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Foreword to the First Edition

The reflection of x-rays and neutrons from surfaces has existed as an experimen-
tal technique for almost 50 years. Nevertheless, it is only in the last decade that
these methods have become enormously popular as probes of surfaces and inter-
faces. This appears to be due to the convergence of several different circumstances.
These include the availability of more intense neutron and x-ray sources (so that
reflectivity can be measured over many orders of magnitude and the much weaker
surface diffuse scattering can now also be studied in some detail); the growing im-
portance of thin films and multilayers in both technology and basic research; the
realization of the important role which roughness plays in the properties of surfaces
and interfaces; and finally the development of statistical models to characterize the
topology of roughness, its dependence on growth processes and its characterization
from surface scattering experiments. The ability of x-rays and neutrons to study sur-
faces over 4–5 orders of magnitude in length scale regardless of their environment,
temperature, pressure, etc., and also their ability to probe buried interfaces often
makes these probes the preferred choice for obtaining global statistical information
about the microstructure of surfaces, often in a complementary manner to the lo-
cal imaging microscopy techniques. This is witnessed by the veritable explosion of
such studies in the published literature over the last few years. Thus these lectures
will provide a useful resource for students and researchers alike, covering as they
do in considerable detail most aspects of surface x-ray and neutron scattering from
the basic interactions through the formal theories of scattering and finally to specific
applications.

It is often assumed that neutrons and x-rays interact weakly with surfaces and in
general interact weakly enough so that the simple kinematic theories of scattering
are good enough approximations to describe the scattering. As most of us now ap-
preciate, this is not always true, e.g., when the reflection is close to being total, or
in the neighborhood of strong Bragg reflections (e.g., from multilayers). This ne-
cessitates the need for the full dynamical theory (which for specular reflectivity is
fortunately available from the theory of optics), or for higher order approximations,
such as the distorted wave Born approximation to describe strong off-specular scat-
tering. All these methods are discussed in detail in these lectures, as are also the
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vi Foreword

ways in which the magnetic interaction between neutrons and magnetic moments
can yield information on the magnetization densities of thin films and multilayers. I
commend the organizers for having organized a group of expert lecturers to present
this subject in a detailed but clear fashion, as the importance of the subject deserves.

Argonne, IL S.K. Sinha
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Introduction

In his paper entitled “On a New Kind of Ray, A Preliminary Communication” relat-
ing the discovery of x-rays, which was submitted to the Würzburg Physico-Medical
Society on December 28, 1895, Röntgen stated the following about the refraction
and reflection of the newly discovered rays: “The question as to the reflection of the
X-ray may be regarded as settled, by the experiments mentioned in the preceding
paragraph, in favor of the view that no noticeable regular reflection of the rays
takes place from any of the substances examined. Other experiments, which I here
omit, lead to the same conclusion.1”

This conclusion remained unquestioned until in 1922 Compton [1] pointed out
that if the refractive index of a substance for x-rays is less than unity, it ought to be
possible, according to the laws of optics, to obtain total external reflection from a
smooth surface of it, since the x-rays, on entering the substance from the air, are go-
ing into a medium of smaller refractive index. This was the starting point for x-ray
(and neutron) reflectivity. The demonstration that the reflection of x-rays on a sur-
face was indeed obeying the laws of electromagnetism was pursued by Prins [2, 3]
and others who investigated the role of absorption on the sharpness of the limit of
total reflection and showed that it was consistent with the Fresnel formulae. This
work was continued by Kiessig [4] using nickel films evaporated on glass. Reflec-
tion on such thin films gives rise to fringes of equal inclination (the “Kiessig fringes”
in the x-ray literature), which allow the measurement of thin film thicknesses, now
the most important application of x-ray and neutron reflectivity. It was, however,
not until 1954 that Parratt [5] suggested inverting the analysis and interpreting x-
ray reflectivity as a function of angle of incidence via models of an inhomogeneous
surface density distribution. The method was then applied to several cases of solid
or liquid [6] interfaces. Whereas Parratt noticed in his 1954 paper that “it is at
first surprising that any experimental surface appears smooth to x-rays. One fre-
quently hears that, for good reflection, a mirror surface must be smooth to within
about one wavelength of the radiation involved...” it soon appeared that effects of
surface roughness were important, the most dramatic of them being the asymmetric

1 A more complete citation of Röntgen’s paper is given in an appendix to this introduction.
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xii Introduction

surface reflection known as Yoneda wings [7]. These Yoneda wings were subse-
quently interpreted as diffuse scattering of the enhanced surface field for incidence
or exit angle equal to the critical angle for total external reflection. The theoretical
basis for the analysis of this surface diffuse scattering was established in particular
through the pioneering work of Croce et al. [8]. In a context where coatings, thin
films and nanostructured materials are playing an increasingly important role for
applications, the number of studies using x-ray or neutron reflectivity dramatically
increased during the 1990s, addressing virtually all kinds of interfaces: solid or liq-
uid surfaces, buried solid–liquid or liquid–liquid interfaces, interfaces in thin films
and multilayers. Apart from the scientific and technological demand for more and
more surface characterisation, at least two factors explain this blooming of x-ray
and neutron reflectivity. First, the use of second and third generation synchrotron
sources has resulted in a sophistication of the technique now such that not only the
thicknesses but also the morphologies and correlations within and between rough in-
terfaces can be accurately characterised for in-plane distances ranging from atomic
or molecular distances to hundreds of microns. In parallel more and more accurate
methods have been developed for data analysis. Second, the development of neutron
reflectometers (Chap. 5) has been decisive, in particular for polymer physics owing
to partial deuteration and for magnetism.

This book follows summer schools on reflectivity held in Luminy in June 1997,
Le Croisic in June 2000 and Giens in May 2008. Since the first edition of the book
published in 1999, x-ray and neutron reflectivity have continued to develop and
new related techniques like grazing incidence small angle scattering (GISAXS) have
become very popular. The first aim of this second edition was therefore to include
these important new developments. Moreover, the first edition was organised into
two parts, “principles” and “applications” whose aim was to give examples of the
use of reflectivity in different fields. Several excellent reviews have been published
since then and it was no longer necessary to include a review in the book. We found
it more useful to include examples in the different chapters devoted to reflectivity-
related methods as tutorials. This is the second main change made to the book.

As strongly suggested by the short historical sketch given above, most of the
revolutions in the use of x-rays (not only for interface studies) arise by considering
new potentialities related to their nature of electromagnetic waves, which was so
controversial in the days of Röntgen. The book therefore starts with a panorama of
the interaction of x-rays with matter, giving both a thorough treatment of the basic
principles, and an overview of more advanced topics like magnetic or anisotropic
scattering, not only to give a firm basis to the following developments but also to
stimulate reflection on new experiments.

Then, a rigorous presentation of the statistical aspects of wave scattering at rough
surfaces is given. This point, obviously important for understanding the nature of
surface scattering experiments, as well as for their interpretation, is generally ig-
nored in the x-ray literature (this chapter has been written mainly by a researcher
in optics). The basic statistical properties of surfaces are introduced first. Then an
ideal scattering experiment is described, and the limitations of such a description,
in particular the fact that the experimental resolution is always finite, are discussed.
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The finiteness of the resolution leads to the introduction of ensemble averages for
the calculation of the scattered intensities and to a natural distinction between co-
herent (specular, equal to the average of the scattered field) and incoherent (diffuse,
related to the mean-square deviation of the scattered field) scattering. These prin-
ciples are immediately illustrated within the Born approximation in order to avoid
all the mathematical complications resulting from the details of the interaction of an
electromagnetic wave with matter.

These more rigorous aspects of the scattering theory are treated in Chaps. 3 and
4 for specular and diffuse scattering. The matricial theory of the reflection of light in
a smooth or rough stratified medium and its consequences are treated in Chap. 3. A
new section on the inversion of reflectivity data has been added to this chapter. The
developments of Chap. 3 are used in Chap. 4 for the treatment of diffuse scattering.
The Croce approach to the distorted-wave Born approximation (DWBA) based on
the use of Green functions is mainly used. It is currently the most popular for data
analysis and is extensively used in particular in Chap. 6. The presentation of the
DWBA is complemented by the discussion of a more simple approximation, very
useful in particular for thin films. The derivation of the scattered intensity from the
scattering cross section is described in detail as well as the implications for reflec-
tivity experiments of a finite resolution. Examples are finally discussed in detail,
in particular for liquid surfaces and thin films for which a full calculation of the
scattering cross section can be made.

The specific aspects of neutron reflectometry require a separate treatment given
in Chap. 5. After an introduction to neutron–matter interactions, neutron reflectivity
of non-magnetic and magnetic materials is presented and the characteristics of the
neutron spectrometers are given. Special attention is paid to the case of non-perfect
layers. The theoretical presentation is followed by examples including biological
and magnetic films, off-specular reflectivity and grazing incidence scattering.

Multilayers are discussed in Chap. 6. The experimental set-ups are described
and examples of reflectivity studies and non-specular scattering measurements are
discussed with the aim of reviewing all the important situations that can be encoun-
tered. Examples include rough multilayers, stepped surfaces, interfaces in porous
media, the role of roughness in diffraction experiments and multilayer gratings.

GISAXS is discussed in Chap. 7. The emphasis is put on the characterisation
of nano-objects on surfaces or buried in a substrate. The application of the DWBA
to GISAXS is discussed after an introduction to the GISAXS scattering geometry.
Form factors are given for a large number of nano-objects and the effect of their
correlations is discussed. Examples in hard and soft condensed matter are finally
given.

Appendix: Röntgen’s Report on the Reflection of X-Rays

“With reference to the general conditions here involved on the other hand, and to
the importance of the question whether the X-rays can be refracted or not on pass-
ing from one medium into another, it is most fortunate that this subject may be
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investigated in still another way than with the aid of prisms. Finely divided bodies in
sufficiently thick layers scatter the incident light and allow only a little of it to pass,
owing to reflection and refraction; so that if powders are as transparent to X-rays
as the same substances are in mass–equal amounts of material being presupposed–
it follows at once that neither refraction nor regular reflection takes place to any
sensible degree. Experiments were tried with finely powdered rock salt, with finely
electrolytic silver-powder, and with zinc-dust, such as is used in chemical investi-
gations. In all these cases no difference was detected between the transparency of
the powder and that of the substance in mass, either by observation with the fluores-
cent screen or with the photographic plate... The question as to the reflection of the
X-ray may be regarded as settled, by the experiments mentioned in the preceding
paragraph, in favor of the view that no noticeable regular reflection of the rays takes
place from any of the substances examined. Other experiments, which I here omit,
lead to the same conclusion.

One observation in this connection should, however, be mentioned, as at first
sight it seems to prove the opposite. I exposed to the X-rays a photographic plate
which was protected from the light by black paper, and the glass side of which was
turned towards the discharge-tube giving the X-rays. The sensitive film was cov-
ered, for the most part, with polished plates of platinum, lead, zinc, and aluminum,
arranged in the form of a star. On the developing negative it was seen plainly that
the darkening under the platinum, the lead and particularly the zinc, was stronger
than under the other plates, the aluminum having exerted no action at all. It appears,
therefore, that these metals reflect the rays. Since, however, other explanations of a
stronger darkening are conceivable, in a second experiment, in order to be sure, I
placed between the sensitive film and the metal plates a piece of thin aluminum-foil,
which is opaque to ultraviolet rays, but it is very transparent to the X-rays. Since the
same result substantially was again obtained, the reflection of the X-rays from the
metals above named is proved. If we compare this fact with the observation already
mentioned that powders are as transparent as coherent masses, and with the further
fact that bodies with rough surfaces behave like polished bodies with reference to
the passage of the X-rays, as shown as in the last experiment, we are led to the
conclusion already stated that regular reflection does not take place, but that bodies
behave toward X-rays as turbid media do towards light.”
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Chapter 1
The Interaction of X-Rays (and Neutrons)
with Matter

F. de Bergevin

1.1 Introduction

The propagation of radiation is generally presented according to an optical formal-
ism in which the properties of a medium are described by a refractive index. A
knowledge of the refractive index is sufficient to predict what will happen at an in-
terface, that is to establish the Snell–Descartes’ laws and to calculate the Fresnel
coefficients for reflection and transmission.
One of the objectives in this introduction will be to link the laws of propagation
of radiation, and in particular the refractive index, to the fundamental phenomena
involved in the interaction of radiation with matter. The main process of interac-
tion in the visible region of the electromagnetic spectrum is the polarization of the
molecules (at least for an insulator). At higher energies as with X-rays, it is gener-
ally sufficient to take into account the interactions with the atoms and at the highest
X-ray energies only the electrons need be considered in the interaction process.
Neutrons interact with the nuclei of the materials, and also have another interaction
with the electrons for those atoms which carry a magnetic moment.

The conventions used in this book will be defined in Sect. 1.2. In the same sec-
tion the basics of wave propagation will be revised. The different physical quantities
which characterize the scattering of radiation will be defined, and also the proper-
ties of Green functions will be explained. In Sect. 1.3 the link between the atomic
scattering and the model of a continuous medium represented by a refractive index
will be established. Section 1.4 will be devoted to the interaction of X-ray radiation
with matter. That will include the inelastic and elastic scattering, and the absorption.
The scattering will be described as split into a non-resonant and a resonant part. To-
gether with the questions of resonance and absorption a discussion of the dispersion
relations will be given. In Sect. 1.5, the case when the scattering depends on the
anisotropy of the material will be briefly examined with reference to magnetic and
to Templeton scattering. Neutron scattering will not be presented in detail in this
chapter since it is treated in Chap. 5 of this book but we shall frequently refer to it.
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In the present chapter, the bold italic font will be used to define words or expres-
sions and the emphasized sentences will be in italic.

Note to the reader of the first edition. A number of minor changes have been
introduced in this chapter for the present edition. On top of these, the main corrected
errors are the following.

• Equation (1.65), a wrong sign
• Equation (1.105), a factor c
• Equation (1.106), in, sc exchanged in the third term
• Section 1.5.5, optical activity in the optical range of the light spectrum was

wrongly attributed to a quadrupolar term.

Some part of Sect. 1.3 has been rewritten in a different way, a figure added in
Sect. 1.3.3 to clear up the meaning of Eq. (1.87) and a few practical remarks added
to Sect. 1.4.8.

1.2 Generalities and Definitions

1.2.1 Conventions, Basic Formulae

Two conventions can be found in the literature to describe a propagating wave, be-
cause complex quantities are not observed and their imaginary part has an arbitrary
sign. In optics and quantum mechanics a monochromatic plane wave is generally
written as

A ∝ e−i(ωt−k.r), (1.1)

which is also the notation used in neutron scattering, even when doing crystallogra-
phy. On the other hand, X-ray crystallographers are used to writing the plane wave as

A ∝ e+i(ωt−k.r). (1.2)

The imaginary parts of all complex quantities are the opposite of one another
in these two notations. Since the observed real quantities may be calculated from
imaginary numbers, it is very important to keep consistently a unique convention.
The imaginary part f ′′ of the atomic scattering factor, for example, used in X-ray
crystallography is a positive number. This is correct provided that it is remembered
that the complex scattering factor ( f + f ′ + i f ′′) ( f is the atomic form factor, also
positive) is affected by a common minus sign, usually left as implicit. In optics, the
opposite convention is commonly used and the most useful quantity is the refractive
index. Its imaginary part which is associated with absorption is always positive.
The number of alternative choices is increased with another convention concerning
the sign of the scattering wave vector transfer q or scattering vector, which can be
written as

q = ksc −kin (1.3)
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or
q = kin −ksc, (1.4)

where kin and ksc are the incident and scattered wave vectors. In this book, the
conventions Eqs. (1.2) and (1.3) as used in crystallography will be adopted. Only
one exception will be made in the chapter devoted to neutrons (Chap. 5), in which
convention Eq. (1.1) will be used. The structure factor which describes the scattered
amplitude in the Born approximation will therefore be written in all cases (except
with neutrons) as

f (q) =
∫

ρ(r)eiq.rd3r, (1.5)

where ρ(r) is the scattering density, which will be discussed below. The real part of
the refractive index is generally less than 1 with X-ray radiation and the refractive
index is usually written as

n = 1−δ − iβ where δ and β are positive. (1.6)

Indeed the imaginary part β is equal to λμ/4π , where λ is the wavelength and μ
the attenuation coefficient (see Eq. (1.88) and Sect. 1.4.6). When dealing with visi-
ble optics, the opposite convention is usual, with an opposite sign for the imaginary
part of n.

The waves will be assumed to be monochromatic in most instances, with the tem-
poral dependence eiωt . To satisfy the international standard of units, or SI units, the
electromagnetic equations will be written in the rationalized MKSA system of units.
The Coulombian force in vacuum is in this system qq′/4πε0r2 with ε0μ0 = c−2,
μ0 = 4π10−7. Note that the same symbol μ is used here for the magnetic suscepti-
bility and just above for the coefficient of attenuation or absorption. In subsequent
use of μ , any confusion should be avoided by consideration of the context.

1.2.1.1 Summary of Some Formulae and Constants

The reader will find at the end of the book a table of the main notations in use. Some
of the basic formulae and constants considered in this chapter are given here:

n = 1−δ − iβ optical index
β = λμ/4π λ wavelength, μ coefficient of attenuation
μ = ρσatten density ρ of objects of attenuation cross-section σatten

n = 1− (2π/k2
0)ρb opt. index from scattering length b, Sect. 1.3

σtot = 2λ I m [b(0)] optical theorem, Sect. 1.3.2
re = e2/4πε0mc2 electron Lorentz classical radius, Sect. 1.4.2
re = 2.818×10−15 m
λsc = λin +λc (1− cos2θ) Compton formula, Sect. 1.4.5
λc = 2π h̄/mc electron Compton wavelength, Sect. 1.4.5
λc = 0.002426 nm
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511 keV electron rest mass
λ nm×E eV = 1239.842 wavelength × energy of a photon

1.2.2 Wave Equation

1.2.2.1 Propagation in a Vacuum

The propagation of a radiation, whether neutrons or X-rays, obeys a series of
second-order partial differential equations which can be presented in a common
form. We will discuss first the case of propagation in a vacuum. Electromagnetic
radiation can be represented by the 4-vector potential Aν(ν = 0,1,2,3) defined by

A0 = Φ/c, (A1,A2,A3) = A, (1.7)

where Φ is the scalar electric potential and A is the 3-vector potential. The 4-vector
potential obeys in the Lorentz gauge and away from any charge

ΔAν = ε0μ0
∂ 2Aν
∂ t2 ,

(
Δ = ∑

xi=x,y,z

∂ 2

∂x2
i

, ε0μ0 =
1
c2

)
. (1.8)

For a neutron of wave functionΨ , the equivalent form of Eq. (1.8) is the Schrödinger
equation without any potential

− h̄2

2m
ΔΨ = i

h̄∂Ψ
∂ t

(1.9)

(using the convention of quantum mechanics for the sign of i, as discussed above).
We shall consider essentially time-independent problems and only monochromatic
radiation which has a frequency ω/2π . The time variable then disappears from the
equations, through use of the relations

1
c2

∂ 2

∂ t2 = −ω2

c2 = −k2
0 (electromagnetic field) (1.10)

i
h̄∂
∂ t

= h̄ω =
h̄2

2m
k2

0 (Schrödinger equation). (1.11)

k0 is the wave vector in a vacuum and h̄ω is the energy.
In both cases, writing the generic field or wave function as A yields the Helmholtz

equation, (
Δ + k2

0

)
A = 0. (1.12)

The solutions to this equation are plane waves with the wave vector k0.
In optics this equation is more usually expressed in terms of the electric and

magnetic fields E and H, or the electric displacement and the magnetic induction
field D and B rather than the vector potential Aν . E is related to the potential through
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E = −gradφ − ∂A
∂ t

= −cgradA0 −
∂A
∂ t

. (1.13)

For a monochromatic plane wave in free space, the gauge can be chosen such
that A0 = 0, then

E = −∂A
∂ t

= −iωA. (1.14)

Therefore, E and A being proportional to each other, most of the discussion sub-
sequent to Eq. (1.12) applies to E as well. Nevertheless, in the presence of electric
charges or polarizable objects, all the properties of the electromagnetic field cannot
be described with the generic field written as a scalar. These particular vector or
tensor properties will be addressed when necessary.

1.2.2.2 Propagation in a Medium

Equation (1.12) still applies in a modified form even when the radiation propagates
in a homogeneous medium rather than a vacuum. All media are inhomogeneous,
at least at the atomic scale, so for the moment the homogeneity will be taken as a
provisional assumption whose justification will be discussed in Sect. 1.3. We also
assume the isotropy of the medium, which is not the case for all materials.

In the case of the electromagnetic radiation the medium is characterized by per-
meabilities ε and μ that replace ε0 and μ0 in Eq. (1.8), although μ can usually be
kept unchanged. Though the static magnetic susceptibility can take different values
in various materials, we are concerned here with its value at the optical frequencies
and above which it is not significantly different from μ0. In a medium Eq. (1.12)
can be written as either

(
Δ + k2)A = 0 (k = nk0, n2 = εμ/ε0μ0 � ε/ε0) (1.15)

or (
Δ + k2

0 −U
)

A = 0
(
U = k2

0

(
1−n2)) . (1.16)

The first form shows that the wave vector has changed by a factor n, which is
the refractive index. The second form is similar to the Schrödinger equation in the
presence of a potential. Indeed in the case of the Schrödinger equation, the material
can be characterized by a potential V and the equation becomes

[
− h̄2

2m

(
Δ + k2

0

)
+V

]
Ψ = 0 (1.17)

which is equivalent to the previous equation, with

U =
2m

h̄2 V (1.18)
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and again we may define a refractive index

n2 = 1−U/k2
0 = 1−V/h̄ω. (1.19)

It is important to realize that describing the propagation in the medium by a
Helmholtz equation, with just a simple change of the wave vector by a factor n or
with the input of a potential U , is really just a convenience. In reality, each atom
or molecule produces its own perturbation to the radiation and the overall result is
not just a simple addition of those perturbations. It happens in most cases that the
Helmholtz equation can be retained in the form indicated above. How n or U de-
pends on the atomic or molecular scattering has to be established. Before address-
ing this question we have to give some further definitions for the intensity, current
and flux of the radiation, and to introduce the formalism of scattering length, cross-
section and Green functions which help to handle the scattering phenomena.

1.2.3 Intensity, Current and Flux

The square of the modulus of the amplitude of the field, i.e. |A|2, defines the inten-
sity of the radiation, which is used to represent either the probability of finding a
quantum of radiation in a given volume or the density of energy transported by the
radiation. |A|2 is also used when combined with the wave vector direction to mea-
sure the flux density. These definitions are trivially correct in vacuum but need to be
revised in a material.

The flux across a given surface is the amount of radiation, measured as an energy
or a number of particles, which crosses this surface per unit time; this is a scalar
quantity. The flux density or current density that we shall also call the flow is a
vector. For instance, the electromagnetic energy flux density (flow) is designed by
S; the energy flux in an elementary surface dσ is then S.dσ . The density of energy
u is connected to the flow by a relation which expresses the energy conservation. In
a non-absorbing medium the amount of energy which enters a given closed volume
must be equal to the variation of the energy inside that volume:

∂Sx

∂x
+

∂Sy

∂y
+

∂Sz

∂ z
+

∂u
∂ t

= 0. (1.20)

Equation (1.20) can be also written in terms of the number of particles instead
of the energy; for instance this is appropriate for the case of neutrons or for elec-
tromagnetic radiation if it is quantized. The same formalism stands for the flux,
the density of current and the density of particles. The dimension of the density of
flux is one of the relevant quantity (energy, number of particles or other) divided by
dimension L2T .

In the case of electromagnetic radiation, the quantities E,H,D and B can be used
instead of A as discussed above and the dielectric and magnetic permeabilities, ε
and μ , can be used to characterize the medium. The energy density is then given by

u = (εE.E∗ +μH.H∗)/4. (1.21)
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For a plane wave defined by the unit vector k̂ along the wave vector,

H =
√

ε/μ k̂×E (1.22)

and the energy density becomes

u = ε |E|2 /2. (1.23)

The energy flow is then equal to the Poynting vector

S = E×H∗/2 = cε
√

ε0μ0/εμ |E|2 k̂/2. (1.24)

Note that these formulae giving u and S are written in terms of complex field
quantities whose real part represents the physical field. The complex and the real
formulations differ by a factor 1/2 in the expressions of second order in the fields.

The change in the wave vector length in going from a vacuum into a medium has
been written above, Eq. (1.15), in terms of the refractive index n

k = nk0 (1.25)

n =
√

εμ/ε0μ0, (1.26)

so that if μ � μ0, we obtain

u = n2 (ε0μ0/μ) |E|2 /2 � n2ε0 |E|2 /2 (1.27)

S = nc(ε0μ0/μ) |E|2 k̂/2 � ncε0 |E|2 k̂/2. (1.28)

This shows that the flux through a surface depends on both the amplitude E and
also on the refractive index of the medium.

A similar expression stands for neutrons (beware, in what follows, as usual in
neutron physics i has a sign opposite to our convention). Here the probability density
ρ and the current density j of particles are considered. The amplitude is the wave
functionΨ :

ρ = |Ψ |2 , j = (h̄i/2m) (ΨgradΨ ∗ −Ψ ∗gradΨ) . (1.29)

For a plane wave,Ψ0eik.r, k̂ being the unit vector along k,

ρ = |Ψ0|2 , j = (h̄k/m) |Ψ0|2 k̂. (1.30)

Here too, the current depends on bothΨ0 and on the medium which is character-
ized by a potential V and

h̄2k2/2m+V = h̄ω. (1.31)

As in optics, it is possible to introduce a refractive index, which is (Eq. (1.19))

n =

√
h̄ω−V

h̄ω
(1.32)
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and which from k0 gives the length of the wave vector k. Then

j = (nh̄k0/m) |Ψ0|2 k̂. (1.33)

The above formulae are valid when the medium is isotropic. When it is anisotropic
the flow of energy and the current are affected. In the electromagnetic case the di-
rection of the flow does not always coincide with the direction of the wave vector.

Exercise 1.2.1. An X-ray beam impinging on a surface gives rise to a reflected and a
transmitted beam. The amplitudes of these beams are given by the Fresnel formulae
(see Sect. 3.1.2). As assumed above, the two media are not absorbing. Check the
conservation of the flux, at least for the (s) polarization.

Exercise 1.2.2. Let us consider a wave function Ψ , such as an evanescent wave
Ψ0e(ikxx−kzz). Calculate the current density.

1.2.4 Scattering Length and Cross-Sections

Let us consider an isolated scattering object (molecule, atom, electron), fully im-
mersed in the field of an incident wave. The object reemits part of the incident ra-
diation. We start with the assumption that its dimensions are small compared to the
wavelength so that the scattered amplitude is the same in all the directions; instead
for an extended object, direction-dependent phase shifts would appear between the
scattered amplitudes coming from different regions in the sample. When examining
the scattered amplitude at large distances r from the object, simple arguments yield
the following expression of the scattered amplitude:

Asc = −Ainb
e−ikr

r
. (1.34)

Indeed this function which has the spherical symmetry (k and r are scalars) is pro-
portional to the incident amplitude Ain and has locally the right wavelength 2π/k;
the decay as the inverse of r guarantees the conservation of the total flux since the
related intensity decays as the inverse of the surface of a sphere of radius r. The
remaining coefficient b has the dimension of a length; this coefficient characterizes
the scattering power of the sample and is the so-called scattering length. The nota-
tion b is rather used in the context of neutron scattering. Here we adopt it for X-rays
as well. To be fully consistent with this notation we keep, as a mere convention, the
minus sign in the definition of b. With this sign, the b value is positive for neutron
with most nuclei, and also for X-ray Thomson scattering. Yet b can have an imag-
inary component but if the atom is not strongly absorbing then it is nearly real. A
more rigorous justification of Eq. (1.34) will be given in the next section.

To justify that b has the dimension of a length, we have considered the total
scattered flux. The ratio of this flux to the incident one per unit of surface (i.e. to the
incident flux density or incident flow) has the dimension of a surface and is equal to
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σscat,tot = 4π |b|2 . (1.35)

This is the so-called total scattering cross-section. The scattered flux in the
whole space is then equal to the one received by a surface equal to σscat,tot which
would be placed normal to the incident beam.

In general, with an extended object, the scattering measured at a large distance
depends on the direction of observation, defined by a unit vector û, so that b is
written as b(û). Therefore it is useful to define a cross-section for this particular
direction that is called the differential scattering cross-section

(dσ/dΩ)(û) = |b(û)|2 (1.36)

which is equal to the flux in the solid angle dΩ directed towards û, divided by dΩ ,
for a unit incident flow (Fig. 1.1). In this case the definition Eq. (1.35) is replaced by

σscat,tot =
∫∫

|b(û)|2 dΩ , (1.37)

where the integration is carried out over all the directions defined by û.
Any object (atom, molecule) also absorbs some part of the incident radiation

without scattering it. Therefore one has to define the so-called cross-section of ab-
sorption, σabs, equal to the ratio of the absorbed flux to the incident flux density.
We have used in Eqs. (1.35) and (1.37) a somewhat awkward notation (σscat, tot) to
recall that it is a scattering cross-section; indeed the total cross-section appellation,
σtot , is also used to name the sum of cross-sections of all the interaction processes
(absorption, elastic and inelastic scattering); it is the whole relative flux picked up
by the object:

σtot = σscat,tot +σabs. (1.38)

Fig. 1.1 Definition of the scattering length b(û) and of the differential scattering cross-section
(dσ/dΩ)(û). The incident plane wave is Aine−ik.r and the scattered wave Ain(b(û)/OM)e−ik OM .
This last expression gives a well-defined flux in the cone OM, whatever the distance OM. The
scattering length and the differential scattering cross-section in the direction û are, respectively,
b(û) and |b(û)|2
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1.2.5 The Use of Green Functions

The scattering amplitude b in Eq. (1.34) has not been introduced very rigorously
and it is possible to define it more formally. The field scattered by a point-like object
obeys the wave equation (1.15) everywhere except at the centre of the object, which
is both the source and a singular point. The simplest mathematical singularity is
the Dirac δ function. The Green function of Eq. (1.15), G(r), is a solution of the
equation (

Δ + k2)G(r) = δ (r). (1.39)

Physically, G(r) represents the field emitted by the source normalized to unity.
More generally, any partial derivative equation which is homogeneous in A such as

DA(x) = 0 (1.40)

(here D represents a sum of differential operators with constant coefficients plus a
constant term, and x is a scalar or a vector variable) admits Green functions G which
satisfy1

DG(x) = δ (x). (1.41)

A common application of Green functions is the resolution of non-homogeneous
partial derivative equations. For example, if G(x) is a Green function and A0(x) is
any of the solutions of the homogeneous equation, the equation

DA(x) = f (x) (1.42)

admits the following solutions:

A(x) = A0(x)+
∫

G(x− x′) f (x′)dx′. (1.43)

This can be shown by substitution into Eq. (1.42) and use of the equation,

f (x) =
∫

δ (x− x′) f (x′)dx′, (1.44)

and by finally applying Eq. (1.41).
Let us now check that the diverging wave Eq. (1.34) (or the converging wave

having the opposite sign for k) is indeed, to a certain coefficient, a Green function
solution of Eq. (1.39). Due to the spherical symmetry, it is worth using the spher-
ical coordinates r, û (r = rû; û is defined by the polar angles θ , φ which we leave
implicit). The differential operators yield

1 A customary definition of Green functions rather sets them as two point functions with

DG(x,x′) = δ (x− x′).
Since we are placed here in free space, translation symmetry allows to centre the δ function at the
origin and to set x′ to 0.
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grad = û
∂
∂ r

+ · · · (1.45)

Δ =
∂ 2

∂ r2 +
2
r
∂
∂ r

+ · · · ; (1.46)

the · · · are some derivatives with respect to θ , φ which vanish since we consider a
spherical symmetry. We shall also use in the next subsection the same incomplete
formulae to calculate waves at large r, where the dropped out terms are higher order
infinitesimals. We then have

(
Δ + k2) e±ikr

r
= 0 for r �= 0. (1.47)

At r = 0, we must compare the singularity with δ (r). It is possible to integrate
the left-hand side of Eq. (1.47) inside a sphere of radius r0 centred at the origin.
Indeed from the definition of G, the integral of (Δ + k2) G(r) must be equal to 1
when performed over the whole volume including the origin. This calculation is
proposed in Exercise 1.2.3 and yields −4π . The Green function of the three dimen-
sional Helmholtz equation is then

G±(r) = − 1
4πr

e±ikr. (1.48)

Now we retrieve Eq. (1.34). We assume that the amplitude scattered by a point
size object sitting in r = 0 satisfies

(
Δ + k2)Asc(r) = Ain(0)4πbδ (r) (1.49)

whose solution is
Asc(r) = Ain(0)4πbG−(r). (1.50)

It is also useful to express the Green function in one dimension. Indeed some
problems related to specular reflectivity can be solved in one dimension. A similar
calculation yields

G1d,±(r) = −±i
2k

e±i|kr|. (1.51)

The Green function of Helmholtz equation in two dimensions can be expressed
with the help of Bessel functions. The asymptotic form at large r is yet harmonic,
with a r−0.5 decay and an additional phase shift equal to ±(π/4).

Exercise 1.2.3. Calculate in three dimensions
∫

r<r0

(Δ + k2)(1/r)e± ikrd3r.

Hints: The integral of the first term, Δ . . ., can be transformed into the integral of
the gradient over the sphere of radius r = r0; the integral of the second, k2. . ., can
be successively performed over spheres and then over r. Note that the independence
of the result with respect to r0 yields Eq. (1.47) and is sufficient to prove that the
argument after (Δ + k2) is a Green function.
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1.2.6 Green Functions: The Case of the Electromagnetic Field

While the Green functions of the Helmholtz equation are valid for scalar fields, as
for instance the neutron wave function, the case of the electromagnetic field is more
complicated. Not only is the field a vector (if the potential is used) but also the
simplest sources are vibrating dipoles which are represented by vectors and which
cannot be described by a simple δ function.

The 4-vectors Aν and jν represent respectively the potential and the current-
charge density, as follows:

A0 = Φ/c, (A1,A2,A3) = A (1.52)

j0 = cρ, ( j1, j2, j3) = j. (1.53)

Φ is the scalar electric potential as previously defined in Eq. (1.7), ρ the charge
density and j the electric current density. Since jν describe the charge motion it
must fulfil the conservation relationship

div j+
1
c
∂ j0
∂ t

= 0. (1.54)

We shall have to integrate the current density over a volume,

J =
∫

j(r)d3r (1.55)

to get a 3-vector J. If we consider a conductor wire in which there is a current, J is
the product of the current intensity by the vector identified to the portion of the wire
enclosed into the volume of integration. If we consider a moving charge (an electron
for instance), J is the product of the charge by the velocity and if it is a vibrating
dipole of amplitude d such as deiωt , J(t) yields iωdeiωt . Such a vibrating dipole,
if infinitesimally small, is the simplest radiating point source. It is characterized by
the following current-charge density which fulfils the conservation law:

j0(r, t) =
ic
ω

div(J(t)δ (r)) =
ic
ω

J(t).gradδ (r) (1.56)

j(r,t) = J(t)δ (r). (1.57)

The charge density j0/c has the form of the derivative in the direction J, of the
scalar function δ .2

In the presence of the current-charge density jν , the potential Aν that we write
with help of the Lorentz gauge verifies, instead of the four homogeneous equations
(1.8), the inhomogeneous ones

2 This idealized dipole, isolated in a vacuum, can be used to represent what happens at a mi-
croscopic scale in a dielectric material in the range of a few atoms (for X-rays and any material
the relevant scale lies inside a single atom). Once the average has been made over a larger volume,
these microscopic currents disappear from the equations. They are implicitly accounted for through
the dielectric constant and the new fields D and H, otherwise equal to ε0E and B/μ0. This is the
point of view of Chap. 4.
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ΔAν −
1
c2

∂ 2Aν
∂ t2 = − jν

ε0c2 . (1.58)

We take as jν the dipole just described. We then keep as the useful solutions Aν
those which have the same oscillating time dependence as jν . When ω is replaced
by ck, Eq. (1.58) transforms into the inhomogeneous Helmholtz equations

(
Δ + k2)A0 (r,t) = − i

ε0c2k
J(t).gradδ (r) (1.59)

(
Δ + k2)A(r,t) = − J(t)

ε0c2 δ (r). (1.60)

The solution of the second equation is a Green function G±(r), Eq. (1.48). The
first one can be solved by the use of the method proposed in Eq. (1.43). The outgoing
solution is

A0 (r,t) = − i
ε0c2k

J(t).gradG−(r) (1.61)

A(r,t) = − J(t)
ε0c2 G−(r) , (1.62)

where G− is given by Eq. (1.48). Up to a constant factor | J | /ε0c2, Eqs. (1.61) and
(1.62) are the equivalent for the electromagnetic potential of the Green function for
the scalar field. These particular expressions are due to both the vector character of
the field and the electric dipolar character of the source. Other kinds of sources exist
that we shall not describe here, as for example magnetic dipoles or multipoles of
higher order.

We may need the electric field E. Following Eq. (1.13)

E(r,t) =
iω
ε0c2

[
J(t)G−(r)+

1
k2 grad (J(t).gradG−(r))

]
. (1.63)

The second derivative gradJ.grad can be handled in two different ways. First,
since we often consider the radiated field far from the source, we look for an asymp-
totic value valid when kr � 1. For this, the expression of the gradient Eq. (1.45)
is used, but only the derivative according to r is kept, and in the derivative of
G− ∝ e−ikr/r, only the derivative of e−ikr is calculated. All the other derivatives
are of higher order in 1/kr. Thus we can write (û is the unit vector along r)

grad(J(t).gradG−(r)) ∼
kr→∞

−grad(J(t).û ik G−(r))

∼
kr→∞

−k2(J(t).û)ûG−(r), (1.64)

and one can recognize in this expression the projection of J about the vector r. The
asymptotic form of E(r, t) is
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E(r, t) ∼
kr→∞

− [J(t)− (J(t).û)û]
iωe−ikr

4πε0c2r
, (1.65)

i.e. the scalar Green function multiplied by the component of the current normal to
û and by iω/ε0c2.

Another way to transform Eq. (1.63), now without any approximation, consists
in writing the last term with the alternative form graddiv(JG−) (this equivalence is
seen in Eq. (1.56)). The following equation is also identically valid:

graddiv ≡ Δ + curlcurl, (1.66)

and since G− is the solution of Helmholtz equation away from the origin, Δ may be
replaced by −k2. As a result we have

E(r, t) = −curlcurl
(

J(t)
ie−ikr

4πε0ωr

)
for r �= 0. (1.67)

1.3 From the Scattering by an Object to the Propagation
in a Medium

Though all materials are inhomogeneous at least at the atomic scale, they commonly
let radiations to propagate smoothly as in an homogeneous continuum. This was as-
sumed in the previous paragraphs, where the overall character of the material was
represented by an optical index. The same assumption is made when representing
the response of a material to an electric field through an homogeneous dielectric
constant. These representations rely on the feasibility of some procedure which re-
places rapidly varying fields by smoothly varying averages and calculates global
quantities such as an optical index or a dielectric constant from atomic ones such as
a scattering length or an atomic polarizability. The determination and assessment of
such an averaging procedure are in general not trivial and have to account for the
combination of several parameters: the type of the radiation, usually scalar (neutron)
or vector (X-ray), its wavelength, the strength of its interaction with matter and the
length scale and other characters of the inhomogeneities. It may sometimes happen
that no reasonable average exists and that the radiation does not propagate smoothly
through the medium.

The case of X-rays and neutrons is fortunately simple because their interaction
with matter happens to be very weak. In other words the density of scattering length
is small in all materials. In Sect. 1.3.2 we develop a calculation adapted to this case
by adding explicitly to the incident wave the field scattered in the forward direction
by all the atoms. It can be viewed as an approximate extension of the optical theo-
rem, briefly described. We then discuss in details the validity of the calculation. We
also show (Sect. 1.3.3) that comparing the extinction length, 1/k0(n−1), with other
length scales of the problem helps to determine the status of the approximations.
Beforehand it is worth to shortly describe in general the problem of field average.
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1.3.1 The Problem of Defining a Field Average

This problem has been the subject of a large amount of literature, mainly devoted
to the electromagnetic field. The case of common dielectric materials was solved
for the static electric field through a formula given by Clausius and Mossotti, then
Lorentz and Lorenz later showed that a similar one applies to electromagnetic waves
(see [12] and [6]). Jackson [12] offers a discussion of the electromagnetic case. A
mathematical view with a recent list of references can be found in [7].

We organize the discussion about the case of the propagation of a wave rather
than the response to a static field. The subsequent formulae are based on the
Helmholtz equation and are written with the generic field A. They do not correctly
describe the case of the electromagnetic field, but they suffice to a symbolic descrip-
tion of the main issues. Let a medium be comprised of a density ρ of atoms with
a scattering length b, sitting at positions labelled i. It scatters the field Asc(r) when
irradiated with Ain(r). The wave vector length in vacuum is k0. From Eq. (1.49)

(Δ + k2
0)Asc(r) = 4πb∑

i

(
Ain(ri)+Asc(ri)−Asc,i(ri)

)
δ (r− ri). (1.68)

Under the summation is the field exciting the atom i. It is the total field at ri minus
the self-field Asc,i, scattered by this atom itself. Let us attempt to find an equation
between macroscopic fields—that is field averages—by integrating Eq. (1.68) over
a small volume about r. A volume v of fixed size and shape is attached at each value
of r, and then called v(r). Writing 〈〉v(r) for the average over v(r), the integration
yields

〈(Δ + k2
0)Asc(r′)〉v(r) =

4πb
v ∑

i∈v(r)

(
Ain(ri)+Asc(ri)−Asc,i(ri)

)
. (1.69)

Before going further, the following questions must be answered:

(i) Which size of v gives a sound average, if it is ?
(ii) Can 〈(Δ + k2

0)Asc(r′)〉v(r) be replaced by (Δ + k2
0)〈Asc(r′)〉v(r) ?

(iii) How to manage the self-field exclusion term −Asc,i(ri) ?

A suitable answer to (i) is in choosing a volume size larger than the scale of the
density fluctuations in the medium and smaller than the wavelength of the radiation.
Further analysis shows that the scattering length of one single atom should not be
too large. More precisely one single granule of inhomogeneity should give only a
small contribution to the scattered field. A favourable answer to (ii) is given at the
expense of a more stringent answer to (i). To deal with a derivative of a function we
need first to define on some scale the average of that function, then to go to a larger
scale to define the derivative. The status of (iii) depends on the type of radiation. If
it is scalar the contributions to Asc(ri) from scattering by atoms inside the volume
v(r) add to each other and the self-field term, being one of many, can be neglected.
It is not so for the electromagnetic field because a cancellation of other terms leaves
the self-field as an important one.
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The calculation in the scalar case may then terminate by neglecting the self-
field and adding Ain(r) to the left-hand side of Eq. (1.69). The equation between
macroscopic fields (overlined) is

(Δ + k2
0)
(
Ain(r)+Asc(r)

)
= 4πρb

(
Ain(r)+Asc(r)

)
. (1.70)

The total macroscopic field obeys the Helmholtz equation with k = nk0 and

n2 = 1− (4π/k2
0)ρb. (1.71)

The solution in the electromagnetic case relies on two mathematical results. First
a spherical distribution of dipoles produces a zero field in its centre. Consequently
the field created at the centre of a sphere by a uniform distribution of dipoles in that
sphere reduces to the field of the dipole sitting at the centre itself. The second point
is that the integral of the field in this sphere, is equal to the total dipolar moment
divided by −3ε0. The first point shows that the self-field cannot be neglected. The
second result brings a correcting factor 1/(1+4πρb/3k2

0) in the right-hand side of
Eq. (1.70). But again we should warn the reader that the equations as written do not
actually represent the electromagnetic case; they are merely indicative. See [12] for
a rigorous argument in the case of the static field. The optical index satisfies

n2 = 1− (2+n2)
3

(4π/k2
0)ρb. (1.72)

This, in our notation, is equivalent to the Lorentz–Lorenz formula.
This approximation applies to visible optics in most of the condensed matter

cases. Indeed the wavelength is a thousand times more extended than atomic den-
sity fluctuations and a volume of averaging can be chosen between these two ranges.
This is not true at X-ray and neutron wavelengths of the same order as the inter-
atomic distances. We can get around this difficulty by weighting the fields with
eik0.r in order to integrate a smoothly varying quantity, and by using the average
form

A(r) = e−ik0.r〈eik0.r′A(r′)〉v(r). (1.73)

The volume v should be as before large enough to enclose many times the range
of atomic density fluctuations. But eik0.rAsc(r) can have a reasonable average over
v, only if the incident and scattered wave vectors are close to each other. This im-
plies k/k0 ≈ 1, a condition equivalent to n ≈ 1 and to (4π/k2

0)ρb � 1. It will be
shown later in this section that under this condition Asc(r) is negligible everywhere
except in the forward direction, at k ≈ k0. Now, whatever the radiation, scalar or
electromagnetic, both Eqs. (1.71) and (1.72) read

n−1 ≈−(2π/k2
0)ρb. (1.74)

The reader may also refer to [16] for the treatment of the X-ray case and look at
the footnote in Sect. 2.3.2 of this book. In the next subsection we discuss in detail,
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through a different route, the X-ray or neutron case, and show how the total field is
built up from the waves scattered by individual atoms.

The approximations that we have made may fail in several ways. With X-rays
and neutrons the assumption of Asc having a wave vector close to the one of Ain is
no longer verified when a crystal is at Bragg orientation with respect to the incident
beam and diffraction occurs. That case may be treated either in the kinematical
theory, that is a Born approximation, considering that the intensity of the diffracted
beam is a small fraction of the incident one which propagates normally, or through
the more exact, dynamical theory. In the second option, the incident beam may
be extincted on a reduced path. Choosing the kinematical or the dynamical theory
usually depends on the extension of the perfectly coherent zones in the crystal. The
dynamical theory of Bragg diffraction for X-rays [3] is tractable in algebraic form
because it neglects the diffraction by all sets of atomic planes but one. This is also
true for neutrons. This approximation is again made possible by the weakness of the
interaction at the atomic level. An effect similar to Bragg scattering is at the origin of
forbidden bands in the electronic energy spectra in crystals; some electronic waves
cannot propagate.

On top of the diffraction by periodic structures, disordered inhomogeneities al-
ways produce some diffuse scattering. When it is intense the assumptions made
above do fail; this is called opalescence. It is well observed at optical wavelengths
when the scale of the inhomogeneities is of the same order as the wave. With X-
rays, diffuse scattering at wide angles is never intense but some sort of opalescence
may occur at scattering angles of the order of millidegrees (see Sect. 1.3.2). Going z
wave may be impossible beyond a short path. This is usually the case for electrons
in solids, because of the strong interaction between an electron and an atom, and
because of the presence of crystalline defects. The electric conduction in metals is
an example of diffusive propagation in place of coherent waves. Sometimes, even
the diffusive propagation may be stopped and the field is said to be localized [2].

1.3.2 The Optical Theorem and Its Extension

1.3.2.1 The Optical Theorem

The optical theorem exactly relates the total cross-section (absorption plus scatter-
ing) σtot of an isolated object with the imaginary part of the amplitude that this
object scatters in the forward direction, i.e. I m [b(0)]:

σtot = 2λ I m [b(0)] . (1.75)

Here b may depend on the scattering direction, but only its value at zero angle is
relevant. The proof relies on a balance between absorption and flux going in and
out of a surface enclosing the object and the Green theorem is applied (see [12],
Sect. 9.14). We stress that no approximation is made. When the field, such as an
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electromagnetic field, has several components, b(0) represents the scattering in the
same polarization as the incident wave.

It is worth to mention this relation because it looks like a partial solution to the
problem of finding the optical index of a medium made of such objects. Indeed the
total cross-section of the objects (atoms or molecules) which constitute a medium
approximately yields the attenuation of that medium, then the attenuation is linked
to the imaginary part β of the index through 4πβ = ρσtotλ . What we call atten-
uation includes the absorption and the loss of radiation due to scattering out of
the direction of propagation. Unfortunately the relation between the molecular total
cross-section and the attenuation is only approximate because the scattering cross-
sections of all the molecules cannot be simply summed, as can be the absorption.

We cannot make use of the optical theorem as it is. First because it gives no
access to the real part of the index, and second because of the approximation made
when going from the cross-section of the objects to the attenuation in the medium.
Its validity can hardly be discussed directly. Instead we shall retrieve Eq. (1.74),
which yields the complete refractive index of a medium, with its real and imaginary
parts, and explicitly show that it is related to the scattering in the forward direction.
That calculation is not exact, but relies on the smallness of ρb. We shall call this
condition, “the weak interaction”. It is equivalent to say that the index is close to
1. In fact, for X-rays and neutrons, the difference to 1 is of the order of 10−5, or
even less. This is not true for visible light. We write below the formulae for a scalar
field. Under the condition that the interaction is weak, those will also be valid for
the electromagnetic field. The demonstration follows Jackson [12].

1.3.2.2 The Amplitude Scattered by a Planar Assembly of Scattering Objects

Let us consider a population of scattering objects homogeneously located in the
surface of a plane P normal to the direction of propagation of the incident plane
wave (Fig. 1.2). We shall consider the amplitude of the wave at a point M, far enough
behind this plane but not at an infinite distance (like in Fresnel diffraction). The field
is supposed to be a scalar.

Fig. 1.2 A plane wave
coming from the left
encounters a plane P
containing an array of
scattering objects. The axis
OM is normal to the wave
planes. The value of the field
as modified by the scattering
will be calculated at the
point M
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Let ρs be the surface density of the scattering objects and A(O) the incident
amplitude of the wave at O, that is in the plane P. The objects located within the
surface ds around a point X in the plane P will contribute an amplitude at the point
M given by

dAX (M) = −A(O)ρsb( ˆXM)
e−ik0XM

XM
ds, (1.76)

where b( ˆXM) is the scattering length in the direction ˆXM. To integrate this expres-
sion over the whole plane P, one first integrates around a ring of radius r and width
dr centred in O. The mean value of b( ˆXM) in this ring is called b(2θ) (2θ being the
angle OMX). The amplitude scattered by this elementary ring is

dAr (M) = −A(O)ρsb(2θ)2πr dr
e−ik0XM

XM
. (1.77)

This must be integrated over r but since

XM2 = OM2 + r2, whence XM dXM = r dr, (1.78)

it is possible to integrate over XM instead of r and the amplitude Asc(M) scattered
by the entire plane P appears as

Asc(M) = −A(O)ρs2π
∫ ∞

OM
b(2θ)e−ik0XMdXM. (1.79)

If b is independent of 2θ the calculation is straightforward. In the general case
the same result is obtained under the assumption that the point M is far enough. This
is shown through an integration by part:

Asc(M) = −(2πi/k0)A(O)ρs{[
b(2θ)e−ik0XM

]XM=∞

XM=OM
−
∫ ∞

OM
e−ik0XM db(2θ)

dXM
dXM

}
. (1.80)

A treatment of the second term is given in [12], Sect. 9.14. Provided that b(2θ)
presents a non-singular extremum at θ = 0 this term is of the order of 1/(k0OM). It
is then negligible if OM � λ .

As for the first term, it quickly oscillates about zero when XM tends towards
infinity in the upper bound so that we make the following approximation

b(2θ)e−ik0XM ∼
XM→∞

0. (1.81)

It is worth noting that to average those oscillations about zero, the upper bound
value for the radius r of the ring used in integrating over the plane P, should be much
larger than some characteristic length. This length is the so-called first Fresnel zone
radius which is of the order of (λOM)1/2 .

Finally the forward scattered amplitude becomes

Asc (M) = iA(O)λρsb(0)e−ik0OM. (1.82)
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The forward scattered field adds to the incident field A(O)e−ik0OM in M and yields
a total field A(M)

A(M) = A(O)e−ik0OM +Asc (M) = A(O)(1+ iλρsb(0))e−ik0OM. (1.83)

If we now consider instead of a plane a thin layer of thickness dx the above
calculation remains valid provided that the surface density ρs is related to the volume
density ρv by

ρs = ρv dx. (1.84)

The total field for such a layer becomes

A(M) = A(O)(1+ iλρvb(0)dx) e−ik0OM. (1.85)

Note that the amplitude scattered by the whole plane in M is outphased by π/2
relative to the one scattered by an element of this plane; that phase shift results from
the summation of amplitudes in the Fresnel diffraction.

1.3.2.3 The Propagation of a Wave in a Homogenous Population
of Scattering Objects

Let us now consider the plane P as an infinitesimally small layer of thickness dx
made of a medium of index n. The wave vector in the medium is nk0. If the point O
is located at the entrance of the layer, a plane wave which has crossed the thickness
dx in the medium of index n has an amplitude at the point M given by

A(O)e−ink0dxe−ik0(OM−dx) ≈ A(O)(1− i(n−1)k0 dx)e−ik0OM. (1.86)

The approximation is correct if |n−1|k0 dx � 1. The comparison of Eqs. (1.86)
with (1.85) shows that

n = 1−λ 2ρvb(0)/2π = 1−
(
2π/k2

0

)
ρvb(0). (1.87)

Equations (1.86) and (1.85) are schematically represented in the complex plane
in Fig. 1.3. As shown in this figure, the imaginary part of b(0) or (n− 1) modifies
the absolute value of the field amplitude in M, whereas the real part modifies its
phase.

Equation (1.87) links the scattering by elementary objects to the propagation in
the medium which is considered to be continuous. It is an extension of the optical
theorem. Indeed β , the imaginary part of n, Eq. (1.6), describes the attenuation of
the radiation through the medium. The squared modulus of Eq. (1.86) is

|A(M)|2 = |A(O)|2
(
1−2βk0 dx+o(k2

0dx2)
)
, (1.88)

where o(k2
0dx2) is for higher order terms. The attenuation through the medium is

described as the sum of attenuation by all objects with an individual cross-section
σatten:
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Imaginary

A(M)

A(o) Real

dA

Fig. 1.3 Representation of the amplitude of the field in the complex plane. Up to the common
factor e−ik0OM, the total field A(M) is the sum of the incident field A(O) and of an infinitesimal
field dA = iλρsb(0)A(O) in Eq. (1.85) and dA = −i(n−1)k0 dxA0 in Eq. (1.86). The component
of the field dA associated with the real part of b(0) or of (n−1) is turned by π/2 from the incident
field. This produces a phase shift of the total field. On the other hand, the imaginary part of b(0) or
of (n−1) decreases the amplitude of the total field

|A(M)|2 = |A(O)|2 (1−σattenρv dx) . (1.89)

Since from Eq. (1.87), β = (2π/k2
0)ρv I m [b(0)]

σatten = 2λI m [b(0)] . (1.90)

It is, obtained through some approximations, almost the optical theorem,
Eq. (1.75) with the total cross-section σtot replaced by the attenuation cross-section
in this particular medium, σatten.

All the derivations above consider the field as a scalar. Under the approximations
made here (XM → ∞) they can be extended to the electromagnetic field. Indeed un-
der these approximations, only the forward scattering, which is usually independent
of polarization and conserving it, is retained. Beyond the above approximations, one
must take into account all the scattering directions, and the scalar and vector fields
display different behaviours.

1.3.2.4 About the Approximations

We must now discuss the approximations which are made. The argument relies on
the equality of the amplitudes calculated from the index Equation (1.86) and from
the scattering equation (1.85). On the one hand Eq. (1.86) is valid if

|n−1|k0 dx � 1 (1.91)

and on the other hand Eq. (1.85) holds if

OM � λ . (1.92)

We are going to show that Eq. (1.87), giving the optical index n for a thin slice dx,
also applies to a material of finite thickness x. That thick material may be divided
into layers of thickness dx. Let O and M be the points taken at the entrance and at
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J

o N

dx dx

x

M

J + 1

Fig. 1.4 The point M is located at the border of the two layers (j, j+1) of the material. We assume
that the condition Le � OM � λ (see text) is satisfied. Note that if OM � λ then NM � λ for
nearly all N. Then the amplitude at M only comes from the layer j and is given by Eq. (1.85)
(with ρs the surface density of the layer). Since Le � OM, (n−1)k0 dx is infinitesimally small, the
approximation Eq. (1.86) does apply, and the material has an index given by Eq. (1.87)

the exit of layer j, such as dx = OM (Fig. 1.4). We assume that dx is such that both
inequalities Eqs. (1.91) and (1.92) are satisfied.

Having OM = dx does not affect the validity of Eq. (1.86) since OM appears
just in a global phase factor. The validity of Eq. (1.85) is affected for the points N
located between O and M, such that NM � λ does not hold. But if OM � λ those
points are a minority which contributes only to a negligible part of the scattering
amplitude observed at M.

In order for the amplitude at M to be given by Eq. (1.85), it is also necessary for
the back scattering coming from the layers j + 1 located behind the point M to be
negligible. The different points of that layer scatter towards M with different phase
shifts. It is possible to show that the ratio of the amplitude scattered by one layer in
the backward direction to the one scattered in the forward direction is of the order
of λ/dx. Therefore the condition OM � λ is sufficient for Eq. (1.85) to be valid.

Satisfying both inequalities Eqs. (1.91) and (1.92) with OM = dx means

λ � OM � λ
2π |n−1| , (1.93)

and this in turn implies |n−1| � 1. This is the condition for our approximations to
be valid. Actually |n−1| is 10−5 or less for X-rays and neutrons. These inequalities
also suggest that a length Le defined as

Le =
λ

2π |n−1| =
Va

λ |b(0)| with Va = 1/ρv, (1.94)

must play an important role in the optical properties of the medium. That length
appears in any scattering process. With reference to the dynamical theory of X-
ray diffraction we shall call this length the extinction length. We should remind
ourselves that the theory as previously exposed applies when this length is much
larger than the wavelength.
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Another condition should also be discussed. We have replaced the sum over the
atoms or molecules by integrals to calculate the scattered amplitudes. This is al-
lowed only if the intermolecular distances and more generally the dimensions of
heterogeneities are smaller than the range of integration. In the longitudinal di-
rection that range is OM and in the transverse direction the characteristic length
for the integration is the radius of the first Fresnel zone, which is of the order of
(OMλ )1/2. The volume Vaver which is large enough to represent on the average the
material (Vaver is defined as a volume larger than the heterogeneity) must be less
than OM2λ . As the inequality OM � Le must stand, Vaver must be very small com-
pared to L2

eλ =V 2
a /λ | b(0) |2, where Va is the volume of the unit (namely the atom)

of scattering length b.
In condensed matter and for X-rays of energy 10 keV or thermal neutrons, Va is of

the order of a few λ 3. For X-rays and for Z � 15, we have Le/λ � 104. For neutrons
this ratio is about ten times larger. The condition Le � λ is thus well satisfied.
Since Va is of the order of λ 3, the volume L2

eλ is of the order of 108 Va (1010 Va for
neutrons). In reasonably homogeneous materials Vaver can easily be chosen between
103Va and L2

eλ . The wave propagation according to the continuous medium field
equations with the index given by Eq. (1.87) is consequently valid.

