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Preface

The problem of cosmic ray (CR) geomagnetic effects came to the fore at the begin-
ning of the 1930s after the famous expeditions by J. Clay onboard ship (Slamat)
between the Netherlands and Java using an ionization chamber. Many CR lati-
tude expeditions were organized by the famous scientists and Nobel Laureates
R. Millikan and A. Compton. From the obtained latitude curves it follows that CRs
cannot be gamma rays (as many scientists thought at that time), but must be charged
particles. From measurements of azimuthally geomagnetic effect at that time it also
followed that these charged particles must be mostly positive (see Chapter 1, and
for more details on the history of the problem see monographs of Irina Dorman,
M1981, M1989).

The first explanations of obtained results were based on the simple dipole ap-
proximation of the geomagnetic field and the theory of energetic charged particles
moving in dipole magnetic fields, developed in 1907 by C. Stormer to explain the
aurora phenomenon. Let us note that it was made about 5 years before V. Hess
discovered CRs, and received the Nobel Prize in 1936 together with K. Anderson
(for the discovery of CR and positrons in CR). Stormer’s theory, based only on the
first, dipole harmonic of the earth’s internal magnetic field, played an important
role for many years in the explanation of the basic properties of CR geomagnetic
effects (see Chapter 2), and is usually used even today for rough estimations of
geomagnetic cutoff rigidities and behavior of trapped radiation in the earth’s mag-
netosphere. This theory, developed by G. Lemaitre and M.S. Vallarta, extended the
conception of Stérmer’s cone of forbidden trajectories and introduced the concep-
tion of CR allowed cone with the existence of a penumbra region between these
cones. From Stormer’s theory it follows, for example, that minimal CR intensity line
on the earth, so-called CR equator, must coincide with the geomagnetic equator in
dipole approximation. However, detailed experimental investigations of CR latitude
effect along different meridians show that there are sufficient differences between
CR and geomagnetic equators caused by important influence of higher harmonics of
the geomagnetic field on CR energetic particles moving in that geomagnetic field.
Moreover, besides internal sources of the geomagnetic field also are important ex-
ternal sources caused by different currents in the earth’s magnetosphere.

vii



viii Preface

Several analytical and numerical methods for CR trajectory calculations were
developed for determining cutoff rigidities for vertical and oblique directions at dif-
ferent zenith and azimuth angles, effective and apparent cutoff rigidities, effective
asymptotic directions, impact zones, and acceptance cones in the real geomagnetic
field including the higher harmonics (see Chapter 3). This chapter is based not only
on original papers of the author and his colleagues N.G. Asaulenko, V.S. Smirnov,
and MLI. Tyasto, but also on key works of P. Bobik, E.O. Fliickiger, M. Kodama, 1.
Kondo, K. Kudela, K.G. McCracken, J.J. Quenby, E.C. Ray, M.A. Shea, D.F. Smart,
M. Storini, I. Usoskin, W.R. Webber, G.J. Wenk, and many others who calculated
these important parameters for CR behavior in the earth’s magnetosphere. Espe-
cially important are calculations during 1960-1970s of effective cutoff rigidities
for vertical direction and effective asymptotic directions for all CR stations of the
worldwide network by K.G. McCracken, M.A. Shea, and D.F. Smart (McCracken
et al., M1962, M1965; Shea et al., M1965, M1976; Shea and Smart, M1975). M.A.
Shea and D.F. Smart also regularly published articles every 5 years, starting from the
epoch 1955.0 up to the present time, on data regarding 5° latitude x 15° longitude
world grids of trajectory-derived effective vertical cutoff rigidities.

Theoretical results obtained in Chapter 3 were checked in many CR latitude
surveys during the Japanese expeditions during 1956-1962 to Antarctica; in
Swedent—-USA latitude surveys during 1956-1959 in connection with Interna-
tional Geophysical Year; in Canadian expeditions during 1965-1966; in neutron
monitor surveys in the Southern Ocean by USA, South Africa, and Australia; in
latitude surveys of environmental radiation and soft secondary CR components by
Italian expeditions to Antarctica; in annual CR latitude summer surveys over the
territory of the former USSR during 1964-1982; in CR planetary surveys by USSR
expeditions on the ships Kislovodsk and Academician Kurchatov; in South African
latitude surveys on different altitudes from airplanes; and many CR latitude surveys
on balloons and satellites (see Chapter 4). In this chapter we consider also: (1)
the problem on CR latitude knee mainly in the frame of the key works by O.C.
Allkofer and W.D. Dau, (2) CR latitude—altitude dependencies in the frame of the
key work by A.V. Belov and colleagues, and (3) daily CR intensity dependencies
from cutoff rigidity in the frame of key works by F. Bachelet and colleagues. Let us
note that experimental data obtained in many CR expeditions during about 80 years
are unique because the geomagnetic field changes sufficiently with time and con-
sequently causes changes in planetary distributions of cutoff rigidities, asymptotic
directions, and acceptance cones.

An example of detail analysis of CR latitude survey data obtained in the Italian
expedition to Antarctica during 1996-1997 taking into account many different data,
exact corrections on meteorological factors, CR worldwide variations, CR North—
South and Forward—Backward asymmetries, exact account of oblique CR arriving
in calculations of apparent cutoff rigidities along the latitude survey, and some other
exact corrections are described in Chapter 5 based mainly on original works of
Dorman and his colleagues O.A. Danilova, N. Tucci, M. Parisi, N.G. Ptitsyna, M.I.
Tyasto, and G. Villoresi. This analysis made possible the finding of coupling func-
tions for standard neutron monitors and for neutron counters without lead with the
highest accuracy at present time.
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Geomagnetic time variations of CR intensity (caused by variations of cutoff
rigidities) are determined by internal and magnetospheric sources (see Chapter 6).
This chapter considers the trajectory calculations of long-term variations of plan-
etary distribution of cutoff rigidities caused mainly by internal source during the
last 2,000 years, during 1600-2000 in steps of 50 years, and during 1950-2005 in
steps of 5 years based mainly on key papers of M.A. Shea, D.F. Smart, and E.O.
Fliickiger. CR geomagnetic variations of magnetospheric origin were discovered
in detailed investigations of CR Forbush-decreases during the main phase of great
magnetic storms, when at middle latitude stations CR intensity increase caused by
decrease of cutoff rigidity was observed. Through many investigations it was estab-
lished that this decrease of cutoff rigidity is mainly caused by sufficient increase of
ring current from about 10° A in quiet periods up to about 10’ A during the main
phase of a strong geomagnetic storm (the same phenomenon caused moving of au-
rora boundary to low latitudes, up to Egypt, in periods of big magnetic storms). CR
variations of magnetospheric origin were investigated in detail theoretically and ex-
perimentally in key papers by H. Debrunner, E.O. Fliickiger, M. Kodama, S. Kudo,
T. Makino, T. Obayashi, P. Tanskanen, M.A. Shea, D.F. Smart, and M. Wada, as
well as in papers of Dorman and his colleagues L.G. Asaulenko, L.M. Baisultanova,
A.V.Belov, V.M. Dvornikov, V. Sdobnov, A.V. Sergeev, M.I. Tyasto, and V.G. Yanke.
This chapter also shows that by using CR data inverse problems and estimated time
variations of main parameters of ring current and other magnetospheric current sys-
tems during big magnetic storms may be solved.

In the last 20 years sufficient jumps were made in our understanding of the earth’s
magnetospheric structure for different disturbance levels, thanks to key papers by
N.A. Tsyganenko and his colleagues M.I. Sitnov and A.V. Usmanov, who developed
magnetospheric models on the basis of a lot of satellite and ground observation data.
The main matter of Chapter 7 is based on crucial results of Tsyganenko and on
key papers which checked these results, and some other magnetospheric models by
galactic and solar CR observations (see Contents and References for Chapter 7).

In Chapter 8 we consider very short atmospheric and magnetospheric effects of
CR in other planets. It is a pity that this problem up to now is only weakly developed.
We do not find any papers in scientific literature devoted to the problem of CR
behavior in atmospheres and magnetospheres of other planets and satellites, except
two papers of Dorman and colleagues which consider only the planets Venus, Mars,
and Jupiter. However, we hope that in the near future this problem will receive higher
attention of CR scientists and will be developed to a level comparable with the level
of research on our planet.

Let me note, that in this book, as in the previous two (Dorman, M2004 and
M2006), I often use extended nomination of CRs as particles with energy much
bigger than average energy of background plasma’s particles. It means that we have
extragalactic CR, galactic CR, solar CR, anomaly CR, interplanetary CR, and mag-
netospheric CR (there are also outer CR and local CR; for details, see Dorman,
M2004, Chapter 1). Scientific literature often uses nomination energetic particles
for CRs generated on the sun, in interplanetary space and in magnetospheres of the
earth and other planets and their satellites.
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The behavior of galactic, solar, and anomaly CRs in the planetary magne-
tospheres are determined not only by main planetary magnetic fields but also by
very variable magnetospheric currents caused by drifts of local CR (energetic par-
ticles) in radiation belts and plasma processes from solar wind—magnetosphere in-
teractions as well as interplanetary shock waves—magnetosphere interactions during
substorms and magnetic storms. On the other hand, main sources of radiation belts
are caused by interactions of galactic, solar, anomaly, and interplanetary CRs with
upper atmosphere causing the formation of albedo and acceleration local CRs in
many processes inside magnetospheres. So there are really very complicated non-
linear interactions of CR, solar wind, and interplanetary shock waves with planetary
magnetospheres.

The detailed Contents give information on the problems considered and dis-
cussed in the monograph. At the beginning of this monograph, there is a list of
Frequently used Abbreviations and Notations. At the end of the book, in the Con-
clusion and Problems, we summarize the main results and consider some unsolved
key problems, which are important for the development of the considered branch of
research. In the References there are separate lists for Monographs and Books (with
years starting by the letter M) as well as for each chapter. For the convenience of
the reader, we have also prepared a Subject Index. At the end of the book there are
Appendices, where we have placed big tables and complicated colored figures; ith
labels starting with the letter A.

I would be grateful for any comments, suggestions, preprints, and reprints that
can be useful in our future research, and can make the next edition of the book better
and clearer. They may be sent directly to me by e-mail (lid@physics.technion.ac.il;
1id010529 @gmail.com), by fax [+972] 4 696 4952, or by post to the following
address: Prof. Lev I. Dorman, Head of ICR&SWC and ESO, P.O. Box 2217, Qazrin
12900, ISRAEL.

July 2008 Lev I. Dorman
Qazrin, Moscow, Princeton
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Chapter 1

First Measurements of Cosmic Ray Geomagnetic
Effects and the Problem of CR Nature

1.1 The First Measurements of CR Latitude Effect
in Expeditions from Holland to Java and Problems
in their Interpretation

Up to the end of the 1920s the common opinion on the nature of cosmic rays (CRs)
was that they were high-energy 7y-rays. If this were so, the Earth’s magnetic field
would not have any influence on CR intensity. The geomagnetic effect in CRs was
discovered accidentally in 1927 by Dutch researcher J. Clay (1927). For a long time
he investigated the time variations and dependence on altitude CR intensity using an
ionization chamber on the island of Java. For interpretation of the obtained exper-
imental results, Clay tried to determine background radiation from the material of
the ionization chamber, but without any success, and so he decided to make this de-
termination in Holland deep underground. During his journey from Java to Holland
on the ship Slamat, Clay made several measurements of CR intensity, and to his
surprise he found that when approaching the equator the CR intensity decreased by
more than 10%. At first, he came to the conclusion that this effect can be explained
by possible decrease of y-emanations in the atmosphere with decreasing latitude.
These measurements were repeated many times in the period 1928-1932 during
several sea voyages between Java and Holland, and back (Clay, 1928, 1930, 1932;
Clay and Berlage, 1932). Figure 1.1 shows these results in comparison with those
obtained by other authors using the same type of instruments — shielded by a Pb
ionization chamber. The Holland-equator effect was measured with good accuracy:
on average 14+ 1%.

However, the discovered dependence of the CR latitude effect from season to
season was very strange: in winter it was bigger than in summer. Also, it was not
clear why at latitudes higher than 50° there was no CR intensity increase with
an increase in latitude as shown in the following: measurements of CR intensity
by F. Begonek in 1928 on the dirigible “Italy” during the first Polar expedition
headed by Umberto Nobile (described in Dorman, 1981); negative result obtained
by the ionization chamber in the survey from Hamburg to Shpizbergen in 1930

L. Dorman, Cosmic Rays in Magnetospheres of the Earth and other Planets, 1
Astrophysics and Space Science Library 358,
(© Springer Science+Business Media B.V. 2009
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(Bothe and Kolhorster, 1930); and no CR intensity change between Archangelsk
(65°N) and Franz Josef Land (82°N) observed in 1932 on the icebreaker “Maligin”

(Verigo, 1938).

1.2 The First Correct Explanation of CR Latitude Survey
Results and Nature of CR; Compton and Millikan’s CR
Latitude Surveys

The first researchers to give a correct explanation of the Clay effect were Bothe
and Kolhorster (1929): they noted that direct information on the nature of CR can
be obtained by investigating the influence of the geomagnetic field on CR intensity
measured at different geomagnetic latitudes (latitude effect). The existence of this
effect discovered in Clay’s CR latitude surveys shows that at least some part of a CR
must be charged particles. To explain the constant of CR intensity above a latitude
of 50° (Kolhorster and Tuwim, 1931), Clay (1932) supposed that primary CRs with
rigidity smaller than 4 x 10°V could not reach the earth’s surface (caused by the
absorption of CRs in the atmosphere). The strong season dependence of the CR
latitude effect was explained later by the temperature effect of the CR muon compo-
nent (Dorman, 1954). The problem of measuring CR geomagnetic effects and their
correct interpretation was recognized after a public discussion between two Nobel
Prize winners, Robert Millikan (y-ray hypothesis) and Arthur Compton (charged
particle hypothesis) (for details, see Dorman, M1981 and M2004, Chapter 1). On
the one hand, no CR latitude effect was observed by Millikan and Cameron (1928)
between 19°S (Bolivia) and 34°N (Pasadena, USA), and by Millikan (1930)
between 34°N (Pasadena, USA) and 59°N (Churchill, Canada). On the other hand,
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in 1932, Compton organized eight expeditions for CR intensity measurements at
69 points at different latitudes and altitudes (see Fig. 1.2).

All measurements in these expeditions were made with the same type of
Pb-shielded ionization chambers constructed by Compton (see Fig. 1.3).
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Fig. 1.2 The position of the main points where CR intensities were measured during eight
Compton expeditions in 1932 (According to Compton, 1932, 1933)

Fig. 1.3 The Pb-shielded
ionization chamber used in
all CR intensity measure-
ments in 1932, organized by
A. Compton
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Fig. 1.4 CR latitude effects |
(CR intensity is given in ion Altitude 4,360 m
cm 2 sec™!) on altitudes of
4,360 m and 2,000 m, and
at sea level (According to
Compton, 1932, 1933)

| (ion cm s~1)

Results of CR measurements at sea level (total latitude effect about 14%), at
altitudes of 2,000 m (effect 22%) and 4,360 m (effect 33%) are shown in Fig. 1.4.

Let us note that in 1928 and 1930, R. Millikan and colleagues obtained negative
results on CR latitude effect, but continued these measurements from airplanes in
1933 using ionization chambers (Bowen et al. 1933), and came to the conclusion that
the CR latitude effect is real and increased sufficiently with an increase of altitude
(see Fig. 1.5).

1.3 The First Determination of Planetary Distribution of CR
Intensity at Sea Level; Longitude Geomagnetic Effect

Many CR latitude surveys (Clay, 1934; Johnson and Read, 1937; Compton, 1937)
were carried out a few years after the famous discussion between Millikan and
Compton on the nature of CRs at the end of 1932, and stimulated the development of
research into CR geomagnetic effects. It became clear that investigation of CR geo-
magnetic effects (latitude and longitude) could give the answer to this key problem:
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Fig. 1.5 Comparison of CR measurements by the ionization chamber taken from airplane flights
at March Field (34°N), Panama (9°N), and Peru (12-17°S) (According to Bowen et al., 1933)
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Fig. 1.6 The curves of equal CR intensity (in ion cm— sec ™! — figures on curves) over the whole

world (According to Compton, 1936)

What is the main part of a CR, charged particles or y-rays? For the first time, on
the basis described above, and with the results of eight CR expeditions organized by
Compton, and measurements made after this, the planetary distribution of CR inten-
sity at sea level all over the world (see Fig. 1.6) was found by Compton (1936). From
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Fig. 1.6 it can be seen that: (1) CR intensity mostly depended on not geographic lat-
itudes, but on geomagnetic latitudes (the earth’s magnetic dipole is inclined at about
11° to the earth’s axis of rotation); (2) there is not only the latitude CR effect, but
also the longitude CR effect (CR intensity sufficiently changed along geomagnetic
latitudes; in the region of the geomagnetic equator, a minimum of CR intensity is ob-
served in the Indian Ocean). Let us note that the existence of the longitude CR effect
was first mentioned by Clay in 1932; he explained this effect by the displacement
of the magnetic dipole more than 300 km from the earth’s center in the direction of
the Indian Ocean.

1.4 The First Measurements of the CR Latitude Effect
in the Stratosphere

From Fig. 1.4 it can be seen that the amplitude of the CR latitude effect increased
sufficiently with increasing altitude (from 14% at sea level up to 33% at altitude
4,360m). So the expected CR latitude effect in the stratosphere must be much
bigger. The first measurements of CR intensity in the stratosphere were made by
S. N. Vernov, who in 1934 developed a special method of receiving CR and meteo-
rological data from balloons by radio. It was found that CR intensity at an altitude
of 12km over Leningrad at latitude 56°N is 2.5 times bigger than at the same al-
titude over Yerevan at 35°N (Vernov, 1937). During the survey onboard the ship
Sergo from the Black Sea to the Far East in 1937, CR intensity was measured on
balloons at many points; it was found that over the equator region the CR intensity
in the stratosphere is about four times smaller than over Leningrad (Vernov, 1938).
On the basis of these measurements, Vernov (1939) came to the conclusion that at
least 90% of primary CRs are charged particles (and it was possible approximately
to determine their energy spectrum).

A lot of CR intensity measurements with ionization chambers on balloons at
many latitudes were made in 1937 by Bowen et al., (1937, 1938). Based on the
obtained results, they came to the conclusion that in the stratosphere CR intensity
changes about three times with latitude (see Fig. 1.7). The four curves shown in
Fig. 1.7 are strictly comparable, since the flights were all made using essentially
identical thin-walled electroscopes (0.5 mm of steel). The whole instrument, with
accessories, weighs but 1,400 g. In a number of cases, the flights at different latitudes
were made using the same instrument.

1.5 East—-West CR Geomagnetic Effect and Determination
of the Sign of Primary Charged Particles

From the above-described investigations of latitude and longitude CR geomagnetic
effects, it became clear that most primary CRs are charged particles. However, what
is the sign of these particles? The matter of the problem is that the latitude CR
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geomagnetic effect is the same for positive and negative particles (it is also true for
longitude CR geomagnetic effect). The possibility of using the geomagnetic field
to determine the sign of primary CR charged particles was indicated for the first
time by Rossi (1931): he noted that if primary CRs contain a non-equal number of
positive and negative particles, the intensity from West and East will be different;
the biggest difference will be in the case when primary CRs are mostly particles
of the same sign. In 1931 he tried to measure the West—East CR asymmetry at sea
level by the first constructed CR telescope based on Geiger—Muller counters and
electronic schemes of coincidences, but within the frame of statistical errors, no
difference in CR intensity from East and West was observed (this experiment is
described in Rossi, M1966). The first positive results on measurements of West—East
CR asymmetry were obtained in 1933 in Mexico (29°N, 2,250 m above sea level) by
Johnson (1933a) and Alvarez and Compton (1933). From the measurements carried
out by the telescope on Geiger—Muller counters with axes inclined from the vertical
to 45°, it was found that the CR flux from the West is about 10% higher than from
the East. A little later in Eritrea at latitude 11°N and an altitude of 2,370 m above
sea level, Rossi (1934) measured the West—East CR asymmetry and found that from
the West the flux was about 26% higher than from the East. Later the West—East CR
asymmetry was measured also on Mt. Alagez in Armenia (35°N): the amplitude of
the effect was found to be 9% (Dukelsky and Ivanova, 1935).
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By analyzing all data obtained at different latitudes and altitudes, Johnson
(1933b) found that the value of West—East CR asymmetry sufficiently increased
when approaching the equator: at an altitude of 3,000 m above sea level this asym-
metry was only 2% at latitude 48°, 7% at 25°, and 13% at the equator. It was also
found that the West—East CR asymmetry sufficiently increased with an increase of
altitude: measurements in Peru in the region of the geomagnetic equator showed
that at sea level the asymmetry was 7%, but at 4,200 m it was about 16%. On the
basis of these measurements, Johnson (1933b) came to the conclusion that almost
all primary CRs are positive charged particles. In the framework of CR geomagnetic
effects research, Johnson (1938) came to the conclusion that positive charged par-
ticles of primary CRs cannot be positrons. Why? Because geomagnetic effects of
CR are observed at sea level, under about 1,000 g cm 2 of air, it means that primary
particles with rigidity smaller than 15 GV (or the secondary CR generated in the
atmosphere by these primary particles) can reach sea level. However, at about this
time, it became well known that positrons with rigidity smaller than 15 GV (or with
energy smaller than 15 GeV and their secondary particles and y-rays) cannot reach
sea level. From this it follows that primary CRs must be protons and/or heavier
nuclei.



Chapter 2
Cosmic Rays in the Dipole Geomagnetic Field

2.1 Dipole Approximation of Geomagnetic Field
and Geomagnetic Equator

2.1.1 Polar Aurora and Stormer’s Theory

The foundation and development of the theory of charged energetic particles moving
in the magnetic field of the earth came about through the need to explain some
geophysical phenomena. These investigations were initiated by C. Stérmer (1907),
who by researching charged energetic particles moving in the earth’s magnetic field,
tried to understand the nature of the polar aurora phenomenon. The earth’s magnetic
field may be presented for a first approximation as a field produced by a dipole with
a moment Mg = 8.1 x 10% Gs.cm? inclined at 11.5° to the earth’s rotation axis and
shifted by 342 km relative to the earth’s center (according to the magnetic survey of
1944). Stormer (1907, 1931, M1955) based his theory on the dipole approximation
of the earth’s magnetic field, which describes the main part of the real geomagnetic
field. For a long time Stormer’s theory was also applied to the investigation of the
behavior of charged particles of CRs in the earth’s magnetic field. Until now this
theory has not lost its interest because many effects of CRs in the geomagnetic field
(latitude and East—West geomagnetic effects, cutoff rigidities, penumbra, formation
of radiation belts, and others) are the same as in a real field and the difference is
only quantitative.

2.1.2 Equations for Particle Moving in Dipole Field
and their Integrals

The equation of relativistic particle with the rest mass m, and charge Ze moving in

the magnetic field H is dmy) 2z
mv e
= — H 2.1
dr c (vxH), @D

L. Dorman, Cosmic Rays in Magnetospheres of the Earth and other Planets, 9
Astrophysics and Space Science Library 358,
(© Springer Science+Business Media B.V. 2009
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where
mg

\/l—vz/CZ,

v is the velocity of particle, and c is the velocity of light. If the particle moving is
considered not in Descartes coordinates but in some other coordinates g;, we obtain,
instead of Eq. 2.1, an equation in the Lagrangian form:

m =

2.2)

dJdL JL

where the Lagrangian function L (g;, ;) for a particle moving in the magnetic field is

L=moc? (1-2/2) P 4 2oy A, 2.4)

C

The vector-potential A is connected with the magnetic field H by the relation H =
rotA. For the dipole magnetic field

_MEXI’
= 3

A , (2.5)
where Mg is the magnetic dipole moment of the earth. For the corresponding choice
of coordinate system (spherical or cylindrical) the vector-potential A will be char-
acterized only with one azimuthal component. For example, in the cylindrical coor-
dinate system p, z, ¢, we obtain

Mgp

32"

APZO’AZZO’A(PZW

(2.6)

The general solution of Eq. 2.1 is a system of six functions (integrals) f depending
on space coordinates r, particle velocity v, and time ¢ as well as six constants Cy:

fi(e,vit)=Cr; k=1,2,...,6. 2.7)

The analytical expressions of integrals f; (r,v,t) can be obtained only in some spe-
cial cases when the field does not depend on time and depends only on one or two
space coordinates. In these cases, integrals do not depend on time and reflect the
laws of conservation. The nondependence of the magnetic field on time leads to
the law of energy conservation, which can be very easily obtained from Eq. 2.1:
multiplying the scalar in this equation by particle velocity v, we obtain

d (mvz)

dt
Because during the moving of a charged particle in the constant magnetic field m =
const, relativistic particles will move in the same manner as nonrelativistic particles

but with the mass m determined by Eq. 2.2. So, to make the consideration easier,
we will analyze nonrelativistic equations of charged particles moving in a constant

=0; mv* = const. 2.8)
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Fig. 2.1 The system of A Z
coordinates used for describ-

ing a charged particle moving
in the field of a magnetic di-

pole

<Y

magnetic field. By using the cylindrical coordinate system (see Fig. 2.1), the integral
of energy described by Eq. 2.8 will be as follows for the nonrelativistic case:

p? 422+ p*¢? = const. (2.9)

The existence of axial symmetry in the case of a dipole field, i.e., nondepen-
dence of the magnetic field from the azimuth ¢, leads to the law of conservation
of momentum component p, because in this case JL / d¢ = 0 and we obtain from
Eq.2.3

8L 2 Ze
=-—= p+ —pAp = const. 2.10
Let us introduce the Rauss function

Lr =L—) gcpe, (2.11)
where ¢, is the derivative from the cyclic coordinate and p. corresponds to the coor-
dinate momentum of the particle (in the case of the axial magnetic field symmetry,

the cyclic coordinate is ¢). In cylindrical coordinates, the Lagrangian function L
described by Eq. 2.4 will be

m . . ) Ze .
L=> (p*+2+p%¢%) + —PPAy, (2.12)
and the Rauss function

+2%) U, (2.13)
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where 5
1 Z
= m <l;)<p — 76 (p) ;P = const. 2.14)

Taking into account the integrals of a moving particle transforms the 3-D problem
of particle propagation in the dipole magnetic field into a 2-D problem of particle
moving in the meridian plane (p,z) in the potential field U:

U U

mﬁz—%, mzz—&—z. (2.15)

2.2 Principles of Stormer’s Theory

For convenience of mathematical research into a charged particle moving in the
dipole magnetic field, Stérmer introduced a special unit of length (now called the

Stormer unit)
s = \/MEZe/mcv7 (2.16)

and changed in equations of particle moving the differentiation over time ¢ on the
differentiation over s by using relation ds = vdt (let us remember that particle ve-
locity v = const). In this case the integrals described by Eqgs. 2.9, 2.10, and 2.15 of
particle moving will have the forms

dp 2 dz\? 5 (do 2_
(ds) +<ds) +p ds =1, 2.17)

2

d
P2 Py (2.18)
ds r
d’p 100 &z 100
o290 a2 297 2.19)
where )
2
0—1- (’1+y> . (2.20)
- r

Equations 2.16-2.20 make up the basis of Stormer’s theory. In the framework of
this theory were found a lot of trajectories of charged particles in the field of the
magnetic dipole. The easiest trajectories are in the equatorial plane and trajectories
crossing the dipole.

The trajectories of particles in the equatorial plane (at z = 0,7 = p) on the basis
of Egs. 2.17-2.20 will be determined by the following equation:

do 2yp —1
P p(pt—rp+1)) 10

2.21)
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Fig. 2.2 Trajectories of
charged particles in the equa-
torial plane in the magnetic
field of a dipole at different
values of Stérmer’s constant y

This equation can be integrated by using elliptic functions. All orbits in the equa-
torial plane can be separated into two types: finite (corresponding to encroached
particles) and infinite (corresponding to particles that have arrived from infinite).
Both types of orbits are shown in Fig. 2.2. Finite orbits are periodic with y > 1;
infinite orbits can have any value of 7. Finite and infinite orbits are separated by a
cyclic curve with the radius corresponding to s = 1 and characterized by y = 1.

The trajectories of particles crossing the center of a dipole were also investigated
in detail by Stormer (1907, 1931, M1955) using the numerical solution of equa-
tions described above. Each trajectory can be considered as a particle moving in the
meridian plane in the potential field Q according to Eq. 2.19, and the rotation of this
plane around the dipole axis. Let us consider the angle @ as the angle between the
element of the trajectory and the East—West direction (see Fig. 2.1). In this case we
obtain

p C(lj—(f = Cos M. (2.22)

From Egs. 2.18 and 2.20, by using Eq. 2.22, we obtain
cos’®m=1-—0Q. (2.23)

From Eq. 2.23 it follows that particles can move only in the region of space where
1 > Q > 0, and cannot move in the region of space where Q < 0. Therefore, the line
QO = 0 is the boundary between the allowed and forbidden trajectories (see Fig. 2.3).
From Fig. 2.3 it can be seen that the trajectory crossing the center of the dipole
does not coincide with the magnetic force line: when approaching near the center,
the particle comes close to the force line and achieves a spiral movement around the
force line. Simultaneously the particle achieves drift in a direction perpendicular to
the magnetic force line (rotation of meridian plane of the trajectory at some value of
longitude — angle of demolition). In Fig. 2.4, the asymptotic latitude A and longitude
® of trajectories are shown passing the center of the dipole in dependence of the
value of Stérmer’s constant Y, found by Stormer (1931, M1955) on the basis of
numerical calculations of many particle trajectories in the magnetic dipole field.
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Fig. 2.3 Trajectories of
charged particles in the merid-
ian plane in the magnetic field
of a dipole at different values
of Q. The trajectory crossing
the center of the magnetic
dipole is shown by a broken
line
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Fig. 2.4 The asymptotic latitude A and asymptotic longitude ® for charged particles crossing the

center of a magnetic dipole depending on Stormer’s constant ¥ (numbers near the points on the
curve)

In the general case it can be found that the surface separated allowed and for-
bidden trajectories in the 3-D space. As we mentioned above, this surface will be
determined by the condition Q = 0, or according to Eq. 2.20, by equation

2
(p+2y> =1. (2.24)

V3 r

The crossings of this surface by the meridian plane at two values of Stérmer’s con-
stant y are shown in Fig. 2.5.

From Fig. 2.5 it can be seen that at ¥ > 1 the allowed region consists of two
separated regions: one starts from about the center of the dipole and is bounded
before s = 1 in the equatorial plane; the other starts at s > 1 and extends to infinity.



2.3 Stormer’s Cone of Forbidden Trajectories 15

y =1.001 7 = 0.999

Fig. 2.5 The allowed and forbidden regions of charged particle moving in the meridian plane at
two different values of Stormer’s constant y. Along the abscissa axes, the distance from the center
of the earth is given in Stormer’s units. The forbidden regions are shown by hatching, and the
allowed regions are shown in white

The first region corresponds to the particles captured by the dipole magnetic field,
and the second is filled by particles arriving from infinity. It is important to note that
at Y > 1 particles cannot arrive from infinity to the region s < 1.

At y < 1, the allowed region also consists of two regions, but now they are con-
nected with a narrow isthmus: this means that particles from infinity can reach the
region s < 1. The value y = 1 is critical: both allowed regions are separated by one
point on the equatorial plane and the achievement of particles from infinity to the
region s < 1 becomes impossible.

2.3 Stormer’s Cone of Forbidden Trajectories

Let us consider the equation for cos ®. From Eqgs. 2.18 and 2.22 it follows that

2y cosA

rcosA 12 (2.25)

cosm =

As was shown in Section 2.2, all points < 1 (r is in Stoérmer’s units of length, see
Eq. 2.16) are forbidden for trajectories characterized with 7 > 1. Therefore, from
Eq. 2.25 it follows that forbidden directions will be all directions for which at r < 1

2 cos A
rcosA r?

COS @ > COS Wy = (2.26)
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These forbidden directions are inside the circle cone with the axis directed as East—
West and the opening angle

2 A
My = arccos < — COS2> , 2.27)
rcos r
determined from Eq. 2.26. From Eq. 2.25 it follows that
2
cos (2.28)

r= ,
14++v1—coswcos® A

and in usual units of length (using the determination of Stérmer’s units of length
according to Eq. 2.16) this relation for particles with charge Ze can be rewritten as

_ ZeMg cos* A

Re(h,0) = 2 .
E (1+\/1 —cos(ocos37L)

(2.29)

where R (A, ®) is the minimal cutoff rigidity which is necessary so that a parti-
cle can achieve the earth’s surface on the latitude A at angle @ to the East—West
direction. From Eq. 2.29 it follows that a particle with rigidity smaller than

ZeM,
Remax = CrEE, (2.30)

cannot achieve the earth’s surface at any latitude and at any azimuth and zenith
angle. For vertical arriving of charged particles at any latitude, the minimal rigidity
will be

R
Revert = czax 5 (2.31)

and for arriving at the equator from the West and zenith angle 90°, the minimal
rigidity for positively charged particles will be (for negatively charged particles the
expression for the minimal rigidity will be the same, but for particles arriving at the
equator from the East at the same zenith angle 90°):

Remax _ Remax (2.32)
2 ’ !
(1 n \@) 5.84

For primary protons and the present value of the earth’s magnetic dipole, the above-
described values will be

Remin =

Remax = 592GV, Revert = 14.8GV, Remin = 10.2GV. (2.33)

In the general case, instead of Eq. 2.29 for protons and the present value of the
earth’s magnetic dipole, we obtain
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59.2cos* A
2
(1 +v/1—cos @cos? 7L)

Re(A, @) = GV, (2.34)

for cutoff rigidity in dependence of latitude A and angle @ (Stormer’s cone), and for
vertical arriving (@ = 90°) it will be

Revert (1) = 14.8cos* A GV. (2.35)

2.4 Lemaitre and Vallarta CR Allowed Cones in the Dipole
Geomagnetic Field; Existence of Penumbra Region

In Eq. 2.26 determining Stérmer’s cone of forbidden trajectories, it was assumed
that y = 1. Lemaitre and Vallarta (1933), by numerical calculations of a lot of
charged-particle trajectories in the dipole magnetic field, show that it is necessary to
use equations

2% cos A

COS M > COS Wy, = -
rcos r

(2.36)

for the cone of allowed trajectories instead of Eq. 2.26 Stérmer’s constant }. depends
on the geomagnetic latitude as shown in Table 2.1.

If Stormer’s cone determines the cutoff rigidities that all particles with smaller
rigidities will have forbidden trajectories, the main cone introduced by Lemaitre and
Vallarta (1933), or allowed cone according to Vallarta (M1938), determines the cut-
off rigidities that all particles with bigger rigidities will have allowed trajectories. As
can be seen from Table 2.1, only for the equator will both these cones coincide, but
for bigger geomagnetic latitudes there is a sufficient difference: the region of rigidi-
ties between both cones formed the penumbra that coincides with a lot of allowed
and forbidden trajectories. The relative role of penumbra sufficiently increases with
an increase of geomagnetic latitude. The function of penumbra f(R) is determined
as 0 for forbidden trajectories and 1 for allowed trajectories. The early theoreti-
cal investigations of the penumbral effects in the dipole field approximation were
summarized by Vallarta (1949) and Schwartz (1959); experimental investigations of
these effects were made by Hedgecock (1964, 1965) using terrella experiments.

Table 2.1 Values of Stérmer’s constant % depending on geomagnetic latitude A

Geomagnetic latitude A 0° 10° 20° 30°

Stormer’s constant . 1.000 0.978 0911 0.806
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2.5 Drift Hamiltonian for a Dipole Magnetic Field

2.5.1 The Matter of Problem

Nosov and Kyzhyurov (1995) note that, after papers of Gardner (1959), Northrop
and Teller (1960) were issued, there was significant interest in the Hamilton for-
mulation of drift theory. In these papers it was shown that the drift equations of
the motion of the charged particles captured by the magnetic field look like the
Hamilton canonic equations provided they are expressed within the terms of o and
B coordinates which are actually Euler’s potentials. In the paper by Nosov (1992),
the drift Hamiltonian is obtained in the o and 3 magnetic coordinates. It shows that
the Hamiltonian structure is defined by choosing the third s parameter. In the paper
by Nosov and Kyzhyurov (1995), the curtain expressions for drift Hamiltonian are
drawn in the three most important cases by the choice of the s parameter. The or-
thogonal system of coordinates is defined in which the velocity of the cross-drift of
the particle is easily calculated from the Hamilton equations. The geometric shapes
of the adiabatic zone are found in the dipole magnetic field, where applying the drift
Hamiltonian for the description of charged-particle motion is most appropriate.

2.5.2 Drift Hamiltonian

According to Nosov and Kyzhyurov (1995), the magnetic field B and the magnetic
vector-potential A, owing to Euler’s potential, can be put down as follows:

B=[VaxVp], A=aVp. (2.37)

For the dipole magnetic field, parameters o and 3 can be expressed through the
spherical coordinates r, 8, ¢ by the following relations (Stern, 1976):

o=B,d2r 'sin’0, B=a,0, (2.38)

where a, is the planet’s radius, By the magnetic field on the equator, and 6 and ¢
polar and azimuthal angles.

By adding the set o and 3 to the third parameter s, it is possible to define them
as single-valued functions from spatial coordinates x/:

élzﬁ(xj), ézzs(xj), 63:(q/c)(x(xj), (2.39)

where ¢ charge of the particle, ¢ velocity of light. Taking the functions &' (x*)
as curvilinear coordinates, it can define a symmetric contra-variant tensor g =
(Véi . Vék), and metric tensor g;. The main term of drift Hamiltonian in coor-
dinates o, 3, s is obtained as (Nosov, 1992):

H(a,5:1) = 1Q(at,8) + (p; /2m) g2 (01, 8) + P (at, ), (2.40)
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where 7 the first adiabatic invariant, Q cyclotron frequency, m mass of particle, g2,
the component of metric tensor, P electric field potential, and p, generalized particle
moment canonically conjugated with the coordinate s.

As a result of the axial symmetry of the dipole magnetic field, coordinate 3
is a cyclic one, and the components of tensor g'3 and g!2 are equal to zero. The
components g!! and g33 for the dipole magnetic field are equal:

n_ . 2/2:2 33 202 4.2 2 7@

g fao/r sin“ 0,g¢”° = m“Q, (ao/r) sin 9(1+3cos 9), Q, = .

(8]

mc
(2.41)

The other components, g2 and g2, and also the components of metric tensor g»»
and g3 can be defined by the choice of parameter s.

2.5.3 Three Cases of the Choice of Parameters

Nosov and Kyzhyurov (1995) considered three most important cases of the choice
of parameter s:

Case 1. Usually, parameter s is considered to be the length of the magnetic force
line. In this case parameter s can be expressed in coordinates r, 0 as follows:

s(r,0)= r(cosB\/ 1 +300529+371/21n‘\/ 1 +300829+\/§COSG’)/2Sin29,
(2.42)

and the values g»> and g3 equal as follows:

gn=1,¢2= [—q(x(r,ﬂ)s(r, 0) +2qoc(r,6)cotan6§;} /crz. (2.43)

In the considered case, the Hamiltonian has the simplest form. In this coordinate
system, it is easy to obtain the approximated expression for the second adiabatic
invariant J, to the action—angle variables and put down the Hamiltonian as follows:

K (o, 17) = IQ, (&) + T (I,00) , (2.44)

where
J=(E-1Q.)/Qy, (2.45)

and E— total energy of the particle, Q,— quatorial cyclotron frequency, Q;,— fre-
quency of particle oscillation between the mirror points:

Q= \/Im 120 /ds? + gm~ 1 2 /ds?. (2.46)

The results of the second derivatives are defined on the equator. However, it is worth-
while noting that in case I, the system of coordinates is not orthogonal. That is why,
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in this case, the 8 value from the Hamilton equations cannot be defined as the ve-
locity of a transverse drift of particle.

Case II. If you take the angle between direction of magnetic field and equatorial
plain as the parameter

1
5(0) = 0 +arctan (ztan 9) + g, (2.47)

for the values which depend on the choice of s, it will be
g =rc(a,s), g2 #0, (2.48)
where r. is the radius of curvature of the magnetic force line. Hamilton’s equation
ps=—0H /0s, (2.49)

describing the motion of the guiding center of a particle along the magnetic force
line, can be easily integrated in this coordinate system. Its solution (when ® = 0)
corresponds to the constancy of the magnetic moment of the particle. This coordi-
nate system, as the preceding one, is not orthogonal and the value [3 here also does
not correspond to the velocity of the drift of the guiding center across the magnetic
force line.

Case III. On the condition that all non-diagonal metric matrix elements equal zero,
the orthogonal coordinate system is formed by the choice, as the parameter s is the
quantity of the scalar potential of magnetic dipole:

s=alBycosB/r. (2.50)

In this case it will be
gn=B7 g”=0. (2.51)

For the drift velocity ug across the magnetic field, which in this coordinate system is
proportional to the value 8, Nosov and Kyzhyurov (1995) obtained the well-known
expression (Alfvén and Falthammar, M1963):

_ 2
Ugr = (ﬁ/ao) rsin@ = |%| (V; +v2) sin’ 6 (1 + cos® 6) Lz/aOQO, (2.52)

where v and v, are the velocities of a particle in the longitudinal and transverse
direction relative to the magnetic field, respectively; L = aoB, / a is the Mclllwain
parameter.

Nosov and Kyzhyurov (1995) note that in case III parameter s is the potential,
naturally adding the set of Euler’s potentials o and . In this coordinate system,
Hamilton’s equations describe both the longitudinal and transverse motions of the
guiding center. However, the coordinate systems I and II appear to be much more
convenient for solving some problems.
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2.5.4 The Conditions for Drift Approximation

The coordinate system in case II is convenient for defining the geometric shape
in the region of the magnetic dipole, which, when using the drift approximation,
is true. The conditions of drift approximation for the transverse and longitudinal
particle motions are put down as follows:

|(rg-V)B/B|=¢, <1, (2.53)

2z (v-B)(B-V)B/B’Q| =¢ < 1, (2.54)

where rg is the Larmor radius. Usually, defining the criterion of adiabaticity for
particle moving in the dipole magnetic field the condition is used:

rg|-|VB|/B=¢ < 1. (2.55)

The critical value of the parameter € = &, can be defined either in an experimen-
tal way or with the help of numerical simulation. The observations of intensity of
trapped radiation decreasing in the magnetosphere with increasing distance from the
earth show the critical value &, = 0.075 (Singer, 1959). Webber (1963) has found
that the divergence between trajectories calculated by the Stormer method and the
method of drift approximation becomes considerable when &, ~ 0.4. Nosov and
Kyzhyurov (1995) considered the drift conditions for the transverse (Eq. 2.53) and
longitudinal (Eq. 2.54) motions separately and found the geometry of adiabatic area.
The critical values of these parameters € ¢ and ), are assumed alike and equal to
0.1. Then, from Eqgs. 2.53 and 2.54 Nosov and Kyzhyurov (1995) defined four dif-
ferent zones in the mirror-point distribution and on the meridian plane. In Fig. 2.6
these shaded areas are denoted as A, B, C, and D. Both conditions described by
Eqgs. 2.53 and 2.54 are satisfied for adiabatic area A. In area D, neither condition
is satisfied. In area C, there are the points of particle reflection for which only the
second condition is broken. In area B only Eq. 2.53 is not satisfied.

For comparison, Fig. 2.6 also plots the curve 1 corresponding to Stormer’s for-
bidden region. The equation of this curve is the following:

r/Cst = sin @ / (1 +V/1+sin’ 9), (2.56)

2.6 Symplectic Method for the Tracing of CR Particle Motion
in a Dipole Magnetic Field

2.6.1 The Matter of Problem

In the paper by Yugo and Iyemori (2001), a new integration technique, the symplec-
tic method, is introduced and applied for tracing CR charged particle motion in a
dipole magnetic field. This method is an integral technique for the Hamilton system
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Fig. 2.6 Structure of the adiabatic region A, and regions B, C, and D in a dipole magnetic field.
Curve 1 corresponds to Stormer’s forbidden region. At the bottom there are two L-scales for pro-
tons and electrons (According to Nosov and Kyzhyurov, 1995)

using the repetition of canonical transformation, and has been tested in celestial
mechanics (Kinoshita et al. 1991; Gladman et al. 1991). Yugo and Iyemori (2001)
noted that if the magnetic field is strong enough to trap the energetic charged par-
ticle, it becomes possible to separate the motion of a charged particle into Larmor
motion and guiding center motion. The motion in a dipole magnetic field has been
analyzed with the guiding center approximation by many authors (e.g., Ejiri, 1978).
Calculations using the guiding center approximation in a realistic magnetosphere
have also been made (e.g., Takahashi and Iyemori, 1989). However, if the electro-
magnetic fields fluctuate on a time scale comparable to the Larmor period, or if the
Larmor radius is comparable to the size of the magnetosphere, or if the curvature of
a magnetic field line of interest is not everywhere small compared to the reciprocal
Larmor radius, the adiabaticity (i.e., the guiding center approximation) is broken
and it is necessary to trace the particle orbit directly.

Yugo and Iyemori (2001) firstly introduced the concept of the symplectic inte-
gration. Next, they tested the method by tracing the charged particles in a dipole
magnetic field and made an error estimation. Then, the Hamiltonian of the motion
of a charged particle in a dipole magnetic field and an “effective potential” were
given. They introduced the symplectic integration and its numerical scheme used
in this study, and showed the results of calculations by the symplectic method and
compared them with those by the standard Runge—Kutta method.
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2.6.2 Hamiltonian Description of Energetic Charged Particle
Motion in a Dipole Magnetic Field

As was described in Section 2.3, in a dipole magnetic field the motion of an ener-
getic charged particle is classified into trapped and untrapped regions. This motion
was first analyzed by Stormer (1907). The dipole magnetic field is represented in a
spherical coordinate system with a vector potential

UoM sin O

Ap=-— P (2.57)

Here, M = 8 x 10?> [Am2], for the earth’s dipole moment. According to Yugo and
Iyemori (2001), the motion of an energetic charged particle in a dipole magnetic
field is written with a Hamiltonian as

1 i
H=— pf—i—rfg

T 2m +

(2.58)

(Pp —qrA¢sin6)
r2sin® 0 ’

where p,, pg and py are canonical momenta that correspond to space coordinates
r, 0, and ¢, respectively, m is the mass, and ¢ is the charge of the particle. The
following is the case when the sign of ¢ is positive. For the normalized canonical
equations, one can write the Hamiltonian as

1
H=_1p

5 (2.59)

1 2
2+é+(p(p+r 1sm29)
T r2sin’ O ’

where H is a conserved quantity, and by one of the canonical equations, py = 0, py
is another conserved quantity.

Yugo and Iyemori (2001) set H = E and py = —C. From other canonical equa-
tions, 7 = p, and = pg/rz, they get

V2 /2+U (r,0) =E, (2.60)
where 5
v =7+ (rf)", 2.61)
and introduced s
1 sin? 6
Ur)=———[——-C) , 2.62
(r6) 2r2sin29< r > (262)

as an effective potential (see Fig. 2.7).

Figure 2.8 shows the regions of trapped and untrapped conditions of protons in
the earth’s dipole magnetic field calculated by Eq. 2.62.

If the starting of the tracing of proton is from region A, the proton is trapped;
however, if the starting of the tracing is from region C, the proton is untrapped. In
the case when the starting of the tracing of the proton is from region B, the state,
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Fig. 2.7 Panels a and b show the intersection of U at 6 = 7 /2 for C > 0 and for C < 0, respectively.
The energy level El is in the trapped region, and E2 and E3 are in the untrapped region. Panel ¢
is a cartoon for a trapped particle (Larmor motion), and panel d is for an untrapped particle (From
Yugo and Iyemori, 2001)
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Fig. 2.8 The trapped and untrapped regions of protons in the earth’s dipole field. Region A is
trapped, and region C is untrapped. In region B, the trapped and untrapped states depend on the
direction of the initial velocity. In region B, the state, trapping or untrapping, depends on the
direction of the initial velocity (From Yugo and Iyemori, 2001)
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trapping or untrapping, depends on the direction of the initial velocity (formation
of penumbra, see Section 2.4). Yugo and Iyemori (2001) noted that the untrapped
particles do not show the Larmor motion anymore.

2.6.3 Symplectic Integration Method of Calculations

Yugo and Iyemori (2001) applied the symplectic integration method to solve the
equations of particle motion in the dipole magnetic field. An explicit method ex-
ists when the Hamiltonian is separated into the generalized momentum term and
the generalized coordinate term (Yoshida, 1993). Investigations have been made to
test the method in celestial mechanics, especially in the 2-body problem (Kinoshita
et al. 1991; Gladman et al. 1991). However, in the case of charged particles moving
in the dipole magnetic field, the two terms cannot be separated, and this explicit
method cannot be used; it is necessary to develop a special implicit method (Yugo
and Iyemori, 2001).

