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Preface to the Second Edition

This book presents material which is more algorithmically oriented than most
alternatives. It also deals with topics that are at or beyond the state of the art.
Examples include practical and applicable wavelet and other multiresolution
transform analysis. New areas are broached like the ridgelet and curvelet
transforms. The reader will find in this book an engineering approach to the
interpretation of scientific data.

Compared to the 1st Edition, various additions have been made through-
out, and the topics covered have been updated. The background or envi-
ronment of this book’s topics include continuing interest in e-science and
the virtual observatory, which are based on web based and increasingly web
service based science and engineering.

Additional colleagues whom we would like to acknowledge in this 2nd
edition include: Bedros Afeyan, Nabila Aghanim, Emmanuel Candès, David
Donoho, Jalal Fadili, and Sandrine Pires, We would like to particularly ac-
knowledge Olivier Forni who contributed to the discussion on compression of
hyperspectral data, Yassir Moudden on multiwavelength data analysis and
Vicent Mart́ınez on the genus function.

The cover image to this 2nd edition is from the Deep Impact project.
It was taken approximately 8 minutes after impact on 4 July 2005 with
the CLEAR6 filter and deconvolved using the Richardson-Lucy method. We
thank Don Lindler, Ivo Busko, Mike A’Hearn and the Deep Impact team for
the processing of this image and for providing it to us.

Paris, London Jean-Luc Starck
June, 2006 Fionn Murtagh



Preface to the First Edition

When we consider the ever increasing amount of astronomical data available
to us, we can well say that the needs of modern astronomy are growing by
the day. Ever better observing facilities are in operation. The fusion of infor-
mation leading to the coordination of observations is of central importance.

The methods described in this book can provide effective and efficient
ripostes to many of these issues. Much progress has been made in recent
years on the methodology front, in line with the rapid pace of evolution of
our technological infrastructures.

The central themes of this book are information and scale. The approach is
astronomy-driven, starting with real problems and issues to be addressed. We
then proceed to comprehensive theory, and implementations of demonstrated
efficacy.

The field is developing rapidly. There is little doubt that further important
papers, and books, will follow in the future.

Colleagues we would like to acknowledge include: Alexandre Aussem, Al-
bert Bijaoui, François Bonnarel, Jonathan G. Campbell, Ghada Jammal,
René Gastaud, Pierre-François Honoré, Bruno Lopez, Mireille Louys, Clive
Page, Eric Pantin, Philippe Querre, Victor Racine, Jérôme Rodriguez, and
Ivan Valtchanov.

The cover image is from Jean-Charles Cuillandre. It shows a five minute
exposure (5 60-s dithered and stacked images), R filter, taken with CFH12K
wide field camera (100 million pixels) at the primary focus of the CFHT in
July 2000. The image is from an extremely rich zone of our Galaxy, contain-
ing star formation regions, dark nebulae (molecular clouds and dust regions),
emission nebulae (Hα), and evolved stars which are scattered throughout the
field in their two-dimensional projection effect. This zone is in the constella-
tion of Saggitarius.

Paris, Belfast Jean-Luc Starck
June, 2002 Fionn Murtagh
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1. Introduction to Applications and Methods

1.1 Introduction

“May you live in interesting times!” ran the old Chinese wish. The early
years of the third millennium are interesting times for astronomy, as a result
of the tremendous advances in our computing and information processing
environment and infrastructure. The advances in signal and image processing
methods described in this book are of great topicality as a consequence.
Let us look at some of the overriding needs of contemporary observational
astronomical.

Unlike in Earth observation or meteorology, astronomers do not want to
interpret data and, having done so, delete it. Variable objects (supernovae,
comets, etc.) bear witness to the need for astronomical data to be available
indefinitely. The unavoidable problem is the sheer overwhelming quantity
of data which is now collected. The only basis for selective choice for what
must be kept long-term is to associate more closely the data capture with
the information extraction and knowledge discovery processes. We have got
to understand our scientific knowledge discovery mechanisms better in or-
der to make the correct selection of data to keep long-term, including the
appropriate resolution and refinement levels.

The vast quantities of visual data collected now and in the future present
us with new problems and opportunities. Critical needs in our software sys-
tems include compression and progressive transmission, support for differen-
tial detail and user navigation in data spaces, and “thinwire” transmission
and visualization. The technological infrastructure is one side of the picture.

Another side of this same picture, however, is that our human ability to
interpret vast quantities of data is limited. A study by D. Williams, CERN,
has quantified the maximum possible volume of data which can conceivably
be interpreted at CERN. This points to another more fundamental justifica-
tion for addressing the critical technical needs indicated above. This is that
selective and prioritized transmission, which we will term intelligent stream-
ing, is increasingly becoming a key factor in human understanding of the
real world, as mediated through our computing and networking base. We
need to receive condensed, summarized data first, and we can be aided in
our understanding of the data by having more detail added progressively. A
hyperlinked and networked world makes this need for summarization more
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and more acute. We need to take resolution scale into account in our infor-
mation and knowledge spaces. This is a key aspect of an intelligent streaming
system.

A further area of importance for scientific data interpretation is that of
storage and display. Long-term storage of astronomical data, we have al-
ready noted, is part and parcel of our society’s memory (a formulation due
to Michael Kurtz, Center for Astrophysics, Smithsonian Institute). With the
rapid obsolescence of storage devices, considerable efforts must be undertaken
to combat social amnesia. The positive implication is the ever-increasing
complementarity of professional observational astronomy with education and
public outreach.

Astronomy’s data centers and image and catalog archives play an im-
portant role in our society’s collective memory. For example, the SIMBAD
database of astronomical objects at Strasbourg Observatory contains data on
3 million objects, based on 7.5 million object identifiers. Constant updating
of SIMBAD is a collective cross-institutional effort. The MegaCam camera at
the Canada-France-Hawaii Telescope (CFHT), Hawaii, is producing images of
dimensions 16000× 16000, 32-bits per pixel. The European Southern Obser-
vatory’s VLT (Very Large Telescope) is beginning to produce vast quantities
of very large images. Increasingly, images of size 1 GB or 2 GB, for a single
image, are not exceptional. CCD detectors on other telescopes, or automatic
plate scanning machines digitizing photographic sky surveys, produce lots
more data. Resolution and scale are of key importance, and so also is region
of interest. In multiwavelength astronomy, the fusion of information and data
is aimed at, and this can be helped by the use of resolution similar to our
human cognitive processes. Processing (calibration, storage and transmission
formats and approaches) and access have not been coupled as closely as they
could be. Knowledge discovery is the ultimate driver.

Many ongoing initiatives and projects are very relevant to the work de-
scribed in later chapters.

Image and Signal Processing. The major areas of application of image
and signal processing include the following.

– Visualization: Seeing our data and signals in a different light is very often
a revealing and fruitful thing to do. Examples of this will be presented
throughout this book.

– Filtering: A signal in the physical sciences rarely exists independently of
noise, and noise removal is therefore a useful preliminary to data inter-
pretation. More generally, data cleaning is needed, to bypass instrumental
measurement artifacts, and even the inherent complexity of the data. Image
and signal filtering will be presented in Chapter 2.

– Deconvolution: Signal “deblurring” is used for reasons similar to filter-
ing, as a preliminary to signal interpretation. Motion deblurring is rarely
important in astronomy, but removing the effects of atmospheric blurring,
or quality of seeing, certainly is of importance. There will be a wide-ranging
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discussion of the state of the art in deconvolution in astronomy in Chap-
ter 3.

– Compression: Consider three different facts. Long-term storage of astro-
nomical data is important. A current trend is towards detectors accom-
modating ever-larger image sizes. Research in astronomy is a cohesive but
geographically distributed activity. All three facts point to the importance
of effective and efficient compression technology. In Chapter 5, the state of
the art in astronomical image compression will be surveyed.

– Mathematical morphology: Combinations of dilation and erosion op-
erators, giving rise to opening and closing operations, in boolean images
and in greyscale images, allow for a truly very esthetic and immediately
practical processing framework. The median function plays its role too in
the context of these order and rank functions. Multiple scale mathematical
morphology is an immediate generalization. There is further discussion on
mathematical morphology below in this chapter.

– Edge detection: Gradient information is not often of central importance
in astronomical image analysis. There are always exceptions of course.

– Segmentation and pattern recognition: These are discussed in Chap-
ter 4, dealing with object detection. In areas outside astronomy, the term
feature selection is more normal than object detection.

– Multidimensional pattern recognition: General multidimensional
spaces are analyzed by clustering methods, and by dimensionality mapping
methods. Multiband images can be taken as a particular case. Such meth-
ods are pivotal in Chapter 6 on multichannel data, 8 on catalog analysis,
and 9 on data storage and retrieval.

– Hough and Radon transforms, leading to 3D tomography and
other applications: Detection of alignments and curves is necessary for
many classes of segmentation and feature analysis, and for the building of
3D representations of data. Gravitational lensing presents one area of po-
tential application in astronomy imaging, although the problem of faint sig-
nal and strong noise is usually the most critical one. Ridgelet and curvelet
transforms (discussed below in this chapter) offer powerful generalizations
of current state of the art ways of addressing problems in these fields.

A number of outstanding general texts on image and signal processing
are available. These include Gonzalez and Woods (1992), Jain (1990), Pratt
(1991), Parker (1996), Castleman (1995), Petrou and Bosdogianni (1999),
Bovik (2000). A text of ours on image processing and pattern recognition
is available on-line (Campbell and Murtagh, 2001). Data analysis texts of
importance include Bishop (1995), and Ripley (1995).

1.2 Transformation and Data Representation

Many different transforms are used in data processing, – Haar, Radon,
Hadamard, etc. The Fourier transform is perhaps the most widely used. The
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goal of these transformations is to obtain a sparse representation of the data,
and to pack most information into a small number of samples. For example,
a sine signal f(t) = sin(2πνt), defined on N pixels, requires only two samples
(at frequencies −ν and ν) in the Fourier domain for an exact representation.
Wavelets and related multiscale representations pervade all areas of signal
processing. The recent inclusion of wavelet algorithms in JPEG 2000 – the
new still-picture compression standard – testifies to this lasting and signifi-
cant impact. The reason for the success of wavelets is due to the fact that
wavelet bases represent well a large class of signals. Therefore this allows us
to detect roughly isotropic elements occurring at all spatial scales and loca-
tions. Since noise in the physical sciences is often not Gaussian, modeling in
wavelet space of many kind of noise – Poisson noise, combination of Gaussian
and Poisson noise components, non-stationary noise, and so on – has been
a key motivation for the use of wavelets in scientific, medical, or industrial
applications. The wavelet transform has also been extensively used in astro-
nomical data analysis during the last ten years. A quick search with ADS
(NASA Astrophysics Data System, adswww.harvard.edu) shows that around
500 papers contain the keyword “wavelet” in their abstract, and this holds
for all astrophysical domains, from study of the sun through to CMB (Cosmic
Microwave Background) analysis:

– Sun: active region oscillations (Ireland et al., 1999; Blanco et al., 1999),
determination of solar cycle length variations (Fligge et al., 1999), fea-
ture extraction from solar images (Irbah et al., 1999), velocity fluctuations
(Lawrence et al., 1999).

– Solar system: asteroidal resonant motion (Michtchenko and Nesvorny,
1996), classification of asteroids (Bendjoya, 1993), Saturn and Uranus ring
analysis (Bendjoya et al., 1993; Petit and Bendjoya, 1996).

– Star studies: Ca II feature detection in magnetically active stars (Soon
et al., 1999), variable star research (Szatmary et al., 1996).

– Interstellar medium: large-scale extinction maps of giant molecular clouds
using optical star counts (Cambrésy, 1999), fractal structure analysis in
molecular clouds (Andersson and Andersson, 1993).

– Planetary nebula detection: confirmation of the detection of a faint plan-
etary nebula around IN Com (Brosch and Hoffman, 1999), evidence for
extended high energy gamma-ray emission from the Rosette/Monoceros
Region (Jaffe et al., 1997).

– Galaxy: evidence for a Galactic gamma-ray halo (Dixon et al., 1998).
– QSO: QSO brightness fluctuations (Schild, 1999), detecting the non-

Gaussian spectrum of QSO Lyα absorption line distribution (Pando and
Fang, 1998).

– Gamma-ray burst: GRB detection (Kolaczyk, 1997; Norris et al., 1994)
and GRB analysis (Greene et al., 1997; Walker et al., 2000).

– Black hole: periodic oscillation detection (Steiman-Cameron et al., 1997;
Scargle, 1997)
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– Galaxies: starburst detection (Hecquet et al., 1995), galaxy counts (Aus-
sel et al., 1999; Damiani et al., 1998), morphology of galaxies (Weistrop
et al., 1996; Kriessler et al., 1998), multifractal character of the galaxy
distribution (Mart́ınez et al., 1993a).

– Galaxy cluster: sub-structure detection (Pierre and Starck, 1998; Krywult
et al., 1999; Arnaud et al., 2000), hierarchical clustering (Pando et al.,
1998a), distribution of superclusters of galaxies (Kalinkov et al., 1998).

– Cosmic Microwave Background: evidence for scale-scale correlations in
the Cosmic Microwave Background radiation in COBE data (Pando et al.,
1998b), large-scale CMB non-Gaussian statistics (Popa, 1998; Aghanim
et al., 2001), massive CMB data set analysis (Gorski, 1998).

– Cosmology: comparing simulated cosmological scenarios with observations
(Lega et al., 1996), cosmic velocity field analysis (Rauzy et al., 1993).

This broad success of the wavelet transform is due to the fact that astro-
nomical data generally gives rise to complex hierarchical structures, often
described as fractals. Using multiscale approaches such as the wavelet trans-
form, an image can be decomposed into components at different scales, and
the wavelet transform is therefore well-adapted to the study of astronomical
data.

This section reviews briefly some of the existing transforms.

1.2.1 Fourier Analysis

The Fast Fourier Transform. The Fourier transform of a continuous func-
tion f(t) is defined by:

f̂(ν) =
∫ +∞

−∞
f(t)e−i2πνtdt (1.1)

and the inverse Fourier transform is:

f(t) =
∫ +∞

−∞
f̂(ν)ei2πνtdu (1.2)

The discrete Fourier transform is given by:

f̂(u) =
1
N

+∞∑
k=−∞

f(k)e−i2π uk
N (1.3)

and the inverse discrete Fourier transform is:

f̂(k) =
+∞∑

u=−∞
f(u)ei2π uk

N (1.4)

In the case of images (two variables), this is:
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f̂(u, v) =
1

MN

+∞∑
l=−∞

+∞∑
k=−∞

f(k, l)e−2iπ( uk
M + vl

N )

f(k, l) =
+∞∑

u=−∞

+∞∑
v=−∞

f̂(u, v)e2iπ( uk
M + vl

N ) (1.5)

Since f̂(u, v) is generally complex, this can be written using its real and
imaginary parts:

f̂(u, v) = Re[f̂(u, v)] + iIm[f̂(u, v)] (1.6)

with:

Re[f̂(u, v)] =
1

MN

+∞∑
l=−∞

+∞∑
k=−∞

f(k, l) cos(2π

(
uk

M
+

vl

N

)
)

Im[f̂(u, v)] = − 1
MN

+∞∑
l=−∞

+∞∑
k=−∞

f(k, l) sin(2π

(
uk

M
+

vl

N

)
) (1.7)

It can also be written using its modulus and argument:

f̂(u, v) = | f̂(u, v) | ei arg f̂(u,v) (1.8)

| f̂(u, v) |2 is called the power spectrum, and Θ(u, v) = arg f̂(u, v) the phase.
Two other related transforms are the cosine and the sine transforms. The

discrete cosine transform is defined by:

DCT (u, v) =
1√
2N

c(u)c(v)
N−1∑
k=0

N−1∑
l=0

f(k, l)

cos
(

(2k + 1)uπ

2N

)
cos

(
(2l + 1)vπ

2N

)

IDCT (k, l) =
1√
2N

N−1∑
u=0

N−1∑
v=0

c(u)c(v)DCT (u, v)

cos
(

(2k + 1)uπ

2N

)
cos

(
(2l + 1)vπ

2N

)

with c(i) = 1√
2

when i = 0 and 1 otherwise.

1.2.2 Time-Frequency Representation

The Wigner-Ville Transform. The Wigner-Ville distribution (Wigner,
1932; Ville, 1948) of a signal s(t) is

W (t, ν) =
1
2π

∫
s∗(t − 1

2
τ)s(t +

1
2
τ)e−iτ2πνdτ (1.9)
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where s∗ is the conjugate of s. The Wigner-Ville transform is always real
(even for a complex signal). In practice, its use is limited by the existence
of interference terms, even if they can be attenuated using specific averaging
approaches. More details can be found in (Cohen, 1995; Mallat, 1998).

The Short-Term Fourier Transform. The Short-Term Fourier Transform
of a 1D signal f is defined by:

STFT (t, ν) =
∫ +∞

−∞
e−j2πντf(τ)g(τ − t)dτ (1.10)

If g is the Gaussian window, this corresponds to the Gabor transform.
The energy density function, called the spectrogram, is given by:

SPEC(t, ν) =| STFT (t, ν) |2=|
∫ +∞

−∞
e−j2πντf(τ)g(τ − t)dτ |2 (1.11)

Fig. 1.1 shows a quadratic chirp s(t) = sin( πt3

3N2 ), N being the number of
pixels and t ∈ {1, .., N}, and its spectrogram.

Fig. 1.1. Left: a quadratic chirp and right: its spectrogram. The y-axis in the
spectrogram represents the frequency axis, and the x-axis the time. In this example,
the instantaneous frequency of the signal increases with the time.

The inverse transform is obtained by:

f(t) =
∫ +∞

−∞
g(t − τ)

∫ +∞

−∞
ej2πντSTFT (τ, ν)dνdτ (1.12)

Example: QPO Analysis. Fig. 1.2, top, shows an X-ray light curve from
a galactic binary system, formed from two stars of which one has collapsed
to a compact object, very probably a black hole of a few solar masses. Gas
from the companion star is attracted to the black hole and forms an accretion
disk around it. Turbulence occurs in this disk, which causes the gas to accrete
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Fig. 1.2. Top: QPO X-ray light curve, and bottom: its spectrogram.

slowly to the black hole. The X-rays we see come from the disk and its corona,
heated by the energy released as the gas falls deeper into the potential well of
the black hole. The data were obtained by RXTE, an X-ray satellite dedicated
to the observation of this kind of source, and in particular their fast variability
which gives us information on the processes in the disk. In particular they
show sometimes a QPO (quasi-periodic oscillation) at a varying frequency of
the order of 1 to 10 Hz (see Fig. 1.2, bottom), which probably corresponds
to a standing feature rotating in the disk.
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1.2.3 Time-Scale Representation: The Wavelet Transform

The Morlet-Grossmann definition (Grossmann et al., 1989) of the continuous
wavelet transform for a 1-dimensional signal f(x) ∈ L2(R), the space of all
square integrable functions, is:

W (a, b) =
1√
a

∫ +∞

−∞
f(x)ψ∗

(
x − b

a

)
dx (1.13)

where:

– W (a, b) is the wavelet coefficient of the function f(x)
– ψ(x) is the analyzing wavelet
– a (> 0) is the scale parameter
– b is the position parameter

The inverse transform is obtained by:

f(x) =
1

Cχ

∫ +∞

0

∫ +∞

−∞

1√
a
W (a, b)ψ

(
x − b

a

)
da db

a2
(1.14)

where:

Cψ =
∫ +∞

0

ψ̂∗(ν)ψ̂(ν)
ν

dν =
∫ 0

−∞

ψ̂∗(ν)ψ̂(ν)
ν

dν (1.15)

Reconstruction is only possible if Cψ is defined (admissibility condition)
which implies that ψ̂(0) = 0, i.e. the mean of the wavelet function is 0.

Fig. 1.3. Mexican hat function.

Fig. 1.3 shows the Mexican hat wavelet function, which is defined by:

g(x) = (1 − x2)e−x2/2 (1.16)

This is the second derivative of a Gaussian. Fig. 1.4 shows the continuous
wavelet transform of a 1D signal computed with the Mexican Hat wavelet.
This diagram is called a scalogram. The y-axis represents the scale.
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Fig. 1.4. Continuous wavelet transform of a 1D signal computed with the Mexican
Hat wavelet.

The Orthogonal Wavelet Transform. Many discrete wavelet transform
algorithms have been developed (Mallat, 1998; Starck et al., 1998a). The
most widely-known one is certainly the orthogonal transform, proposed by
Mallat (1989) and its bi-orthogonal version (Daubechies, 1992). Using the
orthogonal wavelet transform, a signal s can be decomposed as follows:

s(l) =
∑

k

cJ,kφJ,l(k) +
∑

k

J∑
j=1

ψj,l(k)wj,k (1.17)

with φj,l(x) = 2−jφ(2−jx − l) and ψj,l(x) = 2−jψ(2−jx − l), where φ and
ψ are respectively the scaling function and the wavelet function. J is the
number of resolutions used in the decomposition, wj the wavelet (or detail)
coefficients at scale j, and cJ is a coarse or smooth version of the original
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signal s. Thus, the algorithm outputs J + 1 subband arrays. The indexing
is such that, here, j = 1 corresponds to the finest scale (high frequencies).
Coefficients cj,k and wj,k are obtained by means of the filters h and g:

cj+1,l =
∑

k

h(k − 2l)cj,k

wj+1,l =
∑

k

g(k − 2l)cj,k (1.18)

where h and g verify:

1
2
φ(

x

2
) =

∑
k

h(k)φ(x − k)

1
2
ψ(

x

2
) =

∑
k

g(k)φ(x − k) (1.19)

and the reconstruction of the signal is performed with:

cj,l = 2
∑

k

[h̃(k + 2l)cj+1,k + g̃(k + 2l)wj+1,k] (1.20)

where the filters h̃ and g̃ must verify the conditions of dealiasing and exact
reconstruction:

ĥ

(
ν +

1
2

)
ˆ̃
h(ν) + ĝ

(
ν +

1
2

)
ˆ̃g(ν) = 0

ĥ(ν)ˆ̃h(ν) + ĝ(ν)ˆ̃g(ν) = 1 (1.21)

The two-dimensional algorithm is based on separate variables leading to
prioritizing of horizontal, vertical and diagonal directions. The scaling func-
tion is defined by φ(x, y) = φ(x)φ(y), and the passage from one resolution to
the next is achieved by:

cj+1(kx, ky) =
+∞∑

lx=−∞

+∞∑
ly=−∞

h(lx − 2kx)h(ly − 2ky)fj(lx, ly) (1.22)

The detail signal is obtained from three wavelets:

– vertical wavelet : ψ1(x, y) = φ(x)ψ(y)
– horizontal wavelet: ψ2(x, y) = ψ(x)φ(y)
– diagonal wavelet: ψ3(x, y) = ψ(x)ψ(y)

which leads to three wavelet subimages at each resolution level. For three di-
mensional data, seven wavelet subcubes are created at each resolution level,
corresponding to an analysis in seven directions. Other discrete wavelet trans-
forms exist. The à trous wavelet transform which is very well-suited for as-
tronomical data is discussed in the next chapter, and described in detail in
Appendix A.
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1.2.4 The Radon Transform

The Radon transform of an object f is the collection of line integrals indexed
by (θ, t) ∈ [0, 2π) × R given by

Rf(θ, t) =
∫

f(x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2, (1.23)

where δ is the Dirac distribution. The two-dimensional Radon transform maps
the spatial domain (x, y) to the Radon domain (θ, t), and each point in the
Radon domain corresponds to a line in the spatial domain. The transformed
image is called a sinogram (Liang and Lauterbur, 2000).

A fundamental fact about the Radon transform is the projection-slice
formula (Deans, 1983):

f̂(λ cos θ, λ sin θ) =
∫

Rf(t, θ)e−iλtdt.

This says that the Radon transform can be obtained by applying the one-
dimensional inverse Fourier transform to the two-dimensional Fourier trans-
form restricted to radial lines going through the origin.

This of course suggests that approximate Radon transforms for digital
data can be based on discrete fast Fourier transforms. This is a widely used
approach, in the literature of medical imaging and synthetic aperture radar
imaging, for which the key approximation errors and artifacts have been
widely discussed. See (Toft, 1996; Averbuch et al., 2001) for more details
on the different Radon transform and inverse transform algorithms. Fig. 1.5
shows an image containing two lines and its Radon transform. In astronomy,
the Radon transform has been proposed for the reconstruction of images
obtained with a rotating Slit Aperture Telescope (Touma, 2000), for the
BATSE experiment of the Compton Gamma Ray Observatory (Zhang et al.,
1993), and for robust detection of satellite tracks (Vandame, 2001). The
Hough transform, which is closely related to the Radon transform, has been
used by Ballester (1994) for automated arc line identification, by Llebaria
(1999) for analyzing the temporal evolution of radial structures on the solar
corona, and by Ragazzoni and Barbieri (1994) for the study of astronomical
light curve time series.

1.2.5 The Ridgelet Transform

The two-dimensional continuous ridgelet transform in R2 can be defined as
follows (Candès and Donoho, 1999). We pick a smooth univariate function
ψ : R → R with sufficient decay and satisfying the admissibility condition

∫
|ψ̂(ξ)|2/|ξ|2 dξ < ∞, (1.24)
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Fig. 1.5. Left: image with two lines and Gaussian noise. Right: its Radon transform.

which holds if, say, ψ has a vanishing mean
∫

ψ(t)dt = 0. We will suppose
that ψ is normalized so that

∫
|ψ̂(ξ)|2ξ−2dξ = 1.

For each a > 0, each b ∈ R and each θ ∈ [0, 2π], we define the bivariate
ridgelet ψa,b,θ : R2 → R by

ψa,b,θ(x) = a−1/2 · ψ((x1 cos θ + x2 sin θ − b)/a). (1.25)

Given an integrable bivariate function f(x), we define its ridgelet coeffi-
cients by:

Rf (a, b, θ) =
∫

ψa,b,θ(x)f(x)dx.

We have the exact reconstruction formula

f(x) =
∫ 2π

0

∫ ∞

−∞

∫ ∞

0

Rf (a, b, θ)ψa,b,θ(x)
da

a3
db

dθ

4π
(1.26)

valid for functions which are both integrable and square integrable.
It has been shown (Candès and Donoho, 1999) that the ridgelet transform

is precisely the application of a 1-dimensional wavelet transform to the slices
of the Radon transform. Fig. 1.6 (left) shows an example ridgelet function.
This function is constant along lines x1 cos θ + x2 sin θ = const. Transverse
to these ridges it is a wavelet: Fig. 1.6 (right).

Local Ridgelet Transform

The ridgelet transform is optimal for finding only lines of the size of the image.
To detect line segments, a partitioning must be introduced. The image is
decomposed into smoothly overlapping blocks of side-length B pixels in such
a way that the overlap between two vertically adjacent blocks is a rectangular
array of size B × B/2; we use an overlap to avoid blocking artifacts. For an
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Fig. 1.6. Example of 2D ridgelet function.

n × n image, we count 2n/B such blocks in each direction. The partitioning
introduces redundancy, since a pixel belongs to 4 neighboring blocks.

More details on the implementation of the digital ridgelet transform can
be found in Starck et al. (2002; 2003a). The ridgelet transform is therefore
optimal for detecting lines of a given size, equal to the block size.

1.2.6 The Curvelet Transform

The curvelet transform (Donoho and Duncan, 2000; Candès and Donoho,
2000a; Starck et al., 2003a) opens the possibility to analyze an image with
different block sizes, but with a single transform. The idea is to first decom-
pose the image into a set of wavelet bands, and to analyze each band with
a local ridgelet transform. The block size can be changed at each scale level.
Roughly speaking, different levels of the multi-scale ridgelet pyramid are used
to represent different sub-bands of a filter bank output.

The side-length of the localizing windows is doubled at every other dyadic
sub-band, hence maintaining the fundamental property of the curvelet trans-
form, that elements of length about 2−j/2 serve for the analysis and synthesis
of the jth subband [2j , 2j+1]. Note also that the coarse description of the im-
age cJ is not processed. In our implementation, we used the default block size
value Bmin = 16 pixels. This implementation of the curvelet transform is also
redundant. The redundancy factor is equal to 16J + 1 whenever J scales are
employed. A given curvelet band is therefore defined by the resolution level
j (j = 1 . . . J) related to the wavelet transform, and by the ridgelet scale
r. This method is optimal for detecting anisotropic structures of different
lengths.
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A sketch of the discrete curvelet transform algorithm is:

1. apply the à trous wavelet transform algorithm (Appendix A) with J
scales,

2. set B1 = Bmin,
3. for j = 1, . . . , J do,

– partition the subband wj with a block size Bj and apply the digital
ridgelet transform to each block,

– if j modulo 2 = 1 then Bj+1 = 2Bj ,
– else Bj+1 = Bj .
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Fig. 1.7. A few curvelets.

Fig. 1.7 shows a few curvelets at different scales, orientations and loca-
tions. A fast curvelet transform algorithm has also recently been published
by Candes et al. (2005).

In Starck et al. (2004), it has been shown that the curvelet transform
could be useful for the detection and the discrimination of non-Gaussianity
in CMB (Cosmic Microwave Background) data.

1.3 Mathematical Morphology

Mathematical morphology is used for nonlinear filtering. Originally devel-
oped by Matheron (1967; 1975) and Serra (1982), mathematical morphology
is based on two operators: the infimum (denoted ∧) and the supremum (de-
noted ∨). The infimum of a set of images is defined as the greatest lower
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bound while the supremum is defined as the least upper bound. The basic
morphological transformations are erosion, dilation, opening and closing. For
grey-level images, they can be defined in the following way:

– Dilation consists of replacing each pixel of an image by the maximum of
its neighbors.

δB(f) =
∨
b∈B

fb

where f stands for the image, and B denotes the structuring element,
typically a small convex set such as a square or disk.
The dilation is commonly known as “fill”, “expand”, or “grow.” It can
be used to fill “holes” of a size equal to or smaller than the structuring
element. Used with binary images, where each pixel is either 1 or 0, dilation
is similar to convolution. At each pixel of the image, the origin of the
structuring element is overlaid. If the image pixel is nonzero, each pixel
of the structuring element is added to the result using the “or” logical
operator.

– Erosion consists of replacing each pixel of an image by the minimum of its
neighbors:

εB(f) =
∧
b∈B

f−b

where f stands for the image, and B denotes the structuring element.
Erosion is the dual of dilation. It does to the background what dilation
does to the foreground. This operator is commonly known as “shrink” or
“reduce”. It can be used to remove islands smaller than the structuring
element. At each pixel of the image, the origin of the structuring element
is overlaid. If each nonzero element of the structuring element is contained
in the image, the output pixel is set to one.

– Opening consists of doing an erosion followed by a dilation.

αB = δBεB and αB(f) = f ◦ B

– Closing consists of doing a dilation followed by an erosion.

βB = εBδB and βB(f) = f • B

In a more general way, opening and closing refer to morphological filters
which respect some specific properties (Breen et al., 2000). Such morpho-
logical filters were used for removing “cirrus-like” emission from far-infrared
extragalactic IRAS fields (Appleton et al., 1993), and for astronomical image
compression (Huang and Bijaoui, 1991).

The skeleton of an object in an image is a set of lines that reflect the shape
of the object. The set of skeletal pixels can be considered to be the medial axis
of the object. More details can be found in (Breen et al., 2000; Soille, 2003).
Fig. 1.8 shows an example of the application of the morphological operators
with a square binary structuring element.
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Fig. 1.8. Application of the morphological operators with a square binary structur-
ing element. Top, from left to right: original image and images obtained by erosion
and dilation. Bottom, images obtained respectively by the opening, closing and
skeleton operators.

Undecimated Multiscale Morphological Transform. Mathematical
morphology has been up to now considered as another way to analyze data, in
competition with linear methods. But from a multiscale point of view (Starck
et al., 1998a; Goutsias and Heijmans, 2000; Heijmans and Goutsias, 2000),
mathematical morphology or linear methods are just filters allowing us to go
from a given resolution to a coarser one, and the multiscale coefficients are
then analyzed in the same way.

By choosing a set of structuring elements Bj having a size increasing with
j, we can define an undecimated morphological multiscale transform by

cj+1,l = Mj(cj)(l)
wj+1,l = cj,l − cj+1,l (1.27)

where Mj is a morphological filter (erosion, opening, etc.) using the struc-
turing element Bj . An example of Bj is a box of size (2j +1)× (2j +1). Since
the detail signal wj+1 is obtained by calculating a simple difference between
the cj and cj+1, the reconstruction is straightforward, and is identical to the
reconstruction relative to the “à trous” wavelet transform (see Appendix A).
An exact reconstruction of the image c0 is obtained by:

c0,l = cJ,l +
J∑

j=1

wj,l (1.28)

where J is the number of scales used in the decomposition. Each scale has
the same number N of samples as the original data. The total number of
pixels in the transformation is (J + 1)N .
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1.4 Edge Detection

An edge is defined as a local variation of image intensity. Edges can be de-
tected by the computation of a local derivative operator.

Fig. 1.9. First and second derivative of Gσ ∗ f . (a) Original signal, (b) signal
convolved by a Gaussian, (c) first derivative of (b), (d) second derivative of (b).

Fig. 1.9 shows how the inflection point of a signal can be found from its
first and second derivative. Two methods can be used for generating first
order derivative edge gradients.

1.4.1 First Order Derivative Edge Detection

Gradient. The gradient of an image f at location (x, y), along the line
normal to the edge slope, is the vector (Pratt, 1991; Gonzalez and Woods,
1992; Jain, 1990):

�f =
[

fx

fy

]
=

[
∂f
∂x
∂f
∂y

]
(1.29)

The spatial gradient amplitude is given by:

G(x, y) =
√

f2
x + f2

y (1.30)

and the gradient direction with respect to the row axis is

Θ(x, y) = arctan
fy

fx
(1.31)

The first order derivative edge detection can be carried out either by
using two orthogonal directions in an image or by using a set of directional
derivatives.
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Gradient Mask Operators. Gradient estimates can be obtained by using
gradient operators of the form:

fx = f ∗ Hx (1.32)
fy = f ∗ Hy (1.33)

where ∗ denotes convolution, and Hx and Hy are 3 × 3 row and column
operators, called gradient masks. Table 1.1 shows the main gradient masks
proposed in the literature. Pixel difference is the simplest one, which consists
just of forming the difference of pixels along rows and columns of the image:

fx(xm, yn) = f(xm, yn) − f(xm − 1, yn)
fy(xm, yn) = f(xm, yn) − f(xm, yn − 1) (1.34)

The Roberts gradient masks (Roberts, 1965) are more sensitive to diago-
nal edges. Using these masks, the orientation must be calculated by

Θ(xm, yn) =
π

4
+ arctan

[
fy(xm, yn)
f(xm, yn)

]
(1.35)

Prewitt (1970), Sobel, and Frei-Chen (1977) produce better results than
the pixel difference, separated pixel difference and Roberts operator, because
the mask is larger, and provides averaging of small luminance fluctuations.
The Prewitt operator is more sensitive to horizontal and vertical edges than
diagonal edges, and the reverse is true for the Sobel operator. The Frei-Chen
edge detector has the same sensitivity for diagonal, vertical, and horizontal
edges.

Compass Operators. Compass operators measure gradients in a selected
number of directions. The directions are Θk = k π

4 , k = 0, . . . , 7. The edge
template gradient is defined as:

G(xm, yn) =
7

max
k=0

| f(xm, yn) ∗ Hk(xm, yn) | (1.36)

Table 1.2 shows the principal template gradient operators.

Derivative of Gaussian. The previous methods are relatively sensitive to
the noise. A solution could be to extend the window size of the gradient mask
operators. Another approach is to use the derivative of the convolution of the
image by a Gaussian. The derivative of a Gaussian (DroG) operator is

�(g ∗ f) =
∂(g ∗ f)

∂x
+

∂(g ∗ f)
∂y

= fx + fy (1.37)

with g = e−
x2+y2

2σ2 . Partial derivatives of the Gaussian function are

gx(x, y) = ∂g
∂x = − x

σ2
e−

x2+y2

2σ2

gy(x, y) = ∂g
∂y = − y

σ2
e−

x2+y2

2σ2 (1.38)
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The filters are separable so we have

gx(x, y) = gx(x) ∗ g(y)
gy(x, y) = gy(y) ∗ g(x) (1.39)

Then

fx = gx(x) ∗ g(y) ∗ f

fy = gy(y) ∗ g(x) ∗ f (1.40)

Thinning the Contour. From the gradient map, we may want to consider
only pixels which belong to the contour. This can be done by looking for each
pixel in the direction of gradient. For each point P0 in the gradient map, we
determine the two adjacent pixels P1,P2 in the direction orthogonal to the
gradient. If P0 is not a maximum in this direction (i.e. P0 < P1, or P0 <
P2), then we threshold P0 to zero. Fig. 1.10 shows the Saturn image and the
detected edges by the DroG method.

1.4.2 Second Order Derivative Edge Detection

Second derivative operators allow us to accentuate the edges. The most fre-
quently used operator is the Laplacian operator, defined by

�2f =
∂2f

∂x2
+

∂2f

∂y2
(1.41)

Table 1.1. Gradient edge detector masks.

Operator Hx Hy Scale factor

Pixel difference

[
0 0 0
0 1 −1
0 0 0

] [
0 −1 0
0 1 0
0 0 0

]
1

Separated
pixel difference

[
0 0 0
1 0 −1
0 0 0

] [
0 −1 0
0 0 0
0 1 0

]
1

Roberts

[
0 0 −1
0 1 0
0 0 0

] [
−1 0 0
0 1 0
0 0 0

]
1

Prewitt

[
1 0 −1
1 0 −1
1 0 −1

] [
−1 −1 −1
0 0 0
1 1 1

]
1

Sobel

[
1 0 −1
2 0 −2
1 0 −1

] [
−1 −2 −1
0 0 0
1 2 1

]
1
4

Fei-Chen

[
1 0 −1√
2 0

√
2

1 0 −1

] [
−1 −

√
2 −1

0 0 0
1

√
2 1

]
1

2+
√

2
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Fig. 1.10. Saturn image (left) and DroG detected edges.

Table 1.3 gives three discrete approximations of this operator.

Table 1.3. Laplacian operators.

Laplacian 1 Laplacian 2 Laplacian 3

1
4

[
0 −1 0
−1 4 −1
0 −1 0

]
1
8

[
−1 −1 −1
−1 8 −1
−1 −1 −1

]
1
8

[
−1 −2 −1
−2 4 −2
−1 −2 −1

]

Marr and Hildreth (1980) have proposed the Laplacian of Gaussian (LoG)
edge detector operator. It is defined as

L(x, y) =
1

πs4

[
1 − x2 + y2

2s2

]
e−

x2+y2

2s2 (1.42)

where σ controls the width of the Gaussian kernel.
Zero-crossings of a given image f convolved with L give its edge locations.

A simple algorithm for zero-crossings is:

1. For all pixels i,j do
2. ZeroCross(i,j) = 0
3. P0 = G(i,j); P1 = G(i,j-1); P2 = G(i-1,j); P3 = G(i-1,j-1)
4. If (P0*P1 < 0) or (P0*P2 < 0) or (P0*P3 < 0) then ZeroCross(i,j) = 1
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1.5 Segmentation

Image segmentation is a process which partitions an image into regions (or
segments) based upon similarities within regions – and differences between
regions. An image represents a scene in which there are different objects or,
more generally, regions. Although humans have little difficulty in separating
the scene into regions, this process can be difficult to automate.

Segmentation takes stage 2 into stage 3 in the following information flow:

1. Raw image: pixel values are intensities, noise-corrupted.
2. Preprocessed image: pixels represent physical attributes, e.g. thickness of

absorber, greyness of scene.
3. Segmented or symbolic image: each pixel labeled, e.g. into object and

background.
4. Extracted features or relational structure.
5. Image analysis model.

Taking stage 3 into stage 4 is feature extraction, such as line detection, or
use of moments. Taking stage 4 into stage 5 is shape detection or matching,
identifying and locating object position. In this schema we start off with raw
data (an array of grey-levels) and we end up with information – the identi-
fication and position of an object. As we progress, the data and processing
move from low-level to high-level.

Haralick and Shapiro (1985) give the following wish-list for segmentation:
“What should a good image segmentation be? Regions of an image segmenta-
tion should be uniform and homogeneous with respect to some characteristic
(property) such as grey tone or texture. Region interiors should be simple and
without many small holes. Adjacent regions of a segmentation should have
significantly different values with respect to the characteristic on which they
(the regions themselves) are uniform. Boundaries of each segment should be
simple, not ragged, and must be spatially accurate”.

Three general approaches to image segmentation are: single pixel classi-
fication, boundary-based methods, and region growing methods. There are
other methods – many of them. Segmentation is one of the areas of image
processing where there is certainly no agreed theory, nor agreed set of meth-
ods.

Broadly speaking, single pixel classification methods label pixels on the
basis of the pixel value alone, i.e. the process is concerned only with the
position of the pixel in grey-level space, or color space in the case of multi-
valued images. The term classification is used because the different regions
are considered to be populated by pixels of different classes.

Boundary-based methods detect boundaries of regions; subsequently pix-
els enclosed by a boundary can be labeled accordingly.

Finally, region growing methods are based on the identification of spatially
connected groups of similarly valued pixels; often the grouping procedure is
applied iteratively – in which case the term relaxation is used.
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1.6 Pattern Recognition

Pattern recognition encompasses a broad area of study to do with auto-
matic decision making. Typically, we have a collection of data about a situ-
ation; completely generally, we can assume that these data come as a set of
p values, {x1, x2, . . . xp}. Usually, they will be arranged as a tuple or vector,
x = (x1, x2, . . . xp)T . An example is the decision whether a burgular alarm
state is {intruder, no intruder}, based on a set of radar, acoustic, and elec-
trical measurements. A pattern recognition system may be defined as taking
an input data vector, x = (x1, x2, . . . xp)T , and outputing a class label, w,
taken from a set of possible labels {w1, w2, . . . , wC}.

Because it is deciding/selecting to which of a number of classes the vector
x belongs, a pattern recognition system is often called a classifier – or a
pattern classification system. For the purposes of most pattern recognition
theory, a pattern is merely an ordered collection of numbers. This abstraction
is a powerful one and is widely applicable.

Our p input numbers could be simply raw measurements, e.g. pixels in an
area surrounding an object under investigation, or from the burgular alarm
sensor referred to above. Quite often it is useful to apply some problem-
dependent processing to the raw data before submitting them to the decision
mechanism. In fact, what we try to do is to derive some data (another vec-
tor) that are sufficient to discriminate (classify) patterns, but eliminate all
superfluous and irrelevant details (e.g. noise). This process is called feature
extraction.

The components of a pattern vector are commonly called features, thus
the term feature vector introduced above. Other terms are attribute, char-
acteristic. Often all patterns are called feature vectors, despite the literal
unsuitability of the term if it is composed of raw data.

It can be useful to classify feature extractors according to whether they
are high- or low-level.

A typical low-level feature extractor is a transformation IRp′
−→ IRp

which, presumably, either enhances the separability of the classes, or, at
least, reduces the dimensionality of the data (p < p′) to the extent that
the recognition task more computationally tractable, or simply to compress
the data. Many data compression schemes are used as feature extractors, and
vice-versa.

Examples of low-level feature extractors are:

– Fourier power spectrum of a signal – appropriate if frequency content is a
good discriminator and, additionally, it has the property of shift invariance.

– Karhunen-Loève transform – transforms the data to a space in which the
features are ordered according to information content based on variance.

At a higher-level, for example in image shape recognition, we could have
a vector composed of: length, width, circumference. Such features are more
in keeping with the everyday usage of the term feature.
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As an example of features, we will take two-dimensional invariant mo-
ments for planar shape recognition (Gonzalez and Woods, 1992). Assume we
have isolated the object in the image. Two-dimensional moments are given
by:

mpq =
∑

x

∑
y

xpyqf(x, y)

for p, q = 0, 1, 2, . . . .
These are not invariant to anything, yet.

x̃ = m10/m00

gives the x-center of gravity of the object,
and

ỹ = m01/m00

gives the y-center of gravity.
Now we can obtain shift invariant features by referring all coordinates to

the center of gravity (x̃, ỹ). These are the central moments:

m′
pq =

∑
x

∑
y

(x − x̃)p(y − ỹ)qf(x, y)

The first few m′ can be interpreted as follows:
m′

00 = m00 = sum of the grey-levels in the object,
m′

10 = m′
01 = 0, always, i.e. center of gravity is (0,0) with respect to itself.

m′
20 = measure of width along x-axis

m′
02 = measure of width along y-axis.

From the m′
pq can be derived a set of normalized moments:

µpq = m′
pq/((m′

00)
g)

where g = (p + q)/2 + 1
Finally, a set of seven fully shift, rotation, and scale invariant moments

can be defined:

p1 = n20 + n02

p2 = (n20 − n02)2 + 4n2
11

etc.

The crucial principles behind feature extraction are:

1. Descriptive and discriminating feature(s).
2. As few as possible of them, leading to a simpler classifier.
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An important practical subdivision of classifiers is between supervised and
unsupervised classifiers. In the case of supervised classification, a training set
is used to define the classifier parameter values. Clustering or segmentation
are examples of (usually) unsupervised classification, because we approach
these tasks with no prior knowledge of the problem.

A supervised classifier involves:

Training: gathering and storing example feature vectors – or some summary
of them,

Operation: extracting features, and classifying, i.e. by computing similarity
measures, and either finding the maximum, or applying some sort of
thresholding.

When developing a classifier, we distinguish between training data, and
test data:

– training data are used to train the classifier, i.e. set its parameters,
– test data are used to check if the trained classifier works, i.e. if it can

generalize to new and unseen data.

Statistical classifiers use maximum likelihood (probability) as a criterion.
In a wide range of cases, likelihood corresponds to closeness to the class
cluster, i.e. closeness to the center or mean, or closeness to individual points.
Hence, distance is an important criterion or metric. Consider a decision choice
between class i and class j. Then, considering probabilities, if p(i) > p(j) we
decide in favor of class i. This is a maximum probability, or maximum like-
lihood, rule. It is the basis of all statistical pattern recognition. Training the
classifier simply involves histogram estimation. Histograms though are hard
to measure well, and usually we use parametric representations of probability
density.

Assume two classes, w0, w1. Assume we have the two probability densities
p0(x), p1(x). These may be denoted by

p(x | w0), p(x | w1)

the class conditional probability densities of x. Another piece of information
is vital: what is the relative probability of occurrence of w0, and w1? These
are the prior probabilities, P0, P1 – upper-case P s represent priors. In this
case the “knowledge” of the classifier is represented by the p(x | wj), Pj ;
j = 0, 1.

Now if we receive a feature vector x, we want to know what is the proba-
bility (likelihood) of each class. In other words, what is the probability of wj

given x ? – the posterior probability.
Bayes’ law gives a method of computing the posterior probabilities:

p(wj | x) = Pjp(x | wj)/(
∑
j=0

Pjp(x | wj))
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Each of the quantities on the right-hand side of this equation is known –
through training.

In Bayes’ equation the denominator of the right hand side is merely a
normalizing factor, to ensure that p(wj | x) is a proper probability, and so
can be neglected in cases where we just want maximum probability.

Now, classification becomes a matter of computing Bayes’ equation, and
choosing the class, j, with maximum p(wj | x).

The Bayes classifier is optimal based on an objective criterion: the class
chosen is the most probable, with the consequence that the Bayes rule is also
a minimum error classifier, i.e. in the long run it will make fewer errors than
any other classifier.

Neural network classifiers, and in particular the multilayer perceptron,
are a class of non-parametric, trainable classifiers, which produce a nonlin-
ear mapping between inputs (vectors, x), and outputs (labels, w). Like all
trainable classifiers, neural networks need good training data which covers
the entire feature space quite well. The latter is a requirement which be-
comes increasingly harder to accomplish as the dimensionality of the feature
space becomes larger.

Examples of application of neural net classifiers or neural nets as non-
linear regression methods (implying, respectively, categorical or quantitative
outputs) include the following.

– Gamma-ray bursts (Balastegui et al., 2001).
– Stellar spectral classification (Snider et al., 2001).
– Solar atmospheric model analysis (Carroll and Staude, 2001).
– Star-galaxy discrimination (Cortiglioni et al., 2001).
– Geophysical disturbance prediction (Gleisner and Lundstedt, 2001).
– Galaxy morphology classification (Lahav et al., 1996; Bazell and Aha,

2001).
– Studies of the Cosmic Microwave Background (Baccigalupi et al., 2000a).

Many more applications can be found in the literature. A special issue
of the journal Neural Networks on “Analysis of Complex Scientific Data –
Astronomy and Geology” in 2003 (Tagliaferri et al., 2003) testifies to the
continuing work in both theory and application with neural network methods.

1.7 Chapter Summary

In this chapter, we have surveyed key elements of the state of the art in
image and signal processing. Fourier, wavelet and Radon transforms were
introduced. Edge detection algorithms were specified. Signal segmentation
was discussed. Finally, pattern recognition in multidimensional feature space
was overviewed.

Subsequent chapters will take these topics in many different directions,
motivated by a wide range of scientific problems.
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2.1 Introduction

Data in the physical sciences are characterized by the all-pervasive presence
of noise, and often knowledge is available of the detector’s and data’s noise
properties, at least approximately.

It is usual to distinguish between the signal, of substantive value to the
analyst, and noise or clutter. The data signal can be a 2D image, a 1D time-
series or spectrum, a 3D data cube, and variants of these.

Signal is what we term the scientifically interesting part of the data. Signal
is often very compressible, whereas noise by definition is not compressible.
Effective separation of signal and noise is evidently of great importance in
the physical sciences.

Noise is a necessary evil in astronomical image processing. If we can re-
liably estimate noise, through knowledge of instrument properties or other-
wise, subsequent analyses would be very much better behaved. In fact, major
problems would disappear if this were the case – e.g. image restoration or
sharpening based on solving inverse equations could become simpler.

One perspective on the theme of this chapter is that we present a coherent
and integrated algorithmic framework for a wide range of methods which
may well have been developed elsewhere on pragmatic and heuristic grounds.
We put such algorithms on a firm footing, through explicit noise modeling
followed by computational strategies which benefit from knowledge of the
data. The advantages are clear: they include objectivity of treatment; better
quality data analysis due to far greater thoroughness; and possibilities for
automation of otherwise manual or interactive procedures.

Noise is often taken as additive Poisson (related to arrival of photons)
and/or Gaussian. Commonly used electronic CCD (charge-coupled device)
detectors have a range of Poisson noise components, together with Gaussian
readout noise (Snyder et al., 1993). Digitized photographic images were found
by Tekalp and Pavlović (1991) to be also additive Poisson and Gaussian (and
subject to nonlinear distortions which we will not discuss here).

The noise associated with a particular detector may be known in ad-
vance. In practice rule-of-thumb calculation of noise is often carried out. For
instance, limited convex regions of what is considered as background are
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sampled, and the noise is determined in these regions. For common noise
distributions, noise is specified by its variance.

There are different ways to more formally estimate the standard deviation
of Gaussian noise in an image. Olsen (1993) carried out an evaluation of six
methods and showed that the best was the average method, which is the
simplest also. This method consists of filtering the data I with the average
filter (filtering with a simple box function) and subtracting the filtered image
from I. Then a measure of the noise at each pixel is computed. To keep image
edges from contributing to the estimate, the noise measure is disregarded if
the magnitude of the intensity gradient is larger than some threshold, T .

Other approaches to automatic estimation of noise, which improve on the
methods described by Olsen, are given in this chapter. Included here are
methods which use multiscale transforms and the multiresolution support
data structure.

As has been pointed out, our initial focus is on accurate determination of
the noise. Other types of signal modeling, e.g. distribution mixture modeling
or density estimation, are more easily carried out subsequently. Noise mod-
eling is a desirable, and in many cases necessary, preliminary to such signal
modeling.

In Chapter 1, we introduced the wavelet transform, which furnishes a
multi-faceted approach for describing and modeling data. There are many 2D
wavelet transform algorithms (Chui, 1992; Mallat, 1998; Burrus et al., 1998;
Starck et al., 1998a; Cohen, 2003). The most widely-used is perhaps the bi-
orthogonal wavelet transform (Mallat, 1989; Cohen et al., 1992). This method
is based on the principle of reducing the redundancy of the information in
the transformed data. Other wavelet transform algorithms exist, such as the
Feauveau algorithm (Feauveau, 1990) (which is an orthogonal transform, but
using an isotropic wavelet), or the à trous algorithm which is non-orthogonal
and furnishes a redundant dataset (Holschneider et al., 1989). The à trous
algorithm presents the following advantages:

– The computational requirement is reasonable.
– The reconstruction algorithm is trivial.
– The transform is known at each pixel, allowing position detection without

any error, and without interpolation.
– We can follow the evolution of the transform from one scale to the next.
– Invariance under translation is completely verified.
– The transform is isotropic.

The last point is important if the image or the cube contains isotropic fea-
tures. This is the case for most astronomical data sets, and this explains why
the à trous algorithm has been so successful in astronomical data processing.

Section 2.2 describes the à trous algorithm and discusses the choice of this
wavelet transform in the astronomical data processing framework. Section 2.3
introduces noise modeling relative to the wavelet coefficients. Section 2.4
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presents how to filter a data set once the noise has been modeled, and some
experiments are presented in section 2.4.4. Recent papers have argued for
the use the Haar wavelet transform when the data contain Poisson noise.
This approach is discussed in section 2.6, and we compare it to the à trous
algorithm based filtering method.

2.2 Multiscale Transforms

2.2.1 The A Trous Isotropic Wavelet Transform

The wavelet transform of a signal produces, at each scale j, a set of zero-
mean coefficient values {wj}. Using an algorithm such as the à trous method
(Holschneider et al., 1989; Shensa, 1992), this set {wj} has the same number
of pixels as the signal and thus this wavelet transform is a redundant one.
Furthermore, using a wavelet defined as the difference between the scaling
functions of two successive scales ( 1

2ψ(x
2 ) = φ(x) − φ(x

2 )), the original signal
c0, with a pixel at position k, can be expressed as the sum of all the wavelet
scales and the smoothed array cJ

c0,k = cJ,k +
J∑

j=1

wj,k (2.1)

A summary of the à trous wavelet transform algorithm is as follows.

1. Initialize j to 0, starting with a signal cj,k. Index k ranges over all pixels.
2. Carry out a discrete convolution of the data cj,k using a filter h (see

Appendix A), yielding cj+1,k. The convolution is an interlaced one, where
the filter’s pixel values have a gap (growing with level, j) between them
of 2j pixels, giving rise to the name à trous (“with holes”). “Mirroring”
is used at the data extremes.

3. From this smoothing we obtain the discrete wavelet transform, wj+1,k =
cj,k − cj+1,k.

4. If j is less than the number J of resolution levels wanted, then increment
j and return to step 2.

The set w = {w1, w2, ..., wJ , cJ}, where cJ is a last smooth array, represents
the wavelet transform of the data. We denote as W the wavelet transform
operator. If the input data set s has N pixels, then its transform w (w = Ws)
has (J + 1)N pixels. The redundancy factor is J + 1 whenever J scales are
employed.

The discrete filter h is derived from the scaling function φ(x) (see Appen-
dix A). In our calculations, φ(x) is a spline of degree 3, which leads (in one
dimension) to the filter h = ( 1

16 , 1
4 , 3

8 , 1
4 , 1

16 ). A 2D or a 3D implementation
can be based on two 1D sets of (separable) convolutions.

The associated wavelet function is of mean zero, of compact support, with
a central bump and two negative side-lobes. Of interest for us is that, like the
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scaling function, it is isotropic (point symmetric). More details can be found
in Appendix A.

Fig. 2.1. Galaxy NGC 2997.

Fig. 2.2 shows the à trous transform of the galaxy NGC 2997 displayed in
Fig. 2.1 . Five wavelet scales are shown and the final smoothed plane (lower
right). The original image is given exactly by the sum of these six images.

Fig. 2.3 shows each scale as a perspective plot.
Example: Dynamic Range Compression Using the à Trous Algo-
rithm. Since some features in an image may be hard to detect by the hu-
man eye due to low contrast, we often process the image before visualization.
Histogram equalization is certainly one the most well-known methods for
contrast enhancement. Images with a high dynamic range are also difficult
to analyze. For example, astronomers generally visualize their images using
a logarithmic look-up-table conversion.

Wavelets can be used to compress the dynamic range at all scales, and
therefore allow us to clearly see some very faint features. For instance,
the wavelet-log representation consists of replacing wj,k,l by sgn(wj,k,l)
log(|wj,k,l|), leading to the alternative image

Ik,l = log(cJ,k,l) +
J∑

j=1

sgn(wj,k,l) log(| wj,k,l | +ε) (2.2)

where ε is a small number (for example ε = 10−3). Fig. 2.4 shows a Hale-Bopp
Comet image (logarithmic representation) (top left), its histogram equaliza-
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Fig. 2.2. Wavelet transform of NGC 2997 by the à trous algorithm.

tion (middle row), and its wavelet-log representation (bottom). Jets clearly
appear in the last representation of the Hale-Bopp Comet image.

2.2.2 Multiscale Transforms Compared to Other Data Transforms

In this section we will discuss in general terms why the wavelet transform
has very good noise filtering properties, and how it differs from other data
preprocessing transforms in this respect. Among the latter, we can include
principal components analysis (PCA) and correspondence analysis, which de-
compose the input data into a new orthogonal basis, with axes ordered by
“variance (or inertia) explained”. PCA on images as input observation vec-
tors can be used, for example, for a best synthesis of multiple band images, or
for producing eigen-faces in face recognition. Among other data preprocess-
ing transforms, we also include the discrete cosine transform (DCT), which
decomposes the data into an orthogonal basis of cosine functions; and the
Fourier transform (FT) which uses a basis of sine and cosine functions, each
at different frequencies.

PCA, DCT, and FT have the property of energy packing (Seales et al.,
1996): most of the energy (second order moment) of the input vector is packed
into the first few values of the output vector. Thus, one can roughly approxi-
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Fig. 2.3. Superposition of NGC 2997 wavelet scales.

mate, or even eliminate, all but the most important values and still preserve
most of the input energy.

The wavelet transform (WT), whether orthonormal as in the case of the
Haar or Daubechies transforms or non-orthogonal as in the case of the à
trous method, is different. It can be viewed as an automatic method for laying
bare superimposed scale-related components of the data. Our analysis of the
data may be considerably improved by removing noise in all scale-related
components. This perspective differs from the usual approach of PCA, DCT,
and FT: in these methods we remove output scales (or “levels”) entirely to
filter the data.

We turn attention now to denoising through modification of scale informa-
tion at all levels. This is the preferred method of denoising using the wavelet
transform.



2.2 Multiscale Transforms 35

Fig. 2.4. Top: Hale-Bopp Comet image. Bottom left: histogram equalization re-
sults. Bottom right: wavelet-log representations.

Donoho and Johnstone (1994) proposed a “universal threshold”,√
2 log nσ, used in the additive Gaussian noise case where σ is the known

or estimated standard deviation of the data, and n is the size of the input
data set. Wavelet coefficients above this threshold are retained, and those be-
low the threshold are set to zero. The authors also propose a soft threshold,
referred to as wavelet shrinkage, which reduces wavelet values by a fraction
of their initial values.

As an alternative to such hard and soft thresholding, Starck et al. (1994;
1995) assume known or estimated noise properties for the input data, and
then derive or make use of wavelet coefficient probability distributions at each
level, under a null hypothesis of stochastic input. Other noise modeling work
in this direction can be found in Kolaczyk (1997) and Powell et al. (1995),
albeit with different wavelet transforms.
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In the work described in this chapter we employ thresholding in a data-
and noise-driven manner.

2.2.3 Choice of Multiscale Transform

Some important properties of the à trous wavelet transform are as follows.
As already noted, the à trous transform is isotropic. Unlike it, Mallat’s

widely-used multiresolution algorithm (Mallat, 1989) leads to a wavelet trans-
form with three wavelet functions (at each scale there are three wavelet coef-
ficient subimages) which does not simplify the analysis and the interpretation
of the wavelet coefficients. Other anisotropic wavelets include the similarly
widely-used Haar and Daubechies wavelet transforms. An isotropic wavelet
seems more appropriate for images containing features or objects with no
favored orientation.

An important property of the à trous wavelet transform over other wavelet
transforms is shift invariance. Lack of independence to pixel shift is a problem
in the case of any pyramidal wavelet transform (Haar, Daubechies, Mallat,
etc.) due to the down-sampling or decimating. The reason is simply that
shift-variance is introduced because Nyquist sampling is violated in each of
the (wavelet-decomposed) subbands – wavelets are not ideal filters. By not
downsampling the problem is avoided. Various authors have proposed solu-
tions to this problem. The à trous algorithm is in fact a fast implementation
of a wavelet transform with no downsampling.

Two inconvenient aspects of many wavelet transforms are negative values
and lack of robustness. By definition, the wavelet coefficient mean at each
level is zero. Every time we have a positive structure at a scale, we have
negative values surrounding it. These negative values often create artifacts
during the data reconstruction process, or complicate the analysis. For in-
stance, if we threshold small values (noise, non-significant structures, etc.)
in the wavelet transform, and if we reconstruct the image at full resolution,
the structure’s total intensity will be modified. Furthermore, if an object is
associated with high intensity values, the negative values will be significant
too and will lead to false structure detections. Point artifacts (e.g. cosmic
ray hits in optical astronomy, glitches in the infrared ISO, Infrared Satellite
Observatory, detectors) can “pollute” all scales of the wavelet transform. The
wavelet transform is non-robust relative to such real or detector faults.

One way around both of these issues – negative wavelet coefficient val-
ues, and non-robustness relative to anomalous values – is to keep certain
aspects of the multiscale decomposition algorithm provided by the à trous
wavelet transform, but to base our algorithm on a function other than the
wavelet function. The median smoothing transform provides us with one such
possibility. A multiscale pyramidal median transform, for instance, was in-
vestigated in Starck et al. (1996), and is discussed in Chapter 5. We conclude
that the wavelet transform, à trous or otherwise, is not sacrosanct. Depending
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on the data, it may well be advisable and necessary to use other multiresolu-
tion tools. For instance, if the data presents highly anisotropic features, the
ridgelet transform (Candès and Donoho, 1999; Candès and Donoho, 1999)
or the curvelet transform (Donoho and Duncan, 2000; Candès and Donoho,
2000b; Starck et al., 2002; Starck et al., 2003a) will outperform the wavelet
transform.

2.2.4 The Multiresolution Support

A multiresolution support of a data set describes in a logical or Boolean way
if the data s contains information at a given scale j and at a given position
l. If M

(s)
j,k = 1 (or = true), then s contains information at scale j and at the

position k. M depends on several parameters:

– The input data.
– The algorithm used for the multiresolution decomposition.
– The noise.
– All additional constraints we want the support to satisfy.

Such a support results from the data, the treatment (noise estimation, etc.),
and from knowledge on our part of the objects contained in the data (size of
objects, linearity, etc.). In the most general case, a priori information is not
available to us.

The multiresolution support of a data set is computed in several steps:

– Step one is to compute the wavelet transform of the data s: w = Ws =
{w1, w2, ..., wJ , cJ}.

– Binarization of each scale leads to the multiresolution support M =
{M1,M2, ...,MJ ,MJ+1} (the binarization consists of assigning to each
pixel a value only equal to 0 or 1). The last scale MJ+1 relative to the
smoothed array is set to 1 (MJ+1,k = 1 for all k).

– A priori knowledge can be introduced by modifying the support.

This last step depends on the knowledge we have of our data. For instance, if
we know there is no interesting object smaller or larger than a given size in
our image, we can suppress, in the support, anything which is due to that kind
of object. This can often be done conveniently by the use of mathematical
morphology. In the most general setting, we naturally have no information
to add to the multiresolution support.

The multiresolution support will be obtained by detecting at each scale
the significant coefficients. The multiresolution support for j ≤ J is defined
by:

Mj,k =
{

1 if wj,k is significant
0 if wj,k is not significant (2.3)

For 2D data set, in order to visualize the support, we can create an image
I defined by:
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Ik,l =
J∑

j=1

2jMj,k,l (2.4)

The detection of the significant coefficients will be described in the next
section. Fig. 2.5 shows such a multiresolution support visualization of an
image of galaxy NGC 2997.

Fig. 2.5. Multiresolution support representation of a spiral galaxy.