If the condition Vaver � L2
eλ is not fulfilled, the approximation fails. Though the

case Le � λ is out of our discussion, let us mention that when it happens together
with a size of density fluctuations of the same order, Vaver > L2

eλ and then opales-
cence may occur (see Sect. 1.3.1). This can be observed with visible light. With
X-rays a similar situation may occur when the size of fluctuations is for example of
the order of Le, but this is much larger than λ and the diffuse scattering is visible
only at small angle.

Finally we have to humbly set some limitation to the method followed in the
present section. When a beam goes through an interface between a vacuum and a
medium, our discussion applies quite well to the case of normal incidence. Instead,
at grazing incidence approaching the critical angle for total external reflection, it is
seen in Exercises 1.3.1 and 1.3.2 that it does not give a correct result. This is because
we used a first-order perturbation calculation, like a Born approximation. The graz-
ing incidence conditions lie beyond the domain of validity of this approximation
(see next subsection). What we can do is to accept the existence and value of the
optical index found by our method and assume without any formal proof of validity
that, in those conditions, the medium can still be treated as homogeneous with the
same index as in bulk. The method exposed in Chap. 4 offers a basis to complete
the discussion.

1.3.3 The Extinction Length and the Born Approximation

The condition Eq. (1.93) (Le � λ ) shows that the extinction length plays a major
role in the evaluation of the strength of the interaction of a radiation with matter.
When the radiation has travelled a distance Le in the material, it begins to undergo
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a measurable phase shift of exactly one radian relative to a propagation in vacuum;
also it scatters a substantial amount of radiation. The results may be qualitatively
different when the thickness of the material which has been crossed is smaller or
bigger than Le. For X-rays of energy 10 keV, the extinction length is of the order of
a micron (| n−1 |< 10−5), and it is one order of magnitude larger for neutrons.

The approximation which has been made to relate n with b is connected to the
first Born approximation. We have used a single scattering to produce the plane
wave propagating in the medium. The extinction length allows us to decide whether
the Born approximation is valid for a given situation. When Le � λ , the criterion is
that the path travelled in the volume of the material giving rise to a coherent scatter-
ing must be less than Le. This was the criterion Eq. (1.91) in our approximation. The
kinematical theory of diffraction by crystals (equivalent to the Born approximation)
is commonly used because the volume of the perfect crystal (coherently scattering)
is often smaller than one micron cube, that is L3

e . The property expressed in Eq.
(1.93), which tells that the extinction length is much larger than the wavelength,
also presents beneficial effects for the physics of X-rays and neutrons. It is associ-
ated with the fact that even if the kinematical theory is no longer valid, as in perfect
crystals, the dynamical theory remains calculable. In visible optics, where this con-
dition is not valid, the diffraction equations are most often not exactly solvable.

In the study of reflection in grazing incidence on a surface, the extinction length
plays a major role. First it is related to the critical angle of total external reflection,
discussed in Chap. 3. Indeed the following relation stands:

1
|qc|

=
Le sinθc

2(1+n)
≈ Le sinθc

4
, (1.95)

where | qc | is the scattering wave vector transfer corresponding to the specular re-
flection at the critical angle θc (Fig. 1.5). The left-hand side term represents (up to
a factor 1/4π) a sort of wavelength perpendicular to the surface, and the right-hand
side term (up to a factor 1/4) the extinction length projected on the perpendicular

Fig. 1.5 Relation (Eq. (1.95)) between extinction length and critical angle. A beam coming from
vacuum crosses at a glancing incidence angle θ an horizontal interface limiting a medium of optical
index n. The extinction length at that interface is Le. The depth OP is the vertical vacuum wave-
length λ/sinθ . The depth O′′P′ is π times the extinction depth Le sinθ . At the critical condition
θ = θc, those lengths are equal, OP = O′′P′
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axis. The quasi equality of these two lengths is the sign showing that at the criti-
cal angle the Born approximation is no longer valid. For less shallow angles, the
perpendicular wavelength becomes smaller than the perpendicular extinction length
and therefore the reflectivity becomes weak and calculable in this approximation.
In the case of a rough surface, one must also compare the extinction length to the
characteristic lengths of its waviness. If the waviness is longer or shorter than the
extinction length, the losses in reflectivity and the scattering are different.

Exercise 1.3.1. A plane scalar wave, with the wave vector k0, enters a medium
through a planar interface making the angle θ with k0. By dividing the medium in
layers parallel to the interface, calculate the scattered amplitude at any point in the
medium, as shown in Eq. (1.82). Find the direction of equiphase planes of the total
amplitude and compare to Snell–Descartes’s law. The validity of the approximation
depends on θ .

Hint. One can show that the scattered amplitude at a point located downstream
an angled layer is given by Eq. (1.82) divided by sinθ .

Exercise 1.3.2. In the same configuration as the one in the previous exercise, and
assuming b(2θ) constant, find with the same method the amplitude reflected by the
interface. Compare with the exact Fresnel expression given in Chap. 3, Sect. 3.1. In
Sect. 3.3 in the same chapter the Born approximation is discussed as in this exer-
cise. Note that the amplitude calculated here is the backscattered one, considered as
negligible in the discussion of the approximations at the end of Sect. 1.3.2.

Hint. The expressions for the scattered amplitudes at two symmetrical points with
respect to an infinitesimal layer are the same. Only b may change from b(0) in one
case to b(2θ) in the other (2θ is the angle between the reflected and incident wave
vectors).

Notice. If the θ angle is large enough to allow b(2θ) �= b(0), the reflectivity,
obtained from b(2θ), differs from the one obtained with the Fresnel formula and
an optical index associated with b(0). This is because the shape of the molecules
produces both a decrease of b with θ and a roughness of the interface (Chap. 3,
Appendix 3.A).

Exercise 1.3.3. In a one-dimension space, the dx element located at x′, which re-
ceives the scalar field A, scatters in the two opposite directions, Eq. (1.51)

A 2k0ρb1ddxG1d,−(x− x′) = A iρb1ddxe−i|k0(x−x′)|.

G1d,− is the one-dimension outgoing Green function and ρb1d the density of scat-
tering power which in general is real.

Find the relation between ρb1d and the refractive index in this medium at one
dimension.

Hints. Since ρb1d is not assumed to be weak, the method described above
in the present section should not be applied. One may consider an interface at
x = 0 between the vacuum at negative x and the medium at positive x. A wave
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A(x) = A0e−ik0x comes from the vacuum and becomes A′(x) = A′e−ink0x in the
medium. The field in the medium can be written in two ways:

– By the integral equation of the scattering (see Chap. 4, Sect. 4.1.2)

A′(x) = A(x)+
∫ ∞

0
A′(x′)2k0ρb1dG1d,−(x− x′)dx′;

– by the transmission at the interface A′ = tA0, where t is the Fresnel transmission
coefficient, which here is 2/(n+1) (Chap. 3, Sect. 3.1, Eqs. (3.30) and (3.31)).

It may be noticed that the scattering is composed of two terms. The one in
−e−ik0x is at the origin of the disappearance (so-called extinction) of the incident
wave (see the extinction theorem [6]).

1.4 X-Rays

1.4.1 General Considerations

The electromagnetic radiation interacts principally with the electrons, and very
weakly with atomic nuclei (the ratio of the amplitudes is as the inverse of masses).
The interaction is essentially between the electric field and the charge, but a much
weaker interaction is also manifest between the electromagnetic field and the spin,
or its associated magnetic moment.

A photon which meets an atom can undergo one of the three following events:

– elastic scattering, with no change in energy;
– inelastic scattering: part of the energy is transferred to the atom, most frequently

with the ejection of an electron (the so-called Compton effect); however, it may
happen that the lost energy brings the atom in an excited state, without any ion-
ization (Raman effect);

– absorption: all the energy is transferred to the atom and the photon vanishes.
Another photon can be subsequently re-emitted, with a lower energy: this is the
so-called fluorescence.

These mechanisms are described in many text books; the one of R. W. James [13]
is particularly complete (except for the Raman effect which can be found in [17]).

To give an intuitive image, we shall begin with the classical mechanics theory
which provides in simple terms a correct result for the scattering by a free electron
(Thomson scattering). When the electron is bound, this theory is still convenient
enough. However, the Compton scattering cannot be described by this classical the-
ory. Also this theory does not describe correctly the motion of the electrons in the
atom. Therefore we shall also review all the following processes in the frame of the
quantum theory, i.e.;
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– the elastic and inelastic scattering (mainly Compton), for a free or bounded to an
atom electron, when the radiation energy is well above the atomic resonance;

– the photoelectric absorption by an atom;
– the dispersion correction brought to the elastic scattering by the atomic reso-

nance.

Finally we shall discuss the general properties of dispersion which are indepen-
dent of a particular interaction or radiation. One can show that the real and imag-
inary parts of the scattering are linked by the Kramers–Kronig relations which are
extremely general and probe the response of nearly every system to some kind of
excitation. The origin of these properties lies in the thermodynamical irreversibility
that can be introduced through the principle of causality.

1.4.2 Classical Description: Thomson Scattering
by a Free Electron

The scattering by a free electron is simple and presents the main characters of the
scattering by an atom. We shall start with this case.

The electron undergoes an acceleration, which is due to the force exerted by the
incident electric field

Ein(t) = E0eiωt . (1.96)

Let z be the electron position and (−e) its charge, then

mz̈ = (−e)E0eiωt . (1.97)

The electron exhibits oscillations of small amplitude, producing a localized
current

j(r,t) = (−e) żδ (r) (1.98)

=
(−e)2 Ein(t)

iωm
δ (r).

The radiation of that vibrating current, similar to a dipole antenna, has been dis-
cussed in Sect. 1.2.6. From the Eqs. (1.57) and (1.65) we have at large distances
(kr � 1),

Esc ∼
kr→∞

−
[
Ein − (Ein.r)

r
r2

] (−e)2e−ikr

4πε0mc2r
. (1.99)

What is measured is the projection of the field on some polarization direction
given by the unit vector êsc, and êin is the unit vector which describes the incident
polarization. These vectors are chosen so that êin is parallel or antiparallel to E0 and
êsc normal to r (see Fig. 1.6):

Ein = (Ein .̂ein) êin and r.̂esc = 0. (1.100)



28 F. de Bergevin

Fig. 1.6 Directions of
incident and scattered
polarizations for (a) the
(s)–(s) or (σ )–(σ ) mode and
(b) the (p)–(p) or (π)–(π)
mode. The associated
amplitude polarization factor
is, respectively, 1 and cos2θ

To take account of polarizations the definition of the scattering length b in Eq.
(1.34) can be adapted as follows:

Esc .̂esc = −Ein .̂ein b(êsc, êin)
e−ikr

r
, (1.101)

then Eq. (1.99) yields
b(êsc, êin) = reêsc .̂ein, (1.102)

where re is the Lorentz classical radius of the electron with charge e and mass m
(re = e2/4πε0mc2 = 2.818×10−15 m). 3 The charge of the electron appears twice,
first in the movement and then for the emission of the radiation. Thus it appears as
a square and b does not depend on its sign. The scattered field is however opposite
to the incident one because of its relation with the current (by convention, a positive
value of b corresponds to such a sign reversal). If the ingoing polarization is normal
or parallel to the plane of scattering, the outgoing one has the same orientation.
These polarization modes are called (s) or (σ ) when perpendicular to the plane of
scattering and (p) or (π) when parallel. The polarization factor of the scattering
length is 1 in the former case and cos2θ (Fig. 1.6) in the latter. The process that we
have described is the so-called Thomson scattering.

1.4.3 Classical Description: Thomson Scattering by the Electrons
of an Atom, Rayleigh Scattering

The simple result of the Thomson scattering is exact, even for the bound electrons
of an atom, as far as the frequency of the X-rays is large compared to the charac-
teristic atomic frequencies. Nevertheless it is necessary to take into account both
the number of electrons and their position in the electronic cloud when calculating

3 The microscopic phenomena are often described in the Gauss system of units, in which re =
e2/mc2.
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the scattering from an atom. Every point of the electronic cloud is considered to
scatter independently from the others and the scattered amplitudes add coherently.
As in any interference calculation within the Born approximation (see Appendix
1.A to this chapter), justified whenever the scattering is weak, one obtains the total
scattering length by the Fourier transform of the electron density ρ(r)

b = reêsc .̂ein f (q), f (q) =
∫

ρ (r)eiq.rdV (r) (1.103)

(q = ksc −kin, Sect. 1.2.1). The quantity f (q) is called the atomic scattering factor
or the atomic form factor. The integral of ρ(r) over all r values must be equal to
the number of electrons in the atom:

f (0) = Z. (1.104)

There is no safe explanation to support the validity of this interference calcula-
tion. The justification comes from the alternative quantum calculation which gives
the same result.

The assumption that the frequency of the radiation is greater than the atomic fre-
quency may not be valid especially for the inner electronic shells. The model can be
improved by introducing the binding of the electron to the atom which is modelled
by a restoring force of stiffness κ and a damping coefficient γ . The damping is the
result of the radiation which is emitted by the electron, or of the energy transferred
to other electrons. The equation of motion Eq. (1.97), written for a single electron,
now becomes

mz̈+ γ ż+κz = (−e)E0eiωt . (1.105)

One looks for a solution of the kind (eiωt) which must satisfy

(−mω2 + iγω +mω2
0 )z = (−e)E0eiωt , (1.106)

where κ/m =ω2
0 . The current (−e)ż is then

j(r, t) = − iω(−e)2Ein(t)δ (r)
m
(
ω2 −ω2

0

)
− iγω

. (1.107)

As shown for the Thomson scattering above, this yields the following scattering
length:

b = re
ω2

ω2 −ω2
0 − iγω/m

êsc .̂ein. (1.108)

We shall now discuss how this expression is modified for different energies when
only one electron and one resonance are considered although this discussion could
have been more general. Actually it happens that ω , ω0 � γ/m and we just have
to compare ω with ω0. For high-energy X-rays and not too heavy atoms we have
ω > ω0 or even ω � ω0. Within these approximations Eq. (1.108) is just reduced
to Thomson’s expression. If on the other hand ω � ω0, then b becomes
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b = −re
ω2

ω2
0

êsc .̂ein. (1.109)

This is the so-called Rayleigh scattering, originally proposed to explain the scat-
tering of visible light produced by gases or small particles.

Three important features of this kind of scattering should be noticed:

– the polarization factor is the same as for the X-ray Thomson scattering;
– the scattered amplitude is proportional to the square of the frequency and the

cross-section to the fourth power;
– the sign of the scattering length is opposite to the one of the Thomson scattering.

The second point explains the blue colour of the sky (the highest frequency in the
visible spectrum), which from the first point may appear to be highly polarized. The
change of sign noted in the third point is important, since it corresponds to a sign
change of (n− 1). We shall comment this further when we will dispose of a more
quantitative theory (Sect. 1.4.7).

Again for X-rays, the scattering length Eq. (1.108) when summed over all the
atomic electrons becomes similar to the one of Thomson equation (1.103) but with
real and imaginary corrections:

b = re
(

f + f ′ + i f ′′
)

êsc .̂ein, (1.110)

where f is the Thomson scattering, whereas f ′ and f ′′,which are real, give the cor-
rection due to resonance. This correction is the so-called dispersion correction or
anomalous scattering. 4 One must take into account as in the pure Thomson scat-
tering the sum over all the electrons and their spatial distribution, but this discussion
is difficult and uncertain in the classical theory. We shall see that in the quantum
theory f ′ and f ′′ only slightly depend on q and have an energy dependence that we
shall discuss.

The classical model allows the calculation of the absorption as proposed in Ex-
ercise 1.4.1. In fact, one rather gets the total cross-section, including absorption and
scattering. This result is very realistic, since it agrees with the prediction of the
optical theorem discussed in Sect. 1.3.2.

To summarize, the classical model although simple describes most of the phe-
nomena and provides exact values for a certain number of physical quantities.
Nevertheless the values of the resonance frequencies and of the damping coeffi-
cients are not calculable within this framework and are left arbitrary. In addition, it
does not give much indications about the q dependence of the scattering factor at

4 Originally, it was in optics that the anomalous dispersion was introduced. In the vicinity of
resonances, the dispersion is opposite to the usual behaviour for which it is observed that the
index of refraction varies in the same sense as the energy. By extension one refers to “anomalous
scattering”. In French the two adjectives “anormale” and “anomale” are used. “Anormale” means
that it does not follow the rule and “anomale” means different from other individuals from the
same species. Since the normal behaviour of the dispersion does not constitute a law in itself but
only a usual behaviour, the second expression seems to be more appropriate. We acknowledge B.
Pardo for his comments.
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resonance but more important it does not describe the scattering when an electron
is ejected (Compton effect). Although it is possible to give classical description of
such an effect by considering the reaction on the scattering of a vibrating electron,
only the quantum approach is correct. Therefore the only coherent and completely
exact description is given by the quantum theory of the interaction between the ra-
diation and atoms.

Exercise 1.4.1. Calculate the total cross-section of an atom which exhibits only one
resonance characterized by ω0 and γ . We assume that the power taken by an atom
from the radiation is the same as the one dissipated by the damping force γu̇ (do
not forget that when complex numbers are used to describe the oscillation of real
variables, a quantity such as the energy is twice the one obtained with real num-
bers). The initial power of the radiation is given in Sect. 1.2.3. Check that the
optical theorem (Sect. 1.3.2) is satisfied. This gives a simplified view of the ra-
diation damping; see [12], Chap. 17, for a more complete treatment in classical
electrodynamics.

1.4.4 Quantum Description: A General Expression for Scattering
and Absorption

In this description we shall assume that the radiation is quantized as photons. The
scattering and absorption probabilities are then the squared modulus of the prob-
ability amplitudes. The amplitudes are transformed into scattering lengths and the
probabilities into the scattering cross-section. The amplitudes themselves are de-
rived from a perturbative calculation based on the interaction Hamiltonian between
the radiation and the electrons.

The expression of the Hamiltonian of one electron in the radiation field contains
the following term (we leave aside some other terms such as the potential of the
atom)

(1/2m)(p− eA)2 = p2/2m+
(
e2/2mc

)
A2 − (e/m)A.p. (1.111)

The p and A operators are the momentum of the electron and the vector potential
of the radiation. The first term of the right-hand side gives the kinetic energy of the
electron and the two others the energy of interaction. In this expression, the spin
has been neglected which is permitted when the energy of the radiation is weak
compared to the rest mass energy of the electron which is 511 keV. A perturbation
calculation made at the lowest order on the two interaction terms yields the scat-
tered amplitude. The perturbation terms are sketched in Fig. 1.7. The smallest order
of the perturbation is the first order for the term in A2 and the second order for the
term in A.p. These two terms give rise respectively to one and two terms in the scat-
tering length (with our convention for the sign of imaginaries, unusual in quantum
mechanics):
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Fig. 1.7 These diagrams are the symbol of the amplitudes in Eqs. (1.112) and (1.113). A point
represents a matrix element and a line the electron or the photon in the initial or final state of the
matrix element. For instance in (b) where two matrix elements are represented, the initial and final
states display one electron and one photon, and the intermediate state only one electron. In the
formulae as written in the text, the photonic states are not made explicit, but their contribution
(ê,k) is present through the (êe−ik.r) terms. For any of the four amplitudes, (a) bTh, (b) bdisp1, (c)
bdisp2 and (d) the absorption, the Hamiltonian term is indicated

b = re〈s|̂e∗sc e+iksc.r .̂ein e−ikin.r|i〉

− re∑
c

〈s|̂e∗sc.pe+iksc.r|c〉〈c|̂ein.pe−ikin.r|i〉
m(Ec −Ei − h̄ωin + iΓc/2)

− re∑
c

〈s|̂ein.pe−ikin.r|c〉〈c|̂e∗sc.pe+iksc.r|i〉
m(Ec −Ei + h̄ωsc)

= bT h +bdisp1 +bdisp2. (1.112)

Here |i〉 (or |s〉) stands for the initial (or after scattering) electron states. These two
states are identical for elastic scattering and different for inelastic scattering. r is the
position operator of the electron. In the last two rows a sum is made over all the
excited states |c〉 of this electron (bound or continuum states). Ec−Ei represents the
energy of excitation and h̄ω in (h̄ωsc) is the energy of the incident (scattered) photon.
In elastic scattering ωsc = ω in. Γc is the width of the excited level |c〉 and 2π h̄/Γc its
life time. It is also the quantum counterpart of the damping factor γ , Eq. (1.105), in
the classical theory. The polarization vectors may be complex so they can represent
elliptical polarization states.5 The following discussion will show that the first term
represents the Thomson scattering found in the classical theory. The two last terms,
bdisp1 and bdisp2, define the dispersive part of the scattering.

The absorption cross-section is also derived from the interaction Hamiltonian,
once again at the lowest order of perturbation [4], Sect. 44,

σabs (h̄ωin) =
2π h̄cre

m ∑
c

h̄ωinΓc

(Ec −Ei)2

∣∣〈c|̂ein.pe−ikinr|i〉
∣∣2

(Ec −Ei − h̄ωin)2 +Γ 2
c /4

. (1.113)

5 In most instances in this book, only linear polarizations are considered and no complex conju-
gate is indicated. In the case of anisotropic scattering, Sect. 1.5, the circular polarization may be
required.
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In this process the photon completely disappears. The A2 term in the Hamiltonian
does not contribute and therefore only the A.p term is used. Every term of the sum
corresponds to the excitation towards a |c〉 state. The numerator suggests that the
electric field transfers some momentum to the electron and changes the |i〉 level
into the |c〉 level. In a similar way, in Eq. (1.112), one can say that the scattering
bdisp1 is obtained by excitation |i〉 → |c〉, then deexcitation |c〉 → |s〉. This order
is reversed in bdisp2, since the |c〉 state, which is virtual, is destroyed before being
created (Fig. 1.7).

To calculate the scattering as well as the absorption, one generally uses the dipo-
lar approximation, that is to say one replaces the factors eik.r by one, supposing the
wavelength much bigger than the atomic dimensions. This approximation, which is
excellent in the visible spectrum, is still good for X-rays because the inner electronic
levels which are excited are usually very much localized. Under certain conditions,
however, this approximation is not sufficient and the next term in the expansion of
the exponential (ik.r, the quadrupolar term) must be included.

When the energy of a photon is sensibly larger than all the excitation thresholds
of the atom (h̄ω � Ec −Ei), only the first term in Eq. (1.112), which represents the
Thomson scattering, is significant. In the extreme case of light atom and very high
energies, the scattering cross-section given by this first term is even greater than the
absorption cross-section Eq. (1.113): see Sect. 1.4.6. We shall start the discussion of
the Thomson scattering bT h to show that it can be separated into elastic and inelastic
(Compton) scattering. Then we shall describe the absorption spectrum which comes
from Eq. (1.113). Finally we shall discuss the dispersive bdisp1 +bdisp2 scattering, in
relation with absorption.

1.4.5 Quantum Description: Elastic and Compton Scattering

For a free electron and in the classical Thomson scattering, the backward move of
the electron is ignored. Compton performed a kinematical calculation which took
into account the momentum and the energy carried by the radiation quantized as
photons. For an electron initially at rest, the conservation of these two quantities
implies that the photon releases an energy such that the wavelength after the scat-
tering process λsc becomes larger than the initial one λin, and satisfies the equation

λsc = λin +λc (1− cos2θ) λc = 2π h̄/mc = 0.002426 nm, (1.114)

where 2θ is the angle between the incident and scattered beams and λc is the Comp-
ton wavelength of the electron.

In the present calculation, we are doing non-relativistic approximations which
are not valid if the photon energy becomes close to the rest energy of the electron.
Neglected relativistic effects are the influence of the spin and a factor which dimin-
ishes the Compton scattering cross-section.

When the electron is bound to an atom two processes are possible: the radia-
tion may be elastically scattered with the conservation of the electron state (the
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momentum being transferred to the atom which is assumed to have an infinite mass)
or inelastically with the ejection of the electron. One must determine the respective
probabilities of these two processes. We start first with the case of an atom which
has only one electron.

Let us evaluate the elastic, then the total scattering. The inelastic scattering will
be obtained by subtraction. Keeping only bT h from Eq. (1.112) we have

b = reê∗
sc .̂ein fsi, fsi = 〈s|eiq.r|i〉, (1.115)

where q is equal to ksc−kin (Eq. (1.3)). For elastic scattering, |i〉 = |s〉. Let ψ(r)
and ρ(r) be the wave function and the electron density then

fsi = fii =
∫

ψ∗(r)ψ(r)eiq.rdV (r) =
∫

ρ(r)eiq.rdV (r). (1.116)

We have derived here more rigorously the form factor which we previously deter-
mined by the classical theory (for the atom having one electron). The calculation is
completed by the evaluation of the total scattering cross-section, elastic plus inelas-
tic. This total is obtained by summing the modulus square of the scattering factor
over all the final states of the electron,

∑
|s〉

∣∣〈s|eiq.r |i〉
∣∣2 =∑

|s〉
〈i|e−iq.r |s〉〈s|eiq.r |i〉 . (1.117)

Since the sum over the final states is made over all the possible states, these ones
form a complete set and satisfy the closure relation

∑
|s〉

|s〉〈s| = unit operator. (1.118)

The final states disappear from Eq. (1.117) which becomes equal to unity. The
inelastic cross-section is obtained by subtraction and finally we have

(dσ/dΩ)elas+inel = |reê∗
sc .̂ein|2 (1.119)

(dσ/dΩ)elas = |reê∗
sc .̂ein|2 | fii|2 (1.120)

(dσ/dΩ)inel = |reê∗
sc .̂ein|2

(
1−| fii|2

)
. (1.121)

This calculation prompts two remarks. We first observe that in the sum Eq.
(1.117), the terms which do not conserve the momentum seem to play no part: they
cancel the matrix element 〈s|eiq.r|i〉. However, these terms must be included in the
sum to enable the use of the closure relation Eq. (1.118). Next, some information
about the conditions in which this sum is performed should be given. To be correct
we must sum over all the final states of the radiation, with the scattering direction û
kept fixed (this is a result of the definition of the differential cross-section) and with
the energy conservation obeyed. Instead of Eq. (1.117), the exact expression is (Es

and Ei being the energies of the electron states)
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∑
|s〉

∫

ksc/|ksc|=û

∣∣〈s|eiq.r |i〉
∣∣2 δ (Es −Ei − h̄c |kin|+ h̄c |ksc|)dksc. (1.122)

Let us note that this expression imposes the two conditions used by Compton
which are the energy conservation as shown by the δ function and the conserva-
tion of momentum in the matrix element. Performing the integral over ksc one gets
back the sum Eq. (1.117) over the final states of the electron, with the condition
ksc/|ksc| = û. One can see that ksc being in the δ function depends on 〈s|, and con-
sequently q has also that dependence. For the consistency of the above discussion
we neglected this dependence otherwise the closure relation Eq. (1.118) could not
have been applied to Eq. (1.117). The approximation is very good but the small de-
pendence of |ksc| on the final state of the electron, which, through the momentum
conservation, is also a dependence on the electron initial momentum, can be used
to measure the momentum distribution inside the atom or inside the solid. Such an
application of Compton scattering will not be developed further in this book.

The inelastic scattering for which we have calculated the cross-section is fre-
quently considered as the Compton scattering. This is not completely correct since
the total scattering cross-section also includes the Raman scattering. In such a
case the final state 〈s| of the electron is not a free plane wave but a bound excited
state [17]. To be fully complete we must also consider another inelastic scattering
process, the so-called resonant Raman scattering. This process does not appear
in the above calculation, but rather in the development of the second term in Eq.
(1.112), bdisp1, when one assumes 〈s| �= 〈i|; it is obvious at energies close to an ex-
citation edge. It is thus more associated with absorption and fluorescence than with
Compton scattering. However, far from resonances, the dominating inelastic process
is usually the Compton scattering.

The calculation that we have just carried out has to be changed for an atom hav-
ing more than one electron. The electronic states are multi-electron states and each
interaction operator is replaced by the sum of operators acting each on one electron.
For an atom having two electrons,

|i〉 → (1/
√

2) |Ψ1(r1)Ψ2(r2)−Ψ1(r2)Ψ2(r1)〉 (1.123)

eiq.r → eiq.r1+eiq.r2 . (1.124)

Expression (1.123) is the Slater’s determinant which represents the antisymmet-
ric state with respect to the permutation of the electrons. The elastic scattering factor
becomes

f = 〈i|eiq.r1 + eiq.r2 |i〉 . (1.125)

With |i〉 given by Eq. (1.123) and using the orthogonality between Ψ1 and Ψ2,
this yields

f = f11 + f22 where f jl =
∫
Ψ ∗

j (r)Ψl(r)e
iq.rdV (r). (1.126)
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To obtain the total cross-section one must sum the amplitude squares over all
the final states as in Eq. (1.117). Although it is not necessary to know them, we
explicitly write them for more complete view

|s〉 = (1/
√

2) |Ψ1(r1)Ψ2(r2)−Ψ1(r2)Ψ2(r1)〉 (1.127)

|s〉 = (1/
√

2) |Ψx(r1)Ψ2(r2)−Ψx(r2)Ψ2(r1)〉 x �= 1,2 (1.128)

|s〉 = (1/
√

2) |Ψ1(r1)Ψx(r2)−Ψ1(r2)Ψx(r1)〉 x �= 1,2 (1.129)

|s〉 = (1/
√

2)
∣∣Ψx(r1)Ψy(r2)−Ψx(r2)Ψy(r1)

〉
x,y �= 1,2. (1.130)

The last state corresponds to a two-electron excitation and gives rise to a zero
amplitude, but once again, it must be included to use the closure relation. With this
latter, the total cross-section is proportional to

〈i|(e−iq.r1+e−iq.r2)(eiq.r1+eiq.r2) |i〉 . (1.131)

Substituting |i〉 by Eq. (1.123) and using the definition Eq. (1.126), this expres-
sion becomes

2+ f11 f ∗22 + f ∗11 f22 −| f12|2 −| f21|2 . (1.132)

It is easy to extend this calculation to any number of electrons Z. The elastic and
inelastic scattering cross-sections become

(dσ/dΩ)elas+inel =(reê∗
sc .̂ein)

2 (1.133)(
Z + ∑

1≤ j �=l≤Z

f ∗j j fll − ∑
1≤ j �=l≤Z

∣∣ f jl

∣∣2
)

(dσ/dΩ)elas =(reê∗
sc .̂ein)

2

∣∣∣∣∣ ∑1≤ j≤Z

f j j

∣∣∣∣∣
2

(1.134)

(dσ/dΩ)inel =(reê∗
sc .̂ein)

2 (1.135)(
Z − ∑

1≤ j≤Z

∣∣ f j j

∣∣2 − ∑
1≤ j �=l≤Z

∣∣ f jl

∣∣2
)

.

One can see that the elastic scattering factor is written as the Fourier transform
of the electron density (which is the sum of the densities of all the wave functions),
c.f. Eq. (1.116). When the terms | f jl |2 are ignored, the case of the many-electrons
atom is naively deduced from the one having one electron: on one hand the elastic
scattering lengths and on the other hand the inelastic cross-sections of all the elec-
trons are added. The | f jl |2 terms constitute in fact a modest correction. They are
called the exchange terms since they come from matrix elements in which electrons
have been interchanged as for instance in the case of two electrons,

〈Ψ1(r1)Ψ2(r2)| . . .. |Ψ1(r2)Ψ2(r1)〉 . (1.136)
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(a) (b)

Fig. 1.8 Schematic representation of elastic, inelastic (Compton) and total cross-sections as a func-
tion of |q|, (a) for an atom having one electron, (b) for an atom having any number of electrons.
The unit of cross-section is r2

e

They are subtracted because electrons are fermions.
The general evolution of the cross-sections is presented as a function of |q| in

Fig. 1.8.
To end this section we now discuss how easily the Compton scattering is ob-

served. It is suitable to rewrite the change of wavelength, Eq. (1.114), in the follow-
ing way as a function of the scattering vector transfer q

|kin|− |ksc| = (λc/4π)q2 +(higher order in q). (1.137)

A radiation of wavelength λc has an energy of 511 keV, i.e. the mass energy
of the electron at rest. For a radiation of energy 10 keV scattered at an angle
of say one degree (typical of a grazing incidence surface experiment), the wave-
length change is very weak since it depends on the square of q. Things are dif-
ferent in the range of medium and large values of scattering angles where this
change is easily measurable, for instance by using an analyser crystal. At ener-
gies greater than about 100 keV and medium angles of scattering this change is
appreciable.

The Compton cross-section varies in a similar way as shown in Eqs. (1.121) and
(1.135) and in Fig. 1.8. For radiation of 10 keV, it is negligible at small angles, but
this is not true at wider angles. At higher energies, some tens of keV, the Compton
scattering achieves its highest value already at medium angles. At those energies and
for light elements it dominates the other processes. Indeed its proportion is larger
for small Z scatterers. Table 1.1 gives some values of the total scattering cross-
sections (integrated over the whole angular space);6 the elastic cross-section is con-
densed in the forward direction in a cone which becomes narrower when the energy
increases.

6 More cross-section values can be found in the International Tables for X-ray Crystallography
[11], vols. III and IV.
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Table 1.1 Atomic cross-sections of some elements as a function of energy (scattering cross-
sections are integrated over a solid angle 4π). In each case are displayed the Compton scatter-
ing cross-section/the elastic scattering cross-section/the photoelectric absorption cross-section, in
barns (i.e. 10−28 m2). The irregularities in the evolution of the absorption are due to the pres-
ence of an edge close to the chosen energy. After [20]; see also the International Tables for X-ray
Crystallography [11]

Element 5 keV 10 keV 30 keV 100 keV
(Z)

C(6) 2.1/5.8/371 2.7/3.2/39 3.3/0.67/1.1 2.9/0.07/0.02
Cu(29) 4.65/307/19500 8.2/153/22600 13/35.6/1090 13.3/4.5/30
Ag(47) 6.5/820/132000 11.5/459/20600 19/117/6420 20.9/15.8/224
Au(79) 8.22/2630/212000 15.3/1580/36100 27.8/432/8420 33.2/60.8/1590

1.4.6 Resonances: Absorption, Photoelectric Effect

In the interaction process, part of the radiation disappears instead of being scattered.
As shown in Eq. (1.113), the energy is transferred to an electron which is excited to
an empty upper state |c〉. Most frequently it is expelled from the atom; this is the so-
called photoelectric absorption. After a delay of about h/Γc, the atom de-excites,
according to various processes which can be radiative or not. The most obvious
process in a diffraction or scattering experiment is the emission of fluorescence
radiation. It corresponds to the fall of a second electron of the atom into the level
vacated by the first one. Its energy is necessarily lower than the energy of excitation.
The fluorescence yield, i.e. the fraction of excited atoms which are de-excited in
this way, depends on the elements and on the levels; for the K level of copper, the
fluorescence yield is 0.5.

Let us note that for a given excited level |c〉, the cross-section varies with the
energy and exhibits a Lorentzian behaviour with a FWHM Γc. In the X-ray domain,
Γc lies between about a bit less than 0.5 eV and a bit more than 5 eV.

The important transitions for X-rays are those of the inner electrons which belong
to the K, L, . . . shells. The transitions may bring the excited electron towards the
continuum of the free states; their spectral signature is then characterized by an
absorption edge, located at the excitation energy, since any levels above the edge
are equally accessible (Fig. 1.9). They can also arise towards the first free bound
levels. These states may have a large enough density to give rise to one (or several)
well-defined absorption peaks superimposed to the edge, the so-called white line(s).
The white line(s) spectrum is not an exact image of the density of free states of
the atom, molecules or condensed system. The observed spectrum corresponds to a
system which has lost a core electron and is deformed by the electric charge of the
core hole. Peaks can paradoxically then appear below the edge. In condensed matter,
the absorption above the edge exhibits oscillations, the so-called EXAFS (extended
X-ray absorption fine structure), which are interpreted as arising from interference
effects in the wave function of the ejected electron. These interference are due to the
scattering of the ejected electron by the neighbouring atoms.
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Fig. 1.9 Schematics of an
absorption edge, with a white
line (Γ = 2 eV). The solid
line shows the variations of
both the absorption
cross-section and of the
imaginary part of dispersion
correction (see next section)
and the dotted line, the real
part of this correction in
arbitrary units. The origin of
energy, E0, is taken at the
edge. This schematic figure is
not intended to show the real
details of these curves in the
vicinity and above the edge.
On this short interval of
energy, the E−3 decay has
been neglected

In short, one can say that the absorption varies as E−3 and as Z4. This does not
take into account the discontinuities at the edges. The K edges produce a discon-
tinuity of the absorption by a factor of about 5–10. Figure 1.10 shows for copper
a discontinuity of factor 7 at the K edge and of about the same amount for the
three L edges together; one can see that the decay in between the edges is slightly
slower than E−3. Table 1.1 gives some values of the absorption and scattering cross-
sections.

In practice one frequently needs the absorption coefficient μ rather than the
cross-section; this coefficient is defined by the fact that the transmission through a
thickness t is given by e−μt . It is also equal to 4πβ/λ (β the imaginary part of the

Fig. 1.10 Absorption
cross-sections for the atom of
copper in barns (10−22 mm2),
after Cromer–Libermann
(above 10 keV) and Henke
(below 10 keV).The slope of
the E−3 power law is
presented by a dotted line
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refractive index). For a homogeneous material made of a single element, μ depends
on the cross-section σ and on the atomic volume V through

μ = σ/V. (1.138)

To calculate the absorption coefficient of a material, it is sometimes useful to intro-
duce the mass absorption coefficient, given by μ/ρ (ρ is the density) and commonly
tabulated [11]. This coefficient is characteristic of the element and independent of
its density. If A is the molar mass and N the Avogadro’s number

μ/ρ = Nσ/A. (1.139)

The absorption coefficient of a material composed of several elements i, each of
them present with the partial density ρi, is simply given by

μ =∑
i
ρi (μ/ρ)i . (1.140)

1.4.7 Resonances: Dispersion and Anomalous Scattering

We return now to the case of the elastic scattering in which we had neglected the
dispersive part bdisp1 + bdisp2 in Eq. (1.112). Actually we shall take into account
only bdisp1, which represents the second line of this expression. For a term of the
sum over c to be appreciable it is necessary for its denominator to be small which
never occurs in bdisp2.

We reproduce here the formula Eq. (1.110), which gives the separated Thomson
and dispersive contributions:

b = re( f + f ′ + i f ′′)ê∗sc .̂ein. (1.141)

This separation could appear artificial in the classical expression for b, Eq. (1.108),
but arises perfectly naturally in the quantum mechanical one, Eq. (1.112). We have
assumed that the polarization contributes in bdisp1 that is f ′ + i f ′′, through the same
polarization factor as in the Thomson term. This is not true in every case, as dis-
cussed in Sect. 1.5.

Each of the terms |c〉 of the sum in Eq. (1.112), from which the dispersion correc-
tion f ′ + i f ′′ arises, corresponds to an excitation energy (or commonly a resonance)
Ec −Ei. The associated correction is

re( f ′c + i f ′′c ) ∝ 1
x− i

=
x

1+ x2 +
i

1+ x2 (1.142)

with x = [h̄ω− (Ec −Ei)]/(Γc/2) .

The real and imaginary parts are presented in Fig. 1.11.
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Fig. 1.11 Schematic
representation of the
dispersion correction for a
single resonance at energy
Ec −Ei = E0. f ′ and f ′′ are
given by b = re( f + f ′ + i f ′′)

Equations (1.112) and (1.113) show a correspondence between the dispersion
correction in terms of the scattering length and the absorption cross-section. Exactly
at the resonance energy, we check the optical theorem (Im is the imaginary part),

σabs = 2λ I m[b(q = 0)], (1.143)

discussed in Sect. 1.3.2.7

The distribution of the resonance energies Ec −Ei, with the edges as main fea-
tures, has been previously discussed about the absorption. Figure 1.9 shows the
comparison between the variations of the absorption cross-section close to an edge
and the variations of the anomalous scattering.

Let us now look how the real part of the scattering factor, f + f ′, varies when the
energy changes from X-rays to near infrared, that is to say from several tenths of
keV to 1 eV. The highest energies are far above the edges of most elements and the
Thomson scattering factor f is dominant. For lower energies, a negative contribution
f ′ appears at every edge and is more important below the edge than above because
of the white lines. Low-energy edges produce the most intense dispersion effects.
Going to low energies, some edges for which f + f ′ is negative are observed, and
then a transition occurs about 10–100 eV where f + f ′ definitively changes its sign.
In this range, the very intense absorption lines enormously reduce the propagation
of light in matter, which makes it called vacuum ultraviolet radiation, because it
propagates only in vacuum. When the sign of f + f ′, which is also the sign of b,

7 We obtain here an expression for the absorption cross-section, while the optical theorem yields
the same expression for the total cross-section. The error comes from our calculation of the scat-
tering length, made in the first-order Born approximation. The next order is required to obtain an
imaginary part which expresses also the intensity loss due to scattering (see the end of Appendix
1.A to this chapter). The calculation at that order is made intricate because of some difficulties
of the quantum theory of radiation (the divergences of the field theory). That error is negligible
inasmuch as the absorption is the largest part of the cross-section, which is true up to moderate
energies, but not at the highest.
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changes from positive to negative, the refractive index n goes from below to above
the unit value (the link between the scattering and the index is discussed in Sect. 1.3).

1.4.8 Resonances: Dispersion Relations

The absorption cross-section is easily obtained directly by experiments, as for exam-
ple, the measurement of the transmission through a known thickness of a material.
The imaginary part of the scattering length b is found at the same time. The real
part of b, however, is more difficult to obtain accurately. Among the different meth-
ods, not only diffraction experiments but also reflectivity measurements have been
used to extract the scattering length [19]. Having recourse to such methods can be
avoided because it is possible to rebuild the real part of b if the imaginary part is
known over the entire spectral range. Conversely the imaginary part can be deduced
from the real one. This is possible through the so-called dispersion or Kramers–
Kronig relations.

Before showing the theory we give a summary of the practical procedures for
retrieving the spectrum of the real part of the dispersion f ′, when the absorption
spectrum has been measured about an edge:

(1) Convert the measured absorption coefficient μ into the atomic cross-section
σabs, then apply the optical theorem to obtain the imaginary dispersion correc-
tion f ′′. In general the material is composed of several elements, whose atomic
cross-sections should be separated out from the global μ .

(2) The aim is to apply the dispersion relation Eq. (1.148) shown below, which
needs an integration over a wide range of energy. Instead the absorption is usu-
ally measured over a narrow range only. The spectrum of f ′′ should therefore
extended with tabulated values. Any step at the junctions should be reduced as
far as possible, for example by some correction to the normalization.

(3) Apply the Kramers–Kronig integral Eq. (1.148) to f ′′ in order to obtain f + f ′.
Some care is needed with the algorithm of integration for getting a smooth
principal part despite the divergence.

(4) Since the range of integration is not infinite, the result in f + f ′ is given up to
some additive constant, which is retrieved by comparison with tabulated values.

We now show how the dispersion relations are obtained from first principles.
Let us start from the classical model, namely the expression Eq. (1.108) for the

scattering length,

b = re
ω2

ω2 −ω2
0 − iγω/m

êsc .̂ein. (1.144)

The general case can be represented by summing many expressions of this kind
corresponding to each different resonance ω0 with a different damping constant γ .
Since this model is defined by two independent functions of ω0, a distribution of the
resonance densities and a distribution of the damping constants, one could expect the
real and imaginary parts of the scattering length to also constitute two independent
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functions. However, some constraint is imposed because the damping constants γ
are necessarily positive. Although this constraint seems to be weak, it is remarkable
that it is sufficient to lead to a relation between the real and imaginary parts of b.
We shall see that such a relation does not come from a particular scattering model
such as Eq. (1.144); it is more general and applies to the response of any system
to an excitation. For the proof, we return to the model with only one resonance Eq.
(1.144) but this could be easily extended to the general case.

To prove the existence of a relation between the real and imaginary parts of b,
it is necessary to make use of a mathematical trick, the analytical continuation of
function b in the complex plane. The trick allows one to express some basic prop-
erties of complex functions. Indeed b is a complex function of the real variable ω .
If such a function can be represented by a series expansion which converges for any
real value of the variable, then it can also be defined for complex values of this vari-
able. Hence, the series still converges in a domain of the complex plane. Inside this
domain, the function that we shall call here φ(z) is analytic and follows Cauchy’s
theorem. This theorem ensures that for any closed contour C inside the domain of
analyticity and for any point z inside the contour,

φ(z) =
1

2πi

∫
C

φ(z′)
z′ − z

dz′ (z, z′ complex, (1.145)

C taken in the positive sense).

For this relation to be useful the integral must be taken only over the region where
the function is known, i.e. the real axis. Let C be the real axis plus a curve which
continuously approaches infinity in the lower half-plane for instance a semi-circle
with a radius approaching infinity (Fig. 1.12, drawn with the variable ω replacing
z). We obtain the desired relation provided that (a) the function is analytic in all this
half-plane and (b) it approaches zero when the modulus of the variable approaches
infinity so that the integral taken over the semi-circle is zero. Under such condi-
tions, Eq. (1.145) is expressed as an integral over z′ real. These conditions, however,
impose z to be inside the contour and therefore to have an imaginary part strictly
negative though one would wish to have only real quantities. Nevertheless z can be
on the real axis, but then the expression on the left-hand side is divided by two since

Fig. 1.12 Integration over
a contour C defined by the
real axis and a semi-circle
having its radius approaching
infinity. If a function does
not have any pole inside
the contour it satisfies Eq.
(1.145) (ω has the same
role as the z variable). The
poles of the scattering length
b(ω), Eq. (1.144), have been
represented. They are outside
the contour

C

ω Imaginary

−ωr + iγ / 2m ωr + i γ / 2m

ω Real
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z is at the border (a rigorous proof is available). Finally if P represents the principal
part of the integral at the singularity x′ = x, then

φ(x) = − 1
πi

P
∫ +∞

−∞

φ(x′)
x′ − x

dx′ (x,x′ real). (1.146)

The real and imaginary parts of this relation can be written separately. This shows
that if φ(x) satisfies the above conditions (a) and (b), i.e. it is analytic in the lower
half-plane and tends to zero when |x| goes to infinity, some integral relations exist
on the real domain of x between the imaginary and real parts of φ .

Let us apply this trick to the scattering length written in Eq. (1.144), which is
a polynomial fraction of the variable ω . It is analytic over any domain which does
not contain its poles, i.e. the zeros of its denominator. These zeros, indicated in
Fig. 1.12, are iγ/2±ωr (ωr depends on ω0 and γ). The scattering length b satisfies
condition (a) because the damping constant γ which is necessarily positive yields
poles which are in the upper half-plane. To satisfy condition (b) one could divide b
by ω . The relations would then be valid in b(ω)/ω (after replacing φ(x)), but it is
better to divide by ω2 since we then get more general relations as we are going to
comment. Let us notice that the division of b by ω2 does not add any pole and does
not change the domain of analyticity.

A relation such as Eq. (1.146) is not yet completely convenient because the phys-
ical domain does not extend over the entire real axis but only over its positive side
(the variable is the radiation frequency). Integrating from 0 to ∞ is, however, suffi-
cient since b verifies

b(−ω) = b∗(ω). (1.147)

We should look if such a symmetry of the scattering length is attached to a particular
model, or more general. A Fourier transform which transforms the above expression
from ω to time space shows that this is simply the expression of a symmetry by
time reversal. It is thus a general property which has, however, a limitation: this
symmetry does not hold for magnetic moments so the following expressions do not
hold for magnetic scattering. In that case, Eq. (1.147) is written with a minus sign
and different relations are obtained.8 With this equality and a bit of algebra, one can
rewrite the real and imaginary parts of Eq. (1.146). Replacing φ by b(ω)/ω2 and
x,x′ by ω,ω ′ yields

Re[b(ω)/ω2] = − 2
π

P
∫ ∞

0

ω ′I m[b(ω ′)/ω ′2]
ω ′2 −ω2 dω ′ (1.148)

I m[b(ω)/ω2] =
2ω
π

P
∫ ∞

0

Re[b(ω ′)/ω ′2]
ω ′2 −ω2 dω ′. (1.149)

These relations are the so-called Kramers and Kronig or dispersion relations for
the scattering length.

8 In practice the same dispersion relations can be written for magnetic and non-magnetic scattering
lengths provided that the magnetic part is affected by a factor i.
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In this model, the proof we have given assumes all the poles of b(ω)/ω2 to be
above the real axis. We have inferred this from the positive value of the damping
constant but it can also be inferred from the principle of causality of very general
extent. To understand the equivalence of these two hypotheses, positive value of
the damping constant and principle of causality, it is worth returning back to the
resolution of the differential equation (1.105), which describes the movement of the
electron in the incident field. We rewrite this equation with noting the displacement
u instead of z to avoid any confusion with the variable z in the present section; for
simplicity, u will be a scalar. The properties of u that we are going to discuss now
are also the ones of the radiated field which is proportional to u:

mü+ γ u̇+mω2
0 u = (−e)E0 eiωt . (1.150)

A systematic method to solve such a differential equation with a right-hand side f (t)
consists in using the Green function of the equation. This method has been described
in Sect. 1.2.5. Let us recall that a solution of this kind of equation is given by

u(t) = u0(t)+
∫ +∞

−∞
G(t − t ′) f (t ′)dt ′

=
∫ +∞

−∞
G(t − t ′) f (t ′)dt ′, (1.151)

where the Green function, G(t), is the solution of the equation with δ (t) instead of
f (t) in the right-hand side; the solution u0(t) of the homogeneous equation (with-
out the right-hand side) becomes nearly zero after a certain amount of time due to
damping. Writing the electron displacement u(t) through Eq. (1.151) allows the fol-
lowing physical interpretation to be given. The displacement u at a given time t is the
result by linear superposition of the excitation action f at any time t ′ ; since the laws
are invariant by time translation, the coefficient G only depends on the difference
t−t ′. G(t) is obtained through its Fourier transform g(ω). We replace the right-hand
side of Eq. (1.150) by δ (t), whose Fourier transform is one. The derivatives in the
left-hand side transform into powers of ω , so we get

g(ω) = − 1
m

1

ω2 −ω2
0 − iγω/m

, (1.152)

which yields G(t)

G(t) = − 1
2πm

∫ +∞

−∞

eiωt

ω2 −ω2
0 − iγω/m

dω. (1.153)

With Eqs. (1.151) and (1.153) we could find the motion such as given by Eq. (1.107),
solution of Eq. (1.150), but this is not our purpose; we focus only on G(t). To calcu-
late this integral, it is possible to integrate along a closed path in the complex plane:
if the function does not have any poles inside the path of integration, its integral
over it is zero. The poles of g(ω) are those of the scattering length that we have just
discussed; the integral taken over the path of integration C (Fig. 1.12) is then zero.
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For t < 0 the integral over half the circle is also zero since the numerator is bounded
and the integral of dω /|ω|2 goes to zero when |ω| goes to infinite. Then G(t) = 0
for t < 0. It is important to mention that the proof depends on the position of the
poles of g(ω) and on the positive sign of the damping constant. The condition G(t)
equal to zero at negative times constitutes the expression of a causality principle,
according to which an excitation given at a certain instant cannot produce any ef-
fect before this instant. Quite important is the reciprocal, which is true though we
do not show the proof here. Because of the principle of causality, G(t)= 0 for t < 0,
then it can be shown that g(ω) does not have any pole below the real axis and the
Kramers–Kronig relations apply to g(ω) and u(ω). Making the dispersion relations
to depend on this principle gives them a very general extent, beyond the cases where
it is possible to clearly define some damping.

In our world most phenomena are irreversible and time is therefore asymmet-
ric. The positive character of the damping and the principle of causality as dis-
cussed here are two manifestations of the irreversibility. We showed that one or the
other yields the dispersion relations Eqs. (1.148) and (1.149). But this raises a ques-
tion. Microscopic laws in physics are mainly symmetric with respect to time rever-
sal, while irreversibility is manifest in macroscopic systems with many parameters,
when they are drawn out of equilibrium. The scattering of one single photon by one
single atom looks like a microscopic elementary phenomenon. It is worth to see how
and why it is irreversible. A plane wave travelling in vacuum, such as the incident
wave before scattering, constitutes a very unlikely state that can be considered as out
of equilibrium. The equilibrium state of a radiation comprises instead many random
waves in thermal equilibrium with neighbouring objects. The scattering of a plane
wave by an atom is irreversible, a bit like the dilution of an alcohol droplet in a glass
of water. The final state is the spherical wave moving away from the atom, super-
imposed to the incident wave which has a reduced amplitude. Therefore the unique
incident plane wave has been changed into a superposition of plane waves travel-
ling in all the directions. In addition, any of the plane components of the diverging
wave can be associated to a particular movement of the atom since the momen-
tum must be conserved. This is reminiscent of the dilution effect. If the scattering
were reversible, one could produce the reverse operation: starting from a spherical
wave converging towards an atom and from a plane wave, one could see the plane
wave coming out with an increased amplitude. This would be difficult to realize and
may be impossible. For this one should correlate the different plane components of
the converging wave to some particular movements of the atom. The difficulty is
similar to the one which would be faced in an attempt to invert the dilution of the
alcohol droplet by imposing on the molecules of the water–alcohol mixture some
initial conditions such as the mixture demixing into two phases after a few instants.
When absorption and fluorescence occur the process is still more irreversible since
multiple photons can be re-emitted for only one absorbed. As a matter of fact it
appears that absorption and resonant scattering contribute much more to the disper-
sion than pure elastic scattering. From the above arguments one can be convinced
that even though the scattering looks like an elementary phenomenon, it is actually
something irreversible, which has to obey the dispersion relations associated with
irreversibility.
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1.5 X-Rays: Anisotropic Scattering

1.5.1 Introduction

In this section we present briefly some other types of X-ray scattering, observed es-
sentially in crystalline materials. These are the magnetic scattering, which depends
on the magnetic moment of the atom, and the Templeton anisotropic scattering,
which depends on the neighbourhood of the atom in the crystal. A common feature
to these two scattering effects is their anisotropy. The usual scattering amplitude
which is described in the previous sections can be said isotropic because it depends
on the incident and scattered polarization directions through a unique factor, êsc .̂ein,
independent of the orientation of the scattering object. The atomic scattering ampli-
tudes which we discuss now is said to be anisotropic because they depend on the
orientation of the characteristic axes of the atom with respect to the incident and
scattered polarizations. The characteristic axes may represent the magnetic moment
direction of the atom if it exists or the directions of the crystal field which eventually
perturbs the state of that atom.

These scattering effects can take their origin from two different mechanisms.
The first one is the interaction between the electromagnetic radiation and the spin
of the electron. It produces some scattering, the so-called non-resonant magnetic
scattering. This one is essentially independent of the binding of the electron in the
atom, as is the Thomson scattering. A second type of anisotropic scattering arises as
a part of the anomalous or resonant scattering, presented earlier in Sect. 1.4.7. The
atomic states | i〉 and | c〉 in Eq. (1.112), that is the initial state and the one in which
the electron is promoted, may be anisotropic. If that anisotropy originates from a
magnetic moment, the resulting scattering is called resonant magnetic scattering.
If the anisotropy is some asphericity of the atom kept oriented by the particular
symmetry of the material, it is the Templeton anisotropic scattering.

X-ray magnetic scattering is a useful complement to neutron scattering. It can be
used with some elements whose common isotopes strongly absorb thermal neutrons.
The very good resolution (in all respects, position, angle and wavelength) of X-ray
beams is an advantage for some studies. Since X-ray scattering depends on some
characters of the magnetic moment in a way different from neutrons, it may raise
some ambiguities left by neutron scattering experiments. One of these ambiguities
is the ratio of the orbital to spin moment of the atom, because they contribute to
neutron scattering exactly in the same way and cannot be discriminated from each
other. X-ray amplitudes given by spin and orbital moment depend differently on
the geometry of the experiment and they can be separated out. The resonant X-
ray magnetic scattering is element dependent and eventually site dependent, which
may give some useful information. It is also a spectroscopic method which probes
the electronic state of the atom. The availability of small and brilliant X-ray beams
compensates for the smallness of magnetic amplitudes in the study of thin films
and multilayers. When the magnetic element has a very intense resonant magnetic
scattering, even a single atomic layer can be probed.
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Applications of Templeton anisotropic scattering have been developed during
recent years as a valuable tool for exploring the electronic states of atoms in crystals,
inconnected with the specific symmetry of their environment.

In the present section we give a short description of the non-resonant magnetic
scattering, the resonant magnetic scattering and the Templeton anisotropic scatter-
ing. We also discuss the anisotropy of the optical index. The case of the magnetic
neutron scattering is described in the Chap. 5 of this book.

1.5.2 Non-resonant Magnetic Scattering

Similarly to the Thomson scattering, the non-resonant magnetic scattering can be
found either in the classical or quantum theory. The quantum calculation can be
found in [5]. The spin of the electron is associated with a magnetic moment which,
in a classical description, interacts with the magnetic component of the radiation.
Figure 1.13 shows schematically how the interaction between the electromagnetic
field and the electron, comprised of an electric charge and a magnetic moment,
can produce a magnetic-dependent scattering. Having some interplay between spin
and motion in space, and having some magnetic properties attached to an electri-
cally charged particle are relativistic effects. That relativistic character introduces
the scale factor

|h̄q|/2πmc = 2(λc/λ )sinθ (1.154)

between the magnetic and Thomson scattering amplitudes of an electron. In a
diffraction experiment that scale factor is typically of the order of 10−2. Since only
unpaired electrons, which are at most one- or two-tenths of all electrons of a mag-
netized atom, contribute to the magnetic scattering, the magnetic amplitude is in
favourable cases 10−3 – 10−4 of the Thomson amplitude. The intensity of magnetic
Bragg peaks of antiferromagnets is then affected by a factor of the order of 10−7.
The orbital moment contributes to the elastic scattering as well as the spin moment
and with the same order of magnitude, but with a different dependence on wave vec-
tors and polarizations. We write below the scattering length of an electron of spin S
and orbital moment L

bmag = −ire (λc/λ )
[(

ê∗sc.TS .̂ein

)
.S+

(
ê∗sc.TL .̂ein

)
.L
]
. (1.155)

The tensors TS, TL simply help to write these bilinear functions of the polarizations.
Their elements are vectors. In their expression below, 2θ is the angle between k̂in

and k̂sc:

TS =
(s) (p)

(s)
(p)

(
k̂sc × k̂in 2k̂sc sin2 θ

−2k̂in sin2 θ k̂sc × k̂in

)
(1.156)
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Fig. 1.13 The electron can
scatter the electromagnetic
radiation through a variety of
processes. In each of them,
the incident field moves the
electron itself or its spin
through a driving force at left.
The back and forth motion
is indicated by a pair of
thin opposite arrows. In this
motion, the electron reradiates
through a mode indicated at
right. The first process is
the well-known Thomson
scattering. Processes 2–4
describe the scattering by the
spin, drawn as a double arrow.
The process in the fifth line
is a correction to Thomson
scattering when the electron
has a translation motion,
indicated by the momentum p.
When integrated over the orbit
of the electron in the atom, it
gives rise to a scattering by
the orbital moment

TL =

(s) (p)

(s)
(p)

⎛
⎝ 0

(
k̂sc + k̂in

)
sin2 θ

−
(

k̂sc + k̂in

)
sin2 θ 2k̂sc × k̂in sin2 θ

⎞
⎠ . (1.157)

Remember that we use for i a sign opposite to the one used in quantum theory in the
frame of which these equations are usually written.