Let the variables p = (p1,p2,--- Pn)»q = (1,42, - - - qn) be the canonical variables
of a Hamilton system. Mapping (p,q) — (p*,q") is called “symplectic” when

vy =J (2.63)
is satisfied. Here
J(p*,q") (On In>
EELA\ ek WAy , 2.64
Y= Sm0 1,0, (264

and O, is an nth-order zero matrix, and /,, is an nth-order unit matrix.
The transformation (p(¢),q(¢)) — (P(¢),Q(¢)) = (p(t+h),q(t+h)) is sym-
plectic (i.e., canonical) and, by Liouville’s theorem,

dp(t)Ndq(t) =dp(t+h)Adq(t+h). (2.65)

This means that the symplectic mapping is an area-preserving mapping in a 27 di-
mensional plane. The symplectic method is an integration method to keep this con-
dition numerically. The symbol like dx; /\dx, indicates an oriented volume element
of dx; /\dx,. Here,

dxy /\dxz = dxz/\dx; (2.66)

and

/ f(x)dx; Adxy = / f (x)dxydxs. (2.67)

One of the symplectic-type integral methods is written by the general Runge—Kutta
formula shown below, and details are written in Sanz-Serna and Calvo (M1994).
Yugo and Iyemori (2001) considered a set of differential equations

Y k)

i (2.68)
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and tried to develop y, with a time step 4. In this calculation, Eq. 2.68 corresponds
to the canonical equations derived from Eq. 2.59. Yugo and Iyemori (2001) chose a
set of weights

ary .....djg
dsy . (2% (269)
by .....bs
and found Y; (i = 1,...,s) that satisfied
N
Yi=yi+h Z aijF(Yj). (2.70)
j=1
The development of y is described as
N
Yot1 :yn+hzbiF(Yi)~ 2.71)
i=1

It is known that if Eq. 2.68 is a set of canonical equations, and if the above set of
weights satisfies the condition

biaij—l—bjaji—bibj:O (i,jzl,...s), 2.72)

this calculation becomes the symplectic method. At a 5-stage, as Eq. 2.69, there are
some sets of (a, b) that satisfy Eq. 2.72. The orders of calculations in each selection
are over s, and there is a unique choice of (a, b) that achieves the order 2s. The set
of (a, b) for the fourth-order method is described as

1 1_ 3
i /i 1776
1 3 1
176 7 (2.73)
1 1
2 2
and that for the sixth-order method as
5 2 _ /15 5 _ s
36 9 5 36 30
RRIVAE] 2 S V15
36 T 24 9 36 24
2.74
5 4 VIS 2 VI5 5 2.74)
36 " 730 9 15 36
S 4 S
18 9 18

To show the advantage of the above method, Yugo and Iyemori (2001) used the
standard Runge—Kutta method (fourth order). This method is written as
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h
Yl =Yn+ 3 (ki +ky + ks +ks), (2.75)

where,

h h
ki =F(y,), kn=F (yn + kl) , k3=F (yn + kz) . ks =F(y,+hk3)

2 2
(2.76)
The above method is described by the general Runge—Kutta formula as
o 0 0 0
/2 0 0 O
0 1 / 2 0 0 (2.77)
0 0 1 0

1/6 1/3 1/3 1/6

2.6.4 Comparison with the Standard Runge—Kutta Method

Yugo and Iyemori (2001) made a tracing of single proton drift motion having energy
from 10keV to 10MeV at 5 re in the geomagnetic dipole field with fourth- and
sixth-order symplectic methods. The pitch angles at the crossing of the equatorial
plane were set at several values from 90° to 30°. The time step was about 0.016
of the Larmor period on the equatorial plane and the calculations were made for
10,000,000 steps. For comparison, Yugo and Iyemori (2001) solved the equation of
motion 5
m% =qvxB (2.78)
in a spherical coordinate system with the standard Runge—Kutta method (fourth
order). Figure 2.9 shows the examples of relative error accumulation in energy
with fourth- and sixth-order symplectic methods, S4 and S6, and with the standard
Runge—Kutta method, RK4.
The relative error in Fig. 2.9 is defined as

error = |E — E0|/E0, (2.79)

where E, is the exact energy and E is the energy in numerical integration. From
Fig. 2.9, the advantage of the symplectic method is clear. Although the error for the
calculation with the fourth-order symplectic method for pitch angle 30° apparently
fluctuates (panels ¢ and d in Fig. 2.9) because of the mirror motion along the dipole
magnetic field, the error does not continue to increase. On the other hand, the cal-
culation with the standard Runge—Kutta method soon breaks down. This indicates
that, in the calculation using the symplectic method, the numerical error accumu-
lation is much smaller than that with the standard Runge—Kutta method. Yugo and
Iyemori (2001) also found that, because of the co-negation of the error, the error
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Fig. 2.9 The relative error in energy for protons at 5 re with fourth-order symplectic method (5S4,
fluctuating in panels ¢ and d), with the sixth-order symplectic method (S6, thick lines), and with
the standard Runge—Kutta method (RK4). The energies and the pitch angles of each proton are: in
panel a 10keV, pitch angle 90°; in panel b 10 MeV, pitch angle 90°; in panel ¢ 10keV, pitch angle
30°; in panel d 10 MeV, pitch angle 30° (From Yugo and Iyemori, 2001)

development with the fourth-order symplectic method is in the same order as that
with the sixth-order symplectic method. The CPU times necessary for the calcu-
lation with fourth- and sixth-order symplectic methods are almost the same and,
at most, 10 times that with the standard Runge—Kutta method. On the other hand,
Yugo and Iyemori (2001) had to set the time step more than 100 times shorter in the
calculation with the standard Runge—Kutta method even for the particle with pitch
angle 90°. With the standard Runge—Kutta method, it is difficult to trace a proton
having a 30° pitch angle at the equatorial plane with any time step.

2.6.5 Main Results and Discussion

Yugo and Iyemori (2001) tested the symplectic integrator in the earth’s dipole mag-
netic field for typical high-energy charged particles in the radiation belt, and showed
the advantage of the new method. They believe that this method is useful for the
numerical simulation of the earth’s or other planets’ radiation belts in which the
acceleration mechanisms have not been well understood. For example, the forma-
tion of the radiation belt under a geomagnetic storm is very peculiar (e.g., Knipp
et al., 1998). Some scenarios are considered, but no one has produced a quantita-
tive and satisfactory theory. There must exist some non-adiabatic processes and the
described method would be useful to solve the problem. The following point should
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be noted. In Fig. 2.7 in panel a, the energy level El is the trapped region and the E2
is the untrapped region, and the transition between these two regions is very abrupt.
This characteristic can be confirmed by tracing a particle trajectory in a dipole field
with a small perturbation, although not shown here. That is, the injection and the
escape of high-energy charged particles, such as protons of several hundred million
electron volts (see Fig. 2.8), is not gradual, but abrupt. It is necessary to take into
account this abrupt transition between these two regions when one investigates the
problems of radiation belt formation and decay.

2.7 Effective Cutoff Rigidity in Dipole Approximation

As pointed out in Section 2.4, the influence of the earth’s magnetic field on pri-
mary CRs cannot strictly be characterized by the cutoff rigidity R., as was done in
Section 2.3, but at each observing point a penumbra function f(R) must be intro-
duced, which is equal to O in the forbidden region and may jump back and forth
between 0 and 1 several times before settling on the value 1 in the permitted region.
In some papers cited in the preceding section, the effective geomagnetic cutoff rigid-
ity R. was then defined by

7 dR = /m f(R)dR. (2.80)
R 0

However, Eq. 2.80 is a useful definition only if the primary CR spectrum D (R) =
const and is recorded above the atmosphere. Let the penumbra cover the energy
interval Ryin — Rmax, Where R < Ry, is the completely forbidden region, and R >
Rimax the completely permitted region. When recording any secondary component
of type i originating from a primary spectrum D (R), the following expression for
determining the effective cutoff rigidity R.; is appropriate:

| £ ®Rymi(R.1) DRYGR = [ i (R.ho) DIR)GR, 2381)
Rmin Rci

or (taking into account that f(R) = 1 at R > Ryax)

Rmax Rmax
[ £ Rymi(R o) DR)AR= [ i (R.ho) D(R) R, (2.82)
Rmin Rci

where m; (R, ho) is the integral multiplicity. Thus, strictly speaking, different in-
struments at one observing point will have different cutoff rigidities. Therefore, the
customary method in which the spectrum of the variations is determined from ob-
served amplitudes in various components at one point, on the assumption of equal
cutoff rigidity for all components, is not strictly correct. More precisely, the effec-
tive geomagnetic cutoff rigidity R.; for a type i detector and a type k variation
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of the primary spectrum A¢D (R) /D (R) recorded at an altitude with pressure h,, is
determined by the equation

Rmax Rmax
A AMD(R) ' AD (R)
R / 1 (R)Woi (R o) = dR—R/ Wor (R.ho) = R (2.83)

In the relatively small interval Ry, — Rmax, the coupling coefficients can be repre-
sented in the form of a power function

Woi (R, ho) o< RY, (2.84)

where a is positive in the low-energy region and negative for large R. Similarly, the
primary variation can be represented in this interval by

ADR) i (2.85)
D(R)
The integrand on the right-hand side of Eq. 2.83 can then be written as
A¢D (R
Woi (R, ho) g (1(e)> —AXRY, (2.86)

where Y = a+ b and A is a constant, irrelevant for further computations. The func-
tion f(R) can be represented in the form

1 for R2m71 S R S R2m7

FR) = {0 for Ry <R < Ry, (287)

where m are integers, and 1 < m < n with R| = Ryin, Rop+1 = Rmax. Substitution of
Eq. 2.87 into Eq. 2.83 with taking into account Eq. 2.86 gives

n
Y (RL = RL ) = REG = (R (o))" (2.88)
m=1

Hence, for the required effective cutoff rigidity, we find

Rcik (ho) =

m=1

n 7+
ex — Y (RZ' —RZ,TJ_I)] : (2.89)

Thus, for each observing point, Ry (o) is a function of . Figure 2.10 shows f(R)
for the geomagnetic latitudes 30°, 40°, and 50° (in dipole approximation), found in
Makino and Kondo (1965). This figure explains the notations used in Eqs. 2.87-2.89
forn=2.

In Dorman and Gushchina (1967a, b) the effective cutoff rigidities were com-
puted from Eq. 2.89 as a function of 7y (obtained results are shown in Fig. 2.11).
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Fig. 2.10 Penumbra function f(R) in the dipole approximation for three geomagnetic lati-
tudes according to Makino and Kondo (1965); the bottom panel explains the notations used in
Eqgs. 2.7.8-2.7.10 forn =2
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Fig. 2.11 Effective cutoff rigidity as a function o
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From Fig. 2.11 it can be seen that, first, the effective cutoff rigidity at all latitudes
decreases with decreasing y from +3 to 8, and, second, that the largest variations of
the effective cutoff rigidity are expected at latitude 30° and amount to 0.093 GV for
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a variation of 1 in 7. At latitudes 40° and 50° the same change in 7 shifts the effec-
tive geomagnetic cutoff rigidity by 0.0045 GV and 0.007 GV, respectively. Table 2.2
gives examples of the expected effective rigidity changes for these three geomag-
netic latitudes. The values of the exponent a, for different coupling coefficients were
taken from Dorman (M2004, Chapter 3).

Table 2.2 shows that even in a quiet period, a clear difference in effective geo-
magnetic cutoff rigidity for different recorded components exists. At latitude 30° the
effective rigidity changes from 9.20 GV, for recording on low satellites, to 9.33 GV,
for the neutron component at sea level, and to 9.56 GV for the hard component at
sea level. Still larger changes will arise from different variations of primary CRs.
For instance, the cutoff rigidity for the neutron component at sea level may be ex-
pected to vary, in a constant geomagnetic field, between 9.28 and 8.79 GV at 30°
geomagnetic latitude, between 5.378 and 5.354 GV at 40°, and between 2.679 GV
and 2.638 GV for observations at latitude 50°. The corresponding variations for the
hard component at sea level are 9.52-8.98, 5.387-5.362 , and 2.687-2.645 GV. The
Table 2.2 also shows the expected variations for many other types of recording, in-
cluding underground observations at small depths, for various shapes of the primary
spectrum variations.

2.8 Checking of Dipole Model by Measurements of CR Equator

According to the above-considered dipole model of the geomagnetic field, the mini-
mum of CR intensity is expected at the geomagnetic latitude where cutoff rigidity is
maximal, i.e., at the geomagnetic equator. However, the first careful measurements
of the latitude effect of the hard component by Johnson and Read (1937) in 1935
showed that the minimum of CR intensity at longitude 80° W lies about 5° north of
the geomagnetic equator; Clay (1934) in 1933 found a shift to the north of 4° along
the meridian 3° W; Compton and Turner (1937) showed that in 1936 the minimum
of CR intensity along 170° W lies, to the contrary, south of the geomagnetic equator.
At that time, no great significance was attached to these relatively small differences
in the theory. The alternative explanation that they might be related to the distorting
influence of the local temperature effect (Dorman, 1954; Maeda, 1956), could not
be ruled out since no simultaneous radio sounding data were available to check the
temperature of the atmosphere above the recording instrument.

A decisive answer from the latitude effect of the neutron component, which is
not influenced by the atmospheric temperature, was given by Simpson (1956) by
means of neutron monitors aboard expedition ships to Antarctica in 1954/55 and
1955/56. The ships passed the equator several times so that the position of the min-
ima in the curves of the CR latitude effect could be accurately determined at dif-
ferent longitudes. Besides the measurements cited above (Clay, 1934; Compton and
Turner, 1937; Johnson and Read, 1937), those by Simpson (1951) in 1948 at longi-
tude 77° W (minimum 4° north of the geomagnetic equator) and by Law et al. (1949)
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Fig. 2.12 Comparison of the geomagnetic equator according to the dipole representation and the
CR equator — drawn in geographic coordinates (According to Simpson, 1956)

along 121°E (minimum 3° south of the geomagnetic equator) were used to deter-
mine the CR equator. It turned out that the data from different authors were lying
on a smooth curve (see Fig. 2.12) which shows beyond doubt that a real difference
between the geomagnetic and CR equators had been discovered.

Numerous later studies of the latitude effect from ships and airplanes, for in-
stance, Rose et al. (1956), Skorke (1956), Kodama and Miyazaki (1957), Simpson
etal. (1956), Katz et al. (1958), Pomerantz et al. (1958), Storey (1959), Kopylov and
Okulov (1961), and Pomerantz and Agarwal (1962), confirmed this. It was found
that variation in solar activity does not change the position of the CR equator relative
to the geomagnetic equator within the measuring errors of about 1° (Kodama, 1960;
Pomerantz et al., 1960).

2.9 The Checking of Dipole Model by Direct Cutoff Rigidity
Measurements

A further check of the dipole model came from direct measurements of
the cutoff rigidity with the aid of photo-emulsion stacks in the stratosphere.
Waddington (1956) concluded from measurements of primary o particles that
in computations of the energy threshold the usual geomagnetic latitude should not
be used, but a value which is 4-6° smaller in Europe and about 3° larger in Amer-
ica. Substantial differences between the measured cutoff rigidities and the values
expected for a dipole field were also found by MacDonald (1957). The cutoff rigid-
ity was also measured directly, by means of balloons and satellites in the latitude
interval 45-70° by Bingham et al. (1968).
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2.10 Checking of Dipole Model by Data on CR Variations

A clear difference between the CR coordinates and the geomagnetic ones is also
found in studying the CR time variations. For instance, during the second phase of
the solar CR burst of February 23, 1956, when the flux of solar particles was nearly
isotropic, the intensity of various secondary components was studied in Section 45.5
of Dorman (M1957), and in Marsden and Wilson (1958). The ratio of the neutron
intensity increases in Leeds and Chicago remained about 0.7 from 4 h till 18 h UT.
The fact that this ratio is less than unity, though Leeds is at a higher geomagnetic lat-
itude than Chicago, is again a consequence of the difference between the system of
geomagnetic coordinates and the coordinate system valid for CRs. Theoretical cal-
culation of Dorman (M1957) with the aid of the coupling coefficients showed that
the flux should at equal geomagnetic latitude be 1.1-1.2 times smaller in Europe
than in America for recordings of muons and about two times smaller for the neu-
tron component, in good agreement with experiments. A similar result was obtained
in Blokh et al. (1959a) from the amplitude distribution of the intensity decrease at
the time of the magnetic storm of 29 August 1957. Convincing results were obtained
also by Carmichael and Steljes (1960) from worldwide neutron monitor measure-
ments during the increase of CR intensity on 17 July 1959.

2.11 Initial Interpretations of the Differences Between CR
and Geomagnetic Equators

As soon as reliable data had been obtained about the difference between the CR
and the geomagnetic equators, Simpson (1956) showed that these two curves can be
made to roughly coincide with a relative displacement over 45° (see Fig. 2.12). He
suggested that the effect might be due to distortion of the geomagnetic field at large
distances by interaction of the rotating dipole of the earth with the interplanetary
medium. This hypothesis was developed by Maeda (1958), who showed that the
oblique dipole, rotating together with the earth, should displace the effective equator
to the west of the geomagnetic over an angle which depends on the dimensions of
the geomagnetic cavity. He also pointed out that the electromagnetic interaction with
the interplanetary medium should also lead to a small retardation of the rotation of
the earth. Similar ideas were developed by Beiser (1958) and Ingraham (1959).
However, many other investigators advanced weighty arguments to attribute the
effect to the particular distribution of the magnetic field near the earth’s surface
rather than to a distortion of the field at large distances. Computations by Jory (1956)
showed that the geomagnetic fields of a quadrupled character found from the mag-
netic survey of 1945, could actually have an essential influence on CR intensity. In
further works (Vallarta et al., 1958; Kellogg and Schwartz, 1959; Kellogg, 1960),
computations for non-dipole fields were extended and refined by bringing in terms
up to the sixth order. All these studies make it clear that the distribution of the
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magnetic field close to the earth’s surface has a strong influence on the particle tra-
jectories and on the values of cutoff rigidity, for the field, due to the high-order
spherical harmonics, drops rapidly with height. The same point is illustrated by the
good agreement between the CR equator and the curve of zero dip (dip equator) and
by Sandstrom’s analysis (1959) of neutron flux measured aboard an airplane.

The most direct method for finding trajectories and cutoff rigidities in the given
geomagnetic field — numerical integration of the equations of motion of a negative
particle emitted from the surface of the earth — involves a huge amount of computa-
tion. Therefore many authors have tried to solve this problem either by simplifying
Stormer’s theory, so that the cutoff rigidity can be determined without determining
the orbits, or by generalizing this theory so as to take the influence of the higher har-
monics into account, if only approximately. Thus, Baxter and Kelsall (1962) have
computed accurate cutoff rigidities for protons in a dipole magnetic field, taking into
account the dependence on zenith and azimuth angles of incidence, geomagnetic lat-
itude, etc. The following approximation was found by Sauer and Ray (1963): they
neglected the influence of the higher harmonics at large distances and showed that,
at low latitudes, the cutoff rigidity remains approximately constant for a shift along
a magnetic force line. Sauer (1963) computed cutoff rigidities of vertically incident
particles for CR stations with geomagnetic latitudes |A| > 45°. Again, for distances
larger than a certain value r, a dipole field was used, Stormer’s solution being ap-
plied, but at smaller distances, six terms of the development of the geomagnetic field
in spherical harmonics were taken into account and the equation of motion of the
particles was integrated numerically.

2.12 Impact Zones, Asymptotic Directions, and Acceptance
Cones in the Dipole Magnetic Field

Solution of this problem requires a large body of numerical computations; there-
fore a review of the available information will be useful. The principal features can
already be seen in the dipole approximation, which suffices in some practical appli-
cations. The literature over several decennia contains many relevant computations.
After Stormer’s first numerical calculations of trajectories in a dipole field (see the
review in Stormer, M1955), Boguslavsky (M1929) studied many particular cases
of trajectories. Lanza (1965) gave asymptotic directions in the form of nomograms.
Model experiments of Brunberg (1953, 1956), Brunberg and Dattner (1953) on the
asymptotic angles of trajectories of charged particles in the field of a magnetic di-
pole have been widely used. Using further orbit computations by Dwight (1950),
Schliiter (1951), and Malmfors (1945), Firor (1954) computed the impact zones for
particles reaching the earth in the direction from the sun. Four hundred new trajec-
tories were computed by Liist et al. (1955).

Jory (1956) published computations of 663 trajectories of particles with rigidities
in the interval from 1 GV to 10 GV, emitted by the sun. Orbits are considered of
particles arriving at the boundary of the atmosphere along the vertical and under
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angles of 16° and 32° north, east, south, and west of the vertical. On the assumption
that the rigidity spectrum is flat in the interval 1-10 GV, i.e.,

const, for IGV <R < 10GV,

Ds (R) = {o, for R< 1GV,R > 10GV, (2.90)
and that the particle source has a rectangular shape (solid angle £5° in latitude
and +10° in longitude), the impact zones of the particles on the earth are found at
various geomagnetic latitudes (at intervals of 10°), and also the particle intensity in
these zones. He finds that at intermediate latitudes the chief impact zone must lie
at about 3 h, and at high latitudes at about 9 h local time. Liist (1957) extended this
work with the examination of 1,500 orbits of particles coming from a region near the
sun and determined the regions on the earth where these particles may arrive. These
computations were performed for various positions of the source: in the plane of the
geomagnetic equator and shifted by £20°. It turned out that there should be clearly
marked impact zones on earth, depending little on the solid angle of the source. At
low latitudes, only the 3 h zone occurs, at high latitudes the 9 h zone occurs. The
impact zone is said to be at 3 h if the particles arrive at the points on earth for which
the local solar time at the moment when the flux was ejected was 3 h. Particles
arrive in each zone, in the rigidity interval characteristic for this zone. The position
of the zones and the intensity of the particle flux in each of them depend strongly
on the position of the source; in some cases the magnetic field of the earth causes
the particle flux to be focused, particularly at high latitudes. The latter result agrees
with results of computations by Astrom (1956). An experimental check of the width
of the zones can best be made between latitudes 60° and 70° where the background
radiation consists of particles with rigidity less than 1 GV, which do not reach the
earth’s surface.

In a further article, Liist (1958), assuming that the source of solar CR has an
extension of £15° in latitude and £10° in longitude, and that it has a differential
rigidity spectrum o< R~ in the interval 1 GV < R < 30 GV computes the expected
total solar CR intensity at the top of the terrestrial atmosphere as a function of local
time and geomagnetic latitude for a source position at geomagnetic latitude 20°, as
it was during the greatest FEP event on February 23, 1956. Results are shown in
Fig. 2.13.

The sun may also emit protons with a very small kinetic energy down to
0.010 GeV (rigidity 0.14 GV), or even 0.001 GeV (rigidity 0.045 GV). Therefore,
Sakurai (1960) computed the impact zones for particles with rigidity 0.03, 0.1 and
0.6 GV. Figure 2.14 shows the relation between the geomagnetic latitude A of im-
pact and the latitude of the source A, and Fig. 2.15 shows the relation between A
and the angle of escape ¢..; with the aid of these results, the impact zones can be
found for various assumptions about the angular dimensions and the position of the
source relative to the geomagnetic equator.

The assembly of all asymptotic directions forms the acceptance cone. Therefore,
the counting rate of any CR detector depends on the way in which the geomagnetic
field transforms the infinitely small elements of solid angle forming the receiving
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Fig. 2.13 Computed counting rates at the top of the atmosphere on the assumption that the sun is
in the position it had been on February 23, 1956 (According to Liist, 1958)

cone of the detector. Bostrom (1964) shows that for any latitude of the detector, the
ratio M of the receiving solid angle and the solid angle outside the geomagnetic field
M > 1, and for some rigidities M >> 1. Thus the geomagnetic field exerts a focusing
action on CRs, in particular for detectors of soft particles at high-latitude stations
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(see in more detail Section 2.14). For determining the direction of an anisotropic
source, high-latitude stations are most suitable; detectors at low-latitude stations are
sensitive to sources near the equatorial plane only.

In order to avoid cumbersome numerical computations of orbits for low-energy
particles, Webber (1963) based his analysis on the properties of motion in Alfvén
regime and on analysis of the families of orbits computed by Stormer (see Chapter 3,
this volume for more detail on Alfvén and Stormer regimes). By this method as-
ymptotic directions are found for a wide range of geomagnetic latitudes, without
numerical integration. Webber (1963) also generalized this method for the case
of a non-dipole field and found the asymptotic directions for a number of actual
stations.

Kudryavchenko (1962) computed the average effective angles v (the angle of
trajectory shift in the plane of the equator) and ¢ (the angle between the effective
direction of incidence of the particles and the plane of the geomagnetic equator) for
cubic telescopes and neutron monitors at different geomagnetic latitudes (analogous
to the computations described in Section 15.2 in Dorman, M1957), and the corre-
sponding variation of the effective angles during Forbush effects. Analogous com-
putations may be found in papers by Fenton et al. (1959) and Fedchenko (1961).
The coupling coefficients in these papers were taken from Figs. 30 and 242 in
Dorman (M1957), and the angles y (R) and ¢ (R) for various zenith and azimuth
angles from the work of Brunberg and Dattner (1953). For obliquely incident parti-
cles, the above-mentioned exponential factor has also been included. The effective
angles y and ¢, computed in dipole approximation by Lapointe and Rose (1961),
and angular width of the effective sensitivity cones Ay and Ay are given in Table 2.3
as a function of the geomagnetic latitude of the neutron monitor. Table 2.4 shows
the geographic latitude and longitude of the asymptotic directions of the highest
sensitivity for neutron monitors at 22 stations.

Table 2.3 Computed values of effective angles y and @, and effective sensitivity cones Ay and A@
for neutron monitors as functions of geomagnetic latitude (According to Lapointe and Rose, 1961)

Geomagnetic 73 [0} Ay A¢ Geomagnetic 73 0] Ay Ag
latitude latitude

0° 77° 0>  38° 8° 50° 55° —1° 22° 16°
5° 81°  —1° 44° 8° 55° 43° 9° 13 17°
10° 83° —2° 48° 9° 60° 36° 21° 10° 14°
15° 79° =2°  40°  11° 65° 32° 31° 10° 12°
20° 72°  —=3°  33°  13° 70° 28° 44° 13° 9°
25° 72° =3°  31°  15° 75° 27° 57° 17° 8°
30° 80° —3°  41° 16° 80° 25° 67° 22° 7°
35° 79°  =5°  37°  16° 85° 79°

40° 75°  =5° 320 17° 90° 90°

45° 69°  —5°  30° 17°
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Table 2.4 Geographic latitude and longitude of the asymptotic directions of the highest sensitivity
for neutron monitors in dipole approximation of geomagnetic field (According to Lapointe and
Rose, 1961)

Station Direction of the highest Station Direction of the highest
sensitivity sensitivity
Latitude Longitude Latitude Longitude
Berkeley 16°S 60°W Ottawa 3°N 40°W
Mt. Washington 2°N 38°W Pic-du-Midi 5°N 78°E
Mt. Wellington 4°S 155°W Resolute 64°N 97°W
Deep River 6°N 40°W Rome 6°N 95°E
Climax 14°S 50°W Sydney 0° 130°W
College 28°N 132°W Thule 74-84°N
Leeds 20°N 53°E Uppsala 27°N 72°E
Lincoln 10°S 40°W Herstmonceux 14°N 60°E
Mawson 44°S 70°E Zugspitze 7°N 85°E
Munich 8°N 82°E Churchill 31°N 75°W
Mt. Norikura 5°S 151°W Chicago 0° 45°W

2.13 Seasonal and Daily Variation of the Position of Impact
Zones in Dipole Approximation

The position of the source of solar CR changes relative to the geomagnetic equator
during the day and during the year according to the change in the relative position
of the sun. The character of changes directly follows from Figs. 2.14 and 2.15. The
expected daily and season variations of the position of the impact zones, can also
be found from the results obtained by Jory (1956b), Liist (1957), Kelsall (1961),
and other authors. Particularly, in Kelsall (1961), 4,000 numerical orbit integrations
were performed for protons with energies from 0.05 GeV to 50 GeV, assuming dif-
ferent orientations of the incident solar particle stream with respect to the dipole
axis. Two facts, which are not new but were overlooked in earlier work, emerged
from this study: (1) the relative number of impacts in the northern and southern
hemispheres strongly depends on the season; and (2) for certain seasonal conditions
there is a class of orbits which might be called “quasi-trapped”, resembling the
orbits of trapped particles predicted by Stormer. Injection into trapped (periodic)
orbits from these quasi-trapped particles may contribute to the intensity of the radi-
ation belts. This may be one of the causes of time variations of the radiation trapped
in the radiation belts.

Kaminer (1960), on the basis of published data on solar CR particle trajectories
in the approximation of the dipole magnetic field, prepared special graphics for
quickly determining longitude and latitude of 9h and 4 h impact zones on earth
in dependence of UT (from O to 24h) and of the position of the sun relative to
the earth’s geographical equator (from —23° to +23°). It was supposed that the
emitted spectrum of solar energetic particles lasted from 1 to 10 GeV, the latitude
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Fig. 2.16 Graphics for quickly determining the latitude of the 9 h impact zone in dependence of
UT (from O to 24 h) and of the position of the sun relative to the earth’s geographical equator (from
—23° to +23°, numbers near curves) (From Kaminer, 1960)

angle dimension of source is equal to +-15°, and in the longitude direction it may be
described by the §-function. The obtained results are shown in Figs. 2.16-2.19.

On the basis of the graphics presented in Figs. 2.16-2.19, it is very easy to deter-
mine the position of the 9 h and 4 h impact zones for any CR station. As an example,
Fig. 2.20 shows the seasonal changes of impact zones’ positions for several stations
in the former USSR: Apatity, Yakutsk, Moscow, Irkutsk, and Tbilisi.

Let us note that with the development of solar CR event in time, the flux be-
came more isotropic, so these impact zones really only exist at the initial stage
of the event (see Dorman and Miroshnichenko, M1968; Dorman, M1978, Mirosh-
nichenko, M2001).

2.14 Asymptotic Accepted Cones and Expected Counting Rates
of CR Detectors; Focusing Properties of Geomagnetic Field

The counting rates of a CR detector of type i will be determined by the following
expression:

Niho) = [ do> [ da [ D(REs0mi (R.E.7.h0)dR (2.91)
(0] a R

where D (R, &, x) is the intensity of CR incident on the boundary of the atmosphere
at zenith angle & and azimuthally angle x, m; (R, &, X, ho) is the integral multiplic-
ity. Integration in Eq. 2.91 takes over the surface a and over the space angle @ on
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Fig. 2.17 Graphics for quickly determining the longitude of the 9 h impact zone in dependence of
UT (from 0O to 24 h) and of the position of the sun relative to the earth’s geographical equator (from
—23° to +23°, numbers near curves) (From Kaminer, 1960)

the boundary of the atmosphere which corresponds to the detector on the level 4.
According to the Liouville theorem, in the static magnetic field along the particle
trajectory the intensity remains constant, i.e.,

D(R.E.x) =D(R,?,A), (2.92)

where D (R,®,A) is the flux of primary CR out of the geomagnetic field in de-
pendence of the asymptotic geomagnetic longitude ® and asymptotic geomagnetic
latitude A. Equation 2.92 is valid only along the trajectory, therefore, ® and A are
functions of £, x, and R:



44 2 Cosmic Rays in the Dipole Geomagnetic Field

200
180
200 160
180 140
160 120 S
(]
140 100 5
120 80 2
S 100 60 2
g 80 40 °
2 60 20 2
D 40 360 @
5 20 340
© 360 320 ¢
© 340 300 O
[ (0]
S 320 280 (O
£ 300 260
S 280 1020 240
O 260 ——1520 o] 220
240 —5515,
220 :
200
180 Y
0 2 4 6 8 10 12 14 16 18 20 22 24

UT (h)

Fig. 2.18 Graphics for quickly determining the longitude of the 4 h impact zone in dependence of
UT (from O to 24 h) and of the position of the sun relative to the earth’s geographical equator (from
—23° to +23°, numbers near curves) (From Kaminer, 1960)

According to Swann (1933), Eq. 2.92 can be written in the following form:
dQdA;, = dwyda, (2.94)

where dQ and dAj, are elements of space angle and surface out of the geomagnetic
field, and dwy, and da are the same values but at the boundary of the atmosphere.
The introduction of index 7 = 1,2,3,... is caused by the fact that there are no sim-
ple connections between the asymptotical direction determined by angles @ and A
with direction at the boundary of the atmosphere determined by zenith angle £ and
azimuthally angle y. Different values & and ) at definite rigidity R can correspond
to the same direction @, A, but at different positions in space dA;. Correspondingly,
for definite asymptotical direction dQ but at different elements of surface dA; out of
the geomagnetic field, will correspond on the boundary of the atmosphere with one
element of surface da, but with different elements of space angle dwy,. To character-
ize the change of space angle at the crossing of the geomagnetic field by the flux of
charged energetic particles, Brunberg (1958) introduced a coefficient for amplifying

of the space angle
My, (®,A,R) = da)h/dQ. (2.95)
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On the basis of Egs. 2.91-2.95, the expected counting rate of the detector will be

N; (ho) = / 0 / da / D(R,®,A)Y. My (R, ®, A)m; (R, ®, A, ho)dR,  (2.96)
Q R k

a

where summation takes over all elements of space angle dwj, which correspond to
the same element of space angle dQ out of the geomagnetic field.

For practical use of Eq. 2.96, it is convenient to introduce differential coefficients
of sensitivity of the CR detector as follows. Let us divide the full space angle Q out
of the geomagnetic field over many small elements AQ ;. displaced in a direction
characterized by asymptotical longitude ®; and latitude Ay, and rigidity to divide
over many small elements AR;. Let us choose the elements so small that inside each
of them, primary CR flux Djy; can be considered as homogeneous and constant.
Now the counting rate of the CR detector will be expressed as

Ni(ho) =Y.} Y DjuSijudQuAR,, (2.97)
Jj k1
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Fig. 2.20 Seasonal change of position of the 9h and 4 h impact zones for CR stations Apatity,
Yakutsk, Moscow, Irkutsk, and Tbilisi (According to Kaminer, 1960)

where
ijkh

Sk 2.
20, (2.98)

N azmijkth jkih = azmijklh
h h

The focusing properties of the dipole geomagnetic field were investigated in detail

by Bostrom (1964). As an example, in Fig. 2.21 values of coefficient of amplifying

M are shown for vertical incident particles at geomagnetic latitudes 0°, 20°, 45°,

and 74°.

From Fig. 2.21 it can be seen that for a large interval of rigidities, the coeffi-
cient of amplifying M > 1, i.e., the dipole geomagnetic field really has focusing
properties; only in small regions near the cutoff rigidity M < 1, and in these cases
the geomagnetic field is defocusing. For several rigidities M — oo and the focusing
action of the geomagnetic field became especially great. With an increase of geo-
magnetic latitude, the focusing action of the geomagnetic field increases sufficiently
(this is in agreement with the results of Astrom, 1956). Therefore, the CR detectors
on high latitudes will have a sufficiently larger resolution than CR detectors on low
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Fig. 2.21 Focusing properties of the dipole geomagnetic field for vertical incident particles at
geomagnetic latitudes 0°, 20°, 45°, and 74° (According to Bostrom, 1964)
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Fig. 2.22 Asymptotic accepted cones in the field of the geomagnetic dipole for CR particles arriv-
ing from the vertical direction at the geomagnetic latitudes 0°, 20°, and 45°; numbers show particle
rigidity in GV (According to Bostrom, 1964)

latitudes. Figure 2.21 also shows that at all latitudes with a large increase of R, the
focusing or defocusing properties of the geomagnetic field dissipated (M — 1).

Figure 2.22 shows the asymptotic accepted cones in the field of the geomagnetic
dipole for CR particles that arrived from the vertical direction at latitudes 0°, 20°,
and 45°, and in Fig. 2.23 at geomagnetic latitude 74°.

In Figs. 2.22 and 2.23 the change of the form of circle element of space angle
during energetic charged particle bunch crossing of the geomagnetic field are also
shown; only at high rigidity (100 GV) there is no change (coefficient of amplifying
M = 1). On low latitudes (Fig. 2.22, panels for A = 0° and A = 20°) asymptotic
directions are in the region near the equatorial plane. With a decreasing of particle
rigidity, the elements of the space angle become more and more drawn out and for
corresponding rigidities M — oo, the width of elements — 0. For low and middle
latitude stations (see Fig. 2.22), the asymptotic directions are displaced in the broad
interval of longitudes. But for high-latitude stations (Fig. 2.23) asymptotic direc-
tions are displaced in the narrow interval of longitudes and with decreasing particle
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Fig. 2.23 The same as in Fig. 2.22, but for geomagnetic latitude 74°; numbers show particle rigid-
ity in GV (According to Bostrom, 1964)

rigidity theyshift toward the equatorial plane. With decreasing rigidities the dimen-
sion of the elements of the space angle becomes smaller, and at certain rigidities
(10.5, 4.8, 3.2, and 2.3 GV, for which M — o according to Fig. 2.21), the dimension
of elements — 0.

From a comparison of Fig. 2.23 with Fig. 2.22, it also follows that at high lat-
itudes the decreasing of the dimension of the elements of the space angle with a
decreasing of particle rigidity occurs much more quickly than at low and middle
latitudes. Let us note that the described peculiarities of the asymptotic directions
formatted the basis of Bieber and Evenson’s (1995) concept of using high-latitude
CR stations for the Project “The Spaceship Earth” (see details in Dorman, M2004,
Chapter 4, Section 4.4.14).



Chapter 3
Cosmic Rays in the Real Geomagnetic Field

3.1 Inner and Outer Sources of the Real Geomagnetic Field;
Changing in Time

The main part of the geomagnetic field is produced by sources inside the earth: most
probably there are electrical currents in the rotated liquid metallic nucleus of the
earth supported by convective hydromagnetic flows (see, e.g., Braginsky, 1964a, b).
As discussed in Chapter 2 (Sections 2.1-2.7 and 2.12-2.14), in the first approxima-
tion, this field can be considered as the field of magnetic dipole displaced near the
center of the earth. However, as was shown in the same chapter, (Sections 2.6-2.11),
the dipole presentation is not enough for describing CR equator, CR time variations,
and planetary distribution of cutoff rigidities.

Outer sources of the geomagnetic field are produced by three systems of elec-
trical currents: ionosphere currents, ring current, and currents on the boundary of
the magnetosphere (see Chapter 6 for details). The influence of the magnetic field
of ionosphere currents on CR particles’ moving is usually considered as negligible.
The western directed ring current in the earth’s magnetosphere is the most impor-
tant for the geomagnetic field changing in time as well as for the influence on CR
particles moving in the magnetosphere (this influence will be considered in detail in
Chapter 7). The ring current is caused by charged particles trapped in the radiation
belts: beside the rotation of these particles around the magnetic force lines and mov-
ing along the force lines between mirror points in the north and south, they also have
a drift in the direction perpendicular to the magnetic field lines and to the gradient
of the magnetic field (positive particles drifted in the western direction and nega-
tive — in the eastern direction, so the total electrical current will be in the western
direction). The distribution of this western ring current depends on the distribution
of the charged energetic particles, and their velocities and pitch angles (see for more
detail in Dessler and Parker, 1959; Akasofu and Chapman, 1961, and in Chapter 6).

The vector of geomagnetic field is characterized in the Descartes system of co-
ordinates (introduced by French philosopher and mathematician Rene Descartes,
1596-1650), by components north (usually denotes as X), east (Y), and vertical (Z);
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in the cylindrical system by horizontal component H, vertical Z, and declination
D; in the spherical system by the module of magnetic force H, declination D, and
inclination I. These components of geomagnetic field changed in time: short-term
variations are mostly caused by outer sources in the magnetosphere and long-term
variations — mostly by interior sources inside the earth.

3.2 Presentation of the Real Geomagnetic Field by Series
of Spherical Harmonics; Gauss Coefficients

In the 19th century, the famous German scientist Carl Gauss (1777-1855) developed
a theory that analytically presented the real geomagnetic field on the earth’s surface
and in space as a sum of spherical harmonics. The basis of Gauss theory was the
supposition that all main sources of the geomagnetic field are inside the earth. In
this case, there will be no electrical currents in the outer-space of the earth. This
means that

rotH = 0. 3.1

Therefore, the vector of geomagnetic field H on the earth’s surface and out of
the earth can be presented as a gradient of some scalar function U (r) because
rotgradU (r) = 0. So we can suppose that

H = —gradU (r), (3.2)

and because divH = 0, we obtain the Laplace equation for scalar potential of geo-
magnetic field
div (gradU (r)) = V2U (r) = 0. (3.3)

In the spherical system of coordinates Eq. 3.3 will be

2 2
22U U 1a< au) LPU_ o G

"7 T s Tsine 90 T nte 997
where r, 0, @ are the spherical coordinates: radius—vector, addition to the geographic

latitude A (6 = 90° — 1), and geographic longitude. The solution of Eq. 3.4 can be
found in the form

U(r,8,0)=f(r)®(0,9). (3.5)

Let us substitute Eq. 3.5 into Eq. 3.4 and, after division of variables, we obtain

rzdzf(”) +2rdf(”) 9

dr? dr n f(r) =0,
19 I0(0.9)\ 1 00(0,9) (3-6)
- 1 ? 3 2 _
sinf 00 <SIHB 00 ) + sin29 a(pZ +n (I)(ea(p> 07

where n? is the constant of the division of variables.
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The first equation in the system of Eq. 3.6 is the well-known Euler equation with
the solution
f(r) = A" + Byr~ D) 3.7)

where A, and B, are arbitrary constants of integration and »n is any positive inte-
ger value.

The second equation in the system of Eq. 3.6 can be also solved by the method
of variables division:

©(6,0)=5(0)yw(9). (3.8)
By substituting Eq. 3.8 into the second equation of Eq. 3.6, we obtain
Py(e)
a2 1" v(9) =0,

(3.9)

% (Sinediée)> ’ (n(n+1)sin26_ s?riz@)é(e) -

where m? is the constant of the division of variables. The solution of the first equa-
tion of the Eq. 3.9 will be the simple harmonic function

v (@) =o' sinme + B, cosme, (3.10)
and the solution of the second equation of the Eq. 3.9 will be Légandre polynomials
E(6) =P (cosh). (3.11)

Substituting into Eq. 3.5 f(r) determined by Eq. 3.7 and ® (0, ¢) determined by
Egs. 3.8, 3.10, and 3.11, we obtain the following partial solution of the Laplace
equation 3.4:

U(r,0,0)= (Anr"—i— B ) (o) sinm@ + B, cosm@) P)' (cos 0) . (3.12)

pntl

Because the Laplace equation 3.4 is linear, the general solution can be presented as
a sum of partial solutions in two forms:

© n
U (1,0,9) = Z Z (N sinm@ +d)) cosm@) Py (cos0), (3.13)
n=0m=0
© n
Ur(r0,0) =Y Y r "V (@ sinme + b cosme) P (cos 0), (3.14)
n=0m=0
where
ay =By, by =B,B), cf=A0, df=A,B. (3.15)

For analyzing the magnetic field out of the earth which is caused by interior sources
inside the earth, it is necessary to satisfy the boundary condition on infinity where
the magnetic field must equal zero, i.e., we need to choose the solution described
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by Eq. 3.14. Contrarily, for analyzing the magnetic field inside the outer sources, it
is necessary to satisfy the condition at the center of the coordinates that the mag-
netic field must be finite, i.e., we need to choose the solution described by Eq. 3.13.
The first members in Eqs. 3.13 and 3.14 describe the magnetic field of the magnetic
monopole, but really in any body, the sum of magnetic charges is equal to zero. This
means that in the above-mentioned equations, the summation starts from n = 1.
Usually, instead of coefficients a;; and b} we use the coefficients g and /) deter-
mined by the expressions

ay =rggr, by =iy, (3.16)

where rg is the radius of the earth. In this case, for inside sources of the geomagnetic
field out of the earth, we obtain

2(r,0,0) —rEZ Z ( ) (g sinme + h) cosm@) P (cos0).  (3.17)
n=1m=

Now by using Eq. 3.2, it is easy to determine the three components of the vector of
geomagnetic field. The north (X), east (Y), and vertical (Z) components will be

X(r6.9)= _% B _ni (T)nﬂmzn‘,o(g,’fcosm<p+h?sinm<p)cu)”’n§?sm7
(3.18)
Y (r,0,0) = _rsiiléza(p
2 (rE)n+2mZO mg,, sinme — mh’"COSWP)%O;G), (3.19)
2(,0.9) =~ %2
= i} (%)n# (n+1) Zn"o(g;’fcosm(p—i—h;” sinm@)P;" (cos6). (3.20)

When using Eqs. 3.18-3.20, it usually means that ny,y is finite; the total number of
coefficients g and A2} will be nmax (max + 2), SO at nmax = 6 and 8, the total number
of Gauss coefficients will be, correspondingly, 48 and 80. For the presentation of
a geomagnetic field caused by outer sources instead of coefficients ¢j and d;' in
Eq. 3.13, let us introduce the coefficients j) and k] determined by the expressions

=g am = e, (3.21)
In this case, the expression for scalar potential from outer sources will be

(r,0,0)=rg Z — Z (jrrcosme +ky' sinm@) Py (cos 0). (3.22)

n=1 r m=0
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From Eq. 3.22, on the basis of Eq. 3.2, it can be very easy to obtain the three com-
ponents of the geomagnetic field inside of outer sources (in analogy with Egs. 3.18-
3.20). By the summing the components of the magnetic field produced by inner and
outer sources, we obtain

L dry 0
X (r,0,0)= Z Z (I cosme + ¢ s1nm(p)w, (3.23)
n=1m=0 de
s n Pn’l 6
Y(r6,0)=Y Y (1 sinm(pfqg'cosm(p)w, (3.24)
n=1m=0 sin 6
(r,0,0)= Z Z (" cosme + g sinm@) Py (cos 0) , (3.25)
n=1m=
where
=g +in, i =h k), L=+ 1) —nj,
qar = (n+1)h) —nk). (3.26)

3.3 Relative Role of Spherical Harmonics in the Formation
of the Geomagnetic Field from Internal Sources

The first spherical harmonic in Eq. 3.17 (n = 1) corresponds to the field of the mag-
netic dipole, the second harmonic (n = 2) to the field of the quadruple, the third har-
monic (n = 3) to field of octuple, and so on. The relative role of different spherical
harmonics in the formation of a real geomagnetic field from internal sources were
calculated by Quenby and Webber (1959). They used Gauss coefficients g/ and A}
obtained by Finch and Leaton (1957) on the basis of spherical harmonic analysis
of the magnetic maps of the epoch 1955.0. The scalar potential of the geomagnetic
field from internal sources, according to Eq. 3.17, can be presented as

Ur (r,0,9) =Y Uz (r,6,9), (3.27)
n=1
where
n+l N
Uy (r,0,0) =rg < r ) Z (gn' sinm@ + h) cosm@) Py (cos 0). (3.28)
m=0

For the square of Uy, (r, 0, @) averaged over the spherical surface on some distance
r > rg, we obtain

T N R W () (3.29)
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Table 3.1 The relative importance of the spherical harmonics, in percentage of the first harmonic

Distance from the center Order of harmonics Sum of harmonics 2—-6
of the earth, rg
2 3 4 5 6

1.0 10.4 59 28 0.9 0.4 20.4

1.2 8.7 41 1.6 0.4 0.2 15.0

1.5 6.8 2.6 0.8 0.2 0.1 10.5

2.0 5.2 1.5 03 0.1 <0.1 7.0

3.0 3.5 07 0.1 <01 <0.1 4.2

The role of each spherical harmonic will be determined by the value |Ua, (r)| that
can be found as the root square of Eq. 3.29. The results are shown in Table 3.1.

As can be seen from Table 3.1, all highest harmonics gave only 20.4% near the
earth’s surface from the first, dipole harmonic. With an increase in the distance from
the center of the earth, the role of highest harmonics decreases abruptly: at distance
1.5 rg their role became 10%, at 3.0 rg—4.2%.

3.4 Analytical Methods of Trajectory Calculations in the Real
Geomagnetic Field

3.4.1 General Equation

If the Gauss coefficients for some epoch are known, the potential of geomagnetic
field U (r,0, @) can be determined in any point; this means that the vector of the
magnetic field force is also known. The equation of a moving particle with the rest
mass m,, charge Ze, and velocity v(|v| = v is constant in the non-variable magnetic

field) will be
d’r Ze (dr
—=——|—xVU 3.30

dr? me (dt x ) ’ (3-30)

—1/2 . I
where m=m, (1—v*/c?) /2 Let us transform Eq. 3.30 to the differentiation over
trajectory path s (remember that ds = vdf, v = const); as a result, we obtain

&’r  Ze dr
—=—(VUx — |. 3.31
ds2  mve < % ds> 331

The solution of Eq. 3.31 is determined by the value of particle rigidity Ze / mvc and
the space distribution of the magnetic field.

