, at least, three orders of mag-
nitude smaller than the angular velocity of SC orbital motion, both
contribute to the centrifugal forces that affect the attitude motion
of the SC. The torque developed by the centrifugal forces is roughly
proportional to the square of the associated angular velocity. Thus,
the torque due to the orbital motion of the SC around the Earth, is

times greater than the torque produced due to the rotation of the
orbit of the SC, so that its influence can be neglected. It is thereby
demonstrated that the assumptions made above concerning the orbit
of the SC and the Earth’s gravitational field are reasonable in a general
context.

where is the semi-major axis, e the eccentricity and the inclination
of the orbital plane. Thus the Earth’s oblateness does not affect the
form and size of the orbit or its inclination. Orbit evolution consists
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15.2 Reference Systems (IRS / ORS / BRS)

We will now introduce three Cartesian reference systems:
is an inertial reference system (IRS). Its origin

is placed at the Earth’s center of mass. Axis is aligned along
the Earth’s axis of rotation. Axes lie in the Earth’s
equatorial plane so that axis points to the Vernal equinox and
axis completes the right-hand orthogonal reference system. The
term inertial in the name of this reference system means that it can
be considered as absolute, or inertial, with an accuracy acceptable for
our present purposes;

is an orbital reference system (ORS). Its origin O is
placed at the SC’s center of mass. Axis is aligned along the
radius-vector from the center of mass of the Earth to the SC center
of mass. Axis is aligned along the orbit normal. (An observer
located on this axis would see a SC orbiting around the Earth in
a counter-clockwise direction.) Axis completes the right-hand
orthogonal system. It is perpendicular to lies in the orbital
plane and forms an acute angle with the vector of the center of mass
velocity of the SC; are unit vectors with respect to the
ORS axes;

is a body-fixed reference system (BRS). Its axes are directed
along the principal axes of the tensor of inertia of the SC (i.e. its origin
coincides with the center of mass of the SC) and are unit
vectors of the BRS axes.

Let an arbitrary vector a be represented by its projections
on a reference system. We designate the system the vector is projected
onto by a sub-index corresponding with the letter used in the notation
of the axes of that system. For instance, for projecting onto the axes
of a body-fixed reference system we write

Consider a transfer from the orbital to the body-fixed reference
system. Plane angles (Fig.15.1) can be used for representing
this transfer. When these angles are small, they are named pitch, yaw,

and roll respectively. The transformation matrix of directional cosines
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which transforms the components of a vector from one reference sys-
tem to another is sometimes called the directional cosine matrix and
denoted by because its elements are defined through scalar
products of unit vectors by
This matrix can be conveniently represented in tabular form (Ta-
ble 15.1). Such a representation allows us to easily transform a vector

specified by its components in one reference system, by summing the
paired products of the components of a string-vector in BRS with a
string-vector of the matrix to obtain corresponding components of the
column-vector in ORS (and vice versa). For example,

To specify the matrix elements, instead of representing them using
the products of three matrices of elementary rotation (i.e. rotation
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about a particular axis), we write a set of linear transformations that
result from consecutive rotations of the reference system (Fig.15.2).

Transfer now from ORS to BRS through three elementary rota-
tions. The first rotation is performed around the axis through
angle (Fig.l5.2(a)), with linear transformation

The second rotation is executed around the axis through angle
(Fig.15.2 (b)) with

The last rotation is executed around the axis through angle
(Fig.15.2 (c ) ) , with

Substituting from one transformation to another we express
through linear combinations of The factors of ob-
tained by such substitutions are the elements of the directional cosine
matrix A:
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Since a matrix A performs an orthogonal transformation with a unit
determinant, a matrix which performs the reverse transformation
can be obtained by transposing matrix A

Similarly we introduce the transformation matrix which trans-
forms the components of a vector from ORS to IRS and which can be
represented in tabular form (Table 15.2). Elements of the transforma-

tion matrix can be represented using osculating elements (see Fig. 5.1
and relationship (5.1))

15.3 Kinematic Relationships

Obtain kinematic relationships between the components
of SC absolute angular velocity and the derivatives of the
transfer plane angles. The term absolute angular velocity means that
this is an angular velocity of the SC with respect to the inertial refer-
ence system

The relationship between the absolute angular velocity of the SC
its angular velocity with respect to the ORS and the orbital

angular velocity is given by
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The orbital reference system rotates around the orbit normal
which is aligned with the vector of the area integral c (see Section 1.3).
The magnitude of the angular velocity is determined through the ve-
locity of rotation of the SC radius-vector around the Earth using
the formulae (1.23),(1.22) and (1.19) as follows

where is the true anomaly; and is the
parameter. In a circular orbit where is equal to the orbit radius,
reduces to

Establish the relationships between the components

through

where the first rotation around axis has angular velocity the
second rotation around axis has angular velocity and the third
rotation around axis has angular velocity

On substituting the expression for in (15.5) we obtain the re-
quired kinematic relationships

which will later be used to complete the dynamical equations of SC
attitude motion.

15.4 Derivation of the Expression for the

Gravity-Gradient Torque

We next derive the expression for the gravity-gradient torque. Let
R be a radius-vector from the center of mass of the Earth to the
SC center of mass O; r be a radius-vector from to the small mass

of angular velocity of SC rotation relative to the ORS derivatives
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element (particle), and s a radius-vector from this particle to the
SC center of mass O (Fig.15.3).

The gravitational force acting on is determined by the Law of
Universal attraction

A general formula for calculating the total torque exerted on a body of
volume V by a force composed of elementary forces , each applied
at a point specified by a radius-vector s relative to an origin O, has
the form

Thus, using (15.9) for we obtain an expression for the gravity-
gradient torque with respect to the center of mass of a SC

Calculate the components of vector in the BRS, using notations
the resultant

and the vector product
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Write the magnitude of the vector r in the form

Assuming that the ratio s/R is vanishingly small, we can write the
approximation in powers of s/R restricted to terms up to

Also, the series expansion may be written

where the expression in round brackets represents the projection of
vector s onto the axis Substitute (15.11) and (15.12) in (15.10)
and integrate. Take into account the set of equalities

which are valid because the centrifugal moments of inertia of a SC are
equal to zero in the body-fixed reference system considered, due to the
fact that its axes are coincident with the principal axes of the tensor
of inertia of the SC.

Also, take into account the set of equalities

which are valid since the origin O of the BRS coincides with the SC
center of mass. After these substitutions we have
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Zero-value sums are next substituted so that
we can use the notations

for the principal central moments of inertia of the SC. Then, we can
write the required expression for the gravity-gradient torque

The elements of the transformation matrix A contained
in (15.16), are the components of the unit vector of the local ver-
tical in the body-fixed reference system. The ‘physical’ sense lies in
the coincidence of the local vertical and the gradient of the central
Newtonian gravitational field which gives rise to the torque

For the general case, where the axes of another body-fixed reference
system have arbitrary angular positions with respect to the principal
axes of the SC tensor of inertia, the torque can be represented by

where is the tensor of inertia of the SC in this new body-fixed
reference system. If now in this reference system,
the tensor of inertia has the form

where the centrifugal elements of the tensor are

Its diagonal elements A, B and C have already been introduced in
(15.15). Sometimes, instead of A, B, C, D, E, F the corresponding no-
tations are used.
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15.5 Equations of SC Motion

To describe SC motion we may use Euler’s dynamical equations which
can be represented in vector form by

which is valid for any arbitrary BRS. Consider this equation in its
more commonly used scalar form by projecting (15.20) onto the axes
of the BRS, which axes coincide with the principal axes of the SC
tensor of inertia i.e.

These three dynamical equations contain six variables (three compo-
nents of absolute angular velocity and three planar angles). To obtain
their solution we should complement (15.21) with kinematic equations

which express the derivatives of the planar angles in terms of the com-
ponents of the SC absolute angular velocity. Resolving (15.8) with
respect to these derivatives, we obtain Euler’s kinematic equations

Now we make a remark. All three-angle transformation sets are
subject to singularity when the angles cannot define a unique config-
uration. In (15.22) this takes place when and In
the close vicinity of these configurations, a small turn of the body is
followed by a large changing of angles. To avoid this, one can choose
another three-angle transformation set since the motion concerned is
known in advance or use other variables, for instance quaternions in-
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troduced by Hamilton* or elements of a transformation matrix. An
increase in the number of new variables up to more than three allows
us to avoid the problem of singularity (so called ‘gimbal lock’). For
example, choosing six elements of the matrix (15.4) as new
variables we can write the consequent kinematic equations, called the
Poisson

† kinematic equations

where are the components of unit vectors of axes
of the ORS in projections on the BRS, Another

three elements of the matrix not contained in (15.23) can be calculated
using the formula

We will next consider special motions of a SC affected by a gravity-
gradient torque.

*Hamilton, William Rowan (1805-1865) Irish mathematician. Professor at Trin-
ity College Dublin. In his Theory of Systems of Rays he predicted the existence
of conical refraction and unified the field of optics under the principle of varying
action. His reformulation of the equations of motion of Lagrange is a powerful
tool in classical and in modern wave mechanics. He invented quaternions.

†Poisson, Siméon-Denis (1781-1840), French mathematician who was a pupil
and friend of Laplace and Lagrange. He extended their work in celestial mechanics.
Also, he made outstanding contributions in electricity and magnetism.



Chapter 16

SC Motion in a Circular

Orbit

We begin with the motion of a SC in circular orbit. On transforming
the general equations (15.21), (15.22) of SC attitude motion for the
case of a circular orbit (e = 0), where and we
get

First, consider the planar motion of a SC in circular orbit, which
involves the motion of any two of its principal axes of inertia in the
plane of the orbit.

16.1 Planar Motion of a SC

The equations (16.1) have the special solution

185
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where and satisfy the following equations

Eliminating we obtain

which is similar to the equation of motion of a classical pendulum with
one degree of freedom. The special solution satisfying the conditions

is for motion of a SC in an orbital plane (this is called planar motion),
and can be contrasted with the solution satisfying the conditions

which is for three dimensional or spatial motion, that is, motion where
the axes of the SC can assume any arbitrary orientation relative to
the orbital plane.

Equation (16.3) describes the natural planar motions of the SC
and is integrated using elliptic functions. Multiplying both sides of
(16.3) by and integrating over time, we obtain

where is an energy integral. Solving (16.4) with respect to gives

Before finalizing the integration, we consider SC motion in the phase
plane Obtain first the equilibrium positions of the SC and the
conditions for their stability. Substituting into (16.3), we
get sin which has four, physically distinct, solutions
k=0,1,2,3.

We will now derive sufficient conditions for the stability of these
equilibrium positions using an approach based on Lyapunov’s* theorem

* Lyapunov, Alexander Mikhailovich (1857–1918), Russian mathematician, pro-
fessor at the Khar’kov University, who made a significant research input to the
general theory of stability; deduced the ellipsoidal shapes of a spinning liquid and
derived the screw motions of a rigid body in fluid media.
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for stability†. We choose the first integral (16.4) as Lyapunov’s
function At the equilibrium position this function

is equal to zero. Outside of this equilibrium position, under the
inequality A – C > 0, the function is strictly greater than zero.
Thus, function is positive-definite. Using (16.3), the derivative of
function with respect to time is

Necessary conditions for the stability of the trivial solution
are determined from the conditions for the existence of a finite solution
of equation

which is obtained by linearizing equation (16.3) in the vicinity of the
equilibrium position An harmonic solution of this equation
exists if the condition A – C > 0 is valid. This follows from the
condition that imaginary roots of the characteristic equation

†Consider autonomous differential equations

with the equlibrium solution

function, (for example, for all and
which has first partial derivatives with respect to all its variables,

such that its time derivative calculated along the motion described by (16.6)
is either of constant sign; opposite to the sign of the function

or identically equal to zero, then the trivial solution (16.7) of (16.6) is stable.
Function is called Lyapunov’s function. ‘Along the motion’ means that is
substituted from (16.6) in

which provides If there exists a continuous, sign-definite, scalar
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corresponding to (16.8), with respect to the characteristic exponent

exist (the roots of characteristic equations are called characteristic

values or eigenvalues).
Thus, a necessary and sufficient condition for stability, A – C >

0 has been obtained for the equilibrium position For the
equilibrium position we get a similar result.

An investigation of the stability of equilibrium positions with
and can also be performed. A necessary and sufficient

condition for the stability of these solutions is A – C < 0.
We next consider a diagram of SC motion in the phase plane

for the case A – C > 0 (Fig. 16.1). One of the following three relation-
ships is then valid, depending on the magnitude of the energy integral

The points and are stable equilibrium positions while

points and are unstable. Among two axes of inertia
and the axis corresponding to the minimum moment of
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inertia C is directed along the local vertical at the stable position. If
satisfies inequality the SC rotates. If is sufficiently small

that is satisfied, the SC librates relative to the local vertical.
Motion along a separatrix satisfying equality is asymptotic,
that is if then a point in the phase plane tends to approach
an unstable equilibrium position but cannot reach that point. More
typical motions are rotational and periodic.

If now we consider the case A – C < 0, stability is achieved at
positions and when the axis of maximum moment
of inertia of the SC coincides with the local vertical.

Next, substituting from (16.4) in the inequality                we ob-
tain the condition of libration boundedness

Here the index ‘zero’ in and indicates that the angular position
and velocity are pertinent to the moment Let us estimate allowed
values of that provide libration motion. From the triangle
ity†

 B + C > A it follows that A – C < B and so 3(A – C)/B < 3.
Recalling that we obtain from (16.10) the inequality

For SC in LEO§ the estimation rad/s is
valid. Thus, SC libration is possible at a very small initial angular
velocity.

Let us return now to the integration of equation (16.3). On sep-
arating the variables in (16.5) and integrating, we obtain an elliptic

integral

†There are three triangle inequalities:

which are valid for the principal moments of inertia of any body.
§Low Earth Orbits, typically with altitude of the order of 1 000 km.
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Introduce the modulus of the elliptic integral through the expression

The case corresponds to libration. Also introduce
a new variable through the relationship sin from which
we obtain cos Now, using the expression for the
modulus we change in (16.11) variable to variable through a
set of transformations

Finally, we obtain

Next, recall the definition of an elliptic integral of the first kind in
Legendre¶ form

where is termed the amplitude of written which is
induced by inversion of Definition of a sine of amplitude
induces the definition of elliptic function which is called the elliptic

sine

¶ Legendre, Andrien-Marie (1752-1833), French mathematician who made im-
portant contributions to calculus (particularly to function theory, differential equa-
tions and elliptic integrals), number theory and the theory of errors of observation.
The Legendre polynomials he introduced are among the most important of the
special functions.
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Return now to equality (16.12). Transforming its right side and
retaining there the elliptic integral, we obtain

Using the definitions introduced for and and inverting the
integral on the right side of (16.13), we get the required solution of
equation (16.3)

It follows from (16.14) that and, hence, max
This allows us to calculate the amplitude of SC libration.

The period of libration T is determined from the sequence of ex-
pressions

where is a complete elliptic integral of the first kind,

is the period of revolution of the SC around the Earth;
and is the period of

If then, for , we write a Taylor–series expansion

Substituting this expansion in (16.15) we get an approximate expres-
sion for the libration period
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If the terms are negligible, the SC libration is similar to the
motion of an harmonic oscillator with The
period of non-harmonic libration is always greater than this because

(see the last ratio on the right side in (16.15). The value
is the minimum period of libration since, due to the triangle

inequality B + C > A, the maximum value of the ratio 3(A – C)/B
is 3. If then the period tends to infinity.

16.2 SC Equilibrium Positions

We now consider the existence of stationary solutions of (16.1) i.e. the
equilibrium positions of a SC in circular orbit with respect to the ORS.
Substituting in (16.1) we
obtain, if the conditions of pairwise inequality are
valid for the SC moments of inertia, the following relationships

These comprise a closed system of trigonometric equations with re-
spect to the angles which has, in particular, the trivial

solution

It can be shown that 24 equilibrium positions of a three-axis SC exist.
These correspond to all the possible configurations in which the axes
of the BRS can coincide with the axes of the ORS.

The question here arises at to whether solutions
which correspond to tilted positions of the axes of the BRS

with respect to the ORS, exist. Introduce the expressions

The definition of the unit vector of the ORS, given by
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provides the relationships

for the components of this vector in the BRS. Due to the trivial integral
which is valid for a transformation matrix A,

parameters and cannot all be equal to zero at the same
time.

Let then, in this case, the first and second equations of
(16.17), which are uniform and linear with respect to with
non-zero determinant equal to have the unique trivial solution

On substituting in (16.19), the equalities
are valid. The third equation of (16.17) has also to be

satisfied, as well as the trivial integrals of motion
and i.e. taking the

solution into account, the following four relationships

should hold.
If we now introduce new variables and through

then (16.20) leads to two
trigonometric equations

because the two last equations of (16.20) have become identities. Thus,
the introduction of facilitated by the two trivial integrals

results in reducing the number of equations to
be solved.

Express through using the second equation of (16.21), and
substitute it into the first equation. We then obtain which
has solutions As a result, the solutions of
(16.20) expressed through directional cosines have the form
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and

which, together with the relationships determine eight
equilibrium positions of the BRS with respect to the ORS.

Similarly, other cases can be considered. If then either
or is not zero. Let then from the first and

third equations of (16.17), we obtain and, consequently,
As in the case where the solutions

and

determine eight other equilibrium positions.
Finally, let and Then and, conse-

quently, and a further eight solutions exist

and

It is convenient to present all the solutions of (16.17) in tabular
form (Table 16.1). Dashes in this Table mean that configurations

corresponding to values of the relevant directional cosines in the left
column and upper line do not exist. The directional cosines are
expressed using the directional cosines It is seen
in this Table, that there are only 24 equilibrium positions of the BRS
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with respect to the There are no other equilibrium positions
that would correspond to tilted positions of the axes of the BRS with
respect to the ORS.

16.3 Sufficient Conditions

for Equilibrium Stability

Let us turn next to an investigation of the stability of the equilibrium
positions obtained above. Write a Jacobi integral of energy [5]

for equations (16.1). Express this integral using the components of
relative angular velocity with respect to the ORS

Here on the left side, the first term represents the kinetic energy of
relative angular motion; the second term the potential energy of the
gravitational field and the third term the potential energy of centrifu-
gal inertial forces.

Use integral (16.23) to determine the stability conditions of equi-
librium positions of the SC. For specificity, consider the representative
equilibrium positions

Table (16.1) shows that there are four equilibrium positions described
by these relationships since Exclude from

approach to proving the existence of 24 equilibrium SC positions was
used by V.A.Sarychev and V.V.Sazonov in Evaluation of the Boundaries of

the SC Librational Motion. Preprint of the Institute of Applied Mathematics
USSR Academy of Sciences, 1974, N 130. Another approach by P.W.Likins
and R.E.Roberson is contained in Uniqueness of Equilibrium Attitudes for Earth-

Pointing Satellites. Journal of the Astronautical Sciences, 1966, Vol.13, Issue 2,
pp.87-88.
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(16.23) by substituting the trivial integrals

Then integral (16.23) can be written as

where is a new constant.
Denote first integral (16.25) by and confirm with reference to

Section 16.1 that (16.25) can be used as a Lyapunov function . The
function is equal to zero only at positions (16.24). It is noted that
this is a consequence of the substitutions for and made above
which have non-zero values at equilibrium positions. If the inequalities

are valid, then the function is strictly positive outside the equi-
librium positions (16.24). Thus, function is positive-definite by
virtue of (16.26). The derivative is calculated along the
motion described by (16.1) due to the relationship Hence,
by Lyapunov’s theorem for stability, the inequalities (16.26) provide
sufficient conditions for stability at the relative equilibrium positions
(16.18).

Thus, it is sufficient for stability at the relative equilibrium posi-
tions of a SC in circular orbit that (a) the axis of SC minimum moment
of inertia be along the radius-vector connecting the Earth’s center with
the SC center of mass; (b) the axis of SC maximum moment of inertia
be along the orbit normal; (c) the axis of middle moment of inertia
be along the orbit tangent. There are only four equilibrium positions
corresponding to these configurations. They are referred to, speaking
figuratively, as motions with ‘face forward’ (‘head up’ or ‘head down’)
and ‘face back’ (‘head up’ or ‘head down’). Although, there are 24
equilibrium positions listed in Table (16.1), the above consideration
restricts the number of stable configurations to this four (correspond-
ing to minima of the total energy of motion of the SC with respect to
the orbital reference system).
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16.4 Necessary Conditions

for Equilibrium Stability

Consider spatial librations of a SC in a circular orbit close to the equi-
librium position (16.18). Assume that the librations are sufficiently
small that where corresponds to the angles

Substitute these approximations in the elements of the transforma-
tion matrix A. Then the expressions thus obtained for the directional
cosines are substituted into (16.1). This results in the following equa-
tions, linearized in the vicinity of solution (16.18)

Here all terms are especially retained on the same side of the equations
where corresponding nonlinear terms were placed before linearization.
This allows us to deduce the source of different components of the
restoring torque dependent on angular displacement.

In the first equation, the restoring torque associated with roll mo-
tion is developed by centrifugal inertial forces (third term on the left
side) and gravity-gradient forces (term on the right side). In the sec-
ond equation, which describes pitch motion, the restoring torque is
developed by gravity-gradient forces only (term on the right side).
In the third equation, the restoring torque associated with yaw mo-
tion, is developed by centrifugal inertial forces only (third term on the
left side) and there is no term corresponding to the gravity-gradient
torque. This means that the yaw component of the restoring torque
is developed due only to the rotation of the ORS. Because the first
and third equations are mutually coupled, we can speak about the as-
sociation between components of the restoring torque and individual
motions.

On grouping now the similar terms in (16.27), we obtain
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Here we placed first an equation describing pitch motion in the orbital
plane which is independent of roll and yaw If A – B + C = 0
(this case corresponds to an infinitesimally thin plate contained in the

plane of the BRS), then there is no relation between roll and
yaw librations, and all three motions are decoupled.

Next introduce the unitless inertial parameters and
use the argument of latitude as a unitless independent

variable instead of time and transform (16.28) to

where prime denotes a derivative with respect to
The secular equation corresponding to (16.29) has the form

is an eigenvalue frequency when we seek a solution of (16.29) in the
form of harmonic oscillations where is the initial phase
of motion.

Let be roots of the biquadratic equation with respect to

and be a root of the quadratic equation

Then the general solution of (16.29) has the form

where
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and are constants, expressed via initial values
of the angles and their derivatives.

Roots are real if the following conditions

are met so that:

— the signs of and should be the same;
— the sum should be positive;
— the discriminant of the biquadratic equation should be positive.

If the second inequality in (16.35) is true, then the third inequality
is true automatically, since the inertial parameters of the SC satisfy the
triangle inequalities and the sufficient conditions for stability (16.26).

The inequalities (16.35) are necessary conditions for the stability
of the trivial solution of the linearized equations (16.29). Sufficient
conditions (16.26) are expressed via the unitless inertial parameters

and in the form

Domains in the plane (Fig.16.2) determined by the nec-
essary (16.35) and sufficient (16.36) conditions for the stability of the
trivial solution (16.18), are indicated through vertical (domains NPL
and PQRS) and horizontal (domain NPL) hatching respectively. In
domain NPL, the simultaneous fulfilling of necessary and sufficient
conditions for stability results in this regime being cross hatched. The
infinite semi-strip corresponding to all physically realized rigid bodies
is constrained by the triangle inequalities

The necessary and sufficient conditions for stability shown in Fig. 16.2
by the domain NPL, are provided by the inequalities

B > A > C
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These conditions were derived by Beletsky** in 1959.

** V.V.Beletsky. Libration of a Satellite. Transactions: Artificial Satellites of

the Earth, Moscow, USSR Academy of Sciences Publ., 1959, Issue 3, pp.13–31.
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SC Motion in an Elliptical

Orbit

The equations (15.21) and (15.22) have a special solution relevant to
the motion of a SC in an orbital plane (planar motion). Now we will
consider those solutions pertaining to motion in elliptical orbits.

17.1 Equation of Planar SC Motion

For an elliptical orbit, planar motion satisfies the following equations

Substitute the expressions for the directional cosines and in
these equations and transform them to a single,second order, equation

Recalling that and where a prime
denotes derivation with respect to the true anomaly then we obtain
for

201



Substitute in the above the expression to obtain the equation*

of SC motion

Here is a SC inertial parameter and and e satisfy
the inequalities and respectively. Sometimes, it
is convenient to use the mean anomaly M (see (1.28), Section 1.6)
rather than the true anomaly. Using the mean anomaly we can write
equation (17.1) in the form

Introduce a new variable Then from (17.2) we obtain an
equation

which is appropriate, when for the application of asymptotic
methods of solution.

Extract now the particular solution of equation (17.1) that exists
for the specific relation between the SC and orbit parameters

For this, equation (17.1) has the form

with the solution

which carries the following mechanical meaning. At perigee where
and the SC ‘faces’ towards the Earth. At apogee where

it faces along the tangent to the orbit. On passing
the next perigee the SC faces away from the Earth.
On the other hand, the SC spins continuously and occupies the same
angular positions with respect to the Earth every two revolutions.

*V.V.Beletsky. Motion of an Artificial Satellite About its Center of Mass,
Transactions: Artificial Satellites of the Earth. Moscow, USSR Academy of Sci-
ences Publ., 1958, Issue 1, pp.25–43.
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17.2 Linear Librations

On linearizing equation (17.1) in the vicinity of the solution
which exists for a circular orbit and introducing a new variable using

we obtain a non-uniform Hill type equation, with periodic coefficients
and a right side that is periodic with respect to the true anomaly,

This equation cannot be integrated in closed form except for the simple
resonant case and we will thus use an approximation method
to investigate it.

Let the eccentricity e be much less than unity then, to
within the approximation the expression for the coefficient of

in (17.5) can be written in the form

and this equation may then be transformed to a non-uniform Math-

ieu’s equation

The solution of equation (17.6) for a null-order approximation with
respect to e has the form

where is the amplitude and libration phase with
an initial value Let us now obtain a solution of equation (17.6) in
the following form

moreover, and have to satisfy the equations
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is a function to be obtained. (We follow here the van der

Pol’s method
† (see Appendix A)). This form of representation of the

sought solution is called the ‘improved first approximation’.
Substituting (17.8) into (17.6), using the conditions (17.9), and

keeping only terms of first order in e, we get after transformation

Cancel e on both sides. On the right side of (17.10) the harmonics
cos and cos are present, but the harmonics and
sin are absent. In order that (17.10) be valid, the functions A1 and
B1 have to satisfy the relations

Now determine using (17.11) so that the left and right sides in
(17.10) are equal to each other. Substitute in (17.10) in the form

The factors of each harmonic are added and the sums obtained equated
to zero. Thus, we get expressions for the coefficients

Finally, a first approximation to the solution of (17.6) has the form

Through (17.11) the equalities and are valid.
Apart from a resonance at brought about by the equality be-
tween the natural frequency of the SC and the frequency of its orbital

†B.van der Pol. A Theory of the Amplitude of Free and Forced Triode Vibra-
tion. Radio Review, 1920, Vol.1, p.701.
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motion (see the forced term a parametric resonance

at µ = 1/4 caused by the periodic variation of the natural frequency
(see (17.5)) appears. The third term which contains a factor ea in
(17.12), is provided, to a first approximation, by a solution of Math-
ieu’s equation.