Magnetic Compton scattering is also present but results only from the spin. In
Compton scattering h̄q/2πmc can approach 1 so that the cross-section in magnetic
Compton scattering can be significantly larger than in the elastic channel.
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1.5.3 Resonant Magnetic Scattering

As explained in Sect. 1.4.4 the resonant, or dispersive, part of the scattering is based
on the virtual excitation of an electron from a core level to an empty state, which can
be just above the Fermi level. In the subsequent discussion in Sect. 1.4.7, we have
assumed that the polarization factor was the same as for Thomson scattering, êsc .̂ein.
This assumption in fact may be wrong. Let us write the numerator of a particular
term in bdisp1, Eq. (1.112), while making the dipolar approximation (the exponen-
tials are reduced to 1)

〈s|̂e∗sc.p|c〉〈c|̂ein.p|i〉 = ê∗sc.T res .̂ein. (1.158)

Again we express this bilinear function of ê∗sc, êin with a tensor T res. Instead of writ-
ing this tensor with the (s) and (p) polarizations as a basis, we may use a reference
frame (x,y,z) attached to the medium, generally a crystal:

T res =

(x) (y) (z)
(x)
(y)
(z)

⎛
⎝ a1 b3 + ic3 b2 + ic2

b3 − ic3 a2 b1 + ic1

b2 − ic2 b1 − ic1 a3

⎞
⎠ . (1.159)

With ai, bi, ci being nine real coefficients, this is the most general tensor in Eq.
(1.158). The actual structure of that tensor is determined by the symmetry of the
scattering atom. The spherical symmetry is frequently a good approximation, though
never completely exact in a crystal; then T res reduces to the unit matrix [21] and we
recover the usual factor ê∗sc .̂ein.

A case of lowering of the symmetry is the presence of a magnetic moment. We
may observe that a time inversion, which should not change the scattering ampli-
tude, exchanges the incident and scattering beams and reverses the magnetization.
This shows that the antisymmetrical part of T res, that is the icis, is of odd order in
the magnetization. That part has the form

∝ i(ê∗sc × êin) .̂z, (1.160)

where ẑ is just the direction of magnetization, at least in the simplest cases.
These symmetry arguments should be completed by an explicit discussion of

the physical process. The mechanism is described in [10] and shortly explained in
Fig. 1.14 and caption. In the absence of any crystal field,

ê∗sc.T res .̂ein ∝ ê∗sc .̂ein (F11 +F1−1)+ i (̂e∗sc × êin) .̂z(F11 −F1−1)

+(ê∗sc .̂z)(êin .̂z)(2F10 −F11 −F1−1) , (1.161)

where F1−1, F10 and F11 contain some transition probabilities. These transitions are
described by two indices, the first one standing for the change in the orbital moment
ΔL (1 in the dipolar term) and the second one for ΔLz. The first term is the isotropic
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Fig. 1.14 Mechanism of the resonant magnetic scattering in the case of the LIII resonance of a third
row transition element, such as the platinum. Due to the magnetic moment the resonance occurs
preferentially in the spin down (S = −1/2) half valence band, on the right. Because of the strong
spin–orbit coupling in the core shell 2p, the 2p3/2 level is completely separated out from the 2p1/2
and contributes alone to the resonance. Therefore the (S = −1/2) state involved in the resonance
is coupled with a rather defined value of the ẑ component (ẑ the direction of magnetization) of the
orbital moment in the initial state of the electron. For a given polarisation of the radiation, this
makes the amplitude to depend on the atom magnetization direction, here the up direction

anomalous scattering, discussed in Sect. 1.4.7. The second term is the just discussed
antisymmetrical part. The third one depends on the axis along which the magnetiza-
tion is lying, but not on its sign; it is responsible for the magnetic linear dichroism.
One should not forget that the above expression is to be multiplied by a resonance
function of the energy showed in Eq. (1.142) and Fig. 1.11.

The spin–orbit coupling is a key feature of this mechanism. In the example dis-
played in Fig. 1.14, the spin–orbit coupling interaction is very large in the core state,
but in some cases it may be present only in the excited state. In addition to the dipolar
term written in the above formula, a quadrupolar one also exists. Though smaller, it
cannot be neglected if it corresponds to a transition to a strongly magnetized atomic
shell such as the 3d shell of transition elements or 4 f shell of lanthanides. It shows
a quadrilinear dependence on ê∗sc, êin, k̂sc, k̂in.

The order of magnitude of the resonant magnetic scattering may vary on a wide
range. The K resonances, accessible for example in the 3d transition elements, have
amplitudes which are comparable to the non-resonant. Indeed the K shell has no
orbital moment so that the effect relies on the spin–orbit coupling in the valence
shell, which is much less efficient. Furthermore the dipolar transition occurs to a
weakly magnetized p valence shell, while the strongly magnetized d shell can give
only a quadrupolar transition. The latter drawback limits also the LII,III resonances
of lanthanides, but then the L shell is completely split by the spin–orbit interaction.
In that case the amplitude is typically ten times larger than the non-resonant. The
LII,III resonances of transition elements are favourable in all respects and enhance
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the amplitude by several orders of magnitude compared to non-resonant. In the case
of 3d elements, the long wavelength (of the order of 1.5 nm) can only fit long pe-
riodicities and give diffraction on multilayer or be used in reflectivity experiments.
The L resonances of 5d transition elements arise in the 0.1 nm range but among
those only the platinum group elements, and mainly the platinum itself, can take
a magnetic moment. The MIV,V resonances of actinides offer the same favourable
characters and are also quite effective, with amplitude enhancement by a factor of
the order of one thousand. The wavelength near 0.35 nm for the uranium allows for
Bragg diffraction experiments.

1.5.4 Templeton Anisotropic Scattering

Even without any magnetic moment, the atom may show a low symmetry. Most of-
ten, this arises from the crystal field. A spontaneous orbital order (that is an orbital
arrangement resulting mainly from the electrostatic interaction between orbitals of
neighbouring atoms) is also expected in some materials. As a consequence the sym-
metrical part of Eq. (1.159), ai,bi, differs from the unit matrix. Again a quadrupolar
term may exist. The Templeton scattering produces some change in the intensity
of Bragg peaks at the absorption edges and this can be used to get more struc-
tural information. A striking feature is the occurrence of otherwise forbidden re-
flections [9, 15, 22]. When a reflection is forbidden because of a screw axis or glide
plane, the amplitude cancels only if it is a scalar (that is independent of the orien-
tation of the atom). For example with a screw axis, the atom rotates from one site
to the next, so that the tensor amplitude in Eqs. (1.158) and (1.159) may not cancel.
This breakdown of a crystallographic extinction rule should not be confused with
the appearance of, e.g., the 2 2 2 reflection in the diamond structure. In that case the
structure factor is a scalar and the broken extinction rule is not a general rule for
the space group; it applies only to a special position in the cell.

1.5.5 The Effect of an Anisotropy in the Index of Refraction

If the scattering is anisotropic, so may be the index of refraction and the optical
properties. The non-resonant magnetic scattering amplitude is zero in the forward
direction. From the discussion in Sect. 1.3 it cannot contribute to the refractive in-
dex. We shall therefore discuss only the consequences of resonant magnetic and of
Templeton scattering. We give only some brief information on this question which
could deserve quite a long development. The propagation of neutrons in magne-
tized materials and the associated reflectivity is examined in the Chap. 4 of this
book. It is different from the propagation of the electromagnetic radiation in an
anisotropic medium, especially when the interaction is strong. The thermal neutron
has a non-relativistic motion which allows for a complete separation of the space
and spin variables. The electromagnetic radiation instead is fully relativistic, which



1 Interaction of X-Rays (and Neutrons) with Matter 53

intermixes the propagation and polarization properties. In that case, the direction of
propagation depends on the polarization. Several unusual effects are consequently
observed. For example the direction of a light ray may differ from the normal to the
wave planes, or a refracted ray may lie outside of the plane of incidence [6].

Starting from the Helmholtz equation (1.15) the anisotropy of the medium mod-
ifies the dielectric constant (ε/ε0 � n2) which becomes a tensor. Though we wrote
the Helmholtz equation for the 4-vector A and the tensor should be of fourth or-
der, all the useful coefficients are contained in a third-order tensor acting in space,
similar to Eq. (1.159). In the absence of magnetization, we have the case of crystal
optics, described in several textbooks, e.g. [6]. If the medium is magnetized, the an-
tisymmetrical part of the tensor is non-zero and some phenomena occur, such as the
Faraday rotation of the polarization plane or the magnetooptic Kerr effect (that is
polarization-dependent and polarization rotating reflectivity). The basic theory can
be found in [18]. The theory as exposed in the textbooks is drawn in the dipolar
approximation, which is legitimate in the range of the visible or near visible op-
tics. I am not aware of a complete description of anisotropic optics including the
quadrupolar terms. It seems reasonable in practice to use instead of such a full the-
ory some perturbative corrections since the quadrupolar resonance terms are always
small. The incidence of some term beyond the dipolar electric approximation is clear
in an effect well observed with visible light and discovered nearly two centuries ago:
it is the optical activity, that is the rotation of the polarization plane in substances
which lack a centre of symmetry. Indeed the combination of two terms of different
multipole orders is required to produce such an effect. In the optical range the sec-
ond term is magnetic dipolar while in the X-ray range the electric quadrupolar term
gives rise to a similar effect. It is a small effect, even in the optical range, since it cor-
responds to differences of the order of 10−4 between the indices of the two opposite
circular polarizations. Yet it can be easily observed because the absorption of the vis-
ible light is still smaller and samples more than 105 wavelengths thick can be probed.

In the X-ray range, at energies of several keV and above, the refractive index dif-
fers from one by a small value and its anisotropic part is still smaller. Only a limited
list of anomalies are observed and they are interpreted in simple terms. One of the
most studied of those is the magnetic circular dichroism. In a ferro or ferrimagnet,
where a net magnetization is present, the refractive index changes, according to the
helicity of circularly polarized X-rays being parallel or antiparallel to the magneti-
zation. Indeed the optical theorem Eq. (1.75) or its extension Eq. (1.87) yields the
absorption atomic cross section or the dispersive part of the index of the medium,
from the part of the scattering length written in Eqs. (1.158) and (1.161). For that
we make k̂sc equal to k̂in and êsc equal to êin. For a circular polarization, the term in
Eq. (1.160) is real and reads

± k̂in .̂z. (1.162)

The sign is switched from − for the right-handed helicity to + for the left handed.
This is to be multiplied by the complex resonance factor which we have left out from
the formula. The difference in the real, δ , component of the index between both he-
licities gives rise to the Faraday rotation of the polarization plane. Similarly the
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difference in the imaginary, β , component gives rise to a difference in the absorp-
tion, called the magnetic circular dichroism. Once a circularly polarized radiation
is available, it is relatively easy to measure that change of absorption, usually by
switching the magnetization parallel or antiparallel to the beam. Similar to the reso-
nant scattering the dichroism shows a spectrum in the region of the absorption edge.

At the L edges of the 3d elements, the resonances and their magnetic parts are
quite large and the full optical theory, in the dipolar approximation, should be con-
sidered. Some reflectivity measurements have been done, e.g. [14].
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1.A Appendix: the Born Approximation

Anne Sentenac, François de Bergevin, Jean Daillant, Alain Gibaud and Guillaume
Vignaud

In this appendix we give the Born development for the field scattered by a deter-
ministic object.

In absence of any object, the field (scalar for simplicity) is a solution of the
homogeneous Helmholtz equation,

(
Δ + k2

0

)
Ain(r) = 0. (1.A1)

The object introduces a perturbation V on the differential operator, see Eqs. (1.16)
and (1.17). In this case the field is the solution of

(
Δ + k2

0 −V (r)
)

A(r) = 0. (1.A2)

The total field A can be written as the sum of an incident field Ain(r) = Aine−ikin.r

(plane wave solution of the homogeneous equation) and a scattered field Asc which
satisfies the outgoing wave boundary condition. Following Sect. 1.2.5, we transform
Eq. (1.A2) into an integral equation by introducing the Green function

G−(r) = − 1
4π

e−ik0r

r
(1.A3)

that satisfies outgoing wave boundary condition. We obtain

A(r) = Ain(r)+
∫

G−(r− r′)V (r′)A(r′)dr′. (1.A4)
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Formally, one can write the solution of this integral equation in terms of a series in
power of the convolution operator [G−V ],9

A = A(0) +A(1)
sc +A(2)

sc + · · · (1.A5)

with, A(0)(r) = Ain(r),

A(1)
sc (r) =

∫
d3r′G−(r− r′)V (r′)Ain(r′),

A(2)
sc (r) =

∫
d3r′

∫
d3r′′G−(r− r′)V (r′)G−(r′ − r′′)V (r′′)Ain(r′′).

When this series is convergent, one gets the exact value of the field. The main issue
of such an expansion lies in its radius of convergence which is not easy to deter-
mine. Physically, the potential V (r′) combined with the propagation operator G−
represents the action of the particule (or polarization density) at r′ on the incident
wave, i.e. a scattering event. When the potential appears once (in the first-order
term), the incident wave is singly scattered by the particules of the object. When
it appears twice (in the second-order term), one accounts for the double scattering
events, etc. Equation (1.A5) can also be viewed as a perturbative development in
which the scattering event [GV ] is taken as a small parameter. The first Born ap-
proximation consists in stopping the development in Eq. (1.A5) to the first order in
V (thus assuming the predominance of single scattering).

We now proceed by evaluating the scattered far-field and the scattering cross-
section. We assume that the observation point r is far from all the points r′ consti-
tuting the object (with respect to an arbitrary origin situated inside the object). In
this case, one has

∣∣r− r′
∣∣≈ r− û.r′, (1.A6)

so that

G−(r− r′) = − 1
4π

e−ik0|r−r′|
|r− r′| ≈ − 1

4π
e−ik0r

r
eik0û.r′ . (1.A7)

Using this far-field approximation in Eq. (1.A4), one retrieves the expression given
in Sect. 1.2.4,

Asc(r) = −Ainb(û)
e−ik0r

r
. (1.A8)

Bearing in mind the Born development for the field, one can write the scattering
length b in the form, b(û) = b(1)(û)+b(2)(û)+ · · ·, with, for example,

9 In operator notation one can make an analogy with the Taylor expansion of 1/1− x = 1 + x +
x2 + · · ·. Indeed, the field can be written as A = Ain/1− [G−V ] which yields the series

A = Ain +[G−V ]Ain +[G−V ][G−V ]Ain + · · ·+[G−V ]nAin + · · ·,

with [G−V ] f =
∫

G−(r− r′)V (r′) f (r′)dr′.
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b(1)(û) =
1

4π

∫
d3r′V (r′)ei(k0û−kin).r′ . (1.A9)

The calculation of the differential scattering cross-section, Eq. (1.36),

dσ
dΩ

= |b(û)|2

is then straightforward.
It is worth noting that the perturbative development of the energy (which is pro-

portional to the square of the field) starts at second order in V . Hence, to be consis-
tent in our calculation, we should always develop the field up to the second order to
account for all the possible terms (of order two) in the energy. A striking illustration
of this remark is that the first Born approximation does not satisfy energy conserva-
tion. This can be readily shown by injecting the perturbative development of b in
the optical theorem which is a direct consequence of the energy conservation. The
optical theorem relates the total cross-section to the imaginary part of the forward
scattered amplitude. One has, see Sect. 1.3.2, σtot = 2λI m[b(kin)]. If one disre-
gards lossy media, the total cross-section is equal to the scattering cross-section,

σsc =
∫

|b(û)|2dΩ = 2λI m[b(kin)]. (1.A10)

The expansion, Eq. (1.A5), being a formally exact representation of the field, the
optical theorem, written as a series, is verified at each order of the perturbative
development. One gets, to the lowest order,

∫
|b(1)(û)|2dΩ = 2λI m[b(1)(kin)+b(2)(kin)]. (1.A11)

This last equation shows clearly that if one wants the Born approximation to con-
serve energy, one should calculate the scattered amplitude up to second order in the
forward direction.
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Chapter 2
Statistical Aspects of Wave Scattering
at Rough Surfaces

A. Sentenac and J. Daillant

2.1 Introduction

The surface state of objects in any scattering experiment is, of necessity, rough. Ir-
regularities are of the most varied nature and length scales, ranging from the atomic
scale, where they are caused by the inner structure of the material, to the mesoscopic
and macroscopic scale where they can be related to the defects in processing in the
case of solid bodies or to fluctuations in the case of liquid surfaces (ocean waves,
for example).

The problem of wave scattering at rough surfaces has thus been a subject of study
in many research areas, such as medical ultrasonic, radar imaging, optics or solid
state physics [1–4]. The main differences stem from the nature of the wavefield and
the wavelength of the incident radiation (which determines the scales of roughness
that have to be accounted for in the models). When tackling the issue of modelling
a scattering experiment, the first difficulty is to describe the geometrical aspect of
the surface. In this chapter, we are interested solely in surface states that are not
well controlled so that the precise defining equation of the surface, z = z(x,y), is
unknown or of little interest. One has (or needs) only information on certain sta-
tistical properties of the surface, such as the height repartition or height to height
correlations. In this probabilistic approach, the shape of the rough surface is de-
scribed by a random function of space coordinates (and possibly time as well). The
wave scattering problem is then viewed as a statistical problem consisting in finding
the statistical characteristics of the scattered field (such as the mean value or field
correlation functions), the statistical properties of the surface being given.

In the first section of this contribution we present the statistical techniques used
to characterise rough surfaces. The second section is devoted to the description of
a surface scattering experiment from a conceptual point of view. In the third sec-
tion, we investigate to what extent the knowledge of the field statistics such as the
mean field or field autocorrelation is relevant for interpreting the data of a scattering
experiment which deals necessarily with deterministic rough samples. Finally, we
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derive in the fourth section a simple expression of the scattered field and scattered
intensity from random rough surfaces under the Born approximation.

2.2 Description of Randomly Rough Surfaces

2.2.1 Introduction

Let us first consider the example of a liquid surface. The exact morphology of the
surface is rapidly fluctuating with time and is not accessible inasmuch as the detector
will integrate over many different surface shapes. However, statistical information
can be obtained and it provides an useful insight on the physical processes. Indeed,
these fluctuations obey Boltzmann statistics and are characterised by a small number
of relevant parameters such as the density of the liquid or its surface tension (see
Sect. 4.5).

We now consider a set of surfaces of artificial origin (such as metallic optical
mirrors) that have undergone similar technological treatments (like polishing and
cleaning). Since it is impossible to reproduce all the microscopic factors affecting
the surface state, these surfaces have complex and completely different defining
equations z = z(x,y). However, if the surface processing is well enough controlled,
they will present some similarities, of statistical nature, that will distinguish them
from surfaces that have received a totally different treatment.

In these two examples, we are faced with the issue of describing a set of real
surfaces which present similar statistical properties and whose defining equations
z(x,y) are unknown or of small interest (see Fig. 2.1). It appears convenient [2] to
approximate this set of surfaces by a statistical ensemble of surfaces that are reali-
sations of a random continuous process of the plane coordinates r‖ = (x,y), whose
statistical properties depend on some relevant parameters of the physical processes
affecting the surface state (like the grain size of the polishing abrasive in the case
of surfaces of artificial origin). It is likely that the characteristic functions z(r‖)
of the surfaces generated by the random process will be different from that of the
real surfaces under study, but the statistical properties of both ensembles should be
the same.

2.2.2 Height Probability Distributions

Generally speaking, a random rough surface is completely described statistically by
the assignment of the n-point (n → ∞) height probability distribution pn(r1‖,z1 . . .
rn‖,zn) where pn(r1‖,z1 . . .rn‖,zn)dz1 . . .dzn is the probability for the surface points
of plane coordinates r1‖, . . . ,rn‖ of being at the height between (z1 . . .zn) and (z1 +
dz1 · · ·zn +dzn). However, in most cases, we restrict the description of the randomly
rough surface to the assignment of the one- and two-point distribution functions
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Fig. 2.1 Examples of various rough surfaces that present the same Gaussian statistical properties

p1(r‖,z) and p2(r1‖,z1;r2‖,z2). Indeed, most scattering theories need solely this
information.

From these probability functions, one can calculate the ensemble average of
any functional of the random variables (z1 . . .zn) where zi = z(ri‖ri‖), through the
integral,

〈F〉(r1‖ . . .rn‖) =
∫ ∞

−∞
F(z1 . . .zn)pn(r1‖,z1 . . .rn‖,zn)dz1 . . .dzn. (2.1)

The domain of integration covers all the possible values for (z1 . . .zn). This quantity
is equivalent to an average of F calculated over an ensemble of surface realisa-
tions Sp,

〈F〉(r1‖ . . .rn‖) = lim
N→∞

1
N

N

∑
p=1

F(zp
1 . . .zp

n), (2.2)

where zp
j is the altitude of the pth surface realisation at plane coordinates r j‖.

With this definition, one obtains in particular the mean height of the surface
through

〈z〉(r‖) =
∫ ∞

−∞
z(r‖)p1(r‖,z)dz. (2.3)
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The mean square height of the surface is given by

〈z2〉(r‖) =
∫ ∞

−∞
z2(r‖)p1(r‖,z)dz. (2.4)

The height–height correlation function Czz is defined by

Czz(r1‖,r2‖) = 〈z1z2〉 =
∫ ∞

−∞
z1z2 p2(r1‖,z1,r2‖,z2)dz1dz2, (2.5)

where z j = z(r j‖). It is also usual to introduce the pair-correlation function g(r1‖,r2‖)
which averages the square of the difference in height between two points of the
surface,

g(r1‖,r2‖) = 〈(z1 − z2)2〉 =
∫ ∞

−∞
(z1 − z2)2 p2(r1‖,z1,r2‖,z2)dz1dz2. (2.6)

Note that g(r1‖,r2‖) = 2〈z2〉(r‖)−2Czz(r1‖,r2‖).

2.2.3 Homogeneity and Ergodicity

Randomly rough surfaces have frequently the property that the character of the
height fluctuations z does not change with the location on the surface. More pre-
cisely, if all the probability distribution functions pi are invariant under any arbi-
trary translation of the spatial origin, the random process is called homogeneous.
As a consequence, the ensemble average of the functional F(z1 . . .zn) will depend
only on the vector difference, r j‖ − r1‖, between one of the n space argument r1‖
and the (n−1) remaining others r j‖, j = 2 . . .n.

〈F〉(r1‖, . . . ,rn‖) = 〈F〉(0‖ . . .rn‖ − r1‖). (2.7)

When the random process is isotropic (i.e. has the same characteristics along any di-
rection) the dependencies reduce to the distance |r j‖−r1‖| between one of the space
argument and the others. Hereafter we will only consider homogeneous isotropic
random processes and we propose a simplified notation for the various functions
already introduced.

The mean altitude 〈z〉(r‖) does not depend on the r‖ position and one can find a
reference plane surface such as 〈z〉 = 0. The mean square deviation of the surface is
also a constant and we define the root mean square (rms) height σ as

σ2 = 〈z2〉 =
∫ ∞

−∞
z2 p1(z)dz. (2.8)

The rms height is often used to give an indication of the “degree of roughness”,
the larger the σ the rougher the surface. Note that the arguments of the probability
distribution are much simpler.
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Similarly, the height–height correlation function can be written as

Czz(r1‖,r2‖) = 〈z(0‖)z(r‖)〉 = Czz(r‖) =
∫

z1z2 p2(z1,z2,r‖)dz1dz2, (2.9)

where r‖ = |r‖|. We also introduce, with these simpler notations, the one-point and
two-point characteristic functions,

χ1(s) =
∫ ∞

−∞
p1(z)eiszdz, (2.10)

χ2(s,s′,r‖) =
∫ ∞

−∞
p2(z,z′,r‖)e

isz+is′z′dzdz′. (2.11)

One of the most important attributes of a homogeneous random process is its power
spectrum, P(q‖), that gives an indication of the strength of the surface fluctuations
associated with a particular wavelength. Roughly speaking, the rough surface is
regarded as a superposition of gratings with different periods and heights. The power
spectrum is a tool that relates the height to the period. We introduce the Fourier
transform of the random variable z,

z̃(q‖) =
∫

z(r‖)e
iq‖.r‖dr‖, (2.12)

where q‖ = (qx,qy) is the in-plane wave-vector transfer. We define the spectrum as

P(q‖) = 〈|z̃(q‖)|2〉 = 〈z̃(q‖)z̃(−q‖)〉. (2.13)

The Wiener–Khintchine theorem [5] states that the power spectrum is the Fourier
transform of the correlation function:

P(q‖) =
∫

dr‖eiq‖.r‖〈z(0‖)z(r‖)〉 = 4π2C̃zz(q‖). (2.14)

More precisely, one shows that

〈z̃∗(q‖)z̃(q
′
‖)〉 = 〈z̃(−q‖)z̃(q

′
‖)〉 = 4π2C̃zz(q‖)δ (q‖ −q′

‖). (2.15)

The Fourier components of a homogeneous random variable are independent ran-
dom variables, whose mean square dispersion is given by the Fourier transform of
the correlation function. If the power spectrum decreases slowly with increasing q‖,
the roughness associated to small periods will remain important. Thus, whatever
the length scale, the surface will present irregularities. In the real space, it implies
that the correlation between the heights of two points on the surface will be small,
whatever their separation. As a result, the correlation function will exhibit a singu-
lar behaviour about 0 (discontinuity of the derivative for example). An illustration
of the influence of the correlation function (or power spectrum) on the roughness
aspect of the surface is presented in Fig. 2.2 and detailed in Sect. 2.2.4 in the special
case of a Gaussian distribution of heights.
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Fig. 2.2 Various rough surfaces with Gaussian height distribution but various correlation functions.

From bottom to top, Czz(R) = σ2ξ 4/(ξ 2 +R2)2, Czz(R) = σ2 exp(− R2

ξ 2 ), Czz(R) = σ2 exp(− R
ξ )

Until now we have been interested solely in ensemble average, which necessitates
the knowledge of the complete set of rough surfaces generated by the homogeneous
random process (or the probability distributions). However, sometimes only a single
realisation Sp (with dimension Lx,Ly along Ox and Oy) of the random process is
available and one defines the spatial average of any functional F(z1, . . . ,zn) for this
surface by

F̄p(0‖, . . . ,rn‖) = lim
Lx×Ly→∞

1
LxLy

∫
Lx×Ly

dr′‖F [z(r′‖) . . .z(r′‖ + rn‖)]. (2.16)

It happens frequently that each realisation of the ensemble carries the same statis-
tical information about the homogeneous random process as every other realisation.
The spatial averages calculated for any realisation are then all equal and coincide
with the ensemble average. The homogeneous random process is then said to be an
ergodic process. In this case, the following particular relations hold:

σ2 = 〈z2〉 = lim
Lx,Ly→∞

1
LxLy

∫
Lx×Ly

z2(r‖)dr‖, (2.17)

Czz(r‖) = 〈z(0‖)z(r‖)〉 = lim
Lx,Ly→∞

1
LxLy

∫
Lx×Ly

z(r′‖)z(r
′
‖ + r‖)dr′‖. (2.18)

One can show that Eqs. (2.17) and (2.18) will be satisfied if the correlation function
Czz(r‖) dies out sufficiently rapidly with increasing r‖ (see for demonstration [5]).
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Indeed, this property implies that one realisation of the rough surface can be di-
vided up into subsurfaces of smaller area that are uncorrelated so that an ensemble
of surfaces can be constructed from a single realisation. Spatial averaging amounts
then to ensemble averaging. If the random process is homogeneous and ergodic, all
the realisations will look similar while differing in detail. This is exactly what we
expect in order to describe liquid surfaces varying with time or set of surfaces of
artificial origin. The fact that spatial averaging is equivalent to ensemble averaging
when the surface contains enough correlation lengths to recover all the informa-
tion about the random process is of crucial importance in statistical wave scattering
theory.

2.2.4 The Gaussian Probability Distribution and Various
Correlation Functions

In most theories, the height probability distribution is taken to be Gaussian. The
Gaussian distribution plays a central role because it has an especially simple struc-
ture and, because of the central limit theorem, it is a probability distribution that is
encountered under a great variety of different conditions. If the height z of a surface
is due to a large number of local independent events whose effects are cumulative
(like the passage of grain abrasive), the resulting altitude will obey nearly Gaussian
statistics. This result is a manifestation of the central limit theorem which states that
if a random variable X is the sum of N independent random variables xi, it will have
a Gaussian probability distribution in the limit of large N. Hereafter, we suppose
that the average value of the Gaussian variate z(r‖) is null, 〈z〉 = 0. The Gaussian
height distribution function is written as

p1(z) =
1

σ
√

2π
exp

(
− z2

2σ2

)
. (2.19)

Gaussian variates have the remarkable property that the random process is en-
tirely determined by the height probability distribution and the height–height cor-
relation function Czz. All higher order correlations are expressible in terms of
second-order correlation [5]. The two-point distribution function is given in this
case by

p2(z,z′,r‖) =
1

2π
√

σ4 −C2
zz(r‖)

exp−
[
σ2(z2 + z′2)−2zz′Czz(r‖)

2σ4 −2C2
zz(r‖)

]
. (2.20)

Other useful results on the Gaussian variates are

χ1(s) = 〈eisz〉 = e−s2σ2/2, (2.21)

χ2(s,s′,r‖) =
〈

ei(sz−s′z′)
〉

= e−σ2(s2+s′2)/2ess′Czz(r‖). (2.22)
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The correlation function plays a fundamental role in the surface aspect. It provides
an indication of the length scales over which height changes along the surface. It
gives in particular the distance beyond which two points of the surface can be con-
sidered independent. If the surface is truly random, Czz(r‖) decays to zero with in-
creasing r‖. The simplest and often used form for the correlation function is also
Gaussian,

Czz(r‖) = σ2 exp(−r2
‖/ξ

2). (2.23)

The correlation length ξ is the typical distance between two different irregularities
(or bumps) on the surface. Beyond this distance, the heights are not correlated.

In certain scattering experiments, one can retrieve the behaviour of the correlation
function for r‖ close to zero. We have thus access to the small scale properties of the
surface. We have seen that the regularity of the correlation function at zero mirrors
the asymptotic behaviour of the power spectrum: the faster the high-frequency com-
ponents of the surface decay to zero, the smoother the correlation function about
zero. The Gaussian scheme whose variations about zero have the quadratic form
σ2(1− (r‖/ξ )2) is thus indicated solely for surfaces that present only one typical
lateral length scale [6].

For surfaces with structures down to arbitrary small scales, one expects the cor-
relation function to be more singular at zero. An example is the self-affine rough
surface for which

g(r‖) = A0r2h
‖ , (2.24)

where A0 is a constant, or

Czz(r‖) = σ2

(
1−

r2h
‖
ξ 2h

)
, (2.25)

with 0 < h < 1. The roughness exponent or Hurst exponent h is the key parame-
ter which describes the height fluctuations at the surface: small h values produce
very rough surfaces while if h is close to 1 the surface is more regular. This ex-
ponent is associated to fractal surfaces with dimension D = 3−h as reported by
Mandelbrodt [7]. The pair-correlation function given in Eq. (2.24) diverges for
r‖ → ∞. Hence, all the length scales along the vertical axis are represented and
the roughness of the surface cannot be defined. We will see below that in that
case, there is no specular reflection. However, very often, some physical processes
limit the divergence of the correlation function, i.e. the roughness saturates at some
in-plane cut-off ξ . Such surfaces are well described by the following correlation
function,

Czz(R) = σ2 exp

(
−R2h

ξ 2h

)
. (2.26)

For liquid surfaces other functional forms described in Sect. 4.5 are used.
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2.2.5 More Complicated Geometries: Multilayers and Volume
Inhomogeneities

Up to now we have considered solely the statistical description of a rough surface
separating two homogeneous media. The mathematical notions that have been in-
troduced can be generalised to more complicated problems such as stacks of rough
surfaces in multilayer components. In this case, one must also consider the corre-
lation function between the different interfaces, 〈zi(0‖)z j(r‖)〉, where zi represents
the height of the i th surface. A detailed description of the statistics of a rough mul-
tilayer is given in Sect. 6.2. One can also describe in a similar fashion the random
fluctuations of the refractive index (or electronic density) ρ . In this case ρ is a ran-
dom continuous variable of the three-dimensional space coordinates (r‖,z). It will
be introduced in Sects. 4.3.3 and 7.3.

2.3 Description of a Surface Scattering Experiment,
Coherence Domains

We have seen how to characterise, with statistical tools, the rough surface geometry.
The next issue is to relate these statistics to the intensity scattered by the sample in a
scattering experiment. In this section, we introduce the main theoretical results that
describe the interaction between electromagnetic waves and surfaces. Attention is
drawn on the notion of “coherence domains” which takes on particular importance
in the modelling of scattering from random media. In this foreword, we present
briefly the basic mechanisms that subtend this concept.

It can be shown (bear in mind the Huygens–Fresnel principle or see Sect. 4.1.4)
that a rough surface illuminated by an electromagnetic incident field acts as a col-
lection of radiating secondary point sources. The superposition of the radiation of
those sources yields the total diffracted field. If the secondary sources are coher-
ently illuminated, the total diffracted field is the sum of the complex amplitudes of
each secondary diffracted beam. In other words, one has to account for the phase
difference in this superposition. As a result, an interference pattern is created. The
coherence domain is the surface region in which all the radiating secondary sources
interfere. It depends trivially on the nature of the illuminating beam (which can be
partially coherent), but more importantly, it depends on the angular resolution of the
detector. To illustrate this assertion, we consider the Young’s holes experiment [8].
Light from a monochromatic point source (or a coherent beam) falls on two pin-
holes located in the sample plane (see Fig. 2.3). We study the transmitted radiation
pattern on a screen parallel to the sample plane at a distance D. In this region, an
interference pattern is formed. The periodicity Λ of the fringes, which is the signa-
ture of the coherence between the two secondary sources, depends on the separation
d between the two pinholes, Λ = λD/d. Suppose now that a detector is moved on
the screen to record the diffracted intensity. As long as the detector width l is close
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to Λ , the modulation of the interference pattern will be detected. On the contrary,
if l > 10Λ the intensity measured by the detector is the average of the fringe in-
tensities. We obtain a constant equal to the sum of the intensities scattered by each
secondary source. In this case, one may consider that from the detector point of view,
the sources radiate in an incoherent way. We see with this simple experiment that
the coherence length is directly linked to the finite extent of the detector (equivalent
to a finite angular resolution).1

We now turn to a more accurate description of a surface scattering experiment.

2.3.1 Scattering Geometry

We consider an ideal scattering experiment consisting in illuminating a rough sam-
ple with a (perfectly coherent monochromatic) beam directed along kin and detect-
ing the flux of Poynting vector in an arbitrary small solid angle in the direction ksc

with a point-like detector located in the far-field region.
The interaction of the beam with the material results in a wave-vector transfer,

q = ksc −kin. (2.27)

Figure 2.3 shows the scattering geometry in the general case of a surface exper-
iment. The plane of incidence contains the incident wave vector kin and the normal
to the surface Oz. In a reflectivity experiment, it is usual to work in the plane of in-
cidence and thus to have ψ = 0. Yet the case ψ �= 0 is of special interest for surface
diffraction experiments in grazing incidence geometry. When working in the plane
of incidence it is also useful to distinguish the symmetric specular geometry for
which θin = θsc and the off-specular geometry for which θin �= θsc. The following
set of Eq. (2.28) gives the components of the wave-vector transfer with the notations
introduced in Fig. 2.3:

1 It is also obviously linked to the degree of coherence fixed by, for example, the incidence slit
opening. However, for x-ray or neutron experiments the resolution is actually generally limited by
the detector slits opening.
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⎧⎨
⎩

qx = k0 (cosθsc cosψ− cosθin)
qy = k0 (cosθsc sinψ)
qz = k0 (sinθsc + sinθin)

. (2.28)

2.3.2 Scattering Cross-Section

In the ideal experimental setup presented in the previous section, one exactly mea-
sures the differential scattering cross-section as described in Fig. 1.1 (the isolated
scattering object is the rough sample in this case). The vectorial electric field E is
written as the sum,

E = Ein +Esc, (2.29)

of the incident plus scattered field. We are interested by the flux of the Poynting
vector S through a surface dS located at the position R of the detector for a unit
incident flux. The precise calculations of the differential scattering cross-section are
detailed in Sect. 4.1.4. In this paragraph, we simply introduce the main steps of the
derivation.

One assumes that the detector located at R is placed far from the sample (far-field
approximation). We define the scattering direction by the vector ksc (see Fig. 2.3),

ksc = k0û = k0R/R. (2.30)

It is shown in Sect. 4.1.4 that the scattered field can be viewed as the sum of the
wavelets radiated by the electric dipoles induced in the material by the incident field
(these radiating electric dipoles are the coherent secondary sources presented in the
introduction). The strength of the induced dipole located at r′ in the sample is given
by the total field times the permittivity contrast at this point, [k2(r′)− k2

0]E(r′). Let
us recall that for x-rays,

(k2(r′)− k2
0) = k2

0[n
2(r′)−1] = −4πreρel(r′), (2.31)

where ρel is the local electron density and re the classical electron radius.2 In the
far-field region, the scattered field can be written as, see Eq. (4.19) (the far-field
approximation and its validity domain are discussed in more detail in Chap. 4),

2 If one is only interested in materials with low atomic numbers for which the x-ray frequency is
much larger than all atomic frequencies, the electrons can be considered as free electrons plunged
into an electric field E. In this case, the movement of the electron is governed by medv/dt =
−eE, where me, v, −e, are the mass, the velocity and the charge of the electron, respectively.
We find v = (ie/meω)E for a eiωt time dependence of the electric field. Thus, the current density
is j = −eρelv = −(ie2ρel/meω)E where ρel is the local electron density. Writing the Maxwell’s
equations in the form curlH = j + ε0∂E/∂ t = ∂D/∂ t = n2ε0∂E/∂ t (depending on whether the
system is viewed as a set of electrons in a vacuum or as a material of refractive index n), one
obtains by identification that n = 1− (e2/2meε0ω2)ρel = 1− (λ 2/2π)reρel ≈ 1−10−6, with re =
(e2/4πε0mec2) the “classical electron radius”. A complete and rigorous demonstration is given
in [9].
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Esc(R) =
exp(−ik0R)

4πR

∫
dr′(k2(r′)− k2

0)E⊥(r′)eiksc.r′, (2.32)

where
E⊥(r′) = E(r′)− û.E(r′)û (2.33)

represents the component of the electric field that is orthogonal to the direction of
propagation given by û. Expression (2.32) shows that the scattered electric field
Esc(R) can be approximated by a plane wave [8] with wave vector ksc = k0R/R =
k0û and amplitude,

Esc(ksc) = Esc(R). (2.34)

The Poynting vector is then readily obtained,

S =
1

2μ0c
|Esc(R)|2û. (2.35)

The flux of the Poynting vector for a unit incident flux (or normalised by the in-
cident flux through a unit surface normal to the propagation direction) yields the
differential scattering cross-section in the direction given by ksc,

dσ
dΩ

=
1

16π2|Ein|2

∣∣∣∣
∫

[k2(r′)− k2
0]E⊥(r′)eiksc.r′dr′

∣∣∣∣
2

. (2.36)

Note that dσ/dΩ involves a double integration, which can be cast in the form,

dσ
dΩ

=
1

16π2|Ein|2
∫

dr
∫

dr′(k2(r)− k2
0)(k

2(r+ r′)− k2
0)

E⊥(r).E∗
⊥(r+ r′)eiksc.r′ , (2.37)

where u∗ stands for the conjugate of u. By integrating formally Eq. (2.32) over the
vertical axis, one obtains a surface integral,

Esc(R) =
exp(−ik0R)

4πR

∫
E⊥(r′‖,kscz)e

iksc‖.r
′
‖dr′‖, (2.38)

with
E⊥(r′‖,kscz) =

∫
[k2(r′)− k2

0]e
iksczz′E⊥(r′)dz′. (2.39)

We see that Eq. (2.39) is a one-dimensional Fourier transform, thus the variations
of E⊥ with kscz are directly linked to the thickness of the sample. On the other hand,
the variations of Esc with ksc‖ are related to the width of the illuminated area (i.e.
the region for which [k2(r′)− k2

0]E is non-zero).

2.3.3 Coherence Domains

Up to now, we have considered an ideal experiment with a point-like detector. In
reality, the detector has a finite size and one must integrate the differential scattering



2 Statistical Aspects of Wave Scattering at Rough Surfaces 71

cross-section over the detector solid angle, ΔΩdet. Since the cross-section is defined
as a function of wave vectors, it is more convenient to transform the integration
over the solid angle ΔΩdet centred about the direction ksc into an integration in the
(kx,ky) plane. The measured intensity (scattering cross-section convoluted with the
resolution function) is then given by

I =
1

16π2

1
|Ein|

∫
dk‖R(k‖)

×
∫

dr‖

∫
dr′‖E

∗
⊥(r‖ + r′‖,kz).E⊥(r‖,kz)eik‖.r

′
‖ , (2.40)

where R(k‖) is the detector acceptance in the (kx,ky) plane. The expression of R
in the wave-vector space is not easily obtained. In an x-ray experiment, it depends
on the parameters (height, width) of the collecting slits. The reader is referred to
Sect. 4.4 for a detailed expression of R as a function of the detector shape. In
this introductory chapter it is sufficient to take for R a Gaussian function centred
about ksc‖,

R(kscx,kscy) = C exp

[
− (kx − kscx)2

2Δk2
x

− (ky − kscy)2

2Δk2
y

]
. (2.41)

The variables Δkx,Δky govern the angular aperture of the detector. If one assumes
that the integrand does not vary significantly along kz inside Δkx Δky,3 the resulting
intensity is given by

I =
1

16π2

1
|Ein|

∫ ∫
dr‖dr′‖E

∗
⊥(r‖ + r′‖,kscz).E⊥(r‖,kscz)eiksc‖.r

′
‖R̃(r′‖), (2.42)

where
R̃(r‖) = 2πCΔkxΔkye−

1
2Δk2

x x2− 1
2Δk2

y y2
. (2.43)

We now examine Eq. (2.38) that gives the scattered field as the sum of the fields ra-
diated by all the induced dipoles in the sample. We see that the electric field radiated
in the direction ksc by the “effective” dipole placed at point r‖ is added coherently
to the field radiated by another dipole placed at r‖ + r′‖ whatever the distance be-
tween the points. The intensity, measured by an ideal experiment (coherent source
and point-like detector), is given by a double integration of infinite extent which
contains the incoherent term |E⊥(r‖,kscz)|2 and the cross-product (namely the in-
terference term) E⊥(r‖,kscz).E ∗

⊥(r‖ + r′‖,kscz). When the detector has a finite size,
the double integration is modified by the introduction of the resolution function R̃

3 This assumption is not straightforward. It is seen in Eq. (2.39) that the thicker the sample, the
faster the variations of E⊥ with kz. In an x-ray experiment, the sample under study is generally
a thin film (a couple of microns) and we are interested by the structure along z of the material
(multilayers). Hence, the size of the detector is chosen so that its angular resolution permits to
resolve the interference pattern caused by the stack of layers. This amounts to saying that the kz

modulation of E ∗
⊥(r‖ + r′‖,kz).E⊥(r‖,kz) is not averaged in the detector.
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which is the Fourier transform of the angular characteristic function of the detec-
tor. In our example, R̃ is a Gaussian whose support in the (x,y) plane is roughly
1/[Δkx ×Δky]. This function limits the domain over which the contribution of the
cross term to the total intensity is significant. This domain can be called the coher-
ence domain Scoh due to the detector. The fields radiated by two points that belong
to this domain will add coherently in the detector (the cross term value is important),
while the fields coming from two points outside this domain will add incoherently
(the cross term contribution is damped to zero). The resulting intensity can be seen
as the incoherent sum of intensities that are scattered from various regions of the
sample whose sizes coincide with the coherent domain given by the detector. This
can be readily understood by rewriting Eq. (2.42) in the form [10],

I ∝ ∑
i =1,N

∫
Scoh

dr‖

∫
Scoh

dr′‖

E ∗
⊥(ri‖ + r‖ + r′‖,kscz).E⊥(ri‖ + r‖,kscz)eiksc‖.r

′
‖R̃(r′‖), (2.44)

where ri is the centre of the different coherent regions Scoh. Hence, integrating the
intensity over a certain solid angle is equivalent to summing the intensities (i.e.
incoherent process) from various regions of the illuminated sample. This is the
main result of this paragraph. The finite angular resolution of the detector intro-
duces coherence lengths beyond which two radiating sources can be considered
incoherent (even though the incident beam is perfectly coherent). Note that the plu-
ral is not fortuitous, indeed, the angular resolution of the detector can be differ-
ent in the xOy and xOz plane, thus the coherent lengths vary along Ox, Oz and
Oy. In a typical x-ray experiment (see Sect. 4.4), the sample is illuminated coher-
ently over 5 mm2 but the angular resolution of the detector yields coherence do-
mains of solely a couple of square microns. More precisely, a detection slit with
height 100μm, width 1 cm placed at 1 m of the sample with θsc = 10 mrad limits
the coherent length along Oz to 1 μm, along Ox to 100μm and that along Oy to
10 nm. Finally, in this introductory section, we have restricted our analysis solely
to a detector of finite extent. In general, the incident source has also a finite angu-
lar resolution. However, coherence domains induced by the incident angular res-
olution is usually much bigger than that given by the detector angular resolution
so that we do not consider it here. (The calculation scheme would be very similar.)
A more complete description of the resolution function of the experiment is given in
Sect. 4.4.2.

2.4 Statistical Formulation of the Diffraction Problem

In this section, we point out, through various numerical simulations, the pertinence
of a statistical description of the surface and of the scattered power for modelling a
scattering experiment in which the rough sample is necessarily deterministic. The
main steps of our analysis are as follows: Within the coherence domain, the field
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radiated by the induced dipoles (or secondary sources) of the sample interfere. We
call speckle the complicated intensity pattern stemming from these interferences.
The angular resolution of the detector yields an incoherent averaging of the speckle
structures (the intensities are added over a certain angular domain). This angular
integration can be performed with an ensemble average by invoking

1. The ergodicity property of the rough surface (i.e. we assume that the sample is
one particular realisation of an ergodic random process)

2. The equivalence between finite angular resolution and limited coherence do-
mains

It appears finally that the diffused intensity measured by the detector is ade-
quately modelled by the mean square of the electric field viewed as a function of the
random variable z. Throughout this section, the numerical examples are given in the
optical domain. The wavelength is about 1μm and the perfectly coherent incident
beam is directed along the Oz axis.

2.4.1 To What Extent Is a Statistical Formulation
of the Diffraction Problem Relevant?

In Sect. 2.3 it has been shown how to calculate formally the electromagnetic power
measured by the detector in a scattering experiment. To obtain the differential scat-
tering cross-section, one needs to know the permittivity contrast at each point of
the sample and the electric field at those points, Eq. (2.37). If the geometry of the
sample is perfectly well known (i.e. deterministic like gratings), various techniques
(such as the integral boundary method [11, 12]) permit to obtain without any approx-
imation the field inside the sample. It is thus possible to simulate with accuracy the
experimental results. In the case of scattering by gratings (i.e. periodic surfaces) the
good agreement between experimental results and calculations confirms the validity
of the numerical simulations [12].

We study the scattered intensity from different rough deterministic surfaces sn

(e.g. those presented in Fig. 2.1) illuminated by a perfectly coherent beam. In this
experiment, we suppose that the size of the coherence domains induced by the finite
resolution of the detector is close to that of the illuminated area A. In other words,
all the fringes of the interference pattern stemming from the coherent sum of the
fields radiated by every illuminated point of the surface are resolved by the detec-
tor. We observe in Fig. 2.4 that the angular distribution of the intensity scattered
by each surface presents a chaotic behaviour. This phenomenon can be explained
by recalling that the scattered field consists of many coherent wavelets, each aris-
ing from a different microscopic element of the rough surface, see Eq. (2.38). The
random height position of these elements yields a random dephasing of the vari-
ous coherent wavelets which results in a granular intensity pattern. This seemingly
random angular intensity behaviour, known as speckle effect, is obtained when the
coherence domains include many correlation lengths of the surface, when the rough-
ness is not negligible as compared to the wavelength (so that the random dephasing
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Fig. 2.4 Simulations of the
differential scattering
cross-section for the surfaces
presented in Fig. 2.1. The
illuminated area covers
40 μm which explains the
large angular width of the
speckle. The incident
wavelength is 1μm, the
refractive index is n = 1.5.
Normal incidence. The
calculations are performed
with a rigorous integral
boundary method (no
approximation in solving
Eq. (2.37) other than the
numerical
discretisations) [13]
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amplitude is important) and most importantly when the size of the coherence do-
mains is close to that of the illuminated area so that the speckle is not averaged in
the detector. To retrieve the precise angular behaviour of the intensity, one needs
an accurate deterministic description of the surface [14]. In Fig. 2.4 the surfaces sn

present totally different intensity patterns even though they have the same statis-
tical properties. However, some similarities can be found in the curves plotted in
Fig. 2.4. For example, the typical angular width of the spikes is the same for all
surfaces. Indeed, in our numerical experiment it is linked to the width L of the il-
luminated area (which is here equivalent to the coherence domain). The smallest
angular period of the fringes formed by the (farthest-off) coherent point-source pair
on the surface determines the minimal angular width λ/L of the speckle spikes. This
is clearly illustrated in Fig. 2.5, the larger the coherently illuminated area the thin-
ner the angular speckle structures. In optics and radar imaging, sufficiently coherent
incident beams (lasers) combined with detectors with fine angular resolution permit
to study this phenomenon [14]. In x-ray experiments, the speckle effect can also be
visualised in certain configurations. At grazing angles (e.g. θsc = 1 mrad), the ap-
parent resolution of the detector δqx = k0θδθ (see Sect. 4.5.2.1) may be better than
10−7 k0 m−1. The size of the illuminated area being 5 mm, the speckle structures are
resolved in the detector.

We now suppose that the illuminated area is increased enough so that the typi-
cal angular width of the speckle structures will be much smaller than the angular
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Fig. 2.5 Illustration of the dependence of the angular width of the speckle structures on the size of
the illuminated area. Simulation of the intensity angular distribution for one rough surface illumi-
nated in the first case over 60 μm and in the second case over 30 μm. The incident wavelength is
1 μm, the refractive index is n = 1.5, normal incidence

resolution of the detector. The detector integrates the intensity over a certain solid
angle and, as a result, the fine structures disappear. One notices then that the smooth
intensity patterns obtained for all the different surfaces sn are quite similar. This is
not surprising. Indeed, we have seen in the previous paragraph that the finite angu-
lar resolution of the detector is equivalent to the introduction of a coherence domain
Scoh (that is smaller than the illuminated area A). The measured intensity can be
considered the incoherent sum of intensities stemming from the different subsur-
faces of size Scoh that constitute the sample. We now suppose that the illuminated
area is big enough to cover many “coherent” subsurfaces, A > 30Scoh. Moreover, we
suppose that the coherence domain is large enough so that each subsurface presents
the same statistical properties Lcoh > 30ξ , where ξ is the correlation length and
Lcoh the coherence length. If the set of surfaces {sn} can be described by an ergodic
stationary process, the ensemble of subsurfaces obtained from one particular reali-
sation s j will define the same random process with the same ensemble averaging as
that created from any other realisation sk. Consequently, the scattered intensity from
one “big” surface s j can be seen as the ensemble average of the “subsurface” Scoh

scattered intensity which should be the same for all sk. This assertion is supported
by a comparison between two different numerical treatments of the same scattering
experiment [13, 15].

In Fig. 2.6 we have plotted the diffuse intensity obtained from a deterministic
rough surface S j illuminated by a perfectly coherent Gaussian beam, with a detector
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Fig. 2.6 Simulation of the differential scattering cross-section of a rough deterministic surface
which is one realisation of a random process. The illuminated area covers 3 mm (roughly several
thousands of optical wavelengths). The statistics of the random process are Gaussian height distri-
bution with σ = 0.2μm and Gaussian correlation function with ξ = 1μm. The incident wavelength
is 1 μm. Courtesy of Prof. M. Saillard [13]

of infinite resolution. The rough surface is one realisation of a random process with
Gaussian height distribution function and Gaussian correlation function with corre-
lation length ξ . The incident beam is chosen wide enough so that the illuminated
part of S j is representative of the ergodic random process. In other words, S j can
be divided into many subsurfaces (with similar statistical properties) whose set de-
scribes accurately the random process. The total length of the illuminated spot is
5000ξ . It is seen in Fig. 2.6 that the scattered intensity exhibits a very thin speckle
pattern. In general these fine structures are not visible. In Fig. 2.7 we have aver-
aged the diffuse intensity over an angular width of 5◦, corresponding to the angular
resolution of a detector. We compare in Fig. 2.7 the angular averaged pattern with
the ensemble average of the scattered intensity from subsurfaces that are generated
with the same random process as S j but whose coherent illuminated domain is now
restricted to 30ξ (i.e. to the coherence domain induced by the finite resolution of
the detector). We obtain a perfect agreement between the two scattering patterns.
In this example, we no longer need the precise value of the characteristic function
z(r‖) but solely the statistical properties of the random process that describe conve-
niently these particular surfaces. The integration of the intensity over the solid angle
ΔΩ will then be replaced by the calculation of the ensemble average of the inten-
sity. This ensemble averaging appears also naturally in the case of surfaces varying
with time (such as liquid surfaces like ocean) by recording the intensity during a
sufficiently long amount of time.
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Fig. 2.7 Solid line: Angular average over 5◦ of the differential scattering cross-section of the “big
surface” presented in Fig. 2.6; dotted line: ensemble average of the differential scattering cross-
section of rough surfaces with the same statistics as the “big surface”. Size of each realisation is
30μm, no angular averaging. Courtesy of Prof. Saillard [13]

Each subsurface (either spread spatially via the coherence domains or tempo-
rally) generates an electric field E. The latter can be viewed as a function of the
random process z. The intensity measured by the detector is then related to the mean
(in the ensemble averaging sense) square of the field, 〈|E|2〉. The purpose of most
wave scattering theories is to evaluate the various moments of E. More precisely,
the random field can be divided into a mean and a fluctuating part,

E = 〈E〉+δE. (2.45)

We usually study separately the different contributions to the intensity.

2.4.2 Notions on Coherent (Specular) and Incoherent
(Diffuse) Intensity

In the far field, the scattered electric field Esc behaves like a plane wave with wave
vector ksc and amplitude E(ksc), see Eq. (2.32). It can be written as the sum of a
mean part and a fluctuating part,

Esc = 〈Esc〉+δEsc. (2.46)
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The previous discussions have shown that the measured scattered intensity from
a rough sample (whose deterministic surface profile is assumed to be one realisation
of a given ergodic random process) can be evaluated with the ensemble average of
the intensity 〈|Esc(ksc)|2〉,

〈|Esc|2〉 = |〈Esc〉|2 + 〈|δEsc|2〉. (2.47)

The first term on the right-hand side of Eq. (2.47) is called the coherent intensity
while the second term is known as the incoherent intensity. It is sometimes useful to
tell the coherent and incoherent processes in the scattered intensity. In the following,
we show that the coherent part is a Dirac function that contributes solely to the
specular direction [4] if the randomly rough surface is statistically homogeneous in
the (Oxy) plane.

In most approximate theories, the random rough surface is of infinite extent and
illuminated by a plane wave. Suppose we know the scattered far-field Esc from a
rough surface of defining equation z = z(r‖). We now address the issue of how
Esc is modified when the whole surface is shifted horizontally by a vector d. It is
clear that such a shift will not modify the physical problem. However, the incident
wave amplitude acquires an additional phase factor exp(ikin.d) and similarly each
scattered plane wave Esc acquires, when returning to the primary coordinates, the
phase factor exp(−iksc.d). Thus we obtain,

E
z(r‖−d)
sc = e−i(ksc−kin).dE

z(r‖)
sc . (2.48)

We now suppose that the irregularities of the rough surface stem from a random
spatially homogeneous process. In this case, the ensemble average is invariant under
any translation in the (xOy) plane,

〈
E

z(r‖−d)
sc

〉
=
〈

E
z(r‖)
sc

〉
. (2.49)

This equality is only possible if

〈Esc〉 = Aδ (ksc‖ −kin‖). (2.50)

Hence, when the illuminated domain (or coherence domain) is infinite, the co-
herent intensity is a Dirac distribution in the Fresnel reflection (or transmission)
direction. For this reason it is also called specular intensity. Note that unlike the
coherent term, the incoherent intensity is a function in the ksc‖ plane and its contri-
bution in specular direction tends to zero as the detector acceptance is decreased. In
real life, the incident beam is space limited, the coherence domain is finite, thus the
specular component becomes a function whose angular width is roughly given by
λ/Lcoh.

In many x-ray experiments, one is solely interested in the specularly reflected
intensity. This configuration allows the determination of the z-dependent electron
density profile and is often used for studying stratified interfaces (amphiphilic or
polymer-adsorbed film). The modelisation of the coherent intensity requires the
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evaluation of the single integral Eq. (2.32) that gives the field amplitude while the
incoherent intensity requires the evaluation of a double integral Eq. (2.37). It is
thus much simpler to calculate only the coherent intensity and many elaborate the-
ories have been devoted to this issue [4]. Chapter 3 of this book gives a thorough
description of the main techniques developed for modelling the specular intensity
from rough multilayers. However, it is important to bear in mind that the energy
measured by the detector about the specular direction comes from both the coherent
and incoherent processes inasmuch as the solid angle of collection is non-zero. The
incoherent part is not always negligible as compared to the coherent part especially
when one moves away from the grazing angles. An estimation of both contributions
is then needed to interpret the data.

2.5 Statistical Formulation of the Scattered Intensity Under
the Born Approximation

In this last section, we illustrate the notions introduced previously with a simple
and widely used model that permits to evaluate the scattering crosssection of ran-
dom rough surfaces within a probabilistic framework. We discuss the relationship
between the scattered intensity and the statistics of the surfaces. The main princi-
ples of the Born development have been introduced in Chap. 1, Appendix 1.A, and a
complementary approach of the Born approximation is given in Chap. 4 with some
insights on the electromagnetic properties of the scattered field.