At large distances from the earth (r > 3rg) the magnetic field can be accurately
considered as an axial-symmetric field of the magnetic dipole. From Table 3.1 it can
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be seen that at these distances the role of the highest harmonics is smaller than 5%,
i.e., the influence of the highest harmonics and outer sources can be considered as
some small perturbation to the main dipole field. It means that for the real geomag-
netic field an “approximate integral” can be found which can be considered as an
analog of the Stormer integral for a dipole field (see Chapter 2). Therefore, at these
distances the so-called Stormer method can be used (see Section 3.4.2).

On the distances r < 3rg for particles with rigidity smaller than 3-5 GV, the cur-
vature radius of the particle trajectory will be smaller than the scale of the magnetic
field’s change and, in this case, can be used in the drift approximation describing the
moving of the center of a particle rotating in the magnetic field. The method of drift
approximation for particles moving in the geomagnetic field was applied for the first
time by H. Alfvén (see Alfvén, M1950; see also Pikelner, M1966); therefore, this
method is often called the Alfvén method (see Section 3.4.3).

3.4.2 Stormer Method

The Stormer method was used in many calculations of CR asymptotic directions
and cutoff rigidities in the real geomagnetic field (e.g., Quenby and Webber, 1959;
Webber, 1963; Ray, 1963a; Stern, 1967). Ray (1963a) and Stern (1967) considered
this method in more detail.

Let us describe magnetic field H by vector potential A; it can be produced with
accuracy for the gradient of any scalar function ¢ (r). Let us choose the gradient of
¢ (r) so that scalar product AH =0, i.e.,

A-VxA=0. (3.32)
The solution of this equation can be written as follows:
A=0o(r)VB(r), (3.33)

where o.(r) and B (r) are scalar functions from the coordinates. On the other hand,
as we mentioned above, in the region without electrical currents, magnetic field H
can be described by the scalar potential U, i.e, H = VU. Three scalar functions
o, B, U can be chosen as the basis for the natural system of coordinates connected
with the magnetic field. Really,

H=VxA=VaxVp, (3.34)

i.e., vectors Vo and V3 are perpendicular to H, which is equal to VU. This may be
written as

VU -Vo,.=VU-VB =0. (3.35)

For determining the equation for a charged particle moving in this curvilinear system
of coordinates, let us find the Lagrangian of this system:
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mv? Ze 2 oy —1/2
L=—+ v-A, m:(l—v/c) . (3.36)
c

In the Descartes orthogonal system of coordinates we obtain
V=242 22 (3.37)

and consider x, y, and z as functions of o, 3, U. Making differentiation and using
Eq. 3.34, we obtain

()« (3) ()] @
() (%) ( o) |() - () ()
2@ G GG GG o

After calculating the derivatives in Eq. 3.38, we obtain

V=

+ U?

A? |V0c\ I A-Va . .
2 _ 2 ;
Vo= oc2H2 [3 -2 Tp ap. (3.39)
Because f = VB -v=|VB| vg, it follows that

A-v=IA|vg =0p. (3.40)

Substituting Egs. 3.39 and 3.40 into Eq. 3.36, we obtain

L=— —U -2 —aopf. 3.41

2 |2 ® ﬁ * a? WP | 0P (341)

If the Lagrangian in the natural system of coordinates is known, it is easy to deter-
mine the integrals of a moving particle connected with the symmetry of the magnetic
field. For example, let us consider the field of a magnetic dipole. In this case

Ar=Ag=0, a=rAy(r,0)sin0, B=¢, H=|o|B]. (3.42)

Substituting Eq. 3.42 into Eq. 3.39 shows that L does not depend on ¢. In this case,
according to Eq. 2.3 (see Chapter 2), we obtain the integral dL/d ¢ = const. By dif-
ferentiating, we will find that this integral coincides with Stormer’s integral deter-
mined by Eq. 2.10. The real geomagnetic field is quasi-symmetrical, i.e., very weak
depending on one of the coordinates: dL/df3 ~ 0. Let us assume that dL/df8 = 0.
In this case, dL/df = const. By differentiating Eq. 3.39 over 3, we obtain
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val> . A-Va Z
Vo & +7eoc=const. (3.43)

m

H? aH?

Let us determine angles 17, ®, & as follows:
v-Va=v|Valcosn,v-VB =v|VB|cosw,Va- VB = |Val-|[VB|cos&.  (3.44)
In this case, Eq. 3.43 can be rewritten as

AlVal?
%
oH?

Z
(cos® —cosncos&) + £€ 0 = const. (3.45)
C
According to the cosine spherical law,
cos @ — cos N cosE = sinn sin& cos P, (3.46)

where @ is the bi-plane angle between planes (Va, V) and (Va, v).
Let us express vector-potential through the magnetic field H:

o|VB| Vo siné oH
A=a|VB| = = 3.47
IVBI [Vosiné [Vosin&’ (347)
and introduce this expression into Eq. 3.45. We obtain
Ze
my (|Vo|/H) cosy + () o, = const, (3.48)
¢
where
cos Y = sin1 cos . (3.49)

Let us introduce Stormer’s units of length by taking the value (MZe/ mcv)fl/ 2 for
the unit of length, where M is some constant characterized magnetic field with the
measurability of the magnetic dipole moment. In these units, Eq. 3.45 will be trans-
formed into

(|Val/H) cos y + o =2y (3.50)

or
cosy = (2y—o)H/|Val. (3.51)

The integral described by Eq. 3.51 is an approximate integral of a particle moving in
a quasi-symmetrical magnetic field; it can be considered as an analog of Stormer’s
integral for a dipole field (see Chapter 2). For practical use of the integral Eq. 3.51
it is necessary to find function o for the real magnetic field. In the general case, this
function must be determined by the solution of the differential Eq. 3.34 in partial
derivatives. However, in some important partial cases, function o can be found by
an easier way. Detailed extended calculations of functions o and f3 (so-called Euler
potentials) were made by Stern (1967a, b) for the earth’s magnetic field caused by
inside and outside sources. The investigation of a charged particle moving in the real
geomagnetic field by using Euler potentials was also carried out by Ray (1963a).
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3.4.3 Alfvén Method

Let us consider the moving of a charged particle in a magnetic field under the Lorenz
force and some other force f. The equation describing this moving

Z
myv =25y x Ht-t (3.52)
c
can be simplified by the substitution
V=Vig+Vy, (3.53)
where
c
V]g = ﬁfXH (354)
Because
Ze 1
?fvngH‘ = (3.55)
the Eq. 3.52 will be transformed into
Z Z
mivy = Zov) x H—miy, = 2ovi x H+1;, (3.56)
c c
where f; = —mvV;, presents the inertia force. Let us now assume that
Vi = Vo + V2, (3.57)
where B
V2g = ﬁfl X H (358)
In this case we obtain the equation
Z
mis = Z5vy x H—min, (3.59)
C

which is an analog of Eq. 3.56. This process can be continued up to some number £,
Z

miy = “2 v x H—miyq, (3.60)
¢

when the Lorenz radius becomes much smaller than the scale of the magnetic field
change. In this case

T fxH, (3.61)

and, by the second member in Eq. 3.60, may be neglected. Now the moving of a
charged particle in the real magnetic field can be resolved by three components:
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1. The fast cyclotron rotation around the magnetic force line
2. Drift moving of the center of the cyclotron circle across the magnetic field with
the velocity

c

Zopz (F-8i) < H) (3.62)

Vo =Vig+Vog+ -+ Vg =
where fj = —mdv,/dt
3. Free movement along the magnetic force line described by the equation

deH/dt = fH (3.63)

Let us note that the cyclotron rotation of a charged particle around the magnetic
force line generates a magnetic field which is equal to the field of a magnetic dipole
with moment

p=m? /2H. (3.64)

The value of the magnetic moment determined by Eq. 3.64 is approximately an
integral of a particle moving in a magnetic field and is usually called “the first adia-
batic invariant.”” Potential energy £, of the magnetic dipole in the magnetic field is
determined by the expression

E, = uH, (3.65)

and the force acting on the particle will be
f=—-uVH. (3.66)

Substituting Eq. 3.66 into Eqgs. 3.62 and 3.63, we obtain the equation in the drift
approximation for moving the leader center of a charged particle in the nonhomo-
geneous magnetic field. Let us account that in Eq. 3.62, the force f also enters the
perpendicular component of inertia force f;, and centrifugal force f. formatting
when particle moving with velocity v along the bending magnetic force line. If p
is the radius of curvature of magnetic force line,

fo= mvﬁ/p. (3.67)

Calculating forces determined by Eqs. 3.66 and 3.67 for the field of magnetic dipole
and substituting the obtained expressions in Eqs. 3.62 and 3.63, after cumbersome
but simple calculations, we obtain as following:

12
da 2u H,—H
& , 3.68
dr <mrgq cos2 A (1+3sin27L)> (369

dp  3cu 1 +sin’ A H,—H (3.69)
dt Zergqcos4l(1+3sinzl)3/2 H
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where r, is the equatorial distance of the magnetic force line and H, = E; /1 is the
value of the magnetic field at the reflection point of a particle with kinetic energy
Ej. It is now possible to determine the trajectory of the particle:

o —® :i(%) , (3.70)

where S is the Stormer unit of length, and

Ao 3 2

_ 7Ll A

= %/ cos A (s’ 4) 2H, —H 3.71)
0

1+3sm2/l) /> H,—H

The connection between A and [ for different latitudes of refraction A, was calcu-
lated by Alfvén (M1950) and is shown in Fig. 3.1.

The moving of the leader center described by Eqs. 3.70 and 3.71 can be ap-
plied only to the dipole magnetic field. However, if the magnetic field force lines
are known, the calculation of trajectories in the drift approximation is not difficult.
Namely, in the real geomagnetic field, the charged particle will move along the force
lines with the azimuthal drift which depends on the gradient of the magnetic field
and curvature of the magnetic field force lines. Because the main part of the geo-
magnetic field is the dipole field, for the calculation of drift Eqs. 3.70 and 3.71 may
be used with small corrections.

Fig. 3.1 The connection
between displacement along
longitude (proportional to

I) and displacement along
latitude A for charged particle
oscillated relative to the
equatorial plane with the I 1 1 Lé
amplitude characterized by 15 30 45 60 75
the latitude of reflection A, I(°)
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3.4.4 Peculiarities at High Latitudes; Using Boltzmann Equation

Thanks to numeral experimental investigations on satellites with polar orbits (see,
e.g., Akasofu et al., 1963), it was found that the region of latitudes higher than
60-70° is practically open for the access of very small energy solar and galactic
CR. It means that the conception of CR cutoff rigidity does not exist for this region
and the above-considered analytical methods do not work. The main cause of this
phenomenon is small energy particle-scattering by magneto-hydrodynamic waves
in the outer magnetosphere, and especially in the tail of the magnetosphere. As a re-
sult, by a diffuse process, small energy particles can enter inside the magnetosphere
at any point above 60-70° latitude. For calculation of energetic charged-particle
distribution in the outer magnetosphere and their intrusion into the polar cap it is
necessary to use Boltzmann’s kinetic equation taking into account collisions:

af  of ze or  (of
a[+var+c(VXH)aV_(a[>col7 (372)

where f = f(r,v,7) is the distribution function, and the right part of Eq. 3.72 de-
scribes the collision of particles with magneto-hydrodynamic waves. Let us note
that Eq. 3.72 is valid until the energy density of CR particles is much smaller than
the energy density of the magnetic field in the region of particle propagation (if
not, it is necessary to solve the self-consistent problem: to take into account non-
linear effects — pressure of energetic particles and kinetic-stream instability, see
Section 3.4.5).

3.4.5 The Case of High CR Energy Density in the Outer
Magnetosphere and the Self-Consistent Nonlinear Problem

In all above-considered cases, it was assumed that the energy density of the charged
energetic particles is much smaller than the energy density of geomagnetic field
H? /87 and we considered the moving of a single particle, the behavior of which in
the geomagnetic field does not depend on the existence of other charged energetic
particles. It is absolutely true for galactic CRs with an energy density not more than
few eV/ cm’. However, for a trapped population of energetic particles and in some
cases of great solar CR events, we have a different situation with a controversy rela-
tion, when the CR energy density is comparable to or bigger than the energy density
of the magnetic field, especially in the outer magnetosphere. In this case, it is neces-
sary to take into account the self-magnetic field of energetic particles and consider
the nonlinear self-consistent problem. It became important to account the pressure
of charged energetic particles, and in the case of energetic particle anisotropy, it was
also important to consider kinetic-stream instabilities in the background plasma with
additional generation of magneto-hydrodynamic waves on which energetic particles
scattered (see details in Chapter 3 in Dorman, M2006).
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3.4.6 Regions of Applicability of Analytical Methods

As we mentioned in Sections 3.4.4 and 3.4.5, in the region above geomagnetic lat-
itude 60-70°, the concept of cutoff rigidity is not valid. The remaining region can
be approximately separated into three zones: (1) 60° > A > 40°, (2) 40° > A > 20°,
and (3) 20° > A > 0°.

For the first zone, 60° > A > 40° in the high altitudes can be neglected by highest
harmonics of the geomagnetic field, and on the lower altitudes the drift method can
be used. The condition for conversion of the first adiabatic invariant for using the
drift method is

R VH/H <1, or 5x1072R(r/rs)’ <1, (3.73)

where r;, = p c/ZeH is the Larmor radius, and R is the particle rigidity in GV.

For the second zone, 40° > A > 20° analytical methods are not valid and cutoff
rigidities can be estimated approximately by interpolation of results obtained in the
first and third zones (Quenby and Webber, 1959). For more exact results and taking
into account sufficient for this penumbra region, it is necessary to make numerical
calculations of CR trajectories through 0.01 GV, or more exactly, through 0.001 GV.

For the third zone, 20° > A > 0° for approximate calculations of cutoff rigidities,
Stormer’s analytical method can be used. However, asymptotic directions for this
region can be found only by numerical calculations of CR trajectories.

3.5 Main Methods of Numerical Calculation of Charged-Particle
Trajectories in the Real Geomagnetic Field

3.5.1 Gauss Coefficients and Expected Accuracy of Numerical
Calculation of Trajectories in the Real Geomagnetic Field;
Comparison with that Expected for Dipole Field

As is well known, there are no analytical expressions for CR trajectories, even in the
dipole approximation of the geomagnetic field (excluding trajectories in the equato-
rial plane). CR trajectories in the geomagnetic field can be determined in two ways:
(1) by model experiment (Malmfors, 1945; Brunberg and Dattner, 1953), and (2) by
numerical calculations (Stormer, M1955; Jory, 1956; Liist, 1957; Liist and Simpson,
1957; and many others).

The system of equations determining the charged particle moving in any mag-
netic field will be

Z
dv———e(vaU), dr _

= — =vV. 74
dt c dr v (3.74)
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Table 3.2 Gauss coefficients g)', A} for the epoch 1955 according to Finch and Leaton (1957) and
Adam et al. (1964a) in CGSM units

n m Finch and Leaton (1957) Adam et al. (1964a)
gr 1074Gs B, 1074Gs g7, 107*Gs KM, 1074Gs

1 0 —3055 0 —3046 0
1 1 —227 +590 —232 +581
2 0 —152 0 —114 0
2 1 +303 —190 +303 —194
2 2 +158 +24 +167 +32
3 0 +118 0 +113 0
3 1 +191 —45 —177 —44
3 2 +126 +29 +115 +20
3 3 +91 -9 -+80 —14
4 0 +95 0 +104 0
4 1 +80 +15 +87 +13
4 2 +58 =31 +46 —31
4 3 —38 —4 —31 -1
4 4 +31 —17 +32 -23
5 0 —27 0 -23 0
5 1 +32 +2 +22 +1
5 2 +20 +10 +4 +12
5 3 —4 -5 -8 =7
5 4 —15 —14 —14 —11
5 5 =7 +9 =7 +7
6 0 +10 0 +10 0
6 1 +5 -2 +22 -3
6 2 +2 +11 —16 +12
6 3 —24 0 -22 +3
6 4 -3 —1 -3 —1
6 5 0 -3 +1 -1
6 6 —11 —1 —10 -1

If the Gauss coefficients, g, ', are known (e.g., Table 3.2), the strength of the real
geomagnetic field in Eq. 3.74, H = —VU, can be calculated very easily according
to Egs. 3.18-3.20.

Because the Gauss coefficients g/, i)' are known with some definite accuracy,
for control of the trajectory, numerical calculations are necessary to make these
calculations for different groups of Gauss coefficients and then to compare the re-
sults. Table 3.2 gives Gauss coefficients g, h)} for the epoch 1955, according to
Finch and Leaton (1957), based on maps of the British Admiralty, and Adam et al.
(1964a) based on maps of IZMIRAN (Moscow region, Russia). On the basis of
groups of Gauss coefficients g7, h}' for the epoch 1955.0, according to Finch and
Leaton (1957) and Adam et al. (1964a), in Dorman et al. (1966), trajectories of CR
in the rigidity interval from 1 to 10.5 GV are numerically calculated. As an exam-
ple, in Fig. 3.2 are shown asymptotic directions for the Russian CR station Mirny in
Antarctica for both groups of Gauss coefficients and for dipole approximation.
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It can be seen in Fig. 3.2 that the difference between asymptotic directions for
Gauss coefficients gJ', A according to Finch and Leaton (1957) and Adam et al.
(1964a), is not more than 1-2° in longitude and latitude. From Fig. 3.2 it can be also
seen that the asymptotic directions found for the real field described in Finch and
Leaton (1957) and Adam et al. (1964a), are shifted by about 20° to the west relative
to the asymptotic directions found for the dipole approximation of the geomagnetic
field (let us note that the magnetic force line corresponding to CR station Mirny in
the real magnetic field has also shifted by 20° relative to the force line in the dipole
approximation).

The other example is shown in Fig. 3.3: for CR station Tixie Bay in the north of
Siberia in Russia (for particles with rigidities from 1 to 106 GV).

From Fig. 3.3 it can be again seen that, though the asymptotic directions for
real and dipole magnetic field are situated on one smooth curve (like Stdormer’s

T
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Fig. 3.2 Asymptotic
directions for the Russian CR °
station Mirny in Antarctica
for the epoch 1955 according
to Gauss coefficients g, i)'
determined by Finch and
Leaton (1957) and Adam

et al. (1964a). Results 2 ®
are shown by crosses and
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curve in Fig. 2.4), the asymptotic directions for small rigidities (about 1 GV) for
the real geomagnetic field are shifted in longitude for more than 100° relative to
asymptotic directions for the dipole field. So, the different presentations of the real
geomagnetic field for the same epoch gave about the same asymptotic directions
(with an accuracy of about 1-2°), but the difference between asymptotic directions
in the real geomagnetic field and in the dipole field is several tens of degrees.

3.5.2 Stormer’s Method of Numerical Calculation of Trajectories
in Dipole Geomagnetic Field: Why it cannot be Used for Real
Geomagnetic Field

Stormer (M1955) developed a relatively simple method of numerical calculation
of CR trajectories in the dipole geomagnetic field, based on well-known difference
methods of integration of ordinary differential equations supposed by Adams (see
details in Berezin and Zhidkov, M1959; Mysovskikh, M1962; Lans, M1962). The
Adams method was applied by Stormer (M1955) for solving equations of the type

d*r

= =F. (3.75)

where, in the right hand, the force does not depend on I, i.e., it does not depend on
the particle velocity (in difference from Eq. 3.74). By using a cylindrical system of
coordinates, the equation of a charged particle moving in any axial-symmetric mag-
netic field can be transferred to the equation of a particle moving in some potential
field in which, as is well known, the force does not depend on the particle velocity.
In particular, the system of equations of a particle moving in the cylindrical system
of coordinates for the dipole magnetic field is described in Chapter 2 (see Eq. 2.15).
When we consider the real geomagnetic field, it is necessary to take into account
not only the dipole field but also higher spherical harmonics. In this case, the mag-
netic field will not be axial-symmetric and therefore Eq. 3.75 cannot be transformed
to Eq. 2.15. This is the main reason why Stormer’s method (M1955) cannot be ap-
plied to numerical calculations of CR trajectories in the real geomagnetic field.

3.5.3 Method Runge—Kutta of Fourth Order for Numerical
Calculations of CR Trajectories in Real Geomagnetic Field

In many papers, relating to numerical calculations of CR trajectories in the real ge-
omagnetic field, the well-known Runge—Kutta fourth-order method in computation
mathematics is used. From the theory of differential equations it is known that any
system of ordinary differential equations can be, by changing the variables, trans-
formed into a system of first-order differential equations. Moreover, any method of



68 3 Cosmic Rays in the Real Geomagnetic Field

numerical integration of one differential equation can be automatically applied for
the solution of the system of differential equations. Therefore, to avoid cumbrous
and complicated formulas, let us consider, instead of the system of second-order
differential equations, only one equation of the first order

Yy =f(xy), (3.76)

which satisfies the initial condition y =y, at x = x,. An unknown solution in the
neighborhood of point x = x,, can be found by the Taylor series:

1" (n)
(x— xo) y;! (x—xo)"+0(\x—xa|"+l>,
(3.77)

Ve Yo
Y(x) = yo+ 2 (=) + 2

ntl ) is the remainder term of the n+ 1 order of trifle. Let us choose

where O (|x — Xo|
the value of the initial step of integration as x — x, = h and neglect the remainder
member of the n+ 1 order of trifle. In this case, on the basis of Eq. 3.77, we can

calculate the value of the unknown function y at point x = x, + h:

vy Y yf;)
Y (o +h) =yo+JTh+ "h2+ & (3.78)

Repeating this process step by step, we can find the integral curve of Eq. 3.76,
and in the case of the system of equations described by Eq. 3.75 — the trajectory
of a particle. Derivatives in Eq. 3.78 can be found by differentiation of the initial

Eq. 3.76:
dfo f

yi):f(xoa)’o):fm )’Z—i“"fo (3.79)

For the described method the most difficult part is the calculation of higher-order
derivatives according to Eq. 3.79 (it can be limited only by derivatives of the second
order and, in this case, we obtain the method of Euler tangents which was used as a
basis of Stormer’s method, described in Chapter 2).

To avoid calculations of higher-order derivatives and taking into account a pos-
sibly larger number of members of the series of Eq. 3.77, it is convenient to use the
well-known Runge—Kutta method (see Berezin and Zhidkov, M1959; Mysovskikh,
M1962; Lans, M1962; Press et al., M1992). This method supposes to present the
solution in the following linear combination:

y(x) =y(xo) +arks (x—xp) +azky (x —x) + .. .+ anky (x — xo)—l—O(\x x0|”+1)
(3.80)

where

ki (x—x,) = (x—=Xo) f (X0, Y0) ;

ky(x—xp) = (x—x,) f(x+ b1 (x—X0) , Yo +C21k1) 3

ki (6 30) = (£ = %) £ (54 byt (X—%0) s Yo+ Cutkt + .+ Cn 1k 1),
(3.81)
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Coefficients a;, b;, c;; are some constants, which are chosen so that the difference
between the series Eq. 3.77 and Eq. 3.80 becomes minimal, i.e., the remaining mem-
bers of both series must be one order of trifle. This condition led to the system of
algebraic equations for determining coefficients a;, b;, ¢;;. Calculations show that at
n > 5 the accuracy does not increase, so it is enough to use the method Runge—Kutta
of fourth order of accuracy. Now, because we know the initial condition y|X:xa = Yo,
and choosing the step x — x, = h, it is easy to start the process of integration:

y(xo+h) =y(x,) +arky (h) +axky (h) + -+ anky, (). (3.82)

Comparison of Eq. 3.82 with Eq. 3.78 shows that instead of calculations of deriva-
tives y\) up to order 1, we need to calculate the function values of the initial equation
at different points, which is a much simpler problem.

3.5.4 The Choice of the Value of the Step of Numerical
Integration: The Gill’s Modification

The main difficulty of the Runge—Kutta method is the estimation of the error of
calculations that is necessary for determining the value of the step of integration. To
overcome this difficulty, Gill (1951) supposed using the method of subdivision of
the step: after obtaining the solution at the next point by step 4, the calculations are
repeated at step s1/2 and the obtained solutions are compared. If both solutions are
identical in the frame of the chosen accuracy, in further calculations the larger step h
will be used; if they are different, the calculation is repeated at step (h/2)/2 = h/4,
and then the obtained solution will be compared with the solution at step /2, and
so on. This method can be effective when the value of the step is constant: after
choosing the step at the beginning of integration, the same step can be used along
the full trajectory.

For the real geomagnetic field, the situation is more complicated because, in this
case, it is necessary to obtain at each step about the same accuracy necessary to
sufficiently increase the value of the step with an increasing of distance from the
earth; e.g., for the integration of the trajectory of the negative particle with rigidity
10.5 GV started vertically from 20 km altitude above the earth’s surface at geomag-
netic latitude A = 65° to obtain the error 0.01° in the direction necessary to use the
step 350km at the beginning of integration and 7,000 km at the end (at a distance
of about 25rg). Of course, it is possible to use the minimal step 350 km during to-
tal integration, but in this case, the time of numerical calculations will be increased
about 10 times. Nevertheless, this method was widely used in many numerical cal-
culations of CR trajectories in the real geomagnetic field (see, e.g., McCracken,
1962; McCracken and Freon, 1962; McCracken et al., 1962, M1965; Shea et al.,
1965a, b).
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3.5.5 Kelsall’s Modification of the Runge—Kutta Method

To minimize the time of numerical calculations of CR trajectories in the real geo-
magnetic field and to obtain at each step about the same accuracy, Kelsall (1961)
came to the conclusion that the value of step 4 must be chosen as follows:

_fo2, it p>10,
h= {0.0Zp, it p<10, (3.83)

where p is the radius of the curvature of the trajectory (here steps # and p are in
Stormer’s units of length). The separating of the region of integration on two regimes
corresponds to using Stérmer’s method (p > 10) and Alfvén’s method (p < 10)
which were described in Sections 3.4.2 and 3.4.3.

3.5.6 The Merson’s Modification of the Runge—Kutta Method

At integration of the differential equation by the Runge—Kutta method of fourth-
order accuracy, the error of each step of computations is determined by the fifth
member in the Taylor series, which is equal to fo(s)h5 / 120. As we mentioned above,
the calculations of high-order derivatives are met with difficulties. In Merson’s mod-
ification of the Runge—Kutta method (see the detailed description in Lans, M1962)
it is shown that the computation of the fifth-order derivative of function f can be
transformed to the additional calculation of function f at some known point. The
following formula is used for this modification:

L1k (1) + s () + ks ()] + 0 (h5> . (3.84)

¥ (xo+h) :y(xo)+6

where
ky th(xo,)’o%

hf (x0+ 3ay0+k1)

(x0+ Lyot4+%), (3.85)
ky = hf (x(,+ hoyo+ 3y 9"3)

hf(x0+h Yot %+6k4)7

and the error of integration is determined by the formula

1

9 1
e= <k1 — ks ks — 2k5) . (3.86)
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From Eq. 3.86 it follows that the error of integration is proportional to A, i.e.,
e=ah’; h=(ea)'P, (3.87)

where a is some constant. If the error € of trajectory integration is given, it is easy
to determine the necessary value of step /4: let us choose some arbitrary step /; and
then, by Eqgs. 3.85 and 3.86, we calculate the corresponding error €. Now on the
basis of Eq. 3.87 it is easy to determine the necessary step A:

h=h (/€)' (3.88)

In Dorman and Smirnov (1966a, 1967), two programs were compounded for inte-
gration of CR trajectories in the real geomagnetic field presented by six spherical
harmonics. In the first program, the integration was made according to Gill’s modi-
fication (see Section 3.5.4), and in the second, — according to that described here —
Merson’s modification. A comparison of the obtained results shows that Merson’s
modification needed several times less time for computing and gave more exact re-
sults than Gill’s modification. This is caused mainly by the important peculiarity
of Merson’s modification: control of the obtained error at each step of trajectory
integration.

3.5.7 The Stability of CR Trajectory Integration and Control
of Accuracy

The computation of the error at each step of integration does not determine the final
accuracy of CR trajectory calculation. The problem of the accuracy of the solution
is closely connected with the problem of stability: How did the final result change
after small changes of the initial conditions? As was shown in Section 2.12, for
the dipole magnetic field in the region of high latitudes, the well-known effect of
particles focusing takes place in the geomagnetic field. This means that CR energetic
charged particles that arrived at some point in the frame of some small space angle
Ao have smaller space angle AQ outside the geomagnetic field, i.e., the value M =
Aw / AQ > 1, and for some resonant rigidities M > 1. In this case, the integration of
the trajectory of a negative-charged particle starting from the earth’s surface will be
stable: even big errors in the initial vector of the particle velocity vector will not lead
to sufficient errors in the calculated asymptotic direction. According to Bostrom
(1964), the value M > 1 at all latitudes except some small latitude interval near
the Equator. This means that the stability of CR trajectory integration is expected
for a particle arriving at any point of the earth’s surface. Although this result was
obtained for the dipole magnetic field, it is also correct approximately for the real
geomagnetic field where the dipole component is more than 80% of the total field.
In many papers two methods are used for the control of the accuracy of trajec-
tory computation: (1) checking the particle velocity, which must be invariant, and
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(2) inverse integration. The first method gave control of the constant (with an accu-
racy of about 1%) only of the module of velocity v> = &> 4 y* + 22, but not direction.
As was shown in Dorman and Smirnov (1966a, 1967), even at a constant particle
velocity with an error smaller than 1%, the errors in direction reached up to 10°.
Much better results gave the inverse integration. The process of inverse integration
is as follows: the direct integration of the trajectory takes a negative-charged par-
ticle from the earth’s surface and continues up to distances where the influence of
the geomagnetic field becomes negligible, and then starts integration for the posi-
tive particle with the same rigidity in an inverse direction to the earth’s surface. In
Dorman et al. (1966), Dorman and Smirnov (1966a, 1967), Merson’s modification
of the Runge—Kutta method and inverse integration for the control of final results
were used: if the difference in initial and final velocity vectors is more than 0.15°,
the trajectory integration repeated with error € in Eq. 3.86 is two times smaller.

3.5.8 Numerical CR Trajectory Integration in Spherical
Geographical System of Coordinates

Because the scalar potential of the real geomagnetic field is usually given as a func-
tion of geographical coordinates, it is convenient to use for numerical trajectory
computation the geographical spherical system of coordinates with polar axis coin-
ciding with the axis of the earth’s rotation (see Fig. 3.4).

In Dorman et al. (1966) and Dorman and Smirnov (1966a, 1967) the differentia-
tion over time was transferred to differentiation over the length of the arch and the
following units chosen: for particle rigidity 1 GV, for the strength of geomagnetic
field 10 gammas (10~*Gs), for distance 10 km. By using these units, the system of
equations described by Eq. 3.74 will be transformed to the following system:

Fig. 3.4 The geographical spherical system of coordinates with polar axis coincided with the axis
of the Earth’s rotation, used for numerical integration of CR trajectories in the real geomagnetic
field: 1 —the CR station with coordinates Ay, @y ; 2 — trajectory of particle; 3 — asymptotic direction,
characterized by angles A, ®
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4 _ o o03x 3,5
5, — 0-003R (toHy —toHg) + -2 + 2,
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dr i,  tot
=9 —0.003R" (t,Hy —toH,) — —2 — 22
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where t,, tg, t, are components of the unit vector tangent to the trajectory, ds is the
element of trajectory length. The initial condition ry—g = r,, t;,—0 =1,, and the initial
step h used for starting numerical integration according to Merson’s modification.
The initial step & was chosen according to the formula

~fo.1, if p <10,
h= {0.0lp, if p>10, (3.90)
where p is the radius of the trajectory curvature
1/2
p=(p7+p5+pr3) (3.91)
and
d, 3 0
=TT % =0.003R ™! (toHy —1oHy) , (3.92)

_dtg_ute 13 = 0.003R™" (toH, — t,H,) (3.93)
Po=35 "7 rgd g el '

dty  tity oty

=2 —% —0.003R"! (t,Hy — tgH,). 3.94
Po ds r +rtg6 (r 67 r) ( )

The components of the geomagnetic field in the chosen spherical system of coordi-
nates will be

(Z—(j, Hg:—la—u Hy = L _JU (3.95)

H, = — , 2
r oo rsinf do

where, for inside sources,

6 +1 _
U=rg Z (%E)n Z (g cosm@ + hy' sinm@) P (cos 6) (3.96)
n=1

m=0

and
(2—38,m) (n—m)!
(n+m)!

12
P (cos0) = ( ) P (cos0), (3.97)

where J,,;, is the Kronecker symbol which is equal to 0 at m = n and 1 at m = n.
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To start the numerical integration of the system Eq. 3.89, it is necessary to choose
the initial condition. Let it be determined by values r,,0,, Qo,t0,t00,1po (the first
three determine the initial position and second three — the initial direction). The
parameters of initial position are

ro=a(l- €2 cos? lst)qﬂ

+0.020, 6,=90°—Ay, @ = @y, (3.98)
where a is the polar (minimal) radius of the earth, & is the eccentricity of the el-
liptical earth, and Ay and @y are the geographical latitude and longitude of the CR
station. Let us remember that for the unit of length we chose 1,000 km. The initial
direction of a negative particle moving from the earth is the following:

tro =c0sC, tg,=—sin{cosy, ty,=sin{siny, (3.99)

where {, x are zenithal and azimuthal angles of the positive particle arriving at the
earth surface (more exactly, at altitude 20 km). The azimuthal angle is counted from
the geographical north in a clockwise direction.

In the first we calculate the three components of the magnetic field vector at
the starting point according to Eqs. 3.95-3.97. Then we determine the radius of
the trajectory curvature according to Eqs. 3.91-3.94, and after this we calculate the
length of integration step i according to Eq. 3.90. Then we can start the integration
of the system of particle moving equations described by Eq. 3.89 by the Merson’s
modification of fourth-order Runge—Kutta method by using Eqs. 3.84-3.85; as a
result we obtain the next point of the particle trajectory and by Eq. 3.86 determine
the error of our calculations &;. If € < & (where ¢ is the ordered error of trajectory
numerical calculation), we can go to the calculation of the next point. If €, > €, we
determine by Eq. 3.88 the necessary smaller step 4 (to decrease the error up to the
value €), and repeat the numerical integration of Eq. 3.89 by Merson’s modification
of fourth-order Runge—Kutta method by using Eqgs. 3.84-3.85. So, step by step, we
determine full trajectory up to the distances where the geomagnetic field has no
effect. For controlling of the obtained results, we use the numerical integration of
the trajectory in the inverse direction for a particle with the same rigidity, but with a
positive charge (the difference in directions at starting points near the earth’s surface
must be smaller than 0.15° — see Section 3.5.7).

As a result of a lot of numerical integrations of CR trajectories, it was found that
there are three types of trajectories:

1. The trajectories crossing the earth’s surface
2. Quasi-trapped trajectories
3. Trajectories which are going to infinity

The trajectories of types 1 and 2 are empty because the primary CR particles arriving
at the earth’s surface cannot cross part of the earth and cannot be trapped. For these
two types of trajectories penumbra function f (R) = 0. For type 3 trajectories, along
which positive primary CR particles arrive from infinity to the earth’s surface (but
without crossing this surface before) penumbra function f (R) = 1. According to this
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determination of types of trajectories in the real geomagnetic field, the numerical
integration finishes if one of the following three conditions is fulfilled:

r<r,, n=5000, r>10S, (3.100)

where n is the number of steps and S is Stormer’s unit of length expressed in
1,000 km. The first condition in Eq. 3.100 means that the negative particle crossed
the earth’s surface (i.e., the trajectory is empty); the second condition in Eq. 3.100
means that the negative particle became quasi-trapped (i.e., again, the trajectory is
empty); the third condition in Eq. 3.100 means that the negative particle goes to
the distance where the influence of the geomagnetic field on particle moving be-
came negligible (i.e., the trajectory of particle goes to infinity and only in this case,
penumbra function f (R) = 1). Calculations show that the limiting of computations
by condition r = 108 gave an error in the asymptotic direction of not more than 0.1°.
By the final values 0, @, t,, tg, t, of the particle position and moving direction at
r = 10§ it is easy to determine the asymptotic latitude

—tgsinB +t,cos O

A = arctg , (3.101)
\/t(% + (tg cos 6 +1,5in 6)*
and asymptotic longitude
®=¢tactg( — (3.102)
-9 & tgcos @ +1.sin@ ) '

3.5.9 Divergence-Free Magnetic Field Interpolation
and Symplectic Method of Charged-Particle Trajectory
Integration

In Mackay et al. (2006) an interpolation method is presented for calculating a
divergence-free magnetic field at arbitrary locations in space from a representation
of that field on a discrete grid. This interpolation method is used along with sym-
plectic integration to perform particle trajectory integrations with good conserva-
tion properties. These integrations are better at conserving constants of motion and
adiabatic invariants than standard, described above, non-symplectic Runge—Kutta
integration schemes.

The matter of the problem is that in many cases of practical interest, the electric
and magnetic fields are too complex to be expressible in terms of analytic functions.
In such cases, according to Mackay et al. (2006), the fields need to be calculated
numerically on a discrete grid, from which their values may then be interpolated at
arbitrary locations in space. Two main issues may arise when tracing particle trajec-
tories with such fields. One has to do with whether or not the interpolated magnetic
field is divergence-free. The other is related with the conservation properties of the
integration scheme itself.
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When integrating the full trajectory of a particle in an electric and magnetic field,
it is important that the magnetic field satisfy V x B = 0, as this is a necessary condi-
tion for the magnetic moment to be an adiabatic invariant. Let us note that V x B =0
is automatically satisfied if one works with an analytic field, such as a dipole field.
When working with a numerically generated field, however, the actual field values
are only given at discrete grid points, and care must be taken to interpolate the field
in such a way as to ensure that V x B = 0. In general, a field calculation based on a
piecewise multi-linear interpolation of the discretized field will not satisfy this con-
dition. In the context of magneto-hydrodynamic (MHD) plasma modeling, the im-
portance of satisfying V x B = 0 was pointed out by Brackbill and Barnes (1980). It
was shown that failure to satisfy this condition in MHD simulation codes may lead
to unphysical sources in such models. This led to the development of discretiza-
tion schemes on the magnetic field that satisfied the divergence-free condition on
a discrete grid (Toth, 2000). With the further use of adaptive mesh refinement in
MHD codes, interpolation schemes for discretized magnetic fields, capable of pro-
ducing a divergence-free field at arbitrary locations in space were also developed.
For example, Balsara (2004) and T6th and Roe (2002) developed techniques for in-
terpolating magnetic fields everywhere in space, from fields discretized on a grid,
with the property that the resulting fields are analytically divergence-free. Mackay
et al. (2006) note that these methods, however, generally lead to interpolated fields
with discontinuities in the components parallel to cell interfaces. While adequate for
MHD simulation codes (the perpendicular component of the field is continuous and
smooth across cell faces), these interpolation techniques are not applicable to high-
order particle integrations, as they would lead to unacceptable errors in conservation
of the first adiabatic invariant m.

The second issue has to do with numerically preserving exact or approximate
constants of the motion. If such constants exist analytically, they may not be pre-
served numerically, depending on the integration method used. For example, if par-
ticle trajectories are integrated using the standard Runge—Kutta scheme, it is known
that errors in the total energy of the particles can grow without bounds (Yoshida,
1992; Shimada and Yoshida, 1996). An alternative to the standard explicit Runge—
Kutta methods is symplectic integration (the description of this method and appli-
cation for the case of dipole magnetic field are considered above, in Section 2.6).
Methods based on this approach preserve the symplectic structure of the Hamil-
tonian; i.e., they conserve phase space density of Hamiltonian systems, thereby bet-
ter preserving exact constants of the motion (Kinoshita et al., 1991).

Often, when performing particle trajectory integrations, it is necessary to use
magnetic fields that have been computed at discrete grid points. One can ensure that
an interpolation of this field satisfies V x B = 0 by working with the magnetic vec-
tor potential A and ensuring that the interpolation is C> continuous (the field and its
first two derivatives are continuous in the entire domain). There are several ways of
solving for A. For instance, one can directly solve the set of coupled partial differ-
ential equations from V x A = B, together with appropriate boundary conditions, to
obtain the vector potential at prescribed grid points. In problems with symmetry, in
which one of the coordinates is ignorable, it is usually possible to express the mag-
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netic field in terms of stream, or flux functions (Friedberg, M1987). These, in turn,
may be calculated from straightforward numerical integrations of the (divergence-
free) field on a discrete grid. High-order interpolation (as provided, e.g., by cubic
splines) of those flux functions and their derivatives can then be computed to yield
divergence-free magnetic fields. This was the approach followed by Shimizu and
Ugai (1995) who were the first to apply these techniques to azimuthally symmetric
toroidal and mirror geometries.

3.5.10 Symplectic Tracing of High-Energy Charged Particles
in the Inner Magnetosphere

In the considered approach of Mackay et al. (2006), the vector potential A is cal-
culated using Fourier transforms. This is applicable to the calculation of arbitrary
fields in three dimensions, and it does not rely on any symmetry in the problem. On
a technical note, it is preferable, when computing the interpolation of B, to subtract
the (strong) earth dipole field from the discretized field to be interpolated. This “re-
duced” magnetic field can then be interpolated with the technique presented below,
and the earth dipole field can be added back analytically. This approach, while not
necessary, has the advantage of greatly reducing interpolation errors in the vicinity
of the earth, where the field is mainly dipolar. Away from the earth, the dipole field
is weak, and the subtraction and addition of the dipole field has no significant impact
on the interpolation error.

According to Mackay et al. (2006), writing the relation between A and B, in
terms of the Fourier transformed variables, and without loss of generality, assuming
V x A =0 (i.e., assuming the Coulomb gauge), we readily find

- kxB
A= o (3.103)
where A and B are, respectively, the Fourier transforms of A and B in the spatial
coordinates, and k is the wave vector. In these expressions, and in what follows,
the dependence of the Fourier transformed fields on the wave vector k is not writ-
ten explicitly for brevity. In practice, in order to take advantage of the numerical
efficiency of fast Fourier transforms, the fields and their transforms are considered
on a uniform Cartesian grid, and the number of grid points in each x, y, and z di-
rections is an integer power of two. If the original discretized field is provided on
an unstructured grid, or on a grid that does not match our interpolation grid, it is
then necessary to first use a suitable interpolation scheme to project the field on our
grid. Once A has been found, it is then straightforward to determine A by calcu-
lating the inverse Fourier transform. Mackay et al. (2006) note that, when solving
for A in Eq. 3.103, the contribution from B corresponding to k = 0 is ignored. This
is equivalent to subtracting the average value of B before taking the Fourier trans-
form. Therefore, once A has been calculated by Eq. 3.103, the contribution from
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the average magnetic field must be added back in order to obtain an expression for
the full vector potential. With By representing the average of B over the domain, the
corresponding expression for Ay,

Ao = —(rxByg)/2, (3.104)

is then added analytically to yield the total vector potential. It is worth emphasizing
that this procedure will always produce a divergence-free field, independently of
the quality of the original discretized field, or of whether it is divergent-free or not.
The quality of this interpolated field, however, will only be as good as that of the
original field.

Because of the periodicity implied by taking Fourier transforms in the x, y, and
z coordinates, and because, in general, the discretized magnetic field is not periodic
in these coordinates, a straightforward Fourier expansion of the field on a given
domain would lead to approximating the given field as a periodic discontinuous
function. This, in turn, would result in a slow convergence rate in the coefficients of
the Fourier series. In practice, this slow convergence would manifest itself as marked
Gibbs oscillations in the field in the vicinity of those discontinuities near the domain
boundaries (Mathews and Walker, M1971). In order to avoid these discontinuities,
and unphysical oscillations, the domain is expanded by a factor two in each spatial
dimension (thus leading to an eightfold expansion of the original volume), with the
extra portion being filled with reflections of the field in the original domain so as to
make the extended field periodic and continuous at the boundaries.

With A being determined at each of the grid points, it can then be fitted with
cubic splines. It is necessary to use cubic interpolation functions here, as opposed
to lower-order interpolation functions, because of the requirement that V x B = 0.
Indeed, this condition can only be satisfied provided that

J*A;  0%A;
ox;ox;,  Ox;dx;’

(3.105)

i.e., provided that the interpolating function be C? continuous. The same basic tech-
nique can also be used to interpolate the scalar potential, ®. Considering a static

electric field, for simplicity, the spatial Fourier transform of £ = —V x ® leads to
. ik-E

Note that, as with the magnetic field, the spatial average of the electric field (the
k = 0 contribution) must be excluded from this expression. With E representing the
volume-averaged electric field, the associated contribution to the scalar potential is
given by

q)() = —I'-E() (3107)

When that expression for @ is added to the inverse Fourier transform of ® obtained
in Eq. 3.106, a complete prescription for the scalar potential is obtained, which can
then be interpolated with cubic splines, as described above for the vector potential.
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A symplectic integration method is one that preserves the symplectic structure
of a Hamiltonian system; that is, for which dp Adg = dp’ Adq’. In this expression,
q and p represent canonical coordinates and momenta for a given Hamiltonian. Un-
primed variables refer to some initial time step #, while primed variables refer to
the corresponding coordinates and momenta numerically calculated at an advanced
time 7 + Ar. Many studies have shown the effectiveness of symplectic integration
with regard to energy conservation. For example, Gladman et al. (1991), Rieben
et al. (2004), and Shimada and Yoshida (1996) showed that unlike standard explicit
Runge—Kautta integrators, symplectic integrators did not lead to secular growth of
error in exact constants of the motion. For that reason, even though symplectic in-
tegration is more elaborate to implement, and computationally more intensive, it is
the only practical technique in problems that require very long integration times.

The symplectic integration method considered by Mackay et al. (2006), is of the
implicit Runge—Kutta type. Specifically, given a differential equation of the form

Q—F(y),

i (3.108)

the s stage Runge—Kutta method is written as

N
Ya+1 ZYn+hZIbiF(Yi)a (3.109)

i=

where s
Yi=ya+hY ajF(Y)), (3.110)
j=1

It was independently shown by Lasagni (1988), Sanz-Serna (1988), and Suris (1989)
that if the coefficients a;; and b; satisfy

b,-bjzb,-a,-j—&—bjaj,-, (3.111)

where no summation is implied on repeated indices, then this implicit Runge—Kutta
method is symplectic. In particular, the Gauss-Legendre Runge—Kutta methods
are symplectic (Sanz-Serna, 1988). For the fourth-order symplectic Runge—Kutta
method, these coefficients are given as

1 1
Y — 4 4 6 AR

Because of the nonlinearity of the function F in y, the solution of this system of im-
plicit equations must be done iteratively. In the following, Mackay et al. (2006)
use a simple functional iteration technique. An initial guess is assumed for the
Y;, and this is used in equation (3.110) to find an improved estimate of Y;. This
process is repeated until the norm of the difference between two successive approx-
imations becomes smaller than a prescribed value €;,. The convergence criterion is
formulated as
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£— ’i{{f“ —s‘df‘ <&y, (3.113)

where Y¥ is the estimate of the normalized Y; vector at iteration step k. In this ex-
pression, vectors Yﬁ‘ are scaled by dividing all coordinate and momentum variables
of Yf»‘, respectively, by a prescribed representative coordinate and momentum, so as
to have all components of Yf of order unity. After the first two time steps, Mackay
et al. (2006) use the prescription given by Calvo et al. (2003) to obtain good esti-
mates of the starting initial guesses for Y.