2.3 Significant Wavelet Coefficients

2.3.1 Definition

Images and sets of point patterns generally contain noise. Hence the wavelet
coefficients are noisy too. In most applications, it is necessary to know if a
wavelet coefficient is due to signal (i.e. it is significant) or to noise.
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The wavelet transform yields a set of resolution-related views of the input
image. A wavelet image scale at level j has coefficients given by wj,k. If
we obtain the distribution of the coefficient wj,k for each resolution plane,
based on the noise, we can introduce a statistical significance test for this
coefficient. This procedure is the classical significance-testing one. Let H0

be the hypothesis that the image is locally constant at scale j. Rejection of
hypothesis H0 depends (for interpretational reasons, restricted to positive
coefficient values) on:

P = Prob(| wj,k | < τ | H0) (2.5)

The detection threshold, τ , is defined for each scale. Given an estimation
threshold, ε, if P = P (τ) > ε the null hypothesis is not excluded. Although
non-null, the value of the coefficient could be due to noise. On the other
hand, if P < ε, the coefficient value cannot be due to the noise alone, and so
the null hypothesis is rejected. In this case, a significant coefficient has been
detected. This is illustrated in Fig. 2.6.

Fig. 2.6. Threshold determination.

2.3.2 Noise Modeling

Gaussian Noise. If the distribution of wj,l is Gaussian, with zero mean and
standard deviation σj , we have the probability density

p(wj,l) =
1√

2πσj

e−w2
j,l/2σ2

j (2.6)

Rejection of hypothesis H0 depends (for a positive coefficient value) on:
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P = Prob(wj,l > W ) =
1√

2πσj

∫ +∞

wj,l

e−W 2/2σ2
j dW (2.7)

and if the coefficient value is negative, it depends on

P = Prob(wj,l < W ) =
1√

2πσj

∫ wj,l

−∞
e−W 2/2σ2

j dW (2.8)

Given stationary Gaussian noise, it suffices to compare wj,l to kσj . Often
k is chosen as 3, which corresponds approximately to ε = 0.002. If wj,l is
small, it is not significant and could be due to noise. If wj,l is large, it is
significant:

if | wj,l | ≥ kσj then wj,l is significant
if | wj,l | < kσj then wj,l is not significant (2.9)

So we need to estimate, in the case of Gaussian noise models, the noise
standard deviation at each scale. These standard deviations can be deter-
mined analytically, but the calculations can become complicated.

The appropriate value of σj in the succession of wavelet planes is assessed
from the standard deviation of the noise σs in the original data s, and from
study of the noise in the wavelet space. This study consists of simulating
a data set containing Gaussian noise with a standard deviation equal to 1,
and taking the wavelet transform of this data set. Then we compute the
standard deviation σe

j at each scale. We get a curve σe
j as a function of j,

giving the behavior of the noise in the wavelet space. (Note that if we had
used an orthogonal wavelet transform, this curve would be linear.) Due to the
properties of the wavelet transform, we have σj = σsσ

e
j . The noise standard

deviation at scale j of the data is equal to the noise standard deviation σs

multiplied by the noise standard deviation at scale j of the simulated data.
Table 2.1 gives the σe

j values for the 1D, 2D, and 3D à trous wavelet transform
using the cubic B3 spline scaling function.

Table 2.1. σe
j table for the first seven resolution levels.

Resolution level j 1 2 3 4 5 6 7
1D 0.700 0.323 0.210 0.141 0.099 0.071 0.054
2D 0.889 0.200 0.086 0.041 0.020 0.010 0.005
3D 0.956 0.120 0.035 0.012 0.004 0.001 0.0005

2.3.3 Automatic Estimation of Gaussian Noise

k-sigma Clipping. The Gaussian noise σs can be estimated automatically
in a data set s. This estimation is particularly important, because all the
noise standard deviations σj in the scales j are derived from σs. Thus an error
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associated with σs will introduce an error on all σj . Noise is therefore more
usefully estimated in the high frequencies, where it dominates the signal. The
resulting method consists first of filtering the data s with an average filter or
the median filter and subtracting from s the filtered signal f : d = s−f . In our
case, we replace d by the first scale of the wavelet transform (d = w1), which
is more convenient from the computation time point of view. The histogram
of d shows a Gaussian peak around 0. A k-sigma clipping is then used to
reject pixels where the signal is significantly large. We denote d(1) the subset
of d which contains only the pixels such that | dl | < kσd, where σd is the
standard deviation of d, and k is a constant generally chosen equal to 3. By
iterating, we obtain the subset d(n+1) verifying | d

(n)
l | < kσd(n) , where σd(n)

is the noise standard deviation of d(n). Robust estimation of the noise σ1 in
w1 (as d = w1) is now obtained by calculation of the standard deviation of
d(n) (σ1 = σd(n)). In practice, three iterations are enough, and accuracy is
generally better than 5%. σs is finally calculated by:

σs =
σ1

σe
1

=
σd(n)

σe
1

(2.10)

MAD Estimation. The median absolute deviation, MAD, gives an estima-
tion of the noise standard deviation: σm = MED(| w1 |)/0.6745, where MED
is the median function. Our noise estimate σs is obtained by:

σs =
σm

σe
1

(2.11)

Estimation of Gaussian Noise from the Multiresolution Support.
The value of σs, estimated by the k-sigma clipping or any other method, can
be refined by the use of the multiresolution support. Indeed, if we consider
the set of pixels S in the data which are due only to the noise, and if we take
the standard deviation of them, we would obtain a good estimate of σs. This
set is easily obtained from the multiresolution support. We say that a pixel k
belongs to the noise if Mj,k = 0 for all j (i.e. there is no significant coefficient
at any scale). The new estimation of σs is then computed by the following
iterative algorithm:

1. Estimate the standard deviation of the noise in s: we have σ
(0)
s .

2. Compute the wavelet transform (à trous algorithm) of the data s with J
scales, providing the additive decomposition.

3. Set n to 0.
4. Compute the multiresolution support M which is derived from the

wavelet coefficients and from σ
(n)
s .

5. Select the pixels which belong to the set S: if Mj,k = 0 for all j in 1 . . . J ,
then the pixel k ∈ S.

6. For all the selected pixels k, compute the values sk − cJ,k and compute
the standard deviation σ

(n+1)
s of these values (we compute the difference

between s and cJ in order not to include the background in the noise
estimation).
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7. n = n + 1
8. If |σ(n)

s −σ(n−1)
s |

σ
(n)
s

> ε then go to 4.

This method converges in a few iterations, and allows noise estimation to be
improved.

The approach is in fact physically meaningful. It consists of detecting the
set N of pixels which does not contain any significant signal (only the back-
ground + noise). A pixel k is dominated by the noise if all wavelet coefficients
at this position are not significant. The background affects only the last scale
of the wavelet transform. We subtract this last scale from the original data,
and we compute the standard deviation of the set N in this background-free
data. Wavelet coefficients larger than 3σj are considered as significant, but
a small fraction of them will be due to the noise. This introduces a small
systematic bias in the final solution, which is easily corrected by dividing the
standard deviation by a given constant value, found experimentally as equal
to 0.974. Therefore we downgrade the empirical variance in this way. The
method is robust and whatever the initial estimation of noise, it converges
quickly to a good estimate.

More information on this framework for automated noise estimation can
be found in Starck and Murtagh (1998).

Poisson Noise. If the noise in the data s is Poisson, the Anscombe transform
A (Anscombe, 1948)

tl = A(sl) = 2

√
sl +

3
8

(2.12)

acts as if the data arose from a Gaussian white noise model with σ = 1, under
the assumption that the mean value of s is large.

Gaussian and Poisson Noise. The arrival of photons, and their expression
by electron counts, on CCD detectors may be modeled by a Poisson distrib-
ution. In addition, there is additive Gaussian read-out noise. The Anscombe
transformation (eqn. 2.12) has been extended (Murtagh et al., 1995) to take
this combined noise into account. As an approximation, consider the sig-
nal’s value, sk, as a sum of a Gaussian variable, γ, of mean g and standard-
deviation σ; and a Poisson variable, n, of mean m0: we set sl = γ +αn where
α is the gain.

The generalization of the variance stabilizing Anscombe formula is:

tl = Ag(sl) =
2
α

√
αsl +

3
8
α2 + σ2 − αg (2.13)

With appropriate values of α, σ and g, this reduces to Anscombe’s transfor-
mation (eqn. 2.12).

These variance stabilization transformations, it has been shown in
Murtagh et al. (1995), are only valid for a sufficiently large number of counts
(and of course, for a larger still number of counts, the Poisson distribution
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becomes Gaussian). The necessary average number of counts is about 20 if
bias is to be avoided. Note that errors related to small values carry the risk
of removing real objects, but not of amplifying noise. For Poisson parameter
values under this threshold acceptable number of counts, the Anscombe trans-
formation loses control over the bias. In this case, an alternative approach
to variance stabilization is needed. An approach for very small numbers of
counts, including frequent zero cases, has been discussed in (Slezak et al.,
1993; Bijaoui et al., 1994; Starck and Pierre, 1998), and will be described
below.

Support K at scale j Support K at scale j+1

Fig. 2.7. Support K of ψ at two consecutive scales j and j + 1.

Poisson Noise with Few Photons or Counts. We now consider a data
set sl (l ∈ [1 . . . N ]) of N points in a space of dimension D, and a point at
position l is defined by its coordinate (l1, . . . , lD). A wavelet coefficient at a
given position l and at a given scale j is

wj,l = 〈s, ψj,l〉 =
∑
k∈K

nkψ

(
k1 − l1

2j
, . . . ,

kD − lD
2j

)
(2.14)

where K is the support of the wavelet function ψ at scale j (see Fig. 2.7) and
nk is the number of events which contribute to the calculation of wj,l (i.e.
the number of events included in the support of the dilated wavelet centered
at l).

If all events nk (nk ∈ K) are due to noise, wj,l can be considered as a
realization of a random variable Wnk

, Wnk
being defined as the sum of nk

independent random variables. Since independent events are considered, the
distribution of the random variable Wn related to n events is given by n
autoconvolutions of the distribution function for one event H1.

Hn = H1 ∗ H1 ∗ · · · ∗ H1 (2.15)
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Fig. 2.8. Histogram of ψj .

The distribution of one event, H1, in wavelet space is directly given by the
histogram of the wavelet function ψ (see Fig. 2.8). Fig. 2.9 shows the shape
of a set of Hn. For a large number of events, Hn converges to a Gaussian.

In order to facilitate the comparisons, the variable Wn of distribution Hn

is reduced by

c =
Wn − E(Wn)

σ(Wn)
(2.16)

and the cumulative distribution functions are

F+
W,n(ωj) = Prob(W ≤ ωj) =

∫ ωj

−∞
Hn(u)du

F−
W,n(ωj) = Prob(W ≥ ωj) =

∫ ∞

ωj

Hn(u)du (2.17)

From F+
W,n and F−

W,n, we derive two threshold values cmin and cmax such
that

p = Prob(Wn ≥ cmin) = F−
W,n(cmin) = 1 − ε

p = Prob(Wn ≤ cmax) = F+
W,n(cmax) = 1 − ε (2.18)

To be compared with the two threshold values, each wavelet coefficient
has to be reduced by

wr
j,l =

wj,l√
nkσψj

=
wj,l√
nkσψ

2Dj (2.19)

where D is the dimension of the input data set, σψ the standard deviation
of the wavelet function, σψj

the standard deviation of the dilated wavelet
function at scale j (σψj

= σψ/2Dj

) and
√

nk the normalization factor (nk

events in the support of ψj).
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Fig. 2.9. Autoconvolution histograms for the wavelet associated with a B3 spline
scaling function for one and 2 events (top left), 4 to 64 events (top right), 128 to
2048 (bottom left), and 4096 (bottom right).

Therefore a reduced wavelet coefficient wr
j,l, calculated from wj,l, and

resulting from n photons or counts is significant if:

wr > cmax (2.20)

or

wr > cmin (2.21)

A summary of the few event poisson noise filtering method is:

1. Compute the histogram Hnk
for a set of event numbers (for example

N = {nk = 2k}).
2. Compute the two threshold levels, cmin and cmax, for a given ε and for

all nk in N .
3. Use the standard filtering method with the new threshold values.

Remarks:
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1. If the ε value is always the same, threshold values can be computed first
and stored.

2. Be aware that the threshold values, used in the standard filtering method,
depend on the number of events nk which contribute to the evaluation
of wj,l.

Fig. 2.10 shows a simulation. A noisy image containing a faint source was
simulated. Fig. 2.10, top left and top right, show respectively the simulated
image and the noisy simulated data. Fig. 2.10, middle right, shows the fil-
tered image using the Anscombe transform and hard thresholding in wavelet
space. Fig. 2.10, bottom right, shows the filtered image using the thresholding
method based on the wavelet function histogram autoconvolution.

Root Mean Square Data Set. If, associated with the data s, we have the
root mean square map R (i.e. Rl is the noise standard deviation relative to
the value sl), the noise in s is non-homogeneous. For each wavelet coefficient
wj,l of s, the exact standard deviation σj,l needs to be calculated from R.
A wavelet coefficient wj,l is obtained by the correlation product between the
data s and a function gj :

wj,l =
∑

k

skgj,k−l (2.22)

Then we have

σ2
j,l =

∑
k

R2
kg2

j,k−l. (2.23)

In the case of the à trous algorithm, the coefficients gj,l are not known
exactly, but they can easily be computed by taking the wavelet transform of a
Dirac wδ: we have g2

j,l = (Wwδ)2j,l and the set σ2
j is calculated by convolving

the square of the wavelet scale j of wδ with R2 (σ2
j = g2

j ∗ R2).

Other Families of Noise. For any type of noise, an analogous study can
be carried out in order to find the detection level at each scale and at each
position. The types of noise considered so far in this chapter correspond to
the general cases in astronomical imagery. We now describe briefly methods
which can be used for non-uniform and multiplicative noise.

– Non-stationary additive noise:
If the noise is additive, but non-stationary, we cannot estimate a standard
deviation for the whole data. However, we can often assume that the noise
is locally Gaussian, and we can compute a local standard deviation of the
noise for each pixel. In this way, we obtain a standard deviation data set
of the noise, Rσ(x). Then, the data are treated as for case where the root
mean square data set is known (see above).

– Multiplicative noise:
If the noise is multiplicative, the data can be transformed by taking its
logarithm. In the resulting signal, the noise is additive, and a hypothesis
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Fig. 2.10. Small number of events filtering.
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of Gaussian noise can be used in order to find the detection level at each
scale.

– Non-stationary multiplicative noise:
In this case, we take the logarithm of the data, and the resulting signal is
treated as for additive non-stationary noise above.

– Stationary correlated noise:
If a realization of the noise can be generated, the detection level can be
determined by taking the wavelet transform of the noise map, calculating
the histogram of each scale, and deriving the thresholds from the normal-
ized histograms. The normalized histograms give us an estimation of the
probability density function of a wavelet coefficient due to noise. When the
way the data are correlated is unknown, and therefore a noise map cannot
be generated, the MAD method or a k-sigma clipping can be used, as for
the next case of undefined stationary noise.

– Undefined stationary noise:
In this case, the data can be treated as for the Gaussian case, but the noise
standard deviation σj at scale j is calculated independently at each scale.
Two methods can be used:
1. σj can be derived from a k-sigma clipping method applied at scale j.
2. The median absolute deviation, MAD, can be used as an estimator of

the noise standard deviation:
σj = median(| wj |)/0.6745 (2.24)

– Unknown noise:
If the noise does not follow any known distribution, we can consider as sig-
nificant only wavelet coefficients which are greater than their local standard
deviation multiplied by a constant: wj,l is significant if

| wj,l | > kσ(wj,x−l...x+l) (2.25)

2.3.4 Detection Level Using the FDR

An alternative approach to the previous detection strategy is the False Dis-
covery Rate method (FDR) (Benjamini and Hochberg, 1995). This technique
has recently been introduced for astronomical data analysis (Miller et al.,
2001; Hopkins et al., 2002). It allows us to control the average fraction of
false detections made over the total number of detections. It also offers an
effective way to select an adaptive threshold. The FDR is given by the ratio:

FDR =
Via

Da
(2.26)

where Via is the number of pixels that are truly inactive but declared active,
and Da is the number of pixels declared active.

This procedure controlling the FDR specifies a rate α between 0 and 1
and ensures that, on average, the FDR is no bigger than α:

E(FDR) ≤ Ti

V
.α ≤ α (2.27)
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The unknown factor Ti

V is the proportion of truly inactive pixels where Ti is
the number of inactive pixels and V the total number of pixels.

Fig. 2.11. Plot used in FDR algorithm. See text for details. Right: zoom.

Let P1, . . . , PN denote the p-values of the N coefficents at a given scale, or-
dered from smallest to largest. The algorithm to calculate the FDR threshold
is the following:

– Plot the curve Fp(i) versus i/N where Fp(i) is the p-value of the ith ordered
coefficients (see Fig. 2.11, black curve). We consider as significant (active)
all coefficients whose p-values are less than or equal to a given value PD.

– Plot the line y = αj
NcN

, with cN = 1 when the p-values are statistically
independent (see Fig. 2.11, red curve).

– The y-axis coordinate of the crossing point between the line and the curve
Fp gives the PD threshold p-value, and the x-axis coordinate gives the
related coefficient number iD.

– The value of the wavelet coefficient iD is the FDR threshold.

Fig. 2.11, left, illustrates this algorithm. Fig. 2.11, right, is a zoom of the
previous one.

A complete description of the FDR method can be found in (Miller et al.,
2001). In (Hopkins et al., 2002), it has been shown that FDR outperforms
standard methods for source detection. Applying the FDR method at each
scale gives us a detection threshold Tj per scale.
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2.4 Filtering and Wavelet Coefficient Thresholding

2.4.1 Thresholding

Many filtering methods have been proposed in the last ten years. Hard thresh-
olding consists of setting to 0 all wavelet coefficients which have an absolute
value lower than a threshold Tj (non-significant wavelet coefficient):

w̃j,k =
{

wj,k if | wj,k |≥ Tj

0 otherwise

where wj,k is a wavelet coefficient at scale j and at spatial position k.
Soft thresholding consists of replacing each wavelet coefficient by the value

w̃ where

w̃j,k =
{

sgn(wj,k)(| wj,k | −Tj) if | wj,k |≥ Tj

0 otherwise

This operation is generally written as:

w̃j,k = soft(wj,k) = sgn(wj,k)(| wj,k | −Tj)+ (2.28)

where (x)+ = MAX(0, x).
When the discrete orthogonal wavelet transform is used instead of the à

trous algorithm, it is interesting to note that the hard and soft thresholded
estimators are solutions of the following minimization problems:

w̃ = argw min
1
2
‖ s −W−1w ‖2

l2 +λ ‖ w ‖2
l0 hard threshold

w̃ = argw min
1
2
‖ s −W−1w ‖2

l2 +λ ‖ w ‖2
l1 soft threshold

where s is the input data, W the wavelet transform operator, and l0 indicates
the limit of lδ when δ → 0. This counts in fact the number of non-zero
elements in the sequence.

As described before, in the case of Gaussian noise, Tj = Kσj , where j is
the scale of the wavelet coefficient, σj is the noise standard deviation at the
scale j, and K is a constant generally chosen equal to 3.

Other threshold methods have been proposed, like the universal threshold
(Donoho and Johnstone, 1994; Donoho, 1993), or the SURE (Stein Unbiased
Risk Estimate) method (Coifman and Donoho, 1995), but they generally
do not yield as good results as the hard thresholding method based on the
significant coefficients. For astronomical data, soft thresholding should never
be used because it leads to a photometry loss associated with all objects,
which can easily be verified by looking at the residual map (i.e. data − filtered
data). Concerning the threshold level, the universal threshold corresponds to
a minimum risk. The larger the number of pixels, the larger is the risk,
and it is normal that the threshold T depends on the number of pixels (T =√

2 log nσj , n being the number of pixels). The Kσ threshold corresponds to a
false detection probability, the probability to detect a coefficient as significant
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when it is due to the noise. The 3σ value corresponds to 0.27 % false detection.
Thresholding methods such the FDR (see previous section) and Adaptive

thresholding (Johnstone, 2001) are attractive and can replace the standard
k-sigma thresholding.

As described before, a given noise model associated with a data set s
produces a multiresolution support M . Hard thresholding can therefore be
generalized to any kind of noise when it is derived from the multiresolution
support: w̃j,k = Mj,kwj,k. The filtered data s̃ are obtained by:

s̃ = W−1(M.Ws) (2.29)

where W−1 is the inverse wavelet transform operator (reconstruction). This
notation is not overly helpful in the case of the à trous wavelet transform,
which is overcomplete, but it leads to clearer equations.

Hence, wavelet filtering based on hard thresholding consists of taking the
wavelet transform of the signal, multiplying the wavelet coefficients by the
multiresolution support, and applying the inverse wavelet transform.

2.4.2 Iterative Filtering

When a redundant wavelet transform is used, the result after a simple hard
thresholding can still be improved by iterating. We want the wavelet trans-
form of our solution s̃ to reproduce the same significant wavelet coefficients
(i.e., coefficients larger than Tj). This can be expressed in the following way:

(W s̃)j,k = wj,k if wj,k is significant (2.30)

where wj,k are the wavelet coefficients of the input data s. The relation is not
necessarily verified in the case of non-orthogonal transforms, and the resulting
effect is generally a loss of flux inside the objects. The residual signal (i.e.
s − s̃) still contains some information at positions where the objects are.

Denoting M the multiresolution support of s (i.e. Mj,k = 1 if wj,k is
significant, and 0 otherwise), we want:

M.W s̃ = M.Ws

The solution can be obtained by the following Van Cittert iteration (Starck
et al., 1998a):

s̃n+1 = s̃n + W−1(M.Ws − M.Wsn)
= s̃n + W−1(M.WRn) (2.31)

where Rn = s − s̃n.
The iterative filtering from the multiresolution support leads therefore to

the following algorithm:

1. n ← 0.
2. Initialize the solution, s̃(0), to zero.
3. Estimate the significance level (e.g. 3-sigma) at each scale.
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4. Determine the multiresolution support of the signal.
5. Determine the error, R(n) = s − s̃(n) (where s is the input signal, to be

filtered).
6. Determine the wavelet transform of R(n).
7. Threshold: only retain the coefficients which belong to the support.
8. Reconstruct the thresholded error signal. This yields the signal R̃(n) con-

taining the significant residuals of the error signal.
9. Add this residual to the solution: s̃(n) ← s̃(n) + R̃(n).

10. If | (σR(n−1) − σR(n))/σR(n) | > ε then n ← n + 1 and go to 4.

Thus the part of the signal which contains significant structures at any
level is not modified by the filtering. The residual will contain the value zero
over all of these regions. The support can also be enriched by any available
a priori knowledge. For example, if artifacts exist around objects, a simple
morphological opening of the support can be used to eliminate them. The
convergence is fast, generally less than ten iterations.

Dark, Flat and Background Model. In some applications such as gam-
ma-ray image analysis (Integral, GLAST, and others), we may be interested
in taking into account a background in order to detect only features not
contained in the background. Another standard case is that of dark and flat
correction. If we perform this correction before filtering, we lose the noise
statistics and the possibility to have robust wavelet coefficient detection. But
if we do it after denoising, we may introduce some artifacts into the solution.
We describe here how to properly consider these components in the iterative
filtering scheme (see eqn. 2.31). Let us denote D the dark image, F the flat
image and B the background. The previous case corresponds to Dk = 0,
Fk = 1 and Bk = 0. We assume the observed signal s is related to the “sky”
component of interest x by the relation:

s = F (x + B) + D + n = Fx + D1 + n (2.32)

where n is the noise and D1 = FB + D. We estimate the detection level
from s and the noise model as described in the previous sections, but the
significant wavelet coefficients are now detected from the wavelet transform
of s1 = s − D1, and the iteration is:

x̃n+1 = x̃n +
W−1(M.WRn)

F
(2.33)

where Rn = s1 − F x̃n.

2.4.3 Other Wavelet Denoising Methods

Algorithms that exploit the dependency between wavelet coefficients gener-
ally improve the result quality. There are two kind of dependency that can be
used: the dependency inside a given band (i.e. the relation between a wavelet



2.4 Filtering and Wavelet Coefficient Thresholding 53

coefficient and its neighbors) and the dependency between one scale and the
next one (i.e. the relation between a wavelet coefficient at the given scale and
the wavelet coefficient at the same spatial location but at the next coarsest
scale). Taking into account the first dependency can easily be done using a
local Wiener filtering in the wavelet domain (Ghael et al., 1997; Choi and
Baraniuk, 1998). Therefore, each wavelet coefficient is modified following:

w̃j,k =
s2

j,k + σ2
j

s2
j,k

wj,k (2.34)

where σj is the noise standard deviation at scale j and sj,k is the standard
deviation of the “true” signal at scale j and at position k. This relation is
obtained using Bayes’ theorem and assuming the wavelet coefficients of the
noise-free signal follow a Gaussian distribution. In practice, sj,k is unknown
and needs to be estimated. From our model, one gets d2

j,k = s2
j,k + σ2

j where
d2

j,k is the variance of the noisy data. Since wavelet coefficents have a zero
mean, and d2

j,k can be found by:

d2
j,k =

1
M

∑
l∈N(k)

w2
j,l (2.35)

where N(k) represents the region of neighboring coefficients and M the size
of the neighborhood, sj,k is finally derived by computing s2

j,k = (d2
j,k−σ2

j )+ =
MAX(0, d2

j,k −σ2
j ). The typical window size is seven by seven or nine by nine

for images.
Is has been observed that wavelet coefficients of natural images have

highly non-Gaussian statistics (Simoncelli, 1999; Portilla et al., 2003) and
the pdf (probability density function) for wavelet coefficients is better mod-
eled using a generalized Gaussian (Portilla et al., 2003):

p(w) = K(α, p) exp
(
− | w

α
|p
)

(2.36)

where α and p are the model parameters and K(α, p) is a normalization
constant. If we consider a Laplacian pdf (i.e. p=1), the solution is obtained
with a simple soft thresholding (Sendur and Selesnik, 2002):

w̃j,k = soft

(
wj,k,

√
2.σ2

j

sj,k

)
(2.37)

The Bivariate Shrinkage has been proposed for extending this method
in order to take into account the inter-scale relation (Sendur and Selesnik,
2002). Assuming now that the pdf follows:

p(wj,k) =
3

2πσ2
exp

(
−
√

3
σ

√
w2

j,k + w2
j+1,k

)
(2.38)

the denoised coefficient is obtained by (Sendur and Selesnik, 2002):
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w̃j,k =

(√
d2

j,k + d2
j+1,k −

√
3σ2

j

sj,k

)
+√

d2
j,k + d2

j+1,k

.wj,k (2.39)

Alternative methods, but based on the same concept, can be found in
(Crouse et al., 1998; Moulin and Liu, 1999; Sendur and Selesnik, 2002; Portilla
et al., 2003; Kazubek, 2003).

2.4.4 Experiments

Simulation 1: 1D Signal Filtering. Fig. 2.12 shows the result after ap-
plying the iterative filtering method to a real spectrum. The last plot shows
the difference between the original and the filtered spectrum. As we can see,
the residual contains only noise.

Fig. 2.12. Top: real spectrum and filtered spectrum. Bottom: both noisy and
filtered spectrum overplotted, and difference between the spectrum and the filtered
data. As we can see, the residual contains only noise.

Simulation 2: Image with Gaussian Noise. A simulated image contain-
ing stars and galaxies is shown in Fig. 2.13 (top left). The simulated noisy
image, the filtered image and the residual image are respectively shown in
Fig. 2.13 top right, bottom left, and bottom right. We can see that there is
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Fig. 2.13. (a) Simulated image, (b) simulated image and Gaussian noise, (c) fil-
tered image, and (d) residual image.

no structure in the residual image. The filtering was carried out using the
multiresolution support.

Simulation 3: Image with Poisson Noise. The galaxy cluster A2390 is
at a redshift of 0.231. Fig. 2.14, top, shows an image of this cluster, obtained
by the ROSAT X-ray spacecraft. The resolution is one arcsecond per pixel,
with a total number of photons equal to 13506 for an integration time of 8.5
hours. The background level is about 0.04 photons per pixel.

It is obvious that this image cannot be used directly, and some process-
ing must be performed before any analysis. The standard method consists
of convolving the image with a Gaussian. Fig. 2.14, bottom left, shows the
result after such processing. (Used was a Gaussian with a full width at half-
maximum equal to 5”, which is approximately that of the point spread func-
tion). The smoothed image shows some structure, but also residual noise, and
it is difficult to assign any significance to the structure.
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Fig. 2.14. Top: ROSAT image of the cluster A2390. Bottom left: ROSAT image
of the cluster A2390 filtered by the standard method (convolution by a Gaussian).
Bottom right: ROSAT image of the cluster A2390 filtered by the method based on
wavelet coefficients.

Fig. 2.14, bottom right, shows an image filtered by the wavelet transform
(Starck and Pierre, 1998; Murtagh et al., 2000). The noise has been elimi-
nated, and the wavelet analysis indicates faint structures in X-ray emission,
allowing us to explain gravitational amplification phenomena observed in the
visible domain (Pierre and Starck, 1998).

2.4.5 Iterative Filtering with a Smoothness Constraint

A smoothness constraint can be imposed on the solution.

min ‖W s̃‖
1 , subject to s ∈ C, (2.40)

where C is the set of vectors s̃ which obey the linear constraints
{

s̃k ≥ 0,∀k
| (W s̃ −Ws)j,k |≤ ej ;

(2.41)
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Here, the second inequality constraint only concerns the set of significant
coefficients, i.e. those indices which exceed (in absolute value) a detection
threshold tj . Given a tolerance vector e = {e1, ..., ej}, we seek a solution
whose coefficients (W s̃)j,k, at scale and position where significant coefficients
were detected, are within ej of the noisy coefficients (Ws)j,k. For example,
we can choose ej = σj/2. In short, our constraint guarantees that the recon-
struction be smooth but will take into account any pattern which is detected
as significant by the wavelet transform.

Other smoothness penalties can also be used: for instance, an alternative
to (2.40) would be (Malgouyres, 2002; Candès and Guo, 2002; Durand and
Froment, 2003)

min ‖s̃‖TV , subject to s ∈ C.

where ‖ · ‖TV is the Total Variation norm, i.e. an edge preservation penaliza-
tion term defined by:

‖ · ‖TV (X̃) =
∫

| ∇X̃ |p

Minimizing with TV, we force the solution to be closer to a piecewise smooth
image. This may however not be good for most astronomical images which
contain isotropic features without real edges.

The denoising method described here can be seen as a particuliar case of
the Combined Filtering Method described in section 2.5.3.

Results illustrating this method are given in section 8.9, where 3D data
sets are filtered using the autoconvolution histograms based method for the
detection of the wavelet coefficients (see Fig. 8.19).

2.5 Filtering from the Curvelet Transform

2.5.1 Contrast Enhancement

Because some features are hardly detectable by eye in an image, we often
transform it before display. Histogram equalization (cf. section 2.2.1 above)
is one the most well-known methods for contrast enhancement. Such an ap-
proach is generally useful for images with a poor intensity distribution. Since
edges play a fundamental role in image understanding, a way to enhance the
contrast is to enhance the edges. For example, we can add to the original
image its Laplacian (I

′
= I + γ∆I, where γ is a parameter). Only features

at the finest scale are enhanced (linearly). For a high γ value, only the high
frequencies are visible.

Since the curvelet transform is well-adapted to represent images contain-
ing edges, it is a good candidate for edge enhancement. Curvelet coefficients
can be modified in order to enhance edges in an image. The idea is to not
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modify curvelet coefficients which are either at the noise level (in order not to
amplify the noise) or larger than a given threshold. The largest coefficients
correspond to strong edges which do not need to be amplified. Therefore,
only curvelet coefficients with an absolute value in [Tmin, Tmax] are modi-
fied, where Tmin and Tmax must be fixed. We define the following function
yc which modifies the values of the curvelet coefficients (Starck et al., 2003b;
Starck et al., 2003a):

yc(x) = 1 if x < Tmin

yc(x) =
x − Tmin

Tmin
(
Tmax

Tmin
)p +

2Tmin − x

Tmin
if x < 2Tmin

yc(x) = (
Tmax

x
)p if 2Tmin ≤ x < Tmax

yc(x) = 1 if x ≥ Tmax (2.42)

Fig. 2.15. Enhanced coefficients versus original coefficients. Parameters are Tmax

=30,c=5 and p=0.5.

p determines the degree of non-linearity. Tmin is derived from the noise
level, Tmin = cσ. A c value larger than 3 guarantees that the noise will
not be amplified. The Tmax parameter can be defined either from the noise
standard deviation (Tmax = Kmσ) or from the maximum curvelet coefficient
Mc of the relative band (Tmax = lMc, with l < 1). The first choice allows the
user to define the coefficients to amplify as a function of their signal to noise
ratio, while the second one gives an easy and general way to fix the Tmax

parameter independently of the range of the pixel values. Fig. 2.15 shows the
curve representing the enhanced coefficients versus the original coefficients.
This function is arbitrary and any other function with a similar behavior
(i.e. no amplification of the coefficients at the noise level and at very high
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signal-to-noise ratio, and amplification of the coefficents slightly above the
detection limit) could be used as well.

The curvelet enhancement method consists of the following steps:

1. Estimate the noise standard deviation σ in the input image I.
2. Calculate the curvelet transform of the input image. We get a set of

bands wj , where each band wj contains Nj coefficients and corresponds
to a given resolution level.

3. Calculate the noise standard deviation σj for each band j of the curvelet
transform (see (Starck et al., 2002) for more details on this step).

4. For each band j do
– Calculate the maximum Mj of the band.
– Multiply each curvelet coefficient wj,k by yc(| wj,k |).

5. Reconstruct the enhanced image from the modified curvelet coefficients.

Example: Saturn Image

Figs. 2.16 show respectively a part of the Saturn image, the histogram equal-
ized image, the Laplacian enhanced image and the curvelet multiscale edge
enhanced image (parameters were p = 0.5, c = 3, and l = 0.5). The curvelet
multiscale edge enhanced image shows clearly better the rings and edges of
Saturn.

2.5.2 Curvelet Denoising

Curvelet transform denoising is completely similar to wavelet denoising. It
consists of the following:

– Apply the curvelet transform.
– Correct the curvelet coefficients from the noise.
– Apply the inverse curvelet transform.

Most of the methods proposed for wavelets can be used as well with curvelet
coefficients. In our experiments, we used a hard thresholding with a scale-
dependent value for the thresholding parameter k; we have k = 4 for the
first scale (j = 1) while k = 3 for the others (j > 1). We used the same
thresholding strategy with the wavelet transform.

Gaussian white noise with a standard deviation fixed to 20 was added to
the Saturn image. We employed several methods to filter the noisy image:

1. Thresholding of the curvelet transform.
2. Bi-orthogonal undecimated wavelet de-noising methods using the Dauche-

chies-Antonini 7/9 filters (FWT-7/9) and hard thresholding.
3. À trous wavelet transform algorithm and hard thresholding.
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Fig. 2.16. Top: Saturn image and its histogram equalization. Bottom: Saturn image
enhancement by the Laplacian method and by the curvelet transform.

Our experiments are reported on in Fig. 2.17. The curvelet reconstruction
does not contain the same quantity of disturbing artifacts along edges that
one sees in wavelet reconstructions. An examination of the details of the
restored images is instructive. One notices that the decimated wavelet trans-
form exhibits distortions of the boundaries and suffers substantial loss of
important detail. The à trous wavelet transform gives better boundaries, but
completely omits to reconstruct certain ridges. In addition, it exhibits numer-
ous small-scale embedded blemishes; setting higher thresholds to avoid these
blemishes would cause even more of the intrinsic structure to be missed.
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Fig. 2.17. Top left: part of Saturn image with Gaussian noise. Top right: filtered
image using the undecimated bi-orthogonal wavelet transform. Bottom left and
right: filtered image by the à trous wavelet transform algorithm and the curvelet
transform.

2.5.3 The Combined Filtering Method

Wavelets do not restore long features with high fidelity while curvelets are
seriously challenged by isotropic or small features. Each transform has its
own area of expertise and this complementarity is of potential benefit. The
Combined Filtering Method (CFM) (Starck et al., 2001) allows us to benefit
from the advantages of both transforms. This iterative method detects the
significant coefficients in both the wavelet domain and the curvelet domain
and guarantees that the reconstructed map will take into account any pattern
which is detected as significant by either of the transforms.

In general, suppose that we are given K linear transforms T1, . . . , TK and
let αk be the coefficient sequence of an object x after applying the transform
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Tk, i.e. αk = Tkx. We will assume that for each transform Tk we have available
a reconstruction rule that we will denote by T−1

k although this is clearly an
abuse of notation. Finally, T will denote the block diagonal matrix with the
Tks as building blocks and α the amalgamation of the αks.

A hard thresholding rule associated with the transform Tk synthesizes an
estimate s̃k via the formula

s̃k = T−1
k δ(αk) (2.43)

where δ is a rule that sets to zero all the coordinates of αk whose absolute
value falls below a given sequence of thresholds (such coordinates are said to
be non-significant).

Given data y of the form y = s + σz, where s is the image we wish
to recover and z is standard white noise, we propose solving the following
optimization problem (Starck et al., 2001):

min ‖T s̃‖
1 , subject to s ∈ C, (2.44)

where C is the set of vectors s̃ which obey the linear constraints
{

s̃ ≥ 0,
|T s̃ − Ty| ≤ e

(2.45)

Here, the second inequality constraint only concerns the set of significant
coefficients, i.e. those indices µ such that αµ = (Ty)µ exceeds (in absolute
value) a threshold tµ. Given a vector of tolerance (eµ), we seek a solution
whose coefficients (T s̃)µ are within eµ of the noisy empirical αµs. Think of
αµ as being given by

y = 〈y, ϕµ〉,

so that αµ is normally distributed with mean 〈f, ϕµ〉 and variance σ2
µ =

σ2‖ϕµ‖2
2. In practice, the threshold values range typically between three and

four times the noise level σµ and in our experiments we will put eµ = σµ/2.
In summary, our constraints guarantee that the reconstruction will take into
account any pattern which is detected as significant by any of the K trans-
forms.

The Minimization Method. We propose solving (2.44) using the method
of hybrid steepest descent (HSD) (Yamada, 2001). HSD consists of building
the sequence

sn+1 = P (sn) − λn+1∇J (P (sn)); (2.46)

Here, P is the �2 projection operator onto the feasible set C, ∇J is the
gradient of equation 2.40, and (λn)n≥1 is a sequence obeying (λn)n≥1 ∈ [0, 1]
and limn→+∞ λn = 0.

The combined filtering algorithm is:
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1. Initialize Lmax = 1, the number of iterations Ni, and δλ = Lmax
Ni

.

2. Estimate the noise standard deviation σ, and set ek = σ
2 .

3. For k = 1, .., K calculate the transform: α
(s)
k = Tks.

4. Set λ = Lmax, n = 0, and s̃n to 0.
5. While λ >= 0 do

– u = s̃n.
– For k = 1, .., K do

– Calculate the transform αk = Tku.
– For all coefficients αk,l do
• Calculate the residual rk,l = α

(s)
k,l − αk,l

• if α
(s)
k,l is significant and | rk,l |> ek,l then αk,l = α

(s)
k,l

• αk,l = sgn(αk,l)(| αk,l | −λ)+.
– u = T−1

k αk

– Threshold negative values in u and s̃n+1 = u.
– n = n + 1, λ = λ − δλ, and goto 5.

2.6 Haar Wavelet Transform and Poisson Noise

Several authors (Kolaczyk, 1997; Kolaczyk and Dixon, 2000; Timmermann
and Nowak, 1999; Nowak and Baraniuk, 1999; Bijaoui and Jammal, 2001;
Fryźlewicz and Nason, 2004) have recently suggested independently that the
Haar wavelet transform is very well-suited for treating data with Poisson
noise. Since a Haar wavelet coefficient is just the difference between two
random variables following a Poisson distribution, it is easier to derive math-
ematical tools to remove the noise than with any other wavelet method.
An isotropic wavelet transform seems more adapted to astronomical data.
However, there is a trade-off to be made between an algorithm which opti-
mally represents the information, and another which furnishes a robust way
to treat the noise. The approach used for noise filtering differs depending on
the authors. In (Nowak and Baraniuk, 1999), a type of Wiener filter was im-
plemented. Timmermann and Nowak (1999) used a Bayesian approach with
an a priori model on the original signal, and Kolaczyk and Dixon (2000) and
Jammal and Bijaoui (1999; 2001) derived different thresholds resulting from
the probability density function of the wavelet coefficients. The Fisz trans-
form (Fryźlewicz and Nason, 2004) is a variance stabilization method. It is
used to “gaussianize” the noise. Then the standard wavelet thresholding can
be applied to the transformed signal. After the thresholding, the inverse Fisz
transform has to be applied.

2.6.1 Haar Wavelet Transform

Kolaczyk (1997) proposed the Haar transform for gamma-ray burst detection
in one-dimensional signals, and extended his method to images (Kolaczyk and
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Dixon, 2000). The reason why the Haar transform is used is essentially its
simplicity, providing a resilient mathematical tool for noise removal.

As far back as 1910, Haar described the following function as providing
an orthonormal basis. The analyzing wavelet of a continuous variable is a
step function.

ψ(x) = 1 if 0 ≤ x < 1
2

ψ(x) = −1 if 1
2 ≤ x < 1

ψ(x) = 0 otherwise

The Haar wavelet constitutes an orthonormal basis. Two Haar wavelets
of the same scale (i.e. value of m) never overlap, so we have scalar product <
ψm,n, ψm,n′ > = δn,n′ . Overlapping supports are possible if the two wavelets
have different scales, e.g. ψ1,1 and ψ3,0: see (Daubechies, 1992), pp. 10–11.
However, if m < m′, then the support of ψm,n lies wholly in the region where
ψm′,n′ is constant. It follows that < ψm,n, ψm′,n′ > is proportional to the
integral of ψm,n, i.e. zero.

2.6.2 Poisson Noise and Haar Wavelet Coefficients

For 1D data, Kolaczyk (1997) proposed to use a detection level for the scale
j equal to:

tj = 2−(j+2)/2

(
2 log(nj) +

√
(4 log nj)2 + 8 log njλj

)
(2.47)

where nj = N/2j , N is the number of samples, and λj is the background rate
per bin in the nj bin. We now describe the 2D case.

Thresholding Assuming a Uniform Background. Assuming a constant
background with a background rate λ, Kolaczyk and Dixon (2000) proposed
to use the normalized Haar transform (L2-normalization, i.e. the h is defined
by h =

(
1√
2
, 1√

2

)
) with the following threshold, corresponding to a false

detection rate of α:

tj = 2−(j+1)
[
z2

α/2 +
√

z4
α/2 + 4λjz2

α/2

]
(2.48)

where j is the scale level (j = 1 . . . J , J the number of scales), λj = 22jλ is
the background rate in nj = N/22j bins (N is the number of pixels in the
input image), and zα/2 is the point under the Gaussian density function for
which there falls α/2 mass in the tails beyond each zα/2. An upper bound
limit for the threshold limit, valid also with other filters, is (Kolaczyk and
Dixon, 2000):

tj = 2−j

[
log(nj) +

√
log2(nj) + 2λj log(nj)

]
(2.49)
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This formula results from substituting z =
√

2 log(nj) into the previous
equation.

Bijaoui and Jammal (2001) calculated the probability density function of
an unnormalized Haar wavelet coefficient as

p(wj = ν) = e−22jλIν(22jλ) (2.50)

where Iν(x) is the modified Bessel function of integer order ν. For a given
false detection rate α the threshold tj can be derived from this probability
density function.

Thresholding with Non-uniform Background. In many cases, the back-
ground cannot be considered to be constant, and an estimation of λj,k,l (the
background rate at scale j and position k, l) is needed. Several approaches to
background variation can be used:

– Image model: If a model image M can be provided by the user, then λj,k,l

is easily obtained by integrating M over the correct surface area.
– Lower resolution: The filtering must be started from the coarser scale SN .

The solution is refined scale by scale in order to obtain s̃J , s̃J−1, . . . , s̃1.
The λj,k,l values are obtained from λj,k,l (λj,k,l = λj+1,k/2,l/2

4 ).
– Iterative procedure: Filtering can first be performed assuming a constant

background (with rate equal to the mean of the image), and the filtered
image can be used as a model image. This process is repeated several times
until convergence.

Reconstruction. The Haar transform is known to produce block artifacts.
Two approaches have been proposed to resolve this problem.

– Cycle-spinning method (Coifman and Donoho, 1995):
The cycle-spinning method processes the restoration algorithm (Haar
transform + thresholding + reconstruction) using every version of the
original image data obtainable by combinations of left-right and upwards-
downwards translations. The final image is simply the average of all images
resulting from the translation sequence.

– Iterative constraint reconstruction (Bobichon and Bijaoui, 1997):
The iterative constraint reconstruction consists of considering the recon-
struction as an inverse problem, where the solution must respect some
constraints. Constraints on the solution are:
– the positivity,
– the range of variation of its Haar coefficients, and
– the smoothness at all resolution levels.
If wj,k,l and w̃j,k,l are respectively a Haar coefficient at scale j and at
position k, l of the data and the solution, then w̃j,k,l must verify:⎧⎨

⎩
w̃j,k,l ∈ [−tj , 0] if wj,k,l ∈ [−tj , 0]
w̃j,k,l ∈ [0, tj , ] if wj,k,l ∈ [0, tj ]
w̃j,k,l ∈ [wj,k,l − tj/2, wj,k,l + tj/2] if | wj,k,l |> tj

(2.51)
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The smoothness constraint consists of minimizing the gradient of the solu-
tion s̃j at the scale j in both vertical and horizontal directions:

C(s̃j) =‖ Dxs̃j,x,y ‖2 + ‖ Dy s̃j,x,y ‖2 (2.52)

where Dx and Dy are the gradient operators in both directions. A full
description of the algorithm can be found in (Bobichon and Bijaoui, 1997).

The results can also be improved by replacing the Haar wavelet transform
with the bi-orthogonal Haar wavelet transform. In this case, the analysis
filters h and g (i.e. filters used for the transformation) are still the Haar filters,
but the synthesis filters h̃ and g̃ (i.e. filters used for the reconstruction) are
different. Their support is larger, and they are more regular. Table 2.2 gives
two examples of synthesis filters h̃2 and h̃4 allowing an exact reconstruction,
while keeping the same Haar analysis filter.

Table 2.2. Examples of bi-orthogonal Haar filters.

h h̃2 h̃4

−4 0 0 0.016572815184
−3 0 0 −0.016572815184
−2 0 −0.088388347648 −0.121533978016
−1 0 0.088388347648 0.121533978016
0 0.707106781187 0.707106781187 0.707106781187
1 0.707106781187 0.707106781187 0.707106781187
2 0 0.088388347648 0.121533978016
3 0 −0.088388347648 −0.121533978016
4 0 0 −0.016572815184
5 0 0 0.016572815184

MMI Model. The Multiscale Multiplicative Innovations (MMI) model was
proposed in Timmermann and Nowak (1999), and introduces a prior model
fΛ, which is a beta-mixture density function of the form:

f(δ) =
M∑
i=1

pi
(1 − δ2)si−1

B(si, si)22si−1
(2.53)

for −1 ≤ δ ≤ 1, where B is the Euler beta function, −1 ≤ pi ≤ 1 is the weight
of the ith beta density (1−δ2)si−1)

B(si,si)22si−1 with parameter si ≥ 1, and
∑M

i=1 pi = 1.
The final algorithm consists of multiplying each wavelet coefficient wj,k,l by
a term which is derived from the model.

PRESS-optimal Filter. The PRESS-optimal filter (Nowak and Baraniuk,
1999) shrinks the noisy wavelet coefficient toward zero according to the
estimated signal to signal-plus-noise ratio. The PRESS-optimal filter is given
by:
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hj,k,l =
w̃2

j,k,l

w̃2
j,k,l + σ2

j,k,l

(2.54)

where σ2
j,k,l and w̃j,k,l are the noise and signal power. The noise power is

proportional to an estimate of the local intensity of the image falling under
the support of the Haar coefficient wj,k,l. The signal power can be estimated
from a model, or directly from the data by:

w̃2
j,k,l = w2

j,k,l − σ2
j,k,l (2.55)

2.6.3 Experiments

Two test images were used in our experiments. The first one is a simu-
lated XMM image containing a large number of sources of different sizes and
of different intensities (see Fig. 2.18). Fig. 2.18, top right, bottom left and
right, show respectively the filtered images by Haar-Kolaczyk, Haar-Jammal-
Bijaoui, and the à trous algorithm. A 4-sigma level (ε = 6.34e−05) was used
with the three methods. The undecimated Haar transform was used with the
bi-orthogonal Haar filters (filter h̃2).

The second experiment is a simulated galaxy cluster. Two point sources
are superimposed (on the left of the cluster), a cooling flow is at the center, a
sub-structure on its left, and a group of galaxies at the top (see Fig. 2.19 (a)).
From this image, a “noisy” image was created (see Fig. 2.19 (b)). The mean
background level is equal to 0.1 events per pixel. This corresponds typically
to X-ray cluster observations. In the noisy galaxy image, the maximum value
is equal to 25 events. The background is not very relevant. The problem in
this kind of image is the small number of photons per object. It is very dif-
ficult to extract any information from them. Fig. 2.19 (c) and (d) show the
filtered images using the Haar-Kolaczyk thresholding approach and, respec-
tively, an undecimated Haar transform and the undecimated bi-orthogonal
Haar transform. Blocking artifacts due to the shape of the Haar function
are visible when using the undecimated Haar transform, but not with the
undecimated bi-orthogonal Haar transform. Fig. 2.19 (e) and (f) show the
filtered image using the Haar-Jammal-Bijaoui method and the undecimated
bi-orthogonal Haar transform. Fig. 2.19 (f) shows the filtered image using
the iterative filtering method based on the à trous algorithm described in
section 2.4.2 and the significant wavelet coefficients were detected using the
autoconvolution histograms based method (see section 2.3.3). This is the only
method to correctly detect the two faint objects.

From our experiments, we conclude the following.

– The à trous algorithm is significantly better than any of the Haar-based
methods, especially for the detection of faint objects.

– The PRESS-optimal filter produces very poor results.
– The lower resolution furnishes a good estimation of the background. Iter-

ating does not improve significantly the results.
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Fig. 2.18. Top: XMM simulated data, and Haar-Kolaczyk filtered image. Bottom:
Haar-Jammal-Bijaoui and à trous filtered images.

– The Jammal-Bijaoui threshold is a little better than the Kolaczyk one for
compact source detection, and is equivalent for more extended sources.
But the Kolaczyk threshold requires less computation time and is easier to
implement.

– The Fisz transform has the drawback of being time-consuming in its trans-
lation invariant version. Indeed, in the Fisz transform, as opposed to the
other methods, we cannot use an undecimated Haar transform instead of
the Haar transform. The only way to be invariant here through translation
is to use the cycle-spanning procedure (Coifman and Donoho, 1995) which
multiplies the number of operations by the number of pixels contained in
the data.

This study shows clearly that the Haar transform is less effective for
restoring X-ray astronomical images than the à trous algorithm. But its sim-
plicity, and the computation time required, may be attractive alternatives.
In the framework of the XMM-LSS project (Pierre et al., 2004), after a set
of simulations (Valtchanov et al., 2001), the denoising method chosen to be
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Fig. 2.19. Top: simulated galaxy cluster and simulated data. Middle: Haar-
Kolaczyk filtered images using the undecimated Haar transform and the undeci-
mated bi-orthogonal Haar transform. Bottom: Haar-Jammal-Bijaoui filtered image
and the à trous algorithm.



70 2. Filtering

included in the pipeline was the iterative method (see section 2.4.2) using
noise modeling based on histogram autoconvolutions (see section 2.3.3).

Finally we would like to point out some recent papers (Kolaczyk and
Nowak, 2004; Kolaczyk and Nowak, 2005; Willet and Nowak, 2005) which
propose a dyadic partitioning of the image. This dyadic partitioning concept
may however not be very well suited to astrophysical data. This should be
investigated in the future.

2.7 Chapter Summary

Image and signal filtering can be quite a basic operation. But then a visual-
ization or some alternative appraisal of results is needed. By taking account
of the noise properties in the data, we go a long way towards having the
algorithmic procedure tell us, the user, what filtering is required.

Wavelet/curvelet transform spaces, by virtue of their energy compacting
properties, provide an ideal framework for noise filtering. A redundant trans-
form may in addition provide valuable retention of information on the objects
or features at different resolution scales which would otherwise be lost with
a non-redundant transform.

A wide range of statistical noise modeling and filtering approaches were
examined in this chapter, which are appropriate for a range of different types
of data.

The wavelet function used in the Haar wavelet transform is both simple
and interesting from the point of view of analytically defining Poisson noise
in transform space. Does the Haar wavelet transform score highly for Poisson
noise in analogy with the redundant à trous wavelet transform scoring highly
for Gaussian noise? In fact we showed that the latter can still do better, even
if the former has a number of useful properties.

In this chapter, we have considered noisy data obtained from an instru-
ment. But noise is also a problem of major concern for N-body simulations of
structure formation in the early Universe and it has been shown that using
wavelets for removing noise from N-body simulations is equivalent to sim-
ulations with two orders of magnitude more particles (Romeo et al., 2003;
Romeo et al., 2004).



3. Deconvolution

3.1 Introduction

Deconvolution is a key area in signal and image processing. It can include de-
blurring of an observed signal to remove atmospheric effects. More generally,
it means correcting for instrumental effects or observing conditions.

Research in image deconvolution has recently seen considerable work,
partly triggered by the HST optical aberration problem at the beginning
of its mission that motivated astronomers to improve current algorithms or
develop new and more efficient ones. Since then, deconvolution of astronom-
ical images has proven in some cases to be crucial for extracting scientific
content. For instance, IRAS images can be efficiently reconstructed thanks
to a new pyramidal maximum entropy algorithm (Bontekoe et al., 1994). Io
volcanism can be studied with a lower resolution of 0.15 arcsec, or 570 km on
Io (Marchis et al., 2000). Deconvolved mid-infrared images at 20 µm revealed
the inner structure of the AGN in NGC1068, hidden at lower wavelength be-
cause of the high extinction (Alloin et al., 2000): see Fig. 3.1. Research on
gravitational lenses is easier and more efficient when applying deconvolution
methods (Courbin et al., 1998). A final example is the high resolution (af-
ter deconvolution) of mid-infrared images revealing the intimate structure of
young stellar objects (Zavagno et al., 1999): see also Fig. 3.2. Deconvolution
will be even more crucial in the future in order to fully take advantage of in-
creasing numbers of high-quality ground-based telescopes, for which images
are strongly limited in resolution by the seeing.

HST provided a leading example of the need for deconvolution, in the pe-
riod before the detector system was refurbished. Two proceedings (White and
Allen, 1991; Hanisch and White, 1994) provide useful overviews of this work,
and a later reference is (Adorf et al., 1995). While an atmospheric seeing
point spread function (PSF) may be relatively tightly distributed around the
mode, this was not the case for the spherically aberrated HST PSF. Whenever
the PSF “wings” are extended and irregular, deconvolution offers a straight-
forward way to mitigate the effects of this and to upgrade the core region
of a point source. One usage of deconvolution of continuing importance is in
information fusion from different detectors. For example, Faure et al. (2002)
deconvolve HST images when correlating with ground-based observations. In
Radomski et al. (2002), Keck data are deconvolved, for study with HST data.
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Fig. 3.1. The active galaxy nucleus of NGC1068 observed at 20 µm. Left: the raw
image is highly blurred by telescope diffraction. Right: the restored image using the
multiscale entropy method reveals the inner structure in the vicinity of the nucleus.

VLT (Very Large Telescope) data are deconvolved in (Burud et al., 2002),
with other ESO and HST data used as well. In planetary work, Coustenis et
al. (2001) discuss CFHT data as well as HST and other observations.

What emerges very clearly from this small sample – which is in no way
atypical – is that a major use of deconvolution is to help in cross-correlating
image and signal information.

An observed signal is never in pristine condition, and improving it in-
volves inverting the spoiling conditions, i.e. finding a solution to an inverse
equation. Constraints related to the type of signal we are dealing with play
an important role in the development of effective and efficient algorithms.
The use of constraints to provide for a stable and unique solution is termed
regularization.

Our review opens in section 2 with a formalization of the problem. Sec-
tion 3 considers the issue of regularization. In section 4, the CLEAN method
which is central to radio astronomy is described. Bayesian modeling and in-
ference in deconvolution is reviewed in section 5.

Section 6 further considers regularization, surveying more complex and
powerful regularization methods. Section 7 introduces wavelet-based methods
as used in deconvolution. These methods are based on multiple resolution
or scale. In sections 8 and 9, important issues related to resolution of the
output result image are discussed. Section 8 is based on the fact that it is
normally not worthwhile to target an output result with better resolution
than some limit, for instance a pixel size. Section 9 investigates when, where
and how missing information can be inferred to provide a super-resolution
output image.
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Fig. 3.2. The young stellar object AFGL4029 observed with various instruments
of different resolutions, at the same approximate wavelength (11 µm). Upper left:
the ISOCAM image highly blurred by the diffraction, upper right: raw observation
made at the NOT (Nordic Optical Telescope, La Palma, Canarias, Spain), a 2m
class telescope using the CAMIRAS mid-infrared camera; the diffraction still blurs
the resolution quite heavily. Middle left: image obtained at NOT, deconvolved using
the multiscale entropy method. Middle right: the raw image obtained at the CFHT.
During the observations, the seeing conditions at CFHT were better than at the
NOT and the weaker diffraction explains the better quality of the resolution, as
seen in the filtered image (lower left panel) using the multiscale entropy filtering
method (Pantin and Starck, 1996). Lower right: CFHT, the image at the best
resolution achieved, showing the sharpest detail of the cavity carved by the bipolar
outflow. This example from a series of images at different resolutions shows that
results obtained from deconvolution methods are confirmed by raw images at higher
intrinsic resolution, and we see also how increasing the resolution through the use
of deconvolution methods helps in extracting the scientific content from the data.
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3.2 The Deconvolution Problem

Consider an image characterized by its intensity distribution (the “data”) I,
corresponding to the observation of a “real image” O through an optical sys-
tem. If the imaging system is linear and shift-invariant, the relation between
the data and the image in the same coordinate frame is a convolution:

I(x, y) =
∫ +∞

x1=−∞

∫ +∞

y1=−∞
P (x − x1, y − y1)O(x1, y1)dx1dy1

+N(x, y)
= (P ∗ O)(x, y) + N(x, y) (3.1)

P is the point spread function, PSF, of the imaging system, and N is additive
noise.

In Fourier space we have:

Î(u, v) = Ô(u, v)P̂ (u, v) + N̂(u, v) (3.2)

We want to determine O(x, y) knowing I and P . This inverse problem has
led to a large amount of work, the main difficulties being the existence of: (i)
a cut-off frequency of the point spread function, and (ii) the additive noise.
See for example (Cornwell, 1989; Katsaggelos, 1993; Bertero and Boccacci,
1998; Molina et al., 2001).

A solution can be obtained by computing the Fourier transform of the
deconvolved object Ô by a simple division between the image Î and the PSF
P̂

ˆ̃O(u, v) =
Î(u, v)
P̂ (u, v)

= Ô(u, v) +
N̂(u, v)
P̂ (u, v)

(3.3)

This method, sometimes called the Fourier-quotient method is very fast. We
only need to do a Fourier transform and an inverse Fourier transform. For
frequencies close to the frequency cut-off, the noise term becomes important,
and the noise is amplified. Therefore in the presence of noise, this method
cannot be used.

Eqn. 3.1 is usually in practice an ill-posed problem. This means that there
is no unique and stable solution.

Other topics related to deconvolution are:

– Super-resolution: object spatial frequency information outside the spatial
bandwidth of the image formation system is recovered.

– Blind deconvolution: the PSF P is unknown.
– Myopic deconvolution: the PSF P is partially known.
– Image reconstruction: an image is formed from a series of projections (com-

puted tomography, positron emission tomography or PET, and so on).

We will discuss only the deconvolution and super-resolution problems in this
chapter.
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In the deconvolution problem, the PSF is assumed to be known. In prac-
tice, we have to construct a PSF from the data, or from an optical model of
the imaging telescope. In astronomy, the data may contain stars, or one can
point towards a reference star in order to reconstruct a PSF. The drawback
is the “degradation” of this PSF because of unavoidable noise or spurious in-
strument signatures in the data. So, when reconstructing a PSF from exper-
imental data, one has to reduce very carefully the images used (background
removal for instance) or otherwise any spurious feature in the PSF would
be repeated around each object in the deconvolved image. Another problem
arises when the PSF is highly variable with time, as is the case for adaptive
optics images. This means usually that the PSF estimated when observing
a reference star, after or before the observation of the scientific target, has
small differences from the perfect one. In this particular case, one has to turn
towards myopic deconvolution methods (Christou et al., 1999) in which the
PSF is also estimated in the iterative algorithm using a first guess deduced
from observations of reference stars.

Another approach consists of constructing a synthetic PSF. Several stud-
ies (Buonanno et al., 1983; Moffat, 1969; Djorgovski, 1983; Molina et al.,
1992) have suggested a radially symmetric approximation to the PSF:

P (r) ∝ (1 +
r2

R2
)−β (3.4)

The parameters β and R are obtained by fitting the model with stars con-
tained in the data.

3.3 Linear Regularized Methods

3.3.1 Least Squares Solution

It is easy to verify that the minimization of ‖ I(x, y) − P (x, y) ∗ O(x, y) ‖2

leads to the solution:

ˆ̃O(u, v) =
P̂ ∗(u, v)Î(u, v)
| P̂ (u, v) |2

(3.5)

which is defined only if P̂ (u, v) is different from zero. The problem is generally
ill-posed and we need to introduce regularization in order to find a unique
and stable solution.

3.3.2 Tikhonov Regularization

Tikhonov regularization (Tikhonov et al., 1987) consists of minimizing the
term:

JT (O) =‖ I(x, y) − (P ∗ O)(x, y) ‖ +λ ‖ H ∗ O ‖ (3.6)



76 3. Deconvolution

where H corresponds to a high-pass filter. This criterion contains two terms.
The first, ‖ I(x, y)−P (x, y)∗O(x, y) ‖2, expresses fidelity to the data I(x, y),
and the second, λ ‖ H ∗O ‖2, expresses smoothness of the restored image. λ
is the regularization parameter and represents the trade-off between fidelity
to the data and the smoothness of the restored image.

The solution is obtained directly in Fourier space:

ˆ̃O(u, v) =
P̂ ∗(u, v)Î(u, v)

| P̂ (u, v) |2 +λ | Ĥ(u, v) |2
(3.7)

Finding the optimal value λ necessitates use of numerical techniques such
as cross-validation (Golub et al., 1979; Galatsanos and Katsaggelos, 1992).
This method works well, but computationally it is relatively lengthy and
produces smoothed images. This second point can be a real problem when
we seek compact structures such as is the case in astronomical imaging.

3.3.3 Generalization

This regularization method can be generalized, and we write:

ˆ̃O(u, v) = Ŵ (u, v)
Î(u, v)
P̂ (u, v)

(3.8)

where W must satisfy the following conditions (Bertero and Boccacci, 1998).
We give here the window definition in 1D.

1. | Ŵ (ν) |≤ 1, for any ν > 0
2. limν→0 Ŵ (ν) = 1 for any ν such that P̂ (ν) �= 0
3. Ŵ (ν)/P̂ (ν) bounded for any ν > 0

Any function satisfying these three conditions defines a regularized linear
solution. Commonly used windows are:

– Truncated window function: Ŵ (ν) =
{

1 if | P̂ (ν) |≥ √
ε

0 otherwise
where ε is the regularization parameter.

– Rectangular window: Ŵ (ν) =
{

1 if | ν |≤ Ω
0 otherwise

where Ω defines the bandwidth.

– Triangular window: Ŵ (ν) =
{

1 − ν
Ω if | ν |≤ Ω

0 otherwise

– Hamming window: Ŵ (ν) =
{

0.54 + 0.46 cos( 2πν
Ω ) if | ν |≤ Ω

0 otherwise

– Hanning window: Ŵ (ν) =
{

cos(πν
Ω ) if | ν |≤ Ω

0 otherwise

– Gaussian window: Ŵ (ν) =
{

exp(−4.5 ν2

Ω2 ) if | ν |≤ Ω
0 otherwise
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Fig. 3.3. Example of windows with support in the interval [−1/2, 1/2].

– Blackman window:

Ŵ (ν) =
{

0.42 + 0.5 cos(πν
Ω ) + 0.08 cos( 2πν

Ω ) if | ν |≤ Ω
0 otherwise

Fig. 3.3 shows examples of windows. The function can also be derived
directly from the PSF (Pijpers, 1999). Linear regularized methods have the
advantage of being very attractive from a computation point of view. Further-
more, the noise in the solution can easily be derived from the noise in the data
and the window function. For example, if the noise in the data is Gaussian
with a standard deviation σd, the noise in the solution is σ2

s = σ2
d

∑
W 2

k . But
this noise estimation does not take into account errors relative to inaccurate
knowledge of the PSF, which limits its interest in practice.