17.2.1 Stability of the Solution of Mathieu’s

Equation

Write the Mathieu equation‡ in its general form

This equation describes the behaviour of a mechanical system affected
by parametric periodic excitation. The character of its solution is sim-
ilar to that for libration, depending on the values of the parameters

and b. For one combination of values of these parameters the li-
bration remains bounded. For another they increase infinitely. The
phenomenon of librations with infinitely increased amplitude is named
parametric resonance. In the case of bounded librations, the trivial
solution of equation (17.13) is stable. In the unbounded case, there
is no stability. The curves along which periodic solutions of (17.13)
exist, separate domains of stability and instability in the plane (a, b).
An example of a partial solution of Mathieu’s equation was presented
in the previous Section.

Now we will seek a -periodic solution in the following form

Considering only the two first terms, substitute them in (17.13). Trans-
forming the trigonometric function products into sums of these func-
tions we get

The conditions for equating to zero on the left side of this equation
the two retained terms

‡E.Mathieu Cours de physique mathematique, Paris, 1873.
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allow us to write the conditions for the existence of a non-trivial so-
lution for and in the form

These are the left and right boundaries of the non-stability domain of
the trivial solution of Mathieu’s equation, both of which start from
the point = 1, b = 0.

Similarly, the boundaries starting from points = 0, = 4, =

9 , . . . can be constructed. These have the forms

The domain boundaries are presented in a diagram of stability, where
domains of stability are indicated by hatching (Fig.17.1).

If the conditions for parametric resonance are realized, then the
amplitude of the librations increases even though damping is present
in the system. This behaviour of parametrically excited linear sys-
tems, differs from what happens in the case of forced librations. In

206
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the former case, both the energy loss and the input of energy are pro-
portional to the square of the amplitude of libration. In the latter
case, the energy input is directly proportional to the amplitude while
the energy loss is proportional to the square of the amplitude. This is
the reason for the boundedness of forced librations in the presence of
damping.

17.3 Non-linear Librations

Let us seek a solution of (17.1) for small, though nonlinear, forced
librations, in the form

where, as in (17.7), and are constants. First represent sin
in the form of a Fourier-series

Here is Bessel’s§ function of the first kind of order 2k + 1. We
will consider only the first term in this series

Substitute (17.16) in (17.1), using (17.17). Summing the factors of the
same harmonics of and equating the sums for the constant terms,
as well as for sin and cos to zero we get three equations

It follows from the first that and from the third, taking
into account (17.16),

§Bessel, Friedrich Wilhelm (1784–1846), German astronomer and mathemati-
cian, Member of the St.Petersburg and of the Berlin Academy of Sciences. He
made a significant contribution to the theory of errors as applied to astronomical
observations. Functions he developed to describe specific physical and technical
problems, which are now called in his name, are among those most commonly used
in physics and engineering.
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An example of this solution when e = 0.01 is shown in Fig.17.2 [4]
where the left (right) branches of the curve correspond, respectively,
to minus (plus) in (17.19). For the values of parameter lying on the
right side relative to the vertical tangent line there are three solutions
for each value of in contrast to one solution on the left side relative
to this vertical line. For small the relationship is

valid and the solution obtained coincides with that part of (17.12)
corresponding to forced librations.

Consider similarly parametric resonant librations at (see
(17.12)), making the distinction only that the solution should be in
the form

Then, on executing transformations, we obtain two solutions

and

Hence, it follows that the amplitude is uniquely determined within the
domain
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If belongs to (17.21), then parametric resonant librations appear.
The second solution is not realized. The dependence of libration ampli-
tude on the inertial parameter is shown in Fig.17.3 [4]. Amplitudes

of the solution (17.20) existing in the domain (17.21) are indicated by
the solid line. Amplitudes corresponding to non-realized solutions are
indicated by dashed lines.

In the next Section we will consider periodic motions in elliptical
orbits with arbitrary eccentricity, which support the results obtained
above for small eccentricity.

17.4 Periodic Motion of a SC

17.4.1 Solutions for Slightly Elliptical Orbits

Take again equation (17.1) and transform it, for e = 0, into the equa-
tion of a simple pendulum

which describes motion of a SC in a circular orbit. The integral of
energy for equation (17.22) has the form We
present here the solution of this equation for two cases, librations and
rotations,



210 CHAPTER 17. SC MOTION IN AN ELLIPTICAL ORBIT

libration solution ( < 1):

rotation solution ( > 1):

and is the initial phase. A detailed account of the libration solution
(17.23) is contained in Section 16.1.

Since the parameters e  and/or are small, it is possible to apply
asymptotic methods of solution. Adopting, in particular, Poincare’s

method (see Appendix C), it can be shown that a unique, -periodic,
solution of equation (17.1), which is analytic with respect to
e, and satisfies the equality exists for and
Equation (17.22) has a stationary solution

For the non-resonant case a -periodic solution of (17.1) generated
by the stationary solution (in this case, is called a
generating solution), can be obtained as a series in powers of e, for

V.A.Zlatoustov, D.E.Okhotsimsky, V.A.Sarychev and A.P.Torzhevsky. Inves-
tigation of Satellite Libration in the Plane of an Elliptical Orbit. Cosmic Research,

1964, Vol.2, Issue 5, pp.657-666.

where is the period of SC libration, is the period of SC rotation

and the factors of  terms of the same order in e are equated. The
resulting set of equations is then solved, beginning from the equation

the solution (17.26) has the form

where factors have to be determined. To do this, the
solution sought (for example (17.26)), is substituted for in (17.1),

for and proceeding consecutively. For terms up to order three in e,
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A general expression for can be written as

In the resonant case, a solution generated by the sta-
tionary solution can be obtained as a series in powers of

The solution (17.26) is odd with respect to and periodic. The
condition for oddness and periodicity T are represented by

and

Substituting in the first equality, we get Substituting
in the second equality, and taking into account the con-

dition of oddness, we get Assuming we obtain
boundary conditions

which define the solution of equation (17.1). The first terms of
the solution expansion of in the series in e is determined by
(17.27).

The generating, nonstationary, periodic solutions contained among
the librational and rotational solutions (17.23), (17.24) of the pendu-
lum remain periodic at non-zero values of the small parameter e. From
the of the terms of equation (17.1), it follows that the
generating solutions should obey the condition
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where and are relatively prime natural numbers. This condition
determines solutions which describe the motion of a SC when it per-
forms librations with respect to the local vertical during orbits.
Equation (17.31) has real roots only if For at least

periodic solutions of equation (17.1) exist which correspond to the
following values of the phase

Denote by these periodic solutions. They can then be de-
termined in the form of a series in e or, numerically, by solving the
one-parameter boundary value problem for (17.1). Sometimes the
combination of an equation and its boundary conditions is called a
boundary value problem.

17.4.2 Numerical Investigation

which is sometimes called a linearized equation for (17.1) in the vicin-
ity of the solution or an equation in deviations, describes such
perturbed motion.

A characteristic equation

corresponds to (17.33). The coefficients of this equation can be cal-
culated by means of the coefficients of a fundamental matrix (see Ap-
pendix B)

CHAPTER 17. SC MOTION IN AN ELLIPTICAL ORBIT

The results obtained in the previous Section 17.4.1 concern
We will now construct periodic solutions for arbitrary values of the
eccentricity and, simultaneously, analyze their stability.

The construction of solutions of (17.1) is performed by
numerically solving the boundary value problem.

The stability of solutions of (17.1) is analyzed through
using the, corresponding, linerar equation. Let be a small
variation of the solution the stability of which is being
investigated, where is a small deviation. Then, the linear equation
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with initial conditions

Thus,

and the last coefficient of the equation is equal to unity due to
(B.5).

the necessary condition for the stability of the solution is met. If
|A| > 1, then the trivial solution is unstable and, consequently, the
solution is unstable also. The boundary of the stability domain is
determined by |A| = 1.

To extend the generating solutions obtained at e = 0 to the domain
of arbitrary values of eccentricity, we may use a variant of the method

of parameter extension||.

||Consider an equation where is a space of
real numbers of Let be a point such that the equation
is valid. We need to construct a curve L in the space which is determined
by the equation and passes through the point

The unit vector directed along the tangent to L at the point is
obtained from

Assume that the condition rank is met, then the line of the vector is
determined but not its direction. Let us assign this direction. Consider the point

where In general, but as the distance
between and L has order Point nearest to we compute using

and expand it as a series in Keeping only terms of zero and first order, we get
an equation to determine

zero. The final expression for has the form

If |A| < 1, then a trivial solution of (17.33) is stable and

where is an unknown vector. Substitute this expression for in

By virtue of the assumption rank the determinant of this equation is not
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To apply the method of parameter extension to obtain periodic
solutions of (17.1), at least two points on the curve to be constructed
should be known. One point can be determined from the generating
solution. Another can be obtained through the expansion (17.26), or
through similar series calculated for other either stationary (17.25) or
non-stationary (17.23), solutions for the case of librational, periodic
motions. Let us consider now results of the numerical investigation of

solutions of equation (17.1).
The one-parameter boundary value problem (17.1), (17.30) was

solved by the method of parameter extension and the initial values
of SC angular velocity obtained. With the initial condition

and relevant values of e and this angular velocity totally
determines the periodic solution of (17.1). In the plane the
curves of initial velocity for values of e and within a domain where

and are shown in Fig.17.4 [26]. It can be seen
in this figure that, for each value of e, there are either one or three
initial values of in this domain. Denote by and solu-
tions which are extended from non-stationary solutions (17.23). The
subscript index in these notations associates with the ratio in
(17.31). Positive values of situated above the dashed line in
Fig.17.4 correspond to solution Negative values of when

If where a number characterizes the accuracy of computation
then, by taking as we refine and continue to iterate until the inequality

is valid.
Unit vector directed along the tangent to L at the point is obtained from

the conditions

If is small enough then, by virtue of the vector coincides with
the vector When a few such points along the curve L become known, then
prediction of the next point can be made more accurately using linear, quadratic
etc methods of prediction.

Functions and for each are calculated by integrating the differential
equations whose periodic solution is being determined, and also their correspond-
ing variational equations. In order that the algorithm works successfully, the
equality rank should be valid at almost all points of L. This equality can
be violated at a point where the corresponding variational equations have a non-
trivial periodic solution, characterized by the same period and symmetry as the
sought periodic solution. (V.Sarychev, V.Sazonov and N.Melnik. Spatial Periodic
Librations of a Satellite Relative to its Center of Mass. Cosmic Research, 1980,
Vol.18, Issue 5, pp.659-677.)

CHAPTER 17. SC MOTION IN AN ELLIPTICAL ORBIT



17.4. Periodic Motion of a SC 215

correspond to the solution For both generating solutions
the point is a bifurcation point (i.e. a point where, at
least, two solutions appear).

Denote the solution generated from the stationary so-
lution by in the range and by in the range

Solution is determined by the initial values
situated below the dashed line. Initial values of when
correspond to the solution

The dashed line along which the solutions and are com-
bined is called a bifurcation curve. Along this curve, a single value of

corresponds to both the and solutions as determined by
the condition of verticality of the tangent to the isoline

Obtain now an approximate expression for the bifurcation curve
which divides parameter space into domains within which the number
of solutions is different. On substituting the expansion of Bessel’s
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function of the first kind

in the first equation in (17.19), and solving it with respect to a, we
obtain

The sign of its discriminant

specifies the number of real solutions of (17.36). If D > 0 this equation
has a single real solution and there are three real solutions if D <

0. The curve separating domains which correspond to these cases, is
determined by the equation D = 0 with the solution

If equation (17.1) has a single solution. If
it has three solutions for each value of e. The bifurcation curve

starts at the point (e = 0, ) and terminates at the point
( ). For e > 4/9, at all allowed values of the
inertial parameter a single periodic solution exists.

The bifurcation curve can also be calculated numerically using the
condition

which corresponds to the verticality of a tangent to the curve of initial
angular velocity Another method of calculating the curve uses
the conditions for the existence of non-trivial solutions
of the variational equation (17.33) satisfying the boundary conditions

In the parameter plane (Fig.17.5), the bi-
furcation curve obtained using this method is represented by
It starts at the point ( ) but, in contrast to the curve
approximated by (17.37), it terminates at a slightly different point
( ). For large e close to unity, there is another, small,

CHAPTER 17. SC MOTION IN AN ELLIPTICAL ORBIT
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domain where, for each value of e, three solutions also
exist. The domains of stability are shown in Fig.17.6.

Spatial periodic motions of SC in elliptical orbits are calculated and
analyzed with respect to bifurcation effects using a similar approach
in the reference cited in the footnote on page 214.





Chapter 18

A Spinning Axisymmetric

SC in Circular Orbit

A three-axis SC with mutually different moments of inertia can as-
sume, in circular orbit, various equilibrium positions. A dynamically
axisymmetric SC with two equal moments of inertia that uniformly
spins around its axis of symmetry with its spin axis fixed with re-
spect to the orbital reference system displays, so called, stationary

rotations*. The fixed positions are determined by the spin velocity
and by the ratio of the SC moments of inertia. The physical basis for
this behavior is a combination of torques produced by the gyroscopic,
gravity-gradient and centrifugal forces.

18.1 Equations of Motion

To describe the orientation of a SC with respect to the orbital reference
system, we will use classical Euler’s angles (Fig.18.1). The correspond-
ing matrix of directional cosines with elements

*Stationary rotation is a specific case of stationary motion where the position
coordinates (corresponding to a fixed position of the axis of symmetry of the SC
with respect to the ORS) remain constant and the cyclic coordinates (angle of
spin rotation about the axis of symmetry) vary linearly with time.

219
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Here, we retain our previous notation for elements of the matrix of di-
rectional cosines as well as other notations introduced in Chapter 15.
However, these cosines and kinematic relations are now expressed us-
ing Euler’s angles by means of the following formulae

can be defined in tabular form

CHAPTER 18. SPINNING AXISYMMETRIC SC
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Euler’s equations for a dynamically axisymmetric SC (where A = B),
have the form

Stationary Motions of a SC

The existence of the first integral

for (18.2) follows from the last equation of (18.2). In addition, there
is the general integral of energy (Jacobi’s integral)

where

and is constant. Stationary rotation of a SC corresponds to a fixed
position of its axis of symmetry with respect to the orbital reference
system defined by angles and to
a uniform rotation of the SC about this axis. When these constant
values are inserted in the kinematic relations (18.1), their right-hand
sides depend on and only. Next, substitute the kinematic relations
in the first two equations of (18.2). Replace the derivative by its
explicit expression from (18.3)

then, taking into account the third expression from (18.1), we obtain

Among the matrix elements in (18.6), only the elements
depend on the angle which is characterized by its uni-

form variation with time. We may exclude angle from (18.6) in the

18.2. Stationary Motions of a SC

18.2
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following manner. Multiply both sides of the first equation by
and of the second equation by and combine them. Then multi-
ply both sides of these two equations by and respectively
and again combine them. After reduction we get the following two
equations that do not depend on

Here the notations used are

(recall that due to the triangle inequalities for a rigid
body). This procedure of transformation is equivalent to excluding
the cycling variable by introducing a, so called, body semi-fixed

reference system, where one axis coincides with the axis of symmetry.
The two other axes are individually perpendicular to the first axis and
to each other but do not follow the SC’s spin rotation around the axis
of symmetry.

The equalities (18.7) are valid if at least one co-factor in each of
them is equal to zero. This yields four corresponding combinations
of equalities. Resolving them, we obtain the following three pairs of
equations:

Simultaneously equating to zero both the expressions contained in
square brackets in (18.7), provides us with the equation
The solution of this does not belong to the domain of definition of
Euler’s angles (this is a point of singularity for this set of angles), and
we do not take it into consideration.

Let us resolve the three pairs of equations (18.8) with respect to
the angles and and provide a geometrical interpretation of these
solutions in terms of the position of the SC axis of symmetry in the
orbital reference system.
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The first pair admits the solution

for all allowed values of the parameters where and are
integers. The SC axis of symmetry is, in this case, perpendicular
to the orbital plane.

The second pair admits the solution

for any values of the parameters that satisfy the inequality
Here the SC axis of symmetry lies in the plane which is per-

pendicular to the radius-vector of the center of mass.

The third pair admits the solution

for any values of the parameters that satisfy the inequalities
and The SC axis of symmetry

now lies in the plane which is perpendicular to the vector of the
center of mass velocity.

In Fig.18.2 the position of the SC axis of symmetry with respect
to the axes of the orbital reference system is indicated by a bold line.
The ranges of possible positions of are denoted by arcs.

Sometimes we will refer to (18.8) as a stationary solution, mean-
ing that it includes all the stationary motions described by the three
pairs of equations (18.8), without distinguishing between these pairs
or indicating which concrete values of the integers and are chosen.

The angular velocity of SC spin rotation about its axis of symmetry

is obtained from the third equality of (18.5), taking into account values
of from one of the solutions of (18.8) and from the first integral
(18.3).

18.2. Stationary Motions of a SC
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Although the magnitudes of the angles and are constant,
solutions (18.9), (18.10) and (18.11) are referred to as stationary mo-

tions, since the SC axis of symmetry performs rotations with respect
to inertial space which correspond individually to three types of reg-
ular precession with angular velocity Recall that denotes the
angular velocity of rotation of the orbital reference system around the
axis The angle between the axis of spin rotation and the
axis of precession is determined by the relation

In correspondence with the figure of the surface that is traced out
in inertial space by the SC axis of symmetry, motion (18.9) is named
cylindrical or tube precession. Similarly, (18.10) is named hyperboloid

precession while (18.11) is named conic precession. Consider next the
stability conditions for these motions.

Conditions of Stability

for Stationary Motions

Sufficient conditions for stability are obtained using the first integral
(18.4). Necessary conditions are obtained from the existence of imagi-
nary roots of the fundamental equation for (18.1) and (18.2), linearized
in the neighborhood of the stationary motion investigated.

For solution (18.9) at sufficient conditions

18.3

and
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are

and necessary conditions are

For solution (18.10) the sufficient and necessary conditions co-
incide and have the form

For solution (18.11) a sufficient condition is

and necessary conditions are either

All of the above conclusions concerning the regular precession of
an axisymmetric SC do not involve the angle of spin rotation. There
is no stability of this latter angle because of the existence of the first
integral (18.3). For this reason, there is only stability of the position
of the axis of symmetry of the SC in the orbital reference system, and
of the three components of SC angular velocity.

Detailed and complete analysis of this problem was carried out by
F.L.Chernousko†

The stationary motions considered above are more useful for un-
derstanding and interpreting the actual motions of SC than for design

†F.L.Chernousko. On Satellite Motion around its Center of Mass under the Ac-
tion of Gravitational Torques. Applied Mathematics and Mechanics, 1963, Vol.27,
N 3, pp.474–483.

or
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application. A practical example is provided by consideration of a
situation when the Russian orbital station Salyut-7 (which had an al-
most axisymmetric configuration), tilted in 1985 to the local vertical
by tens of degrees. This is interpreted to have been caused by the on-
set of rotation about its longitudinal axis, induced by the development
of a, non-conservative, aerodynamic torque‡.

An example of the application in motion analysis of (18.11) is its
use in estimating the orientation of a, close to, axisymmetric SC in
slow spin rotation.

‡V.A.Sarychev, M.Yu.Belyaev, S.P.Kuz’min, V.V.Sazonov and T.N.Tyan. In-
vestigation of Attitude Motion of the Salyut-7 Orbital Station for Long Time
Intervals. Acta Astronautica, 1987, Vol.16, Issue pp.165–192.



Chapter 19

Equilibrium of a Gyrostat

Equations of Motion

A SC provided with a statically and dynamically balanced axisym-
metric rotor (or with a set of such rotors) spinning inside it with
constant angular velocity is called a gyrostat. Such rotors cause the
SC to take up more equilibrium positions relative to the orbital ref-
erence system than are obtained utilizing the gravity-gradient torque
effect (with consequent interesting practical applications). The effect
of uncompensated permanent angular momentum on SC motion may,
associatively, be investigated.

Assume in the case of a particular gyrostat that a rotor spins about
a fixed axis; that friction between the rotor and the SC body is neg-
ligible and that the rotor’s motion does not change the moments of
inertia of the SC. An expression for the angular momentum of the
gyrostat is as follows

where J is the tensor of inertia of the SC body, is a vector of SC
absolute angular velocity, is the tensor of inertia of the rotor
and is the relative angular velocity of the rotor with respect
to the SC body (Fig.19.1). Denote the gyrostat tensor of inertia by

then its equation of motion in circular orbit in vector

227
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form is as follows

Here A is a transformation matrix (15.4) with elements Introduce
variables using the formulae where
are projections of the total angular momentum of the rotors on to the

axis of a body-fixed reference system with axes coincident with
the principal central axes of inertia of the gyrostat. The argument of
latitude is chosen to be a, unitless, independent variable,
where is the moment of first crossing the ascending node. Then,
the dynamical equations of SC motion in scalar form are

The plane angles and introduced in Section 15.2 and corre-
sponding kinematic relationships (15.8) can now be used to define the
angular positions of a SC with respect to the ORS.

Express the generalized integral of energy of equations (19.2) using
the SC’s, unitless, relative velocity components
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We next obtain stationary solutions of (19.3), which describe the
equilibrium positions of the SC with respect to the ORS. Substituting
the zero relative angular velocity components and
the constant angles in (19.3), we get a set of
algebraic equations

These identities when combined with expressions for the directional
cosines form a closed set of trigonometric equations from which

can be determined. To obtain the general solution of (19.4) is a
complicated task but it has been successfully accomplished*. In con-
sequence, through a proper choice of gyrostat parameters, any given
axis of a SC can be pointed towards the Earth. Also, any required
orientation with respect to the ORS can be achieved.

Particular Cases

of Equilibrium Positions

Consider three particular cases of gyrostat orientation.

Case Under this condition, the following particular solu-
tion of (19.4) exists

This corresponds to the attitude of a gyrostat turned around the local
vertical through a yaw angle with value Thus, if it is necessary
to provide a turn with a specific yaw value, we can calculate the re-
quired values of and using (19.5). Alternatively, if these latter
components are known, we can determine the complementary value of

*V.A.Sarychev and S.A.Gutnik. Relative Equilibria of a Gyrostat Satellite.
Cosmic Research, 1984, Vol.22, Issue 3, pp.257–260.

19.2
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Sufficient conditions for the stability of this equilibrium position,
which are obtained using the first integral (19.3) to form Lyapunov’s
function, are

Case This condition results in the following particular
solution

This corresponds to the attitude of a gyrostat turned around the local
tangent through a roll angle with value Sufficient conditions for
the stability of this equilibrium position are

Case These conditions result in

Sufficient conditions for the stability of this, trivial, equilibrium posi-
tion are

If B = A and there are no rotors, then there is no yaw component
of the restoring torque. In these circumstances, the axis of dynamical
symmetry of the SC orients along the local vertical, and alternative
specific orientations of the other SC axes cannot be realized. Rotors
can be successfully used to orient a SC in yaw, including the trivial
angular position (19.9) (i.e. this latter position can be taken up even
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by an axisymmetric SC through using rotors). Sufficient conditions
for the stability of (19.9) transformed from (19.10) for B = A are as
follows

Consider the solution when (i.e. when
the axis of rotor rotation is directed along the gyrostat axis and
the moment of inertia corresponding to this axis is not a maximum. In
this case, the stability conditions (19.10) can be satisfied by choosing
an appropriate Recall that, because of the conditions B > A > C,

the axis of a SC without rotors has to be an axis of maximum
moment of inertia. Installation of a rotor with along this axis
weakens this requirement (see the second inequality in (19.10)).

Another feature of a gyrostat is that the rotor provides a unique
stable orientation in yaw, because switching the sign of can cause
instability at the position and stability of the inverse
position Such uniqueness cannot be attained
through utilizing the gravity-gradient torque (Section 16.2).

Consider now the necessary conditions for stability of the triv-
ial equilibrium position. Write equations of motion linearized in the
vicinity of (19.9)

The characteristic equation of (19.12) has imaginary roots only, that
is the necessary conditions for stability are satisfied if

When

there are eight equilibrium positions of the gyrostat and, when
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at least twenty four equilibrium positions of the gyrostat exist.
these positions transfer to the corresponding equilibrium positions

of a rigid body in the central gravitational field (Section 16.2).



Chapter 20

SC Motion Affected by an

Aerodynamic Torque

General Assumptions

As a SC moves through a rarefied atmosphere, the interaction of the,
consequently, counter-flowing molecular stream with the SC body pro-
duces different dynamic effects.

If the center of pressure does not coincide with the center of
mass of the SC, then either a restoring or a tumbling torque
arises, depending on the relative positions of these centers in the
molecular stream. Since the atmosphere is linked to the spinning
surface of the Earth, the vector of velocity of the stream does
not lie in the orbital plane of the SC.

SC rotation initiates an effect called ‘stream wash’, which pro-
duces an aerodynamic dissipative torque.

The atmospheric density is not the same at each point of the
surface of the SC but this produces a negligible ‘gradient effect’
on SC motion.

The natural, temperature dependent, velocities of the impacting
air molecules also only produce a negligible effect on SC motion.

Interaction with a counter-flowing molecular stream can be used to
provide passive attitude control of a SC. Early missions during which
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this technique was applied include the scientific SC Cosmos-149 and

In order to be able to calculate the associated restoring aerody-
namic torque, the nature of the interaction between the SC surface
and the counter-flowing molecular stream must be studied. Experi-
ence shows that the following mode of interaction is the most probable.
On impacting with the SC surface, a particle transfers its total energy
to the surface and attains temperature equilibrium with the site of
impact. After this process the particle exits this site and goes off into
space with a temperature velocity equal to the temperature velocity
of the surface molecules of the SC. Since this temperature velocity
is much lower than the velocity of the counter-flowing molecules, it
can be assumed that the impact was absolutely inelastic. In this case
the elementary force acting on an element of surface (which is
defined by its vector normal) with magnitude equal to the area is
given by the expression

Here V is the vector of the velocity of the element of surface with
respect to the flowing molecular stream; is the air density
at the relevant location and is the drag coefficient as a function
of the angle of attack (i.e. the angle between the vector V and the
vector (Fig. 20.1).

Consider now the effect of stream wash. As a rotating body moves
through the atmosphere, the velocities of its center of mass and the
center of pressure differ from each other as a result of the relative
velocity caused by rotation of the body. Because of this difference,
a nonconservative term proportional to the angular velocity of the

Cosmos-320.
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body appears in the expression for aerodynamic torque. This term
can provide asymptotic stability of SC motion. The origin of the
name ‘stream wash’ lies in the noncoincidence (relative slant) of the
directions of the center of mass velocity and the drag force at the
pressure center.

Write the vector equation of SC motion under the effect of an
aerodynamic torque caused by the drag force

concentrated at the center of pressure

where is the velocity of the center ofpressure, is
the velocity of the SC center of mass, S is a cross-sectional area of the
SC, is the angular velocity of the SC with respect to the ORS and

is the radius-vector of the center of pressure with respect to the SC
center of mass.

Suppose that the center of pressure is situated on the axis
of the BRS. Also assume that both and do not depend on the
orientation of the SC with respect to the vector of its translational
velocity so that and are each constant in the equations of motion.
Physically this corresponds to assuming that all interactions of the
SC with the atmosphere are reduced to the drag forces which act
on a sphere with its center fixed at a given distance from the center
of mass of the SC. Since the center of pressure of a sphere coincides
with its geometric center, we can replace all the aerodynamic forces by
their resultant applied at the center of the sphere. In a complementary
application, a sphere that is used to produce an aerodynamic restoring
torque on a SC is called an aerodynamic stabilizer.