A simple case which illustrates the power of the symplectic integration method is
that of a proton moving in a dipole field. Here, the field that is being considered by
Mackay et al. (2006) is purely analytic, thereby automatically satisfying V x B = 0;
all that is being considered in this case is the difference between symplectic integra-
tion and the standard (explicit) Runge—Kutta method. The fourth-order symplectic
Runge—Kutta integration method is used to solve Hamilton’s equations resulting
from the Hamiltonian for a charged particle in the earth’s dipole magnetic field,
namely,

1 2 P(29
H=— Py
2m pr+r2+

2
Msin 0
<p¢+q“"4m> ] , (3.114)

where r, 0, and ¢ are the usual spherical coordinates, and p,, pg, and py, are the as-
sociated canonical moments, M = 8 x 10?2 Am? is the value for the earth’s magnetic
moment. For comparison, the standard non-symplectic fourth-order Runge—Kutta
method is used to solve the equations of motion resulting from the Lorentz force
acting on a charged particle in a magnetic field,

dv. ¢
” _m(va). (3.115)
The initial conditions used for the particle tracing are taken from Yugo and Iyemori
(2001). A single proton is initially placed with its guiding center at 5 rg on the
equatorial plane. It is given the energy of either 10keV or 10 MeV, and a pitch
angle at its initial position of 30° or 90°. Following Yugo and Iyemori (2001), the
step size is taken to be 0.016 times the Larmor period at the initial position, and the
particle trajectories are integrated for 107 time steps. The error in the energy at each
time step is calculated as

|E — Ey|

Ey

, (3.116)

€Iror —

where Ej is the exact energy of the proton, calculated at its initial position. Results
for both methods are shown in Fig. 3.5. As can be seen from Fig. 3.5, the error in
energy that occurs for the symplectic integration method is much smaller than that
with the Runge—Kutta integration. In fact, when the pitch angle is 30°, the accumu-
lation of error that occurs for the Runge—Kutta method is so large that |E — Ey|/Ep
quickly exceeds unity, and the integration is terminated. This occurs after 6,841 time
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Fig. 3.5 Relative error in energy for (top) fourth-order explicit Runge—Kutta method and (bottom)
fourth-order symplectic method for protons in the Earth’s dipole field, initially at 5 rg. The energies
and pitch angles of the protons are a 10keV and pitch 90°, b 10 MeV and pitch 90°, ¢ 10keV and
pitch 30°, and d 10 MeV and pitch 30°. The error obtained with the Runge—Kutta integrator with
a pitch angle of 30° increases above unity in just a few time steps, and it is not visible in panels ¢
and d (From Mackay et al., 2006)

steps in the 10 keV case, and after only 301 time steps in the 10 MeV case. For this
reason, the error from the explicit Runge—Kutta method is not visible in panels ¢ and
d of Fig. 3.5.

As was noted by Mackay et al. (2006), recently there has been interest in the
trapping of charged particles in the cusp region of the magnetosphere (e.g., Sheldon
etal., 1998; Chen et al., 2001). It has been suggested that this could be a major accel-
eration region, and that it could provide a possible explanation for particle energiz-
ing in the magnetosphere (Chen et al., 1998; Fritz and Chen, 1999; Fritz et al., 2000).
Mackay et al. (2006) look at differences found in integrating trajectories of trapped
protons in that region using three integration techniques. As a reference, the first
one considered uses the symplectic integration technique with a magnetic field that
satisfies V x B = 0. The second approach uses a standard (non-symplectic) Runge—
Kutta integration, also with a divergence-free magnetic field. Third, Mackay et al.
(2006) integrate trajectories with the same non-symplectic Runge—Kutta method,
but with a magnetic field that is interpolated using a simple multi-linear formula,
for which the magnetic field is, in general, not divergence-free. The results from
the symplectic integration are deemed to be the most accurate, and they provide a
reference for those of the other two methods. The comparison between results ob-
tained with the Runge—Kutta integration with interpolated fields satisfying, or not,
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the divergence-free conditions will therefore provide a direct assessment of the im-
portance of satisfying this condition. Finally, these example calculations are for the
purpose of comparing the numerical properties of the different integration and inter-
polation techniques, and should not be seen as a detailed study of the physics of par-
ticle dynamics in the cusp. Another useful comparison concerns the time evolution
of the energy and the first adiabatic invariant 2 computed with both approaches. The
variations in these two quantities have been considered along several particle trajec-
tories calculated with the two interpolation schemes described above. Figures 3.6
and 3.7 show representative results from two trapped particles.
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Fig. 3.6 Relative error in energy calculated with fourth-order explicit Runge—Kutta integration

using cubic spline interpolation with V x B = 0 (dotted lines) and with multi-linear interpolation

of the fields (V x B # 0, solid lines). Errors are shown for two representative trapped particles

(From Mackay et al., 2006)
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Fig. 3.7 Time evolution of the magnetic moment calculated for two representative trapped 100 eV
protons with explicit Runge—Kutta integration using cubic spline interpolation with V. x B =0
(dotted lines) and with multi-linear interpolation of the fields with V x B # 0 (solid lines). The two
particles selected are the same as in Fig. 3.6 (From Mackay et al., 2006)

In both cases shown in Figs. 3.6 and 3.7, the particle energy is 100 eV, their ini-
tial conditions are the same for both field interpolation schemes, and both particles
remain trapped during the entire 10 h simulation period. Figure 3.6 shows the error
in the energy computed with both interpolated fields. In one case (panel a), the inte-
gration carried with V x B = 0 is seen to lead to a smaller error in the conservation
of the energy, while in the other (panel b), it is the other way around. In both cases,
however, energy is relatively well conserved, with the maximum relative error after
10h being of order 107>, The lack of sensitivity on the condition V x B = 0, in
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energy conservation is consistent with the fact that, as noted previously, the Lorentz
force is perpendicular to v, and does not do any work. This is independent of whether
V x B = 0 is satisfied or not. The situation is different, however, with the first adi-
abatic invariant. Indeed, it is known that smoothness in the fields and V x B =0
are necessary conditions for u to be an approximate constant of the motion. This is
confirmed in Fig. 3.7, which shows the evolution of u in time, computed with and
without V x B = 0, for the same particles as in Fig. 3.6. After an initial transient pe-
riod, during which the particles go through a region of weak magnetic field (where
U is not expected to be a good invariant), the particles drift on trajectories where
U is nearly constant. After the initial transient period, however, the oscillations in
are seen to be noticeably larger when the integration is carried with a magnetic field
that does not strictly satisfy V x B = 0. Qualitatively, these oscillations are also gen-
erally more irregular when the integration is carried in a non-divergence-free field
and the variations appear on a larger timescale. While qualitatively distinct, the dif-
ferences observed here in the variations of u are quantitatively relatively small. In
the situation considered, however, where particles are weakly trapped in the cusp
region, these small differences are sufficient to yield important differences in the
predicted confinement over long integration periods. In Fig. 3.7 the initial magnetic
moment, computed for the same particle, differs between the two methods of inte-
gration. For example, in panel a, the initial value of u is approximately 1.7 x 10~°
when computed for the scheme in which B is not divergence-free, while, for the
same initial conditions, u is approximately 1.2 x 10~, when y is not divergence-
free. This is because (1) both methods use different interpolation techniques for the
magnetic field, (2) the field is very weak in the region of injection, and (3) the mag-
netic moment is inversely proportional to B. Thus, in that case, the small absolute
difference in the interpolation errors associated with the two approaches results in
an appreciable difference in the initial values of .
Mackay et al. (2006) came to the following conclusions:

1. A technique for interpolating the magnetic field from numerically computed field
values on a discrete grid with the Fourier transforms is used to calculate the vec-
tor potential A from the magnetic field discretized on a uniform rectangular grid.

2. Cubic splines are then used to interpolate A anywhere in the domain, thus pro-
viding an approximation for the field with C? continuity. This, in turn, is required
for the computed magnetic field to be divergent-free.

3. This method is applied to the integration of charged-particle trajectories in the
earth magnetosphere. Two integration methods are considered: a fourth-order im-
plicit symplectic method, known for its good conservation properties of Hamil-
tonian systems, and a standard (explicit) Runge—Kutta integration method. The
latter is used to assess the importance of interpolating the magnetic field while
satisfying the condition V x B = 0.

4. It was found that the computed number of particles confined in the approximately
quadrupole field of the earth cusp region is considerably smaller when the con-
dition V x B = 0 is not satisfied.

5. As expected, the computed first adiabatic invariant p is also found to be better
conserved in magnetic fields with zero divergence. This confirms that, when-



3.6 Asymptotic Directions, Impact Zones, and Acceptance Cones in the Geomagnetic Field 85

ever integrating full particle trajectories (as opposed to solving gyro-averaged
or drift-kinetic equations), it is important to use magnetic fields that satisfy the
divergence-free condition.

6. The previous conclusion is supported by the fact that, when studying (weak)
trapping in the cusp region of the magnetosphere, a large fraction of the par-
ticles that are determined as being trapped when integrated with a field that
satisfies V x B = 0, are incorrectly predicted to be lost when their trajectories
are calculated with a straightforward interpolation of B that is, in general, not
divergence-free.

7. Failure to satisfy the V x B = 0 condition may lead to unphysical variations in
the adiabatic invariant ¢ and, consequently, to erroneous physical results.

8. The fitting and interpolating technique considered for B and E was presented in
the static field approximation. This technique, however, can readily be extended
to account for time varying fields by expressing the electric field in terms of
E=—-V®—JA/dt.

3.6 Asymptotic Directions, Impact Zones, and Acceptance Cones
in the Geomagnetic Field Including the Higher Harmonics

3.6.1 Examples for Different CR Stations

The necessity to include non-dipole terms in the geomagnetic field follows from
the fact that the use of dipole terms only entails errors in the asymptotic direc-
tions in the order of 10-20° and more, as follows from the works by McCracken
and Freon (1962), McCracken (1962), Hatton and Carswell (M1963), and others
(see Section 3.5.1). As examples, Figs. 3.8 and 3.9 show the asymptotic directions
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Fig. 3.9 The same as in Fig. 3.8, but for the station Churchill. Rigidities of incident particles (from
right to left): 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.27, 1.45, 1.88, 2.20, 2.63, 3.15, 3.72, 4.37, 5.14,
6.50, 8.50, and 10.5GV

in geographic coordinates at Deep River and Churchill for particles incident along
the vertical and under an angle of 32° with the vertical from the north, south, east
and west. The calculations were made according to Gill’s modification (see Sec-
tion 3.5.4) by using Gauss coefficients of the geomagnetic field of the epoch 1955.0,
according to Finch and Leaton (1957), and shown in Section 3.5.1 (see Table 3.2).

The asymptotic cones of 11 neutron monitors for particles with rigidities from
1.0 to 5.74 GV with zenith angles <32° are shown in Fig. 3.10.

3.6.2 Classification of Stations by their Acceptance Cones

McCracken (1962) showed that, whereas at one station the particles arrive in one
narrow cone only, at others they come from several cones. He concluded that there
are stations which cannot lie in the second, third, etc., impact zones. The correct
explanation is as follows: consider Stormer’s curve of asymptotic directions of tra-
jectories passing through the dipole center, as a function of the constant y (see
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Fig. 3.10 Asymptotic cones of 11 neutron monitors for incidence of particles with rigidity from
1.0 to 5.74 GV for zenith angles <32°. The filled circles indicate the effective direction for each
detector on the assumption that the rigidity spectrum of the solar particles is exponential

Fig. 2.4). Each of the branches corresponds to a definite impact zone. Since in the
actual magnetic field, just as in the dipole field, the asymptotic directions lie on
the Stormer curve, any station must be in the principal impact zone as well as in the
others. However, the coupling coefficients at rigidities R < 1 GV are so small that
particles below this rigidity contribute a negligible amount to the counting rate of
neutron monitors at sea level, even for the solar particle spectrum. Hence, stations
which in the second impact zone receive radiation with rigidities below 1 GV will
not record this and in this sense we may speak about stations which cannot lie in
the second, third, etc., impact zones. These stations have a narrow acceptance cone
for solar radiation and are, therefore, most suitable for the study of the anisotropy
of galactic and solar particles. No extensive integrations are required for finding
the geographic distribution of these stations. Figure 2.4 shows that all stations with
R, < 1.1GV for y = 0.7 will receive solar radiation only when they are lying in the
principal impact zone.
Putting Y = 0.7 and R, = 1.1 GV in the formula

Mg cos* A/
R.— E£COS - (3.117)

e (}/+ Y2 —cos3 A’ cos w)

or for a vertical particle arriving (® =7/2)
R. = Mgcos* A’ J4y*rg, (3.118)

where A’ is the effective geomagnetic latitude according to Quenby and Wenk
(1962), we find ' = 64° or R.; = 0.54GV.
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3.6.3 Acceptance Cones for Russian and Former Soviet
Net of Stations

As mentioned above, the numerical integration of CR trajectories for Russian and
the former Soviet net of stations was made in Dorman et al. (1966), Dorman and
Smirnov (1966a, 1967); these results were reviewed in Dorman et al. (M1971) and
in Dorman (M1974). On the basis of Eq. 3.118 with the cutoff rigidities for the
actual magnetic field according to Sauer (1963), Fig. 3.11 shows the curve / which
was drawn for the Russian stations at R,y = 0.54GV.

Whereas in the first two polar regions above curve / in Fig. 3.11, the stations can
lie only in the first (principal) impact zone and receive radiation from a narrow cone,
all other stations, i.e., those below curve /, can lie in the second, third, etc., zones
as well and receive radiation from a wide region. Evidently the anisotropy of solar
particles and galactic CR can be best studied at stations in the intermediate zone
between curves / and 2, which receive radiation in a narrow cone from regions close
to the plane of the ecliptic. These conclusions are illustrated by Fig. 3.12, showing
the integration results for some stations in different zones for particles with rigidities
from 1.872 to 14.9 GV for Yakutsk and from 1 to 14.9 GV for the three high-latitude
stations.

The program for integrating trajectories of charged particles in the magnetic field
of the earth, represented by six spherical harmonics, was applied in Dorman et al.
(1966) to determine the asymptotic directions for vertically incident particles for the
former Soviet net of stations in the rigidity range from 1 to 1,000 GV. The results
are listed in Table A3.1.

Dorman and Smirnov (1966a, 1967) have extended this work to determine the
asymptotic directions of particles reaching 13 former Soviet stations in oblique di-
rections by computing about 5,000 trajectories in the magnetic field of the earth
represented by six spherical harmonics. They used the coefficients g and A ob-
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Fig. 3.11 Classification of the former Soviet net of stations with respect to acceptance cones: A —
Apatity, H — Heiss Island, T — Tikhaya Bay, Y — Yakutsk. For an explanation of curves / and 2 see
the text
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Fig. 3.12 Asymptotic directions of particles recorded by neutron monitors at some former Soviet
stations

tained by Adam et al. (1964b) from spherical analysis of the geomagnetic charts
drawn up by the Leningrad department of the IZMIRAN for the epoch 1960. The
rigidities and incidence angles for computing the trajectories must be chosen so that
they can be used conveniently in the study of CR intensity variations. The region
where the source is localized can be found most accurately from the relations

AD(R)
D(R)

AD(R)
D(R)

P (R)W (R) AR =const, A(R)W (R) AR =const,  (3.119)

where @ (R) and A (R) are the asymptotic longitude and latitude of the trajectory,
W (R) is the coupling coefficient, D(R) is the differential spectrum of the primary
radiation and R is the rigidity of the particle.

In the numerous computations of trajectories, different series of rigidities have
been used by many authors, but the most suitable selection, according to Eq. (3.119)
is applied in Hatton and Carswell (M1963), and Dorman and Smirnov (1966a,
1967). The integrations have been performed in the interval from 0.85 to 350 GV.
Below 0.85 GV the coupling coefficients are so small that the intensity of any sec-
ondary component at sea level is practically zero and, for rigidities above 350 GV,
the influence of the geomagnetic field on the trajectories may be neglected. The
zenith and azimuth angles for obliquely incident particles have been so chosen that
the asymptotic directions in the actual field can easily be compared with those com-
puted in the geomagnetic dipole field. The trajectories were computed for particles
incident under angles 16° and 32° from the south, east, north, and west and for
important stations also for zenith angle 48°.



90 3 Cosmic Rays in the Real Geomagnetic Field

3.6.4 Asymptotic Directions for the Worldwide Net of CR Stations

The asymptotic directions of particle incidence were computed by McCracken et al.
(M1965) for 79 CR stations of the worldwide net. Unlike Dorman and Smirnov
(1967), the coefficients g} and A} here were taken from the development of the
field according to Finch and Leaton (1957) for the epoch 1955. The computations
of McCracken et al. (M1965) were made for zenith angles 0°, 16°, and 32° for the

directions of incidence of the particles from the north, south, east, and west.

3.6.5 Asymptotic Directions for Solar CR During Some Great
Events

The asymptotic directions of approach in the rigidity range from 5 to 20 GV com-
puted by Smart et al. (2000) for CR muon detectors for the maximum of the 23
February 1956 and 29 September 1989 high-energy solar CR events are illustrated
in Figs. 3.13 and 3.14. Asymptotic directions of approach for selected CR neutron
monitors mapped on a spherical projection of the earth were computed by Smart
et al. (2000) for the solar CR events of 29 September 1989 and 19 October 1989.
Results are shown in Fig. 3.15.

3.6.6 Asymptotic Directions for Several Selected CR Stations

Storini et al. (2001), using the International Geomagnetic Field model for epoch
1995.0 (IGRF 95), have made a particle access study for the Yangbajing ex-
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Fig. 3.13 World map projection of the asymptotic directions of approach computed for CR muon
detectors for the high-energy solar CR event of February 23, 1956 (According to Smart et al., 2000)
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Fig. 3.14 The same as in Fig. 3.13 but for the solar CR event of September 29, 1989 (According
to Smart et al., 2000)
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Fig. 3.15 Asymptotic directions of approach computed for selected CR neutron monitors mapped
on a spherical projection of the Earth. These projections are oriented on the probable interplanetary
magnetic field direction for two specific solar cosmic ray events. Left: September 29, 1989; Right:
October 19, 1989 (According to Smart et al., 2000)

periments located in Tibet (30° 06" 38" N, 90° 31’ 50” E; 4,300m a.s.l.; av-
erage atmospheric vertical depth 606 g/cmz). Asymptotic directions and cutoff
rigidities were calculated for the 100-4.10 GV rigidity interval for the follow-
ing directions: vertical and zenith angles 15° and 30° for 8 azimuthal directions:
N (0°), NE (45°), E (90°), SE (135°), S (180°), SW (225°), W (270°), and
NW (315°). The trajectory calculations were initiated at an altitude of 20 km above
the earth’s surface, using a variable step range AR from 0.01 GV and 0.1 GV at
R <20GV and AR = 1 GV for R > 20GV. The effective cutoff rigidity for the ver-
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O-0 Zenith = 15° IGRF95 Model
0-0 Zenith =30° e e

Fig. 3.16 Effective cutoff rigidities for ARGO-YBJ location for two different zenith angles and
eight azimuthal angles for the epoch 1995.0 (According to Storini et al., 2001)

tical direction was found to be 13.98 GV. Oblique directions cutoff rigidities are
shown in Fig. 3.16.

In Fig. 3.17 asymptotic directions are shown for vertical and zenith angle 15°,
and in Fig. 3.18 for zenith angle 30°. The maps of asymptotic directions for CR
particle rigidities of 25, 30, 40, 50, 70, and 100 GV for the vertical direction and
zenith angles 15° and 30° are shown in Fig. 3.19.

3.7 On the Connection of CR Cutoff Rigidities in the Real
Geomagnetic Field with the L-Parameter of Mcllwain

3.7.1 Results for Dipole Field

The classical Stérmer equation determining the cutoff rigidity for vertically incident
particles in the dipole field (see Chapter 2)

Re = Mg cos* A /41, (3.120)

(where Mg is the earth’s magnetic moment, rg its radius of the earth, and A the
geomagnetic latitude) may be used with Mcllwain’s (1961) B—L coordinate system
for taking the effects of the eccentricity of the geomagnetic field into account (Sauer,
1963; Sauer and Ray, 1963). With the relation

rg = Lcos* A, (3.121)
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Fig. 3.17 CR asymptotic directions for vertical and 15° zenith angle incident particles at ARGO-
YBJ location (21-100 GV from right to left with the step AR = 1GV). The 0° latitude is shown
by a dotted line, the geographic longitude of ARGO-YBJ detector is indicated by a vertical arrow
(According to Storini et al., 2001)

where L is the parameter of Mcllwain (1961) for the real geomagnetic field, the
values of the cutoff rigidities of CR can be represented in the form

Re ~ Mg /4L* ~ 14.9L 2 GV. (3.122)

3.7.2 Results for Trajectory Calculations for Quiet Time

Comparison of the cutoff rigidities computed from Eq. 3.122 with the results of
trajectory computations by Ray (1963b, c; 1965) showed that the relative difference
lies between —11% and +-8%. Lin et al. (1963) showed that at high latitudes a close
relation between the cutoff rigidities at the earth’s surface and the values of the
L-coordinate exists, but at lower latitudes the lines of constant L and of constant
cutoff rigidity begin to deviate considerably from each other.

Smart and Shea (1965) instead of using Eq. 3.122 proposed the expression

R. =KL 'GV, (3.123)



94 3 Cosmic Rays in the Real Geomagnetic Field

60 'ARGAO- YBL
TR K
Vertical
—60 F
60 [
_ W’?f“@@oo
e 15N
8 60 :
2 6or i 30°E
< '
- meogo
°
s 60
e 60
>
n
< "Hﬂmw%wmm
30°$S
—60 :
60 :
——
5 30° W
—60 -IIIII'E.IIIII!IIIII!IIIII!IIIII!IIIII!IIIII

60 90 120 150 180 210 240 270
Asymptotic longitude (°)

Fig. 3.18 The same as in Fig. 3.17, but for zenith angle 30° (From Storini et al., 2001)

where K and 7 are obtained by the least-squares method from the values of cutoff
rigidities for vertically incident particles. They found that the computed effective
cutoff rigidities agree well with Eq. 3.123, if K = 15.89 and y = 1.995. A later,
more detailed correlation analysis based on Eq. 3.123 by Smart and Shea (1967),
showed that the planetary distribution of R, except within 2° from the CR equator, is
best represented by K = 16.59, y = 2.083 for the cutoff rigidities from Quenby
and Wenk (1962); the standard deviation with respect to Eq. 3.123 then is 8.2%,
for 3,706 values of R.. The cutoff rigidities from Makino (1963) give K = 15.99,
Y = 2.014, the standard deviation for 916 values of R, being 20.1%. Finally, for the
trajectory computations by Shea et al. (1965a, b), K = 15.96 and y = 2.005, with
standard deviation 5.7% for 226 values of cutoff rigidity. Figure 3.20 illustrates
these comparisons.

A more accurate study of the relation between cutoff rigidities and the
L-coordinates was made by Dorman and Smirnov (1966b). The real geomag-
netic field has no axial symmetry, but, as shown by Quenby and Webber (1959) the
influence of the asymmetric part of the field on cutoff rigidity is small and may be
neglected. Considering that the geomagnetic potential may be represented by an
infinite sum of spherical harmonics and, neglecting the part of the field depending
on longitude, we find for the field in the equatorial plane



3.7 On the Connection of CR Cutoff Rigidities in the Real Geomagnetic Field 95
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Fig. 3.19 Sky map of the asymptotic directions of approaching CR particles to the Yangbajing
location. The cardinal directions: N, NE, E, SE, S, SW, W, and NW were considered for particle
rigidities of 25, 30, 40, 50, 70, and 100 GV and zenith angles: 15° (bottom) and 30° and vertical
(top) (According to Storini et al., 2001)

H=Y M,r "), (3.124)

and the vector potential of such a field is given by

8

M,

A:
n+1
=1 nr

ey, (3.125)

where M), is the moment of the nth harmonic of the field, and e, is the unit az-
imuthally vector. With the magnetic field and vector potential found from Eqgs. 3.124



96 3 Cosmic Rays in the Real Geomagnetic Field

100
F Cutoff rigidity vs. L for various methods
| Quenby and Wenk | Makino | Trajectory method
= ¢ L L
0} )
> 10 \\
S - \
o) C
8 Y
3 3
o L %
3 \
510 : ),
> [ .‘&
- A
L ),'.;
L Y
%
01 1 L1 ||||||':r"‘ 1 L |||\.'u)' L 1 - ||||||-U'-

1 2 4610 1 2 4610 201 2 46 10 20
L parameter

Fig. 3.20 Relation between the L parameter and the calculated values of cutoff rigidities from
Quenby and Wenk (1962), Makino (1963), and trajectory derived by Shea et al. (1965a, b)
(According to Smart and Shea, 1967)

and 3.125 the cutoff rigidity may be found numerically, using Stormer’s integral for
axially symmetric fields. The cutoff rigidity of vertically incident particles for an
arbitrary axially symmetric magnetic field is determined by a system of three alge-
braic equations (Asaulenko et al., 1965):

Re=ryH (rg,0), re+R; 'reAg (re,0) =7, Ag(re,A)R; 'recosd =y (3.126)

with three unknowns: R, is the cutoff rigidity, y is Stormer’s constant, ry is the
distance from the center of the earth to the point of transition dividing the permit-
ted inner and outer regions. Further, A, is the azimuthally component of the vector
potential, A is the latitude of the point of observation. Usually only six terms are
included in the development of the geomagnetic field because of the finite accu-
racy of the geomagnetic charts. However, even when only six terms are used in the
series described by Eqgs. 3.124 and 3.125, substitution of the finite sums for field
and vector potential leads to a system of algebraic equations of the seventh degree,
the roots of which cannot be expressed in closed form. Instead, we may find an
approximate solution of system Eq. 3.126 by making use of the fact that the main
part of the geomagnetic field is the dipole term, considering the higher harmonics
as perturbations.

On the other hand, in the dipole field the critical transition point is known to lie
at a distance of one Stormer unit from the center of the dipole, and the equatorial
distance of the line of force along which the particle is moving is half as large. Thus,
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if the transition center of the particle moves along a line of force with equatorial
distance L earth’s radii, the critical transition point lies at a distance 2L. When the
perturbing field is superposed on the dipole field the critical point is displaced over
a small distance Ar. Then, instead of Eq. 3.126, we obtain

R.=(2L+Ar)H (2L+Ar),
(2L+Ar) [1+R; 'Ap 2L+ Ar,0)] =27, (3.127)
Ag (1,A)R; 'cosA = 2y.

Substituting the magnetic field and the vector potential determined by Eqgs. 3.124
and 3.125 into Eq. 3.127 and developing each term of the sum in a Taylor series
in powers of Ar, we find for R, when only the first terms of the developments are
included,

R.=[0.25 ML 2 +0.19M>L > +0.15M3L* +0.12M, L3
+0.10MsL ¢+ 0.08MsL™ "] x3x 107 GV. (3.128)

Here My, M>,..., Mg are the magnetic moments in the harmonic development of
the geomagnetic field (in units Gs cm®, Gs cm?, ..., Gs cm®, respectively), L is the
Mcllwain’s parameter (in cm). Expressing each of the magnetic moments of the
higher harmonics of the magnetic field by means of the non-dipole part of the field at
the Equator AH at the longitude of the point of observation, we find, from Eq. 3.128,
the following formula, which is more convenient in practice:

R. = 14912+ AH (18.4L—3 8L 4431054+ 0.8L 0+ 0.3L—7) GV.
(3.129)

Values L (here they are in the earth’s radii rg) as well as AH (in Gs) can be easily
found from the charts. For L > 2.5 the second and following terms of this series
can be neglected and then the cutoff rigidity is determined within 1% by Eq. 3.122.
Even in the equatorial region the results given by Eq. 3.129 are not so bad, as may
be seen from the satisfactory agreement shown in Fig. 3.21.

o Z
o
T
\
|
I

o
3

Latitude (°)

—_

o
T

)

\

wn

180 120 60 0 60
W Longitude (°)

1 1

120 180
E

Fig. 3.21 CR equator. Full curve: measured; dotted curve: computed from Eq. 3.129
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3.7.3 Using the Relation between R, and Mcllwain L-Parameter
for Estimation of R, Variations during Disturbed Periods

Rodger et al. (2006) note that the geomagnetic rigidity cutoffs are well organized
in terms of the Mcllwain L-parameter (see Sections 3.7.1 and 3.7.2, and later de-
velopments in Smart and Shea, 1994; Selesnick et al., 1995). The L-variation of
the geomagnetic rigidity cutoff has been determined for quiet times from about
10,000 nuclei observations made by the MAST instrument on the SAMPEX satel-
lite (Ogliore et al., 2001). These authors report that the geomagnetic rigidity cutoffs,
R., for quiet times are given by

R. = 15.062L2 —0.363 [GV], (3.130)

representing average conditions for K, = 2.3. As noted above, dynamic vertical
cutoff rigidities dependent upon magnetic activity levels, have been determined by
particle tracing (Smart and Shea, 2003) using the K),-dependent Tsyganenko (1989)
magnetospheric field model. These authors have reported that the change of proton
cutoff energy with K, is relatively uniform over the range of the original Tsyganenko
(1989) model (K, < 5), but the cutoff changes introduced by the Boberg et al. (1995)
extension to higher K, is non-linear such that there are large changes in proton cutoff
energy for a given L value at large K, values. Rodger et al. (2006) make use of the
K,-dependent variations in the effective vertical cutoff energies at a given IGRF L
value at 450 km altitude determined from this modeling (Smart et al., 2003), but
with a slight modification to ensure that the geomagnetic rigidity cutoff varies as
15.062L72, as was observed in the SAMPEX experimental data. The results are
presented in Fig. 3.22.

From Fig. 3.22 it can be seen that the change in cutoff energy with geomagnetic
activity is strongly non-linear at the highest disturbance levels. Rodger et al. (2006)
noted that the plot of effective vertical cutoff energies against geomagnetic latitude
varying with geomagnetic activity (Fig. 3.22) is useful for summarizing the response
of the geomagnetic field during geomagnetic storms.

3.7.4 Estimation of R, for Any Altitude on the Basis
of the Relationship Between R, and L

In order to interpolate down to lower altitudes (e.g., 100 km), Rodger et al. (2006)
followed the approach outlined by Smart and Shea (2003) again using the IGRF-
determined L value. This exploits the basic relationship between R. and L, i.e.,

R.=CiL™2, (3.131)
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Fig. 3.22 Variation with geomagnetic activity of the effective vertical cutoff energies for protons
at an altitude of 450 km based on the modeling of Smart et al. (2003) and SAMPEX observations
(Ogliore et al., 2001) (From Rodger et al., 2006)

where Cy, is an altitude-independent constant. Thus, by knowing the value of Cy, for
the IGRF L value at 450 km altitude above a given location, one can determine R,
at 100 km once one knows the L value for that location at 100 km altitude.

3.7.5 Global Rigidity Cutoff Maps Based on the Relation Between
R. and L

Figure 3.23 presents maps of the proton geomagnetic rigidity cutoff energies for
the southern (left) and northern (right) hemispheres at very low (K, = 0), middle
(K, =4), and high (K, = 9) disturbance levels, based on the relation between R,
and L discussed in Sections 3.7.3 and 3.7.4. In Fig. 3.23 contour lines with units
of MeV mark the geographic locations of the rigidity cutoff energies at 100 km
altitude. Note that the location of the cutoffs for K, = 0 and K, = 4 are simply
projected from Fig. 3.22 and thus are based on the Tsyganenko (1989) magnetic
field model.

During geomagnetic storms, solar energetic particles (SEPs) impact larger re-
gions of the polar atmosphere. The contour line in Fig. 3.23 showing the cutoff
location for an energy of 0.001 MeV, is indicative of the “no-cutoff” region; es-
sentially all SEPs will access the upper atmosphere located poleward of this line,
irrespective of the particle energy. As shown in Fig. 3.23, the size of the “no-cutoff”
region expands significantly equatorward with an increase in geomagnetic activity.
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Proton cutoff energies at 100 km altitude: Kp =0 Proton cutoff energies at 100 km altitude: Kp =0

Proton cutoff energies at 100 km altitude: Kp =4 Proton cutoff energies at 100 km altitude: Kp =4

g — P

Fig. 3.23 Contour plots showing the locations of the rigidity energy cutoffs at 100 km. The con-
tour labels have units of MeV, and the location Halley is shown with a square. Note that as the
geomagnetic activity levels increase, the cutoffs move equatorward (From Rodger et al., 2006)
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The basic shape of the SEP, the affected region predicted by Fig. 3.23, is rather sim-
ilar to the zone of high ozone losses observed by satellite measurements during an
SEP event (Seppili et al., 2004; for details see in Chapter 13 of Dorman, M2004).

3.7.6 Calculations of R, and L for Different Models: Comparison

Rodger et al. (2006) note that the Tsyganenko (1989, 1996) geomagnetic field mod-
els are among a small set of external field models, which are commonly used as
standard tools. However, it is less widely appreciated that, at highly disturbed geo-
magnetic conditions, all geomagnetic field models struggle to reproduce the exper-
imentally observed fields (see Fig. 3.24).

Figure 3.24 shows the L value of Halley calculated using various field models
during the 4 November 2001 SEP event, to be contrasted against the IGRF and
Tsyganenko (1989) magnetic field models which are the basis of the rigidity cutoff
energy predictions.

The additional L value calculations shown in Fig. 3.24 were undertaken using
the European Space Agency’s Space Environment Information System (SPEN-
VIS), taking as input 3-hourly geophysical parameters (geomagnetic indices, so-
lar wind, and IMF measurements) provided by the NSSDC OMNI Web data-
bases. The 3-hour timescale is to provide “like-with-like” comparison with the
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Fig. 3.24 Comparison of the Mcllwain L value determined by various geomagnetic field models.

The IGRF internal field (dotted) and the K),-dependent Tsyganenko (1989) model (solid lines) are
contrasted against a number of other models (From Rodger et al., 2006)
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K),-driven Tsyganenko-89 (Tsyganenko, 1989) model. Figure 3.24 includes the
Ostapenko—Maltsev (Ostapenko and Maltsev, 1997), Olson—Pfitzer dynamic (Pfitzer
et al., 1988), Tsyganenko-96 (Tsyganenko, 1996), and “paraboloid” magnetic field
models, the last of which has been proposed as ISO standard for the earth’s magne-
tospheric magnetic field and has been developed jointly by research teams from the
Skobeltsyn Institute of Nuclear Physics (Moscow) and the US Geological Survey
as described in SPENVIS. Note that there is a large data gap in Fig. 3.24, covering
the hours 51-75. This is due to a gap in solar wind/IMF measurements, required
as inputs for all the additional magnetic field models. This gap starts just after the
beginning of the peak disturbance as measured by K, (hours 48-54). It is instruc-
tive to consider the wide variation in L values reported for Halley by the differing
magnetic field models during the 4-7 November 2001 storm period (Fig. 3.24).
Rodger et al. (2006) argued that the IRIS absorption measurements indicate that the
geomagnetic field is not as stretched at high K, as suggested by the Tsyganenko-
89 field model and that while Halley should effectively move poleward in L value
during this period, the shift should be reasonably slight. From the observed ab-
sorption levels it appears that at the peak storm time of 4—7 November 2001, the
geomagnetic field was distorted such that Halley moved poleward only by about
AL = 1. The Tsyganenko-89 model suggests that the L value of Halley is shifted to
L~6.5 (i.e., AL = 2). The rigidity cutoff energy of ~ 18 MeV for highly disturbed
conditions is consistent with an IGRF L shell of L = 5.5 (=3.5° poleward of Hal-
ley) during low-disturbance conditions (e.g., K, ~ 1). However, Fig. 3.24 indicates
that the Tsyganenko-89 model is relatively conservative when contrasted with the
Tsyganenko-96 and Olson—Pfitzer dynamic calculations, which lead to much larger
poleward shifts (AL > 6 and AL ~ 4, respectively), and very low values of rigid-
ity cutoff energy. In contrast, the Ostapenko—Maltsev and paraboloid magnetic field
models report smaller shifts in L value during these storm conditions, both reaching
L~ 5.5 around the time of the highest K}, values, and thus a rigidity cutoff energy
of about 18 MeV as determined above. Although further tests would be valuable,
it appears that these dynamic magnetic field models would be good candidates for
future work into time-varying rigidity cutoff energies, following the approach of
Smart and Shea (2003).

3.8 Planetary Distribution of Cutoff Rigidities at Altitude 20 km

3.8.1 Offset Dipole and CR Cutoff Rigidity Coordinates

Smart and Shea (1995) show that coordinates based on the offset dipole are suf-
ficiently different from the coordinates based on CR cutoff rigidity contours. The
offset dipole coordinates can be determined according to Akasofu and Chapman
(M1972), and Roederer (1972) by the Schmidt normalized Gauss coefficients (used
for describing the earth’s magnetic field) in the following way. The tilt angle 8 and
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dipole phase angle ¢ will be determined as

6 = arctan (((g})z + (h{)z) m/g(l)) , @ =arctan (b1 /g}),  (3.132)

and the dipole position from the geocenter will be determined as

Xea = (L2 —giLs) /3L3.yea = (Ls —hiLs) /313, zea = (L1 —giLs) /3L3,
(3.133)

where

Ly =28%3+ V3 (glgh +hih}), Lo=—glgd+3(g0g) +glel+hind),
2 2 1/2
Ly = —hii+3 (W +hig+elid), La=((a%])*+ (])") ",

Ls = (Lig) +Log} + Lant) /4 ((g38])” + (1))
(3.134)

On the basis of Egs. 3.132-3.134 for epoch 1980.0 magnetic field DGRF (1992)
model, Smart and Shea (1995) found that

0=11.2° @©=289.2°, x,q=0.0605rz, yeq=0.0388rg, zoq=0.0267rg,
(3.135)

where rg is the radius of the earth. By the Stormer expression for the vertical cut-
off rigidity (see Chapter 2 and details in Smart and Shea, 1977) the cutoff rigidity
contours at the “top” of the atmosphere (altitude 20 km over geoids surface), can be
found corresponding to the location of geomagnetic dipole described by Eq. 3.135.
Results are shown in Fig. 3.25.

60 g

aq 30—

40 50 20—
w1 ————

. 20F 0 150 20—
3 0 Mm—-——{
2 M - 00—
E 20 S
1 N————— ]

0 60 120 180 240 300 360
East longitude (°)

Fig. 3.25 The vertical cutoff rigidity contours in the offset dipole approximation found by applying
the Stormer equation to the position of the magnetic dipole at the epoch 1980.0 (described by
Eqgs. 3.132-3.134) (According to Smart and Shea, 1995)
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Fig. 3.26 The CR vertical cutoff rigidity contours determined by the trajectory-tracing on the basis
of magnetic field model DGRF (1992) for epoch 1980.0, based on 5° x 5° world grid (According
to Smart and Shea, 1995)

The results in Fig. 3.25 can be compared with the vertical cutoff rigidities con-
tours derived from CR trajectory tracing for the same epoch 1980.0 with the same
model DGRF (1992). The results are shown in Fig. 3.26.

The longitudinal phase shift (which can be easily seen from comparison of
Figs. 3.25 and 3.26) is about the same as that observed for the shift in the East
direction for about 3 h of CR equator relative to geomagnetic equator (see Fig. 2.7).

3.8.2 CR Vertical Cutoff Rigidity Planetary Distribution
Jor the Epoch 1955.0

Trajectory computations (up to 25 earth radii) of the penumbra for vertical inci-
dence, with the approximation of the geomagnetic field by six harmonics according
to Finch and Leaton (1957) for the epoch 1955.0, were used by Shea (1963) for
many points along the course of the ship Soya from Japan to Antarctica and airplane
expeditions from Paris to the Canary Islands. Kondo et al. (1963) compared the CR
cutoff rigidities R.; found by direct trajectory computations with R, computed by
Quenby and Wenk (1962). They found that the relative difference (R.; — Rc2)/Rc1
for nearly 100 points along the courses of the latitude expeditions of the ships
Soya, Labrador, Atka, and Arnev had a mean-square value of about 10%. The plan-
etary distribution of the vertical cutoff rigidities was also determined by Kondo and
Kodama (1965). The trajectories were computed numerically for Finch and Leaton’s
(1957) development of the geomagnetic field for the epoch 1955.0. The effective
cutoff rigidities R, were determined from the relation
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/nﬂRﬂN@dR:/f@ﬁm@ﬂMMdK (3.136)
Re 0

where m;(R) is the integral multiplicity, and D (R) is the primary CR spectrum,
and m;(R)D(R) is the sensitivity function for the ith component. Here f(R) takes
the role of the penumbra into account; it is equal to 1 for allowed and O for
forbidden trajectories. If m;(R)D(R) is put equal to 1, then the error in the R,
determination introduced by this approximation becomes about 0.2-0.4 GV. The
interval used was 0.1 GV. Comparison with results of Shea (1963), where the in-
terval 0.01 GV was used, showed that the errors arising on this account are on an
average of about 0.08 GV (with a maximum error of 0.25 GV). Figure 3.27 shows
the results.

Shea et al. (1968) calculated 5° x 15° world grids of trajectory-derived vertical
cutoff rigidities for epoch 1955.0. In these calculations, the approximation of the
geomagnetic field by six harmonics according to Finch and Leaton (1957) for the
epoch 1955.0 it was utilized. Results are shown in Table A3.2.
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Fig. 3.27 Contours of constant threshold rigidity plotted in geographic coordinates for the epoch
1955.0 (According to Kondo and Kodama, 1965)
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3.8.3 CR Vertical Cutoff Rigidity Planetary Distributions
Jor Epochs 1965.0 and 1975.0

Shea and Smart (1975b) calculated 5° x 15° world grids of trajectory-derived ver-
tical cutoff rigidities for epochs 1965.0 and 1975.0. In these calculations the Inter-
national Geomagnetic Reference Field according to IJAGA Commission 2 (1969)
was used with time derivatives applied also for epoch 1975.0. Results are shown
in Table A3.3 for the epoch 1965.0 and Table A3.4 for 1975.0. The effective ver-
tical cutoff rigidities were calculated by using penumbra functions found in Shea
and Smart (1975b) for each point as described in Dorman et al. (M1972) and in
Section 3.10.

3.8.4 The Change of CR Vertical Cutoff Rigidity Planetary
Distribution During 20 Years, from 1955 to 1975

Table A3.5 shows the planetary distribution of the differences of CR effective verti-
cal cutoff rigidities in 1955 and 1975.

From Table A3.5 it can be seen that, whereas minor changes (<0.2GV) in the
cutoff rigidities occur in many areas of the world over this 20-year interval, major
changes (>0.60GV) occur in the Central and Southern Atlantic Ocean area and over
the Central and South American land masses. Shea and Smart (1975b) came to the
conclusion that while the changes in the southern hemisphere primarily decrease in
the vertical cutoff rigidities, there is an area in the northern hemisphere, principally
in the Atlantic Ocean, where comparable increases in the vertical cutoff rigidities
are calculated.

3.8.5 CR Vertical Cutoff Rigidity Planetary Distribution
Jor Epoch 1980

Shea and Smart (1983) calculated 5° x 15° world grid of trajectory-derived vertical
cutoff rigidities for the epoch 1980.0. Results are shown in Table A3.6.

3.8.6 CR Vertical Cutoff Rigidity Planetary Distribution
Jor Epoch 1990.0

Smart and Shea (1997a) calculated 5° x 15° world grid of trajectory-derived verti-
cal cutoff rigidities for the epoch 1990.0. Results are shown in Table A3.7 and in
Fig. 3.28.
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Fig. 3.28 Contours of constant threshold rigidity plotted in geographic coordinates for the epoch
1990.0 (According to Smart and Shea, 1997a)

3.8.7 CR Vertical Cutoff Rigidity Planetary Distribution
Jor Epoch 1995.0

Smart and Shea (2007a) calculated 5° x 15° world grid of trajectory-derived vertical
cutoff rigidities for the epoch 1995.0. Results are shown in Table A3.8.

3.8.8 CR Vertical Cutoff Rigidity Planetary Distribution
Jor Epoch 2000.0

Smart and Shea (2007b) calculated 5° x 30° world grid of trajectory-derived ver-
tical cutoff rigidities for the epoch 2000.0. Results are shown in Fig. 3.29 and in
Table A3.9.

3.9 CR Effective Cutoff Rigidity Planetary Distribution
for Satellite Altitudes

Smart and Shea (1997b) have derived a 5° x 15° world grid of CR cutoff rigidities
for satellite altitude at 450 km for the epoch 1990.0 employing the Definitive Inter-
national Geomagnetic Reference Field for this epoch (IGRF 1991 Revision, 1992).
The CR trajectory calculations were initiated in the vertical and west direction at
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Fig. 3.29 Contours for vertical geomagnetic cutoff rigidities for the epoch 2000 (From Smart and
Shea, 2007b)
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Fig. 3.30 Contours of constant effective vertical cutoff rigidity plotted in geographic coordinates
for the epoch 1990.0 at an altitude of 450 km (From Smart and Shea, 1997b)

zenith angle 90° from a distance of 6,821.2 km from the geocenter (i.e., 450 km al-
titude above the average earth of 6,371.2 km radius). Figure 3.30 and Table A3.10
show the results for CR vertical effective cutoff rigidity planetary distribution.

Results for planetary distribution of CR effective cutoff rigidity for the west di-
rection at 90° zenith angle are shown in Table A3.11 and Fig. 3.31.
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Fig. 3.31 Contours of constant effective cutoff rigidity for the west direction at 90° zenith angle
plotted in geographic coordinates for the epoch 1990.0 at an altitude of 450 km (According to
Smart and Shea, 1997b)

3.10 Cutoff Rigidities for the Worldwide Network of CR Stations

3.10.1 Calculations of Cutoff Rigidities for CR Stations
and Checking by Data on CR Variations

It should be stressed once more that fully reliable values of the CR cutoff rigidi-
ties can be found only by direct numerical integration of particle trajectories in
the real field of the earth, where all geomagnetic effects are automatically taken
into account. This is particularly clear from the results of McCracken and Freon
(1962) and Freon and McCracken (1962) who found in this way a cutoff rigid-
ity of 1.27-1.30 GV for Port aux Francais (Kerguelen Island), which was 0.45 GV
smaller than the generally adopted value. Kodama (1965) determined the cutoff
rigidity for vertical incidence of 85 CR stations by straight computation of the tra-
jectories. For rigidities between 5 and 13 GV, the computing error is £0.05GV,
for larger and smaller rigidities it is £0.1 GV. The quality of the computed thresh-
old rigidities was estimated by comparison with data about the Forbush decreases
in July 1959 and about the CR increases of 23 February 1956 and 12 November
1960. The latitude variations of these effects showed that the observed values agree
better with the computations of Kodama (1965) than with those of Quenby and
Wenk (1962).
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3.10.2 Comparison of Different Models of Calculation

Comparing the relative merits of the various models for computing the vertical cut-
off rigidities, Kenney et al. (1965) found that (1) of all models considered, the simple
dipole is least satisfactory; (2) the model of Quenby and Wenk (1962) for moderate
latitudes is an improvement over that of Quenby and Webber (1959); (3) Makino’s
model (Makino, 1963) is only a little better than that of Quenby and Wenk (1962);
and (4) the models based on Mcllwain’s parameter L (see Section 3.7) is sufficiently
good for all regions except the equatorial ones. Three series of measurements of
the position of the CR equator near South America agree well with accurate tra-
jectory computations but not with data about the position of the equator based on
the parameter L, if the simple Eq. 3.122 is used, even when the dipole is taken
to be shifted to the east. To this conclusion we should add that the more accurate
Eq. 3.129, derived by Dorman and Smirnov (1966b), correctly represents the ob-
served position of the CR equator. Hence, the most accurate results for the cutoff
rigidities are obtained by direct trajectory computations. In this respect, the results
of Shea and Smart (1966a, b, 1967), Shea et al. (1965b, 1968), Smart and Shea
(1966), McCracken et al. (M1965), and Daniel and Stephens (1966) are important;
here the real magnetic field is taken into account up to six harmonics. In particular,
in Smart and Shea (1966), a network of vertical R, is given over the earth, with 15°
intervals in latitude and longitude; for taking account of the penumbra effect, the
computations were made with an interval of 0.01 GV. For the intermediate points,
the value of R, may be obtained by interpolation, using the L parameter. In Shea
et al. (1965) R, is determined for more than 300 points on the earth’s surface, 26
points being chosen near the South African magnetic anomaly and six in the region
of the Northern Atlantic, for which regions anomalous values were observed. For
the regions near South Africa, the Southern Atlantic, and the Canary Islands the
rigidity thresholds are found to differ by more than 15% from those computed by
Quenby and Wenk (1962). It is found that with the cutoff rigidities of this work,
the results for the various CR latitude measurements agree well with each other.
Shea et al. (1965b) concluded that, though for a large part of the earth the cutoff
rigidities computed with different models of the geomagnetic field practically do
not differ from each other, for some regions this difference proves to be important
in the analysis of CR effects. In Shea and Smart (1966b, 1967) values of R, were
determined by the same method for more than 100 points on the earth and it was
shown that numerous observations of CR geomagnetic effects and the CR equator
agree well, within the error limits, with trajectory computations of cutoff rigidity.
This check gives a serious reason to consider the cutoff rigidities for the worldwide
net of CR stations by McCracken et al. (M1965) as the most accurate values of R,
now available. In McCracken et al. (M1965), the trajectories were integrated with
inclusion of six harmonics of the field in the range 1 rg < r < 3.5rg, five harmonics
for 3.5 < r < 4.0rg, four harmonics for 4.0rg < r < 6.4 rg, three harmonics for
6.4rg < r < 11rg and the first two harmonics in the range of variation of the dis-
tance from the earth’s center 11rg < r < 51 rg, where rg is the radius of the earth.
These computations were made for an altitude of 20 km above the earth’s surface
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because the influence of the geomagnetic field on primary CR particles only was
considered, and the first interaction of these with the nuclei of air atoms takes place
at about this altitude.