Linear regularized methods present also a number of severe drawbacks:

– Creation of Gibbs oscillations in the neighborhood of the discontinuities
contained in the data. The visual quality is therefore degraded.

– No a priori information can be used. For example, negative values can
exist in the solution, while in most cases we know that the solution must
be positive.

– Since the window function is a low-pass filter, the resolution is degraded.
There is trade-off between the resolution we want to achieve and the noise
level in the solution. Other methods such as wavelet-based methods do not
have such a constraint.
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3.4 CLEAN

The CLEAN method is a mainstream one in radio-astronomy. This approach
assumes the object is composed of point sources. It tries to decompose the
image (called the dirty map) into a set of δ-functions. This is done iteratively
by finding the point with the largest absolute brightness and subtracting the
PSF (dirty beam) scaled with the product of the loop gain and the intensity at
that point. The resulting residual map is then used to repeat the process. The
process is stopped when some prespecified limit is reached. The convolution
of the δ-functions with an ideal PSF (clean beam) plus the residual equals
the restored image (clean map). This solution is only possible if the image
does not contain large-scale structures. The algorithm is:

1. Compute the dirty map I(0)(x, y) and the dirty beam A(x, y)

2. Find the maximum value, and the coordinate (xmax, ymax) of the corre-
sponding pixel in I(i)(x, y) .

3. Compute I(i+1)(x, y) = I(i)(x, y) − γImaxAm(x, y)
with Am(x, y) = A(x − xmax, y − ymax)
and the loop gain γ inside [0,1].

4. If the residual map is at the noise level, then go to step 5.
Else i ←− i + 1 and go to step 2.

5. The clean map is the convolution of the list of maxima with the clean
beam (which is generally a Gaussian).

6. Addition of the clean map and the residual map produces the deconvolved
image.

In the work of Champagnat et al. (1996) and Kaaresen (1997), the restora-
tion of an object composed of peaks, called sparse spike trains, has been
treated in a rigorous way.

3.5 Bayesian Methodology

3.5.1 Definition

The Bayesian approach consists of constructing the conditional probability
density relationship:

p(O | I) =
p(I | O)p(O)

p(I)
(3.9)

The Bayes solution is found by maximizing the right part of the equation.
The maximum likelihood solution (ML) maximizes only the density p(I | O)
over O:

ML(O) = max
O

p(I | O) (3.10)
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The maximum-a-posteriori solution (MAP) maximizes over O the product
p(I | O)p(O) of the ML and a prior:

MAP(O) = max
O

p(I | O)p(O) (3.11)

p(I) is considered as a constant value which has no effect in the maxi-
mization process, and is ignored. The ML solution is equivalent to the MAP
solution assuming a uniform probability density for p(O).

3.5.2 Maximum Likelihood with Gaussian Noise

The probability p(I | O) is

p(I | O) =
1√

2πσN

exp− (I − P ∗ O)2

2σ2
N

(3.12)

and, assuming that p(O) is a constant, maximizing p(O | I) is equivalent to
minimizing

J(O) =
‖ I − P ∗ O ‖2

2σ2
n

(3.13)

Using the steepest descent minimization method, a typical iteration is

On+1 = On + γP ∗ ∗ (I − P ∗ On) (3.14)

where P ∗(x, y) = P (−x,−y). P ∗ is the transpose of the PSF, and O(n) is the
current estimate of the desired “real image”. This method is usually called the
Landweber method (1951), but sometimes also the successive approximations
or Jacobi method (Bertero and Boccacci, 1998).

The solution can also be found directly using the FFT by

Ô(u, v) =
P̂ ∗(u, v)Î(u, v)
P̂ ∗(u, v)P̂ (u, v)

(3.15)

3.5.3 Gaussian Bayes Model

If the object and the noise are assumed to follow Gaussian distributions
with zero mean and variance respectively equal to σO and σN , then a Bayes
solution leads to the Wiener filter:

Ô(u, v) =
P̂ ∗(u, v)Î(u, v)

| P̂ (u, v) |2 +σ2
N

(u,v)

σ2
O

(u,v)

(3.16)

Wiener filtering has serious drawbacks (artifact creation such as ringing ef-
fects), and needs spectral noise estimation. Its advantage is that it is very
fast.
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3.5.4 Maximum Likelihood with Poisson Noise

The probability p(I | O) is

p(I | O) =
∏
x,y

((P ∗ O)(x, y))I(x,y) exp{−(P ∗ O)(x, y)}
I(x, y)!

(3.17)

The maximum can be computed by taking the derivative of the logarithm:

∂ ln p(I | O)(x, y)
∂O(x, y)

= 0 (3.18)

which leads to the result (assuming the PSF is normalized to unity)

I(x, y)
P ∗ O(x, y)

∗ P ∗ = 1 (3.19)

Multiplying both sides by O(x, y)

O(x, y) =
[

I(x, y)
(P ∗ O)(x, y)

∗ P ∗(x, y)
]

O(x, y) (3.20)

and using Picard iteration (Issacson and Keller, 1966) (see Appendix B for
more details) leads to

On+1(x, y) =
[

I(x, y)
(P ∗ On)(x, y)

∗ P ∗(x, y)
]

On(x, y) (3.21)

which is the Richardson-Lucy algorithm (Richardson, 1972; Lucy, 1974;
Shepp and Vardi, 1982), also sometimes called the expectation maximiza-
tion or EM method (Dempster et al., 1977). This method is commonly used
in astronomy. Flux is preserved and the solution is always positive. The posi-
tivity of the solution can be obtained too with Van Cittert’s and the one-step
gradient methods by thresholding negative values in On at each iteration.

Example: Application to Deep Impact Data. Deep Impact flew the
largest telescope in history to deep space (subsequently exceeded by the
HIRISE instrument on the Mars Reconnaisance Observer (MRO)), an f/35
Cassegrain design with 10m focal length. A flaw in the pre-launch calibration
of this High Resolution Instrument (HRI) resulted in the inability to accu-
rately focus the instrument during flight. Fortunately, because of the nature
of the PSF, much of the higher spatial frequency information is retained and
use of image deconvolution can recover much of the originally expected spa-
tial resolution. Fig. 3.4, left, shows an image taken approximately 8 minutes
after impact with the CLEAR6 filter and Fig. 3.4, right, shows the result of
thirty iterations of the Richardson-Lucy algorithm.
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Fig. 3.4. Deep Impact image (left) and deconvolved image (right) using the
Richardson-Lucy method.

3.5.5 Poisson Bayes Model

We formulate the object PDF (probability density function) as

p(O) =
∏
x,y

M(x, y)O(x,y) exp{−M(x, y)}
O(x, y)!

(3.22)

The MAP solution is

O(x, y) = M(x, y) exp
{[

I(x, y)
(P ∗ O)(x, y)

− 1
]
∗ P ∗(x, y)

}
(3.23)

and choosing M = On and using Picard iteration leads to

On+1(x, y) = On(x, y) exp
{[

I(x, y)
(P ∗ On)(x, y)

− 1
]
∗ P ∗(x, y)

}
(3.24)

3.5.6 Maximum Entropy Method

In the absence of any information on the solution O except its positivity, a
possible course of action is to derive the probability of O from its entropy,
which is defined from information theory. Then if we know the entropy H of
the solution, we derive its probability as

p(O) = exp(−αH(O)) (3.25)

The most commonly used entropy functions are:

– Burg (1978): Hb(O) = −
∑

x

∑
y ln(O(x, y))

– Frieden (1978a): Hf (O) = −
∑

x

∑
y O(x, y) ln(O(x, y))
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– Gull and Skilling (1991):

Hg(O) =
∑

x

∑
y

O(x, y) − M(x, y) − O(x, y) ln (O(x, y)|M(x, y))

The last definition of the entropy has the advantage of having a zero maxi-
mum when O equals the model M , usually taken as a flat image.

3.5.7 Other Regularization Models

Molina et al. (2001) present an excellent review of taking the spatial context
of image restoration into account. Some appropriate prior is used for this.
One such regularization constraint is:

‖CI‖2 =
∑

x

∑
y

I(x, y)− 1
4
(I(x, y+1)+I(x, y−1)+I(x+1, y)+I(x−1, y))

(3.26)

Similar to the discussion above in section 5.2, this is equivalent to defining
the prior

p(O) ∝ exp
{
−α

2
‖CI‖2

}
(3.27)

Given the form of equation (3.26), such regularization can be viewed as
setting a constraint on the Laplacian of the restoration. In statistics this
model is a simultaneous autoregressive model, SAR (Ripley, 1981).

Alternative prior models can be defined, related to the SAR model of
equation (3.26). In

p(O) ∝ exp

{
−α

∑
x

∑
y

(I(x, y) − I(x, y + 1))2 +
(
I(x, y) − I(x + 1, y))2

)}

(3.28)

constraints are set on first derivatives.
Blanc-Feraud and Barlaud (1996), and Charbonnier et al. (1997b) con-

sider the following prior:

p(O) ∝ exp

{
−α

∑
x

∑
y

φ(‖ ∇I ‖ (x, y))

}

∝ exp

{
−α

∑
x

∑
y

(
φ(I(x, y) − I(x, y + 1))2 + φ(I(x, y) − I(x + 1, y))2

) 1
2

}
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(3.29)

The function φ, called potential function, is an edge preserving function. The
term α

∑
x

∑
y φ(‖ ∇I ‖ (x, y)) can also be interpreted as the Gibbs energy

of a Markov Random Field.
Generally, functions φ are chosen with a quadratic part which ensures

good smoothing of small gradients (Green, 1990), and a linear behavior which
cancels the penalization of large gradients (Bouman and Sauer, 1993):

1. limt→0
φ
′
(t)

2t = 1, smooth faint gradiants.

2. limt→∞
φ
′
(t)

2t = 0, preserve strong gradiants.

3. φ
′
(t)

2t is strictly decreasing.

Such functions are often called L2-L1 functions. Examples of φ functions:

1. φq(x) = x2: quadratic function.
2. φTV (x) =| x |: Total Variation.
3. φ2(x) = 2

√
1 + x2 − 2: Hyper-Suface (Charbonnier et al., 1997a).

4. φ3(x) = x2/(1 + x2) (Geman and McClure, 1985).
5. φ4(x) = 1 − e−x2

(Perona and Malik, 1990).
6. φ5(x) = log(1 + x2) (Hebert and Leahy, 1989).

Fig. 3.5 shows different φ functions.

Fig. 3.5. Examples of potential function φ.
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The ARTUR method (1997b), which has been used for helioseismic inver-
sion (Corbard et al., 1999), uses the function φ(t) = log(1 + t2). Anisotropic
diffusion (Perona and Malik, 1990; Alvarez et al., 1992) uses similar functions,
but in this case the solution is computed using partial differential equations.

The function φ(t) = t leads to the total variation method (Rudin et al.,
1992; Acar and Vogel, 1994), the constraints are on first derivatives, and the
model is a special case of a conditional autoregressive or CAR model. Molina
et al. (2001) discuss the applicability of CAR models to image restoration
involving galaxies. They argue that such models are particularly appropriate
for the modeling of luminosity exponential and r1/4 laws.

The priors reviewed above can be extended to more complex models.
In Molina et al. (1996; 2000), a compound Gauss Markov random field
(CGMRF) model is used, one of the main properties of which is to target the
preservation and improvement of line processes.

Another prior again was used in Molina and Cortijo (1992) for the case
of planetary images.

3.6 Iterative Regularized Methods

3.6.1 Constraints

We assume now that there exists a general operator, PC(.), which enforces
a set of constraints on a given object O, such that if O satisfies all the
constraints, we have: O = PC(O). Commonly used constraints are:

– Positivity: the object must be positive.

PCp
(O(x, y)) =

{
O(x, y) if O(x, y) ≥ 0
0 otherwise (3.30)

This constraint can be generalized when upper and lower bounds U and L
are known:

PCp
(O(x, y)) =

⎧⎨
⎩

U if O(x, y) > U
O(x, y) if L ≤ O(x, y) ≤ U
L otherwise

(3.31)

For example, if the background image B is known, we can fix L = B and
U = +∞.

– Support constraint: the object belongs to a given spatial domain D.

PCs
(O(x, y)) =

{
O(x, y) if k ∈ D
0 otherwise (3.32)

– Band-limited: the Fourier transform of the object belongs to a given fre-
quency domain. For instance, if Fc is the cut-off frequency of the instru-
ment, we want to impose on the object that it be band-limited:
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PCf
(Ô(u, v)) =

{
Ô(u, v) if ν < Fc

0 otherwise
(3.33)

These constraints can be incorporated easily in the basic iterative scheme.

3.6.2 Jansson-Van Cittert Method

Van Cittert (1931) restoration is relatively easy to write. We start with n = 0
and O(0) = I and we iterate:

On+1 = On + α(I − P ∗ On) (3.34)

where α is a convergence parameter generally taken as 1. When n tends to
infinity, we have O = O + I − P ∗ O, so I = P ∗ O. In Fourier space, the
convolution product becomes a product

Ôn+1 = Ôn + α(Î − P̂ Ôn) (3.35)

In this equation, the object distribution is modified by adding a term pro-
portional to the residual. The algorithm converges quickly, often after only 5
or 6 iterations. But the algorithm generally diverges in the presence of noise.
Jansson (1970) modified this technique in order to give it more robustness
by considering constraints on the solution. If we wish that A ≤ Ok ≤ B, the
iteration becomes

On+1(x, y) = On(x, y) + r(x, y) [I(x, y) − (P ∗ On)(x, y)] (3.36)

with:

r(x, y) = C
[
1 − 2(B − A)−1 | On(x, y) − 2−1(A + B) |

]

and with C constant.
More generally the constrained Van-Cittert method is written as:

On+1 = PC [On + α(I − P ∗ On)] (3.37)

3.6.3 Other Iterative Methods

Other iterative methods can be constrained in the same way:

– Landweber:

On+1 = PC [On + γP ∗(I − P ∗ On)] (3.38)

– Richardson-Lucy method:

On+1(x, y) = PC

[
On(x, y)

[
I(x, y)

(P ∗ On)(x, y)
∗ P ∗(x, y)

]]
(3.39)
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– Tikhonov: the Tikhonov solution can be obtained iteratively by computing
the gradient of equation (3.6):

∇(JT (O)) = [P ∗ ∗ P + µH∗ ∗ H] ∗ O − P ∗ ∗ I (3.40)

and applying the following iteration:

On+1(x, y) = On(x, y) − γ∇(JT (O))(x, y) (3.41)

The constrained Tikhonov solution is therefore obtained by:

On+1(x, y) = PC [On(x, y) − γ∇(JT (O))(x, y)] (3.42)

The number of iterations plays an important role in these iterative meth-
ods. Indeed, the number of iterations can be considered as another regular-
ization parameter. When the number of iterations increases, the iterates first
approach the unknown object, and then potentially go away from it (Bertero
and Boccacci, 1998).

3.7 Wavelet-Based Deconvolution

3.7.1 Introduction

Deconvolution and Fourier Domain. The Fourier domain diagonalizes
the convolution operator, and we can identify and reduce the noise which is
amplified during the inversion. When the signal can be modeled as stationary
and Gaussian, the Wiener filter is optimal. But when the signal presents
spatially localized features such as singularities or edges, these features cannot
be well-represented with Fourier basis functions, which extend over the entire
spatial domain. Other basis functions, such as wavelets, are better-suited to
represent a large class of signals.

Towards Multiresolution. The concept of multiresolution was first intro-
duced for deconvolution by Wakker and Schwarz (1988) when they proposed
the Multiresolution CLEAN algorithm for interferometric image deconvolu-
tion. During the last ten years, many developments have taken place in order
to improve the existing methods (CLEAN, Landweber, Lucy, MEM, and so
on), and these results have led to the use of different levels of resolution.

The Lucy algorithm was modified (Lucy, 1994) in order to take into ac-
count a priori information about stars in the field where both position and
brightness are known. This is done by using a two-channel restoration algo-
rithm, one channel representing the contribution relative to the stars, and
the second to the background. A smoothness constraint is added on the
background channel. This method, called PLUCY, was then refined firstly
(and called CPLUCY) for considering subpixel positions (Hook, 1999), and
a second time (Pirzkal et al., 2000) (and called GIRA) for modifying the
smoothness constraint.
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A similar approach has been followed by Magain (1998), but more in the
spirit of the CLEAN algorithm. Again, the data are modeled as a set of point
sources on top of spatially varying background, leading to a two-channel
algorithm.

The MEM method has also been modified by several authors (Weir, 1992;
Bontekoe et al., 1994; Pantin and Starck, 1996; Núñez and Llacer, 1998;
Starck et al., 2001). First, Weir proposed the Multi-channel MEM method,
in which an object is modeled as the sum of objects at different levels of
resolution. The method was then improved by Bontekoe et al. (1994) with
the Pyramid MEM. In particular, many regularization parameters were fixed
by the introduction of the dyadic pyramid. The link between Pyramid MEM
and wavelets was underlined in (Pantin and Starck, 1996; Starck et al., 2001),
and it was shown that all the regularization parameters can be derived from
the noise modeling. Wavelets were also used in (Núñez and Llacer, 1998) in
order to create a segmentation of the image, each region being then restored
with a different smoothness constraint, depending on the resolution level
where the region was found. This last method has however the drawback
of requiring user interaction for deriving the segmentation threshold in the
wavelet space.

The Pixon method (Dixon et al., 1996; Puetter and Yahil, 1999) is rel-
atively different to the previously described methods. This time, an object
is modeled as the sum of pseudo-images smoothed locally by a function

with position-dependent scale, called the pixon shape function. The set of
pseudo-images defines a dictionary, and the image is supposed to contain
only features included in this dictionary. But the main problem lies in the
fact that features which cannot be detected directly in the data, nor in the
data after a few Lucy iterations, will not be modeled with the pixon func-
tions, and will be strongly regularized as background. The result is that the
faintest objects are over-regularized while strong objects are well restored.
This is striking in the example shown in Fig. 3.8.

The total variation method has a close relation with the Haar transform
(Cohen et al., 1999; Steidl et al., 2003), and more generally, it has been shown
that potential functions, used in Markov Random Field and PDE methods,
can be applied on the wavelet coefficients as well. This leads to multicale
regularization, and the original method becomes a specific case where only
one decomposition level is used in the wavelet transform.

Wavelets offer a mathematical framework for the multiresolution process-
ing. Furthermore, they furnish an ideal way to include noise modeling in the
deconvolution methods. Since the noise is the main problem in deconvolution,
wavelets are very well adapted to the regularization task.

3.7.2 Wavelet-Vaguelette Decomposition

The Wavelet-Vaguelette decomposition, proposed by Donoho (1995; 2004),
consists of first applying an inverse filtering:
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F = P−1 ∗ I + P−1 ∗ N = O + Z (3.43)

where P−1 is the inverse filter (P̂−1(u, v) = 1
P̂ (u,v)

). The noise Z = P−1 ∗N

is not white but remains Gaussian. It is amplified when the deconvolution
problem is unstable. Then, a wavelet transform is applied to F , the wavelet
coefficients are soft- or hard-thresholded (Donoho, 1993), and the inverse
wavelet transform furnishes the solution.
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Fig. 3.6. Wavelet packet decomposition by a mirror basis. The variance of the
noise has a hyperbolic growth.

The method has been refined by adapting the wavelet basis to the fre-
quency response of the inverse of P (Kalifa, 1999; Kalifa et al., 2003). This
Mirror Wavelet Basis has a time-frequency tiling structure different from
conventional wavelets, and isolates the frequency where P̂ is close to zero, be-
cause a singularity in P̂−1(us, vs) influences the noise variance in the wavelet
scale corresponding to the frequency band which includes (us, vs). Fig. 3.6
and Fig. 3.7 show the decomposition of the Fourier space respectively in 1D
and 2D.
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Fig. 3.7. The mirror wavelet basis in 2-dimensional space.

Because it may be not possible to isolate all singularities, Neelamani
(1999; 2004) advocated a hybrid approach, proposing to still use the Fourier
domain so as to restrict excessive noise amplification. Regularization in the
Fourier domain is carried out with the window function Wλ:

Ŵλ(u, v) =
| P̂ (u, v) |2

| P̂ (u, v) |2 +λT (u, v)
(3.44)

where T (u, v) = σ2

Ŝ(u,v)
, S being the power spectral density of the observed

signal.

F = Wλ ∗ P−1 ∗ I + Wλ ∗ P−1 ∗ N (3.45)

The regularization parameter λ controls the amount of Fourier-domain
shrinkage, and should be relatively small (< 1) (Neelamani et al., 2004).
The estimate F still contains some noise, and a wavelet transform is per-
formed to remove the remaining noise. The optimal λ is determined using a
given cost function. See (Neelamani et al., 2004) for more details.

This approach is fast and competitive compared to linear methods, and
the wavelet thresholding removes the Gibbs oscillations. It presents however
several drawbacks:

1. The regularization parameter is not so easy to find in practice (Neela-
mani et al., 2004), and requires some computation time, which limits the
usefulness of the method.

2. The positivity a priori is not used.
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3. The power spectrum of the observed signal is generally not known.
4. It is not trivial to consider non-Gaussian noise.
5. Choosing the basis to conform to the operator (PSF) may not be optimal

because the wavelet packets, matched to the frequency behavior of the
PSF, may not match image structures as well as conventional wavelet
basis (Figueiredo and Nowak, 2003).

The second point is important for astronomical images. It is well-known that
the positivity constraint has a strong influence on the solution quality (Kem-
pen and van Vliet, 2000). We will see in the following that it is straightforward
to modify the standard iterative methods in a way that they benefit from the
capacity of wavelets to separate the signal from the noise.

3.7.3 Regularization from the Multiresolution Support

Noise Suppression Based on the Wavelet Transform. We have noted
how, in using an iterative deconvolution algorithm such as Van Cittert or
Richardson-Lucy, we define R(n)(x, y), the residual at iteration n:

Rn(x, y) = I(x, y) − (P ∗ On)(x, y) (3.46)

By using the à trous wavelet transform algorithm, Rn can be defined as
the sum of its J wavelet scales and the last smooth array:

Rn(x, y) = cJ(x, y) +
J∑

j=1

wj,x,y (3.47)

where the first term on the right is the last smoothed array, and w denotes a
wavelet scale.

The wavelet coefficients provide a mechanism to extract only the signif-
icant structures from the residuals at each iteration. Normally, a large part
of these residuals are statistically non-significant. The significant residual
(Murtagh and Starck, 1994; Starck and Murtagh, 1994) is then:

R̄n(x, y) = cJ,x,y +
J∑

j=1

M(j, x, y)wj,x,y (3.48)

where M(j, x, y) is the multiresolution support, and is defined by:

M(j, x, y) =
{

1 if wj,x,y is significant
0 if wj,x,y is non-significant (3.49)

This describes in a logical or Boolean way if the data contains information
at a given scale j and at a given position (x, y) (see section 2.2.4).

An alternative approach was outlined in (Murtagh et al., 1995) and
(Starck et al., 1995): the support was initialized to zero, and built up at
each iteration of the restoration algorithm. Thus in equation (3.48) above,
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M(j, x, y) was additionally indexed by n, the iteration number. In this case,
the support was specified in terms of significant pixels at each scale, j; and
in addition pixels could become significant as the iterations proceeded, but
could not be made non-significant.

Regularization of Van Cittert’s Algorithm. Van Cittert’s iteration
(1931) is:

On+1(x, y) = On(x, y) + αRn(x, y) (3.50)

with Rn(x, y) = In(x, y) − (P ∗ On)(x, y). Regularization using significant
structures leads to:

On+1(x, y) = On(x, y) + αR̄n(x, y) (3.51)

The basic idea of this regularization method consists of detecting, at each
scale, structures of a given size in the residual Rn(x, y) and putting them in
the restored image On(x, y). The process finishes when no more structures are
detected. Then, we have separated the image I(x, y) into two images Õ(x, y)
and R(x, y). Õ is the restored image, which ought not to contain any noise,
and R(x, y) is the final residual which ought not to contain any structure. R
is our estimate of the noise N(x, y).

Regularization of the One-step Gradient Method. The one-step gra-
dient iteration is:

On+1(x, y) = On(x, y) + P ∗(x, y) ∗ Rn(x, y) (3.52)

with Rn(x, y) = I(x, y)− (P ∗On)(x, y). Regularization by significant struc-
tures leads to:

On+1(x, y) = On(x, y) + P ∗(x, y) ∗ R̄n(x, y) (3.53)

Regularization of the Richardson-Lucy Algorithm. From equation
(3.1), we have In(x, y) = (P ∗ On)(x, y). Then Rn(x, y) = I(x, y) − In(x, y),
and hence I(x, y) = In(x, y) + Rn(x, y).
The Richardson-Lucy equation is:

On+1(x, y) = On(x, y)
[
In(x, y) + Rn(x, y)

In(x, y)
∗ P ∗(x, y)

]

and regularization leads to:

On+1(x, y) = On(x, y)
[
In(x, y) + R̄n(x, y)

In(x, y)
∗ P ∗(x, y)

]

Convergence. The standard deviation of the residual decreases until no
more significant structures are found. Convergence can be estimated from
the residual. The algorithm stops when a user-specified threshold is reached:

(σRn−1 − σRn)/(σRn) < ε (3.54)
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Fig. 3.8. Simulated Hubble Space Telescope Wide Field Camera image of a distant
cluster of galaxies. Six quadrants. Upper left: original, unaberrated and noise-free.
Upper right: input, aberrated, noise added. Middle left: restoration, Richardson-
Lucy. Middle right: restoration, Pixon method. Lower left: restoration wavelet-
vaguelette. Lower right: restoration wavelet-Lucy.
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Examples. A simulated Hubble Space Telescope Wide Field Camera image
of a distant cluster of galaxies is shown in Fig. 3.8, upper left. The image
used was one of a number described in (Caulet and Freudling, 1993; Freudling
and Caulet, 1993). The simulated data are shown in Fig. 3.8, upper right.
Four deconvolution methods were tested: Richardson-Lucy, Pixon, wavelet-
vaguelette, Wavelet-Lucy. Deconvolved images are presented respectively in
Fig. 3.8 middle left, middle right, bottom left and right. The Richardson-Lucy
method amplifies the noise, which implies that the faintest objects disappear
in the deconvolved image. The Pixon method introduces regularization, and
the noise is under control, while objects where “pixons” have been detected
are relatively well-protected from the regularization effect. Since the “pixon”
features are detected from noisy partially deconvolved data, the faintest

objects are not in the pixon map and are strongly regularized. The wavelet-
vaguelette method is very fast and produces relatively high quality results
when compared to Pixon or Richardson-Lucy, but the Wavelet-Lucy method
seems clearly the best of the four methods. There are fewer spurious objects
than in the wavelet-vaguelette method, it is stable for any kind of PSF, and
any kind of noise modeling can be considered.

3.7.4 Wavelet CLEAN

Multiresolution CLEAN. The CLEAN solution is only available if the
image does not contain large-scale structures. Wakker and Schwarz (1988)
introduced the concept of Multiresolution Clean (MRC) in order to alleviate
the difficulties occurring in CLEAN for extended sources. The MRC approach
consists of building two intermediate images, the first one (called the smooth
map) by smoothing the data to a lower resolution with a Gaussian function,
and the second one (called the difference map) by subtracting the smoothed
image from the original data. Both these images are then processed sepa-
rately. By using a standard CLEAN algorithm on them, the smoothed clean
map and difference clean map are obtained. The recombination of these two
maps gives the clean map at the full resolution.

In order to describe how the clean map at the full resolution is obtained
from the smoothed and difference clean map, a number of symbols must be
defined:

– G = the normalized (
∫

G(x)dx = 1) smoothing function; the width of
the function is chosen such that the full width at half-maximum of the
smoothed dirty beam is f times larger than the full width at half-maximum
of the original dirty beam.

– A = dirty beam
– D = dirty map
– δ = δ-functions
– R = residual after using CLEAN on the map
– B = clean beam with peak value 1
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– C = clean map
– s = the scale factor of the dirty beam needed to rescale the smooth dirty

beam back to a peak value 1
– r = the scale factor of the dirty beam needed to rescale the smooth clean

beam back to a peak value 1
– As = normalized smooth dirty beam = sA ∗ G
– Ad = normalized difference dirty beam = 1/(1 − 1

s )(A − As

s )
– Bs = normalized smooth clean beam = rB ∗ G
– Bd = normalized difference clean beam = 1/(1 − 1

r )(B − Bs

r )

From the delta-functions found by the CLEAN algorithm, one can restore
the dirty map by convolving with the dirty beam and adding the residuals:

D = Ds + Dd = δs ∗ As + Rs + δd ∗ Ad + Rd (3.55)

which can be written also as:

D = [sδs ∗ G +
s

s − 1
δd ∗ (1 − G)] ∗ A + Rs + Rd (3.56)

If we replace the dirty beam by the clean beam, we obtain the clean map:

C =
s

r
δs ∗ Bs +

s(r − 1)
r(s − 1)

δd ∗ Bd + Rs + Rd (3.57)

The MRC algorithm needs three parameters. The first fixes the smoothing
function G, and the other two are the loop gain and the extra loop gain which
are used by CLEAN respectively on the smooth dirty map and difference dirty
map.

This algorithm may be viewed as an artificial recipe, but it has been
shown (Starck and Bijaoui, 1991) that it is linked to multiresolution analysis.
Wavelet analysis leads to a generalization of MRC from a set of scales.

Wavelet and CLEAN. We have seen that there are many wavelet trans-
forms. For interferometric deconvolution, we choose the wavelet transform
based on the FFT (Starck et al., 1994; Starck and Bijaoui, 1994; Starck
et al., 1998a) for the following reasons:

– The convolution product is kept at each scale.
– The data are already in Fourier space, so this decomposition is natural.
– There is a pyramidal implementation available which does not take much

memory.

Hence until the end of this section on Wavelet CLEAN, we will consider the
use of the pyramidal transform based on the FFT (see Appendix C for more
details).
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Deconvolution by CLEAN in Wavelet Space. If w
(I)
j are the wavelet

coefficients of the image I at scale j, we get:

ŵ
(I)
j (u, v) = ŵ

(P )
j Ô(u, v) (3.58)

where w
(P )
j are the wavelet coefficients of the point spread function at the

scale j. The wavelet coefficients of the image I are the convolution product
of the object O by the wavelet coefficients of the point spread function.

At each scale j, the wavelet plane w
(I)
j can be decomposed by CLEAN

(w(I)
j represents the dirty map and w

(P )
j the dirty beam) into a set, denoted

δj , of weighted δ-functions.

δj = {Aj,1δ(x − xj,1, y − yj,1), Aj,2δ(x − xj,2, y − yj,2), . . . , (3.59)
Aj,nj

δ(x − xj,nj
, y − yj,nj

)}
where nj is the number of δ-functions at the scale j and Aj,k represents the
height of the peak k at the scale j.

By repeating this operation at each scale, we get a set Wδ composed of
weighted δ-functions found by CLEAN (Wδ = {δ1, δ2, . . . }). If B is the ideal
point spread function (clean beam), the estimation of the wavelet coefficients
of the object at the scale j is given by:

w
(E)
j,x,y = δj ∗ w

(B)
j,x,y + w

(R)
j,x,y = (3.60)∑

k

Aj,kw
(B)
j,x−xj,k,y−yj,k

+ w
(R)
j,x,y

where w
(R)
j is the residual map. The clean map at the full resolution is ob-

tained by the reconstruction algorithm. If we take a Gaussian function as the
scaling function, and the difference between two resolutions as the wavelet
(1
2ψ(x

2 , y
2 ) = φ(x, y) − 1

2φ(x
2 , y

2 )), we find the algorithm proposed by Wakker
and Schwarz (1988). The MRC algorithm in wavelet space is as follows:

1. We compute the wavelet transforms of the dirty map, the dirty beam and
the clean beam.

2. For each scale j, we decompose by CLEAN the wavelet coefficients of the
dirty map into a list of weighted δ-functions δj .

3. For each scale j, we convolve δj by the wavelet coefficients of the clean
beam and we add the residual map w

(R)
j to the result in order to obtain

the wavelet coefficients of the clean map.
4. We compute the clean map at the full resolution by using the reconstruc-

tion algorithm.

Improvements to Multiresolution CLEAN. We apply CLEAN to each
plane of the wavelet transform. This allows us to detect at each scale the
significant structure. The reconstructed image gives the estimation Õ found
by MRC for the object. But MRC does not assume that this estimation is
compatible with the measured visibilities. We want:
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Fig. 3.9. Example of detection of peaks by CLEAN at each scale.

| ˆ̃O(u, v) − Vm(u, v) | < ∆m(u, v) (3.61)

where ∆m(u, v) is the error associated with the measure Vm.
To achieve this, we use the position of the peaks determined by the MRC

algorithm. We have seen that after the use of CLEAN, we get a list of posi-
tions δj in each plane j, with approximate heights Aj . In fact, we get a nice
description of the significant structures in the wavelet space (see Fig. 3.9).
The height values are not sufficiently accurate, but CLEAN enhances these
structures. So we have to determine heights which reduce the error. We do so
using Van Cittert’s algorithm (1931) which converges, even in the presence
of noise, because our system is well-regularized. Then, heights of the peaks
contained in Wδ will be modified by the following iterative algorithm:

1. Set n = 0 and W(0)
δ = Wδ.

2. Compute A
(n+1)
j,l = A

(n)
j,l + Qj,l.W(n)

δ so that we then have:

δ
(n+1)
j = {A(n+1)

j,1 δ(x − xj,1, y − yj,1),

and:

W(n+1)
δ = {δ(n+1)

1 , δ
(n+1)
2 , . . . }

3. n = n + 1 and go to step 1.

Q is the operator which:
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– computes the wavelet coefficients of the clean map w(C) by convolving at
each scale δ

(n)
j by the clean beam wavelet w

(B)
j

w
(C)
j = δ

(n)
j ∗ w

(B)
j

– reconstructs the estimated object O(n) at full resolution from w(C)

– thresholds the negative values of O(n)

– computes the residual r(n) by:

r̂(n) = p(V − Ô(n))

where p is a weight function which depends on the quality of the measure-
ment V (error bars). A possible choice for p is:
– p(u, v) = 0 if we do not have any information at this frequency (i.e. a

frequency hole).
– p(u, v) = 1 − 2∆m(u,v)

Vm(0,0) if ∆m(u, v) is the error associated with the mea-
surement Vm(u, v).

– computes the wavelet transform w(r(n)) of r(n)

– extracts the wavelet coefficient of w(r(n)) which is at the position of the
peak Aj,lδ(x − xl, y − yl).

The final deconvolution algorithm is:

1. Convolution of the dirty map and the dirty beam by the scaling function.
2. Computation of the wavelet transform of the dirty map which yields w(I).
3. Computation of the wavelet transform of the dirty beam which yields

w(D).
4. Estimation of the standard deviation of the noise N0 of the first plane

from the histogram of w0. Since we process oversampled images, the
values of the wavelet image corresponding to the first scale (w(I)

0 ) are
nearly always due to the noise. The histogram shows a Gaussian peak
around 0. We compute the standard deviation of this Gaussian function,
with a 3σ clipping, rejecting pixels where the signal could be significant.

5. Computation of the wavelet transform of the clean beam. We get w(B).
If the clean beam is a Dirac, then ŵ

(B)
j (u, v) = ψ(2ju,2jv)

φ(u,v) .
6. Set j to 0.
7. Estimation of the standard deviation of the noise Nj from N0. This is

done from the study of the variation of the noise between two scales, with
the hypothesis of a white Gaussian noise.

8. Detection of significant structures by CLEAN: we get δj from w
(I)
j and

w
(D)
j . The CLEAN algorithm is very sensitive to the noise. Step 1 of this

algorithm offers more robustness. CLEAN can be modified in order to
optimize the detection.

9. j = j + 1 and go to step 7.
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10. Reconstruction of the clean map from Wδ = {δ1, δ2, · · · } by the iterative
algorithm using Van Cittert’s method.

The limited support constraint is implicit because we put information only
at the position of the peaks, and the positivity constraint is introduced in the
iterative algorithm. We have made the hypothesis that MRC, by providing
the coordinates of the peaks, gives the exact position of the information in
the wavelet space and we limited the deconvolution problem by looking for
the height of the peaks which give the best results. It is a very strong limited
support constraint which allows our problem to be regularized. CLEAN is not
used as a deconvolution algorithm, but only as a tool to detect the position
of structures.

Examples. Hen 1379 is a post-Asymptotic Giant Branch star in a phase of
intense mass loss. The circumstellar dust distribution for post-AGB generally
departs from spherical geometry. This is the case for Hen 1379, the high po-
larization measured at visible and near-infrared wavelengths indicating that
the envelope is strongly non-spherical.

Fig. 3.10 shows the uv plane coverage of Hen 1379 (left), and the inverse
Fourier transform of the data (right). The high angular resolution obser-
vations of this source were performed using the ESO one-dimensional (1D)
slit-scanning near-infrared specklegraph attached to the ESO 3.6m telescope
Cassegrain focus.

Fig. 3.11 shows the reconstruction by the wavelet transform of the evolved
star Hen 1379. The ratio of point-source to the maximum amplitude of the
envelope is 290. Contour levels are 12, 24, 36, . . . , 96% of the maximum
amplitude of the envelope.

3.7.5 The Wavelet Constraint

We have seen previously that many regularized deconvolution methods
(MEM, Tikhonov, total variation, etc.) can be expressed by two terms (i.e.
‖ I −P ∗O ‖2 +λC(O)), the first representing the fidelity to the data and the
second (i.e. C(O)) the smoothness constraint on the solution. The parameter
λ fixes the trade-off between the fit to the data and the smoothness. Using a
wavelet based penalizing term Cw, we want to minimize

J(O) = ‖ I − P ∗ O ‖2 +λCw(O) (3.62)

If φ is a potential function which was applied on the gradients (see sec-
tion 3.5.7), it can also be applied to the wavelet coefficients and the constraint
on the solution is now expressed in the wavelet domain by (Jalobeanu, 2001):

J(O) = ‖ I − P ∗ O ‖2 +λ
∑
j,k,l

φ(‖ (WO)j,k,l ‖p) (3.63)

When φ(x) = x and p = 1, it corresponds to the l1 norm of the wavelet
coefficients. In this framework, the multiscale entropy deconvolution method
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Fig. 3.10. Right: uv plane coverage of Hen 1379, and left: the inverse Fourier
transform of the data.
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Fig. 3.11. Reconstructed image.

(see below and Chapter 7) is only one special case of the wavelet constraint
deconvolution method.

Multiscale Entropy. In (Starck et al., 1998b; Starck and Murtagh, 1999;
Starck et al., 2001), the benchmark properties for a good “physical” defin-
ition of entropy were discussed. The multiscale entropy, which fulfills these
properties, consists of considering that the entropy of a signal is the sum of
the information at each scale of its wavelet transform (Starck et al., 1998b),
and the information of a wavelet coefficient is related to the probability of it
being due to noise.

For Gaussian noise, the multiscale entropy penalization function is:
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Fig. 3.12. Penalization functions: dashed, l1 norm (i.e. φ(w) =| w |); dotted l2

norm φ(w) = w2

2
; continuous, multiscale entropy function.

hn(wj,k) =
1
σ2

j

∫ |wj,k|

0

u erfc

(
| wj,k | −u√

2σj

)
du (3.64)

A complete description of this method is given in Chapter 7. Fig. 3.12 shows
the multiscale entropy penalization function. The dashed line corresponds
to a l1 penalization (i.e. φ(w) =| w |), the dotted line to a l2 penalization
φ(w) = w2

2 , and the continuous line to the multiscale entropy function. We
can immediately see that the multiscale entropy function presents quadratic
behavior for small values, and is closer to the l1 penalization function for
large values. Penalization functions with a l2-l1 behavior are generally a good
choice for image restoration.

Fig. 3.13. Beta Pictoris raw data.
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The Beta Pictoris image (Pantin and Starck, 1996) was obtained by in-
tegrating 5 hours on-source using a mid-infrared camera, TIMMI, placed on
the 3.6 ESO telescope (La Silla, Chile). The raw image has a peak signal-to-
noise ratio of 80. It is strongly blurred by a combination of seeing, diffraction
(0.7 arcsec on a 3m class telescope) and additive Gaussian noise. The initial
disk shape in the original image has been lost after the convolution with the
PSF (see Fig. 3.13). Thus we need to deconvolve such an image to get the
best information on this object i.e. the exact profile and thickness of the disk,
and subsequently to compare the results to models of thermal dust emission.

Fig. 3.14. Filtered image (left), and deconvolved one (right).

After filtering (see Fig. 3.14, left), the disk appears clearly. For detection
of faint structures (the disk here), one can calculate that the application of
such a filtering method to this image provides a gain of observing time of a
factor of around 60. The deconvolved image (Fig. 3.14, right) shows that the
disk is extended at 10 µm and asymmetrical. The multiscale entropy method
is more effective for regularizing than other standard methods, and leads to
good reconstruction of the faintest structures of the dust disk.

TV and Undecimated Haar Transform. A link between the TV and
the undecimated Haar wavelet soft thresholding has been studied in (Cohen
et al., 1999; Steidl et al., 2003), arguing that in the 1D case the TV and
the undecimated single resolution Haar are equivalent. When going to 2D,
this relation does not hold anymore, but the two approaches share some
similarities. Whereas the TV introduces translation- and rotation-invariance,
the undecimated 2D Haar presents translation- and scale-invariance (being
multi-scale).

Minimization Algorithm. Recent works (Figueiredo and Nowak, 2003;
Daubechies et al., 2004; Combettes and Vajs, 2005) show that the solution
of eqn. 3.63 can be obtained in a very efficient way, by applying a wavelet
denoising on the solution at each step of the Landweber iteration.
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O(n+1) = WDenλ

(
O(n) + P ∗ ∗

(
I − P ∗ O(n)

))
(3.65)

where WDen is the operator which performs wavelet denoising, i.e. applies
the wavelet transform, corrects the wavelet coefficients from the noise, and
applies the inverse wavelet transform.

If φ(x) = x and p = 1 (i.e. l1 norm), the solution is obtained by the
following iteration:

O(n+1) = softλ(O(n) + P ∗ ∗ (I − P ∗ O(n))) (3.66)

where soft is the soft thresholding. If the Haar wavelet transform is chosen,
this algorithm is a fast method for minimizing the total variation.

The penalty function needs to be continuous in order to guarantee the
convergence. Therefore, a hard threshold cannot be used but a soft threshold
as well as many other shrinkage techniques can be used. If the penalty func-
tion is stricly convex (as in soft thresholding), then it converges to a global
minimum (Figueiredo and Nowak, 2003).

Constraints in the Object or Image Domains. Let us define the object
domain O as the space to which the solution belongs, and the image domain
I as the space to which the data belongs (i.e. if X ∈ O then P ∗ X ∈ I).
In section 3.7.3, it was shown that the multiresolution support constraint
leads to a powerful regularization method. In this case, the constraint was
applied in the image domain. Here, we have considered constraints on the
solution. Hence, two different wavelet based strategies can be chosen in order
to regularize the deconvolution problem.

The constraint in the image domain through the multiresolution support
leads a very robust way to control the noise. Indeed, whatever the nature of
the noise, we can always derive robust detection levels in the wavelet space
and determine scales and positions of the important coefficients. A drawback
of the image constraints is that there is no guarantee that the solution is free
of artifacts such as ringing around point sources. A second drawback is that
image constraints can be used only if the point spread function is relatively
compact, i.e. does not smear the information over the whole image. In it does
do so, the concept of localization of information does not make sense any
more.

The property of introducing a robust noise modeling is lost when applying
the constraint in the object domain. For example, in the case of Poisson noise,
there is no way (except using time consuming Monte Carlo techniques) to
estimate the level of the noise in the solution and to adjust properly the
thresholds. The second problem with this approach is that we try to solve
two problems (noise amplification and artifact control in the solution) with
one parameter (i.e. λ). The choice of this parameter is crucial, while such a
parameter does not exist when using the multiresolution support.

Constraints can be added in both the object and image domains in order
to better control the noise by using the multiresolution support. This gives
us a warranty that the solution is free of artifacts when using the wavelet
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constraint on the solution (Pantin and Starck, 1996; Starck et al., 2001; Starck
et al., 2003c). This leads to the following equation to be minimized:

J(O) = ‖ M.W1 (I − P ∗ O) ‖2 +λ
∑
j,k,l

φ(‖ (W2O)j,k,l ‖p) (3.67)

where M is the multiresolution support derived from I and W1. W1 and
W2 are the wavelet transforms used in the object and image domains. We
may want to use two different wavelet decompositions: W1 for detecting the
significant coefficients and W2 for removing the artifacts in the solution.
Since the noise is controlled by the multiscale transforms, the regularization
parameter λ does not have the same importance as in standard deconvolution
methods. A much lower value is enough to remove the artifacts relative to the
use of the wavelets. The positivity constraint can be applied at each iteration.
The iterative scheme is now:

O(n+1) = WDenλ(
(
O(n) + P ∗ ∗ R̄n

)
(3.68)

where R̄n is the significant residual, i.e. R̄n = W−1
1 M [W1(I −P ∗O(n))] (see

eqn. 3.48)).

The Combined Deconvolution Method. As for the filtering (see sec-
tion 2.5.3), we may want to benefit from the advantages of both the wavelet
and the curvelet transforms for detecting the significant features contained in
the data. More generally, we assume we use K transforms T1, . . . , TK , and we
derive K multiresolution supports M1, . . . ,MK from the input image I using
noise modeling. Following determination of a set of multiresolution supports,
we can solve the following optimization problem (Starck et al., 2003c):

min
Õ

C(Õ), subject to MkTk[P ∗ Õ] = MkTkI for all k, (3.69)

where C is the smoothness constraint.
The constraint imposes fidelity on the data, or more exactly, on the sig-

nificant coefficients of the data, obtained by the different transforms. Non-
significant (i.e. noisy) coefficients are not taken into account, preventing any
noise amplification in the final algorithm.

A solution for this problem could be obtained by relaxing the constraint
to become an approximate one:

min
Õ

∑
k

‖MkTkI − MkTk[P ∗ Õ]‖2 + λC(Õ) (3.70)

The solution is computed by using the projected Landweber method
(Bertero and Boccacci, 1998):

Õn+1 = Õn + α

(
P ∗ ∗ R̄n − λ

∂C
∂O

(Õn)
)

(3.71)

where R̄n is the significant residual which is obtained using the following
algorithm:
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– Set In
0 = In = P ∗ Õn.

– For k = 1, . . . ,K do In
k = In

k−1 + Rk

[
Mk(TkI − TkIn

k−1)
]

– The significant residual R̄n is obtained by: R̄n = In
K − In.

This can be interpreted as a generalization of the multiresolution support
constraint to the case where several transforms are used. The order in which
the transforms are applied has no effect on the solution. We extract in the
residual the information at scales and pixel indices where significant coeffi-
cients have been detected.

α is a convergence parameter, chosen either by a line-search minimizing
the overall penalty function or as a fixed step-size of moderate value that
guarantees convergence.

If the C is a wavelet based penalization function, then the minimization
can again be done using the previous wavelet denoising approach:

Õn+1 = WDen
(
Õn + (P ∗ ∗ R̄n)

)
(3.72)

The positivity is introduced in the following way:

On+1 = Pc

[
WDen

(
Õn + (P ∗ ∗ R̄n)

)]
(3.73)

3.8 Deconvolution and Resolution

In many cases, there is no sense in trying to deconvolve an image at the
resolution of the pixel (especially when the PSF is very large). The idea to
limit the resolution is relatively old, because it is already this concept which
is used in the CLEAN algorithm (Högbom, 1974). Indeed the clean beam
fixes the resolution in the final solution. This principle was also developed
by Lannes (1987) in a different form. This concept was re-invented, first by
Gull and Skilling (1991) who called the clean beam the Intrinsic Correlation
Function (ICF), and more recently by Magain (1998) and Pijpers (1999).

The ICF is usually a Gaussian, but in some cases it may be useful to take
another function. For example, if we want to compare two images I1 and I2

which are obtained with two wavelengths or with two different instruments,
their PSFs P1 and P2 will certainly be different. The classic approach would
be to deconvolve I1 with P2 and I2 with P1, so we are sure that both are at
the same resolution. But unfortunately we lose some resolution in doing this.
Deconvolving both images is generally not possible because we can never be
sure that both solutions O1 and O2 will have the same resolution.

A solution would be to deconvolve only the image which has the worse
resolution (say I1), and to limit the deconvolution to the second image res-
olution (I2). Then, we just have to take P2 for the ICF. The deconvolution
problem is to find Õ (hidden solution) such that:

I1 = P1 ∗ P2 ∗ Õ (3.74)
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and our real solution O1 at the same resolution as I2 is obtained by convolving
Õ with P2. O1 and I2 can then be compared.

Introducing an ICF G in the deconvolution equation leads to just consid-
ering a new PSF P ′ which is the convolution of P and G. The deconvolution is
carried out using P ′, and the solution must be reconvolved with G at the end.
In this way, the solution has a constrained resolution, but aliasing may occur
during the iterative process, and it is not sure that the artifacts will disappear
after the re-convolution with G. Magain (1998) proposed an innovative alter-
native to this problem, by assuming that the PSF can be considered as the
convolution product of two terms, the ICF G and an unknown S, P = G ∗S.
Using S instead of P in the deconvolution process, and a sufficiently large
FWHM value for G, implies that the Shannon sampling theorem (Shannon,
1948) is never violated. But the problem is now to calculate S, knowing P
and G, which is again a deconvolution problem. Unfortunately, this delicate
point was not discussed in the original paper. Propagation of the error on the
S estimation in the final solution has also until now not been investigated,
even if this issue seems to be quite important.

3.9 Super-Resolution

3.9.1 Definition

Super-resolution consists of recovering object spatial frequency information
outside the spatial bandwidth of the image formation system. In other terms,
frequency components where P̂ (ν) = 0 have to be recovered. It has been
demonstrated (Donoho et al., 1992) that this is possible under certain con-
ditions. The observed object must be nearly black, i.e. nearly zero in all but
a small fraction of samples. Denoting n the number of samples, m the num-
ber of non-zero values in the Fourier transform of the PSF, and ε = m

n the
incompleteness ratio, it has been shown that an image (Donoho et al., 1992):

– Must admit super-resolution if the object is 1
2ε-black.

– Might admit super-resolution if the object is ε-black. In this case, it depends
on the noise level and the spacing of non-zero elements in the object. Well-
spaced elements favor the possibility of super-resolution.

– Cannot admit super-resolution if the object is not ε-black.

Near blackness is both necessary and sufficient for super-resolution. Astro-
nomical images often present such data sets, where the real information (stars
and galaxies) is contained in very few pixels. If the 1

2ε-blackness of the object
is not verified, a solution is to limit the Fourier domain Ω of the restored ob-
ject. Several methods have been proposed in different contexts for achieving
super-resolution.
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3.9.2 Gerchberg-Saxon Papoulis Method

The Gerchberg-Saxon-Papoulis (Gerchberg, 1974) method is iterative, and
uses the a priori information on the object, which is its positivity and its
support in the spatial domain. It was developed for interferometric image
reconstruction, where we want to recover the object O from some of its visi-
bilities, i.e. some of its frequency components. Hence, the object is supposed
to be known in a given Fourier domain Ω and we need to recover the ob-
ject outside this domain. The problem can also be seen as a deconvolution
problem, I = P ∗ O, where

P (u, v) =
{

1 if (u, v) ∈ Ω
0 otherwise (3.75)

We denote PCs
and PCf

the projection operators in the spatial and the
Fourier domain:

PCs
(X(x, y)) =

{
X(x, y) if (x, y) ∈ D
0 otherwise

PCf
(X̂(u, v)) =

{
Î(u, v) = Ô(u, v) if (u, v) ∈ Ω
0 otherwise

(3.76)

The projection operator PCs
replaces by zero all pixel values which are not

in the spatial support defined by D, and PCf
replaces all frequencies in the

Fourier domain Ω by the frequencies of the object O. The Gerchberg algo-
rithm is:

1. Compute Õ0 = inverse Fourier transform of Î, and set i = 0.
2. Compute X1 = PCs

(Õi).
3. Compute X̂1 = Fourier transform of X1.
4. Compute X̂2 = PCf

(X̂1).
5. Compute X2 = inverse Fourier transform of X̂2.
6. Compute Õi+1 = PCs

(X̂2).
7. Set X1 = Õi+1, i = i + 1 and go to 2.

The algorithm consists just of forcing iteratively the solution to be zero
outside the spatial domain D, and equal to the observed visibilities inside
the Fourier domain Ω. It has been shown that this algorithm can be derived
from the Landweber method (Bertero and Boccacci, 1998), and therefore its
convergence and regularization properties are the same as for the Landwe-
ber method. It is straightforward to introduce the positivity constraint by
replacing PCs

by P+
Cs

P+
Cs

(X(x, y)) =
{

max(X(x, y), 0) if (x, y) ∈ D
0 otherwise

The Gerchberg method can be generalized (Bertero and Boccacci, 1998)
using the Landweber iteration:



3.9 Super-Resolution 107

On+1 = P+
Cs

[On + α(P ∗ ∗ L − P ∗ ∗ P ∗ On)] (3.77)

where L = P+
Cs

(I).

3.9.3 Deconvolution with Interpolation

The MAP Poisson algorithm, combined with an interpolation, can be used
to achieve super-resolution (Hunt, 1994):

On+1 = On exp

⎧⎨
⎩
(

I

(P ∗ On)↓
− 1

)

↑

∗ P ∗

⎫⎬
⎭ (3.78)

where uparrow and downarrow notation describes respectively the oversam-
pling and downsampling operators. The PSF P must be sampled on the same
grid as the object.

3.9.4 Undersampled Point Spread Function

Some observations are made with an undersampled PSF. When the obser-
vation is repeated several times with a small shift between two measure-
ments, we can reconstruct a deconvolved image on a smaller grid. We denote
D(i, j, k) the kth observation (k = 1 . . . n), ∆i,k, ∆j,k the shift in both direc-
tions relative to the first frame, L↑ the operator which coadds all the frame
on a smaller grid, and L−1

↓ the operator which estimates D from L↑D using
shifting and averaging operations. The ∆i,k, ∆j,k shifts are generally derived
from the observations using correlation methods, or a PSF fitting (if a star
is in the field), but can also be the jitter information if the data is obtained
from space. Note also that L−1

↓ L↑D �= D. The point spread function P can
generally be derived on a finer grid using a set of observations of a star,
or using an optical modeling of the instrument. The deconvolution iteration
becomes:

On+1 = On + αP ∗
[
L↑(D − L−1

↓ (P ∗ On))
]

(3.79)

and the positivity and spatial constraints can also be used:

On+1 = P+
Cs

[
On + αP ∗

[
L↑(D − L−1

↓ (P ∗ On))
]]

(3.80)

The coaddition operator L↑ can be implemented in different ways. All frames
can first be interpolated to the finer grid size, shifted using an interpolation
function, and then coadded.

“Dithering” or “jitter” have been terms applied to purposeful use of offsets
in imaging (Hook and Fruchter, 2000). An ad-hoc method called “drizzling”
is developed by Hook and Fruchter (2000) and implemented in IRAF, based
on mapping pixels to a finer grid and assuming knowledge of geometric dis-
tortion.
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Dithering was first described in (Bennet, 1948). Any discrete image nec-
essarily implies quantization, and therefore some distortion (the presence of
frequencies other than found in the original data) and loss of signal detail (re-
lated to the quantization step). Quantization error in many cases is not white,
but instead is highly correlated with the signal. Adding a small amount of
noise to the signal before quantization can mitigate this. Such “signal shap-
ing” has been used at least since the 1960s. Gammaitoni et al. (1998) relate
this to the phenomenon of “stochastic resonance”, i.e. the fact that weak sig-
nals can be amplified and optimized by the assistance of small quantities of
noise. They summarize guidelines for addition of noise as follows: the addition
of dither can statistically reduce the quantization error; uniformly distributed
dither is best; and there exists an optimal value of random dither amplitude
which coincides with the amplitude of the quantization step. Why then does
one use multiple images with random image offsets, when it would seem that
adding a small amount of noise to the signal would suffice? If quantization
were the only objective this would be the case. However the use of interpola-
tion in combining images (justified by a resultant higher signal-to-noise ratio)
would re-introduce signal dependencies, i.e. further sources of distortion.

Lauer (1999) ignores geometric distortion and instead addresses the prob-
lem of aliasing resulting from combining undersampled images. A linear com-
bination of Fourier transforms of the offset images is used, which mitigates
aliasing artifacts in direct space.

Multiresolution Support Constraint

The constraint operator P+
Cs

may not always be easy to determine, especially
when the observed object is extended. Furthermore, if the object is very
extended, the support will be very large and the support constraint may have
very small influence on the final result. For this reason, it may be convenient
to replace the support constraint by the multiresolution support constraint.
The advantages are the following:

– It can be automatically calculated from the noise modeling in the wavelet
space.

– Extended objects are generally also smooth. This means that the support
on the small scales will be small, and therefore this introduces a smoothness
constraint on extended objects, and no constraint on point-like objects.

Wavelet Constraint

As in section 3.7.5, a wavelet smoothness constraint can be added to the
solution, and the same kind of minimization method can be used (Willett
et al., 2004). The solution is obtained using the following two step algorithms
(Willett et al., 2004):
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Zn+1 = P+
Cs

[
On + αP ∗

[
L↑(D − L−1

↓ (P ∗ On))
]]

On+1 = soft(Zn+1) (3.81)

where soft is the wavelet soft thresholding operation. Other wavelet denois-
ing procedures could be used. Using the soft thresholding means that we a
priori assume that the wavelet coefficients of the solution follow a Laplacian
distribution.

3.10 Conclusions and Chapter Summary

As in many fields, simple methods can be availed of – for example the solution
provided by equation (3.16) – but at the expense of quality in the solution
and a full understanding of one’s data. Often a simple solution can be fully
justified. However, if our data or our problems are important enough, then
appropriate problem solving approaches have to be adopted. The panoply of
methods presented in this review provide options for high quality image and
signal restoration.

We have noted how the wavelet transform offers a powerful mathemati-
cal and algorithmic framework for multiple resolution analysis. Furthermore
noise modeling is very advantageously carried out in wavelet space. Finally,
and of crucial importance in this chapter, noise is the main problem in de-
convolution.

Progress has been significant in a wide range of areas related to deconvolu-
tion. One thinks of Bayesian methods, the use of entropy, and issues relating
to super-resolution, for example.

We will conclude with a short look at how multiscale methods used in
deconvolution are evolving and maturing.

We have seen that the recent improvement in deconvolution methods has
led to use of a multiscale approach. This could be summarized in the following
way:

– Linear inverse filtering → wavelet-vaguelette decomposition

– CLEAN → wavelet-CLEAN

–
Fixed step gradient
Lucy
Van Cittert

⎫⎬
⎭ →

Regularized by
the multiresolution

support

–
MEM
MRF
PDE

⎫⎬
⎭ →

Penalization
based on the

wavelet coefficients
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Finally, wavelet based constraints can be added in both domains (Starck
et al., 2001). This allows us to separate the deconvolution problem into two
separate problems: noise control from one side, and solution smoothness con-
trol on the other side. The advantage is that noise control is better carried
out in the image domain, while smoothness control can only be carried out
in the object domain.

The reason for the success of wavelets is due to the fact that wavelet bases
represent well a large class of signals, especially astronomical data where most
of the objects are more or less isotropic. When the data contains anisotropic
features (solar, planerary images, etc.), other multiscale methods, such as
the ridgelet or the curvelet transform (Candès and Donoho, 1999; Candès
and Donoho, 2000b; Donoho and Duncan, 2000; Starck et al., 2002), are
good candidates for replacing the wavelet transform. The ultimate step is
the combination of the different multiscale decomposition.



4. Detection

4.1 Introduction

Information extraction from images is a fundamental step for astronomers.
For example, to build catalogs, stars and galaxies must be identified and their
position and photometry must be estimated with good accuracy. Various
methods have been proposed in the past to achieve such results. One of the
most widely used software packages is SExtractor (Bertin and Arnouts, 1996).
Its ability to deal with very large images (up to 60000×60000 pixels) and its
robustness make for its success. A standard source detection approach, such
as in SExtractor, consists of the following steps:

1. Background estimation.
2. Convolution with a mask.
3. Detection.
4. Deblending/merging.
5. Photometry.
6. Classification.

These different steps are described in the next section. Astronomical im-
ages contain typically a large set of point-like sources (the stars), some quasi
point-like objects (faint galaxies, double stars), and some complex and diffuse
structures (galaxies, nebulae, planetary stars, clusters, etc.). These objects
are often hierarchically organized: a star in a small nebula, itself embedded
in a galaxy arm, itself included in a galaxy, and so on.

Faint extended objects may be lost by the standard approach. Fig. 4.1
shows a typical example where a faint extended object is under the detection
limit. In order to detect faint objects, whatever their sizes, Bijaoui (1993)
proposed the Multiscale Vision Model, MVM. A vision model is defined as
the sequence of operations required for automated image analysis. Taking
into account the scientific purposes, the characteristics of the objects and the
existence of hierarchical structures, astronomical images need specific vision
models. This is also the case in many other fields, such as remote sensing,
hydrodynamic flows, or biological studies. Specific vision models have been
implemented for these kinds of images.

We introduce the Multiscale Vision Model as defined in Bijaoui and Rué
(1995) in section 3. Then we show how deconvolution can be combined with
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point source

extended source
detection level

3 sigma

background level

Fig. 4.1. Example of astronomical data: a point source and an extended source are
shown, with noise and background. The extended object, which can be detected by
eye, is undetected by a standard detection approach.

object reconstruction, how this helps with object identification, and how it
can be very useful for deconvolution with a space-variant point spread func-
tion (PSF).

Section 4.5 presents the specific case of source and non-Gaussianity de-
tection in the Cosmological Background.

4.2 From Images to Catalogs

Background Estimation

In most cases, objects of interest are superimposed on a relatively flat signal,
called background signal. The background must be accurately estimated, or
otherwise it will introduce bias in flux estimation. In (Bijaoui, 1980; Irwin,
1985), the image is partitioned into blocks, and the local sky level in each
block is estimated from its histogram. The pixel intensity histogram p(I) is
modeled using three parameters, the true sky level S, the RMS (root mean
square) noise σ, and a parameter describing the asymmetry in p(I) due to
the presence of objects, and is defined by (Bijaoui, 1980):

p(I) =
1
a

exp(σ2/2a2) exp [−(I − s)/a] erfc
(

σ

a
− (I − s)

σ

)
(4.1)

Median filtering can be applied to the 2D array of background measure-
ments in order to correct for spurious background values. Finally the back-
ground map is obtained by a bi-linear or a cubic interpolation of the 2D
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array. The blocksize is a crucial parameter. If it is too small, the background
estimation map will be affected by the presence of objects, and if too large it
will not take into account real background variations.

In (Costa, 1992; Bertin and Arnouts, 1996), the local sky level is calcu-
lated differently. A 3-sigma clipping around the median is performed in each
block. If the standard deviation is changed by less than 20% in the clipping
iterations, the block is uncrowded, and the background level is considered to
be equal to the mean of the clipped histogram. Otherwise, it is calculated
by c1 × median − c2 × mean, where c1 = 3, c2 = 2 in (Costa, 1992), and
c1 = 2.5, c2 = 1.5 in (Bertin and Arnouts, 1996). This approach has been
preferred to histogram fitting for two reasons: it is more efficient from the
computation point of view, and more robust with small sample size.

Convolution

In order to optimize the detection, the image must be convolved with a
filter. The shape of this filter optimizes the detection of objects with the
same shape. Therefore, for star detection, the optimal filter is the PSF. For
extended objects, a larger filter size is recommended. In order to have optimal
detection for any object size, the detection must be repeated several times
with different filter sizes, leading to a kind of multiscale approach.

Detection

Once the image is convolved, all pixels Il at location l with a value larger
than Tl are considered as significant, i.e. belonging to an object. Tl is generally
chosen as Bl+kσ, where Bl is the background estimation at the same position,
σ is the noise standard deviation, and k is a given constant (typically chosen
between 3 and 5). The thresholded image is then segmented, i.e. a label is
assigned to each group of connected pixels. The next step is to separate the
blended objects which are connected and have the same label.

An alternative to the thresholding/segmentation procedure is to find
peaks. This is only well-suited to star detection and not to extended ob-
jects. In this case, the next step is to merge the pixels belonging to the same
object.

Deblending/Merging

This is the most delicate step. Extended objects must be considered as single
objects, while multiple objects must be well separated. In SExtractor, each
group of connected pixels is analyzed at different intensity levels (30), starting
from the highest down to the lowest level. The pixel group can be seen as a
surface, with mountains and valleys. At the beginning (highest level), only
the highest peak is visible. When the level decreases several other peaks may
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become visible, defining therefore several structures. At a given level, two
structures may become connected, and the decision whether they form only
one (i.e. merging) or several objects (i.e. deblending) must be taken. This is
done by comparing the integrated intensities inside the peaks. If the ratio
between them is too low, then the two structures must be merged.