Consider now planar motion of the SC (Fig. 20.2). Let the vector
be antiparallel to the axis of the BRS, which makes an angle

with the axis of the ORS. Then, the expression for the mag-
nitude of V is Symbol means
differentiation with respect to time The projection of the vector
equation of motion on the normal to the orbital plane has the form
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where J is the moment of inertia of the SC about its principal axis
perpendicular to the plane of its orbit. On transforming this we obtain

The energy dissipation effect of stream wash is determined by the re-
lationship which is called Strouhal’s number where
is a typical angular velocity of the SC, is a representative SC
dimension and is the velocity of the SC center of mass with re-
spect to the counter-flowing stream. For a representative SC with

rad/sec, and m/sec, Strouhal’s num-
ber is We therefore retain in (20.1) only terms up to the
first order of the ratio

The second term here is a, non conservative, dissipating term, and it
is assumed that the center of pressure is situated behind the center of
mass along the direction of SC motion so that and

Equation (20.2) has a solution and the corresponding vari-
ational equation written in terms of the unitless true anomaly is
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The associated characteristic equation has roots with a negative real
part proportional to the factor of in (20.3) and, consequently, to
Strouhal’s number. This means that, in order to decrease the am-
plitude of SC librations by a factor e = 2.72 . . . , some sec are
required. Such a slow change is negligible when considered relative
to the attitude motion of a SC. Thus, we need to retain in the equa-
tions of motion only the conservative terms. In the deep atmosphere
the effect of stream wash can be significant. It is noted, for example,
that the perturbed motion of a bomb equipped with a stabilizing fin
is dissipated after its release from an aircraft due to the ’stream wash’
effect in the dense surrounding atmosphere.

20.2 Atmospheric Density

Approximation

Consider the density of the Earth’s upper atmosphere. The density
distribution of an homogeneous, ideal, gas with altitude is deter-
mined by the equation of hydrostatic balance

and by the Clapeyron-Mendeleev formula

where M is the mean molecular weight, T is the absolute temperature,
P is the gas pressure, is the universal gas constant and is the
gravitational acceleration at the altitude

Substituting from (20.5) in (20.4) and integrating the latter
from an initial value to the altitude we obtain formulae for the
atmospheric pressure and density
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In general, M and T are functions of altitude and time. The main
difficulty with regard to atmospheric models is the complexity of the
relationships between M, T and time which are of a quasi-cyclic na-
ture (see Section A.1.17). These variations are associated with quasi-
periodic changes in the solar energy absorbed by the Earth’s atmo-
sphere which are daily, seasonal and half-yearly. There is also a quasi-
periodicity associated with the ~ 11 year solar cycle. In low Earth
orbits with altitudes in the range ~ 500 – 800 km, variations in atmo-
spheric density by a factor of 10 or more can be consequent on changes
in solar activity (see Section A.1.18).

Usually, simplified models of the atmosphere take into account only
the altitude profile. The isothermal model is among these. This model
is obtained from (20.6) at

where = const is the reciprocal of the scale height

of the atmosphere. Estimations show that, in the altitude range from
300 up to 700 km, the magnitude of varies almost linearly from
45 km up to 70 km. In an elliptical orbit varies between altitudes
of perigee and apogee For this reason instead of (20.7) the
following expression is usually used

Here Model (20.8) is one of the simplest available and
does not even take into account daily variations in density.

For qualitative analysis, analytical expressions for aerodynamic
force and torque are usually used. If the SC body has a convex,
spheroidal, shape, then axis symmetry allows us to approximate the
force and torque using spatial attack angle functions. These could, for
instance, be presented in the form of an attack angle cosine series. If
the SC center of mass lies on the geometric axis of symmetry then,
lifting and drag forces, and also a restoring torque, act on the SC.

To obtain equations of SC motion under the effect of an aerody-
namic torque, introduce the following assumptions:

the Earth and its atmosphere rotate with a common angular
velocity;
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the effect of the atmosphere reduces to a drag force applied at
the center of pressure and oppositely directed to the velocity of
the center of mass of the SC relative to the atmosphere;

the effect of the atmospheric drag on the translational motion
of the SC is negligible, that is we can regard the orbit of the SC
as fixed in inertial space.

Taking account of the second assumption, let
be the radius-vector of the pressure center with respect to the origin of
the BRS. The projections of the SC center of mass velocity vector
relative to the counter-flowing molecular stream then have the form

where is the angular velocity of the spin rotation of the Earth
and is the radius-vector of the SC center of mass with respect to
the Earth’s center (which is determined using
Expressions (20.9) are obtained taking into account (5.21) and (5.22).
Write the aerodynamic torque in vector form

Then the dynamic equations of SC motion can be expressed in vector
form

The plane angles are chosen as generalized variables, as was
done in Section 15.2 so that the kinematic equations have the form
shown in (15.22).

Using now the matrix A of directional cosines (see Section 15.2),
we write expressions for the projections of the aerodynamic torque on
the axes of the BRS
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where and
We next consider two aspects of SC dynamics. In the first we in-

vestigate the influence on SC motion of the rotation of the atmosphere
produced by the spinning Earth. In the second we consider equilib-
rium positions of a SC in circular orbit, without taking the Earth’s
spin into account.

20.3 Effect of the Earth’s Rotation

Again, let the center of pressure be situated on the axis of the
BRS and assume that both and do not
depend on the orientation of the SC with respect to the vector of its
translational velocity. Then, we can use and in
the equations of motion.

For such a practical case, Euler’s dynamical equations written us-
ing the argument of latitude and the unitless variables

have the form

Here the aerodynamic parameter which has
the same dimensions as moments of inertia, is introduced; symbol

denotes differentiation with respect to the argument of latitude.
The negative sign makes positive for stable equilibrium positions
of the SC. For arbitrary positioning of a center of pressure fixed in the
BRS, three aerodynamic parameters and could similarly be
introduced.

Using the formulae (20.9). we get the following expressions
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where which is approximately equal to 1/16 for low Earth
orbits. Although the case for a circular orbit was specifically con-
sidered above, these expressions also hold for and the result
obtained does not depend on the eccentricity of the orbit.

Now we construct the forced solution of system (20.13) in the form
of a series in integer powers of the parameter which is taken to be
small

Here are unknown functions of and of the
parameters of the system. Substitute the series (20.15) in (20.13).
Sum the terms of the same degree in and equate them to zero. In-
stead now of writing and solving the equations to determine

we adopt the following reasoning process. If there is no aerody-
namic effect, equations (20.13) reduce to (16.17) which have a trivial
solution (16.18) for an equilibrium position of the SC. The terms of
order in (20.13) have the forms and with respect to
(20.14) at If then This means
that the particular solution satisfies the equations
of zero-order in

Next we write equations for the coefficients of the first
order in the expansion (20.15)

which can be separated into two parts. The first part contains a single
equation in with solution The second part contains two
equations in and The forced solution of the latter pair is ob-
tained in the form and where expressions
for the unknown amplitudes and are

cos sin
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Now we write the solution (20.15) to within an accuracy of the order

at its limits. If that is if the aerodynamic torque is weak,
then If that is if the aerodynamic torque is
dominant, then

If the gravity-gradient torque is deemed to be negligible so that A =

B = C, then (20.19) has the following form

and is valid for a low polar orbit.

20.4 Equilibrium Positions and

Conditions for Stability

Now we consider equilibrium positions of a SC in circular orbit without
taking the Earth’s spin into account. Rewrite the equations of motion
(20.13) in the form

The generalized integral of energy for a SC with an aerodynamic
stabilizer, has the form

of in the form

Analyze next the behaviour of the amplitude of the forced libration
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The approach adopted to find equilibrium positions of a SC under
the effect of an aerodynamic torque, is similar to the approach already
used to obtain equilibrium positions of a SC under a gravity-gradient
torque (Section 16.2). The associated procedure is, however, more
complicated, due to the fact that three aerodynamic parameters are
additionally contained in (20.20). Integral (20.21) can be used to
construct a Lyapunov function to derive the necessary conditions for
stability.

Consider as before the special case where the center of pressure is
situated on the axis so that and Then,
equations (20.20) and the expression for the integral (20.21) have the
respective forms

and

The zero-approximation of considered in our previous analy-
sis (Section 20.3) corresponds to the absence of the effect of the Earth’s
spin and, consequently, it provides the presently sought equilibrium
position of the SC. Let us now investigate the stability of the trivial
equilibrium position described by

using Lyapunov’s theorem for stability .
Substitute and from the trivial integrals

and in (20.23). Multiply both sides of the resulting
equality by two. Add the zero-value identity to
the left side. Following transformation and on collecting the factors
which completely define the perfect square term we obtain
the first integral of (20.22) in the form
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that can be used as a Lyapunov function for the analysis of the stability
of the trivial solution (20.24). Under the following conditions

the function (20.25) is positive-definite and satisfies the conditions of
Lyapunov’s theorem of stability. Hence, (20.26) defines sufficient con-
ditions for the stability of the trivial angular position of a SC with
a stabilizer. The positive sign of required by (20.26), physically
corresponds to the location of the center of pressure behind the cen-
ter of mass with respect to the direction of SC translational motion.
To derive the necessary conditions for stability, the method used in
Section 16.4 can again be applied.

Let the condition be satisfied. Then, the equations (20.22)
admit the special solution

which describes planar motion when α satisfies the equation

The planar solution can be obtained from the condition

which describes planar equilibrium positions of a SC when the axes of
the BRS do not coincide with the axes of the ORS
then there are no solutions where We call
these solutions the non-trivial or inclined equilibrium positions. Now
we consider another way to produce such inclined positions.

Coming back to the case we rewrite equation (20.27)
in the form

The condition for the existence of an equilibrium position

(if and
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has two different solutions, and at arbitrary values of
the SC parameters, and the solutions

if

Values of SC parameters at which the inequality reduces to an equality,
determine the bifurcation point. At this point, a pair of non-trivial
solutions (20.29) appears. This is consequent on the attainment of a
balance between the gravity-gradient and aerodynamic torques acting
on the SC. The first integral

of equation (20.28) can be used to analyze the stability of these equilib-
rium positions. This was already done above for the trivial equilibrium
position in the spatial case.

Let us here obtain the necessary conditions for stability of the
non-trivial solution (20.29). Linearize (20.28) in its vicinity

where represents a small variation of the variable The corre-
sponding characteristic equation has the form

The condition

that the roots of the characteristic equation are imaginary, is the nec-
essary condition for stability.

This stability condition is, however, directly opposed to the con-
dition (20.30) arising from the existence of the non-trivial solutions,
except for values of the SC parameters satisfying the inequalities
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These inequalities determine the existence of stable non-trivial equi-
librium positions of the SC.

Investigation of the effect of the restoring torque over a long time
interval using an averaging method showed [4] that the angular mo-
mentum vector precesses around the tangent to the orbit at perigee,
where the magnitude of the drag force is a maximum. Also, that small
nutational librations are superimposed on the precession of the angu-
lar momentum vector. Further that, the rotation of the atmosphere
caused by the Earth’s spin produces a weak variation in the precession
velocity.



Chapter 21

SC Motion in the

Geomagnetic Field

Let us now consider the simplest practical method of realizing passive
SC orientation. This involves providing orientation along the vector
H of the local geomagnetic field strength. In this case a restoring mag-
netic torque is produced through the interaction between a permanent
magnet installed on-board the SC and the local geomagnetic field. The
magnetic moment of the magnet is chosen to be sufficiently strong to
allow the magnetic torque to govern the motion of the SC with re-
spect to the vector H. Hysteresis rods fabricated from soft magnetic
material can be used to produce a damping torque.

21.1 The Geomagnetic Field

To a first approximation, the Earth’s magnetic field is that of a sphere
uniformly magnetized in the direction of its, body centered, dipole
axis. This axis cuts the surface of the Earth in the northern and
southern hemispheres. The present ‘best fit’ between this Earth cen-
tered dipole and the actual magnetic field is obtained by taking the
Southern Pole to be at approximately 78° S, 111° E (near the Vostok

polar station, Antarctica) and at 78° N, 69° W (near Thule, Green-
land). These points are called the Geomagnetic Poles. The angle of
displacement between the Earth’s spin axis and its magnetic axis is of
the order of 11°.

The plane through the center of the Earth perpendicular to its

247
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dipole axis is called the dipole equatorial plane and the circle in which
this latter plane cuts the sphere is called the dipole equator. Dipole
latitude is reckoned relative to the dipole equator. The semicircles
joining the poles are termed dipole meridians.

Sources of the geomagnetic field are located in the Earth’s deep
interior and in localized magnetic anomalies near the surface of the
Earth. Transient magnetic disturbances can, in addition, be caused
by the motion of charged particles in near Earth space. The geomag-
netic field beyond several Earth’s radii has a different character from
that of the ‘near Earth field’ and will be separately considered in the
Addendum ( A.1.15). We discuss here the near Earth field produced
by the Earth’s internal magnetic sources and by magnetic anomalies.

Usually the potential of the internal geomagnetic field    which
varies inversely with distance from the center of the Earth to a point
in space, is represented by an infinite series of spherical harmonics

Here is the mean equatorial radius of the Earth; are
the spherical coordinates of the point in space where the potential
is calculated ( is the magnitude of the radius-vector of the point
relative to the center of the Earth, is the geographic longitude of
the point and is the angle between the radius-vector and the spin
axis of the Earth which is called the co-elevation), is the
associated Legendre function of the first kind of degree n and order m

are Gaussian coefficients (named after Gauss) that vary slowly
with time in correspondence with the secular change in the internal
field. The vector of induction of the geomagnetic field with potential
(21.1) is determined by the expression

Since the geomagnetic field varies with time, we may simplify its deter-
mination by assuming that the coefficients of the series (21.1)
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vary step-wise at the moment of passing from one year to another but
do not vary during the course of a particular year. Another procedure
leading to a more precise analysis, is to interpolate the coefficients us-
ing their derivative values. Updated values of the Gaussian coefficients
are published every five years by the International Association of Ge-
omagnetism and Aeronomy. This body also sanctions the publication
of an International Geomagnetic Reference Field (IGRF), constructed
using a combination of several models.

Another way of representing is by the expression

with

and

Here represents phase angles (with respect to the reference direc-
tion to the Greenwich meridian which is denoted by in the
equatorial plane) and is a measure of the ‘total strength’ of each
term of order (n, m). It is noted that, according to (21.6), the ac-
tual quadrant in which lies is determined by the signs of and

The cosine and sine of the angle are respectively taken to be
proportional to and

An interpretation of the different terms in the expansion (21.1) has
been provided by N.A.Umov*, who showed that each spherical func-
tion represents the potential of a multipole with axes defined by the
order of the function. An individual magnetic moment corresponds
to each multipole. Umov, using a specific mathematical procedure,
obtained the directions of the axes and the magnitudes of the mag-
netic moments for functions of the second and third degree employing
the coefficients and (see Fig.21.1). This picture is taken from
J.G.Roederer†, who gave a detailed interpretation of these and higher
terms of the expansion (21.4) and showed that terms of order 4 and

*N.A.Umov. Selected Papers. Leningrad, 1950.
† J.G.Roederer, Geomagnetic Field Distortions and Their Effects on Radiation

Belt Particles, Review Geophys. and Space Phys., 1972, Vol.10, pp.599–630.
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higher associate with terrestrial magnetic anomalies. Terms (4, 3) and
(5, 4) are, in particular, related to the South African anomaly and
(4, 3) and (6, 5) to the South American (Brazilian) anomaly. The
multipole moments are proportional to the coefficients given by
(21.5). and the phase angles are given by (21.6).

Models of the Geomagnetic Field

Certain terms of the series (21.1) have clear physical interpretations.
Let us consider now those terms used in the investigation of SC dy-
namics under the effect of the geomagnetic field.

Dipole Terms

Direct Dipole Model

If we take into consideration the coefficient only the field
described by the series (21.1) is the field of a dipole situated at the
center of the Earth and oriented antiparallel to its spin axis, i.e. ori-

21.2

21.2.1
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ented in the direction North to South. This is the, so called, direct

dipole model. The corresponding equivalent dipole distribution is rep-
resented in Fig.21.1 by the case Its usefulness lies in the
fact that the equations of motion of a SC with regard to the interac-
tion of its magnetic moment with the geomagnetic field are periodic in
time. This allows us to investigate the equations of motion using well
known techniques based on the theory of differential equations with
periodic coefficients. Also, this model is able to take into account the
two principle features of the behaviour of the local vector H of mag-
netic field strength during the motion of a SC along its orbit, namely,
non-uniform rotation of H with respect to the inertial reference system
and variations in its magnitude. For general investigations, periodic
motion is a suitable approximation to real motion.

Let us represent the vector H by means of its projections on the
axes of the orbital reference system within the framework of the direct
dipole model

where is the strength of the geomagnetic field over
the equator, is the Earth’s magnetic moment and previously intro-
duced notations for orbital elements are employed. In this model, the
vector H varies, generally speaking, in both magnitude and direction,
circumscribing a closed conical surface for each half-orbit of the SC in
the reference system the axes of which are parallel to
the axes of the IRS and the origin of which is
located at the SC center of mass. For simplicity we consider an orbit
with zero-angle of the ascending node.

The projections of H on the axes of have the form

The conical surface formed by the vector H normalized by H0 during
a half-revolution of the SC around the Earth along an orbit with in-
clination is shown in Fig.21.2 with respect to this reference
system. This cone is symmetrical with respect to the plane
The angle which is formed by H in this plane is



It is convenient to represent the motion of vector H with respect to
the reference system which is transformed from system

by turning it counterclockwise through an angle
about a direct line passing through the point O aligned parallel to the
line of nodes. The angle is determined by the transformed relation

Calculations show that the cone circumscribed by the vector H differs
slightly from a circular cone with vertex angle For an equa-
torial orbit, the cone circumscribed by vector H degenerates into a
straight line, which is parallel to the Earth’s spin axis. In polar or-
bit, the cone develops in the orbital plane. For intermediate cases
the cone considered lies outside the circular cone but touches it at

The maximum angle between the vector
H and the nearest generator of the circular cone during half a revolu-
tion, is achieved for an orbit with inclination and this angle
is                 [6].
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Inclined Dipole Model

The term (1, 1) for which (see Fig. 21.1) represents a
dipole of moment lying along a direction which makes an angle

in the plane of the geographic equator with the direction to the
Greenwich meridian. Coefficients of the potential expansion (21.4)
corresponding to the IGRF for the years 2000 – 2005 [31] yield a value
for and for The full case can thus be
interpreted to represent a single, Earth-centered, inclined dipole. The
angle between the Earth’s spin axis and this dipole is The
line defined by this Earth-centered dipole vector is the geomagnetic

axis. Although this is directed southward, it is conventional to use the
geographic longitude of the northern extension of the geomagnetic
axis to define its azimuthal direction. Thus,
geographic longitude. The meridian defined by is called the mag-

netic meridian.

Thus, taking into account the first three terms of the series (21.1),
we get the potential of a dipole inclined to the Earth’s spin axis.
These three terms make up what is called the inclined dipole model,
which allows us to take into account the daily rotation of the Earth.
Equations of motion obtained within the framework of this model
contain terms incorporating the period of the Earth’s spin rotation and
the period of revolution of the SC around the Earth. It is, however,
more complex to perform effective analysis using equations involving
quasiperiodic coefficients than periodic ones.

The first there terms in the series (21.1) have the highest magni-
tudes. The next terms are interpreted to represent potentials produced
by different multipoles. This means that the main part of the geo-
magnetic field has a dipole nature. As the distance from the Earth’s
surface increases, the magnitudes of the highest harmonics of the mag-
netic potential, which describe localized anomalies, decrease and the
potential becomes closer to that of a dipole. For example, on the
Earth’s surface, the contribution of the dipole part is and at
an altitude of 10 000 km it is

21.2.2    Quadrupole Terms

Consider now the quadrupole terms The equivalent pairs of
dipoles corresponding to the terms labeled (2, 0), (2, 1) and (2.2) are



shown in Fig.21.1. We can interpret the first-order effect of the (2,0)
and (2, 1) terms to constitute a parallel displacement of the position
of the Earth’s dipole away from the center of the Earth (along and
perpendicular to its spin rotation axis).

The secular change of the expansion coefficients causes a slow vari-
ation in the position of the magnetic center, which undergoes a west-
ward drift while receding from the Earth’s center at a rate of between
2 and 3 km/year. This latter motion means that the eccentricity of
the main dipole is increasing with time.

Consider next the (2, 2) case. Since, (see Fig.21.1) the equivalent
pair of dipoles lies in a plane perpendicular to the Earth’s dipole, the
(2, 2) terms cannot be transformed away. The principal first-order
effect of the (2, 2) quadrupole is to deform the equatorial component
of the magnetic field.

21.2.3   Octupole Terms

As shown in Fig.21.1, there are four possible equivalent dipole pair
configurations corresponding to The (3, 1) and (3, 3) terms can
be shown to cause a, longitude dependent, inclination of the total field
with, however, only a second-order variation in its intensity. Hence,
except for a different azimuthal periodicity and phase, their effects
are analogous to that of the (2, 2) quadrupole in that they produce
warping of the equatorial component of the magnetic field.

The (3, 0) octupole term is responsible, on the other hand, for
an azimuthally symmetric compression of the field on and near the
equatorial surface and this is associated with a slow secular decrease
in magnitude. The (3, 2) octupole causes the field to be compressed
or expanded in alternating longitudinal sectors.

The effects of terms of higher order are generally considered col-
lectively and can be similarly interpreted..

Averaged Model

Another model of the geomagnetic field, called the averaged model,
was used in pioneering work by Zajac‡. Accordingly to this model,

‡E.E.Zajak. Some Simple Solutions Relating to Magnetic Attitude Control of
Satellites. Proc. of 4th US National Congress of Applied Mechanics, Berkeley,

254 CHAPTER 21. SC IN THE GEOMAGNETIC FIELD



21.3. Equations of Motion 255

vector H has a permanent magnitude and uniformly rotates in iner-
tial space with twice the orbital angular velocity of a SC (compare
with the direct dipole model (see Section 21.2.1)). The magnitude
could be defined, for instance, as the mean between maximum and
minimum magnitudes of H or by the integrated mean magnitude over
the orbit. In the framework of this model, equilibrium positions of the
SC with respect to H exist§, but these equilibrium positions do not
correspond with what is observed in practice.

The general expression (21.1) is used in solving navigational prob-
lems by numerical methods when higher order terms, small in mag-
nitude but permanently acting, generate errors in the determination
of the orbit and attitude of a SC. In the phase of designing attitude
control systems with magnetic elements when a preliminary analysis
of SC dynamics is initiated, simple models of the geomagnetic field
such as the direct dipole model, the inclined dipole model and even
the averaged model are usually used. This opens up opportunities for
theoretical analysis which cannot be carried out using the expression
(21.1) (i.e. in circumstances when a large number of terms needs to be
taken into account). For instance for navigation and attitude deter-
minations as well as for the advanced analysis of SC dynamics, 8 × 8
or even 10 × 10 terms are used.

21.3 Equations of Motion

Suppose a SC to be represented by a rigid body containing a perma-
nent magnet. Let the center of mass of the SC move along a Keplerian
orbit around the Earth. The Earth’s gravitational field is central and
Newtonian. The geomagnetic field is approximated by a direct dipole
model. To write the equations of SC attitude motion we introduce, in
addition to the ORS and BRS, a Cartesian magnetic reference system

(MRS) which relates with the vector H of the local geomag-
netic field at a point O. Unit vectors and of the axes of this

CA, June, 18-21, 1962, Pergamon Press, 1962, Vol.1, pp.449–456.
§ V.V.Beletsky and A.B.Novogrebel’sky. Existence of Stable Relative Equilibria

of an Artificial Satellite in the Model Magnetic Field. Astronomical J., 1973,
Vol.50, Issue 2, pp.327–335.



system have the form

where is the unit vector of the axis of the ORS.
The angular position of the BRS with respect to the MRS

we denote by angles (Fig.21.3). The corresponding

transformation matrix has elements
determined by

Elements of matrix used to
transfer from the system to the system have the
form
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The angular velocity of the MRS with respect to inertial space is
determined by the projections on the axes of the MRS

where Here, to
calculate the projections the following general expressions
are used

which are presented through derivatives of elements of the matrix

Now we take into account the external magnetic restoring torque
developed by the permanent magnet and the gravity-gradient torque.
The equations of SC motion then have the form

where is a magnetic moment of the SC,
as earlier,

is the vector of absolute angular velocity of the SC;
is the vector of SC angular velocity with respect to the MRS and the
following relationships for its projections are valid



Using unitless parameters and variables

equations (21.7) can be written in the form

where it is assumed that the magnetic moment of the permanent mag-
net is directed along the axis so that and also
that the orbit is a circular one.

Consider now the case of an axisymmetric SC with On
introducing new variables

we rewrite (21.9) in the form

where
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Equations (21.11) describe the motion of the SC axis of symmetry.
Equations (21.10) have first integral const and describe SC mo-
tion around its axis of symmetry Value is contained in (21.11)
as a parameter. The values are assumed to be known
from (21.11).

We will next investigate motions that can be adopted as nominal
for a SC that is required to be uniaxially oriented along the vector
H. First, consider the special case of planar motion of the SC axis of
symmetry in a polar orbit.

21.4  Planar Motion of the SC Axis of

Symmetry

For a polar orbit when the following special solution of equa-
tions (21.10) and (21.11) exists

where and functions satisfy the following equa-
tions with coefficients with respect to

Solution (21.12) corresponds to motion of the SC axis of symmetry
in the plane of a polar orbit. We again call this planar motion, in
contrast to spatial motion which is characterized by the inequality

21.4.1 Asymptotic Solution

For the case where the magnetic restoring torque governs SC motion
we now seek a solution of (21.13) in the form of a

formal series in negative degree powers of the parameter
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The coefficients and contained in (21.14) are determined
from an infinite set of recurrent relationships, obtained by substituting
the series (21.14) in (21.13) and then equating to zero expressions with
the same degree of the parameter This set has a unique
solution satisfying the conditions of symmetry

By means of (21.15) the conditions

of –periodicity of the solution of equations (21.13) are transformed
to boundary conditions

By virtue of (21.13) invariance with respect to the transformation
each solution of the boundary value problem

(21.13), (21.16) satisfies the relations (21.15), as well as
and Consequently,

the solution is – periodic.

21.4.2   Numerical Construction of

Periodic Solutions

Numerical construction of the periodic solution (21.14) reduces to solv-
ing the boundary value problem (21.13), (21.16). For this purpose, the
equation is solved using Newton’s method¶ with respect to

¶ We need to solve the vector equation

with respect to x, where is an unknown vector and is a
parameter. Suppose that the approximate solution of (21.17) is known for
a given Now expand the function F in a Teylor series in the vicinity of

where the symbol denotes a small deviation from It is assumed that func-
tion F is continuous and may be differentiated a sufficient number of times. Neglect
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at fixed and the relationship The value
is chosen as an initial approximation. The results of calculation for

are shown in Fig.21.4 and in Fig.21.5. In these figures, initial

conditions and amplitudes are respectively

plotted vs the magnetic parameter in the range Each
point on the plots in Fig.21.4 defines a planar, solution
that satisfies the boundary conditions (21.16). An amplitude of a pe-

second-order and higher terms denoted in (21.18) by and substitute this
in (21.17). Resolving this equation, we obtain an improved approximation to
the solution of the equation (21.17)

Using as the next approximation, we can employ this procedure again to in-
crease the accuracy of the solution of (21.17). The fact of convergence and the rate
of convergence depend on the initial approximation and on the properties of the
function This method is called Newton’s method or the Newton-Raphson

iteration method and it is a version of the successive approximations method.