3.10.3 Comparison of Different Models of the Geomagnetic Field

How do the vertical cutoff rigidities for CR stations determined by the trajectory-
tracing technique depend upon the geomagnetic field model utilized? To solve
this important problem, Shea and Smart (1975a) calculated effective vertical cut-
off rigidities for 43 CR stations by the trajectory-tracing technique for the epoch
1955 using different geomagnetic field models: Finch and Leaton (1957) and IGRF
developed by IAGA Commission 2 (1969). Results are shown in Table 3.3.

From Table 3.3 it can be seen that the difference between effective vertical cut-
off rigidities for two geomagnetic models lies in the interval from +0.21GV to
—0.08 GV (the average difference is +0.045GV). Shea and Smart (1975a) came to
the conclusion that effective vertical cutoff rigidities for the worldwide network of
CR stations are essentially the same when calculated using comparable field models
for the same epoch.

3.10.4 Cutoff Rigidities for Inclined Directions

Unfortunately, all results described above for R, refer only to vertically incident
particles, whereas actual time variations have been also studied for inclined com-
ponents. Therefore, it is important to extend the trajectory computations of R, to
incidences under various zenith and azimuth angles. To the end of the 1960s this
had been done only for the station Hyderabad (India, 17.6°N, 78.5°E). For this
station, Daniel and Stephens (1966) determined R, by trajectory computations for
zenith angles 0-80° and azimuth angles 0-350°, with intervals of 10°, the first six
harmonics of the actual field being included.

3.11 The CR Penumbral Effects in the Real Geomagnetic Field

3.11.1 The CR Penumbra in Dependence of Delineated Value

The penumbra effects in the dipole approximation were considered in Chapter 2
(Sections 2.4 and 2.5). For determining penumbra effects in the real geomagnetic
field, it is necessary to make a lot of trajectory-traced numerical calculations. The
first question is: What delineated value must be chosen? Figure 3.32 shows Smart
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Table 3.3 Effective vertical cutoff rigidities for CR stations calculated using two geomagnetic field
models for the epoch 1955.0 (According to Shea and Smart, 1975a)

Station name Geographic coordinates Effective vertical cutoff
rigidities (GV)
Latitude Longitude F&L Field IGRF
1 2 3 4 5
Ahmedabad, India 23.01 72.61 15.94 15.82
Alma Ata, Kazakhstan 43.20 76.94 6.73 6.61
Athens, Greece 37.97 23.72 8.70 8.66
Bergen, Norway 60.40 5.32 1.14 1.13
Brisbane, Australia —27.50 153.01 7.21 7.25
Buenos Aires, Argentina —34.58 301.50 10.63 10.58
Chacaltaya, Bolivia —16.31 291.85 13.10 13.07
Chicago, USA 41.83 272.33 1.72 1.69
Climax, USA 39.37 253.82 3.03 3.01
Dacca, Bangladesh 23.70 90.37 16.22 16.05
Dallas, USA 32.78 263.20 4.35 4.37
Deep River, Canada 46.10 282.50 1.02 1.02
Durham, USA 43.10 289.16 1.41 1.39
Gif Sur Yvette, France 48.68 2.13 3.61 3.55
Hafelekar, Austria 47.32 11.37 4.37 4.30
Hermanus, South Africa —34.42 19.22 4.90 4.82
Huancayo, Peru —12.05 284.67 13.45 13.44
Irkutsk, Russia 52.47 104.03 3.66 3.58
Jungfraujoch, Switzerland 46.55 7.98 4.48 4.45
Kerguelen Island —49.35 70.22 1.19 1.22
Kiel, FRG 54.33 10.13 2.29 2.27
Kula, USA 20.73 203.67 13.30 13.23
Leeds, England 53.82 358.45 2.20 2.11
Lomnicky Stit, Slovakia 49.20 20.22 4.00 3.96
Makerere, Uganda 0.33 32.56 14.98 15.06
Mexico City, Mexico 19.33 260.82 9.53 9.46
Mina Aguilar, Argentina —23.10 294.30 12.51 12.46
Moscow, Russia 55.47 37.32 2.46 2.42
Mt. Norikura, Japan 36.12 137.56 11.39 11.18
Mt. Washington, USA 44.30 288.70 1.24 1.26
Mt. Wellington, Australia —42.92 147.24 1.89 1.95
Ottawa, Canada 45.40 284.40 1.08 1.10
Pic Du Midi, France 42.93 0.25 5.36 5.29
Predigtsthul, Germany 47.70 12.88 4.30 4.26
Rome, Italy 41.90 12.52 6.30 6.12
Sacramento Peak, USA 32.72 254.25 4.98 5.02
Sanae, Antarctica —70.30 357.65 1.06 1.00
Sulphur Mt., Canada 51.20 244.39 1.14 1.12
Uppsala, Sweden 59.85 17.58 1.41 1.39
Ushuaia, Argentina —54.80 291.70 5.68 5.68
Utrecht, The Netherlands 52.06 5.07 2.76 2.70
Yakutsk, Russia 62.02 129.72 1.70 1.63

Zugspitze, Germany 47.42 10.98 4.24 4.27
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Fig. 3.32 Illustration of penumbra delineated at 0.001 GV (left in each double column) and
0.01 GV (right) for Palestine (31.75°N, 95.65°W) for the real geomagnetic field of the epoch
1965.0 (IGRF model). White indicates allowed and dark indicates forbidden CR trajectories (Ac-
cording to Smart and Shea, 1975b)

and Shea’s (1975b) results of penumbra trajectory-traced numerical calculations for
two delineated values: 0.001 and 0.01 GV.

Analysis of the results shown in Fig. 3.32 led Smart and Shea (1975b) to the
following conclusion: the main cone cutoff (4.72 GV for penumbra delineated at
0.01 GV and 4.756 GV for delineated at 0.001 GV) and the effective cutoff rigid-
ity (4.48 and 4.468 GV) are quite similar, but there are serious differences in the
Stormer cutoff rigidity (4.38 GV compared with 3.828 GV).

3.11.2 The Concept of the First Forbidden Band in the CR
Penumbra

Smart et al. (2000), in their extended review on the CR geomagnetic effects, ac-
centuated the important role of the pioneering works of Lund et al. (1970, 1971)
and Peters (1974) realizing the use of CR geomagnetic cutoff features to measure
actual CR phenomena. Lund et al. (1971) noted a feature they called the first for-
bidden band that was generally stable and could be used as a sharp edge for isotope
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separation (Byrnak et al., 1981; Soutoul et al., 1981). The concept of this first forbid-
den band is illustrated in Fig. 3.33. The rigidities illustrated are the relatively simple
trajectories that intersect the solid earth as the rigidity scan passes through the upper
cutoff rigidity. These relatively simple trajectories, forming the first forbidden band,
also form a relatively stable and persistent feature of the CR penumbra. They gen-
erated the sharp edge that the HEAO 3 experimenters used for isotope separation
(Copenhagen-Saclay, 1981).

According to Smart et al. (2000), the specific feature of the first forbidden band
can also be used as a check of the absolute accuracy of the trajectory calculations.
The concept is that 100% of the CR flux is transmitted at rigidities above the rigidity
of the first forbidden band. The first forbidden band is the fiducially mark that nor-
malizes both the theoretical and observed transmission. The transmission decreases
as a function of rigidity as the forbidden bands in the CR penumbra block particle
access. The trajectory calculations offer a prediction of the rigidity of the first for-
bidden band and the relative transmission through the CR penumbra (see for more
detail in Section 3.12).

3.11.3 Penumbral Width in Dependence of Vertical Cutoff Rigidity
for Different Epochs

The penumbral width A is determined as the difference between the main cone cutoff
rigidity and Stormer cutoff rigidity. In Smart and Shea (1975b), on the basis of
trajectory-traced penumbra function calculations penumbra widths for each location
for world grids at epochs 1955.0, 1965.0, and 1975.0 of real magnetic field models
were determined. Results are shown in Fig. 3.34 for the epochs 1955.0, 1965.0,
and 1975.0.

According to Smart and Shea (1975b), the examination of Fig. 3.34 suggests that,
up to about 10 GV, the width A of the penumbra is fairly well ordered when using
the main cone vertical cutoff rigidity R, as an ordering parameter; a least-squares
fit to the data for each epoch results in the following relationships:

A(1955.0)=0.098R:32° A (1965.0)=0.138R%:17! " A(1955.0)=0.140R} "
(3.137)

where A is in GV.
3.11.4 Effective Vertical Cutoff Rigidities for Different CR

Detectors and Types of CR Variations

The problem of determining the effective vertical cutoff rigidities for different CR
detectors and types of CR variations in the dipole approximation of the geomag-
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Fig. 3.34 The penumbral width A vs. main cone vertical cutoff rigidity for the epochs 1955.0,
1965.0, and 1975.0 (According to Smart and Shea, 1975b)

netic field was considered in detail in Chapter 2 (Section 2.7). We described in
Eqgs. 2.123-2.129 how the effective vertical cutoff rigidity can be determined for
different geomagnetic latitudes, different CR detectors, and different types of CR
variations if the penumbra function f(R) is known. Table 2.2 and Fig. 2.11 show
how for three geomagnetic latitudes 30°, 40°, and 50° the effective vertical cutoff
rigidity changed for different types of observations in dependence of the rigidity
spectrum of primary CR variation. Let us note that Eqs. 2.123-2.129 may also be
used for the case of the real geomagnetic field. Only for each point of observa-
tion it is necessary to use the specific penumbra function f (R) determined from
numerical trajectory calculations in the interval Ry, — Rmax Where it takes the val-
ues 0 or 1 correspondingly for forbidden and allowed trajectories, and f(R) =0
at R < Ruyin, f(R) =1 at R > Rpax. Therefore, for the real geomagnetic field the
effective geomagnetic cutoff rigidity R for a type i detector recorded on the some
altitude with pressure h,, characterized by the polar coupling coefficient W,; (R, /),
and a type k variation of the primary spectrum A¢D (R) /D (R) will be determined
by the equation

Rmax Rinax
/ f(R)W,i (R, h,) AZD(I(;;)“R— / W,i (R, h,)

Rpin cik

AD(R)

D) dR. (3.138)

In the relatively small interval Ry,in — Rmax, the coupling coefficients can be repre-
sented in the form of a power function

Woi (R, hy) o< R, (3.139)

where a is positive in the low-energy region and negative for large R. Similarly, the
primary variation can be represented in this interval by
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AMD(R)

The integrand on the right-hand side of Eq. 3.138 can then be written as

AyD (R)

Wi (R, ) D)

—AXRY, (3.141)

where Y= a+b and A is a constant, irrelevant for further computations. The function
f(R) can be represented in the form

1 for Rou—1 <R < Ry,

FR) = { 0 for Roy <R <Ryt (3.142)

where m are integers, and 1 < m < n with R| = Ryin, Ron+1 = Rmax. Substitution of
Eq. 3.142 into Eq. 3.138, taking into account Eq. 3.141, gives

Y (RL BRI ) = REG — (Re (o)™ (3.143)
m=1

whence we find for the required effective cutoff rigidity

Rcik (h()) =

m=1

T~ 1 1 mr
Riaw— Y (jo,; Rg;_l)l . (3.144)

For the actual geomagnetic field, f(R) was computed in Shea et al. (1965b) for
four different points (Fig. 3.35).

39.8°S 225°E

] 516°S8 23.7°E

18 20 22 24 26 R (GV)

Fig. 3.35 Penumbra function f.. for four points based on a field model with six spherical harmonics:
I, II, 111, and IV are based on Finch and Leaton (1957) for the epoch 1955.0 (According to Shea
et al., 1965b)
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Fig. 3.36 Effective cutoff rigidity in the actual geomagnetic field as a function of y for points I-IV
with coordinates shown in Fig. 3.35 (According to Dorman and Gushchina, 1967)

The corresponding effective cutoff rigidities R (h,) as a function of the expo-
nent Y = a + b, are given in Fig. 3.36.

With the aid of Fig. 3.36, the expected variations of R (h,) for various CR com-
ponents and different types of variation can easily be found (see Table A3.12). Even
in a quiet period at point I R (h,) varies between 7.901 and 8.037 GV depending
on the type of component recorded. The corresponding intervals for the points I-IV
are: 4.700-4.757 GV, 4.603-4.651 GV; 3.680-3.795 GV; and 2.0135-2.0240 GV.

As can be seen from Table A3.12, important changes are expected for CR vari-
ations of different origin. Namely, for the neutron component at sea level in inter-
vals: 7.938-7.78 GV, 4.718-4.677 GV, 3.716-3.637 GV, and 2.0225-2.0045 GV for
the points I, II, III, and TV, correspondingly. For the hard component at sea level
in intervals: 7.987-7.825 GV, 4.730-4.689 GV, and 3.747-3.668 GV, for points I, II,
and III. It should be pointed out that the effective R (h,) also depends on the rep-
resentation of the field. According to Dorman and Gushchina (1967), for point II the
difference between the two representations (Finch and Leaton, 1957 and Jensen and
Cain, 1962) in a quiet period is 0.097 GV for recording on low satellites, 0.093 GV
for the neutron component at sea level, and 0.112 GV for the hard component at
sea level.
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3.12 CR Rigidity Transmittance Functions

3.12.1 The Concept of the Transmittance Function and Two
Methods of Calculation

According to Shea and Smart (1971) and Shea et al. (1973), the CR rigidity transmit-
tance function is the evaluation of the fraction of allowed trajectories at a specified
rigidity that can be detected by a CR experiment possessing a finite solid angle of ac-
ceptance. This function was introduced for the first time in Shea and Smart (1971).
In order to obtain the rigidity transmittance function T (R, A, @,H), it is necessary
to calculate the fraction of allowed trajectories F (R,A, @, H,0,¢) at a given rigidity
R, latitude A and longitude ¢, and altitude H arriving in the direction describing by
zenith angle 0 and azimuthal angle ¢. The function F (R,A,¢,H,0,¢) must then
be weighted by the differential geometric factor dG (6, ¢) /d6d¢ of the CR experi-
ment, as described by the following equation (Lezniak et al., 1975):

JF(RA,0,H.6,9)(dG(6,9)/d0d¢)dodo
8¢

gq{ (dG (6,0)/d6d¢) d6de

T(R,A,@,H) = (3.145)

There are two methods for calculating the CR rigidity transmittance function.

The first method: trajectory-traced calculations. Shea et al. (1973) assumed that
the CR trajectory calculations for a specific zenith and azimuth (considered to be the
midpoint of a small solid angle) typify the CR rigidities allowed (or forbidden) for
a finite solid angle. The calculations of the trajectories were made by the trajectory-
tracing method (see Section 3.5) used in McCracken et al. (1962), Shea et al. (1965)
for the epoch 1965.0 according to the geomagnetic field model IAGA (1969) for CR
research on balloons at Dallas, Palestine, and Midland. For the Palestine trajectory
calculations were performed every 5° in zenith and 30° in azimuth (total 217 dif-
ferent zenith and azimuth angles). For example, the set of trajectory calculations
for the zenith angle 15° and azimuth angle 60° is considered to be representative
of all trajectories in the solid angle boundaries by 12.5-17.5° in zenith and 45-75°
in azimuth. To illustrate this, Fig. 3.37 shows penumbra functions for zenith angles
15°, 30°, and 45°, as the first step in the calculation of the transmittance function.
The second step is the determination of effective cutoff rigidities in each direction
(as described in Section 3.11), and then integrating over the acceptance solid angle.

The second method: empirical by using the Stormer equation. The above-
described trajectory-traced method of CR rigidity transmittance function calcula-
tion is very complicated, and needs a lot of computer time; it can be applied to
several important points, but for many CR stations, it is better to apply the empir-
ical method by using the Stormer equation proposed by Shea et al. (1973). The
idea of this method is to use vertical effective cutoff rigidity R., determined by
trajectory-traced calculations, and then determinethe effective geomagnetic latitude
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Fig. 3.37 The first step of CR rigidity transmittance function calculation by the trajectory-
traced method. Illustration of penumbra calculated at zenith angles of 15°,30°, and 45°
for Palestine (Texas, USA). The azimuthal directions are (from left to right): 277°,307°,
247°,337°,217°,7°,187°,37°,157°,67°,127°, and 97°. All azimuthal directions are measured
clockwise from the north. For comparison, penumbra for the vertical direction is also shown
(denoted by the letter V) (According to Smart and Shea, 1975b)

Aet according to the expression

1/4

Aef = arccos (R(,‘,/(ME/rz)) (3.146)

where Mg is the dipole magnetic moment of the earth, and r is the distance from
the point of CR measurements to the center of the dipole. In this case, an approxi-
mate value of cutoff rigidity in any direction can be calculated very easily by using
the Stormer equation determining the main, open cone (see Chapter 2):
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Fig. 3.38 The comparison of results obtained by empirical and trajectory calculated methods of
determining the CR rigidity transmittance function for Palestine (Texas, USA) for CR detectors
possessing 45° and 60° half-angle apertures (left and right panels, correspondingly) (According to
Shea et al., 1973)

Mg cos* A,
Re(1,0,0,Aef) = £ of —7 (3.147)
r? (1+(1 — sin O sin ¢ cos3 Aef) /)

where 0 is the zenithal angle, and ¢ is the azimuthal angle. After determining
R (1,0, ¢, Aef), it is necessary to make integration over 6 and ¢ covered all accepted
solid angles.

Figure 3.38 shows the comparison of results obtained by the above-described two
methods of determining the CR rigidity transmittance function for Palestine (Texas,
USA) for CR detectors possessing 45° and 60° half-angle apertures.

3.12.2 The Dependence of Transmittance Function Calculation
Accuracy from the Delineated Value

In Bobik et al. (2001) the transmittance functions, using the Tsyganenko (1989)
field model, are calculated with rigidity delineated values AR = 1073, 107#, and
1073 GV, for the high-latitude CR station Oulu (65.05° N, 25.47° E). Results are
shown in Fig. 3.39.

From Fig. 3.39 sufficient difference can be seen between calculated transmit-
tance functions for 1073 GV and 10~* GV delineated values, but for 10~ GV and
1075 GV delineated values, the difference between calculated transmittance func-
tions is negligible. From this it follows that, for high-latitude sites, the optimum
delineated value is 1074 GV.
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3.12.3 The Dependence of Transmittance Function Calculation
Accuracy from the Number of Azimuthal Directions

Figure 3.40 shows results of Smart and Shea’s (1975a) calculations using the
trajectory-traced method of transmittance functions for Sioux Falls, Cape Giradeau,
and Palestine for two cases: when transmittance functions are calculated on the basis
of 4 and 12 azimuthal directions. From Fig. 3.40 it can be seen that most exact re-
sults gave calculations of transmittance functions on the basis of 8 and 12 azimuthal
directions.

For Dallas and Midland, calculations were made for a total of 73 different zenith
and azimuth angles. Results are shown in Fig. 3.41 in comparison with those ob-
tained for Palestine.

3.12.4 On the Influence of Ionization Losses on the Transmittance
Function

Lezniak et al. (1975) investigated the influence of ionization losses on the transmit-
tance function. The ionization losses of a CR primary particle in the atmosphere
were considered in detail in Rossi (M1952) and by Sternheimer (1959):
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Fig. 3.40 Transmittance functions calculated by the trajectory-traced method for Sioux Falls, Cape
Giradeau, and Palestine on the basis of 4 azimuthal directions (fop panel) and of 8 and 12 azimuthal
directions (bottom panel) (From Smart and Shea, 1975a)

d(Ec/A) A n-1/2 ,\ GeV /nucleon
= 1536 10 W(9.30+Zln<ﬁ(l—ﬁ) )-8 )W
(3.148)

where E} /A is the kinetic energy per nucleon of a primary CR particle with charge
Ze, B is the particle velocity divided by light velocity, and x is the distance along
the trajectory in g/ cm?. For determining x, it is necessary to know the distribution
of air density p (H) depending on altitude H that can be described by the equation
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Fig. 3.41 Transmittance functions calculated by the trajectory-traced method for Dallas and
Midland in comparison with those obtained for Palestine (According to Shea et al., 1973)
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where the atmospheric temperature profile 7(H) used in Lezniak et al. (1975) is
shown in Fig. 3.42.

In Fig. 3.43 the transmittance function for the balloon experiment at an altitude
of 40 km over Cape Giradeau is shown for oxygen primary CR particles in the case
where ionization losses have been considered.

A comparison of smoothed transmittance functions for Cape Giradeau calculated
without energy loss along particle trajectories (see Fig. 3.39) and taking into account
energy loss along particle trajectories (see Fig. 3.43) is shown in Fig. 3.44.
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Fig. 3.44 Comparison of CR rigidity transmittance functions for Cape Giradeau for different as-
sumptions (According to Lezniak et al., 1975)

It can be seen from Fig. 3.44 that, for CR primary particles with Z = 6 and
more, the account of ionization losses along particle trajectories is sufficient for
calculations of CR rigidity transmittance functions.

3.12.5 On the Checking of the Theoretically Calculated CR
Rigidity Transmittance Functions by Balloon Experiments

Webber et al. (1975) described the experiment which can be used for checking
the theoretically calculated CR rigidity transmittance functions. The experiment
was made during balloon flights at Cape Giradeau (R, = 2.62GV) and Sioux
Falls (R, = 1.71GV) using CR telescopes (including Cherenkov counters) of high-
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energy resolution. Near the cutoff, the energy resolution of Cherenkov counters was
~60 MeV /nucleon. As was shown in Webber et al. (1975), one can study details
of both the isotopic composition of CR and the rigidity cutoff of the earth’s mag-
netosphere by examining the pulse-height distributions obtained for the various CR
charges in a Cherenkov detector onboard a high-altitude balloon at a latitude where
the rigidity cutoff is slightly above the threshold energy of the Cherenkov detector
or with a scintillation X total energy measurement when the rigidity cutoff is be-
low the Cherenkov threshold. If we select a CR element which we know consists
essentially of a single isotope (e.g., oxygen), then we can study the shape of the
rigidity transmittance function and compare it with one that is theoretically deter-
mined. On the other hand, if we know exactly the rigidity transmittance function, we
may study the cutoff effects of other CR nuclei thus deriving information on their
isotopic composition.

Figure 3.45 presents a pulse-height distribution obtained for CR oxygen nuclei
using a lucite Cherenkov detector onboard a high-altitude balloon from Cape Gi-
radeau (the solid curve denotes the expected distribution in the absence of geomag-
netic cutoff).

In order to determine the details of the rigidity cutoff, Webber et al. (1975) had
taken various possible rigidity transmittance functions and used them to calculate
pulse-height distributions, which were then compared with experimental data as
shown in Fig 3.45. In Fig. 3.46 a comparison between the observed and calculated
pulse-height distributions is presented for two assumed forms of the rigidity trans-
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Fig. 3.45 Observed pulse-height distribution obtained for CR oxygen nuclei with a lucite
Cherenkov detector onboard a high-altitude balloon from Cape Giradeau. The expected distrib-
ution in the absence of geomagnetic cutoff is shown by the solid curve (According to Webber
etal., 1975)
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Fig. 3.46 Comparison of observed and calculated pulse-height distributions. The observed pulse-
height distribution is the same as that presented in Fig. 3.45, and is reproduced twice at the lower
pulse height channels so that it may be readily compared with the two separate calculations of the
pulse-height distribution obtained under different assumptions of the shape of the rigidity cutoff
(According to Webber et al., 1975)
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Fig. 3.47 Rigidity transmittance functions for Cape Giradeau for a CR telescope with a half-
acceptance angle of 30° for different assumptions (According to Webber et al., 1975)

mittance function: one which is predicted theoretically using the trajectory-tracing
technique (see Sections 3.12.1-3.12.3) and one which represents a sharp cutoff.

In Fig. 3.47 a plot is presented of the rigidity transmittance functions used to
generate the calculations shown in Fig. 3.46.
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As was shown by Webber et al. (1975), the observation data are consistent (see
Fig. 3.46) with a sharp cutoff but are also consistent with a somewhat more grad-
ual transmittance function, as shown in Fig. 3.47. This gradual transmittance func-
tion was obtained from the observation data by using a numerical deconvolution
technique to invert the integral equation and so obtain the product of the rigidity
transmittance function and the kinetic energy spectrum. Then, by dividing the ob-
tained result on the kinetic energy spectrum, the rigidity transmittance function was
determined (as shown in Fig. 3.47).

3.12.6 On Checking the Theoretically Calculated CR Rigidity
Transmittance Functions by Satellite Experiments

According to Smart et al. (2000), the difference between the predicted transmission
and the observed transmission seen in the satellite experiment is an indication of the
accuracy of the trajectory calculations. The HEAO-3 experimenters (Copenhagen-
Saclay, 1981) found that, at 5 GV, the experimentally observed first forbidden band
in their 1°0 data set was about 5% lower than predicted by the trajectory calculations
using the IGRF internal field. These results are shown in Fig. 3.48.

However, at about 2 GV larger differences were found between the experimen-
tal observations of the first forbidden band and the trajectory calculations utilizing
the IGREF field model. There was a larger shift between the predicted and observed
rigidity of the first forbidden band, as shown in Fig. 3.49, and the observed penum-
bra was more transparent than predicted by the trajectory calculations.
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Fig. 3.48 Calculated and experimentally observed CR cutoff at 5GV by the HEAO-3 experi-
ments at an altitude of 400 km. The heavy line indicates the predicted transmission through the
CR penumbra obtained by trajectory calculations in the internal geomagnetic field. The light line
indicates the observed average transmission derived from several thousand primary CR oxygen
nuclei (According to Copenhagen-Saclay, 1981)
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Fig. 3.49 Calculated and experimentally observed CR cutoff at 2 GV by the HEAO-3 experiments
at 400 km altitude. The solid line indicates the predicted transmission through the CR penumbra
obtained by trajectory calculations in the internal geomagnetic field. The dashed line indicates
the observed average transmission derived from several thousand oxygen nuclei (According to
Copenhagen-Saclay, 1981)

The results shown in Fig. 3.49 indicate the inadequacy of trajectory calculations
using only the internal geomagnetic field to describe the trajectory of charged par-
ticles in the magnetosphere. These results also strongly suggest (Smart et al., 2000)
that at rigidities below a few GV, the use of magnetospheric models is essential for
reliable CR trajectory calculations.

3.12.7 Transmittance Function Approach to Disentangle Primary
Jfrom Secondary CR Fluxes in the Penumbra Region

According to Bobik et al. (2006), the AMS-01 observations (in June 1998, on-
board the space shuttle orbiter Discovery) have shown the presence of primary
and secondary CRs (most of them protons) at a low earth orbit (at about 400 km
of altitude). In this paper the transmittance function has been determined for each
of the ten geomagnetic regions (see Table 3.4 and Fig. 3.50), M = 1,2,3,...10,
for which the AMS-01 data are available and is indicated by 7j,. These regions
are defined by means of the corrected geomagnetic coordinates (CGM, see in
http://nssdc.gsfc.nasa.gov/space/cgm/cgm.html). CGM coordinates (latitude and
longitude) of a point in space are computed by tracing the DGRF/IGRF magnetic
field line through the specified point to the dipole geomagnetic equator, then return-
ing to the same altitude along the dipole field line and assigning the obtained dipole
latitude and longitude as the CGM coordinates to the starting point.
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Table 3.4 Geomagnetic regions covered by AMS-01 measurements and kinetic energies corre-
sponding to each geomagnetic zone (From Bobik et al., 2006)

Region M CGM latitude 6, (rad) Kinetic energy (GeV)
1 [6m] <0.2 6.16
2 02< |6y <03 6.16
3 03<|6m| <04 4.88
4 0.4<|6m| <05 3.00
5 0.5<|6m| <0.6 3.00
6 0.6 <|6ym| <0.7 1.78
7 0.7<|6m| <0.8 1.35
8 0.8 <|6m| <09 0.74
9 09<|m| <1.0 0.27
10 [6m]| > 1.0 0.07

Latitude (°)

;50‘ - IO —
Longitude (°)

Fig. 3.50 The ten geomagnetic regions (M) covered by AMS-01, defined in Table 3.4, are shown
on the background of the Earth surface. A typical trajectory of AMS-01 detector onboard the space
shuttle, at an altitude of about 400 km, is also plotted. The space shuttle trajectory shifts with time
and covers the earth’s surface almost uniformly inside a geographic latitude |81, | < 51.6° (From
Bobik et al., 2006)

Bobik et al. (2006) note that the Ty requires the determination of the allowed tra-
jectories of the particles entering the AMS-01 spectrometer, following a backtrack-
ing procedure. The 3,600 locations of the particles to be backtracked are distributed
uniformly over a complete sphere surrounding the earth at an altitude of 400 km
and 78.9% of them are within the geographic latitudes of the orbits of the space
shuttle, i.e., |Bg1a| < 51.6°, excluding the South Atlantic anomaly region. The 270
particle directions are isotropically distributed within the outward hemisphere and
inside the 32° acceptance cone (around the local geocentric zenith) of the AMS-01
spectrometer. In addition, a large number of particle directions covering up to the
full outward hemisphere have been backtracked to investigate the Ty; dependence
on the acceptance cone. The Ty has been computed for the same 31 rigidity in-
tervals of the AMS-01 data (see in Aguilar et al., 2002, Table 4.5), i.e., the lowest
rigidity value is about 0.37 GV and the largest is about 200 GV. To take into account
the energy dependence of the proton flux, each energy interval has been subdivided
into ten equally spaced subintervals. The subintervals have been weighted according
to the function of their relative fluxes. Within the acceptance cone of the AMS-01
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spectrometer, about 2.3 x 108 particle trajectories have been reconstructed back to
the magnetopause or to the atmosphere.

For the ten geomagnetic regions, the Ty has been averaged over all uniformly
distributed locations:

Ty (Ry) = Y o Ronivt) (3.150)
in Yim

where R, is the particle rigidity in the bth rigidity interval of width ARy, Ty (Rp, iy )
is the transmittance function for the position iy inside the geomagnetic region
M, and Xij, is the total number of locations for the same region. For the location
iMm, Tv (Rp,ipm) is given by:

10 ~NiM R
Ty (Rp,ip) = Z e ‘;b.s alll\(ﬂ[\:),.\) —,
s=1 Vg ( h,s) + forb ( h,s)

(3.151)

where R;, ¢ and wy, ¢ are the mean rigidity and weight of the sth subinterval of the
width AR, /10 for the bth rigidity bin, N;’yl and N}"Zrb are the numbers of allowed
and forbidden trajectories, correspondingly.

In Fig. 3.51, the Ty for the ten different AMS-01 geomagnetic regions (given
in Table 3.4) and during the STS-91 AMS-01 flight are shown as a function of the
proton kinetic energy in GeV. As expected, toward the polar regions lower-energy
particles can reach the AMS-01 orbit through the magnetosphere. In Fig. 3.52 the
transmittance functions for the first and tenth geomagnetic regions are shown as
functions of the proton kinetic energy for detector acceptance cones of 32° (i.e., the
AMS-01 acceptance cone) and 45° (i.e., the expected AMS-02 acceptance cone)

0.1 1.0
Kinetic energy (GeV)

Fig. 3.51 Transmittance function Ty evaluated for AMS-01 regions during the STS-91 mission
flight time (June 1998) as a function of the proton kinetic energy in GeV. The lines are to guide the
eye (From Bobik et al., 2006)
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Fig. 3.52 Transmittance function for: a 7} and b 7} in dependence of the proton kinetic energy
for detector acceptance cones of 32° and 45° around the local geocentric zenith. The lines are to
guide the eye (From Bobik et al., 2006)

around the local geocentric zenith. The smaller the acceptance cone, the steeper the
Ty becomes. However, for geomagnetic regions beyond the fifth, the transmittance
functions become similar.

The major contributions to the quoted errors for the transmittance functions in
Figs. 3.51 and 3.52 are about 1.4% for the uncertainty of the spectral index of the
primary proton spectrum used in the subintervals, about 1% for AMS-01 altitude
variation during the observation time, and about 1.5% (in total) for the algorithm
accuracy, treatment of the magnetic field model, and procedure of the speed op-
timization. Furthermore, although the Ty has been computed for June 8, 1998,
at 10.00 UT, the Ty does not vary by more than 0.1% during the AMS-01 ob-
servation duration at different daytimes for fixed geomagnetic condition (constant
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Dy = —22nT, evaluated as average for full AMS-01 mission flight time). Thus in
the ten geomagnetic regions, the AMS-01 observed flux has been set (and indicated
with <I>K,?§V (Rp)) at 1 AU for rigidities larger than those of the penumbra region for
each geomagnetic region:

D47 (R, Tir (Ry) = 1) = Prav (R, Tyt (Ry) = 1). (3.152)

For rigidities where Ty, (R,) = 0, i.e., below the penumbra rigidities in each geo-
magnetic region, the observed fluxes have not been corrected, i.e.,

D47 (Ry, Tir (Ry) = 0) = ®47* (R, Tar (Rp,) = 0). (3.153)

Inside the penumbra regions for which 0 < Tjs (Rp) < 1, the observed fluxes in each
geomagnetic region M have been corrected to take into account(l) the effective
detection of high-energy particles, i.e., the average difference among the observed
flux and the corresponding flux at 1 AU in each rigidity bin above about 20.5 GeV
of kinetic energy (these are energies large enough to neglect the geomagnetic-
dependence of the regions), and (2) the effective detection for each penumbra
rigidity bin, i.e., the average difference among the observed flux and the corre-
sponding flux at 1 AU in the same rigidity bin of the successive regions (with larger
geomagnetic latitudes) where Ty = 1. As an example, in Fig. 3.53, the fluxes per
units of solid angle Cbﬁ’j\, (Rp) are shown for the geomagnetic regions 1, 4, 7, and 10
as functions of the proton kinetic energies. The errors accounting for the correction
procedure have been added quadratically to the published errors for the observed
fluxes from Alcaraz et al. (2000a). For the AMS-01 observations, the predicted pri-
mary CR fluxes per unit of solid angle @y (R,) are obtained by convolving the
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Fig. 3.53 Normalized fluxes per units of solid angle are shown for the geomagnetic regions M = 1,
4,7, and 10 as functions of the proton kinetic energies. The lines are to guide the eye (From Bobik
et al., 2000)
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transmittance function of each geomagnetic region M with the estimated AMS-01
flux @4y (Rp) (given in Alcaraz et al., 2000b) at 1 AU, i.e., outside the magne-
tosphere, as functions of the proton rigidity Rj. Thus, it will be

Dyr (Rp) = Prav (Rp) T (Ry) - (3.154)
The secondary CR fluxes per unit of solid angle ®j}, (R,) can be obtained as
P} (Ry) = Dify (Ry) — Par (Ry) - (3.155)

As examples, in Figs. 3.54-3.57 the fluxes per units of solid angle @4y (R)),
Py (Rp),and ®j, (Rp,) are shown as functions of the proton kinetic energy for the
first, fourth, seventh, and tenth geomagnetic region. The quoted errors for the fluxes
@)/ (Rp) and @}, (Rp) have been derived by the error propagations from those of the
transmittance functions Ty (Rp) and fluxes @14 (Rp) and D575, (Rp).

Bobik et al. (2006) came to the following conclusions:

1. The AMS-01 observations (in June 1998, onboard the space shuttle orbiter Dis-
covery) have shown the presence of primary and secondary CRs at a low earth
orbit, i.e., at an altitude of about 400 km.

2. Most of these secondary CRs are trapped or fast reentrant albedo protons created
in interactions with the atmosphere by fast incoming primary CRs.

3. Some secondary particles seem to be sufficiently energetic to populate the
penumbra region above the local geomagnetic cutoff rigidity.

4. A backtracking procedure of simulated protons entering the AMS-01 spectrome-
ter provides the fraction of allowed (and hence forbidden) trajectories of primary
CRs. Consequently, it allows determining of the transmittance function describ-
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Fig. 3.54 Fluxes per units of solid angle as a function of the proton kinetic energy for M = 1
geomagnetic region: @4y (Rp,) — open circles, ®p—; (R),) —solid circles), and ®},_, (R;,) — squares
(From Bobik et al., 2006)
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Fig. 3.56 The same as in Fig. 3.54, but for M = 7 geomagnetic region

ing the transport properties of primary CRs to the space surrounding the earth (at
an altitude of about 400 km) from the upper limit of the geomagnetic field, i.e.,
the magnetopause located at 1 AU.

5. The transmittance function finally allows determining of fluxes of the primary
CRs in the ten geomagnetic regions for AMS-01 observations.

6. The observed spectra of the AMS-01 geomagnetic regions are found to be larger
that those predicted for the primary CRs in the penumbra region by the trans-
mittance function procedure, i.e., some secondary CRs (mainly reentrant albedo
protons) are also found to populate the spectrum above the local geomagnetic
cutoff rigidity.
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Fig. 3.57 The same as in Fig. 3.54, but for M = 10 geomagnetic region

8. The fraction of the secondary to overall particle flux in the penumbra region
increases gradually to more than about 28% in the ninth geomagnetic region (i.e.,
for latitudes between 0.9 and 1.0 rad); owing to earth shadowing, this excess is
only present in the downward proton flux.

9. The models IGRF (1992) and Tsyganenko96 (Tsyganenko and Stern, 1996) of
geomagnetic fields used to determine the transmittance function can be extrap-
olated for the coming years, as a consequence the transmittance function can
be derived for the same period of time. Since the modulated CR spectrum at
1 AU can also be estimated for coming years, it becomes possible to predict
particles fluxes at any observation location of future experiments inside the mag-
netosphere.

3.13 Obliquely Incident Particles and Apparent Cutoff Rigidities

Obliquely incident particles have been considered in the computations of
asymptotic-approach directions (Rao et al., 1963; Cramp et al., 1995). Stoker
(1995) suggested that oblique particles might also be responsible for anomalies in
neutron monitor latitude surveys. Clem et al. (1997) proposed an operational def-
inition of a parameter that they named the “apparent” cutoff rigidity. The apparent
cutoff rigidity is defined as that rigidity which, if uniform over the whole sky, would
yield the same neutron monitor counting rate as the real, angle-dependent, cutoff
rigidities distribution. Clem et al. (1997) calculated propagation of primary CR
particles through the earth’s atmosphere with the three-dimensional Monte Carlo
transport program FLUKA (FLUctuating KAscades) maintained at INFN in Milan,
Italy (Fasso et al., 1993). An initially isotropic distribution of primary particles
is filtered through a map of the effective geomagnetic cutoff rigidities calculated
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for each geographical location and the surviving particles transported through the
atmosphere. The simulated ground-level particle intensities, folded with the NM-64
detector response, are then used to calculate a geographically dependent NM-64
counting rate. One important result of these calculations is that the response with
an increasing angle of incidence, falls less rapidly than predicted by an exponential
relationship on sec(0) as would be expected from a simple attenuation model.
Scattering in multiple inelastic interactions removes most memory of the primary
incidence direction from a daughter particle at sea level. Such multiple interactions
thus reduce the attenuation of obliquely incident particles. Figures 3.58 and 3.59
illustrate these calculations for two different locations.

In each case the cutoff map was obtained by computing the effective cutoff rigidi-
ties in 41 separate directions, and then using a standard contour plotting algorithm
to generate the map (these calculations take about three days of CPU time on a DEC
Alpha workstation for one position). In Fig. 3.58, the apparent cutoff rigidity found
is close to the vertical cutoff rigidity, whereas in Fig. 3.59 there is a substantial
difference between the apparent and vertical cutoff rigidities. The primary conclu-
sion of Clem et al. (1997) is that the apparent cutoff rigidities provide a far superior
ordering of the CR latitude survey data sets.

While the apparent cutoff rigidity is clearly superior to the vertical cutoff rigidity
in ordering the data, it also takes about 40 times as long to calculate. Bieber et al.
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Fig. 3.58 Effective cutoff rigidities map for location 48.19°S, 77.02°W. Vertical cutoff rigidity is
7.37 GV, and apparent cutoff rigidity is 7.38 GV. Solid dots show the locations where cutoffs are
calculated for the ring approximation (According to Bieber et al., 1997)
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Fig. 3.59 The same as in Fig. 3.58, but for location 43.92°S, 76.64°W. Vertical cutoff rigidity is
8.23 GV, and apparent cutoff rigidity is 8.65 GV (According to Bieber et al., 1997)

(1997) therefore tried to find what approximations may be valid. A first approxima-
tion is of course a simple trend line such as that shown in Fig. 3.60. Such a line is
probably sufficient to allow latitude surveys analyzed with apparent cutoff rigidities
to be compared with surveys using vertical cutoff rigidities. Most truly systematic
effects on derived particle spectral indices should be reduced greatly using this de-
vice. It is interesting to note that the “world grid” cutoff rigidities all lie close to
the trend line, in distinction from those emerging from the Clem et al. (1997) analy-
sis. That analysis was, however, specifically prompted by a large anomaly in the
counting rates, ultimately traced to the structure observed between 6 and 10 GV
in Fig. 3.60.

In an attempt to find a faster way to calculate cutoffs in such a region — or perhaps
as a way to identify such regions — Bieber et al. (1997) have considered an approach
reminiscent of that employed by Rao et al. (1963). Bieber et al. (1997) consider ef-
fective cutoffs computed for nine directions (large black dots in Figs. 3.58 and 3.59).
Their approximation to the apparent cutoff is the average of the vertical cutoff rigid-
ity and the average cutoff rigidities over the ring at 30° off vertical. They used a
weight of 1/2 for the vertical cutoff rigidity, and for the eight cutoffs at 30° a weight
of 1/16 each. Figure 3.61 shows the result of this approximation, i.e., the difference
between the ring method approximation of cutoff rigidity and the apparent cutoff
rigidity as function of vertical effective cutoff rigidity.
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Fig. 3.60 Difference between apparent and vertical cutoff rigidities as a function of effective ver-
tical cutoff rigidity (According to Bieber et al., 1997)
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Fig. 3.61 Difference between apparent and vertical cutoff rigidities as a function of effective ver-
tical cutoff rigidity (From Bieber et al., 1997)
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A comparison of Figs. 3.60 and 3.61 shows most of the large scale-trend is re-
moved in this approach and a significant amount of the fine structure as well. Specif-
ically, the RMS error from the trend line in Fig. 3.60 is 0.08 GV, whereas the scatter
is reduced to 0.05 GV in Fig. 3.61 (relative to the trend line shown there). Most en-
couraging is the “anomalous” structure in Fig. 3.60 which is reproduced fairly well
under the ring approximation in Fig. 3.61. Scatter in this region is no worse than it
is for the “world grid” points.

3.14 Simulation of the Geomagnetic Cutoff Rigidity Angle
Distribution with the GEANT-3 Computing Program Using
the Data of the International Geomagnetic Reference
Field

3.14.1 Importance of the Exact Knowledge of the CR Cutoff
Rigidity Angle Distribution for the Problems of Atmospheric
Neutrino and Other Secondary Particles Generated
in the Earth’s Atmosphere

As pointed out by Wentz et al. (2001a), a precise knowledge of the CR geomagnetic
cutoff rigidity R, angle distribution is a substantial ingredient in any calculation
of low-energy particle fluxes in the earth’s atmosphere. Especially the calculation
of atmospheric neutrino fluxes for the investigation of the Atmospheric Neutrino
Anomaly, requests precise directional-dependent tables of R, functions. The Super-
Kamiokande experiment in Kamioka, Japan, delivered the most precise results on
the Atmospheric Neutrino Anomaly (Fukuda et al., 1998), existing substantial dif-
ferences between neutrinos produced above the detector, and the neutrinos produced
in the antipode region in the South Atlantic. This observation is commonly inter-
preted as clear evidence for neutrino oscillations. Nevertheless, there are also geo-
graphical differences between Japan and the South Atlantic which have to be taken
into consideration. Due to the South Atlantic Magnetic Field Anomaly, the geo-
magnetic cutoff in Japan is about 50% higher than at the opposite point of the earth.
In addition, the experimental observation of a directional East—West dependency of
the neutrino fluxes (Futagami et al., 1999) has to be accounted mainly to the asym-
metry in the primary particle flux caused by R., while the deflection of charged
secondary particles, like pions and muons in the atmosphere, plays a minor but not
negligible role (the problem of geomagnetic field influence on CR secondary com-
ponents generated and propagated in the atmosphere will be consider in more detail
in Section 3.15).

In Wentz et al. (2001a) the International Geomagnetic Reference Field is used in
a GEANT-3 simulation to calculate R, for CRs entering the earth’s magnetic field.
The calculations are made using the backtracking method, where antiprotons start
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from the top of the atmosphere and are tracked to outer space. The R, functions are
estimated for protons in rigidity steps of 0.2 GV for 131 directions in 1,655 locations
covering, in a nearly equidistant grid, the surface of the earth. For special locations,
where neutrino or low-energy muon data have been measured, the R, functions are
calculated in a fine grid of 21,601 directions.

The estimated R, can be verified by the experimental results for primary protons
and helium nuclei measured in different geomagnetic latitudes during the Shuttle
mission of the AMS prototype. These precise tables of R, can be used in the frame
of the CORSIKA code to calculate atmospheric muon and neutrino fluxes.

3.14.2 Using the Backtracking Method for the Precise Calculation
of the Geomagnetic Cutoff Rigidities

In Wentz et al. (2001a), the simulation of R, is done in a complete microscopic
calculation of possible proton trajectories in a realistic magnetic field of the earth.
Only the trajectories connecting outer space with the earth’s surface represent par-
ticles above the geomagnetic cutoff rigidities R.. Thus, the simulation of R, can
be reduced to the problem of calculating these trajectories. Due to the possibility
of inverting the problem, the calculation of R. can be made using the backtrack-
ing method, where antiprotons start from the earth’s surface and are tracked until
they reach outer space, where the magnetic field vanishes, or they are bent back
to the earth. Assuming an isotopic primary flux in outer space, which is only dis-
turbed by the presence of the earth and its magnetic field, the directional particle
intensity can be calculated by taking out all forbidden trajectories, expressed in
a table of R., depending on the geographical position, the local arrival direction,
and the rigidity of the particle. This is a direct consequence of applying Liou-
ville’s theorem, as has been already proved by Lemaitre and Vallarta (1933) and
Stormer (1930).

As the starting altitude of the backtracking method, the top of the atmosphere
at an elevation of 112.3km was selected by Wentz et al. (2001a). This particular
choice of the starting altitude allows the direct use of the results within the COR-
SIKA simulation program (Heck et al., 1998). The magnetic field inside the earth’s
atmosphere and the deflection of charged particle in it is handled in CORSIKA
(CORSIKA is a code widely used for the simulation of Extensive Air Showers).
The extension by the tables of R, now allows the simulation of low-energy primary
particles, too. The antiprotons are tracked with the GEANT-3 detector simulation
tool (CERN, 1993). Due to the unusual dimensions for a GEANT-3 simulation, the
tracking precision has to be investigated. The tracking can be tested by reversing the
trajectory, meaning that the momentum and charge of the antiproton are inverted,
after the particle leaves the magnetosphere and the reversed particle is traced on
its way back to the starting point. The error found by this method is about 10 m.
Compared with a typical track length of 50,000 km, this means a relative tracking
error of ~ 2 x 1077, The earth’s magnetic field is described by the International
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Geomagnetic Reference Field (IAGA, 1992) for the year 2000. This allows a pre-
cise simulation of the penumbra region, too. While a pure dipole field always leads
to a sharp cutoff, the precise irregular field with its inhomogeneities partly shows a
diffuse region between the closed trajectory of the highest and open trajectories of
the lowest rigidity.

3.14.3 Calculations and Results for the Planetary and Angle
Distributions of CR Geomagnetic Cutoff Rigidity

In Wentz et al. (2001a), geomagnetic cutoff functions have been simulated for 1,655
locations, distributed nearly equidistantly over the earth’s surface. The functions are
simulated in 320 rigidity steps in a range between 0.4 and 64.4 GV for 131 ar-
rival directions. The rigidity range covers all energies from the particle production
threshold up to the maximum cutoff of a particle impinging horizontally at the geo-
magnetic equator from the East. The simulation of the complete cutoff functions in
fixed rigidity steps allows the study of the smoothness of the cutoff, the sometimes
chaotic behavior of the cutoff in some regions, and the existence of gaps for the pri-
mary protons well below the geomagnetic cutoff. The chosen resolution of 0.2 GV
is sufficient for calculating of atmospheric particle fluxes. The obtained world map
of the vertical geomagnetic cutoff rigidities R, is shown in Fig. A3.1.

For some selected places, where experimental results exist for low-energy muons
or atmospheric neutrinos, precise tables of R, with an angular resolution of 250 rsr
have been calculated. As an example, the directional-dependence of R. for Fort
Sumner, in New Mexico, is presented in Fig. A3.2 (Fort Sumner has been used by
many balloon-borne detectors as a launching place).