Photometry and Classification

Photometry. Several methods can be used to derive the photometry of a
detected object (Bijaoui, 1980; Kron, 1980). Adaptive aperture photometry
uses the first image moment to determine the elliptical aperture from which
the object flux is integrated. Kron (1980) proposed an aperture size of twice
the radius of the first image moment radius r1, which leads to recovery of
most of the flux (> 90 %). In (Bertin and Arnouts, 1996), the value of 2.5r1

is discussed, leading to loss of less than 6% of the total flux. Assuming that
the intensity profiles of the faint objects are Gaussian, flux estimates can be
refined (Maddox et al., 1990; Bertin and Arnouts, 1996). When the image
contains only stars, specific methods can be developed which take the PSF
into account (Debray et al., 1994; Naylor, 1998).

Star-galaxy Separation. In the case of star–galaxy classification, following
the scanning of digitized images, Kurtz (1983) lists the following parameters
which have been used:

1. mean surface brightness;
2. maximum intensity, area;
3. maximum intensity, intensity gradient;
4. normalized density gradient;
5. areal profile;
6. radial profile;
7. maximum intensity, 2nd and 4th order moments, ellipticity;
8. the fit of galaxy and star models;
9. contrast versus smoothness ratio;

10. the fit of a Gaussian model;
11. moment invariants;
12. standard deviation of brightness;
13. 2nd order moment;
14. inverse effective squared radius;
15. maximum intensity, intensity weighted radius;
16. 2nd and 3rd order moments, number of local maxima, maximum intensity.

References for all of these may be found in the cited work. Clearly there
is room for differing views on parameters to be chosen for what is essen-
tially the same problem. It is of course the case also that aspects such as
the following will help to orientate us towards a particular set of parameters
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in a particular case: the quality of the data; the computational ease of mea-
suring certain parameters; the relevance and importance of the parameters
measured relative to the data analysis output (e.g. the classification, or the
planar graphics); and, similarly, the importance of the parameters relative to
theoretical models under investigation.

Galaxy Morphology Classification. The inherent difficulty of character-
izing spiral galaxies especially when not face-on has meant that most work
focuses on ellipticity in the galaxies under study. This points to an inher-
ent bias in the potential multivariate statistical procedures. In the following,
it will not be attempted to address problems of galaxy photometry per se
(Davoust and Pence, 1982; Pence and Davoust, 1985), but rather to draw
some conclusions on what types of parameters or features have been used in
practice.

From the point of view of multivariate statistical algorithms, a reasonably
homogeneous set of parameters is required. Given this fact, and the available
literature on quantitative galaxy morphological classification, two approaches
to parameter selection appear to be strongly represented:

1. The luminosity profile along the major axis of the object is determined at
discrete intervals. This may be done by the fitting of elliptical contours,
followed by the integrating of light in elliptical annuli (Lefèvre et al.,
1986). A similar approach was used in the ESO-Upsalla survey. Noisi-
ness and faintness require attention to robustness in measurement: the
radial profile may be determined taking into account the assumption of a
face–on optically–thin axisymmetric galaxy, and may be further adjusted
to yield values for circles of given radius (Watanabe et al., 1982). Alter-
natively, isophotal contours may determine the discrete radial values for
which the profile is determined (Thonnat, 1985).

2. Specific morphology-related parameters may be derived instead of the
profile. The integrated magnitude within the limiting surface brightness
of 25 or 26 mag. arcsec−2 in the visual is popular (Takase et al., 1984;
Lefèvre et al., 1986). The logarithmic diameter (D26) is also supported
by Okamura (1985). It may be interesting to fit to galaxies under con-
sideration model bulges and disks using, respectively, r

1
4 or exponential

laws (Thonnat, 1985), in order to define further parameters. Some cater-
ing for the asymmetry of spirals may be carried out by decomposing
the object into octants; furthermore the taking of a Fourier transform of
the intensity may indicate aspects of the spiral structure (Takase et al.,
1984).

The following remarks can be made relating to image data and reduced
data.

– The range of parameters to be used should be linked to the subsequent use
to which they might be put, such as to underlying physical aspects.
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– Parameters can be derived from a carefully-constructed luminosity pro-
file, rather than it being possible to derive a profile from any given set of
parameters.

– The presence of both partially reduced data such as luminosity profiles, and
more fully reduced features such as integrated flux in a range of octants,
is of course not a hindrance to analysis. However it is more useful if the
analysis is carried out on both types of data separately.

Parameter data can be analyzed by clustering algorithms, by principal
components analysis or by methods for discriminant analysis. Profile data
can be sampled at suitable intervals and thus analyzed also by the foregoing
procedures. It may be more convenient in practice to create dissimilarities
between profiles, and analyze these dissimilarities: this can be done using
clustering algorithms with dissimilarity input.

4.3 Multiscale Vision Model

4.3.1 Introduction

The multiscale transform of an image by the à trous algorithm produces at
each scale j a set {wj}. This has the same number of pixels as the image.
The original image I can be expressed as the sum of all the wavelet scales
and the smoothed array cJ by the expression

I(k, l) = cJ,k,l +
J∑

j=1

wj,k,l. (4.2)

Hence, we have a multiscale pixel representation, i.e. each pixel of the input
image is associated with a set of pixels of the multiscale transform. A further
step is to consider a multiscale object representation, which would associate
with an object contained in the data a volume in the multiscale transform.
Such a representation obviously depends on the kind of image we need to
analyze, and we present here a model which has been developed for astro-
nomical data. It may however be used for other kinds of data, to the extent
that such data are similar to astronomical data. We assume that an image I
can be decomposed into a set of components:

I(k, l) =
No∑
i=1

Oi(k, l) + B(k, l) + N(k, l) (4.3)

where No is the number of objects, Oi are the objects contained in the data
(stars galaxies, etc.), B is the background image, and N is the noise.

To perform such a decomposition, we have to detect, to extract, to mea-
sure and to recognize the significant structures. This is done by first comput-
ing the multiresolution support of the image, and by applying a segmentation
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scale by scale. The wavelet space of a 2D direct space is a 3D one. An object
has to be defined in this space. A general idea for object definition lies in
the connectivity property. An object occupies a physical region, and in this
region we can join any pixel to other pixels based on significant adjacency.
Connectivity in direct space has to be transported into wavelet transform
space, WTS. In order to define the objects we have to identify the WTS pix-
els we can attribute to the objects. We describe in this section the different
steps of this method.

4.3.2 Multiscale Vision Model Definition

The multiscale vision model, MVM (Bijaoui and Rué, 1995), described an
object as a hierarchical set of structures. It uses the following definitions:

– Significant wavelet coefficient: a wavelet coefficient is significant when its
absolute value is above a given detection limit. The detection limit depends
on the noise model (Gaussian noise, Poisson noise, and so on).

– Structure: a structure Sj,k is a set of significant connected wavelet coeffi-
cients at the same scale j:

Sj,k = {wj,x1,y1 , wj,x2,y2 , · · · , wj,xp,yp
} (4.4)

where p is the number of significant coefficients included in the structure
Sj,k, and wj,xi,yi

is a wavelet coefficient at scale i and at position (xi, yi).
– Object: an object is a set of structures:

Ol = {Sj1,k1 , · · · , Sjn,kn
} (4.5)

We define also the operator L which indicates to which object a given
structure belongs: L(Sj,k) = l is Sj,k ∈ Ol, and L(Sj,k) = 0 otherwise.

– Object scale: the scale of an object is given by the scale of the maximum
of its wavelet coefficients.

– Interscale relation: the criterion allowing us to connect two structures into
a single object is called the “interscale relation”.

– Sub-object: a sub-object is a part of an object. It appears when an object
has a local wavelet maximum. Hence, an object can be composed of several
sub-objects. Each sub-object can also be analyzed.

4.3.3 From Wavelet Coefficients to Object Identification

Multiresolution Support Segmentation. Once the multiresolution sup-
port has been calculated, we have at each scale a boolean image (i.e. pixel
intensity equals 1 when a significant coefficient has been detected, and 0
otherwise). The segmentation consists of labeling the boolean scales. Each
group of connected pixels having a “1” value gets a label value between 1
and Lmax, Lmax being the number of groups. This process is repeated at each
scale of the multiresolution support. We define a “structure”Sj,i as the group
of connected significant pixels which has the label i at a given scale j.
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Fig. 4.2. Example of connectivity in wavelet space: contiguous significant wavelet
coefficients form a structure, and following an interscale relation, a set of structures
forms an object. Two structures Sj , Sj+1 at two successive scales belong to the
same object if the position pixel of the maximum wavelet coefficient value of Sj is
included in Sj+1.

Interscale Connectivity Graph. An object is described as a hierarchical
set of structures. The rule which allows us to connect two structures into a
single object is called “interscale relation”. Fig. 4.2 shows how several struc-
tures at different scales are linked together, and form objects. We have now
to define the interscale relation: let us consider two structures at two succes-
sive scales, Sj,k and Sj+1,l. Each structure is located in one of the individual
images of the decomposition and corresponds to a region in this image where
the signal is significant. Denoting (xm, ym) the pixel position of the maxi-
mum wavelet coefficient value of Sj,k, Sj,k is said to be connected to Sj+1,l

if Sj+1,l contains the pixel position (xm, ym) (i.e. the pixel position of the
maximum wavelet coefficient of the structure Sj,k must also be contained in
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the structure Sj+1,l). Several structures appearing in successive wavelet coef-
ficient images can be connected in such a way, which we call an object in the
interscale connectivity graph. Hence, we identify no objects in the wavelet
space, each object Oi being defined by a set of structures, and we can assign
to each structure a label i, with i ∈ [1, no]: L(Sj,k) = i if the structure Sj,k

belongs to the ith object.

Filtering. Statistically, some significant structures can be due to the noise.
They contain very few pixels and are generally isolated, i.e. connected to no
field at upper and lower scales. So, to avoid false detection, the isolated fields
can be removed from the initial interscale connection graph. Structures at
the border of the images may also have been detected because of the border
problem, and can be removed.

Merging/Deblending. As in the standard approach, true objects which
are too close may generate a set of connected structures, initially associated
with the same object, and a decision must be taken whether to consider such
a case as one or two objects. Several cases may be distinguished:

– Two (or more) close objects, approximately of the same size, generate a
set of structures. At a given scale j, two separate structures Sj,1 and Sj,2

are detected while at the scale j + 1, only one structure is detected Sj+1,1,
which is connected to the Sj,1 and Sj,2.

– Two (or more) close objects of different sizes generate a set of structures,
from scale j to scale k (k > j).

In the wavelet space, the merging/deblending decision will be based on
the local maxima values of the different structures belonging to this object. A
new object (i.e. deblending) is derived from the structure Sj,k if there exists
at least one other structure at the same scale belonging to the same object
(i.e. there exists one structure Sj+1,a and at least one structure Sj,b such that
L(Sj+1,a) = L(Sj,b) = L(Sj,k)), and if the following relationship is verified:
wm

j > wm
j−1 and wm

j > wm
j+1, where:

– wm
j is the maximum wavelet coefficient of the structure Sj,k: wm

j =
MAX(Sj,k).
– wm

j−1 = 0 if Sj,k is not connected to any structure at scale j − 1.
– wm

j−1 is the maximum wavelet coefficient of the structure Sj−1,l, where
Sj−1,l is such that L(Sj−1,l) = L(Sj,k) and the position of its highest
wavelet coefficient is the closest to the position of the maximum of Sj,k.

– wm
j+1 = MAX{wj+1,x1,y1 , · · · , wj+1,xn,yn

}, where all wavelet coefficients
wj+1,x,y are at a position which belongs also to Sj,k (i.e. wj,x,y ∈ Sj,k).

When these conditions are verified, Sj,k and all structures at smaller scales
which are directly or indirectly connected to Sj,k will define a new object.
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Object Identification. We can now summarize this method allowing us to
identify all the objects in a given image I :

1. We compute the wavelet transform with the à trous algorithm, which
leads to a set W = WI = {w1, . . . , wJ , cJ}. Each scale wj has the same
size as the input image.

2. We determine the noise standard deviation in w1.
3. We deduce the thresholds at each scale from the noise modeling.
4. We threshold scale-by-scale and we do an image labeling.
5. We determine the interscale relations.
6. We identify all the wavelet coefficient maxima of the WTS.
7. We extract all the connected trees resulting from each WTS maximum.

4.3.4 Partial Reconstruction

Partial Reconstruction as an Inverse Problem. A set of structures Si

(Si = {Sj,k, · · · , Sj′,k′}) defines an object Oi which can be reconstructed
separately from other objects. The coaddition of all reconstructed objects
is a filtered version of the input data. We will denote Wi the set of wavelet
coefficients belonging to the object Oi. Therefore, Wi is a subset of the wavelet
transform of Oi, W̃i = WOi. Indeed, the last scale of W̃i is unknown, as
well as many wavelet coefficients which have not been detected. Then the
reconstruction problem consists of searching for an image Oi such that its
wavelet transform reproduces the coefficients Wi (i.e they are the same as
those of Si, the detected structures). If W describes the wavelet transform
operator, and Pw the projection operator in the subspace of the detected
coefficients (i.e. having set to zero all coefficients at scales and positions where
nothing was detected), the solution is found by minimization of (Bijaoui and
Rué, 1995)

J(Oi) =‖ Wi − A(Oi) ‖ (4.6)

where the operator A is defined by: A = Pw ◦W.
We have to solve the inverse problem which consists of determining Oi

knowing A and Wi. The solution of this problem depends on the regularity
of A. The size of the restored image Oi is arbitrary and it can be easily
set greater than the number of known coefficients. It is certain that there
exists at least one image Oi which gives exactly Wi, i.e. the original one.
But generally we have an infinity of solutions, and we have to choose among
them the one which is considered as correct. An image is always a positive
function, which leads us to constrain the solution, but this is not sufficient
to get a unique solution.

Reconstruction Algorithm. The least squares method can be used to
solve the relation Wi = A(Oi) which leads to seeking the image Oi which
minimizes the distance ‖Wi −A(Oi)‖. ‖Wi −A(Oi)‖ is minimum if and only
if Oi is a solution of the following equation:
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Ã(Wi) = (Ã ◦ A)(Oi) (4.7)

and Ã is defined by (Bijaoui and Rué, 1995):

Ã(Wi) =
J∑

j=1

(h1 ∗ · · · ∗ hj−1)Wi(j) (4.8)

where h is the low-pass filter used in the wavelet decomposition, and Wi(j)
is a subset of Wi, i.e. its wavelet coefficients of scale j.

The reconstruction algorithm is:

1. Initialization step: the estimated image On
i , the residual wavelet wn

r and
residual image Rn are initialized.

⎧⎨
⎩

O0
i = W−1Wi

w0
r = Wi − A(O0

i )
R0 = Ã(w0

r)
(4.9)

W−1 is the wavelet reconstruction operator. From a wavelet structure
Wi, an image Oi is restored corresponding to the sum of the wavelet
scales and the last smoothed image. Wi is not necessarily the wavelet
transform of an image, so W−1WOi may not be equal to Oi.

2. Computation of the convergence parameter αn:

αn =
‖Ã(wn

r )‖2

‖A(Rn)‖2
(4.10)

3. An iterative correction is applied to On
i to get the intermediate image

On+1
i :

On+1
i = On

i + αnRn (4.11)

4. Positivity constraint: negative values in On+1
i are set to zero.

5. Wavelet residual computation:

wn+1
r = Wi − A(On+1

i ) (4.12)

6. Test on the wavelet residual: if ‖wn+1
r ‖ is less than a given threshold, the

desired precision has been reached and the procedure is stopped.
7. Computation of the convergence parameter βn+1:

βn+1 =
‖Ã(wn+1

r )‖2

‖Ã(wn
r )‖2

(4.13)

8. Residual image computation

Rn+1 = Ã(wn+1
r ) + βn+1Rn (4.14)

9. Return to step 1.
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4.3.5 Examples

Example 1: Band Extraction. We simulated a spectrum which contains
an emission band at 3.50 µm and non-stationary noise superimposed on a
smooth continuum. The band is a Gaussian of width FWHM = 0.01 µm
(FWHM = full width at half-maximum), and normalized such that its max-
imum value equals ten times the local noise standard deviation.

Fig. 4.3 (top) contains the simulated spectrum. The wavelet analysis re-
sults in the detection of an emission band at 3.50 µm above 3σ. Fig. 4.3
(middle) shows the reconstruction of the detected band in the simulated
spectrum. The real feature is over-plotted as a dashed line. Fig. 4.3 (bottom)
contains the original simulation with the reconstructed band subtracted. It
can be seen that there are no strong residuals near the location of the band,
which indicates that the band is well-reconstructed. The center position of the
band, its FWHM, and its maximum, can then be estimated via a Gaussian
fit. More details about the use of MVM for spectral analysis can be found in
(Starck et al., 1997b).

Example 2: Star Extraction in NGC2997. We applied MVM to the
galaxy NGC2997 (Fig. 4.4, top left). Two images were created by coadding
objects detected from scales 1 and 2, and from scales 3 to 6. They are dis-
played respectively in Fig. 4.4, top right, and bottom left. Fig. 4.4, bottom
right, shows the difference between the input data and the image which con-
tained the objects from scales 1 and 2. As we can see, all small objects have
been removed, and the galaxy can be better analyzed.

Example 3: Galaxy Nucleus Extraction. Fig. 4.5 shows the extracted
nucleus of NGC2997 using the MVM method, and the difference between the
galaxy image and the nucleus image.

4.3.6 Application to ISOCAM Data Calibration

The ISOCAM infrared camera is one of the four instruments on board the
ISO (Infrared Space Observatory) spacecraft which ended its life in May 1998.
It operated in the 2.5-17 µm range, and was developed by the ISOCAM con-
sortium led by the Service d’Astrophysique of CEA Saclay, France (Cesarsky
et al., 1996).

The main difficulty in dealing with ISOCAM faint source detection is the
combination of the cosmic ray impacts (glitches) and the transient behavior
of the detectors (Siebenmorgen et al., 1996; Starck et al., 1999a). For glitches
producing a single fast increase and decrease of the signal, simple median
filtering allows fairly good deglitching, while for other glitches, memory effects
can produce false detections. Consequently, the major source of error here is
not the detection limit of the instrument, which is quite low, but the large
number of glitches which create false detection.
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Fig. 4.3. Top: simulated spectrum. Middle: reconstructed simulated band (full
line) and original band (dashed line). Bottom: simulated spectrum minus the re-
constructed band.

Three types of glitches can be distinguished (Claret et al., 2000; Starck,
2000):

– a positive strong and short feature (lasting one readout),
– a positive tail (called fader, lasting a few readouts),
– a negative tail (called dipper, lasting several tens of readouts).

Fig. 4.6 is a plot of the camera units (ADU: analog to digital units)
measured by a single pixel as a function of the number of readouts, i.e. time,
which shows the three types of glitches. At the top (a), three sharp type “1”
glitches are clearly visible. In the middle plot (b), another pixel history shows
a “fader” (at about 80 readouts and lasting about 20 readouts). In the bottom
plot (c), a “dipper” is present at readout 230, which lasts about 150 readouts.
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a b

c d

Fig. 4.4. (a) Galaxy NGC2997, (b) objects detected from scales 1 and 2, (c) objects
detected from scales 3 to 6, and (d) difference between (a) and (b).

The signal measured by a single pixel as a function of time is the combina-
tion of memory effects, cosmic ray impacts and real sources. Memory effects
begin with the first readouts, since the detector faces a flux variation from an
offset position to the target position (stabilization). Subsequently memory ef-
fects appear with long-lasting glitches and following real sources. One needs to
clearly separate all these constituents of the signal in each pixel before build-
ing a final raster map. One must also keep information on the associated noise
before applying a source detection algorithm. Indeed, since the glitches do not
follow Gaussian statistics, it is clear that an analysis of the final raster map
would lead to poor results, since the standard detection criteria (detection
above N times the standard deviation of the noise) would no longer be valid.

The calibration from pattern recognition (Starck et al., 1997a; Starck
et al., 1999b) consists of searching only for objects which verify given condi-
tions. For example, finding glitches of the first type is equivalent to finding
objects which are positive, strong, and with a temporal size lower than that
of the sources.
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Fig. 4.5. Upper left: galaxy NGC2997; upper right: extracted nucleus; bottom:
difference between the two previous images.

Fig. 4.7 (bottom) presents the result after carrying out such processing.
Original data are shown in Fig. 4.7 (top). Fig. 4.8 shows the decomposition
of the original signal (see Fig. 4.7 top) into its main components: (a), (b),
and (d) are features (short glitch, glitch negative tail, and baseline) which
present no direct interest for faint source detection, and (c) and (e) (source
and noise) must be considered further. The noise must also be kept because
faint sources could be undetectable in a single temporal signal, but detectable
after co-addition of the data. The simple sum of the five components is exactly
equal to the original data (see Fig. 4.7 top). The calibrated background free
data (see Fig. 4.7 bottom) are then obtained by addition of (c) and (e).



126 4. Detection

Fig. 4.6. Examples of glitches. (a) This signal contains three glitches of the first
type. (b) A glitch with a long tail appears (named fader) around the position 80.
The glitch has been truncated, and its real amplitude is 2700 ADUs. (c) A glitch
with a negative tail (named dipper) appears around position 240.

4.4 Detection and Deconvolution

The PSF is not needed with MVM. This is an advantage when the PSF
is unknown, or difficult to estimate, which happens relatively often when it
is space-variant. However, when the PSF is well-determined, it becomes a
drawback because known information is not used for the object reconstruc-
tion. This can lead to systematic errors in the photometry, which depends on
the PSF and on the source signal-to-noise ratio. In order to preempt such a
bias, a kind of calibration must be performed using simulations (Starck et al.,
1999b). This section shows how the PSF can be used in the MVM, leading
to a deconvolution.

Object Reconstruction using the PSF

A reconstructed and deconvolved object can be obtained by searching for a
signal O such that the wavelet coefficients of P ∗ O are the same as those of
the detected structures. If W describes the wavelet transform operator, and
Pw the projection operator in the subspace of the detected coefficients, the
solution is found by minimization of

J(O) =‖ W − (Pw ◦W)P ∗ O ‖ (4.15)
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Fig. 4.7. Top: original data, and bottom: calibrated data (background free). The
flux in ADUs (analog to digital units) is plotted against time given by the number
of exposures. Note the gain variation of about 5 ADUs which appears after the
second glitch.

where W represents the detected wavelet coefficients of the data, and P is
the PSF. In this approach, each object is deconvolved separately. The flux
related to the extent of the PSF will be taken into account. For point sources,
the solution will be close to that obtained by PSF fitting. This problem is also
different from global deconvolution in the sense that it is well-constrained.
Except for the positivity of the solution which is always true and must be
used, no other constraint is needed. This is due to the fact that the recon-
struction is performed from a small set of wavelet coefficients (those above a
detection limit). The number of objects is the same as those obtained by the
MVM, but the photometry and the morphology are different. The astrometry
may also be affected.

The Algorithm

Any minimizing method can be used to obtain the solution O. Since we did
not find any problem of convergence, noise amplification, or ringing effect,
we chose the Van Cittert method on the grounds of its simplicity. For each
detected object, we apply the following algorithm:

On+1 = On + W−1(W − (Pw ◦W)P ∗ On) (4.16)

where W−1 is the inverse wavelet transform.

1. Set n to 0.
2. Find the initial estimation On by applying an inverse wavelet transform

to the set W corresponding to the detected wavelet coefficients in the
data.
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Fig. 4.8. Decomposition of the signal into its main components: (a) short glitch,
(b) glitch negative tail, (c) source, (d) baseline, (e) noise. The simple sum of the
five components is exactly equal to the original data (see previous figure). The
calibrated background-free data are obtained by addition of signals (c) and (e).

3. Convolve On with the PSF P : In = P ∗ On.
4. Determine the wavelet transform W (In) of In.
5. Threshold all wavelet coefficients in W (In) at position and scales where

nothing has been detected (i.e. Pw operator). We get Wt(In).
6. Determine the residual wr = W − Wt(In).
7. Reconstruct the residual image Rn by applying an inverse wavelet trans-

form.
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8. Add the residual to the solution: On+1 = On + Rn.
9. Threshold negative values in On+1.

10. If σ(Rn)/σ(O0) < ε then n = n + 1 and go to step 3.
11. On+1 contains the deconvolved reconstructed object.

In practice, convergence is very fast (less than 20 iterations). The recon-
structed image (not deconvolved) can also be obtained just by reconvolving
the solution with the PSF.

Space-Variant PSF

Deconvolution methods generally do not take into account the case of a space-
variant PSF. The standard approach when the PSF varies is to decompose
the image into blocks, and to consider the PSF constant inside a given block.
Blocks which are too small lead to a problem of computation time (the FFT
cannot be used), while blocks which are too large introduce errors due to
the use of an incorrect PSF. Blocking artifacts may also appear. Combining
source detection and deconvolution opens up an elegant way for deconvolution
with a space-variant PSF. Indeed, a straightforward method is derived by just
replacing the constant PSF at step 3 of the algorithm with the PSF at the
center of the object. This means that it is not the image which is deconvolved,
but its constituent objects.

Undersampled Point Spread Function

If the PSF is undersampled, it can be used in the same way, but results may
not be optimal due to the fact that the sampled PSF varies depending on
the position of the source. If an oversampled PSF is available, resulting from
theoretical calculation or from a set of observations, it should be used to
improve the solution. In this case, each reconstructed object will be oversam-
pled. Equation (4.15) must be replaced by

J(O) = ‖ W − (Pw ◦W ◦ Dl)P ∗ O ‖ (4.17)

where Dl is the averaging-decimation operator, consisting of averaging the
data in the window of size l × l, and keeping only one average pixel for each
l × l block.

Example: Application to Abell 1689 ISOCAM Data

Fig. 4.9 (left) shows the detections (isophotes) obtained using the MVM
method without deconvolution on ISOCAM data. The data were collected
using the 6 arcsecond lens at 6.75 µm. This was a raster observation with 10s
integration time, 16 raster positions, and 25 frames per raster position. The
noise is non-stationary, and the detection of the significant wavelet coefficients
was carried out using the root mean square error map Rσ(x, y) by the method



130 4. Detection
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Fig. 4.9. Abell 1689: left: ISOCAM source detection (isophotes) overplotted on
an optical image (NTT, band V). The ISOCAM image is a raster observation at
7 µm. Right: ISOCAM source detection using the PSF (isophotes) overplotted on
the optical image. Compared to the left panel, it is clearly easier to identify the
detected infrared sources in the optical image.

described in Starck et al. (1999b). The isophotes are overplotted on an optical
image (NTT, band V) in order to identify the infrared source. Fig. 4.9 (right)
shows the same treatment but using the MVM method with deconvolution.
The objects are the same, but the photometry is improved, and it is clearly
easier to identify the optical counterpart of the infrared sources.

4.5 Detection in the Cosmological Microwave
Background

4.5.1 Introduction

The Cosmic Microwave Background (CMB), discovered in 1965 by Penzias
and Wilson (1965), is a relic of radiation emitted some 13 billion years ago,
when the Universe was about 370,000 years old. This radiation exhibits char-
acteristics of an almost perfect blackbody at a temperature of 2.726 Kelvin
as measured by the FIRAS experiment on board the COBE satellite (Fixsen
et al., 1996). The DMR experiment, again on board COBE, detected and
measured small angular fluctuations of this temperature, at the level of a
few tens of micro Kelvin, and at angular scales of about 10 degrees (Smoot
et al., 1992). These so-called temperature anisotropies were predicted as the
imprints of the initial density perturbations which gave rise to the present
large-scale structures as galaxies and clusters of galaxies. This relation be-
tween the present-day universe and its initial conditions has made the CMB
radiation one of the most preferred tools of cosmologists to understand the



4.5 Detection in the Cosmological Microwave Background 131

history of the universe, the formation and evolution of the cosmic structures
and physical processes responsible for them, and for their clustering.

As a consequence, the past few years have been a particularly exciting pe-
riod for observational cosmology focussing on the CMB. With CMB balloon-
borne and ground-based experiments such as TOCO (Miller et al., 1999),
BOOMERanG (de Bernardis et al., 2000), MAXIMA (Hanany et al., 2000),
DASI (Halverson et al., 2002) and Archeops (Benôıt et al., 2003), a firm de-
tection of the so-called “first peak” in the CMB anisotropy angular power
spectrum at the degree scale was obtained. This detection was very recently
confirmed by the WMAP satellite (Bennett et al., 2003), which detected also
the second and third peaks. The WMAP satellite mapped the CMB tempera-
ture fluctuations (see Fig. 4.10) with a resolution better than 15 arc-minutes,
and very good accuracy, marking the starting point of a new era of preci-
sion cosmology that enables us to use the CMB anisotropy measurements to
constrain the cosmological parameters and the underlying theoretical models.

Fig. 4.10. WMAP Data.

CMB data are different from other astronomical data sets in the sense
that they are not sparse (typical sparse data are stars or/and galaxies on
top of a smooth background). After a component separation processing (see
section 6.7), the CMB data are not completely free of contaminations. Point
sources still need to be detected and removed. Once we believe the data
are clean enough, we want to check if the distribution of CMB temperature
fluctuations is Gaussian by using robust statistical Gaussianity tests.
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4.5.2 Point Sources on a Gaussian Background

Several methods have been proposed in the last years for point source detec-
tion in the CMB such as the the Mexican Hat wavelet (Cayón et al., 2000;
Cayón et al., 2001), the pseudo-filter (Sanz et al., 2001), or the biparametric
scale-adaptive filter (López-Caniego et al., 2005). A simple and robust tech-
nique, which maximizes the signal-to-noise ratio is the Matched Filter (Vio
et al., 2002). Assuming an isotropic point spread function (PSF) with known
power sprectum τ(q) and the CMB with power spectrum P (q), the Matched
Filter is (Vio et al., 2002):

ψ̂MF (q) =
1

2πα

τ(q)
P (q)

, α ≡
∫ +∞

0

q
τ2

P
dq, (4.18)

with minimum variance

σ2 =
1

2πα
. (4.19)

If the PSF is unknown (or space-variant), the Mexican Hat wavelet may
be a good alternative. It consists of convolving the data with the wavelet
function ψa,b(x) = ψ(x−b

a ), where ψ(x) = 1√
2π

(1 − x2)e−x2/2. a is the scale
parameter and b the position parameter. A fast implementation is obtained by
using the Fourier transform (or the spherical harmonic transform for data on
the sphere) to perform the convolution products (ψ̂a(q) = 2√

π
(qa)2e−

1
2 (qa)2)

(López-Caniego et al., 2005).

4.5.3 Non-Gaussianity

The search for non-Gaussian signatures in the CMB temperature fluctuation
maps furnished by MAP1 (Komatsu et al., 2003), and to be furnished by
PLANCK2, is of great interest for cosmologists. Indeed, the non-Gaussian
signatures in the CMB can be related to very fundamental questions such
as the global topology of the universe (Riazuelo et al., 2002), superstring
theory, topological defects such as cosmic strings (Bouchet et al., 1988), and
multi-field inflation (Bernardeau and Uzan, 2002). The non-Gaussian signa-
tures can, however, have a different but still cosmological origin. They can be
associated with the Sunyaev-Zel’dovich (SZ) effect (Sunyaev and Zeldovich,
1980) (inverse Compton effect) of the hot and ionized intra-cluster gas of
galaxy clusters (Aghanim and Forni, 1999; Cooray, 2001), with the gravi-
tational lensing by large scale structures (Bernardeau et al., 2003), or with
the reionization of the universe (Aghanim and Forni, 1999; Castro, 2003).
They may also be simply due to foreground emission (Jewell, 2001), or to
non-Gaussian instrumental noise and systematics (Banday et al., 2000).
1 http://map.gsfc.nasa.gov/
2 http://astro.estec.esa.nl/SA-general/Projects/Planck/
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All these sources of non-Gaussian signatures might have different origins
and thus different statistical and morphological characteristics. It is therefore
not surprising that a large number of studies have recently been devoted to
the subject of the detection of non-Gaussian signatures. Many approaches
have been investigated: Minkowski functionals and the morphological statis-
tics (Novikov et al., 2000; Shandarin, 2002), the bispectrum (3-point estima-
tor in the Fourier domain) (Bromley and Tegmark, 1999; Verde et al., 2000;
Phillips and Kogut, 2001), the trispectrum (4-point estimator in the Fourier
domain) (Kunz et al., 2001), wavelet transforms (Aghanim and Forni, 1999;
Forni and Aghanim, 1999; Hobson et al., 1999; Barreiro and Hobson, 2001;
Cayón et al., 2001; Jewell, 2001; Starck et al., 2004), and the curvelet trans-
form (Starck et al., 2004). In (Aghanim et al., 2003; Starck et al., 2004), it
was shown that the wavelet transform was a very powerful tool to detect the
non-Gaussian signatures. Indeed, the excess kurtosis (4th moment) of the
wavelet coefficients outperformed all the other methods (when the signal is
characterized by a non-zero 4th moment). Based on kurtosis of wavelet coef-
ficients, recent studies have reported non-Gaussian signatures in the WMAP
data (Vielva et al., 2004; Mukherjee and Wang, 2004; Cruz et al., 2005). The
excess kurtosis is a widely used statistic, based on the 4th moment. For any
(symmetrical) random variable X, the kurtosis is:

κ(X) =
EX4

(EX2)2
− 3.

The kurtosis measures a kind of departure of X from Gaussianity. The non-
Gaussianity detector consists of first applying a multiscale transform (e.g.,
wavelet, or curvelet), and then calculating at each scale the kurtosis. In prac-
tice, missing data and instrumental effects may create an artificial kurtosis
and it is very important to produce realistic simulations which present the
same caracteristics as the observated data (e.g., missing data, noise, etc.).
Then the kurtosis obtained from the data is compared to the kurtosis level
expected from the simulations.

Finally, a major issue of the non-Gaussian studies in CMB remains our
ability to disentangle all the sources of non-Gaussianity from one another.
Recent progress has been made on the discrimination between different pos-
sible origins of non-Gaussianity. Namely, it was possible to separate the non-
Gaussian signatures associated with topological defects (cosmic strings) from
those due to the Doppler effect of moving clusters of galaxies (both domi-
nated by a Gaussian CMB field) by combining the excess kurtosis derived
from both the wavelet and the curvelet transforms (Starck et al., 2004).

The wavelet transform is suited to spherical-like sources of non-
Gaussianity, and a curvelet transform is suited to structures representing
sharp and elongated structures such as cosmic strings. Each provides an
adapted non-Gaussian estimator, namely the normalized mean excess kurto-
sis. The combination of these transforms through the product of the normal-
ized mean excess kurtosis of wavelet transforms by normalized mean excess



134 4. Detection

kurtosis of curvelet transforms highlights the presence of the cosmic strings
in a mixture CMB+SZ+CS. Such a combination gives information about the
nature of the non-Gaussian signals. The sensitivity of each transform to a
particular shape makes it a very strong discriminating tool (Starck et al.,
2004; Jin et al., 2005).

Fig. 4.11. Top: primary Cosmic Microwave Background anisotropies (left) and
kinetic Sunyaev-Zel’dovich fluctuations (right). Bottom: cosmic string simulated
map (left) and simulated observation containing the previous three components
(right). The wavelet function is overplotted on the Sunyaev-Zel’dovich map and
the curvelet function is overplotted on the cosmic string map.

In order to illustrate this, we show in Fig. 4.11 a set of simulated maps.
Primary CMB, kinetic SZ and cosmic string maps are shown respectively
in Fig. 4.11 top left, top right and bottom left. The “simulated observed
map”, containing the three previous components, is displayed in Fig. 4.11
bottom right. The primary CMB anisotropies dominate all the signals except
at very high multipoles (very small angular scales). The wavelet function is
overplotted on the kinetic Sunyaev-Zel’dovich map and the curvelet function
is overplotted on cosmic string map.
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4.6 Conclusion

The multiscale vision model allows us to analyze very complex data sets, and
the main advantages of this approach are:

– Faint extended objects can be detected as well as point sources.
– The analysis does not require background estimation. (We know that if the

background varies spatially, its estimation becomes a non-trivial task and
may produce large errors in object photometry.)

We have shown that the source detection can be combined with a deconvolu-
tion when using wavelet based methods such as the Multiscale Vision Model.
This leads to the reconstruction of deconvolved objects. The main advantages
of this approach are:

– Objects are easier to identify in the deconvolved map.
– Morphological parameters (galaxy ellipticity and so on) are more accurate.
– Since each object is deconvolved separately, a spatially variable point

spread function can easily be taken into account.
– Very large images can be deconvolved.

Many images contain stars and small galaxies, with a relatively flat back-
ground. In such cases, MVM may not be so attractive, especially if the im-
ages to be analyzed are very large. Object by object reconstruction requires
much more computation time than a standard approach, especially with well-
optimized code like SExtractor. A hybrid wavelet-SExtractor solution, as pro-
posed in (Valtchanov et al., 2000), could then be a solution. Wavelet filtering
is first applied to the data, taking into account the correct noise model in
wavelet space, and the detection program SExtractor is then used on the
noise-free image to find the sources. This combined solution has the advan-
tage of fast and robust detection, as in the standard method, while keeping
the ability to detect the faintest objects, which is only possible in wavelet
space.

4.7 Chapter Summary

Object and feature detection, as discussed in this chapter, builds on the
earlier work of (i) filtering, and (ii) deconvolution. The latter are important,
and they may be necessary, in conjunction with the work of object and feature
finding and measurement.

Formally, we discussed the issues facing us, as analyst, in terms of a vision
model. Computer vision, and signal and data analysis, presuppose models at
all stages of the processing path. A vision model is a high-level model.

We also showed how data imperfections, using the case of signal glitch
analysis, came under the heading of object and feature detection.
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5.1 Introduction

From year to year, the quantity of astronomical data increases at an ever
growing rate. In part this is due to very large digitized sky surveys in the
optical and near infrared, which in turn is due to the development of digital
imaging arrays such as CCDs (charge-coupled devices). The size of digital
arrays is also continually increasing, pushed by the demands of astronomical
research for ever larger quantities of data in ever shorter time periods. Cur-
rently, projects such as the European DENIS and American 2MASS infrared
sky surveys, or the Franco-Canadian MegaCam Survey and the American
Sloan Digital Sky Survey, will each produce of the order of 10 TBytes of image
data. The routine and massive digitization of photographic plates has been
made possible by the advent of automatic plate scanning machines (MAMA,
APM, COSMOS, SuperCOSMOS, APS, PMM, PDS) (Richter, 1998). These
machines allow for digitization of the truly enormous amount of useful astro-
nomical data represented in a photograph of the sky, and they have allowed
the full potential of large area photographic sky surveys to be brought to
fruition. The storage of astronomical data requires the latest innovations in
archiving technology (12” or 51

4” WORM in the past, CD WORMS or mag-
netic disks with RAID technology now, DVD in the very near future). The
straightforward transfer of such amounts of data over computer networks be-
comes cumbersome and in some cases practically impossible. Transmission
of a high resolution Schmidt plate image over the Internet would take many
hours. Facing this enormous increase in pixel volume, and taking into account
the fact that catalogs produced by extraction of information from the pixels
can always be locally wrong or incomplete, the needs of the astronomer follow
two very different paths:

– The development of web technology creates the need for fast access to
informative pixel maps, which are more intuitively understandable than
the derived catalogs.

– Quantitative work often requires accurate refinement of astrometry and
photometry, or effective redetection of missed objects.

In both cases and for different reasons, the astronomical community is
confronted with a rather desperate need for data compression techniques.
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Several techniques have in fact been used, or even developed, in the field
of astronomy. Véran (1994) studied lossless techniques. White et al. (1992)
developed HCOMPRESS, based on the Haar wavelet transform, and Press
et al. (1992) developed FITSPRESS based on the Daubechies wavelet trans-
form. In addition, the scientist must of course consider JPEG, a general
purpose standard. Somewhat counter-intuitively (because the median is by
no means the most computationally efficient of operations) effective and effi-
cient compression based on the multiresolution Pyramidal Median Transform
(PMT) algorithm was developed by Starck et al. (1996). Huang and Bijaoui
(1991) used mathematical morphology in MathMorph for astronomical image
processing.

Based on image type and application, different strategies can be used:

1. Lossy compression: in this case compression ratio is relatively low (< 5).
2. Compression without visual loss. This means that one cannot see the

difference between the original image and the decompressed one.
3. Good quality compression: the decompressed image does not contain any

artifact, but some information is lost.
4. Fixed compression ratio: for some technical reason or other, one may

decide to compress all images with a compression ratio higher than a
given value, whatever the effect on the decompressed image quality.

5. Signal/noise separation: if noise is present in the data, noise modeling
can allow for very high compression ratios just by including filtering in
wavelet space during the compression.

According to the image type and the selected strategy the optimal compres-
sion method may vary. A major interest in using a multiresolution framework
is to get, in a natural way, the possibility for progressive information transfer.

According to Shannon’s theorem, the number of bits we need to code
an image I without distortion (losslessly) is given by its entropy H. If the
image (with N pixels) is coded with L intensity levels, each level having a
probability of appearance pi, the entropy H is

H(I) =
L∑

i=1

−pi log2 pi (5.1)

The probabilities pi can be easily derived from the image histogram. The
compression ratio is given by:

C(I) =
number of bits per pixel in the raw data

H(I)
(5.2)

and the distortion is measured by

R =‖ I − Ĩ ‖2=
N∑

k=1

(Ik − Ĩk)2 (5.3)

where Ĩ is the decompressed image.
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A Huffman, or an arithmetic, coder is generally used to transform the set
of integer values into the new set of values, in a reversible way

Compression methods use redundancy in the raw data in order to reduce
the number of bits. Efficient methods mostly belong to the transform coding
family, where the image is first transformed into another set of data where
the information is more compact (i.e. the entropy of the new set is lower than
the original image entropy). The typical steps are:

1. transform the image (for example using a discrete cosine transform, or a
wavelet transform),

2. quantize the obtained coefficients, and
3. code the values by a Huffman or an arithmetic coder.

The first and third points are reversible, while the second is not. The dis-
tortion depends on the way the coefficients are quantized. We may want to
minimize the distortion with the minimum of bits, and a trade-off is then nec-
essary in order to also have “acceptable” quality. “Acceptable” is subjective,
and depends on the application. Sometimes, any loss is unacceptable, and
the price to be paid for this is a very low compression ratio (often between
one and two).

In this chapter, we describe the compression method based on the Pyra-
midal Median Transform (PMT), and we report our findings using five
other compression algorithms (HCOMPRESS, FITSPRESS, JPEG, PMT,
and MathMorph) from astrometry and photometry. We used a sample of
nearly 2000 stars from an ESO Schmidt plate centered on the globular clus-
ter M5. The results indicate that PMT can give compression ratios of up to 5
times the maximum ratio obtained from the other methods, when the regions
are not too dense.

The next section contains a brief and general description of image com-
pression techniques, and of the four compression software packages, FITS-
PRESS, HCOMPRESS, JPEG and PMT. This is followed by a presentation
of data and calibrations used for our study (and a discussion of our approach
to testing the astronomical quality assessment of the compressed images),
and a presentation of our results.

5.2 Lossy Image Compression Methods

5.2.1 The Principle

Numerical image information is coded as an array of intensity values, repro-
ducing the geometry of the detectors used for the observation or the den-
sitometer used for plate digitization. The object signal is stored with noise,
background variations, and so on. The relevant information depends on the
application domain, and represents what the astronomer wants to study. The
information of relevance reflects the limits of the observing instrument and
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of the digitization process. Reducing the amount of data to be coded requires
that the relevant information be selected in the image and that the coding
process be reorganized so that we emphasize the relevant information and
drop noise and non-meaningful data. For this, we can focus on the region of
interest, filter out noise, and quantize coarsely to take into account the limits
of our human visual system if the images are only used for browsing.

Furthermore, the usual pixel array representation associated with images
stores a lot of redundant information due to correlation of intensity values
between nearby pixels and between different scales for large image structures
or slowly varying background. A good compression scheme should aim at
concentrating on the meaningful information in relation to the scientific pur-
pose of the imaging (survey) project and code it efficiently, thereby limiting
as much as possible the redundancy.

For this study, we examined the major available image compression pack-
ages – with relevance to astronomy – and compared their strategies with
respect to these goals.

5.2.2 Compression with Pyramidal Median Transform

Multiscale Median Transform. The median transform is nonlinear, and
offers advantages for robust smoothing (i.e. the effects of outlier pixel values
are mitigated). Define the median transform of image f , with square kernel of
dimensions n×n, as med(f, n). Let n = 2s + 1; initially s = 1. The iteration
counter will be denoted by j, and J is the user-specified number of resolution
scales.

1. Let cj = f with j = 1
2. Determine cj+1 = med(f, 2s + 1).
3. The multiresolution coefficients wj+1 are defined as: wj+1 = cj − cj+1.

Image w1 has zero values.
4. Let j ←− j + 1; s ←− 2s. Return to Step 2 if j ≤ J .

A straightforward expansion formula for the original image is given by:

f = cJ +
J∑

j=1

wj (5.4)

where cJ is the residual image.
The multiscale coefficient values, wj , are evidently not necessarily of zero

mean, and so the potential artifact-creation difficulties related to this aspect
of wavelet transforms do not arise. Note of course that values of w can be
negative.

For integer image input values, this transform can be carried out in integer
arithmetic only which may lead to computational savings.

Computational requirements of the multiresolution transform are high,
and these can be reduced by decimation: one pixel out of two is retained
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at each scale. Here the transform kernel does not change from one iteration
to the next, but the image to which this transform is applied does. This
pyramidal algorithm is looked at next.

Pyramidal Median Transform. The Pyramidal Median Transform
(PMT) is obtained by the following algorithm:

1. Let cj = f with j = 1.
2. Determine c∗j+1 = med(cj , 2s + 1) with s = 1.
3. The pyramidal multiresolution coefficients wj+1 are defined as: wj+1 =

cj − c∗j+1.
4. Let cj+1 = dec(c∗j+1) where the decimation operation, dec, entails 1 pixel

replacing each 2 × 2 subimage.
5. Let j ←− j + 1. Return to Step 2 so long as j < J .

Here the kernel or mask of dimensions (2s + 1) × (2s + 1) remains the
same during the iterations. The image itself, to which this kernel is applied,
becomes smaller.

While this algorithm aids computationally, the reconstruction formula
(equation 5.4 above) is no longer valid. Instead we use the following algorithm
based on B-spline interpolation:

1. Take the lowest scale image, cj .
2. Interpolate cj to determine the next resolution image (of twice the di-

mensionality in x and y). Call the interpolated image c′j .
3. Calculate cj−1 ←− c′j + wj .
4. Set j ←− j − 1. Go to Step 2 if j > 0.

This reconstruction procedure takes account of the pyramidal sequence of
images containing the multiresolution transform coefficients, wj . It presup-
poses, though, that good reconstruction is possible. We ensure that by use
of the following refined version of the Pyramidal Median Transform. Using
iteration, the coefficients, wj+1 = cj − cj+1, are improved relative to their
potential for reconstructing the input image.

Iterative Pyramidal Median Transform. An iterative scheme can be
proposed for reconstructing an image, based on pyramidal multi-median
transform coefficients. Alternatively, the PMT algorithm, itself, can be en-
hanced to allow for better estimates of coefficient values. The following is an
iterative algorithm for this objective:

1. i ←− 0. Initialize f i with the given image, f . Initialize the multiresolution
coefficients at each scale j, wf

j , to 0.
2. Using the Pyramidal Median Transform, determine the set of transform

coefficients, wfi

j .
3. wf

j ←− wf
j + wfi

j .
4. Reconstruct image fi+1 from wf

j (using the interpolation algorithm de-
scribed in the previous section).



142 5. Image Compression

5. Determine the image component which is still not reconstructible from
the wavelet coefficients: fi+1 ←− f − fi+1.

6. Set i ←− i + 1, and return to Step 2.

The number of iterations is governed by when fi+1 in Step 5 approaches a
null (zero) image. Normally 4 or 5 iterations suffice. Note that the additivity
of the wavelet coefficients in Step 3 is justified by additivity of the image
decomposition in Step 5 and the reconstruction formula used in Step 4, both
of which are based on additive operations.

Non-Iterative Pyramidal Transform with Exact Reconstruction. A
non-iterative version of the pyramidal median transform can be performed
by decimating and interpolating the median images during the transform:

1. Let cj = f with j = 1.
2. Determine cj+1 = dec[med(cj , 2s + 1)]
3. Determine c∗j+1 = interpolation of cj+1 to size of cj

4. The pyramidal multiresolution coefficients wj+1 are defined as: wj+1 =
cj − c∗j+1.

5. Let j ←− j + 1. Return to Step 2 so long as j < J .

This saves computation time in two ways. First, there is no need to iterate.
Secondly, in step 2 one does not calculate the median for all pixels and then
decimate it; rather, one just calculates the median for the pixels to be left after
decimation. Thus the median calculations are 4 times fewer. This algorithm
is very close to the Laplacian pyramid developed by Burt and Adelson (Burt
and Adelson, 1983). The reconstruction algorithm is the same as before, but
the reconstructed image has no error. In the following, we will indicate this
version by referring to PMT.

5.2.3 PMT and Image Compression

The principle of the method is to select the information we want to keep, by
using the PMT, and to code this information without any loss. Thus the first
phase searches for the minimum set of quantized multiresolution coefficients
which produce an image of “high quality”. The quality is evidently subjective,
and we will define by this term an image such as the following:

– There is no visual artifact in the decompressed image.
– The residual (original image – decompressed image) does not contain any

structure.

Lost information cannot be recovered, so if we do not accept any loss, we
have to compress what we take as noise too, and the compression ration will
be low (a ratio of 3 or 4 only).

The method employed involves the following sequence of operations:

1. Determination of the multiresolution support.
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2. Determination of the quantized multiresolution coefficients which gives
the filtered image. (Details of the iterative implementation of this algo-
rithm are dealt with below.)

3. Coding of each resolution level using the Huang-Bijaoui method (1991).
This consists of quadtree-coding each image, followed by Huffman-coding
(with fixed codes) the quadtree representation. There is no information
loss during this phase.

4. Compression of the noise if this is wanted.
5. Decompression consists of reconstituting the noise-filtered image (+ the

compressed noise if this was specified).

Scale 5

Scale 4

Scale 3

Scale 2

Scale 1
Significant Signal: (> K sigma_j)

q_j = w_j / (q sigma_j)

SIGNIFICANT SIGNAL
(k=3, q = 0.5)+
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= DATA

Quadtree + Huffman Encoding
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Q+HE
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Fig. 5.1. Graphic depiction of the PMT compression method.
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Fig. 5.1 shows graphically the PMT compression method. Note that we
can reconstruct an image at a given resolution without having to decode the
entire compressed file.

The first two phases were described in earlier chapters and we will now
describe the last three phases.

Quantized Coefficients. We define the set Q = {q1, ...qn} of quantized
coefficients, qj corresponding to the quantized multiresolution coefficients wj .
We have:

– qj(x, y) = 0 if M(j, x, y) = 0
– qj(x, y) = int(wj(x, y)/(ksignalσj)) if M(j, x, y) = 1

Here, int denotes integer part. The image reconstructed from Q gives the
decompressed image D. Good compression should produce D such that the
image R = I − D contains only noise. Due to the thresholding and to the
quantization, this may not be the case. It can be useful to iterate if we want
to compress the quantized coefficients such that the best image is rendered
possible. The final algorithm which allows us to compute both the quantized
coefficients and the multiresolution support is:

1. Set i = 0, Ri = I

2. Set M(j, x, y) = 0 and qi
j(x, y) = 0 ∀x, y, j

3. Compute the PMT of Ri: we obtain wj

4. If i = 0, estimate at each scale j the standard deviation of the noise σj .
5. New estimation of the multiresolution support:

for all j, x, y, if | wj(x, y) |> kσj , M(j, x, y) = 1
6. New estimation of the set Q:

for all j, x, y, if | M(j, x, y) |= 1,
qj(x, y) = qj(x, y) + int(wj(x, y)/(ksignalσj))

7. Reconstruction of Di from Q
8. i = i + 1, Ri = I − Di−1 and go to 3

In step 6, ksignal = 1.5. (This value was fixed experimentally and seems
to be a good trade-off between quality and efficiency.) After a few iterations,
the set Q contains the multiresolution coefficients. This allows a considerable
compression ratio and the filtered image can be reconstructed without arti-
facts. The residual image R is our reconstruction error (rec(Q) + R = I).
The results without iterating are satisfactory too, and are sufficient in most
cases. If we are not limited by time computation during the compression, we
can carry out a few iterations in order to have subsequently the best quality
reconstruction.

Quadtree and Huffman Encoding. To push compression further, we code
the multiresolution coefficients using a quadtree (Samet, 1984) followed by
Huffman (Held and Marshall, 1987) encoding.
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The particular quadtree form we are using was suggested by Huang and
Bijaoui (1991) for image compression.

– Divide the bitplane into 4 quadrants. For each quadrant, code as “1” if
there are any 1-bits in the quadrant, else code as “0”.

– Subdivide each quadrant that is not all zero into 4 more sub-quadrants and
code them similarly. Continue until one is down to the level of individual
pixels.

Noise Compression. If we want exact compression, we have to compress
the noise too. There is no transform which allows better representation of
the noise, and the noise compression ratio will be defined by the entropy.
Generally, we do not need all the dynamic range of the noise, and we do not
compress the residual map R but rather the image Rq = int(R/(knoiseσR))
with knoise = 1

2 in the applications below.
Lossless compression can be performed too, but this makes sense only if

the input data are integers, and furthermore the compression ratio will be
very low.

Image Decompression. Decompression is carried out scale by scale, start-
ing from low resolution, so it is not necessary to decompress the entire file if
one is just interested in having a look at the image. Noise is decompressed and
added at the end, if this is wanted. (The examples discussed below suppress
the noise entirely.)

5.2.4 Compression Packages

Methods used in astronomy include HCOMPRESS (White et al., 1992), FIT-
SPRESS (Press, 1992), and JPEG (Furht, 1995). These are all based on linear
transforms, which in principle help to reduce the redundancy of pixel values
in a block and decorrelate spatial frequencies or scales. In addition to the
PMT, other methods have been proposed for astronomical image such as
compression using mathematical morphology (Huang and Bijaoui, 1991). A
specific decompression method was also developed in (Bijaoui et al., 1996) in
order to reduce artifacts relative to the HCOMPRESS method. In the sig-
nal processing domain, two other recent approaches are worthy of mention.
The first is based on fractals, and the second uses a bi-orthogonal wavelet
transform.

We first briefly review all of these methods, and then compare them in
the framework of astronomical images.

HCOMPRESS. HCOMPRESS (White et al., 1992) was developed at the
Space Telescope Science Institute (STScI, Baltimore), and is commonly used
to distribute archive images from the Digital Sky Survey DSS1 and DSS2. It
is based on the Haar wavelet transform. The algorithm consists of
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1. applying a Haar wavelet transform to the data,
2. quantizing the wavelet coefficients linearly as integer values,
3. applying a quadtree to the quantized value, and
4. using a Huffman coder.

Sources are available at http://www.stsci.edu/software/hcompress.html.

HCOMPRESS with Iterative Decompression. Iterative decompression
was proposed in (Bijaoui et al., 1996) to decompress files which were com-
pressed using HCOMPRESS. The idea is to consider the decompression prob-
lem as a restoration problem, and to add constraints on the solution in order
to reduce the artifacts.

FITSPRESS. FITSPRESS (Press, 1992) uses a threshold on very bright
pixels and applies a linear wavelet transform using the Daubechies-4 filters.
The wavelet coefficients are thresholded based on a noise threshold, quan-
tized linearly and runlength encoded. This was developed at the Center for
Astrophysics, Harvard. Sources are available at
http://www.eia.brad.ac.uk/rti/guide/fits.html.

JPEG. JPEG is the standard video compression software for single frame
images (Furht, 1995). It decorrelates pixel coefficients within 8 × 8 pixel
blocks using the discrete cosine transform (DCT) and uniform quantization.

Wavelet Transform. Various wavelet packages exist which support im-
age compression, leading to more sophisticated compression methods. The
wavelet transform we used is based on a bi-orthogonal wavelet transform
(using Antonini-Daubechies 7/9 coefficients) with non-uniform coding (Taub-
man and Zakhor, 1994), and arithmetic encoding. Source code is available at
http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html.

Fractal. The image is decomposed into blocks, and each block is represented
by a fractal. See (Fisher, 1994) for more explanation.

Mathematical Morphology. This method (Huang and Bijaoui, 1991), de-
noted MathMorph in this chapter, is based on mathematical morphology
(erosion and dilation). It consists of detecting structures above a given level,
the level being equal to the background plus three times the noise standard
deviation. Then, all structures are compressed by using erosion and dilation,
followed by quadtree and Huffman coding. This method relies on a first step
of object detection, and leads to high compression ratios if the image does
not contain many objects (the image is nearly black, cf. Chapter 3), as is
often the case in astronomy.

5.2.5 Remarks on these Methods

The pyramidal median transform (PMT) is similar to the mathematical mor-
phology (MathMorph) method in the sense that both try to understand what
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is represented in the image, and to compress only what is considered as signif-
icant. The PMT uses a multiresolution approach, which allows more powerful
separation of signal and noise. The latter two methods are both implemented
in the MR/1 package (see http://www.multiresolution.com).

Each of these methods belongs to a general scheme where the following
steps can be distinguished:

1. Decorrelation of pixel values inside a block, between wavelength, scales
or shape, using orthogonal or nonlinear transforms.

2. Selection and quantization of relevant coefficients.
3. Coding improvement: geometrical redundancy reduction of the coeffi-

cients, using the fact that pixels are contiguous in an array.
4. Reducing the statistical redundancy of the code.

Table 5.1. Description and comparison of the different steps in the compression
packages tested.

Coefficient Coefficient Geometrical Statistical
Software Transform Quantization Organisation Redundancy Redundancy

reduction reduction

JPEG DCT Linear Zigzag Runlength Huffmann
8×8 pixels sequence coding

HCOMPRESS Haar Linear Pyramidal Quadtree on Huffmann
2×2 pixels bitplanes

FITSPRESS Wavelets Linear Increasing Runlength Huffmann
Daubechies-4 resolution coding

MR/1 Pyramidal Linear / Decreasing Quadtree on Huffmann
PMT Median Noise resolution bitplanes

Transform estimation
MR/1 Erosion/ Linear / Quadtree on Huffmann

Math.Morph. Dilation Noise – bitplanes
estimation

How each method realizes these different steps is indicated in Table 5.1.
Clearly these methods combine many strategies to reduce geometrical and

statistical redundancy. The best results are obtained if appropriate selection
of relevant information has been performed before applying these schemes.

For astronomical images, bright or extended objects are sought, as well
as faint structures, all showing good spatial correlation of pixel values and
within a wide range of greylevels. Noise background, on the contrary, shows
no spatial correlation and fewer greylevels. The removal of noisy background
helps in regard to data compression of course. This can be done with filtering,
greylevel thresholding, or coarse quantization of background pixels. This is
used by FITSPRESS, PMT and MathMorph which divide information into
a noise part, estimated as a Gaussian process, and a highly correlated signal
part. MathMorph simply thresholds the background noise estimated by a
3-sigma clipping, and quantizes the signal as a multiple of sigma (Huang
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and Bijaoui, 1991). FITSPRESS thresholds background pixels and allows for
coarse background reconstruction, but also keeps the highest pixel values in
a separate list. PMT uses a multiscale noise filtering and selection approach
based on noise standard deviation estimation. JPEG and HCOMPRESS do
not carry out noise separation before the transform stage.

Identifying the Information Loss. Apart from signal-to-noise discrim-
ination, information losses may appear after the transforms at two steps:
coefficient selection and coefficient quantization. The interpretable resolution
of the decompressed images clearly depends upon these two steps.

If the spectral bandwidth is limited, then the more it is shortened, the
better the compression rate. The coefficients generally associated with the
high spatial frequencies related to small structures (point objects) may be
suppressed and lost. Quantization also introduces information loss, but can
be optimized using a Lloyd-Max quantizer for example (Proakis, 1995).

All other steps, shown in Table 5.1, such as reorganizing the quantized co-
efficients, hierarchical and statistical redundancy coding, and so on, will not
compromise data integrity. This statement can be made for all packages. The
main improvement clearly comes from an appropriate noise/signal discrimi-
nation and the choice of a transform appropriate to the objects’ properties.

5.2.6 Other Lossy Compression Methods

The number of bits that we need for an accurate representation of CCD
(charge coupled device) raw data was discussed in (Watson, 2002). The
integer image I in the FITS file is related to the real data D by: D =
Bzero+Ibscale. Lossy compression can then be obtained by (i) quantization of
I, and (ii) application of a lossless compression technique such as bzip2 (Se-
ward, 1998), gzip (Gailly, 1993), lzop (Oberhumer, 1998) or HCOMPRESS
(White et al., 1992). The image I should be quantized with a quantization
step Q:

I = I

[
I

Q

]
(5.5)

where [x] is the nearest integer to x. The quantization step should be derived
from the read-out noise of the detector by (Watson, 2002):

Q =

{
INT

(
qσb

bscale

)
if qσb > bscale

1 if qσb ≤ bscale

(5.6)

where INT(x) is the largest integer no greater than x, q is a user parameter
(suitable values for q are 0.5 to 2), and σb is the noise standard deviation.

In a recent paper, (Shamir and Nemiroff, 2005), a similar method is pro-
posed, but only pixels in the background are quantized in order to not affect
bright pixels. This approach is in the same spirit as the PMT and the Math-
Morph method, i.e. it searches first as to where the information is, and then



5.3 Comparison 149

compresses as a function of the result of the search. But the problem is that
the source/background classification is done on a pixel by pixel basis which
leads to a misclassification of all faint extended sources. Such a problem does
not occur with the PMT. The second drawback is the need to estimate the
background (as in the MathMorph method), which is not trivial, especially
when the image contains very extended sources.

5.3 Comparison

5.3.1 Quality Assessment

In order to compare the different compression methods, we can use several
characteristics, with constraints on these characteristics depending on the
type of applications (see Table 5.2).

Table 5.2. List of criteria for comparison of compression methods for various types
of astronomical image-based application.

Application type Quick Catalog Source Deep Reca-
view overlay: extract., detection libration

cross- cross-
correl. ident.

Comparison criterion

quality: visual medium high medium indifferent high
quality: precision low medium high very high high
Transfer + comput. speed very fast fast medium slow medium
Progressive vision yes yes no no no

The progressive vision aspect is very useful in the context of quick views
(for example on the web) and catalog overlays, where the user can decide
when the quality of a displayed image is sufficient. Overall latency, i.e. speed
of display (transfer + processing time) is usually critical for applications re-
lated to progressive vision. For good quality quick views of a given area,
catalog and database overlays, and cross-correlation of sources at various
wavelengths, the required quality will be essentially qualitative: good geom-
etry of the objects, no visual artifacts, good contrast, etc.

More quantitative tasks have different requirements. For cross-identifica-
tion processes, and any situation where recalibration to improve astrometry
and photometry is needed, or reprocessing of object detections where some
were obviously missed, star/galaxy discrimination or separation of distinct
objects falsely merged, the quality estimation must be a quantitative process.
The loss of information can be measured by the evolution of “relevant para-
meters” varying according to compression rate and method.

Quality criteria for estimating the merits and performances of a compres-
sion method fall under these headings:
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1. Visual aspect
2. Signal-to-noise ratio
3. Detection of real and faint objects
4. Object morphology
5. Astrometry
6. Photometry

Very few quantitative studies have been carried out up to now in astron-
omy in order to define which compression method should be used. Two studies
were carried out in the framework of the Aladin Interactive Sky Atlas project
(Bonnarel et al., 2001). One was in 1993–94, when JPEG, FITSPRESS, and
HCOMPRESS were evaluated (Carlsohn et al., 1993; Dubaj, 1994), and an-
other in 1996-1997 (Murtagh et al., 1998; Louys et al., 1999), when JPEG
and PMT were compared.

5.3.2 Visual Quality

A quick overview was obtained of each method produced by running all com-
pression algorithms on two images. The first was a 256 × 256 image of the
Coma cluster from an STScI POSS-I digitized plate, and the second was a
1024 × 1024 image, extracted from the ESO 7992V plate digitized by CAI-
MAMA (described in more detail in the next section). The visual quality was
estimated from the visual aspect of the decompressed image, and the quality
of the residual (original image – decompressed image). Conclusions relative
to this study are:

– FITSPRESS leads to cross-like artifacts in the residual image, a loss of
faint objects and a decrease in object brightness.

– JPEG cannot be used at compression ratios higher than 40. Above this,
artifacts become significant, and furthermore astrometry and photometry
become very bad.

– The fractal method cannot be used for astronomical data compression.
There are boxy artifacts, but the main problem is that object fluxes are
modified after decompression, and the residual contains a lot of information
(stars or galaxies can be easily identified in the residual map).