2.5.1 The Differential Scattering Cross-Section

We start from Eq. (2.32) that gives the scattered far field as the sum of the fields
radiated by the induced dipoles in the sample. The main difficulty of this integral
is to evaluate the exact field E inside the scattering object. In the x-ray domain, the
permittivity contrast is very small (≈ 10−6) and one can assume that the incident
field is not drastically perturbed by surrounding radiating dipoles. Hence, a popular
assumption (known as the Born approximation) is to approximate E by Ein. With
this approximation the integrand is readily calculated. For an incident plane wave
Eine−ikin.r, the differential scattering cross-section can be expressed as

dσ
dΩ

=
1

16π2

|Ein⊥|2
|Ein|2

∫
dr
∫

dr′[k2(r)− k2
0][k

2(r′)− k2
0]e

iq.(r−r′), (2.51)

where Ein⊥ is the projection of the incident electric field on the plane normal to
the direction of observation of the differential cross-section. Denoting the unit vec-
tors in direction Ein and Esc, êin = Ein/Ein and (êsc)2 = Esc/Esc, respectively, we
have |Ein⊥| = Ein(êin .̂esc)2. In x-ray experiments, the incident field impinges on
the surface at grazing angle and one studies the scattered intensity in the vicinity
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of the specular component. In this configuration, the orthogonal component of the
incident field with respect to the scattered direction is close to the total incident
amplitude. Yet, we retain the projection term (êin .̂esc)2 in the differential scattering
cross-section for completeness and coherence with the results of Chap. 1. Bearing
in mind the value of the permittivity contrast as a function of the electronic density,
Eq. (2.31), Eq. (2.51) simplifies to

dσ
dΩ

= r2
e(êin êsc)2

∫
dr
∫

dr′ρel(r)ρel(r′)eiq.(r−r′), (2.52)

with ρel the electron density and re the classical electron radius.4 In the case of a
rough interface separating two semi-infinite homogeneous media one gets,

dσ
dΩ

= r2
eρ2

el(êin .̂esc)2
∫ z(r‖)

−∞
dz
∫ z(r′‖)

−∞
dz′
∫

dr‖

∫
dr′‖eiq.(r−r′). (2.53)

Integrating Eq. (2.53) over (z,z′) (with the inclusion of a small absorption term to
ensure the convergence at −∞) yields,

dσ
dΩ

=
ρ2

elr
2
e

q2
z

(êin .̂esc)2
∫

dr‖

∫
dr′‖eiq‖.(r‖−r′‖)eiqz[z(r‖)−z(r′‖)]. (2.54)

This equation concerns a priori the scattering from any (deterministic or not) object.
In this chapter, we are mostly interested by the scattering from surfaces whose sur-
face profile z is unknown or of no interest. We have seen in the preceding sections
that if z is described by a random homogeneous ergodic process, the intensity mea-
sured by the detector can be approximated by the ensemble average of the scattering
cross-section. It amounts to replacing in Eq. (2.54) the integration over the surface
by an ensemble average,

∫
f (r‖)dr‖ = LxLy〈 f 〉, where Lx,Ly are the dimensions of

the surface along Ox and Oy. One obtains,

dσ
dΩ

=
ρ2

elr
2
e LxLy

q2
z

(êin .̂esc)2
∫

dr‖eiq‖.r‖
〈

eiqz[z(r‖)−z(0‖)]
〉
. (2.55)

4 One can make a general presentation of elastic scattering under the Born approximation from
the scattering by an isolated object as presented in Sect. 1.2.4 and Appendix 1.A. The differential
scattering cross-section can be cast in the form

dσ
dΩ

=

∣∣∣∣∣∑j
beiq.r j

∣∣∣∣∣
2

=
∣∣∣∣
∫

drρbeiq.r
∣∣∣∣
2

,

where ρ is the density of scattering objects and b their scattered length as introduced in Eq. (1.34).
The complex exponential is the result of the phase shift between waves scattered in the ksc direction
by scatterers separated by a vector r as shown in Fig. 2.8. For neutrons, b is the scattering length
which takes into account the strong interaction between the neutrons and the nuclei (we do not
consider here magnetic materials); for x-rays, b = re = (e2/4πε0mec2) = 2.8× 10−15 m which is
the classical radius of the electron.
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Fig. 2.8 Phase shift between the waves scattered by two point scatterers separated by a vector r.
The phase shift is (ksc −kin).r = q.r

Note that the expression (2.55) of the differential scattering cross-section ac-
counts for both the coherent and incoherent processes. Hence, this integral does not
converge in the function sense, it contains a Dirac distribution if the surface is infi-
nite. This property will be illustrated with various examples in the following. If the
probability density of z is Gaussian, we can write the differential cross-section as

dσ
dΩ

=
ρ2

elr
2
e LxLy

q2
z

(êin .̂esc)2
∫

dr‖eiq‖.r‖e−
1
2 q2

z 〈[z(r‖)−z(0‖)]
2〉. (2.56)

We see that, under the Born approximation (where we neglect multiple scatter-
ing) the scattered intensity is related to the Fourier transform of the exponential

of the pair-correlation function, g(r‖) =
〈[

z(r‖)− z(0‖)
]2〉

. In the following we

illustrate this result by studying the differential scattering crosssection for various
pair-correlation functions. We start by the expression of the scattering differential
cross-section in the case of a flat surface.

2.5.2 Ideally Flat Surfaces

For ideally flat surfaces g(r‖) is zero everywhere at the surface and the scattering
cross-section yields

dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

(êin .̂esc)2
∫

dr‖eiq‖.r‖ . (2.57)

The integral is the Fourier transform of a constant so that,5

dσ
dΩ

=
4π2r2

eρ2
elLxLy

q2
z

(êin .̂esc)2δ (q‖). (2.58)

The scattered intensity is thus a Dirac distribution in the Fresnel reflection direc-
tion. As expected, for a perfectly flat surface, the reflectivity comes solely from a

5 Let us recall that δ (q‖) = 1
4π2

∫
e−iq‖.r‖dr‖.



82 A. Sentenac and J. Daillant

coherent process (Sect. 2.4.2), the incoherent scattering is null 〈δE2〉= 0. Note that
the reflectivity decreases as a power law with qz. We now turn to the more compli-
cated problem of scattering from rough surfaces that are described statistically by a
homogeneous ergodic random process.

2.5.3 Self-Affine Rough Surfaces

2.5.3.1 Surfaces Without Cut-Off

We first consider self-affine rough surfaces with pair-correlation function g given by
Eq. (2.24), g(r‖) = A0r2h

‖ . With this pair-correlation function, the roughness cannot
be determined since there is no saturation. The scattering cross-section is in this
case,

dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

(êin .̂esc)2
∫

dr‖e−
q2
z
2 AR2h

eiq‖.r‖ , (2.59)

and can be expressed in polar coordinates as

dσ
dΩ

=
r2

0ρ2
e LxLy

q2
z

(êin .̂esc)2
∫

dr‖e−
q2
z
2 AR2h

J0(q‖r‖), (2.60)

with q‖ being the modulus of the in-plane scattering wave vector and J0 the zeroth
order Bessel function. The above integral has analytical solutions for h = 0.5 and
h = 1 and has to be calculated numerically in other cases. For h = 1, the integration
yields,

dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

(êin .̂esc)2e
−q2

‖/q4
z , (2.61)

and for h = 0.5,

dσ
dΩ

= (êin .̂esc)2 r2
eρ2

elLxLy

q2
z

πA(
q2
‖ +
(

A
2

)2
q4

z

)3/2
. (2.62)

The above expressions clearly show that for surfaces of this kind the scattering is
purely diffuse (no Dirac distribution, no specular component).

2.5.3.2 Surfaces with Cut-Off

Rough surfaces are said to present a cut-off length when the correlation function
Czz(r‖) tends to zero when r‖ increases (for example see Eq. (2.26), when Czz(r‖) =

σ2 exp
(
−

r2h
‖
ξ 2h

)
, the cut-off is ξ ). In this general case an analytical calculation is not

possible and the scattering cross-section becomes,
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dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

e−q2
zσ2

(êin .̂esc)2
∫

dr‖eq2
zCzz(r‖)eiq‖.r‖ . (2.63)

The integrand in Eq. (2.63) does not tend to 0 when r‖ is increased. The inte-
gration over an infinite surface does not exist in the function sense. Indeed, dσ/dΩ
accounts for both the coherent and incoherent contributions to the scattered power.
It is possible to extract the specular (coherent) and the diffuse (incoherent) compo-
nents by writing the integrand in the form,

eq2
zCzz(r‖) = 1+

(
eq2

zCzz(r‖) −1
)

. (2.64)

The distributive part (or Dirac function) characterises the coherent or specular re-
flectivity while the regular part gives the diffuse power. Equation (2.63) is then cast
in the form,

dσ
dΩ

=
(

dσ
dΩ

)
coh

+
(

dσ
dΩ

)
incoh

, (2.65)

with
(

dσ
dΩ

)
coh

=
r2

eρ2
elLxLy

q2
z

e−q2
zσ2

(êin .̂esc)2
∫

dr‖eiq‖.r‖

=
4π2r2

eρ2
elLxLy

q2
z

e−q2
zσ2

δ (q‖)(êin .̂esc)2 (2.66)

and
(

dσ
dΩ

)
incoh

=
r2

eρ2
elLxLy

q2
z

e−q2
zσ2

(êin .̂esc)2
∫

dr‖
(

eq2
zCzz(r‖) −1

)
eiq‖.r‖ . (2.67)

The specular part is similar to that of a flat surface except that it is reduced by the
roughness Debye–Waller factor e−q2

zσ2
. The diffuse scattering part may be deter-

mined numerically if one knows the functional form of the correlation function.
When q2

zCzz(r‖) is small, the exponential can be developed as 1+q2
zCzz(r‖). In this

case, the differential scattering cross-section appears to be proportional to the power
spectrum of the surface P(q‖),

(
dσ
dΩ

)
incoh

= r2
eρ2

elLxLye−q2
zσ2

4π2P(q‖)(êin .̂esc)2. (2.68)

We see with Eqs. (2.66) and (2.68) that the Born assumption permits to evaluate
both the coherent and incoherent scattering cross-sections of rough surfaces in a
relatively simple way. This technique can be applied without additional difficulties
to more complicated structures such as multilayers or inhomogeneous films. Unfor-
tunately, in many configurations, the Born assumption proves to be too restrictive
and one can miss major features of the scattering process. More accurate models
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such as the distorted-wave Born approximation have been developed and are pre-
sented in Chap. 4 of this book. Yet, the expressions of the coherent and incoherent
scattering cross-sections given here by the first Born approximation provide useful
insights on how the measured intensity relates to the shape (statistics) of the sam-
ple. The coherent reflectivity, Eq. (2.66), does not give direct information on the
surface lateral fluctuations, except for the overall roughness σ , but it provides the
electronic density of the plane substrate. Hence, reflectivity experiments are used
in general to probe, along the vertical axis, the electronic density of samples that
is roughly homogeneous in the (xOy) plane but varies in a deterministic way along
Oz (e.g. typically multilayers). Chapter 3 of this book is devoted to this issue. On
the other hand the incoherent scattering Eq. (2.68) is directly linked to the height–
height correlation function of the surface. Bearing in mind the physical meaning
of the power spectrum, Sect. 2.2.3, we see that measuring the diffuse intensity at
increasing q‖ permits to probe the surface state at decreasing lateral scales. Hence,
scattering experiments can be a powerful tool to characterise the rough sample in
the lateral (Oxy) plane. This property will be developed and detailed in Chap. 4.
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Chapter 3
Specular Reflectivity from Smooth
and Rough Surfaces

A. Gibaud and G. Vignaud

It is well known that light is reflected and transmitted with a change in the direc-
tion of propagation at an interface between two media which have different optical
properties. The effects known as reflection and refraction are easy to observe in the
visible spectrum but more difficult when x-ray radiation is used (see the introduction
for a historical presentation). The major reason for this is the fact that the refractive
index of matter for x-ray radiation does not differ very much from unity, so that the
direction of the refracted beam does not deviate much from the incident one. The
reflection of x-rays is however of great interest in surface science, since it allows
the structure of the uppermost layers of a material to be probed. In this chapter, we
present the general optical formalism used to calculate the reflectivity of smooth or
rough surfaces and interfaces which is also valid for x-rays.1

3.1 The Reflected Intensity from an Ideally Flat Surface

3.1.1 Basic Concepts

The interaction of x-rays with matter can be understood in a quantitative manner if
the index of refraction for x-ray radiation of the investigated material is known. A
basic determination of this quantity can be obtained in the framework of the phe-
nomenological model of electrons elastically bounded to the nucleus. In this model,
only the electrons are moving and the nuclei are considered to be fixed. Fundamental
equation of motion applied to an electron in an electromagnetic field E yields

m
d2r
dt2 +h

dr
dt

+ kr = −eE, (3.1)

A. Gibaud (B)
Laboratoire de Physique de l’Etat Condensé, UMR 6087, Université du Maine Faculté des
sciences, 72085 Le Mans Cedex 9, France

1 The basic concepts used to determine the reflection and transmission coefficients of an electro-
magnetic wave at an interface were first developed by A. Fresnel [1] in his mechano-elastic theory
of light.
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where h is a phenomenologic friction coefficient and k is a spring constant.
Solution of this equation assuming that the electron follows the oscillations of

the field gives the displacement of an electron with respect to its average position

r =
−e

m(ω2
0 −ω2)+ iω h

m

Eeiωt , (3.2)

where ω0 =
√

k
m is the eigen pulsation of the electron bounded to the nucleus. This

value is much smaller than the pulsation ω of hard x-ray radiations since ω0 ≈
1015 rad/s << ω = 1.2×1019 rad/s.

Therefore one can assume that far from an absorption edge

r ≈ eE
mω2 . (3.3)

The dielectric polarisation becomes

P = ε0χE = − ρ2
e E

mω2 . (3.4)

In this expression ρe is the number of electrons per unit volume, i.e. the electron
density, and χ is the dielectric susceptibility that can be written as

χ = εr −1 = − ρee2

ε0mω2 . (3.5)

The index of refraction is thus

n =
√

εr =
√

1+χ, (3.6)

and since χ � 1, one can write

n = 1− ρee2

2mε0ω2 . (3.7)

Introducing the classical radius re of the electron

re =
e2

4πε0mc2 = 2.8×10−15 m, (3.8)

one finally obtains for no absorption

n = 1− reρeλ 2

2π
. (3.9)

For well-crystallised materials the volume of the unit cell is known and the elec-
tron density ρe can be written as

ρe =∑
k

Zk

Vm
, (3.10)
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where Vm is the unit cell volume, Zk is the number of electrons of atom k in the unit
cell. In the more elaborate quantum mechanics description (see Chap. 1) the atomic
number Zk is modified by the real f ′ and imaginary f ′′ part of the anomalous atomic
form factor at the wavelength λ . The sum is carried out over all atoms contained in
the unit cell.

Alternatively when the stoichiometric composition and the mass density μ of a
material are known, the electron density is also given by

ρe = N μ
∑
k

xk
Zk+ f

′
k+i f ′′k

Mk

∑
k

xk
, (3.11)

with N the Avogadro number, xk the number of atoms k and Mk the molar mass of
atom k.

Generally the index of refraction can be written as (see Sect. 1.4.2 for more
details)

n = 1−δ − iβ , (3.12)

with

δ =
re

2π
λ 2ρe =

re

2π
λ 2μN

∑
i

xi(Zi+ f ′i )
Mi

∑
i

xi
(3.13)

and

β =
re

2π
λ 2μN

∑
i

xi
f ′′i
Mi

∑
i

xi
. (3.14)

As an example we consider bulk silicon that crystallises in a cubic structure (see
Fig. 3.1) containing eight atoms per unit cell of atomic number Z = 14.

The lattice parameter is a = 5.43 Å. This yields ρe = 0.71e/Å
3
, δ = 7.6×10−5

and β = 2 × 10−7 at the copper Kα radiation. When the lattice parameter is

Fig. 3.1 Crystalline structure
of silicon. The unit cell is
cubic and contains eight
atoms
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unknown, as for instance for an amorphous material, one can still determine the elec-
tron density provided the stoichiometry and the density of the material are known.
Typical values for δ are usually in the range 10−5 − 10−6 and β is about 10 times
smaller. A similar equation holds for neutrons where reρe has to be replaced by ρb
(see Chap. 5, Eq. (5.24)).

A specific property of x-rays and neutrons is that since the refractive index is
slightly less than 1, a beam impinging on a flat surface can be totally reflected.
The condition to observe total external reflection is that the angle of incidence θ
(defined here as the angle between the incident ray and the surface) must be less
than a critical angle θc. This angle can be obtained by applying Snell–Descartes’
law with cosθtr = 1, yielding in absence of absorption

cosθc = n = 1−δ . (3.15)

Since δ is of the order of 10−5, the critical angle for total external reflection is
clearly extremely small. At small angles, cos θc can be approximated as 1− θ 2

c /2
and (3.15) becomes

θ 2
c = 2δ . (3.16)

The total external reflection of an x-ray (or neutron) beam is therefore only observed
at grazing angles of incidence below about θ < 0.5◦. At larger angles, the reflectivity
decreases very rapidly as mentioned above.

In this chapter, we will calculate the reflectivity as a function of the incident angle
θ or alternatively as a function of the modulus q = 4π sinθ/λ of the wave-vector
transfer q (see Eq. (2.27) and Fig. 2.3 with ψsc = 0). This means that the following
ratios,

R(θ) =
I(θ)

I0
, (3.17)

R(q) =
I(q)
I0

, (3.18)

will be determined, where I(θ) or I(q) is the reflected intensity (flux of Poynting’s
vector through the detector area) for an angle of incidence θ (or wave-vector transfer
q), and I0 is the intensity of the incident beam. The theory of x-ray reflectivity is
valid under the assumption that it is possible to consider the electron density as
continuous (see Chap. 1). Under this approximation, the reflection is treated like
in optics, and the reflected amplitude is obtained by writing down the boundary
conditions at the interface, i.e. the continuity of the electric and magnetic fields at
the interface, leading to the classical Fresnel relations.

3.1.2 Fresnel Reflectivity

The reflection and transmission coefficients can be derived by writing the condi-
tions of continuity of the electric and magnetic fields at the interface. The reflected
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Fig. 3.2 Reflection and
refraction of an incident
wave polarised along y and
travelling in the xOz plane of
incidence
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intensity, which is the square of the modulus of the reflection coefficient, is the quan-
tity measured in an experiment. Let us consider an electromagnetic plane wave
propagating in the xOz plane of incidence, with its electric field polarised normal
to this plane along the Oy direction. The interface between air and the reflecting
medium which is located at z = 0 as shown in Fig. 3.2 will be assumed to be abrupt.
In order to better emphasise that the same formalism applies for x-rays and visible
optics we use in this section the angles defined from the surface normal as in optics,
together with the grazing angles usually used in x-ray or neutron reflectivity.

The expression for the electric field in a homogeneous medium is derived from
Maxwell’s equations which when combined lead to the propagation equation of the
electric field known as Helmholtz’s equation (see Chap. 1, Eqs. (1.12) and (1.15)
for details)

ΔE+ k2
j E = 0, (3.19)

where k j is the wave vector in medium j. The electric field which is solution of
Helmholtz’s equation is given for the incident (in), reflected (r) and transmitted (tr)
plane waves by

E j = A je
i(ωt−k j .r)êy, (3.20)

with j = in, r or tr, k0 = |kin| = |kr| = 2π/λ = |ktr|/n and êy is a unit vector along
the y axis (see Fig. 3.2). Note that the convention of signs used in crystallography is
adopted here (see Part I, Chap. 1 by F. de Bergevin for details). It is straightforward
to show that the components of the (in), (tr) and (r) wave vectors are

⎧⎨
⎩

kin = k0(sin i1êx − cos i1êz)
kr = k0(sin i1êx + cos i1êz)
ktr = k0n(sin i2êx − cos i2êz).

(3.21)

The tangential component of the electric field must be continuous at the interface
(z = 0). In air, the field is the sum of the incident and reflected fields. Assuming that
the medium is sufficiently thick for the transmitted beam to be completely absorbed,
the following relation must be fulfilled,

Ainei(ωt−k0 sin i1x) +Are
i(ωt−k0 sin i1x) = Atre

i(ωt−k0nsin i2x). (3.22)

Equation (3.22) must be valid for any value of x, so that the following condition
must hold,
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sin i1 = nsin i2. (3.23)

This condition is simply the well-known Snell–Descartes’ second law. As a result
of this, the conservation of the perpendicular component of the electric field leads to

Ain +Ar = Atr. (3.24)

It will be assumed that the media are non-magnetic so that the tangential com-
ponent of the magnetic field must also be continuous. According to the Maxwell–
Faraday equation,

∇×E = −∂B
∂ t

= −iωB. (3.25)

The tangential component Bt is the dot product of the magnetic field with the unit
vector êx, i.e.

Bt =
(∇×E).êx

iω
. (3.26)

Since the electric field is normal to the incident plane, it is polarised along the y axis
and the curl of the field gives

∇×E =
∂Ey

∂x
êz −

∂Ey

∂ z
êx. (3.27)

The tangential component of the magnetic field is then given by

Bt = − 1
iω

∂Ey

∂ z
, (3.28)

and from Eq. (3.22) it is easy to show that the conservation of this quantity yields

(Ain −Ar)cos i1 = nAtr cos i2. (3.29)

Writing the reflected amplitude r = Ar/Ain and the transmitted one t = Atr/Ain, the
following relations are obtained:

1+ r = t

1− r = nt
cos i2
cos i1

.
(3.30)

Combining these two equations, the reflected amplitude coefficient in the case of
a (s) polarisation is found to be

r(s) =
cos i1 −ncos i2
cos i1 +ncos i2

, (3.31)

which by the use of the Snell–Descartes’ relation leads to

r(s) =
sin(i2 − i1)
sin(i1 + i2)

. (3.32)

In the case of an electric field parallel to the plane of incidence, a similar calculation
leads to
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r(p) =
tan(i2 − i1)
tan(i2 + i1)

. (3.33)

Those equations are known as the Fresnel equations [1]. It is easy to show that at
small grazing angles of incidence for x-rays r(p) ≈ r(s) ≈ r. Only (s) polarisation
(electric field polarised perpendicular to the plane of incidence) will be considered
in detail below but some results will also be given for (p) polarisation).

The grazing angle of incidence θ that the incident beam makes with the reflect-
ing surface is usually the experimental variable in a reflectivity measurement. It is
therefore important to express the coefficient of reflection as a function of this angle
θ and also of the refractive index n. Starting from

r =
cos i1 −ncos i2
cos i1 +ncos i2

, (3.34)

and using the fact that the θ and i1 and the θtr and i2 are complementary angles as
shown in Fig. 3.2, Eq. (3.34) becomes

r =
sinθ −nsinθtr

sinθ +nsinθtr
. (3.35)

Applying the Snell–Descartes’ law,

cosθ = ncosθtr (3.36)

produces the following coefficient of reflection:

r (θ) =
sinθ −

√
n2 − cos2 θ

sinθ +
√

n2 − cos2 θ
. (3.37)

In the case of small incident angles (for which cos θ = 1− θ 2/2) and for electro-
magnetic x-ray waves the refractive index (in the absence of absorption) is given by

n2 = 1−2δ = 1−θ 2
c . (3.38)

The general equation (3.37) becomes,

r (θ) =
θ −
√

θ 2 −θ 2
c

θ +
√

θ 2 −θ 2
c

. (3.39)

The reflectivity, which is the square of the modulus of the reflection coefficient,
is given by

R(θ) = rr∗ =

∣∣∣∣∣
θ −
√

θ 2 −θ 2
c

θ +
√

θ 2 −θ 2
c

∣∣∣∣∣
2

. (3.40)

Finally, if the absorption of the x-ray beam by the material is accounted for, the
refractive index takes a complex value and the Fresnel reflectivity is then written as

R(θ) = rr∗ =

∣∣∣∣∣
θ −
√

θ 2 −θ 2
c −2iβ

θ +
√

θ 2 −θ 2
c −2iβ

∣∣∣∣∣
2

. (3.41)
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The reflectivity can equally well be given in terms of the wave-vector transfer q:

R(q) =

∣∣∣∣∣∣
qz −

√
q2

z −q2
c − 32iπ2β

λ 2

qz +
√

q2
z −q2

c − 32iπ2β
λ 2

∣∣∣∣∣∣

2

. (3.42)

When the wave-vector transfer is very large compared to qc , i.e. q � 3qc, the
following asymptotic behaviour is observed:

R =
q4

c

16q4 . (3.43)

It can be seen from Fig. 3.3 that the reflectivity curve or reflectivity profile con-
sists of three different regimes:

– A plateau of total external reflection R = 1 when q < qc

– A very steep decrease when q = qc

– A 1/q4 power law when q > 3qc

It is worth noting that if the value of qc is measured experimentally, this immediately
yields the value of the electron density in the material (see Part I, Chap. 1 by F. de
Bergevin) since,

qc = 3.75×10−2√ρe, (3.44)

where ρe is the electron density in the units e−/Å3.
Finally, remembering that the reflectivity is observed under specular conditions,

reference to the system of axes defined in Fig. 3.2 shows that the Fresnel reflectivity
R(q) can be written as

R(q) =

∣∣∣∣∣∣
qz −

√
q2

z −q2
c − 32iπ2β

λ 2

qz +
√

q2
z −q2

c − 32iπ2β
λ 2

∣∣∣∣∣∣

2

δqxδqy, (3.45)

Fig. 3.3 Calculated
reflectivity of a flat silicon
wafer and asymptotic law
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since q = qz in Eq. (3.45), and the reflectivity of a flat surface is only measurable
in the specular direction. Equation (3.45) completely describes the reflectivity of a
homogeneous material, showing in particular that the reflectivity differs from zero
only for wave-vector transfers normal to the surface of the sample.2

Figure 3.3 illustrates the calculated reflectivity curve for a silicon wafer in the
power law regime and also in the case of a more complete dynamical calculation.
The deviation from unity due to the absorption of the x-rays in the material can be
seen to play a major role in determining the form of the curve in the region close to
the critical edge at q = qc. Equation (3.45) shows quite clearly that the calculation
of a reflectivity curve requires only the electron density and the absorption of the
material (for the wavelength used). Table 3.1 gives some useful data for calculat-
ing the reflectivity of various elements and compounds. A much wider database of
quantities relevant to reflectivity measurements can be found at the following web
site, “http://www-cxro.lbl.gov/optical constants/”.

As a conclusion of this section we wish to stress some points concerning the
validity of Eq. (3.45). It is important to realise that in a real experiment we never
measure the theoretical reflectivity as given by Eq. (3.45) since the incident beam is
not necessarily strictly monochromatic, is generally divergent and the detector has
a finite acceptance. For any instrument, the effects of the divergence of the x-ray
source, of the slit settings or of the angular acceptance of the monochromator and
analyser crystals used to collimate the incident and scattered beams must be taken
into account. Those effects can be described using a three-dimensional resolution
function which is never a Dirac distribution but a three-dimensional function having
a certain width (see Chaps. 4 and 7) which precisely depends on the set-up char-
acteristics detailed above. The value of the measured reflectivity can be estimated
through the convolution of Eq. (3.45) with the resolution function of the instrument.
For measurements made in the incidence plane and under specular conditions, a
first effect is that the convolution smears out the qz dependence of the reflectivity.
This can generally be accounted for by convolving R(qz) with a Gaussian function.
Another most important effect of the finite resolution is that beams outside the spec-
ular direction are accepted by the detector (in other words, the specular condition
δ (qx)δ (qy) is replaced by a function having a finite width Δqx ×Δqy). Then, if the
surface to be analysed is rough, the convolution with the resolution function drasti-
cally changes the problem because part of the diffuse intensity which arises from the
roughness is contained in the resolution volume. It may even happen for very rough
surfaces that the diffuse intensity becomes as intense as the specular reflectivity.

2 For this reason, the reflectivity of a flat surface is described as “ specular”, a term which is more
normally used to describe the reflection by an ordinary mirror. It seems that Compton [2] was
the first to have foreseen the possibility of totally reflecting x-rays in 1923 and that Forster [3]
introduced Eq. (3.41). Prins [4] carried out some experiments to illustrate the predictions of this
equation in 1928, using an iron mirror. He also used different anode targets to study the influence
of the x-ray wavelength on the absorption. Kiessig also made similar experiments in 1931 [5]
using a nickel mirror. An account of the historical development of the subject can be found in
the pioneering work of L.G. Parrat [6] in 1954 and of Abélès [7]. The fundamental principles are
discussed in the textbook by James [8].
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Table 3.1 A few examples of useful data used in reflectivity analysis. The table contains the elec-
tron density ρe, the critical wave vector qc, the parameter δ , the absorption coefficient β , the
structure of the material and its specific mass (δ and β are given at λ = 1.54 Å). A useful formula

for calculating the critical wave-vector transfer is qc(Å−1) = 0.0375
√

ρe
(
e−/Å

3)
, and conversely

ρe = 711q2
c

Material ρel qc δ β Structure ρ

e−/Å3 Å−1 106 107 kg/m3

Si 0.7083 0.0316 7.44 1.75 Cubic, diamond 2330
a = 5.43 Å, Z = 8

SiO2 0.618 0.0294 6.5 1.7 2200
Ge 1.425 0.0448 15.05 5 Cubic, diamond 5320

a = 5.658 Å, Z = 8
AsGa 1.317 0.0431 13.9 4.99 Cubic, diamond 5730

a = 5.66 Å, Z = 8
Glass 67.5% SiO2,12%
crown 0.728 0.0328 8.1 1.36 B2O3, 9% Na2O, 2520

9.5% K2O, 2% BaO
Float
glass 0.726 0.0320 7.7 1.3 –
Nb 2.212 0.056 24.5 15.1 Cubic, bcc 8580

a = 3.03 Å, Z = 2
Cu 2.271 0.0566 24.1 5.8 Cubic, fcc 8930

a = 3.61 Å, Z = 4
Au 4.391 0.0787 46.5 49.2 Cubic, fcc 19280

a = 4.078 Å
Ag 2.760 0.0624 29.25 28 Cubic, fcc 10500

a = 4.09 Å
ZrO2 1.08 0.0395 11.8 –
WO3 1.723 0.0493 18.25 12 – –
H2O 0.334 0.0217 3.61 0.123 – 1000
CH3CH2− 0.32 0.0212 – –
–COOH 0.53 0.0273 – –
CCl4 0.46 0.0254 – –
CH3OH 0.268 0.0194 – –
PS-PMMA 0.377 0.0233 – –

When this is occurring, the only way to use Eq. (3.45) is to subtract the diffuse part
from the reflected intensity to obtain the true specular reflectivity (see Sect. 4.4 for
details).

3.1.3 Measuring the Reflectivity

3.1.3.1 Footprint Effect

The size of the beam is an important parameter because x-ray reflectivity measure-
ments usually start below the critical angle of external reflection. Assuming a rect-
angular beam with dimensions t1t2 (t2 the dimension parallel to the surface of the
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sample) and an incident angle α, it is straightforward to show that the footprint of
the beam on the surface of the sample is

F =
t1

sinα
t2.

At the critical angle of silicon (α � 0.2◦ for E = 8 keV) and for t1 = 100μm, we
find the footprint along the direction of propagation of the beam is about t1

α = 30mm.
This shows that the sample size must be at least 30 mm long to totally reflect the
incident beam at this angle of incidence. This condition is the minimum condition
to be fulfilled to observe total external reflection at the critical angle.

3.1.3.2 Divergence of the Beam

The measurement of an x-ray reflectivity curve necessitates the use of a well-
collimated parallel incident beam. The divergence, Δα , of the incident beam needs
to be small enough to precisely define the incident angle. A similar condition stands
for the divergence Δβ of the reflected beam. The incident and exit angular diver-
gences define the angular width, ω =

√
Δα2 +Δβ 2, of the direct beam. The lower

this value the better the resolution. Needless to say that improving the resolution
gives a better estimation of some typical features like the Kiessig fringes minima
and the critical angle. However, working in a high-resolution mode has the draw-
back to narrow the angular width of the reflectivity ridge. The better the resolution
the more difficult it is to track the reflectivity curve over a wide range of wave-vector
transfers.

The classical reflectivity set-up on a tube laboratory source (Philips X-pert re-
flectometer) gives ω = 0.07◦ (full width half maximum). This yields a width of the
ridge equal to 0.035 ◦. A reflectometer must therefore work with positioning angles
better than 0.002◦ (FWHM).

3.1.3.3 In Practice

The first step when measuring a reflectivity curve is to precisely define the direct
beam. This is made by scanning the detector into the direct beam after having care-
fully attenuated the direct beam to avoid detector saturation. Let I0 be the direct
beam intensity. The second step consists in cutting the direct beam in half. This is
made by translating sample into the direct beam. If the sample surface is parallel to
the direct the alignment procedure is over. Nevertheless this is never the case and
after cutting the direct beam in half, one usually carries out a rotation of the sam-
ple (called a sample scan or sometimes an omega scan) about an axis normal to the
incident plane (i.e. the plane containing the normal to the sample surface and the di-
rect beam). During such a scan the detector remains at a fixed zero position and the
sample rotates. In a sample scan the intensity in the detector has a typical triangular
shape that is peaked at the zero position of the sample. One must iteratively halve
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the direct beam intensity and look for the zero position of the sample. When the
sample is well aligned the intensity goes from 0 to I0/2 and exhibits a symmetric
triangular shape. This measurement is a bit crude since part of the direct beam can
be totally reflected by the sample surface. The alignment can be further refined by
performing a sample scan at different positions along the reflectivity ridge (i.e. at
non-zero q wave-vector transfers). The peak position in the scan yields an incident
angle α that must be reset to 2θ/2. A sample scan about an axis parallel to the inci-
dent beam is also recommended at synchrotron facilities where the beam extension
can be quite small.

3.1.4 The Transmission Coefficient

As shown in Eq. (3.30), the amplitude of the transmission coefficient satisfies the
relation 1+ r = t. It is straightforward to show by combining Eqs. (3.30) and (3.41)
that the transmitted intensity must be given by

T (θ) = tt∗ =

∣∣∣∣∣
2θ

θ +
√

θ 2 −θ 2
c −2iβ

∣∣∣∣∣
2

, (3.46)

T (qz) = tt∗ =

∣∣∣∣∣∣
2qz

qz +
√

q2
z −q2

c − 32iπ2β
λ 2

∣∣∣∣∣∣
2

. (3.47)

The transmitted intensity has a maximum at θ = θc as shown in Fig. 3.4 which
gives the actual variation of the transmitted intensity as a function of the incident
angle θ (or qz) in the case of silicon, germanium and copper samples irradiated
with the copper Kα radiation. The transmitted intensity is nearly zero at very small
angles in the regime of total reflection. It increases strongly at the critical angle
and finally levels off towards a limit equal to unity at large angles of incidence.
The maximum in the transmission coefficient, which is also a maximum in the field

Fig. 3.4 Transmission
coefficient in intensity in
different materials, silicon,
copper and germanium; the
maximum appears at the
critical wave-vector transfer
of the material
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at the interface, is the origin of the so-called Yoneda wings which are observed in
transverse off-specular scans (see Sect. 4.3.1).

3.1.5 The Penetration Depth

The absorption of a beam in a medium depends on the complex part of the refractive
index and limits the penetration of the beam inside the material. The refractive index
for x-rays, defined in Eq. (1.6), is n = 1−δ − iβ . The amplitude of the electric field
polarised along the y direction ((s) polarisation) and propagating inside the medium
of refractive index n is given by

E = E0ei(ωt−k0ncosθtrx+k0nsinθtrz). (3.48)

Since ncosθtr = cosθ (the Snell–Descartes’ law) and sinθtr ≈ θtr, this equation
can be written as

E = E0e+i(ωt−k0 cosθx)eik0nθtrz. (3.49)

The absorption is governed by the real part of eik0nθtrz, with

nθtr = (1−δ − iβ )
√

θ 2 −2δ −2iβ = A+ iB. (3.50)

The coefficients A and B can be deduced from the above equation and B is
given by

B(θ) = − 1√
2

√√
(θ 2 −2δ )2 +4β 2 − (θ 2 −2δ ). (3.51)

It follows that the electric field is

E = E0ei(ωt−k0 cosθx+k0Az)e−k0B(θ)z. (3.52)

Taking the modulus of this electric field shows that the variation of the intensity
I(z) with depth into the material is given by

I(z) ∝ EE∗ = I0e−2k0B(θ)z (3.53)

The absorption coefficient is therefore

μ (θ) = −2k0B(θ) =
−4πB(θ)

λ
, (3.54)

and the penetration depth which is the distance for which the beam is attenuated by
1/e is given by

z1/e (θ) =
1

μ (θ)
=

−λ
4πB(θ)

=
1

2I mkz,1
. (3.55)
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Fig. 3.5 Evolution of the
penetration depth in Si, Ge
and Cu irradiated with the
Kα line of a copper tube as
a function of the wave-vector
transfer. Note that the figure
is presented as a function of
qz = 4π sinθ/λ

Note that this quantity depends on the incident angle θ through the value of B(θ).
In particular, in the limit θ → 0 , neglecting absorption,

z1/e (θc) =
λ

4πθc
. (3.56)

In addition, the penetration depth is wavelength dependent since β depends on
the wavelength. Values of β are tabulated in the International Tables for Crystallog-
raphy, vol. IV [9], or they can also be found at the web site which has already been
referred to, “http://www-cxro.lbl.gov/optical constants/”.

Figure 3.5 shows the variation of the penetration depth as a function of the inci-
dent angle in silicon, germanium and copper for the case of CuKα radiation. The
penetration depth remains small, that is, below about 30 Å when θ is smaller than the
critical angle. This is the property which is exploited in surface diffraction, where
only the first few atomic layers are analysed. The penetration depth increases steeply
at the critical angle and finally slowly grows when θ >> θc.

3.2 X-Ray Reflectivity in Stratified Media

The simple case of a uniform substrate exhibiting a constant electron density was
considered in the previous section. This situation is of course not the most gen-
eral one. For example, stratified media and multilayers are frequently encountered.
Moreover, interfaces generally cannot be considered as steps, but are rough and
thick. Thick interfaces may be approximated by dividing them into as many slabs of
constant electron density as necessary to describe their (continuous) density profile.
Again, it is not possible in this case to use the Fresnel coefficients directly to cal-
culate the reflectivity. The calculation must be performed by applying the boundary
conditions for the electric and magnetic fields at each of the interfaces between the
slabs of constant electron density. The result is usually presented as the product of
matrices, and multiple reflections are taken into account in the calculation known
as the dynamical theory of reflection. Several excellent descriptions of this kind of
calculation can be found in [10–14].
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3.2.1 The Matrix Method

Let us consider a plane wave polarised in the direction perpendicular to the plane of
incidence ((s) polarisation) and propagating into a stratified medium. The axes are
chosen so that the wave is travelling in the xOz plane as shown in Fig. 3.6.

The air is labelled as medium 0 and the strata or layers with different electron
densities are identified by 1� j � n downwards. In this notation the depth Z j+1

marks the interface between the j and j +1 layers. The wave travelling through the
material will be transmitted and reflected at each interface and the amplitudes of
the upwards and downwards travelling waves will be defined as A+ and A−, respec-
tively. The electric field E− of the downwards travelling wave in the jth stratum, for
example, is given by the solution of the Helmholtz’s equation,

E− = A−e+i(ωt−kinx, jx−kinz, jz)êy. (3.57)

The following notation will be adopted in the derivation:

kinx, j = k j cosθ j

kinz, j = −k j sinθ j = −
√

k2
j − k2

inx, j. (3.58)

Note that the value of kinx, j is conserved at each interface since this condition is
imposed by the Snell–Descartes’ law of refraction. The upwards and downwards
travelling waves are obviously superimposed at each interface so that at a depth z
from the surface the electric field in medium j is

E j(x,z) = (A+
j eikinz, jz +A−

j e−ikinz, jz)e+i(ωt−kinx, jx). (3.59)

As kinz, j takes a complex value, the magnitude of the upwards and downwards
electric fields in layer j will be denoted by

U(±kinz, j,z) = A±
j e±ikinz, jz (3.60)

Fig. 3.6 Illustration of the
plane of incidence for a
stratified medium. The
signs− and + label the
direction of propagation of
the wave; air is labelled
medium 0 and the strata are
identified by 1 ≤ j ≤ n layers
in which upwards and
downwards waves travel

z Air

Substrate

x

+

zj

z1

zj + 1

zs

j + 1

ksc,j

–
0

2

j

1

kin,j

→ →
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to simplify the notation. In addition, the quantity kinz, j will be replaced by kz, j. The
condition of continuity of the tangential component of the electric field and the
conservation of kx, j at the depth Z j+1 of the interface j, j +1 lead to

U(kz, j,Z j+1)+U(−kz, j,Z j+1) = U(kz, j+1,Z j+1)+U(−kz, j+1,Z j+1). (3.61)

It was shown in (3.28) that the tangential component of the magnetic field is
continuous when the first derivative of the electric field is conserved. This leads to
the equality below, at the j, j +1 interface,

kz, j
[
U(kz, j,Z j+1)−U(−kz, j,Z j+1)

]
= kz, j+1

[
U(kz, j+1,Z j+1)−U(−kz, j+1,Z j+1)

]
.

(3.62)

The combination of these two equations can be written in a matrix form so that the
magnitudes of the electric field in media j, j +1 at depth Z j+1 must satisfy

[
U(kz, j,Z j+1)

U(−kz, j,Z j+1)

]
=
[

p j, j+1 m j, j+1

m j, j+1 p j, j+1

][
U(kz, j+1,Z j+1)

U(−kz, j+1,Z j+1)

]
, (3.63)

with

p j, j+1 =
kz, j + kz, j+1

2kz, j
,

m j, j+1 =
kz, j − kz, j+1

2kz, j
.

(3.64)

The matrix which transforms the magnitudes of the electric field from the medium
j to the medium j +1 will be called the refraction matrix R j, j+1. It is worth noting
that R j, j+1 is not unimodular and has a determinant equal to kz, j+1

/
kz, j. In addition,

the amplitude of the electric field within the medium j varies with depth as follows:
[

U(kz, j,z)
U(−kz, j,z)

]
=
[

e−ikz, jh 0
0 eikz, jh

][
U(kz, j,z+h)

U(−kz, j,z+h)

]
. (3.65)

The matrix which is involved here will be denoted the translation matrix T . The
amplitude of the electric field at the surface (depth Z1 = 0) of the layered material
in Fig. 3.6 is obtained by multiplying all the refraction and the translation matrices
in each layer starting from the substrate (at z = Zs) as follows:

[
U(kz,0,Z1)

U(−kz,0,Z1)

]
= R0,1T1R1,2 . . .RN,s

[
U(kz,s,Zs)

U(−kz,s,Zs)

]
. (3.66)

All the matrices involved in the above product are 2× 2 matrices so that their
product which is called the transfer matrix M is also a 2×2 matrix. We thus have,
[

U(kz,0,Z1)
U(−kz,0,Z1)

]
= M

[
U(kz,s,Zs)

U(−kz,s,Zs)

]
=
[

M11 M12

M21 M22

][
U(kz,s,Zs)

U(−kz,s,Zs)

]
. (3.67)
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The reflection coefficient is defined as the ratio of the reflected electric field to
the incident electric field at the surface of the material and is given by

r =
U(kz,0,Z1)

U(−kz,0,Z1)
=

M11U(kz,s,Zs)+M12U(−kz,s,Zs)
M21U(kz,s,Zs)+M22U(−kz,s,Zs)

. (3.68)

It is reasonable to assume that no wave will be reflected back from the substrate
if the x-rays penetrate only a few microns, so that

U(kz,s,Zs) = 0, (3.69)

and therefore the reflection coefficient is simply defined as

r =
M12

M22
. (3.70)

The transmission coefficient is defined as the ratio of the transmitted electric field
to the incident electric field

t = U(−kz,s,Zs)/U(−kz,0,Z1), (3.71)

and is given by
t = 1/M22. (3.72)

This method for the derivation of the reflection and transmission coefficients is
known as the matrix technique. It is a general method which is valid for any kind of
electromagnetic wave. However, it should be noted that for a plane wave of polari-
sation (p), the p j, j+1 and m j, j+1 coefficients must be modified in (3.64) by changing
the wave vector kz, j in medium j by kz, j/n2

j . One obtains

p(p)
j, j+1 =

n2
j+1kz, j +n2

j kz, j+1

2n2
j+1kz, j

m(p)
j, j+1 =

n2
j+1kz, j −n2

j kz, j+1

2n2
j+1kz, j

.

(3.73)

Let us remark that instead of considering the passage from U(±kz, j,Z j+1) to
U(±kz, j+1,Z j+1), it is also possible to directly consider the passage from A±

j to
A±

j+1. The corresponding matrix [12] is

[
A+

j

A+
j

]
=

[
p j, j+1ei(kz, j+1−kz, j)Z j+1 m j, j+1e−i(kz, j+1+kz, j)Z j+1

m j, j+1ei(kz, j+1+kz, j)Z j+1 p j, j+1e−i(kz, j+1−kz, j)Z j+1

][
A+

j+1

A+
j+1

]
. (3.74)

In this case, it is no longer necessary to introduce the translation matrix. A third
alternative consists in defining a matrix which links the electric field and its first
derivative at a depth Z j to the same quantities at a depth Z j+1. The matrix is uni-
modular and is defined for an (s) polarised wave as [11, 13]
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∣∣∣∣∣
cosδ j+1

sinδ j+1
kz, j+1

−kz, j+1 sinδ j+1 cosδ j+1

∣∣∣∣∣ , (3.75)

with δ j+1 = kz, j+1
(
Z j −Z j+1

)
. The application of this general electromagnetic for-

malism to the case of x-ray reflectivity is discussed in the next section.

3.2.2 The Refraction Matrix for X-Ray Radiation

As shown in the previous section (Eqs. (3.63) and (3.64)), the refraction matrix is
defined as

R j, j+1 =
[

p j, j+1 m j, j+1

m j, j+1 p j, j+1

]
,

with

p j, j+1 =
kz, j + kz, j+1

2kz, j
m j, j+1 =

kz, j − kz, j+1

2kz, j
. (3.76)

Equation (3.58) shows that kz, j is the component of the wave vector normal to
the surface and that it is equal to

kz, j = −k j sinθ j = −
√

k2
j − k2

x, j. (3.77)

kx, j is conserved and is equal to k cosθ . As a result of this, the z component of k0

in medium j is

kz, j = −
√

k2
0n2

j − k2
0 cos2 θ , (3.78)

where k0 is the wave vector in air. In the limit of small angles and substituting the
expression of the refractive index for x-rays, this becomes

kz, j = −k0

√
θ 2 −2δ j −2iβ j. (3.79)

A similar expression can be obtained for kz, j+1 so that the coefficients p j, j+1 and
m j, j+1, and as a consequence the refraction matrix R j, j+1, are entirely determined
by the incident angle and by the value of δ and β in each layer.

3.2.3 Reflection from a Flat Homogeneous Material

For a homogeneous material, the transfer matrix between air (medium 0) and
medium 1 is simply the refraction matrix, which means that M = R0,1 so that
the reflection coefficient r becomes

r = r0,1 =
U(kz,0,0)

U(−kz,0,0)
=

M12

M22
=

m0,1

p0,1
=

kz,0 − kz,1

kz,0 + kz,1
, (3.80)
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or (neglecting absorption)

r =
−k0θ + k0

√
θ 2 −2δ −2iβ

−k0θ − k0

√
θ 2 −2δ −2iβ

=
θ −
√

θ 2 −2δ −2iβ
θ +
√

θ 2 −2δ −2iβ
. (3.81)

Equation (3.81) is of course identical to the one obtained by using the familiar
expression for the Fresnel reflectivity (see Eq. (3.41)). Similarly, the transmission
coefficient is simply given by

t0,1 =
U(−kz,1,0)
U(−kz,0,0)

=
1

M22
=

1
p0,1

=
2kz,0

kz,0 + kz,1
, (3.82)

which is the same result as the one obtained earlier in Eq. (3.46). It should be re-
alised that these reflection and transmission coefficients have been derived for an
incident wave impinging on the surface of the material with a wave vector kin. In
some cases (for example in the next chapter when treating the distorted-wave Born
approximation), it is important to label these coefficients to indicate which is the
incident wave (Fig. 3.7). The detailed notation for the reflection and transmission
coefficients will then be rin

0,1 and t in
0,1 when kin is concerned and rsc

0,1 and tsc
0,1 for the

wave vector ksc. The explicit expressions for those coefficients are3

t in
0,1 =

2kinz,0

kinz,0 + kinz,1
, (3.83)

tsc
0,1 =

2kscz,0

kscz,0 + kscz,1
. (3.84)

Fig. 3.7 Definition of the
angles for the calculation of
t in
0,1 and tsc

0,1

kin

kin z,0

ksc z,0

θsc

ksc

θin

3.2.4 A Single Layer on a Substrate

The transfer matrix for the case of a layer of thickness −h = Z1−Z2 (h and kz,1 are
negative) deposited on a substrate is given as

R0,1T1R1,2 =
∣∣∣∣ p0,1 m0,1

m0,1 p0,1

∣∣∣∣
∣∣∣∣ e

−ikz,1h 0
0 e+ikz,1h

∣∣∣∣
∣∣∣∣ p1,2 m1,2

m1,2 p1,2

∣∣∣∣ , (3.85)

3 Let us also point out that the field in medium 1 associated with a plane wave travelling with a
wave vector kin,1 is E1(kin,1,r) = U(kin,1,z)e−kin,xx = E0t in

0,1e−kin,xxe−kinz,1z.
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and the reflection coefficient is

r =
M12

M22
=

m0,1 p1,2eikz,1h +m1,2 p0,1e−ikz,1h

m0,1m1,2eikz,1h + p1,2 p0,1e−ikz,1h . (3.86)

Dividing numerator and denominator by p0,1 p1,2 and introducing the reflection
coefficients ri−1,i = mi−1,i/pi−1,i for the two media i and i−1, the reflection coeffi-
cient of the electric field at the layer is then found to be

r =
r0,1 + r1,2e−2ikz,1h

1+ r0,1r1,2e−2ikz,1h . (3.87)

It is worth noting that the denominator of this expression differs from unity by
a term which corresponds to multiple reflections in the material, as shown by the
product of the two reflection coefficients r01r12.
It is also straightforward to determine the transmission coefficient since its value is
given by 1/M22; this yields,

t =
t0,1 t1,2e−ikz,1h

1+ r0,1r1,2e−2ikz,1h . (3.88)

In the case when the absorption can be neglected, the reflected intensity is
therefore,

R =
r2

0,1 + r2
1,2 +2r0,1r1,2 cos2kz,1h

1+ r2
0,1r2

1,2 +2r0,1r1,2 cos2kz,1h
. (3.89)

The presence of the cosine terms in Eq. (3.89) indicates clearly that the reflectiv-
ity curve will exhibit oscillations in reciprocal space whose period will be defined
by the equality

2kz,1h ≈ qz,1h = 2pπ, (3.90)

or

qz,1 =
2pπ

h
. (3.91)

These oscillations are the result of the constructive interference between the
waves reflected at interfaces 1 and 2. The difference in path length which separates
the two waves is

δ = 2hsinθ1 = pλ , (3.92)

so that

qz,1 =
2π p

h
. (3.93)

Figure 3.8 which shows the experimental reflectivity of a copolymer deposited onto
a silicon substrate provides a good illustration of this type of interference phenom-
ena. The experimental curve is presented in open circles and the calculated one as
a solid line. The calculation is made by using the matrix technique in which we
use Eq. (3.85) as starting point. The fact that the reflectivity is less than 1 below
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Fig. 3.8 Measured and
calculated reflectivities of a
thin film of a diblock
copolymer PS-PBMA
deposited on a silicon wafer

the critical angle is related to a surface effect. At very shallow angles, it frequently
happens that the footprint of the beam is larger than the sample surface so that only
part of the intensity is reflected. A correction must then be applied to describe this
part of the reflectivity curve. The roughness of the interfaces is also included in the
calculation as discussed below.

3.2.5 Two Layers on a Substrate

The calculation of the reflectivity can also be made by the matrix technique in the
case of two layers deposited on a substrate. After multiplying the five matrices of
refraction and translation it is possible to express the reflection coefficient as

r =
r0,1 + r1,2e−2ikz,1h1 + r2,Se−2i(kz,2h2+kz,1h1) + r0,1r1,2r2,Se−2ikz,2h2

1+ r0,1r1,2e−2ikz,1h1 + r1,2r2,Se−2ikz,2h2 + r2,Sr0,1e−2i(kz,1h1+kz,2h2) . (3.94)

The above expression clearly shows that for two layers on a substrate, multiple
reflections at each interface appear in the matrix calculation. The phase shifts depend
on the path difference calculated in each medium and therefore on the thickness of
each layer, and indirectly on the angle of incidence. Examples of this kind are en-
countered in metallic thin films which tend to oxidise when placed in air. The reflec-
tivity curve of an oxidised niobium thin film deposited on a sapphire substrate [15]
is shown in Fig. 3.9. The upper layer obviously corresponds to the niobium oxide.
The oxide layer grows as a function of time of exposure to air and reaches a maxi-
mum thickness of around 15 Å after a few hours. The reflectivity curve presented in
Fig. 3.9 displays a very characteristic shape, which includes the following features:

• Short wavelength oscillations which can be identified with the interferences
within the (thick) niobium layer.

• A beating of the oscillations with a longer wavelength in q, which comes from
the presence of the oxide on top of the niobium layer; this leads to two interfaces
at nearly the same altitude from the surface of the sapphire substrate.
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Fig. 3.9 Reflectivity of Nb
thin film on sapphire showing
the beating of spatial
frequency between two
comparable thicknesses
which are the thickness of the
niobium film and the
thickness of the entire film
(niobium and niobium oxide)

There are similarities between this phenomenon and the characteristic beating of
acoustic waves of similar frequency.

3.2.6 Organic Multilayers

The reflectivity curve of multilayered systems exhibit additional interesting features
due to the repetition of a layered motif. This repetition produces a specific period
Λ that gives rise to Bragg peaks located every 2π/Λ . We show here measurements
carried out on a series of different organic film samples prepared on smooth sil-
icon wafer substrates (covered with their native oxide layer), going from a sin-
gle monolayer of OTS (n-octadecyltrichlorosilane, CH3(CH2)17SiCl3) to multilayer
OTS/(NTSOH)x films, where NTSOH is OH-terminated NTS, obtained by the ox-
idation of the terminal ethylenic function of NTS (18-nonadecenyltrichlorosilane,
CH2 = CH(CH2)17SiCl3), and the number of NTSOH layers, x, varies between
1 and 11. Although NTSOH and OTS are similar, both with a silane head group
and a long hydrocarbon tail, there are significant differences. NTSOH has a ter-
minal CH2OH alcohol group whereas OTS (18 carbon atoms) is one carbon atom
shorter than NTSOH (19 carbon atoms) and is terminated with a CH3 methyl
group. As shown in Fig. 3.10 the reflectivity extends to 0.7 Å−1, over a dynamic
range of 9 orders of magnitude. The relatively high overall intensity and the
large modulation intensity indicate that both the film and substrate have Angstrom
scale roughness. Reflectivity curves of samples with variable x exhibit similarly
well-defined Bragg peaks and Kiessig fringes. The Kiessig fringes spacing is
inversely proportional to the total film thickness whereas the Bragg peak po-
sition is inversely proportional to the layer spacing (more details are available
in [16]).
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Fig. 3.10 Calculated (full
line) and measured (symbols)
absolute reflectivity curves for
the films with x = 0, 1, 4, 7
and 11 (for clarity, each curve
is offset by 102 with respect
to the previous one)

3.3 From Dynamical to Kinematical Theory

The full dynamical theory described above is exact but does not clearly show the
physics of scattering because numerical calculations are necessary. Sometimes, one
can be more interested in an approximated analytical expression. Different approx-
imations can be done [13, 17–19], the simplest one being the Born approximation.4

We will start from the dynamical expression of the reflected amplitude calculated
in the previous section (Eq. (3.89)) for a thin film of thickness h deposited on a
substrate

r =
r0,1 + r1,2 e−2ikz,1h

1+ r0,1r1,2 e−2ikz,1h , (3.95)

and degrade it to obtain approximate expressions. Here the phase shift between the
reflected waves on the substrate and the layer denoted by ϕ = −2kz,1h = qz,1h can
be written as a function of either k or q. The term r0,1 r1,2 eiϕ in this equation repre-
sents the effect of multiple reflections in the layer and a first step in the approxima-
tion consists in neglecting this term.

This is illustrated in Fig. 3.11 which shows a comparison between the reflec-
tivities calculated for a diblock copolymer film on a silicon wafer with the matrix
method taking into account or not the multiple reflections at the interfaces. It can
be seen that the two curves are almost identical showing that this approximation

4 This kind of approach was first made by Rayleigh in 1912 in the context of the reflection of
electromagnetic waves [17] but has since become known as the Born approximation since Born
generalised it to different types of scattering processes.
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Fig. 3.11 Comparison between reflectivities calculated with the matrix technique (full line in
Figures a and b) and after neglecting the multiple reflections (triangles in (a)) and in addition

the refraction (circles in b). Calculations are performed for a diblock copolymer (qc = 0.022Å
−1

)
600 Å thick on a silicon substrate

is quite good. Under this approximation, the reflection coefficient r for a stratified
medium composed of N layers is

r = r0,1 + r1,2eiqz,1d1 + r2,3ei(qz,1d1+qz,2d2) + · · ·+ r j, j+1e
i

j
∑

k=0
qz,k dk

+ · · · (3.96)

In Eq. (3.96) the ratio r j, j+1 of the amplitudes of the reflected to the incident
waves at interface j, j +1 is

r j, j+1 =
qz, j −qz, j+1

qz, j +qz, j+1
, (3.97)

with the wave-vector transfer in medium j:

qz, j = (4π/λ )sinθ j =
√

q2
z −q2

c, j. (3.98)

Finally,

R(qz) =

∣∣∣∣∣
n

∑
j=0

r j, j+1eiqzz j

∣∣∣∣∣
2

with r j, j+1 =
qz, j −qz, j+1

qz, j +qz, j+1
.

A further approximation consists in neglecting the refraction and the absorption
in the material in the phase factor in Eq. (3.96):

r =
n

∑
j=0

r j, j+1 e
iqz

j
∑

m=0
dm

. (3.99)

In this case the approximation is more drastic and this can be seen in Fig. 3.11(b)
showing that the region of the curve just after the critical angle is most affected, and
in particular the positions of the interference fringes.
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A final approximation consists in assuming that the wave vector qz does not
change significantly from one medium to the next so that the sum in the denom-
inator of r j, j+1 may be simplified:

r j, j+1 =
q2

z, j −q2
z, j+1

(qz, j +qz, j+1)2 =
q2

c, j+1 −q2
c, j

4q2
z

=
4πre(ρ j+1 −ρ j)

q2
z

, (3.100)

with qc, j =
√

16πreρ j in which re stands for the classical radius of the electron.
These approximations lead to the following expression for the reflection coefficient,

r = 4π re

n

∑
j=1

(ρ j+1 −ρ j)
q2

z
e

iqz
j
∑

m=0
dm

. (3.101)

If the origin of the z axis is chosen to be at the upper surface (medium 0 at a
depth of Z1 = 0), then the sum over dm in the phase factor can be replaced by the
depth Z j+1 of the interface j, j +1 and the equation becomes

r = 4πre

n

∑
j=1

(ρ j+1 −ρ j)
q2

z
eiqzZ j+1 . (3.102)

Finally, if we consider that the material is made of an infinite number of thin
layers, the sum may then be transformed into an integral over z, and the reflection
coefficient r has the form

r =
4π re

q2
z

+∞∫

−∞

dρ(z)
dz

eiqz z dz. (3.103)

A very useful, less-drastic approximation is obtained by replacing (4πreρs)2 /q4
z

by RF (qz) in Eq. (3.103). Under this approximation the reflectivity can be written
as [19]

R(qz) = r.r∗ = RF (qz)

∣∣∣∣∣∣
1
ρs

+∞∫

−∞

dρ (z)
dz

eiqzzdz

∣∣∣∣∣∣
2

. (3.104)

The above expression for R(qz) is not rigorous but it has the advantage of be-
ing easily handled in analytical calculations. In addition, if the Wiener–Khintchine
theorem is applied to this result, we find

R(qz)
RF(qz)

=
1
ρ2

s
T F
[
ρ ′ (z)⊗ρ ′ (z)

]
, (3.105)

so that the data inversion gives the autocorrelation function of the first derivative of
the electron density [20] or the Patterson function [21, 22].