Figure A3.3 displays the sharpness of the cutoff, defined by the momentum dif-
ference between the first open and the last closed trajectory. In the case of Fort
Sumner, the cutoff is relatively sharp; especially for directions with a higher cutoff
the penumbra region is rather narrow or not found at all.

Fig. A3.4 shows the directional-dependence of the geomagnetic cutoff rigidity
for Kamioka.

It is remarkable that for Kamioka the strong deviation from a regular shape as
observed in the calculation for Fort Sumner (Fig. A3.2) is caused by some local
irregularities of the magnetic field over Japan. This feature should be reflected in
the azimuthal-dependence of the particle intensity in Kamioka.

The broad penumbra region in Kamioka is interesting. As seen in Fig. A3.5, the
penumbra region has a width of more than 4 GV in some cases (this is about four
times broader than in the calculation for Fort Sumner, while the maximum cutoff in
both locations is practically comparable).

Figure A3.5 also shows the existence of cutoff gaps, meaning that windows for
primary protons, some GV below the actual cutoff, are observed. Especially in the
region around a zenith angle of 25° and an azimuth angle of 160° this effect is very
pronounced and explains the chaotic behavior observed in the geomagnetic cutoff
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map. This feature is the result of higher-order corrections of the magnetic field in
this direction and can be accounted for only in a detailed calculation, like the one
presented in Wentz et al. (2001a). Usual calculations with a pure dipole field used in
many simulations of atmospheric particle fluxes fail completely in reproducing this
effect. Due to the steep spectra of primary CRs, the contribution of primary protons
from such a gap may have a significant contribution to the neutrino flux from this
direction.

3.14.4 Comparison with AMS Measurements of the Geomagnetic
Cutoff on Shuttle

According to Alcaraz et al. (2000a, b, c), the geomagnetic cutoff was measured
with high precision by the space Shuttle mission of the Alpha Magnetic Spec-
trometer (AMS) prototype. Due to the inclination of 51.7° of the Shuttle orbit, the
Shuttle passes geomagnetic latitudes from O to more than 1 rad. The experimental
spectra of downward moving protons and helium nuclei can be compared rather
directly with the results of the above-described simulation. Only a small correc-
tion in the order of 10% for the difference in altitude between the top of the at-
mosphere, as assumed in CORSIKA and the shuttle orbit is applied. In detail, the
position of the Shuttle and the detector acceptance are taken into account in Wentz
et al. (2001a). Locations situated in the region of the South Atlantic Magnetic Field
Anomaly are excluded, as they are in the published values of AMS. The primary
isotropic spectra are simulated following the measured exponential energy spectra
but being extrapolated downward to particle energy £ = 0. The solar modulation
is assumed to follow the parameterization of Gleeson and Axford (1968). Particles
above the geomagnetic cutoff and inside the detector acceptance are sorted out and
compared with the measured spectra. The spectra of primary protons for different
regions of the geomagnetic latitude together with the simulation results are shown
in Fig. A3.6, while Fig. A3.7 displays the corresponding results for primary helium
nuclei.

The lower flux of primary helium allows only the subdivision into three intervals
of the geomagnetic latitude. The excellent agreement of the actual cutoff calcula-
tion with the experimental results shows the high precision of the calculation, only
the proton spectrum for geomagnetic latitudes 0.9 < Oyag < 1.0 shows a slight dif-
ference, which has to be attributed to the smallness of the cutoff value which is
more or less equal to the momentum steps of the cutoff functions. This disagree-
ment has no influence on the simulation of atmospheric neutrino and muon fluxes,
because the involved energies are already near the particle-production threshold and
the produced secondary particles hardly reach the earth’s surface with a valuable
energy.

Wentz et al. (2001a) came to the conclusion that the measured spectra of pri-
mary protons and helium nuclei show perfect agreement with the calculated values
of the geomagnetic cutoff. For selected locations on the earth, where low-energy
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atmospheric neutrino or muon fluxes have been measured, detailed calculations in
21,601 directions for the geomagnetic cutoff have been made. The resulting cutoff
tables have been used for the simulation of atmospheric muon fluxes and the simu-
lation of the neutrino fluxes for the Super-Kamiokande site with CORSIKA (Wentz
et al., 2001Db).

3.15 Geomagnetic Field Influence on Secondary CR Generated
and Propagated in the Atmosphere

3.15.1 On the Possible Geomagnetic Effects in Secondary CRs

Many of the particles which are produced by the primary CR and which move
through the earth’s atmosphere are charged, so that their trajectories are affected
by the geomagnetic field. As CRs propagate through the earth’s atmosphere, the
energy of the primary particle is reduced by nuclear collisions; in addition, the en-
ergy of the charged particles decreases because of ionization energy losses. As the
kinetic energy of the charged particle decreases, the curvature of its trajectory in-
creases. The effect of the geomagnetic field on CRs in the atmosphere is thus to
deflect charged particles away from their original trajectories. As the trajectory of a
charged particle changes, so does its path length (both the geometric path length and
the path length in terms of grams per square centimeter) down to a fixed depth in
the atmosphere. In addition, there are changes in the coordinates of the point of the
interaction with the nucleus. The effectiveness of the geomagnetic field’s influence
on CR propagation in the atmosphere was demonstrated in Pakhomov (1982) on the
basis of the integral multiplicities calculated without considering the specific detec-
tor. Involved in Dorman and Pakhomov (1983) are not only the charged particles
but also the genetically related neutrons. In Dorman and Pakhomov (1983), calcula-
tions were carried out on the propagation of CRs in the atmosphere with allowance
for the effect of the geomagnetic field. The energy spectra of protons, neutrons, 7" -
mesons, and muons are found. The integral neutron multiplicities are determined for
the NM-64 neutron supermonitors at various atmospheric depths with and without
allowance for the geomagnetic field.

3.15.2 The Main Conditions for Calculations and Principal
Sources

Dorman and Pakhomov (1983) report calculations of the differential energy spectra
of neutrons N, protons N, charged pions N+, and muons N, from a mono-
energetic point source of unit intensity (1 proton/(cm”.sec)) at the top of the
atmosphere. Calculations were carried out for pion-nucleon cascades in the at-
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mosphere from primary protons with energies E, = 3 and 10 GeV incident vertically
on the atmosphere at the point with the coordinates corresponding to the geographic
pole. A cascade-evaporation model of nuclear reactions was used incorporating the
decrease in the density of nuclear matter due to the ejection of intra-nuclear nucle-
ons by cascade particles, according to Barashenkov et al. (1971), and Barashenkov
and Toneev (M1972). The Monte Carlo program library, developed previously by
Luzov et al. (1976) for calculations on the propagation of particles in matter, was
supplemented with a part to describe the motion of charged particles in the geo-
magnetic field. The effect of the geomagnetic field on the propagation of charged
particles in the atmosphere was taken into account with the help of the equations
of motion of particles in a steady state magnetic field with allowance for ionization
energy loss:

dpi/dt = —op;+(e/c) [V xH],, (3.156)

where p; are the momentum components of the particle, V is its velocity, e is its
charge, c is the speed of light, H is the geomagnetic field, and o is a function of the
energy of the particle and the density of the air. Using the Bethe—Bloch formula, we
find that

a=0.05cp (1+7) (1% +27) "7 (®/12) (M, /M) . (3.157)

Here p is the density of the air, M), is the mass of the proton, M is the mass of the
particle, 7 is the kinetic energy in units of the rest mass of the particle, and

@~ 11.6+In (T>+2T) — (T>+2T) (1+T) . (3.158)

The strength of the geomagnetic field was calculated by the ICGRF program, which
was developed in Tsyganenko (1979). The first six spherical harmonics of the series
were taken into account. The primary protons were assumed incident vertically on
an infinite plane slab of air 1033 g/ cm? thick, consisting of 21% oxygen and 79%
nitrogen. The altitude profiles of the pressure and temperature were calculated from
the standard atmosphere model (Khrgian, M1958).

3.15.3 Expected Ratios of Secondary CR Neutrons to Muons
with and without Allowance for the Geomagnetic Field

Working from the energy spectra calculated with and without allowance for the
geomagnetic field, we determined the contributions of the various components to
the overall multiplicity of particles which were produced and which reached a fixed
level in the atmosphere. Table 3.5 shows the results found in the ratio of the number

of neutrons m{" (E,, E,h) to the number of charged particles m%™ (E,, E,h) for

various levels £ (in g/ sz) or corresponding altitudes H (in km) in the atmosphere
and for various secondary particle energies E, generated from primary protons with
energy E, incident to the boundary of the atmosphere in the vertical direction.
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Table 3.5 The ratio of the number of neutrons to the number of charged particles in secondary
CRs depending on altitude H and particles energy E, generated by primary protons with energies
3 and 10 GeV (According to Dorman and Pakhomov, 1983)

Energy of Altitude Primary proton energy Primary proton energy
secondary (km) 3GeV 10 GeV
particles
With Without With Without
geomagnetic geomagnetic geomagnetic geomagnetic
field field field field
15 1.9 22 1.4 1.9
E > 10MeV 10 34 3.8 22 2.5
5 7.7 5.0 3.0 33
0 383 18.4 1.8 1.5
15 1.0 1.3 0.8 1.1
E > 100MeV 10 1.8 2.0 1.2 1.4
5 4.0 2.7 1.5 1.7
0 198 52 0.73 0.67
15 0.63 0.81 0.58 0.79
E > 400MeV 10 1.1 1.2 0.75 0.90
5 2.1 1.9 0.71 0.80
0 0.19 0.15

Table 3.5 shows that the ratio of the number of neutrons to the number of charged
particles falls off with increasing energy of the primary particles, particularly rapidly
at sea level. These calculations show that the fraction of muons in the total particle
multiplicity depends strongly on the energy of the primary particle. At low energies
(E, = 3GeV), there are essentially no muons at sea level, while at mountain alti-
tudes and in the stratosphere they amount to no more than 5%. At primary proton
energies E, = 10GeV, the fraction of muons increases with the threshold energy
and depth in the atmosphere reaching 80% at sea level at E > 400 MeV.

The contribution of charged pions is insignificant, less than 1%. The fraction
of protons in the total multiplicity decreases with increasing depth and increases
with the threshold energy, amounting to no more than 5% at sea level and reaching
55% in the stratosphere at E > 400MeV. Correspondingly, the number of neutrons
falls off with increasing threshold energy and varies in a complicated way with at-
mospheric depth. At primary proton energies E, = 3GeV, the contribution of neu-
trons increases with depth, amounting to 99.7% at sea level. At E, = 10GeV, the
fraction of neutrons increases with increasing atmospheric depth to H = Skm and
then falls off sharply.

It can be also seen from Table 3.5, that the geomagnetic field causes certain
changes in the ratio of the number of neutrons to the number of charged particles.
However, the nature of the change in this ratio with depth in the atmosphere and
with threshold energy is basically the same as in the results calculated without the
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geomagnetic field. Only in the case of primary particles with E, = 3GeV for E >
10MeV and E > 100MeV does the ratio increase dramatically at H = 0 and 5 km.

3.15.4 Expected Differential Energy Spectra N(E) of Secondary
Neutrons and Muons at Sea Level and at H = 5km
Jrom Primary CR Protons with Energy 3 and 10 GeV
According to Calculations with and Without Geomagnetic
Field Influence on Their Propagation in the Atmosphere

Figure 3.62 shows differential energy spectra N(E) of neutrons and muons at sea
level and at H = 5km according to calculations with and without the geomag-
netic field. We see from Fig. 3.62 that, for primary protons with E, = 3GeV,
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Fig. 3.62 Differential energy spectra N(E) of secondary neutrons and muons at altitudes H = 0
(sea level) and at H = 5km generated from 1 proton/(cm?.sec) with energies E, = 3 and 10 GeV
incident vertically on the atmosphere and calculated with and without the geomagnetic field (solid
and dashed curves, respectively) (According to Dorman and Pakhomov, 1983)
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the differential energy spectra of neutrons at H = 0 and of muons at mountain
altitudes (H = 5km) calculated without the geomagnetic field, are significantly
higher than the corresponding values found with the geomagnetic field in the re-
gion £ < 100-150MeV. At E, = 10GeV, the particle spectra are less different.
Incorporating the geomagnetic field leads to an increase of 20—30% for the neutrons
over a broad energy range.

The muon spectra calculated with the geomagnetic field for E, = 10GeV exceed
the equivalent values calculated without the field up to £ < 300-400MeV. The
energy spectra for the various particle species thus change substantially when the
geomagnetic field is taken into account.

3.15.5 Differential Energy Spectra of Neutrons, Protons, Charged
Pions and Muons at Sea Level and Altitudes 5, 10, 15 km
Generated from Primary Protons with Energies 3
and 10 GeV According to Calculations Taking into Account
the Geomagnetic Field Influence on Secondary CR Particles
Propagation

Figure 3.63 shows differential energy spectra of neutrons, protons, T mesons, and
muons according to calculations incorporating the geomagnetic field.

Figure 3.63 shows that the neutron energy spectra are monotonically decreasing
functions of the energy, while the spectra of protons, 7+ mesons, and muons have
a maximum. At E, = 3GeV, the neutron fluxes are considerably higher than the
fluxes of other components at all atmospheric depths considered and over the en-
tire energy range. For primary protons with E, = 10GeV, the neutron fluxes exceed
the fluxes of the other components at energies £ < 300-400MeV. At higher ener-
gies E, at mountain altitudes and altitudes in the stratosphere, the neutron fluxes
become comparable to the proton and muon fluxes, while the muon fluxes become
predominant at sea level.

We should point out that the proton energy spectra rise sharply near the energy
of the primary particles. This “trace of the primary particles” is noticeable in the
proton energy spectra at stratospheric altitudes (H = 15 and 10km) and at mountain
altitudes (H = 5km). It can be seen from Fig. 3.63 that the primary protons with
E, = 3GeV produce at H = 15km proton fluxes at £ ~ 2.5GeV — an energy ap-
proximately equal to the energy of the primary particles (when the ionization loss
is taken into account) — which are 2.5 times the fluxes of the primary protons with
E, = 10GeV. The energy spectrum of the primary CR falls off steeply with the en-
ergy. At y = 2.7, there are 25 times as many primary protons with E, = 3GeV as
with E, = 10GeV. The primary protons with E, = 3GeV thus make a contribution
to the proton flux in the stratosphere (H = 15km) near the energy E =~ 2.5GeV
which is 65 times as great as that of primary protons with E, = 10GeV.
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3.15.6 On the Detector’s Integral Multiplicity Taking Account
of Geomagnetic Field Influence on Secondary CR Particle
Propagation

Since the trace of the primary particles intensifies with decreasing depth in the
atmosphere and is extremely noticeable at depths of 100-250 g/cmz, there is the
possibility of detecting variations in the primary cosmic radiation on aircraft. A
limitation of this method is that the detectors must carefully identify the particle
species (protons, o-particles, and others). As mentioned above, the geomagnetic
field is important for neutrons in the atmosphere with £ < 100-150MeV. According
to Hughes et al. (1964), neutron monitors of the NM-IGY type mostly detect neu-
trons with £ > 50MeV. The calculations of Pakhomov and Sdobnov (1977) show
that the NM-IQSY neutron supermonitor is sensitive to lower energy of neutrons:
each tenth neutron with £ = 10-20MeV is thus detected. We would like to deter-
mine the changes in the integrated neutron multiplicities m, caused by taking the
geomagnetic field into account in the case of the NM-IQSY neutron supermonitor.
By the detector’s integral multiplicity m; (E,, k) we mean the number of particles of
species i which are detected at observation level & and which are produced from a
single primary particle of energy E, which has entered the atmosphere in a vertical
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Fig. 3.63 Differential energy spectra of neutrons (), protons (p), charged pions (1), and muons
(1) according to calculations incorporating the geomagnetic field for altitudes H = 15, 10, 5, and
0km and primary protons with energies £, = 3 and 10 GeV incident vertically on the atmosphere
(According to Dorman and Pakhomov, 1983)
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Table 3.6 Detector’s integral multiplicities for the neutron supermonitor NM-IQSY for observa-
tions at sea level and at an altitude of 5km from primary protons with energies 3 and 10 GeV,
according to calculations with and without the geomagnetic field (According to Dorman and
Pakhomov, 1983)

Primary proton H=5km H = 0km (sea level)
energy Without With Without With
geomagnetic geomagnetic geomagnetic geomagnetic
field field field field
E, =3GeV 0.17 0.21 0.011 0.063
E, =10GeV 0.48 0.58 0.029 0.039
direction:
E,
mi (Ey,h) = / md™ (E,,E,h)G; (E)dE, (3.159)
0

where G; (E) is an instrumental function which is a measure of the efficiency at
which particles of species i with energy E are detected, and mi™ (E,,E,h) is the
number of particles of species i which are produced in the atmosphere and which
reach the level A. Table 3.6 shows the results of calculation of the detector’s inte-
gral multiplicities for the neutron supermonitor NM-IQSY. From Table 3.6 it can be
seen that the detector’s integral neutron multiplicities calculated with and without
allowance for the geomagnetic field are quite different. We might note that the dif-
ferences reach a maximum at sea level, 75% for primary proton energy E, = 3 GeV
and 26% for E, = 10GeV.

3.15.7 On Checking Geomagnetic Field Effects on Secondary CRs
During their Propagation in the Atmosphere using Data
from High-Latitude CR Stations

The analysis in Sections 3.15.1-3.15.6 shows that the geomagnetic field has a strong
effect on the secondary components of the CR in the atmosphere up to an energy
of 100-150MeV for nucleons and 300-400 MeV for muons. Theoretical calcula-
tions of the integral multiplicities, detector’s integral multiplicities, and coupling
functions must therefore incorporate the effect of the geomagnetic field on the prop-
agation of CRs in the atmosphere. Since the effect of the geomagnetic field on CRs
in the atmosphere is the greatest for low-energy primary particles (with energies in
the order of a few GeV), experimental confirmation of this effect should be sought
in data from high-latitude CR stations.



3.16 On the Influence of IMF on the CR Entry into the Earth’s Magnetosphere 151

3.16 On the Influence of IMF on the CR Entry into the Earth’s
Magnetosphere

3.16.1 The Matter of Problem

Richard et al. (2002) have investigated the entry of energetic ions of solar origin
into the earth’s magnetosphere as a function of the orientation of the interplanetary
magnetic field (IMF). They modeled this entry by following high-energy particles
(protons and *He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields
from a global MHD model of the magnetosphere and its interaction with the so-
lar wind. For the most part, these particles entered the magnetosphere on or near
open field lines, except for some above 10 MeV that could enter directly by crossing
field lines due to their large gyro-radii. The MHD simulation was driven by a series
of idealized solar wind and IMF conditions. It was found that the flux of particles
in the magnetosphere and transport into the inner magnetosphere varied widely ac-
cording to the IMF orientation for a constant upstream particle source, with the most
efficient entry occurring under southward IMF conditions. The flux inside the mag-
netosphere could approach that in the solar wind, implying that SEPs can contribute
significantly to the magnetospheric energetic particle population during typical SEP
events depending on the state of the magnetosphere.

The goal of Richard et al.’s (2002) study was to understand the entry of SEPs into
the magnetosphere and under what conditions they contributed significantly to the
magnetospheric particle population. While the most energetic solar particles will not
be strongly deflected by magnetospheric magnetic fields, the entry of a large fraction
of the incoming energetic particles will be influenced by the magnetospheric config-
uration, which is in turn controlled by the IMF. Richard et al. (2002) approached the
problem of SEP entry into the magnetosphere by calculating many particle trajec-
tories in MHD field models of the magnetosphere under different IMF conditions.
They focused on the transport of SEPs into the inner magnetosphere that provides
the source population for the ring current.

3.16.2 The MHD Model of the Magnetosphere for Different IMF
Conditions

Richard et al. (2002) computed the trajectories of high-energy particles subject to
the Lorentz force equation including relativistic modifications. Because these high-
energy particles have large Larmor radii, a guiding center approximation would be
inadequate. The electric and magnetic field model in which they determined the
trajectories of these particles, was obtained from a global MHD simulation of the
magnetosphere and its interaction with the solar wind (Raeder et al., 1995). MHD
simulations provide the best available three-dimensional global models of the en-
tire magnetosphere and its interaction with the solar wind, as shown by their ability
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Fig. 3.64 MHD input parameters: the IMF conditions used to drive the MHD simulation as a
function of time (According to Richard et al., 2002)

to model spacecraft observations (Frank et al., 1995). MHD simulations have been
used with some success as field models for thermal particle motion in the magne-
tosphere (Richard et al., 1994, 1997; Ashour-Abdalla et al., 1997). SEPs in the solar
wind are very tenuous compared to the bulk (low energy) solar wind and they would
not disturb the field model significantly, with the possible exception of the ring cur-
rent region. For this study, Richard et al. (2002) primarily launched protons, but they
also launched some 3He ions because of their importance as indicators of impulsive
solar particle events.

To simplify the interpretation of the results, Richard et al. (2002) used idealized
solar wind and IMF conditions (Fig. 3.64) to drive the simulation. According to
Fig. 3.64, the B, and B, components of the IMF were assumed to vary during the
simulation while the IMF B, component was held at —5nT. For the first hour and
a half of the simulation, B, was southward with a magnitude of 5nT to initialize
the simulation. From between 1.5 and 3.5 h, B, was southward with a magnitude of
8nT. A 2-hour interval of steady IMF allowed the model magnetosphere to respond
to this driving condition. Previous MHD simulations have shown that a timescale
of 1-2h is needed for the magnetosphere to reach a new configuration following a
change in the IMF (Ogino et al., 1994; Walker et al., 1999). During this southward
IMF interval solar wind, i.e., not connected to the earth, field lines reconnected with
closed field lines on the dayside, while in the magnetotail, open field lines recon-
nected to make solar wind and closed field lines. Richard et al. (2002) varied the
IMF linearly in time between 3h 30 min and 4 h until it was dawnward and then
held it steady with By, = 8nT from hour 4 to 6. This led to a magnetospheric con-
figuration with open field lines on the dawn-side flank of the magnetosphere. From
hour 6 to 6h 30 min, the IMF changed to northward IMF and remained steadily
northward with a magnitude of 8 nT until hour 8.
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For northward IMF conditions, reconnection occurred tailward of the cusp. In
general, the magnetospheric configurations were similar to those seen in previous
MHD simulations for idealized IMF conditions (e.g., Walker and Ogino, 1989). Par-
ticles were launched for a longer interval of time in the northward and dawnward
IMF configurations than in the southward based on the assumption that, during the
first 3 h of the simulation, the magnetosphere had already responded to the south-
ward IMF condition. Other solar wind parameters did not change with time. The
solar wind density remained fixed at 10cm >, and its velocity was 450 km/s in the
x direction and the thermal pressure was 20 x 10~ 2 Pa. One feature of the simula-
tion that was not included in many idealized simulations was a constant magnetic
dipole tilt angle of 33°. The resulting hemispheric asymmetry was increased further
because of the presence of an IMF B,. Besides tilting the dayside magnetosphere,
the tilt and the By depressed the plasma sheet below z = 0 and warped it dawnward
in the center versus the flanks.

According to Richard et al. (2002), the entry of the high-energy particles into the
magnetosphere is strongly affected by the presence of open magnetic field lines. The
variation of the fraction of open magnetic flux on the inner boundary as a function
of time (see Fig. 3.65) reflects the morphological evolution of the model magne-
tosphere.

From Fig. 3.65 it can be seen that for southward IMF, the fraction of open flux is
more than half. After the transition to dawnward IMF, the fraction of open flux dec-
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Fig. 3.65 Fraction of open magnetic flux as a function of time. This was calculated by integrating
the amount of open and closed flux through the inner boundary sphere at 4.5 r, and dividing the
amount of open flux by the total. The shaded bands indicate the times when the IMF was changing.
The IMF direction is also indicated: SW stands for southward, DW for dawnward, and NW for
northward (According to Richard et al., 2002)
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reased for about 0.45 min and then stabilized and increased slightly. After the tran-
sition to northward IMF, the fraction of open magnetic flux decreased to an even
lower level. Overall, the simulations were arranged driving conditions to be appro-
priate for generating a series of representative magnetospheric states. Launching a
constant upstream flux in this system allowed us to attribute changes in the particle
population in the magnetosphere to the effect of the magnetospheric configuration.

3.16.3 Calculations of CR Particle Trajectories

The particle trajectories in Richard et al. (2002) were calculated in the time-varying
fields from the MHD simulation and they experienced different field configurations
as time advanced. This was done by interpolating linearly in time between snapshots
of the simulation fields taken every 4 min. Protons were launched every minute be-
tween simulation hours 3 and 8, while 3He ions were launched only for southward
IMF, i.e., between hours 3 and 3.5. A total of 9.4 million protons were launched, as
well as about 1 million *He ions. High-energy particles from the sun reach the earth,
streaming along interplanetary magnetic field lines (Fliickiger, 1990). Richard et al.
(2002) therefore launched the test particles (protons and *He ions) upstream of the
magnetosphere in the solar wind. Figure 3.66 shows where they were launched for
southward IMF.
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Fig. 3.66 Particle launches for southward IMF. In this figure all items are at or projected into
the y = 0 plane. The thin lines are magnetic field lines begun at y = 0 at the sunward boundary.
Particles were launched on planes whose locations are indicated by the heavy lines. The other
curves are fits to the magnetopause and bow shock and the x = 0 and y = O planes. The small
circle represents the location of the earth. Note the presence of dipole tilt and B, (From Richard
et al., 2002)
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Particles were launched near the sunward boundary on a plane in the solar wind
at x = 15rg extending between —35rg and 357 in y and in z. SEPs from a single
distant source arriving at the earth’s surface along interplanetary field lines arrive
either parallel to or antiparallel to the interplanetary field lines. Because the IMF
B, was negative, particles that entered the system from the sunward direction were
moving along magnetic field lines. Particles that are moving along field lines should
enter the simulation system at other locations where field lines are directed into the
system as well. All locations at the side, bottom, or top boundary where field lines
were directed into the simulation region, were presumed to be particle sources. For
example, for the southward IMF case particles were launched along the top bound-
ary as well as the front boundary as well as at x = 15 rg (Fig. 3.66). Because particle
distributions were modified by interaction with the bow shock, Richard et al. (2002)
launched particles only in the region x > —11rg near where the bow shock inter-
sects the system boundary; with this limit, however, some particles were launched
in the magnetosheath because the bow shock position varied in time and this limit
was an approximation.

3.16.4 Particle Distribution in Velocity Space

According to Richard et al. (2002), the particles were distributed in velocity space as
a kappa distribution (Christon et al., 1988) with a k coefficient of 0.5. The formula
for a kappa distribution function is

—Kk—1

F(E)~ (1+E/KEr) , (3.160)

where E is the particle energy and Et is the thermal energy. For £ > Er, this be-
comes a power law with a coefficient of —(x + 1). The thermal energy used was
set to a value near 40 keV. The energy range of particles launched was between 0.1
and 50 MeV. Particles below 100keV were not included in the distribution because
the study concerned particles above typical magnetospheric energies; and particles
above 50 MeV have Larmor radii comparable to the system size were also not in-
cluded. The launched distribution was isotropic except for the fact that only particles
with velocities into the simulation system were included.

Particles reaching the outer boundaries of a box with edges at x = 18rg, x =
—1007g, y = £40rg and z = 40 rg were removed as were those reaching a 4.5rg
radius sphere centered on the earth which is outside the simulation inner boundary
at 3.5 rg. The particles reaching this boundary were considered to have precipitated.
Particle “hits” were collected at planar and spherical virtual detectors (Ashour-
Abdalla et al., 1993). Particles that cross these surfaces have the time, positions,
and velocities of their crossing recorded. Particle fluxes and other quantities can be
calculated from these values. Note that in the results shown in this paper flux at a
virtual detector is the omnidirectional flux; i.e., the contributions of all the parti-
cles crossing a given virtual detector surface from any direction in a given region
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(chosen to be 172 squares) are added together. The flux at virtual detectors scale
with the source in the upstream solar wind. Because particles are launched from
x > —11rg only, particles that could arrive on open field lines that reached the sim-
ulation boundary tailward of the bow shock, are neglected. Because the E x B drift
in the solar wind was small compared to the velocities of the energetic particles,
they usually did not convect to these parts of the polar cap either. This left part of
the polar cap empty in considered results. If the system size in y and z had been
large enough to include all open field lines on the sunward side, the polar cap would
probably have been more completely filled.

3.16.5 How the Magnetosphere Reaches a Quasi-Steady
Configuration Consistent with Each IMF Direction

Since Richard et al. (2002) carried out their calculations using a time-dependent
IMEF, it is necessary to ask how the assumed time-dependence (Fig. 3.64) influences
the results. In this idealized problem, Richard et al. (2002) wanted to show how par-
ticles enter the magnetosphere for a given IMF orientation. Therefore, it is necessary
that the magnetosphere has enough time to reach a quasi-steady configuration con-
sistent with each IMF direction. However, trapped particles can remain in the model
magnetosphere for a long time compared to the time between IMF orientations.
Even after the IMF reaches a quasi-steady state for a given IMF, some of the parti-
cles may have entered the magnetosphere when the IMF had a different orientation.
To help us understand the effects of the time-dependence on these results, Richard
et al. (2002) carried out a series of calculations of particle trajectories for which the
electric and magnetic fields were held constant. For these runs, they used the electric
and magnetic fields from single time steps in the MHD simulations. By comparing
the time-dependent results with the results from these snapshots, we can estimate
the significance of the time-dependence.

3.16.6 Calculation Results for IMF in a Southward Orientation

At the beginning of the particle calculations, at hour 3, the IMF was in a south-
ward orientation, and remained so until hour 3.5 at which time the IMF began its
transition to a dawnward (positive B) orientation. Recall that there was a constant
B, throughout the entire simulation. At hour 4 the IMF transition was complete.
During the southward IMF condition, reconnection takes place on the dayside and
in the magnetotail. Omni-directional particle fluxes (protons/area-time) during the
interval from hour 3 to 3.5 are shown in Fig. 3.67. The upper panel shows the fluxes
at the z = 0 plane and the lower panel shows the y = 0 plane for the interval between
hours 3 and 3.5. Fits to the bow shock and magnetopause in the MHD simulation
are shown as black curves. The dotted curves are the inner boundary of the particle
calculation at 4.5 rg.
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Fig. 3.67 Omni-directional particle fluxes accumulated at virtual detectors. The upper panel shows
the fluxes at the z = 0 plane and the lower panel shows the y = 0 plane for the interval between
hours 3 and 3.5. Fits to the bow shock and magnetopause in the MHD simulation are shown as
black curves. The dotted curves are the inner boundary of the particle calculation at 4.5 rg. Nonzero
fluxes appear just inside the inner boundary because the fluxes are collected in 1 r}z5 domains. In the
magnetosphere, the regions of highest flux had the order of 1,000 hits (one particle can hit a virtual
detector more than once) per domain at a virtual detector while the smallest fluxes could reflect a
single hit (From Richard et al., 2002)

Nonzero fluxes appear just inside the inner boundary because the fluxes are col-
lected in 1r]2E domains. One important feature of the results at this and subsequent
times was how effective the magnetospheric magnetic fields were in shielding the
magnetosphere from the high-energy solar protons. The bow shock and the mag-
netopause reflected most incoming protons. Note that the omni-directional flux of
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particles upstream of the bow shock was often greater than the incident flux of par-
ticles launched. This was because of the contribution of particles reflected from the
bow shock; recalling that particles passing through virtual detector planes in either
direction were added to compute the omni-directional flux, whereas in the incident
flux all ions cross an upstream virtual detector in the same direction. There is a
region of low omni-directional flux, relative to adjacent magnetosheath and mag-
netospheric regions, just outside the magnetopause on the dawn side. This region
contains open field lines that extend dawnward away from the earth and then south-
ward to the bottom boundary where particles were not launched during this interval.
The *He ions we launched under southward IMF qualitatively followed the distri-
bution of the protons but their flux within the magnetosphere was generally lower
relative to their upstream abundance.

A significant number of ions did penetrate the magnetosphere. Richard et al.
(2002) have observed two entry mechanisms for the ions we launched. As we will
see later, ions with energies greater than about 10 MeV have Larmor radii large
enough that they can directly penetrate the magnetosphere on the dayside, while
lower-energy ions moved along open field lines into the magnetosphere. The coef-
ficient of adiabaticity k, the square root of the ratio of the particle Larmor radius
to the field line curvature (Biichner and Zelenyi, 1989) for these energetic particles
often fell to values of around 1 or less and they can experience non-adiabatic behav-
ior. This k is not to be confused with the x coefficient in the distribution function
(Eq. 3.160). In the Richard et al. (2002) simulation the directly penetrating particles
were energetic enough to experience non-adiabatic behavior over large regions of
the magnetosheath and magnetosphere. The locations of open field lines were of
primary importance in determining particle entry for the majority of the particles,
which were at energies below 1 MeV. Where the magnetic field was weak or had a
small radius of curvature, entry was enhanced.

Richard et al. (2002) note the effect of dipole tilt and B, in Fig. 3.67. Because
of these factors, the plasma sheet was warped such that it was lower (in z) near
midnight than on the dusk or dawn flanks, and parts of it fell below z = 0. In the
magnetotail between hours 3 and 3.5 the protons were mainly confined to the plasma
sheet while the lobes were nearly empty. Protons in this plasma sheet were confined
within a band of around 5rg high in z, but were spread out all along the plasma
sheet in y, reflecting the thinness of the plasma sheet for southward IMF. During
this time interval (hours 3—4) the protons entered mainly on the front side of the
magnetosphere, often through the northern cusp region, visible in Fig. 3.67 near
z=6rg, x = 3rg. The weak field and open field lines at the northern cusp allowed
particles to access the inner magnetosphere. Once inside the magnetosphere, they
sometimes became quasi-trapped and began drifting around the earth. While a few
protons remained trapped over a relatively long term (hours), most of them reached
the inner boundary or entered the plasma sheet and were subsequently lost tailward
or at the flanks. The particles that became trapped long enough to completely circle
the earth, were adiabatic for the most part and could be energized by the changing
local magnetic field responding to the IMF. The cusp, plasma sheet, and the region
of quasi-trapped particles are clearly visible in Fig. 3.67, bearing in mind the ef-
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fect of dipole tilt and consequent plasma sheet warping. The high omni-directional
flux of protons visible in the noon—midnight meridian just above z = 0 inside the
magnetopause are quasi-trapped particles circulating around the earth. Ions in the
equatorial region would probably have approached the earth more closely, and re-
main trapped longer, but were lost at the inner boundary at 4.5rg. It must be kept
in mind that for most of these particles, the trapping is temporary and they leave
close field lines again later, frequently returning upstream. While the ions often
bounced wildly through the magnetotail, the overall motion was primarily dawn to
dusk in the direction of the gradient drift in the tail and trapped particles circled
the earth in the expected clockwise sense. It can be seen that omni-directional ion
fluxes (Fig. 3.67) reach levels comparable to their fluxes in the solar wind for the
quasi-trapping region and the cusp.

To help evaluate the role of time-dependence, Richard et al. (2002) also ran par-
ticles in a snapshot of the fields from the MHD simulation taken at 3 h. The flux
pattern for this case is shown in Fig. 3.68.

When comparing Fig. 3.68 to Fig. 3.67, it can be seen that the two patterns are
remarkably similar. There seems to be a decrease in penetration into the magne-
tosphere in the time-independent case versus the time-dependent case. This may
mean that penetration is enhanced in the time-dependent case, but the effect is evi-
dently secondary in the case of a slowly varying magnetosphere.

3.16.7 Calculation Results for IMF in a Dawnward Orientation

Between hours 4 and 6, the IMF was dawnward. For this configuration, open field
lines extended through the dawn flank. This defined the primary entry region for
the protons. On the other hand, there is a region with relatively few or no particles
just inside the dusk-side magnetopause in the equatorial plane beginning at about
7rg from the noon—midnight meridian and extending to the dusk-side boundary
(Fig. 3.69 and Fig. 3.70).

Once they entered the plasma sheet, the protons spread out toward the dusk
side. Omni-directional fluxes in the quasi-trapping region, the plasma sheet, and
the cusp decreased considerably during the interval between simulation hours 4 and
5 (Fig. 3.69). The examination of single-particle trajectories indicated that particles
tended to approach the near-earth region from the magnetotail or on the dayside
due to direct penetration that was always present. As seen by comparing Figs. 3.67
and 3.69, there was a lower flux of trapped and quasi-trapped particles (between
about 9rg and the inner boundary) during the dawnward IMF interval. For this
configuration, protons can most easily access the magnetotail from the dawn-side
flank, but these protons most commonly exit down the tail and do not reach the in-
ner magnetosphere. The location of maximum flux in the plasma sheet (comparing
Figs. 3.67 and 3.69) is now further from the earth, as well as less intense. Because
the field lines in the magnetotail are no longer highly stretched protons, they bounce
further from the equatorial plane.
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Fig. 3.68 The same as in Fig. 3.67 but at 3 h (From Richard et al., 2002)

The interval between 5 and 6 h had a flux distribution qualitatively similar to that
of the previous hour (Figs. 3.69 and 3.70). The main difference is an overall decrease
in flux and a concentration of high flux to a localized region on the dawn side that did
not seem to correspond to any strong localized entry in the MHD simulation. Exam-
ining single-particle trajectories indicates that transport in the magnetotail remained
primarily from dawn to dusk. For the dawnward case, the time-independent simula-
tion (not shown) gave results similar to the time-dependent case. As was seen in the
southward IMF case, however, magnetospheric fluxes in the time-independent case
seemed to be reduced slightly overall compared to the time-dependent case. For both
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Fig. 3.69 Particle fluxes between 4 and 5 h. The format is the same as for Fig. 3.67. This interval
had a steady dawnward IMF (From Richard et al., 2002)

southward and dawnward IMF particles often partially orbit the earth while mirror
bouncing and then exit the magnetosphere, usually tailward or back into the magne-
tosheath. Others precipitate at the inner boundary after being trapped for a while. If
the inner boundary had been closer to the earth, these particles would presumably
have remained trapped for a longer period.

3.16.8 Calculation Results for IMF in a Northward Orientation

From 6 to 6.5 h the IMF changed from dawnward to northward, and then remained
steady until 8 h. The asymmetry due to dipole tilt and IMF B, caused more intense
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Fig. 3.70 Particle fluxes between 5 and 6 h. The format is the same as for Fig. 3.67. This interval
had a steady dawnward IMF (From Richard et al., 2002)

magnetic reconnection to take place in the southern hemisphere, tailward of the
cusp, and therefore most open field lines extended southward. The examination of
single-particle trajectories indicated that the great majority of the ions in the north-
ern hemisphere entered from a southward direction. Particle entry on the dawn side
decreased and fluxes in the southern cusp increased as the field changed (Fig. 3.71).
The plasma sheet flux decreased although the maximum moved close to the earth.
The lobes on the dawn side contained a low level of energetic particle flux. This flux
extends to the noon—midnight meridian plane below the plasma sheet.
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Fig. 3.71 Particle fluxes between 6 and 7 h. The format is the same as for Fig. 3.67. The first half
hour of this interval was during the transition from dawnward to northward IMF and the second
half hour was for steady northward IMF (From Richard et al., 2002)

The flux from 7 to 8 h decreased overall. The most dramatic feature is the high
flux in the southern cusp (Fig. 3.72). The magnetopause can be seen to be a strong
barrier to particle entry at this time. Particles enter through the southern cusp and
high fluxes also occur on the dawn-side LLBL region, though in this case, particles
drift across the field and access open field lines, replaced by convection on newly
opened field lines (Richard et al., 1994) as the main entry processes.
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Fig. 3.72 Particle fluxes between 7 and 8 h. The format is the same as for Fig. 3.67. This interval
had a steady northward IMF (From Richard et al., 2002)

3.16.9 Comparison of the Time-Dependent and Time-Independent
Cases

When Richard et al. (2002) ran a time-independent case using a snapshot of the
northward IMF magnetosphere, at 7h 45 min, an interesting result was obtained.
While the results in the outer magnetosphere were comparable between the time-
dependent and time-independent cases, there is much less flux in the inner mag-
netosphere in the vicinity of the equatorial plane in the time-independent case
(Fig. 3.73).
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Fig. 3.73 Omni-directional particle fluxes accumulated at virtual detectors for a time-independent
case. This calculation used a snapshot from the MHD simulation at 7 h 45 min. The format is the
same as for Fig. 3.72 (From Richard et al., 2002)

To understand this difference, Richard et al. (2002) examined the particles that
occupied the inner magnetosphere in the time-dependent case. They found that these
were trapped or quasi-trapped particles that had entered the inner magnetosphere
during earlier times when the IMF orientation was dawnward or southward. We
conclude that there were no trapped or quasi-trapped particles observed during
the quasi-steady northward IMF simulation that were launched while the IMF was
northward.
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3.16.10 On the Energy Change of Particles Entering Inside
the Magnetosphere

Although the ions were usually non-adiabatic and could gain or lose energy due to
magnetospheric electric fields, the high energies of the launched particles relative
to the electric potential across the magnetosphere caused energization within the
magnetosphere to be of minor importance overall. The exceptions were particle
gradient-drifting around the earth for a prolonged interval. These particles expe-
rienced adiabatic heating as the magnetic field changed. Waves in the inner mag-
netosphere that might heat ions further did not play a role in this calculation,
even though there are expected to be MHD wave modes present in the simula-
tion, because the sampling of the MHD simulation results every 4 min filtered
out almost all waves. To understand the basic physics of particle entry, it is in-
structive to examine the trajectories of single particles in the model system. The
particle trajectories to be discussed now are protons that precipitated onto the in-
ner boundary. Particles of this type were chosen because transport into the near-
earth region is important for the results. For southward IMF, protons could ac-
cess the inner magnetosphere near the northern cusp. One such proton (Fig. 3.74)
was launched at simulation time 3 h 32 min and had an initial energy of 107 keV
and a 25° pitch angle. This particle began on a solar wind field line on the
dawn side and moved toward the magnetosphere. At the magnetopause it expe-
rienced a brief interval with k¥ < 1 as it crossed from the solar wind to closed
field lines. After traveling tailward on the dawn side near the equatorial plane, it
was eventually scattered into a nearly perpendicular pitch angle. As it migrated
toward the earth and became trapped, which occurred near midnight, x fell be-
low 1.5. It became trapped and remained so for a prolonged period, finally pre-
cipitating after simulation hour 10. This particle experienced adiabatic heating
while trapped and its final energy was 190keV. While this particle was on open
field lines only very briefly, it was the strongly curved field lines resulting from
dayside reconnection that led to a decrease of k allowing the particle to en-
ter.

A 611keV proton launched at 6 h 14 min simulation time, during the transition
to northward IMF, is shown in Fig. 3.75. As can be seen from its path in the so-
lar wind, the particle’s motion is mainly field aligned there with a pitch angle of
27°. This particle began on solar wind field lines on the dawn side and reached the
magnetopause where it became trapped in the magnetopause current layer with a
mainly perpendicular pitch angle. It experienced x < 2 only during one interval,
which is on curved field lines in the magnetosheath. While in the magnetopause
current layer, it reached open field lines that it followed inward, and its pitch angle
changed to greater than 160°. Later it gained more parallel velocity and precipi-
tated.

Figure 3.76 plots the trajectory of a proton of 390keV launched at 6 h 26 min
simulation time with an initial pitch angle of 63°. As one would expect from the IMF
direction at this time, it approached the magnetosphere from the southern, dawnward
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Fig. 3.74 Proton trajectory is shaded gray according to field line type and points along a particle
trajectory projected onto the z = 0 (fop panel), y = 0 (middle panel), and x = O (bottom panel)
planes are shown. Points where the particle was on closed field lines are dark gray and ones on
solar wind field lines are medium gray. Because the total number of points had to be decimated
to make this plot, the small number of points on the open field lines are not shown. Filled circles
along the trajectory in the top and bottom panels indicate the locations of local minima of k where
Kk < 2. In the middle panel, these points are behind the dense points where the particle is trapped
and therefore are not shown. To limit the cluttering of the figure a filled circle was only plotted if
it was at least 1.6 rg away from the others (From Richard et al., 2002)
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Fig. 3.75 Proton trajectory is shaded gray according to field line type and points along a particle
trajectory projected onto the z = 0 (fop panel), y = 0 (middle panel), and x = 0 (bottom panel)
planes are shown. Points where the particle was on open field lines are light gray and ones on solar
wind field lines are medium gray. Filled circles indicate points that were local minima of kK where
K < 2 and were more than 1.6 r¢ apart (From Richard et al., 2002)
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Fig. 3.76 Proton trajectory is shaded gray according to field line type and points along a particle
trajectory projected onto the z = 0 (fop panel), y = 0 (middle panel), and x = O (bottom panel)
planes are shown. Points where the particle was on open field lines are light gray and ones on solar
wind field lines are medium gray. Filled circles indicate points that were local minima of kK where
K < 2 that were more than 1.6 rg apart (From Richard et al., 2002)
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direction. It crossed into the magnetosphere on the flanks of the magnetotail. Its
large Larmor radius in the solar wind is apparent, and this allows it to cross directly
from the solar wind to open field lines and finally to closed field lines. It moves on
the closed field lines to the inner boundary.

Finally, a definitely directly penetrating proton is shown that had an initial energy
of 45 MeV and an initial pitch angle of 85° (Fig. 3.77). It was launched at simulation
time 6 h and 45 min. It had a huge Larmor radius in the solar wind that tightened
as it crossed the bow shock and magnetopause. This particle moved easily between
different field line types until it struck the inner boundary. It experienced kK < 2
throughout much of its time in the magnetosphere.

3.16.11 Demonstration of the Magnetospheric Configuration’s
Control of the Entry of High-Energy Particles

One way to demonstrate the magnetospheric configuration’s control of the entry of
high-energy particles is to plot the population of the inner magnetosphere and the
precipitation rate (Fig. 3.78) as a function of time.

The numbers in Fig. 3.78 were computed assuming that the upstream flux repre-
sents a total flux above 100keV of 2.5 x 108 protons/ m? sec. This number is based
on the differential flux for a typical SEP event at 100keV taken from Gloeckler
(1984). The precipitation rate, i.e., precipitation onto the inner boundary at 4.5rg,
shows a fairly systematic variation with IMF. Recall that the IMF was southward at
first, then dawnward, and finally northward. Also bear in mind that part of the flux in
the polar cap on open field lines that do not connect to the dayside has been omitted.
During southward IMF the precipitation rate was relatively high, reflecting an abun-
dance of open field lines and efficient transport into the inner magnetosphere. The
rate decreased during the dawnward IMF interval and finally fell to a very low level
during steady northward IMF. The trend is consistent with the decrease of open field
lines that occurred as the IMF changed from northward to southward, as shown in
Fig. 3.65.

The number of protons at less than 7 rg (Fig. 3.78) can be taken to reflect the pop-
ulation of the inner magnetosphere in the model. While some of these protons were
quasi-trapped in the inner magnetosphere, most of them remained only briefly in
the inner magnetosphere before reaching the inner boundary or exiting the system,
usually tailward or duskward. Only about 1% of the test protons remained in the
inner magnetosphere for more than 15 min. Some protons were observed to make a
nearly complete circle around the earth, then exit back into the magnetosheath. The
initial increase of the population during southward IMF was evidently due to the
system filling with protons as the calculation proceeded; particles could take a few
minutes to reach this region. During southward IMF, most protons entered the inner
magnetosphere on the dayside. After the IMF turned dawnward, the number enter-
ing the inner magnetosphere on the dayside decreased and highest concentration
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Fig. 3.77 Proton trajectory is shaded gray according to field line type and points along a particle
trajectory projected onto the z = 0 (fop panel), y = 0 (middle panel), and x = O (bottom panel)
planes are shown. Points where the particle was on open field lines are light gray, ones on closed
field lines are dark gray, and ones on solar wind field lines are medium gray. Filled circles indicate
local minima of k¥ where x < 2 that were more than 1.6 rg apart (From Richard et al., 2002)
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Fig. 3.78 Precipitation rate and population of the inner magnetosphere as a function of time. The

gray bands indicate the times when the IMF was changing. The top panel shows the precipitation
rate onto the inner boundary of the simulation for an upstream flux of 2.5 x 10% protons m 2 sec ™.