– MathMorph leads to good compression ratios, but background estimation
is delicate. For the Coma cluster, the result was relatively bad, due to the
difficulty of finding the background. More sophisticated algorithms can
certainly be used to do this task. Another drawback of this method is the
bad recovery of the contours of the object, which leads also to a loss of
flux.

– HCOMPRESS produces artifacts. Iterative reconstruction allows them to
be suppressed, but in this case reconstruction takes time. However this
approach should be considered when the archived data are already com-
pressed with HCOMPRESS (e.g. HST archive).
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– The wavelet method produces very good results for the Coma cluster (com-
pression ratio of 40). For the second image, where a compression ratio of
more than 200 is obtained with the PMT or by mathematic morphology,
artifacts appear if we try to achieve the same high performances. This
method can be used, but not for very high compression ratios.

– PMT produces good quality results for both images. The compression ratio,
similarly to the mathematical morphology method, depends on the content
of the image. The fewer the pixels of objects in the image, the higher the
compression ratio.

An interesting feature of the wavelet method is that the compression ratio
is a user parameter. For PMT, and MathMorph, the compression ratio is
determined from noise modeling. For other methods, a user parameter allows
the compression ratio to be changed, and consequently the image quality, but
only iterations can lead to a given compression ratio, or to a given quality.

Comparison between PMT and HCOMPRESS

Fig. 5.2, upper left, shows the Coma cluster from a Space Telescope Science
Institute POSS-I digitized plate. Fig. 5.2, upper right, shows the decom-
pressed image using HCOMPRESS (30:1) and bottom left, the decompressed
image using the PMT (30:1). Fig. 5.2, bottom right, shows the difference be-
tween the original image and the PMT decompressed one.

5.3.3 First Aladin Project Study

Two quantitative studies were conducted at CDS (Strasbourg Data Centre),
within the scope of the Aladin Interactive Sky Atlas project, focusing on
a small number of methods. The effects of compression for a Schmidt pho-
tographic plate in the region of M5 (numbered ESO 7992v), scanned with
the CAI-MAMA facility, were examined. The digitized image is a mosaic
of 28 × 28 subimages, each of 1024 × 1024 pixels. Sampling is 0.666 arcsec-
onds per pixel. This region was chosen because of the availability of a catalog
(Ojha et al., 1994) obtained from the same plate digitization, where posi-
tions and blue magnitudes had been estimated for 20,000 stars or galaxies
of magnitude 10–19. The position of each object was ascertained by Ojha et
al. by marginal Gaussian fitting to the intensity distribution. Magnitude was
determined using 120 photometric standards, which allowed the magnitude-
integrated density calibration curve to be specified.

To carry out our tests in a reasonable time and to avoid plate boundary
effects, we analyzed 25 adjacent subimages, located at the center of the pho-
tographic plate. We stress that these test images are real and not simulated.
They are representative of the images distributed by the CDS’s reference im-
age service, Aladin. The central region used for the astrometry and photome-
try measurements contains about 2000 objects whose magnitude distribution
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Fig. 5.2. Upper left: Coma cluster from a Space Telescope Science Institute POSS-I
digitized plate. Upper right: decompressed image using HCOMPRESS (30:1). Bot-
tom left: decompressed image using Pyramidal Median Transform (30:1). Bottom
right: difference between the original image and the PMT decompressed one.

(from 14 for the brightest objects, to 19 for the faintest objects) is indicative
of that of the global population of the catalog (Dubaj, 1994).

Detection experiments (Carlsohn et al., 1993) were performed to study
the effect of compression on the preservation of faint objects. This was done
on a test region, where 16 sources of estimated magnitude close to 21 were
identified. Results are described in Table 5.3. Detection errors (loss and false
detections) clearly increase with the compression rate. FITSPRESS loses the
most objects, HCOMPRESS creates the most false objects. JPEG slightly
better preserves faint objects but only below compression rate of 40:1. In
(Carlsohn et al., 1993), the three methods were compared with respect to the
signal-to-noise ratio, and positional and brightness error of known objects. It
results that JPEG is better than HCOMPRESS at low signal-to-noise ratios,
and is relatively similar at higher levels. Concerning the signal-to-noise ratio,
the astrometry, and photometry, JPEG and HCOMPRESS produce images
of equivalent quality, but FITSPRESS is again worse than the other two
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Table 5.3. Detection of faint objects in a digitized patch of a Schmidt plate im-
age, using the MIDAS detection routines SEARCH/INVENTORY on original and
compressed/decompressed images at different compression rates: 4:1, 10:1, 20:1
and 40:1. With comparable detection parameters, and depending on compression
method, faint objects can be lost or spurious objects corresponding to local maxima
can be found. Visual inspection is necessary to confirm real detected objects.

Method Compress. Real Lost False Number Percentage
ratio objects objects objects detection detection

detected detected errors errors

4 15 1 2 3 19
JPEG 10 14 2 2 4 25

20 14 2 4 6 38
40 13 3 5 8 50

4 14 2 3 5 31
Hcompress 10 14 2 5 7 44

20 11 5 3 8 50
40 11 5 5 10 53

4 15 1 1 2 13
Fitspress 10 13 3 0 3 19

20 10 6 0 6 38
40 5 11 0 11 69

methods. The first astrometrical tests were undertaken by Dubaj and are
summarized in Fig. 5.3.

Star/galaxy discrimination was assessed by measuring the mean density
by pixel, and considering the deviation of this quantity relative to its mean
value for stars with the same integrated density as the object. Sufficiently
low values are considered associated with galaxies. Applying this criterion
to a subsample of around 1000 objects known a priori as stars or galaxies
led to a contamination rate of 18% on the original image and 21% to 25%
with compressed/uncompressed images (compression factor 40, for the three
methods). This shows at least that morphological studies can be made on
compressed/uncompressed images without substantial degradation.

The general conclusion of this first study was that none of these methods
could provide good visual quality above compression rates of 40:1 and that
the standard JPEG method was ultimately not so bad, even if block artifacts
appear. The available software (i.e., HCOMPRESS and FITSPRESS) devel-
oped in astronomy did not score very well in the framework of the Aladin
project. When the PMT method was proposed (Starck et al., 1996; Starck
et al., 1998a), a second study was carried out in order to compare JPEG and
PMT. In the meantime, MathMorph was implemented and underwent the
same tests.
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Fig. 5.3. Comparison of the ability of the different packages to recover the position
of objects according to object magnitude: astrometrical error increases with mag-
nitude. We recorded the limit of magnitude above which the position error exceeds
the catalog precision: 0.1 pixel.

Fig. 5.4. Left: Original image, subimage extracted from 1024×1024 patch, ex-
tracted in turn from the central region of ESO7992v. Right: JPEG compressed
image at 40:1 compression rate.
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Fig. 5.5. Left: MathMorph compressed image of the same patch, at 203:1 com-
pression rate. Right: PMT-compressed image at 260:1 compression rate.

5.3.4 Second Aladin Project Study

Visual Quality. For the two compression methods studied here (JPEG and
PMT), each implying loss of information, a good compromise between com-
pression rate and visual quality has to be found. In the case of JPEG, various
studies (Carlsohn et al., 1993; Dubaj, 1994) confirm that beyond a compres-
sion rate of 40:1 this method of compression, when used on 12 bit/pixel
images, gives rise to “blocky” artifacts. For PMT, as described in this chap-
ter, the reconstruction artifacts appear at higher compression rates, beyond
a rate of 260 in the particular case of our images. Figs. 5.4 and 5.5 allow
the visual quality of the two methods to be compared, for test image 325. A
subimage of the original image is shown in Fig. 5.4 (left).

Astrometry Quality. To estimate the influence of compression algorithms
on astrometrical precision of the objects, the error in the position of the
object in the original image compared to the position in the compressed/un-
compressed image, was studied. This was done for each object in the catalog.
Object position determination was carried out using the MIDAS (ESO, 1995)
software (Munich Image Data Analsyis System) routines based on fitting
of two marginal Gaussian profiles as used originally (Ojha et al., 1994) for
creating the catalog. Knowing the catalog magnitude of the objects, the mean
positional error as a function of the object magnitude can be represented.

This was done for magnitude intervals of 0.25 for the 2000 objects of
the dataset used. Fig. 5.6 allows the performances of JPEG and PMT to be
compared. Note that for the two methods, the error is below the systematic
error of the catalog, in particular in the interval from object magnitudes 13
to 19 where sufficient objects warrant asserting a significant result. Outside
that interval, the dataset does not contain enough objects to establish a mean
error in the astrometry.
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Fig. 5.6. Mean error in astrometry, by interval of 0.25 magnitude, for images
compressed 40 times by JPEG, 260 times by PMT, and 210 times for MathMorph.

Photometry Quality. Conservation of photometric properties is also a fun-
damental criterion for comparison of compression algorithms. The integrated
densities of the objects in the 25 original images were compared with the cor-
responding integrated densities from the images compressed/uncompressed
with PMT and with JPEG. This study was carried out in three stages:

– Detection of objects in the original image, and in the reconstructed image,
and calculation of the integrated densities. This stage of the processing
therefore gives a list of objects characterized by (xo, yo, do), with (xo, yo)
the coordinates of the barycenter, and do the logarithm of the integrated
density. Similarly, (xr, yr, dr) represents the list of objects detected under
similar conditions in the reconstructed image.

– Magnitude calibration of the original image and of the reconstructed image.
– Calculation of the error in the logarithm of the integrated density, by mag-

nitude interval.

Each detected object is associated with its nearest neighbor in the catalog,
according to the following rule, and we assign the corresponding catalog mag-
nitude, Mc, to the detected object: a detected object, (x, y), is associated with
the closest catalog object (xc, yc) subject to their distance being less than or
equal to 3 pixels. This finally provides two object lists: (xo, yo, do,Mco), for
the original image, and (xr, yr, dr,Mcr) for the reconstructed image. In a sim-
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Fig. 5.7. Comparison of the calibration error, by 0.0625 magnitude intervals, be-
tween the uncompressed image using JPEG, the original image, and the reference
catalog.

Fig. 5.8. Comparison of the calibration error, by 0.0625 magnitude intervals, be-
tween the uncompressed image using PMT, the original image, and the reference
catalog.
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Fig. 5.9. Comparison of the calibration error, by 0.0625 magnitude intervals, mea-
sured on the uncompressed image using MathMorph, the original image, and the
reference catalog.

ilar manner, the magnitude and logarithm of the integrated density associa-
tion curves, Mcr = f(dr), are studied for the JPEG- and PMT-reconstructed
images. To verify the stability of the photometric values in spite of the com-
pression, we hope to obtain curves, and thus to calibrate the reconstructed
images, and to find dispersion around an average position which stays close
to the dispersion obtained on the calibration curve of the original image.
In fact, for varied compression methods, a systematic lowering of integrated
densities of images can be noted (Dubaj, 1994), which results in the average
calibration function (fitted by an order 3 polynomial) being slightly trans-
lated relative to the calibration function of the original image. To estimate
the behavior of the dispersion of the calibration curve for both compression
methods, we proceeded thus:

– Approximation by polynomial (degree 3) regression of the calibration func-
tion. Mc = f(d).

– Calculation of the mean calibration error by magnitude interval, for the
set of objects detected in the 25 subimages, i.e. about 2000 objects in all.

Thus we measure the photometric stability of the objects following compres-
sion, relative to their representation in the original image. The corresponding
error curves are shown in Figs. 5.7, 5.8 and 5.9. The JPEG curve shows a
slight increase for magnitudes above 18, and a smoothing effect for brighter
objects between 14 and 16. For PMT, an increase in dispersion is noticed for
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Table 5.4. Compression of a 1024 × 1024 integer-2 image. Platform: Sun Ultra-
Enterprise; 250 MHz and 1 processor. Artifact asks whether or not prominent arti-
facts are produced. Progressive transmissions points to availability of code.

Comp. Decomp. Artifact Comp. Progressive
time (sec) time (sec) ratio transmission

JPEG 1.17 4.7 Y <40 Y (in C)

Wavelet 45 7.1 Y 270 Y

Fractal 18.3 9 Y < 30 N

Math. Morpho. 13 7.86 N < 210 N

Hcompress 3.29 2.82 Y 270 Y (in C)

Hcompress 3.29 77 N 270 N
+ iter rec

PMT 7.8 3.1 N 270 Y (in Java)

high magnitudes, which corresponds to the problem of the detection of faint
objects. Lowering the detection threshold from 4σ to 3σ does not change
this. We note that the number of intervals below 14 is too small to allow
for interpretation of the behavior of very bright objects. Even if PMT brings
about greater degradation in the photometry of objects, especially when the
objects are faint, the errors stay close to that of the catalog, and as such are
entirely acceptable. Of course we recall also that the compression rate used
with PMT is 260:1, compared to 40:1 for JPEG.

5.3.5 Computation Time

Table 5.4 presents the computation time required for compression and de-
compression on a specific platform (Sun Ultra-Enterprise, 250 MHz and 1
processor). With the JPEG, wavelet, and fractal methods, the time to con-
vert our integer-2 FITS format to a one-byte image is not taken into account.
Depending on the applications, the constraints are not the same, and this
table can help in choosing a method for a given project. The last column
indicates if software already exists for progressive image transmission.

Thinking from the point of view of managing a web-based image server, we
would like to compare the performances of the different packages considering
two scenarios:
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– Archive original and compressed images and distribute both on demand.
– Compress the data before transferring them and let the end-user decom-

press them at the client side.

This latter situation has been studied and is illustrated in Fig. 5.10. Con-
sidering a network rate of 10kbits/second and an image of 2 MBytes, we mea-
sured the time necessary to compress, transmit and decompress the image.
Methods are ordered from top to bottom according to increasing visual qual-
ity of the decompressed image. If we consider 20 seconds to be the maximum
delay the end-user can wait for an image to be delivered, only HCOMPRESS
and PMT succeed, with less artifacts for PMT.

Fig. 5.10. Comparison of the overall time for compression, transmission and de-
compression for distribution of astronomical images using the web: the network rate
is supposed to be 10kbits/second, and the image size is 2MBytes (1024 × 1024 × 2
bytes). The best-preserving codecs with respect to visual quality are shown at the
bottom of the graph.

5.3.6 Conclusion

The MathMorph method reproduces the image pixels up to a given threshold.
The quality of the image depends on the estimate of the noise standard devi-
ation before the application of MathMorph transformations. The method has
good performance on uncrowded astronomical fields. When a crowded field
or an extended object is present in the image, the compression rate becomes
much lower than the one obtained with the pyramidal median transform and,
with traditional estimation of noise standard deviation, the faint extensions
of objects and faint objects are lost in the compression.

The PMT method provides impressive compression rates, coupled with
acceptable visual quality. This is due to the progressive noise suppression at
successive scales. Nevertheless, on some crowded regions the PMT cannot
compress more than 50:1, because much object information is to be coded in
few image scales.
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This method is robust and can allow for certain image imperfections. On a
Sun Ultra-Enterprise (250 Mhz, 1 processor), compressing a 1024×1024 image
takes about 8 seconds (CPU time), with subsequent very fast decompression.

The decomposition of the image into a set of resolution scales, and fur-
thermore the fact they are in a pyramidal data structure, can be used for
effective transmission of image data (Percival and White, 1996). Some work
on web progressive image transmission capability has used bit-plane decom-
position (Lalich-Petrich et al., 1995). Using resolution-based and pyramidal
transfer and display with web-based information transfer is a further step in
this direction.

5.4 Lossless Image Compression

5.4.1 Introduction

The compression methods looked at above involve filtering of information
which is not considered to be of use. This includes what can demonstrably
(or graphically) be shown to be noise. Noise is the part of information which
is non-compressible, so that the residual signal is usually very highly com-
pressible. It may be feasible to store such noise which has been removed from
images on backing data store, but clearly the access to such information is
less than straightforward.

If instead we seek a compression method which is guaranteed not to de-
stroy information, what compression ratios can be expected?

We note firstly that quantization of floating (real) values necessarily in-
volves some loss, which is avoided if we work in integer arithmetic only. This
is not a restrictive assumption. Appropriate rescaling of image values may be
availed of.

Next we note that the lifting scheme (Sweldens and Schröder, 1996) pro-
vides a convenient algorithmic framework for many wavelet transforms. The
low-pass and band-pass operations are replaced by predictor and update op-
erators at each resolution level, in the construction of the wavelet transform.
When the input data consist of integer values, the wavelet transform no longer
consists of integer values, and so we redefine the wavelet transform algorithm
to face this problem. The predictor and update operators use, where neces-
sary, a floor truncation function. The lifting scheme formulas for prediction
and updating allow this to be carried out with no loss of information. If this
had been done in the usual algorithmic framework, truncation would entail
some small loss of information.

5.4.2 The Lifting Scheme

The lifting scheme (Sweldens and Schröder, 1996) is a flexible technique that
has been used in several different settings, for easy construction and imple-
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Fig. 5.11. The lifting scheme – forward direction.

mentation of traditional wavelets (Sweldens and Schröder, 1996), and of sec-
ond generation wavelets (Sweldens, 1997) such as spherical wavelets (Schröder
and Sweldens, 1995).

Its principle is to compute the difference between a true coefficient and
its prediction:

wj+1,l = cj,2l+1 − P(cj,2l−2L, ..., cj,2l−2, cj,2l, cj,2l+2, ..., cj,2l+2L) (5.7)

A pixel at an odd location 2l + 1 is then predicted using pixels at even
locations.

The transformation is done in three steps:

1. Split: Split the signal into even and odd number samples:

ce
j,l = cj,2l

co
j,l = cj,2l+1 (5.8)

2. Predict: Calculate the wavelet coefficient wj+1,l as the prediction error
of co

j,l from ce
j,l using the prediction operator P:

wj+1,l = co
j,l − P(ce

j,l) (5.9)

3. Update: The coarse approximation cj+1 of the signal is obtained by
using ce

j,l and wj+1,l and the update operator U :

cj+1,l = ce
j,l + U(wj+1,l) (5.10)

The lifting steps are easily inverted by:

cj,2l = ce
j,l = cj+1,l − U(wj+1,l)

cj,2l+1 = co
j,l = wj+1,l + P(ce

j,l) (5.11)

Some examples of wavelet transforms via the lifting scheme are:
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– Haar wavelet via lifting: the Haar transform can be performed via the
lifting scheme by taking the predict operator equal to the identity, and an
update operator which halves the difference. The transform becomes:

wj+1,l = co
j,l − ce

j,l

cj+1,l = ce
j,l +

wj+1,l

2
All computation can be done in place.

– Linear wavelets via lifting: the identity predictor used before is correct
when the signal is constant. In the same way, we can use a linear predic-
tor which is correct when the signal is linear. The predictor and update
operators are now:

P(ce
j,l) =

1
2
(ce

j,l + ce
j,l+1)

U(wj+1,l) =
1
4
(wj+1,l−1 + wj+1,l)

It is easy to verify that:

cj+1,l = −1
8
cj,2l−2 +

1
4
cj,2l−1 +

3
4
cj,2l +

1
4
cj,2l+1 −

1
8
cj,2l+2

which is the bi-orthogonal Cohen-Daubechies-Feauveau (1992) wavelet
transform.
The lifting factorization of the popular (9/7) filter pair leads to the follow-
ing implementation (Daubechies and Sweldens, 1998):

s
(0)
l = cj,2l

d
(0)
l = cj,2l+1

d
(1)
l = d

(0)
l + α(s(0)

l + s
(0)
l+1)

s
(1)
l = s

(0)
l + β(d(1)

l + d
(1)
l−1)

d
(2)
l = d

(1)
l + γ(s(1)

l + s
(1)
l+1)

s
(2)
l = s

(1)
l + δ(d(2)

l + d
(2)
l−1)

cj+1,l = us
(2)
l

cj+1,l = ud
(2)
l (5.12)

with

α = −1.586134342
β = −0.05298011854
γ = 0.8829110762
δ = 0.4435068522
u = 1.149604398 (5.13)

Every wavelet transform can be written via lifting.
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Fig. 5.12. The lifting scheme with two iterations: left, predict-first approach, and
right, update-first approach.
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Adaptive Wavelet Transform. Adaptivity can be introduced in the wave-
let transform by reversing the order of the predict and the update steps in
the lifting scheme (Claypoole et al., 2000). When the update operator is first
applied, the prediction is based on the low-pass coefficients that are computed
as in the standard wavelet transform. In the update-first approach, as illus-
trated in Fig. 5.12, the detail coefficients are not in the loop for calculating
the coefficients at a coarser scale. Hence, we can start the prediction process
at the coarser scale, and working from coarse to fine scales. The idea is now to
make the predictor data-dependent. The prediction operator is chosen, based
on the local properties of the data at a coarser scale. If a feature is detected,
the order of the predictor is reduced, while if the data are smooth, a larger
order is preferred.

Integer Wavelet Transform. When the input data are integer values, the
wavelet transform no longer consists of integers. For lossless coding, it is
useful to have a wavelet transform which produces integer values. We can
build an integer version of every wavelet transform (Calderbank et al., 1998).
For instance, denoting �x� as the largest integer not exceeding x, the integer
Haar transform (also called “S” transform) can be calculated by:

wj+1,l = co
j,l − ce

j,l

cj+1,l = ce
j,l + �wj+1,l

2
� (5.14)

while the reconstruction is

cj,2l = cj+1,l − �wj+1,l

2
�

cj,2l+1 = wj+1,l + cj,2l (5.15)

More generally, the lifting operators for an integer version of the wavelet
transform are:

P(ce
j,l) = �

∑
k

pkce
j,l−k +

1
2
�

U(wj+1,l) = �
∑

k

ukwj+1,l−k +
1
2
� (5.16)

The linear integer wavelet transform is

wj+1,l = co
j,l − �1

2
(ce

j,l + ce
j,l+1) +

1
2
�

cj+1,l = ce
j,l + �1

4
(wj+1,l−1 + wj+1,l) +

1
2
� (5.17)

Even if there is no filter that consistently performs better than all the
other filters on all images, the linear integer wavelet transform performs gen-
erally better than others (Calderbank et al., 1998). More filters can be found
in (Calderbank et al., 1998).
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5.4.3 Comparison

For comparison purposes, we use JPEG in lossless mode. We also use the
standard Unix gzip command, which implements the Lempel-Ziv run-length
encoding scheme, especially widely-used for text data. As before, we base our
experiments on image data from a Schmidt photographic plate in the region
of M5 (numbered ESO 7992v), scanned with the CAI-MAMA facility. We
use subimages of dimensions 1024 × 1024. Sampling is 0.666 arcseconds per
pixel. Ancillary catalog information was available for our tests. The images
are representative of those used in Aladin, the reference image service of the
CDS (Strasbourg Data Centre, Strasbourg Observatory).

Table 5.5. Compression of a 1024 × 1024 integer-2 image. Platform: Sun Ultra-
Sparc 250 MHz and 2 processors.

CPU time (sec)
Software Compression Decompression Compression

time time ratio

JPEG 2.0 0.7 1.6
lossless

Lifting scheme 4.3 4.4 1.7
with Haar

Gzip (Unix) 13.0 1.4 1.4

Table 5.5 shows our findings, where we see that the integer and lifting
scheme wavelet transform approach is a little better than the other methods
in terms of compression ratio. Not surprisingly, the compression rate is not
large for such lossless compression. Routine mr lcomp (MR/1, 2001) was used
for this work. Lossless JPEG suffers additionally from rounding errors.

We now turn attention to usage of a lossless wavelet-based compressor,
above and beyond the issues of economy of storage space and of transfer time.
The lifting scheme implementation of the Haar wavelet transform presents
the particularly appealing property that lower resolution versions of an image
are exactly two-fold rebinned versions of the next higher resolution level. For
aperture photometry and other tasks, lower level resolution can be used to
provide a partial analysis. A low resolution level image can be used scientifi-
cally since its “big” pixels contain the integrated average of flux covered by
them.

The availability of efficiently delivered low resolution images can thus be
used for certain scientific objectives. This opens up the possibility for an
innovative way to analyze distributed image holdings.
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5.5 Large Images: Compression and Visualization

5.5.1 Large Image Visualization Environment: LIVE

With new technology developments, images furnished by detectors are larger
and larger. For example, current astronomical projects are beginning to deal
with images of sizes larger than 8000 by 8000 pixels (VLT: 8k × 8k, MegaCam
16k × 16k, etc.). A digitized mammogram film may lead to images of about
5k × 5k. Analysis of such images is obviously not easy, but the main problem
is clearly that of archiving and network access to the data by users.

In order to visualize an image in a reasonable amount of time, transmission
has to be based on two concepts:

– data compression
– progressive decompression

With very large images, a third concept is necessary, which is the region
of interest. Images are becoming so large it is impossible to display them in a
normal window (typically of size 512 × 512), and we need to have the ability
to focus on a given area of the image at a given resolution. To move from one
area to another, or to increase the resolution of a part of the area is a user
task, and is a new active element of the decompression. The goal of LIVE is
to furnish this third concept.

An alternative to LIVE for extracting a region of the image would be to
let the server extract the selected area, compress it, and send it to the user.
This solution is simpler but gives rise to several drawbacks:

– Server load: the server must decompress the full size image and re-compress
the selected area on each user request.

– Transfer speed: to improve the resolution of a 256 × 256 image to a 512
× 512 image, the number of bits using the LIVE strategy is of the order
of 10 to 100 less than if the full 512 × 512 image is transferred. The lower
the compression ratio, the more relevant the LIVE strategy.

The principle of LIVE is to use the previously described technology, and
to add the following functionality:

– Full image display at a very low resolution.
– Image navigation: the user can go up (the quality of an area of the image

is improved) or down (return to the previous image). Going up or down
in resolution implies a four-fold increase or decrease in the size of what is
viewed.

Fig. 5.13 illustrates this concept. A large image (say 4000 × 4000), which
is compressed by blocks (8 × 8, each block having a size of 500 × 500), is rep-
resented at five resolution levels. The visualization window (of size 256 × 256
in our example) covers the whole image at the lowest resolution level (image
size 250 × 250), but only one block at the full resolution (in fact between
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Fig. 5.13. Example of large image, compressed by block, and represented at five
resolution levels. At each resolution level, the visualization window is superimposed
at a given position. At low resolution, the window covers the whole image, while at
the full resolution level, it covers only one block.

one and four, depending on the position in the image). The LIVE concept
consists of moving the visualization window into this pyramidal structure,
without having to load into memory the large image. The image is first visu-
alized at low resolution, and the user can indicate (using the mouse) which
part of the visualized subimage he wishes to zoom on. At each step, only
wavelet coefficients of the corresponding blocks and of the new resolution
level are decompressed.

5.5.2 Decompression by Scale and by Region

Support of the transfer of very large images in a networked (client-server)
setting requires compression and prior noise separation. In addition, progres-
sive transfer may be supported, or delivery by scale and by image region. For
such additional functionality, multiscale transform based methods are very
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attractive because they integrate a multiresolution concept in a natural way.
The LIVE prototype (MR/1, 2001), which is Java-based at the client end,
allows access to differing resolution levels as well as block-sized regions of the
compressed image data.

A prototype has also been developed (Gastaud et al., 2001) allowing
the visualization of large images with the SAO DS9 software (available at
http://hea-www.harvard.edu/RD/ds9).

Computation Time. We examined compression performance on large num-
bers of astronomy images. Consider for example a 12451×8268 image from the
CFH12K detector at the CFHT (Canada-France-Hawaii Telescope), Hawaii.
A single image is 412 MB. As astronomy detectors tend towards 16000×16000
in image dimensions – the case of the UK’s Vista telescope now being de-
signed for operation in Chile for instance – it is clear that compression and
delivery technologies are very much needed. A typical observing night gives
rise to terabytes of data, and image repositories are measured in petabytes.

Using denoising compression, we compressed the CFH12K image to 4.1
MB, i.e. less than 1% of its original size. Compression took 789 seconds on
an Ultra-Sparc 10. Decompression to the fifth resolution scale (i.e., dimen-
sions divided by 25) took 0.43 seconds. For rigorously lossless compression,
compression to 97.8 MB, i.e. 23.75% of the original size, took 224 seconds,
and decompression to full resolution took 214 seconds. Decompression to full
resolution by block was near real-time.

5.5.3 The SAO-DS9 LIVE Implementation

A user interface was developed (Gastaud et al., 2001) for images compressed
by the software package MR/1 (2001), which comes as a plug-in to the widely-
used astronomical image viewer SAO-DS9 (Joye and Mandel, 2000). This
interface allows the user to load a compressed file and to choose not only the
scale, but also the size and the portion of image to be displayed, resulting in
reduced memory and processing requirements. Astrometry and all SAO-DS9
functionality are still simultaneously available.

The sources of the interface in Tcl/Tk and the binaries for the decom-
pression (for Unix and Windows operating systems) are available to the as-
tronomical community.

– Compression: The compression and decompression tools are part of the
MR1 package (MR/1, 2001). Wavelet, Pyramidal Median, and lifting
scheme are implemented, with lossy or lossless options. The final file is
stored in a proprietary format (with the extension .fits.MRC). The decom-
pression module is freely available.

– Image viewer: They are many astronomical image viewers. We looked at
JSky (because it is written in Java) and SAOImage-DS9. The latter was
selected: it is well maintained, and for the programmer it is simpler. DS9
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is a Tk/Tcl application which utilizes the SAOTk widget set. It also in-
corporates the new X Public Access (XPA) mechanism to allow external
processes to access and control its data, and graphical user interface func-
tions.

– Interface: DS9 supports external file formats via an ASCII description file.
It worked with the MRC format, but it enables only one scale of the image
to be loaded. The selected solution was a Tcl/Tk script file which interacts
with XPA. Tcl/Tk is recommended by the SAO team and is free and
portable.
This interface enables the user to
– select a file,
– select the maximum size of the displayed window,
– zoom on a selected region (inside the displayed window), and
– unzoom.

The Tcl/Tk script file with DS9 and the decompressed module has been
used on Solaris (Sun Microsystems Sparc platform), Linux (Intel PC plat-
form) and Windows NT, 2000 (with some tuning), and can also work on
HP-UX, ALPHA-OSF1. On a 3-year old PC, the latency is about one sec-
ond.

How to Use It. The user first launches DS9, and then xlive.tcl. The XLIVE
window (see Fig. 5.14) has four buttons and a text field.

1. Max Window Size: this is the maximum size of the displayed window
(FITS image given to DS9), and can be changed by the user.

2. File: the user selects a compressed image (extension .fits.MRC) The com-
plete image at the lowest resolution appears in the DS9 window (see
Fig. 5.14)

3. Up Resol: this button zooms the image. If the new image is bigger than
the Max Window Size, select the center of the Region of Interest in the
DS9 window. Validate by the “OK” button.

4. Down Resol: this button unzooms the image.
5. Exit: this button quits the program, deleting the temporary files.

Simultaneously all DS9 functionality is availability.

5.6 Hyperspectral Compression
for Planetary Space Missions

In recent years, hyperspectral data have come very much to the fore, and here
we discuss compression of such data, based on a multiresolution transform.

Recent planetary and future space missions carry or will carry imag-
ing spectrometers, e.g. OMEGA on board Mars-Express, VIMS on board
Cassini, VIRTIS on board Rosetta, and Venus-Express and Simbio-Sys on
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Fig. 5.14. DS9 with the XLIVE-DS9 interface.
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board BepiColombo. These types of instruments, working mainly in the vis-
ible and infrared domain, furnish hyperspectral cubes of data, two of the
dimensions representing the image and the third the spectral response of
the imaged scene. For example the VIRTIS imaging spectrometer on board
Rosetta (a European Space Agency cornerstone aiming to study the comet
Churyomov-Gerasimenko) will acquire cubes of dimensions 128× 800 for the
spatial directions by 128 spectral channels. Since the on-board memory and
computing capabilities are limited on this kind of spatial mission, the hyper-
spectral cube is obtained by successive acquisition of two-dimensional frames.
Moreover since the data downlink rate is generally low and the amount of
data to transmit becomes higher with the increasing performances of the in-
struments, efficient data compression techniques in terms of both speed and
SNR are necessary. Lossy compression based on the wavelet transform meets
these two requirements and the efficient SPIHT (set partition in hierarchical
trees) algorithm (Said and Pearlman, 1996) has become very popular.

The data cube should be compressed frame by frame. In this context two
possibilities exist: either the compression is achieved from the spatial images
and repeated along the spectral direction, or the compression is applied to the
frames having one spectral direction and one spatial direction, i.e. by slice.
The latter corresponds to the acquisition mode of grating spectrometers such
as OMEGA and VIRTIS.

It has been shown (Langevin and Forni, 2000) on AVIRIS 128×128×128
12-bit cube data from the ESA compression database,
http://www.estec.esa.nl/tech/datacwg, that the second solution gives far
better results. Applying a straightforward wavelet transform on each slice,
the signal to noise ratio (SNR) gain was typically 2dB for a compression rate
of 1 bit per data value.

However this approach is not satisfactory in terms of spatial/spectral
crosstalk. Two contiguous spectra present a contrast of nearly 30% in over-
all brightness. As a result, the decompressed spectrum at 1 bit/datum of a
given pixel is systematically lower than the uncompressed spectrum, with
significant distortions of the spectral signatures.

A major improvement on this issue was obtained by (Langevin and Forni,
2000) using a specific wavelet transformation. Instead of performing the
wavelet transform in the X and Y directions on the 128 × 128 unit, and
then repeating three times the transform on the low-pass upper left region,
a 4-level wavelet transform is performed on each of the 128 spatial lines, and
then the same procedure is performed on each column of the result. The
same tree coding search (Said and Pearlman, 1996) is implemented as with
the nominal transform, notwithstanding the rectangular shape of most of the
sub-bands. When performed on a standard image, this approach is slightly
less efficient than the nominal transform but on spectral-spatial slices, the
SNR increases by typically 4 to 5dB. Even more importantly, the bias on
the decompressed spectrum cannot be distinguished from the uncompressed
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spectrum. The wavelet transform applied in this way is indeed an efficient
decorrelator between the spatial and spectral components.

5.7 Chapter Summary

Storage and also delivery have been the main themes of this chapter. Integer
wavelet transforms, using the lifting scheme, have been shown to be impor-
tant for lossless compression. For lossy compression, perhaps surprisingly in
view of the anticipated computation time, the Pyramidal Median Transform
performs very well.

For large image delivery, a plug-in was provided for the SAO-DS9 image
display system to support scale- and region of interest based on-the-fly de-
compression. This system decompresses and displays very large images – for
example, images which are not far short of 2 GB in size – in near real-time.

For some projects, we need to achieve huge compression ratios, which
cannot be obtained by current methods without introducing unacceptable
distortions. For instance, it was shown (Dollet et al., 2004) that if we wish to
extend the GAIA mission in order to make a high-spatial resolution all-sky
survey in the visible based on a scanning satellite, then the main limitation is
the amount of collected data to be transmitted. A solution is to introduce all
our knowledge of both the sky and the instrument in order to compress only
the difference between what we know and what we observe. Data simulations
become a very important task and errors on the point spread functions, po-
sitions of stars, etc., must be under control (Dollet et al., 2004). We imagine
that this concept could be extended to a new generation of astronomical im-
age coders which exploit all astronomical ressources available (hence availing
of the virtual observatory) and which apply this strategy (viz., sky simulation
+ difference coding).

Finally, we would like to point out that, to our knowledge, thorough study
has yet to be carried out on the use of the new JPEG2000 image compression
standard for astronomical data compression.
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6.1 Introduction

A new generation of detectors produce multichannel data, i.e. a set of images
taken with different filters.

The challenge for multichannel data filtering and restoration is to have a
data representation which takes into account at the same time both the spa-
tial and the spectral (or temporal) correlation. A three-dimensional transform
based coding technique was proposed in (Saghri et al., 1995), consisting of a
one-dimensional spectral Karhunen-Loève transform, KLT (Karhunen, 1947))
and a two-dimensional spatial discrete cosine transform (DCT). The KLT is
used to decorrelate the spectral domain and the DCT is used to decorrelate
the spatial domain. All images are first decomposed into blocks, and each
block uses its own Karhunen-Loève transform instead of one single matrix
for the whole image. Lee (1999) improved on this approach by introducing
a varying block size. The block size is made adaptive using a quadtree and
bit allocation for each block. The DCT transform can also be replaced by a
wavelet transform (WT) (Epstein et al., 1992; Tretter and Bouman, 1995).

We introduce in section 6.2 the Wavelet-Karhunen-Loève transform (WT-
KLT) (Starck and Querre, 2001) and show how to use it for noise removal.
Decorrelating first the data in the spatial domain using the WT, and after-
wards in the spectral domain using the KLT, allows us to derive robust noise
modeling in the WT-KLT space, and hence to filter the transformed data in
an efficient way. We show also that the correlation matrix can be computed
by different methods taking noise modeling into account.

Multichannel data gives us also the opportunity to better understand the
physical properties of an observed source. However, in many cases, we cannot
isolate the source of interest, and each channel contains the superposition of
the flux emitted at a given wavelength by all sources along the line of sight.
If the source gives rise to different known spectral behaviors, it is possible to
separate them very easily. When the spectral behaviors are unknown, it be-
comes a problem of blind source separation (BSS), which can be solved using
independent component analysis (ICA). This consists of recovering unob-
served signals or “sources” from several observed mixtures (Cardoso, 1998a).
Assuming that n statistically independent signals s1(t), ..., sn(t) are mixed
by an unknown n × n mixing matrix A = [aij ], we have:
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X(t) = AS(t) (6.1)

where S(t) = [s1(t), . . . , sn(t)]t, and X(t) = [x1(t), . . . , xn(t)]t represents the
observed signals, with xi(t) =

∑n
j=1 aijsj(t). The challenge is to find how to

achieve separation using as our only assumption that the source signals are
statistically independent. The solution consists of finding an n×n separating
matrix B, Y (t) = BS(t), such that Y is an estimate of S. This is achieved by
minimizing contrast functions Φ, which are defined in terms of the Kullback-
Leibler divergence K:

Φ(Y ) =
∫

pY (u) log
pY (u)∏
pYi

(ui)
du (6.2)

The mutual information, expressed by the Kullback-Leibler divergence,
vanishes if and only if the variables Yi are mutually independent, and is
strictly positive otherwise. ICA has been used in astronomy to analyze mul-
tispectral images (Nuzillard and Bijaoui, 2000) of the galaxy 3C 120, to sep-
arate the Cosmic Microwave Background from other sky components (Bacci-
galupi et al., 2000a; Maino et al., 2002; Delabrouille et al., 2003; Patanchon
et al., 2004a), and to study MARS data obtained using the OMEGA spectra
(Bibring and OMEGA, 2004) on board Mars Express (Forni et al., 2005). As
for PCA, it has been shown (Zibulevsky and Pearlmutter, 2001; Zibulevsky
and Zeevi, 2001) that applying ICA to wavelet transformed signals leads to
better quality results, especially in the presence of noise. Section 6.6 describes
the ICA concept and the recent developments (SMICA,WSMICA methods)
for the specific case of the CMB.

6.2 The Wavelet-Karhunen-Loève Transform

6.2.1 Definition

The Karhunen-Loève transform, also often referred to as eigenvector,
Hotelling transform, or principal component analysis (PCA) (Karhunen,
1947; Levy, 1948; Hotelling, 1933) allows us to transform discrete signals into
a sequence of uncorrelated coefficients. Considering a vector D = d1, ..., dL

of L signals or images of dimension N (i.e. N pixels per image), we de-
note M = {m1, ...,mL} the mean vector of the population (mi is the
mean of the ith signal di). The covariance matrix C of D is defined by
C = (D − M)(D − M)t, and is of order L × L. Each element ci,i of C is
the variance of di, and each element ci,j is the covariance between di and dj .
The KLT method consists of applying the following transform to all vectors
xi = {d1(i), ..., dL(i)} (i = 1..N):

yi = Λ− 1
2 A(xi − M) (6.3)
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where Λ is the diagonal matrix of eigenvalues of the covariance matrix C,
and A is a matrix whose rows are formed from the eigenvectors of C (Gon-
zalez and Woods, 1992), ordered following the monotonic decreasing order of
eigenvalues.

Because the rows of A are orthonormal vectors, A−1 = At, and any vector
xi can be recovered from its corresponding yi by:

xi = Λ
1
2 Atyi + M (6.4)

The Λ matrix multiplication can be seen as a normalization. Building A
from the correlation matrix instead of the covariance matrix leads to another
kind of normalization, and the Λ matrix can be suppressed (yi = A(xi −M)
and xi = Atyi + M). Then the norm of y will be equal to the norm of x.

Fig. 6.1. WT-KLT transform data flow. Each frame (or band) of the input data
set is first wavelet transformed, and a principal component analysis is applied at
each resolution level.

We suppose now that we have L observations of the same view, e.g. at
different wavelengths (or at different epochs, etc.), and denote as dl one ob-
servation, W (l) its wavelet transform, and wl,j,k one wavelet coefficient at
scale j and at position k. The standard approach would be to use an orthog-
onal wavelet transform, and to calculate the correlation matrix C from the
wavelet coefficients instead of the pixel values:
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Cm,n =

∑J
j=1

∑Nj

k=1 wm,j,kwn,j,k√∑J
j=1

∑Nj

k=1 w2
m,j,k

√∑J
j=1

∑Nj

k=1 w2
n,j,k

(6.5)

where J is the number of bands, and Nj is the number of coefficients in the
band j. In (Lee, 1999), a more complex approach was proposed, which is
to decompose the images into Nb blocks and apply a KLT for each block
separately. We investigate here different approaches for data restoration.

6.2.2 Correlation Matrix and Noise Modeling

We introduce a noise model into our calculation of the correlation matrix. If
the input sequence D contains noise, then the wavelet coefficients are noisy
too. Eigenvalues at the high scales are computed with noisy WT coefficients
and we may lose the true underlying correlation that exists between the
input images dl. The expression of the correlation matrix has to be modified
in order to allow us to take noise into account. We add a weighting term
to each wavelet coefficient which depends on the signal-to-noise ratio. The
correlation matrix is calculated by:

Cm,n =

∑J
j=1

∑Nj

k=1 pj(wm,j,k)wm,j,kpj(wn,j,k)wn,j,k√∑J
j=1

∑Nj

k=1 p2
j (wm,j,k)w2

m,j,k

√∑J
j=1

∑Nj

k=1 p2
j (wn,j,k)w2

n,j,k

(6.6)

where pj is a weighting function. The standard approach corresponds to the
specific case where pj(wm) = 1 (no weighting). By considering that only
wavelet coefficients with high signal-to-noise ratio should be used for the
correlation matrix calculation, pj can be defined by:

pj(w) =
{

1 if w is significant
0 if w is not significant (6.7)

and a wavelet coefficient w is said to be “significant” if its probability of
being due to noise is smaller than a given ε value. In the case of Gaussian
noise, it suffices to compare the wavelet coefficient w to a threshold level tj .
tj is generally taken as λσj , where σj is the noise standard deviation at scale
j, and λ is chosen between 3 and 5. The value of λ = 3 corresponds to a
probability of false detection of 0.27%, for a Gaussian statistic.

This hard weighting scheme may lead to problems if only a few coefficients
are significant. This weighting scheme can be replaced by a soft weighting
scheme, by defining pj(w) as:

pj(w) = 1 − Prob(W >| w |) (6.8)

where Prob(W >| w |) is the probability that a wavelet coefficient is larger
than w due to the noise. For Gaussian noise, we have:
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pj(w) = 1 − 2√
2πσj

∫ +∞

|w|
exp(−W 2/2σ2

j )dW

= erf

(
| w |√
2σj

)
(6.9)

6.2.3 Scale and Karhunen-Loève Transform

We can also analyze separately each band of the wavelet transform, and then
apply one KLT per resolution level. This implies calculating a correlation
matrix C(j) for each band j.

C(j)
m,n =

∑Nj

k=1 pj(wm,j,k)wm,j,kpj(wn,j,k)wn,j,k√∑Nj

k=1 p2
j (wm,j,k)w2

m,j,k

√∑Nj

k=1 p2
j (wn,j,k)w2

n,j,k

(6.10)

This has the advantage of taking into account more complex behavior of
the signal. Indeed, structures of different sizes may have a different spectral
behavior (for example, stars and galaxies in astronomical images), and a
band-by-band independent analysis allows us to better represent this kind of
data.

6.2.4 The WT-KLT Transform

The final WT-KLT algorithm has these steps:

1. Estimate the noise standard deviation σ(l) of each input data set dl.
2. Calculate the wavelet transform W (l) of each input data set dl.
3. For each band j of the wavelet transform, calculate the correlation ma-

trix C(j) relative to the vector xj =
{

W
(1)
j ,W

(2)
j , ...,W

(L)
j

}
, where W

(l)
j

represents band j of the wavelet transform W (l) of dl.
4. For each band j, diagonalize the matrix C(j) and build the transform

matrix Aj from the eigenvectors of C(j).
5. For each band j and each position k, apply the matrix Aj to the vector

xj,k = {w1,j,k, w2,j,k, ..., wL,j,k}:
yj,k = Ajxj,k (6.11)

6. The WT-KLT coefficients cl,j,k are derived from yj,k by cl,j,k = yj,k(l).
The l index in the transformed coefficients no longer represent the obser-
vation number, but the eigenvector number. l = 1 indicates the principal
eigenvector while l = L indicates the last one.

The mean vector M disappears in this algorithm because the wavelet coeffi-
cients are zero mean.

Fig. 6.1 shows the data flow of the WT-KLT transform.
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6.2.5 The WT-KLT Reconstruction Algorithm

The reconstruction algorithm has these steps:

1. For each band j and each position k, we apply the matrix At
j to the

vector yj,k = {c1,j,k, c2,j,k, ..., cL,j,k}
xj,k = At

jyj,k (6.12)

2. The wavelet coefficients wl,j,k are derived from xj,k by wl,j,k = xj,k(l).
3. An inverse wavelet transform of W (l) furnishes dl.

6.3 Noise Modeling in the WT-KLT Space

Since a WT-KLT coefficient c is obtained by two successive linear trans-
forms, broadly applicable noise modeling results from this, and as a conse-
quence determining the noise standard deviation associated with the c value
is tractable. In the case of Poisson noise, the Anscombe transformation can
first be applied to the data (see Chapter 2). This implies that for the filter-
ing of a data set with Poisson noise or a mixture of Poisson and Gaussian
noise, we will first pre-transform the data D into another data set A(D)
with Gaussian noise. Then A(D) will be filtered, and the filtered data will be
inverse-transformed. For other kinds of noise, modeling must be performed
in order to define the noise probability distribution of the wavelet coeffi-
cients (Starck et al., 1998a). In the following, we will consider only stationary
Gaussian noise.

Noise Level on WT-KLT Coefficients

Assuming a Gaussian noise standard deviation σl for each signal or image dl,
the noise in the wavelet space follows a Gaussian distribution σl,j , j being
the scale index. For a bi-orthogonal wavelet transform with an L2 normal-
ization, σl,j = σl for all j. Since the WT-KLT coefficients are obtained from
a linear transform, we can easily derive the noise standard deviation relative
to a WT-KLT coefficient from the noise standard deviation relative to the
wavelet coefficients. In fact, considering the noise standard deviation vector
s = {σ1, ..., σL}, we apply the following transformation:

yj = A2
js

2 (6.13)

and the noise standard deviation relative to a WT-KLT coefficient cl(j, k) is√
yj(l).
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6.4 Multichannel Data Filtering

6.4.1 Introduction

KLT-based filtering methods were proposed in the past (Andrews and Pat-
terson, 1976; Lee, 1991; Konstantinides et al., 1997) for single images. The
idea proposed was to decompose the image I of M × N pixels into non-
overlapping blocks Bs of size Nb × Nb. Typically, Nb takes values from 4 to
16. Let λ1, λ2, ...λn be the singular values of the matrix I in decreasing order,
and assuming that the matrix I is noisy, the rank r of I was defined such
that (Konstantinides and Yao, 1988)

λr ≥ ε1 > λr+1 (6.14)

where ε1 is the norm of the noise. In the case of a Gaussian distribution
of zero mean, an upper bound is

√
MNσ (Konstantinides et al., 1997). A

filtered version of I can be obtained by reconstructing each block only from
its first r eigenvalues. A novel approach was developed in (Natarajan, 1995;
Konstantinides et al., 1997) in order to find the optimal ε value, based on the
ε-compression ratio curve, using a lossless compression method like JPEG. It
was found that the maximum of the second derivative of the curve furnishes
the optimal ε value (Natarajan, 1995).

In the case of multichannel data filtering, several different approaches may
be considered based on noise modeling. They are presented in this section,
and evaluated in the next section.

6.4.2 Reconstruction from a Subset of Eigenvectors

The WT-KLT transform of a data set D = {d1, ..., dL} consists of applying a
KLT on the wavelet scales. Hence, the vector Wj =

{
W

(1)
j , ...,W

(L)
j

}
of the

scales j of the wavelet transforms W l can be decomposed uniquely as:

Wj = UjΛ
1
2
j V −1

j =
L∑

i=1

√
λj,iuj,iv

t
j,i (6.15)

where Λj is the diagonal matrix of eigenvalues of the correlation matrix Cj ,
Uj and Vj are orthogonal matrices with column vectors uj,i and vj,i which
are respectively the eigenvectors of WjW

t
j and W t

j Wj .
The filtered wavelet coefficients of band j can be obtained by:

W̃j =
r∑

i=1

√
λj,iuj,iv

t
j,i (6.16)

where r is the rank of the matrix.
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Fig. 6.2. Simulation: the dataset is composed of 18 frames. Each of them contains
a source (small Gaussian) at the same position, but at different intensity levels.
Top, plot of the source maximum value versus the frame number. Middle, frames
2 and 10, and bottom, filtered version of frame 10 by the wavelet transform and
wavelet Karhunen-Loève transform.
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6.4.3 WT-KLT Coefficient Thresholding

Hard thresholding can be applied to the WT-KLT coefficients in a fashion
analogous to the thresholding of wavelet coefficients.

6.4.4 Example: Astronomical Source Detection

Fig. 6.2 shows a simulation. We created a dataset of 18 frames, each contain-
ing a source at the same position, but at different intensity levels. The source
is a small Gaussian, and the source SNR is defined as the ratio between the
maximum of the source and the noise standard deviation. Fig. 6.2, top, shows
the evolution of the SNR in the 18 frames. Frames 2 and 10 are shown in
Fig. 6.2, middle, left and right. The source SNR ratio is respectively 3 and 1.
Fig. 6.2, bottom, left and right, show respectively the filtered frame 10 using
the wavelet transform and the WT-KLT. The WT detects only noise, while
the WT-KLT clearly identifies the source.

6.5 The Haar-Multichannel Transform

We have seen in Chapter 2 that the Haar transform has some advantages,
especially when the data contains Poisson noise.

In order to decorrelate the information both spatially and in wavelength
(or in time), a 2D-wavelet transform must first be performed on each frame of
the data cube D(x, y, z). We denote the result wj,kx,ky,z, where j is the scale
index (j ∈ [1, J ], where J is the number of scales), kx, ky the spatial position
in the scale (kx ∈ [0, Nx − 1], ky ∈ [0, Ny − 1]), and z is the frame number.
This set must again be transformed in order to decorrelate the information
in the third dimension. We apply a 1D-transform on each vector wj,kx,ky,z,
and we get a new set of data uj,j′,kx,ky,kz

, where j′ and kz are respectively
the scale index and position in the third dimension.

Using the unnormalized Haar transform, a coefficient uj+1,j′+1,k,l,t can
be written as:

uj+1,j′+1,kx,ky,kz
=

2j
′
kz+2j

′
−1∑

i=2j
′+1kz

wj+1,kx,ky,i −
2j

′
+1(kz+1)−1∑

i=2j
′+1kz+2j

′

wj+1,kx,ky,i(6.17)

We assume now a constant background rate λi for each frame i of the data
cube. Each Haar wavelet coefficient wj+1,kx,ky,i is the difference between two
random variables Xi and Yi, which follows a Poisson distribution of parame-
ter λj,i, where λj,i represents the rate per pixel over 2j+1 pixels of the ith
frame, and is equal to 22jλ− i. Then uj+1,j′+1,kx,ky,kz

is the difference of two
variables, X =

∑
i Xi and Y =

∑
i Yi, and both follow a Poisson distribution

of parameter
∑

i λj,i. The thresholding method described in section 2.6 can
therefore be used, using the correct λ value.
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Filtering. The multichannel filtering algorithm is:

1. For each frame D(∗, ∗, z), apply the 2D-Haar transform: we obtain
wj,k,l(z).

2. For each scale j, and at each position kx, ky, extract the 1D vector
wj,kx,ky,∗ and compute its wavelet transform. We get a new data set.

3. Threshold the coefficients using the correct λ value.
4. Inverse 1D transform.
5. Inverse 2D transform.

For non-constant background, a coarse-to-fine approach, as explained in
section 2.6 in Chapter 2, can be used.

6.6 Independent Component Analysis

6.6.1 Definition

In multidimensional data processing, Blind Source Separation (BSS) may be
necessary. The overall goal is to recover unobserved signals, images or sources
S from mixtures of these sources X observed typically at the output of an
array of sensors. The simplest mixture model takes the form:

X = AS (6.18)

where X and S are random vectors of respective sizes m × 1, n × 1, and
A is an m × n matrix. The entries of S are assumed to be independent
random variables. Multiplying S by A linearly mixes the n sources into m
observed processes. Independent component analysis methods were developed
to solve the BSS problem, i.e. given a batch of T observed samples of X,
estimate the mixing matrix A and reconstruct the corresponding T samples
of the source vector S, relying mostly on the statistical independence of
the source processes. Independence is a strong, yet in many cases plausible,
assumption that goes beyond the simple second order decorrelation obtained
using PCA for instance. Due to obvious intrinsic indeterminacies in model
(6.18), decorrelation is not enough to recover the source processes.

The probability distributions of the individual sources also need to be
modeled but coarse assumptions can be made (Cardoso, 1998b; Hyvärinen
et al., 2001). Still, algorithms for blind component separation and mixing ma-
trix estimation do depend on the model used for the probability distribution
of the sources (Cardoso, 2001). In a first set of techniques, source separation
is achieved in a noiseless setting, based on the non-Gaussianity of all but pos-
sibly one of the components. Most mainstream ICA techniques belong to this
category: Jade (Cardoso, 1999), FastICA, Infomax (Hyvärinen et al., 2001).
In a second set of blind techniques, the components are modeled as Gaussian
processes and, in a given representation, separation requires that the sources
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have diverse, i.e. non-proportional, variance profiles. For instance, the Spec-
tral Matching ICA method (SMICA) (Delabrouille et al., 2003; Moudden
et al., 2005) considers in this sense the case of mixed stationary Gaussian
components and goes further than the above model (Eqn. 6.18) by taking
into account additive instrumental noise N :

X = AS + N (6.19)

Moving to a Fourier representation, the idea is that colored components can
be separated based on the diversity of their power spectra.

In the case where the main component of interest cannot be modeled
as a stationary Gaussian distribution, methods from the first set are ex-
pected to yield better results. A brief overview of the non-Gaussian ICA
method, JADE, and FastICA (Hyvärinen et al., 2001), are presented next.
The SMICA method is described in section 6.7. This is followed by a descrip-
tion of ways to combine wavelets and ICA techniques. Some useful properties
of wavelet transforms can indeed enhance the performance of ICA methods
in various situations.

6.6.2 JADE

The Joint Approximate Diagonalization of Eigenmatrices method (JADE) as-
sumes the observed data X follows the noiseless mixture model (6.18) where
the independent sources S are non-Gaussian i.i.d. 1 random processes. The
mixing matrix is assumed to be square and invertible so that (de)mixing is ac-
tually just a change of basis. In the case we have more channels than sources,
the data can be preprocessed using PCA, and only the first n eigenvectors
are retained, n being the number of sources.

As mentioned above, second order statistics do not retain enough informa-
tion: finding a change of basis in which the data covariance matrix is diagonal
cannot lead to source recovery. However, decorrelation is half the job and one
may seek the basis in which the data is represented by maximally indepen-
dent processes among those bases in which the data is decorrelated. This
leads to so-called orthogonal algorithms: after a proper whitening of the data
by multiplication with W , one is then seeking a rotation R so that Ŝ defined
by

Ŝ = W−1 Y = W−1 R Xw = W−1 R W X (6.20)

and B̂ = Â−1 = W−1 R W are estimates of the sources and of the inverse of
the mixing matrix.

JADE is an orthogonal ICA method. As for most mainstream ICA tech-
niques, it exploits higher order statistics and tries to achieve some sort of
1 I.i.d. stands for independently and identically distributed meaning that each

entry of X at a given time t is independent of X at any other time t′, and that
the distribution of X does not depend on time.
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nonlinear decorrelation. More precisely, approximate independence is mea-
sured using fourth order cross-cumulants:

Fijkl = cum(yi, yj , yk, yl)
= E(yi, yj , yk, yl) − E(yi, yj)E(yk, yl)

−E(yi, yl)E(yj , yk) − E(yi, yk)E(yj , yk) (6.21)

where E represents statistical expectation, and where the yis are the entries
of vector Y modeled as random variables, and the correct change of basis
(i.e. rotation) is found by somehow diagonalizing the fourth order cumulant
tensor. Indeed, if the yis were independent, all the cumulants with at least
two different indices would be zero. Following the independence assumption of
the source processes S and the decorrelation (whiteness) of Y for all rotations
R, the fourth order tensor F is well-structured: JADE was in fact devised to
take advantage of the algebraic properties of F . JADE’s objective function
is given by:

Jjade(R) =
∑

ijkl 
=ijkk

cum(yi, yj , yk, yl)2

=
∑
ij

∑
k 
=l

cum(yi, yj , yk, yl)2 (6.22)

which can be interpreted as a joint diagonalization criterion. Fast and robust
algorithms are available for the minimization of Jjade(R) with respect to
R based on Jacobi’s method for matrix diagonalization (Pham, 2001). More
details on JADE can be found in (Cardoso, 1999; Cardoso, 1998b; Hyvärinen
et al., 2001), and an interesting application of JADE for Mars Express data
analysis (OMEGA instrument) can be found in (Forni et al., 2005).

JADE for Spherical Maps. Applying JADE on multichannel data mapped
to the sphere does not require any particular modification of the algorithm.
Indeed, JADE estimates the fourth order cumulant tensor from the available
data samples assuming an i.i.d. random field. Hence, given a pixelization
scheme on the sphere such as provided by the Healpix package, JADE can
be directly applied to the multichannel spherical data pixels.

Example. Fig. 6.3 shows three simulated signals. Six observed data sets were
derived from the three sources, by a linear combination (see Fig. 6.4). With-
out any knowledge of the mixing matrix, the JADE-ICA (Cardoso, 1998a)
method was applied and the three signals were reconstructed from the six
observed data sets (see Fig. 6.5).

6.6.3 FastICA

FastICA is by now a standard technique in ICA. Like JADE, it is meant for
the analysis of mixtures of independent non-Gaussian sources in a noise-less
setting. A complete description of this method can be found in (Hyvärinen
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Fig. 6.3. Example of three simulated sources.

et al., 2001) and references therein. Many papers on this algorithm are avail-
able at http://www.cs.helsinki.fi/u/ahyvarin/papers/fastica.shtml. We give
here a brief and simplified account of the algorithm. FastICA, again like
JADE, is a so-called orthogonal ICA method: the independent components
are sought by maximizing a measure of non-Gaussianity under the constraint
that they are decorrelated. Intuitively, one should understand that mixtures
of independent non-Gaussian random variables tend to look more Gaussian.
An enlightening view of the relation between mutual information, which is
a natural measure of independence, decorrelation and non-Gaussianity, can
be found in (Cardoso, 2001; Cardoso, 2003). Non-Gaussianity is assessed in
FastICA using a contrast function G based on a non-linear approximation to
negentropy (Hyvärinen et al., 2001). In practice, depending on the applica-
tion, different approximations or nonlinear (non-quadratic) functions should
be experimented with. In a simple deflation scheme, for sphered data, the
directions are found sequentially: a direction r of maximal non-Gaussianity
is sought by maximizing

JG(r) =
(
E{G(rT xwhite)} − E{G(ν)}

)2
(6.23)

where ν stands for centered unit variance Gaussian variable, under the con-
straint that r has unit norm and that r is orthogonal to the directions found
previously. The contrast function G can for instance be chosen among the
following (Hyvärinen et al., 2001):
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Fig. 6.4. Mixed sources. Each of these six signals is a linear combination of the
three simulated sources.

G0(u) =
1
a
log cosh(au)

G1(u) = −1
a
exp(−au2/2)

G2(u) =
1
4
u4

(6.24)

where a is a constant to be determined depending on the application. It can b
e shown that the maxima of JG occur at certain maxima of E{G(rT xwhite)}.
These are obtained for r solution to:

E{xwhiteg(rT xwhite)} − λr = 0 (6.25)

where λ is a constant easily expressed in terms of the optimal direction r0,
and g is the derivative of G. Solving this equation using Newton’s method,
and a few approximations, a fixed-point algorithm is derived which consists
of repeating the following two steps until convergence:

r ← E{xwhiteg(rT xwhite)} − E{g′(rT xwhite)}r
r ← r

‖r‖
(6.26)

A simple implementation of this algorithm, largely based on MatlabTM, is
available at www.cis.hut.fi/projects/ica/fastica/.
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Fig. 6.5. Reconstructed sources from the mixed signals.

6.7 CMB Data and the SMICA ICA Method

6.7.1 The CMB Mixture Problem

In the CMB, the precise measurement of these fluctuations is of utmost im-
portance to cosmology. Their statistical properties (spatial power spectrum,
Gaussianity) strongly depend on the cosmological scenarios describing the
properties and evolution of our Universe as a whole, and thus permit us to
constrain these models as well as to measure the cosmological parameters de-
scribing the matter content, the geometry, and the evolution of our Universe.

Accessing this information, however, requires disentangling in the data
the contributions of several distinct astrophysical sources, all of which emit
radiation in the frequency range used for CMB observations. This problem
of component separation, in the field of CMB studies, has been the object of
many dedicated studies in the past.

To first order, the total sky emission can be modeled as a linear superpo-
sition of a few independent processes. The observation of the sky in direction
(θ, ϕ) with detector d is a noisy linear mixture of Nc components:

xd(ϑ, ϕ) =
Nc∑
j=1

Adjsj(ϑ, ϕ) + nd(ϑ, ϕ) (6.27)

where sj is the emission template for the jth astrophysical process, here re-
ferred to as a source or a component. The coefficients Adj reflect emission
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distributions while nd accounts for noise. When Nd detectors provide inde-
pendent observations, this equation can be put in vector-matrix form:

X(ϑ, ϕ) = AS(ϑ, ϕ) + N(ϑ, ϕ) (6.28)

where X and N are vectors of length Nd, S is a vector of length Nc, and A
is the Nd × Nc mixing matrix.

Blind source separation or independent component analysis (ICA) meth-
ods have been implemented specifically for CMB studies. The work of Bacci-
galupi et al. (2000b), further extended by Maino et al. (2002) implements a
blind source separation method exploiting the non-Gaussianity of the sources
for their separation, which permits us to recover the mixing matrix A and
the maps of the sources. Accounting for spatially varying instrumental noise
in the observation model is investigated by Kuruoglu et al. (2003), as well
as the possible inclusion of prior information about the distributions of the
components using a generic Gaussian mixture model.

Snoussi et al. (2004) propose a Bayesian approach in the Fourier domain
assuming known spectra for the components as well as possibly non-Gaussian
priors for the Fourier coefficients of the components. A fully blind, maxi-
mum likelihood approach is developed in (Cardoso and et al., 2002) and (De-
labrouille et al., 2003), with the new point of view that spatial power spectra
are actually the main unknown parameters of interest for CMB observations.
This method, called Spectral Matching ICA (SMICA) is a source separation
method based on spectral matching in Fourier space A key benefit is that
parameter estimation can then be based on a set of band-averaged spectral
covariance matrices, considerably compressing the data size.

6.7.2 SMICA

Spectral matching ICA (SMICA) is a blind source separation technique
which, unlike most standard ICA methods, is able to recover Gaussian sources
in noisy contexts. It operates in the spectral domain and is based on spectral
diversity: it is able to separate sources provided they have different power
spectra. This section gives a brief account of SMICA. More details can be
found in (Delabrouille et al., 2003; Moudden et al., 2005); first applications
to CMB analysis are in (Delabrouille et al., 2003; Patanchon et al., 2004a).

Model and Cost Function. For a second-order stationary Nd-dimensional
process, we denote by RX(ν) the Nd × Nd spectral covariance matrix at
frequency ν, that is, the (i, i)th entry of RX(ν) is the power spectrum of
the ith coordinate of X while the off-diagonal entries of RX(ν) contain the
cross-spectra between the entries of X. If X follows the linear model of equa-
tion (6.28) with independent additive noise, then its spectral covariance ma-
trix is structured as

RX(ν) = ARS(ν)At + RN (ν) (6.29)
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with RS(ν) and RN (ν) being the spectral covariance matrices of S and N
respectively. The assumption of independence between the underlying com-
ponents implies that RS(ν) is a diagonal matrix. We shall also assume inde-
pendence of the noise processes between detectors: matrix RN (ν) also is a
diagonal matrix.