This method can be used in the case where is a known solution of (21.17) for
and we need to obtain its solution for Taking as a first

approximation to the solution of the equation

and executing the Taylor expansion as in (21.18), we obtain formula (21.19) where
and have to be calculated for



riodic solution describes maximum deviation of the axis of symmetry

of the SC from vector H over the period As increases further, we
obtain new curves and, consequently, new solutions. Roughly speak-
ing, the difference between the solutions defined by different curves
(called ‘branches’) is that the number of librations within the period

increases with
The plot in Fig.21.4 displays a number of separate branches. For

initial conditions pertaining to the same ‘relatively flat’ part of a par-
ticular branch, the magnitude has the same
sign. Relatively flat in this context means ‘almost flat’ and it is noted
that the more distant a particular branch is from the origin, the closer
this part of the curve approximates to being flat. After passing to the
relatively flat part of a neighboring branch, the sign of changes.
The profiles of curves in the vicinity of points where changes sign,
that is, at points of discontinuity, were calculated using the method
of parameter extension.

The relatively flat parts of the curves between points of discon-
tinuity correspond to the solution presented in the form of a formal
series (21.14) at The discontinuities between the relatively
flat parts are induced by bifurcation of the boundary value problem
(21.13), (21.16) caused by resonances between the orbital motion of
the SC and natural librations of the SC axis of symmetry in the orbital
plane. Such bifurcation reflects a divergence of the series (21.14) that
justifies calling this a ’formal series’.
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Bifurcation magnitudes of the parameter that is abscissa of
points on the curves at which the tangents are vertical (see Fig.21.4),
are determined for by the approximate formula

where

A few points determined using (21.20) are denoted by the symbol ×

on the abscissa-axis (Fig.21.4). The way to obtain the asymptotic for-
mula (21.20) for determining the abscissae of the bifurcation points of
periodic solutions is as follows. At the equations (21.13) satisfy
the conditions of the theorem for the existence of periodic solutions
of second order differential equations involving a large parameter||. In
accordance with this theorem, (21.13) has a unique solu-
tion (21.14) satisfying the condition for all sufficiently
large values of the parameter except in the vicinity of the resonant
points Let us find these points.

The equations in deviations for the solution (21.14) have the form

The values of parameter at which (21.21) with boundary conditions

has a nontrivial solution, are the bifurcation ones.

| |B.M.Levitan. Expansion by Natural Functions. Moscow, GITTT Publ., 1950.



Reducing (21.21) to a single equation and performing variable sub-
stitutions, called Liouville’s substitutions**, using formulae

we get the equation and boundary conditions corresponding to (21.15)

Here

and terms are truncated. This is a problem of eigenvalues for
a Schturm††-Liouville operator, with boundary values corresponding
to the periodicity. The asymptotic formula (21.20) for the eigenvalues

obtained by the method of successive approximations
‡‡ is valid to

an accuracy of .

**Liouville, Joseph (1809–1882). French mathematician. Member of the Paris
Academy of Sciences. His main work was devoted to mathematical analysis. Also,
he made contributions to the theory of elliptic functions and investigated the
boundary value problem for linear differential equations of the second order (the
Schturm-Liouville problem).

††Schturm, Jacques Charles François (1803–1855). French mathematician.
Member of the Paris Academy of Sciences. He studied the boundary value prob-
lem for differential equations with applications in mathematical physics, as well as
problems concerning eigenvalues and eigenfunctions.

‡‡In the framework of the method of successive approximations, a solution of
equation (21.22) can be sought in the form

where and are constants. The equality follows from (21.23) and
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21.4.3 Investigation of Stability

The stability of solution (21.12) is next investigated in linear approx-
imation, using the linearized equations

where symbol denotes the deviation of some associated variable;
and are calculated at These equations in deviations are

(21.22) so we can write

On using we obtain

On substituting (21.24) into (21.25) we get

where and, without losing generality, we can assume that

For large equation (21.26) clearly has a solution. The roots lie near points
corresponding to the numbers where is an integer, that is
where is small. Substituting this expression in (21.26) we determine

Now the relationship

can be written. Resolving this with respect to we get

This expression determines the abscissae of points of bifurcation.



obtained through linearization of (21.11) in the vicinity of the planar
solution (21.12). They are separable into two independent sets of
equations. Here, equations (21.27) describe the motion of the SC axis
of symmetry perturbed in the plane of the orbit and equations (21.28)
describe the motion of the axis perturbed in the plane perpendicular to
the orbit. Also equations (21.27) and (21.28) can be used to calculate
the natural frequencies and amplitudes of small librations as functions
of the initial conditions of motion and of the SC parameters.

The characteristic equations for (21.27) and (21.28) each have a
similar form

The coefficients and are determined through obtaining solutions
of (21.27) and (21.28). If and then all the roots
of (21.29) are situated on a circle and necessary conditions
for the stability of the investigated periodic solution are fulfilled. For
brevity we say that planar stability is present if and spatial
stability if If both conditions are fulfilled together, we say
that the solution is stable. Graphs of coefficients and vs the
parameter are plotted in Fig.21.6 Segments of curves where the

necessary conditions for stability are satisfied are shown hatched in
Fig. 21.4.

At equations (21.27) have a nontrivial solu-
tion. If rank where is a fundamental matrix

of (21.27), then this solution is unique up to a constant factor. The
matrix is constructed from columns, each of which is a solution
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of the initial problem for period The initial conditions for each
problem are given by consecutive columns (for the considered case
these are and of the identity matrix E. Analysis of the
fundamental matrix elements shows that, at the point (Fig.21.7)
on one boundary of the interval of stability where the equa-
tions (21.29) have a nontrivial solution satisfying the conditions of

symmetry

At the point on the other boundary of the interval of stability where
a nontrivial solution of (21.29) satisfies the conditions

At the point the solution of (21.13) emerges from the
periodic solution (21.14). This solution satisfies the conditions (21.15)
(i.e. it consists of an odd and an even and consequently,
satisfies the boundary conditions

The initial conditions of the solution are represented by
curve 1 in Fig.21.7(a).

At the point the nonsymmetric solution of (21.13)
satisfying the boundary conditions



appears. Initial conditions of this solution are represented by curves
2 in Fig.21.7. The plot of the initial conditions for the
solutions is taken from Fig.21.4. Stable solutions are indicated by
hatching.

21.5 Spatial Motion of the SC Axis of

Symmetry

The terms of (21.11) have period with respect to and obtaining
the spatial solutions of these equations for the general case
is similar to solving a boundary value problem under the following
boundary conditions

At the boundary value problem (21.11), (21.34)
has a planar solution (21.12), for which the coefficients and in
equations (21.29) are not equal to unity. In this case, by Poincare’s
theorem (Appendix C), for small enough the boundary
value problem (21.11), (21.34) has a unique solution which analytically
depends on and This solution passes, at
through the planar solution. Using the invariance of (21.11) with
respect to the variable substitution

we reduce the boundary conditions (21.34) to

Any solution of the boundary value problem (21.11), (21.36) is
periodic and satisfies (21.35). The solution obtained by solving the
boundary value problem (21.11), (21.36) has a larger domain of defini-
tion than the solution of the boundary value problem (21.11), (21.34).
This is because the solution of (21.11), (21.36) for sufficiently small

and for the generating, planar, solution
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(21.14) is defined everywhere, with the exception only of points
and (Fig.21.4). The abscissa of point is determined by

which is similar to the expression (21.20) for the planar case, with the
difference that the values and pertinent here are calculated using

A number of points obtained using (21.37) are designated by the sym-
bol along the abscissa-axis in Fig.21.4 and Fig.21.5.

If then the spatial solution of (21.9) can be
constructed as a formal series

similar to (21.14). Owing to this method of construction, the solution
when transfers to the planar solution (21.16).

For numerical investigation of the spatial solutions, the
boundary value problem (21.11), (21.36) is reduced to the following
equations

where and For given magnitudes of
these equations form a closed set of two equations with respect to the
unknown and Equations (21.39) describe a two-dimensional



surface in the space of the five parameters Nu-
merical investigation of this surface reduces to intersecting it by a
three-dimensional hyperplane Plots of the functions

and against which represent symmetrical, spatial
solutions are shown in Fig.21.8. The positive ray starting at

in Fig.21.8(a) and the dashed curve in Fig.21.8(b), jointly repre-
sent the planar, solution, odd with respect to obtained
in Section 21.4.2. A spatial solution extends the planar one at the
point Necessary conditions for stability are satisfied along the
hatched intervals. Dashed lines in Fig.21.5 represent the amplitudes
of particular spatial solutions.

We now consider certain bifurcation curves along which new so-
lutions emerge. Bifurcation here is determined by the two equations
(21.39) and by

In the space of the five parameters bifurcation can be
represented by a two-dimensional hypersurface specified by these three
equations. The intersection of this hypersurface by a hyperplane, for
example results in bifurcation curves. Numerically ob-
tained bifurcation curves in the plane for are shown in
Fig.21.9. In the vicinity of these curves, the amplitude of periodic mo-
tion increases over the considered values of parameter The range
chosen for this parameter can be examined typical for a SC provided
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with a passive magnetic attitude control system. Solid lines show the
bifurcation curves of solutions whose amplitudes are small at a fixed
orbit inclination. Dashed lines show intervals of the bifurcation curves
where the solutions have relatively large amplitudes. Horizontal line
at corresponds to the polar orbit.

A trivial solution, which corresponds to the coincidence of the axis
of orientation of the SC with vector H in an equatorial orbit, has the
bifurcation points where non-trivial solutions satisfying
the boundary conditions (21.34) emerge (Fig.21.10).

Bifurcation magnitudes of the parameters can be obtained
in a similar way to that already used to determine the bifurcation
points of planar and spatial solutions for a polar orbit with



Write equations in deviations for solution (21.38) by linearizing (21.9)

where and only terms, which on transfer to a ‘fast’ time
scale have an order not higher than are retained.

Consider for (21.40) the boundary value problem

Determine the values which provide this problem with a
non-trivial solution. Introducing a new complex variable

we transform (21.40) to

On substituting in this equation new variables

equation (21.42 ) attains the form

where

Equation (21.43) is solved by the method of successive approxima-
tions. The conditions under which a non-trivial solution exists with
regard to the transformed boundary conditions (21.41) are as follows

where
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Solutions of (21.44) have the form

Here is integer. Coefficients depend on the
orbit inclination but coefficient depends also on the product

This allows us to gain insight into the general behaviour of the
bifurcation curves presented in Fig. 21.9 in the framework of the ap-
proximations made. A detailed analysis of the spatial periodic motion
of a SC was performed by Sarychev and Ovchinnikov*.

*V.A.Sarychev and M.Yu.Ovchinnikov. Motion of a Satellite Equipped with a
Permanent Magnet around Its Center of Mass. Cosmic Research, 1986, Vol.24,
Issue 4, pp.527–543.





Chapter 22

Motion of a SC under

Damping

In order to develop a passive attitude control system it is necessary
to provide both restoring and damping torques so that a SC can, as
required, either attain a steady-state orientation or undergo forced mo-
tion. Methods to develop a restoring torque through applying different
kinds of external force have already been considered in Chapter 14 for
passive systems. Damping torques may be provided based on various
physical effects, for example magnetic hysteresis (which appears in
soft magnetic materials when they are re-magnetized). For damping
purposes, a soft magnetic material can be employed featuring: high
initial relative magnetic permeability (of the order of several thousand,
or even tens of thousands); a low coercive force (significantly less than
the intensity of the Earth’s ’re-magnetizing’ field) and non-saturation
in this latter field. A damper based on the hysteresis effect might
typically be in the shape of a rod with the ratio (length to diameter)
in the range 100 – 300. This ratio is a key-factor in optimizing the
time-response of an attitude control system.

A number of investigations in the field of passive magnetic orien-
tation were performed by Fishell, Stopkuchen, Mager, Ninomiya and
Kamuller in the 1960s and 1970s within the framework of small SC
projects with a mass of a few tens of kilograms (Transit-1B, Transit-

2A, Azur, ESRO-1A, ESRO-1B, EXOS-A, Magion etc). A renewed
interest in this topic is generated by the development of nano-SC with
a mass of a few kilograms. A list of nano-SC equipped with atti-
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tude control systems is presented in Table 22.1*. This shows that
the majority of these nano-SC were provided with a passive attitude
control system. Among several competing technologies, magnetic atti-
tude control systems (MACS) occupied a favored position due to their
simplicity and reliability. In contrast, a passive gravity-gradient atti-
tude control system (GGACS) is complicated by the need to deploy a
boom given that, to fabricate such a device appropriately scaled, is a
difficult technological problem. Also, small flywheels, which provide
an accuracy of orientation that is an order of magnitude higher than
that achieved by GGACS, require precise technology and dedicated
on-board resources.

To develop a passive magnetic system employing minimum SC re-
sources a careful study of SC dynamics, rather than of the fabrication
of mechanical elements, is required. Despite the inherent simplic-
ity of such attitude control systems, the mathematical models associ-
ated with them are complicated. Simulation of the dynamics of a SC
equipped with a permanent magnet and hysteresis rods requires the
initial solving of two basic problems. The first is to obtain solutions
from which the nominal motion of the SC is chosen. The second is
to analyze the transient motion of a SC under the damping effects of
hysteresis rods and to determine the parameters of these rods. A de-
tailed review of research concerning the dynamics of SC with passive
MACS is given in [27].

As an example of the application of such damping, we consider next
the transient motion of a magnetically stabilized SC provided with a
strong permanent magnet installed along the SC axis of symmetry,
and with hysteresis rods fixed in the SC structure.

22.1 Equations of Motion

Let the SC be approximated by an axisymmetric rigid body (so that
the two equatorial principal moments of inertia are equal to each
other). Suppose that a strong permanent magnet with magnetic mo-
ment is located along the axis of the BRS, and that a single
hysteresis rod with unit vector e is inclined with respect to the plane

*M.Ovchinnikov. Attitude Control Systems for Nanosatellites, ZAMM Z.

angew. Math. Mech.. Berlin, 2001, Vol.81, Suppl.4, pp.1027–1030.
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(Fig.22.1). We take into account in the present analysis only
the magnetic restoring torque developed by the permanent magnet;
the magnetic damping torque produced by the hysteresis rod and the
gravity-gradient torque. For an axisymmetric SC the equations of
motion then have the form

where A and B are the axial and equatorial principal moments of iner-
tia of the SC; is the volume of the hysteresis rod; the permeability
of vacuum; is an hysteresis function which describes mag-
netization of the rod (it depends on the properties of the magnetic
material from which the rod is made, on the ratio rod length to diam-
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eter, on the running intensity of the re-magnetizing field, and on

the rate of re-magnetization); are the projections of the
unit vector e on the axes of the BRS. Other notations used were intro-
duced in Chapter 21. It is noted that the interaction of the rod with
the permanent magnet is not taken into account in (22.1). Also that,
if several rods are installed on a SC, the terms corresponding to each
rod should be appropriately inserted on the right-sides of equations
(22.1).

To approximate an hysteresis loop, the Rayleigh† model

is used, where is the initial magnetic permeability; is the
Rayleigh constant and an amplitude of the re-magnetizing field.
This model correctly describes the shape and area of the hysteresis
loop in the vicinity of the origin since re-magnetization is
symmetrical with respect to this origin.

Another hysteresis model called the parallelogram model is de-
scribed by the formula

where is a constant and the product is associated with
the coercive force of the rod material. This model takes into account
the dependence of the magnetization on the sign of the rate of re-
magnetization, although the magnitude of this rate is not involved
(analogous to the case of Coulomb friction). Since the hysteresis
damping effect has itself the nature of Coulomb friction, this model
has the advantage of describing the hysteresis effect for arbitrary vari-
ations of the magnetizing field. However, its accuracy is low. The
Rayleigh model provides a quantitative advance in accuracy but, on
the other hand, is subject to strong constraints with respect to the
external re-magnetizing field.

†Rayleigh (Strutt), John William (1842–1919). English physicist. Member of
the London Royal Society. His main work was devoted to the investigation of
linear and non-linear oscillations and he was one of the founders of the theory of
oscillations.
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Introduce again the unitless parameters and variables

and rewrite equations (22.1) in the following form

In order now to apply averaging we introduce, so called, ‘fast time’.
which has a scale similar to the scale of natural SC librations.

22.2 Fast Time. Equations of Motion in

Standard Form

We already supposed that the SC is equipped with a strong permanent
magnet. This allows us to introduce the small unitless parameter

where and
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and to use the fast time where is the
magnitude of the argument of latitude at the initial moment of fast
time. We assume the spin rotation of the SC to be slow (i.e. ).
Denote by differentiation with respect to and rewrite equations
(22.3) in the form

At equations (22.4) describe the motion of a rigid body for
the Lagrange case, yielding the three first integrals

where are constants
Also, for equations (22.4) have the specific solution

const, Substitute in (22.4)
where and are new variables, and retain in the expansion the first
non-zero terms in positive degree powers of the parameter Thus,
we obtain
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where the following notations are introduced

At the two last equations in (22.4) have the solution

where and are constants of integration;

When then are not constants and we use
through the transformation (22.6) as new variables

(instead of the previously used variables Resolving the
equations obtained on employing the transformation (22.6) with re-
spect to the derivatives, we obtain the equations in standard form (as
is required to allow the application of the Krilov

‡
-Bogolyubov

§
 averag-

ing method)

where the variables are called slow variables and and
are fast variables.

‡Krilov, Nikolay Mitrofanovich (1879–1955), Russian mathematician. Member
of the USSR Academy of Sciences. He developed interpolation techniques and
methods for the approximated integration of non-linear differential equations.

§Bogolyubov, Nikolay Nikolaevich (1909–1992), Russian mathematician and
physicist. Member of the USSR Academy of Sciences. He developed approxi-
mated methods and averaging techniques for mathematical analysis, mathematical
physics and nonlinear mechanics.
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The rates of variation of the fast variables and are the
same and equal to in an asymptotic sense. Following the Krilov-
Bogolyubov method for the resonant case, introduce a new variable
to denote the phase difference

Substituting from (22.8) in (22.7) we obtain

where

Now the averaging procedure may be carried out.

22.3 Averaging the Equations of Motion

Using the Krilov-Bogolyubov averaging method adapted for equations
with discontinuous right-sides¶, we seek a solution of (22.9) in the
following form

where is a vector of slow variables and
a vector of new slow variables still to be obtained; Y

is an unknown vector-function.
¶V.A.Plotnikov and T.S.Zver’kova. Averaging Method for Equations of Stan-

dard Form with Discontinuous Right-Sides. Differential Equations, 1982, Vo1.18,
N 6, pp.1076-1078.
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To obtain the new slow variables to a first approximation with
regard to the small parameter we write the vector equation

Here is a vector-function of the right-sides of equations (22.9) di-
vided by and averaged over the fast variable (termed ‘averaged

over the fast phase '), i.e. . Later we will remove

the bar from the notation for the new slow variables.
Equation has only two physically different solutions

if Otherwise, any value of the variable is a solution
of the equation if either

We do not, as already mentioned, take into account in this anal-
ysis the effect of the strong permanent magnet on the hysteresis rod.
It is, however, reasonable to assume that the configuration pertains
where this rod lies in the equatorial plane of the permanent magnet.
Also, that it is perpendicular to this magnet and crosses it through its
center (i.e. In this case, the vector of intensity of the mag-
netic field of the permanent magnet is closely perpendicular to the
equatorial plane. Thus, the component of this vector of intensity is at
a minimum along the hysteresis rod. Consequently, the range of the
external remagnitazing field variation is shifted through a minimum
distance from the origin and the effectiveness of the rod as a
damper is only minimally decreased.

Averaging the right-sides of equations (22.9) over returning to
the initially used independent variable and noting that

we obtain the following equations
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where we retain on the right-sides only terms up to the order
apart from in the second last equation where we keep terms up to the
order

22.4 Case of Two Mutually Orthogonal,

Identical, Hysteresis Rods

Next we consider a case where two, mutually orthogonal, identical,
hysteresis rods are installed on the SC. For two such rods, equations
(22.13) have the form
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where

It follows from equations (22.14) that two mutually orthogonal, iden-
tical, hysteresis rods installed in the equatorial plane of the magnet
cause cancellation of those terms in the equations which are propor-
tional to the parameter These latter terms represent that part of the
magnetization of the rods which is linearly dependent on the applied
external magnetic field. Thus, they do not contribute to the damping
but, rather, exert a perturbing effect. The potential to retain in the
equations as a result of cancellation only those terms responsible for
non-linear magnetization, provides a practical reason to install two
hysteresis rods.

22.4.1 Case without Hysteresis Rods

If there are no hysteresis rods on the SC (i.e. ), equations 22.13)
have three first integrals. Two of these are

and they allow us to obtain an insight into SC motion. From the
expression for it follows that the angle between the SC axis of
symmetry and vector H has a maximum value over the equator and
a minimum value over the poles. The ratio of these maximum and
minimum deviations is equal to

Substituting amplitudes and from (22.15) in the third equa-
tion of (22.13) when yields the equation
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Its solution has the form||

where and is a constant of integration.

Write expressions for in the following way.

where Use now
as new slow variables instead of through formulae (22.16)
and(22.17). Thus, we obtain

Note that the equation for c1 may be considered separately from the
others since it does not contain the fast variable (remembering that

This allows us to obtain a solution for in the form of a
quadrature.

22.4.2 Case of Weak Damping

The case of weak damping corresponds to the inequality To
obtain a solution for (22.18) we need, generally, to average the right-
sides of the equations over the fast variable As previously noted, we
do not need to make this averaging in the case of the first equation,
for which we can immediately write a solution in the form of the
quadrature

||M.L.Pivovarov. Concerning the Librations of a Magnetically Stabilized Satel-
lite, Transactions of Russian Academy of Sciences: Mechanics of Solids, 1994,
Issue 3, p.5.
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Thus, the instantaneous amplitude defined by of the
deviation of the SC axis of symmetry from the vector H as a function
of the argument of latitude is described by an expression derived
from (22.15) and (22.19)

In the framework of the Rayleigh model, the area of an hys-
teresis loop is expressed in terms of the Rayleigh constant and
the amplitude of the re-magnetizing field For
small the value of is constant. Thus, the values of and
may be determined using the results of experimental measurements.
Parameter contained in (22.20) is determined from the expression

When measurement data for hysteresis loops are
available, one can quantitatively describe the transient process using
formulae (22.18) and (22.20).

It is easy to integrate averaged equations (22.14) and to calculate
the quadratures (22.19), (22.20) using standard techniques. An exam-
ple of the numerical computation of quadratures (22.19) and (22.20)
is now provided. Assume that Two identical rods are in-
stalled on a SC as described above and A graph of plotted
against when and is shown in Fig. 22.2. Also, a
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graph of the instantaneous amplitude divided by plotted against
when is shown in Fig. 22.3.

Two curves (1 and 2) representing instantaneous amplitudes calcu-
lated by two different methods in the framework of the parallelogram
model (22.2) are plotted in Fig.22.4. Curve 1 which was obtained us-
ing an averaged equation similar to (22.19) represents the amplitude

with respect to time when sin and
Actually, this amplitude is an osculating curve for fast

librations of the SC axis of symmetry with frequency of order
Curve 2 was obtained by integrating the non-linear equations (22.3),
while meeting the constraint inherent in the hysteresis model.
It describes the discrete function denoted by large black dots, which
is calculated using the formula

where is the maximum deviation of the SC axis of symmetry from
H during the revolution around the Earth The
values of the parameters contained in the equations are

Parameters and when two identical rods are
installed provide the value 0.06 for parameter Initial conditions of
motion were chosen such that the initial amplitudes and were the
same. Symbol on curve 1 denotes the maximum value of during
a particular revolution. The curves closely match until line 2 tends to
the horizontal. This approximately corresponds to the attainment by
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the SC of steady-state motion. The amplitude of steady-state motion
is determined by several factors, including non-uniform variation of the
vector H, the residual magnetization of the rods and residual, non-
damped, spin rotation of the SC. Comparison of the sine-style curves

in Fig. 22.3 and in Fig. 22.4 shows that their behaviour depends on
the hysteresis model which is employed (Rayleigh’s model and the
parallelogram model respectively).

This approach to investigating the motion of a SC with respect to
the vector H was employed for the development of an ACS for the
nano-SC Munin**.

**M.Ovchinnikov, V.Pen’kov, O.Norberg and S.Barabash. Attitude Control Sys-
tem for the First Swedish Nanosatellite Munin. Acta Astronautica, 2000, Vol.46,
Issue 2–6, pp.319-326.



Appendix A

Method of van der Pol

The idea behind this method is as follows. Let an equation

be considered, where is a real constant and is a small parameter.
We call this equation ‘quasi-linear’ and its librational solution a ‘quasi-
linear’ oscillation. The corresponding equation obtained from (A.1) at

is called the generating equation. Function should be finite. A
general solution of the generating equation has the form

arbitrary constants; is termed the ‘phase‘. Since is small we
can expect that the general solution (A.2) can approximately provide
a solution of (A.1) if amplitude is not in fact a constant but, rather,
slowly varies. The instantaneous character of the librations is totally
described by instantaneous values of and We may choose and

as new variables and use the following transformation

The latter expression is obtained by differentiating the solution (A.2)
for constant and (Actually, this is a transformation from the
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Cartesian coordinates to polar ones On substitut-
ing these coordinates in the original quasi-linear equation (A.1) and
equating from the first formula to the second, resolve the system
obtained with respect to and to get

These equations are totally equivalent to the original equation due to
the non-singularity of the transformation. The first equation shows
that the amplitude varies slowly, due to its being proportional to
the small parameter Thus we can expect that, during one libration
when the phase increases by the amplitude correspondingly
increases weakly. Therefore, we can exchange the right sides of the
transformed equations with their values averaged over the period

where

These equations are called truncated equations or equations of van der

Pol. The first of them depends only on the amplitude and it can
usually be integrated. In the interval of order thedifference

is less than (as can be shown using the Krilov-Bogolyubov
method).