Data points are 15 min apart. The bottom panel shows the number of particles between 7 rg and the
inner boundary for the same upstream flux, with data points every 5 min (From Richard et al., 2002)

of arrival points (into the inner magnetosphere) was found dawnward of midnight.
Evidently these were particles that entered the magnetotail on the dawn-side open
field lines and reached the inner magnetosphere. The overall population in the in-
ner magnetosphere decreased during dawnward IMF as the region of particle arrival
moved tailward. As the IMF changed to northward, the entry rate into the inner
magnetosphere increased again, with protons arriving primarily from the dawn side.
During this transition, the number of particles in the inner magnetosphere increased,
but this is due to the particles in the southern cusp, not trapped or quasi-trapped par-
ticles. As steady northward IMF conditions continued, few particles reached the
inner magnetosphere with most of these briefly entering near the southern cusp.
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3.16.12 On the He Ion Trajectories for Southward IMF

The *He ion abundance is enhanced during impulsive SEP events. Richard et al.
(2002) calculated *He ion trajectories for southward IMF only. The flux distribution
for these particles was qualitatively similar to that of the protons that are shown
in Fig. 3.67, but the fluxes within the magnetosphere were reduced relative to the
upstream flux. For the purpose of comparison with protons, Richard et al. (2002)
plotted the population of the inner magnetosphere and precipitation for these par-
ticles in Fig. 3.78 as if they had the same upstream flux as the protons. It can be
seen that they entered the inner magnetosphere and precipitated at a lower rate (rel-
ative to their upstream flux) than the protons. This is consistent with the role of k¥
in particle entry. For particles of the same energy, the velocity of a proton will be
greater than that of an *He ion by a factor of the square root of the mass ratio. The
mass of a *He ion is three times the mass of a proton while the charge doubles. This
leads to a proton having a Larmor radius 15% larger than a *He ion of the same
energy.

3.16.13 Main Results and Discussion

Richard et al. (2002) have shown that in their trajectory calculations, high-energy
particles’ access to the magnetosphere was strongly controlled by the IMFE. For a
steady proton source, the omni-directional proton fluxes in some locations in the
magnetotail varied by a factor of 100 as the IMF changed. Transport into the in-
ner magnetosphere varied by a factor of 5. A southward IMF condition allowed
the greatest access to the magnetosphere of the IMF conditions studied, dawnward
IMF less, and northward IMF considerably less. The cusp was an important entry
region for the high-energy particles for northward and southward IMF, while the
dawn-side flank was the dominant entry location for dawnward IMF. Fritz et al.
(1999) reported that energetic particles are frequently observed in the cusp region.
While they have ruled out an SEP source for events seen on August 27, 1996 it is
possible that some of these events are related to SEPs. Relative to their initial high
energy, the SEPs in above described calculations usually did not gain or lose much
energy. The exceptions were particles that remained trapped long enough to gain or
lose energy adiabatically during IMF transitions. It was likely that because of the
inner boundary at 4.5 rg, some particles that otherwise would remain trapped and
possibly further energized, are lost. It may be easy to estimate this energization. In
being transported from 67 to 4rg at midnight, an equatorial pitch angle particle
conserving ( would increase in energy by a factor of 2.8. The transport of SEPs in
these calculations often involved non-adiabatic motion. Particles usually entered the
magnetosphere while they were not adiabatic. Non-adiabatic motion could also be
important for the transport of particles onto trapped or quasi-trapped paths.
Time-independent calculations gave results that were quite similar to the time-
dependent ones in the outer magnetosphere, even though the latter were obtained
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by accumulating data through half an hour to an hour, while the magnetosphere
was slowly varying. This indicates that for a slowly varying magnetosphere, a
time-independent calculation is adequate for modeling energetic particle entry. This
can be attributed to the fact that high-energy particles rapidly precipitated became
trapped or exited the magnetosphere. There were hints that particle penetration
was enhanced in the time-dependent case, suggesting that a rapidly varying mag-
netosphere could experience significantly enhanced particle penetration. On the
other hand, trapped particles experienced the consequences of IMF changes. These
particles, however, remained a minor part of the total population in the inner magne-
tosphere during southward and dawnward IMF. The trapped particles were affected
by IMF changes largely through adiabatic changes that affected the particle orbits
by a relatively small amount and changed their energies. During northward IMF,
when particles from the solar wind did not become trapped, the trapped particle
population consisted solely of particles that had entered the magnetosphere during
earlier IMF orientations. The population of trapped particles was reduced in our
calculation, however, by the removal of particles at 4.5, from the earth.

Because IMF conditions typically undergo much more rapid variations than in
this idealized case, particle entry into the magnetosphere may be even more complex
than in our results. In this calculation the residence time of the vast majority particles
in the magnetosphere was much less than the duration of transitions in the IMF
(half an hour). For rapid variations in the IMF, especially when a shock strikes
the magnetosphere, the entry process would probably be modified. Richard et al.
(2002) argued that if the SEP proton flux in the solar wind during an intense gradual
proton event could easily enter the magnetosphere, it would dominate the plasma
sheet population in the energy range above 0.1 MeV. Their model indicates that
the SEP flux within the magnetosphere does become comparable to the solar wind
flux in parts of the magnetosphere depending on IMF orientation. The near-earth
magnetotail under southward IMF is one instance of this.

3.17 Propagation of Protons in the Energy Range 0.1-50 MeV
through the Earth’s Bow Shock, MagnetoSheath,
and Magnetopause Inside the Magnetosphere

3.17.1 The Matter of Problem

Shimazu and Tanaka (2005) note that researchers have long studied the questions
of how SEPs reach the earth and how they move in the earth’s magnetic field. Early
results revealed that relatively low-energy SEPs access only high latitudes in the at-
mosphere. In the case of the dipole magnetic field, the lowest accessible latitude on
the earth is called the Stérmer cutoff latitude. In the 1960s and 1970s, comparisons
of satellite observations and calculations of particle trajectories based on models
of the earth’s magnetic field clarified how SEPs enter the magnetosphere and how
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they move in the earth’s magnetic field (Morfill and Scholer, 1973). In these trajec-
tory calculations, static models were used for the electric and magnetic fields. In the
1990s, progress was made in global MHD simulations of the interaction between the
solar wind and the magnetosphere. These simulations can reproduce realistic elec-
tric and magnetic fields in the magnetosphere. Thus the entry of SEPs into the mag-
netosphere and their trajectories can be studied by using simulation data that take
the configuration of the magnetosphere into account. Richard et al. (2002) simulated
SEP entry into the magnetosphere by using global MHD simulation data (see above,
Section 3.16). They showed that more protons can reach the inner magnetosphere
when the IMF has a southward component. Kress et al. (2004) traced protons from
the earth’s ionosphere in reverse and showed that the cutoff latitude for 25 MeV
protons becomes low when the dynamic pressure of the solar wind increases.

SEPs observed near the earth are manifestations of particle acceleration in the
Heliosphere. They are considered to derive from two different sources (Reames,
1999): (1) solar flares, and (2) shock waves driven outward from the sun by coronal
mass ejections (CMEs). The intensity-time profiles of SEPs observed by a satel-
lite near the earth can be distinguished from one another. Solar flares cause impul-
sive 3He-rich events. In contrast, shock waves driven by CME cause gradual proton
events, in which the observed proton flux increases slowly as compared with an
impulsive event.

Shimazu and Tanaka (2005) note that the access of SEPs to the earth is not only
an interesting topic in geophysics but also a problem of practical importance from
the viewpoint of space weather. Protons arriving at low altitudes ionize neutral atoms
in the E and D layers of the ionosphere (i.e., they cause impact ionization). One con-
sequence of the increased ionization of the high-latitude ionosphere is polar cap ab-
sorption (PCA) (Bailey, 1964; see also in Velinov et al., M1974, and in Dorman,
M2004), which adversely affects airplane communications using high-frequency
(HF) radio waves. These protons also represent a serious threat to electrical compo-
nents onboard spacecraft in high-inclination orbits.

3.17.2 Three Categories of Energetic Protons Incoming
to the Earth

Shimazu and Tanaka (2005) classify protons incoming to the earth into three cate-
gories, depending on the interaction process with the magnetosphere. The first cate-
gory is low-energy protons (less than 100 keV). These are thermal protons forming
a component of the solar wind and carrying the MHD flow. The second category is
high-energy protons (greater than 50 MeV). These protons are not much affected by
the earth’s magnetic field because their cyclotron radii are greater than the scale of
the magnetosphere. The last category, which is considered in detail in the paper of
Shimazu and Tanaka (2005), are protons in the energy range between 100 keV and
50 MeV. These protons trajectories are affected by the electric and magnetic fields
in the magnetosphere because their cyclotron radii are less than or comparable to
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its scale. Since the flux of these protons is much lower than that of the thermal
protons, it is not necessary to consider feedback from the electric current that they
generate. Therefore it is reasonable to calculate the trajectories of protons in this
category in given electric and magnetic fields. Shimazu and Tanaka (2005) investi-
gated energetic proton propagation through the earth’s bow shock, magnetosheath,
magnetopause, and magnetosphere from the upstream side of the solar wind by in-
tegrating particle orbits according to data from previous global MHD simulation
(Tanaka, 1995, 2000). Utilizing the simulation data enabled considering the dy-
namic response of protons in realistic electric and magnetic fields in the magne-
tosphere. Shimazu and Tanaka (2005) specifically considered protons in the energy
range from 100keV to 10 MeV. So far, little attention has been paid to the ques-
tions of whether solar protons in this energy range are accelerated near the earth and
whether their acceleration is related to how they enter the magnetosphere.

3.17.3 Energetic Proton Propagation through Bow Shock
with Shock-Drift Acceleration

One of the possible mechanisms for this acceleration is shock-drift acceleration at
the collisionless fast-mode bow shock (the mechanism of shock-drift acceleration
was first supposed and developed in Dorman and Freidman, 1959; see detail in
Chapter 4 in Dorman, M2006). Since the downstream value of the magnetic field
in the fast MHD shock waves is greater than the upstream value, the shock front
acts as a magnetic mirror reflecting some incident particles. The reflected particles
move along the shock front through the gradient-B drift. Since the direction of the
gradient-B drift agrees with the direction of the acceleration due to the electric field
in the shock frame, the particles gain energy through this process. When the par-
ticles’ cyclotron radii are less than the scale of the shock curvature or structure,
the particles can cross the shock every cyclotron period and gain significant energy
in the drift. The shock-drift acceleration has been considered theoretically in the
de Hoffmann—Teller frame of reference, in which the electric fields vanish on both
sides of the shock, because each particle’s energy is conserved in this frame (Decker,
1988). The de Hoffmann—Teller frame, however, is more suitable for investigating
a planar shock. Here, because are considered a curved bow shock and focus on pro-
ton entry into the magnetosphere, there instead use the GSM coordinates (the frame
moving with the earth) to express the velocity and the electric field.

The shock-drift mechanism has been intensively studied. Observational evidence
was presented by Blokh et al. (1959), Anagnostopoulos and Sarris (1983), and
Anagnostopoulos and Kaliabetsos (1994), while theoretical descriptions were given
by Dorman and Freidman (1959), Dorman (1959), Shabansky (1961), Sonnerup
(1969), Terasawa (1979), Decker (1988), and Giacalone (1992) for protons and by
Vandas (2001) for electrons. So far, however, only a few attempts have been made
at examining the relation between the acceleration and the entry into the magne-
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tosphere. Shimazu and Tanaka (2005) intend this research as an investigation of the
energies of protons entering the magnetosphere and the relation between their entry
and the shock-drift acceleration.

3.17.4 Energetic Particles Propagation through Bow-Shock
with Diffusive Shock Acceleration

The other possible mechanism for proton acceleration is diffusive-shock (first-order
Fermi) acceleration (see detail in Chapter 4 in Dorman, M2006). This process is
especially effective at a quasi-parallel shock, where small-scale turbulence scatters
particles (Scholer, 1990). Particle acceleration has also been considered as a re-
sult of scattering by large-amplitude waves (Kuramitsu and Hada, 2000). Strictly
speaking, with the inclusion of particle scattering, the mechanism referred to as
shock-drift acceleration is a subset of the more general diffusive shock acceleration.
However, MHD simulations do not account for small-scale turbulence within the
shock transition region and upstream waves (at a scale less than the grid size), which
significantly affect the motion of particles. It is necessary to introduce a scattering
timescale in order to include these effects in the simulation. Though this is an inter-
esting topic, Shimazu and Tanaka (2005) do not focus on small-scale turbulence in
the described research. Rather, to distinguish scatter-free acceleration from diffusive
acceleration induced by small-scale turbulence, it is important to first clarify the ef-
fect of scatter-free shock-drift acceleration on proton entry into the magnetosphere.
They follow the latter approach in this research.

3.17.5 MHD Simulation

Shimazu and Tanaka (2005) first performed a global MHD simulation of the inter-
action between the solar wind and the earth’s magnetosphere (Tanaka, 1995). We
solved the MHD equations:

ap
T +V-(pv) =0, (3.161)
av 1
P, +p(v-V)v:—VP+E(V><B) x B, (3.162)
oB
5 = Vx (vxB), (3.163)

2 .
aU+V-<v<U+B+P)—B(V B)>:0, (3.164)
Jt 2u u
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where ) )
P pv B
U—}/_]Jr > +2u, (3.165)
and p is the density, 7 is time, v is the velocity, P is the pressure, 1 is the permeability,
B is the magnetic field, and ¥ is the polytrophic index.

In this simulation, Shimazu and Tanaka (2005) applied a third-order TVD scheme
based on the monotonic upstream scheme with a linearized Riemann solver. They
assumed a uniform solar wind at the upstream boundary and a zero gradient at the
downstream boundary. Then they included the dipole magnetic field (potential field)
in the simulation. The inner boundary (at 3 rg) was regarded as the ionosphere. The
ionospheric potential was solved to match the divergence of the Pedersen and Hall
currents with the field-aligned current. The electrical conductivity of the ionosphere
depends on the solar zenith angle and the magnitude of the field-aligned current.
In this study, the same values were used for these ionospheric conductivity para-
meters as in Tanaka (2000). In examining the magnetosphere-ionosphere coupling
process, numerical errors in the low-pressure region near the ionosphere should be
reduced. For this purpose, the MHD calculation was reconfigured so as to suppress
the direct inclusion of the magnetic field’s potential component as a dependent vari-
able. A system of equations incorporating such a modification can still be written
in a conserved form and can be treated by the TVD scheme. Through this scheme,
Tanaka (1995, 2000) advanced the understanding of the field-aligned current system
in the magnetosphere, of the structure and origin of the magnetospheric convection,
and of the sub-storm mechanism in relation with the convection.

3.17.6 The Grid System for Simulation

Shimazu and Tanaka (2005) utilized a grid system based on the modified spherical
coordinates (Tanaka, 2000). This grid system gives coarse meshes in the solar wind
region, and fine meshes near the inner boundary and in the plasma sheet region.
Therefore, it is suitable for investigating the interaction between the solar wind and
the magnetosphere. The numbers of grid points were 56, 58, and 40 in the 1, q, and f
directions, respectively. The MHD simulation model was symmetric with respect to
the equatorial plane because we did not include the dipole tilt. The velocity of the
solar wind and the components of the IMF were set to vsy, =450km/s, By =0, By =
—2.5nT, and B, = 4.2nT, respectively, as typical parameter values. The time step
was 0.06 sec, and the electric and magnetic field data were saved every 6 sec.

3.17.7 The Efficiency of the Shock-Drift Acceleration

To investigate the efficiency of the shock-drift acceleration, Shimazu and Tanaka
(2005) increased the dynamic pressure of the solar wind in the simulation runs. To
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exclude the effect of the electric field, they considered a density increase, rather
than a velocity increase, as a dynamic pressure increase. Here, they considered the
situation in which there is a density increase (i.e., an interplanetary shock) at the
magnetopause after the SEP has already arrived there. This situation is often ob-
served because an interplanetary shock, which can be a source of SEPs, propagates
slower than do the SEPs. In the simulation, the solar wind density was increased
from 10cm > to 30cm ™3 (case A) and to 100cm ™ (case B), at x = 30 on the
upstream side, from # = 0 to = 1 min. This density change then arrived at the sub-
solar bow shock (x~ 12 rg) at around t = 4.3 min and at the sub-solar magnetopause
(x =~ 10rg) at around 7 = 4.7 min.

3.17.8 Calculation of Proton Trajectories for Three Regions

The proton trajectories in Shimazu and Tanaka (2005) were calculated using the
electric and magnetic field data from the MHD simulation. Since B, was 0, Shimazu
and Tanaka (2005) injected protons on the upstream side of the solar wind surround-
ing the magnetosphere in the following regions: (1) 0 < x/rg < 30, 0 <y/rg <
30, 28 < |z| /re < 30; (2) 0 < x/rg < 30, 28 < |y|/re <30, 0 <z/rg < 30; and
(3) 28 < x/rg < 30,—30 < y/rg < 30,—30 < z/rg < 30 (shown by the white ar-
eas in Fig. 3.79). The protons were injected when 30 min of real time had passed
from the start of the MHD simulation run. This time corresponded to t = —5 min.
This 30-min period was the duration required for the MHD simulation to reach an
equilibrium state. The protons were isotropic and were injected at a constant rate,
with various pitch angles.

To calculate the proton trajectories, Shimazu and Tanaka (2005) solved the equa-
tion of motion for protons which included the relativistic effect:

d mv,
SN (1 (/o))

where m is the proton mass, v, is the proton velocity, ¢ is the speed of light, e is the
unit charge, and E is the electric field, which equals —v x B. Equation 3.166 was in-
tegrated numerically. The time step was 0.01 sec. In the simulation the nearest grid
point to each proton was searched for. Then, the electric and magnetic fields at a
proton’s location were interpolated from the values at the neighboring grid points
according to the distances between the location and the grid points. The inner bound-
ary for the trajectory calculation was set to 4 rg, while the outer boundary was set
to 707g.

—e¢(E+v,xB), (3.166)
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3.17.9 Results for the Shock-Drift Acceleration at the Bow Shock
(Case A)

As a starting point, Shimazu and Tanaka (2005) considered the case where the
density of the solar wind increased from 10 to 30 cm~3 (case A). These values corre-
spond to a dynamic pressure increase approximately from 3.4 to 10 nPa. The z com-
ponent of the IMF (B,) was set to be positive to distinguish the effect of negative
B, from that of the dynamic pressure increase. Figure 3.79 shows the distribution of
the pressure on the noon—midnight meridian plane around the earth, as calculated
in the MHD simulation. When the solar wind density increase arrived, the pres-
sure increased on the downstream side of the bow shock in the magnetosheath. As
this pressure increase propagated to the downstream side in the magnetosheath, the
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Fig. 3.79 Pressure distribution on the noon—midnight meridian plane around the earth as calculated
in the MHD simulation (case A) at # = 0.0 min (panel a), 6.0 min b, 8.0 min ¢, and 10.0 min d. The
radius of the black circle at the center is 4 rz. The white areas are the locations of the initial proton
injections. The curves in panels ¢ and d represent the dayside region at 9 rg, where the spectra and
pitch angles shown in Figs. 3.80 and 3.81 are calculated (From Shimazu and Tanaka, 2005)
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magnetosphere on the dayside was compressed. The details of the magnetosphere
changes obtained using the same MHD code can be found in the work of Fujita et al.
(2003a, b).

To determine whether the shock-drift acceleration could be observed in this sim-
ulation, Shimazu and Tanaka (2005) plotted the energies and pitch angles of the
protons. Figure 3.80 depicts the energy spectra for the protons in the initial popu-
lation and on the downstream side of the shock after the density increase arrived
(t ~ 6-10 min).

The initial spectrum is for the upstream population and does not include protons
reflected at the shock. The spectrum on the downstream side was obtained by inte-
grating the protons over the dayside at 9rg. This location is in the magnetosheath,
as shown by the curves in panels ¢ and d of Fig. 3.79. Only the protons coming from
farther than 9rg are counted (i.e., the inward proton flux from the upstream side),
while those coming back from the magnetosphere were not included. As a result,
Shimazu and Tanaka (2005) did not need to consider the effect of the magnetopause
here. They set the initial incident spectrum as a k distribution (Christon et al., 1988)
determined by Eq. 3.160 (see in Section 3.16) with a k coefficient of 0.5, where E
is the particle energy and Et is the thermal energy which was set to 40 keV here. As
noted above, the energy range of the injected protons was from 100keV to 10 MeV.

Figure 3.80 shows that the spectrum became harder on the downstream side. The
initial flux was proportional to E~!'*® and on the downstream side, the flux of pro-
tons in the energy range between 700 keV and 4 MeV was proportional to E~!-?7,
Note that this does not indicate only shock-drift acceleration but may also include
the energy-dependence on the particle transmission rate through the shock. In con-
trast, the spectrum index above 5 MeV on the downstream side was almost the same
as that of the initial one. The downstream spectrum also appears almost parallel to
the initial one at intermediate energies (300-700 keV). This is additional evidence
for the shock-drift acceleration (Decker, 1983; Anagnostopoulos and Kaliabetsos,
1994).
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Figure 3.81 shows the pitch-angle distribution integrated over the northern hemi-
sphere on the dayside at 9 rg after the density increase arrived (¢ ~ 6—10 min).

Shimazu and Tanaka (2005) also considered only the inward proton flux here.
The energies of the upstream protons were set to be monochromatic (100 keV) to
ensure comparability with the previous results. The distribution shows the same
characteristic signature for the transmitted protons after the shock-drift acceleration
as that shown by Giacalone (1992). Transmitted 100 keV protons exhibit a peak at
around 45° as a result of the shock-drift acceleration at a curved shock (Giacalone,
1992). Therefore, the results shown in Fig. 3.81 suggest the presence of shock-drift
acceleration.

3.17.10 Energetic Particle Entry into the Magnetosphere
and Expected Polar Map of Proton Precipitation
at 4r, (Case A)

Shimazu and Tanaka (2005) recorded the protons that had energies of 10 MeV at the
moment of injection and reached the inner boundary at 4 RE before the solar wind
density increase (t ~ 1-4 min). Then, they plotted the locations where the protons
reached 4 rg, as shown in Fig. 3.82.

Figure 3.82 thus represents the polar map of proton precipitation at 4 rg. Shimazu
and Tanaka (2005) intend this figure to represent a statistical and complete image of
proton entry into the magnetosphere, before discussing the trajectories of individual
protons. Figure 3.82 shows all protons that reached 4 rg. The locations were not dis-
tributed uniformly in latitude but were instead localized at high latitudes (greater
than 43.6°). The results indicate that the trajectories were affected by the earth’s
magnetic field. Tracing the proton that reached the lowest latitude, along the di-
pole magnetic field line, we observed that it reached 68.1° of latitude at 1 rg, which
corresponds to the cutoff latitude.
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Fig. 3.82 Locations where 10 MeV protons reached 4 rg, before the solar wind density increase
(f ~ 1-4 min), shown by a polar map. The figure shows a superposition of the northern and south-
ern hemispheres over 30° of latitude. The latitude lines for 30°, 40°, 50°, 60°, 70°, and 80° and
longitude lines for 00, 06, 12, and 18 h local time (LT) are shown (From Shimazu and Tanaka, 2005)

Previous studies described in Section 3.16 have shown that protons enter the
magnetosphere easily from open field lines, where the earth’s magnetic field lines
reconnect with interplanetary magnetic field lines, when the IMF has a southward
component (Richard et al., 2002). In the case examined here, the IMF had a north-
ward component, but most of the protons that entered the magnetosphere moved
over the cusp region, where the magnetic field was relatively weak. Some of these
protons reached high latitudes on the dayside. Most of the protons that reached the
nightside also entered the magnetosphere at a high altitude over the cusp region, but
they crossed field lines and became trapped by the earth’s magnetic field. They then
bounced and drifted from the dawn side to the nightside (i.e., gradient drift). They
gained or lost energy adiabatically while trapped in the magnetic field, and some of
them precipitated on the nightside.

There was little proton flux on the nightside of the polar region, as shown in
Fig. 3.82. Tracing 10 MeV protons in reverse from the nightside of the polar region,
we found that they came from the far magnetotail. Since Shimazu and Tanaka (2005)
did not include protons from the tail in this simulation, there was little proton flux in
this region. These protons from the far tail are known to exhibit delayed entry into
the magnetotail (Van Allen et al., 1987).
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3.17.11 Relation Between Proton Entry and Shock-Drift
Acceleration

Figure 3.83 shows a time profile of the latitudes and energies at which protons
reached 4rg. Shimazu and Tanaka (2005) examined three initial monochromatic
energy cases, 100keV, 1 MeV, and 10 MeV, which enabled them to study the depen-
dence of the entry flux and the cutoff latitude on the energy. As described above, the
solar wind density increase arrived at the sub-solar bow shock at around r = 4.3 min
and at the sub-solar magnetopause at around ¢ = 4.7 min. Shimazu and Tanaka
(2005) found that the proton flux at 4rg increased after the density increase ar-
rived. In particular, almost no 100keV protons arrived before the density increase,
but afterward they did reach 4 rg (panel a in Fig. 3.83). For both 1 MeV and 10 MeV
protons, the lowest latitude that the protons could reach became lower after the den-
sity increase than it had been before (panels b and ¢ in Fig. 3.83), which agrees with
the results given by Kress et al. (2004). The flux of 10 MeV-protons was higher than
that of 1 MeV protons, because Shimazu and Tanaka (2005) did not apply a realistic
spectrum (i.e., a power law) on the upstream side. Note that in real interplanetary
space, the 10 MeV flux is much less than the 1 MeV fluxes. A remarkable finding
here was the acceleration of the 100 keV protons. Some of these protons were ac-
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Fig. 3.83 Time profiles of the latitudes (panels a, ¢, and e) and energies (b, d, and f) of protons
reaching 4 rg in case A, for energies of 100keV (a and b), | MeV (¢ and d), and 10 MeV (e and f)
at the moment of injection (From Shimazu and Tanaka, 2005)
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Fig. 3.84 Time profile of the energy of initial 100 keV proton during the shock-drift acceleration.
The time period of shock-drift acceleration (f = 6.6-7.4 min) is indicated by the bars on the hori-
zontal axes (From Shimazu and Tanaka, 2005)

celerated to energies three times higher than on the upstream side. In contrast, none
of the 1 MeV or 10 MeV protons were accelerated to energies even twice as high.

Figure 3.84 shows an example of a time profile for the energy of a 100keV
proton.

The profile in Fig. 3.84 indicates that the proton’s energy increased rapidly from
t=6.6tot=7.4min.

Figure 3.85 illustrates the trajectory of the same proton. The white lines repre-
sent the trajectory, and the grey code represents they component of the electric field
E at t = 7.0 min. They component predominated over the other components of the
electric field. The black lines denote the location of the bow shock, which was deter-
mined from the pressure distribution. This trajectory shows that the proton drifted
along the bow shock when its energy increased (shown by the black lines for time
t = 6.6-7.4 min). The grey code given in Fig. 3.85 illustrates that E, observed in the
frame moving with the earth was amplified to approximately 5 mV/m over the cusp
region in the magnetosheath at t = 7 min. This value is consistent with the electric
field observed where shock-drift acceleration of protons occurred (Anagnostopoulos
and Kaliabetsos, 1994).

The reason for the enhancement over the cusp region was the combination of
the magnetosheath flow v¢ and the piled-up B,. After the proton was accelerated at
the bow shock, it entered the magnetosphere at a high altitude over the cusp region.
Finally, it was trapped by the earth’s magnetic field, drifted from the dawn side to
the nightside, and reached the inner boundary on the nightside.

It can be concluded from the proton’s trajectory analysis that the proton was
accelerated at the bow shock through the shock-drift mechanism. Since B, was 0, the
entire bow shock simulated here was almost quasi-perpendicular. The magnetopause
is one candidate for providing this acceleration, but the electric field there was not
as large as that on the downstream side of the shock, as illustrated in Fig. 3.85. The
detailed analysis of other proton trajectories in the simulation also showed that the
energy changes in other places were much smaller than that at the bow shock.
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Fig. 3.85 Trajectory of the same proton as shown in Fig. 3.84, indicated by the white lines, with
the black lines representing the part of the trajectory from 7 = 6.6 to t = 7.4 min. The trajectory is
projected onto a the z = 3 rg plane, b the y = 6 rg plane, and ¢ the x = 6 rg plane. The grey code
at the right represents electric field Ey at # = 7 min for case A. The black lines denote the location
of the bow shock (From Shimazu and Tanaka, 2005)
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3.17.12 Statistical Results for Proton Entry and Shock-Drift
Acceleration

It was shown above that shock-drift acceleration was effective for the single pro-
tons. Since higher-energy protons have higher probabilities of entering the magne-
tosphere and can reach lower latitudes, in general, the shock-drift acceleration can
account for part of the variation in the precipitation flux and the cutoff latitude after
the density increase arrived, as shown in Fig. 3.83. Correlation of the precipitation
flux increase with the arrival of the density increase strongly suggests this. Thus, it
seems reasonable to suppose that the role of the shock-drift acceleration in proton
entry into the magnetosphere is to increase the proton flux into the magnetosphere
and lower the cutoff latitude. In addition to the proton acceleration, it was pointed
out that the compression of the magnetosphere due to a dynamic pressure increase
also has the effect of lowering the cutoff latitude (Obayashi, 1961). Therefore, these
two factors contributed to lowering the cutoff latitude shown in Fig. 3.83.

3.17.13 Results for Large Solar Wind Density Increase (Case B)

It follows from the above results that higher-energy protons can be accelerated if
the solar wind density increases further. We thus also simulated a case in which the
solar wind density was increased from 10 to 100cm™ (case B), corresponding to
a dynamic pressure increase approximately from 3.4 to 34 nPa. Figure 3.86 depicts
the energies of protons that reached 4 rg in this case. The energies of the upstream
protons were monochromatic, 100keV, 1 MeV, and 10 MeV. The maximum energy
of the 100keV protons increased with time, as shown in Fig. 3.86 (panel a). The
statistical energy increase observed in Fig. 3.86 (panel a) was mostly caused by
the pressure increase (i.e., the increase in the electric field) in the magnetosheath
at that time (from # = 6 to + = 10 min), as shown in Fig. 3.79 (panels ¢ and d).
Figure 3.86 (panel b) shows that some 1 MeV protons at the moment of injection
were accelerated to more than 2 MeV after the density increase arrived. Comparing
Fig. 3.83 and Fig. 3.86 shows that not only the 100 keV protons but also the 1 MeV
protons could be accelerated in this case.

3.17.14 Comparison Between Cases A and B

From Fig. 3.86 (panel c) it can be seen that for some 10 MeV protons, their energies
reached 12 MeV. Among these protons, however, none were accelerated to twice
the energy, unlike 1 MeV protons. The acceleration capability thus constituted 1 or
2MeV in case B, which was much higher than the order of 100keV for case A. The
difference between cases A and B was the electric field magnitude on the down-
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Fig. 3.86 Time profiles of the energies of protons reaching 4 rg in case B, for energies of a 100 keV,
b 1 MeV, and ¢ 10 MeV at the moment of injection (From Shimazu and Tanaka, 2005)

stream side of the shock. As estimated from the results of the MHD simulation, the
electric field in the magnetosheath over the cusp region for case B was approxi-
mately 15 mV/m, or three times as large as that for case A, after the density increase
passed. A comparison between cases A and B indicated that the electric field on
the downstream side of the shock is the key element in determining the shock-drift
acceleration at the bow shock when the solar wind density increased.
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3.17.15 Discussion on the Main Results and Observational
Evidence

The main results of the above-described research of Shimazu and Tanaka (2005) are
as follows:

When the solar wind density did not change, 100keV protons could not
reach 4 rg.

In case A, the solar wind density increased from 10 to 30 cm 3, which often
happens in reality. In this case, 100 keV protons could be accelerated through the
shock-drift mechanism at the bow shock and reached 4 rg.

In case B, the solar wind density increased from 10 to 100cm 3. In this case, the
obtained results indicated that shock-drift acceleration of 1 MeV protons is possi-
ble at the Earth’s bow shock, although such a significant density increase does not
often occur.

Other physical parameters, however, can also provide appropriate conditions for
proton acceleration in the energy range above 1 MeV. These parameters include
the solar wind velocity, the IMF, the ratio of the upstream magnetic field to the
downstream magnetic field, and the ratio of the proton cyclotron radius to the local
radius of the shock curvature, or a combination of these parameters.

The observational evidence on the reality of the above-described simulations was
obtained in different experiments. In fact, Anagnostopoulos and Kaliabetsos (1994)
found from IMP 8 and IMP 7 data that protons were accelerated up to energies as
high as 4 MeV in the vicinity of the quasi-perpendicular bow shock when a sudden
commencement of geomagnetic storm occurred. At the time of the observation, the
magnitude of the IMF was 10-30 nT, which is more than twice the value used in the
described simulations. Thus, the observation of the proton acceleration in the energy
range greater than 1 MeV seems reasonable from the viewpoint of the simulation.
Although the values of the parameters were not exactly the same, the shock-drift
acceleration of solar protons up to energies in the order of 1 MeV is not only a the-
oretical possibility but has actually been observed. The simulation results indicated
that the electric field on the downstream side was not transient. Since a 100keV
proton travels 41 rg in 1 min, the electric field on a timescale longer than 1 min is
not transient for such a proton. The enhanced electric field over the cusp region in
the magnetosheath had a timescale longer than 1 min. Instead of a transient field,
an almost steady, enhanced electric field on the downstream side contributed to the
acceleration. Thus betatron acceleration cannot be the main acceleration mecha-
nism here.

Shimazu and Tanaka (2005) have confined attention to the case where the x com-
ponent of the IMF (By,) is 0. If By is not 0, the bow shock has a quasi-parallel con-
figuration where shock-drift acceleration would not occur. Rather, diffusive-shock
acceleration is known to occur at a quasi-parallel shock, as was noted above. Pro-
tons can also be scattered and accelerated by turbulence in the magnetosphere, the
bow shock, and the foreshock region. Ion-cyclotron waves in the outer part of the
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Earth’s magnetosphere can also accelerate protons. In the progress of this impor-
tant research, the effects of small-scale turbulence on the proton acceleration will be
included.

Shimazu and Tanaka (2005) have examined how the shock-drift acceleration at
the Earth’s bow shock affects the entry of solar energetic protons into the mag-
netosphere. The paper describes the results of the first simulation combining the
shock-drift acceleration and proton entry into the magnetosphere. Through this sim-
ulation, the trajectories of protons were traced in the energy range from 100 keV to
10MeV from the upstream side of the solar wind, in electric and magnetic fields
obtained from global MHD simulation data. The results showed that the proton flux
entering the magnetosphere was increased and that the cutoff latitude became lower
when the dynamic pressure of the solar wind was increased. Under quiet solar wind
conditions in this simulation, 100 keV protons could not reach 4 rg. Protons enter-
ing the magnetosphere, reaching 4 rg, and having energies in the orders of 100 keV
and 1 MeV could experience shock-drift acceleration at a quasi-perpendicular bow
shock, when the solar wind density increased. In fact, the shock-drift acceleration
of solar protons up to energies as high as 4 MeV was actually observed by space-
craft. The effects of the shock-drift acceleration on proton entry into the magne-
tosphere were to increase the proton flux into the magnetosphere and to lower the
cutoff latitude. Compression of the magnetosphere also contributed to lowering the
cutoff latitude, in addition to the proton acceleration, when the dynamic pressure in-
creased. Protons entered the magnetosphere mainly at a high altitude over the cusp
region, where the magnetic field was relatively weak, even when B, was positive.
These protons could reach lower latitudes because they were accelerated and the
magnetosphere on the dayside was compressed. A comparison between the cases
of high and low dynamic pressure showed that the enhanced electric field on the
downstream side of the shock in a frame of reference moving with the Earth was the
key element in determining the trajectory.

Shimazu and Tanaka (2005) have shown the importance of energetic particle
traces in the shock-drift acceleration at the Earth’s bow shock. To conduct this
research, information on the electric and magnetic fields over a wide area around
the Earth and in the solar wind is necessary. If this information is obtained, it will be
possible to compare simulations and observations conducted under almost the same
actual conditions. MHD simulation suits this purpose, and combining it with ener-
getic particle traces will facilitate development of research on particle acceleration
in the actual configuration of the magnetosphere.



Chapter 4

Cosmic Ray Planetary Surveys on Ships, Trains,
Tracks, Planes, Balloons, and Satellites

4.1 CR Latitude Surveys by Japanese Expeditions
during 1956-1962 to Antarctica on the Ship Soya

4.1.1 The Routes and CR Apparatus in Japanese
and Some Previous Latitude Surveys

Within the framework of the project “Japanese Antarctic Research Expedition,”
measurements were taken of CR intensities (nucleonic — by a Simpson-type neu-
tron monitor described in Simpson (1951), and muonic — by a Neher-type ionization
chamber which was used in previous Japanese expeditions by Sekido et al., 1943) on
the expedition ship Soya along a constant route between Japan and Antarctica (see
Fig.4.1), during five surveys between 1956 and 1962 (Kodama, 1960; Fukushima
et al., 1963).

This route passes through two intense geomagnetic anomalies around Singapore
and Cape Town. Each survey started in October or November and finished the fol-
lowing April or May every year excepting 1957/58. The period of these latitude
surveys corresponds to periods from the maximum of solar activity to near the mini-
mum. Importantly, the obtained data are useful for investigation of threshold rigidity
distribution, for determining the position of the CR equator, for estimation of cou-
pling functions for neutron and muon components, as well as for research of long-
term CR modulation depending on particle rigidities. In Fig. 4.2 voyage courses are
shown along which CR measurements were carried out and in Table 4.1 gives short
information on these CR latitude surveys for the period 1936-1957.

4.1.2 Corrections of Japanese CR Latitude Survey Data
on the Barometric Effect and Worldwide CR Variations

According to Fukushima et al. (1963), all CR latitude survey data were cor-
rected on barometric effect by using constant barometric coefficients for all data of
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Fig. 4.1 The voyage course along which the CR measurements on the ship Soya were carried out
(From Kodama, 1960)
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Fig. 4.2 The voyage courses along which CR measurements were carried out (short information
on these CR latitude surveys are given in Table 4.1) (According to Kodama, 1960)

latitude surveys: for neutron component ffx = —0.77% /mb and for muon compo-
nent By = —0.13%/mb. These barometric coefficients were determined on the basis
of data above the CR latitude knee (see Section 4.1.7). Results of data correction on
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Table 4.1 Short information on CR latitude surveys in 1936-1957 (From Kodama, 1960)

Observer Type of apparatus Period of survey
(1) Compton and Ionization chamber Mar. 1936-Jan. 1937
Turner (1937)
(2) Sekido et al., (1943) Ionization chamber Apr. 1937-Mar. 1939
(3) Rose et al., (1956) Neutron monitor Oct. 1954
(4) Simpson et al. Neutron monitor Dec. 1954
(1956)
(5) Simpson et al. Neutron monitor Feb.—Apr. 1955
(1956)
(6) Kodama and Ionization chamber Nov. 1956-Apr. 1957
Miyazaki (1957) and neutron monitor
(7) Rothwell and Neutron monitor Feb.—May 1957
Quenby (1958)
(8) Law et al., (1949) Counter telescope July—Aug. 1948
(9) Storey (1958) Neutron monitor July—Aug. 1957
(10) Sandstrom (1958) Neutron monitor Feb. 1957
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Fig. 4.3 Day-to-day variation of CR intensity corrected for barometric effect throughout the first
Japanese CR latitude survey. Rigid line shows the neutron component intensity (left scale in %)
and black points are for the muon component (right scale in %) (According to Kodama, 1960)

barometric effect for neutron and muon component for the first Japanese CR latitude
survey (November 1956—April 1957) are shown in Fig. 4.3.

Let us note that, as described in detail in Chapter 6 of the monograph
Dorman (M2004), real barometric coefficients sufficiently depend on cutoff rigid-
ity R. (they decrease with increasing R.) and on the level of solar activity (they
decrease with increasing solar activity). The correct procedure for CR latitude
survey correction on the barometric effect is described in detail in Chapter 16 of
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Fig. 4.4 Approximate worldwide CR intensity variation (in %) during the first Japanese CR
latitude survey (November 1956 — April 1957) for muon and neutron CR components (Accord-
ing to Kodama, 1960)

Dorman (M2004). Because each Japanese CR latitude survey lasted for about half
a year, all latitude survey data were also corrected on worldwide CR variations on
the basis of CR observations by standard neutron and muon detectors at the stations
Huancayo, Mexico, Mt. Norikura, and Chicago. The data of these stations were
converted to relative intensities and averaged. In Fig.4.4 the average worldwide
CR variations are shown during the first Japanese CR latitude survey (November
1956—April 1957) for muon and neutron CR components.

It was shown that, for the correction of survey data on the worldwide CR in-
tensity variation of one stable worked station with special correction factor o which
depends on the geomagnetic latitude (or on cutoff rigidity) of the position of the ship
can be used. This correction factor o for NM of Mt. Norikura station was determined
on the basis of data of 18 CR stations during several great Forbush decreases, and
its dependence on the geomagnetic latitude is shown in Fig. 4.5.

4.1.3 Database of Japanese CR Latitude Surveys

In the first CR latitude survey (November 1956—April 1957) NM-IGY from four
neutron counters and an ionization chamber were used; they were put inside the
observation hut, which was specially built on the upper deck of the ship Soya. In
the second survey (November 1958—April 1959) and in the third survey (November
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1959-April 1960) only a neutron monitor was used and the observation hut was
removed to the middle deck, which is lower by one stair (resulting in increasing the
absorber to about 15-20g/ cm?). In the fourth (November 1960—April 1961) and
fifth (November 1961-April 1962) surveys, NM-IGY and an ionization chamber
were used. Fukushima et al. (1963) list daily data on CR intensities for all five
latitude surveys.

Table A4.1 lists (according to Fukushima et al., 1963) daily data of CR mea-
surements during the 1956/57 expedition of the nucleonic component by neutron
monitor Iy (corrected for barometric pressure Iyp and for the barometric effect and
worldwide CR variations Ixpw) and the muon component by ionization chamber Iy
(corrected for the barometric effect Iyip, given in 0.01%).

4.1.4 Geomagnetic Latitude CR Curves for Neutron
and Muon Components

In Fig. 4.6 geomagnetic latitude CR curves are shown for neutron and muon compo-
nents obtained during the first Japanese CR latitude survey (November 1956—April
1957).

4.1.5 CR Equator According to Measurements
in Japanese Expeditions

Using the Japanese CR latitude surveys, the position of the CR equator at 107°E
geographic longitude was determined: it was situated at 6°N geographical latitude
(or 5°S geomagnetic latitude, see Fig.4.7).
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4.1.6 Longitude Effect Along the CR Equator

Figure 4.8 shows the longitude effect of CR neutron intensity along the CR equator
according to measurements from Japanese CR surveys at sea level in comparison
with CR neutron intensity measurements on airplanes at an altitude of 18,000 ft
(Rothwell, 1960).



4.1 CR Latitude Surveys by Japanese Expeditions during 1956-1962 to Antarctica

Fig. 4.8 Longitude effect for
neutron component at the CR
equator. Black points corre-
spond to measurements at sea
level, and the solid line shows
results obtained on airplanes
at an altitude 18,000 ft (Ac-
cording to Kodama, 1960)

Fig. 4.9 Daily mean values of
CR intensity around the CR
knee. Solid circles are values
from the first survey (No-
vember 1956-April 1957),
and open circles from the
second survey (November
1958-April 1959) (According
to Kodama, 1960).
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4.1.7 The Position of Latitude Knee According to Japanese

Expeditions

According to Kodama (1960), the position of the latitude knee at about 20°E geo-
graphic longitude in the southern hemisphere is much lower than the ordinary one
and corresponds to 6.4 GV for cutoff rigidity calculated for the eccentric dipole
model of the earth’s magnetic field (see Fig. 4.9).

4.1.8 Planetary Distribution of CR Neutron Intensity

By using the above results together with the available results of the latitude surveys
so far obtained by many researchers, worldwide distribution of CR neutron intensity
at sea level is determined by Kodama (1960). From a comparison of the world map
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Fig. 4.10 The planetary distribution of CR neutron intensity at sea level. Numerical values attached
to contour lines show relative intensities in % (the minimal observed CR intensity is taken as 100%)
(According to Kodama, 1960)

thus obtained (see Fig.4.10) with various models for the earth’s magnetic field, it
is concluded that the geomagnetic effect of the earth’s magnetic field upon CRs is
mostly subjected to the geomagnetic field including higher-order terms in the earth’s
potential.

4.2 Swedish—-USA Latitude Surveys During 1956-1959
in Connection with the International Geophysical Year

4.2.1 Latitude Surveys and the Problem of CR Cutoff Rigidities

According to Sandstrom et al. (1963), the CR cutoff rigidities have been the
subject of much discussion since it was found that even the eccentric dipole
model failed as an appropriate approximation of the terrestrial magnetic field (Rose
et al., 1956; Rothwell, 1958; Katz et al., 1958). Several authors have carried out cal-
culations accounting for the non-dipole terms of the Gaussian expansion of the field
(Rothwell, 1958; Quenby and Webber, 1959; Kellogg 1960; Quenby and Wenk,
1962). In the opinion of Sandstrom et al. (1963), the most advanced work until 1963
was that of Quenby and Wenk (1962) who, in addition, introduced corrections for
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Fig. 4.11 Routes of M/S Lommaren from Scandinavia to South Africa and back and of M/S Stratus
to South Africa, Australia, and back via the Suez Canal (From Pomerantz, 1972)

the penumbral effects. The problem of CR cutoff rigidities was one of the main aims
of the Swedish—USA latitude surveys during 1956—1959 carried out in connection
with the International Geophysical Year (Sandstrom et al., 1963; Pomerantz, 1972).

From October 1956 to January 1958 a neutron monitor mounted on board M/S
Lommaren made four double voyages between Scandinavian ports and South Africa.
After being transferred to M/S Stratus, it made two voyages (March 1958—February
1959) via South Africa to Australia and back across the Indian Ocean (Fig.4.11).
Part of the data from these expeditions have been employed for studies of the
CR equator and the latitude knee (Pomerantz et al., 1958, 1960a, b; Sandstrém
et al., 1962; see review in Pomerantz, 1972). The experimental setup has been de-
scribed in Pomerantz (1957). Altogether, there were 10 passages west of Africa,
two passages from South Africa to Australia, and one passage each along two tracks
across the Indian Ocean (Fig.4.11).

The reductions of data were made for intervals of 1 h. The mean counting rates
for 6 h were employed for the final analysis. The corresponding positions were ob-
tained from the ship’s log. Concerning the periods passed in port, a mean has been
calculated for the whole stretch of such a period. To eliminate long-time intensity
variations, the data have been normalized by comparison with fixed neutron moni-
tors. All the data were normalized with respect to the neutron monitor at Uppsala.
In addition, the data from the two voyages of M/S Stratus were normalized to the
monitors at Huancayo and Uppsala by means of a linear equation.



200 4 Cosmic Ray Planetary Surveys on Ships, Trains, Tracks, Planes, Balloons, and Satellites

4.2.2 CR Equator Along the Longitude 14°W

Figure 4.12 shows CR data of a latitude survey representing a typical CR equator
crossing in October 1958 along the geographical longitude 14° W.

Results on all crossings of the CR equator during latitude surveys on the ships
Lommaren and Stratus and determination for the CR equator location are summa-
rized in Table 4.2.
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Fig. 4.12 CR data representing a typical Equator crossing. The raw bi-hourly counting rates
were corrected for variations in barometric pressure, and normalized for worldwide CR inten-
sity variations based on the observations with neutron monitors at several fixed locations. The
corrected 6-h mean counting rate is plotted as a function of geographical latitude. The curve and
the corresponding point of minimum intensity were calculated by the least-squares method (From
Pomerantz, 1972)

Table 4.2 Summary of CR equator determinations at longitude 14° W (based on the CR latitude
surveys on the ships Lommaren and Stratus) (From Pomerantz, 1972)

Date Location of CR Date Location of CR
equator equator
November 1956 7.5°N August 1957 6.8°N
January 1957 8.4°N November 1957 6.1°N
March 1957 6.4°N December 1957 5.5°N
May 1957 6.3°N April 1958 6.2°N
July 1957 7.1°N October 1958 6.9°N

Mean value 6.7°+0.8°N
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Fig. 4.13 The CR intensities in different Swedish-USA latitude surveys between October 1956
and March 1959 plotted as a function of threshold rigidity computed with a geomagnetic field
approximation that takes into account the contribution of higher-order terms. The data are from
all six voyages (different symbols on the figure), but points in the regions where the calculated
threshold rigidity values were found to be erroneous are excluded. The intensity scale represents
counts per 6 h (From Pomerantz, 1972)

4.2.3 Dependencies of CR Intensity from the Cutoff Rigidity

Figure 4.13 shows dependencies of CR intensity from the cutoff (threshold) rigidity
(calculated by taking into account the contribution of higher-order terms) on the
basis of all Swedish—-USA CR latitude surveys carried out between October 1956
and March 1959 in connection with IGY.