In the definition of RX(ν), we have not explicitly defined the frequency
ν. This is because SMICA can be applied to the separation of components in
many contexts: each observation Xd can be a time series (one-dimensional),
an image (two-dimensional random field), or a random field on the sphere (as
in full-sky CMB studies). In each case, the appropriate notions of frequency,
stationarity and power spectrum should be used.

SMICA estimates all (or a subset of) the model parameters:

θ = {RS(νq), RN (νq), A}

by minimizing a measure of “spectral mismatch” between sample estimates
R̂X(ν) (defined below) of the spectral covariance matrices and their ensem-
ble averages which depend on the parameters according to equation (6.29).
More specifically, an estimate θ̂ = {R̂S(νq), R̂N (νq), Â} is obtained as θ̂ =
arg minθ φ(θ) where the measure of spectral mismatch φ(θ) is defined by

φ(θ) =
Q∑

q=1

αqD
(
R̂X(νq), ARS(νq)A† + RN (νq)

)
(6.30)

Here, {νq|1 ≤ q ≤ Q} is a set of frequencies, {αq|1 ≤ q ≤ Q} is a set of
positive weights, and D(·, ·) is a measure of mismatch between two positive
matrices.

This approach is a particular instance of moment matching. As such,
if consistent estimates R̂X(νq) of the spectral covariance matrices RX(νq)
are available and if the model is identifiable, then any reasonable choice of
the weights αq and of the divergence measure D(·, ·) should lead to consis-
tent estimates of the parameters. However, this does not mean that these
choices should be arbitrary: in our standard implementation, we make spe-
cific choices (described next) in such a way that minimizing φ(θ) is identical
to maximizing the likelihood of θ in a model of Gaussian stationary processes.
Hence, these choices guarantee good statistical efficiency when the underly-
ing processes are well-modeled as Gaussian stationary processes. When this
is not the case, though, the performance of SMICA may not be as good as
(but not necessarily worse than) the performance of other methods designed
to capture other aspects of the statistical distribution of the data, such as
non-Gaussian features, for instance.

Given a data set, denote X̃(ν) as its discrete Fourier transform at fre-
quency ν and denote by {Fq|1 ≤ q ≤ Q} a set of Q frequency domains with
Fq centered around frequency νq. Spectral covariance matrices are estimated
non-parametrically by
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R̂X(νq) =
1
nq

∑
ν∈Fq

X̃(ν)X̃(ν)† (6.31)

where nq denotes the number of Fourier points X̃(ν) in the spectral domain
Fq. We always use symmetric domains in the sense that frequency ν belongs
to Fq if and only if −ν also does. This symmetry guarantees that R̂X(νq) is
always a real valued matrix when X itself is a real valued process.

In its standard form, the SMICA technique uses positive weights αq = nq

and a divergence D defined as

DKL(R1, R2) =
1
2

(
trace(R1R

−1
2 ) − log det(R1R

−1
2 ) − m

)
(6.32)

which is the Kullback-Leibler divergence between two m-variate zero-mean
Gaussian distributions with covariance matrices R1 and R2. These choices
stem from the Whittle approximation according to which each X̃(ν) has a
zero-mean normal distribution with covariance matrix RX(ν) and is uncorre-
lated with X̃(ν′) for ν �= ν′. In this case, it is easily checked that −φ(θ) eval-
uated with αq = nq and D = DKL is (up to a constant) the log-likelihood for
T data samples. This is actually true when the spectral domains are shrunk
to just one DFT point (nq=1 for all q); when the spectral domains Fq are
chosen to contain several (usually many) DFT points, then −φ(θ) is the log-
likelihood, in the Whittle approximation, of the Gaussian stationary model
with constant power spectrum over each domain Fq. This approximation is
at small statistical loss when the spectrum is smooth enough to show little
variation over each spectral domain.

The major gain of assuming constant spectrum over each Fq is the result-
ing reduction of the data set to a small number of covariance matrices. This
may be a crucial benefit in applications like astronomical imaging where very
large data sets are frequent.

Regarding our application to CMB analysis, the hypothesized isotropy of
the distribution of the sources leads us to integrate over spectral domains with
the corresponding symmetry. For sky maps small enough to be considered as
flat, the spectral decomposition is the two-dimensional Fourier transform and
the “natural” spectral domains are rings centered on the null frequency. For
larger maps where curvature cannot be neglected, the spectral decomposition
is over spherical harmonics and the natural spectral domains contain all the
modes associated with a set of scales (Patanchon et al., 2004b).

Component Map Estimation. When running SMICA, power spectral
densities for the sources and detector noise are obtained along with the esti-
mated mixing matrix. They are used in reconstructing the source maps via
Wiener filtering in Fourier space: a Fourier mode X(ν) in frequency band
ν ∈ Fq is used to reconstruct the maps according to

Ŝ(ν) = (ÂtR̂N (ν)−1Â + R̂S(ν)−1)−1ÂtR̂N (ν)−1X(ν) (6.33)
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In the limiting case where noise is small compared to signal components, the
Wiener filter reduces to

Ŝ(ν) = (ÂtR̂N (ν)−1Â)−1ÂtR̂N (ν)−1X(ν) (6.34)

Note however that the above Wiener filter is optimal only for stationary
Gaussian processes. For weak, point-like sources such as galaxy clusters seen
via the Sunyaev–Zel’dovich effect much better reconstruction can be expected
from nonlinear methods.

6.8 ICA and Wavelets

Several properties of wavelets have been recognized as particularly useful in
multichannel data processing: bringing wavelets and independent component
analysis together has proven quite profitable. Extensions WJADE and WS-
MICA of the two ICA methods described previously are discussed in this
section.

Wavelets are remarkable at data compression, meaning that data that are
structured in the initial representation require fewer significant coefficients in
a wavelet representation. In imprecise and general terms, wavelets grab the
coherence between coefficients of the structured data and produce a smaller
set of significant coefficients which are then less coherent and which have
a sparser statistical distribution. Then, the super-Gaussian2 i.i.d. statistical
model which appears in most standard ICA methods may better suit the
wavelet coefficients of the data than the data samples in the initial represen-
tation.

Wavelets have been developed for the analysis of non-stationary and sin-
gular data in order to overcome certain difficulties associated with the Fourier
transform. Wavelets are widely used to reveal variations in the spectral con-
tent of time series or images as they permit the singling out of regions in
direct space while retaining localization in the frequency domain. Astrophys-
ical data analysis has much to gain in avoiding the assumption of stationar-
ity underlying Fourier analysis. Moreover, observed data maps are commonly
imperfectly shaped and incomplete with missing or masked patches due to
experimental settings, scanning strategies, etc. This will impair direct appli-
cation of the Spectral Matching ICA method described previously. One might
consider resorting to wavelets.

6.8.1 WJADE

Wavelets come into play as a sparsifying transform. Applying a wavelet trans-
form on both sides of (6.18) does not affect the mixing matrix and the model
2 A super-Gaussian distribution is also called a lepto-kurtic distribution, referring

to a distribution with a narrow central peak and heavy tails. A typical example
is the Laplacian distribution.
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structure is preserved. Also, moving the data to a wavelet representation does
not affect its information content. However, the statistical distribution of the
data coefficients in the new representation is different: wavelets are known
to lead to sparse i.i.d. representations of structured data. Further, the local
(coefficientwise) signal to noise ratio depends on the choice of a representa-
tion. A wavelet transform tends to grab the informative coherence between
pixels while averaging the noise contributions, thus enhancing structures in
the data. Although the standard ICA model (6.18) is for a noiseless setting,
the derived methods can be applied to real data. Performance will depend on
the detectability of significant coefficients i.e. on the sparsity of the statistical
distribution of the coefficients. Moving to a wavelet representation will often
lead to more robustness to noise.

Once the data has been transformed to a proper representation (e.g.
wavelets but also ridgelets and curvelets in the case of strongly anisotropic
2D or 3D data), WJADE consists of applying the standard JADE method
to the new multichannel coefficients. Once the mixing matrix is estimated,
the initial source maps are obtained using the appropriate inverse transform
after some nonlinear denoising or thresholding of the coefficients if necessary.

6.8.2 Covariance Matching in Wavelet Space: WSMICA

SMICA, which was designed to address some of the general problems raised
by Cosmic Microwave Background data analysis, has already shown signifi-
cant success for CMB spectral estimation in multidetector experiments (De-
labrouille et al., 2003; Patanchon et al., 2004a). However, SMICA suffers from
the non-locality of the Fourier transform which has undesired effects when
dealing with non-stationary components or noise, or with incomplete data
maps. The latter is a common issue in astrophysical data analysis: either the
instrument scanned only a fraction of the sky or some regions of the sky were
masked due to localized strong astrophysical sources of contamination (com-
pact radio-sources or galaxies, strong emitting regions in the galactic plane).
A simple way to overcome these effects is to move instead to a wavelet rep-
resentation so as to benefit from the localization property of wavelet filters,
which leads to wSMICA (Moudden et al., 2005). The wSMICA method uses
an isotropic undecimated wavelet transform. The wavelet and scaling func-
tions have small compact supports which allows missing patches in the data
maps to be handled easily.

Using this wavelet transform algorithm, the multichannel data X is de-
composed into J detail maps Xw

j and a smooth approximation map Xw
J+1

over a dyadic resolution scale. Since applying a wavelet transform on (6.28)
does not affect the mixing matrix A, the covariance matrix of the observations
at scale j, is still structured as

RX
w (j) = ARS

w(j)At + RN
w (j) (6.35)
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where RS
w(j) and RN

w (j) are the diagonal spectral covariance matrices in the
wavelet representation of S and N respectively. It was shown (Moudden et al.,
2005) that replacing in the SMICA method the covariance matrices derived
from the Fourier coefficients, by the covariance matrices derived from wavelet
coefficients, leads to much better results when the data are incomplete. This
is due to the fact that the wavelet filter response on scale j is short enough
compared to data size and gap widths and most of the samples in the filtered
signal remain then unaffected by the presence of gaps. Using exclusively these
samples yields an estimated covariance matrix R̂X

w (j) which is not biased by
the missing data.

6.8.3 Numerical Experiments

The application of wSMICA to synthetic mixtures of CMB, galactic dust
and Sunyaev Zel’dovich (SZ) maps is considered here. Dust emission is the
greybody emission of small dust particles in our own galaxy. The intensity of
this emission is strongly concentrated towards the galactic plane, although
cirrus clouds at high galactic latitudes are present as well (Schlegel et al.,
1998). The SZ effect is a small distortion of the CMB blackbody emission
that can be modeled, to first order, as a small additive emission, negative at
frequencies below 217 GHz, and positive at frequencies above (Birkinshaw,
1999).

The component maps used, shown in Fig. 6.6, were obtained as described
in (Delabrouille et al., 2003). The problem of instrumental point spread func-
tions is not adressed here, and all maps are assumed to have the same resolu-
tion. The high level foreground emissions from the galactic plane region were
discarded using the Kp2 mask from the WMAP team website3. These three
incomplete maps were mixed using the matrix in Table 6.1 to simulate obser-
vations in the six channels of the Planck high frequency instrument (HFI).

Table 6.1. Entries of A, the mixing matrix used in our simulations.

CMB DUST SZ Channel

1.0 1.0 −1.51 100 GHz
1.0 2.20 −1.05 143 GHz
1.0 7.16 0.0 217 GHz
1.0 56.96 2.22 353 GHz
1.0 1.1 × 103 5.56 545 GHz
1.0 1.47 × 105 11.03 857 GHz

Gaussian instrumental noise was added in each channel according to
model (6.28). The relative noise standard deviations between channels were
3 http://lambda.gsfc.nasa.gov/product/map/intensity mask.cfm
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Fig. 6.6. The maps on the left are the templates for CMB, galactic dust and SZ
used in the experiment described in section 6.8.3. The maps on the right were
estimated using wSMICA and scalewise Wiener filtering. (The different maps are
drawn here in different color scales in order to enhance structures and ease visual
comparisons).

set according to the nominal values of the Planck HFI given in Table 6.2 and
we experimented with five global noise levels at −6, −3, 0, +3 and +6 dB
from nominal values.

The synthetic observations were decomposed into six scales using our
wavelet transform on the sphere and wSMICA was used to obtain estimates
of the initial source templates. For the sake of comparison, a separation with
SMICA was also performed based on Fourier statistics computed in the same
six dyadic bands imposed by our choice of wavelet transform.

The resulting component maps estimated using wSMICA, for nominal
noise levels, are shown in Fig. 6.6 where the quality of reconstruction can be
visually assessed by comparison with the initial components. Fig. 6.7 gives
more quantitative results in the particular case of CMB, comparing the per-
formance of SMICA and wSMICA in terms of reconstruction error MQE
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Table 6.2. Nominal noise standard deviations in the six channels of the Planck HFI.

100 GHz 143 GHz 217 GHz Channel

2.65 × 10−6 2.33 × 10−6 3.44 × 10−6 Noise std

353 GHz 545 GHz 857 GHz Channel

1.05 × 10−5 1.07 × 10−4 4.84 × 10−3 Noise std

which we defined by

MQE =
std(CMB(ϑ, ϕ) − α × ̂CMB(ϑ, ϕ))

std(CMB(ϑ, ϕ))
(6.36)

where std stands for empirical standard deviation (obviously computed out-
side the masked regions), and α is a linear regression coefficient estimated
in the least squares sense. These results clearly show that using wavelet-
based covariance matrices provides a simple and effective way to cancel the
bad impact that gaps actually have on the performance of estimation using
Fourier based statistics. Another way in which the effect of the gap on the
performance of SMICA could probably be reduced is by applying a proper
apodizing window on the data prior to estimating the spectral covariance,
which is standard practice in harmonic analysis. With the mask used, build-
ing such a window is not straightforward so that, in the present experiments,
SMICA was applied without correction for the gaps. The results given in
Fig. 6.7 should be interpreted considering this aspect.

It may be argued that the proposed wavelet based approach offers little
flexibility in the spectral bands available for wSMICA while the Fourier ap-
proach gives complete flexibility in this respect. But actually it is possible to
use other transforms on the sphere (e.g. wavelet packet transform, continuous
wavelet transform) or in fact any set of linear filters, preferably well-localized
both on the sphere and in the spherical harmonics domain. In this way gaps
are dealt with well, and spectral information is preserved, to achieve the
source separation objective.

We have considered here a linear mixing model, which does not reflect
the reality. Some components have a spectrum which varies spatially and
this spectral index variation is not considered by the previously described
methods. A solution could be to separate the wavelet coefficients of the data
into different subsets, each subset corresponding to a given spatial area, and
to apply successively the wSMICA method on each subset. As long as the
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Fig. 6.7. Relative reconstruction error defined by (6.36) of the CMB component
map using SMICA and wSMICA as a function of the instrumental noise level.

spectral index variation is relatively smooth, this solution may be acceptable.
But this locally invariant mixture model may also not be good enough for
an exact representation of the reality. Another, and maybe more impotant,
problem is the fact that the ICA methods make the same statistical assump-
tion for all components (i.e. they are all non-Gaussian in JADE and FastICA
and they are all Gaussian in SMICA and wSMICA), while we know that
one component is Gaussian (i.e. the CMB) and all others are not. An ICA
method allowing us to consider different statistical models for the different
components would certainly improve dramatically the quality of the compo-
nent separation in the CMB mixture problem.

6.9 Chapter Summary

It has been seen that applying analysis methods on wavelet noise filtered data
may lead to better results: this was noted for principal components analysis
(or Karhunen-Loève transform), and for independent component analysis.

ICA methods are powerful techniques for recovering the original sky emis-
sions from a mixture of different components. The recent developments in
combined wavelet–ICA approaches such as wSMICA lead to flexible tools to
deal with non-stationary components. Maps with missing patches are a par-
ticular example of practical significance. Our numerical experiments, based
on realistic simulations of the astrophysical data expected from the Planck
mission, clearly show the benefits of correctly processing existing gaps in the
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data which is not a real surprise. By moving to the wavelet domain, it is
possible to easily cope with gaps of any shape in a very simple manner, while
still retaining spectral information for component separation. Clearly, other
possible types of non-stationarities in the collected data such as spatially
varying noise or component variance, etc. could be dealt with very simply
in a similar fashion using the wavelet extension of SMICA (Moudden et al.,
2005).

The integrated analysis strategies discussed in this chapter cater for the
analysis of data “cubes”, or more correctly multiple band signals. This in-
cludes hyperspectral data also. Given its special role in facilitating analysis of
signals with Poisson noise, we paid particular attention to the Haar wavelet
transform.



7. An Entropic Tour
of Astronomical Data Analysis

7.1 Introduction

The term “entropy” is due to Clausius (1865), and the concept of entropy
was introduced by Boltzmann to statistical mechanics in order to measure
the number of microscopic ways that a given macroscopic state can be re-
alized. Shannon (1948) founded the mathematical theory of communication
when he suggested that the information gained in a measurement depends
on the number of possible outcomes from which one is realized. Shannon also
suggested that the entropy be used for maximization of the bit transfer rate
under a quality constraint. Jaynes (1957) proposed to use the entropy mea-
sure for radio interferometric image deconvolution, in order to select between
a set of possible solutions that which contains the minimum of information or,
following his entropy definition, that which has maximum entropy. In prin-
ciple, the solution verifying such a condition should be the most reliable. A
great deal of work has been carried out in the last 30 years on the use of the
entropy for the general problem of data filtering and deconvolution (Ables,
1974; Bontekoe et al., 1994; Burg, 1978; Frieden, 1978a; Gull and Skilling,
1991; Narayan and Nityananda, 1986; Pantin and Starck, 1996; Skilling, 1989;
Weir, 1992; Mohammad-Djafari, 1994; Mohammad-Djafari, 1998). Tradition-
ally information and entropy are determined from events and the probability
of their occurrence. Signal and noise are basic building-blocks of signal and
data analysis in the physical sciences. Instead of the probability of an event,
we are led to consider the probabilities of our data being either signal or
noise.

Observed data Y in the physical sciences are generally corrupted by noise,
which is often additive and which follows in many cases a Gaussian distrib-
ution, a Poisson distribution, or a combination of both. Other noise models
may also be considered. Using Bayes’ theorem to evaluate the probability
distribution of the realization of the original signal X, knowing the data Y ,
we have

p(X|Y ) =
p(Y |X).p(X)

p(Y )
(7.1)
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p(Y |X) is the conditional probability distribution of getting the data Y given
an original signal X, i.e. it represents the distribution of the noise. It is given,
in the case of uncorrelated Gaussian noise with variance σ2, by:

p(Y |X) = exp

⎧⎨
⎩−

∑
pixels

(Y − X)2

2σ2

⎫⎬
⎭ (7.2)

The denominator in equation 7.1 is independent of X and is considered as a
constant (stationary noise). p(X) is the a priori distribution of the solution
X. In the absence of any information on the solution X except its positivity,
a possible course of action is to derive the probability of X from its entropy,
which is defined from information theory.

The main idea of information theory (Shannon, 1948) is to establish a
relation between the received information and the probability of the observed
event (Bijaoui, 1984). If we denote I(E) the information related to the event
E, and p the probability of this event occurring, then we consider that

I(E) = f(p) (7.3)

Thereafter we assume the two following principles:

– The information is a decreasing function of the probability. This implies
that the more information we have, the less will be the probability associ-
ated with one event.

– Additivity of the information. If we have two independent events E1 and
E2, the information I(E) associated with the occurrence of both is equal
to the addition of the information of each of them.

I(E) = I(E1) + I(E2) (7.4)

Since E1 (of probability p1) and E2 (of probability p2) are independent,
then the probability of both occurring is equal to the product of p1 and p2.
Hence

f(p1p2) = f(p1) + f(p2) (7.5)

A good choice for the information measure is

I(E) = k ln(p) (7.6)

where k is a constant. Information must be positive, and k is generally fixed
at −1.

Another interesting measure is the mean information which is denoted

H = −
∑

i

pi ln(pi) (7.7)

This quantity is called the entropy of the system and was established by
Shannon (1948).

This measure has several properties:
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– It is maximal when all events have the same probability pi = 1/Ne (Ne be-
ing the number of events), and is equal to ln(Ne). It is in this configuration
that the system is the most undefined.

– It is minimal when one event is sure. In this case, the system is perfectly
known, and no information can be added.

– The entropy is a positive, continuous, and symmetric function.

If we know the entropy H of the solution (the next section describes
different ways to calculate it), we derive its probability by

p(X) = exp(−αH(X)) (7.8)

Given the data, the most probable image is obtained by maximizing
p(X|Y ). Taking the logarithm of equation 7.1, we thus need to maximize

ln(p(X|Y )) = −αH(X) + ln(p(Y |X)) − ln(p(Y )) (7.9)

The last term is a constant and can be omitted. In the case of Gaussian noise,
the solution is found by minimizing

J(X) =
∑

pixels

(Y − X)2

2σ2
+ αH(X) =

χ2

2
+ αH(X) (7.10)

which is a linear combination of two terms: the entropy of the signal, and a
quantity corresponding to χ2 in statistics measuring the discrepancy between
the data and the predictions of the model. α is a parameter that can be viewed
alternatively as a Lagrangian parameter or a value fixing the relative weight
between the goodness-of-fit and the entropy H.

For the deconvolution problem, the object-data relation is given by the
convolution

Y = P ∗ X (7.11)

where P is the point spread function, and the solution is found (in the case
of Gaussian noise) by minimizing

J(X) =
∑

pixels

(Y − P ∗ X)2

2σ2
+ αH(X) (7.12)

The way the entropy is defined is fundamental, because from its definition
will depend the solution. The next section discusses the different approaches
which have been proposed in the past. Multiscale Entropy, presented in sec-
tion 3, is based on the wavelet transform and noise modeling. It is a means
of measuring information in a data set, which takes into account important
properties of the data which are related to content. We describe how it can
be used for signal and image filtering, and for image deconvolution. The case
of multi-channel data is then considered before we proceed to the use of mul-
tiscale entropy for description of image content. We pursue two directions of
enquiry: determining whether signal is present in the image or not, possibly
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at or below the image’s noise level; and how multiscale entropy is very well
correlated with the image’s content in the case of astronomical stellar fields.
Knowing that multiscale entropy represents well the content of the image,
we finally use it to define the optimal compression rate of the image. In all
cases, a range of examples illustrate these new results.

7.2 The Concept of Entropy

We wish to estimate an unknown probability density p(X) of the data. Shan-
non (1948), in the framework of information theory, defined the entropy of
an image X by

Hs(X) = −
Nb∑
k=1

pk log pk (7.13)

where X = {X1, ..XN} is an image containing integer values, Nb is the num-
ber of possible values of a given pixel Xk (256 for an 8-bit image), and the
pk values are derived from the histogram of X:

pk =
#Xj = k

N
(7.14)

#Xj = k gives the number of pixels with value k, i.e., Xj = k.
If the image contains floating values, it is possible to build up the his-

togram L of values Li using a suitable interval ∆, counting up how many
times mk each interval (Lk, Lk + ∆) occurs among the N occurrences. The
probability that a data value belongs to an interval k is pk = mk

N , and each
data value has a probability pk.

The entropy is minimum and equal to zero when the signal is flat, and
increases when we have some fluctuations. Using this entropy in equation 7.10
leads to minimization of

J(X) =
χ2

2
+ αHs(X) (7.15)

This is a minimum entropy restoration method.
The trouble with this approach is that, because the number of occur-

rences is finite, the estimate pk will be in error by an amount proportional to
m

− 1
2

k (Frieden, 1978b). The error becomes significant when mk is small. Fur-
thermore this kind of entropy definition is not easy to use for signal restora-
tion, because the gradient of equation 7.15 is not easy to compute. For these
reasons, other entropy functions are generally used. The main ones are:

– Burg (1978):

Hb(X) = −
N∑

k=1

ln(Xk) (7.16)
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– Frieden (1978a):

Hf (X) = −
N∑

k=1

Xk ln(Xk) (7.17)

– Gull and Skilling (1991):

Hg(X) =
N∑

k=1

Xk − Mk − Xk ln(
Xk

Mk
) (7.18)

where M is a given model, usually taken as a flat image

In all definitions N is the number of pixels, and k represents an index pixel.
Each of these entropies can be used, and they correspond to different

probability distributions that one can associate with an image (Narayan and
Nityananda, 1986). See (Frieden, 1978a; Skilling, 1989) for descriptions. The
last definition of the entropy above has the advantage of having a zero maxi-
mum when X equals the model M . All of these entropy measures are negative
(if Xk > 1), and maximum when the image is flat. They are negative because
an offset term is omitted which has no importance for the minimization of the
functional. The fact that we consider that a signal has maximum informa-
tion value when it is flat is evidently a curious way to measure information. A
consequence is that we must now maximize the entropy if we want a smooth
solution, and the probability of X must be redefined by:

p(X) = exp(αH(X)) (7.19)

The sign has been inverted (see equation 7.8), which is natural if we want the
best solution to be the smoothest. These three entropies, above, lead to the
Maximum Entropy Method method, MEM, for which the solution is found
by minimizing (for Gaussian noise)

J(X) =
N∑

k=1

(Yk − Xk)2

2σ2
− αH(X) (7.20)

To recapitulate, the different entropy functions which have been proposed
for image restoration have the property of being maximal when the image is
flat, and of decreasing when we introduce some information. So minimizing
the information is equivalent to maximizing the entropy, and this has led to
the well-known Maximum Entropy Method, MEM. For the Shannon entropy
(which is obtained from the histogram of the data), the opposite is the case.
The entropy is null for a flat image, and increases when the data contains
some information. So, if the Shannon entropy were used for restoration, this
would lead to a Minimum Entropy Method.

In 1986, Narayan and Nityanda (1986) compared several entropy func-
tions, and concluded by saying that all were comparable if they have good
properties, i.e. they enforce positivity, and they have a negative second deriv-
ative which discourages ripple. They showed also that results varied strongly
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with the background level, and that these entropy functions produced poor
results for negative structures, i.e. structures under the background level (ab-
sorption area in an image, absorption band in a spectrum, etc.), and compact
structures in the signal. The Gull and Skilling entropy gives rise to the diffi-
culty of estimating a model. Furthermore it has been shown (Bontekoe et al.,
1994) that the solution is dependent on this choice.

The determination of the α parameter is also not an easy task and in fact it
is a very serious problem facing the maximum entropy method. In the historic
MAXENT algorithm of Skilling and Gull, the choice of α is such that it must
satisfy the ad hoc constraint χ2 = N when the deconvolution is achieved,
N being the number of degrees of freedom of the system i.e. the number
of pixels in image deconvolution problems. But this choice systematically
leads to an under-fitting of the data (Titterington, 1985) which is clearly
apparent for imaging problems with little blurring. In reality, the χ2 statistic
is expected to vary in the range N ±

√
2N from one data realization to

another. In the Quantified Maximum Entropy point of view (Skilling, 1989),
the optimum value of α is determined by including its probability P(α) in
Bayes’ equation and then by maximizing the marginal probability of having
α, knowing the data and the model m. In practice, a value of α which is
too large gives a resulting image which is too regularized with a large loss of
resolution. A value which is too small leads to a poorly regularized solution
showing unacceptable artifacts. Taking a flat model of the prior image softens
the discontinuities which may appear unacceptable for astronomical images,
often containing as they do stars and other point-like objects. Therefore the
basic maximum entropy method appears to be not very appropriate for this
kind of image which contains high and low spatial frequencies at the same
time. Another point to be noted is a ringing effect of the maximum entropy
method algorithm, producing artifacts around bright sources.

To solve these problems while still using the maximum entropy concept,
some enhancements of the maximum entropy method have been proposed.
Noticing that neighboring pixels of reconstructed images with MAXENT
could have values differing a lot in expected flat regions (Charter, 1990),
Gull and Skilling introduced the concepts of hidden image S and intrinsic
correlation function C (Gaussian or cubic spline-like) in the Preblur MAX-
ENT algorithm.

The intrinsic correlation function, ICF, describes a minimum scale length
of correlation in the desired image O which is achieved by assuming that

O = C ∗ S (7.21)

This corresponds to imposing a minimum resolution on the solution O. Since
the hidden space image S is not spatially correlated, this can be regularized
by the entropy

Hg(h) =
N∑

k=1

Sk − Mk − Sk ln(
Sk

Mk
) (7.22)
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In astronomical images many scale lengths are present, and the Multi-
channel Maximum Entropy Method, developed by Weir (Weir, 1991; Weir,
1992; Bridle et al., 1998; Marshall et al., 2002), uses a set of ICFs having
different scale lengths, each defining a channel. The visible-space image is
now formed by a weighted sum of the visible-space image channels Oj :

O =
Nc∑
j=1

pjOj (7.23)

where Nc is the number of channels. Like in Preblur MAXENT, each solution
Oj is supposed to be the result of the convolution between a hidden image
Sj with a low-pass filter (ICF) Cj :

Oj = Cj ∗ Sj (7.24)

But such a method has several drawbacks:

1. The solution depends on the width of the ICFs (Bontekoe et al., 1994).
2. There is no rigorous way to fix the weights pj (Bontekoe et al., 1994).
3. The computation time increases linearly with the number of pixels.
4. The solution obtained depends on the choice of the models Mj (j =

1 . . . Nc) which were chosen independently of the channel.

In 1993, Bontekoe et al. (1994) used a special application of this method
which they called Pyramid Maximum Entropy on infrared image data. The
pyramidal approach allows the user to have constant ICF width, and the
computation time is reduced. It is demonstrated (Bontekoe et al., 1994) that
all weights can be fixed (pj = 1 for each channel).

This method eliminates the first three drawbacks, and gives better recon-
struction of the sharp and smooth structures. But in addition to the two last
drawbacks, a new one is added: since the images Oj have different sizes (due
to the pyramidal approach), the solution O is built by duplicating the pixels
of the subimages Oj of each channel. This procedure is known to produce
artifacts due to the appearance of high frequencies which are incompatible
with the real spectrum of the true image Ô.

However this problem can be easily overcome by duplicating the pixels
before convolving with the ICF, or expanding the channels using linear in-
terpolation. Thus the introduction of the “pyramid of resolution” has solved
some problems and brought lots of improvements to the classic maximum
entropy method, but has also raised other questions. In order to derive the
model from a physical value, Pantin and Starck (1996) brought the wavelet
transform into this context, and defined entropy as follows:

H(O) =
1
σ2

I

l∑
j=1

Nj∑
k=1

σj(wj,k − Mj − |wj,k| ln
|wj,k|
Mj

) (7.25)



208 7. An Entropic Tour of Astronomical Data Analysis

where l is the number of scales, and Nj is the number of samples in the band
j (Nj = N for the à trous algorithm). The multiscale entropy is the sum of
the entropy at each scale.

The coefficients wj,k are wavelet coefficients, and we take the absolute
value of wj,k in this definition because the values of wj,k can be positive or
negative, and a negative signal contains also some information in the wavelet
transform.

The advantage of such a definition of entropy is the fact we can use previ-
ous work concerning the wavelet transform and image restoration (Murtagh
et al., 1995; Starck and Murtagh, 1994; Starck and Bijaoui, 1994). The noise
behavior has already been studied in the case of the wavelet transform and
we can estimate the standard deviation of the noise σj at scale j. These
estimates can be naturally introduced in our models mj :

Mj = kmσj (7.26)

The model Mj at scale j represents the value taken by a wavelet coefficient in
the absence of any relevant signal and, in practice, it must be a small value
compared to any significant signal value. Following the Gull and Skilling
procedure, we take Mj as a fraction of the noise because the value of σj

can be considered as a sort of physical limit under which a signal cannot be
distinguished from the noise (km = 1

100 ).
As described above, many studies have been carried out in order to im-

prove the functional to be minimized. But the question which should be raised
is: what is a good entropy for signal restoration?

In (Starck et al., 1998b; Starck and Murtagh, 2001; Starck et al., 2001),
the benchmark properties for a good “physical” definition of entropy were
discussed. Assuming that a signal X is the sum of several components:

X = S + B + N (7.27)

where S is the signal of interest, B the background, and N the noise, we
proposed that the following criteria should be verified:

1. The information in a flat signal is zero (S = 0, N = 0 and B = Const.).
2. The amount of information in a signal is independent of the background

(H(X) is independent of B).
3. The amount of information is dependent on the noise (H(X) is dependent

on N). A given signal X does not furnish the same information if the
noise N is high or small.

4. The entropy must work in the same way for a pixel which has a value
B + ε, and for a pixel which has a value B − ε. H(X) must be a function
of the absolute value of S instead of S.

5. The amount of information is dependent on the correlation in the signal.
If the signal S presents large features above the noise, it contains a lot of
information. By generating a new set of data from S, by randomly taking
the pixel values in S, the large features will evidently disappear, and this
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Fig. 7.1. Saturn image (left) and the same data distributed differently (right).
These two images have the same entropy using any of the standard entropy defini-
tions.

new signal will contain less information. But the pixel values will be the
same as in S.

Fig. 7.1 illustrates the last point perfectly. The second image is obtained
by distributing randomly the Saturn image pixel values, and the standard
entropy definitions produce the same information measurement for both im-
ages. The concept of information becomes really subjective, or at least it
depends on the application domain. Indeed, for someone who is not involved
in image processing, the second image contains less information than the first
one. For someone working on image transmission, it is clear that the second
image will require more bits for lossless transmission, and from this point
of view, he or she will consider that the second image contains more infor-
mation. Finally, for data restoration, all fluctuations due to noise are not of
interest, and do not contain relevant information. From this physical point of
view, the standard definition of entropy seems badly adapted to information
measurement in signal restoration.

These points are not axioms, but rather desirable properties that should
be respected by the entropy functional in order to characterize well the data.
We see that in these properties we are taking account of: (i) the background –
very much a relative notion, associated with our understanding of the image
or signal; and (ii) the noise – important when handling scientific, medical and
other images and signals. The background can also be termed continuum, or
DC component, and is often very dependent on the semantics of the image.
Our signal generation process could be conceived of in terms of thermody-
namics (Ferraro et al., 1999): the rate of variation of entropy is composed of
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internal heat changes, and heat transfers from external sources. The latter is
our noise, N , and the former is signal including background.

It is clear that among all entropy functions proposed in the past, it is the
Shannon one (1948) which best respects these criteria. Indeed, if we assume
that the histogram bin is defined as a function of the standard deviation of
the noise, the first four points are verified, while none of these criteria are
verified with other entropy functions (and only one point is verified for the
Gull and Skilling entropy by taking the model equal to the background). We
reiterate that our critique of information measures is solely in view of our
overriding goals, namely to define a demonstrably appropriate measure for
image and signal processing in the physical sciences.

7.3 Multiscale Entropy

7.3.1 Definition

Following on from the desirable criteria discussed in the previous section,
a possibility is to consider that the entropy of a signal is the sum of the
information at each scale of its wavelet transform, and the information of a
wavelet coefficient is related to the probability of it being due to noise. Let us
look at how this definition holds up in practice. Denoting h the information
relative to a single wavelet coefficient, we define

H(X) =
l∑

j=1

Nj∑
k=1

h(wj,k) (7.28)

with h(wj,k) = − ln p(wj,k). l is the number of scales, and Nj is the number
of samples in band (scale) j. For Gaussian noise, we get

h(wj,k) =
w2

j,k

2σ2
j

+ Const. (7.29)

where σj is the noise at scale j. Below, when we use the information in
a functional to be minimized, the constant term has no effect and we will
take the liberty of omiting it. We see that the information is proportional
to the energy of the wavelet coefficients. We will call this entropy defini-
tion, ENERGY-MSE, in the following. A similar result has been derived in
(Maisinger et al., 2004) by a different method.

The larger the value of a normalized wavelet coefficient, then the lower
will be its probability of being noise, and the higher will be the information
furnished by this wavelet coefficient. We can see easily that this entropy
fulfills all the requirements listed in the previous section. Just as for Shannon
entropy, here information increases with entropy. Using such an entropy for
optimization purposes will ordinarily lead to a minimum entropy method. If
we consider two signals S1, S2, derived from a third one S0 by adding noise:
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S1 = S0 + N1(σ1) (7.30)
S2 = S0 + N2(σ2)

then we have:

if σ1 < σ2 then H(S1) > H(S2) (7.31)

and a flat image has zero entropy.
This entropy definition is completely dependent on the noise modeling.

If we consider a signal S, and we assume that the noise is Gaussian, with
a standard deviation equal to σ, we won’t measure the same information
compared to the case when we consider that the noise has another standard
deviation value, or if the noise follows another distribution. As for the Shan-
non entropy, the information increases with the entropy, and using such an
entropy leads to a Minimum Entropy Method.
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Fig. 7.2. Multiscale entropy of Saturn (continuous curve), and multiscale entropy
of the scrambled image (dashed curve).

Fig. 7.2 shows the information measure at each scale for both the Saturn
image and its scrambled version. The global information is the addition of
the information at each scale. We see that for the scrambled image (dashed
curve), the information-versus-scale curve is flat, while for the unscrambled
saturn image, it increases with the scale.

Equation 7.28 holds if the wavelet coefficients are statistically indepen-
dent, which should imply that our approach is limited to an orthogonal or bi-
orthogonal transform. However, this disadvantage may be addressed through
the use of the so-called cycle-spinning algorithm (also named translation-
invariant algorithm) (Coifman and Donoho, 1995), which consists of perform-
ing the process of “transform,” “denoise,” and “inverse transform” on every
orthogonal basis corresponding to versions of the data obtainable by combi-
nations of circular left-right and upwards-downwards translations. Further-
more Donoho and Coifman (1995) have shown that using a non-decimating
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wavelet transform is equivalent to performing a set of decimated transforms
with shift on the input signal. This means that equation 7.28 remains true
for non-decimated wavelet transforms if it is normalized by the number of
shifts. We will consider the orthogonal case in the following, knowing it can
be generalized to non-decimated transforms.

7.3.2 Signal and Noise Information

Assuming that the signal X is still composed of the three components S, B, N
(X = S+B+N), H is independent of B but not of N . Hence, our information
measure is corrupted by noise, and we decompose our information measure
into two components, one (Hs) corresponding to the non-corrupted part, and
the other (Hn) to the corrupted part. We have (Starck et al., 1998b)

H(X) = Hs(X) + Hn(X) (7.32)

We will define in the following Hs as the signal information, and Hn as the
noise information. It is clear that noise does not contain any meaningful
information, and so Hn describes a semantic component which is usually not
informative for us. For each wavelet coefficient wj,k, we have to estimate the
fractions hn and hs of h (with h(wj,k) = hn(wj,k) + hs(wj,k)) which should
be assigned to Hn and Hs. Hence signal information and noise information
are defined by

Hs(X) =
l∑

j=1

Nj∑
k=1

hs(wj,k)

Hn(X) =
l∑

j=1

Nj∑
k=1

hn(wj,k) (7.33)

If a wavelet coefficient is small, its value can be due to noise, and the infor-
mation h relative to this single wavelet coefficient should be assigned to hn.
If the wavelet coefficient is high, compared to the noise standard deviation,
its value cannot be due to the noise, and h should be assigned to hs. Note
that Hs(X) + Hn(X) is always equal to H(X).
N1-MSE. A first approach for deriving hs and hn from ps and pn is to just
consider ps and pn as weights on the information h. Then we have:

hs(wj,k) = ps(wj,k)h(wj,k) (7.34)
hn(wj,k) = pn(wj,k)h(wj,k)

and the noise and signal information in a signal are

Hs(X) =
l∑

j=1

Nj∑
k=1

hs(wj,k) (7.35)

Hn(X) =
l∑

j=1

Nj∑
k=1

hn(wj,k)
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which leads for Gaussian noise to:

Hs(X) =
l∑

j=1

Nj∑
k=1

w2
j,k

2σ2
j

erf

(
| wj,k |√

2σj

)
(7.36)

Hn(X) =
l∑

j=1

Nj∑
k=1

w2
j,k

2σ2
j

erfc

(
| wj,k |√

2σj

)

We will refer to these functions by the name N1-MSE in the following.

N2-MSE. By the previous entropy measure, information relative to high
wavelet coefficients is completely assigned to the signal. For a restoration,
this allows us also to exclude wavelet coefficients with high signal-to-noise
ratio (SNR) from the regularization. This leads to perfect fit of the solution
with the data at scales and positions with high SNR. If we want to consider
the information due to noise, even for significant wavelet coefficients, the noise
information relative to a wavelet coefficient must be estimated differently.

The idea for deriving hs and hn is the following: we imagine that the
information h relative to a wavelet coefficient is a sum of small information
components dh, each of them having a probability to be noise information.
To understand this principle, consider two coefficients u and w (w > u) with
Gaussian noise (σ = 1). The information relative to w is h(w) = w2. When
u varies from 0 to w with step du, the information h(u) increases until it
becomes equal to h(w). When it becomes closer to w, the probability that the
difference w−u can be due to the noise increases, and the added information
dh is more corrupted by the noise. By weighting the added information by
the probability that the difference w − u is due to the noise, we have:

hn(wj,k) =
∫ |wj,k|

0

pn(| wj,k | −u)
(

∂h(x)
∂x

)
x=u

du (7.37)

is the noise information relative to a single wavelet coefficient, and

hs(wj,k) =
∫ |wj,k|

0

ps(| wj,k | −u)
(

∂h(x)
∂x

)
x=u

du (7.38)

is the signal information relative to a single wavelet coefficient. For Gaussian
noise, we have

hn(wj,k) =
1
σ2

j

∫ |wj,k|

0

u erfc

(
| wj,k | −u√

2σj

)
du

hs(wj,k) =
1
σ2

j

∫ |wj,k|

0

u erf

(
| wj,k | −u√

2σj

)
(7.39)

Equations 7.35 and 7.39 lead to two different ways to regularize a sig-
nal. The first requires that we use all the information which is furnished in
high wavelet coefficients, and leads to an exact preservation of the flux in a
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structure. If the signal gives rise to high discontinuities, artifacts can appear
in the solution due to the fact that the wavelet coefficients located at the
discontinuities are not noisy, but have been modified like noise. The second
equation does not have this drawback, but a part of the flux of a structure
(compatible with noise amplitude) can be lost in the restoration process. It
is however not as effective as in the standard maximum entropy methods.

LOG-MSE. The multiscale entropy function used in (Pantin and Starck,
1996) – we call it LOG-MSE in the following – can be considered in our
framework if h is defined by:

h(wj,k) =
σj

σ2
X

[wj,k − Mj− | wj,k | log
(
| wj,k |
kmσj

)
] (7.40)

where σX is the noise standard deviation in the data. And hn is defined by:

hn(wj,k) = A(pn(wj,k))h(wj,k) (7.41)

where A is a function which takes the values 0 or 1 depending on pn(wj,k):

A(pn(wj,k)) =
{

1 if pn(wj,k) > ε
0 if pn(wj,k) ≤ ε

(7.42)

Wavelet coefficients which are significant will force A(pn(wj,k)) to be equal
to 0 (because their probabilities of being due to noise is very small), and do
not contribute to Hn. This means that using Hn in a regularization process
will have an effect only on scales and positions where no significant wavelet
coefficient is detected.

In practice we prefer N1-MSE and N2-MSE for several reasons. First the
way the model is used in equation 7.40 is somewhat artificial, and there is an
undetermination when the wavelet coefficient is equal to 0. A better choice
for the LOG-MSE would be the Herbert and Leaby function (1989):

h(wj,k,l) ∝ log
(

1 +
| wj,k,l |

σj

)
(7.43)

LOG-MSE seems difficult to generalize to other classes of noise, which is
not the case for N1-MSE and N2-MSE. The ENERGY-MSE is quadratic and
leads to a strong penalization even for wavelet coefficients with high signal-to-
noise ratio. Such penalization terms are known to oversmooth the strongest
peaks and should not be used. N2-MSE has the advantage of estimating
the corrupted part in the measured information h, even for large wavelet
coefficients. Fig. 3.12 shows the multiscale entropy penalization function.

Multiscale MEM and ICF In (Maisinger et al., 2004), it was argued that
the multiscale entropy is merely a special case of the intrinsic correlation func-
tion approach, where we replace the ICF kernel by a wavelet function. From
the strict mathematical point of view, this is right, but this perspective min-
imizes completely the improvement related to the wavelets. All the concepts
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of sparse representation (which is the key to wavelet success in many applica-
tions), fast decomposition and reconstruction, zero mean coefficients (which
allows us to get wavelet coefficients which are independent of the background
and to derive robust noise modeling) do not exist in the ICF-MEM approach.
Furthermore, the ICF-MEM approach requires us to estimate accurately the
background, which may be a very difficult task, and it has be shown (Bon-
tekoe et al., 1994) that the solution depends strongly on this estimation. On
the contrary, Multiscale MEM needs only an estimation of the noise stan-
dard deviation, which is easy to determine. We prefer to keep our vision of
the multiscale entropy method as a specific case of the generalized wavelet
regularization techniques rather than as an extension of the ICF approach.

7.4 Multiscale Entropy Filtering

7.4.1 Filtering

The problem of filtering or restoring data D can be expressed by the follow-
ing: We search for a solution D̃ such that the difference between D and D̃
minimizes the information due to the signal, and such that D̃ minimizes the
information due to the noise.

J(D̃) = Hs(D − D̃) + Hn(D̃) (7.44)

Furthermore, the smoothness of the solution can be controlled by adding a
parameter:

J(D̃) = Hs(D − D̃) + αHn(D̃) (7.45)

In practice (Chambolle et al., 1998), we minimize for each wavelet coeffi-
cient wj,k:

j(w̃j,k) = hs(wj,k − w̃j,k) + αhn(w̃j,k) (7.46)

j(w̃j,k) can be obtained by any minimization routine. In our examples, we
have used a simple binary search.

Fig. 7.3 shows the result when minimizing the functional j with different
α values, and noise standard deviation equal to 1. The corrected wavelet
coefficient is plotted versus the wavelet coefficient. From the top curve to the
bottom one, α is respectively equal to 0, 0.1, 0.5, 1, 2, 5, 10. The higher the
value of α, the more the corrected wavelet coefficient is reduced. When α is
equal to 0, there is no regularization and the data are unchanged.

7.4.2 The Regularization Parameter

The α parameter can be used in different ways:

– It can be fixed to a given value (user parameter): α = αu. This method
leads to very fast filtering using the optimization proposed in the following.
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Fig. 7.3. Corrected wavelet coefficient versus the wavelet coefficient with different
α values (from the top curve to the bottom one, α is respectively equal to 0,0.1,0.5,
1, 2, 5,10).

– It can be calculated under the constraint that the residual should have
some specific characteristic. For instance, in the case of Gaussian noise, we
expect a residual with a standard deviation equal to the noise standard
deviation. In this case, α = αcαu. The parameter finally used is taken as
the product of a user parameter (defaulted to 1) and the calculated value
αc. This allows the user to keep open the possibility of introducing an
under-smoothing, or an over-smoothing. It is clear that such an algorithm
is iterative, and will always take more time than a simple hard thresholding
approach.

– We can permit more constraints on α by using the fact that we expect a
residual with a given standard deviation at each scale j equal to the noise
standard deviation σj at the same scale. Then rather than a single α we
have an αj per scale.

A more sophisticated way to fix the α value is to introduce a distribution
(or a priori knowledge) of how the regularization should work. For instance,
in astronomical image restoration, the analyst generally prefers that the flux
(total intensity) contained in a star or in a galaxy is not modified by the
restoration process. This means that the residual at positions of astronomical
objects will approximately be equal to zero. All zero areas in the residual map
obviously do not relate to realistic noise behavior, but from the user’s point
of view they are equally important. For the user, all visible objects in the
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Fig. 7.4. Corrected wavelet coefficient versus the wavelet coefficient with different
α values.

filtered map contain the same flux as in the raw data. In order to obtain this
kind of regularization, the α parameter is no longer a constant value, but
depends on the raw data. Hence we have one α per wavelet coefficient, which
will be denoted αs(wj,k), and it can be derived by

αs(wj,k) = αj
1 − L(wj,k)

L(wj,k)
(7.47)

with L(wj,k) = MIN(1,
|wj,k|
ksσj

), where ks is a user parameter (typically de-
faulted to 3).

When L(wj,k) is close to 1, αs(wj,k) becomes equal to zero, there is no
longer any regularization, and the obvious solution is w̃j,k = wj,k. Hence, the
wavelet coefficient is preserved from any regularization. If L(wj,k) is close to
0, αs(wj,k) tends toward infinity, the first term in equation (7.46) is negligible,
and the solution will be w̃j,k = 0. In practice, this means that all coefficients
higher than ksσj are untouched as in the hard thresholding approach. We
also notice that by considering a distribution L(wj,k) equal to 0 or 1 (1
when | wj,k |> ksσj for instance), the solution is then the same as a hard
thresholding solution.

7.4.3 Use of a Model

Using a model in wavelet space has been successfully applied for denoising:
see for example (Chipman et al., 1997; Crouse et al., 1998; Jansen and Roose,
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1998). If we have a model Dm for the data, this can also naturally be inserted
into the filtering equation:

Jm(D̃) = Hs(D − D̃) + αHn(D̃ − Dm) (7.48)

or, for each wavelet coefficient wj,k:

jm(w̃j,k) = hs(wj,k − w̃j,k) + αhn(w̃j,k − wm
j,k) (7.49)

where wm
j,k is the corresponding wavelet coefficient of Dm.

The model can be of quite different types. It can be an image, and in
this case, the coefficients wm

j,k are obtained by a simple wavelet transform
of the model image. It can also be expressed by a distribution or a given
function which furnishes a model wavelet coefficient wm from the data. For
instance, the case where we want to keep intact high wavelet coefficients (see
equation 7.47) can also be treated by the use of a model, just by calculating
wm

j,k by

wm
j,k = ps(wj,k)wj,k (7.50)

When wj,k has a high signal-to-noise ratio, Ps(wj,k) is close to 1, and wm
j,k is

equal to wj,k. Then αhn(w̃j,k −wm
j,k) is equal to zero and w̃j,k = wj,k, i.e. no

regularization is carried out on wj,k.
Other models may also be considered. When the image contains contours,

it may be useful to derive the model from the detected edges. Zero-crossing
wavelet coefficients indicate where the edges are (Mallat, 1991). By averaging
three wavelet coefficients in the direction of the detected edge, we get a value
wa, from which we derive the SNR Se of the edge (Se = 0 if there is no
detected edge). The model value wm is set to wa if a contour is detected,
and 0 otherwise. This approach has the advantage of filtering the wavelet
coefficient, and even if an edge is clearly detected the smoothing operates in
the direction of the edge.

There is naturally no restriction on the model. When we have a priori
information of the content of an image, we should use it in order to improve
the quality of the filtering. It is clear that the way we use knowledge of the
presence of edges in an image is not a closed question. The model in the
entropy function is an interesting aspect to investigate further in the future.

7.4.4 The Multiscale Entropy Filtering Algorithm

The Multiscale Entropy Filtering algorithm, MEF (Starck and Murtagh,
1999), consists of minimizing for each wavelet coefficient wj,k at scale j

jm(w̃j,k) = hs(wj,k − w̃j,k) + αjhn(w̃j,k − wm
j,k) (7.51)

or

jms(w̃j,k) = hs(wj,k − w̃j,k) + αjαs(wj,k)hn(w̃j,k − wm
j,k) (7.52)
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if the SNR is used. By default the model wm
j,k is set to 0. There is no user

parameter because the αj are calculated automatically in order to verify the
noise properties. If over-smoothing (or under-smoothing) is desired, a user
parameter must be introduced. We propose in this case to calculate the αj in
the standard way, and then to multiply the calculated values by a user value
αu defaulted to 1. Increasing αu will lead to over-smoothing, while decreasing
αu implies under-smoothing.

Using a simple dichotomy, the algorithm becomes:

1. Estimate the noise in the data σ (see chapter 2).
2. Determine the wavelet transform of the data.
3. Calculate from σ the noise standard deviation σj at each scale j.
4. Set αmin

j = 0, αmax
j = 200.

5. For each scale j do

a) Set αj = αmin
j +αmax

j

2
b) For each wavelet coefficient wj,k of scale j, find w̃j,k by minimizing

jm(w̃j,k) or jms(w̃j,k)
c) Calculate the standard deviation of the residual:

σr
j =

√
1

Nj

∑Nj

k=1(wj,k − w̃j,k)2

d) If σr
j > σj then the regularization is too strong, and we set αmax

j

to αj , otherwise we set αmin
j to αj (σj is derived from the method

described in section 2.4).
6. If αmax

j − αmin
j > ε then go to 5.

7. Multiply all αj by the constant αu.
8. For each scale j and for each wavelet coefficient w find w̃j,k by minimizing

jm(w̃j,k) or jms(w̃j,k).
9. Reconstruct the filtered image from w̃j,k by the inverse wavelet transform.

The minimization of jm or jms (step 5b) can be carried out by any method.
For instance, a simple dichotomy can be used in order to find w̃ such that

∂hs(w − w̃)
∂w̃

= −αj
∂hn(w̃)

∂w̃
(7.53)

The idea to treat the wavelet coefficients such that the residual respects
some constraint has also been used in cross-validation (Nason, 1994; Nason,
1996; Amato and Vuza, 1997). However, cross validation appears to overfit
the data (Strang and Nguyen, 1996).

See Appendices D and E for the calculation of the derivative of hs and
hn.

7.4.5 Optimization

In the case of Gaussian noise, the calculation of the erf and erfc functions
could require considerable time compared to a simpler filtering method. This
can be easily avoided by precomputing tables, which is possible due to the
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specific properties of ∂hs

∂w̃ and ∂hn

∂w̃ . hs and hn are functions of the standard
deviation of the noise, and we denote the reduced functions by hr

s and hr
n,

i.e. hs and hn for noise standard deviation equal to 1. It is easy to verify that

∂hs(wj,k)
∂w̃

= σj

∂hr
s(

wj,k

σj
)

∂w̃
(7.54)

∂hn(wj,k)
∂w̃

= σj

∂hr
n(wj,k

σj
)

∂w̃
(7.55)

Furthermore, ∂hr
n

∂w̃ and ∂hr
s

∂w̃ are symmetric functions, ∂hr
n

∂w̃ converges to a con-
stant value C (C = 0.798), and ∂hr

s

∂w̃ tends to C − w when w is large enough
(> 5). In our implementation, we precomputed the tables using a step-size
of 0.01 from 0 to 5. If no model is introduced and if the SNR is not used, the
filtered wavelet coefficients are a function of α and wj

σj
, and a second level

of optimization can be performed using precomputed tables of solutions for
different values of α.

7.4.6 Examples

1D Data Filtering

Figs. 7.5, 7.6 and 7.7 show the results of the multiscale entropy method on
simulated data (2048 pixels). From top to bottom, each figure shows simu-
lated data, the noisy data, the filtered data, and both noisy and filtered data
overplotted. For the two first filterings, all default parameters were taken
(noise standard deviation and αj automatically calculated, αu = 1, and the
chosen wavelet transform algorithm is the à trous one). For the block sig-
nal (Fig. 7.5), default parameters were also used, but the multiresolution
transform we used is the multiresolution median transform.

Simulations have shown (Starck and Murtagh, 1999) that the MEF
method produces a better result than the standard soft or hard thresholding,
from both the visual aspect and PSNR (peak signal-to-noise ratio).

7.5 Deconvolution

7.5.1 The Principle

The most realistic solution of the deconvolution problem is that which mini-
mizes the amount of information, but remains compatible with the data. For
the MEM method, minimizing the information is equivalent to maximizing
the entropy and the functional to minimize is

J(O) =
N∑

k=1

(Ik − (P ∗ O)k)2

2σ2
I

− αH(O) (7.56)
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Fig. 7.5. From top to bottom, simulated block data, noise blocks, filtered blocks,
and both noisy and filtered blocks overplotted.
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Fig. 7.6. From top to bottom, simulated data, noisy data, filtered data, and both
noisy and filtered data overplotted.
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Fig. 7.7. From top to bottom, simulated data, noisy data, filtered data, and both
noisy and filtered data overplotted.
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where H is either the Frieden or the Gull and Skilling entropy.
Similarly, using the multiscale entropy, minimizing the information is

equivalent to minimizing the entropy and the functional to minimize is

J(O) =
N∑

k=1

(Ik − (P ∗ O)k)2

2σ2
I

+ αH(O) (7.57)

We have seen that in the case of Gaussian noise, H is given by the energy
of the wavelet coefficients. We have

J(O) =
N∑

k=1

(Ik − (P ∗ O)k)2

2σ2
I

+ α

l∑
j=1

Nj∑
k=1

w2
j,k

2σ2
j

(7.58)

where σj is the noise at scale j, Nj the number of pixels at the scale j, σI

the noise standard deviation in the data, and l the number of scales.
Rather than minimizing the amount of information in the solution, we

may prefer to minimize the amount of information which can be due to the
noise. The function is now:

J(O) =
N∑

k=1

(Ik − (P ∗ O)k)2

2σ2
I

+ αHn(O) (7.59)

and for Gaussian noise, Hn has been defined by

Hn(X) =
l∑

j=1

Nj∑
k=1

1
σ2

j

∫ |wj,k|

0

u erf

(
| wj,k | −u√

2σj

)
(7.60)

The solution is found by computing the gradient ∇(J(O)) and performing
the following iterative scheme:

On+1 = On − γ∇(J(On)) (7.61)

We consider an αj per scale, and introduce thereby an adaptive regular-
ization which depends on the signal-to-noise ratio of the input data wavelet
coefficients.

7.5.2 The Parameters

In order to introduce flexibility in the way we restore the data, we introduce
two parameters βj,k and αj,k which allow us to weight, respectively, the two
terms of the equation to be minimized:

J(O) =
1

2σ2
I

N∑
k=1

⎛
⎝∑

j

∑
l

βj,kwj,l(R)ψj,l(k)

⎞
⎠

2

+
l∑

j=1

Nj∑
k=1

αj,kh(wj,k(O))

where R = I − P ∗ O, and R =
∑

j

∑
k wj,k(R)ψj,k (wj,k(R) are the wavelet

coefficients of R, and wj,k(O) are the wavelet coefficients of O).
We consider three approaches for estimating βj,k



7.6 Multichannel Data Filtering 225

1. No weighting: βj,k = 1
2. Soft weighting: βj,k = ps(wj,k(I))

In this case, βj,k is equal to the probability that the input data wavelet
coefficient is due to signal (and not to noise).

3. Hard weighting: βj,k = 0 or 1 depending on pn(wj,k(I)) (pn(wj,k(I)) =
1 − ps(wj,k(I))). This corresponds to using only significant input data
wavelet coefficients.

αj,k is the product of two values: αj,k = αuβ′
j,k.

– αu is a user parameter (defaulted to 1) which allows us to control the
smoothness of the solution. Increasing αu produces a smoother solution.

– β′
j,k depends on the input data and can take the following value:

1. No regularization (β′
j,k = 0): only the first term of the functional is

minimized.
2. No protection from regularization (β′

j,k = 1): the regularization is applied
at all positions and at all the scales.

3. Soft protection (β′
j,k = pn(wj,k(I))): the regularization becomes adap-

tive, depending on the probability that the input wavelet coefficient is
due to noise.

4. Hard protection (β′
j,k = 0 or 1 depending on pn(wj,k(I))).

5. Soft + hard protection: (β′
j,k = 0 or pn(wj,k(I)) depending on

pn(wj,k(I))).

We easily see that choosing a hard weighting and no regularization leads
to deconvolution from the multiresolution support (Starck et al., 1998a).

7.5.3 Examples

Fig. 7.8 shows a simulation. The original image, panel (a), contains stars
and galaxies. Fig. 7.8b shows the data (blurred image + Gaussian noise),
Fig. 7.8c shows the deconvolved image, and Fig. 7.8d the residual image (i.e.
data minus solution reconvolved by the PSF). The blurred image SNR is
12dB, and the deconvolved image SNR is 23.11 dB.

7.6 Multichannel Data Filtering

The multiscale entropy relative to a set of observations D(1 . . . M) can be
written as:

H(D) =
L∑

l=1

J∑
j=1

Nj∑
k=1

h(cl,j,k) (7.62)

where J is the number of scales used in the wavelet transform decomposition,
L the number of observations, k a pixel position, c a WT-KLT coefficient,
and l denotes the eigenvector number.
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Fig. 7.8. (a) Original image, (b) blurred image + Gaussian noise, (c) deconvolved
image, and (d) residual image.

The last scale of the wavelet transform is not used, as previously, so this
entropy measurement is background-independent, which is important because
the background can vary greatly from one wavelength to another.

As for wavelet coefficients in the case of mono-channel data, we know
the noise standard deviation relative to a coefficient, and coefficients are of
zero mean. Therefore, we can apply the same filtering method. The filtered
WT-KLT coefficients are found by minimizing for each cl,j,k:

j(c̃l,j,k) = hs(cl,j,k − c̃l,j,k) + αhn(c̃l,j,k) (7.63)

Example

Fig. 7.9 shows the results of a simulation. We created a dataset of 18 frames,
each of them containing a source at the same position, but at different in-
tensity levels. The source is a small Gaussian. The data cannot be coadded
because the level of the source varies from one frame to another (variable
source). Additive noise was used, and the data were filtered. The root mean
square error (RMSE) was calculated on each individual frame on a 5 × 5
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Fig. 7.9. Simulation: Integrated root mean square error (ordinate) versus the noise
standard deviation (abscissa). See text for discussion.

square centered on the source. Hence, the RMSE reflects well the photo-
metric errors, and the addition over the 18 RMSE, which we call IRMSE
(Integrated RMSE), provides us with a reliable measurement of the filtering
quality. The simulation was repeated with 12 noise levels, and four differ-
ent filtering methods were compared. Fig. 7.9 shows the IRMSE versus the
noise standard deviation plot. The four methods are (i) multiscale entropy
applied to the WT-KLT coefficients (diamond), (ii) reconstruction from a
subset of eigenvectors of the KLT (triangle), (iii) multiscale entropy applied
to each frame independently (square), and (iv) thresholding applied to the
wavelet transform of each frame (star). This simulation shows clearly that
the approach described here, multiscale entropy applied to the WT-KLT co-
efficients, outperforms all other methods.

The same experiments were performed using a simulated Planck data
set. The data set contains ten images, each a linear combination of 6 sky
components images (CMB, SZ, free-free, etc.). As in the previous simulation,
noise was added, and the data were filtered by the four methods. The only
difference is that the RMSE is calculated on the full frames. Fig. 7.10 shows
IRMSE versus the noise standard deviation plot. Diamonds, triangles, square
and stars represent the same methods as before. Again, the multiscale entropy
applied to the WT-KLT coefficients outperforms the other methods.
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Fig. 7.10. Planck simulation: Integrated root mean square error (ordinate) versus
the noise standard deviation (abscissa). See text for discussion.

7.7 Relevant Information in an Image

Since the multiscale entropy extracts the information from the signal only, it
was a challenge to see if the astronomical content of an image was related to
its multiscale entropy.

For this purpose, we used the astronomical content of 200 images of 1024
× 1024 pixels extracted from scans of 8 different photographic plates carried
out by the MAMA digitization facility (Paris, France) (Guibert, 1992) and
stored at CDS (Strasbourg, France) in the Aladin archive (Bonnarel et al.,
1999). We estimated the content of these images in three different ways:

1. By counting the number of objects in an astronomical catalog (USNO
A2.0 catalog) within the image. The USNO (United States Naval Ob-
servatory) catalog was originally obtained by source extraction from the
same survey plates as we used in our study.

2. By counting the number of objects estimated in the image by the SEx-
tractor object detection package (Bertin and Arnouts, 1996). As in the
case of the USNO catalog, these detections are mainly point sources (i.e.
stars, as opposed to spatially extended objects like galaxies).

3. By counting the number of structures detected at several scales using the
MR/1 multiresolution analysis package (MR/1, 2001).

Fig. 7.11 shows the results of plotting these numbers for each image
against the multiscale signal entropy of the image. The best results are ob-
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Fig. 7.11. Multiscale entropy versus the number of objects: the number of objects
is, respectively, obtained from (top) the USNO catalog, (middle) the SExtractor
package, and (bottom) the MR/1 package.
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tained using the MR/1 package, followed by SExtractor and then by the
number of sources extracted from USNO. The latter two basically miss the
content at large scales, which is taken into account by MR/1. Unlike MR/1,
SExtractor does not attempt to separate signal from noise.

SExtractor and multiresolution methods were also applied to a set of CCD
(charge coupled detector, i.e. digital, as opposed to the digitized photographic
plates used previously) images from CFH UH8K, 2MASS and DENIS near
infrared surveys. Results obtained were very similar to what was obtained
above. This lends support to (i) the quality of the results based on MR/1,
which take noise and scale into account, and (ii) multiscale entropy being a
good measure of content of such a class of images.