Appendix B

Linear Equations with

Periodic Coefficients

Consider linear differential equations with periodic coefficients in the
form

where is a vector of variables and is a matrix
with periodic coefficients of period Matrix

is called a fundamental matrix since it is composed of linear-
independent solutions of (B.1). A general solution of (B.1) has the
form

where is a constant vector determined by the initial
conditions. Without loosing generality, we may assume X(0) = E,

where E is the identity matrix. Denoting by the determinant of
the fundamental matrix X, that is, and we
can write

Since is a matrix of solutions then, due to the peridiocity of the
matrix

where is a matrix with constant coefficients We assumed that
the fundamental matrix satisfies the initial condition X(0) = E.
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Thus, at we obtain from (B.3)

We can, therefore, calculate the matrix A for a finite time interval.
Next, we show that a solution satisfying the relationship

exists, where is a constant to be determined. Since any solution of
(B.1) has the form (B.2), a constant vector satisfying the equality

and, consequently, also an equality
should exist. Using these last two equalities and (B.4) we obtain

Relation (B.3) allows us to rewrite this formula as follows

In order that this equality will have a non-trivial solution with respect
to for any the constant should satisfy the equation

This is called the characteristic equation. For simplicity we assume
that all the roots of this equation, which are the eigenvalues or char-

acteristic roots of the matrix A and, consequently, also of the funda-
mental matrix are distinct so that each root corresponds to
an individual Hence, we obtain independent solutions
satisfying (B.4). These solutions may be represented in the following
form

where is a periodic vector and is a
constant called the characteristic index, which is calculated using the
formula

The latter expression is valid for calculations where is a complex
number. Thus, we obtain a set of equalities
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which confirm (B.4).
Since the general solution (B.1) has the form (B.2), we can write

Due to (B.4) the components of this vector satisfy the equality
Equating the magnitudes of both sides we obtain the

relation

which implies that, if all and, associatively, all then, in
a period  the magnitudes of all the solutions will decrease. There-
fore, a mapping point tends to zero with time. The conditions for
stability of the linear differential equations with periodic coefficients
are as follows.

If all then the trivial solution  of (B.1) is asymp-
totically stable.

If at least one root satisfies the inequality then the
solution      is unstable.

If all roots satisfy the inequality then the solution
is stable but not asymptotically stable.

Earlier it was assumed that all the roots of the characteristic equa-
tion have to be distinct. Now we may remark, that the first two
conditions for stability listed above can be applied also in the case
of multiple roots. However, the third condition requires distinctness
of the roots with respect to elementary denominators of the matrix

Using Liouville’s formula

we get for the last coefficient of the characteristic equation
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the set of expressions

a root then This implies that (B.1) has a
solution. If, on the other hand. then

and, consequently, (B.1) has a 2T-periodic solution.
Both cases were already met when we consider in Section 17.4.2 and in
Section 21.4.3 applications involving the stability and periodic motion
of, respectively, gravity-gradient stabilized and magnetically stabilized
SC.

which allow us to calculate employing coefficients of matrix ˆ  rather
than through using the fundamental solution.

Consider now two useful cases. If the characteristic equation has



Appendix C

Poincare’s Method

Consider the differential equation

where vector is of dimension is a scalar argument, ‘dot’ denotes
a derivative with respect to and is a small parameter
Assume that a function is analytical with respect to and Our
task is to obtain a solution of (C.1) that satisfies the initial
condition

Introduce a generating equation

corresponding to (C.1) and assume that a solution of this equation is
known. Let the same initial conditions be imposed
on both equations. Substitute

in (C.1). Then, the new variable has to satisfy the equation

and also the initial condition
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Since the right side of (C.3) is an analytical function of and we
may rewrite it in the following form

Here is composed of non-linear terms (having
order higher than one) with respect to and The subscripted index
‘zero’ in (C.4) and in A means that they are calculated for
and where is a known solution of the generating equation

Since we assumed that a solution of the initial problem for the
generating equation is known, then terms A and are also known
functions of We now seek a solution of the linearized equation (C.4)
for in the form of the following expansion

On substituting this expansion in (C.4) and equating terms of the
same order with respect to powers of we obtain an infinite set of
equations

In the consecutive solving of these equations, starting from the first
one, the functions are known functions of as they are functions
of known variables The variables have to satisfy

Using the above we formulate Poincare’s theorem:

1. A solution of the linearized equation (C.4) may be obtained by
employing the operations of differentiation and integration in quadra-
ture since the general integral of the generating equation (C.2) is
known.
2. Solution of the non-linear equation (C.1) is an analytical function
of the parameter i.e. for sufficiently small absolute values of the
set converges and, consequently, represents an integral
of the equation (C.1) expanded in powers of

(C.2).
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Addendum

The Space Environment

A.1 Solar Activity and Near Earth Space

An overview is here provided of various aspects of solar activity and
its role in creating the environmental conditions in which SC function
when close to the Earth.

A.1.1 The Sun and the Solar Wind

The Sun is a glowing sphere with a visible radius close to 700 000 km
and an equatorial rotation period of 25.3 days (~ 27 days when viewed
from the moving Earth). Most of the Sun’s light originates in a
~ 500 km thick layer called the Photosphere with an emission tem-
perature of ~ 6 000 K. Above this is the Chromosphere with thickness
~ 2 500 km and temperature ~ 10 000 K. Beyond that extends the
Corona, which is readily observed during a total solar eclipse. Spec-
tral measurements indicate that the mean energy of particles in the
corona corresponds to a temperature of The corona has
no well defined boundary but fades into the Solar Wind.

As a result of the large difference in gas pressure between the
corona and interstellar space, plasma is driven outward from the Sun
despite the restraining influence of solar gravity. This ‘solar wind’ as it
streams past the Earth at a mean Sun-Earth distance of or
1 Astronomical Unit (AU), consists of protons and electrons
and respectively), with a small amount of ionized helium

and a few ions of heavier elements. The solar wind carries
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mass away from the Sun at a rate of It has a typical
flow speed of ~ 400 km/s at 1 AU but this parameter can vary over a
wide range (from ~ 200 km/s to more than 1 000 km/s).

The expanding solar wind drags the solar magnetic field outward
with it, forming which is called the ‘frozen-in’ Interplanetary Magnetic

Field (IMF). The rotation of the Sun gives to this magnetic field a
spiral form (the garden hose effect). The angle between the magnetic
field lines and a line drawn from the Sun to an observer at the Earth
is about 45°. For refinements to this model see Hundhausen (1995).

A.1.2 Co-rotating Interaction Regions

The solar wind at low heliographic latitudes is composed of alternating
high speed and low speed flows that co-rotate with the Sun. The high-
speed streams originate in structures called Coronal Holes that extend
equator-ward from the magnetic poles of the Sun and are characterized
by open magnetic field lines. The slow speed streams originate in the
outer portions of dense coronal streamers that tend to straddle the
solar magnetic equator.

At low solar latitudes, the Sun’s rotation (~ 13.3° per day) causes
high speed plasma to be aligned in the same radial direction, and
to travel out behind, plasma exiting from solar regions located rela-
tively to westward (since as viewed from the Earth the Sun rotates
from east to west). With increasing distance from the Sun, the high
speed streams steepen and overtake the slower plasma ahead, thereby
producing compressive Corotating Interaction Regions (CIRs) at the
leading edges of the streams. A CIR thus comprises a region of high
pressure such that its leading edge is a forward wave that propagates
into the slow plasma ahead while its trailing edge is a reverse wave
that propagates in the backward direction. These waves commonly
steepen into forward and reverse shocks at a distance from the Sun of
~ 1 – 2 AU. Ions can be accelerated at both of these shocks. How-
ever, the strongest acceleration occurs at the reverse shock, resulting
in MeV ions propagating Sun-wards through the high speed stream.

Since slow plasma is accelerated as it encounters the forward wave
and fast plasma is decelerated as it encounters the reverse wave, a CIR
acts to limit the steepening of a high-speed stream. Also, it transfers
momentum and energy from a fast stream to relatively slowly moving
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plasma ahead so that speed differences reduce with increasing distance
from the Sun. Studies using data recorded out of the ecliptic plane
aboard the Ulysses SC show that CIRs are systematically tilted due to
the tilt of the solar magnetic dipole relative to the solar rotation axis
(see Chapter 21). Individual CIRs may survive over multiple solar
rotations.

A SC encountering a CIR in interplanetary space can record signa-
tures of its associated shock accelerated particles. For example, on the
occasion of the first elliptical orbit of Mars by the Phobos-2 Mission
to Mars and its Moons in 1989 (average distance from the Sun at en-
counter ~ 1.5 AU), data recorded by the onboard instruments SLED
and LET showed that the close planetary environment was charac-
terized by the presence of energetic particles associated with a CIR
transit (McKenna-Lawlor et al. 1991). Similarly, data obtained by
the energetic particle experiment EPONA on ESA’s Giotto Mission
during a flyby of P/Grigg-Skjellerup in 1992 (then at ~ 1 AU from
the Sun) showed that this comet was immersed in a CIR (Kirsch et al.

1997). The SOHO SC orbit at *, the location of IMP-8 at ~ 1 AU
and the solar-polar orbit of Ulysses, currently provide convenient com-
plementary locations for long term monitoring of CIRs.

A.1.3 The Solar Cycle

The Sun undergoes a well known cycle of variability showing a main
periodicity of approximately eleven years (this period is not constant
but varies between about 9.5 and 12.5 years). At the beginning of a
cycle the solar magnetic field resembles a dipole, the axis of which is
aligned with the Sun’s rotation axis. During the following 5 – 6 years
this configuration dissipates but, during the last part of the cycle a
dipole configuration is restored, but with a polarity that is opposite
to the previous one. Restoration of the original configuration requires
approximately 22 years (the Magnetic Cycle).

Sunspots constitute solar regions characterized by unusually strong,
localized, solar magnetic fields (0.1 – 0.4 T). These features were used
historically to indicate levels of solar variability since the sunspot num-

* is the first Lagrangian libration point based on the three body dynam-
ical problem located at 0.99 AU on the Sun-Earth line, just ahead of, and in
synchronous orbit with, the Earth as it moves around the Sun.



306 ADDENDUM.  THE SPACE ENVIRONMENT

ber is highest at around the middle of a cycle. More recently the
mean daily flux of solar radio emissions at 10.7 cm wavelength (unit:

which shows well defined peaks and troughs at solar
maximum and solar minimum, has been adopted as a representative
activity indicator (the F10.7 index).

The flux of cosmic radiation arriving at the Earth from the galaxy
(see also Section A. 1.10) is modulated by the sunspot cycle. This is
related to the fact that complex magnetic fields in space associated
with enhanced levels of solar activity act, as solar maximum, to shield
the Earth from the influx of energetic charged galactic cosmic rays.
The annual mean of cosmic ray intensity displays, in consequence,
a systematic variation over a solar cycle, with its maximum phase
coincident with the years of minimum sunspot number. A signature
of the 22–year magnetic cycle can also be identified in galactic cosmic
ray intensities as well as a modulation associated with the rotation
of the Sun. Data recorded aboard NASA’s Pioneer-10 and Voyager-

1 and Voyager-2 SC clearly show classical cosmic ray modulation as
well as solar rotation signatures in records obtained as they traveled
outwards through the Heliosphere

† during several solar cycles. IMP-

8 provided 1 AU baseline data for these ‘deep space’ missions and
it was noted, for example, that disturbances originating on the Sun
marking the rise of a new solar cycle (No. 23) in April/May 1998
were reflected at Voyager-1 and –2 in September/October 1998 when
these SC were respectively at distances of 56 and 72 AU from the Sun.
Such observations illustrate the long range influence of solar processes
within the heliosphere.

†The solar wind as it flows out through the solar system pushes against the
plasma, gas and fields of the Interstellar Medium (ISM), thereby forming a large
‘bubble’ in interstellar space called the heliosphere. This structure acts to shield
the solar system from interstellar plasma and magnetic fields, as well as from most
of the cosmic rays and dust in our local galactic neighborhood. The boundary
where the Sun’s atmosphere merges with interstellar space is called the Heliopause.

The position of the heliopause depends both on the strength of the solar wind and
on the properties of the local interstellar medium. Observations made by the
Ulysses SC indicate that the solar wind from the Sun’s poles displays a higher
speed than is the case in the ecliptic. Thus, the heliopause should be further from
the Sun in the polar direction. (See also Section A.4).
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A.1.4 Solar Flares

At its most basic level, a Solar Flare consists of a rapid brightening
in the solar atmosphere associated with an explosive release of energy
that was previously stored in solar magnetic fields. Large flares radiate
throughout the electromagnetic spectrum (producing gamma rays, X-
rays, visible emissions and km long radio waves).

Energetic particles associated with Impulsive Solar Flares are in-
terpreted to be accelerated stochastically by resonant wave-particle
interactions in the low corona. The particles concerned are charac-
terized by being electron rich, and they have a ratio which
can attain a value of up to Also, they display enhancements
in heavy elements by about a factor of ten relative to normal coronal
abundances (Reames, 1999).

The amount of energy involved in the flare process varies over a
wide range from some for the smallest flaring phenomenon on
the Sun to about for the most important flare events. At the
present time it is not clear how the energy is distributed between dif-
ferent kinds of emission. In only one instance to date has an in-depth
estimate been made of the various kinds of energy released — that was
in the case of a typical (rather small), flare event that occurred on 5
September, 1973 during the Skylab Mission. The availability in rela-
tion to this event of electromagnetic observations recorded over more
than ten decades in wavelength (from less than 1 angstrom to greater
than 1 meter), allowed Canfield et al. (1980) to estimate (within the
limitations of certain inherent errors and assumptions), that the total
radiated energy was more than The mechanical energy of large
scale mass motions (including contributions from cool eruptive mate-
rial; an emission front; a shock wave with a coronal transient; magnetic
field convection and flare core motions), was in parallel estimated by
Webb et al. (1980) to exceed

A.1.5 Coronal Mass Ejections

Coronal Mass Ejections (CMEs) comprise major ejections of material
from the Sun’s outer atmosphere in the form of a

large cloud of charged particles. These events are often associated
with solar flares but can occur independently. CMEs have speeds in
the general range 50 km/s to > 1200 km/s.
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Strong interplanetary shocks driven by fast CMEs are effective in
accelerating solar wind ions in the high solar corona up to energies of
several hundred MeV. It is believed that the largest and most ener-
getic Solar Energetic Particle (SEP) events recorded at the Earth are
Gradual Events (‘Gradual’ implies particle profiles that slowly rise)
composed of particles accelerated in the Sun-Earth space in associa-
tion with shocks driven by fast CMEs (Reames, 1999). Measurements
of the ionization rates of Fe in such events suggest that ambient (un-
heated) coronal material provides the seed population for the con-
stituent particles, even those that are shock accelerated up to energies
of ~ 600 MeV/amu (Tylka et al., 1995).

If the shocks that generate ‘gradual’ solar energetic particle (SEP)
events are sufficiently energetic and their propagation direction appro-
priate, these particles can reach the Earth. A transient disturbance in
the Earth’s magnetic field provides in more than 90 % of these cases
a clear indication of the arrival of a travelling shock.

At solar minimum CIRs are dominant in the interplanetary medium.
However, as a new cycle develops, signatures of energetic particles as-
sociated with solar flares and CMEs gradually come to provide the
main signatures of solar activity. During the Cruise Phase (July 1988
– March 1989) of the Phobos-2 Mission to Mars, the interplanetary
medium was in course of changing over from solar minimum domi-
nated to solar maximum dominated conditions (solar cycle 22 began
in September, 1986). Energetic particle measurements illustrating
the change-over from one characteristic set of particle signatures to
another recorded by the onboard SLED instrument are available in
McKenna-Lawlor et al. (1991).

Fig.A.1 shows an example of SLED data recorded at Mars from
1 – 26 March, 1989 in two energy channels (202 – 609 keV and >
30 MeV respectively) when the activity of the new cycle was already
established. In the interval concerned, the SC was in a circular or-
bit about the planet at an altitude of 6 330 km (it is noted
that on 27 March telemetry contact with Phobos-2 was lost). These
long duration measurements of high energy particle radiation illustrate
the hazardous environmental conditions to which space hardware and
‘man in space’ can be exposed when the Sun is active (see also Sec-
tion A.3).
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A.1.6 Prediction of Proton Events

Two models are presently available for predicting long term solar
proton fluences‡, namely the King Model (King, 1974) and the (Jet
Propulsion Laboratory) JPL Model of Feynman et al. (1993). The
King model was constructed using data obtained exclusively during
the active years of solar cycle 20 (maximum ~ 1969) and was, for
a long time, the standard model used to predict mission integrated
solar proton fluences. Several assumptions made by King were later
considered questionable and this problem was addressed by the JPL
group in a series of studies that, in the final version of their model
(JPL-91), analyzed data from three solar cycles (19, 20 and 21). Us-
ing the exact dates of solar maximum as the zero reference year for
each individual cycle, it was shown that the active phase lasts for 7
years in a particular 11 year period. The years of high fluence be-
gin some 2.5 years prior to the zero reference date and end 4.5 years
after that date. An asymmetry in the event frequency and intensity

‡
Particle Flux is defined by the quotient where is the increment of

particle number in the time interval (measured in Particle Fluence

is defined by the quotient where is the number of particles incident on
a sphere of cross-sectional area da (measured in
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thus exists with respect to the peak in solar activity. Only data col-
lected during the seven active years of the cycles studied were used in
JPL-91 for radiation level prediction. At the present time this model
(Feynman et al. 1993) is considered to be the most reliable (in the
statistical sense) for the prediction of solar fluences for space mission
analysis (Tranquille and Daly, 1992). It is presently used at both ESA
and NASA in this regard. It was noted by Goswami et al. (1988)
that the variability observed in solar particle fluences during the three
cycles considered at JPL precludes the possibility of improving the
statistical predictability of solar particles until the physics underlying
the processes concerned is better understood and this comment is still
true.

A.1.7 Numerical Modeling

Data based on the continuous monitoring of various aspects of solar
activity can be input to numerical models to predict the arrival at
the Earth of individual shocks and energetic particles. Predictions
of this kind are routinely made in ‘real time’ by forecasters at the
Space Environment Center (SEC) of the National Oceanographic and

Atmospheric Administration, (NOAA) in Boulder, Colorado, based on
continuously updating global information on solar circumstances. The
forecasts produced are made continuously available by SEC to a wide
spectrum of users.

Three numerical models often used at SEC to provide ‘real time’
predictions of shock arrivals at the Earth, were tested against the
measured arrival times of a sample of flare associated, CME gener-
ated, shocks. These shocks were detected in solar wind plasma, inter-
planetary magnetic field and energetic particle data recorded aboard
SOHO, ACE, WIND, INTERBALL-1 and IMP-8 (McKenna-Lawlor
et al. 2002, and references therein). Fig.A.2 shows a typical Gradual
SEP recorded by the LION instrument aboard SOHO on Days 158-
164. 2000. Shock passage was close to noon on Day 160. An account
of LION is provided in McKenna-Lawlor et al. 1997.

The numerical models tested were the Shock Time of Arrival Model

(STOA); the Interplanetary Shock Propagation Model (ISPM) and the
Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2). Both STOA
and ISPM require as input data the initial coronal shock velocity (de-
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rived from solar radio burst and coronagraph data) and the input
energy duration (derived from solar X-ray measurements), as well as
the location of the active source on the Sun. HAFv.2 generally uses
the same observational inputs but differs from STOA and ISPM in
the way the background solar wind is treated. STOA utilizes the ob-
served solar wind speed at while ISPM employs a fixed internal
model with a representative speed of 360 km/s at 1 AU. HAFv.2,
models the inhomogeneous ambient solar wind that affects the prop-
agation of disturbances en route from the Sun to the Earth. Realistic
inner boundary conditions determine the modeled background solar
wind flow and IMF topology. These data are derived from synoptic
solar source surface maps of the radial magnetic field and from calcu-
lations of the magnetic flux divergence and solar wind velocity close
to the Sun.

STOA and ISPM each predict whether a shock will arrive at the
Earth (which is for these calculations equivalent to its arrival at
and, if so, when. They also provide a measure of shock strength in
terms, respectively, of the concerned magneto-acoustic Mach number
and a shock strength index. HAFv.2 can predict the solar wind speed,
density, dynamic pressure and interplanetary magnetic field vector
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as functions of time at different locations in the heliosphere. The
temporal profile of the predicted dynamic pressure at is used to
compute a ‘Shock Search Index’. The predicted shock arrival time is
generated when this index exceeds an empirical threshold. The shock
is deemed to be significant when the predicted post-shock dynamic
pressure is greater than its pre-shock value.

For the (limited) sample investigated, STOA provided the smallest
values of the (predicted minus observed) arrival times and showed a
typical precision better than about The ratio of the error estimate
for each model to the standard deviations of the observations were
0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2 respectively. The
testing of larger statistical samples and refining of the models is an
ongoing activity but the results provide confidence that STOA, in
particular, satisfactorily simulated what transpired.

A.1.8 The Earth’s Magnetosphere

In the absence of interplanetary plasma, the geomagnetic field would
extend in all directions. The Earth is, however, located within the
expanding solar wind which acts to compress and confine the geo-
magnetic field to produce a ‘tear shaped’ cavity around which the
solar wind flows. This cavity is called the Magnetosphere. Fig.A.3
illustrates schematically the locations of its characteristic boundaries,
which are briefly described below.

A collisionless Shock Wave is formed upstream of the magneto-
sphere due to the encounter between the supersonic solar wind and
the ‘obstacle’ to its flow presented by the Earth’s magnetic field. In
this region, wave-particle interactions take over the role played by
particle collisions in a collisional shock. Beyond it, the shocked solar
wind forms a layer of turbulent plasma (the Magnetosheath) between
the Bow Shock and the Magnetopause. This latter surface constitutes
the boundary between the solar wind and the Earth’s magnetosphere.
Across the magnetopause, the magnetic field usually undergoes a sharp
change in both strength and direction so that, by Ampere’s Law, elec-
trical current flows at this interface (the Chapman-Ferraro Current).

The solar wind does not readily penetrate the magnetopause but,
rather, compresses the field around the Earth to form the magneto-
spheric cavity, the Sun-ward boundary of which is located where the
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outward pressure exerted by the compressed geomagnetic field and the
magnetospheric plasma pressure are mutually balanced by the pres-
sure of the solar wind plasma. A complex process of inter-connection
between the magnetic field of the solar wind and the geomagnetic field
(not presently well understood) acts to stretch out the magnetic field
in the anti-Sun direction to form a long Magnetotail. Under quiet
conditions, the Sun-ward side magnetopause is located at
from the Earth is ~ 6 400 km) while the magnetotail extends
anti-Sunward to a distance that may be in excess of

The magnetosphere effectively shields the Earth from most of the
direct solar wind because charged particles do not readily travel across
a magnetic field. In consequence, most of the shocked solar wind
particles flow around the magnetosphere within the magnetosheath.
Some solar wind plasma can, however, enter the magnetosphere. For
instance, between the Sun-ward magnetic field and the tail-ward mag-
netic field are located two funnel-shaped regions called the Polar Cusps

which the solar wind can access by following the local magnetic field
lines towards the Earth.

Also, solar wind plasma is found in the magnetotail, although the
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method of its entry to this region is a subject of some debate. In
this regime the Plasma Sheet is sub-divided by a thin Neutral Sheet,

where magnetic fields from the northern and southern hemispheres
of the Earth effectively cancel to create a magnetically ‘neutral’ re-
gion. In the upper (northern) region of the plasma sheet the magnetic
field is directed towards the Earth. In the lower (southern region) the
field is directed away from the Earth. As long as the impingement of
the solar wind on the magnetosphere is reasonably steady, the plasma
sheet remains in equilibrium. When, however, coupling between the
solar wind and the magnetosphere is enhanced due to solar circum-
stances, this balance is disturbed. Details of the processes involved
are not well known. However it is generally envisaged that, when the
IMF is oriented anti-parallel to the geomagnetic field lines, magnetic
merging can occur between the interplanetary and geomagnetic fields
at the dayside magnetopause and energy is associatively transferred
from the solar wind to the magnetosphere. An associated increase in
magnetic pressure in the magnetotail then causes the plasma sheet to
become ‘pinched’ until a neutral point is formed. Here, energy stored
in the magnetotail is explosively released by a re-connection process
and plasma particles are resultingly accelerated so that they travel, on
either side of the neutral point, towards the Earth and down the mag-
netotail respectively. These re-connection events are thought to occur
at about to tail-ward. The accelerated particles moving
Earth-wards along the magnetic field lines bombard the upper atmo-
sphere around the poles in regions called the Auroral Ovals, thereby
stimulating auroral displays. Complementary, fast plasma flows down
the tail showing speeds of several hundreds of km/s have been iden-
tified out to about in observations made aboard the ISEE-3

and Geotail SC.

On the occasion of an Earth gravity assist manoeuvre executed
by ESA’s Giotto SC on 2 July 1990, conditions were unusually quiet
in the magnetosphere, thereby enabling a rare “snapshot” of this re-
gion to be recorded both in magnetic field and energetic particle mea-
surements. These data, which show characteristic signatures of key
magnetospheric regimes, including the bow shock; the magnetopause
(inbound and outbound) and the midnight cusp are available in Glass-
meier et al. (1991) — magnetic data, and in McKenna-Lawlor et al.

(2001a) — energetic particle data.
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All of the planets hitherto explored have magnetospheres. For
planets that have no internal magnetic dynamo, the solar wind induces
a magnetosphere through its interaction with the upper atmosphere
and ionosphere. It is thus possible to distinguish between intrinsic and
induced magnetospheres (Russell, 1991). Spacecraft are profoundly
affected by disturbances in the terrestrial magnetosphere and display
operational anomalies, and even failure, under particular perturbing
circumstances (see Section A.2). Study of magnetospheres in other
parts of the solar system where different boundary conditions and
scale sizes pertain offer new scientific insights into magnetospheric
processes, but also potentially constitute hazardous environments for
investigating SC.

A.1.9 Particle Populations in the Magnetosphere

Key populations making up the near Earth energetic particle fluxes
include Galactic Cosmic Rays (GCRs); particles trapped in the geo-
magnetic field forming the Van Allen Belts, and energetic particles
associated with solar activity. Fig.A.4 and Fig.A.5 present typical
energy spectra of these various populations.

A.1.10 Galactic Cosmic Rays

Galactic Cosmic Rays (GCRs) originate in our galaxy and they per-
vade the solar system. These particles constitute nuclei from all the
known stable atoms as well as electrons (composition: 83 % protons;
13 % He nuclei; 3 % electrons and 1 % higher Z particles — with peaks
at C, O, Ne, Mg, Si and Fe).

The omnidirectional flux of GCRs > 100 MeV/n is about four
particles/ at the time of minimum of the (approximately) eleven
year solar cycle and about two particles/ at the time of solar
maximum. This modulation (see also Section A. 1.3) affects particles
with momentum up to ~ 1.7 GeV/c, where c is the velocity of light.
The annual GCR dose rates are 10 rads and 5 rads respectively at so-
lar minimum and solar maximum (taking into account a slight related
change in composition). The higher Z population is of particular in-
terest with regard to the radiation damage produced by these particles
(see Section A.2.1).
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A.1.11 The Van Allen Belts

Early measurements indicated that energetic particles are trapped in
two distinct belts in the geomagnetic field, the innermost centered
at about and the outermost at about These are now
called the Van Allen Radiation Belts to commemorate associated pi-
oneering work by James Van Allen, in particular with regard to data
recorded aboard Explorer-1 and Explorer-3 (Van Allen et al. 1958).
Measurements made aboard NASA’s Department of Defense SC CR-

RES, which was launched in 1990 at a time of solar maximum, showed
that the region between the inner and outer belts may become filled,
as a result of solar activity, with energetic protons that can remain
trapped in this ‘slot’ region for many months (Dyer et al. 1995).