Figure 3.12 illustrates the main features of this data inversion. It is based on
a calculation with a model structure [19] for a sample consisting of two layers, a
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Fig. 3.12 Calculated reflectivity of a two-layer system and its Fourier transform after division of
the data by the Fresnel reflectivity of the substrate. In the calculation the two layers of different
electron densities are 300 and 100 Å thick. The Fourier transform immediately gives the thickness
of each layer without relying on any model. One can also note the expected peak at z = 400 Å in
the autocorrelation function

lower one of 300 Å and an upper one of 100 Å on a substrate. The left-hand side
diagram gives the calculated reflectivity curve which shows a feature similar to the
“beating” effect seen in Fig. 3.9, arising here because of the similar thicknesses
of the two layers. The right-hand side diagram gives the autocorrelation function,
which has intense peaks at the interfaces where the derivative of the electron density
is maximum. In an ideally flat sample these peaks would be delta functions, but
for a real case their width depends on factors such as the roughness, the degree of
interdiffusion at the interfaces and the instrumental resolution.

Equation (3.104) is a good starting point to introduce a last formulation for the
reflected intensity. Starting from Eq. (3.104)

R(qz) = rr∗ = RF (qz)

∣∣∣∣∣∣
1
ρs

+∞∫

−∞

dρ (z)
dz

eiqzzdz

∣∣∣∣∣∣
2

=
(4πreρs)

2

q4
z

∣∣∣∣∣∣
1
ρs

+∞∫

−∞

dρ (z)
dz

eiqzzdz

∣∣∣∣∣∣
2

(3.106)

and using the general relation between the Fourier transform of a function and the
Fourier transform of its first derivative, we have

R(qz) =
(4πre)

2

q2
z

∣∣∣∣∣∣
+∞∫

−∞

ρ(z)eiqz z dz

∣∣∣∣∣∣
2

=
(4πre)

2

q2
z

∫∫
ρ(z)ρ(z′)eiqz(z−z′)dzdz′. (3.107)

To summarise, it has been shown in this section that the kinematic theory is derived
from the dynamical theory by three approximations:
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(1) No multiple reflections at the interfaces
(2) The effects of refraction can be neglected
(3) The reflection coefficient at each interface is proportional to the difference of

electron density

All the expressions discussed above have been derived under the assumption of
ideally flat interfaces in the samples. In such a case, the lateral position of reflecting
points at the interfaces is unimportant, since all of the points are at the same depth
from the surface. It is thus implicit that the intensity is localised along the specular
direction. This means that the expression above can be considered as valid over
the entire reciprocal space after multiplication by the delta functions δqx and δqy

which characterise the specular character of the reflected intensity. Therefore, the
last equation of (3.107) for example may as well be written as

R(q) =
(4πre)

2

q2
z

∫∫
ρ(z)ρ(z′)eiqz(z−z′)dzdz′δqxδqy. (3.108)

Note that

R(q) =
(4πre)2

q2
z

∫∫
ρ(z)ρ(z′)eiqz(z−z′)dzdz′δqxδqy (3.109)

is the well-known Born approximation (or kinematical) expression for x-ray scat-
tering. It can be recovered from the integration of the scattering cross-section

dσ
dΩ

=
4r2

e

LxLyq2
z

∫∫
drdr′ρ(r)ρ(r′)eiq.(r−r′), (3.110)

as shown in Sect. 4.2.2.5

3.4 Influence of the Roughness on the Matrix Coefficients

It was shown in Chap. 2 that scattering from a rough surface/interface can be sep-
arated into two contributions, coherent and incoherent scattering. In this chapter,
we are only interested in the specular intensity, i.e. the coherent intensity given by
the average value of the field. We give here a simple method to take roughness into
account in the reflection by a rough multilayer using the matrix method. We rely on
a more complete and rigorous treatment of the case of a single interface given in
Appendix 1.A to this chapter. In this appendix, it is shown that for roughnesses with
in-plane characteristic lengths smaller than the extinction length ≈ 1μm for x-rays,
introduced in Chap. 1,

rrough
0,1 = rflat

0,1e−2kz,0kz,1σ2
1 . (3.111)

5 We may notice that if applied to a flat surface this expression would lead to R(q) =
q4

cδ (qx)δ (qy)/16q4
z .
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The exponential in Eq. (3.111) is known as the Croce–Névot factor [23]. We now
apply the method of Sect. 3.A.3 to the matrix method. Starting from Eq. (3.74)

[
A+

j

A−
j

]
=

[
p j, j+1ei(kz, j+1−kz, j)Z j+1 m j, j+1e−i(kz, j+1+kz, j)Z j+1

m j, j+1ei(kz, j+1+kz, j)Z j+1 p j, j+1e−i(kz, j+1−kz, j)Z j+1

][
A+

j+1

A−
j+1

]
, (3.112)

which links the amplitudes of the electric field in two adjacent layers, we assume that
the position of the interface Z j+1 between the j and j+1 layers fluctuates vertically
as a function of the lateral position because of the interface roughness. Following a
method proposed by Tolan [24], we replace the quantity Z j+1 by Z j+1 + z j+1(x,y)
in the above matrix and we take the average value of the matrix over the whole area
coherently illuminated by the incident x-ray beam (in the spirit of Sect. 3.A.3, this
amounts to averaging the phase relationship between the fields above and below the
interface). This leads to (as shown in Appendix 1.A, such expressions are only valid
at first order in 〈z2

j〉)
〈[

A+
j

A−
j

]〉
=
〈[

p j, j+1ei(kz, j+1−kz, j)Z j+1ei(kz, j+1−kz, j)z j+1(x,y)

m j, j+1ei(kz, j+1+kz, j)Z j+1ei(kz, j+1+kz, j)z j+1(x,y) · · ·

m j, j+1e−i(kz, j+1+kz, j)Z j+1e−i(kz, j+1+kz, j)z j+1(x,y)

p j, j+1e−i(kz, j+1−kz, j)Z j+1e−i(kz, j+1−kz, j)z j(x,y)

][
A+

j+1
A−

j+1

]〉
. (3.113)

For Gaussian statistics, or at lowest order in σ2
j , we have, assuming the indepen-

dence of the different interface roughnesses:
〈[

A+
j

A−
j

]〉
=

[
p j, j+1ei(kz, j+1−kz, j)Z j+1e−(kz, j+1−kz, j)2σ2

j+1/2

m j, j+1ei(kz, j+1+kz, j)Z j+1e−(kz, j+1+kz, j)2σ2
j+1/2

m j, j+1e−i(kz, j+1+kz, j)Z j+1e−(kz, j+1+kz, j)2σ2
j+1/2

p j, j+1e−i(kz, j+1−kz, j+1)Z j+1e−(kz, j+1−kz, j)2σ2
j+1/2

]〈[
A+

j+1
A−

j+1

]〉
.

(3.114)

The influence of the interface roughness is apparent from this result. The coefficients

m j, j+1 and p j, j+1 are, respectively, reduced by the factors e−(kz, j+1+kz, j)2σ2
j+1/2 and

e−(kz, j+1−kz, j)2σ2
j+1/2. It was shown in the previous section that the ratio m j, j+1/p j, j+1

is the relevant quantity in the expression of the reflected intensity. This ratio which
is the Fresnel coefficient of reflection at the altitude Z j+1 is therefore reduced by the
amount

rrough
j, j+1

rflat
j, j+1

= e−2kz, j+1kz, jσ2
j+1 = e−qz, j+1qz, jσ2

j+1/2 (3.115)

in the presence of interface roughness. In the particular case where the Born ap-
proximation holds (kz, j = kz, j+1 = (1/2)qz), the Fresnel coefficient is reduced by
the amount
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Fig. 3.13 Influence of
roughness on the specular
reflectivity of a 600 Å thin
layer deposited on a substrate

rrough
j, j+1

rflat
j, j+1

= e−2kz, j+1kz, jσ2
j+1 = e−q2

zσ2
j+1/2, (3.116)

which is the Debye–Waller factor.
We present in Fig. 3.13 how the introduction of the roughness at the interfaces

modifies the reflectivity curve. In particular, this figure shows that the reflectivity
curve falls faster for rough interfaces and that the amplitude of the fringes is signif-
icantly reduced at high wave-vector transfers.

As a conclusion we have shown in this chapter that the calculation of the reflec-
tivity can be properly handled by the matrix technique. This technique is the most
widely used in the calculation of the specular reflectivity for the reason that it is
simple and exact. However, the main drawback of this technique is that it is only
valid in specular conditions, which is an important restriction. Incoherent scattering
is discussed in the next chapter, using in particular the matrix formalism described
above.

3.A Appendix: The Treatment of Roughness in Specular
Reflectivity

François de Bergevin, Jean Daillant, Alain Gibaud and Anne Sentenac

The aim of this appendix is to give an overview of the different methods which
can be used to take roughness into account in specular reflectivity. We first present
the second-order Rayleigh calculation for a sinusoidal grating in order to introduce
the main ideas. Then, we discuss the distorted-wave Born approximation (DWBA)
results (see Chap. 4 for a presentation of this approximation). Finally, we shortly
discuss a simple method that allows one to retrieve the Debye–Waller and Croce–
Névot factors which are the limiting laws for, respectively, large and small in-plane
correlation lengths. We consider scalar waves in all this appendix.
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3.A.1 Second-Order Rayleigh Calculation for a Sinusoidal Grating

Let us consider the problem of the reflection by a rough interface (here simplified
as a one-dimensional sinusoidal grating of period Λ ) separating two media and illu-
minated by a plane wave ei(ωt−kinxx−kinzz). The Rayleigh method [25, 26] consists in
expanding the fields in both media as sets of plane waves and in writing the bound-
ary conditions for the field and its first derivative. In order to write these boundary
conditions, one has to calculate the values of the field and of its first derivative on
the surface, as a series of terms like

aη exp−i(kη ,xx+ kη ,zz(x)) ,

where η refers to both the medium (above or below the interface) and to the plane
wave in the expansion (in particular, the component of its wave vector parallel to
the surface describing the scattering order). One then expands

aη exp−i(kη ,xx+ kη ,zz(x)) ≈ aη exp−i(kη ,xx)
[

1− ikη ,zz(x)−
1
2

k2
η ,zz

2(x)+ · · ·
]
.

(3.A1)

Since z(x) can be expressed as a sum of two exponentials (z0/2)exp(±2iπx/Λ)
(in the general case this would be a particular term in the Fourier expansion of the
roughness), the expressions in the boundary conditions consist of sums of exponen-
tials in x. For the boundary conditions to be satisfied for all x, it is necessary and
sufficient that they are satisfied for each of these exponentials separately. We now
have a series of equations, each corresponding to a scattering order:

kinx, kinx ±2π/Λ , . . . .

We define in medium 0 or 1

k±1
(0,1)z =

√
k2
(0,1)−

(
kinx ±

2π
Λ

)2

,

and similarly
k0 cosθ±1 = k0 cosθin ±2π/Λ .

A series in z0 appears in each equation, and the system will be solved perturba-
tively at each order. At zeroth order we get the Fresnel coefficients. At first order in
z0 (in amplitude), we get for the intensities in the ±1 scattering orders [27]

I(1)
±1 = I0z2

0k0,zk
±1
0,z

√
RF(θin)RF(θ±1), (3.A2)

where RF(θin) and RF(θ±1) are the Fresnel reflection coefficients in intensity for
the angles θin and θ±1, respectively.
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At second order (in amplitude) in z0, we get in the specular

I(2)
0 = −I0z2

0k0,zRF(θin)Re
(

2k1,z + k+1
0,z − k+1

1,z + k−1
0,z − k−1

1,z

)
. (3.A3)

We now try to find the change in reflectivity coefficient in the limiting cases of
large and small Λ values.

• Large Λ values For large Λ values, the diffracted orders in both media get close
to the specular and transmitted beams:

k±1
0,z ≈ k0,z, k±1

1,z ≈ k1,z.

Then
R(θin) ≈ RF(θin)+ I(2)

0 /I0 ≈ RF(θin)(1−2z2
0k2

0,z).

Since one has 〈z2〉 = z2
0/2,

R(θin) ≈ RF(θin)(1−4k2
0,z〈z2〉)

which is the first-order expansion of the Debye–Waller factor in 〈z2〉.
• Small Λ values One has

k±1
0,z − k±1

1,z =
k2

c

k±1
0,z + k±1

1,z

, (3.A4)

where kc = k0
√

1−n2 is the critical wave vector. For small Λ values, k±1
0,z ,k

±1
1,z �

kc and therefore, using Eq. (3.A4), k±1
0,z − k±1

1,z � kc. Since k1,z is never much
smaller than kc, it is the only term that survives in the sum in Eq. (3.A3). There-
fore,

R(θin) ≈ RF(θin)(1−4Re(k0,zk1,z)〈z2〉),
which is the first-order expansion of the Croce–Névot factor [23] in 〈z2〉.

3.A.2 The Treatment of Roughness in Specular Reflectivity
Within the DWBA

The issue of the modification of the specular intensity due to surface scattering has
been considered within the distorted-wave Born approximation, in particular in [28,
29]. The results of [28, 29] agree with the Rayleigh treatment given in the previous
section. It is nevertheless interesting to note that contrary to what is sometimes
assumed, the specular intensity can be affected in the first-order DWBA. This is
because the basis for this approximation includes both the reflected and transmitted
fields. It is therefore possible that single scattering events transfer energy from one
field to the other (in fact, energy would be conserved at this level of approximation
for the sum of the reflected and transmitted fields, see Appendix 1.A). In particular,
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the first-order result of the DWBA Eq. (4.47) or [28] yields the Croce–Névot factor
at first order in 〈z2〉.
Exercise: Show this.

The second-order DWBA [29] shows, as did the Rayleigh calculation discussed
above, that the Debye–Waller factor is obtained for large Λ values whereas the
Croce–Névot factor is obtained for small Λ values.

3.A.3 Simple Derivation of the Debye–Waller
and Croce–Névot Factors

The accuracy of approximated expressions for the reflectivity coefficient mainly
relies on the quality of the approximations made on the local value of the electric
field at the interface. Let us consider the two limiting cases of roughnesses with
very small and very large in-plane characteristic length scales. If the characteristic
length scale of the roughness is much larger than the extinction length (we have a
slowly varying interface height), the field can be written locally for the well-defined
interface at a scale smaller than the roughness characteristic scale (this is the so-
called tangent plane approximation):

E j(x,z) =
(

A+
j eik j,zz +A−

j e−ik j,zz
)

eiωt−kiin‖.r‖ . (3.A5)

The field will be reflected at different heights depending on x, and the reflection
coefficient is

rrough =
〈A+

0 〉x

A−
0

,

where the average value is taken over the surface. Writing the boundary conditions,
one obtains with the notations of Chap. 3 for a surface located at z

{
A+

0 eikz,0z +A−
0 e−ikz,0z = A−

1 e−kz,1z

kz,0A+
0 eikz,0z − kz,0A−

0 e−ikz,0z = −kz,1A−
1 e−kz,1z.

(3.A6)

One obtains

rrough =
〈A+

0 〉x

A−
0

= r0,1〈e2ik0,zz〉 = r0,1e−2k0,z〈z2〉,

which is the Debye–Waller factor as expected. We obtain this factor because the
roughness characteristic length is large enough for the incident and reflected fields
to have a precise phase relationship.

We now assume the characteristic length to be much smaller than the extinction
length, which is on the order of 1μm. Then, the electric field is not perturbed at the
roughness scale (in other words, there are no short-scale correlations between the
field and the roughness). There is only an overall perturbation of the electric field
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which can be written to a good approximation as the combination of upwards and
downwards propagating plane waves, whose amplitude will however depend on the
roughness:

E j(x,z) =
(

A+
j,effe

ik j,zz +A−
j,effe

−ik j,zz
)

eiωt−kiin‖.r‖ , (3.A7)

where the A j,eff ( j = 0,1) are unknown effective amplitudes for the rough interface.
The reflection coefficient is defined as

rrough =
A+

0,eff

A−
0,eff

.

Now, we assume that the phase relationships between the field above and below
the interface are only valid on average because the field “does not see” the local
roughness (this is of course not a rigorous argument, the justification for Eq. (3.A8)
is the calculations given in the two previous sections):

{
2k0,zA

+
0,eff = (k0,z − k1,z)A−

1,eff〈e−i(k0,z+kz,1)z〉
2k0,zA

−
0,eff = (k0,z + k1,z)A−

1,eff〈ei(k0,z−kz,1)z〉.
(3.A8)

Equation (3.A8) can be obtained from Eq. (3.A6) or directly using the matrix
method Eq. (3.74). Then

rrough =
A+

0,eff

A−
0,eff

= rflate−2kz,0kz,1〈z2〉, (3.A9)

one obtains the Croce–Névot factor. Note that in this case, the transition layer
method would give an equally good result. Note also that the method could be ap-
plied to the averaging of transfer matrices, as it is done in Chaps. 3 and 6.

3.B Appendix: Inversion of Reflectivity Data

François Rieutord

3.B.1 Introduction

Inversion of scattering data is a – if not the – general problem of crystallography.
It amounts generally to the problem of phase determination. In a scattering exper-
iment (x-ray or neutron), we have access to the intensity of the scattered radiation
only, not to its phase. Techniques exist that provide also the phase (e.g. x-ray holog-
raphy) but they are not (yet) standard techniques. Having lost the phase data, one
cannot directly reconstruct the structure of the scattering object from the scattering
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measurements. Looking for phase determination essentially amounts to a better un-
derstanding of the origin of the scattered signals within simple or complex sys-
tems. Paradoxically, one problem of x-ray or neutron reflectivity is the simplicity
of an exact calculation of the reflectivity (i.e. taking into account multiple scatter-
ing or absorption). One just has to split the electron density profile into a series
of boxes and perform the product of matrices describing light propagation through
these boxes [30–33]. The formalisms, derived from multilayer optics, are very pow-
erful, easy to set up on a computer and include in standard parameter refinements
routines [34]. As a consequence, the temptation is strong to use such formalisms in
automatic fitting routines of electron density profiles. However, these calculations
often hinder the origin of scattering and do not allow one to estimate the confidence
degree one can have in a given solution. Moreover, the splitting of a profile into a
stack of boxes (layers) is often not the best way to describe the main features of
a reflection curve as the different features of a curve are not equally sensitive to
the different profile parameters. Our approach is here to provide alternative descrip-
tions of profiles and analyse in detail the structure scattering data relation, be it with
approximations. In the following we shall be mainly concerned with the so-called
kinematical approximation (single scattering and low absorption, i.e. use of Fourier
transforms).

Mathematically, the scattered amplitude reads, in the single scattering approxi-
mation, as a Fourier transform of the structure:

I(q) = |a(q)|2 =
∣∣∣∣
∫

dreiqrρ(r)
∣∣∣∣
2

. (3.B1)

The reflection geometry is only a special scattering geometry where the problem
is rather simpler being one dimensional:

R(qz)
RF(qz)

=
∣∣∣∣
∫

dzeiqzz 1
ρ−∞

∂ρ(z)
∂ z

∣∣∣∣
2

, (3.B2)

where RF(qz) is the Fresnel reflectivity of the substrate with electron density
ρ−∞.

In the following, we shall review different means that can be worked out to
recover the structure, keeping in mind that we shall always need additional
information to the strict scattering intensity to help solve part or all of the missing
information due to the lack of phase information. We shall stay within the kinemat-
ical approximation where the reflectivity is proportional to the FT of the derivative
of the index profile. (Note: In principle we could think of using the part of the
reflectivity close to total external reflection to separate between two profiles hav-
ing the same Fourier transform (and hence the same reflectivity at large angles).
Even though accurate measurements of θc are not always straightforward to per-
form, this part was sometimes used in the past to raise degenerescence between two
solutions.)
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3.B.2 A Few Examples

In this section we shall give a few examples proving that strict inversion of reflection
data is impossible, showing that two dissimilar profiles can yield the same reflection
curve.

The first case (Fig. 3.14) would correspond to a thin film deposited on a sub-
strate and bound by rough interfaces. The figure shows that the reflection curves are
identical, although the profiles are very different. If one plots the derivative of the
index profiles, the reason of the similarity immediately shows up: the two profiles
are symmetrical to each other and the two scattered amplitudes have only different
phase differences. Indeed, we write the profile derivative as

ρ ′(z) = Δρ1 exp

(
− z2

2σ2
1

)
+Δρ2 exp

(
− (z−d)2

2σ2
2

)
, (3.B3)

with a reflected amplitude equal to

a(q) ∝ Δρ1 exp(−q2σ2
1 )+Δρ2 exp(−q2σ2

2 )exp(iqd). (3.B4)

The complex amplitude reads in one case

a1(q) = A1(q)+A2(q)exp(iqd), (3.B5)

and in the other
a2(q) = A2(q)+A1(q)exp(iqd), (3.B6)

with A1(q) and A2(q) real. One can write

a1(q) = F(q)exp(iΦ(q)) (3.B7)

a2(q) = a1(q)exp(iqd) = F(q)exp(−iΦ(q))exp(iqd). (3.B8)

The two complex amplitudes differ only by a phase term.

Fig. 3.14 Two profiles giving
the same reflectivity curve
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Fig. 3.15 Two profiles giving
the same reflection with
interfaces at different
locations
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In the same way, we can imagine more complex situations and profiles, where
the same type of symmetries are present ending with different interface positions
(see Fig. 3.15 for example).

In a still more general way, we see how to generate, from a given profile, other
profiles with the same reflection curves. If a(q) is the complex amplitude scatted by
profile ρ(z),

a(q) ∝
∫ ∞

−∞
ρ ′(z)exp(iqz)dz. (3.B9)

[Note: asρ(z) is a physical quantity, we have a(q) = a(−q)]. We get by inverse
Fourier transform,

ρ ′(z) ∝
∫ ∞

−∞
a(q)exp(iqz)dq. (3.B10)

We see that any profile obtained replacing a(q) by another complex function with
the same module will give the same reflectivity. We just need to add any phase φ(q)
to a(q). The only constraint on φ(q) comes from the condition a(q) = a(−q) that
requests that φ(q) be odd (φ(−q) = −φ(q)). On Fig. 3.16, we see two profiles gen-
erated this way, adding a phase of type φ(q) = q3σ3 to the FT of the first profile and
back transforming again. As the choice of φ(q) is open, we can generate this way
a wide variety of different profiles yielding identical reflections. For the Fig. 3.14
example, one writes a(q) = |a(q)|exp(iφa(q)), and the phase difference between the
two complex scattered amplitudes reads

Fig. 3.16 Two profiles giving
the same reflectivity curve,
obtained by phase changes of
the complex amplitude and
inverse Fourier transform
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φ(q) = −2φa(q)+qd. (3.B11)

We will show in the following a few special cases where we use a special physical
knowledge about the profile to possibly choose only one solution among the set of
mathematically possible solutions.

3.B.3 Multilayers

We shall first study the multilayer case. Here the additional knowledge brought into
the problem is the periodic nature of the unknown index profile. This case is inter-
esting as it is close to the case of traditional crystallography where crystals have
periodic structures and where the question is to find the distribution of material
within the elementary cell.

As the system is periodic, the intensity is concentrated into periodic Bragg peaks
and the internal structure within the cell is reconstructed by Fourier series rather than
continuous integrals. The phase problem is now discrete: we need to get the phase
of each individual Bragg peak. Then the structure may be worked out by simple
inverse Fourier series of the scattered amplitude.

Crystallographers have developed numerous methods to deal with the phase loss
or to get back this phase. In a general way, methods that are used for this purpose are
based on the interference between a reference wave and the unknown signal whose
phase is wanted. Most popular methods are

– The heavy atom method: within the structure, it acts as a reference. The phase of
the reference signal is obtained by changing the wavelength close to an absorp-
tion edge.

– The multiple diffraction method: one looks on the effect on a Bragg peak when
a second Bragg peak is brought in reflection position. The change in intensity of
the different peaks allows an estimate of the phase difference between the peaks.
A series of phase difference between peaks (triplets) can then be obtained which
may allow data inversion.

In the method below, we follow the same ideas but the phase reference is a sur-
face reflection: we shall be interested in the case of a periodic structure deposited
on a substrate while we try to determine the multilayer structure (i.e. the structure
factor of a period of the multilayer). Our method is based on the statement that in a
reflectivity signal from such a system, we do not only see the FT of the multilayer
structure (a series of Bragg peaks with secondary maxima) but we also see a con-
tribution from the external interfaces bounding the film. This appears as a variation
in the intensity of secondary maxima on the side of the main Bragg peaks. Actu-
ally, we find in the literature several names for these secondary maxima that may be
confusing:

– They are no Kiessig fringes that are equal inclination fringes due to interference
between outer surfaces and that we observe even if the film has no inner structure.
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– They are not pure secondary maxima due to the finite-size structure (and that we
would see even if the film had no outer surfaces, e.g. if it was embedded in a
matrix with the same average density).

We are dealing with an interference between these two quantities. This interference
may be constructive on one side and destructive on the other side due to possible
sign change of structure factor at Bragg peak position, explaining the large asym-
metry that is often observed around them. We explain in the following how to take
advantage of this interference to get the phase of the structure factor. The idea was
first worked out on Langmuir–Blodgett layers [35, 36] but it is of course applicable
to a broader range of multilayer systems.

Here we shall present the principles on a simple case, using the kinematical ex-
pression of the reflected intensity:

RN(q) =
R(q)

RF(q)
=
∣∣∣∣T.F.(

ρ(z)
ρ−∞

)
∣∣∣∣
2

. (3.B12)

In the case of a multilayer deposited on a substrate

RN(q) = |k(q)+ p(q) f (q)|2 , (3.B13)

where k(q) is the amplitude reflected by our reference, p(q) and f (q) the form
and structure factor, respectively. In the present case, the reference is the reflected
amplitude from the substrate, which is a constant (=1 since we normalised the curves
to the Fresnel reflection). To improve the description one can use an amplitude of
type a = aexp(−q2σ2/2) to account for attenuation due to a rough interface.

The form factor p(q) can be simply expressed for a finite-size multilayer:

p(q) = exp[iqd/2]
N

∑
n=0

(exp(iqd))n, (3.B14)

i.e.

p(q) =
sin(Nqd/2)
sin(qd/2)

exp(iqNd/2). (3.B15)

In a similar way as for the reference, we can introduce an additional damping to
the amplitude, adding an imaginary part to the form factor phase:

ϕ(q) = qd + i
q2σ2

2
. (3.B16)

We get for p(q), including absorption

p(q) =
i
2

exp( q2σ2

4 )
sin(qd/2+ iq2σ2/4)

(
1− exp(iNqd)exp(−Nq2σ2/2)

)
. (3.B17)



3 Specular Reflectivity from Smooth and Rough Surfaces 123

If absorption is strong, we get

p(q) =
i
2

exp( q2σ2

4 )
sin(qd/2+ iq2σ2/4)

. (3.B18)

The expressions give a maximum amplitude for q = n2π/d and determine the
shape of Bragg peaks.

The structure factor f (q) is the data we are looking for. It reads

f (q) =
∫ d/2

−d/2

ρ ′(z)
ρ−∞

exp[iqz]dz. (3.B19)

Taken at Bragg peak positions (q = n2π/d), this expression provides the Fourier
coefficients of the structure factor fn = | fn|exp(iϕn). The problem set is the deter-
mination of not only | fn| but also ϕn. If we can measure these two data, for a large
number of Bragg peaks, we can then get back to the structure (ρ ′(z)) through its
Fourier series expansion,

ρ ′(z)
ρ−∞

=
2
d ∑n

| fn|cos

(
n

2π
d

z+ϕn

)
, (3.B20)

and, integrating

ρ(z)
ρ−∞

=
ρ(0)
ρ−∞

+∑
n

| fn|
πn

sin

(
n

2π
d

z+ϕn

)
. (3.B21)

We have represented on Fig. 3.17 the interference figures of a Bragg peak with
a reflection signal coming from the substrate, for different values of the structure
factor phase. We notice strong shape differences close to peak feet as a function of
phase showing we have a way to measure the phase data, e.g. fitting expression (1)
to experimental data.

We put into practice the method on several types of multilayers as Langmuir–
Blodgett layers [35, 36]. As an example, we represent on Fig. 3.18 a reflectivity
curve obtained on a protein multilayer (bacteriorhodopsin) deposited on a silicon

Fig. 3.17 The four
interference structures for
a Bragg peak interfering with
a surface reflection for phases
in the four quadrants
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Fig. 3.18 Reflectivity curve
of a bacteriorhodopsin
multilayer including N ≈ 5
layers

substrate. The reflection curve obtained is of poor quality showing only three Bragg
peaks, as the multilayer included only a few layers (N ≤ 5) with raw deposition
conditions. However, we can recognise easily on the curve the different shapes of
Fig. 3.17 from which we can extract three (amplitude, phase) doublets for the struc-
ture factor at the Bragg peak locations. The Fourier reconstruction of the period
has some similarity with the structure along c of the protein, so that the measure-
ments are already accurate enough to indicate under which orientation the protein
in the purple membrane deposits on silicon. It is clear that in these cases the inter-
est of such measurement is only anecdotic and that a much larger number of peaks
would be necessary to get interesting data. This may be achievable as for Langmuir–
Blodgett layers for instance, several tens of peaks are observable. For protein layers
and bacteriorhodopsin in particular, the same is true. This type of method using a
surface as a reference has a special interest for thin layer only. For bulk crystals,
they seem hardly applicable unless one is able to achieve extremely flat outer sur-
faces (the outer surface works also as a reference).

Note that other references may be considered not using a specular reflection but a
Bragg line of the substrate (if it is a single crystal, e.g. silicon). Rotating the sample
around the normal to the Bragg plane, we can bring adsorbate line in reflection
position whose phase may be determined with respect to the substrate line. This kind
of method may find an application for polycrystalline samples on substrates. The
method is then similar to the triplet method mentioned above, with the advantage of
a known substrate.

3.B.4 Simple Profiles

In the case of a simple interface, for instance the external surface of a material, the
first parameter that can be extracted from the reflection curve is the index change at
the vacuum/material interface (this scales the reflectivity curve). Looking in more
details, we can also extract the roughness, i.e. the width parameter for the interface.
Looking further we can track the presence of modulations, etc. which may put into
evidence a surface layer, a composition profile, etc. We propose here to formalise
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the relation between the reflectivity and the structure to check how far we can go in
such description. To do so, we have expanded the derivative of the electron density
profile in moments that naturally account for these different terms (index difference,
roughness, etc.)

By definition, one gets

Mi =
1

ρ−∞

∫ ∞

−∞

(
∂ρ
∂ z

)
zidz. (3.B22)

This definition may be adjusted to use normalised quantities. The first three mo-
ments give the scale of the problem:

M0 is the electron density jump (the index jump).
M1 is the profile centre position, which can always be set to zero choosing the
origin of the x-scale.
M2 is the mean quadratic width of the profile.
Taking z0 = M1, we can define the Mi so that M0 = 1, M1 = 0 and M2 = σ2.

We can define dimensionless quantities for higher order moments:

r = M3/M3/2
2 , K = M4/M2

2 −3.
These data quantify the degree of asymmetry and extent at large distances for the

profile. The data of all the different moment allow one in principle to reconstruct the
profile. A convenient way of doing so is to decompose the profile (or its derivative)
(which is square summable) in a series of Hermite functions nth derivative of a
Gaussian. This type of expansion (used in quantum mechanics or probability theory)
has the advantage of being almost invariant upon Fourier transform. One reads

ρ ′(z) =
∞

∑
n=0

cnφ (n)(z) = φ(z)
∞

∑
n=0

cn(−1/
√

2)nHn(z/
√

2), (3.B23)

where

φ(z) =
1

2π
exp(−z2/2)

Hn(z) = exp(z2)(−1)n dn

dzn exp(−z2). (3.B24)

We have

c0 = 1

c1 = c2 = 0

c3 = −r/6

c4 = K/4!, (3.B25)

c5 = (−M5 +10M3)/5!, (3.B26)

c6 = (M6 −15M4 +30)/6!. (3.B27)

Upon Fourier transform, the Gaussian is invariant and we get the following ex-
pansion for the reflectivity:
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R(q)
RF(q)

= |T.F.(
ρ ′(z)
ρ−∞

)|2

= exp(−q2σ2)

∣∣∣∣∣
∞

∑
n=0

cn(iqσ)n

∣∣∣∣∣
2

= exp(−q2σ2)
(
1+2c4(qσ)4 +(c2

3 −2c6)(qσ)6 + · · ·
)
. (3.B28)

We have applied this formalism to the free surface of liquid helium. At low tem-
peratures, this surface is subject to quantum capillary wave excitation (“ripplons”)
that tend to smooth the liquid/vapour interface. Functional density calculations of
this liquid/vapour interface have predicted the following shape for the profile [37]:

ρ(z) =
ρ(−∞)

[1+ exp(z/a)]ν
, (3.B29)

with a = 0.196 nm and ν = 5/2 for 4He. Numerically for this profile (represented in
Fig. 3.19) one gets s = 0.286 nm; r = −0.695 and K = 1.474.

The series of cn coefficients is 1, 0, 0, 0.061, 0.031, 0.024 for c0, c1, . . ., c5. In
the present case the Fourier transform can be calculated exactly. One finds

R(q)
RF(q)

= F(qa), (3.B30)

with
F(x) = πx(1+4/9x2)(1+4x2)/(sinh(πx)cosh(πx)). (3.B31)

Hence, we can evaluate precisely the quality of the approximations performed.
We can see in this case that exact calculation and expansion yield similar results
up to q = 4 nm−1 where the reflectivity is typically 10−9, which is the limit value
for the technique using e.g. synchrotron sources. The discrepancy between the pure
Gaussian description is visible at lower q, but the first corrective term is due to
parameter c4 and not due to asymmetry c3 (Fig. 3.20).

Fig. 3.19 Plot of the
asymmetric profile expected
for the free surface of liquid
helium (profile and
derivative). The dashed
curves represent the standard
Gaussian approximation (2nd
moment)
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Fig. 3.20 Reflectivity curve calculations for the different approximations. Solid line: exact calcula-
tion, dotted curve: Gaussian approximation, dashed curve: expansion using higher order moments.
Insert: Reflectivities normalised to the Fresnel reflectivity with a Gaussian attenuation, showing up
to which wave vector value one needs to measure to detect asymmetry

In principle this technique can be applied to more complex density profiles such
as a thin film bound by two interfaces. Describing such a profile by a series of
moments is not efficient yet the previous development can be used for each indi-
vidual interface profile. The FT will display terms involving not only individual
interface parameters but also crossed interference terms. We can see then that in
some cases (e.g. if one interface is perfectly known), the asymmetry of the other
interface appears more rapidly in the reflection curve due to the existence of these
crossed terms [38].

3.B.5 Methods Based on Several Measurements

The phase problem can be viewed as due to the fact that at each point on the reflec-
tion curve, we have only one data on the complex amplitude whereas two data are
necessary to get the complex amplitude.

If one introduces in the scattering length density profile an element whose scat-
tering length can be varied in a controlled manner, we shall then have, for each
point at a given q, several values for the modulus which could be used to extract the
complex amplitude.

These methods, similar to that of the heavy atom, whose scattering length is
varied by changing the energy close to an absorption edge, can be also operated with
neutrons [39] varying beam polarisation on a magnetic substrate, or the substrate or
its isotope composition.

If we assume we have the same profile ρ(z) deposited on two substrates a and b
whose composition and top interface are known, we will have for the reflectivities
of the film/substrate system, in either case

ra(q) = |rF(q)+ rsa(q)|2, (3.B32)

rb(q) = |rF(q)+ rsb(q)|2. (3.B33)
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The unknown is here rF(q), the complex amplitude reflected by the film, data are
ra(q) and rb(q) while rsa(q) and rsb(q) are known.

ra(q) = |rF(q)|2 + |rsa(q)|2 +2rsa(q)rF(q)cos(φF(q)), (3.B34)

rb(q) = |rF(q)|2 + |rsb(q)|2 +2rsb(q)rF(q)cos(φF(q)). (3.B35)

We have two equations in two unknowns, |rF(q)| and φF(q), that we can solve for
any q if rsa(q) �= rsb(q). A third measurement may improve the phase determination
and raise possible uncertainties on φF(q) phase sign [40].

3.B.6 Direct Methods

They are based on the fact that the amplitude and phase of the scattered wave derive
from the real and imaginary parts of a complex function, Fourier transform of the
scattering length density profile. This profile has special properties that can be used
to limit the number of solutions to the phase problem. For example, the profile func-
tion is continuous, limited and generally considered as zero outside a finite range
(in the top and bottom media, e.g. air and substrate ρ(z) = cst → ρ ′(z) = 0). Choos-
ing the origin, one may set ρ ′(z) = 0 when z < 0. The complex amplitude may be
considered as the Fourier transform of a response function and, taking into account
the properties of this function, we can use complex variable function theory (e.g.
Cauchy relations) to obtain integral relations between real and imaginary parts of
the Fourier transform of this function (“dispersion” or Kramers–Kronig relations).

In practice the problem is slightly more complicated. We do not want to deter-
mine the imaginary part of the scattered amplitude from the knowledge of the real
part, but the phase knowing the modulus. The idea is to consider the logarithm of
the complex amplitude:

ln(a(q)) = ln(|r(q)|)+ iφ(q), (3.B36)

with r(q) =
√

(R(q)). Making the assumption that properties of the logarithm of
the FT of the response function are the same as those of the FT itself, we can write
Kramers–Kronig relations between real and imaginary parts of the log of the com-
plex amplitude, which are the log of the modulus and the phase [41]:

φ(q) =
−q
π

P
∫ ∞

−∞

ln[r[χ]/r[q]]
χ(χ−q)

dχ. (3.B37)

Actually this equation, obtained by an application of the Cauchy formula to the
function ln(r(χ))/χ along a contour that excludes χ = 0 and χ = q points, presumes
a number of assumptions that are not necessarily obvious for functions correspond-
ing to physical profiles (Fig. 3.21).

It requires for instance that the integral along the half-circle whose radius tends
towards infinity in the upper half complex plane be zero. As r(q) → 0 when
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Fig. 3.21 Integration contour
in the complex plane

0 q

q → ∞, ln(r(q)) → −∞ and this is not a priori obvious. This is why one consid-
ers ln(r(χ))/χ rather than ln(r(χ)).

Moreover, Cauchy formula gives a zero integral for a complex variable function
only when it has no zero inside the contour (the upper half complex plane in the
present case). In practice, with simple density profiles, this is not always true and
making this assumption amounts to choosing one solution among various possible
phase solutions, while such a choice may not be very clear from a physical point
of view. Clinton has discussed these methods in a few simple cases [42]. When the
profile is dominated by an interface located at z = 0, i.e.

a(χ) = a0 +∑
i

ai exp iχdi, (3.B38)

with di > 0 and a0 > ∑i |ai|, then |a(χ)| > 0,∀χ verifying Im χ ≥ 0. This case is
close to those studied in Sects. 3.B.3 and 3.B.4. A few examples where this tech-
nique has been applied to experimental profiles are given by A. van der Lee [43].
The main interest of this technique is to provide a starting point independent of
any model. One is free in a second step to start from this model and change the
phases (i.e. introduce zeroes in the complex plane) to make the profile correspond
to physical data obtained independently.

3.B.7 Case of Symmetrical Profiles

A special case that is worth being considered is the case where the profile is symmet-
rical. This is the case for example when considering free standing films (e.g. liquid
crystal or surfactant films) or interfacial profiles in the case of bonding between
similar materials. In these cases, the special knowledge we have about the profile
function ρ(z) is that it is even. As a consequence, the Fourier transform of this func-
tion is a real function and the phase problem reduces now to a sign problem. The
scattered amplitude being a continuous function, the sign changes can occur only at
zeroes of the function that are generally easily located on the intensity curve.

This method has been used practically on reflection data taken on bonding in-
terfaces (Fig. 3.22). When bonding identical substrates together, we can expect the
density profile to be an even function. Then the inversion procedure can be worked
out in a straightforward way and completely automated.



130 A. Gibaud and G. Vignaud

Fig. 3.22 Sequence for a direct inversion of reflection data in the case of a symmetrical profile
(here the interface of a silicon direct bonding). (a) q4R(q) reflectivity data. (b) Square root of the
previous curve. (c) Sign allocation assuming minima corresponding to a phase sign change. (d)
Inverse FT of curve c, giving the electron density profile

3.B.8 Conclusion

It is difficult to provide a general method for interpreting reflectivity data. We pro-
posed a few examples allowing the recovery of the “lost” phase when additional
information on the scattering length profile is available. It is important to keep in
mind the uncertainties related to this phase loss when interpreting experiments.
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Chapter 4
Diffuse Scattering

J. Daillant, S. Mora and A. Sentenac

Specular reflectivity, as described in Chap. 3, is sensitive to the average density pro-
file along the normal (Oz) to a sample surface. Very often, one would also like to
determine the statistical properties of surfaces or interfaces (i.e. the “lateral” struc-
tures in the (xOy) plane). We have seen in Chap. 2 that the scattered intensity de-
pends on the roughness statistics of the sample (when the coherence domains are
much smaller than the illuminated area). More precisely, under several simplifying
assumptions, the differential scattering cross-section is related to the power spec-
trum of the surface. More generally, we will see that x-ray scattering experiments
allow the determination of the lateral lengths of surface morphologies and of the
correlations between buried interfaces over more than 5 orders of magnitude from
Ångströms to tens of microns in plane (see Sect. 4.5.1). Specific methods known as
GISAXS (grazing-incidence small angle x-ray scattering) have been developed in
the small angle regime, in particular when one is interested in the size, shape and
distribution of particles. They are described in Chap. 7.

In this chapter we present the theory of scattering by random media from an elec-
tromagnetic point of view. Starting from Maxwell equations we establish the vol-
ume integral equation giving the scattered field as the field radiated by the dipoles
induced in the material (part of these results have been used without demonstration
in Chap. 2). We then describe several perturbation techniques (Born approximation
and distorted-wave Born approximation, DWBA) which allow one to obtain sim-
ple expressions for the differential scattering cross-section. Then, special attention
is paid to the resolution function and to the determination of absolute (measured)
intensities. This is necessary if one wants to draw quantitative information from
an experiment. These methods are finally applied to scattering problems of increas-
ing complexity: scattering by a single rough surface, surface scattering in a thin film,
scattering by rough inhomogeneous multilayers and scattering by surface crystalline
structure.

Most of the chapter is devoted to the discussion of the so-called distorted-wave
Born approximation (DWBA) which presently provides the most accurate analysis
of x-ray and neutron data.

J. Daillant (B)
SCM/LIONS, bât. 125, CEA Saclay, 91191 Gif sur Yvette Cedex, France

Daillant, J. et al.: Diffuse Scattering. Lect. Notes Phys. 770, 133–182 (2009)
DOI 10.1007/978-3-540-88588-7 4 c© Springer-Verlag Berlin Heidelberg 2009
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4.1 Differential Scattering Cross-Section for X-Rays

In this section, we first establish the propagation equation for the electric field and
show that its solution can be put in the form of an integral equation using Green
functions. This integral equation is the basis for the Born development (see Sect. 4.2
for the Born approximation and Sect. 4.3 for the (first-order) DWBA). The definition
of the distorted-wave Born approximation then amounts to the choice of an unper-
turbated (ideal) state for which the field in the sample and the Green functions have
to be evaluated exactly. The evaluation of the Green functions is the main difficulty
of the technique and we give here a simple method, based on the reciprocity theo-
rem, to calculate them for various reference states: an infinite homogeneous medium
(for the Born approximation) and a planar multilayer (for the DWBA).

The developments made in this section are valid for complicated systems like
multilayers with rough interfaces and possibly density inhomogeneities. However,
for simplicity the reader can refer to the case of a single rough interface separating
two material media (0) and (1) depicted in Fig. 4.1.

–ksc

PA = eδ (r-R)

(a)

PB = δn2E(r’)

kin ksc

Ein

E(R) = Eref + δ E(R)

(b)

Fig. 4.1 Illustration of the reciprocity theorem in the case of a single rough surface. The rough
surface (real state in (a)) is viewed as a perturbation (in grey) of the reference state (in (b)). The
location of the planar interface in the reference case is arbitrary (it is here situated below the
deepest incursion of the roughness, see Footnote 9 on this subject). The total electric field E(R)
existing in the real (rough) state is the sum of the specular field Eref(R) coming from the reference
medium and of the scattered field δE(R) radiated by the dipole density δP(r′) = ε0δn2(r′)E(r′),
which is nonzero only within the grey region. In order to use the reciprocity theorem to calculate
δE(R) we consider two distributions of sources: (1) A unit dipole with moment ê placed at R
(detector location) creating a field distribution EA(r′) = Eê

det(R,r′) in the reference state in (b); (2)
A dipole density representing the perturbation brought by the roughness (grey region) δP(r′) =
ε0δn2(r′)E(r′) creating a field distribution EB(R) = δE(R) in (a). The reciprocity theorem yields
δE(R).̂e =

∫
dr′δP(r′)Eê

det(R,r′)

4.1.1 Propagation Equation

Using Maxwell’s equations

∇×E = −∂B
∂ t

, (4.1)
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∇×H = j+
∂D
∂ t

, (4.2)

one obtains the propagation equation for the electric field in the homogeneous media
(0) and (1) containing no charges or currents:

∇×∇×E−n2(r)
ω2

c2 E = −∇2E−n2(r)
ω2

c2 E

= ∇2E− ω2

c2

(
E+

P
ε0

)

= 0, (4.3)

for waves having a eiωt time dependence. n is the refractive index; the dielectric
constant and the refractive index are related by ε = n2; k = nω/c is the wavevec-
tor; in vacuum k0 = ω/c = 2π/λ (λ is the wavelength). Note that all the possible
complexity (roughness, inhomogeneities) of a sample is contained in n2(r).

In the case of neutrons, one has to solve Schrödinger equation which has a similar
structure:

(
− h̄2

2m
∇2 +

2π h̄2

m ∑
i

biρi

)
ψ(r) = Eψ(r), (4.4)

where bi is the scattering length of nuclei i whose (number) density in the sample
is ρi.

In the following we will work out a perturbative solution for the problem of
surface scattering. We will start from a reference case, close to the real case of
interest (for example the corresponding flat surface in the case of a rough surface)
for which the electromagnetic field can be exactly calculated using the methods of
Chap. 3. Then from the linearity of Eq. (4.3) the electric field in the real case can
be calculated as the electric field in the reference case plus the field radiated by
dipoles induced in the perturbation (for example a very thin rough layer in the case
of a rough surface, see Fig. 4.1). Due to the weak interaction of x-rays with matter
(the index is only slightly different from 1), the perturbation is weak and a good
approximation is obtained. More precisely, we decompose the index as

n2(r) = n2
ref(r)+δn2(r), (4.5)

where nref is the refractive index in the reference case. The reference state is simple
enough for the electromagnetic field to be calculated exactly (vacuum, plane inter-
face, planar multilayers). It represents the basis (zeroth order) of the perturbation
development and should be as close as possible to the real medium in order to min-
imise the influence of the perturbation. n2

ref yields a specular reflection, and δn2 will
give incoherent scattering. Equations (4.3) and (4.5) are rewritten as

∇×∇×E(r)−n2
ref(r)k

2
0E(r) = δn2(r)k2

0E(r) =
ω2

ε0c2 δP. (4.6)
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The right-hand side of Eq. (4.6) can be considered as a dipole source δP(r′) =
ε0δn2(r′)E(r′) in the reference medium.1 Maxwell’s equations and Eq. (4.3) being
linear, the electric field can be written as E = Eref +δE where Eref is the field in the
reference case and δE the perturbation in the field radiated by the dipole source δP.

4.1.2 Perturbation Theory

The field radiated at the detector by the dipole sources δP can be calculated using
Green functions, where the Green tensor G (R,r′) for the propagation equation in
the reference (ideal) case is defined as the solution of2

∇×∇×G (R,r′)−n2
ref(R)k2

0G (R,r′) =
k2

0

ε0
δ (R−r′), (4.7)

which satisfies outgoing wave boundary conditions (the ∇×∇ operator acts on R).3

It follows from the linearity of Maxwell’s and propagation equations that (insert
Eq. (4.8) in Eq. (4.6))

E(R) = Eref(R)+δE(R)

= Eref(R)+
∫

drG (R,r).δP(r)

= Eref(R)+ ε0

∫
drδn2(r)G (R,r).E(r) (4.8)

is the solution of Eq. (4.6). Equation (4.8) is formally equivalent to Eq. (1.A4) and
will be the basis for the Born (or DWBA) development. However, we first need an
expression for the Green function. This can in particular be done using an elegant
method due to P. Croce [9–13, 31] based on the reciprocity theorem [28].

4.1.3 Derivation of the Green Functions

4.1.3.1 The Reciprocity Theorem

In this paragraph we determine the Green function G (R,r′) introduced in Eq. (4.8)
for a vacuum, a simple interface and a planar multilayer. For this, we use the

1 Note that E(r′) is the real unknown field at r′.
2 We have the identity ∇×∇ = graddiv−ΔΔΔ . In a vacuum, divE = 0 and the propagation equation
reduces to a set of three Helmholtz equations −ΔE− k2

0E = 0. With this sign convention, the
outgoing Green tensor G (r) reduces to −G−(r) defined in Chap. 1 for the scalar field obeying the
Helmholtz equation ΔE + k2

0E = 0.
3 The solution (in the sense of distributions) of Eq. (4.7) satisfies by construction the boundary
conditions in the system (e.g. the saltus conditions at each interface if the reference state is a planar
multilayer).
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reciprocity theorem demonstrated for example in Appendix 4.A and [27, 28, 41].
The reciprocity theorem states that in a given reference medium, two different dis-
tributions of dipole sources PA and PB creating the fields EA and EB are linked by
the relation,

∫
drEA(r).PB(r) =

∫
drEB(r).PA(r). (4.9)

In order to calculate the perturbation in the field at the detector δE(R), we con-
sider the following sources and field distributions (see Fig. 4.1):

• The source with polarisation vector δP(r′) = ε0δn2(r′)E(r′) creating an un-
known field δE(R) at the detector in the real case of the rough interface

• The unit dipole êδ (R− r′) located at the detector, creating a known field
Eê

det(R,r′) at point r′ in the roughness region (the field can be calculated exactly
since the unit dipole radiates in the simple reference geometry)

EA = Eê
det(R,r′) PA = δ (R−r′)ê

EB = δE(R) PB = ε0δn2E(r′),

and the reciprocity theorem Eq. (4.9) yields

δE(R).̂e =
∫

dr′ε0δn2(r′)E(r′).Ee
det(R,r′). (4.10)

Equation (4.10) is equivalent to

E(R).̂e = Eref(R).̂e+
∫

dr′ε0δn2(r′)E(r′).Eê
det(R,r′). (4.11)

The unit vector ê being arbitrary, Eq. (4.11) is in fact a vector (and not scalar)
equation (choose ê equal, respectively, to x̂, ŷ and ẑ to calculate the different field
components). We retrieve formally Eq. (4.8),4

E(R) = Eref(R)+ ε0

∫
dr′δn2G (R,r′).E(r′).

Comparing Eqs. (4.8) and (4.11), we see that the Green function required to
calculate the scattered field can therefore be simply calculated as the field in r′ due
to a unit dipole in R (detector) in the reference case. In practice, we will directly
use this property in Eq. (4.10) to calculate the scattered field. This is particularly
convenient in the far-field approximation within which the dipole field is easy to
calculate. Note that Eq. (4.11) is an exact relation [15] from which approximations
can be made. That Eq. (4.11) is exact is verified in Appendix 4.B in the particular
case of the reflection on a film.

4 Note that the reciprocity theorem gives Eq. (4.11) but does not tell us that the Green tensor is
reciprocal in the sense that G (R,r′) = G (r′,R). In fact the symmetry relations on the Green tensor
involve transpositions, see e.g. [41].
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In the far-field approximation, the polarisation vector êsc is necessarily perpen-
dicular to the (meaningful in far-field) sample-to-detector direction û = R/R. It ap-
pears convenient to introduce two main polarisation states. In polarisation (s), the
field direction is normal to the scattering plane (defined by the normal to the sample
and the sample-to-detector direction (Oz,û)), in polarisation (p) the field direction
lies in the scattering plane. Polarisation effects however generally remain negligible
at grazing incidence. In any case, the scattered field amplitude is

δE(R) =
∫

dr′ε0δn2E(r′).Eêsc
det(R,r′). (4.12)

We now explicitly calculate the Green function in a vacuum (which is the refer-
ence state in the Born approximation), a single interface (which also gives a simple
approximation for thin films, Sect. 4.5.2) and for a planar multilayer (which is a
natural reference state for the DWBA).

4.1.3.2 Green Function in a Vacuum

The electric field at point r′ created by a dipole moment ê located at R in a homo-
geneous infinite medium (vacuum) can be written as (neglecting the 1/|R− r′|2 and
1/|R− r′|3 terms in the limit of large |R− r′|) [25]

Eê
det(R,r′) = k2

0(û× ê)× û
e−ik0|R−r′|

4πε0|R− r′| , (4.13)

where û = |R− r′|/|R− r′| is the unit vector in the direction of observation. Here-
after we assume that R � r′ so that û ≈ R/R. Note that the dipole is here located
at the detector position and that the field is observed at the sample. In the far-field
approximation, one can develop

∣∣R − r′
∣∣= ∣∣R û− r′

∣∣≈ R− û.r′ ≈ R−ksc.r′/k0

(see Fig. 4.1).5 The spherical wave can therefore be developed on the tangent plane
wave,

5 The far-field conditions (or Fraunhofer diffraction) are more restricting than only R � r′. Indeed,

to neglect the quadratic term in the expansion of e−ik0|R−r′| one needs r′2/λ to be small compared
to R. Applying this approximation in Eq. (4.8) yields a condition on the whole size of the scattering
object (since r′ covers all the perturbated region). The discussion in Chap. 2 has shown that the
support of the integral appearing in Eq. (4.8) can actually be restricted to the domain of coherence
(induced by the incident beam and detector acceptance) of the scattering processes. In this case
the far-field conditions can be written as l2

coh/λ � R. In a typical x-ray experiment, the sample-
to-detector distance is R = 1 m, the wavelength is λ = 1 Å. The total illuminated area is a few
mm but the coherence length is lcoh ≈ 1 μm, hence the far-field approximation is valid. When the
coherence length is too important (very small detector acceptance) for the far-field conditions to be
satisfied, we are in the frame of the Fresnel diffraction and one needs to retain the quadratic terms
in the expansion of |R − r′| [3, 40].
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Eê
det(R,r′) = k2

0(û× ê)× û
e−ik0R

4πε0R
eiksc.r′ . (4.14)

If we choose ê normal to the direction of scattering, for example along the (s)
and (p) polarisation directions ê(s) or ê(p), one simply has

E(s),(p)
det (R,r′) = k2

0
e−ik0R

4πε0R
eiksc.r′ ê(s),(p). (4.15)

4.1.3.3 Green Function for a Single Interface

A second example is that of a single interface between medium 0 and 1. The same
calculation can be repeated for a dipole moment ê located at the detector position R
and r′ in medium 1, the only difference being the coefficient tsc

0,1 giving account of
the transmission at the interface. One obtains

E(s),(p)
det (R,r′) = k2

0
e−ik0R

4πε0R
tsc
0,1eiksc.r′ ê(s),(p). (4.16)

4.1.3.4 Green Function for a Stratified Medium

We finally consider a planar multilayer as reference state and consider the expression
of the electric field created at point r′ by a unit dipole placed in R. The point r′ can
be taken anywhere in the stratified medium, see Fig. 4.6. Using the same plane wave
limit in the general case of a stratified medium, Eq. (4.15) can be generalised for (s)
or (p) polarisation for r′ lying in layer j:6

6 The electric field is the solution of the inhomogeneous differential equation ∇×∇×Eê
det(r

′)−
n2

ref(z
′)k2

0Eê
det(r

′) = êδ (R−r′) that satisfies outgoing wave boundary conditions. The unit dipole
at the detector position lies in medium 0 as depicted in Fig. 4.1. In the homogeneous region 0,
the electric field can be written as the sum of a particular solution and a homogeneous solution.
The particular solution is given in Eq. (4.13) while the general homogeneous solutions are simply
up-going plane waves with wavevector modulus k0. In media j with j �= 0 �= s, the electric field
is solution of the homogeneous vectorial Helmholtz equation and it can be written as a sum of
up-going and down-going plane waves with wavevector modulus k j . In the substrate the general
solutions are down-going plane waves with wavevector modulus ks. To obtain the amplitudes of
these plane waves we write the boundary conditions at each interface. The far-field approximation
permits to simplify greatly the problem. In this case, the expression of the particular solution at
z = Z1 is given by Eq. (4.15). The dipole field close to the first interface can be approximated by an
“incident” plane wave with wavevector ksc. Hence, the amplitudes of the other plane waves (that
are the general solutions of the homogeneous Helmholtz equations) are calculated easily with the
transfer matrix technique presented in Chap. 3. The problem has been reduced to the calculation of
the electric field in a stratified medium illuminated by a plane wave. The meaning of superscripts
(s) or (p) is always unambiguous: it indicates the direction of the radiating unit dipole in a vacuum
for a given position R of the detector. In other words, it indicates the polarisation state of the

scattered plane wave with wavevector ksc. Note that the directions of ê(p)
sc and ksc will vary from

layer to layer due to refraction whereas the directions given by ksc|| and ê(s)
sc do not change.
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Edet
(s),(p)(R,r′) = k2

0
e−ik0R

4πε0R
EPW (s),(p)

j (−kscz,j,z
′)ê(s),(p)

sc e
iksc‖.r

′
‖ (4.17)

is the field in medium j for an incident plane wave with polarisation (s) or (p) which
can be computed by using standard iterative procedures [3, 24]. Using the notations
of Chap. 3, Eqs. (3.59) and (3.60), one has,

EPW (s),(p)
j (−kz, j,z) = U (s),(p)

j (−kz, j,Z j)e−ikz, jz +U (s),(p)
j (kz, j,Z j)eikz, jz, (4.18)

where r = (r‖,z) with z is the z coordinate with the origin taken at z = Z j and where
the superscript “PW” has been used to emphasise that EPW is calculated for an
incident plane wave.