7.8 Multiscale Entropy and Optimal Compressibility

Subsequently we looked for the relation between the multiscale entropy and
the optimal compression rate of an image which we can obtain by multires-
olution techniques (Starck et al., 1998a). By optimal compression rate we
mean a compression rate which allows all the sources to be preserved, and
which does not degrade the astrometry (object positions) and photometry
(object intensities). Louys et al. (1999) and Couvidat (1999) estimated this
optimal compression rate using the compression program of the MR/1 pack-
age (2001).

Fig. 7.12. Multiscale entropy of astronomical images versus the optimal compres-
sion ratio. Images which contain a high number of sources have a small ratio and a
high multiscale entropy value. The relation is almost linear.

Fig. 7.12 shows the relation obtained between the multiscale entropy and
the optimal compression rate for all the images used in our previous tests,
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both digitized plate and CCD images. The power law relation is obvious, thus
allowing us to conclude that:

– Compression rate depends strongly on the astronomical content of the
image. We can then say that compressibility is also an estimator of the
content of the image.

– Multiscale entropy allows us to predict the optimal compression rate of the
image.

7.9 Conclusions and Chapter Summary

We have seen that information must be measured from the transformed data,
and not from the data itself. This is so that a priori knowledge of physical as-
pects of the data can be taken into account. We could have used the Shannon
entropy, perhaps generalized, cf. Sporring and Weickert (1999), to measure
the information at a given scale, and derive the bins of the histogram from
the standard deviation of the noise, but for several reasons we thought it
better to directly introduce noise probability into our information measure.
Firstly, we have seen that this leads, for Gaussian noise, to a very physically
meaningful relation between the information and the wavelet coefficients: in-
formation is proportional to the energy of the wavelet coefficients normalized
by the standard deviation of the noise. Secondly, this can be generalized to
many other kinds of noise, including such cases as multiplicative noise, non-
stationary noise, or images with few photons/events. We have seen that the
equations are easy to manipulate. Finally, experiments have confirmed that
this approach gives good results.

For filtering, multiscale entropy has the following advantages:

– It provides a good trade-off between hard and soft thresholding.
– No a priori model on the signal itself is needed as with other wavelet-based

Bayesian methods (Chipman et al., 1997; Crouse et al., 1998; Vidakovic,
1998; Timmermann and Nowak, 1999).

– It can be generalized to many kinds of noise.
– The regularization parameter α can be easily fixed automatically. Cross-

validation (Nason, 1996) could be an alternative, but with the limitation
to Gaussian noise.

Replacing the standard entropy measurements by Multiscale Entropy avoids
the main problems in the MEM deconvolution method.

We have seen also how this new information measure allows us to analyze
image background fluctuation. In the example discussed, we showed how
signal which was below the noise level could be demonstrated to be present.
The SNR was 0.25. This innovative analysis leads to our being able to affirm
that signal is present, without being able to say where it is.
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To study the semantics of a large number of digital and digitized photo-
graphic images, we took already prepared – external – results, and we also
used two other processing pipelines for detecting astronomical objects within
these images. Therefore we had three sets of interpretations of these images.
We then used Multiscale Entropy to tell us something about these three sets
of results. We found that Multiscale Entropy provided interesting insight into
the performances of these different analysis procedures. Based on strength of
correlation between Multiscale Entropy and analysis result, we argued that
this provided circumstantial evidence of one analysis result being superior to
the others.

We finally used Multiscale Entropy to provide a measure of optimal im-
age compressibility. Using previous studies of ours, we had already available
to us a set of images with the compression rates which were consistent with
the best recoverability of astronomical properties. These astronomical prop-
erties were based on positional and intensity information, – astrometry and
photometry. Papers cited contain details of these studies. Therefore we had
optimal compression ratios, and for the corresponding images, we proceeded
to measure the Multiscale Entropy. We found a very good correlation. We
conclude that Multiscale Entropy provides a good measure of image or signal
compressibility.

The breadth and depth of our applications lend credence to the claim
that Multiscale Entropy is a good measure of image or signal content. The
image data studied is typical not just of astronomy but other areas of the
physical and medical sciences. Compared to previous work, we have built
certain aspects of the semantics of such data into our analysis procedures. As
we have shown, the outcome is a better ability to understand our data.

Could we go beyond this, and justify this work in the context of, for
example, content-based image retrieval? Yes, clearly, if the user’s query is for
data meeting certain SNR requirements, or with certain evidence (which we
can provide) of signal presence in very noisy data. For more general content-
based querying, this work opens up another avenue of research. This is simply
that in querying large data collections, we can at any time allow greater
recall, at the expense of precision. Our semantics-related Multiscale Entropy
measure can be used for ranking any large recall set. Therefore it can be
employed in an interactive image content-based query environment.
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8.1 Introduction

Galaxies are not uniformly distributed throughout the universe. Voids, fila-
ments, clusters, and walls of galaxies can be observed, and their distribution
constrains our cosmological theories. Therefore we need reliable statistical
methods to compare the observed galaxy distribution with theoretical mod-
els and cosmological simulations.

The standard approach for testing models is to define a point process
which can be characterized by statistical descriptors. This could be the dis-
tribution of galaxies of a specific type in deep redshift surveys of galaxies (or
of clusters of galaxies). In order to compare models of structure formation,
the different distributions of dark matter particles in N-body simulations
could be analyzed as well, with the same statistics. In this chapter we will be
concerned with analysis methods which can be applied to catalogs. We will
look at:

– Correlation and clustering in galaxy catalogs.
– The Genus function.
– Fractal analysis methods, and models, of data.
– Graph data structures, and in particular the Voronoi diagram.
– Statistical model-based clustering.
– Catalog data noise filtering.

Usually catalogs of extragalactic objects contain the angular coordinates
of the objects (galaxies, groups, clusters, superclusters, voids) on the sky. In
the equatorial coordinate system they are right ascension (α) and declination
(δ). They are galactic longitude (l) and galactic latitude (b) in galactic coordi-
nates, and they are supergalactic longitude (SL) and supergalactic latitude
(SB) in supergalactic coordinates. Recently derived extragalactic catalogs
contain a great number of objects with their respective redshifts z, so in
principle it is possible to transform the angular coordinates together with
redshift to a rectangular coordinate system. To do this one has to assume a
cosmological model (H0, q0) in order to transform the redshift to the distance
in Mpc, and also to choose which distance measure to use (e.g. “luminosity
distance”, “angular diameter distance”, “comoving distance”).
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The choice for the angular coordinate system depends on the problem,
and it is convenient to use the system for which the catalog boundaries can
be most easily demarcated.

Methods for estimation of the correlation function can be employed also
for the particular case of having only angular positions on the sky. This is
the case for example in catalogs from radio observations where there is no
information for the distance. Then usually the correlation function, denoted
w(θ), is a function of the angular separation θ.

8.2 Two-Point Correlation Function

8.2.1 Introduction

The two-point correlation function ξ(r) has been the primary tool for quanti-
fying large-scale cosmic structure (Peebles, 1980). Assuming that the galaxy
distribution in the Universe is a realization of a stationary and isotropic
random process, the two-point correlation function can be defined from the
probability δP of finding an object within a volume element δV at distance
r from a randomly chosen object or position inside the volume:

δP = n(1 + ξ(r))δv, (8.1)

where n is the mean density of objects. The function ξ(r) measures the clus-
tering properties of objects in a given volume. It is zero for a uniform random
distribution, and positive (respectively, negative) for a more (respectively,
less) clustered distribution. For a hierarchical clustering or fractal process,
1+ξ(r) follows a power-law behavior with exponent D2−3. Since ξ(r) ∼ r−γ

for the observed galaxy distribution, the correlation dimension for the range
where ξ(r) � 1 is D2 � 3 − γ. The Fourier transform of the correlation
function is the power spectrum. The direct measurement of the power spec-
trum from redshift surveys is of major interest because model predictions are
made in terms of the power spectral density. It seems clear that the real space
power spectrum departs from a single power-law ruling out simple unbounded
fractal models (Tegmark et al., 2004).

In an unbounded volume embedded in a three-dimensional Euclidean
space, we can compute ξ(r) by considering a large number of points N and
calculate the average

1 + ξ(r) =
N(r)
Np(r)

(8.2)

where N(r) is the number of pairs of points with a separation in the interval
[r −∆r, r + ∆r], and Np(r) is the number of pairs for a Poisson distribution
in the same volume. Since Np(r) = 4πr2ndr, we have
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1 + ξ(r) =
1
N

N∑
i=1

Ni(r)
4πr2ndr

(8.3)

where Ni(r) is the number of points lying in a shell of thickness dr, with
radius r, and centered at the point labeled i. However, when the calculation
has to be performed in a finite volume, the effect of the edges has to be
seriously considered. For this reason, other estimators have been proposed,
which consider the estimation of the volume around each data point by means
of Monte Carlo random catalog generations. In this section we present a
description of the most widely-used estimators, and show the results obtained
for some samples with well-known or well-studied clustering properties.

8.2.2 Determining the 2-Point Correlation Function

Standard Method. Given a catalog containing Nd points, we introduce a
random catalog with NR points, and denote

– DD(r) = number of pairs in the interval (r ± dr/2) in the data catalog.
– RR(r) = number of pairs in the interval (r± dr/2) in the random catalog.

The two–point correlation function ξ(r) is derived from

ξ̃(r) =
NR(NR − 1)
ND(ND − 1)

DD(r)
RR(r)

− 1, (8.4)

where NR(NR − 1)/2 and ND(ND − 1)/2 are the number of pairs in the
random and data catalogs. The ratio of these two values is a normalization
term.

Davis-Peebles Method. Davis and Peebles (1983) proposed a more robust
estimator by introducing DR, the number of pairs between the data and the
random sample within the same interval.

ξ̃DP (r) = 2
NR

ND − 1
DD(r)
DR(r)

− 1 (8.5)

Hamilton Method. Another possibility is to use the Hamilton (1993) ap-
proach, which corrects for a presence in the data of large-scale artificial cor-
relation due to some periodicity caused by the volume boundaries or by some
selection effects.

ξ̃HAM (r) =
DD(r)RR(r)

DR2(r)
− 1 (8.6)
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Landy-Szalay Method. The Landy-Szalay estimator (1993) was intro-
duced with the goal of producing a minimum variance estimator and also
like the Hamilton estimator is not affected by large-scale correlations:

ξ̃LS(r) = c1
DD(r)
RR(r)

− c2
DR(r)
RR(r)

+ 1 (8.7)

with

c1 =
NR(NR − 1)
ND(ND − 1)

c2 =
2NR(NR − 1)

NDNR
(8.8)

From simulations, it has been shown that this estimator is better than the
others (Pons-Bordeŕıa et al., 1999; Kerscher et al., 2000; Mart́ınez and Saar,
2002).

8.2.3 Error Analysis

Assuming the errors in the correlation function are distributed normally
(which is not completely true bearing in mind the cross-correlation in the
different separation bins) we can estimate the uncertainty as a Poisson sta-
tistic for the corresponding errors in bins:

∆P ξ̃(r) =
1 + ξ̃(r)√

DD(r)
(8.9)

If C random catalogs R1, ..., RC are created instead of one, then ξ̃(r) can
be estimated C times, and our final estimate is:

ξ̃(r) =
1
C

C∑
i=1

ξ̃i(r) (8.10)

and the error is obtained by

∆STD ξ̃(r) =

√
(ξ̃i(r) − ξ̃(r))2

C − 1
(8.11)

Finally, a third approach is also popular, and consists of using a bootstrap
method (Efron and Tibshirani, 1986). C bootstrap samples B1, .., BC are
created by taking randomly with replacement the same number of points that
form the original sample. Then the bias-corrected 68% bootstrap confidence
interval is [ξboot(0.16), ξboot(0.84)], where

ξboot(t) = G−1
{
Φ
[
Φ−1(t) + 2Φ−1 [G(ξ0)]

]}
. (8.12)
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Here G is the cumulative distribution function (CDF) of the ξ(r) values,
for a given bin r ± ∆r, for all bootstrap resamplings, Φ is the CDF of the
normal distribution, Φ−1 is its inverse function and ξ0 is the estimated ξ(r)
taken from other than the bootstrap resampling results (e.g. from random
catalog generations). Note that Φ(0.16) = −1.0 and Φ(0.84) = 1.0.

This confidence estimator is valid when G is not Gaussian (Efron and
Tibshirani, 1986). However, this method requires a large number of boot-
strap resamplings (usually more than 100) and for large datasets with tens
of thousands of points it becomes quite time-consuming.

Note that we can take also the ∆boot
STD for the bootstrap resamplings and

then it can be simply written as [ξboot(0.16), ξboot(0.84)] = ξ0 ± σξ, where

σξ =

√
(ξi

boot(r) − ξ0(r))2

B − 1
. (8.13)

8.2.4 Correlation Length Determination

The two-point correlation function for the gravitational clustering or fractal
distribution can be given as a power law:

ξ(r) = Ar−γ (8.14)

where A is the amplitude and γ is the power law index.
The correlation length rc is defined by

ξ(r) =
(

r

rc

)−γ

, (8.15)

and it is the separation at which the correlation is 1. This scale in princi-
ple divides the regime of strong, non-linear clustering (ξ >> 1) from linear
clustering.

It is easy to connect rc with A and γ by:

rc = exp−A
γ (8.16)

8.2.5 Creation of Random Catalogs

One of the crucial steps in estimation of the correlation function is random
catalog creation. The catalogs contain data which is subject to various se-
lection effects and incompleteness. Not taking such properties into account
could lead to false correlation. The major effects to be considered are the dis-
tance selection function – the number of objects as a function of the distance,
and the galactic latitude selection function.

The first effect is caused by the geometry of space-time and the detection
of only the strongest objects at great distances. For uniform distribution of
points in 3D Euclidean space N(R) ∼ R−3.
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Fig. 8.1. Simulation of a Cox process with 6000 points.

The second effect is caused by light absorption from our Galaxy and it
depends on the galactic latitude. Usually it is modeled as a cosec function
and in terms of probability density function. It can be given as:

P (b) = 10α(1−cosec|b|). (8.17)

These two effects must be incorporated appropriately in the random cat-
alog generation process.

Since the different catalogs of objects are subject to different selections,
it is not possible to have one single procedure for random catalog generation.
We will provide, however, versions for some interesting particular cases.

8.2.6 Examples

Simulation of Cox Process. The segment Cox point process (Pons-
Bordeŕıa et al., 1999) is a clustering process for which an analytical expression
of its 2–point correlation function is known and therefore can be used as a test
to check the accuracy of the ξ–estimators. Segments of length l are randomly
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Fig. 8.2. Analytical ξCox(r) curve (continuous line), and two–point correlation
function of the Cox process with 6000 points overplotted, using the Landy-Szalay
method. The error bars are obtained from the minimum and maximum of twenty
realizations.

scattered inside a cube W and, on these, segment points are randomly dis-
tributed. Let LV be the length density of the system of segments, LV = λsl,
where λs is the mean number of segments per unit volume. If λl is the mean
number of points on a segment per unit length, then the intensity λ of the
resulting point process is

λ = λlLV = λlλsl . (8.18)

For this point field the correlation function can be easily calculated, taking
into account that the point field has a driving random measure equal to the
random length measure of the system of segments. It has been shown (Stoyan
et al., 1995) that

ξCox(r) =
1

2πr2LV
− 1

2πrlLV
(8.19)

for r ≤ l and vanishes for larger r. The expression is independent of the
intensity λl. Fig. 8.1 shows the simulation of a Cox process with 6000 points.
Fig. 8.2 shows the analytical ξCox(r) curve (continuous line), and the esti-
mated two–point correlation function overplotted. The Landy-Szalay method
was used with 10000 random points. The errors are the results from 20 ran-
dom Cox process realizations.
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Fig. 8.3. Aitoff equal-area projection in galactic coordinates of IRAS galaxies with
F60µm > 1.2 Jy and distance < 100 Mpc. Their total number is 710.

Application to IRAS Data. We present in this section the two point
correlation function analysis of the IRAS 1.2 Jy Redshift Survey (Fisher
et al., 1995) for a volume limited subsample.

In order to create a volume limited subsample from the IRAS catalog, we
applied the following steps:

– Extract from the catalog the right ascension α (hh,mm,ss,1950), the decli-
nation δ (sign,dg,mm,ss,1950), and the velocity Hvel (km/s).

– Convert α, δ to galactic coordinates l, b (in radians) because the catalog
boundaries (|b| > 5 deg) are most easily defined in this system.

– Convert velocity to redshift (z = Hvel/c).
– Assuming H0 = 100 and Ω = 1, calculate the distance d by the luminosity

distance formulae proposed in (Pen, 1999):

dL =
c

H0
(1 + z)[F (1, Ω0) − F (

1
1 + z

,Ω0)]

F (a,Ω0) = 2
√

s3 + 1[
1
a4

− 0.1540
s

a3
+ 0.4302

s2

a2

+0.19097 ∗ s3

a
+ 0.066941s4]−

1
8

s3 =
1 − Ω0

Ω0
(8.20)

– Select galaxies (statusflag in [O,H,Z,F,B,D,L]) with distance d < 100 Mpc,
and flux F60µm > 1.2 Jy in the galaxy rest frame. So the luminosity of a
galaxy is given by:

L = 4πd2F60µm (8.21)

and the luminosity of a galaxy at the limiting distance (100 Mpc) with the
limiting flux (1.2 Jy) is
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Llimit = 4π1002(1.2) (8.22)

We select all the galaxies with L larger than Llimit.
– Calculate the coordinates in a cube:

X = d cos(b) cos(l)
Y = d cos(b) sin(l)
Z = d sin(b) (8.23)

Fig. 8.3 shows the galaxy positions. The result for the redshift space
correlation function for the combined north+south IRAS catalog is presented
in Fig. 8.4. The result is consistent with published results for this catalog
(Fisher et al., 1995):

r0 = 4.27+0.66
−0.81 and γ = 1.68+0.36

−0.29 (8.24)
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Fig. 8.4. Left: correlation function of the IRAS galaxies in linear bins with the
corresponding linear least square fit for the data in separation range 1 – 20 Mpc.
Right: correlation function of the IRAS galaxies in logarithmic bins.

For comparison we present the correlation function for the same data cat-
alog but in logarithmic separation bins. As is clear from Fig. 8.4, right, strong
fluctuations for the correlation function at large separations are significantly
smoothed.

Application to Numerical Simulations – ΛCDM Model. For cosmo-
logical studies it is very important to test the predictions of various cosmo-
logical models for the clustering properties of matter, and to put constraints
on various parameters by analyzing the results from numerical simulations
and their correspondence to what is observed. In simulations we have a large
parameter space of the objects (coordinates, velocities, masses, and so on) so
it is natural to examine clustering properties by means of various statistical
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tools used in the analysis of the observational data: correlation functions,
power spectrum analysis, etc.

We will present here the results for the correlation function for one cos-
mological model (ΛCDM, h = 0.7, Ω0 = 0.3, ΩΛ = 0.7) from a Hubble
volume simulation. The data are available at the following address:
http://www.physics.lsa.umich.edu/hubble-volume

We extracted a volume limited slice with objects with redshift less than
0.4 (for the cosmological model this corresponds to 1550 Mpc). A view of
the data is presented in Fig. 8.5, left, for the XY plane and in Fig. 8.5 right
for the XZ plane. All the points represent groups or clusters of galaxies with
masses greater than ∼ 6.6 × 1013M∗.
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Fig. 8.5. Left: the XY plane view of the ΛCDM slice used for the correlation
function analysis. The opening angle is 45 deg. and the total number of objects is
6002. Right: the XZ plane view of the ΛCDM slice.

The results with the corresponding linear least squares fit are presented in
Fig. 8.6, left, for linear separation bins and in Fig. 8.6, right, for logarithmic.

The results are consistent with the normalization used in the simulations –
the clustering properties of the simulation should correspond to the observed
clustering for redshift of 0 (r0 ≈ 15, γ ≈ 1.8).

8.2.7 Limitation of the Two-Point Correlation Function:
Toward Higher Moments

In order to illustrate the limitation of the two-point correlation function, we
use two simulated data sets. The first one is a simulation from stochastic
geometry. It is based on a Voronoi model. The second one is a mock catalog
of the galaxy distribution drawn from a Λ-CDM N-body cosmological model
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Fig. 8.6. Left: the correlation function of the ΛCDM model for linear separation
bins. The fit is carried out in 1–50 Mpc separations and the error bars are the stan-
dard deviations of 5 random catalog generations (the second method for estimating
the uncertainty of the correlation function, i.e. ∆R). Right: the correlation function
for logarithmic separation bins.

(Kauffmann et al., 1999). Both processes have very similar two-point corre-
lation functions at small scales, although they look quite different and were
generated following completely different algorithms.

– The first comes from Voronoi simulation: We locate a point in each of
the vertices of a Voronoi tessellation of 1500 cells defined by 1500 nuclei
distributed following a binomial process. There are 10,085 vertices lying
within a box of 141.4 h−1 Mpc side.

– The second point pattern represents the galaxy positions extracted from
a cosmological Λ-CDM N-body simulation. The simulation was carried
out by the Virgo consortium and related groups (see http://www.mpa-
garching.mpg.de/Virgo). The simulation is a low-density (Ω = 0.3) model
with cosmological constant Λ = 0.7. It is, therefore, an approximation to
the real galaxy distribution (Kauffmann et al., 1999). There are 15,445
galaxies within a box with side 141.3 h−1 Mpc. Galaxies in this catalog
have stellar masses exceeding 2 × 1010 M�.

Fig. 8.7 shows the two simulated data sets, and Fig. 8.8 shows the two-
point correlation function curve for the two point processes. The two point
fields are different, but as can be seen in Fig. 8.8, both have very similar
two-point correlation functions in a huge range of scales (2 decades).

In order to improve the discrimination power, we need to use higher or-
der statistics. The two-point correlation function can been generalized to the
N-point correlation function (Szapudi and Szalay, 1998; Peebles, 2001), and
the entire hierarchy can be related with the physics responsible for the clus-
tering of matter. Nevertheless they are difficult to measure, and therefore
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Fig. 8.7. Simulated data sets. Top, the Voronoi vertices point pattern (left) and
the galaxies of the GIF Λ-CDM N-body simulation (right). The bottom panels show
one 10 h−1 width slice of the each data set.

other related statistical measures have been introduced as a complement in
the statistical description of the spatial distribution of galaxies (Mart́ınez
and Saar, 2002), such as the void probability function (Maurogordato and
Lachieze-Rey, 1987), the multifractal approach (Mart́ınez et al., 1990), the
minimal spanning tree (Bhavsar and Splinter, 1996; Krzewina and Saslaw,
1996; Doroshkevich et al., 2001), the Minkowski functionals (Mecke et al.,
1994; Kerscher, 2000) or the J function (Lieshout and Baddeley, 1996; Ker-
scher et al., 1999) which is defined as the ratio

J(r) =
1 − G(r)
1 − F (r)

(8.25)
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Fig. 8.8. The two-point correlation function of the Voronoi vertices process and
the GIF Λ-CDM N-body simulation. They are very similar in the range [0.02,2] h−1

Mpc.

where F is the distribution function of the distance r of an arbitrary point
in R3 to the nearest object in the catalog, and G is the distribution function
of the distance r of an object to the nearest object. Wavelets have also been
used for analyzing the projected 2D or the 3D galaxy distribution (Escalera
et al., 1992; Slezak et al., 1993; Mart́ınez et al., 1993b; Pagliaro et al., 1999;
Kurokawa et al., 2001). Some of these methods are described in the following.

8.3 The Genus Curve

The two-point correlation function is not sensitive to the phase of the Fourier
transform of the data. This explains why it describes poorly the spatial dis-
tribution of the galaxy. The first morphological descriptor used was the genus
(Gott et al., 1986a). The genus G(S) measures the connectivity of a surface,
S, with holes and disconnected pieces, by the difference of the number of
holes and the number of isolated regions:

G(S) = number of holes − number of isolated regions + 1.

The genus of a sphere is G = 0, a torus or a sphere with a handle has the
genus G = +1, a sphere with N handles has the genus G = +N , while the
collection of N disjoint spheres has the genus G = −(N − 1). The genus
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describes the topology of the isodensity surfaces. Thus its study is, in the
cosmological literature, frequently called “topological analysis”.

The genus curve is usually parameterized by two related quantities, the
filling factor, f , which is the fraction of the survey volume above the density
threshold or, alternatively, by the quantity ν defined by

f =
1√
2π

∫ ∞

ν

e−t2/2dt. (8.26)

In the case of a Gaussian random field, ν is also the number of standard
deviations by which the threshold density departs from the mean density,
and with this parametrization, the genus per unit volume of a surface, S,
corresponding to a given density threshold, g ≡ (G(S) − 1)/V , follows the
analytical expression

g(ν) = N(1 − ν2) exp
(
−ν2

2

)
, (8.27)

where the amplitude N depends on the power spectrum of the random
field (Hamilton et al., 1986).

In practice, the genus is calculated by (i) convolving the data by a kernel,
generally a Gaussian, (ii) setting to zero all values under a threshold ν in the
obtained distribution, and (iii) taking the difference D between the number
of holes and the number of isolated regions. The genus curve G(ν) is obtained
by varying the threshold level ν.

�

�

Fig. 8.9. The average genus curve for 50 realizations of a Gaussian random field
with P (k) ∼ k−1 together with the expected analytical result (solid line). The error
bars show 1 σ deviations.
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Using the algorithm described in (Mart́ınez et al., 2005), we have calcu-
lated the genus curve for 50 realizations of a Gaussian random field with a
power-law power spectrum P (k) ∼ k−1 in a 1283 box. The realizations were
smoothed with a Gaussian kernel of σ = 3. The results are shown in Fig. 8.9
and are very close to the theoretical expectations.

When rich clusters dominate the distribution, the genus curves are shifted
to the left, and the morphology is referred to as “meat-ball”, while the ex-
pression “Swiss-cheese” is used for right-shifted genus curves corresponding to
distributions with empty bubbles surrounded by a single high density region.
As discussed in (Mart́ınez et al., 2005), the first step of the algorithm, the
convolution by a Gaussian, may be dramatic for the description of filaments,
which are spread out along all directions, and better results are obtained if
we replace the Gaussian smoothing by a wavelet denoising.

8.4 Minkowski Functionals

An elegant generalization of the genus statistic is to consider this measure as
one of the four Minkowski functionals which describe different morphological
aspects of the galaxy distribution (Mecke et al., 1994). These functionals pro-
vide a complete family of morphological measures since all additive, motion
invariant and conditionally continuous functionals defined for any hypersur-
face are linear combinations of its Minkowski functionals.

The Minkowski functionals (MF for short) describe the morphology of
isodensity surfaces, and depend thus on two factors – the smoothing proce-
dure and the specific density level (see (Sheth and Sahni, 2005) for a recent
review). An alternative approach starts from the point field, decorating the
points with spheres of the same radius, and studying the morphology of the
resulting surface (Schmalzing et al., 1996). These functionals depend only on
one parameter (the radius of the spheres), but this approach does not refer
to a density; we shall not use that for the present study.

The Minkowski functionals are defined as follows. Consider an excursion
set Fφ of a field φ(x) in 3-D: i.e., the set of all points where φ(x ≥ φ). Then,
the first Minkowski functional (the volume functional) is the volume of the
excursion set:

V0(φ) =
∫

Fφ

d3x.

The second MF is proportional to the surface area of the boundary δFφ of
the excursion set:

V1(φ) =
1
6

∫
δFφ

dS(x).

The third MF is proportional to the integrated mean curvature of the bound-
ary:
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V2(φ) =
1
6π

∫
δFφ

(
1

R1(x)
+

1
R2(x)

)
dS(x),

where R1 and R2 are the principal curvatures of the boundary. The fourth
Minkowski functional is proportional to the integrated Gaussian curvature
(the Euler characteristic) of the boundary:

V3(φ) =
1
4π

∫
δFφ

1
R1(x)R2(x)

dS(x).

The last MF is simply related to the morphological genus g introduced in the
previous subsection by

V3 = χ =
1
2
(1 − G)

(χ is the usual notation for the Euler characteristic). The functional V3 is
somewhat more comfortable to use – it is additive, while G is not, and it
gives just twice the number of isolated balls (or holes). Although the genus
remains to be widely used, in several recent papers authors have chosen to
present the Minkowski functional V3.

Instead of the functionals, their spatial densities Vi are frequently used:

vi(f) = Vi(f)/V, i = 0, . . . , 3,

where V is the total sample volume.
All the Minkowski functionals have analytic expressions for isodensity

slices of realizations of Gaussian random fields. For three-dimensional space
they are:

v0 =
1
2
− 1

2
Φ

(
ν√
2

)
,

v1 =
2
3

λ√
2π

exp
(
−ν

2

)
,

v2 =
2
3

λ2

√
2π

ν exp
(
−ν

2

)
,

v3 =
λ3

√
2π

(ν2 − 1) exp
(
−ν

2

)
,

where Φ(·) is the Gaussian error integral, and λ is determined by the corre-
lation function ξ(r) of the field as:

λ2 =
1
2π

ξ′′(0)
ξ(0)

.
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Numerical Algorithms

Several algorithms can be used to calculate the Minkowski functionals for a
given density field and a given density threshold. We can either try to fol-
low exactly the geometry of the isodensity surface, e.g., using triangulation
(Sheth et al., 2003), or to approximate the excursion set on a simple cubic
lattice. The algorithm that was proposed first by (Gott et al., 1986b) uses a
decomposition of the field into filled and empty cells, and another popular
algorithm (Coles et al., 1996) uses a grid-valued density distribution. The
lattice-based algorithms are simpler and faster, but not as accurate as the
triangulation codes. The main difference is in the edge effects – while sur-
face triangulation algorithms do not suffer from these, edge effects may be
rather serious for the lattice algorithms. In (Mart́ınez et al., 2005), a simple
grid-based algorithm has been proposed. It consists of finding the density
thresholds for given filling fractions by sorting the grid densities, first. Ver-
tices with higher densities than the threshold form the excursion set. This set
is characterized by its basic sets of different dimensions – points (vertices),
edges formed by two neighboring points, squares (faces) formed by four edges,
and cubes formed by six faces. The algorithm counts the numbers of all basic
sets, and finds the values of the Minkowski functionals as

V0(f) = a3N3,

V1(f) = a2

(
2
9
N2(f) − 2

3
N3(f)

)
,

V2(f) = a

(
2
9
N1(f) − 4

9
N2(f) +

2
3
N3(f)

)
,

V3(f) = N0(f) − N1(f) + N2(f) − N3(f),

where a is the grid step, f is the filling factor, N0 is the number of vertices,
N1 is the number of edges, N2 is the number of squares (faces), and N3 is the
number of basic cubes in the excursion set for a given filling factor (density
threshold). This formula was proven by (Adler, 1981) and was first used in
cosmological studies by (Coles et al., 1996).

This algorithm is simple to program, and it gives excellent results, pro-
vided the grid step is substantially smaller than the characteristic lengths of
the isosurfaces (the smoothing length). This is needed to be able to accu-
rately follow the geometry of the surface. It is also very fast, allowing us to
use Monte-Carlo simulations for error estimation (Mart́ınez et al., 2005).

8.5 Fractal Analysis

8.5.1 Introduction

The word “fractal” was introduced by Mandelbrot (1983), and comes from the
Latin word fractus which means “break”. According to Mandelbrot, a fractal
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is an object which has a greater dimension than its topological dimension. A
typical fractal is the Cantor set. It is built in the following way: considering a
segment of dimension L, we separate it into three equal parts, and suppress
the middle part. There remain two segments of size L

3 . Repeating the process
on both segments, we get four segments of size 3−2L. After n iterations, we
have 2n segments of size 3−nL. The Cantor set is obtained when n tends to
infinity. The set has the following properties:

1. It is self-similar.
2. It has a fine structure, i.e. detail on arbitrary small scales.
3. It is too irregular to be described in traditional geometrical language,

both locally and globally.
4. It is obtained by successive iterations.
5. It has an infinite number of points but its length is negligeable.

These properties define in fact a fractal object.
A real fractal does not exist in nature, and we always need to indicate at

which scales we are talking about fractality. It is now well-established that the
universe is fractal at small scales (r < 10h−1Mpc) (Durrer and Labini, 1998;
Sylos Labini, 1999; Joyce et al., 1999; Mart́ınez et al., 2001; Pietronero and
Sylos Labini, 2001; Gaite and Manrubia, 2002; Ribeiro, 2005; Seshadri, 2005).
A recent review of the fratal approach to large-scale galaxy distribution can
be found in (Yadav et al., 2005).

8.5.2 The Hausdorff and Minkowski Measures

Measure. An object dimension describes how an object F fills space. A
simple manner of measuring the length of curves, the area of surfaces or
the volume of objects is to divide the space into small boxes (segment in
one dimension, surface in 2D, and cubes in 3D) of diameter δ. These boxes
are chosen so that their diameter is not greater than a given size δ, which
corresponds to the measure resolution.

We consider now the quantity:

Ld
δ(F ) =

∑
diam(Bi)d (8.28)

where d is a real number, diam(Bi) is the diameter of the box i. Ls
δ(F )

represents an estimation of the size of F at the resolution δ. Depending on
the choice of the boxes, the measure is more or less correct. Generally, it is
easier to manipulate the Minkowski-Bouligand measure which fixes all the
boxes to the same size δ. Using this measure, the size of F is given by:

Ms(F ) = lim
δ→0

∑
diam(Bi)s = δsNB(δ) (8.29)

where NB is the number of boxes needed to cover the object F . Then the
curves of length L∗ can be measured by finding the number NB(δ) of line



8.5 Fractal Analysis 251

segments (respectively squares and cubes for the second and third object) of
length δ needed to cover the object. The three sizes are:

L = M1(F ) = NB(δ)δ1 →
δ→0

L∗δ
0 (8.30)

A = M2(F ) = NB(δ)δ2 →
δ→0

L∗δ
1 (8.31)

V = M3(F ) = NB(δ)δ3 →
δ→0

L∗δ
2 (8.32)

8.5.3 The Hausdorff and Minkowski Dimensions

The Hausdorff dimension dH of the set F is the critical dimension for which
the measure Hd(F ) jumps from infinity to zero:

Hd(F ) =
{

0, d > dH ,
∞, d < dH .

(8.33)

But HdH (F ) can be finite or infinite. For a simple set (segment, square, cube),
Hausdorff dimension is equal to the topological dimension (i.e. 1, 2, or 3). This
is not true for a more complex set, such as the Cantor set. Minkowski dimen-
sion dM (and dH(F ) ≤ dM (F )) is defined in a similar way using Minkowski
measure.

By definition, we have:

MdM = lim
δ→0

δdM NB(δ) (8.34)

When δ → 0, we have dM ln M = dM ln δ + lnNN (δ). If M is finite, the
Minkowski dimension, also called box-counting, can be defined by

dM = lim
δ→0

ln NB(δ)
− ln δ

(8.35)

In the case of the Cantor set, at iteration n, we have 2n segments of size
3−n (δ = 3−n). When n → ∞, we have

dM (Cantor) =
ln 2n

− ln 3−n
=

ln 2
ln 3

(8.36)

8.5.4 Multifractality

The multifractal picture is a refinement and generalization of the fractal
properties that arise naturally in the case of self-similar distributions. The
singularity spectrum f(α) can be introduced as a quantity which characterizes
the degree of regularity and homogeneity of a fractal measure.



252 8. Astronomical Catalog Analysis

Hölder Exponent. A multifractal measure describes a non-homogeneous
set A. Such a measure is called multifractal if it is everywhere self-similar,
i.e. if the measure varies locally as a power law, at any point of A. Denoting
µ a measure, we call the Hölder exponent or singularity exponent at x0 the
limit

α(x0) = lim
δ→0

ln µ(Bx0(δ))
ln δ

(8.37)

where Br0 is a box centered at r0 of size δ. We have:

µ(Bx0(δ)) ∝ δα(x0) (8.38)

The smaller the value α(x0), the less the measure is regular around x0. For
example, if µ corresponds to a Dirac distribution centered at 0, then α(0) = 0,
and if µ corresponds to a Gaussian distribution, then α(0) = −1.

Singularity Spectrum. The singularity spectrum, associated with a mea-
sure µ, is the function which associates with α the fractal dimension of any
point x0 such that α(x0) = α:

f(α) = dF ({x0 ∈ A | α(x0) = α}) (8.39)

The function f(α) is usually (Paladin and Vulpiani, 1987) a single-humped
function with the maximum at maxαf(α) = D, where D is the dimension of
the support. In the case of a single fractal, the function f(α) is reduced to a
single point: f(α) = α = D.

The singularity spectrum describes statistically the α exponent distribu-
tion on the measure support. For example, if we split the support into boxes
of size δ, then the number of boxes with a measure varying as δα for a given
α is

Nα(δ) ∝ δ−f(α) (8.40)

f(α) describes the histogram of Nα(δ) when δ is small. A measure is homo-
geneous if its singularity spectrum is concentrated in a single point. If f(α)
is large, the measure is multifractal.

Multifractal Quantities. From a practical point of view one does not de-
termine directly the spectrum of exponents [f(α), α]; it is more convenient
to compute its Legendre transformation [τ(q), q] given by{

f(α) = q · α − τ(q)
α = dτ(q)

dq

(8.41)

In the case of a simple fractal one has α = f(α) = D. In terms of the Legendre
transformation this corresponds to

τ(q) = D(q − 1) (8.42)

i.e. the behavior of τ(q) versus q is a straight line with coefficient given by
the fractal dimension.
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8.5.5 Generalized Fractal Dimension

Definition. The generalized fractal dimension, also called Rényi dimension
of order q, is given by:

Dq =
τ(q)
q − 1

(8.43)

D0 is also called capacity dimension, and coincides with the Hausdorff di-
mension. Dimensions D1, and D2 are respectively called information and
correlation dimension.

Partition Function. The partition function Z is defined by:

Z(q, δ) =
N(δ)∑
i=1

µq
i (δ) (8.44)

where we denote µi(δ) = µ(Bi(δ)). If the measure µ is multifractal, Z follows
a power law in the limit δ → 0.

Z(q, δ) ∝ δτ(q) (8.45)

The box-counting method consists of calculating the partition function,
to derive τ(q) from Z, and to obtain the multifractal spectrum by a Legendre
transform.

8.5.6 Wavelets and Multifractality

Singularity Analysis. Let f(x) be the input signal, x0 the singularity loca-
tion, α(x0) the Hölder exponent at the singularity point x0 and n the degree
of Taylor development such that n ≤ α(x0) < n + 1. We have

f(x) = f(x0) + (x − x0) f (1)(x0) + ... + (8.46)
(x − x0)n

n!
f (n)(x0) + C |x − x0|α(x0)

Letting ψ be the wavelet with nψ > n vanishing moments, then we have
for the wavelet transform of f(x) at x0 when the scale goes to 0 (ψ is orthog-
onal to polynomials up to order n):

lim
scales→0+

Tψ[f ](x0, s) ∼ aα(x0) (8.47)

One can prove that if f is C∞, then we have

lim
scales→0+

Tψ[f ](x0, s) ∼ anψ (8.48)

Thus, we have
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{
Tψ[f ] ∼ snψ where the signal f is regular
Tψ[f ] ∼ sα(>> snψ ) around a singular zone (8.49)

For a fixed scale s, Tψ[f ](., s) will be greater when the signal is singular.
This local maximum is organized in maxima lines (function of s) which con-
verges, when s goes to 0, to a singularity of the signal. Mallat and Hwang
(1992) demonstrate that to recover the Hölder exponent α(x0) at x0, one
need only study the wavelet transform along these lines of maxima which
converge (when the scale goes to 0) towards the singularity point x0.

Along this maxima line l we have

Tψ[f ](b, s) ∼ aα(x0), (b, a) ∈ l, s → 0+ (8.50)

Fig. 8.10 displays the function f(x) = K(x − x0)0.4 with a singular point at
x0. The Hölder exponent at x0 is equal to 0.4. In Fig. 8.11, we display the
wavelet transform of f(x) with a wavelet ψ which is the first derivative of a
Gaussian. In Fig. 8.12, we display log2|Tψ[f ](x, s)| as a function of log2(s).

Fig. 8.10. Function f(x) = K(x − x0)
0.4 .

When we compute the slope of the curve log2|Tψ[f ](x, s)| versus log2(s)
along a maxima line which converges at x0, we obtain an estimation of the
Hölder exponent (in this case α(x0) ≈ 0.4 which corresponds to the theoret-
ical value).

Wavelet Transform of Multifractal Signals. The estimation of the
Hölder exponent by this method becomes inaccurate in the case of multi-
fractal signals (Arneodo et al., 1995). We need to use a more global method.
One can define the wavelet-based partition function by
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Fig. 8.11. Wavelet transform of f(x) with a wavelet ψ which is the first derivative
of a Gaussian. The small scales are at the top. The maxima line converges to the
singularity point at x0.

Z(q, s) =
∑
bi

|Tψ[µ](bi, s)|q (8.51)

where (bi, s)i are all local maxima at scale s.
Let τ(q) be the scaling exponent. We can prove that we have

Z(q, s) ∼ aτ(q) (8.52)

We can then calculate the singularity spectrum D(α) by its Legendre
transformation

D(α) = min
q

(qα − τ(q)) (8.53)

This method is called the Wavelet Transform Modulus Maxima (WTMM).

Numerical Applications of WWTM Method. The calculation of the
singularity spectrum of signal f proceeds as follows:

– compute the wavelet transform and the modulus maxima Tψ[f ] for all
(s, q). We chain all maxima across scale lines of maxima,

– compute the partition function Z(q, s) =
∑

bi
|Tψ[f ](bi, s)|q,

– compute τ(q) with log2 Z(q, s) ≈ τ(q) log2(s) + C(q),
– compute D(α) = min

q
(qα − τ(q)).

The Triadic Cantor Set. Definition: The measure associated with the
triadic Cantor set is defined by f(x) =

∫ x

0
dµ where µ is the uniform measure

lying on the triadic Cantor set described in section 8.5.1. To compute f(x), we
used the next recursive function called the Devil’s Staircase function (which
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Fig. 8.12. Estimation of the Hölder exponent α(x0) at x0 by computing the slope
of log2 |Tψ[f ](x, s)| versus log2(s) along a maxima line which converges to x0.

looks like a staircase whose steps are uncountable and infinitely small: see
Fig. 8.13).

f(x) =

⎧⎨
⎩

p1f(3x) if x ∈ [0, 1
3 ]

p1 if x ∈ [ 13 , 2
3 ]

p1 + p2f(3x − 2) if x ∈ [ 23 , 1]
(8.54)

This is a continuous function that increases from 0 to 1 on [0,1]. The
recursive construction of f(x) implies that f(x) is self-similar.

Fig. 8.13. Classical Devil’s Staircase function (associated with triadic Cantor set)
with p1 = 0.5 and p2 = 0.5 (left) and partition function Z(q, s) for several values of
q (right). The wavelet transform is calculated with ψ equal to the first derivative
of a Gaussian.
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Fig. 8.14. Scaling Exponent estimation τ(q) (left) and Singularity Spectrum D(α)
(right). The Scaling Exponent curve corresponds to the theoretical curve τ(q) =
(q − 1) log2(2)/ log2(3). Points of the Singularity Spectrum where q �= ∞(max q)
and q �= −∞(min q) are reduced to a single point (α = log2(2)/ log(3), D(α) =
log2(2)/ log2(3)). This point corresponds to the Hausdorff dimension of the triadic
Cantor Set.

The Generalized Devil’s Staircase with p1 = 0.4 and p2 = 0.6. One
can prove (Arneodo et al., 1995) that the theoretical singularity spectrum
D(α) of the generalized Devil’s Staircase function f(x) =

∫ x

0
dµ verifies the

following:

– The singular spectrum is a convex curve with a maximum value αmax

which corresponds to the fractal dimension of the support of the measure
(µ).

– The theoretical support of D(α) is reduced at the interval [αmin, αmax]:

{
αmin = min( ln p1

ln(1/3) ,
ln p2

ln(1/3) )
αmin = min( ln p1

ln(1/3) ,
ln p2

ln(1/3) )
(8.55)

Fig. 8.15 displays the generalized Devil’s Staircase and its partition func-
tion Z(q, s). In Fig. 8.16, we can see the Scaling Exponent and the Singularity
Spectrum. This one is in perfect “accord” with the theoretical values: bell
curve, D(α)max = log2(2)/ log2(3), αmin ≈ 0.47 and αmax ≈ 0.83.

8.6 Spanning Trees and Graph Clustering

The best match or nearest neighbor problem is important in many disciplines.
In the database and more particularly data mining field, nearest neighbor
searching is called similarity query, or similarity join (Bennett et al., 1999). A
database record or tuple may be taken as a point in a space of dimensionality
m, the latter being the associated number of fields or attributes. Fast methods
for nearest neighbor finding, and their use as algorithmic building blocks in
hierarchical clustering, can be found in (Murtagh, 1985). Applications of best
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Fig. 8.15. Devil’s Staircase function with p1 = 0.4 and p2 = 0.6 (left) and partition
function Z(q, s) for several values of q (right). The wavelet transform is calculated
with ψ equal to the first derivative of a Gaussian.

Fig. 8.16. Scaling Exponent estimation τ(q) (left) and Singularity Spectrum
D(α) (right). The theoretical maximum value of D(α) is obtained for αmaxD =
log2(2)/ log2(3) and D(αmaxD) = log2(2)/ log2(3).

match finding in solar astronomy are to be found in (Csillaghy et al., 2000;
Csillaghy and Benz, 1999). Data preprocessing may be used to attempt to
break the O(n) barrier for determining the nearest neighbor of a data object,
and many algorithms have been proposed over the years which remain linear
time algorithms but with low constants of proportionality.

Data mining is often carried out in sparse information spaces, i.e., re-
lationships between the data objects are few and far between. Under these
circumstances, a graph is a good (and storage-efficient) data model.

Single linkage clustering is a very commonly used clustering method. Rohlf
(1982) reviews algorithms for the single link method with complexities rang-
ing from O(n log n) to O(n5). The criterion used by the single link method
for cluster formation is weak, meaning that noisy data in particular give rise
to results which are not robust.

The minimal spanning tree (MST) and the single link agglomerative clus-
tering method are closely related: the MST can be transformed irreversibly
into the single link hierarchy (Rohlf, 1973). The MST is defined as of minimal
total weight, it spans all nodes (vertices) and is an unrooted tree. The MST
has been a method of choice for at least four decades now either in its own
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right for data analysis (Zahn, 1971), as a data structure to be approximated,
e.g. using shortest spanning paths (Murtagh, 1985), or as a basis for cluster-
ing. MST has been used for many years for large-scale galaxy distribution
analysis (Bhavsar and Splinter, 1996; Krzewina and Saslaw, 1996; Doroshke-
vich et al., 2001). We will look at some fast algorithms for the MST in the
remainder of this section.

Perhaps the most basic MST algorithm, due to Prim and Dijkstra
(Horowitz and Sahni, 1978), grows a single fragment through n − 1 steps.
We find the closest vertex to an arbitrary vertex, calling these a fragment of
the MST. We determine the closest vertex, not in the fragment, to any vertex
in the fragment, and add this new vertex into the fragment. While there are
fewer than n vertices in the fragment, we continue to grow it.

This algorithm leads to a unique solution. A default O(n3) implementa-
tion is clear, and O(n2) computational cost is possible (Murtagh, 1985).

Sollin’s algorithm constructs the fragments in parallel. For each fragment
in turn, at any stage of the construction of the MST, determine its closest
fragment. Merge these fragments, and update the list of fragments. A tree
can be guaranteed in this algorithm (although care must be taken in cases of
equal similarity) and our other requirements (all vertices included, minimal
total edge weight) are very straightforward. Given the potential for roughly
halving the data remaining to be processed at each step, the computational
cost reduces from O(n3) to O(n2 log n).

The real interest of Sollin’s algorithm arises when we are clustering on a
graph and do not have all n(n−1)/2 edges present. Sollin’s algorithm can be
shown to have computational cost m log n where m is the number of edges.
When m � n(n − 1)/2 then we have the potential for appreciable gains.

The MST in feature spaces can of course make use of the fast nearest
neighbor finding methods. See (Murtagh, 1985) for various examples.

Other graph data structures which have been proposed for data analysis
are related to the MST. We know, for example, that the following subset
relationship holds:

MST ⊆ RNG ⊆ GG ⊆ DT

where RNG is the relative neighborhood graph, GG is the Gabriel graph,
and DT is the Delaunay triangulation. The latter, in the form of its dual,
the Voronoi tessellation, has been used for analyzing the clustering of galaxy
locations. References to these and related methods can be found in (Murtagh,
1993).

8.7 Voronoi Tessellation and Percolation

A Voronoi tessellation constructs a convex Voronoi cell around each occu-
pied pixel and assigns fluxes to them based on the number of photons in
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the pixel, the cell area, and the effective exposure time at the pixel loca-
tion. This of course is an imaging perspective, and mutatis mutandis we may
consider continuous spaces, and unit regions. Thus background photons have
large cells and low fluxes associated with them, whereas source photons are
characterized by small cells and high fluxes.

The flux at which the observed cumulative distribution of fluxes for the
selected region begins to deviate from the one expected for random Poisson
noise is used as a threshold to discriminate between background events and
pixels that may belong to sources. Pixels with associated fluxes exceeding the
threshold are passed to a non-parametric percolation algorithm that groups
adjacent high-flux pixels into sources. The advantage of Voronoi tessellation
and percolation is that no assumptions are made about the geometrical prop-
erties of the sources and that very extended sources are detected as significant
without a single pixel in the image being required to feature a photon count
significantly different from the background.

Therefore, Voronoi tessellation and percolation is particularly well-suited
for resolved sources of low surface brightness and potentially irregular shape.
The main disadvantage of the approach is that it tends to produce blends
when run with a low flux threshold on crowded fields. Some examples of the
use of Voronoi tessellations for astronomical catalog analysis can be found in
(van de Weygaert, 1994; González et al., 2000)

We will return to Voronoi tessellations later in this chapter when dealing
with noise filtering.

8.8 Model-Based Clustering

Motivation for considering a model for our data is that it may help us answer
important ancillary questions. A prime example is the question of how many
inherent clusters or groups of data objects we have. We review recent progress
in this section.

8.8.1 Modeling of Signal and Noise

A simple and widely applicable model is a distribution mixture, with the
signal modeled by Gaussians, in the presence of Poisson background noise.

Consider data which are generated by a mixture of (G − 1) bivariate
Gaussian densities, fk(x; θ) ∼ N (µk, Σk), for clusters k = 2, . . . , G, and with
Poisson background noise corresponding to k = 1. The overall population
thus has the mixture density

f(x; θ) =
G∑

k=1

πkfk(x; θ)
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where the mixing or prior probabilities, πk, sum to 1, and f1(x; θ) = A−1,
where A is the area of the data region. This is referred to as mixture modeling
When constraints are set on the model parameters, θ, this leads to model-
based clustering (Banfield and Raftery, 1993; Dasgupta and Raftery, 1998;
Murtagh and Raftery, 1984; Banerjee and Rosenfeld, 1993).

The parameters, θ and π, can be estimated efficiently by maximizing the
mixture likelihood

L(θ, π) =
n∏

i=1

f(xi; θ),

with respect to θ and π, where xi is the ith observation.
Now let us assume the presence of two clusters, one of which is Poisson

noise, the other Gaussian. This yields the mixture likelihood

L(θ, π) =
n∏

i=1

[
π1A−1 + π2

1
2π

√
|Σ|

exp
{
−1

2
(xi − µ)T Σ−1(xi − µ)

}]
,

where π1 + π2 = 1.
An iterative solution is provided by the expectation-maximization (EM)

algorithm (Dempster et al., 1977). Let the “complete” (or “clean” or “out-
put”) data be yi = (xi, zi) with indicator set zi = (zi1, zi2) given by (1, 0) or
(0, 1). Vector zi has a multinomial distribution with parameters (1;π1, π2).
This leads to the complete data log-likelihood:

l(y, z; θ, π) = Σn
i=1Σ

2
k=1zik[log πk + log fk(xk; θ)]

The E-step then computes ẑik = E(zik | x1, . . . , xn, θ), i.e. the posterior
probability that xi is in cluster k. The M-step involves maximization of the
expected complete data log-likelihood:

l∗(y; θ, π) = Σn
i=1Σ

2
k=1ẑik[log πk + log fk(xi; θ)].

The E- and M-steps are iterated until convergence.
For the 2-class case (Poisson noise and a Gaussian cluster), the complete-

data likelihood is

L(y, z; θ, π) =
n∏

i=1

[π1

A
]zi1

[
π2

2π
√

|Σ|
exp

{
−1

2
(xi − µ)T Σ−1(xi − µ)

}]zi2

The corresponding expected log-likelihood is then used in the EM algorithm.
This formulation of the problem generalizes to the case of G clusters, of
arbitrary distributions and dimensions.

Fraley (1999) discusses implementation of model-based clustering, includ-
ing publicly available software.

In order to assess the evidence for the presence of a signal-cluster, we use
the Bayes factor for the mixture model, M2, that includes a Gaussian density
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as well as background noise, against the “null” model, M1, that contains only
background noise. The Bayes factor is the posterior odds for the mixture
model against the pure noise model, when neither is favored a priori. It is
defined as B = p(x|M2)/p(x|M1), where p(x|M2) is the integrated likelihood
of the mixture model M2, obtained by integrating over the parameter space.
For a general review of Bayes factors, their use in applied statistics, and how
to approximate and compute them, see (Kass and Raftery, 1995).

We approximate the Bayes factor using the Bayesian Information Crite-
rion or BIC (Schwarz, 1978). For a Gaussian cluster and Poisson noise, this
takes the form:

2 log B ≈ BIC = 2 log L(θ̂, π̂) + 2n logA− 6 log n,

where θ̂ and π̂ are the maximum likelihood estimates of θ and π, and L(θ̂, π̂)
is the maximized mixture likelihood.

A review of the use of the BIC criterion for model selection – and more
specifically for choosing the number of clusters in a data set – can be found
in (Fraley and Raftery, 1999).

Mixture modeling and the BIC criterion were applied to gamma-ray burst
data (Mukherjee et al., 1998). Around 800 observations were assessed. A re-
cently published paper (Hakkila et al., 2000) confirms that in our earlier work
(Mukherjee et al., 1998) we were statistically correct, while also providing an
instrumental rather than astrophysical origin of clustering.

8.8.2 Application to Thresholding

Consider an image or a planar or 3-dimensional set of object positions. For
simplicity we consider the case of setting a single threshold in the image
intensities, or the point set’s spatial density.

We deal with a combined mixture density of two univariate Gaussian
distributions fk(x; θ) ∼ N (µk, σk). The overall population thus has the
mixture density

f(x; θ) =
2∑

k=1

πkfk(x; θ)

where the mixing or prior probabilities, πk, sum to 1.
When the mixing proportions are assumed equal, the log-likelihood takes

the form

l(θ) =
n∑

i=1

ln

[
2∑

k=1

1
2π

√
|σk|

exp
{
− 1

2σk
(xi − µk)2

}]

The EM algorithm is then used to iteratively solve this (Celeux and Go-
vaert, 1995). The Sloan Digital Sky Survey (SDSS, 2000) is producing a sky
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map of more than 100 million objects, together with 3-dimensional infor-
mation (redshifts) for a million galaxies. Pelleg and Moore (1999) describe
mixture modeling, using a k-D tree (also referred to as a multidimensional bi-
nary search tree) preprocessing to expedite the finding of the class (mixture)
parameters, e.g. means, covariances.

8.9 Wavelet Analysis

Wavelets can be used for analyzing the projected 2D or the 3D galaxy dis-
tribution (Escalera et al., 1992; Slezak et al., 1993; Pagliaro et al., 1999;
Kurokawa et al., 2001). For the noise model, given that this relates to point
pattern clustering, we have to consider the Poisson noise case described in
section 2.3.3 (Poisson noise with few counts).

Fig. 8.17. Data in the plane. The 256 × 256 image shows 550 “signal” points – two
Gaussian-shaped clusters in the lower left and in the upper right – with in addition
40,000 Poisson noise points added. Details of recovery of the clusters is discussed
in Murtagh and Starck (1998).

Fig. 8.17 shows an example of where point pattern clusters – density
bumps in this case – are sought, with a great amount of background clutter.
Murtagh and Starck (1998) refer to the fact that there is no computational
dependence on the number of points (signal or noise) in such a problem,
when using a wavelet transform with noise modeling. Hence the dominant
part of the processing is of constant computational cost, O(1), which is quite
an achievement.
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Fig. 8.18. Simulated data.

Fig. 8.18 shows a simulation of a 60h−1 Mpc box of universe, made by A.
Klypin (simulated data at http://astro.nmsu.edu/∼aklypin/PM/pmcode). It
represents the distribution of dark matter in the present-day universe and
each point is a dark matter halo where visible galaxies are expected to be
located, i.e. the distribution of dark matter haloes can be compared with the
distribution of galaxies in catalogs of galaxies.

Fig. 8.19 shows the same data set filtered by the 3D wavelet transform,
using the algorithm described in section 2.4.5.

It has been shown that the genus curve derived from a density obtained by
wavelet smoothing presents more information about the true topology of the
distribution of galaxies than using the one derived from standard Gaussian
smoothing (Mart́ınez et al., 2005).

If wavelets are perfectly suited for detecting clusters in a 3D data set,
they are not optimal for representing filaments and walls. For this reason,
it has been proposed to combine the wavelet decomposition with two other
multiscale transforms, the 3D ridgelet and the 3D beamlet, which represent
well, respectively, walls and filaments (Starck et al., 2005).
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Fig. 8.19. Simulated data filtered by the wavelet transform.

8.10 Nearest Neighbor Clutter Removal

The wavelet approach is certainly appropriate when the wavelet function
reflects the type of object sought (e.g. isotropic), and when superimposed
point patterns are to be analyzed. However, non-superimposed point patterns
of complex shape are very well treated by the approach described in (Byers
and Raftery, 1998). Using a homogeneous Poisson noise model, Byers and
Raftery derive the distribution of the distance of a point to its kth nearest
neighbor.

Next, these authors consider the case of a Poisson process which is signal,
superimposed on a Poisson process which is clutter. The kth nearest neigh-
bor distances are modeled as a mixture distribution: a histogram of these, for
given k, will yield a bimodal distribution if our assumption is correct. This
mixture distribution problem is solved using the EM algorithm. Generaliza-
tion to higher dimensions, e.g. 10, is also discussed.

Similar data was analyzed by noise modeling and a Voronoi tessellation
preprocessing of the data in (Allard and Fraley, 1997). It is pointed out in
this work how Voronoi tessellations can be very useful whenever the Voronoi
tiles have meaning in relation to the morphology of the point patterns. How-
ever, this approach does not scale well to higher dimensions. Ebeling and
Wiedenmann (1993), reproduced in (Dobrzycki et al., 1999), propose the use
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of a Voronoi tessellation for astronomical X-ray object detection and charac-
terization.

8.11 Chapter Summary

Some old problems have been given new answers in this chapter, such as how
we choose the inherent number of clusters in a data set. We have noted how
a Voronoi graph structure is a good one when the morphology investigated
is diverse.

Most of all in this chapter we have been concerned with the analysis of
cosmology catalogs. Correlation and clustering were foremost in our minds.
Scale was implicitly at issue thoughout the chapter, and the characterization
of fractal or self-similar behavior was looked at in some depth.



9. Multiple Resolution in Data Storage
and Retrieval

9.1 Introduction

Earlier chapters have covered important themes in data storage and access.
Compression, in particular, is at the heart of technologies needed for compact
storage and fast data access. Filtering, too, serves to allow the more essential
elements of information to be retained. Deconvolution is available for refining
our signals and images.

Recent innovative use of the Haar wavelet transform is to be found in the
area of database querying. For very large databases, an approximate query
result may be acceptable. For data confidentiality, an approximate query
result may be required. The progressive refinement which is possible with
the wavelet transform fits in well with support for approximate database
querying.

When best match retrievals to our query are wanted, performing the
search in wavelet space can have advantages. We will show below why this is
so.

Data resolution and scale can be embodied in clustering schemes and more
particularly in hierarchical clustering. A review of past and current work is
presented, with particular reference to hyperlinked data repositories.

When data clustering is “active” – the user can interact with the struc-
tures imposed on the data – we have an open path towards innovative human-
machine interaction. Visual user interfaces result from doing this.

We subsequently look closer at how we take ideas initially developed for
signal and image processing towards application in more general information
spaces. An enabling tool is array permutation. A number of examples are
used to illustrate these innovative results.

9.2 Wavelets in Database Management

Catalog matching in astronomy gives rise to the problem of fuzzy joins, i.e.
merging two tables based on object coordinates, but with different precisions
associated with measurement of these coordinates (Read and Hapgood, 1992;
Page, 1996). Here we will briefly review a different type of problem, namely
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that of approximate query processing. This arises when data must be kept
confidential so that only aggregate or macro-level data can be divulged. Ap-
proximate query processing also provides a solution to access of information
from massive data tables.

One approach to approximate database querying through aggregates is
sampling. However a join operation applied to two uniform random samples
results in a non-uniform result, which furthermore is sparse (Chakrabarti
et al., 2000). A second approach is to keep histograms on the coordinates.
For a multidimensional feature space, one is faced with a “curse of dimen-
sionality” as the dimensionality grows. A third approach is wavelet-based.
This will be briefly reviewed.

A form of progressive access to the data is sought, such that aggregated
data can be obtained first, followed by greater refinement of the data. The
Haar wavelet transform is a favored transform for such purposes, given that
reconstructed data at a given resolution level is simply the mean of data
values. Vitter et al. (1999; 1998) consider the combinatorial aspects of data
access using a Haar wavelet transform, and based on a d-dimensional data
hypercube. Such data, containing scores or frequencies, is often found in the
commercial data mining context. The application area is referred to as OLAP,
On-Line Analytical Processing.

As pointed out in Chakrabarti et al. (2000), one can treat multidimen-
sional feature hypercubes as a type of high dimensional image, taking the
given order of feature dimensions as fixed. As an alternative a uniform “shift
and distribute” randomization can be used (Chakrabarti et al., 2000).

What if, however, one organizes the data such that adjacency has a mean-
ing? This implies that similarly-valued objects, and similarly-valued features
are close together. Later in this chapter we will describe exactly how this can
be done. We will describe the close linkage with singular value decomposition,
and we will also include consideration of the case of very high dimensional,
and perhaps very sparse, feature spaces.

One further topic will be touched on before leaving the area of database
querying. The best match problem seeks a set of closest retrievals in a fea-
ture space, and can be counterposed to the database exact match or partial
match problems. Parseval’s theorem indicates that Euclidean distance in the
space or time domain is directly related to Euclidean distance in the fre-
quency domain. The Euclidean distance is invariant under any orthonormal
transformation of the given feature space. This allows the querying to be
carried out in the Haar or any other orthonormal wavelet transform space.
One important reason for doing this includes data filtering prior to querying.
Furthermore a filtered database may well be very compressible, which points
to possible interest when supporting querying of very large databases. Fur-
ther theoretical and experimental results are presented in (Murtagh, 1998;
Chang and Fu, 1999).
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9.3 Fast Cluster Analysis

The non-technical person more often than not understands clustering as a
partition. K-means provides such a solution.

A mathematical definition of a partition implies no multiple assignments
of observations to clusters, i.e. no overlapping clusters. Overlapping clusters
may be faster to determine in practice, and a case in point is the one-pass
algorithm described in (Salton and McGill, 1983). The general principle fol-
lowed is: make one pass through the data, assigning each object to the first
cluster which is close enough, and making a new cluster for objects that are
not close enough to any existing cluster.

This algorithm was the basis for clustering the web in the context of the
Altavista search engine (Broder et al., 1997). A feature vector is determined
for each HTML document considered, based on sequences of words. Similar-
ity between documents is based on an inverted list. The similarity graph is
thresholded, and components sought.

Broder (1998) solves the same clustering objective using a thresholding
and overlapping clustering method similar to the Salton and McGill one. The
application described is that of clustering the Altavista repository in April
1996, consisting of 30 million HTML and text documents, comprising 150
GBytes of data. The number of serviceable clusters found was 1.5 million,
containing 7 million documents. Processing time was about 10.5 days. An
analysis of the clustering algorithm used is in (Borodin et al., 1999).

The threshold-based pass of the data, in its basic state, is susceptible to
lack of robustness. A bad choice of threshold leads to too many clusters or
two few. To remedy this, we can work on a well-defined data structure such
as the minimal spanning tree. Or, alternatively, we can iteratively refine the
clustering. Partitioning methods, such as k-means, use iterative improvement
of an initial estimation of a targeted clustering.