The Inner Radiation Belt, which in the equatorial plane is lo-
cated at roughly contains primarily high energy pro-
tons. Particles with energies > 10 MeV and maximum flux density

are concentrated at radial distances of



A.1.  Solar Activity and Near Earth Space 317

The source of these protons is the in-flight radioactive decay of neu-
trons generated in nuclear interactions produced by galactic cosmic
rays in the upper atmosphere (Cosmic Ray Albedo Neutron Decay —
GRAND). It is noted that this source would produce a radiation belt
around a magnetized planet even if the solar wind did not exist. Ex-
tended measurements made aboard the SAMPEX SC showed that the
inner belt is rather stable, while displaying a modulation over the
general time scale of the solar cycle.

A population of particles located within the inner belt composed
of heavy nuclei (mainly oxygen, with some nitrogen, helium and a
small amount of carbon), is interpreted to have been produced by cos-
mic rays of interstellar origin (the Anomalous Component), see Cum-
mings et al. (1993). Measurements of a representative atomic species
(20 MeV/n Oxygen) made aboard SAMPEX over approximately seven
years, indicate that the particle loss rates associatively observed are
in conformity with estimates of the loss rates predicted to occur in a
drift averaged model atmosphere under both solar minimum and solar
maximum conditions (Li et al. 2001a).

The Outer Radiation Belt contains mainly electrons with energies
ranging from several hundred keV to a few MeV. It is much more dy-
namic than the inner belt and exhibits changes on solar cycle, semian-
nual, solar rotation and diurnal time scales. Semiannual variations in
the relativistic electron population were found to depend on a substan-
tial, semiannual, solar wind speed increase associated with a pre-cursor
solar wind density enhancement and, in particular, with a southward
turn of the IMF (Blake et al. 1997). The outer belt is most intense,
and extends further towards lower L values, at around the equinoxes
(Baker et al. 1999). Also, it was long recognized that geomagnetic
activity shows a semiannual variation with its greatest activity near
the equinoxes (Chapman and Bartels, 1940).

The seasonal variation of geomagnetic activity was overviewed by
Cliver et al. 2000 who cited three possible causes namely: the Axial

Effect (that is the variation of the Earth in heliographic latitude and
the associated increase in solar wind speed at higher heliographic lati-
tudes); the Equinoctical Effect (that is the varying angle of the Earth’s
dipole with respect to the flow direction of the solar wind, which re-
flects a varying efficiency in coupling) and the Russell-McPherron Ef-

fect (that is the larger of the IMF near the equinoxes in
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GSM coordinates due to the then pertaining tilt of the dipole axis with
respect to the heliographic equatorial plane, see Russell and McPher-
ron, 1973).

Studies by Li et al. (2001a) using SAMPEX data indicate that,
in the inner magnetosphere, the equinoctial effect is the primary con-
tributor to the semiannual variation of relativistic electrons, and also
of the accompanying variations in geomagnetic activity. A lesser role
is played by the axial and Russell-McPheron effects. The semian-
nual variation of MeV electrons at geo-stationay orbit was attributed
mostly to the semannual variation of solar wind velocity. Overall, it
was inferred that the magnetosphere is strongly controlled by the solar
wind.

An account of sporadic, rather than periodic, variability in the
high energy, outer belt, electron fluxes is contained in Section A.1.16.

A.1.12 Particle Motion in the Geomagnetic Field

If an electrically charged particle is injected into the geomagnetic field
with some initial velocity at an angle to the field vector, it will follow a
helical trajectory about, and along, the magnetic field line (provided
that its energy does not exceed the energy threshold for trapping).
When it spirals towards a region of higher field intensity the particle
experiences an induced electric field that accelerates its circular (cy-
clotron) motion transverse to the magnetic field line. An increase in
the transverse kinetic energy of the particle resultingly occurs (due to
conservation of energy) at the expense of its motion parallel to the
field line, and a point may eventually be reached at which all the par-
allel kinetic energy has been converted into transverse energy. In this
situation, the particle reverses its parallel motion and spirals back in
the opposite direction. In this way in the Earth’s field, a charged par-
ticle can bounce back and forth between two “mirror points” lying on
opposite sides of the geomagnetic equator.

Since the terrestrial magnetic field is not uniform and its field lines
are curved, the particle will, in addition, drift in longitude around the
Earth. Particles with charge q < 0 drift eastward while ions with q > 0
drift westward (thus electrons drift eastward and protons and other
ions westward, see Fig.A.6). A charged particle can remain trapped
within a fixed ‘drift shell’ for a very long time. Early studies showed
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that geo-magnetically trapped ions are composed mainly of
and

Radiation belt fluxes are usually mapped in a geomagnetic coor-
dinate system (B, L). Here B is the magnetic field intensity at the
point of measurement and L is a parameter defining the drift shell
(B, L) of a trapped particle with pitch angle equal to 90° at the point
of observation. For particles mirroring at this point, B and L are adi-
abatic invariants, uniquely determined in terms of the first and second
adiabatic invariants of motion and I (McIlwain, 1961). For a par-
ticle not mirroring at the point of observation (i.e. having a pitch
angle the magnetic field intensity at the mirror point is

and is the L value determined by which in
turn is obtained by tracing the field line passing through the point
of observation to its conjugate mirror points. Both and are
adiabatic invariants. Since the geomagnetic field distribution under-
goes secular changes (Chapter 7), the (B, L) values of a fixed point in
space change with epoch. At L values below about 3, this has impor-
tant consequences for particle fluxes trapped at altitudes below about
2000 km.
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A.1.13 The South Atlantic Anomaly

Since the center of the Earth’s magnetic dipole is displaced with re-
spect to the center of the Earth, particles trapped on the geomagnetic
field lines in the inner radiation belt penetrate to lower altitudes over
the South Atlantic Ocean than anywhere else on Earth. Two influ-
ences are involved in this effect. These are (a) the trapping of particles
in the field of a titled dipole with significant contributions from the
quadrupole and octupole terms and (b) the input
of higher order terms (5,4), (6,5) and (4.3) which are associated with
local, crustal, magnetic anomalies (Roederer, 1972).

The secular variation of the main dipole  coefficient with time,
at present a decrease in magnitude of about per century,
influences energetic protons trapped on low-L drift shells. These par-
ticles, whose characteristic lifetimes within the shells are of the order
of centuries, are subject, due to conservation conditions, to a secular
change in drift shell position and energy such that the L parameter of
a given particle decreases as decreases. Also, a secular change in
the expansion coefficients causes a slow variation in the position of the
‘magnetic center’ which drifts westwards from the Earth’s center at a
rate of between 2 and 3 km/year. The eccentricity of the main dipole
thus increases with time. In consequence, particle shells are gradually
dipping deeper into the atmosphere over the South Atlantic. The en-
hanced concentration of particles at this general location is referred to
as the South Atlantic Anomaly (SAA). Fig.A.7 shows modeled proton
fluxes with energies greater than 100 MeV in the SAA region. These
concentrated fluxes extend above Brazil and South Africa where they
constitute a radiation hazard to SC.

A.1.14 Magnetic Storms

A current, generated by the longitudinal drift of energetic (10–200 keV)
charged particles trapped on field lines between L ~ 2 – 7 circulates
clockwise around the Earth as viewed from the north (see also Sec-
tion A.1.12 and Fig.A.6.). This current is termed the Ring Current.

The global strength of the ring current can be monitored by ground
based magnetometers at middle or equatorial latitudes.

A Magnetic Storm was defined by Gonzales et al. (1994) as ‘an
interval of time when a sufficiently intense and long-lasting interplane-
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tary convection electric field leads, through substantial energization in
the magnetosphere-ionosphere system, to an intensified ring current
strong enough to exceed some key threshold of a quantifying storm
time index’ (the electric field concerned derives from the solar wind
velocity V and from the southward IMF component   ). An index
that is frequently used in quantifying the effect is the Disturbance

Storm Time Index obtained from hourly scalings of horizontal
magnetic variations recorded by a network of, near equatorial, geomag-
netic observatories. The characteristic accompaniments of elevated
solar wind velocity and a strong, southward directed component,
suggests that enhanced energy transfer from the solar wind/IMF to
the magnetosphere during these events includes a process of magnetic
field merging.

Storms are typically divided into three distinct phases according
to their signatures in During the Initial Phase, is positively
enhanced by amounts reaching peak values of approximately 100, 50
and 30 nT, which are respectively described as Intense, Moderate and
Small (typically Sub-Storm) events. This Initial Phase can last from
minutes to hours. During the Main Phase of an Intense Event (typi-
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cally 30 minutes to several hours), can attain negative values of
hundreds of nT as the ring current builds up. Thereafter, the Recov-

ery Phase can endure from tens of hours to more than a week as
gradually returns to its normal level.

Geomagnetic disturbances are also often described in terms of the
Index, which is the mean value of the disturbance level in the two

horizontal magnetic components recorded at thirteen, selected, sub-
auroral stations. The name originates from planetarische kennzif-

fer (planetary index).
Sub-storms are episodic events that release energy stored in the

magnetosphere and magnetotail into the high latitude ionosphere, as-
sociatively creating intense auroral displays. They occur in association
with most levels of magnetic activity but are more frequent and in-
tense during magnetic storms. A ‘classical’ hypothesis that the ring
current is enhanced via the injection of energized plasma sheet par-
ticles from the magnetotail to the inner magnetosphere during sub-
storms is presently challenged and a more modern view is that the
sub-storm expansion phase acts as the energy dissipation term, while
the southward IMF constitutes the input term, in the energy balance
equation (see for example Siscoe and Petschek, 1997 and McPherron
et al. 1997).

The largest magnetic storms are often related to the occurrence of
a CME accompanied by a fast shock and this combination is called
an Interplanetary Coronal Mass Ejection (ICME), see Dryer (1994).
Moreover, for geo-effectiveness, the characteristic configuration of a
large, southward directed component should endure for several
hours. Not surprisingly, CMEs will usually not produce significant
magnetic storms when the southward directed is small; if it is
directed northward or if the ICME source on the Sun is unfavorably
far from the central meridian. Very energetic flares located at around
central meridian can, however, be associated with major magnetic
storms, as defined by their and indices (Gonzalez et al., 1994,
1999).

Two different processes have been suggested for the formation of
the storm-time ring current. These are (a) the injection of plasma
into the inner magnetosphere during the expansion phase of magneto-
spheric sub-storms and (b) increased convective transport of charged
particles from the night-side plasma sheet into the inner magneto-
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sphere (L < 4), consequent on an intensification of the Earth’s dawn-
dusk convection electric field during extended periods of strong south-
ward IMF. At the present time there is some evidence that favors the
enhanced convection over the plasma injection model and it is increas-
ingly inferred that sub-storms play a significant, albeit not a primary,
role in the growth of the storm-time ring current.

A.1.15 External Magnetic Field Models

The geomagnetic field can be represented, to a first order approxima-
tion, by a magnetic dipole with its axis inclined to the Earth’s spin
axis by ~ 11.5° with some contributions from quadrupole, octupole
and certain higher order terms ( see Section A.1.13 and Chapter 21).
The internal multipoles can be neglected beyond L = 3 – 4, and, in
this region of space, even a centered dipole model provides a satisfac-
tory approximation of the internal field. Beyond L = 4, the effect of
external currents starts to play a role and this regime is called the Ex-

ternal Magnetic Field. Three important current systems are present
in the undisturbed outer magnetosphere namely, currents at the mag-
netospheric boundary and in the neutral sheet and the ring current
(which flows in the equatorial, minimum induction, surface). During
magnetic storms and sub-storms there are substantial changes in these
current systems while field-aligned currents flow both out from, and
into, the underlying ionosphere.

The external field has been investigated over several decades using
SC and, based on these data, the average strength and shape of the
field as it is configured during periods of enhanced magnetic activity
has been modeled by several authors. In this regard, a frequently
used series of empirical, global, magnetic field models was developed
by N.Tsyganenko (for convenience the representative model described
in Tsyganenko (1989) is generally referred to as T-89). This series
is based on the International Geomagnetic Reference Field (IGRF)
— which represents the internal contribution to the field — suitably
chosen for the epoch concerned and modified by including the effects
of the various magnetospheric current systems mentioned above.

To illustrate these models let (IGRF-2000) be represented by
and the modified field, as determined in T-89, be represented by
Denote by In Fig.A.8, is plotted against alti-
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tude at the geographic longitude and latitude of the SAA assuming five
different environmental situations. The lowest curve in the plot cor-
responds to the most disturbed magnetic conditions (where )

and the highest corresponds to quiet time conditions. These plots indi-
cate that, at the altitude of geo-synchronous orbit, there is a difference
of up to 40 % between the disturbed and undisturbed magnetic fields.
Alternative external magnetic models include the Olson and Pfitzer
tilt dependent model (Olson and Pfitzer, 1977) and the Olson and
Pfitzer dynamic model (Pfitzer et al. 1988).

Lemaire et al. (1995) compared the modeled magnetic field ob-
tained using T-89, as well as the two Olson and Pfitzer models men-
tioned above, with in-situ measurements made under disturbed mag-
netic conditions aboard the CRRES SC. These comparisons showed
that none of the models was adequate to reproduce the measured
fields over all parts of the orbits investigated. More recently, Zhou et

al. (1997) tested the T-96-01 model against data from the POLAR

SC measured at high altitudes above the polar cap and, again, found
major discrepancies between the modeled and observed fields. More
work on modeling the external field is thus presently required.
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A.1.16 Relativistic Electrons

In addition to the ‘periodic’ variability described in Section A.1.11,
dramatic day to day enhancements, showing slow as well as rapid
buildups, are frequently found in the fluxes of the outer belt electrons.
While in general (although not exclusively) these events are associated
with geomagnetic storms, the magnitude of a particular enhancement
can vary over a wide range for any given storm strength, attaining
in many instances an increase of several orders of magnitude. The
electrons can also display sudden ‘drop-outs’, such that the fluence
decreases by 2 – 3 decades within 24 hours. These latter events may
be due to magnetic changes in which the electron population is tem-
porarily shifted out of geo-synchronous orbit. Alternatively, they may
be related to sudden electron losses made either to the magnetopause
or to the upper atmosphere.

Two classes of process have emerged to account for the observed
enhancements in the outer belt, namely those that rely on internal
acceleration or re-circulation mechanisms and those that rely on in-
creased radial transport into the region. A general account of the
several mechanisms proposed in these two categories is contained in
Friedel et al. (2001). If it is supposed, as is popularly the case, that the
variable high energy electrons originate in a population of lower en-
ergy electrons (from a few tens to a few hundred keV) already present
in the outer radiation belt or, alternatively, injected into this region,
the process whereby these electrons are subsequently accelerated to
relativistic energies remains to be explained.

One possibility is that the enhanced fluxes of relativistic (MeV)
electrons are driven by a drift-resonant interaction with the enhanced
ULF wave activity observed during storm times. To test this sugges-
tion, solar wind variations, relativistic electron fluxes and Pc5 ULF
wave power data measured over a six month interval using two STRV

micro-SC were inter-compared (Pc5 pulsations comprise strong, com-
pressed, variations in the magnetic field magnitude, with typical peri-
ods of about ten minutes, which are commonly observed in the outer
magnetosphere at low geomagnetic latitudes). These comparisons pro-
vide evidence that the largest relativistic MeV electron flux increases
occurred in association with Pc5 wave power that was sustained over
a number of days in response to, long lived, high speed solar wind
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streams (Mathie and Mann, 2000). Also, it was noted in this study
that the maximum available Pc5 energy was located at the outer edge
of the radiation belt and decreased strongly with decreasing L. Al-
though these results are encouraging, it is still appropriate in view of
the great complexities involved, to seek to determine on a case by case
basis for a large number of events the comparative roles of the vari-
ous mechanisms that may, in principle, operate to produce individual
relativistic electron enhancements, so as to elucidate which process is
the most important under particular circumstances, and why (Friedel
et al. 2001).

Theoretical aspects of relativistic electron dynamics have, mean-
while, yielded methods that can be used in predicting high energy
electron enhancements. One such method is to take a simple physical
diffusion model and modulate its diffusion coefficients using appropri-
ate solar wind parameters. This procedure has already provided evi-
dence that the processes concerned are predictable (i.e. non-chaotic)
and based on a. low-dimension, solar wind input function (Li et al.

2001b). Another, method based on a statistical approach, looks for
relationships between various input parameters (e.g. solar wind state,
the index, ULF wave activity) and the output relativistic electron
fluxes. In this connection, a statistical study by O’Brien et al. (2001)
yielded useful operational thresholds for predicting the effectiveness
of a given storm in producing relativistic electron flux buildups at
geo-synchronous orbit.

In addition, a statistical link identified between daily electron flu-
ence and average solar wind speed prompted Baker et al. (1990) to
suggest that the daily > 2 MeV electron fluence at geo-synchronous
orbit can be predicted through employing a linear filter technique that
uses average solar wind speed as its input. This method has since been
refined to result in the Relativistic Electron Forecast Model (REFM)
presently utilized at NOAA’s Space Environment Center (SEC).

In this kind of forecasting, to help account for short-term ‘drop
outs’ (see above) and longer term drifts, a flux offset is employed to
adjust the output. This involves comparing previous selected mea-
surements with relatively recent values to compute the offset. The
number of days of previous measurements varies from one to twenty,
and the predictions are made with lead times that range from one to
three days, or (less reliably) eight days. A complementary method
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based on forecasts that use a ‘Quiet Sun’ Wang-Sheely Model
§ rather

than recorded solar wind data, is also used to provide electron fluence
forecasts that cover up to 8 days.

Bombardment by high energy relativistic electrons can lead to
anomalies in the operation of SC, or even to complete SC failure,
see for example Regan et al. (1983) and Baker et al. (1987), as well
as Section A.2.4. Against this background, and having regard in ad-
dition to the threat these high energy particles pose to astronauts on
the International Space Station (Section A.3.9), relativistic electrons
are presently routinely monitored by NOAA SC at geo-synchronous
orbit.

A.1.17 Thermospheric Heating

The Thermosphere (at atmospheric altitudes between 120 – 600 km)
is subject to large temperature variations (approximate range 800 –
1200 K) over a typical solar cycle as a result of the local absorption
of Extreme Ultraviolet Radiation (EUV). At altitudes between 500 –
800 km the atmospheric density between solar maximum and solar
minimum is increased by approximately two orders of magnitude. The
expansion of the atmosphere in response to heating has a significant
effect on SC lifetimes. The dominant effects in this connection are
the level of solar activity in a particular cycle and the value of the
ballistic coefficient of the SC concerned. A family of plots relating
SC lifetime as a function of altitude with the solar cycle phase for
various representative ballistic coefficients, was provided by Tribble et

al. (1999)

A.1.18 Atmospheric Drag

When the Earth’s atmosphere expands in response to solar activity,
the drag experienced by SC in near Earth orbits increases. As already

§The Wang-Sheely empirical model determines the solar wind speed at the
Earth from the divergence of magnetic flux tubes in a synoptic, map-based, po-
tential field source, surface model of the coronal magnetic field. According to this
model, fast solar wind emanates from regions of small magnetic field divergence
while slow solar wind comes from high divergence regions.
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shown in Chapter 6, a drag perturbing force that decreases SC energy
causes the orbit to contract.

One of the most difficult tasks in evaluating and modeling the
drag effect lies in determining appropriate values for the atmospheric
density. There is at present a plethora of atmospheric models, di-
vided between those that are Static and those that are Time Varying.

Static models reflect latitudinal and longitudinal density variations.
Attempts to model a symmetrical atmosphere to conform to every re-
gion on the Earth’s surface are, however, frustrated by the presence of
geographical features (for example mountain ranges) while the Earth’s
equatorial bulge (Chapter 7), in itself introduces a density anomaly.

Time varying models require that many short term, and long term,
variations in the distribution of density in the Earth’s atmosphere be
taken into account. These are primarily associated with the chang-
ing position of the Earth in space and with levels of solar activity.
Table A.1 lists some of the major contributors to the variations con-
cerned. Other contributors include the effects of oceanic and atmo-
spheric tides and winds and the influence of differential atmospheric
rotation.

Among numerous mathematical models of atmospheric density de-
veloped since the late 1950s are:

The Committee for Space Research (COSPAR) International
Reference Atmosphere Models (CIRA) produced by The Com-
mittee for Space Research — COSPAR (Rees, 1988 and Rees
et al. 1990). The CIRA-90 version covers altitudes from 25 –
2500 km.

Jacchia Models. The 1977 version covers from 70 – 2500 km.
(Jacchia, 977).

Mass Spectrometer and Incoherent Scatter data (MSIS). The
1986 version covers from ground level to 2000 km (Hedin, 1986).

The Russian Density Model (COST). The 1999 version covers
altitudes from 120 – 1500 km (Vallado, 2001).

A study by Gaposchkin and Coster (1987) concludes that no one
density model is universally applicable. Thus, when choosing a model
for a particular application, the accuracy needed (which is a function
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of the computational requirements) relative to a reasonable speed of
calculation for the task concerned, should be taken into account.

A dramatic case of orbit decay due to atmospheric drag was pro-
vided by NASA’s Skylab orbital station, which was launched to study
the active Sun in 1973. The high level of activity under investigation
resulted in greatly enhanced levels of drag due to atmospheric heating.
In consequence, SKYLAB re-entered the Earth’s atmosphere in 1979
considerably in advance of its expected demise, and before an attempt
to deliver, using the Shuttle, a propulsion module to boost its altitude
could be made.

A.1.19 Solar Radiation Pressure

The total solar energy striking at the Earth’s mean distance
from the Sun is traditionally referred to as the Solar Constant and it
has the value¶ Due to effects relating to the
motion of the Earth around the Sun, Wertz (1978) provided a time
varying formula instead of a constant value to account for variations
recorded at the Earth over the course of a year

where is the number of days from when the Sun is at aphelion
(this point is usually reached on July 4, but with some variation).

Solar Radiation Pressure is a significant source of attitude and
trajectory errors for high altitude (> 1 000 km) and for interplanetary
SC. It depends on the reflective characteristics of the surfaces on which
this radiation impinges; on the influence of surface shading during
different parts of the orbit and on general aspects of orbital position
and orbital inclination with respect to the Sun. Since incident photons

¶ Detailed studies of the Solar Constant were made using data from the Solar
Maximum Mission. These measurements show variations in the energy received
from the Sun of about 0.01% that lasted from days to weeks and were correlated
with the passage of sunspots across the solar disk. Superimposed on these varia-
tions, a long term decrease of about 0.018% per year was interpreted to be related
to a cycle of activity on the Sun with a period longer than the 22 year magnetic
cycle (Wilson et al. 1984). It is noted that a change in the solar constant of 1%
would change the average temperature of the Earth by some one or two degrees
C.
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exert a net force on each segment of a SC, the resulting solar radiation
force may be considered to pass through a ‘center of pressure’ (CP). If
this is not coincident with the center of mass (CM), a solar radiation
torque is produced.

When radiant energy E falls on a surface, that surface is subjected
to a force per unit area. The incoming photons during an interval of
time have an equivalent mass so the equivalent increment of
momentum may be expressed as

where S is the surface area. The magnitude of the force F acting on
the surface is then

where P = I/c is the radiation pressure impinging on an energy ab-
sorbing surface. For a totally absorbing surface (black body)

For a perfectly reflecting surface (mirror)

At the surface of a SC, radiant energy may be partially absorbed
and partially reflected. Reflection can occur in two ways namely, the
incoming energy may be reflected specularly (so that the angle of
incidence with respect to the normal to the surface is equal to the
angle of reflection), or it may be reflected diffusely. In the latter case,
the radiation leaves the surface so that the intensity in any direction
is proportional to the cosine of the angle between the surface normal
and the direction of reflected radiation.

As in the case of the acceleration due to drag (which is analyzed
in Chapter 6), the acceleration due to solar radiation pressure alters
the energy, and consequently the semi-major axis, of a SC orbiting
the Earth. During that part of the orbit where the SC approaches
the Sun, the energy and semi-major axis decrease whereas, when the
SC moves away from the Sun, both of these values increase. For an
orbit that is completely in sunlight, the change in the semi-major axis
over one orbital revolution is periodic and averages to zero. If a SC
goes into Earth eclipse averaging is not maintained and a correction
should be employed when making orbital determinations. Since the
disturbing force is proportional to the area to mass ratio of each par-
ticular SC, those structures with a large value of this ratio are subject
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to a relatively large perturbation. In this connection ECHO-1, the
first communications SC (launched in 1960) which comprised a sphere
30.5 meters in diameter made of mylar polyester film designed to act
as a passive communications reflector, also provided a suitable object
for studying the effect of solar radiation pressure. Early observations
showed a decay in perigee height of approximately 3.5 km/day from
the initial 1 852 km altitude circular orbit of this SC.

A.1.20 Solar Sailing

The very small force that results from solar radiation pressure can be
used to propel a SC using a specularly reflecting sail. Technical studies
have demonstrated in this regard that, by building a SC with a large
area to mass ratio and locating the center of mass near to, or in the
plane of, such a sail, guided energy transfer can be used to navigate
the SC to a given target plane. Also, it was demonstrated that rather
sophisticated manoeuvres are associatively possible.

For applications involving inner planet encounters, the consider-
able problem must be solved of constructing a SC that can withstand
severe ambient heat while, at the same time, accommodating a light
weight sail with a large surface area. The advantages of such a difficult
development lie in the saving of propellant that could be achieved, and
in the fact that sensitive onboard instruments would not be contami-
nated by thruster plume emissions. An early study of how to optimize
solar radiation pressure for space flight was carried out by Van der Ha
and Modi (1979) and designs based on this technology have been pro-
posed by many authors for missions to relatively nearby targets (e.g.
Mercury and Halley’s Comet). Solar sailing has not yet been put into
practice because, in particular, of the difficult problem of deploying
the very large sails required.

A.1.21 Perturbing Effects on Orbiting SC

A summary of the various perturbing influences that can be exerted,
under the same environmental conditions, on a particular orbiting SC
is provided in Fig.A.9 (following Fortescue and Stark, 1995). In this
figure, for each effect, the logarithm of the disturbing acceleration nor-
malized to one gram of the SC mass is plotted as a function of altitude.
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Conclusions from these comparisons are as follows:
Below ~ 100 km, re-entry conditions prevail and atmospheric drag

predominates.
At altitudes below ~ 200 km, atmospheric drag is a significant fac-

tor in determining the life of a SC.
Above 200 km, the effect of the Earth’s oblateness (harmonic     )

is second only to that of the gravitational field.

The relative magnitudes of solar radiation pressure and atmo-
spheric drag are, according to Fig.A.9, nearly equal at 500 km, and this
approximate level is frequently quoted in the literature as a transition
altitude between the dominance of drag and solar radiation pressure
effects. It should be remembered, however, that drag depends on
the level of solar activity and curves representing other environmental
circumstances would show different results. Further, only the mag-
nitudes of the perturbing accelerations are taken into account in the
comparisons presented. To determine in practice the mutual effects of
individual perturbations on a particular SC, equations involving the
accelerations concerned must be examined individually and detailed
calculations made.
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A.1.22 Disturbance Free SC and their

Applications

SC that are controlled to follow a trajectory determined only by ex-
ternal gravitational forces (a geodesic) are referred to as drag-free SC.
The key supporting technologies required are gravitational reference
sensors and micro-thrusters. A gravitational reference sensor consists
of a proof-mass freely floating in an evacuated cavity near the SC’s
center of mass. The housing of this cavity is attached to the SC and
a sophisticated measurement system (based on a capacitance bridge
arrangement) to determine the position of the proof-mass with respect
to the housing is provided. If, for example, solar radiation pressure im-
pels the SC towards the proof-mass, the associated change in position
is sensed and the micro-thrusters activate to perform a correction. By
this means, the influences of both solar radiation pressure and drag
can be counteracted so that the proof-mass tends to follow the orbit
created by the gravitational field only. In order to validate that the
proof-mass is following such a geodesic, its trajectory must be com-
pared with that of a suitable reference object. Drag-free control was
first demonstrated in 1972 aboard the Triad-1 SC of the U.S. Navy’s
Navigation Satellite System TRANSIT.