4.1.4 The Differential Scattering Cross-Section

Summarising the previous expressions, one can always write for the different polar-
isations of the electric field

E(R) = Eref(R)+ ε0k2
0

e−ik0R

4πε0R
(êin .̂esc) . . .

× êsc

∫
dr′δn2(r′)EPW (kinz,z

′)EPW (−kscz,z
′)eiq‖.r

′
‖ , (4.19)

where EPW (s),(p)
j (−kscz,z′) is the field at r′ in the medium for an incident plane wave

at detector position. Let us note here that the −ksc orientation of EPW (s),(p)
j (−kz, j,z)

which results from the reciprocity theorem is necessary to give account of the phase
advance of the field radiated by a dipole located at r′ compared to one at origin.

To calculate the differential scattering cross-section we proceed by deriving the
Poynting vector expression. In the far-field approximation,

Bsc =
1
c

û×E,

and the Poynting’s vector is

S =
|E|2
2μ0c

û.

The differential scattering cross-section is obtained by calculating the flux cR2S.u
of Poynting’s vector (power radiated) per unit solid angle in direction ksc across a
sphere of radius R for a unit incident flux. One gets,

dσ
dΩ

=
k4

0

16π2|Ein|2
(êin .̂esc)2

∣∣∣∣
∫

dr′δn2(r′)EPW (kinz,z
′)EPW (−kscz,z

′)eiq‖.r′‖
∣∣∣∣
2

.

(4.20)
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If one considers the issue of scattering from random media, we have seen in
Chap. 2 that scattering can be separated into a coherent process and an incoherent
process. The latter is the usual quantity of interest in a scattering experiment and it
is given by

(
dσ
dΩ

)
incoh

=
k4

0

16π2|Ein|2
(êin .̂esc)2

×
{∣∣∣∣
∫

dr′δn2(r′)EPW (kinz,z
′)EPW (−kscz,z

′)eiq‖.r′‖
∣∣∣∣
2

−
∣∣∣∣
〈∫

dr′δn2(r′)EPW (kinz,z
′)EPW (−kscz,z

′)eiq‖.r′‖
〉∣∣∣∣

2
}

. (4.21)

If we had chosen a vacuum as the reference state, we would have obtained

dσ
dΩ

=
k4

0

16π2|Ein|2

∣∣∣∣
∫

dr′δn2(r′)E⊥(r′)eiksc.r′
∣∣∣∣
2

. (4.22)

This exact expression has been used in Chap. 2 to discuss the effect of an ex-
tended detector on the measured scattered intensity in relation with the statistical
properties of a surface. In general, it will however be less easy to develop an accu-
rate approximation from this expression.

4.2 First Born Approximation

The first Born approximation which neglects multiple reflections can only be used
far from the critical angle for total external reflection or Bragg peaks. Close to these
points, the scattering cross-sections are large and the contribution to the measured
intensity of multiple reflections cannot be neglected. The main advantage of present-
ing this approximation here is that it makes the structure of the scattered intensity
very transparent. It has already been presented in Chap. 2 in a different context with
the aim of illustrating how statistical information about surfaces or interfaces can be
obtained in a scattering experiment.

4.2.1 Expression of the Differential Scattering Cross-Section

In the Born approximation, both the Green function and the electric field are evalu-
ated in a vacuum, Eq. (4.11).

Eê
det(R,r′) = k2

0(û× ê)× û
e−ik0R

4πε0R
eiksc.r′ (4.23)
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E(r′) ≈ Eine−ikin.r′ . (4.24)

−ksc is the wavevector oriented from the detector to the surface which gives the
dipole field of Eq. (4.10). Then, substituting into (4.11),

E(s) = Eine−ikin.r′ +
k2

0e−ik0R

4πR
(Ein .̂esc) êsc

∫
drδn2eiq.r, (4.25)

with the wavevector transfer
q = ksc −kin. (4.26)

For such a field dependence, we obtain for the differential scattering cross-section
(power scattered per unit solid angle per unit incident flux) [25]

dσ
dΩ

=
k4

0

16π2 (êin .̂esc)
2
∣∣∣∣
∫

drδn2eiq.r
∣∣∣∣
2

= r2
e (êin .̂esc)

2
∣∣∣∣
∫

drδρeiq.r
∣∣∣∣
2

. (4.27)

4.2.2 Single Flat Surface

As a first example we now calculate the differential scattering cross-section in the
case of a single flat surface.

Integrating Eq. (4.27) for a perfect dioptre (index of refraction n0 and n1, see
Fig 4.2), one obtains

dσ
dΩ

=
k4

0

16π2 (n2
1 −n2

0)
2 (êin .̂esc)

2
∣∣∣∣
∫

dr‖eiq‖.r‖
∫ 0

−∞
dzeiqz.z

∣∣∣∣
2

. (4.28)

The upper medium is medium 0, and the substrate (medium 1) is made slightly
absorbing in order to make the integral over z converge (I m(qz) < 0):

∫ 0

−∞
dzeiqz.z =

1
iqz

⎡
⎣eiqz×0 − eiqz×−∞︸ ︷︷ ︸

→0

⎤
⎦ .

q

q

x

z
y ψ

θsc
kin

ksc

n0

n1

θ

Fig. 4.2 Scattering geometry. The components of the wavevector transfer are qx =
k0(cosθsc cosψ− cosθin), qy = k0 cosθsc sinψ and qz = k0(sinθsc + sinθin). The surface between
medium 0 (z > 0) and medium 1 (z < 0) is located at z = 0
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The differential scattering cross-section can then be written as

dσ
dΩ

=
k4

0

16π2q2
z
(n2

1 −n2
0)

2 (êin .̂esc)
2
∣∣∣∣
∫

dr‖eiq‖.r‖

∣∣∣∣
2

=
k4

0

16π2q2
z
(n2

1 −n2
0)

2 (êin .̂esc)
2
∫

dr‖

∫
dr′‖eiq‖.(r‖−r′‖). (4.29)

Making the change of variables R‖ = r‖ − r′‖ and integrating over R‖,

dσ
dΩ

=
k4

0

16π2q2
z
(n2

1 −n2
0)

2 (êin .̂esc)
2

=A︷ ︸︸ ︷∫
dr‖

=4π2δ (q‖)︷ ︸︸ ︷∫
dR‖eiq‖R‖ ,

we obtain
dσ
dΩ

=
k4

0A

4q2
z
(n2

1 −n2
0)

2 (êin .̂esc)
2 δ (q‖), (4.30)

where A is the illuminated area and the identity

1
4π2

∫
dR‖ eiq‖.R‖ = δ (q‖) (4.31)

has been used. The condition δ (q‖) yields specular reflection. We can now calculate
the reflectivity R which has been defined in Chap. 3 as

R(q) =
I(q)
I0

,

where I(q) is the scattered intensity (flux of Poynting’s vector through the detector
area) and I0 is the incident beam intensity. By definition, the differential scattering
cross-section is the power scattered per unit solid angle per unit incident flux.

I(q) = I0

∫
dσ
dΩ

(q)dΩ .

The angular acceptance of the detector is ΔΩ = Δθ ×Δψ , Δθ and Δψ being
the vertical and horizontal angular spread of the detector, respectively. The detector
being in the specular direction, dqx = k0 sinθscdθsc and dqy = k0dψ . Since qz =
2k0 sinθ , we have

dθdφ =
2dq‖
k0qz

.

The incident flux is equal to I0/(Asinθ), and one has

R =
1
I0
× I0

A sinθ︸︷︷︸
=qz/(2k0)

∫∫
k4

0A

4q2
z
(n2

1 −n2
0)

2 (êin .̂esc)
2 δ (q‖)×

2dq‖
k0qz

. (4.32)
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One finally obtains in (s) polarisation

R =
k4

0

q4
z
(n2

1 −n2
0)

2 =
16π2

q4
z

r2
e(ρ1 −ρ0)2 =

q4
c

16q4
z
, (4.33)

which shows the well-known q−4
z decay in reflectivity. Equation (4.32) also shows

that within the Born approximation, the Brewster angle, for which the reflection
coefficient is 0 in (p) polarisation, is 45◦.

4.2.3 Single Rough Surface

We now consider a rough surface. This example is mainly detailed here to show how
height–height correlation functions arise as average surface quantities in the scatter-
ing cross-section. The scheme of the calculations is similar to the previous one (case
of a flat surface). It will always be the same within the Born or distorted-wave Born
approximations, whatever the kind of surface or interface roughness considered. We
start from

dσ
dΩ

=
k4

0

16π2 (n2
1 −n2

0)
2 (êin .̂esc)

2
∣∣∣∣
∫

dr‖

∫ z(r‖)

−∞
dz eiq.r

∣∣∣∣
2

. (4.34)

Following the same method as for a flat surface (Sect. 4.2.2), the integration over
z yields

dσ
dΩ

=
k4

0

16π2q2
z

(
n2

1 −n2
0

)2
(êin .̂esc)

2
∣∣∣∣
∫

dr‖ eiqzz(r‖)eiq‖.r‖

∣∣∣∣
2

. (4.35)

Equation (4.35) can be written as

dσ
dΩ

=
k4

0(n
2
1 −n2

0)
2

16π2q2
z

(êin .̂esc)
2
∫

dr‖

∫
dr′‖eiqz(z(r‖)−z(r′‖))eiq‖.r‖e−iq‖.r

′
‖ . (4.36)

Making the change of variables R‖ = r‖ − r′‖ and integrating over R‖:

dσ
dΩ

=
k4

0A

16π2q2
z

(
n2

2 −n2
1

)2
(êin .̂esc)

2
∫

dR‖ 〈eiqz(z(R‖)−z(0))〉eiq‖.R‖ , (4.37)

where A is the illuminated area and we have simply used the definition of the average
over a surface.7 Assuming Gaussian statistics of the height fluctuations z(r‖) (see
Chap. 2), or in any case expanding the exponential to the lowest (second) order, we
have 〈

eiqz(z(R‖)−z(0))
〉

= e−
1
2 q2

z 〈z(R‖)−z(0)〉2
. (4.38)

7 In general, this average over the surface will not be known and we will use an ensemble average
as discussed in Chap. 2.
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We then obtain

dσ
dΩ

=
k4

0A

16π2q2
z

(
n2

1 −n2
0

)2
(êin .̂esc)

2 e−q2
z 〈z〉2

∫
dR‖eq2

z 〈z(R‖)z(0)〉eiq‖.R‖ . (4.39)

This equation also includes specular (coherent) components because it has been
constructed from the general solution of an electromagnetic field in a vacuum. The
diffuse intensity can be obtained by removing the specular component (calculated by
applying exactly the same scheme of calculation as for the case of the flat surface):

(
dσ
dΩ

)
coh

=
k4

0A

4q2
z

(
n2

1 −n2
0

)2
e−q2

z 〈z〉2
(êin .̂esc)

2 δ (q‖). (4.40)

The diffuse (incoherent) intensity is then

(
dσ
dΩ

)
incoh

=
k4

0A

16π2q2
z
(n2

1 −n0)2 (êin .̂esc)
2

× e−q2
z 〈z2〉

∫
dR‖

(
eq2

z 〈z(R‖)z(0)〉 −1
)

eiq‖.R‖ . (4.41)

4.3 Distorted Wave Born Approximation

We will now present an approximation with a further order of complexity. We
choose as reference state the same system as the real one, but with perfectly flat
interfaces (step index profiles). The Green function and the field in Eq. (4.11)
are therefore those for flat steep interfaces, and the iterative methods discussed in
Chap. 3 can be used to calculate the field and the Green function. This approxima-
tion yields better results than the first Born approximation near the critical angle
for total external reflection. It is currently the most popular approximation for the
treatment of x-ray surface scattering data.

A first change due to the new choice of reference state is that, because refraction
is taken into account, the normal component of the wavevector now depends on the
local index. Using Snell–Descartes law,

kz,i = k0

√
sin2 θ − sin2 θci, (4.42)

where θ 2
ci = 2(1−ni) is the critical angle for total external reflection between vac-

uum and medium i with ni = 1− δi − iβi. More precisely, the real and imaginary
parts of the wavevector in medium i are

Re(kz,i) =
1√
2

k0

√
[(θ 2 −2δi)2 +4β 2

i ]1/2 +(θ 2 −2δi), (4.43)

I m(kz,i) =
1√
2

k0

√
[(θ 2 −2δi)2 +4β 2

i ]1/2 − (θ 2 −2δi). (4.44)
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As mentioned above, refraction also implies that the direction of the polarisation
vector in (p) polarisation changes from layer to layer. To avoid the complications
related to this point, unless otherwise specified, we will always limit ourselves to
the case of scattering of a (s) polarised wave into (s) polarisation in the rest of this
section. Then, one has (êin .̂esc) = cosψ in every layer.

4.3.1 A Single Interface

4.3.1.1 Scattering Cross-Section for a Single Rough Interface
Between Two Homogeneous Media

Considering only one rough interface between media (0) and (1) and placing the
reference plane above the real rough interface (Fig. 4.1),8 we have, for (s) or (p)
polarisation

Eêsc
det(R,r′) =

k2
0e−ik0R

4πε0R
EPW

1 (−kscz,1,z
′)eik‖.r

′
‖ êsc

=
k2

0e−ik0R

4πε0R
tsc
0,1 eiksc,1.r′ êsc, (4.45)

E(r′) = Ein EPW
1 (kinz,1,z

′)e−ik‖.r
′
‖ êin

= Ein t in
0,1 e−ikin,1.r′ êin, (4.46)

where t in
0,1 and tsc

0,1 are the Fresnel transmission coefficients for polarisation (s) for
the angle of incidence θin and the scattering angle in the scattering plane θsc, re-
spectively. Explicit expressions for those coefficients are given by Eqs. (3.83) and
(3.84). Putting Eqs. (4.45) and (4.46) in Eq. (4.11) and following the same treatment
of the integrals as in Sect. 4.2.3, we obtain a generalisation of Eq. (4.41):

(
dσ
dΩ

)
incoh

= A
k4

0

16π2 (n2
1 −n2

0)
2
∣∣∣t in

0,1

∣∣∣2 ∣∣tsc
0,1

∣∣2 e−
1
2 (q2

z,1+q∗2
z,1)〈z2〉

|qz,1|2

×(êin .̂esc)2
∫

dR‖
[
e|qz,1|2〈z(R‖)z(0)〉 −1

]
eiq‖.R‖ , (4.47)

or, using n = 1−λ 2/2πreρ ,

(
dσ
dΩ

)
incoh

= Ar2
e(ρ1 −ρ0)2

∣∣∣t in
0,1

∣∣∣2 ∣∣tsc
0,1

∣∣2 e−
1
2 (q2

z,1+q∗2
z,1)〈z2〉

|qz,1|2

×(êin .̂esc)2
∫

dR‖
[
e|qz,1|2〈z(R‖)z(0)〉 −1

]
eiq‖.R‖ . (4.48)

8 See Sect. 4.3.1.
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This expression is explicitly symmetrical in the source and detector positions
as required by the reciprocity theorem. It differs from Eq. (4.41) by the additional
transmission coefficients.

4.3.1.2 Density Inhomogeneities in the Substrate

Only surface scattering has been considered up to this point. However, the dielec-
tric index inhomogeneities leading to scattering can also be density fluctuations.
This should always be borne in mind when interpreting experiments. The scatter-
ing due to density inhomogeneities can be treated using a formalism similar to that
used for surface scattering. The relevant correlation functions will be of the form
〈δρ(0,z′)δρ(r‖,z)〉. This problem was considered in the early paper of Bindell and
Wainfan [2]. Again we limit the discussion to the scattering of a (s) polarised inci-
dent wave into a (s) polarised wave.

The surface is assumed to be perfectly smooth in this analysis. The upper medium
0 is homogeneous whereas density inhomogeneities occur in medium 1. Within the
DWBA the differential scattering cross-section is

dσ
dΩ

= Ar2
e

∣∣∣t in
0,1

∣∣∣2 ∣∣tsc
0,1

∣∣2 (êin .̂esc)2 (4.49)

×
〈∫

dr‖

∫
dr′‖e

iq‖.(r‖−r′‖)
∫

dz
∫

dzδρ1(r‖,z)δρ1(r′‖,z
′)ei(qzz−q∗z z′)

〉
,

where we have used n = 1− (λ 2/2π)reρ . Using the identity

i
(
qzz−q∗z z′

)
= iqz

(
z− z′

)
−2I m(qz)z′, (4.50)

and making the change of variables z �→ z+ z′ one obtains

dσ
dΩ

= Ar2
e

∣∣∣t in
0,1

∣∣∣2 ∣∣tsc
0,1

∣∣2 (êin .̂esc)2
∫ 0

−∞
dz′e−2I m(qz)z′

×
∫

dR‖

∫ −z′

−∞
dzeiq‖.r‖eiqzz 〈δρ1(R‖,z)δρ1(0,0)

〉
. (4.51)

Equation (4.51) usually leads to a shorter equation when 〈δρ(0,z′)δρ(r‖,z)〉 is
known. The example of liquids is treated in Sect. 4.5.1 [see Eq. (4.78)].

4.3.1.3 DWBA Versus First Born Approximation

The amplitude of the real and imaginary parts of the unperturbated electric field (ref-
erence case) is plotted in Fig. 4.3 for a grazing angle of incidence θin fixed below
the critical angle of reflection. For z > 0 (in the upper medium), the electric field
is sinusoidal (standing waves). For z < 0 (below the surface) the field decays expo-
nentially (evanescent waves). Within the Born approximation, the field amplitude is
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Fig. 4.3 Amplitude of the real and imaginary parts and modulus of the electric field at the silicon–
air interface. The surface is at z = 0, silicon at z < 0. The angle of incidence is θin = 0.5θc below
the critical angle for total reflection. The prolongation of either the transmitted or reflected field in,
respectively, air or silicon is shown using thinner lines

a constant, and at any time, the field is a sine wave (propagating at speed c). The
DWBA is a better approximation than the Born approximation as its reference case
is a better approximation to the real system. It obviously leads to very different re-
sults for inhomogeneities deeply buried in the sample as there is no total reflection
within the Born approximation. Even for surface roughness below the critical angle
for total external reflection the result will be quite different as the amplitude of the
field at the surface is larger than Ein.9

Another important point which is clear on Fig. 4.3 is that not only the field but
also its first derivative is continuous at the surface. For this reason, for moderate
roughnesses (less than a few nm), one can use either the expression of the field be-
low or above the surface to calculate the scattered intensity. As there is only one
wave propagating in the substrate, it is easier to use the transmitted field as has been
done in Eq. (4.47). The full calculation using the reflected field is given for example
in [15]. The exact position of the reference surface is also unimportant for the same
reason.

At the critical angle for total external reflection θin = θci, the transmission co-
efficients have a peak value of 2 (Fig. 4.4) as the incident and reflected fields are
in phase at z = 0. As the dipole source equivalent to roughness ε0δn2E is propor-
tional to E, there is a maximum in the scattered intensity. By using the reciprocity
theorem, one can see that the Green function is also peaked near θsc = θc.10 Those

9 This is not a problem from the conservation of energy point of view as there is no energy flux
inside the substrate.
10 Equivalently, the peak in the Green function can be seen to arise from the angular dependence
of the field emitted by a dipole placed below the interface.
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Fig. 4.4 Square of the
modulus of the Fresnel
transmission coefficient for
polarisation (s) (|tin|2) as a
function of θin/θc. θ is the
angle of incidence and θc the
critical angle for total
external reflection
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Fig. 4.5 Scattering by the
bare water surface. θsc
detector scan at fixed θin and
ψ . Note the presence of the
Yoneda peak

Yoneda peak

peaks are the so-called Yoneda peaks [46]. The Yoneda peak at θsc = θc is shown in
Fig. 4.5 for a scan at fixed θin. The two peaks at θsc = θc and θin = θc are shown for
a different type of scan (rocking curve) on Fig. 4.10.

4.3.2 General Case of a Stratified Medium

4.3.2.1 Interface Scattering

In the general case of a stratified medium depicted in Fig. 4.6, one has in layer j for
(s) or (p) polarisation

E(r′) ≈ Ein EPW
j (kinz, j,z

′)e−ikin‖.r
′
‖ êin j

Eêsc
det(R,r′) =

k2
0e−ik0R

4πε0R
EPW

j (−kscz, j,z
′)eiksc‖.r

′
‖ êsc j. (4.52)

The DWBA method consists then in developing the EPW functions defined in
Eq. (4.18) in each medium as, for example, in (s) polarisation, in layer j:
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Fig. 4.6 X-ray surface scattering in a stratified rough medium. Because of multiple reflections,
there are waves propagating upwards (with an amplitude U(kz, j,z)) and downwards (with an am-
plitude U(−kz, j,z)) in layer j where the total of the field amplitude is EPW

in, j (there is an equivalent
dependence of the Green function). Multiple reflections are considered within the DWBA but not
within the first Born approximation. The perturbation method consists in evaluating the field scat-
tered by the dipolar density equivalent to the index difference (n j−1 −n j) between the real system
where the rough interface profile is z j(r‖) and the unperturbated system where the interface is lo-
cated at Z j and is placed here at the average interface plane. For interface j the unperturbated and
real index distributions differ in the hatched region

EPW (s)
j (kz, j,z) = U (s)(kz, j,Z j)e

ikz, jz +U (s)(−kz, j,Z j)e
−ikz, jz

= ∑
±

U (s)(±kz, j,Z j)e
±ikz, jz, (4.53)

where the U coefficients are the magnitudes of the upwards and downwards propa-
gating waves which are explicitly obtained in Chap. 3 of this book, Eq. (3.60), using
the “Vidal and Vincent” representation of transfer matrices [44]. The field is then
written (put Eqs. (4.52) in Eq. (4.11) and sum over all interfaces) as

E(s) = Eref +Ein
k2

0e−ik0R

4πε0R
êin .̂esc

N

∑
j=0

∫
dr‖ eiq‖.r‖

∫ z j+1(r‖)

0
dzε0(n2

j+1 −n2
j)E

PW
j+1(kinz,j+1,z)EPW

j+1(−kscz,j+1,z), (4.54)

where it has been assumed that the reference plane is located above the interface,
hence the EPW

j+1 fields. Then, the generalisation of Eq. (4.47) is
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=
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16π2 (êin .̂esc)2
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∑
±
∑
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∑
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(
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)(
n2

k −n2
k−1

)∗

U (s)(±kinz, j,Z j)U (s)(±kscz, j,Z j)U (s)∗(±kinz,k,Zk)U (s)∗(±kscz,k,Zk)

Q̃ j,k(±kinz, j ± kscz, j,±kinz,k ± kscz,k), (4.55)
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with

Q̃ j,k(qz,q
′
z) =

∫
dr‖

∫
dr′‖eiq‖.(r‖−r′‖)

[〈∫ z j(r‖)

0
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∫ zk(r′‖)
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dz′ei(qzz−q,∗

z z′)
〉

−
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0
dzeiqzz

〉 〈∫ zk(r′‖)

0
dz′e−iq,∗

z z′
〉]

, (4.56)

where the specular (coherent) contribution, obtained as an average over the field as
shown in Chap. 2, has been removed. Performing the integrations over z and z′ and
making the change of variables r‖ − r′‖ → R‖ as previously,

Q̃ j,k(qz,q
′
z) = A

e−
1
2 [q2

j,z〈z2
j 〉+(q,∗

k,z)
2〈z2

k〉]

q j,zq
,∗
k,z

∫
dR‖ eiq‖.R‖

(
eq j,zq,∗

k,z〈z j(0)zk(R‖)〉 −1
)

.

(4.57)

Because reflection at all interfaces is taken into account, all the possible combi-
nations of the incident and scattered wavevectors appear in the formulae.

4.3.3 Density Inhomogeneities in a Multilayer

The interfaces are now assumed to be perfectly smooth. Within the DWBA, and
assuming effective U functions within the layers,11 the differential scattering cross-
section will be (cf. Eq. (4.55))

dσ
dΩ

= r2
e(êin .̂esc)2

N

∑
j=1

N

∑
k=1
∑
±
∑
±
∑
±
∑
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U (s)(±kinz, j,Z j)U (s)(±kscz, j,Z j)U (s)∗(±kinz,k,Zk)U (s)∗(±kscz,k,Zk),

(4.58)

where now

B̃ j,k(qz,q
′
z) =

∫
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∫
dr′‖eiq‖.(r‖−r′‖)

∫ Z j+1−Z j

0
dz
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dz′

〈
δρ2

j (r‖,z)δρ2
k
∗
(r′‖,z

′)
〉

ei(qzz−q,∗
z z′).

(4.59)

Making the change of variables r‖ − r′‖ → R‖,

11 Assuming effective U functions within the layers is only possible if the characteristic size of
the inhomogeneities is much smaller than the extinction length, see Appendix 3.A to Chap. 3. This
might not be the case for multilayer gratings (see Sect. 6.7) or large copolymer domains [8].



152 J. Daillant et al.

B̃ j,k(qz,q
′
z) = A

∫
dR‖eiq‖.R‖

∫ Z j+1−Z j

0
dz
∫ Zk+1−Zk

0
dz′

〈
δρ2

j (0,z)δρ2
k
∗
(R‖,z

′)
〉

ei(qzz−q,∗
z z′).

(4.60)

In the case of a semi-infinite medium, only U1(−kin,z,1,Z1) = t in and
U1(−ksc,z,1,Z1) = tsc are different from 0. Writing qz,1 = Re(qz,1)+ i I m(qz,1),
one obtains

B̃1,1(qz,1,qz,1) = A
∫

dR‖eiq‖.R‖

∫ 0

−∞

∫ 0

−∞
dzdz′ eiRe(qz,1)(z−z′)eI m(qz,1)(z+z′)

〈
δρ2

1 (0,z)δρ2
1
∗
(R‖,z

′)
〉

,
(4.61)

i.e. the bulk fluctuations are integrated over the penetration length of the beam.
Comparing Eq. (4.61) to Eq. (4.57), we note that contrary to bulk scattering,

surface scattering is inversely proportional to the square of wavevector transfers.
Therefore, surface scattering will generally be dominant at grazing angles whereas
bulk scattering will ultimately dominate at large scattering angles.

4.3.4 Further Approximations

The distorted-wave Born approximation as presented here does not always allow an
accurate enough representation of the scattered intensity close to the critical angle
for total external reflection [45]. Understanding scattering at grazing angles is highly
desirable because bulk scattering is minimised under such conditions. This is critical
because the signal scattered by surfaces or interfaces is generally very low. Different
approaches have been attempted to improve the DWBA.

A first approximation consists in taking into account the average interface profile
in Eq. (4.11) [20]. The reference medium is now defined by the relative permittiv-
ity εref(z) = 〈ε〉(z), with 〈ε〉(z) = 1/A

∫
ε(r‖,z)dr‖ in the case of a rough surface

defined by an ergodic random process. (In [1] the shape of the average permittiv-
ity is approximated by a hyperbolic tangent profile to simplify the calculation of
the reference Green tensor.) The main interest of this new reference medium is that
the reference field Eref is that of the transition layer and thus contains directly the
Névot–Croce factor in the reflection coefficient. Moreover the perturbation δn2(r‖)
is of null average 〈δn2〉 = 0 and we may expect to have minimised its value (and
thus extended the validity domain of the perturbative development). This improve-
ment has been shown to yield much better results than the classical DWBA in the
optical domain where the permittivity contrasts are important [38]. In the x-ray do-
main its interest is more questionable since it does not lead to simple expressions
for the scattering cross-section. Indeed δn2(r‖) is no longer a step function and the
integration along the z-axis cannot be done analytically. A possibility is to use the
matrix method to describe the transition layer [20].

Another possibility would be to directly take into account multiple surface
(roughness) scattering without using the effective medium approximation. It is then
necessary to iterate the fundamental Eq. (4.11) [5–7, 20]. This has been done up
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to the second order in [18] for specular reflectivity, and the corrections might be
important close to the critical angle for total external reflection.

Finally there exist many approximate methods that have been developed in totally
different contexts (optics, radar). In most methods, the field scattered by the rough
surface is evaluated with a surface integral equation (given by the Huygens–Fresnel
principle (or Kirchhoff integral) [32]). The integrand of the latter contains the field
values and its normal derivatives at each point of the surface. The Kirchhoff approx-
imation consists in replacing the field on the surface by the field that would exist
if the surface is locally assimilated to its tangent plane. This technique, when ap-
plied to the coherent field yields the famous Debye–Waller factor on the reflection
coefficient. It is a single scattering approximation (also called physical optics ap-
proximation). The perturbative theory (the small parameter is the rms height of the
surface) has also been widely used. A possible starting point is writing the boundary
conditions on the field and its derivative at the interface under the Rayleigh hypoth-
esis. A brief survey of this method is given in Sect. 3.A.1. Note that the iteration
of these methods permit to account for some multiple scattering effects, but the in-
creasing complexity of the calculation limits their interest. It is now also possible to
consider the resolution of the surface integral equation satisfied by the field without
any approximation (and thus to account for all the multiple scattering). Preliminary
results have been already presented in the radar and optical domain. However, in the
x-ray domain those techniques have a major drawback: They only consider surface
scattering (with a surface integral equation) and the generalisation to both surface
and volume scatterings is not straightforward. The differential method [33] which
consists in solving the inhomogeneous differential equation satisfied by the Fourier
component of the field (in the k‖ space) with a Runge–Kutta algorithm along the
z-axis would be more adequate. It has already been used to calculate the diffraction
by multilayer gratings and accounts for all multiple scattering (no approximation),
but it remains difficult to use it for non-periodic (rough) surfaces because of the
computing time and memory required.

4.4 From the Scattering Cross-Section to the Scattered Intensity

4.4.1 The Different Types of Scans

Different types of scans can be used depending on the information one is looking
for. These are

• Constant qz scans in the plane of incidence (defined by the incident wave-vector
and the normal to the surface). They are also known as “Rocking curves”, as
rocking the sample for a fixed incident beam/detector geometry approximately
provides a constant qz. The advantage of such scans is to provide a simple qx

dependence. The disadvantages are a limited qx range (see Fig. 4.7) and possibly
a large background from the substrate as the grazing angle of incidence will
generally be larger than the grazing angle for total external reflection.
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Fig. 4.7 Scan types. (a) Detector scan in the plane of incidence. (b) Constant qz scan in the plane
of incidence. (c) Constant qz (horizontal dotted lines) and detector scans (thick continuous lines)
in the (qx,qz) plane of incidence. The right-bottom area is below the surface and cannot be reached
in the plane of incidence. (d) ψ scan using a linear detector around the surface normal

• Detector scans in the plane of incidence for a fixed angle of incidence, generally
below the critical angle for total external reflection, known as “detector scans”.
The advantage of such scans is to always keep the background from the substrate
low if the grazing angle of incidence is lower than the critical angle for total exter-
nal reflection. The scattered intensity however has a more complicated structure
than in rocking curves as both qx and qz are varied during a scan. Both rocking
curves and detector scans give access to low qx values as qx = k0(cosθsc−cosθin)
(see Sect. 4.5.1).

• Scans in the plane of incidence with a constant θsc offset known as longitudinal
scans, or with a constant qx offset. Such scans can be very useful for example for
determining the conformality of interfaces in thin films. They can also be used to
determine and subtract the background in a reflectivity experiment.

• ψ scans around the normal to the surface, generally performed using a linear
position-sensitive detector. Such scans should be performed when one wants ac-
cess to large q‖ values. The combination of detector and ψ scans allows the full
determination of surface spectra for in-plane wave-vectors in the range 105 m−1

to 1010 m−1.

These different types of scans are illustrated in Fig. 4.7.

4.4.2 Expression of the Scattered Intensity

In contrast to specular reflectivity where the specular condition δ (q‖) implies
that resolution effects amount to a simple convolution, the scattered intensity in a
diffuse scattering experiment is proportional to the resolution volume. It is therefore
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necessary to have a detailed knowledge of the resolution function in order to get
quantitative information from an experiment.

Starting from the definition of the scattering cross-section, we have for the scat-
tered intensity

I =
I0

hiwi

∫
dσ
dΩ

dΩ =
I0

hiwi

∫ (
dσ
dΩ

)
Res(Ω)dΩ , (4.62)

with dΩ = dθscdψ . Since each experimental setup is different, it is impossible to
give a general expression for the scattered intensity. We will detail here the calcu-
lation for detector scans in the plane of incidence which is more complicated to
handle. It is in general easier to perform the integrations in the wavevector space.
Using

qx = k0 (cosθin − cosθsc) ⇒ dqx = k0sinθscdθsc (4.63)

qy = k0sinψ � k0ψ ⇒ dqy = k0dψ (4.64)

for θin ≈ 0, we get for scattering by a rough surface in the plane of incidence

I =
I0

hiwi

Ar2
eρ2

1 |tin
0,1|

2|tsc
0,1|

2(êin .̂esc)2

k2
0sinθsc

∫
dxdy

∫
dqxdqyeiqxx+iqyy(eq2

z 〈z(0)z(r‖)〉 −1),

(4.65)

where the integration in qx and qy is over the q-space resolution. Generally, we will
have widely opened slits in the y direction and

∫
dqyeiqyy = 2πδ (y). Concerning the

qx integration, the exact shape of the resolution function is unimportant as long as
its area is conserved. Considering a Gaussian resolution function

R̃es(δqx) =
1√
2π

e
− (δqx−qx)2

2Δqx2 (4.66)

around qx, we get

I =
I0

hiwi

2πAr2
e(ρ1 −ρ0)2|t in

0,1|
2|tsc

0,1|
2 (ein · esc)

2Δθsc

k0∫
dxeiqxxe−

Δqx2x2
2 (eq2

z 〈z(0)z(x)〉 −1)

(4.67)

Exercise: Show that for
〈
zs
(
r‖
)

zs (0)
〉

= σ2
s e

−
(

r2
‖/ xi2

)
,

I =
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2

)))
,

(4.68)

with erf(qu) = 2q/
√
π
∫ u

0 exp(−q2x2)dx.
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It should always be kept in mind that wavevector resolution functions are delicate
to handle (see [19]).12 From a computing point of view, a numerical integration of
the scattering cross-section which reduces to a multiplication with the detector solid
angle when Δq << q can be preferable.

4.4.3 Illuminated Area

In addition to the solid angle, the scattered intensity depends on the effective illu-
minated area which also needs to be precisely determined. A standard way to define
the scattering direction is through the use of a pair of slits. We first consider detector
scans in the plane of incidence. We have a slit Sd (hd ×wd) in front of the detector
(Ld away from the sample) and another one Sc (hc ×wc) at a distance Ld −Lc from
the sample (see Fig. 4.8). The θsc acceptance of the detector is Δθsc = hd/Ld , and
the ψ acceptance is simply Δψ = max(wd/Ld ,Δψin). The illuminated area is hi/θin

and the intensity is proportional to hihd/Ldθin. At grazing angles of detection, all
points in the footprint “see” the detector, but for θsc ≥ (hcLdθin)/(hiLc), the slits Sc

and Sd play the role of a collimator (which helps in reducing the background), and
only a fraction of the points in the footprint can see the detector. The intensity is
now proportional to (wihchd)/(θscLc).

For scans in the sample plane (diffraction or diffuse scattering experiments), the
footprint of the beam can be discretised as shown in Fig. 4.8b. The θsc acceptance
of the detector is Δθsc = hd/Ld . If a vertically mounted position-sensitive detector

(a)

Ld

θsc

hd

hc

Lc

hc(Ld 
/Lc) /θsc

(b)
wd

wc wi

Lc

Ld

wc(Ld 
/Lc)/ψ

ψ

Fig. 4.8 Resolution effects. The vertical × horizontal dimensions of the detector slit Sd and of
the slit placed just after the sample Sc are (hd ×wd) and (hc ×wc), respectively. The sample-to-Sd
distance is Ld , and the Sc-to-Sd distance is Lc. (a) Detector scans in the plane of incidence. A point
lying in the dark-grey area “sees” the detector under an angle hd/Ld . This angle decreases to 0 in
the light-grey area, as represented by the trapezoid whose FWHM is hc(Ld/Lc)/θsc. (b) Detector
scans around a vertical axis. Points along the thick dotted line normal to the sample-to-detector
axis “see” the detector proportionally to the trapezoid height. The effective illuminated length is
wc(Ld/Lc) and the effective illuminated area is wc(Ld/Lc)/ψ×wi

12 The major problem is that the transformation of the angular resolution function into a wavevector
resolution function leads to a function which is generally not separable in qx and qz.
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of height Hd and resolution hd is used, it can be seen as the superposition of Hd/hd

small detectors. The ψ acceptance is Δψ = wd/Ld . Again, for very small ψ values,
the entire footprint contributes to the measured intensity, and for increasing ψ values
the slit Sc eventually limits the illuminated area. The points along each subsurface
contribute to the measured intensity proportionally to the trapezoid on Fig. 4.8b. The
effective length on such a subsurface is wcLc/Ld , and the effective area of all the
subsurfaces (the parallelogram of Fig. 4.8b) is (wiwcLd)/(Lcψ). A cut-off therefore
occurs for ψ = (wcldθin)/(hiLc).

The dependence of the scattered intensity on the slit sizes is easily visualised in
the case of scattering by a liquid surface since the scattering cross section is well
known and has a smooth dependence on q‖. For example, on Fig. 4.9b for water, one

Fig. 4.9 Resolution effects for detector scans in the plane of incidence in the case of scattering by
the water-free surface. λ = 0.096 nm, θin = 1.41 mrad, the incident beam size was 0.4×0.2 nm2

(H ×V ), the sample-to-detector distance was 650 nm and the collimator distance Sc − Sd was
470 mm. The symbols are experimental data, and the lines are calculated without adjustable param-
eters. (a) Scaling of the scattered intensity with the height of the detector slit hd and the collimator
slit hc. If both hc and hd are multiplied by a factor of 2, the intensity is multiplied by a factor of
4 (2 because the effective area seen by the detector is twice as large and 2 for the angular accep-
tance). (Circles: wc × hc = 10× 1 mm, wd × hd = 1× 0.5 mm; Squares: wc × hc = 10× 2 mm,
wd × hd = 1× 0.25 mm.) (b) The cut-off between the footprint limited and the collimator lim-
ited regimes is determined by the collimator slit height hc (Triangles: wc × hc = 10 × 10 mm,
wd × hd = 1× 0.25 mm, the diamonds indicate the background for this scan; Inverted triangles:
wc×hc = 10×1 mm, wd ×hd = 1×0.25 mm, these curves have been divided by 100.) (c) Depend-
ing on Δψ , there is a full integration qy (∝q−1

x law) or a simple convolution (∝q−2
x law). (Filled

triangles: wc × hc = 10× 10mm, wd × hd = 1× 0.25mm; Filled squares: wc × hc = 10× 1 mm,
wd × hd = 1× 0.25 mm; Filled circles: wc × hc = 10× 0.1 mm, wd × hd = 1× 0.25 mm; these
curves have been divided by a factor of 104.) The broken lines indicate the q−1

x and q−2
x laws
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can identify the wings of the direct beam on the left, a regime where I ≈ q−1
x with

the resolution being mainly determined by the illuminated area (dσ/dΩ ∝ A/q2
x ∝

1/θ 3
sc; Δθsc ∝ θsc, and therefore I ∝ 1/θ 2

sc ∝ 1/qx) and finally a regime where the
resolution is limited by the Sc −Sd collimator.

4.4.4 Reflectivity Revisited

Equation (4.48) above shows that the diffuse intensity decreases as q−2
z for small

qz values, whereas it was shown in Chap. 3 that the specular (coherent) intensity
decreases as q−4

z . One therefore expects that diffuse scattering will eventually dom-
inate over the specular reflectivity. Of course the wavevector at which diffuse scatter-
ing becomes dominant will depend on the experimental resolution since the diffuse
intensity is proportional to the resolution volume. In fact, for reasonable experimen-
tal conditions, the corresponding wavevectors are rather small, on the order of a
few nm−1, and this leads to major difficulties in the treatment of reflectivity data.
A “reflectivity curve” I(qz) is indeed never a pure specular reflectivity curve. More-
over, the diffuse intensity is often (but not always) peaked in the specular direction
(Fig. 4.10), making the separation of the specular and diffuse components very dif-
ficult experimentally.

This is a very difficult problem since the qz dependence of the diffuse intensity
depends on the exact interface correlation function. A simple model can therefore

Fig. 4.10 Diffuse scattering
from the water surface which
is peaked in the specular
direction because capillary
waves of longer wavelength
cost less energy (only a
calculated intensity is
presented here because the
large background due to bulk
scattering prevents from a
precise measurement, see
below) and a solid surface
with a flat power spectrum
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Fig. 4.11 Reflectivity of
an octadecyltrichlorosilane
film on water. The broken
line corresponds to specular
intensity. It is dominated by
diffuse intensity (grey line)
for wavevectors larger than
2nm−1. The black line is
the total (specular + diffuse)
intensity. Inset: corresponding
electron densities for the
complete model Eq. (4.71)
(thick line) and the simple
box model with error function
transition layers (thin line)

no longer be used for the analysis of “reflectivity” curves. This is the situation found
for the system of Fig. 4.11, an octadecyltrichlorosilane Langmuir film on water [4].
In this case, the surface spectrum can be calculated, and the specular and diffuse
contributions to the reflectivity can be compared. The roughness spectrum (here
thermally excited capillary waves) is obtained from thermodynamic considerations
by Fourier decomposition of the free energy, see Sect. 4.5.1:

〈
z(q‖)z(−q‖)

〉
=

1
A

kBT

Δρg+ γq2
‖ +κq4

‖
. (4.69)

A is the interfacial area, γ is the surface tension and κ is the bending rigidity modu-
lus. The correlation function can be obtained by Fourier transformation:

〈z(0)z(r‖)〉 = kBT/2πγ×
[
K0

(
r‖
√

Δρg/γ
)
−K0

(
r‖
√

γ/κ
)]

, (4.70)

where K0 is the modified Bessel function of second kind of order 0. Then, for
a wavevector resolution Δqx, the intensity measured in the θsc = θin direction is
smaller than the reflectivity of a perfectly flat interface by a factor

π−1/2Γ
[

1
2
− kBT q2

z

4πγ
,

1
2
Δq2

X
K
γ

]
× exp−

[
q2

z kBT

2πγ
ln

(
eγE

√
2

√
γ/K

ΔqX

)]
, (4.71)

where Γ is the incomplete Γ function and γE is the Euler’s constant. Note that this
factor is larger than e−q2

z <z2> because diffuse scattering has been taken into account
in addition to specular reflectivity.

It can be seen on Fig. 4.11 that even for relatively small wavevectors the diffuse
intensity dominates. It would not have been possible to obtain physically reasonable
parameters from the experiment without taking its contribution into account (see
Fig. 4.11).
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4.5 Examples

4.5.1 Liquid-Free Surfaces

4.5.1.1 The Scattering Cross-Section

The aim of this paragraph is to show how the DWBA can be used in order to obtain
the differential scattering cross-section in a real case. The roughness of liquid in-
terfaces is due to thermally excited capillary waves whose spectrum can be written
as [26]

〈
z(q‖)z(−q‖)

〉
=

1
A

kBT

Δρg+ γq2
‖
. (4.72)

Δρ is the density difference between the lower and upper liquids, γ is the surface
tension and A the area. Equation (4.72) describes thermally excited capillary waves
limited by gravity at large scales and by surface tension at distances smaller than the
so-called capillary length (lc =

√
γ/Δρg ≈ 2.7 mm for water). More precisely, the

γq2
‖ term stems from the increase in interfacial area due to the deformation. As this

area increase is less important for long wavelengths, we obtain the q−2 characteristic
divergence. Fourier transforming, we obtain the height–height correlation function:

〈
z(0)z(r‖)

〉
= kBT/(2πγ)K0

(
r‖
√

Δρg/γ
)

. (4.73)

K0 is the modified second kind Bessel function of order 0. K0(x)x→0 ≈ Log2 −
γE Logx, with γE Euler’s constant, and limK0(x)x→∞ = 0. Then, the scattering cross-
section is [from Eq. (4.47)] is given by
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where qmin =
√

Δρg/γ is the minimum wavevector in the capillary wave spectrum
and qmax is the largest one, on the order 2π/molecular size. The approximation
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, (4.75)

where η = (kBT/2πγ)q2
z , is very accurate for η � 1 and leads to [21, 37, 43]
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Another contribution is that of density fluctuations in the bulk (thermally ex-
cited acoustic waves). Inserting the density–density correlations for bulk liquid
fluctuations,

〈ρ(r)ρ(r′)〉 = ρ2kBT κTδ (r− r′) (4.77)

in Eq. (4.51), where κT =−1/V (∂V/∂P)T is the isothermal compressibility yielding
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where A/2I m(qz,1) is the effective scattering volume. The total diffuse scattering
cross-section is therefore
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(4.79)

4.5.1.2 Experimental Procedures

One could expect that the same scans which are used for the measurement of diffuse
scattering from solid surfaces could be also applied to liquid surfaces, and in partic-
ular “rocking curves” (equivalent to qx scans at fixed qz for small angles). Since qz

is constant, the signal obtained by doing such scans is very simply related to the sur-
face spectrum, and a very good resolution is obtained because of the grazing angle
geometry [16, 19]: Using qx = k0(cos(θsc)− cos(θin)),

Δqx = k0 (sinθinΔθin + sinθscΔθsc) , (4.80)

and the grazing angle geometry results in an increase in resolution by a factor of
the order of sinθin or sinθsc. In fact such measurements do not yield satisfactory
results because bulk scattering dramatically increases when both the grazing angle
of incidence and the scattering angle become larger than the critical angle for to-
tal external reflection, which is unavoidable in such scans. Indeed, the penetration
length which is inversely proportional to I m(qz,1), Eq. (4.78), is then on the order
of a μm, whereas it is on the order of a nm if either θin or θsc is smaller than θc.
In practice, it is therefore necessary to fix the grazing angle of incidence below the
grazing angle for total external reflection θc. Under this constraint, it is possible to
measure the scattered intensity by scanning either in the plane of incidence (detector
scan) or in the horizontal sample plane.

In the first case, qx and qz are varied together and the scans are therefore sensi-
tive to both the surface roughness (because of the qx variation) and to the normal
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structure (because of the qz variation). For diffuse scattering measurements, the
main advantage of this configuration is the geometrical increase in Fourier space
resolution for scans performed in the plane of incidence discussed above. Us-
ing Eq. (4.80) and neglecting the incident beam divergence, Δqx = k0 sinθscΔθsc.
Also, using qx = k0(cos(θsc)− cos(θin)) ≈ (1/2)k0(θ 2

in − θ 2
sc) with λ = 0.14 nm,

θin = 2 mrad and a minimum accessible θsc = 2.5 mrad at the tails of the reflected
beam, one can see that the minimum accessible qx ≈ 105 m−1 is in good agreement
with the experiments. This kind of measurement should also be considered when-
ever one is interested in the determination of the normal structure of thin films. It is
indeed a valuable alternative to reflectivity experiments when using synchrotron ra-
diation. Its two main advantages over reflectivity are a reduced background because
the grazing angle of incidence is fixed below the critical angle for total external re-
flection and the much lighter experimental setup (only a mirror is required instead
of a complicated beam deflector).

When one is only interested in the roughness spectrum at large wavevectors,
the second kind of scans (in the horizontal sample plane) which directly yields a
signal proportional to the roughness spectrum should be preferred. A PSD mounted
perpendicular to the sample surface can be used to determine the normal structure.
Alternatively, one can integrate over the detector length to improve the statistics.

The Fourier space resolution for such scans is Δqy = k0Δψ , and there is no ge-
ometrical increase in resolution in this geometry. Denoting wd the width of the slit
placed in front of the detector, and Ld the sample-to-detector distance, the small-
est accessible wavevector is k0wd/Ld ≈ 2× 107 m−1 limited by the slit size. The
counterpart of the coarser resolution is that the measured intensity is larger, and the
statistics are also improved by the integration of the intensity along z. As a conse-
quence, the surface scattered signal can be recorded up to wavevectors on the order
of 1010 m−1. The two kinds of scans (in the plane of incidence and in the plane of
the sample) are therefore complementary, and using both of them allows a determi-
nation of surface spectra from 105 m−1 to 1010 m−1.

Fixing the grazing angle of incidence below the critical angle for total external
reflection, the dominant source of scattering is from the upper phase. Even when
working at the liquid–gas interface where the scattering from the subphase-vapour-
saturated helium gas is very weak (it will be at least 3 orders of magnitude larger
when the upper phase is a liquid), it can be necessary to subtract this background. A
very reliable procedure for background subtraction is that of [22]. It consists in low-
ering the trough and scanning around the direct beam (which is transposed by twice
the incident angle). Since the experiment is done under total external reflection, even
if the reflected beam and the transmitted beam (when the sample is lowered) follow
a different path, both paths have exactly the same length, and the beam intensity
is the same along them. Only two differences can be noted: x-rays scattered down-
wards before being reflected will not be totally reflected, but this does not lead to any
difference in the region of interest which is above the specular beam. X-rays scat-
tered upwards before being reflected will have a contribution 2×θin below the point
where they should contribute. Since the background is perfectly flat in the region of
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Fig. 4.12 Procedure for background subtraction

interest, this does again not lead to any noticeable consequence (see Fig. 4.12). This
procedure is therefore reliable, even if the background is not negligible.

A last important point not specific to liquid surfaces is that contrary to the
specular or Bragg-reflected intensity (presence of δ distributions in the scattering
cross-section), the diffuse intensity (including Bragg singularities in two dimen-
sions) increases with the resolution volume (Fig. 4.9). It is therefore necessary to
precisely determine the resolution function as a function of slit openings and the
footprint of the beam on the surface to precisely determine the magnitude of this
intensity.

Figure 4.7d gives a schematic view of a diffuse scattering experiment at the air–
liquid interface. A Teflon trough (inner diameter ∼ 300 mm) is mounted on an ac-
tive antivibration system. A monochromatic incident beam is first extracted from
the polychromatic beam of an undulator source using a two-crystal diamond (111)
monochromator. Higher harmonics are eliminated using two platinum-coated glass
mirror, also used to set the grazing angle of incidence θ on the liquid. The size of
the incident beam is fixed by a slit Sin (for instance 250 × 250μm). The horizon-
tal resolution of the experiment is fixed by the slits Sc and Sd (for instance 300μm
wide and 500μm wide, respectively). Sc is placed at 250 mm from the sample, and
Sd at 1000 mm. These two last slits also fix the illuminated area A seen by the de-
tector (see Fig. 4.8). The precise knowledge for the illuminated area is needed for
the calculation of the scattering cross-section [see for instance Eq. (4.47)]. Inten-
sity is collected by a vertically mounted position-sensitive detector (PSD). When all
the scattering sources of the sample are known, it is possible to calculate in absolute
units the scattered intensity (see for instance Fig. 4.13 where the wavelength is fixed
at λ = 0.154 nm).

The measurements are performed under a vapour-saturated helium atmosphere.
Despite the low level of background, it is necessary to subtract the residual back-
ground. A rectangular Langmuir trough (with a movable barrier and a surface pres-
sure sensor) is used for experiments on surfactant films at air–water interfaces.

The intensity scattered by the bare water surface is plotted in Fig. 4.13 for a ψ
and compared to the intensity calculated from Eq. (4.79). The excess of scattering
at q‖ ≥ 109 m−1 indicates that Eq. (4.79) does not capture all sources of scattering.
It has been shown that this excess comes from a lower effective surface tension for
large q‖ [30].
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Fig. 4.13 Scattering by the
bare water surface. (a)
Detector scan. (b) ψ scan at
fixed θin. An integration
along the linear detector (θsc)
has been performed. Surface
scattering dominates for θin =
2.01 mrad with the
characteristic q−2 divergence
whereas scattering by density
fluctuations dominates θin =
4.61 mrad above the critical
angle for total external
reflection. After Nature 403
871 (2000). Note the structure
peak of water around
2×1010 m−1. The
measurements extend over
more than 5 orders of
magnitude in q‖

4.5.2 Thin Films

In this section we derive expressions for thin films when the refractive index of the
film is not too different from that of the substrate. A good approximation consists in
taking the substrate as the reference medium. One therefore obtains

dσ
dΩ

=
(

dσ
dΩ

)
ref

+ r2
e

∣∣∣t in
0,1

∣∣∣2 ∣∣tsc
0,1

∣∣2 (êin .̂esc)2

〈∣∣∣∣
∫

drδρ(r)eiq.r
∣∣∣∣
2
〉

, (4.81)

defining ρflat(r‖,z) as the electron density for an equivalent flat film, and making the
change of variables z → z−ζ (r‖), we get
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+
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2
〉

.
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Exercise: Check that

E = r0,1
ik0R
4πR

iqz
(ρ1 −ρ0)

∫ 0

−∞
(ρ1 −ρ0)eiq.rdr, (4.83)

where r0,1 is the reflectivity coefficient between media 0 and 1 and is the exact
solution for the electric field scattered by a flat substrate. Show that at the same
level of approximation as above, one has for a film

E = r0,1
ik0R
4πR

∫ 0

−∞

(
iqz +

δρ(z)
ρ1 −ρ0

)
eiq.rdr. (4.84)

Deduce that at the same level of approximation,
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2

, (4.85)

a very popular formula for x-ray reflectivity.
We now use the general expression Eq. (4.82) to show how all correlations can

be determined in a thin film. We will then consider the case of domains and grazing
incidence diffraction in a flat film.

4.5.2.1 Determination of Correlations in a Film

Let us consider a film of electron density ρfilm, thickness d and profile ζ f (r‖) on a
rough substrate of electron density ρsub and profile ζs(r‖).

dσ
dΩ

=
A
q2

z
r2

e

∣∣∣t in
0,1

∣∣∣2 ∣∣tsc
0,1
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. (4.86)

From this expression, it is possible to determine the substrate–film 〈ζs(0)ζ f (r‖)〉
and film–film 〈ζ f (0)ζ f (r‖)〉 correlation functions, provided the substrate–substrate
correlation function 〈ζs(0)ζs(r‖)〉 has been measured first as the oscillating cos(qzd)
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provides a way to separate them. This has been used by Tidswell et al. [42] in order
to study how the surface of a liquid film follows a rough substrate due to van der
Waals forces.

4.5.2.2 Domains in a Flat Film

For domains in a flat film, we have ρflat(r‖,z)−ρ1 = δρav +(ρD −ρav)∑i δ (r‖ −
ri‖)⊗s(r‖), with ρav the average electron density in the film and δρav = (1−c)ρF +
cρD−ρ1 for D domains (with coverage c) located in ri‖ and of shape s(r‖) (s(r‖) = 1
inside a domain and 0 outside) in a F film. Integrating over z,
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〉
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(4.87)

We can now write
〈
∑

i
∑

j
δ (r‖ − ri‖)δ (r‖ − rj‖)

〉
=

〈
∑

i
∑

j
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〉
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〈
∑
i �= j
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〉

= Nδ (r‖)+Ncg(r‖), (4.88)

where g(r‖) is the pair correlation function which gives the probability of finding a
domain at r‖ knowing there is one at origin. One finally obtains for the incoherent
part of the scattering cross-section,
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. (4.89)

For circular domains of radius R

∣∣s̃(q‖)
∣∣2 =

(
2J1(q‖R)

q‖R

)2

.

4.5.2.3 Grazing Incidence Diffraction in a Flat Film

We now consider the case of a film with crystalline order, for example a Langmuir
film. ρuc(r) is the electron density in the two-dimensional unit cell defined by the
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vectors a1 and a2, and the crystal consists of N1 and N2 unit cells along x and y. We
therefore have

δρ(r) =
N1

∑
i1=1

N2

∑
i2=1

ρuc(r− i1a1 − i2a2), (4.90)

and for our flat film
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(4.91)

Summing first, then integrating, we get
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where ρ̃uc(q) is the Fourier transform of ρuc(r)− ρsub. If N1 and N2 are large, an
example of calculation using Eq. (4.92) is given in Fig. 4.14,
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Fig. 4.14 Grazing incidence diffraction from a behenic acid film in the S phase at T = 16.1◦C and
Π = 32.1 mN/m (circles). a = 0.5027 nm and b = 0.7265 nm. Under these conditions F(1,1)=
F(0,2). The line is a calculation using Eq. (4.92) with N1 = 140 and N2 = 80 plus proper powder
averaging [34]



168 J. Daillant et al.

with G = (2nπ/a1,2pπ/a2) a vector of the reciprocal space. Finally,

dσ
dΩ

= 4π2re
∣∣t in

0,1

∣∣2∣∣tsc
0,1

∣∣2(êin .̂esc)2 × A
|a1 ×a2|2 ∑h,k

|F(h,k,qz)|2 δ (q‖ −G).

(4.94)

4.5.3 Liquid–Liquid Interfaces and Membranes

The investigation of liquid–liquid or solid–liquid interfaces poses several additional
problems.

• Transmission through a bulk phase implies to use high-energy penetrating x-rays.
The transmission through a 7 cm wide cell full of hexadecane (C16H34) as a func-
tion of energy is given for example in Fig. 4.15. One can see that one needs at
least an energy of 20 keV to get a transmission of 15%. Energies in the range 20–
30 keV offer a good compromise. Much higher energies and very small beams
have been successfully used for reflectivity measurements [35]. Due to the spec-
ular condition, the background is indeed reduced when using very small beams.
For diffuse scattering, signal and “background” share the same dependence on
slit sizes and there is no gain in reducing the beam size.

• The long path through the upper liquid requires a careful background subtraction
using the procedure of Sect. 4.5.1. An example is given for a double bilayer close
to a solid wall in Fig. 4.16.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000

Tr
an

sm
is

si
on

E [eV]

Fig. 4.15 Transmission by 7 cm of hexadecane (C16H34) as a function of energy
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Fig. 4.16 Left: double lipid bilayer close to a solid wall. The first bilayer is absorbed on the silicon
wafer, whereas the second one is freely floating a few nms from the first one. Right: background
subtraction for diffuse scattering from the double bilayer system [14]

• The high energy implies a very low value for the critical angle for external reflec-
tion, which in turn implies to work with wide enough cells, in particular when
there is a meniscus, if one wants to work on the flat part of the surface.

We give here two examples of such measurements.

4.5.3.1 Monolayers at the Oil–Water Interface

The first one is a monolayer of the lipid DSPC (di-stearoyl-phosphatidylcholine)
at the interface between oil (hexadecane) and water (Fig. 4.17). The measure-
ments were carried out in the plane of incidence using 22 keV x-rays at the ID10B
beamline of the ESRF. The data were analysed using Eqs. (4.72), (4.73), (4.74),
(4.75) and (4.76) with γ = 2.5 mN/m and κ = 40kBT.