4.3 CR Latitude Surveys by Canadian Expeditions in 1965-1966

4.3.1 Three Canadian CR Latitude Surveys, Routes, and using
Apparatus

In a series of five papers by Carmichael et al. (1969a), Carmichael and Bercovitch
(1969a), Carmichael et al. (1969b, c¢), and Carmichael and Bercovitch (1969b),
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Fig. 4.14 Routes of the three Canadian CR surveys made during 1965 and 1966 (According to
Carmichael et al., 1969a)

important results of three CR latitude surveys near the minimum of solar activity
1965/66, are described. These surveys were conducted (1) in North America in the
summer of 1965, (2) in Canada in December 1965, and (3) in western USA and
Hawaii in the summer of 1966. The routes of three Canadian CR expeditions in
1965/66 are shown in Fig. 4.14, and in Fig. 4.15 the structures of the used shipboard
neutron monitor and muon telescope are also shown.

All data were corrected on the change of air pressure (barometric effect) and
worldwide CR variations according to data of several neutron monitors and muon
telescopes in the world; based on these data coefficients for correction expedition
data were determined. Figure 4.16 shows the time variation of CR neutron intensity
according to Deep River NM and periods of all three CR latitude surveys.

Coefficients used for the correction of observed CR intensity during three
Canadian expeditions on the worldwide CR intensity variation dependening on the
pressure and cutoff rigidity of the point of CR measurements for shipboard neutron
monitor and muon telescope are shown in Fig.4.17.
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Fig. 4.15 Structures of the neutron monitor 3-NM-64 and muon telescope 2-MT-64 used in
Canadian CR expeditions 1965/66 (According to Carmichael et al., 1969a)

4.3.2 Main Results for the Expedition in Summer 1965

The main results of CR measurements during the latitude survey of summer 1965
are presented in Table A4.2. It shows data corrected on barometric and temperature
effects (see description of methods in Chapters 5—8 of Dorman, M2004) as well
as for worldwide secular CR variations. The route of this expedition is shown in
Fig.4.14 and, using CR neutron and muon detectors in Fig. 4.15. The time variation
of CR neutron intensity according to Deep River NM and periods of all three CR
latitude surveys are shown in Fig. 4.16, and in Fig. 4.17 coefficients determining the
dependencies of secular variations on the pressure and cutoff rigidity of the point of
CR measurements for neutron and muon components are shown.

4.3.3 CR Latitude Survey in Canada in November-December 1965

This was a small latitude survey which was carried out at sites with cutoff rigidities
<2GV. The main purpose of this survey was to investigate the high-latitude plateau
in neutron and muon CR intensities, and to investigate in more details CR meteoro-
logical effects (including barometric and snow effects; for more details about these
effects see in more details in Chapter 6 of monograph Dorman, M2004). The main
results obtained during this expedition are shown in Table 4.3.
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and Bercovitch, 1969)

4.3.4 CR Latitude Survey in Western USA and Hawaii in Summer
1966

According to Carmichael et al. (1969b), during this expedition, a 3-NM-64 ship-
board neutron telescope and 2-MT-64 shipboard muon telescope (see Fig.4.15)
were operated at 29 sites near sea level and mountains on the western seaboard of
the USA and in Hawaii in May-July 1966 (see the route in Fig. 4.14). The latitude
survey was started at Deep River with three runs, No. 52, 53, and 54, during which
a new device for measuring the temperature of the mercury in the servo-barometer
was installed and calibrated. The transport van then moved to San Francisco where
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Table 4.3 Main results of CR measurements during the latitude survey in November—December
1965 (According to Carmichael et al.,1969b).

Run Site Lat. Long. Cut-off Day of P Neutron monitor
(°N) (°E) (GV) start  (mm Hg) scaled rate/hour
(1965) Measured Corrected
45 DeepRiver4 46.10 282.50 1.02 321 752.4 1,301.4 1,323.8
46 Quonset 46.10 282.50  1.02 336 748.4 1,209.6 1,232.3
47  Kapuskasing® 49.42 277.50 0.71 337 733.9 1,424.8 1,447.8
48  North Bay?* 46.70 280.58  0.95 341 730.4 1,471.7 1,500.8
49  Toronto* 43.68 280.63  1.33 344 743.3 1,296.4 1,318.5
50  Windsor* 4227 277.03  1.56 348 743.1 1,304.2 1,315.9
51 DeepRiver5 46.10 28250 1.02 353 748.1 1,234.1 1,2534

Note: *Measurements at airport.

the equipment was operated at the International Airport. Then it went to Imperial
near the Mexican border, and then to the top of Mt. Palomar at about 1,870 m. On
the way down Mt. Palomar, the measurements were taken at Dyche valley and then,
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until May 24, at Borrego Airport which provided a fourth elevation at approximately
the same cutoff rigidity 5.7 GV. On May 27, the transport van reached Mt. Hood.
Near the cutoff rigidity of Mt. Hood (about 2.4 GV), the mobile equipment was op-
erated at four different elevations including Portland Airport at sea level. On June 9,
1966, the transport van was sent by ship to Hawaii. Measurements on the island of
Maui in Hawaii were started on June 26 mainly in Kula (about 1,000 m above sea
level), and then on the top of Mt. Haleakala (3,600 m above sea level). During the
following two weeks the mobile equipment was operated at seven different altitudes
between the top of Mt. Haleakala and sea level. The main results of this expedition
are listed in Table A4.3.

4.3.5 Calibrated and Extended Measurements of CR Intensity
on the Aircraft at Different Altitudes and at Different
Cutoff Rigidities

For calibration and extending of the above-described ground CR measurements at
different altitudes and different cutoff rigidities CR measurements on the aircraft
KC-135 were taken simultaneously. The first set of CR measurements at aircraft
altitudes were taken when the transport van was on Mt. Palomar on May 20, 1966.
The aircraft KC-135 was in the vicinity of Mt. Palomar for 2 h, during which time
it circled for 46 min at an altitude of 3,080 m, and for lesser times at six other levels
up to 12,700 m. The time spent at each level was enough to provide at least 40,000
counts, which corresponds to a statistical error of +0.5%. These measurements were
taken by the airborne neutron monitor (see Fig.4.18), constructed from lead and
polyethylene by Peterson et al. (1966) which follow the Chicago pattern (Meyer
and Simpson, 1955).

= 12 ~—5—

Fig. 4.18 The airborne neutron monitor, constructed from lead and polyethylene by Peterson
et al. (1966), following the Chicago pattern (Meyer and Simpson, 1955)
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4.3.6 Geographically Smoothed Geomagnetic Cutoffs Rigidities

According to Carmichael et al. (1969c), when a preliminary report on the CR lat-
itude survey of summer 1965 was being prepared (Carmichael et al., 1965), the
vertical-trajectory calculations for many of the sites were made using steps of
0.1 GV. This did not give enough accuracy for taking into account the effects of
penumbra (see Section 3.11). As a result of these rough calculations, it was not pos-
sible to obtain a smooth CR latitude curve (depending on cutoff rigidity), especially
in the region of Central Mexico. To solve this problem, Shea et al. (1968) developed
an extensive program of trajectory calculations with steps of 0.01 GV for all sites of
all three Canadian CR latitude surveys and for the world grid with steps in longitude
15° and latitude 2.5°. The geographical smoothing of calculated vertical-trajectory
cutoff rigidities is shown in Fig.4.19 for longitudes 195°, 210°, 225°, 240°, 255°,
270°, and 285°E. Using these geographical smoothing cutoff rigidities provided
satisfactorily smooth CR latitude curves, even in the Central Mexico region (see
Fig.4.20).
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Fig. 4.19 Geographical smoothing of calculated vertical-trajectory cutoff rigidities with 0.01 GV
steps (According to Carmichael et al., 1969¢ on the basis of the trajectory calculations of Shea
et al., 1968)
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Fig. 4.20 The broken curve and open-circle points show neutron-monitor counting rates (reduced
to a common depth in the atmosphere) plotted using geomagnetic rigidity cutoff values deter-
mined by the vertical-trajectory method in steps of 0.1 GV. A discontinuity or kink in the curve
occurs between San Luis Potosi and Mexico City. The full points exhibit the same data plotted
after modification of the vertical-trajectory cutoff rigidities (calculated in steps of 0.01 GV) by the
geographical smoothing process illustrated in Fig. 4.19 (According to Carmichael et al., 1969c¢)

4.3.7 Final Analysis of Three Canadian CR Latitude Survey Data

The final analysis of the data of three Canadian CR latitude surveys was done by
Carmichael and Bercovitch (1969) taking into account the change of barometric
coefficients with altitude and cutoff rigidities of the sites of measurements as well as
geographically smooth cutoff rigidities (see Section 4.3.6). The information on the
barometric coefficient’s changing with altitude and cutoff rigidities for the neutron
monitor were discussed in detail by Dorman, (M2004, see Fig. 6.9.6 on page 347 of
that book), and for the muon telescope see Fig. 4.21.

The final results for all three Canadian CR latitude surveys, for neutron monitor
and muon telescope, reduced to sea level (760 mm Hg) by barometric coefficients
depending on atmospheric pressure and cutoff rigidity, are shown in Table A4.4.

The final corrected latitude curve for the muon telescope is shown in Fig. 4.22.
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Fig. 4.21 Barometric coefficient for the muon telescope near the minimum of solar activity in 1965
(According to Carmichael and Bercovitch, 1969)
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Fig. 4.22 The normalized muon intensity as a function of geographically smoothed vertical-
trajectory cutoff rigidity (According to Carmichael and Bercovitch, 1969)
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Fig. 4.23 NM latitude variations at sea level near the minimum of solar activity in 1965/66. The
neutron intensity (normalized to the level of latitude knee at the high latitudes) are shown as a
function of geographically smoothed vertical trajectory cutoff rigidity (According to Carmichael
and Bercovitch, 1969)

Figure 4.23 shows the final corrected latitude curve for the neutron monitor: neu-
tron intensity (normalized to the level of latitude knee at high latitudes) as a function
of geographically smoothed vertical-trajectory cutoff rigidity.

4.3.8 CR Latitude Effects at Different Altitudes

On the basis of CR ground measurements during the three Canadian CR ex-
peditions and recalculations by known barometric coefficients, Carmichael and
Bercovitch (1969) estimated the CR latitude effects for neutron monitor and muon
telescope counting rates at different altitudes (see Table 4.4).
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Table 4.4 CR latitude effects for neutron monitor and muon telescope counting rates at different
altitudes (According to Carmichael and Bercovitch, 1969)

Geographically
smoothed ver-
tical-trajectory

Neutron-monitor rate
(% of high-latitude value)

Muon-monitor rate

(% of high-latitude value)

cutoff rigidity, 1,033 843 680 299 1,033 843 680
GV g cm—2 g cm—2 g cm—2 g cm—2 g cm—2 g cm—2 g cm ™2
1 100 100 100 100

2 99.3 99.3 994

2.5 98.1 97.7 97.5

3 96.5 95.7 94.9

3.5 94.7 93.1 91.9

4 92.8 90.4 88.6 100 100 100
5 88.8 85.1 82.2 99.9 99.9 99.9
6 84.7 79.8 76.3 65.0 99.6 99.1 98.7
7 80.5 74.8 70.6 99.1 97.7 96.4
8 76.5 70.0 65.4 98.5 95.9 93.7
9 72.6 65.5 60.5 97.7 94.0 90.9
10 68.9 61.3 56.1 96.9 92.1 88.1
11 65.4 57.5 52.2 95.9 90.0 85.3
12 62.1 53.9 48.4 94.7 87.8 82.4
13 59.3 50.8 45.2 31.6 93.2 85.4 79.4
14 56.7 91.4

Altitude 1.0 4.17 14.5 241 1.0 1.70 3.11
factor

4.3.9 Comparison of Latitude Curves for Neutron Intensity
in Two Minima of Solar Activity in 1954/55 and 1965/66

Carmichael and Bercovitch (1969) compared the results obtained from the three
Canadian expeditions in solar activity minimum of 1965/66, and obtained on board
the ships Labrador and Atka in the minimum of 1954/55 (described in Rose
et al., 1956). The routes of Labrador and Atka in 1954/55 in the northern hemi-
sphere were almost wholly within the region of smoothed geographically vertical-
trajectory cutoff rigidities (see Section 4.3.6). Figure 4.24 shows a comparison of
neutron monitor latitude surveys of two minima of solar activity: in the three Cana-
dian expeditions in the minimum of 1965/66 and in the expeditions on the ships
Labrador in September—November 1954 and Arka in December 1954—April 1955.

A good agreement between the two CR latitude surveys can be seen in Fig. 4.24.
It indicates (delineated by a broken curve in Fig. 4.24) that in the solar activity min-
imum of 1954/55, the CR latitude effect was slightly larger by about 1% than in the
minimum of 1965/66. But, according to Carmichael and Bercovitch (1969), this dif-
ference must be attributed mostly to the atmospheric temperature effect: the 1954/55
data were not corrected for temperature effect, but the data of 1965 were.
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Fig. 4.24 Comparison of neutron monitor latitude surveys during two minimums of solar activ-
ity: in three Canadian expeditions in the minimum of 1965/66, and on the ships Labrador in
September—November 1954, and Atka in December 1954—April 1955 (According to Carmichael
and Bercovitch, 1969)

4.4 NM Surveys in the Southern Ocean to Antarctica
by USA, Australia, and South Africa

4.4.1 Main Results of the Latitude Survey 1994/95;
Discovery of the Sea State CR Effect

Bieber et al. (1995) conducted a “shakedown cruise” from December 20, 1994 to
April 17, 1995 in which the monitor was picked up in Hobart (Tasmania, Australia)
and delivered to Seattle (California, USA). Figure 4.25 shows the course followed
by the US Coast Guard icebreaker Polar Star from the time it left Hobart until it
crossed the equator on the homeward voyage.

Figure 4.25 also plots the “course” of the asymptotic direction of a 17 GV parti-
cle incidence vertically on the neutron monitor. This is calculated using a new code
(Bieber et al., 1992) that takes into account the time of year, time of day, and mag-
netosphere state (defined by the Kp index and the model of Tsyganenko, 1989). The
observation data were properly corrected for the extreme influences on the neutron
monitor. Besides barometric pressure, the most obvious of these is the response of
the monitor to varying orientations of the ship. This effect is clearly illustrated in
Fig.4.26, which shows a plot of the shipboard neutron monitor counting rate (cor-
rected for barometric pressure and normalized to McMurdo NM) as a function of
the sea state for cutoff rigidities of less than 0.5 GV.
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Fig. 4.25 Course plot (dashed line) for the US Coast Guard icebreaker Polar Star during part of
the latitude survey south of the equator. Also shown is the calculated asymptotic direction of the
mean response rigidity of about 17 GV (According to Bieber et al., 1995)

Fig. 4.26 Shipboard neu-
tron monitor counting rate
(hourly averages, normal-
ized to McMurdo NM) as a
function of the sea state (esti-
mated swell height in feet) for
cutoff rigidities of less than
0.5 GV. Recorded as integers,
sea-state readings have been
spread to display individual
measurements (According to
Bieber et al., 1995)
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The sea-state CR effect only provides a rather crude approximation to the ship’s
motion (see the details about this effect in Section 16.3 of Dorman, M2004). Nev-
ertheless, it is obvious that the effect on the data is relatively large. Response of the
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Fig. 4.27 Shipboard monitor counting rate corrected for the sea-state effect and normalized to Mc-
Murdo NM, as a function of calculated cutoff rigidity. Dorman functions (Dorman, 1969) indicate
that results of previous latitude surveys (Moraal et al., 1989) are normalized to latitude survey data
of December 20, 1994—April 17, 1995, at 10 GV, and shown by a solid line for 1976 and a dashed
line for 1987 (From Bieber et al., 1995)

ship to the swells of course depends on the wind, ship speed, and the orientation
of the ship’s axis with respect to the wave vectors. For correction data on the sea-
state effect, Bieber et al. (1995) applied a fractional correction to data at all cutoff
rigidities based on the fit line shown in Fig. 4.26.

The shipboard monitor counting rate as a function of calculated cutoff rigidity
is shown in Fig.4.27. For comparison the Dorman functions derived by Moraal
et al. (1989) are shown from their surveys during the previous two solar minima
in 1976 and 1987. These have been normalized to data of Bieber et al. (1995) at
10GV by means of a Dorman function fit. Bieber et al. (1995) noted that values
in the dataset in the critical range of 0.5 to 2 GV are comparable to the observed
differences between two successive solar minima: data from the southbound pass
follow the solid curve (which corresponds to 1976), while data from the northbound
trend follow the dashed curve (which corresponds to 1987). According to Bieber
et al. (1995), the spread in measurement data is real, and has its origin in anisotropy
in the CR flux.

4.4.2 CR Spectra Deduced from Neutron Monitor Surveys

Bieber et al. (1997) noted that to be able to use neutron monitors for precise deter-
mination of particle anisotropies and spectra, it is necessary to understand both the
neutron monitor energy response, or “yield function,” and the spectrum of galactic
CR primaries. The standard method to obtain these is a latitude survey, which is
conducted with a transportable monitor. The monitor count rate N is recorded as
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a function of geomagnetic cutoff rigidity R.. The negative differential of N (R;) is
called the “differential response” and is simply the product of the yield function
S(R) and the galactic differential spectrum D (R.), i.e.,

_dN(Rc)/dRc :S(RC)D(RC)' 4.1

During the austral summer of 1995/96, a neutron monitor was operated aboard a
US Coast Guard icebreaker as it traveled from San Diego, California to McMurdo,
Antarctica. The survey instrument was a 3-tube NM-64 detector installed in a stan-
dard shipping container. After correction of obtained data for the barometric effect
and sea-state effect (the procedure of these corrections was the same as described in
Section 4.4.1), and using Eq. 4.1, the differential response of neutron monitor to the
galactic CR spectrum was found. The obtained result for the minimum of solar activ-
ity in 1995/96 were compared by Bieber et al. (1997) with the differential responses
also obtained with NM-64 on the basis of latitude surveys near previous minimums
of solar activity (see Fig.4.28): in 1987 (according to Moraal et al., 1989), in 1976
(Stoker et al., 1967), and in 1965 (Carmichael and Bercovitch, 1969).

As can be easily seen from Fig. 4.28, the differential response in the energy range
from 1 to 8 GV is systematically higher during periods of positive solar magnetic
polarity (dashed curves in Fig.4.28) than during those of negative polarity (solid
curves in Fig. 4.28), in agreement with Moraal et al. (1989).

1 0 T T T T T T T

1 Date source (top to bottom):

' 1995 NM-64, Bieber et al. (1997)

1" [ 1976 NM-64, Stoker et al. (1980)

" 1987 NM-64, Moraal et al. (1989)

" 1965 NM-64, Carmichael and Bercrovitch (1969)

\
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Fig. 4.28 Neutron monitor differential responses from four latitude surveys with NM-64 detectors.
Dashed and solid lines denote respectively surveys conducted during positive (1976, 1995) and
negative (1965, 1987) solar magnetic polarity. Legend indicates year of survey, monitor type, and
data source. Curves based on the Dorman function (Dorman, 1969), parameterization presented by
Moraal et al. (1989) (According to Bieber et al., 1997)
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4.4.3 Apparent Geomagnetic Cutoffs and the CR Anomaly
in the Cape Town Region

According to Stoker et al. (1997), a survey of CR intensities at 30,000 feet altitude
was carried out in the Southern Africa region during the minimum solar activity in
September 1976 with a 1-NM-64 standard super neutron monitor aboard a South
African Air Force (SAAF) C130 Hercules aircraft. The points in Fig. 4.29 are 5 min
count rates of the 1-NM-64 super neutron monitor, recorded at 30,000 feet altitude
during the 1976 survey. The cutoff rigidities at the time of the flights have been
calculated by interpolation from the 5° x 15° world grids of Shea and Smart (1975,
1983) for vertical cutoff rigidities, using the Bessel formula for equally spaced data
points (Potgieter et al., 1980). The curve in Fig. 4.29 represents the expected latitude
distribution at 30,000 feet altitude and was obtained by a transformation of the 1976
sea-level CR latitude survey to 30,000 feet altitude (Potgieter et al., 1980). This
transformation was described by Stoker (1995) and Stoker and Moraal (1995). The
cutoff rigidities at sea level were also interpolated from the 5° x 15° world grids
of Shea and Smart (1975, 1983) for vertically incident particles. A deviation in the
5 min count rates from the curve in Fig. 4.29 is apparent between ~4.5 and 10 GV.
Stoker et al. (1997) noted that the same deviation as shown in Fig.4.29, was
seen in all distributions of the South African aircraft CR latitude surveys between
1966 and 1976, but not in the 1965 North American/Australian CR latitude sea-
level surveys of Keith et al. (1968), Stoker (1995), and Stoker and Moraal (1995).
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Fig. 4.29 Count rates at 30,000 feet pressure altitude, recorded during the 1976 latitude survey
and plotted against vertical cutoff rigidity. The curve was transformed from the 1976 sea-level CR
latitude survey to an altitude of 30,000 ft (From Stoker et al., 1997)
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The latter result implies that the vertical cutoff rigidity orders, as a parameter, the
CR latitude survey data equally well in the South African region and in the North
American/Australian regions. It is only in the South African region and only at
aircraft altitudes that the hump appears between ~4.5 and 10 GV. The question now
arises whether the vertical cutoff rigidity is the correct ordering parameter for CR
investigations by earthbound detectors. Obliquely incident particles must inevitably
contribute to the observed intensities of secondary CRs, differently at different levels
in the atmosphere. The final result depends on the value of cutoff rigidity, how it is
calculated, and which phenomena will be taken into account.

In fact, the cutoff rigidity at any geographic location is a function of the zenith
and azimuth angles of arrival, the altitude of the detection location, and the geomag-
netic conditions at the time of the measurement. Usually, it was found to be suffi-
cient to use cutoff rigidities that were determined for vertically incident particles,
using the trajectory-tracing method within International Geomagnetic Reference
Fields (IGRFs) and by taking secular variations into account. Tsyganenko (1989)
proposed a model that describes the external magnetic field in the earth’s magne-
tosphere depending on the dipole tilt angle for six geomagnetic activity levels. The
model includes the magnetic field ring current, the magnetic field from the magnetic
tail currents, as well as the magnetopause contribution and the average magnetic ef-
fect of field-aligned currents. Stoker et al. (1997) suggest that this model combined
with the IGREF, representing the geomagnetic main field for the appropriate epoch,
should be used by trajectory calculations to obtain effective cutoff rigidities. To
solve this important problem, Clem et al. (1997) proposed a parameter they termed
the “apparent” cutoff rigidity which is intended to improve upon the vertical cutoff
rigidity by including effects of obliquely incident particles (for more details, see
Section 3.13).

Apparent cutoff rigidities have been calculated in Stoker et al. (1997) at loca-
tions of flights at 30,000 feet in 1976. In Fig. 4.30 the 5 min count rates of Fig. 4.29
are displayed as a function of apparent cutoff rigidity. From Fig.4.30 it can be
seen that using apparent cutoff rigidities instead of vertical cutoff rigidities, re-
sulted in smooth distribution without the hump in Fig.4.29. The curve was fitted
to these count rates. There are small deviations from this curve, which might have
resulted from the first approximation approach taken by using a simple trend line
between locations at which apparent cutoff rigidities have been calculated (see, in
more details, calculations of apparent cutoff rigidities in different approximations in
Section 3.13).

4.4.4 Using He-3 Neutron Counters for Neutron-Component
Measurements; CR Latitude Survey in 1998/99

Pyle et al. (1999) conducted a 3-NM-64 latitude survey over the period November
1998—May 1999 using, for the first time, a 3He neutron detector in place of one of
the three '"BF; counters. The 3He detector design was developed after extensive
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Fig. 4.30 Count rates of Fig.4.29 plotted against apparent cutoff rigidities. The curve is a fit to
this distribution (From Stoker et al., 1997)

simulation studies (see details on the 3He detector in Section 4.4.13 of the book
Dorman, M2004). This survey, one of an annual series, covered a very wide range
of cutoff rigidities, from 0 to 17.4 GV. It was found that the efficiency and energy
response of the *He detector is nearly identical to that of the 'BF; detector, and
that these detectors can be used in a standard NM-64 monitor. Figure 4.31 shows
the track of the ship Polar Sea for the period November 1998—April 1999, along
with contours of the vertical cutoff rigidity; the monitor covered one of the widest
rigidity ranges yet achieved in a shipborne survey.

As part of the program to study the *He tubes, in December 1998, at a stopover
in Honolulu (Hawaii), one of the 'BF3 tubes was replaced in the monitor by a He
tube. Thus, from Honolulu onward, the monitor consisted of the two 10BF3 tubes
(left and center) and one 3He tube (right). In the paper by Pyle et al. (1999) only the
center '°BF3 channel was used because of sporadic noise pickup in the left °BF;
channel.

Fig. 4.32 shows the overall pressure-corrected counting rate profile as a function
of time (top panels) and the vertical cutoff rigidity (bottom panels), with the He
tube plotted in black and the '°BFj; tube in grey.

In Fig.4.32 the calculated vertical effective geomagnetic cutoff rigidities were
used from the papers Shea et al. (1965) and Cooke et al. (1991) using a trajectory
code based upon the Tsyganenko (1989) magnetosphere model according to Lin
et al. (1995). No corrections for changes in the modulation level have yet been made
to these data; these would not be important for the counting rate ratios.

Figure 4.33 plots the variation of the ratio He/!°BF; as a function of the vertical
cutoff rigidity.
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Fig. 4.31 The track of the ship Polar Sea for the period November 1998—April 1999, along with
contours of the vertical cutoff rigidity (dashed lines; numbers are vertical cutoff rigidities in GV)

(From Pyle et al., 1999)
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Fig. 4.32 The overall pressure-corrected counting rate profile as a function of time (top panels)
and the vertical cutoff rigidity (botrom panels), with the >He tube plotted in black and the '°BF;

tube in grey (According to Pyle et al.,

1999)
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Fig. 4.33 Ratio of counting rates *He/'°BF; as a function of the vertical cutoff rigidity (According
to Pyle et al., 1999)

From Fig.4.33 it can be seen that over a very wide range of rigidities the ratio
of counting rates with counters *He/!°BFj; is constant to better than 1%. The pre-
dicted ratio, based on the simulations of Clem (1999), is also shown in Fig.4.33.
The measured *He NM-64 detector response is approximately 5% higher than these
predictions.

4.4.5 Latitude Survey Observations of Neutron Multiplicities

Bieber et al. (2001b, 2004) augmented the electronics for the NM latitude survey
so as to record the elapsed time 87 between detected neutrons in each proportional
tube in order to examine time correlations in the data as a function of cutoff rigidity
and primary spectrum. They quantified the dependence of counting rate on NM
dead time, with particular focus on the longer dead times that were once employed
at the former USSR (Russian) stations. The observations of Bieber et al. (2001b,
2004) show that NM dead time has little influence on the detected depth of Forbush
decreases, indicating that the CR spectral shape is little changed in the decrease.
However, the use of different dead times significantly alters the response of the NM
as a function of cutoff rigidity.

The earliest known measurements of the latitude-dependence of multiplicity was
performed by Dyring and Sporre (1966) using a two tube IGY monitor. Subse-
quently, other surveys have been conducted, such as that of Aleksanyan et al. (1979).
In these surveys the multiplicity of an event was determined by opening a time gate
initiated by a single count and adding the additional counts that occur during the
gate length. The total number of counts in each event determines the multiplicity
level. Each level has an associated response function corresponding to a different
median rigidity of primary particles. To gain a better understanding of this process
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and to provide additional checks of our simulations, Bieber et al. (2001b, 2004)
augmented the electronics in the three-tube NM-64 latitude survey station to mea-
sure the elapsed time 87 between counts from each proportional tube. They present
an initial analysis of data acquired during the northbound segment of the 2000/01
CR latitude survey (Clem et al., 1997; Bieber et al., 2003), and compare these data
to a numerical simulation. As an initial application of our results, we quantify and
discuss the response differences between our stations and the former USSR stations
operating prior to the mid-1980s. These stations had by design a much longer dead
time than the standard NM-64 (Blokh et al., 1971). In order to extract the primary
CR spectrum from the 87 distribution, a separate yield function for each 8T compo-
nent must be developed and used in an iterative numerical de-convolution. Dorman
et al., (1981) discuss such an approach. The original amplifier and discriminator cir-
cuits designed for the BP-28 neutron counters have an average dead time of 20 us to
maximize the overall count rate, while the early former USSR stations introduced
a 1,200us dead time in an effort to move the response of the monitor to lower en-
ergy. It is very important to understand the implications of this choice when reading
the literature and using data from different stations in the same analysis. The result
of summing the 8T distributions from different lower limits is shown in Fig.4.34.
The actual distribution is compared in each case to an exponential (dotted line) fit-
ted at high 8T values. Bieber et al. (2001b, 2004) used the simulation to generate
Fig. A4.1, which shows the calculated average number of counts per incident neu-
tron as a function of energy and dead time. These results show that the ability of
an NM-64 to detect multiple evaporation neutrons from a single incident particle is
nearly maximized for a dead time of 20 us and nearly minimized for 1,200 us.
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Fig. 4.34 The total observed counts (integral of observed 8T distribution) as a function of dead
time for different cutoff rigidities (According to Bieber et al., 2004)



222 4 Cosmic Ray Planetary Surveys on Ships, Trains, Tracks, Planes, Balloons, and Satellites

Figure A4.2 displays the percentage reduction in counts when the circuit dead
time is changed from 95 to 1200 us. This so-called Russian Reduction is shown as a
function of time during the 2000/01 CR latitude survey along with the local effective
vertical cutoff rigidity and McMurdo neutron monitor station count rates. The sun
was very active during this period, but this activity had little effect on the “Russian
Reduction” within observational error. These observations also imply that a Forbush
decrease has very little effect on the ground spectral shape, even though it reduces
the overall flux level of sea-level hadrons. However, the “Russian Reduction” shows
a fairly strong dependence on cutoff rigidity. In Fig. A4.2, it increases with increas-
ing rigidity, which implies the early Russian/former USSR stations were less sen-
sitive to high rigidity primaries. The cutoff rigidity thus has a significant effect on
both the spectral shape and the overall flux level of sea-level hadrons.

Figure 4.35 displays as a direct correlation, the percentage reduction and cutoff
rigidity. The percentage reduction varies from 15.5% to 18.5% over a cutoff range
from O to 15 GV. This dependence is quite significant, particularly since some re-
search projects require neutron monitor accuracies better than a few percent. The
rigidity dependence of the “Russian Reduction” would actually be stronger if the
standard dead time of 20 us were compared. The simulation result is also shown in
this plot for comparison. The shape represents the observations fairly well; however,
the simulation is roughly 15% higher than the data. This difference derives from the
minor difference in the shape of the calculation and observations. These anomalies
in the calculation provide interesting clues for ongoing investigation to understand
the internal processes in a neutron monitor.
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Fig. 4.35 Observed percentage of counts having 87 < 1,200us as a function of effective vertical
cutoff rigidity. The curve is the result of simulation (From Bieber et al., 2004)
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4.4.6 Continuing Each-Year NM Latitude Surveys: Main Results
Jrom 1994-2001

According to Bieber et al. (2001a), each year, beginning in 1994, a Bartol Research
Institute, University of Tasmania, and Australian Antarctic Division collaboration
conducted a neutron monitor latitude survey from the USA to McMurdo, Antarctica,
and back over an approximately 6-month period. Data were taken on seven separate
trips from Seattle to McMurdo and back. These are plotted in Fig. 4.36, along with
selected vertical geomagnetic cutoff rigidity contours.

Counts from the three counter neutron tubes are recorded once a second, together
with data from pitch-and-roll inclinometers. Pressure data and the GPS-derived lat-
itude, longitude, and time are recorded once a minute. In Bieber et al. (2001a), the
data are utilized from regions where the geomagnetic cutoff rigidities are greater
than 2 GV, which eliminates many of the periods of rough seas. The 5° x 15° of
1980.0 epoch vertical cutoff rigidity grid (Smart and Shea, 1985) was interpolated
to produce an hour-by-hour set of cutoff rigidity values. During each survey, the
monitor spent several weeks in the harbor at McMurdo, near the McMurdo neutron
monitor. This period was used to normalize the total counting rate to the McMurdo
monitor during each visit. This compensates for any instrumental changes, which
may have occurred from year to year. During each survey year (approximately
November—May), care was taken not to make any changes which might affect the

Latitude (°)

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
Longitude E of Greenwich (°)

Fig. 4.36 Course plots for the 7 NM latitude surveys. Each is labeled at 1-week intervals from the
start year of the survey (e.g., 7 for 1997/98); 1980 vertical cutoff rigidity contours are shown as
dashed lines (numbers in GV) (According to Bieber et al., 2001a)
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normalization. In order to remove various noise problems encountered during the
trips, the counting rate data were corrected on a minute-by-minute basis, time-
corrected using onboard GPS clock data, and then pressure-corrected to 760 mmHg
using a pressure coefficient 8 (R.) varying with cutoff rigidity R. as follows:

B (R.) = —0.983515 4 0.00698286 R, 4.2)

where 8 (R.) is in percent per mmHg and R is in GV (Clem et al., 1997). Since
this series of observations was conducted during a period of frequent and often ex-
treme changes in modulation level, the data were organized to yield the highest time
resolution possible, consistent with a significant sweep over a large range of cut-
off rigidities. Therefore, the 7 years of observations were divided into 24 segments,
with each traverse to and from the magnetic equator (or highest R, value) treated
separately. Some segments were adjusted to avoid the inclusion of major Forbush
decreases. An attempt was made to lessen the effect of other, minor modulation
changes during a segment by demodulating the data using a modulation function
based on the Climax NM and Haleakala NM count rates. It was assumed in Bieber
et al. (2001a) that the demodulated survey count rate can be expressed as

§'(1) = S(O)M (Re,t), 4.3)
where the modulation function is according to Nagashima et al. (1989)
M (Re,t) = A (1) R (4.4)

and parameters A (r) and y(¢) are determined by observations on the Climax NM
(R. =3.03GV) and Haleakala NM (R; = 3.03 GV). The examination of this proce-
dure for several Forbush effect periods showed that the CR latitude survey data were
effectively corrected to a constant level. The intervals of the 24 segments utilized are
shown in Fig. 4.37, along with the McMurdo NM count rate.

For each segment in Fig. 4.37, the hourly data points were plotted against the ver-
tical cutoff rigidity at the middle of the hour. A least-squares fit to a three-parameter
Dorman function was performed for all data above 2 GV. The resulting fit was then
differentiated to give the differential response. For one segment, a sample set of
results is shown in Fig. 4.38.

Figure 4.39 plots spectra from a representative set of mid-Pacific segments that
span the period from the approach to the last solar minimum (early 1996), through
solar minimum modulation in 1997, until late April-early May, 2001. Inspection
of the spectra plotted in Fig.4.39 indicates that the region beyond 12 GV shows
very little modulation change, as expected, whereas the region below 10 GV forms
an envelope of 10GV forms an envelope of curves ranging from solar minimum
modulation (curves 2 and 3) to the highest modulation level (curve 9).

From Fig. 4.39 it can be seen that there is some evidence for crossing of some of
the spectra (e.g., curve 8 appears to show very strong modulation at high rigidities
but a marked recovery at low rigidities). This period is characterized by a very rapid
recovery in low cutoff rigidity NM, and is typical of a dynamic modulation period.
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Fig. 4.37 The 24 time intervals used in Bieber et al. (2001a) are numbered at the top. The
McMurdo NM counting rate is also shown (From Bieber et al., 2001a)
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Figure 4.40 shows spectra from all four western Pacific segments. It is apparent
that curves 2 and 4 (equator to Seattle) form a separate group from curves 1 and 3
(Adelaide to equator). Bieber et al. (2001a) noted that the use of improved apparent
cutoff rigidity calculations (see Section 4.4.3) will improve the agreement of these
spectra among themselves, and with the larger set of mid-Pacific spectra during solar
modulation cycle can be studied more exactly.

4.5 Latitude Surveys of Environmental Radiation and Soft
Secondary CR Components by Italian Expeditions
to Antarctica

4.5.1 Environmental Radiation and Soft Secondary CR Monitoring
Along the Course of the Expeditions from Italy to Antarctica
and Back

According to Galli et al. (1997a,b) and Cecchini et al. (1997a), the environmen-
tal radiation, i.e., CR and radioactivity gammas with £ > 5keV, has been con-
tinuously monitored for the first time, on a timescale of 1 min, across the Indian
Ocean from Italy to the Ross Sea—Bay Terra Nova. Such measurements have been
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Fig. 4.38 A sample fit of the data (for segment nine from October 14 to November 29, 1997),
showing the fit to the Dorman function (/eft scale), as well as the derivative (characterized coupling
function W(R), right scale). Least-squares fit results are shown (According to Bieber et al., 2001a)

performed during the XTI (1995/96) and XII (1996/97) Italian expeditions to Antarc-
tica on board the ship Ifalica. One of the purposes of this experiment was to mea-
sure the latitude effect of the secondary cosmic radiation with energy smaller than
5 MeV, the so-called ultra-soft CR component (Bernardini and Ferretti, 1939), and
observe the X-ray spectra with £ > 50keV, in order to identify the various nat-
ural and artificial airborne radionuclides along the course of [falica passing from
the northern to the southern hemisphere. Worldwide researches on airborne natural
and artificial radionuclides (Bressan et al., 1973; Larson et al., 1972; Wilkening and
Clements, 1975; Wilkniss et al., 1974) with continuous (but not too long duration)
monitoring of their concentration, have been made. However, no ultrasoft CR mon-
itoring experiments with energy below 5-8 MeV have so far been carried out.



4.5 Latitude Surveys of Environmental Radiation and Soft Secondary CR 227

4604 | | | | | T rrrrrrrrl
440 LY Selected latitude traverses: =
420 g 1: (1995, 12,01) - (1995, 12.21)
200 2: (1996, 02,28) — (1996, 03,21) ]
r 3:(1997,10,14)— (1997, 11,20) 1
3801 4:(1998, 03,18) — (1998, 04,28) "]
360f- 5: (1998, 11,03) - (1998, 11,30) -]
r 6: (2000, 02,28) — (2000, 04,07) 1
3401 7: (2000, 04,07) - (2000, 0502) ]
300k 8: (2001, 02,26) - (2001,0327) ]
L 9: (2001, 04,18) - (2001, 05,06)
3004~ g
& 280 .— --l
S
3 2601~ g
-t |
& 240 -
= D
=] o -
g 200 4
g |
s
= 200 4 ]
= Q
[T = T“' L
1801~ = -
3
L 3 \ ]
160 £ 8 \‘ -
P %
140 Il I il I il I L1l I Ll I 1 |. 1 [ | ] ‘%\
g 5 8 8 8 = v
(=2} (=2} (=23 (=23 o o XY
= = = = ] g N\
120 S S = S S = '
q = b= = = b= S
£ ] ] I e NN
3 4 5 6 7 8 9 10 11 12 13141516171819 21 23

1980 Vertical cutoff rigidity (GV)

Fig. 4.39 Representative primary CR spectra from 1996 to 2001 for traverses of the central Pacific
Ocean. The time intervals are shown in the upper-right corner, together with numeric keys, which
are plotted on the spectra. The inset plots the McMurdo NM counting rate with the key numbers at
the center of the intervals used (From Bieber et al., 2001a)

4.5.2 The Environmental Radiation and Soft Secondary CR
Detectors

In order to monitor the environmental radiation during the two campaigns three
identical scintillation detectors containing a cylindrical (10 x 20cm’@) Nal(TI)
monocrystal, with side and bottom shielded by 1cm Pb and 0.2cm Cu were de-
signed, built, and used (see Fig. 4.41).

The working principles of the environment radiation detector have been de-
scribed in detail in Cecchini et al. (1997b). Each detector (65 x 65 x 130cm?, weight
about 80kg) was provided with its own power supply as well as an acquisition and
servicing computer.

During the XI Expedition (lasting from November 25, 1995 to March 23, 1996),
two of the environment radiation detectors were retained on the deck of [Italica.



228 4 Cosmic Ray Planetary Surveys on Ships, Trains, Tracks, Planes, Balloons, and Satellites

I I I | I I I I 1 LU I 14
Fareast surveys 3
96 1: + Ade>Equ 1997 02/20-03/31=] 450
A 2: O Equ>Sea 1997 03/31-06/02
92 3: X Ade>Equ 1999 08/02-03/22 ] 400
o8 B 4: ® Equ>Sea 1999 03/22-05/24 1
84 - 350
80 |- ]
- — 300
76 |- ]
72 - 1
. —250 __
S 1 2
g_ 68 I~ 4 S
s 1 1 €
= 64 2 4 g
s | 200 &
c 4 -
3 60 10,000 x
= T r
= F 9,800 J
56 - 9,600 .
" 9,400 ] 150
52 |- = J
5 9,200 -
I 5 NPT PP eI N ] Lo 1
8 o0 o (o) D [} (o)
S & & & & 2 i
44 - ~ - N~ - ~
1 o o =N | = = 191 | I I I I I | | 1 100
2 3 4 5 6 7 8 9 10 11 1213141516 18 20
1980 Vertical cutoff rigidity (GV)

Fig. 4.40 Dorman function fits (eft scale) and derived spectra (right scale) for the segments west
of Australia and in the western Pacific ocean. The southern hemisphere pair appears different,
especially at high rigidities, from the northern. This was attributed to the use of a fixed 1980 cutoff
rigidity grid (From Bieber et al., 2001a)

These detectors had a nearly total view of the sky above the horizon under about
6.6g/ cm? of Fe. The third detector was disembarked in Bay Terra Nova where it
operated from January 14 to February 10, 1996.

4.5.3 Measured Spectra of Environmental Radiation

As an example, Figure 4.42 shows the superposed hourly spectra of environment
radiation in the range 50-3,500 keV recorded at latitude 6° in the Indian Ocean.
4.5.4 Latitude Dependencies of Environmental Radiation

in the 50-3,500 keV Energy Band

Figure 4.43 shows minute-by-minute count rates registered during both journeys
in the 50-3,500keV energy band. As seen from Fig. 4.43, variations of a different
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Fig. 4.41 Drawing of the environment radiation and soft secondary CR detector: 1 — Nal(TI)
scintillation monocrystal, 1’ quartz window, 2 — photomultiplier, 3 — multi-metal shield, 3’ —
0.8mmAl, 4 — plastic bottles of potassium hydrate, 5 — lead screen 10 mm thick, 61 mm Cu lin-
ing, 7-3 mm Al lining, 8 — polyurethane foam, 9-1.5 mm Al protection, 10 — rotation axis, 11 —
MT input, 12 — outgoing signal (According to Galli et al., 1997a)
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Fig. 4.42 Superposed-hourly consecutive spectra of the environment radiation in the range 50—
3,500 keV recorded at latitude 6° in the Indian Ocean and averaged for 24 h. Vertical axis: loga-
rithms of hourly counting rates per 10keV channel (According to Galli et al., 1997a)
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Fig. 4.43 Counts per minute in the energy range 50-3,500keV observed during the course from
Italy to Bay Terra Nova (BTN) — left panels, and from Bay Terra Nova to Italy — right pan-
els. Results for latitude survey in 1995/96 are shown in the upper panels and for the survey in
1996/97 in the bottom panels. The abscissa shows time in hours after starting (According to Galli
et al., 1997a)

nature are present. Some appear to remain rather constant from one journey to the
next (e.g., 100-200 h and 850-950 h during the survey Ravenna—Bay Terra Nova in
1995/96 and in 1996/97 as well as 150-200 h during the survey Bay Terra Nova—
Italy). Others show no apparent relation to features registered in the subsequent (or
preceding) journey.

4.5.5 Observations of Transition Sea-to-Land Effects
and “Radonic Storms” in the Environment Radiation
During Latitude Surveys

One of the most conspicuous effects on environment radiation appears to be the
sea-to-land transition effect (see Fig.4.43) observed whenever the ship entered (or
exited) the Italian harbors as well as Hobart (Tasmania) or Littleton (New Zealand).
It shows up as a net change of more than a factor of two over distances on the order
of one eighth of a mile. The spectral analysis in the radioactivity band suggests that
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part of such effect could be due to a greater abundance of 23¥U and >3>Th daughters
on land and to a greater decrease of the former and the absence of the latter over sea.

Another registered effect is the count-rate increase when the ship Italica went
across the Suez Canal and the Red Sea. Random events have been associated to
“radonic storms”: total counting-rate increases up to 100% in the 50-3,500 keV
band, with a fast rise and a slower decrease, lasting 7-10h have been observed.
Many of them were observed while the ship was cruising at 4-5 miles from the coast
of Bay Terra Nova. Such phenomena might be related either to transport from land to
sea of airborne particulate possibly associated to some meteorological perturbation
or to sea-surface waves.

4.5.6 Latitude Effects of the Soft Secondary CR Components
in the Energy Ranges 2.8-5.0 and 5-20 MeV

The latitude effects, measured on the secondary CR in the energy ranges 2.8—-5 MeV
and 5-20MeV (i.e., ultra-soft and soft components), are shown in Fig. 4.44.
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Fig. 4.44 Soft (5-20MeV) — upper curve, and ultra-soft (2.8-5MeV) — lower curve CR hourly
pressure corrected (by using barometric coefficients —0.38 and —0.37%/mb, respectively, for soft
and ultrasoft components). Data are 5-hourly smoothed versus geographic latitudes during the
period December 21, 1996-March 20, 1997. The two arrows at 6° N of latitude mark the position
of the CR ultra-soft component minima (According to Galli et al., 1997a)
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As seen from Fig. 4.44, the observed latitude effect amounts to ~19.3% for CR
in the range 2.8-5MeV and ~13.5% for 5-20 MeV (as compared to the ~7% mea-
sured with a spherical ion chamber under 12 cm Pb by Compton and Turner, 1937).

4.5.7 The Main Results Obtained During Latitude Surveys
of Environment Radiation and Soft Secondary CR
Components

Galli et al. (1997a, b) and Cecchini et al. (1997a) concluded that the most out-
standing phenomena observed during the 1995/96 and 1996/97 Italian expeditions
to Antarctica on board the ship Italica are:

1. Sea-to-land transition effects for the total counting rate, with rapid increases of
the order of a factor 2—-3 during about 5 min within distances of 1/8 of a mile

2. The level of environmental radiation at Bay Terra Nova is higher than that ob-
served at sea by almost a factor of 10

3. Radon storms were observed, i.e., enhancements of short duration in the level of
radon daughters, that appear to be related to the presence of strong winds blowing
from land (this fact seems to find confirmation in the contemporary episodes
observed by two detectors separated by distances of <20km).

4. By environment radiation measuring it has been shown that the detectors used
can provide sufficient counting statistics for CRs to detect solar diurnal waves of
1-2%.

5. The transportation of radon daughters by huge atmospheric perturbations has
been effective over distances of about 1,200 km.

6. New monitor units of similar design and with a similar Nal crystal, but heavier
shielding and confirmed to a much smaller volume to be easily placed in different
experimental conditions, such as underground, underwater, on marine platforms,
and on high mountains, will be very useful.

4.6 Daily CR Latitude Curves Derived from the NM Worldwide
Network Data

4.6.1 The Main Idea of the Method Developed by Italian Scientists

The main idea of the method supposed and developed by Italian scientists (Bachelet
et al., 1972a, b, ¢, d; 1973) is simple and very effective: the using of daily average
the CR counting rates of the NM worldwide network (about 60 neutron supermon-
itors of the IQSY type and neutron monitors of the IGY type see the description
of detectors in Section 4.4 in Dorman, M2004), calibrated by CR latitude survey
data to obtain for each day the latitude curve of the CR intensity depending on
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cutoff rigidity. It is well known that the observed CR intensity on earth has a suffi-
cient complicated anisotropy in the equatorial plane, owing to the earth’s rotation.
We see this anisotropy at each station as CR solar diurnal and semi-diurnal varia-
tions (in local solar time) and CR stellar diurnal and semi-diurnal variations (in the
local siderial time). These variations change in time in connection with solar and
magnetic activity and they are the main cause of CR intensity difference at CR sta-
tions with the same cutoff rigidities, but spaced at different longitudes. Therefore,
it is not possible to use hourly CR data for obtaining latitude curves without cor-
rection on anisotropy effects. But using the daily averaged data really compensates
this anisotropy and after correcting on local barometric and temperature effects (see
Chapters 5-7 in Dorman, M2004) can be used for constructing CR latitude curves.

Let us note that the discussed method does not take into account the CR
anisotropy perpendicular to the equatorial plane, the so-called north—south
anisotropy (see the review in Dorman, 2000). This anisotropy cannot be eliminated
by daily averaging hourly CR data. The method of their estimation and elimination
from CR latitude survey data was developed by Belov et al. (1987, 1990, 1995),
Villoresi et al. (2000), Iucci et al. (2000), and