Fundamental physics experiments in space typically involve the
measurement of very small effects. In consequence, exploitation of
the full sensitivities of the technologically advanced detectors used in
these investigations can only be achieved by eliminating disturbing
environmental factors, as the following examples illustrate.

It can be inferred, based on Einstein’s theory of General Relativity
| | ,

||Whereas Newton perceived gravity as an attractive force acting simultaneously
at a distance across space to affect all bodies, Einstein in his Theory of General

Relativity proposed that space, time and matter are not independent of each other,
as Newton had assumed. Rather, he postulated that gravity acts not as a force
but as a field that warps space and time around massive bodies such as stars and
planets. The elliptical orbits of the planets around the Sun are, thus, straight lines
through curved space-time.

Although Newton’s and Einstein’s theories are very different, their results with
regard to the material presented in the preceding chapters of this book are identi-
cal. However, General Relativity predicts effects the detection, or non detection,
of which at sufficiently high levels of accuracy can be used to test the validity of the
theory itself. With present day understanding of the near Earth environment and
the application of sophisticated technological advances, the problem of providing
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that a rotating massive body drags space and time around with it
(the Frame Dragging Effect). In consequence, a gyroscope in a polar
Earth orbit at 650 km is predicted to turn with the Earth through
an angle which, after one year, amounts to 42 milliarc-seconds (there
are 3600 arc-seconds in a single angular degree). Further, according
to Einstein’s theory the rotating Earth causes a warping of space-
time. In consequence, a change in the spin direction of an orbiting
gyroscope is predicted to occur as a result of its motion through space-
time curvature. This is called the Geodetic Effect. In the particular
case of the orbit described above, a rotation in the orbit plane of
6,600 milliarc-seconds per year is expected. The philosophy of the
Gravity Probe B Mission (GPB) is to fly a set of gyroscopes in the ‘test
orbit’ mentioned above to check the validity of the Frame Dragging
prediction to an accuracy of 1% and of the Geodetic Effect prediction
to one part in 10 000.

Calculations show that, in the test orbit, drag from residual at-
mospheric gases coupled with the effect of solar radiation pressure
would produce spurious accelerations that approach However,
through use of a proof-mass, the mean acceleration on the gyroscopes
can be reduced to By rolling the SC (one revolution every ten
minutes) about a guide star, disturbing forces due to residual gases,
as well as errors in the gyroscope and telescope readouts can also be
significantly reduced. The use of super-conducting magnetic shielding
eliminates the possibility of a disturbing Lorentz force arising from
motion through the geomagnetic field.

Galactic cosmic rays, solar protons and geo-magnetically trapped
protons with energies in excess of ~ 70 MeV could penetrate the SC
structure, depositing energy (heat), momentum and electrical charge
on the proof mass. Using proton flux models (Section A.2.2) and the
GEANT/CERN Monte Carlo radiation transport code (Brun et al.

1984)** an attempt was made by the GPB Team to quantify these

experimental evidence for important, but hitherto untested, predictions of General
Relativity can now be addressed using space borne experiments potentially with
profound implications for modern physics.

**In cases where more than just the absorbed radiation dose should be known,
the powerful software tool GEANT is used which employs, for a specific geometry,
a particle-transport method that takes into account such effects as back-scatter,
the production of secondary particles etc. Its uses are varied and include, in ad-
dition to determining the charge deposition on proof-masses, the determination of
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effects. It is, however, difficult to assess the absolute accuracy of the
GEANT simulations, while the particle models themselves may only be
accurate to within a factor of about two at the energies concerned. It
can, nevertheless, be deduced that electrostatic charging of the proof-
mass can present a particular problem. In these circumstances, a fault
tolerant proton detector with the capability to provide ongoing moni-
toring of energetic particles in the range 50 – 500 MeV was included on
the SC (McKenna-Lawlor et al. 2001b), so that the measured data can
be interpreted relative to ambient energetic particle measurements.

Another representative experiment in fundamental physics is pro-
vided by proposals to test the Equivalence Principle (EP) in space
(the EP asserts that all objects, irrespective of their composition, ex-
perience the same acceleration due to the force of gravity). Although
no practical limit at which the EP violation should occur has been
established, a goal to test it to one part in is presently deemed
scientifically desirable and achievable. In addition to employing drag
free technology, this requires the development of an analytical method
to estimate the effects of various local orbital disturbances (in particu-
lar that due to the Earth’s oblateness) on the measurement sensitivity.
The approach adopted in this regard is to extend Hill’s equations to
appropriately account for the influence of the Earth’s shape, as well as
to assess the spectral characteristics of gravity-gradient disturbances,
on the SC. Gravity gradient parametric excitation of the proof-masses
is also taken into account.

Other gravity related missions include a planned series of ‘sep-
arated SC’ missions. These are based on the philosophy that the
movement of massive bodies in the galaxy produces disturbances in
the local gravity field of the solar system that are detectable through
the minute shift associatively produced in the distance between a pair
of SC in an orbit high above the Earth. By means of such exper-
iments it is hoped to be able to study aspects of the universe that
are undetectable using conventional visible light and radio astronomy
techniques.

These brief accounts of new generation experiments underline the
need to develop appropriate techniques to neutralize various disturb-
ing features of the terrestrial environment in which the associated

background particle levels in detectors, the responsiveness of detectors to thermal
heating, the shielding effectiveness of honey-comb structures etc.
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measurements are made

A.2 The Environment and SC

Performance

Conditions on the Sun as well as in the solar wind, magnetosphere,
thermosphere and ionosphere influence the performance and reliabil-
ity of SC. For example a SC can malfunction due to the fact that its
constituent electronics suffer radiation damage. Also, SC can display
anomalous behavior and failure following plasma induced charging.
These, and other, on-board responses to the ambient environment are
next discussed and outline suggestions provided in respect of mitigat-
ing strategies that can be employed.

A.2.1 Electronics and Energetic Particle

Radiation

An accurate knowledge of the Earth’s particle radiation environment
is of special interest to design engineers and SC users due to increas-
ing requirements to mount in advanced scientific experiments highly
sophisticated electronic devices that are sensitive to particle radiation.
Over optimistic models could lead to failure whereas too pessimistic
models would lead to the use of unnecessarily heavy SC shielding or
the choice of an over costly mission trajectory.

When a single particle causes a malfunction in common electronic
components (e.g. in random access memories, micro-processors, HEX-
FET power transistors etc.), the effect produced is called a Single

Event Effect (SEE). These are of three main types Single Event Upsets

(SEUs); Single Event Latch Ups (SELs) and Single Event Burnouts

(SEBs).
Single Event Upset (SEU); An SEU is a soft error consisting

of bit-flips, with no preference between 1 to 0 and 0 to 1 transitions.
SEUs are generated by galactic cosmic rays, as well as by the heavy
ions produced in flare events. Particularly potent are ions in the CNO
group and those with maximum energies of 2 MeV/n or higher. Pro-
tons or other ions can also cause SEUs indirectly when they create
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particles featuring high Linear Energy Transfer (LET) via nuclear re-
actions near to, or within, the sensitive volume of an electronic device.
SEUs can corrupt a data register, thereby causing a control parameter
to be altered, but they do not damage the component concerned or
interfere with its subsequent operation.

Single Event Latch Up (SEL); Single high Z-particles can ‘turn
on’ part of an integrated circuit to produce a, so-called, Latch Up.
Once in this state, the electronic system is no longer controlled in
the way the designer had planned and it must be powered down and
switched on again to enable control of the circuit to be regained. This
unwanted configuration may draw enough power through the chip to
damage it, and even to associatively effect the power supply. Latch
Ups can, in addition, be produced due to the application of an over
voltage, or as a result of a sudden flash of X-rays (Gamma dot events).

Single Event Burn Out (SEB); In this case the device fails per-
manently as a result of radiation damage. SEBs include burnouts of
n channel power MOSFETs, gate rupture, frozen bits and noise in
charge-coupled devices. An SEB may be triggered in a power MOS-
FET biased in the OFF state when a heavy ion passing through it
deposits enough charge to turn the device on. SEB susceptibility
decreases with increasing temperature. A power MOSFET may un-
dergo Single Event Gate Rupture (SEGR) due to localized dielectric
breakdown in the gate oxide, thereby producing an SEB. Destruction
of bipolar junction transistors can also occur. Single Event Dielectric

Rupture events (SEDRs) occur in CMOS and are similar to the SEGRs
observed in power MOSFETs.

Fig.A.10 presents a world map of SC locations where SEUs were
recorded in memories located onboard a polar orbiting satellite (at
700 km). These data show a strong clustering of events in the South
Atlantic Anomaly and a preferential distribution of the remaining up-
sets at high latitudes. This pattern reflects the fact that upsets in the
SAA are generated by energetic particles trapped in the geomagnetic
field whereas high latitude upsets are produced by cosmic rays and
solar related events.

SC components can be manufactured to withstand high total doses
of radiation. Survivability is the ability of a space system to perform its
intended function in a stressed environment. Hardness is an attribute
defining the environmental stress level which a system can survive. For
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example, a space system that can survive the absorption of rads of
total dose is said to have a ‘hardness’ of that amount. In designing SC
electronics a Radiation Hardness Assurance Control Plan (RHACP)
should be followed to suit the mission profile. Various engineering
techniques can be employed to enhance the survivability of a particular
design (see for example Nordin and Kong, 1999).

A.2.2 Models of near Earth Energetic Particles

The first empirical models of the Earth’s radiation environment were
designed at the American Aerospace Corporation and later at NASA
(Vette, 1991a). The latest proton models in this series are AP-8 MIN
and AP-8 MAX which correspond, respectively, to minimum and max-
imum conditions of solar activity. Complementary electron models are
AE-8 MIN and AE-8 MAX (Vette, 1977, 1991b). A series of trapped
radiation belt models based on these NASA models was developed
using data from Soviet SC by the Institute for Nuclear Physics of the
Moscow State University (INP/MSU). The first of these was called
the Cosmos Model-82. Later INP models are described by Getselev et

al. (1991).
Since these models were built, the SAA has shifted considerably to

the west due to the secular variation of the geomagnetic field distri-
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bution (Chapter 21). This, and other, effects were analyzed and the
performances of the Soviet and NASA models inter-compared in ESA
sponsored studies carried out by Lemaire et al. (1991, 1995). It was
associatively found that both the NASA and INP trapped radiation
models produce similar fluxes in the bulk of the Earth’s radiation belts.
There are, however, significant differences between the predictions of
these models in regions of steep gradients.

A number of new radiation belt models were more recently de-
veloped for ESA based on data from several SC experiments (includ-
ing AZUR/EI-88, SAMPEX/PET, UARS/PEM, CRRES/MEA and
ISEE-1/WIM). These new models were inter-compared, where this
was appropriate, and also directly compared with the standard NASA
models by Lemaire et al. (1995).

A.2.3 Radiation Models for Mission Evaluations

To allow estimates to be made of the total dose expected to be ab-
sorbed by a new SC and its payload elements in different orbits and
at different times of the solar cycle, access to all the models is con-
veniently provided by The SPace ENVironment Information System

Project (SPENVIS). This is a software tool prepared for ESA that
allows, among other possibilities, the generation of a desired SC tra-
jectory on a geomagnetic coordinate grid to facilitate the calculation
of

trapped proton and electron fluxes and solar proton fluxes;
radiation doses (ionizing and non-ionizing);
damage equivalent fluxes in Si and GaAs solar panels;
LET spectra and single event upset rates;
trapped proton flux anisotropy
atmospheric and ionospheric densities and temperatures.

The way radiation environment models are used in planning new ESA
missions is next described since this procedure is broadly representa-
tive of how new mission planning is carried out in all of the world’s
space agencies.

The initial stage of the analysis involves constructing a general
model of the radiation environment that will be experienced aboard
the planned SC. In this connection, for solar cells, the software tools
EQFRUX and EQFRUX.GA (for silicon and gallium arsenide cells



respectively), provide damage equivalent 1 MeV electron fluxes. This
assists both in sizing the SC solar array required and in determining an
appropriate cover glass thickness. Since cell performance progressively
declines in the space environment, it is necessary to ensure in advance
that the power provided by the solar cells flown will, at the end of life
(EOL), still be sufficient to operate the SC.

The software tool SHIELDOSE which provides curves displaying
dose as a function of shielding thickness, allows minimum standards
for electronic components to be established. Based on these curves,
suitable components can be selected and items identified that re-
quire shielding additional to that provided by the SC. Components
that it is essential to fly which have particular dose requirements are
then subjected to an intensive shielding analysis. The software tool
ESABASE/DOSRAD, which uses ray-tracing and sectoring analysis
techniques to obtain an evaluation of the total dose at onboard loca-
tions of interest, is associatively employed. This approach is appro-
priate where spot shielding can be introduced. However, it does not
take into account the effects of electron and bremsstrahlung angular
scatter; secondary radiation or background particle levels. In cases
where more rigorous analysis is required, the GEANT Monte-Carlo
particle transport method can be employed (see also Section A.1.22).
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To evaluate trapped particle spectra and solar proton spectra with
respect to an arbitrary set of orbital parameters, the UNIRAD SW

package is used. First, an orbit generator and a geomagnetic field
model are availed of to convert the orbital parameter set to, idealized,
magnetic dipole co-ordinates. These co-ordinates are then employed in
concert with trapped particle models to obtain omni-directional fluxes
along the SC trajectory and to compute orbital average particle flux
spectra.

UNIRAD also incorporates the King and JPL Models (Section
A.1.6) to allow (within their inherent individual limitations) the so-
lar proton spectrum for a particular mission to be calculated (while
duly taking into account the effect of geomagnetic shielding). Finally,
the CREME package provides a comprehensive set of cosmic ray and
flare ion LET and energy spectra (while also incorporating the con-
tributions of geomagnetic and material shielding). When combined
with radiation test data, upset cross-sections and LET thresholds for
electronic components, this software can be used to estimate the SEU
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and SEL rates required for component selection. A trapped proton
spectrum can be included with the cosmic ray LET spectrum to also
give SEU and SEL rates for the environment. The incorporation of
interplanetary weather indices (which in some cases include solar pro-
ton fluences), allows both ‘worst case’ and ‘nominal case’ predictions
to be made.

Mission objectives determine the type of orbit selected. The en-
vironment in GEO (which is generally used by communications SC)
is already well understood. In this regime missions are generally long
lived, thereby averaging out the effect of transient events. The pre-
dicted mission dose is consequently both straightforward to estimate
and inherently reliable. On the other hand, missions flown at low al-
titudes (for example for Earth Observations) where the particle fluxes
change rapidly and the secular drift of the SAA is appreciable, require
the environmental models to be very carefully interpreted for each
individual application.

Highly Eccentric Orbits (HEO) which are favored for astronomical
investigations demand, since they evolve considerably during a typical
mission lifetime, that studies be made of many orbits with respect to
their individual peak particle flux spectra, mission average spectra,
total mission dose and solar cell damage fluences. Also, since orbits
of this kind extend beyond the regions covered by AP-8 and AE-8
(namely along the magnetotail and into interplanetary space), models
based on data from relevant environments (e.g. from ISEE) should be
associatively used.

Lunar missions and interplanetary missions usually involve Earth
Flybys. The short duration of the associated radiation belt passage
makes the absorbed dose sensitive to the pertaining state of the belts.
Since transient conditions are not catered for by AP-8 and AE-8, a
model based on CRRES data (CRRESPRO) which was designed for
use during both quiet and active proton belt conditions can be suitably
employed.

A.2.4 SC Charging

The plasma environment of an orbiting SC depends on where that
SC is located, and also on its own gaseous products. In the Earth’s
environment, plasma and extreme ultra violet (EUV) radiation are
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the major sources of SC charging currents. In its particular ambi-
ence, a SC can accumulate charge until an equilibrium condition is
reached in which the net current is zero (i.e. when the electron and
ion currents from the plasma to the spacecraft, the secondary electron
current, the back-scattered electron current and the photo-electron
current mutually cancel). EUV created photo-electric emissions are
usually dominant in geo-synchronous orbits. The density of the ambi-
ent plasma also affects the speed of SC charging. In this connection a
tenuous plasma (less than will charge a SC and its sur-
faces more slowly than a ‘dense’ plasma (characterized by thousands
of particles per cubic centimeter).

Terrestrial space plasma environments can be roughly divided into
two regimes, namely those around Geo-Synchronous Orbit (GEO) at
~ 35 000 km and those around Low Earth Orbit (LEO) at ~ 100 –
1 000 km. At geo-synchronous orbit the plasma is hot, tenuous, highly
variable and responds strongly to individual solar events. In LEO, the
plasma is dense, cool and rather stable.

In GEO, the equilibrium potential of a SC is typically of the or-
der of a few volts positive, as a result of the balance between photo-
emission and charged particle collection. However, during magnetic
storms, electrons impinge on the SC with energies of several tens of
keV. If the SC then enters eclipse so that the photoelectron current
vanishes, its surface can rapidly charge up to a negative potential of
the same order of magnitude as the energies of the impacting elec-
trons. Such charging can occur differentially (i.e. different parts of
the surface can attain significantly different potentials), thereby lead-
ing to arcing. This can cause physical damage to SC materials, degra-
dation of solar arrays and generation of electromagnetic interference
(onboard noise). Operational anomalies, or even overall failure, can
ensue in these circumstances.

Data secured by the research SC SCATHA (Spacecraft Charging
at High Altitudes) which was launched in 1979, supplemented by com-
plementary data from other experiments, allowed the development in
the U.S. of a computer code for the prediction and analysis of charging
effects (the NASCAP–NASA Charging Analyzer Program). NASCAP
is able to deal with complex SC shapes and with a range of possible
materials (Katz et al. 1983). Also the code is applicable under a
number of different conditions (e.g. it takes into account that, if a
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SC is located near local noon, evening, midnight or dawn the ambi-
ent conditions experienced will be significantly different and result in
a markedly different charging history). In addition, comprehensive
guidelines for designers concerning the assessment and control of SC
charging in GEO were drawn up by Purvis et al. (1984).

In LEO, low inclination orbits provide a relatively benign environ-
ment as far as SC charging is concerned. In this regime, a spacecraft
can generally be regarded as closely coupled to the dense surround-
ing plasma and surface potentials of, at most, a few volts are typically
displayed. In polar orbits at high latitudes although the plasma densi-
ties are comparable, intense fluxes of precipitating energetic electrons
(5 – 10 keV) associated with the production of the aurorae can, in
addition, be present. When these precipitating particles impinge on a
SC differential surface charging can result.

In addition, SC motion relative to the background plasma plays
a role since, in LEO, a SC moves with a velocity that is in excess of
the velocities of the ambient thermal ions but lower than the veloc-
ities of the ambient electrons. A plasma wake characterized by ion
depletion is accordingly formed behind the SC and, in the case of a
structure where significant ram induced ion current collection occurs
at the same time that a large ion-free wake is created, problems due to
differential charging can become significant. In a worst case scenario,
if a large, energetic, precipitating electron current impinges on wake
related surfaces at a time when photo-emission is blocked due to the
SC being in an eclipsed condition, a catastrophic discharge can occur.
The consequences of such discharges range from transient operational
anomalies to overall, permanent, failure. Also, physical damage to
materials and deleterious effects such as sputtering and the attraction
to the SC surface of chemically active species can ensue.

Investigations of charging in polar orbit at altitudes of about 840 km
and inclinations around 99° were carried out using SC of the Defense
Meteorological Satellite Program (DMSP). The data secured suggest
that vehicle size is an important factor with reference to charging.
General overviews by Stevens and Kirkpatrick (1986) and by Martin
et al. (1990) discuss key circumstances that influence: environmental
interactions between a SC and its surroundings; the various interac-
tive mechanisms involved; their consequences for particular SC and
techniques that can overcome the adverse effects concerned (see also
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Section A.3.1). It is noted that most of the deleterious effects are in-
creased if a high voltage power system is included in the SC design.
Also, that damage to surfaces and cables produced due to impinging
micrometeoroids and space debris can have a significant influence on
arcing thresholds.

The computational codes developed in the U.S. for GEO (see above)
were later modified and extended to make them applicable to LEO
(NASCAP/ LEO). Also, a 3-D code (POLAR) was developed to pre-
dict the ion and electron structure in those plasma wakes generated by
large SC (Katz et al. 1985). For ESA, the Spacecraft/Plasma Interac-
tions and Electromagnetic Effects Program (ESPIRE) was developed
to provide a design resource in relation to the various problem areas
related to SC – plasma interactions. A feature of this development was
the emphasis placed on validating experimentally the design related
engineering tools produced. ESPIRE comprises a suite of programs
individually capable of analyzing, on the basis of a specific, but re-
stricted, set of assumptions a particular aspect of the SC – plasma
interaction. The programs include LEOPOLD (to determine the LEO
and Polar Orbit environment characteristics); SOLARC (analysis of
solar array power loss); EQUIPOT (analysis of material charging);
PICOCHARGE (analysis of SC charging) and SAPPHIRE (analysis
of SC ram and wake flows). Although the individual codes allow only
part of the overall problem to be addressed, use of the entire suite al-
lows a more complete picture of a particular situation to be built up.
ESPIRE was constructed to facilitate future additions to the programs
as a result of the continuing development of engineering software tools.

Internal charging due to the penetration of dielectric material by
high energy electrons, poses a particular threat to SC. Such high
energy electrons, for example those present in the Van Allen Belts,
can penetrate a SC skin and establish a negative potential on in-
ternal dielectric materials and on floating conductors. A fluence of

with energies E > 100 keV over a period
sufficiently long to dominate the relevant dielectric leakage rate, can
build up a charge at (say) a circuit board sufficient to produce local
arcing (thereby creating a pulse lasting of the order of tens of nanosec-
onds). Metalized areas on a printed circuit board can also charge up
sufficiently to produce arcing. In addition, internal charging affects
cable wrap, wire insulation, electrical connectors, feed-throughs etc.
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An internal discharge is deemed to be more damaging than an exter-
nal discharge since it occurs in close proximity to sensitive electronic
circuitry (Leach and Alexander, 1995). Studies made in GEO aboard
The Combined Release and Radiation Effects Satellite (CRRES) indi-
cate that “most environmentally induced spacecraft anomalies result
from deep dielectric charging and resulting discharge pulses, and not
from surface insulator charging or single event upsets”, Gussenhoven
et al. (1996).

SC anomalies show an association with the high speed solar wind
streams that impinge on the Earth in the declining phase of the
sunspot cycle, although there is also some association with periods
of elevated solar activity. The key factor is solar wind speed and
the consequent enhancement of energetic electrons in the outer belt.
Anomalies recorded on the Meteosat-3 SC between 1988 and 1995 show
a peak in 1994 of about 160 events whereas, during the solar maxi-
mum years, there were only about 50 events per year ††(a new solar
cycle started in 1996). A dramatic situation occurred in May 1998
when EQUATOR–S failed on May 1, POLAR displayed an anomaly
in its function on May 6 and GALAXY-4 suffered failure  on   May
9. Baker et al. (1998) suggested that these breakdowns were due to
dielectric break-down and material damage produced by ambient rel-
ativistic electrons. This interpretation is supported by the fact that
the SAMPEX and GOES SC detected such electrons in the radiation
belts at the relevant times. See also the analysis of Cyamukungu et

al. (1999).
The ESA DDC code DICTAT was used to interpret internal charg-

ing data obtained aboard CRRES by the Internal Discharge Monitor,
supplemented by data from the Russian GLONAS and HORIZONT

SC. Complementary charging codes (COULOMB and ECO-M) made
available by the Russian Scientific Production Association of Applied
Mechanics were also used at ESA in evaluating these data sets. DIC-
TAT calculates the electron current that, on passing through a conduc-
tive shield, is deposited inside a dielectric. From the deposited current,
the maximum electric field within the dielectric is found. This field
can then be compared with the breakdown field to determine if the
material concerned is at risk of undergoing an electrostatic discharge.

††Private communication from M.Hapgood.
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NOAA presently makes routine electron flux measurements in po-
lar orbit using its Polar Orbiting Operational Environmental Satel-
lite (POES). Its Geo-stationary Operational Environmental Satellite
(GOES) records complementary measurements in geo-synchronous or-
bit. Alerts are issued by NOAA/SEC when the > 2 MeV electron flux
at GOES exceeds particle flux units (pfu) during more than three
consecutive five-minute periods. An even more significant threshold
is flagged when the cumulative fluence exceeds pfu over a 72-hour
period. Data recorded by GOES show that there is a close correla-
tion between Phantom commands (changes in the operation of a SC
not instigated by ground command) and occasions when electrons in
the > 2 MeV range penetrate the skin of a particular SC. See also
Section A.3.2.

A.2.5 SC Contamination

The exposure of SC materials to the vacuum of space gives rise to
out-gassing. This can lead to an alteration in the surface properties of
the out-gassing material itself as well as to the contamination of sur-
rounding surfaces where the released substances are deposited. Also,
thruster emissions can cause degradation of the thermal and/or op-
tical characteristics of those SC surfaces on which they impinge. In
particular, deposits on solar cells reduce their electric power output.
Also, the release of charged particles during active charge control mod-
ifies the ambient neutral environment, thereby affecting local plasma
interactions. Further, SC charging by charge exchange causes changes
in surface potential, with the associated risk of arc discharges.

The Shuttle (which has typical apogees in the range 330 – 350 km)
is immersed during its flight in a multi-species gas cloud, the shape
of which is governed by interactions with the ambient neutral atmo-
sphere and with the space plasma environment. Contributors to this
environment are: releases in the form of particulate matter and gases
from the onboard Reaction Control System (RCS) and from the Or-
bital Manoeuvring System (OMS); products of engine firings; cabin
gas leaks; gasses from the waste management system; water releases;
material out-gassing and ablated surface coatings. At certain angles,
sunlight is scattered from this induced atmosphere producing a glare
that interferes with the observations of onboard optical instruments.
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Engine firings while producing their own particular contaminant cloud,
are also associated with a light flash that illuminates the Shuttle and
contributes to the production of surface glow phenomena and optical
pollution. Particulate contamination is enhanced when the exhaust
plume of the RCS impacts directly on Shuttle surfaces.

A.2.6 Sputtering from SC Surfaces

In general, atmospheric constituents in the path of an Earth orbiting
SC impinge on its surface with kinetic energies that vary in accor-
dance with particle mass and SC velocity. Excited impacting species
have, in addition to kinetic energy, excitation and ionization potential
energies extending up to ~ 25 eV / particle. The recombination of
such atoms at a SC surface to form diatomic molecules involves a re-
lease of energy and further energy is released during the formation of
surface compounds. The majority of the collisional energies involved
in gas-surface interactions in LEO have values that are similar to the
surface binding energies of atoms in a solid. Thus, depending on the
degree of surface localization, it is possible for bond breaking to occur,
resulting in the ejection of atoms and molecules. The particular case
of the effect of chemically reactive atomic oxygen on a SC in LEO is
discussed in Section A.2.7.