DSPC, 2.5mN/m, 40kBT
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Fig. 4.17 Diffuse scattering from a DSPC (di-stearoyl-phosphatidylcholine) monolayer at the in-
terface between oil (hexadecane) and water. Measurements in the plane of incidence using 22 keV
x-rays at the ID10B beamline of the ESRF
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4.5.3.2 Lipid Membranes Close to a Solid Wall

A second example is that of lipid membranes close to a solid wall as depicted in
Fig. 4.16 (left). A double bilayer of, for example, DSPC is deposited using the
Langmuir–Blodgett and the Langmuir–Schaeffer techniques [14]. Whereas the first
bilayer is adsorbed on the substrate (a very flat silicon wafer), the second one is
freely floating in the potential of the wall and the first one. The potential consists of
an attractive van der Waals contribution and repulsive hydration and entropic con-
tributions and can be accurately determined as well as the membrane tension and
bending rigidity. The Hamiltonian writes

H [z
(
r‖
)
] =
∫

R2
d2r‖

[
1
2
κ
(
∇2z
)2

+ γ (∇z)2 +U (z)
]
, (4.95)

and after expansion of U to second order leads to a spectrum equivalent to Eq. (4.72)
with U ′′ instead of Δρg. Let us note here that U ′′ is determined by diffuse scattering
whereas the position of the minimum is determined in complementary reflectivity
experiments. Examples of scattering curves obtained in the plane of incidence using
20 keV x-rays at the ESRF BM32 beamline are given in Fig. 4.18.
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Fig. 4.18 Non-specular scattering data (symbols) and best fits (lines) for DSPC double layers at
48◦C (squares and solid line) and 56◦C (filled circles and dashed line)

4.A Appendix: The Reciprocity Theorem

We consider a medium described by the relative permittivity εref(r) which is as-
sumed to be different from 1 in a localised region of space. Let two different current
distribution sources JA, JB (with same frequency ω) be placed in this medium. We
denote by the indices A, B the fields created by these sources, separately, in the
medium. They satisfy Maxwell’s equations,
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∇×EA(B) = −iωBA(B)

∇×HA(B) = JA(B) + iωDA(B), (4.A1)

where DA,(B)(r) = ε0εref(r)EA(B)(r) and BA(B) = HA(B)/μ0. Substituting the
Maxwell’s equations in the vectorial identity,

∇.(EA ×HB −EB ×HA) = HB.∇×EA −EA.∇×HB

−HA.∇×EB +EB.∇×HA, (4.A2)

leads to

∇.(EA ×HB −EB ×HA) = EB.JA −EA.JB + iω(EB.DA −EA.DB)
+ iω(HA.BB −HB.BA). (4.A3)

The last two terms on the right-hand side are zero so that we get,

∇.(EA ×HB −EB ×HA) = (EB.JA −EA.JB) . (4.A4)

Integrating Eq. (4.A4) over all space gives
∫

d3r∇.(EA ×HB −EB ×HA) =
∫

d3r (EB.JA −EA.JB) ,

and using the divergence theorem
∫

d2r(EA ×HB −EB ×HA) =
∫

d3r (EB.JA −EA.JB) . (4.A5)

If now the current sources are limited to a finite volume, the surface of integration
in Eq. (4.A5) is infinitely remote from them, and the electromagnetic field can be
approximated by a plane wave with E and H orthogonal and transverse.

H =
√

ε0

μ0
n̂×E.

It follows that,

EA ×HB −EB ×HA = 0,

which yields
∫

d3rEB.JA =
∫

d3rEA.JB, (4.A6)

which is the reciprocity theorem [27, 28, 41]. Equation (4.A6) can also be written
for dipole density sources through P = (1/iω)J, one gets

∫
d3rEB.PA =

∫
d3rEA.PB. (4.A7)
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4.B Appendix: Verification of the Integral Equation in the Case
of the Reflection by a Thin Film on a Substrate

It has been indicated in the main text that the integral equation (4.11) obtained by
applying the reciprocity theorem is an exact equation. In this appendix, we verify
that this is indeed the case for a single film on a substrate. The reference situation is a
homogeneous medium of optical index n0 and we want to calculate the electric field
in the case where there is a film (1) of thickness d on a substrate (2). The reflection
and transmission coefficients of the smooth film are, respectively, Eqs. (3.87) and
(3.88):

r =
r0,1 + r1,2e−2ikz,1d

1+ r0,1r1,2e−2ikz,1d , t =
t0,1t1,2e−ikz,1d

1+ r0,1r1,2e−2ikz,1d .

The real case differs from the ideal one within the substrate where the refractive
index difference between the real and ideal case is (n2

2 − n2
0) and in the film where

the difference is (n2
1 −n2

0). In Eq. (4.11), we need the field in the real case, which is
the transmitted field in the substrate, and is

EPW
1 (z) =

t0,1

1+ r0,1r1,2e2ikinz,1d

[
e−ikinz,1z + r1,2e−ikinz,1(2d−z)

]

in the film. We also need the Green function in vacuum (medium (0)),
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4πε0R
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Using Eq. (4.11), the electric field can be written as
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4πR
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. . .
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. (4.B1)

In Eq. (4.B1), we have used that k2
z, j = k2

j −k2
x = n2

j k
2
0 −k2

x implies k2
0(n

2
j −n2

0) =
k2

z, j − k2
z,0. Medium (2) is considered to be slightly absorbing in order to ensure the

convergence of the integration. One obtains

E = E0 −
e−ikR

4πR

∫
dr‖eiq‖.r‖(2ik0 sinθ0r). (4.B2)
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The differential scattering cross-section is thus

dσ
dΩ

=
k2

0

4π2 |r|
2 sin2 θ04π2A δksc‖,kin‖ = k2

0 sin2 θ0|r|2A δ (q‖). (4.B3)

And we find for the reflection coefficient

R =
1

A sinθ0

∫
dσ
dΩ

dΩ = |r|2 (4.B4)

as expected.

4.C Appendix: Interface Roughness in a Multilayer
Within the Born Approximation

In this appendix we treat the case of a rough multilayer within the Born approxima-
tion in order to show some simple properties of the scattered intensity. In the case
of the rough multilayer depicted in Fig. 4.6, Eq. (4.27) gives
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. (4.C1)

The upper medium (air or vacuum) is medium 0, and the substrate (medium s) is
slightly absorbing in order to make the integrals converge.
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which can be written as
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Let us then define
zi = Zi + zi(r‖), (4.C4)

where Zi is the height of the flat interface in the reference case. Equation (4.C3) can
be written as

dσ
dΩ

=
k4

0

16π2q2
z

cos2ψ×
N

∑
i=0

N

∑
j=0

∫
dr‖

∫
dr′‖

[
n2

i+1 −n2
i

][
n2

j+1 −n2
j

]

eiqz(Zi−Z j)eiqz(zi(r‖)−z j(r′‖))eiq‖.(r‖−r′‖). (4.C5)

Making the change of variables r‖ − r′‖ → r‖ and integrating over r′‖,
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dσ
dΩ

=
k4

0A

16π2q2
z

cos2ψ×
N

∑
i=0

N

∑
j=0

∫
dr‖
[
n2

i+1 −n2
i

][
n2

j+1 −n2
j

]

eiqz(Zi−Z j)〈eiqz(zi(r‖)−z j(0))〉eiq‖.r‖ , (4.C6)

where A is the illuminated area. Assuming Gaussian statistics of the height fluctua-
tions zi(r‖), or in any case expanding the exponential to the lowest (second) order,
we have

〈eiqz(zi(r‖)−z j(0))〉 = e−
1
2 q2

z 〈zi(r‖)−z j(0)〉2
. (4.C7)

We then obtain

dσ
dΩ

=
k4

0A

16π2q2
z

cos2ψ

N

∑
i=0

N

∑
j=0

[
n2

i+1 −n2
i

][
n2

j+1 −n2
j

]
eiqz(Zi−Z j)e−

1
2 q2

z 〈zi〉2− 1
2 q2

z 〈z j〉2

∫
dr‖ eq2

z 〈zi(r‖)z j(0)〉2
eiq‖.r‖ . (4.C8)

This equation also includes specular components because it has been constructed
from the general solution of an electromagnetic field in a vacuum. The diffuse in-
tensity can be obtained by removing the specular component:

dσ
dΩ

=
k4

0A

4q2
z

N

∑
i=0

N

∑
j=0

[
n2

i+1 −n2
i

][
n2

j+1 −n2
j

]

eiqz(Zi−Z j)e−
1
2 q2

z 〈zi〉2− 1
2 q2

z 〈z j〉2
δ (q‖). (4.C9)

The diffuse intensity is then

(
dσ
dΩ

)
incoh

=
k4

0A

16π2q2
z

N

∑
i=0

N

∑
j=0

[
n2

i+1 −n2
i

][
n2

j+1 −n2
j

]
eiqz(Zi−Z j)e−

1
2 q2

z 〈zi〉2− 1
2 q2

z 〈z j〉2

(êin .̂esc)2
∫

dr‖
(

eq2
z 〈zi(r‖)z j(0)〉2 −1

)
eiq‖.r‖ . (4.C10)

For a single surface, we get Eq. (4.41). It is remarkable that Eq. (4.C10) has
exactly the same structure as the reflectivity coefficient,

(
dσ
dΩ

)
coh

=
k4

0A

4q2
z

N−1

∑
i=0

N−1

∑
j=0

[
n2

i+1 −n2
i

][
n2

j+1 −n2
j

]

eiqz(Zi−Z j)e−
1
2 q2

z 〈zi〉2− 1
2 q2

z 〈z j〉2
δ (q‖), (4.C11)
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each term simply being multiplied by a “transverse” coefficient:

1
4π2

∫
dr‖
(

eq2
z 〈zi(r‖)z j(0)〉2 −1

)
eiq‖.r‖ .

4.D Appendix: Quantum Mechanical Approach of Born
and Distorted-Wave Born Approximations

T. Baumbach and P. Mikulı́k

In this appendix we treat the formal quantum mechanical approach to scattering
by multilayers with random fluctuations. That can be interface roughness, but also
porosity or density fluctuations. In particular we develop the differential scattering
cross-section in the kinematical approximation (first Born approximation) and in
the distorted-wave Born approximation in terms of the structure amplitudes of the
individual layers and of their disturbances. This approach is written in a general way.
In Chap. 6 it will be applied to the reflection and to diffraction under conditions of
specular reflection under grazing incidence by rough multilayers and multilayered
gratings. We would like to notice that we adopted here the phase-sign notation of
this book, with plane waves e−ikr and Fourier transforms e+iqr, which is contrary to
that used in most publications using this formalism.

4.D.1 Formal Theory

Here we develop formally the incoherent approach for the scattering by multilayers
with defects independently of the specific scattering method. We make use of the
(scalar) quantum mechanical scattering theory and its approximations, in particular
the first-order Born approximation (kinematical theory) and the distorted-wave Born
approximation (semi-dynamical theory).

Scattering of the incident wave |K0〉 by the potential V produces the total wave
field |E〉, described by the integral equation [17]

|E〉 = |K0〉+ Ĝ0V̂ |E〉 , (4.D1)

where Ĝ0 is the Green function operator of the free particle. We define the tran-
sition operator by T̂ |K0〉 ≡ V̂ |E〉 and the transition matrix by the matrix elements
T0S = 〈KS|T̂ |K0〉, characterising the scattering from |K0〉 into |KS〉. The differential
scattering cross-section σ into an elementary solid angle δΩ can be expressed by
the matrix elements of the transition matrix

dσ =
1

16π2 |T0S|2 dΩ . (4.D2)
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Scattering by a Randomly Disturbed Potential

Including a random spatial fluctuation of the scattering potential, the differential
cross-section averages over the statistical ensemble of all microscopic configurations

dσ =
1

16π2

〈
|T0S|2

〉
dΩ . (4.D3)

We divide dσ into coherent and incoherent contributions

dσ =
{

1
16π2 | 〈T0S〉 |2 +

1
16π2 |Cov(T0S,T0S)|2

}
dΩ ≡ dσcoh +dσincoh (4.D4)

by denoting the covariance

Cov(a,b) = 〈ab∗〉−〈a〉〈b〉∗ . (4.D5)

Defining the non-random part of the scattering potential by V A (unperturbed po-
tential) and the random (perturbed) potential by V B, the coherent part of the differ-
ential cross-section writes

dσcoh =
1

16π2

∣∣T A +
〈
T B〉∣∣2 dΩ (4.D6)

and the incoherent differential cross-section

dσincoh =
1

16π2 Cov(T B,T B)dΩ . (4.D7)

If the random part V B causes only a small disturbance to the scattering by V A,
we can calculate T B within the distorted-wave Born approximation (DWBA). It is
worth noting that in contrast to the widely spread opinion it is not a small potential
V B � V A which defines the validity of the DWBA, but rather the scattering by V B

which has to be weak.

Scattering by a Randomly Disturbed Multilayer

In a multilayer we represent each layer by the product of its volume polarisability
χ∞ j(r) and the layer size function Ω j(r)

χ(r) =
N

∑
j=1

χ j(r) =
N

∑
j=1

χ∞ j(r)Ω j(r) . (4.D8)

The optical (or scattering) potential for x-rays can be expressed by the polar-
isability: V (r) = −k2

0χ(r). The contribution of the different layers to the scat-
tering cross-section is distinguished by considering each layer as an independent
scatterer
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V̂ (r) =∑
j

v j(r) . (4.D9)

Then Eq. (4.D4) writes

dσ =
1

16π2

{∣∣∣∣
N

∑
j=1

〈
τ j
〉∣∣∣∣

2

+
N

∑
j=1

N

∑
k=1

Cov(τ j,τk)

}
dΩ , (4.D10)

with τ j = 〈KS|v j|E〉.
Separating the non-random and the random part of each layer, v j = vA

j + vB
j , we

obtain

dσ =
1

16π2

{∣∣∣∣
N

∑
j=1

τA
j +

N

∑
j=1

〈
τB

j

〉∣∣∣∣
2

+
N

∑
j=1

N

∑
k=1

Cov
(
τB

j ,τB
k

)}
dΩ , (4.D11)

where the τA
j are the contributions of the non-perturbed layers to scattering, and τB

j
are those of the layer disturbances. The first term is the coherent part dσcoh, which
consists of the contribution of the ideal multilayer and of the averaged transition
elements of the layer disturbances. The second, incoherent part dσincoh contains the
covariance functions of all single-layer transition elements.

Formally the division of V̂ into a sum of scatterers ∑ j v j is arbitrary. The sticking
point is to find a set of eigenstates, which is convenient to serve as basis for cal-
culation of the transition elements. Finally, we remind the reader that until now no
approximation has been made.

4.D.2 Formal Kinematical Treatment by First-Order Born
Approximation

Within the kinematical treatment (first-order Born approximation) we approximate
the transition operator by the operator of the scattering potential T̂ |K〉 ≈ V̂ |K〉. The
set of vacuum wavevectors |K〉 = e−ikr provides an orthogonal basis for the cal-
culation of the differential scattering cross-section. The transition elements of the
individual layers are

τ j = 〈KS|v j|K0〉 = −k2
0

∫
drχ j(r)eiqr , (4.D12)

where q = kS − k0. Defining the structure factor of the layer

S j(q) =
∫

s
dr‖ Fj(qz,r‖)eiq‖r‖ , (4.D13)

with the random one-dimensional layer form factor

Fj(qz,r‖) =
∫

dzχ j(r)eiqz(z−Z j), (4.D14)
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the transition element becomes

τ j = −k2
0 eiqzZ j S j(q) . (4.D15)

The coherent scattering cross-section (4.D9) uses the statistical averages 〈τ j〉av,
and so we search for the mean layer form factor 〈Fj(qz,r‖)〉av. The incoherent dif-
ferential scattering cross-section contains the covariance functions

q̃ jk = Cov(S j,Sk) (4.D16)

=
∫

dr‖

∫
dr‖

′ eiq‖(r‖−r‖
′) Cov

(
Fj(qz,r‖),Fk(qz,r‖

′)
)

.

Substituting (4.D13) and (4.D16) into (4.D10), we obtain the kinematical differ-
ential scattering cross-section of an arbitrary multilayer

dσ =
k4

0

16π2

{∣∣∣∣
N

∑
j=1

〈S j〉aveiqzZ j

∣∣∣∣
2

+
N

∑
j=1

N

∑
k=1

q̃ jk eiqz(Z j−Zk)

}
dΩ . (4.D17)

4.D.3 Formal Treatment by a Distorted-Wave Born Approximation

The distorted-wave Born approximation takes all those effects of multiple scattering
into account which are caused by the unperturbed potential V A. It is less the method
itself, but rather the right choice of V A, which decides about the success in order to
be enough transparent and sufficiently precise. We search for such a V A which en-
ables to explain the essential multiple scattering effects. However, it should provide
the simplest possible solutions EA

K used as orthonormal basis for the representation
of scattering by the disturbance (perturbed potential) V B.

Scattering by planar multilayers with sharp interfaces produces such simple so-
lutions. It has been shown that rough multilayers as well as intentionally laterally
patterned multilayers and gratings can be treated advantageously by starting with an
ideal potential of a planar (laterally averaged) multilayer, splitting the polarisabil-
ity in

χ = χA +χB with χA =
N

∑
j=1

χAplanar
j . (4.D18)

Coherent scattering by the non-perturbed multilayer generates a wave field EA
K ,

which can be decomposed into a small number of plane waves within each plane
homogeneous layer, both with constant complex amplitudes and wavevectors,

EA
K, j(r) =

[ I

∑
n=1

Ekn, j e−ikn‖, jr‖ e−iknz, j(z−Z j)
]
ΩA

j (z) . (4.D19)
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In case of specular reflection it is I = 2 (one transmitted and one reflected wave),
for grazing incidence diffraction and strongly asymmetric x-ray diffraction I = 8.
The EA

K(r) are used as non-perturbed states for the estimation of T B (4.D6).
Within the first-order DWBA one obtains

T B,DWBA = 〈EA∗
S |V̂ B|EA

0 〉 = −k2
0

∫
dr EA

S (r)χB(r)EA
0 (r) . (4.D20)

Again, it is recommendable to describe the contribution of the disturbance within
each plane layer separately by

τB
j = −k2

0

∫
dr EA

S (r)χB
j EA

0 (r), (4.D21)

with
χBplanar

j = χΩA
j −χAplanar

j . (4.D22)

We define Fmn
j and Smn

j formally similar to the expressions (4.D13) and (4.D14);
however, now with respect to the disturbance χB

j and corresponding to the actual
scattering vector

qmn
j = km

S j − kn
0 j, (4.D23)

inside the layer

Fmn
j (qmn

z, j ,r‖) =
∫

dzχB
j (r)eiqmn

z, j (z−Z j) . (4.D24)

Each τB
j consists of I × I terms

τB
j = −k2

0

I

∑
m=1

I

∑
n=1

Em
S j(z)S

mn
j En

0 j(z) , (4.D25)

or using the matrix formalism

τB
j = −k2

0Em
S jŜ jEn

0 j , (4.D26)

where the column vector Em
K, j contains the amplitudes of the I plane waves of one

non-perturbed state in the jth layer and Ŝ j is the structure factor matrix of the layer
disturbance, respectively. Each term in (4.D25) represents the contribution of the
disturbance to the scattering from one plane wave of the initial state EA

K0
to another

plane wave of the final state EA
KS

. Each scattering process is characterised by the
product of the according wave amplitudes Em

S jE
n
0 j and by the disturbance structure

factors Smn
j .

In order to determine the coherent scattering cross-section we average F and S
over the statistical ensemble and substitute these terms in (4.D10). The incoherent
cross-section contains the covariance functions for each layer pair

Cov
(
τB

j ,τB
k

)
= k4

0 ∑
m,n,o,p

Em
S jE

n
S j Q̃mnop

jk Eo
0kE p

0k, (4.D27)
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with

Q̃mnop
jk = Cov

(
Smn

j ,Sop
k

)

=
∫

dr‖

∫
dr‖

′ eiq‖(r‖−r‖
′) Cov

(
Fj(qmn

z, j ,r‖),Fk(q
op
z,k,r‖

′)
)

. (4.D28)

Each term represents the covariance of one scattering process in layer j and a
second scattering process in layer k. Adding up the contributions of all scattering
processes and all layers we obtain finally

dσ =
k4

0

16π2

{∣∣∣∣∣
N

∑
j=1

τA
j +

N

∑
j=1

I

∑
m,n=1

Em
S j

〈
Smn

j

〉
En

0 j

∣∣∣∣∣
2

(4.D29)

+
N

∑
j,k=1

I

∑
m,n,o,p=1

Em
S j(E

n
S j)

∗ Q̃mnop
jk Eo

0k(E
p
0k)

∗
}

dΩ .

In x-ray reflectivity, each eigenstate of the unperturbed potential consists of a
transmitted and reflected wave, thus I = 2. The four wavevector transfers q11, . . . ,q22,
corresponding to (ksc‖ − kin‖,±ksc,z ± kin,z) in (4.56), (4.57) or (6.48), are repre-
sented in the reciprocal space in Fig. 6.40. Further, the above expressions are written
explicitly for diffuse scattering in Eqs. (6.46), (6.47), (6.48) and (6.49) and for co-
herent reflectivity for deterministic (i.e. non-random) grating potential V B in (6.72).
The covariance for grazing incidence diffraction is presented by (6.62).

Simpler DWBA for Multilayers

The expressions simplify enormously if we can approximate the non-perturbed po-
larisability by its mean value in the multilayer, averaging vertically over the whole
multilayer stack. We obtain a homogeneous “non-perturbed layer”. The splitting of
the potential in this way gives

χA(r) = 〈χML(r)〉av

χB(r) =
N

∑
j=1

χBlayer
j (r) with χBlayer

j (r) =
(
χ(r)−〈χML(r)〉av

)
Ω id

j (r) .
(4.D30)

Now the non-perturbed wave field below the sample surface consists of the trans-
mitted wave only. In consequence exclusively the primary scattering processes

Cov(τB
j ,τB

k ) = K4 tSt∗S Q̃11
jk r0r∗0 (4.D31)

and the transmission function of the sample surface are considered. Also the effect
of refraction is included.
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Chapter 5
Neutron Reflectometry

C. Fermon, F. Ott and A. Menelle

5.1 Introduction

Neutron reflectometry is a relatively new technique [1, 2]. In the last years, it has
been extensively used for solving soft matter problems like polymer mixing [3–5]
or the structure of liquids at the surface [6, 7], for example. The key property of
neutrons for polymer studies is their large contrast between 1H and 2H which allows
selective “labeling” by deuteration.

In the late 1980s, a new field of application of neutron reflectometry emerged.
Following the discovery of giant magneto-resistance in anti-ferromagnetically cou-
pled multilayered films [8] and new magnetic phenomena in ultra-thin films, there
has been an interest in the precise measurement of the magnetic moment direc-
tion in each layer of a multilayer and at the interface between layers. Owing to the
large magnetic coupling between the neutron and the magnetic moment, neutron re-
flectometry has proved to be a powerful tool for obtaining information about these
magnetic configurations and for measuring magnetic depth profiles.

At grazing incidence, it is possible to distinguish three scattering geometries
(Fig. 5.1): specular reflection, scattering in the incidence plane (off-specular scatter-
ing) and scattering perpendicular to the incidence plane (grazing incidence SANS).
These different scattering geometries probe different length scales x and directions
in the sample surface. Specular reflectivity probes the structure along the depth in
the film (3 nm < ξ < 100 nm). Off-specular scattering probes surface features at a
micrometric scale (600 nm < ξ < 60 μm). Finally, grazing incidence SANS probes
surface features in the range 3 nm < ξ < 100 nm. These different scattering geome-
tries allow the study of a very wide range of length scales ξ , ranging from a few nm
up to several μm.

In this chapter, we give an overview of the experimental and theoretical methods
used in neutron reflectometry, focusing mainly on specular reflectivity. The corre-
sponding theory is partly derived from previous work on x-rays, and we emphasize
on the aspects specific to neutrons.

C. Fermon (B)
Service de Physique de l’Etat Condensé, Orme des Merisiers, CEA Saclay,
91191 Gif sur Yvette Cedex, France

Fermon, C. et al.: Neutron Reflectometry. Lect. Notes Phys. 770, 183–234 (2009)
DOI 10.1007/978-3-540-88588-7 5 c© Springer-Verlag Berlin Heidelberg 2009



184 C. Fermon et al.

z 

x 

y 

sample

Incident
beam

Specular
reflection 

Incidence
plane 

Specular reflection
0.06 < qz < 3 nm–1

3 nm < ξ < 100 nm

Incidence plane
10–4 < qx < 10–2 nm–1

600 nm < ξ < 60 µm

Plane perpendicular 
to the incidence plane 
10–4 < qy < 3 nm–1

3 nm < ξ < 100 nm

Fig. 5.1 The different surface scattering geometries. (Black line) specular reflectivity geometry;
(dotted plane) off-specular scattering plane, corresponding to the incidence plane; (hashed plane)
GISANS scattering plane, perpendicular to the incidence plane. These different scattering geome-
tries probe a very wide range of length scales and directions in the sample surface

In a first part, we will review the neutron–matter interactions. We then describe
the non-magnetic scattering. In this case, it is possible to introduce an optical index
and give a treatment which is similar to x-ray reflectometry (Chap. 3).

In a second part, the neutron spin is introduced. In this case, optical indices can-
not be used any longer and it is necessary to completely solve the Schrödinger equa-
tion. A detailed matrix formalism is presented.

We then discuss the different aspects of data processing and the problems related
to the surface roughness. Two types of neutron reflectometers are described: fixed-
wavelength two-axis reflectometers and time-of-flight spectrometers.

The use of neutron reflectivity in the field of polymer films and magnetic layers
is then illustrated by several examples.

Finally, we present the use of off-specular scattering and grazing incidence SANS
applied to the study of magnetic surfaces. However, the theoretical aspects of mag-
netic off-specular scattering are not discussed since it would require a dedicated
chapter.

Notations used in this chapter

b, b j bound scattering length of a nucleus, mean scattering length of a layer j
bc bound coherent scattering length
bi incoherent scattering length
bN spin-dependent scattering length
b′ real part of the scattering length
b′′ imaginary part of the scattering length
E0,E j energy of the neutron in the vacuum and in layer j
e charge of the electron
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d, d j thickness of a layer
g Landé factor (g = 2)
h̄ Planck constant
I nuclear spin operator
k wave vector
M,Mj magnetic moment of an electron and of a layer
m neutron mass
me electron mass
n j refractive index of layer j
p p = 2.696 fm, conversion factor of magnetization to

an effective scattering length
q scattering vector
s spin operator of the electron
σ Pauli operator associated with the neutron spin
Vj volume of layer j
V (r) interaction Hamiltonian
gn gn = −1.9132, nuclear Landé factor of the neutron
λ ,λ0 neutron wavelength
μB Bohr magneton (μB = eh̄/(2me) = 9.27×10−24 JT−1)
μn nuclear magneton (μn = eh̄/(2mp) = 5.05×10−27 JT−1)
ρ j atomic density of layer j (atoms per cm3)
σ j absorption
θ j,ϕ j spherical angles of the magnetization of layer j
θin, θr incident and reflected angles of the neutron beam

We call “up” (resp. “down”) the neutron polarization parallel (resp. anti-parallel)
to the external applied magnetic field.
“Down–up” designates a polarized “down” incident beam and polarized “up” de-
tected beam.
“Down–up” and “up–down” are called spin-flip processes.

5.2 Schrödinger Equation and Neutron–Matter Interactions

5.2.1 Schrödinger Equation

The neutron can be described by a wave of wavelength λ , of wave vector:

k0 =
2π
λ

, (5.1)

and of energy

E0 =
h̄2k2

0

2m
. (5.2)
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Its wave function verifies the Schrödinger equation (1.17):

h̄2

2m
d2ψ
dr2 +[E −V (r)]ψ = 0, (5.3)

where m is the neutron mass, E its energy and V the interaction potential. The
neutron is a spin 1/2 particle so that ψ(r) can be expressed on the base of the two
spin states:

ψ+(r) |+〉+ψ−(r) |−〉 . (5.4)

When there is an external or internal magnetic field, an “up” (resp. “down”)
neutron designates a neutron in the eigenstate |+〉 (resp. |−〉). In the following,
the space dependence (r) of the index will often be dropped.

5.2.2 Neutron–Matter Interaction

The two main interactions are the strong interaction with the nuclei and the magnetic
interaction with the existing magnetic moments (nuclear and electronic). There are
a large number of second-order interactions which are described in [9].

5.2.2.1 Neutron–Nucleus Interaction: Fermi Pseudo-Potential

The scattering of a neutron by a nucleus comes mainly from the strong interac-
tion. The interaction potential is large but its extension is much smaller than the
wavelength of the neutron. Hence this interaction can be considered as punctual and
isotropic. Within the Born approximation, it can be described by the Fermi pseudo-
potential [10]:

VF(r) = b

(
2π h̄2

m

)
δ (r), (5.5)

where b is the scattering length and r is the position of the neutron. The value of the
scattering length b depends on the nucleus and on the nuclear spin of the nucleus.
Formally it can be written as

b = bc +
1
2

bNI.σ , (5.6)

N.B.: the scattering length is generally a complex number: b = b′ + ib′′. The first
term bc is called the coherent scattering length. The second term corresponds to
the strong interaction of the spin of the neutron (described by the operator 1/2σ )
with that of the nucleus (operator I). The total spin J = 1/2σ + I is a good quan-
tum number for the neutron spin – nucleus spin interaction 1/2σ .I. In the manifold
{I ±1/2}, the eigenvalues of the spin-dependent operator I.σ are I (for J = I +1/2)
and −(I + 1) (for J = I − 1/2). We name b+ and b− the two scattering lengths
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associated with these two eigenvalues, corresponding to the two states |+〉 and |−〉
of the neutron spin. The nucleus spin-dependent scattering lengths can then be writ-
ten as follows [11]: {

b+ = b0 + 1
2 bnI

b− = b0 − 1
2 bn(I +1)

, (5.7)

where I is the nuclear spin quantum number.
We remind that the total scattering cross section is given by (see Eq. (1.35))

σtot = 4π〈|b|2〉, (5.8)

in which the brackets designate the statistical average over the neutron and nuclear
spins.

5.2.2.2 Neutron Absorption

The absorption of neutrons is described by the imaginary part of the scattering
length b′′. The absorption cross section is given by

σabs = (4π/k0)b′′. (5.9)

The absorption is negligible for thin films except for some elements: Gd, Sm, B
and Cd. These elements present (n,γ) nuclear resonances at thermal neutron energies
which strongly increase the absorption.

5.2.2.3 Incoherent Scattering

Incoherent scattering comes from the random distribution of isotopes or nuclear spin
states in a material. In this case, the total scattering cross section (see Eq. (5.8)) can
be written as

σtot = 4π〈|b|2〉 = 4π
(
〈|b|〉2 +

(
〈|b|2〉−〈|b|〉2))= σcoh +σincoh, (5.10)

where σcoh and σincoh are called the coherent and incoherent scattering lengths. In
the presence of isotope or spin disorder, the second term in Eq. (5.10) is not zero.
If, for example, the nucleus carries a spin (see 5.8) we have a spatial distribution b+

and b− of scattering lengths. In the case of an isotope distribution bα in the material,
the incoherent cross section is given by

σinc,isotope = 4π ∑
α<β

cαcβ |bα −bβ |2, (5.11)

where cα designates the fraction of isotope α in the material. Incoherent scatter-
ing appears as a q-independent background in the experiments and can be treated
as an absorption plus a flat background. The incoherent scattering is particularly
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important for hydrogenated layers but it is small for deuterated layers. A more de-
tailed discussion of incoherent scattering can be found in [12–14]. Tables of the dif-
ferent scattering lengths (coherent, incoherent, absorption) of the different elements
can be found in [13, 14].

5.2.2.4 Magnetic Interaction

The main magnetic interaction is the dipolar interaction of the neutron spin with the
magnetic field created by the unpaired electrons of the magnetic atoms. This field
contains two terms, the spin part and the orbital part:

B =
μ0

4π

(
∇×
{
μe ×R

|R|3

}
− e ve ×R

|R|3

)
, (5.12)

where μe = −2μBσ is the magnetic moment of the electron, μB is the Bohr magne-
ton, ve is the speed of the electron.

The neutron magnetic moment is equal to

μ = gnμnσ . (5.13)

The magnetic interaction is expressed as

VM(r) = −μ .B = −gnμnσ .B. (5.14)

Neutron reflectivity does not allow the separation of the orbital and spin contri-
butions, it is only sensitive to the internal magnetic field.

5.2.2.5 The Zeeman Interaction

It is the interaction of the neutron spin with an external magnetic field B0:

VZ(r) = −gnμnσ .B0. (5.15)

5.3 Reflectivity on Non-Magnetic Systems

For non-magnetic systems we can introduce the notion of optical indices. It is an ap-
proach similar to the x-ray formalism (Chaps. 1 and 2). It can be applied to neutron
reflectometry on soft matter [15] and non-magnetic systems.

We consider a neutron beam, reflected by a perfect surface with an incident angle
θ . As in Chap. 3, the surface is defined by the interface between the air (n = 1) and
a material with an optical refractive index n. In vacuum, the energy of the neutron
is given by
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E =
h̄2k2

0

2m
=

h2

2mλ 2 . (5.16)

Let q = kr −kin be the scattering wave vector. The projection of the scattering
wave vector on the z-axis (perpendicular to the surface) is given by

qz =
4π
λ

sinθin. (5.17)

5.3.1 Neutron Optical Indices

The neutron indices are very different from the x-ray indices and we will determine
their expression from the Schrödinger equation. We suppose that the interaction
potential V (r) in the medium is independent of the in-plane coordinates x and y.
The mean potential V in the medium is given by the integration of the Fermi pseudo-
potential:

V =
1
v

∫

v

V (r)d3r =
2π h̄2

m
ρb, (5.18)

where ρ is the number of atoms per unit volume. The atomic details at the interface
are smoothed out (Fig. 5.2b) and the interaction potential V is only a function of the
depth in the film z.

In the absence of any magnetic field, the Schrödinger equation can be written as

h̄2

2m
d2ψ
dr2 +[E −V ]ψ = 0. (5.19)

Equation (5.19) can be written in the form of a Helmholtz propagation equation
similar to the electromagnetic case:

d2ψ
dr2 + k2ψ = 0, (5.20)

with

k2 =
2m

h̄2 [E −V ] . (5.21)

kin

in r

kr

z

k

q

θ θ 

θ
λ

sin
4π=q

Thin film
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Medium 
n<1

Incident Reflected 
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V(z)

layer 1 

layer 2 

vacuum
q 

R(Q)

(b) (a) 

x

Fig. 5.2 (a) Specular reflectivity geometry. (b) Interface between two surfaces. In the optical ap-
proximation, the interface is approximated as a continuous medium
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We define the optical index as follows:

n2 =
k2

k2
0

(5.22)

The optical index n can be written as1

n2 = 1− V
E

= 1− λ 2

π
ρb. (5.23)

It is in most cases smaller than 1 except for materials with a negative scattering
length (e.g., Ti and Mn). The quantity 1− n is of the order of 10−5 and thus n can
be written as

n ≈ 1− λ 2

2π
ρb. (5.24)

5.3.2 Critical Angle for Total External Reflection

At the interface between two media, the Snell’s law applies:

cosθin = ncosθtr. (5.25)

Since we have shown that the index is smaller than 1, for angles θ ≤ θc, there is
a total reflection of the incident wave like in the case of x-ray reflection. The critical
angle θc is given by the condition θtr = 0, i.e.,

cosθc = n. (5.26)

Since θc is very small it is possible to use a Taylor expansion. Using (5.24) and
(5.26) the expression of θc is given by

θc =

√
ρb
π

λ . (5.27)

The corresponding critical wave vector is

qc =
4π sinθc

λ
= 4
√

πρb. (5.28)

5.3.3 Determination of Scattering Lengths and Optical Indices

In the case of pure materials, the knowledge of b and ρ fully characterizes the
material. In the case of crystalline solids of the type AxBy, for example, unit
cells must be considered and the density ρ of unit cells per unit volume must be

1 This expression is similar to that for x-ray (see Sect. 3.1.1) where the classical electron radius re

is the scattering length density for x-rays.
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Table 5.1 Scattering length, atomic density, optical index δ = 1 − n (at λ = 0.4 nm) and
critical wave vector of some common materials. More exhaustive data can be found at
“www.neutron.anl.gov”

Material bn (fm) ρ (1028m−3) ρb (1013m−2) δ (10−6) qc (nm−1)

H (hydrogen) −3.73
D (deuterium) 6.67
C (graphite) 6.64 11.3 75 19.1 0.19
C (diamond) 6.64 17.6 117 29.8 0.24
O 5.80
Si 4.15 5.00 20.8 5.28 0.10
Ti −3.44 5.66 −19.5 −5.0 –
Al 3.45 6.02 20.8 6.11 0.10
Fe 9.45 8.50 80.3 20.45 0.20
Co 2.49 8.97 22.34 5.69 0.11
Ni 10.3 9.14 94.1 24.0 0.22
Cu 7.72 8.45 65.2 16.6 0.18
Ag 5.92 5.85 34.6 8.82 0.13
Au 7.63 5.90 45 11.5 0.15
H2O −1.68 3.35 −5.63 −1.43 –
D2O 19.1 3.34 63.8 16.2 0.18
SiO2 15.8 2.51 39.7 10.1 0.14
GaAs 13.9 2.21 30.7 7.82 0.12
Al2O3 (sapphire) 24.3 2.34 56.9 14.5 0.17
Pyrex 42 10.7 0.14
Polystyrene 23.2 0.61 14.2 3.6 0.084
Polystyrene 106.5 0.61 65 16.5 0.18

(deuterated)

calculated. The average scattering length bav in the unit cell is simply given by
bav = (xbA + ybB)/(x+ y). The value ρbav can then be used to calculate the index
of the material. The case of liquids and polymers is more complex since it is usu-
ally more difficult to define a “unit cell”. Thus, the best method is to calibrate the
optical index of each polymer or liquid that one wants to study by measuring a thick
film, for example. Table 5.1 gives the scattering length, optical index δ = 1−n and
critical wave vector qc (at λ = 0.4 nm) for various elements and compounds.

5.3.4 Reflection on a Homogeneous Medium

As shown by Eq. (5.19) the problem of the reflection of a neutron beam on a non-
magnetic medium can be treated exactly in the same way as the reflection of x-rays.
Since the potential V is only z dependent, the Schrödinger Eq. (5.19) reduces to the
one-dimensional equation:

h̄2

2m
d2ψz

dz2 +[Ez −Vz]ψz = 0, (5.29)

with a wave function of the form ψ = ei(kinxx+kinyy)ψz.
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In the medium, the general solution is given by

ψz = Aeiktrzz +Be−iktrzz. (5.30)

The transmitted wave vector can be related to the incident wave vector using (5.21):

k2 =
2m

h̄2 [E −V ] = k2
in −4πρb. (5.31)

At the interface we have to apply the continuity condition on ψ and ∇ψ . In a way
similar to the x-ray case, it is then possible to show that the parallel components of
the incident and reflected waves are continuous [10]. The continuity of the parallel
components allows us to write

k2
trz = k2

inz −4πbρ. (5.32)

Considering Eqs. (5.20) and (5.32), the problems of neutron and x-ray reflectivity
are formally the same. It is possible to use the same formalism as the one developed
in Chap. 3 for x-ray reflectivity.

In particular, it is possible to use the classical Fresnel formulae. The reflected and
transmitted amplitudes are given by

r =
sinθin −nsinθtr

sinθin +nsinθtr
, (5.33)

t =
2sinθi

sinθi +nsinθtr
. (5.34)

In terms of scattering wave vector, the reflected intensity is given by

R =
∣∣∣∣k0z − ktrz

k0z + ktrz

∣∣∣∣
2

. (5.35)

Figure 5.3 shows a typical curve calculated for a perfect surface. Below the criti-
cal wave vector qc the reflectivity is exactly 1. Beyond this region, the signal decays
as 1/q4.
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Fig. 5.3 Reflected intensity as a function of qz for a silicon substrate (at λ = 0.4 nm)
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Fig. 5.4 Reflectivity on a multilayer system Si//Cu (50 nm)/Cr (9 nm). The short period oscilla-
tions are characteristic of the total thickness of the layer (59 nm); the long range modulation is
characteristic of the thin Cr layer (9 nm). (Insert) Optical index profile as a function of the depth in
the film

Figure 5.4 presents the situation of the reflection of a neutron beam on a multi-
layer Si ‖ Cu | Cr. Modulations of the reflected intensities are observed. They cor-
respond to constructive and destructive interferences of the neutron waves scattered
by the different interfaces of the multilayer system. These oscillations are called
Kiessig fringes. Their pattern is characteristic of the multilayer system.

5.4 Neutron Reflectivity on Magnetic Systems

If the system is magnetic or if there is an external magnetic field on the sample,
we need to take into account the spin of the neutron. In the simplest case where
the magnetization of the different layers is collinear to the applied magnetic field
defining the neutron polarization direction, it is possible to introduce a magnetic
optical index. However, in the general case, when the magnetizations of the layers
are not parallel to the applied field, it is not possible to use optical indices and it
is always necessary to completely solve the Schrödinger equation [16–19]. In the
case of homogeneous, infinite magnetic layers, the problem can be solved using a
formalism very similar to the non-magnetic case developed in the previous part.

5.4.1 Interaction of the Neutron with an Infinite
Homogeneous Layer

We consider a magnetic layer of thickness d, where the neutron interacts with the
different unpaired electrons. We perform a direct integration on the layer in order to
obtain the potential V for the Schrödinger equation.
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5.4.1.1 The Magnetic Interaction

A first approach is to assume that the neutron is sensitive to the internal magnetic
field in the magnetic layer. The interaction potential is then written as

−gnμnσ . [μ0 (1−D)M+B0] , (5.36)

where M is the magnetization of the layer, D is the demagnetizing factor and B0 is
the external magnetic field. In the case of an infinite magnetic thin film, (1−D)M
is equal to the in-plane component of the magnetization M‖. It is possible to demon-
strate this result but the calculations are somewhat lengthy. This is developed below
for the interested reader but it can be skipped at the first reading.

The magnetic interaction can be written as

−gnμnσ .B = −gnμnσ .

(
∇×
{
μe ×R

|R|3

}
− e

c
ve ×R

|R|3

)
(5.37)

or

−gnμn

{
σ .∇×

(
μe ×R

|R|3

)
− e

2mec

(
pe.

σ ×R

|R|3
+

σ ×R

|R|3
.pe

)}
, (5.38)

with
pe = −ih̄∇e. (5.39)

If we first consider only the spin-dependent part of the interaction, we can write

∇×
(
μe × r

r3

)
= −∇×

(
μe ×∇

(
1
r

))
=

1
2π2

∫
1
q2 (q× (μe ×q))exp(iq.r)dq.

(5.40)

5.4.1.2 Integration on a Homogeneous Layer

We suppose a constant atomic density ρ . We replace r by r + r0, where r0 is the
distance between the neutron and the center of the layer. r is the distance between the
center and the volume dr in the layer. The spin-dependent part of the interaction is

2gnμnμBσ
1

2π2

∫
1
q2

∫

V

ρ(r)(q× s(r)×q)exp(iq.r0)exp(iq.r)drdq, (5.41)

where ρ(r) is the density and s(r) = s is the mean value of the spin magnetization
in the volume dr. The two first integrations over x and y give Dirac distributions:

4gnμnμBρσ
∫

1
q2

z

∫ L/2

−L/2
drz(qz × ŝ×qz)exp(iqz.r0z)exp(iqzrz)dqz. (5.42)
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The third integration gives

8πgnμnμBρσ .s‖ [θ(r0z +L/2)−θ(r0z −L/2)] . (5.43)

where θ(r) is the Heaviside function. We can do the same calculation on the orbital
part and we obtain

2π h̄2

m
pσ .M‖ρ [θ(r0z +L/2)−θ(r0z −L/2)] , (5.44)

with p = 2.696 fm. M‖ is given in μB per atom and represents the in-plane com-
ponent of the magnetization and not necessarily the magnetization perpendicular to
the wave vector.

5.4.1.3 Conclusion

From Eq. (5.44), we can deduce two very important points: it is only possible to
measure the in-plane magnetization and the magnetic interaction is zero out of the
layer. These two properties are essential, the first is the main limitation to the use
of neutrons for the study of magnetic thin films, the second is the justification of
solving the Schrödinger equation in each layer, independently of the others. Thus
the formalism developed for non-magnetic systems can be adapted to the magnetic
case, however, with some complications.

5.4.2 Solution of the Schrödinger Equation

The interaction potential for a layer j is given by

Vj =
2π h̄2

m
ρ jb j −

2π h̄2

m
ρ j pσ .M j‖ −gnμn σ .B0. (5.45)

We introduce an effective field Beff defined by (Fig. 5.5)

Beff = B0 +μ0M‖. (5.46)

Fig. 5.5 Effective field Beff,j
in the layer, sum of the
external field B0 and of the
magnetization of the layer
Mj. Definition of the
spherical coordinates φ j

and θ j
µ0Mα

B0

φα

θα Bα

z

x

y
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If we introduce the spherical angles θ and φ to describe the effective field:
⎧⎨
⎩

Beff, jx = B0x +μ0Mjx = Beff, j sin(θα)cos(ϕα)
Beff, jy = B0y +μ0Mjy = Beff, j sin(θα)sin(ϕα)
Beff, jz = B0z = Beff, j cos(θ j)

, (5.47)

the interaction potential V can then be written in the compact form as

Vj =
2π h̄2

m
ρ jb j −gnμnσ .Beff,α . (5.48)

The Schrödinger equation

− h̄2

2m
Δψ +V (r)ψ = Eψ (5.49)

is a vectorial equation in the basis of the two spin states |+〉 and |−〉. We have to
solve the Schrödinger equation (5.49) with a wave function expressed with its two
spinor components ψ+ and ψ−. It can be written explicitly as

− h̄2

2m
Δ
(
ψ+
ψ−

)
+
(

2π h̄2

m
ρ jb j

)(
ψ+
ψ−

)

− gnμn
(
Beff,xσx +Beff,yσy +Beff,zσz

)(ψ+
ψ−

)
= E

(
ψ+
ψ−

)
,

where the Pauli spin operators σ are given by

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

We obtain the two coupled equations involving the two spinor components ψ+
and ψ−:

(
− h̄2

2m
∇2 +

2π h̄2

m
b jρ j −gnμnBeff,z

)
ψ+(r)

+
(
−gnμnBeff,x + ignμnBeff,y

)
ψ−(r) = Eψ+(r)(

− h̄2

2m
∇2 +

2π h̄2

m
b jρ j +gnμnBeff,z

)
ψ−(r)

+
(
−gnμnBeff,x − ignμnBeff,y

)
ψ+(r) = Eψ−(r).

5.4.3 General Solution

We search solutions of the form ψ+(r) = a+ exp(ik.r) and ψ−(r) = a− exp(ik.r).
The possible values for k are given by the possibility of finding non-zero solutions
of the previous system (i.e., zero determinant condition). These conditions give four
possible values for k:
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k±2
j =

2m

h̄2 E −4πρ jb j ±
2mgnμn

h̄2

∣∣B j
∣∣ . (5.50)

A general solution of the form

exp(ik‖, jr‖)
(

aexp(ik+
z, jz)+bexp(−ik+

z, jz) +cexp(ik−z, jz)+d exp(−ik−z, jz)
)
(5.51)

is not valid when there is an external magnetic field because k+
‖,0 �= k−‖,0. At this point

there are two ways of solving the problem. The first way is to solve the problem for
each eigenstate |+〉 and |−〉. The second way consists in taking the general solution
which is expressed as follows:

exp(ik++
‖, j r‖)

(
aexp(ik++

z, j z)+bexp(−ik++
z, j z)

)

+ exp(ik−−
‖, j r‖)(cexp(ik−−

z, j z)+d exp(−ik−−
z, j z))

+ exp(ik+−
‖, j r‖)

(
eexp(ik+−

z, j z)+ f exp(−ik+−
z, j z)

)

+ exp(ik−+
‖, j r‖).(gexp(ik−+

z, j z)+hexp(−ik−+
z, j z)), (5.52)

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k++2
j = k+2

j , k++2
‖, j = k+2

‖,0

k+−2
j = k+2

j , k+−2
‖, j = k−2

‖,0

k−+2
j = k−2

j , k−+2
‖, j = k+2

‖,0

k−−2
j = k−2

j , k−−2
‖, j = k−2

‖,0

. (5.53)

The solution of Eq. (5.4.2) is the solution (5.52) rotated by the angles of the quanti-
zation axis

ψ+
j (r)

= exp(ik++
‖, j r‖)(a

++
j exp(i k++

z, j z)+b++
α exp(−i k++

z,αzz)) cos(θα/2)

+exp(ik+−
‖, j r‖)(a

+−
j exp(i k+−

z, j z)+b+−
j exp(−i k+−

z, jz z)) cos(θ j/2)

−exp(ik−+
‖, j r‖)(a

−+
j exp(i k−+

z, j z)+b−+
j exp(−i k−+

z, jz z)) e−iϕ j sin(θα/2)

−exp(ik−−
‖, j r‖)(a

−−
j exp(i k−−

z, j z)+b−+
j exp(−i k−−

z, jz z)) e−iϕ j sin(θα/2)

and

ψ−
j (r)

= exp(ik++
‖, j r‖)(a

++
j exp(i k++

z, j z)+b++
j exp(−i k++

z, jz z)) eiϕ j sin(θ j/2)

+exp(ik+−
‖, j r‖)(a

+−
j exp(i k+−

z, j z)+b+−
j exp(−i k+−

z, jz z)) eiϕ j sin(θ j/2)

+exp(ik−+
‖, j r‖)(a

−+
j exp(i k−+

z, j z)+b−+
j exp(−i k−+

z, jz z)) cos(θ j/2)

+exp(ik−−
‖, j r‖)(a

−−
j exp(i k−−

z, j z)+b−+
j exp(−i k−−

z, jz z)) cos(θ j/2).
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5.4.4 Continuity Conditions and Matrices

The eight constants a±j and b±j are fixed by the continuity of ψ and ∇ψ at the
interface. This gives exactly eight equations. The reflection matrix M is then a
8× 8 matrix but with two non-zero 4× 4 blocks (there are no cross terms between
the group with “k+

‖,0” components and the group with “k−‖,0” components in their
wave vector. It is possible to split the problem into two calculations using 4× 4
matrices. The continuity relations can be written as

D j(r j)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a++
j

b++
j

a−+
j

b−+
j

a−−
j

b−−
j

a+−
j

b+−
j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D j+1(r j)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a++
j+1

b++
j+1

a−+
j+1

b−+
j+1

a−−
j+1

b−−
j+1

a+−
j+1

b+−
j+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.54)

where the 8×8 matrix D j(r j) is written as

D j(r j) =
(

DA j 0
0 DB j

)
. (5.55)

We give here the explicit expression of the two matrices DA and DB (we omit
the index j and we write (θ ′ = θ j/2)):

DA j =

⎛
⎜⎜⎜⎜⎝

e
ik++
‖ r

cos(θ ′)eik++
z z e

ik++
‖ r

cos(θ ′)e−ik++
z z

k++
z e

ik++
‖ r

cos(θ ′)eik++
z z −k++

z e
ik++
‖ r

cos(θ ′)e−ik++
z z

e
ik++
‖ r

eiϕ sin(θ ′)eik++
z z e

ik++
‖ r

eiϕ sin(θ ′)e−ik++
z z

k++
z e

ik++
‖ r

eiϕ sin(θ ′)eik++
z z −k++

z e
ik++
‖ r

eiϕ sin(θ ′)e−ik++
z z

(5.56)

−e
ik−+
‖ r

e−iϕ sin(θ ′)eik−+
z z −e

ik−+
‖ r

e−iϕ sin(θ)e−ik−+
z z

−k−+
z e

ik−+
‖ r

e−iϕ sin(θ)eik−+
z z k−+

z e
ik−+
‖ r

e−iϕ sin(θ)e−ik−+
z z

e
ik−+
‖ r

cos(θ ′)eik−+
z z e

ik−+
‖ r

cos(θ ′)e−ik−+
z z

−k−+
z e

ik−+
‖ r

cos(θ ′)eik−+
z z k−+

z e
ik−+
‖ r

cos(θ ′)e−ik−+
z z

⎞
⎟⎟⎟⎟⎠ ,

DB j =

⎛
⎜⎜⎜⎜⎝

−e
ik−−
‖ r

e−iϕ sin(θ ′)eik−−
z z −e

ik−−
‖ r

e−iϕ sin(θ ′)e−ik−−
z z

−k−−
z e

ik−−
‖ r

e−iϕ sin(θ ′)eik−−
z z k−−

z e
ik−−
‖ r

e−iϕ sin(θ ′)e−ik−−
z z

e
ik−−
‖ r

cos(θ ′)eik−−
z z e

ik−−
‖ r

cos(θ ′)e−ik−−
z z

k−−
z e

ik−−
‖ r

cos(θ ′)eik−−
z z −k−−

z e
ik−−
‖ r

cos(θ ′)e−ik−−
z z

(5.57)
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e
ik+−
‖ r

cos(θ ′)eik+−
z z e

ik+−
‖ r

cos(θ ′)e−ik+−
z z

k+−
z e

ik+−
‖ r

cos(θ ′)eik+−
z z −k+−

z e
ik+−
‖ r

cos(θ ′)e−ik+−
z z

e
ik+−
‖ r

eiϕ sin(θ ′)eik+−
z z e

ik+−
‖ r

eiϕ sin(θ ′)e−ik+−
z z

k+−
z e

ik+−
‖ r

eiϕ sin(θ ′)eik+−
z z −k+−

z e
ik+−
‖ r

eiϕ sin(θ ′)e−ik+−
z z

⎞
⎟⎟⎟⎟⎠ .

The reflection matrix M is defined by

M =
j=N

∏
j=0

D−1
j (r j)D j+1(r j) =

(
MA 0

0 MB

)
, (5.58)

where

MA =
N

∏
j=0

DA −1
j DA j+1 and MB =

N

∏
j=0

DB−1
j DB j+1. (5.59)

We have the relation: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a++
0

b++
0

a−+
0

b−+
0

a−−
0

b−−
0

a+−
0

b+−
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a++
s

b++
s

a−+
s

b−+
s

a−−
s

b−−
s

a+−
s

b+−
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.60)

In the case of incident “up” neutrons, Eq. (5.60) gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
r++

0
0
r−+

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t++
s

0
t−+
s

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.61)

For “down” neutrons we have
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
r−−

0
0
r+−

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
t−−
s

0
t+−
s

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.62)
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Let r++
0 , r−+

0 be the reflectivity amplitudes for a neutron “up” (resp. “down”), re-
flected “up” (resp. “down”). The corresponding transmission coefficients are given
by t++

s , t−+
s . We deduce

⎧⎪⎪⎨
⎪⎪⎩

r++
0 =

MA21MA33 −MA23MA31

MA11MA33 −MA13MA31

r−+
0 =

MA41MA33 −MA43MA31

MA11MA33 −MA13MA31

(5.63)

and ⎧⎪⎪⎨
⎪⎪⎩

t++
s =

MA33

MA11MA33 −MA13MA31

t−+
s =

−MA31

MA11MA33 −MA13MA31

. (5.64)

We find similar relations for the four other coefficients. The reflected intensities
are given by

R++ ∝
∣∣r++∣∣2 , (5.65)

and
R−+ ∝

∣∣r−+∣∣2 . (5.66)

In the case of small external magnetic field, we have R+− ≈ R−+ .

5.4.5 Reflection on a Magnetic Dioptre

Let qz be the (Oz) component of the scattering vector q = kr−kin. We will consider
the case of a reflection on a magnetic substrate.

To simplify the problem, we assume that the applied magnetic field B0 is small
so that q+

0z ≈ q−0z = q0z. The component of the q vector in the magnetic medium is
given by (see 5.32)2

q±sz ≈
√

q2
0z −16πρ(bn ±bm). (5.67)

We will assume that the external field B0 and the magnetization M lie in the layer
plane. This corresponds to θ = 90◦ (see Fig. 5.6). Let φ be the angle between B0

and M. The expressions of the reflection coefficients deduced from the expressions
of the M matrices are given by

r++ =
cos2 φ

2

(
q0z −q+

sz

)(
q0z +q−sz

)
+ sin2 φ

2

(
q0z −q−sz

)(
q0z +q+

sz

)
cos2 φ

2

(
q0z +q+

sz
)(

q0z +q−sz
)
+ sin2 φ

2

(
q0z +q−sz

)(
q0z +q+

sz
) , (5.68)

2 We remind that “qz = 2kz”, the scattering wave vector in the substrate is equal to twice the
projection of the incident wave vector on the (Oz) axis.
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Fig. 5.6 Neutron beam
incident on a magnetic
substrate of magnetization M
in an applied field B0

Vacuum

B0

M

Magnetic material 

ki kr

q0

qs kt

r+− =
2 q0z cos φ

2 sin φ
2

(
q+

sz −q−sz

)
cos2 φ

2

(
q0z +q+

sz
)(

q0z +q−sz
)
+ sin2 φ

2

(
q0z +q−sz

)(
q0z +q+

sz
) . (5.69)

The measured intensities are given by

R++ =
∣∣r++∣∣2 and R+− =

∣∣r+−∣∣2 . (5.70)

5.4.5.1 Case of a Non-Magnetic Substrate

In this case, corresponding to a zero magnetization (bm = 0), the scattering vectors
q+

sz and q−sz are equal (Eq. 5.67). The reflection coefficients simplify and can be
written in the form of classical Fresnel coefficients:

r++ =
q0z −qsz

q0z +qsz
and r+− = 0. (5.71)

The reflected intensity is given by

R++ =
∣∣∣∣q0z −qsz

q0z +qsz

∣∣∣∣
2

=

∣∣∣∣∣∣
q0z −

√
q2

0z −q2
c

q0z +
√

q2
0z −q2

c

∣∣∣∣∣∣

2

, (5.72)

where the critical wave vector qc is equal to
√

16πρbn . When q0z < qc, qsz is a pure
imaginary number and one finds a reflected intensity equal to 1. When q0z is very
large, one can show that the intensity decreases as 1/q4

0z.

5.4.5.2 Case of a Magnetic Substrate in a Magnetic Field B000
Aligned with the Magnetization M (φ === 000φ === 000φ === 000)

In this simple case, the expressions of the reflection coefficients simplify and can be
written as

r++ =
q0z −q+

sz

q0z +q+
sz

, r−− =
q0z −q−sz

q0z +q−sz
and r+− = 0. (5.73)
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These expressions still correspond to Fresnel reflectivities. The only modification
introduced by the magnetism is a difference in the critical angle. The critical angles
for the reflectivity curves “up–up” and “down–down” are given by

q±c ≈
√

16πρ (bn ±bm). (5.74)

The spin-flip signals (R± and R∓) are zero.
N.B.: the coefficients r++ and r−− can be deduced one from the other by a 180◦

φ rotation.
The non-spin-flip signals are plotted as solid lines in Fig. 5.7. We find classical

shapes for the reflectivity curves, with a total reflectivity plateau followed by a sharp
decrease. The main difference between the “up–up” and “down–down” curves is the
extension of the total reflectivity plateau.