A very widely used family of methods for inducing a partition on a data
set is called k-means, c-means (in the fuzzy case), ISODATA, competitive
learning, vector quantization and other more general names (non-overlapping
non-hierarchical clustering) or more specific names (minimal distance or ex-
change algorithms).

The usual criterion to be optimized is:

1
| I |

∑
q∈Q

∑
i∈q

‖i − q‖2

where I is the object set, | . | denotes cardinality, q is some cluster, Q is the
partition, and q denotes a set in the summation, whereas q denotes some
associated vector in the error term, or metric norm. This criterion ensures
that clusters found are compact, and therefore assumed homogeneous. The
optimization criterion, by a small abuse of terminology, is ofter referred to as
a minimum variance one.
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A necessary condition that this criterion be optimized is that vector q be
a cluster mean, which for the Euclidean metric case is:

q =
1

| q |
∑
i∈q

i

A batch update algorithm, due to (Lloyd, 1957; Forgy, 1965) and others
makes assignments to a set of initially randomly-chosen vectors, q, as step 1.
Step 2 updates the cluster vectors, q. This is iterated. The distortion error,
equation 1, is non-increasing, and a local minimum is achieved in a finite
number of iterations.

An online update algorithm is due to MacQueen (1976). After each pre-
sentation of an observation vector, i, the closest cluster vector, q, is updated
to take account of it. Such an approach is well-suited for a continuous input
data stream (implying “online” learning of cluster vectors).

Both algorithms are gradient descent ones. In the online case, much atten-
tion has been devoted to best learning rate schedules in the neural network
(competitive learning) literature: (Darken and Moody, 1991; Darken et al.,
1992; Darken and Moody, 1992; Fritzke, 1997).

A difficulty, less controllable in the case of the batch algorithm, is that
clusters may become (and stay) empty. This may be acceptable, but also may
be in breach of our original problem formulation. An alternative to the batch
update algorithm is Späth’s (1985) exchange algorithm. Each observation is
considered for possible assignment into any of the other clusters. Updating
and “downdating” formulas are given by Späth. This exchange algorithm is
stated to be faster to converge and to produce better (smaller) values of the
objective function. We have also verified that it is usually a superior algorithm
to the minimal distance one.

K-means is very closely related to Voronoi (Dirichlet) tessellations, to
Kohonen self-organizing feature maps, and various other methods.

The batch learning algorithm above may be viewed as:

1. An assignment step which we will term the E (estimation) step: estimate
the posteriors,

P (observations | cluster centers)

2. A cluster update step, the M (maximization) step, which maximizes a
cluster center likelihood.

Neal and Hinton (1998) cast the k-means optimization problem in such a
way that both E- and M-steps monotonically increase the maximand’s values.
The EM algorithm may, too, be enhanced to allow for online as well as batch
learning (Sato and Ishii, 1999).

In (Thiesson et al., 1999), k-means is implemented (i) by traversing blocks
of data, cyclically, and incrementally updating the sufficient statistics and
parameters, and (ii) instead of cyclic traversal, sampling from subsets of the
data. Such an approach is admirably suited for very large data sets, where
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in-memory storage is not feasible. Examples used by Thiesson et al. (1999)
include the clustering of a half million 300-dimensional records.

9.4 Nearest Neighbor Finding on Graphs

Hypertext is modeled by a graph. Hence search in information spaces often
becomes a search problem on graphs. In this section, we will discuss nearest
neighbor searching on graphs.

Clustering on graphs may be required because we are working with (per-
haps complex non-Euclidean) dissimilarities. In such cases where we must
take into account an edge between each and every pair of vertices, we will
generally have an O(m) computational cost where m is the number of edges.
In a metric space we have seen that we can look for various possible ways to
expedite the nearest neighbor search. An approach based on visualization –
turning our data into an image – will be looked at below. However there is
another aspect of our similarity (or other) graph which we may be able to
turn to our advantage. Efficient algorithms for sparse graphs are available.
Sparsity can be arranged – we can threshold our edges if the sparsity does
not suggest itself more naturally. A special type of sparse graph is a planar
graph, i.e. a graph capable of being represented in the plane without any
crossovers of edges.

For sparse graphs, minimal spanning tree (MST) algorithms with O(m log
log n) computational cost were described by (Yao, 1975) and (Cheriton and
Tarjan, 1976). A short algorithmic description can be found in (Murtagh,
1985), and we refer in particular to the latter.

The basic idea is to preprocess the graph, in order to expedite the sorting
of edge weights (why sorting? – simply because we must repeatedly find
smallest links, and maintaining a sorted list of edges is a good basis for doing
this). If we were to sort all edges, the computational requirement would be
O(m log m). Instead of doing that, we take the edge set associated with each
and every vertex. We divide each such edge set into groups of size k. (The
fact that the last such group will usually be of size < k is taken into account
when programming.)

Let nv be the number of incident edges at vertex v, such that
∑

v nv = 2m.
The sorting operation for each vertex now takes O(k log k) operations for

each group, and we have nv/k groups. For all vertices the sorting requires a
number of operations which is of the order of

∑
v nv log k = 2m log k. This

looks like a questionable – or small – improvement over O(m log m).
Determining the lightest edge incident on a vertex requires O(nv/k) com-

parisons since we have to check all groups. Therefore the lightest edges inci-
dent on all vertices are found with O(m/k) operations.

When two vertices, and later fragments, are merged, their associated
groups of edges are simply collected together, therefore keeping the total
number of groups of edges which we started out with. We will bypass the
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issue of edges which, over time, are to be avoided because they connect ver-
tices in the same fragment: given the fact that we are building an MST, the
total number of such edges-to-be-avoided cannot surpass 2m.

To find what to merge next, again O(m/k) processing is required. Using
Sollin’s algorithm, the total processing required in finding what to merge
next is O(m/k log n). The total processing required for grouping the edges,
and sorting within the edge-groups, is O(m log k), i.e. it is one-off and ac-
complished at the start of the MST-building process.

The total time is O(m/k log n) + O(m log k). Let us fix k = log n. Then
the second term dominates and gives overall computational complexity as
O(m log log n).

This result has been further improved to near linearity in m by Gabow et
al. (1986), who develop an algorithm with complexity O(m log log log . . . n)
where the number of iterated log terms is bounded by m/n.

Motwani and Raghavan (1995), chapter 10, base a stochastic O(m) algo-
rithm for the MST on random sampling to identify and eliminate edges that
are guaranteed not to belong to the MST.

Let us turn our attention now to the case of a planar graph. For a planar
graph we know that m ≤ 3n−6 for m > 1. For proof, see for example (Tucker,
1980), or any book on graph theory.

Referring to Sollin’s algorithm, described above, O(n) operations are
needed to establish a least cost edge from each vertex, since there are only
O(n) edges present. On the next round, following fragment-creation, there
will be at most ceil(n/2) new vertices, implying of the order of n/2 process-
ing to find the least cost edge (where ceil is the ceiling function, or smallest
integer greater than the argument). The total computational cost is seen to
be proportional to: n + n/2 + n/4 + · · · = O(n).

So determining the MST of a planar graph is linear in numbers of either
vertices or edges.

Before ending this review of very efficient clustering algorithms for graphs,
we note that algorithms discussed so far have assumed that the similarity
graph was undirected. For modeling transport flows, or economic transfers,
the graph could well be directed. Components can be defined, generalizing
the clusters of the single link method, or the complete link method. Tarjan
(1983) provides an algorithm for the latter agglomerative criterion which is
of computational cost O(m log n).

9.5 Cluster-Based User Interfaces

Information retrieval by means of “semantic road maps” was first detailed in
(Doyle, 1961). The spatial metaphor is a powerful one in human information
processing. The spatial metaphor also lends itself well to modern distributed
computing environments such as the web. The Kohonen self-organizing fea-
ture map (SOM) method is an effective means towards this end of a visual
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information retrieval user interface. We will also provide an illustration of
web-based semantic maps based on hyperlink clustering.

The Kohonen map is, at heart, k-means clustering with the additional con-
straint that cluster centers be located on a regular grid (or some other topo-
graphic structure) and furthermore their location on the grid be monotoni-
cally related to pairwise proximity (Murtagh and Hernández-Pajares, 1995).
The nice thing about a regular grid output representation space is that it
lends itself well to being a visual user interface.

Fig. 9.1 shows a visual and interactive user interface map, using a Kohonen
self-organizing feature map (SOM). Color is related to density of document
clusters located at regularly-spaced nodes of the map, and some of these
nodes/clusters are annotated. The map is installed as a clickable imagemap,
with CGI programs accessing lists of documents and – through further links –
in many cases, the full documents. In the example shown, the user has queried
a node and results are seen in the right-hand panel. Such maps are maintained
for (currently) 18000 articles from the Astrophysical Journal, 10000 from
Astronomy and Astrophysics, over 3300 astronomical catalogs, and other data
holdings. More information on the design of this visual interface and user
assessment can be found in (Poinçot et al., 1998; Poinçot et al., 2000).

A Java-based visualization tool (Guillaume and Murtagh, 2000) was de-
veloped for hyperlink-based data, consisting of astronomers, astronomical
object names, article titles, and with the possibility of other objects (images,
tables, etc.). Through weighting, the various types of links could be prior-
itized. An iterative refinement algorithm was developed to map the nodes
(objects) to a regular grid of cells which, as for the Kohonen SOM map, are
clickable and provide access to the data represented by the cluster. Fig. 9.2
shows an example for an astronomer.

9.6 Images from Data

9.6.1 Matrix Sequencing

We take our input object-attribute data, e.g. document-term or hyperlink
array, as a 2-dimensional image. In general, an array is a mapping from the
Cartesian product of observation set, I, and attribute set, J , onto the reals,
f : I×J −→ IR, while an image (single frame) is generally defined for discrete
spatial intervals X and Y , f : X × Y −→ IR. A table or array differs from
a 2-dimensional image, however, in one major respect. There is an order
relation defined on the row- and column-dimensions in the case of the image.
To achieve invariance we must induce an analogous ordering relation on the
observation and variable dimensions of our data table.

A natural way to do this is to seek to optimize contiguous placement
of large (or nonzero) data table entries. Note that array row and column
permutation to achieve such an optimal or suboptimal result leaves intact
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Fig. 9.1. Visual interactive user interface to the journal Astronomy and Astro-
physics. Original in color.

each value xij . We simply have row and column, i and j, in different locations
at output compared to input. Methods for achieving such block clustering
of data arrays include combinatorial optimization (McCormick et al., 1972;
Lenstra, 1974; Doyle, 1988) and iterative methods (Deutsch and Martin, 1971;
Streng, 1991). In an information retrieval context, a simulated annealing
approach was also used in (Packer, 1989). Further references and discussion
of these methods can be found in (Murtagh, 1985; March, 1983; Arabie et al.,
1988). Treating the results of such methods as an image for visualization
purposes is a very common practice, e.g. (Gale et al., 1984).

We now describe briefly two algorithms which work well in practice.

Moments Method (Deutsch and Martin, 1971): Given a matrix, a(i, j), for
i = 1, 2, . . . , n, and j = 1, 2, . . . ,m. Define row moments as m(i) =
(
∑

j ja(i, j))/(
∑

j a(i, j)). Permute rows in order of nondecreasing row mo-
ments. Define column moments analogously. Permute columns in order of
nondecreasing column moments. Reiterate until convergence.



9.6 Images from Data 275

Fig. 9.2. Visual interactive user interfaces, based on graph edges. Map for as-
tronomer Jean Heyvaerts. Original in color.

This algorithm results (usually) in large matrix entries being repositioned
close to the diagonal. An optimal result cannot be guaranteed.

Bond Energy Algorithm (McCormick et al., 1972): Permute matrix rows and
columns such that a criterion, BEA =

∑
i,j a(i, j)(a(i − 1, j) + a(i + 1, j) +

a(i, j − 1) + a(i, j + 1)) is maximized.

An algorithm to implement the BEA is as follows: Position a row arbi-
trarily. Place the next row such that the contribution to the BEA criterion is
maximized. Place the row following that such that the new contribution to
the BEA is maximized. Continue until all rows have been positioned. Then do
analogously for columns. No further convergence is required in this case. This
algorithm is a particular use of the traveling salesperson problem, TSP, which
is widely used in scheduling. In view of the arbitrary initial choice of row or
column, and more particularly in view of the greedy algorithm solution, this
is a suboptimal algorithm.

Matrix reordering rests on (i) permuting the rows and columns of an
incidence array to some standard form, and then data analysis for us in
this context involves (ii) treating the permuted array as an image, analyzed
subsequently by some appropriate analysis method.

Dimensionality reduction methods, including principal components analy-
sis (suitable for quantitative data), correspondence analysis (suitable for qual-
itative data), classical multidimensional scaling, and others, is based on sin-
gular value decomposition. It holds:

AU = ΛU
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where we have the following. A is derived from the given data – in the
case of principal components analysis, this is a correlation matrix, or a vari-
ance/covariance matrix, or a sums of squares and cross-products matrix.

Zha et al. (2001) formalize the reordering problem as the constructing of
a sparse rectangular matrix

W =
(

W11 W12

W21 W22

)

so that W11 and W22 are relatively denser than W12 and W21. Permuting rows
and columns according to projections onto principal axes achieves this pattern
for W . Proceeding recursively (subject to a feasibility cut-off), we can further
increase near-diagonal density at the expense of off-diagonal sparseness.

A few comments on the computational aspects of array permuting meth-
ods when the array is very large and very sparse follow (Berry et al., 1996).
Gathering larger (or nonzero) array elements to the diagonal can be viewed in
terms of minimizing the envelope of nonzero values relative to the diagonal.
This can be formulated and solved in purely symbolic terms by reordering ver-
tices in a suitable graph representation of the matrix. A widely-used method
for symmetric sparse matrices is the Reverse Cuthill-McKee (RCM) method.

The complexity of the RCM method for ordering rows or columns is pro-
portional to the product of the maximum degree of any vertex in the graph
represented by the array and the total number of edges (nonzeros in the ma-
trix). For hypertext matrices with small maximum degree, the method would
be extremely fast. The strength of the method is its low time complexity but
it does suffer from certain drawbacks. The heuristic for finding the starting
vertex is influenced by the initial numbering of vertices and so the quality of
the reordering can vary slightly for the same problem for different initial num-
berings. Next, the overall method does not accommodate dense rows (e.g., a
common link used in every document), and if a row has a significantly large
number of nonzeros it might be best to process it separately; i.e., extract the
dense rows, reorder the remaining matrix and augment it by the dense rows
(or common links) numbered last.

One alternative approach is based on linear algebra, making use of the
extremely sparse incidence data which one is usually dealing with. The execu-
tion time required by RCM may well require at least two orders of magnitude
(i.e., 100 times) less execution time compared to such methods. However such
methods, including for example sparse array implementations of correspon-
dence analysis, appear to be more competitive with respect to bandwidth
(and envelope) reduction at the increased computational cost.

Elapsed CPU times for a range of arrays (Berry et al., 1996), show per-
formances between 0.025 to 3.18 seconds for permuting a 4000 × 400 array.
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9.6.2 Filtering Hypertext

It is quite impressive how 2D (or 3D) image signals can handle with ease
the scalability limitations of clustering and many other data processing op-
erations. The contiguity imposed on adjacent pixels bypasses the need for
nearest neighbor finding. It is very interesting therefore to consider the fea-
sibility of taking problems of clustering massive data sets into the 2D image
domain. We will look at a few recent examples of work in this direction.

Church and Helfman (1993) address the problem of visualizing possibly
millions of lines of computer program code, or text. They consider an ap-
proach borrowed from DNA sequence analysis. The data sequence is tok-
enized by splitting it into its atoms (line, word, character, etc.) and then
placing a dot at position i, j if the ith input token is the same as the jth.
The resulting dotplot, it is argued, is not limited by the available display
screen space, and can lead to discovery of large-scale structure in the data.

When data do not have a sequence we have an invariance problem which
can be resolved by finding some row and column permutation which pulls
large array values together, and perhaps furthermore into proximity to an
array diagonal. Sparse data is a special case: a review of public domain soft-
ware for carrying out SVD and other linear algebra operations on large sparse
data sets can be found in (Berry et al., 1999).

Once we have a sequence-respecting array, we can immediately apply
efficient visualization techniques from image analysis. Murtagh et al. (2000)
investigate the use of noise filtering (i.e. to remove less useful array entries)
using a multiscale wavelet transform approach.

An example follows. From the Concise Columbia Encyclopedia (1989 2nd
ed., online version) a set of data relating to 12025 encyclopedia entries and to
9778 cross-references or links was used. Fig. 9.3 shows a 500 × 450 subarray,
based on a correspondence analysis (i.e. ordering of projections on the first
factor).

This part of the encyclopedia data was filtered using the wavelet and
noise-modeling methodology described in (Murtagh et al., 2000) and the
outcome is shown in Fig. 9.4. Overall the recovery of the more apparent
alignments, and hence visually stronger clusters, is excellent. The first rela-
tively long “horizontal bar” was selected – it corresponds to column index
(link) 1733 = geological era. The corresponding row indices (articles) are,
in sequence:

SILURIAN PERIOD
PLEISTOCENE EPOCH
HOLOCENE EPOCH
PRECAMBRIAN TIME
CARBONIFEROUS PERIOD
OLIGOCENE EPOCH
ORDOVICIAN PERIOD
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Fig. 9.3. Part (500 × 450) of original encyclopedia incidence data array.

TRIASSIC PERIOD
CENOZOIC ERA
PALEOCENE EPOCH
MIOCENE EPOCH
DEVONIAN PERIOD
PALEOZOIC ERA
JURASSIC PERIOD
MESOZOIC ERA
CAMBRIAN PERIOD
PLIOCENE EPOCH
CRETACEOUS PERIOD

The approach described here is based on a number of technologies: (i)
data visualization techniques; (ii) the wavelet transform for data analysis –
in particular data filtering; and (iii) data matrix permuting techniques. The
wavelet transform has linear computational cost in terms of image row and
column dimensions, and is not dependent on the pixel values.

9.6.3 Clustering Document-Term Data

Experiments were carried out on a set of bibliographical data – documents
in the literature crossed by user-assigned index terms. This bibliographic
data is from the journal Astronomy and Astrophysics. We looked at a set
of such bibliography relating to 6885 articles published in Astronomy and
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Fig. 9.4. End-product of the filtering of the array shown in the previous figure.

Astrophysics between 1994 and early 1999. A sample of the first 10 records
is as follows.

1994A&A...284L...1I 102 167
1994A&A...284L...5W 4 5 14 16 52 69
1994A&A...284L...9M 29
1994A&A...284L..16F 15 64
1994A&A...284....1B 32 49 71
1994A&A...284...12A 36 153 202
1994A&A...284...17H 3 10 74 82 103
1994A&A...284...28M 17 42 102
1994A&A...284...33D 58
1994A&A...284...44S 111

A 19-character unique identifier (the bibcode) is followed by the sequence
numbers of the index terms. There are 269 of the latter. They are specified
by the author(s) and examples will be seen below. The experiments to fol-
low were based on the first 512 documents in order to facilitate presentation
of results. We investigated the row and column permuting of the 512 × 269
incidence array, based on the ordering of projections on the principal compo-
nent, but limited clustering was brought about. This was due to the paucity
of index term “overlap” properties in this dataset, i.e. the relatively limited
numbers of index terms shared by any given pair of documents. For this
reason, we elected to base subsequent work on the contingency table.
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Fig. 9.5. Row/column-permuted contingency table of 512 documents, based on
projections onto the first principal component.

A principal components analysis of the 512×269 dataset is dominated by
the O(m3), m = 269, diagonalization requirement. Calculating the principal
component projections for the rows takes linear (in document space) time.
We used the order of principal component projections to provide a standard
permutation of rows and columns of the document contingency table. The
resulting permuted contingency table is shown in Fig. 9.5.

Figs. 9.6 and 9.7 show, respectively, the results of a wavelet transform (the
redundant à trous transform is used) at wavelet resolution level 3 and the
final smoothed version of the data. The latter is a background or continuum.
In both of these figures, more especially in the continuum one, we have visual
evidence for a cluster at the bottom left, another smaller one about one-third
of the way up the diagonal, and a large one centered on the upper right-hand
side of the image.

We are simply using the wavelet transform in this instance to facilitate
analysis of a large, permuted data array. We wish to find contiguous clusters.
Such clusters will for the most part be close to the diagonal. We recall that the
contingency array used is symmetric, which explains the symmetry relative
to the diagonal in what we see.

We can interpret the clusters on the basis of their most highly associated
index terms. This in turn relates to the ordering of index terms on the first
principal component axis in this case. Applying an arbitrary cut-off (±0.2)
to principal component projections, we find the index terms most associated
with the two ends of the first principal component as follows:
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Fig. 9.6. Resolution level 3 from a wavelet transform of the data shown in Fig. 9.5.

stars:circumstellar matter
X-rays:stars
stars:abundances
stars:evolution
stars:mass loss
stars:binaries:close
stars:late type
stars:activity
stars:magnetic fields
stars:coronae
stars:flare
radio continuum:stars
stars:chromospheres
stars:binaries

The other extremity of the first principal component axis is associated
with the following index terms:

ISM:molecules
galaxies:ISM
galaxies:kinematics and dynamics
galaxies:evolution
galaxies:spiral
galaxies:interactions
galaxies:structure
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Fig. 9.7. The final smoothed version of the data resulting from a wavelet transform
of the data shown in Fig. 9.5.

galaxies:abundances
galaxies:redshifts
galaxies:luminosity function,mass function
galaxies:compact

The distinction is clear – between stars, and stellar topics of inquiry, on the
one hand, and interstellar matter (ISM) and galaxies, i.e. topics in cosmology,
on the other hand. This distinction explains the two clusters clearly visible
at the opposite ends of the diagonal in Fig. 9.7 (and less so in the original
permuted data, Fig. 9.5). The distinction between stellar and cosmological
foci of inquiry in the astronomical literature is a well-known one, which is
linked directly and indirectly to astronomical instrumentation and even to
shifts of professional interest over the past few decades.

9.7 Chapter Summary

The wavelet transform has been used in a novel and exciting way in various
aspects of the work discussed in this chapter. Both database management,
implying structured data, and best match information search, implying par-
tially or weakly structured data, were covered.

Another separate issue is how the user interacts with data holdings. Inter-
active and responsive user interfaces can be created, based on data clustering
and progressive refinement of views on data.
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Finally we looked at how image and signal processing methods could be
applied to multidimensional feature spaces.

The methods discussed in this chapter provide a broad range of tools and
techniques for human navigation of data and information spaces.



10. Towards the Virtual Observatory

10.1 Data and Information

The Mosaic browser was released in early 1993, and fundamentally changed
the way that, first, science, and later almost all other areas of social activ-
ity, are carried out. The drivers for the web, as is well-known, were scientific
activities related to high energy physics – particularly Berners-Lee who de-
veloped the http protocol at CERN; and high performance computing and
networking at NCSA – and particularly Andreesen who developed the Mosaic
browser. Another comparable sea-change is currently being sought by many
projects nationally and internationally relating to the Grid. Closely related
is the concept of the virtual observatory in astronomy – viz., statistical prop-
erties of data in distributed databases as counterposed to traditional concern
with single specified objects – and to e-science. In the latter area, the increas-
ingly online scientific literature has led to enormous productivity growth in
science.

To illustrate the quantitative and qualitative sea-change which our com-
puting infrastructure is undergoing let us look at the issue of scalability. Our
algorithms and software systems must be stable, robust over a wide range
of scales in (storage) space and (computational) time. The well-known Inter-
net search engine, Google, is reputed to use some 5000 CPUs, and Hotmail
8000. Massive data sets, and clever signal filtering and information fusion
algorithms, are needed for example to find very distant objects which tell the
story of the early Universe (the record in June 2001 is a quasar at redshift 6.2
derived from the processed data of the Sloan Digital Sky Survey – an appro-
priate illustration of the “virtual observatory” at work). Industrial tendencies
are exemplified by the growth in web server farms, with real estate rented
by the square meter, and caching and geolocation infrastructure to speed up
data delivery. In networking the OSI (International Organisation for Stan-
dardization) 7-layer model is becoming a 2-layer model, services/content on
top and transport/distribution on the bottom, with implications for proto-
cols (a point made by J. Lawrence, Intel, in a keynote at FPL2001, European
Conference on Field Programmable Logic, Queen’s University Belfast, Au-
gust 2001). Closer to research is the computational grid (driven by particle
physics, and scientific visualization of simulation and modeling), the access
grid (with a focus on videoconferencing and collaborative work), and the data
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grid (for fields such as bioinformatics/functional genomics and space-borne
and Earth-based observational astronomy).

We will next give a short historical overview, first of cluster analysis, and
then of multiresolution transforms.

Cluster analysis and related data analysis methods received significant
boosts from different directions, and at different times. In the 1960s a range
of very beautiful algorithmic methods were developed in the general area of
multidimensional scaling, and have since become mainstream in the analy-
sis of educational, political, and sociological data. Modeling of data through
graph theoretical methods has a far longer history, with contributions by
Euler, Hamilton, and later combinatoricists such as Erdős and Rényi. Nowa-
days graph theory is called upon to help with our understanding of the web
cyberspace which is the infrastructure of modern society. Even old questions
in clustering and data analysis can be given new answers, as exemplified by
the issue of the number of clusters in a data set: Bayes factors (Statistics,
University of Washington group), minimum description length (Wallace, and
Computer Science, Monash group), Kolmogorov complexity (Computer Sci-
ence, Royal Holloway group), are important contributions to this. New areas
of clustering include chemical databases, multimedia data streams, astron-
omy, and other fields (see the special issue of The Computer Journal on this
theme, Vol. 41, No. 8, 1998). Visualization and interactive analysis, from ex-
pensive beginnings in the work of Friedman and Stützle at SLAC (Stanford
Linear Accelerator Center) in the 1960s, are now represented by such widely-
used packages like S-Plus and R, Ggobi, and have strongly influenced image
processing packages like IDL (and PV-Wave), and others. In the foreword
to the special issue of The Computer Journal referred to above, we ask why
all problems have not yet been solved in this field. We answer that there is
continual turnover and renewal of applications, with requirements that are
analogous to what went before but with important new elements, and that
many theoretical and practical results have long ago passed into mainstream
and widespread practice. As particular branches of the extended clustering
and data analysis family, we can include machine learning, pattern recogni-
tion, and neural networks.

A short sketch of wavelet and multiresolution transforms follows. Fourier
analysis has long occupied central ground in signal processing. Wavelets es-
sentially do what Fourier does – frequency analysis – and incorporate also
space/time analysis. The Fast Fourier Transform, the great invention of
Tukey (who also gave us the terms “bit” and “software”, and who died in
July 2000), is bettered by the wavelet transform. Fundamental theories of
wavelets were developed by Daubechies and others, Mallat linked wavelets
to image processing, and Strang furthered comprehensive linkage with signal
processing. In graphics, DeRose and others developed digital cinema tech-
nologies based on wavelets, with DeRose leaving for Pixar, to play a central
role in the creation of such films as “Toy Story” (Disney/Pixar) and others.
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Our work, (Starck et al., 1998a) and many papers, is characterized by
the dominance of application drivers. Our concerns are to develop innovative
solutions for problems in image, signal and data processing which include:
compression, filtering, deconvolution, feature/object detection, fusion and
registering, visualization, modeling and prediction, and quantitative charac-
terization through information and noise models. Insofar as signal and noise
modeling are fundamental to our work, we can claim with justice that for
selected problems and classes of problem we provide optimal analysis of data
and information.

10.2 The Information Handling Challenges Facing Us

Some of the grand challenges now opening up in astronomical data analysis
are the following.

– What is to be understood by data mining in science (and areas of engi-
neering), and why is this radically different from commercial and business
data mining?

– How do we provide very long term semantic description of scientific data
and information? Such challenges go far beyond writing a few DTDs (Doc-
ument Type Definitions).

– Bayesian modeling can help with the all-important problem of model selec-
tion. What are the leading scientific decisions requiring such model-based
decision making?

– Data and information storage and processing are integrally linked to de-
livery. What are the new paradigms emerging on the human-machine in-
terface, and what are the implications for image and catalog archives?

– How will scientific “collaboratories” change given availability of broad-
band networks? What are the implications of 3G wireless communication,
in conjunction with very high bandwidth backbone links? What are the
implications – and the potential – of wide availability of inexpensive, very
high quality display devices?

The topics discussed in this book are an important contribution to these,
and other, challenges.

The future of astronomical data analysis harbors significant challenges.
Our methodology is capable of meeting these challenges. The state of the
art in data analysis described in this book is a contribution towards the
objective of applying appropriate and necessary data analysis methodology
to face these challenges.
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A. A Trous Wavelet Transform

A wavelet transform for discrete data is provided by the particular version
known as à trous (“with holes”, so called because of the interlaced convolution
used in successive levels: see step 2 of the algorithm below) (Holschneider
et al., 1989; Shensa, 1992; Starck et al., 1998a). This is a “stationary” or
redundant transform, i.e. decimation is not carried out. One assumes that
the sampled data {c0,l} are the scalar products, at pixels l, of the function
f(x) with a scaling function φ(x) which corresponds to a low-pass filter.

The wavelet function ψ(x) obeys the dilation equation:

1
2
ψ
(x

2

)
=

∑
k

g(k)φ(x − k) (A.1)

The coefficients g(x) are consistent with given φ and ψ. We compute the
scalar products 1

2j 〈f(x), ψ(x−l
2j )〉, i.e. the discrete wavelet coefficients, with:

wj+1,l =
∑

k

g(k)cj,l+2jk (A.2)

The indexing is such that, here, j = 1 corresponds to the finest scale, implying
high frequencies.

Generally, the wavelet resulting from the difference between two successive
approximations is applied:

wj+1,l = cj,l − cj+1,l (A.3)

The first filtering is then performed by a twice-magnified scale leading to
the {c1,l} set. The signal difference {c0,l} − {c1,l} contains the information
between these two scales and is the discrete set associated with the wavelet
transform corresponding to φ(x). The associated wavelet is ψ(x).

1
2
ψ
(x

2

)
= φ(x) − 1

2
φ
(x

2

)
(A.4)

The distance between samples increasing by a factor 2 (see Fig. A.1) from
scale j to the next, cj+1,l, is given by:

cj+1,l =
∑

k

h(k)cj,l+2jk (A.5)
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Fig. A.1. Passage from c0 to c1, and from c1 to c2.

The coefficients {h(k)} derive from the scaling function φ(x):

1
2
φ
(x

2

)
=

∑
l

h(l)φ(x − l) (A.6)

The à trous wavelet transform algorithm is:

1. We initialize j to 0 and we start with the data cj,k.
2. We carry out a discrete convolution of the data cj,k using the filter h.

The distance between the central pixel and the adjacent ones is 2j .
3. After this smoothing, we obtain the discrete wavelet transform from the

difference cj,k − cj+1,k.
4. If j is less than the number J of resolutions we want to compute, we

increment j and then go to step 2.
5. The set W = {w1, ..., wJ , cJ} represents the wavelet transform of the

data.

The algorithm allowing us to rebuild the data-frame is immediate: the
last smoothed array cJ is added to all the differences, wj .

c0,l = cJ,l +
J∑

j=1

wj,l (A.7)

Triangle Function as the Scaling Function. Choosing the triangle func-
tion as the scaling function φ (see Fig. A.2, left) leads to piecewise linear
interpolation:

φ(x) = 1− | x | if x ∈ [−1, 1]
φ(x) = 0 if x �∈ [−1, 1]

We have:
1
2
φ
(x

2

)
=

1
4
φ(x + 1) +

1
2
φ(x) +

1
4
φ(x − 1) (A.8)
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c1 is obtained from:

c1,l =
1
4
c0,l−1 +

1
2
c0,l +

1
4
c0,l+1 (A.9)

and cj+1 is obtained from cj by:

cj+1,l =
1
4
cj,l−2j +

1
2
cj,l +

1
4
cj,l+2j (A.10)

Figure A.2, right, shows the wavelet associated with the scaling function.
The wavelet coefficients at scale j are:

wj+1,l = −1
4
cj,l−2j +

1
2
cj,l −

1
4
cj,l+2j (A.11)
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Fig. A.2. Left: triangle function φ; right: the wavelet ψ.

The above à trous algorithm is easily extended to two-dimensional space.
This leads to a convolution with a mask of 3 × 3 pixels for the wavelet asso-
ciated with linear interpolation. The coefficients of the mask are:

(
1/4 1/2 1/4

)
⎛
⎝ 1/4

1/2
1/4

⎞
⎠

At each scale j, we obtain a set {wj,l} which we will call a wavelet band or
wavelet scale in the following. A wavelet scale has the same number of pixels
as the input data.

B3-spline Scaling Function. If we choose a B3-spline for the scaling func-
tion:

φ(x) = B3(x) =
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Fig. A.3. Left: the cubic spline function φ; right: the wavelet ψ.

1
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(| x − 2 |3 −4 | x − 1 |3 +6 | x |3 −4 | x + 1 |3 + | x + 2 |3) (A.12)

the coefficients of the convolution mask in one dimension are ( 1
16 , 1

4 , 3
8 , 1

4 , 1
16 ),

and in two dimensions:
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To facilitate computation, a simplification of this wavelet is to assume
separability in the two-dimensional case. In the case of the B3-spline, this
leads to a row-by-row convolution with ( 1

16 , 1
4 , 3

8 , 1
4 , 1

16 ); followed by column-
by-column convolution. Fig. A.3 shows the scaling function and the wavelet
function when a cubic spline function is chosen as the scaling function φ.

The most general way to handle the boundaries is to consider that c(k +
N) = c(N−k) (“mirror”). But other methods can be used such as periodicity
(c(k + N) = c(N)), or continuity (c(k + N) = c(k)).

Examples. In order to demonstrate the basic features of the wavelet trans-
form, we created a simulated spectrum composed of a continuum, superim-
posed Gaussian noise, and three emission features with Gaussian line pro-
files. The features have widths of standard deviation equal to 15d, 2d, and
3d (d = 9.76562e−4µm) and are located at 3.49 µm, 3.50 µm, and 3.60 µm,
respectively. This spectrum is shown in Fig. A.4. Fig. A.5 contains its wavelet
transform. Figs. A.5a-g plot the wavelet scales 1–7, and Fig. A.5h represents
the smoothed array cJ . Note that the individual wavelet scales have zero
mean. The original spectrum is obtained by an addition of the eight signals,
i.e. the seven wavelet scales and the smoothed array. It can be seen that the
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Fig. A.4. Simulated spectrum composed of a continuum, superimposed Gaussian
noise, and three emission features with Gaussian line profiles (see text).

Fig. A.5. (a–g) The wavelet scales 1 to 7 and (h) the smoothed array cJ of
the simulated spectrum shown in Fig. A.4. The addition of the eight signals gives
exactly the original spectrum of Fig. A.4
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narrow features near 3.50 µm and 3.60µm are detected at wavelet scales 2, 3,
and 4, i.e. Fig. A.5 b-d, respectively. The broad band near 3.49 µm is detected
at scales 5 and 6 (Figs. A.5 e,f, respectively). Because the two bands near
3.49 µm and 3.50 µm have a significantly different width, they are detected
at different wavelet scales.



B. Picard Iteration

Suppose that an equation is given,

�L(x) = 0 (B.1)

where x is a vector, and L a function, and that it is possible to rewrite the
equation into the form:

x = F (x) (B.2)

where F is function obtained by rearrangement of the function L. Then the
solution can be obtained from the sequence (Issacson and Keller, 1966; Hunt,
1994):

xn+1 = F (xn) (B.3)

The sequence converges if there exists a neighborhood such that, for any
x and x + ∆ in the neighborhood,

‖ F (x + ∆) − F (x) ‖ ≤ C ‖ ∆ ‖ (B.4)

for a constant C < 1. For example, the object-image relation is:

I − P ∗ O = 0 (B.5)

By convolving by P ∗ and adding O to both sides, we have

O = O + P ∗ ∗ (I − P ∗ O) (B.6)

Picard iteration gives:

On+1 = On + λP ∗ ∗ (I − P ∗ On) (B.7)

where λ is a parameter which controls the convergence.



C. Wavelet Transform
Using the Fourier Transform

We start with the set of scalar products c0(k) =< f(x), φ(x − k) >. If φ(x)
has a cut-off frequency νc ≤ 1

2 (Starck et al., 1994; Starck and Bijaoui, 1994;
Starck et al., 1998a), the data are correctly sampled. The data at resolution
j = 1 are:

c1(k) =< f(x),
1
2
φ(

x

2
− k) > (C.1)

and we can compute the set c1(k) from c0(k) with a discrete filter ĥ(ν):

ĥ(ν) =

{
φ̂(2ν)

φ̂(ν)
if | ν |< νc

0 if νc ≤| ν |< 1
2

(C.2)

and

∀ν,∀n ĥ(ν + n) = ĥ(ν) (C.3)

where n is an integer. So:

ĉj+1(ν) = ĉj(ν)ĥ(2jν) (C.4)

The cut-off frequency is reduced by a factor 2 at each step, allowing a reduc-
tion of the number of samples by this factor.

The wavelet coefficients at scale j + 1 are:

wj+1(k) =< f(x), 2−(j+1)ψ(2−(j+1)x − k) > (C.5)

and they can be computed directly from cj(k) by:

ŵj+1(ν) = ĉj(ν)ĝ(2jν) (C.6)

where g is the following discrete filter:

ĝ(ν) =

{
ψ̂(2ν)

φ̂(ν)
if | ν |< νc

1 if νc ≤| ν |< 1
2

(C.7)

and

∀ν,∀n ĝ(ν + n) = ĝ(ν) (C.8)

The frequency band is also reduced by a factor 2 at each step. Applying the
sampling theorem, we can build a pyramid of N + N

2 + . . .+1 = 2N elements.
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For an image analysis the number of elements is 4
3N2. The overdetermination

is not very high.
The B-spline functions are compact in direct space. They correspond to

the autoconvolution of a square function. In Fourier space we have:

B̂l(ν) = (
sin πν

πν
)l+1 (C.9)

B3(x) is a set of 4 polynomials of degree 3. We choose the scaling function
φ(ν) which has a B3(x) profile in Fourier space:

φ̂(ν) =
3
2
B3(4ν) (C.10)

In direct space we get:

φ(x) =
3
8

[
sin πx

4
πx
4

]4

(C.11)

This function is quite similar to a Gaussian and converges rapidly to 0. For
2-dimensions the scaling function is defined by φ̂(u, v) = 3

2B3(4r), with r =√
(u2 + v2). This is an isotropic function.
The wavelet transform algorithm with J scales is the following:

1. Start with a B3-spline scaling function and derive ψ, h and g numerically.
2. Compute the corresponding FFT image. Name the resulting complex

array T0.
3. Set j to 0. Iterate:
4. Multiply Tj by ĝ(2ju, 2jv). We get the complex array Wj+1. The inverse

FFT gives the wavelet coefficients at scale 2j ;
5. Multiply Tj by ĥ(2ju, 2jv). We get the array Tj+1. Its inverse FFT gives

the image at scale 2j+1. The frequency band is reduced by a factor 2.
6. Increment j.
7. If j ≤ J , go back to 4.
8. The set {w1, w2, . . . , wJ , cJ} describes the wavelet transform.

If the wavelet is the difference between two resolutions, i.e.

ψ̂(2ν) = φ̂(ν) − φ̂(2ν) (C.12)

and:

ĝ(ν) = 1 − ĥ(ν) (C.13)

then the wavelet coefficients ŵj(ν) can be computed by ĉj−1(ν) − ĉj(ν).

Reconstruction. If the wavelet is the difference between two resolutions,
an evident reconstruction for a wavelet transform W = {w1, . . . , wJ , cJ} is:

ĉ0(ν) = ĉJ(ν) +
∑

j

ŵj(ν) (C.14)
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But this is a particular case, and other alternative wavelet functions can
be chosen. The reconstruction can be made step-by-step, starting from the
lowest resolution. At each scale, we have the relations:

ĉj+1 = ĥ(2jν)ĉj(ν) (C.15)
ŵj+1 = ĝ(2jν)ĉj(ν) (C.16)

We look for cj knowing cj+1, wj+1, h and g. We restore ĉj(ν) based on a
least mean square estimator:

p̂h(2jν) | ĉj+1(ν) − ĥ(2jν)ĉj(ν) |2 +
p̂g(2jν) | ŵj+1(ν) − ĝ(2jν)ĉj(ν) |2 (C.17)

is to be minimum. p̂h(ν) and p̂g(ν) are weight functions which permit a
general solution to the restoration of ĉj(ν). From the derivation of ĉj(ν) we
get:

ĉj(ν) = ĉj+1(ν)ˆ̃h(2jν) + ŵj+1(ν)ˆ̃g(2jν) (C.18)

where the conjugate filters have the expression:

ˆ̃
h(ν) = p̂h(ν)ĥ∗(ν)

p̂h(ν)|ĥ(ν)|2+p̂g(ν)|ĝ(ν)|2 (C.19)

ˆ̃g(ν) = p̂g(ν)ĝ∗(ν)

p̂h(ν)|ĥ(ν)|2+p̂g(ν)|ĝ(ν)|2 (C.20)

In this analysis, the Shannon sampling condition is always respected and
no aliasing exists.

The denominator is reduced if we choose:

ĝ(ν) =
√

1− | ĥ(ν) |2

This corresponds to the case where the wavelet is the difference between the
square of two resolutions:
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Fig. C.1. Left: the interpolation function φ̂ and right: the wavelet ψ̂.
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| ψ̂(2ν) |2 = | φ̂(ν) |2 − | φ̂(2ν) |2 (C.21)

In Fig. C.1 the chosen scaling function derived from a B-spline of degree
3, and its resulting wavelet function, are plotted in frequency space.

The reconstruction algorithm is:

1. Compute the FFT of the image at the low resolution.
2. Set j to J . Iterate:
3. Compute the FFT of the wavelet coefficients at scale j.
4. Multiply the wavelet coefficients ŵj by ˆ̃g.

5. Multiply the image at the lower resolution ĉj by ˆ̃
h.

6. The inverse Fourier transform of the addition of ŵj
ˆ̃g and ĉj

ˆ̃
h gives the

image cj−1.
7. Set j = j − 1 and return to 3.

The use of a scaling function with a cut-off frequency allows a reduction
of sampling at each scale, and limits the computing time and the memory
size required.



D. Derivative Needed
for the Minimization

The Error Function

The error function is written erf(x) and the complementary error function
erfc(x). Their definitions are:

erf(x) =
2√
π

∫ x

0

e−t2dt (D.1)

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

e−t2dt (D.2)

These functions have the following limits and symmetries:

erf(0) = 0 erf(∞) = 1
erfc(0) = 1 erfc(∞) = 0

erf(−x) = erf(x) erfc(−x) = 2−erfc(x)
(D.3)

N1-MSE

Now we compute the contribution of the wavelet coefficient x to the noise
information:

hn(x) =
x2

2σ2
erfc(

x√
2σ

) (D.4)

dhn(x)
dx

=
x

σ2
erfc(

x√
2σ

) +
x2

2σ2

∂erfc( x√
2σ

)

∂x
(D.5)

We derive the function erfc:
∂ erfc(x)

∂x
= − 2√

π
e−x2

(D.6)

then
dhn(x)

dx
=

x

σ2
erfc(

x√
2σ

) − x2

√
2πσ3

e−
x2

2σ2 (D.7)
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In order to minimize the functional 7.44, we may want to calculate the
derivative of hs(x− y), hs(x− y) measuring the amount of information con-
tained in the residual (y being the data).

hs(x − y) =
(y − x)2

2σ2
erf(

y − x√
2σ

) (D.8)

Denoting z = y − x, we have

hs(z) =
z2

2σ2
erf(

z√
2σ

) (D.9)

dhs(z)
dz

=
z

σ2
erf(

z√
2σ

) +
z2

2σ2

∂erf( z√
2σ

)

∂z
(D.10)

=
z

σ2
erf(

z√
2σ

) +
z2

√
2πσ3

e−
z2

2σ2 (D.11)

and
dhs(x − y)

dx
= −dhs(z)

dz
(D.12)

N2-MSE

We compute the contribution of the wavelet coefficient x to the noise infor-
mation:

hn(x) =
1
σ2

∫ x

0

t erfc(
x − t√

2σ
)dt (D.13)

dhn(x)
dx

= hn(x + dx) − hn(x) (D.14)

=
1
σ2

∫ x+dx

0

erfc(
x + dx − t√

2σ
)dt − 1

σ2

∫ x

0

erfc(
x − t√

2σ
)dt (D.15)

dhn(x)
dx

=
x

σ2
erfc(

x − x√
2σ

) +
1
σ2

∫ x

0

∂ t erfc( x−t√
2σ

)

∂x
dt (D.16)

Now, because erfc(0) = 1 we have:

dHn(x)
dx

=
x

σ2
+

1
σ2

∫ x

0

∂ t erfc( x−t√
2σ

)

∂x
dt (D.17)

We derive the function erfc:
∂ erfc(x)

∂x
= − 2√

π
e−x2

(D.18)
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∂ erfc( (x−t)√
2σ

)

∂x
= − 2√

π

1√
2σ

e−
(x−t)2

2σ2 = −
√

2
π

1
σ

e−
(x−t)2

2σ2 (D.19)

Now we deduce for the derivative of hn:

dhn(x)
dx

=
x

σ2
+

1
σ2

∫ x

0

−
√

2
π

1
σ

t e−
(x−t)2

2σ2 dt (D.20)

dhn(x)
dx

=
x

σ2
+

1
σ3

√
2
π

∫ x

0

t e−
(x−t)2

2σ2 dt (D.21)

We create the variable J

J =
∫ x

0

t e−
(x−t)2

2σ2 dt (D.22)

We create the variable u

u = t−x√
2σ

t = x + u
√

2σ

dt =
√

2σdu
t = 0 ⇒ u = −x√

2σ
t = x ⇒ u = 0

(D.23)

The variable J can be written with u

J =
∫ 0

−x√
2σ

(x + u
√

2σ)e−u2√
2σdu (D.24)

J =
√

2σx

∫ 0

−x√
2σ

e−u2
du + 2σ2

∫ 0

−x√
2σ

u e−u2
du (D.25)

The first part of J can be rewritten as:

J0 =
√

2σx

∫ x√
2σ

0

e−u2
du (D.26)

J0 can be expressed with the error function.

J0 =
√

2σ

√
π

2
xerf(

x√
2σ

)J0 = σ

√
π

2
x erf(

x√
2σ

) (D.27)

Now the second part of J is obvious

J1 = 2σ2

∫ 0

−x√
2σ

u e−u2
du (D.28)

or

de−u2

du
= −2ue−u2

(D.29)

We replace
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J1 = −σ2

∫ 0

−x√
2σ

d(e−u2
) (D.30)

J1 = σ2[e−
x2

2σ2 − 1] (D.31)

Now we can write J

J = J0 + J1 = σ

√
π

2
x erf(

x√
2σ

) + σ2[e−
x2

2σ2 − 1] (D.32)

We can write the derivative of hn

dhn(x)
dx

=
x

σ2
− 1

σ3

√
2
π

J (D.33)

=
x

σ2
− x

σ2
x erf(

x√
2σ

) +
1
σ

√
2
π

[1 − e−
x2
2σ2 ] (D.34)

=
x

σ2
erfc(

x√
2σ

) +
1
σ

√
2
π

[1 − e−
x2

2σ2 ] (D.35)

In order to minimize the functional 7.44, we may want to calculate the
derivative of hs(x | y), hs(x | y) measuring the amount of information con-
tained in the residual (y being the data).

hs(x | y) =
1
σ2

∫ y−x

0

t erf(
y − x − t√

2σ
)dt (D.36)

Denoting z = y − x, we have

hs(z) =
1
σ2

∫ z

0

t erf(
z − t√

2σ
)dt (D.37)

=
1
σ2

∫ z

0

tdt − 1
σ2

∫ z

0

t erfc(
z − t√

2σ
)dt (D.38)

and
dhs(x)

dx
=

∂hs(z)
∂z

∂z

∂x
(D.39)

∂hs(z)
∂z

= z
σ2 − ∂hn(z)

∂z (D.40)

Then

dhs(x)
dx

= −y − x

σ2
+

y − x

σ2
erfc(

y − x√
2σ

) +

√
2
π

1
σ

[1 − e−
(y−x)2

2σ2 ] (D.41)

= −y − x

σ2
erf(

y − x√
2σ

) +

√
2
π

1
σ

[1 − e−
(y−x)2

2σ2 ] (D.42)



E. Generalization of the Derivative
Needed for the Minimization

The contribution of the wavelet coefficient x to the noise and signal informa-
tion in the general case is

hn(x) =
∫ |x|

0

pn(u|x)(
∂h(x)

∂x
)x=udu (E.1)

hs(x) =
∫ |x|

0

ps(u|x)(
∂h(x)

∂x
)x=udu

Assuming h(x) = 1
2x2, we have

hn(x) =
∫ |x|

0

pn(x − u)udu (E.2)

hs(x) =
∫ |x|

0

ps(x − u)udu

dhs(x)
dx

=
∫ x

0

∂Ps(x − u)
∂x

)x=uudu +
1
dx

∫ x+dx

x

Ps(x − u)udu (E.3)

Since Ps(0) = 0, the second term tends to zero.
Denoting ∂Ps(x−u)

∂x = −∂Ps(x−u)
∂u , we have

dhs(x)
dx

= −
∫ x

0

∂Ps(x − u)
∂u

udu (E.4)

= −([uPs(x − u)]x0 −
∫ w

0

Ps(x − u)du) (E.5)

=
∫ x

0

Ps(x − u)du (E.6)

=
∫ x

0

Ps(u)du (E.7)

and from hn = h − hs we get

dhn(x)
dx

= x −
∫ x

0

Ps(u)du (E.8)

and
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dhs(y − x)
dx

= −
∫ y−x

0

Ps(u)du (E.9)

It is easy to verify that replacing Ps(x) = erf(x), and Pn(x) = erfc(x),
(case of Gaussian noise) we find the same equation as in Appendix B.



F. Software and Related Developments

Software: Public Domain and Commercial

– An excellent first stop is at AstroWeb. Many aspects of astronomy are
included, including software. Accessible from cdsweb.u-strasbg.fr/
astroweb.html, there are nearly 200 links to astronomy software resources.
Links to large software packages are included in these lists: ESO-MIDAS,
AIPS, IRAF, the Starlink Software Collection, the IDL Astronomy User’s
Library, and information on the FITS storage standard.

– Statistical software is available at www.astro.psu.edu/statcodes. For
statistics software in general, the point of reference is Statlib,
lib.stat.cmu. edu.

– For clustering, an annotated resources list is at astro.u-strasbg.fr/
∼fmurtagh/mda-sw/online-sw.html. This includes independent compo-
nent analysis, decision trees, Autoclass, etc. For data mining or knowledge
discovery, KDNuggets is at www.kdnuggets.com.

– For wavelets, a list of resources, mostly in the public domain, is available
at www.amara.com/current/wavesoft.html.

– A commercial package for mathematical morphology is at malte.ensmp.fr/
Micromorph. Matlab (referred to again below) contains a great number of
specialized toolboxes, including mathematical morphology, wavelets, and
neural networks.

– Links to some neural network code is accessible from AstroWeb. The
Stuttgart Neural Network Simulator, an all-round neural net modeling
package, is at www-ra.informatik.uni-tuebingen.de/SNNS.

– Important commercial data analysis packages include IDL (with its twin,
PV-Wave), S-Plus (and public domain version, R: see www.r-project.org),
Mathematica, and Matlab (public domain versions include Octave and
SciLab).

– The MR software package includes MR/1 which implements multiscale
methods for 1D and 2D data, MR/2 which implements methods derived
from multiscale entropy, and MR/3 which implements multiscale methods
for 3D and multi-channel data. Nearly all figures in this book are based on
this package. Information is available at www.multiresolution.com.
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– MRS, a package in IDL for multiresolution analysis on the sphere is avail-
able at jstarck.free.fr/mrs.html. MRL, also in IDL, is for weak lensing,
and is available at jstarck.free.fr/mrl.html.

– MaxEnt software for maximum entropy signal analysis, including applica-
tions in chemical spectroscopy and imaging tomography, can be found at
www.maxent.co.uk.

– The Pixon software for image analysis, again with wide-ranging application
areas including nuclear medicine, is described at www.pixon.com.

– Finally, for other topics, including support vector machines, machine learn-
ing, rough sets, multivalued logic, and much more, see homepage.ntlworld.
com/jg.campbell/links.

– There are many display programs available, which are certainly to be found
in larger systems. Stand-alone FITS viewers for Windows are available at
http://www.eia.brad.ac.uk/rti/guide/fits.html. A “gold standard”
of astronomical imaging display programs is SAO DS9: http://hea-www.
harvard.edu/RD/ds9. A stand-alone data visualization system is GGobi
(a successor to XGobi): www.ggobi.org.

– For image compression, the following were cited in Chapter 5:
– HCOMPRESS: www.stsci.edu/software/hcompress.html.
– FITSPRESS: www.eia.brad.ac.uk/rti/guide/fits.html.
– Wavelet: www.geoffdavis.net/dartmouth/wavelet/wavelet.html.
– Fractal: inls.ucsd.edu/y/Fractals/book.html.

– For source detection: SExtractor, terapix.iap.fr/soft/sextractor/
index.html.

New Developments

A number of important national and international projects are targeting a
new generation of software systems. Some of them are listed here.

– Both new and old, the online astronomical literature is available at the
NASA Astrophysics Data System, adswww.harvard.edu.

– Major virtual observatory projects include the Astrophysical Virtual Ob-
servatory, www.eso.org/projects/avo, and the National Virtual Observa-
tory, www.us-vo.org. The Virtual Observatory Forum is at www.voforum.
org.

– Opticon, the Optical Infrared Coordination Network, is at www.astro-
opticon.org, and AstroWise, Astronomical Wide-Field Imaging System
for Europe at www.astro-wise.org.

– For Grid-related work, AstroGrid (UK) is at www.astrogrid.org. The
iAstro coordination initiative is at www.iAstro.org.
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Berry, M., Drmač, Z., and Jessup, E.: 1999, SIAM Review 41, 335
Berry, M., Hendrickson, B., and Raghavan, P.: 1996, in J. Renegar, M. Shub, and

S. Smale (eds.), Lectures in Applied Mathematics Vol. 32: The Mathematics of
Numerical Analysis, pp 99–123, American Mathematical Society

Bertero, M. and Boccacci, P.: 1998, Introduction to Inverse Problems in Imaging,
Institute of Physics

Bertin, E. and Arnouts, S.: 1996, Astronomy and Astrophysics, Supplement Series
117, 393

Bhavsar, S. P. and Splinter, R. J.: 1996, Monthly Notices of the Royal Astronomical
Society 282, 1461

Bibring, J.-P. and OMEGA: 2004, AAS/Division for Planetary Sciences Meeting
Abstracts 36,

Bijaoui, A.: 1980, Astronomy and Astrophysics 84, 81
Bijaoui, A.: 1984, Introduction au Traitement Numérique des Images, Masson
Bijaoui, A.: 1993, in Y. Meyer and S. Roques (eds.), Progress in Wavelet Analysis

and Applications, pp 551–556, Editions Frontières
Bijaoui, A., Bobichon, Y., and Huang, L.: 1996, Vistas in Astronomy 40, 587
Bijaoui, A., Bury, P., and Slezak, E.: 1994, Catalog analysis with multiresolution

insights. 1. Detection and characterization of significant structures, Technical
report, Observatoire de la Côte d’Azur
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Högbom, J.: 1974, Astronomy and Astrophysics Supplement Series 15, 417
Holschneider, M., Kronland-Martinet, R., Morlet, J., and Tchamitchian, P.: 1989,

in Wavelets: Time-Frequency Methods and Phase-Space, pp 286–297, Springer-
Verlag

Hook, R.: 1999, ST-ECF Newsletter No. 26 pp 3–5
Hook, R. and Fruchter, A.: 2000, in ASP Conference Series 216: Astronomical Data

Analysis Software and Systems IX, p. 521, Astronomical Society of the Pacific
Hopkins, A. M., Miller, C. J., Connolly, A. J., Genovese, C., Nichol, R. C., and

Wasserman, L.: 2002, Astronomical Journal 123, 1086
Horowitz, E. and Sahni, S.: 1978, Fundamentals of Computer Algorithms, Pitman
Hotelling, H.: 1933, Journal of Educational Psychology 24, 417
Huang, L. and Bijaoui, A.: 1991, Experimental Astronomy 1, 311
Hunt, B.: 1994, International Journal of Modern Physics C 5, 151
Hyvärinen, A., Karhunen, J., and Oja, E.: 2001, Independent Component Analysis,

Wiley, New York



Bibliography 319

Irbah, A., Bouzaria, M., Lakhal, L., Moussaoui, R., Borgnino, J., Laclare, F., and
Delmas, C.: 1999, Solar Physical Journal 185, 255

Ireland, J., Walsh, R. W., Harrison, R. A., and Priest, E. R.: 1999, Astronomy and
Astrophysics 347, 355

Irwin, M. J.: 1985, Monthly Notices of the Royal Astronomical Society 214, 575
Issacson, E. and Keller, H.: 1966, Analysis of Numerical Methods, Wiley
Jaffe, T., Bhattacharya, D., Dixon, D., and Zych, A.: 1997, Astrophysical Journal

Letters 484, L129
Jain, A. K.: 1990, Fundamentals of Digital Image Processing, Prentice-Hall
Jalobeanu, A.: 2001, Ph.D. thesis, Université de Nice Sophia Antipolis
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Lefèvre, O., Bijaoui, A., Mathez, G., Picat, J., and Lelièvre, G.: 1986, Astronomy
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gradient, 18

Haar multichannel transform, 183
Haar transform, 3, 34, 36, 63, 65, 67,

70, 101, 138, 145, 162, 183, 268
– Fisz transform, 63
Hadamard transform, 3
Hausdorff, 250, 251
– dimension, 251, 257
– measure, 250
Hough transform, 3, 12
Hubble Space Telescope, 71
Hubble Space Telescope WFC, 92, 93
Huffman coding, 139, 143, 144, 146
hyperspectral imagery, 170

ICA
– FastICA, 186
– wavelet, 193
– WJADE, 193
– WSMICA, 194
ICF, 104
independent component analysis, 175,

184
information theory, 202
interstellar
– matter, 282
– medium, 4
intrinsic correlation function, 206, 207
IRAS, 240, 241

ISO, 36
ISODATA, 269
isotropy, 36

J function, 244
Jacobi method, 79
JADE, 185
– wavelet, 193
JPEG 2000, 4

k-means, 269, 271
Karhunen-Loève transform, 24, 175–181
Kohonen map, 270, 273, 274
Kullback-Leibler, 176

Landweber method, 79
large images, 167
Legendre transformation, 252, 255
lifting scheme, 161
lossless compression, 161
lossy compression, 138

MAD, 41
MAP, 107
Markov random field, 82, 83
mathematical morphology, 3, 15
– closing, 16
– dilation, 15, 16
– erosion, 15, 16
– opening, 16
– skeleton, 16
matrix reordering, 274, 275
maximum a posteriori, 79
Maximum Entropy Method, 81, 99,

205–207
maximum likelihood, 26, 78
medial axis, 16
median, 140
– median absolute deviation, 41
– multiscale median transform, 140
– pyramidal median transform, 36,

138, 141, 142
MEM, 206, 207
Mexican hat wavelet, 9
MIDAS, 155
minimal spanning tree, 258, 271, 272
Minkowski, 250, 251
– dimension, 251
– functionals, 244, 247
– measure, 250
mirror wavelet basis, 88
mixture modeling, 261, 262
MMI, 66
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moments, 24
morphological filter, 17
MR/1, 228, 230
MST, 258, 271, 272
multichannel data, 175, 226
multifractality, 251, 252
multilayer perceptron, 27
multiresolution support, 37, 38, 51, 90
multiscale entropy, 210, 231
– deconvolution, 72, 73, 99, 101, 109,

220
– filtering, 215, 218
– multichannel data, 226
multiscale median transform, 140
multiscale vision model, 116, 117

nearest neighbor, 271
neural network, 27
noise, 38, 39, 42, 43, 63, 65, 70, 90
– Anscombe transformation, 42, 180
– correlated, 48
– Gaussian, 29, 39, 42, 70, 79, 180
– median absolute deviation, 41
– multiplicative, 46
– non-stationary, 46, 48
– Poisson, 29, 42, 43, 63, 65, 67, 70, 80,

180, 183
– root mean square map, 46
– sigma clipping, 40
– variance stabilization, 42

object classification, 114
OLAP, 268
opening, 16

parametric, 26
partial differential equation, 84
pattern recognition, 24
PET, 74
photometry, 114, 156
Picard iteration, 80, 297
pixon, 87, 92, 93
planar graph, 271
positron emission tomography, 74
POSS-I, 150–152
posteriors, 26
potential function, 83
power spectrum, 6, 24
PRESS-optimal filter, 66
principal components analysis, 33, 175,

176, 280
priors, 26
progressive decompression, 167
PSF, 74, 75

pyramid, 299
pyramidal median transform, 36, 138,

141, 142

quadtree, 142, 144, 146

Radon transform, 3, 12, 13
regularization, 75, 206, 215
– Richardson-Lucy, 91
– Tikhonov, 75, 85
– wavelet, 89
relaxation, 23
Reverse Cuthill-McKee, 276
Richardson-Lucy method, 80, 90, 91
ridgelet transform, 12, 37, 110
ROSAT, 55
Rosette/Monoceros Region, 4

SAO-DS9, 169, 170
SAR model, 82
scalogram, 9
segmentation, 3, 23
– region growing, 23
SExtractor, 111, 228, 230
shape, 24
sigma clipping, 40
signal shaping, 108
SIMBAD, 2
simulated annealing, 274
simulation
– ΛCDM model, 241–243
– Cantor set, 255
– Cox process, 238
– Devil’s staircase function, 255
single link, 258
singular value decomposition, 275
sinogram, 12
skeleton, 16
Sloan Digital Sky Survey, 137, 263
SMICA, 185, 189
– wavelet, 194
software, 309
Space Telescope Science Institute, 145
sphere, 186
– ICA on the sphere, 186
– map on the sphere, 186
SPIHT, 172
stationary signal, 40
stochastic resonance, 108
streaming, 1
super-resolution, 105
supervised classification, 26
support, 37, 90
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support, multiresolution, 38, 51
SURE, 50

thresholding, 50
– adaptive thresholding, 51
– bivariate shrinkage, 52
– False Discovery Rate, FDR, 48, 51
– hard, 50, 88
– local Wiener, 52
– MMI, 66
– PRESS-optimal filter, 66
– soft, 50, 88
– SURE, 50
– universal threshold, 50
total variation, 57, 84, 101
training, 26
transform
– à trous wavelet transform, 31
– Anscombe transformation, 42
– bi-orthogonal wavelet transform, 30,

146
– curvelet transform, 14, 37, 59, 110
– discrete cosine transform, 6, 33, 139,

146, 175
– discrete sine transform, 6
– Feauveau transform, 30
– Fisz transform, 63
– Fourier transform, 3
– Gabor transform, 7
– Haar transform, 3, 63, 138
– Hadamard transform, 3
– Hough transform, 3, 12
– Karhunen-Loève transform, 24, 176
– lifting scheme, 161
– multiscale median transform, 140
– pyramidal median transform, 138,

141, 142
– Radon transform, 3, 12
– ridgelet transform, 12, 37, 110
– short-term Fourier transform, 7
– wavelet, 9
– wavelet Karhunen-Loève transform,

179, 180
– Wigner-Ville transform, 6
transformation
– Legendre, 255
two-point correlation function, 234,

235, 237

universal threshold, 35, 50
unsupervised classification, 26, 269

vaguelette, 87
Van Cittert method, 85, 90, 91, 96, 98
variance stabilization, 42
visibilities, 106
visualization, 2
Voronoi tessellation, 233, 259, 266, 270

wavelet, 9
– à trous wavelet transform, 30, 31, 291
– bi-orthogonal, 10, 36
– CLEAN deconvolution, 95
– clustering, 263
– compression, 145
– continuous wavelet transform, 9
– contrast enhancement, 32
– Daubechies wavelet, 34, 36, 163
– deconvolution, 86
– Feauveau transform, 30
– filtering, 263
– fractal analysis, 253
– Haar, 3, 63, 101, 146, 183
– hard threshold, 50
– ICA, 193
– integer wavelet transform, 165
– lifting scheme, 161
– local Wiener, 52
– Mexican hat function, 9, 132
– modulus maxima, 255
– multichannel data, 177, 179, 180
– multiscale entropy, 99, 208
– orthogonal, 10
– scalogram, 9
– significant coefficient, 38, 91
– soft threshold, 50
– thresholding, 35, 48, 50
– transform, 194
– wavelet transform, 4, 31, 34, 36, 180,

300
– wavelet-vaguelette decomposition,

87, 92
Wiener filter, 79
Wigner-Ville transform, 6

zero crossings, 22, 218
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