The results of early sputtering calculations for the most abundant
atmospheric constituents indicate (Laher and Magill, 1988) that sig-
nificant surface degradation should be observable in the cases of cad-
mium, thallium, zinc, lead and indium over exposure times in LEO of
the order of months. For magnesium, tin, silver and gold measurable
mass loss would occur during exposure times of the order of years.

A.2.7 Corrosive Oxygen

In the diffusive equilibrium conditions prevailing above 110 km in the
Earth’s atmosphere, the scale height (i.e. the height interval over
which the density of a particular species drops to 1 / e of its value) of
each atmospheric species varies in inverse proportion to its molecular
weight. The density of light constituents thus decreases less rapidly
with altitude than is the case for heavy constituents. Atomic oxygen
which is formed when solar ultraviolet radiation dissociates molecular
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oxygen, is in consequence, the dominant component of the Earth’s
atmosphere between ~ 200 – 600 km. A solar cycle related variation
results in an increase by one or two orders of magnitude in the num-
ber density of atomic oxygen found to be present at an
altitude of ~ 300 km at solar maximum relative to solar minimum,
under quiet geo-magnetic conditions.

Atomic oxygen impingement on a SC depends on: the ambient
density; on the relative SC velocity (which, in the case of an easterly
orbit, is ~ 7.2 km/s at an altitude of 400 km) and on the orientation
of particular SC surfaces (the worst case fluence is on a ram surface
at solar maximum). Atomic oxygen is in a highly reactive state and
produces erosion of SC surfaces through oxidation. Further, as the
SC goes in and out of Earth eclipse, the associated ‘thermal cycling’
effect removes outer oxidized products from the surface, thereby ex-
posing deeper layers to the erosion process. The effects produced can,
in the case of some materials, weaken the strength of elements of the
structure and also produce changes in the surface properties that ad-
versely influence SC thermal control. Accounts of extensive studies of
atomic oxygen erosion are contained, for example, in Stevens (1990),
Caledonia and Krech (1990), Tennyson (1993) and Tribble (1995).

Investigations of surface damage using retrieved space hardware
were carried out on the Long Duration Exposure Facility (LDEF),
which was returned to Earth in 1990. This vehicle spent ~ 5.7 years
in space in a nearly circular orbit with an initial altitude of 476 km
and with LDEF experienced the effects of one half of a
solar cycle, being deployed during a solar minimum and recovered
(when close to re-entry) at a solar maximum. Under these circum-
stances, about 57% of the overall exposure of LDEF to atomic oxygen
occurred during the last six months of its flight and it was observed
that there was more corrosive damage at its forward than at its rear
extremity. Another specimen used to study erosion was provided by
Eureka (European Retrievable Carrier), which was brought back from
space in 1993 after 326 days in a nearly circular orbit with an initial
altitude around 500 km and The above investigations, sup-
plemented by studies of pieces of Surveyor III (which were brought
back to Earth from the surface of the moon) and curated parts of the
Solar Maximum Mission SC and of the Hubble Space Telescope, were
used to facilitate the development of software tools for the corrosive
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damage assessment of new SC. Also, these studies stimulated the pro-
duction of a new generation of materials that have the capability to
better withstand the space environment than those previously flown.

Mitigating design strategies for SC in hazardous environments in-
clude; choice of suitable structural materials; configuring the power
system so that the exposure of high voltage surface areas is mini-
mized; choosing the operating voltages so that they remain below
possible arcing thresholds; arranging SC grounding to maintain sen-
sitive structures near the plasma- electrical potential and adopting
appropriate technical solutions to maintain SC potential.

A.2.8 Thermal Problems

To provide a successful thermal design for a SC in Earth orbit, it is
necessary to take into account both external and internal influences. In
the former case, direct solar, Earth reflected solar (albedo) and Earth-
emitted infra-red fluxes jointly contribute to SC surface heating. The
heating produced varies with SC shape, reflectivity and orientation
during different in-orbit events (for example during occultations, peri-
ods of oblique illumination etc.). Onboard electronic subsystems and
scientific instruments meanwhile generate internal heat. Thermal con-
trol can be achieved using either standard passive or active techniques.

To develop a thermal design for a new SC, all the pertaining key re-
quirements and onboard constraints must first be identified. Also, the
SC attitude and orientation relative to the Earth and the Sun during
all phases of the mission must be known. Once the thermal boundary
conditions, temperature limits for individual onboard items and or-
bital information is established, a model can be developed that allows
SC temperatures to be predicted as a function of time. Thermal tests
at both component, subsystem and system level may, thereafter, be
conducted to verify the model and demonstrate the proper operation
of particular items under stressed environmental conditions.

To guard against changes in the thermal characteristics of SC sur-
faces due to their degradation during the mission, materials with stable
thermo-optical properties and controlled out-gassing behavior should
be selected. A current trend to reduce the size of SC components to
support the development of small, micro and nano-SC, with the asso-
ciated necessity to concentrate functions and subsystems in a substan-
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tially reduced volume, carries the consequence of high density power
dissipation. Highly conductive materials, small-scale heat pipes and
pumped fluid loops can assist in providing suitable technical solutions
in this regard.

A.2.9 Ambient Electric and Magnetic Fields

Studies conducted for ESA by Martin et al. (1990) of SC motion
through ambient electric and magnetic fields in Earth orbit have high
lighted several important effects and their consequences, namely:

1. The component of SC velocity perpendicular to the magnetic
field gives rise to a Lorentz force  which leads to:

Generation of currents causing power dissipation;

Changes in SC charging;

Structural currents;

Electromagnetic interference;

Orbital drag;

Changes in the SC magnetic moment;

Eddy currents;

Change in the potential reference for plasma physics exper-
iments;

2. Interactions of SC currents with the magnetic field produce I×B

forces and torques causing:

Orbital drag;

Forces on structural elements;

3.

4.

Interactions of a charged SC with an ambient electric field pro-
duce Coulomb forces, again giving rise to orbital drag and
forces on structural elements.

Interaction of SC magnetic and electric dipole moments with
external fields creates magnetic and electric forces leading to:
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Forces generated in a non-uniform magnetic field causing
orbital drag and forces on structural elements;

Generation of m × H and p × E torques, potentially caus-
ing attitude control and pointing errors and deflection of
structural elements.

SC with residual net dipole moments (due for example to uncom-
pensated current flows or onboard permeable materials), are subject
to magnetic torques. Magnetic cleanliness requirements are thus rou-
tinely imposed with respect to the construction and assembly of SC,
their subsystems and payload. Recommended practice applies to: ma-
terial selection; components (for example mounting items with large
dipole moments in pairs to produce magnetic moment cancellation);
the minimization of current loops etc. Thereafter, the SC dipole mo-
ment per unit mass is determined and appropriate magnetic compen-
sation provided.

A.3 Overview of In-Orbit Disturbances

The planets of the solar system are immersed in the dynamic outer at-
mosphere of the Sun. Thus, in addition to orbital perturbations due,
in particular, to the Earth’s oblateness; lunisolar gravitational attrac-
tion; solar radiation pressure and atmospheric drag, SC are subject to
numerous disturbances due to solar activity, the deleterious effects of
which are of concern to SC designers and operators as well as to the
‘Man in Space Program’. An overview of the onboard problems expe-
rienced aboard a SC in orbit close to the Earth due to solar activity
is provided in Table A.2. Column 1 indicates the groups within the
space community (space segment) concerned with particular, disrup-
tive, in-orbit effects. Column 2 specifies the nature of these problems
and Column 3 their cause. Column 4 summarizes the technical con-
sequences ensuing. Column 5 indicates the magnetospheric locations
where specific SC problems occur. The various onboard effects con-
cerned and their causes are briefly reviewed below and referenced to
preceding information. Also, mention is made of circumstances lead-
ing to orbit decay as well as to problems that can be anticipated during
interplanetary missions.
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Comprehensive studies of the various environmental interactions that
occur between a SC and its surroundings were conducted by Stevens
and Kilpatrick (1986) and by Martin et al. (1990). These investiga-
tions allow the various deleterious situations that occur in a plasma to
be grouped under six general headings, These six situations, together
with their individual consequences, are listed for convenience below.
See also the account of influences of the space environment on a SC
contained in Sections A.2.4 – A.2.7.

Coulomb force on components and materials causing me-
chanical forces and torques on the SC structure.

Electrostatic fields which affect materials, electronics and
scientific instruments of the payload as a result of charge–in-
duced conductivity, piezoelectric effects, Kerr (polarization)
cell effects, deflection of electrons in detection equipment
and changes in the resistivity of materials and components.

Enhanced contamination (leading to changes in surface ther-
mal and optical properties).

Surface arc discharges giving rise to electromagnetic inter-
ference, electronics damage, logic upsets, material degrada-
tion, optical emissions, contamination, forces and torques
and an enhanced local plasma density. Also, induced elec-
trical currents can lead to:

Plasma power leakage between the SC and the plasma,
causing power loss and fluctuations, material degradation,
contamination and electromagnetic interference.

Sustained discharges between SC components through the
conducting plasma, causing short circuits in the power dis-
tribution system, electromagnetic interference, materials
degradation and contamination, optical emissions and me-
chanical forces and torques.
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A.3.1 Surface and Internal Charging

1. The accumulation of charged particles on a SC surface gives rise,
due to associated electrostatic fields and induced currents, to :

(a)

(b)

(c)

(d)

(e)

(f)



Naturally occurring ambient plasma oscillations can couple to
the SC systems leading to: the electrical oscillation of surface
potentials causing interference with grounding to the plasma,
electromagnetic interference and temporal fluctuations in SC po-
tential.
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2.

3. SC motion through the plasma, which is hypersonic with re-
spect to the ambient ions, creates a ram-wake structure and
local plasma density variations that lead to:

(a)

(b)

(c)

Radio frequency refraction, causing a degradation in com-
munications links.

An influence on charging phenomena, causing changes in
SC potential.

Plasma wave generation, causing electromagnetic interfer-
ence.

4. The impact of low energy thermal ions results in:

(a) Interactions with chemically volatile ions, leading to chem-
ical reactions which cause changes in the surface properties
and material degradation.

(b) Material-ion collisions which lead to: deposition and sput-
tering – causing material degradation, change of surface
properties and contamination; production of secondary elec-
tron emission – causing a change in SC potential.

5. The impact of low energy thermal electrons results in mate-
rial–electron collisions leading to:

(a)

(b)

Secondary electron emission, causing a change in SC po-
tential.

Back-scattered electrons, causing a cancellation of the charg-
ing effects of incoming electrons.

6. The interaction of electromagnetic waves with the plasma can
(due to the absorption, dispersion, scattering or reflection of
these waves), result in disturbances to communications signals.
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Also, the impingement of energetic (> 10 keV)) charged particles
on SC surfaces results in internal and bulk charging (Section A.2.4).
The onboard consequences include those already noted above under
(1a-1c) and, in addition, the following effects:

Internal discharges, including arcs on circuit boards and inside
cables, Lichtenberg pattern arcs causing electromagnetic inter-
ference, electronic damage, logic upsets, material degradation,
optical emissions, contamination and forces and torques on the
SC.

Sustained discharges, causing electromagnetic interference, ma-
terial degradation, contamination, optical emissions and me-
chanical forces and torques.

It should be noted against the above background that the docking
of two SC in a plasma, or contact in a plasma between other possible
pairs of objects that may be at different potentials, can lead to cur-
rent flow (charge redistribution), thereby causing arc discharges. This
has important safety implications for astronauts engaged in extra-
vehicular-activities.

A.3.2   Phantom Commands

Disturbances due to electrical transients produced in association with
surface and internal charging can appear to SC systems as directions
from the ground (Phantom Commands). These transients often occur
in the local time period between dawn/midnight and midnight/dawn
during magnetic storms. This is because, during such SC transitions,
the photo-electric effect is abruptly rendered either absent or present,
thereby potentially triggering a discharge. Also, thruster firings can
produce changes in the local plasma environment that trigger arc dis-
charges. These various unpredicted events can result in loosing control
of SC power and propulsion systems as well as of individual scientific
instruments. Induced Mode switching in which a SC puts itself into
Standby Mode, or otherwise changes its expected operational proce-
dure, can also occur.
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A.3.3 Total Ionizing Dose and Single Event
Effects

Total Ionizing Dose (TID) is used in estimating the effect produced on
electronic components by electrons and protons. TID is measured in
terms of the absorbed dose, which is a measure of the energy absorbed
by matter. Absorbed dose may be quantified using the gray (Gy),
where 1 Gy = 100 rads = 1 J/kg.

Long term, cumulative, damage due to particle radiation can cause
electronic devices aboard a SC to display: increased leakage (with re-
lated changes in power consumption); threshold effects, timing changes,
increased detector background noise etc. Single Event Effects (SEEs)
concern instant failure mechanisms (see Section A.2.1). The TID fail-
ure rate can thus be described in terms of a mean time to failure

whereas SEEs are expressed in terms of a random failure rate.
To compute the radiation dose for the components to be flown on

a new SC, the procedure described in Section A.2.3 can be adopted.

A.3.4 Solar Cell Degradation and Displacement
Damage

Solar cells on Earth orbiting SC undergo bombardment by energetic
particles. These particles pass through protective coverings and pro-
duce both ionization damage and Displacement Damage (crystal lat-
tice defects) in the underlying cell. In consequence, cell performance
is increasingly degraded over the life time of a mission. Such degrada-
tion is made manifest by a reduction in both the voltage and current
output (with associated implications for the survival of the SC).

Solar cells are usually made from either silicon or gallium arsenide
(the latter provides enhanced efficiency but at an increased produc-
tion cost). Individual cells can be arranged in series or in parallel
to produce a desired output. Solar cell strings can be suitably ar-
ranged to minimize power loss from a complete array in case of single
cell failure. Various mitigating procedures are adopted by commercial
manufacturers to combat the effects of solar cell degradation. See also
the procedure for designing an array for a new mission described in
Section A.2.3.
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A.3.5 Loss of Attitude Control / Orientation

The sun-ward boundary of the magnetopause is usually located at
from the Earth’s center. Variations in the pressure of the

incoming solar wind can, however, cause this boundary to become
severely compressed. Thus, under conditions characterized by high so-
lar wind velocity and density and a strongly southward component
of the IMF, the magnetopause may be displaced until it is inside GEO
orbit A GEO SC on the sun-ward side of the Earth can,
under these conditions, be outside the magnetopause for periods of
from minutes to hours. When a SC in GEO crosses the magnetopause
and enters the magnetosheath (located between the bow shock and
the magnetopause, see Fig.A.3), its on-board sensors register a drop
to near zero in the measured magnetic field. Also, the sign of the
field varies erratically in this regime. Under these circumstances, SC
attitude control torques can inadvertently be applied in the wrong
direction. The design of the attitude control system should, overall,
be such as to enable the SC to withstand unwanted magnetic field
torques generated during disturbed conditions.

During SEPs, photonic devices such as certain star trackers and
CCDs experience a noise floor increase. Such noise in onboard star
trackers can result in SC orientation problems.

A.3.6 Loss of Signal Phase and Amplitude Lock

The ionosphere at times becomes highly irregular causing SC signals
traversing this disturbed medium to scintillate at the receiver. Strong
geomagnetic storms can lead to such scintillation in the auroral zones.
Scintillation effects may cause the phase tracking loops in the re-
ceivers to temporarily loose lock, thereby introducing discontinuities
in the phase derived biased pseudo ranges and significant signal loss
ensues (Heroux and Kleusberg, 1989). Not only does this interfere
with telemetry (the up / down link) but the Global Positioning Sys-
tem (GPS) can associatively loose tracking contact with a sufficient
number of SC to inhibit precise location finding.

The disturbances described above also introduce changes in the
time it takes signals to traverse the ionosphere. These delays are
proportional to the Total Electron Content (TEC) along the signal
path and inversely proportional to the square of the frequency of the
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signal. The pseudo-range error from variations in TEC can be up to
about 16 m at the zenith and about three times that distance close to
the horizon. Changes occur over times as short as ten minutes at high
latitudes and on diurnal time scales at mid-latitudes. These effects
also reduce the accuracy and reliability of the GPS.

A.3.7 Solar Radio Interference

The Sun is in itself a, highly variable, broad-band, radio source. Some-
times when a SC is tracked, the Sun may be within a side-lobe, or even
in the main beam, of the tracking antenna. If it then happens that
the Sun produces a large radio burst, the signal from the SC can be
overwhelmed. Such interference events occur most frequently during
the years around solar maximum.

A.3.8 Orbit Decay

Atmospheric heating, stimulated in particular by solar cycle related
enhanced EUV radiation, causes the Earth’s atmosphere to expand.
The resulting increased densities at LEO significantly increase the
number of microscopic collisions between a particular SC (with its
characteristic Ballistic Parameter) and ambient gas particles, thereby
increasing the pertaining drag and inducing premature orbit decay,
Tribble et al. (1999). Atmospheric drag is the largest single source
of position prediction uncertainty for most SC at altitudes below ~
1 000 km and can result in a one-day prediction uncertainty of several
tens of km in estimated SC positions. Under conditions of strong,
solar related, disturbances, drag can alter the orbit sufficiently that
ground contact with a SC is temporarily lost.

Due to solar radiation pressure, all the orbital elements of an Earth
orbiting SC in sunlight show annual periodic variations. These varia-
tions are rendered more complicated if the SC is eclipsed or undergoes
partial surface shadowing. Induced changes in perigee height can sig-
nificantly affect the lifetime of a high altitude (above ~ 1 000 km)
orbiting SC with a large area to mass ratio (see Section A. 1.19).

A SC injected into a geo-stationary orbit is subject, in particular,
to perturbations due to the Earth’s oblateness, luni-solar gravitation
and solar radiation pressure. The onboard propulsion system can make
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corrective manoeuvres (station keeping) with a tolerance designed to
ensure that the SC remains within the ground antenna beam-width.
Once the propellant to enable station keeping is exhausted, the or-
bital inclination of the SC will grow so that it drifts in longitude,
thereby potentially posing a hazard to adjacent SC. There is now a
legal requirement to design such SC so that, at the end of their useful
lifetimes, they can be suitably moved away to a location where they
cannot cause a collision.

A.3.9 Biological Effects

There are a number of parameters that influence astronaut exposure
to energetic particle radiation in near Earth orbits. These include:
the SC structure; SC altitude and inclination: the orbit phase: the
start time and duration (where applicable) of Extravehicular Activity

(EVAs); the status of the outer electron belts and of interplanetary
flux; the phase of the sunspot cycle and the pertaining geomagnetic
field conditions.

Low inclination, high altitude flights undertaken during solar min-
imum are subject to higher dose rates than high inclination, low al-
titude flights conducted during solar maximum (since the influx of
GCRs is less under those conditions characterizing solar maximum,
see Section A.1.3). At high altitudes, the area encompassed by the
SAA is larger and its concentration of protons enhanced. Although,
however, the trajectories of high inclination flights pass through max-
imum intensity regions within the SAA, less time is spent there than
is the case for low inclination flights at the same altitude. Thus, the
crew is subjected to less related net exposure in the former case.

At solar maximum, increased solar activity leads to heating and
expansion of the atmosphere. This expansion results in a loss of pro-
tons from the inner radiation belt due to their interaction with the
atmosphere. On the other hand, new belts of trapped particles can
form during active periods (Section A.1.11).

The US National Council on Radiation Protection (NCRP) for
space-flight activities has drawn up recommendations for organ spe-
cific exposure limits for astronauts that include for annual exposure:
50 rem‡‡ for blood forming organs (200 rem for eyes and 300 rem for

‡‡The Roentgen Equivalent Man (rem) is a unit used to derive Equivalent Dose.
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skin). The annual exposure limit for blood forming organs adopted for
astronauts in NASA’s ALARA Policy (As Low As Reasonably Achiev-
able), is ten times higher than that adopted for terrestrial radiation
workers. ALARA involves providing real time, onboard, radiological
support for flight crews and motivates a general philosophy of mini-
mizing the exposure of personnel to space weather events.

The mission plan for the construction and maintenance of the In-

ternational Space Station (ISS) requires astronauts and cosmonauts to
work in space suits outside their SC in six-hour shifts for a total time
estimated to exceed 1 500 hours. These EVAs are scheduled, during
the construction phase of the station, to take place at a time of high
solar activity. One or two EVAs per month are, thereafter, planned
(for general maintenance) throughout the lifetime of the ISS.

The high inclination orbit (51.6°) traversed by the ISS has the
consequence that, for a portion of nearly every day, some fraction
of the orbit lies within the outer radiation belt. In the worst case
this fraction amounts to ~ 20%. During relativistic electron events
(Section A.1.16), the intensity of the ambient relativistic electron pop-
ulation increases by a few orders of magnitude. These events occur,
on average, approximately once per month and can last for several
days. Further, during Solar Proton Events (SPEs) the high latitude
zones to which solar energetic particles have access show a tendency
to widen over the polar latitudes traversed by the ISS. This tendency
becomes more pronounced when SPEs intensify. Internal doses on the
ISS are calculated to be of the order of 30 mrads/day. In EVA they
are expected to be about ten times higher.

To minimize astronaut exposure during EVAs, risk management
procedures, based on the analysis of continuously updating environ-
mental information, are implemented. In this connection, a con-
stellation of strategically placed research and operational SC are co-
ordinated to provide ‘real time’ information on the radiation environ-
ment at the ISS orbit. These SC carry out various tasks that include;
monitoring the Sun and its corona at multiple wavelengths (to pro-

This relates the absorbed dose in human tissue to the effective biological damage
of the radiation. Not all radiation has the same biological effect, even for the same
amount of absorbed dose. To determine equivalent dose, the absorbed dose (in
rad) is multiplied by a quality factor (Q) that is unique to the type of incident
radiation.
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vide inputs on the strengths of X-ray events and on the generation
of CMEs); monitoring SPEs and monitoring the solar wind (to al-
low the size and shape of SPE access zones relevant to the ISS to be
computed). Meanwhile, NOAA SC in low altitude orbits monitor rela-
tivistic electron fluxes in the outer radiation belt. Relativistic electron
flux predictions based on the REFM forecast model (Section A.1.16)
are also made available by NOAA. An implementation plan to swiftly
channel all of this information to the radiation risk managers has been
put in place and associated response protocols defined.

A.3.10 Interplanetary Conditions

On interplanetary flights, a flight crew will be subjected to galactic cos-
mic radiation (GCR) and to solar proton events (SPEs). One percent
of GCRs consists of heavy charged particles (mostly carbon, oxygen
and iron nuclei) and these constituents, which are known as High Z and

Energy (HZE) particles, are likely to cause significantly more than one
percent of the biological damage produced. Iron is the most impor-
tant particle biologically because of its relatively high abundance, and
also because of the large quantities of energy it deposits per unit path
length in tissue (its Linear Energy Transfer (LET)). High LET radi-
ation has an elevated Radiobiological Effectiveness (RBE). It is noted
with reference to SPIEs that, between the Apollo-16 and –17 missions
in 1972, a solar proton enhancement produced radiation levels of suf-
ficient energy that an astronaut outside of the Earth’s magnetosphere
would have absorbed a lethal dose within ten hours of the start of this
event.

Rough estimates indicate that crews en-route to Mars would re-
ceive radiation to their blood forming organs at a rate of 20 rem per
year during solar maximum and at 49 rem per year during solar mini-
mum (Case et al. 1993). Although the occurrence of GCRs is reduced
at the time of solar maximum, missions flown at that time would
undergo an increased incidence of SPEs. Energetic particle radiation
recorded in a circular orbit ~ 6 000 km above Mars during the Phobos-

2 Mission at a time of enhanced solar activity, see Fig.A.1, shows the
presence of significant fluxes of protons with E > 30 MeV between
March 7-27, 1989. The interaction of such energetic particle radiation
with SC shielding, as well as the biological effects estimated to char-



acterize a range of possible mission profiles of different durations need
to be studied in depth before an appropriate SC design and a suitable
trajectory for a manned flight to Mars can be decided.

In the light of our present understanding of hazardous, solar re-
lated, ‘near Earth’ problems, a preliminary evaluation of risks to SC
and their power systems in planetary environments can also be made.
In the case of a ‘low orbit’ at Mars, many of the concerns applicable in
LEO at the Earth transpire to be again relevant, namely aerodynamic
drag, solar radiation pressure, SC charging and magnetic torques. It
is noted, however, that drag varies much less with solar activity in the
atmospheres of Mars and Venus than is the case at the Earth. That is
because their thermospheres are mainly composed of carbon dioxide,
so that they lose heat much more effectively than does the atomic
oxygen that dominates the terrestrial thermosphere. Thus, the tem-
perature fluctuations due to solar activity and the main species scale
height change are both significantly smaller at these planets than at
the Earth.

The Voyager-1 and -2 Missions were extended in 1989 after some
twelve years of space flight. The objective was that these SC would
continue to explore the region beyond the outer planets and reach
the limits of the Sun’s sphere of influence — and maybe beyond. In
this connection, the re-named Voyager Interstellar Mission (VIM ) was
commanded to continue to provide particles and fields measurements
characterizing the outer solar system. Voyager-1 is exiting the solar
system at a speed of about 3.5 AU per year some 35° out of the eclip-
tic plane to the north and Voyager-2 is exiting at a speed of about
3.3 AU per year 48° out of the ecliptic plane to the south.

According to our present understanding, at some distance from the
Sun, the supersonic solar wind flow is held back from further expansion
by the interstellar wind. As a result of this interaction a Termination

Shock is formed where the solar wind slows from supersonic to sub-
sonic speed. In this regime, large changes in plasma flow direction and
magnetic field orientation occur. In the context of planned VIM ex-
ploration, study of this region will constitute the ‘Termination Shock

A.4. Beyond the Solar System 365
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Phase’ of the mission. Exit from this region will initiate SC entry to
the heliosheath and the start of a ‘Heliosheath Exploration Phase’.
Here, the ambient environment is still dominated by the Sun’s mag-
netic field and by the solar wind. This second phase will end with
SC passage through the heliopause, a boundary that defines the out-
ermost extent of both the Sun’s magnetic field and the solar wind.
Transition of the heliopause boundary will begin the third ‘Interstel-
lar Exploration Phase’, where the SC finally operates in an interstellar
wind dominated environment (the Interstellar Medium (ISM)). It is
presently estimated that the location of the terminator shock is at
85 ± 5 AU and the heliopause boundary at between 120 and 150 AU
from the Sun.

Meanwhile, a dedicated mission called the Interstellar Probe Mis-

sion ( IPM ) , is independently under design with a minimum goal to
reach 200 AU within 15 years after its launch, and with enough on-
board consumables to reach 400 AU. The payload is planned to mea-
sure the detailed properties of the plasma, neutral atoms, energetic
particles, magnetic fields and dust in the outer heliosphere and in the
local ISM. This mission could constitute a defining step in a yet more
ambitious program to explore the nearby galactic neighborhood. It
is still in a concept definition phase and requires the realization of
several challenging technical developments in low power avionics, ad-
vanced power systems and phased array Ka-band telecommunications.
Propulsion methods under consideration include a solar sail with a di-
ameter of 400 m and nuclear electric propulsion.

The IPM initiative is the latest among a series of such proposals
dating back to 1977. However, this time it is listed in NASA’s strate-
gic planning documentation as a ‘potential mission beyond 2007’. It is
described here in that it is representative of the age old human quest
for knowledge through extending our confining frontiers, while provid-
ing in addition a logical step in regard to what could be attempted
next.
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