The case of the magnetization parallel to the applied field is the most usual case.
In this situation, there is no spin-flip cross section and the interaction can again be
described using scalar optical indices. A magnetic “optical index” can be derived
from the Schrödinger equation whose expression is given by

n± ≈ 1−δ ±δM = 1− λ 2

2π
ρ± mλ 2

h2 μ .B, (5.75)

where δ is the nuclear contribution to the optical index, and δM is the magnetic
contribution to the optical index, the sign of the magnetic contribution depends on
the relative orientation of the neutron spin with respect to the magnetization (parallel
or anti-parallel). Table 5.2 gives values of optical indexes for some typical materials.
One should notice that the magnetic optical index is of the same order of magnitude
as the nuclear optical index.
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0.1

1

q0 (nm)–1

(M // B) up-up
(M // B) down-down
(M perp. B) up-down/10
(M perp. B) up-up

0.4 0.80 0.2 0.6 1qc
– qc

+

Fig. 5.7 Reflectivity curves in the case of a magnetization parallel and perpendicular to the mag-
netic field B0. When the magnetization is parallel to the field, the non-spin-flip curves “up–up”
and “down–down” are distinct (solid lines), the spin-flip signal is zero. When the magnetization
is perpendicular to the field B0, the spin-flip curves superimpose (squares), a very large spin-flip
signal appears (lozenges) (the spin-flip signal has been divided by a factor 10 for clarity)
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Table 5.2 Nuclear and magnetic optical index n = 1−δ ±δM for some materials at λ = 0.4 nm

Element δ (×10−6) δM (×10−6) σa (barns)

Fe 20.45 11.7 2.56
Co 5.7 10.3 37.2
Ni 24 3.7 4.49
Gd 5.0 14.5 49,700
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Fig. 5.8 Reflectivity of a magnetic film Si//Ni (40 nm). The reflectivity depends on the relative
orientation of the neutron spin with respect to the magnetization. (Insert) Optical index profile for
both neutron polarizations (parallel and anti-parallel)

Figure 5.8 shows the situation of a magnetic thin film on a substrate. In this case,
the optical index depends on the relative orientation of the neutron spin with respect
to the thin film magnetization. The measured reflectivity is very different for neutron
incident with a spin parallel to the magnetization (optical index n+ = 1− δ − δM)
and for neutrons incident with a spin anti-parallel to the magnetization (optical index
n− = 1− δ + δM). Note that the neutron spin and magnetic moment have opposite
signs so that when the neutron spin is anti-parallel to the magnetization, its magnetic
moment is parallel.

5.4.5.3 Case of a Magnetic Field Perpendicular to the Substrate
Magnetization (φφφ === 9990◦◦◦)

In this case, the reflection coefficients become

r =

(
q0z −q+

sz

)(
q0z +q−sz

)
+
(
q0z −q−sz

)(
q0z +q+

sz

)
2
(
q0z +q+

sz
)(

q0z +q−sz
) =

1
2

(
r++ + r−−) , (5.76)
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r+− =
q0z
(
q+

sz −q−sz

)
2
(
q0z +q+

sz
)(

q0z +q−sz
) . (5.77)

The reflected intensities are given by

R++ = R−− = |r|2 =
1
4

∣∣r++∣∣2 +
1
4

∣∣r−−∣∣2 +
1
2

Re
(
r++ × r−−) . (5.78)

One can notice that the up–up and down–down intensities are the sum of three
terms. The first two correspond to the intensities of the non-spin-flip signals in the
case of a magnetization aligned with the external magnetic field; they are weighted
by a 1/4 coefficient. These terms introduce two discontinuities at the positions q+

c
and q−c in the reflectivity curve (see Fig. 5.7, white square curve). To these two
terms, an “ interference ” term adds 1

2 Re(r++ × r−−) whose analytical expression is
not simple. Its variations are plotted in Fig. 5.9a. For q0z = 0, this term is equal to 1/2
and the intensity is totally reflected. Its value decreases as soon as q0z increases and
becomes negative around q−c . It becomes positive again around q+

c , then decreases
very quickly. However, this contribution does not modify qualitatively the form of
the non-spin-flip curve except that there is no total reflectivity plateau.

The spin-flip intensity is given by

R+− =
∣∣r+−∣∣2 =

1
4

∣∣∣∣∣
q0z
(
q+

sz −q−sz

)
(
q0z +q+

sz
)(

q0z +q−sz
)
∣∣∣∣∣
2

. (5.79)

The characteristic form of the spin-flip signal (see Fig. 5.6) is given by the term∣∣q+
sz −q−sz

∣∣2. The variations of this term are plotted in Fig. 5.9b (thick lines). Two
successive regime changes appear at the points q−c and q+

c . They correspond to the
points where q−sz and q+

sz successively change from pure imaginary to real values.
This signal is slightly modulated by the factor q0z which gives a linear increase. The
factor 1/

∣∣(q0z +q+
sz

)(
q0z +q−sz

)∣∣2 gives a very fast decrease at large qz. Its variations
are plotted in Fig. 5.9b (thin lines).

In the case where the magnetization is not fully perpendicular to the applied mag-
netic field, the three terms in the R++ intensity are weighted by cos4 φ

2 , sin4 φ
2 and
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Fig. 5.9 (a) Contribution of the interference term Re(r++ × r−−) between the r++ and r−− am-
plitudes in the non-spin-flip intensities for a reflection on a substrate whose magnetization is per-
pendicular to the applied magnetic field B0. (b) Variations of two factors of the spin-flip intensity:
(bold lines) factor

∣∣q+
sz −q−sz

∣∣2; (thin lines) factor 1/
∣∣(q0z +q+

sz

)(
q0z +q−sz

)∣∣2
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2cos2 φ
2 sin2 φ

2 factors, φ being the angle between the field and the magnetization.
In the case of a magnetic layer deposited on a non-magnetic substrate, the above
considerations are not qualitatively modified. The main difference is that Kiessig
fringes appear after the plateau of total reflection.

5.4.5.4 Zeeman effects

In this section we describe an effect which can break the symmetry between the
R++ and R−− signals in a reflectivity experiment. It is related to Zeeman energy
changes which can take place when the neutron flips during the reflection on a sur-
face. If a sufficiently high magnetic field is applied on the sample and if the neutrons
experience a spin-flip during the reflection, they will either gain or loose magnetic
energy. Since the reflection process is an elastic one, the energy is fully transferred
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Fig. 5.10 (a) Relative orientations of B and M giving the same results. (b) Spin-flip reflectivity
with M ⊥ B in low fields. Both configurations lead to the same spin-flip signals. The reflectivity
with B//M is plotted as a reference. (c) Reflectivity cross sections in high fields (0.5 T). All top
configurations give the same results. Note the very large splitting of the two spin-flip signals up–
do and do–up
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as a gain or loss in kinetic energy. The conditions required to observe such effects
are that (i) a sufficiently high field of a fraction of a tesla is applied on the sample
and (ii) there is a sufficiently high spin-flip cross section. Both requirements are op-
posite since in usual case, the magnetization will align with the applied field and the
spin-flip scattering cross section will be zero. In practice, these effects are observed
when the magnetic field is applied perpendicular to the sample and the demagnetiz-
ing field prevents the magnetization to rotate out of the thin film plane. These are
the conditions under which the effect was quantified for the first time [20, 21]. If we
consider the situation of an in-plane magnetization, if the guide field B is low (tens
of mT), the spin-flip cross section is very large as soon B is non-collinear with M
(see Fig 5.10b). However, both spin-flip signals R+− and R−+ are equal. The reflec-
tivity does not depend on the fact that B is or not in the film plane. When the applied
field is large (fraction of a tesla), significant asymmetry effects are observed in the
spin-flip cross sections (see Fig. 5.10c).

5.4.6 Conclusion

One should note that polarized reflectivity is sensitive to the induction in the thin
films: no difference is made between the spin and orbital magnetic moments. In
practice, it is possible to measure four different signals in a polarized reflectivity
experiment : two non-spin-flip reflectivities, R++ (resp. R−−), corresponding to the
number of incoming “up” (resp. “down”) neutrons reflected with an “up” (resp.
“down”) polarization; two spin-flip reflectivities, R+−= R−+, corresponding to the
number of neutrons experiencing a spin-flip during the reflection on the sample.
In a first approximation, the non-spin-flip reflectivities probe the components of the
magnetization which are parallel to the applied field; the spin-flip cross-reflectivities
are sensitive to the component of the magnetization perpendicular to the applied
field. Combining this information it is possible to reconstruct the magnetization
direction and amplitude along the depth of the film. The depth resolution is of the
order of 2–3 nm in simple systems. Polarized reflectivity is a surface technique and
thus is not sensitive to paramagnetic or diamagnetic contribution from the substrate.
There is no absorption. There are no phenomenological parameters. The data are
“naturally” normalized. All these characteristics make neutron reflectivity data easy
to model and interpret.

5.5 Non-Perfect Layers, Practical Problems
and Experimental Limits

5.5.1 Interface Roughness

Most of the studied systems show imperfect interfaces depending on the deposition
process of the layer. We will consider three roughness scales: interface roughness,
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atomic interdiffusion and homogeneity of the layer thickness. Let ξ represent the
characteristic lateral length scale for the roughness. A perfect knowledge of the sur-
face would correspond to the knowledge of z(x,y) for all in-plane length scales.
The treatment of the roughness is very similar to that described in Chaps. 2 and
3. According to the resolution of a typical neutron reflectivity experiment, one can
(somewhat arbitrarily) distinguish three typical types of roughness which have dif-
ferent origins.

• Interdiffusion of the species between two successive layers. This happens during
the deposition of a top layer which is miscible with the bottom material. This
process is strongly temperature dependent. It corresponds to a typical length scale
of ξ < 0.5μm.

• A roughness induced by rough edges on the substrate or by grains in the case of
two successive layers. This roughness usually occurs during thin film growth. It
is also the type of roughness which is difficult to take into account in models. It
corresponds to 1 μm< ξ < 100μm.

• Flatness of the sample. Depending on the deposition process, the atomic flux
may have an angular dependence which can lead to an uneven thickness over the
sample surface. It corresponds to ξ > 100μm.

These three roughness scales can be modeled in three different ways to account
for their effects on the measured reflectivity curves. They induce very different ef-
fects on the experimental signals. One has to keep in mind the following limitation:
if the lateral fluctuations are not small compared to the layers thicknesses the fol-
lowing treatments are inadequate.

5.5.1.1 Thickness Inhomogeneity of the Sample

Thickness variation in a thin film sample (usually between the middle and the sam-
ple edges) is a “large” lateral scale problem (a few mm). The experimental mea-
sured curve can be treated as the superposition of reflectivity curves calculated for
the thicknesses spectrum weighted by the corresponding area. The resulting effect
is a blurring of the coherent oscillations for large q.

N.B.: Since the Kiessig fringes period is inversely proportional to the wavelength
of the incident beam, a thickness fluctuation (which reflects in the Kiessig oscil-
lations period) can be taken into account as an incident wavelength spread δλ .
Figure 5.12 (thin line, δλ = 10%) illustrates the effect of a wavelength spread; it
also corresponds to what would be observed for a 10% sample thickness fluctuation.

5.5.1.2 Roughness and Interdiffusion

Specular reflectivity cannot distinguish between these two types of roughness. The
measurement of the coherent scattering length density ρb probes a large planar scale
compared to the size of the roughness: for a given z depth, one measures a mean
value of ρb averaged over a large surface.
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First solution: Nevot–Croce factors

If one assumes a flat distribution of x, the two types of interface can be treated by a
single model where the step function is replaced by the following error function:

er f

(
z− z j

σ j

)
=

2√
π

∫ (z−z j)/σ j

0
e−t2

dt. (5.80)

This curve shows an inflexion point at z j. The value σ j is given by the inverse of
the curve slope at z j. The thickness is given by 2σ j. The effect of a smooth interface
surface described by (5.80) is to multiply the reflectivity R of a perfect flat interface
by a Debye–Waller (or better Nevot–Croce, see Chap. 3, Appendix 3.A) factor [22]:

exp(−2kz, jkz, j+1σ2
j ). (5.81)

In the case of a stack of multilayers each having a specific roughness, the Nevot–
Croce factor is applied to each transfer matrix. Unfortunately, this cannot be applied
in the magnetic case, the formalism preventing an easy calculation of the reflectivity
R at each interface. However, one can introduce a global factor and then apply this
factor to each diagonal element at each interface. In practice, this works quite well
except in the case of rather strong magnetic roughness like domains. The main effect
of this factor is to decrease the reflectivity at high q.

Second solution: discretization

This technique is efficient to model atomic interdiffusion. The interface is replaced
by a finite number of discrete layers describing the concentration index. Either an
error function or a linear function profile can be used. For real systems of thin solid
films, one layer with an average ρb usually works well.

If the interdiffusion profile follows an erf function, the result is identical to the
Nevot–Croce factor.

5.5.1.3 Intermediate Roughness

In the case of intermediate roughness, the previous methods are not completely satis-
factory. Actually, this type of roughness not only decreases the specular reflectivity
but also creates a non-specular diffuse background which can modify the results.
In this case, the diffuse scattering should be measured and the specular reflectivity
should be corrected accordingly. This treatment is quite complex and will not be
detailed here.

5.5.1.4 Magnetic Roughness

This problem is very complex. A typical example where magnetic roughness ap-
pears is the case of a demagnetized sample. In this case, each domain has an effective
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scattering length very different from its neighbor. This appears for neutrons as a gi-
ant roughness. This situation can be modeled using a DWBA approach [23, 24].
Such a situation leads to magnetic off-specular scattering (see Sect. 9) (Fig. 5.11).

5.5.2 Angular Resolution

The different expressions given above are valid for a perfect incident beam. For the
fit of experimental data, it is important to have a good knowledge of the beam diver-
gence and homogeneity. The beam angular divergence and wavelength dispersion
must be taken into account in the simulations. The divergence of the incident beam,
δθ , is usually determined by two slits if the beam is smaller than the effective width
of the sample seen by the neutron beam, or by the first slit and the sample itself
if the sample is small enough to be totally illuminated by the neutron beam. Usu-
ally, δθ is fixed during the experiment. We have then to convolute the calculated
reflectivity with a function which is the experimental shape of the beam divergence.
However, a square function gives in most cases a good approximation of that func-
tion. In the case of curved samples, δθ can be slightly adjusted during the treatment.
δθ has two effects: a decrease of the amplitude of the oscillations and a rounding
of the discontinuity at the critical angle. Figure 5.12 gives an example of this effect.
Wavelength dispersion is strongly dependent on the monochromator or on the time
resolution in the case of time-of-flight spectrometers (see below). The effect of that
dispersion is different from an angular divergence: the oscillations disappear at high
angles (see Fig. 5.12). We remind that if a sample has a non-homogeneous thick-
ness, the effect is very similar (see above). A wavelength dispersion can be used to
model thickness variations over the sample surface.
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5.5.3 Analysis of Experimental Data

Reflectivity curves cannot be directly inverted. For a non-magnetic system, it is even
possible to build a family of scattering length density profiles which give the same
reflectivity curve. This is due to the fact that we measure only the intensity and loose
the phase of the reflectivity [25]. For magnetic systems, the problem of the signal
phase is less critical. However, the main source of uncertainty on the result is in
general due to the lack of intensity at high angles. The analysis of experimental data
is done by adjusting the different parameters involved in the problem until a good
fit is obtained. The main source of uncertainty on the result is in general due to the
lack of intensity at high Q and the roughness of the sample. In the case of mag-
netic systems, we usually know rather well the composition of the different layers.
We have then to adjust the roughness, the thicknesses and the magnetic moments
magnitude. It is in general very useful to have some external information like x-rays
reflectometry and magnetic hysteresis measurements.

5.5.4 Sample Environment

The absorption of neutrons is negligible in most materials. The typical penetration
depth for materials such as silicon or aluminum is of the order of 50 mm (depend-
ing of the wavelength). This makes it easy to set up complex sample environments
on neutron spectrometers. The available ancillary equipments include cryomagnets
(temperature range 1.6–300 K, magnetic field range 0–7 T), furnaces (temperature
up to 800◦C) and closed liquid cells (made of quartz or silicon).



5 Neutron Reflectometry 211

5.5.5 Sample Sizes – Measurements Time

One has to keep in mind that most existing reflectometers are optimized to perform
experiments on samples which have a surface of the order of 10 cm2. In the case
of optimized reflectometers with focussing systems (such as PRISM at the LLB),
it is possible to perform experiments on samples which have a size of the order of
1 cm2. These limitations in size imply that the studied samples need to have a very
good homogeneity over a very large surface: the thicknesses of the layers need to
be homogeneous and the substrate needs to be flat over the whole sample surface. If
this is not the case, only averages over the sample surface will be measured and the
information that can be obtained about the sample will be limited.

The reflectivity signal drops very quickly with the scattering wave vector value.
For a perfect interface, at large Q values, the reflectivity is proportional to 1/Q4. Q
values of the order of 2 to −3 nm−1 typically correspond to reflectivity of the order
to 10−6 and require measurements of the order of 2–6 h.

One has to keep in mind that most existing reflectometers are designed to perform
experiments on samples which have a surface of the order of 10 cm2. In the case of
optimized reflectometers with focusing systems (such as PRISM at the LLB), it is
possible to perform experiments on samples which have a size of the order of 1
cm2. These limitations in size imply that the studied samples need to have a very
good homogeneity over a very large surface: the thickness of the layers needs to be
homogeneous and the substrate needs to be flat over the whole sample surface. If
this is not the case, only averages over the sample surface will be measured and the
information that can be obtained about the sample will be limited.

5.6 The Spectrometers

The spectrometers can be divided into two different groups: time-of-flight reflec-
tometers like EROS at the Laboratoire Léon Brillouin (LLB), CRISP and SURF at
ISIS, D17 at the ILL and monochromatic reflectometers like PRISM at LLB and
ADAM at the Institut Laue Langevin (ILL). Time-of-flight spectrometers are nec-
essary for reflectometry studies on liquids. A list of existing reflectometers can be
found in [26].

5.6.1 Monochromatic Reflectometers

Monochromatic reflectometers are basically two axes spectrometers. The wave-
length is fixed (0.43 nm for PRISM) and the reflectivity curve is obtained by chang-
ing the incident angle θ . In this case, the sample is usually vertical. On this type
of reflectometers it is easy to put a polarizer and an analyzer in order to select the
spin states of the incident and reflected neutrons. The flippers can be of Mezei type
(two orthogonal coils) [27]. They allow to flip the neutron spin state from “up” to
“down”. An example of two-axis spectrometer is presented in Fig. 5.13.
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Fig. 5.13 The two-axis reflectometer PRISM at the LLB

5.6.2 Time-of-Flight Reflectometers

The second possibility is to work at a fixed incidence angle and to scan the incident
wavelength. Cold neutrons have a typical slow travel speed of the order of 1000 m/s
which depends on the wavelength v = h/mλ . Thus if one sends a neutron pulse (de-
fined with a chopper and of typical duration 0.2 ms), a spatial spread of the neutrons
of different wavelengths takes place between the chopper and the detection systems.
The neutron wavelength can then simply be measured by the travel time between the
chopper and the detector. This technique is called time of flight (ToF). Figure 5.14
shows the typical layout of a ToF reflectometer. One advantage of a ToF’s setup is
that it is very easy to change the resolution by changing the chopper and slits pa-
rameters. Another advantage is that the sample does not need to be moved during
an experiment and thus is easier to measure free liquid surfaces.

The time-of-flight technique consists in sending a pulsed white beam on the sam-
ple. Since the speed of the neutron varies as the inverse of the wavelength, the latter
is directly related to the time taken by the neutron to travel from the pulsed source
to the detector (over the distance L) by

λ =
h

mL
t. (5.82)

This relation is also written as

λ (nm) =
t(μs)

2527L(m)
. (5.83)

Sample (solid or liquid) 

Multi-disc
chopper
ν = 1000rpm 

Deflection 
mirror 

detectorQ 

neutron
guide 

Collimator 

L = 4.3m

Fig. 5.14 Description of the time-of-flight reflectometer EROS at the LLB [28]
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On a spallation source, the neutron beam is “naturally” pulsed and the time-of-
flight technique is used. On a reactor, pulsed neutrons are produced by a chopper.

For a reflectivity measurement, the angle is fixed and the reflectivity curve is
obtained by measuring the reflectivity signal for each wavelength of the available
spectrum, each wavelength corresponding to a different scattering wave vector mag-
nitude. In practice, the wavelength spectrum (typ. 0.2–2 nm) is not wide enough to
cover a very large Q-range in the reciprocal space. Thus, usually two or more differ-
ent incidence angles are used to cover a wider Q-range. An example of time-of-flight
spectrometer is presented in Fig. 5.14.

5.7 Non-Magnetic Reflectivity

5.7.1 Isotopic Labeling

The substitution of hydrogen by deuterium in organic materials allows to strongly
change the neutron optical index of the material without changing its physical or
chemical properties. A very interesting possibility offered by neutron scattering is
to do selective labeling by deuteration which leads to a very large contrast between
deuterated (bD = 6.67 fm) and protonated (bH = −3.7 fm) systems [29, 30]. Such a
labeling is used in two ways: (i) the measurement of the conformation of polymeric
chains at the interface in good solvent by using hydrogenated polymers in deuter-
ated solvents (for example, adsorption profiles of polymers at interfaces have been
measured by neutron reflectivity [31–34]) and (ii) the determination of the structure
of “complex” systems involving two polymers by mixing hydrogenated and deuter-
ated polymers. This can be achieved with deuterated and hydrogenated chains of the
same polymer (to study the interdiffusion of chains at the interface of two molten
polymers for example [35]) or of different polymers (multilayers of polyelectrolyte
of opposite charges for example [36]). Combining these two advantages to deter-
mine the structure of a mixture of two different polymers in good solvent is possible
by using the variation contrast method: measurements are performed in successive
mixtures of hydrogenated and deuterated solvent that either match the neutron opti-
cal index of the first polymer, or match the neutron optical index of the second one.
It allows to resolve the whole structure of the system [37].

5.7.1.1 Interdiffusion Between Diblock Copolymer Multilayers

We shall illustrate here the use of selective deuteration to study the polymer inter-
diffusion. By spin coating, it is possible to deposit polymer layers on glass or silicon
with a roughness below 1 nm. It is then possible to deposit a second layer on the first
one. If one of the layers is deuterated, it is possible to study the interdiffusion as a
function of time and annealing temperature. The diffusion will appear as a smearing
of the interface between the two layers and thus a decrease of the Kiessig fringes
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tometer at the Laboratoire Léon Brillouin). Right: Reflectivity of the quadrilayer after annealing
for 1 h at 115◦C

amplitude. Diblock copolymers are made of two chains A and B linked together
(A–B). These systems present a large variety of interesting properties. For exam-
ple, if A and B are not miscible, they can form self-organized multilayers of a fixed
thickness parallel to the surface where the solution is deposited. The observed struc-
ture is of the type (substrate; A–B; B–A; A–B; B–A . . .). We have studied diblock
copolymers of the type (polystyrene-polybutylmetacrylate: PS-PBMA). The initial
system consisted in a layer of partially deuterated PS-PBMA copolymer deposited
on a trilayer of totally hydrogenated copolymers. The reflectivity of this system is
shown in Fig. 5.15. The numerical fit shows a large index at the top of the system
corresponding to the deuterated copolymer. The system has then been annealed for
12 h at 400 K and then remeasured (Fig. 5.15). On this reflectivity curve, one can
observe a clear “Bragg” peak at the position q = 0.1 nm−1. This indicates the dif-
fusion of the deuterated polymer to the inner layers. Since the diblock copolymers
are ordered in multilayers, a periodic variation of the index appears (see insert in
Fig. 5.15).

5.7.1.2 Interdiffusion Between Polymer Layers

To illustrate these two aspects we shall present a recent study on the conformation of
dense grafted brushes of polystyrene (PS) on silicon [38–40]. Such macromolecular
architecture is designed to answer the technological demand of controlled and repro-
ducible thin polymer films. It is based on recent grafting from techniques that allow
to graft polymers onto a surface in an efficient way. Classically, the most common
method for polymer grafting is the grafting onto where end functionalized polymers
react with appropriate surface sites. In this more promising grafting from method,
the chains grow in situ from preformed surface-grafted initiators [41]. This latter
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approach is thus a suitable way for building high-density polymer brushes because
it is not limited by polymer diffusion. It also allows a fine control of the polymer
layer. This strategy has been applied by Devaux et al. [38] to realize grafted brushes
of PS on silicon which have been studied by neutron reflectivity.

In order to test the homogeneity of the chains growth during the polymeriza-
tion process, a specific chain designed for neutron reflectivity measurement has
been fabricated with a two-step process: the first part of the chains has been grown
using deuterated monomers and the second part using hydrogenated monomers
(Fig. 5.16a). Chemically, the polymer chains behave as a single physical unit. How-
ever, NR allows to easily distinguish between the two parts of the chains as shown
in Fig. 5.16c that presents the reflectivity of the polymer layer at the polymer/air
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Fig. 5.16 Reflectivity on a polymer grown using a “grafting from” method. (a) A polymer layer
grafted on a silicon substrate, half of the layer is hydrogenated, the second half of the layer is
deuterated; (b) optical index along the thickness of the layer assuming different interface thickness
(the profile is assumed to vary as an erf function); and (c) reflectivity of the system and theoretical
curves for the different thickness of the interfacial layer (zone separating the H- and D-polymer
layers). The best agreement is obtained for an interfacial layer of thickness 25 Å
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interface: Kiessig fringes arise from the deuterated layer, the hydrogenated layer
and the whole layer. It allows a very accurate determination of the width of the
interface thickness between the deuterated and the hydrogenated parts of the poly-
mers: if the width is null we would get large oscillations from the deuterated layer
and if it is too large we only get small oscillations from the whole layer as other
oscillations vanishes (Fig. 5.16c presents the simulated profiles of Fig. 5.16b). Best
fit shows that the interface width is limited to 2.5 nm for a brush of thickness 43 nm.
This proves that this “grafting from” technique allows to built very well-ordered
polymer brushes and that the growth of the brushes is very homogeneous.

5.7.1.3 Solid–Liquid Interfaces

The swelling capacities of the PS brushes in good solvent have been measured in
a second part of the study: an hydrogenated brush of a dry thickness of 22 nm was
placed into a good solvent of PS (deuterated toluene). As it has been said before,
the absorption of neutrons is very low and this allows to use the silicon substrate
as the incident medium (even though the travel in the silicon is larger than 50 mm)
(Fig. 5.17a). Figure 5.17b presents the monomeric concentration profile as a func-
tion of the depth deduced from the fit of experimental reflected curves. It shows
that the swelling of the layer is limited. The volume fraction φ of the polymer re-
mains as high as 0.8 of the density of the dry polymer showing that the solvent
hardly penetrates the layer. At the polymer–solvent interface, one can observe a
parabolic variation of the polymer density. Three fitting methods have been tested
and provide very similar results. The detailed information about the very top of the
polymer layer is limited because the Q-range of the measurement was limited. The
maximal stretch of the layer can nevertheless be evaluated as it roughly corresponds
to the maximal extension of the profile (30 nm). It shows that the chains were al-
ready strongly stretched in their dry state (φ ∼ 0.7) as the layer width was 22 nm.
Such initial strong stretching is due to a very high density of grafting of polymeric
chains that explains the unusual low swelling capacities of the brushes. This exam-
ple illustrates some of the unique possibilities offered by neutron reflectivity for the
study of solid–liquid interfaces.

5.7.2 Oxide Layers

Neutron reflectivity may be used to probe oxide layers since the neutron optical
index of oxides is usually very different from non-oxidized materials [42]. This
makes neutron reflectivity much more sensitive to details in an oxide structure than
x-ray reflectivity (Fig. 5.18).

For example, the preparation of SiO2 films on silicon substrates by three different
methods (thermal, chemical and electrochemical oxidation) have been compared by
Bertagna et al. [43, Fig. 4]. Depending on the preparation method, the obtained films
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layer, due for example to an oxidation gradient, give measurable effects in neutron reflectivity
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give very different reflectivity results. Anodic and chemical oxides are found to be
not very dense (60–75% of the theoretical density). Thermal oxides are the densest
(95%).

Neutron reflectivity may also be useful in the case of some specific materials such
as boron which strongly absorbs neutrons (e.g., the study of borophosphosilicate
glass thin films used in microelectronic circuit devices) [44] or titanium which has
a negative scattering length (such as TiOx coatings for glazing) [45–47]. Neutron
reflectometry has sometimes been used to characterize the oxidation of metallic
thin films [48–50].

Another key advantage of neutrons is their high sensitivity to D2O (compared
to x-rays). Neutron reflectivity has, for example, been used to characterize the
moisture transport through Al2O3/polymer multilayered barrier films for flexible
displays [51]. It has also been used to characterize the adsorption of water on
hydrophobic/hydrophilic TiO2 surfaces under UV illumination [52].

Another advantage which must be mentioned is that in neutron reflectometry it
is easy to set up complex sample environments. This is especially true in the case
of solid/liquid interfaces where the neutron beam can be sent through the substrate
and probe the solid–liquid interface with negligible absorption [53–55].

5.7.3 Biological Systems

During the last decade, neutron reflectivity has been used for biological systems,
mainly for the study of biophysical problems at solid–liquid interfaces. For the read-
ers interested in this field, they shall refer to the recent reviews of G. Fragneto-Cusani
[56] and S. Krueger [57]. The following references give good examples of what can
be achieved using neutron reflectometry [58–65].

5.8 Polarized Neutron Reflectometry on Magnetic Systems

During the early 1980s, advanced techniques for the deposition of ultra-thin metal
films were developed. This led to the fabrication of new artificial materials com-
prising the stacking of different materials in thin sandwiches (heterostructures). The
combination of different types of materials gave rise to new physical phenomena.
The first new phenomenon to be probed was the magnetic exchange coupling in su-
perlattices (Fig. 5.19a). It appeared that magnetic layers separated by non-magnetic
spacer layers can be magnetically coupled. The coupling can be either ferromag-
netic, anti-ferromagnetic or more complex (quadratic or even helicoidal). The cou-
pling can also change sign (from ferro to anti-ferro) as a function of the spacer
layer thickness. Such phenomena were observed in rare-earth superlattices (Gd/Y,
Dy/Y, Gd/Dy, Ho/Y [66]), transition metal superlattices (Fe/Cr [67, 68], Co/Cu [69],
Fe/V [70], Co/Ru [71]) and mixing of semiconductors and metals (Fe/Si [72],
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Fe/Ge [74]). The field is still open and new systems are still being synthesized, espe-
cially with magnetic semiconducting materials (GaMnAs [75, 76], EuS/PbS [77]).

These magnetic coupling phenomena are strongly connected to the giant
magneto-resistance effect [8]: Depending on the orientation of the magnetization of
the different layers in the heterostructure, the resistivity of the system varies signifi-
cantly. This has opened a new field of study which is now referred to as spintronics.

In the early 1990s, the phenomenon of exchange bias was revived. A ferro-
magnetic layer in contact with an anti-ferromagnetic material can be magnetically
strongly coupled (Fig. 5.19b) [78–82]. The soft magnetic layer is thus strongly
pinned along a well-defined direction. This is presently used in most of the spin-
tronics systems (Fig. 5.19c). The phenomenon is used in commercial devices but is
still not fully understood from a theoretical point of view. The origin of the coupling
depends on the type of materials, their crystallinity, and the fabrication process,
etc. [83–85].

In the late 1990s, it appeared that the performances of giant magneto-resistive
systems could be enhanced by combining tunnel barriers and magnetic materials
(using materials such as Fe2O3, Fe3O4, CoFe2O4, MgO, Al2O3). This field is still
very active and a number of phenomena still need to be understood. Electronic de-
vices using magnetic tunnel junctions (such as Magnetic Random Access Memo-
ries) are about to be commercialized but significant progress can still be made.

Besides the combination of well-known materials, during the late 1990s, a wealth
of new materials were synthesized (typically perovskites of the type ABMnO3). The
growth of these materials as epitaxial thin films was quickly mastered following
the experience acquired previously on oxide superconductors. These materials have
properties ranging from colossal magneto-resistance to magneto-electric effects.

More recently, a new field has developed which is the search for new magnetic
semiconductors. After the early studies of Eu-based magnetic semiconductors (EuO
and EuS) in the 1970s, the field was dormant until GaMnAs magnetic semicon-
ductors were synthesized in the middle of the 1990s. Since then, a number of new
systems have been synthesized in order to find room temperature magnetic semi-
conductors. The discovery of a suitable material could boost the field of spintronics.
These new materials range from diluted semiconductors to magnetically doped in-
sulating oxide materials.

We can mention other types of studies, such as the penetration of the magnetic
flux in superconductor thin films [86], the exchange spring effect between soft and
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hard magnetic layers [87], the magnetism of ultra-thin films [88, 89], proximity
effects between magnetism and superconductivity [90, 91], induced magnetism at
interfaces (e.g., the magnetism induced in V in contact with Gd [92]) and the super-
anti-ferromagnetism (edge effects in Fe/Cr superlattices [93]).

In this section, we shall give examples of specular polarized reflectivity on var-
ious types of magnetic systems in order to highlight the information that can be
obtained by polarized neutron reflectometry. All the experiments shown here have
been performed on the reflectometer PRISM.

5.8.1 Superlattices

5.8.1.1 Periodic Multilayers

A superlattice consists of a periodic repetition (n times) of a bilayer system [A/B]n
(see Fig. 5.19a). If the material A is magnetic, then depending on the thickness of
the intermediate layer B (from 0.5 to 3 nm) and the type of the B material (Cr, Mn,
Cu, etc.) a magnetic coupling can be mediated through this non-magnetic B layer.
The coupling energy can be described by using an energy of the form

Ecoupling = −J1 S1 ·S2 − J2 (S1 ·S2)
2 .

Depending on the sign and magnitude of the coupling constants J1 and J2, a
variety of magnetic orderings can be observed. Usually the coupling constant oscil-
lates between positive and negative values as a function of the thickness of the B
spacer, thus the magnetic order between the A layers changes from ferromagnetic to
anti-ferromagnetic. In some structures, it is even possible to observe non-collinear
coupling between the different magnetic layers.

In the case of periodic multilayers, we can observe Bragg peaks correspond-
ing to the period of the multilayer. In the case of anti-ferromagnetic coupling or
variable angle coupling, it is possible to obtain directly a mean angle between the
different magnetic layers. With polarized neutrons, it is possible to measure very
rapidly a precise value of the average magnetic moments. If high-order Bragg peaks
are observed, a good estimate of the chemical and magnetic interface can be ob-
tained. In the literature, there is a large amount of results on magnetic multilay-
ers [25, 71, 94]. The most thoroughly studied system is the metallic system Fe/Cr.
The pioneering polarized neutron reflectometry studies have been performed on this
system [95, 96]. Though the origin of the magnetic coupling is well understood in
metallic heterostructures [97], the exact origin of the ordering in structures combin-
ing semi-conductors or even insulators is still unclear.

5.8.1.2 Metal Superlattice

Figure 5.20 shows an example of PNR on a system [Fe(2.5 nm)/Si(1.2 nm)]n [44].
The reflectivity was measured at 20 K in a planar field of 20 mT. At the position
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q = 0.17 Å−1, the peak is indicative of the period of the superlattice defined by the
thickness 3.7 nm of the [Fe(2.5 nm)/Si(1.2 nm)] bilayer. It corresponds to the [001]
peak of the superlattice. A magnetic contrast between the UP and DO reflectivities
exists corresponding to a net magnetization component along the applied field. The
position q = 0.085 Å−1, that is (0 0 1/2), a strong diffraction peak is observed. It
indicates an anti-ferromagnetic component. But the existence of a very strong spin-
flip peak at (0 0 1/2) indicates that a non-collinear magnetic order has set up in the
structure. Numerical modeling suggests that the Fe layers are arranged so that the
magnetizations of alternating Fe layers make an angle of 30◦ with respect to the
applied magnetic field. The magnetic moment of the iron layer is however reduced
to 1.4 μB per Fe atom because of the Si interdiffusion and of the fact that the Fe
layers are very thin. The question of the origin of the coupling remains unclear.

The studies of the magnetic coupling in magnetic superlattices are still numerous:
in “all metal” superlattices we can mention Pd/Fe [98], Heussler alloys [99, 100],
U/Fe [101]; in semi-conductors Fe/Ge [102]; in rare-earths DyFe2/Y Fe2 [103],
Ho/Y [104]; in metal oxide layers Co/Al2O3 [105].

In such multilayer systems, neutron reflectivity is sensitive to very small mag-
netic moments. In [GaAs/GaMnAs]n superlattices, magnetizations as small as 27
kA/m (0.03 T) can be determined [73].

5.8.1.3 Magnetic Oxide Superlattice

This example illustrates the use of the magnetic contrast to measure the chem-
ical segregation in manganite heterostructures: [(LaMnO3)a/(SrMnO3)b]n (with
8 < a < 12 ; 4 < b < 8). These superlattices are deposited layer by layer in or-
der to enforce a cationic order between La and Sr and a cationic segregation be-
tween Mn3+ and Mn4+. The first material is anti-ferromagnetic in its bulk form, the
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second is ferromagnetic. The objective of the measurement was to check whether
the cationic segregation (La/Sr) effectively induced a (AF/F) stacking. The reflec-
tivity on one of these systems is presented in Fig. 5.21a. Around the angle θ=1.3◦,
a superstructure peak corresponding to the system’s periodicity can be observed.
The contrast between the two reflectivity curves up and down is characteristic of
the in-depth magnetization profile. In order to model the reflectivity curves, it is
only necessary to introduce a small modulation of the magnetization in the system
(Fig. 5.21b): the cationic segregation does not lead to a clear magnetic segregation.
The magnetization modulation is only 25% between the two types of layers.

5.8.1.4 Supermirrors

For technical purposes it is interesting to build systems exhibiting an artificially
large optical index. One can build such a structure by stacking periodic multilayers
with an almost continuous variation of the period [106]. In such a system, if the
periodicity range is well chosen, a large number of Bragg peaks follow the total re-
flectivity plateau. Since the periodicity of the multilayer is varying continuously, all
these Bragg peaks add constructively. Using this technique it is possible to enhance
the length of the total reflection plateau by a factor 3–4 (up to 6 in technological
demonstrators). Such mirrors are now widely used for neutron guides and for polar-
ization devices. Figure 5.22 gives an example of a polarizing mirror.

5.8.2 Magnetic Single Layers

Even though most of the studies are performed on superlattices (usually for scatter-
ing intensity reasons), the magnetization of very thin systems can also be probed.
The advantage of studying simple systems is that much more detailed informa-
tion can be obtained since the signal is not blurred by roughness or thickness
fluctuations.
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Fig. 5.22 Polarizing supermirror

5.8.2.1 Metal Trilayer

We present here the example of the study of a coupled FeCo/Mn/FeCo tri-layer sys-
tem [107]. The structure of the sample is shown in Fig. 5.23a. The “active” region is
formed by the layers FeCo/Mn/FeCo. The Ag layer is used to promote an epitaxial
growth of the system. The Au layer is a simple protective capping. The presented
system is Fe0.5Co0.5/Mn(8Å)/ Fe0.5Co0.5. The specificity of this system is that the
magnetic couplings between Fe and Mn, and Co and Mn are of opposite sign. Ab
initio calculation predicted that in such a system, contrary to a pure Fe/Mn interface,
a complex magnetic behavior of the Mn layer arises. A first measurement was per-
formed in a saturating field (not shown). A numerical modeling of the data shows
that the magnetic moment in the Fe0.5Co0.5 layers is 2.4μB/atom (as in bulk mate-
rials). A net magnetic moment of 0.8μB/atom in Mn is also observed. This induced
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magnetization in the Mn layer was theoretically predicted for FeCo alloys by the ab
initio calculations. In similar systems without Co, no magnetic moment is observed
in the Mn layer.

The applied field was then decreased down to 1.2 mT. The reflectivity was re-
measured. In these conditions a large spin-flip signal is observed (Fig. 5.23b). The
reflectivity data were fitted by letting the magnetization directions vary. The best
adjustment was obtained when the magnetization of the layers makes an angle of 4◦

with respect to the applied field. When the two magnetic layers make an angle of
90◦ we have a quadratic coupling.

5.8.2.2 Exchange Bias–Spin Valves

The magnetic thin film system which has enjoyed the most popularity until now
is the spin valve. It consists of a stack of two magnetic layers separated by a non-
magnetic spacer. The electrical resistance of the system depends on the relative ori-
entation of the magnetizations. In industrial systems, one of the magnetic layers
is pinned by a coupling with an anti-ferromagnetic material through the so-called
exchange bias mechanism. The materials that are used in such structures are numer-
ous: Co, Fe, Ni, NiFe, Fe3O4,CoFe2O4,LaSrMnO3, etc., for ferromagnetic layers;
Cu, Cr, V, Al2O3, H f O2, SrTiO3, etc., for the spacer layers; FeMn, IrMn, CoO, NiO,
Fe2O3, BiFeO3, Co/Ru/Co, etc., for the anti-ferromagnetic exchange bias layer.

Such spin-valve systems have been extensively characterized [111–114] and are
now well understood. However, the microscopic understanding of exchange bias has
been a long-standing problem for decades now. A wealth of literature is being pro-
duced on numerous and very varied systems [115–121]. It appears that the exchange
bias mechanism combines very subtle effects. The reversal process of the coupled
magnetic layer has been studied in detail. Since the origin of the phenomenon is of-
ten linked to micromagnetic problems, reflectivity studies are often complemented
with off-specular scattering which probes the underlying micromagnetic structures.
This technique is described in the following.

5.8.2.3 Magnetic Oxides

Polarized neutron reflectivity has also been used to probe the magnetism of indi-
vidual thin films such as oxide layers (manganites [122, 123] or Fe3O4 [124]). For
example, the hysteresis cycle of La0.7Sr0.3MnO3 thin films shows a region with a
low coercivity on which is superimposed a contribution which requires 0.3 T to
be saturated. This suggests that the films are not homogeneous and that they are
composed of several phases having different coercivities. Neutron reflectivity mea-
surements were performed on single La0.7Sr0.3MnO3 thin films in order to probe
the magnetization profiles through the depth of the films as a function of the tem-
perature. Figure 5.24 shows the reflectivity on a 16 nm La0.7Sr0.3MnO3. Modeling
using a homogeneous magnetic layer does not provide satisfactory fits. In order to



5 Neutron Reflectometry 225

0

0.5

1

1.5

2

2.5

3

3.5

4

150

profondeur dans le film (nm)

ai
m

an
ta

ti
o

n
 (

µ
B

/f
.u

.)

77K
117K
190K
250K
300K

LSMO

STO or MgO 

M2

M3

M1

STO or MgO 

10

100

1000

10000

100000

1000000

0 0.5

0 50 100

1 1.5
Theta (°)

ré
fl

ec
ti

vi
té

up-up

down-down

fit up-up

fit down-down

Fig. 5.24 (a) Reflectivity of a La0.7Sr0.3MnO3 (16 nm) film deposited on SrTiO3. (a) Modeling
of the system: (top) perfect system, (bottom) more realistic model. (b) Magnetization profiles as a
function of the temperature for the system LSMO (16 nm)//STO

quantitatively model the data, it has been necessary to introduce a model taking
into account different magnetizations at the interfaces. We considered a three-layer
model with magnetizations M1, M2 and M3 in the depth of the films. Figure 5.24
shows the variations of the magnetizations M1, M2 and M3 as a function of the tem-
perature. One can note that the interface magnetization is reduced by 25–30%.

5.9 Off-Specular Scattering

In the recent years, the new developments of polarized reflectivity have been con-
nected to the study of micro and nanostructures especially micromagnetic structures
in multilayers. These structures correspond to the formation of magnetic domains in
the size range from 100 nm to 10μm. This is motivated by the fact that the micro-
magnetic structure plays a key role in the magnetic behavior of superlattices. It is
also connected to the present trend which consists in patterning thin films into small
structures so as to obtain a confinement not only in one direction but also in the thin
film plane. Off-specular scattering which is a technique derived from the specular
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has been developed for the study of the roughness or the micromagnetism at a mi-
crometric scale. For the study of nanometric structures (in the range below 100 nm),
grazing incidence small angle scattering is being considered and is discussed in the
next section.

In the case of specular reflectivity, the scattering vector q is perpendicular to
the sample surface and thus one probes the structure of the sample along its depth
only. All the structures in the thin film plane are averaged out. This hypothesis is
correct as long as there is no formation of magnetic domains in the structure and
that it can be assumed that the magnetization is homogeneous in each layer of the
system. If this is not the case, by slightly modifying the scattering geometry, that is
by introducing a small in-plane component of the scattering wave vector (Fig. 5.25)
it is possible to probe in-plane structures. The specificity of the reflectivity geometry
is that the in-plane component qx of the scattering vector is very small, of the order
of 0.1–10μm−1. In this scattering geometry, one will be mostly sensitive to in-plane
lateral structure with a characteristic size ranging from 50μm down to 0.5μm. The
upper limit is set by the resolution of the spectrometer and the size of the direct
beam. The lower limit is set by the available neutron flux. These sizes correspond
to typical sizes of micromagnetic domain structures. Thus magnetic off-specular is
mostly used to probe such problems. These measurements are usually performed by
using a position-sensitive detector after the sample and measuring the scattering on
the detector as a function of the incidence angle.

The pioneering work in the field of off-specular scattering was presented in the
early 1990s [125]. For flux reasons, until now, most of these studies have been per-
formed on multilayer systems. Figure 5.26 presents an example of the off-specular
scattering from a [Co/Cu]50 multilayer.

The diffuse signal has been measured as a function of qx and qz. In Fig. 5.26a and
b, one observes the structural correlation peak [001] corresponding to the chemical
periodicity. At remanence, a strong diffuse scattering peak is observed at the position
[0 0 1/2]. Since the magnetic diffuse scattering is localized around the position [0
0 1/2], it is possible to say that the Co layers are globally anti-ferromagnetically
coupled along the thickness of the layer. However, since there is a strong diffuse
scattering, it is also possible to say that there exists a significant magnetic disorder
in the plane of the Co layers. The width of the diffuse scattering peak around the
position [0 0 1/2] (Fig. 5.26c) is inversely proportional to the magnetic domain size
and gives an estimate of the mean magnetic domain size which ranges from 1μm at
remanence (30 G) and grows to 6 μm at 250 G.
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Fig. 5.26 [Co (2 nm)/Cu (2 nm)]50 multilayers (adapted from Langridge et al. [69]). (a) Diffuse
scattering at H = 0. One observes a strong diffuse signal at the AF position. (b) Diffuse scattering
in a saturating field. The AF peak has disappeared. (c) Evolution of the AF peak as a function of
the applied field (cut along Qz = 0.75nm−1). (d) Magnetic coupling between the layers. x is the
lateral correlation length between magnetic domains. The Co layers are locally coupled AF but
there is a strong disorder within each Co layer

Magnetic off-specular scattering has been mostly used to probe the magnetic do-
main sizes in multilayers. Detailed quantitative analysis of the magnetic off-specular
scattering can be performed [93]. The effect of the micromagnetic structure can
then be correlated with other properties such as the magneto-crystalline anisotropy
(in Fe/Cr superlattice [126]) or the magneto-resistive effect (in Fe/Cr [127, 128]
or Co/Cu [129] superlattices). The formation of micromagnetic structures is very
important with respect to the transport properties in magnetic sensors. The signal-
to-noise ratio of giant magneto-resistive systems is very sensitive to the micromag-
netic structure [111]. Off-specular studies are also used to complement studies on
exchange bias systems: Co/CoO [130] and Ir20Mn80/Co80Fe20 [131]. Off-specular
scattering has also been used to study the problem of the reversal process in neu-
tron polarizing supermirrors [132]. In some special cases, it has been shown that
it is also possible to probe single interfaces (Fe/Cr/Fe trilayer [133] or waveguide
structures [134]).

The trend in nanosciences is shifting from continuous thin films to in-plane
nanostructures. These nanostructures can be obtained by patterning or by self-
organization [135–139, 143]. In a number of studies, the influence of patterning
on the exchange bias has been probed [140–142, 144]. These studies are of interest
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when the magnetic heterostructures are to be integrated in large-scale microcircuits
(typically for magnetic RAMs.)

5.10 Grazing Incidence Scattering

Since nanosciences are aiming at smaller scales (well below 1μm), off-specular will
reach its limits since it is limited to probing rather large correlation lengths (ξ >
500nm). This is why surface scattering has been extended to the SANS geometry.
In this case, one looks at the scattering in the plane perpendicular to the incidence
plane (Fig. 5.26a, hashed plane). The scattering wave vector is given by qx = k0.Δqy

and is in a range comparable to the scattering wave vectors in SANS experiments:
10−4 < qy < 3nm−1. This corresponds to correlation lengths ξ ranging from 3 to
100 nm.

We present here the first example of a grazing incidence SANS experiment on a
magnetic thin film [145]. FePt thin film layers self-organize themselves in magnetic
stripe domains (Fig. 5.27a). The stripes are almost perfectly ordered as a periodic
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θin = 0.7◦. (c) GISANS signal at constant qz. (d) Distribution of the magnetic induction in the thin
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pattern with a period of about 100 nm. In order to study in-depth this magnetic
pattern, a grazing incidence SANS experiment was performed on the spectrometer
PAPYRUS at the LLB. The neutron beam was sent at grazing incidence (θin = 0.7◦)
on the layer, the magnetic domains being parallel to the incidence plane (Fig. 5.27a).
Diffraction from the magnetic domains can be observed. Figure 5.27b details the
different contributions of the grazing incidence SANS signal. An integration at fixed
qz has been performed and is presented in Fig. 5.27c. Three diffraction orders can
be observed (the second order being extinct). In order to model the system, it is
necessary to take into account the Néel caps between the magnetic stripes as well as
the magnetic stray fields (Fig. 5.27d) [146].

Other systems with stripe domains have been studied (e.g., Fe/FeN [147]). Sys-
tems of magnetic Fe nanodots have also been observed using grazing incidence
SANS [148].

Compared to magnetic force microscopy, which is a direct space probe, the tech-
nique permits to probe buried layers and to obtain quantitative information about the
magnetization. Force microscopy only gives surface information and no quantitative
information. The other advantage is that it is also possible to set up complex sample
environments (furnace – cryostat – high magnetic fields). The strong limitation is
however that presently the neutron flux is rather low and long counting times are
required. As dedicated instruments will be developed the situation will improve.

5.11 Conclusion on Neutron Reflectometry

5.11.1 Neutron–X-Ray Comparison

In the last decade, great efforts have been made to apply x-ray scattering to the study
of the magnetism of thin films. The high flux available on the synchrotron sources
compensates for the weak magnetic interaction of x-rays. In this paragraph, we want
to underline the strengths and weaknesses of the different scattering techniques.
Neutron reflectivity has the following characteristics:
+ It is a direct quantitative probe of the magnetization. The data processing is very
simple and quantitative. It is straightforward to obtain the magnetization profile (am-
plitude and direction) in a thin film system.
+ Complex sample environments are available (very low temperatures, high tem-
peratures, high magnetic fields).
+ It is possible to probe buried layers. Protective capping can be used. The corollary
is that it is possible to probe complex systems consisting of several layers. It is not
necessary to design the system specifically for the scattering experiment.
+ The flux is low and several hours of measurements are required for each sam-
ple and experimental conditions. Dynamics can be probed only down to ∼10μs in
stroboscopic mode.
− Neutrons have a weak chemical sensitivity and resonant techniques or spectro-
scopic techniques do not exist.
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− It is not possible to distinguish the spin and orbital moments.
The techniques of magnetic x-ray scattering (x-ray dichroism; resonant x-ray reflec-
tivity; x-ray imaging) have the following advantages/disadvantages:
+ High flux.
+ Chemical sensitivity.
+ High speed dynamics.
+ Imaging possibilities (sub-μm).
− The data processing is very complex because the magnetic interaction is tensorial.
Quantitative data are difficult to extract on complex materials.
− It is difficult to set up complex sample environments.
− It is difficult to probe buried layers.
− No vector magnetometry.

5.11.2 Future Evolutions

This chapter has given an overview of the neutron reflectometry as a tool for the
investigation of surfaces. We have presented a matrix formalism which makes it
possible to describe the specular reflectivity on non-magnetic and magnetic systems.
Neutron reflectometry offers several specificities which makes it very useful for
the study of polymer and magnetic thin film systems. In the field of soft matter,
the possibility of deuteration and selective labeling makes neutron reflectivity an
invaluable tool. In the field of magnetic thin films, the main advantages are that it is
a direct probe of the magnetization in a material. It can easily be used to measure
AFM, ferro or helical ordering in superlattices, probe complex magnetic ordering in
multilayers, give detailed insights in problems such as the magnetism of ultra-thin
films or the exchange bias mechanism. This has been illustrated with a few typical
examples.

The problem of phase determination in neutron reflectometry is also an active
field of research [149–151]. If not only the intensity but also the phase of the re-
flectivity could be measured a direct inversion of the reflectivity profile would be
possible. Nevertheless, during these last 2 decades, polarized neutron reflectometry
has proved to be a useful tool for the topics discussed above. In the early studies of
magnetic superlattices, new types of magnetic orders were directly and unambigu-
ously probed. Since then it has systematically been used for the study of magnetic
thin film heterostructures. It is even used to characterize industrial systems. It is now
complemented by new tools using the magnetic sensitivity of x-rays: magnetic x-ray
diffraction or reflectivity and x-ray dichroism.

A wide set of surface scattering techniques have become available during the last
decade (Fig. 5.28): specular neutron reflectivity which is operated routinely, off-
specular scattering which is easily performed but requires complex data processing,
grazing incidence SANS which is still in development. A very large range of corre-
lation lengths in thin film systems can now be probed using these different scattering
techniques.
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Fig. 5.28 Correlation lengths and suitable scattering techniques

Presently, a big effort is made in order to increase the flux on neutron reflec-
tometers. Flux gains ranging from 10 to 100 can reasonably be expected in the next
decade through the implementation of new types of neutron reflectometers. Quanti-
tative gains in the measuring time and in the minimum sample size will be achieved.
Other opportunities may appear when new neutron spallation sources will come into
operation in the next 5–10 years. However it is not yet clear if qualitative gains, that
is new types of measurements besides the ones presented in this communication will
be achieved. For example, the use of neutrons to probe inelastic processes has been
barely scratched in the field of thin films.
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106. Böni, P.: Phys. B 234–236, 1038–1043 (1997) 222
107. Nerger, S., et al.: Phys. B 297, 185-188 (2001) 223
108. Fritzsche, H., et al.: Phys. Rev. B 70, 214406 (2004)
109. Laloe, J.B., et al.: IEEE T. Magn. 42 (2006)
110. Schmitz, D., et al.: J. Magn. Magn. Mater. 269, 89–94 (2004)
111. Pannetier, M., Doan, T.D., Ott, F., Berger, S., Persat, N., Fermon, C., Europhys. Lett. 64,

524–528 (2003) 224, 227
112. Moyerman, S., et al.: J. Appl. Phys. 99, (2006) 224
113. Schanzer, C., et al.: Physica B 356, 46–50(2004) 224
114. Zhao, Z.Y., et al.: Phys. Rev. B 71, 1098–0121(2005) 224
115. Fitzsimmons, M.R., et al.: Phys. Rev. Lett. 84, 3986–89 (2000)224
116. Leighton, C., et al.: Phys. Rev. B 65, 064403/1–7 (2002)224
117. Fitzsimmons, M.R., et al.: Phys. Rev. B 65, 134436 (2002)224
118. Gierlings, M., et al.: Phys. Rev. B 65, 092407/1–4 (2002) 224
119. Blomqvist, P., et al.: J Appl. Phys. 96, 6523–6526 (2004) 224
120. Paul, A., et al.: Phys. Rev. B 1098–0121 (2006) 224
121. Roy, S., et al.: Phys. Rev. Lett. 95, 047201 (2005) 224
122. Ott, F., et al.: J. Mag. Mag. Mat. 211, 200–205 (2000) 224
123. Borges, R.P., et al.: J. Appl. Phys. 89, 3868-3873 (2001) 224
124. Moussy, J.-B., et al.: Phys. Rev. B 70, 174448 (2004) 224
125. Felcher, G.P., et al.: Neutron News 5, 18–22 (1994) 226
126. Nagy, D.L., et al.: Phys. Rev. Lett. 88, 4 (2002) 227
127. Lauter, H., et al.: J. Magnet. Magnetic Mater. 258, 338 (2003)227
128. Lauter-Pasyuk, V., et al.: J. Magnet. Magnetic Mater. 226, 1694 (2001) 227
129. Paul, A., et al.: Physica B 356, 31 (2005) 227
130. Gierlings, M., et al.: Physica B 356, 36–40 (2004) 227
131. Paul, A., et al.: Physica B 356, 26–30 (2005) 227
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Chapter 6
X-Ray Reflectivity by Rough Multilayers

T. Baumbach and P. Mikulı́k

6.1 Introduction

One tendency in present material research is the increasing ability to structure solids
in one, two and three dimensions at a sub-micrometer scale. Based on various
material systems artificial mesoscopic-layered superstructures such as multilayers,
superlattices, layered gratings, quantum wires and dots have been fabricated suc-
cessfully. This has opened new perspectives for manifold technological applications
(e.g. for anticorrosion coating and hard coating, micro and optoelectronic devices,
neutron and x-ray optical elements, magnetooptical recording).

The perfection of mesoscopic-layered superstructures is characterised by

1. the perfection of the superstructure (grating shape, periodicity, layer thickness,
etc.),

2. the interface quality (roughness, graduated heterotransition, interdiffusion, etc.),
3. crystalline properties (strain, defects, mosaicity, etc.).

Roughness is of crucial importance for the physical behaviour of interfaces.
Roughness reduces the specular reflectivity of mirrors and waveguides for x-ray
and neutron optics. Moreover it creates unintentional diffuse scattering. In mag-
netic layers it changes the interface magnetisation. Roughness promotes corrosion
and influences the hardness of materials. It disturbs the electronic band structure in
semiconductor devices. Interface roughness supports the generation of crystalline
defects in layered structures. In multilayers already the roughness of the substrate
or the buffer layer influences the quality of all subsequent layers. Depending on the
growth process the roughness profile can be partially replicated from interface to
interface.

Interface roughness is a random deviation of the layer shape from an ide-
ally smooth plane. We consider here roughness with correlation properties of
mesoscopic (sub-micrometer) scale. Irradiating a macroscopic area of the sample,
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surface-sensitive x-ray scattering allows the investigation of the statistical behaviour
of the roughness profile.

Interface roughness in multilayers can be studied by all surface-sensitive x-ray
scattering methods (x-ray reflection (XRR), grazing incidence diffraction (GID),
strongly asymmetric x-ray diffraction (SAXRD)) employing physical principles
similar to the case of simple surfaces. They are based on

1. the reduction of the information depth at grazing angles of incidence and exit,
2. reflection of x-rays by the individual interfaces of a multilayer (ML) at small

angles of incidence,
3. interference of the waves reflected by different interfaces,
4. diffuse scattering of x-rays by interface disturbances.

Specular x-ray reflection (SXR) as the most frequently used method studies
the depth profile of the electron density. It detects the density gradient at the in-
terface between two layers, where from we conclude on the r.m.s. roughness.
Grazing incidence diffraction and strongly asymmetric x-ray diffraction detect
interface roughness via the strain and the depth profile of the Fourier compo-
nents of the electron density. The measurement of diffuse x-ray scattering (DXS)
gives a clear evidence of interface roughness, distinguishing between roughness
and graduated interfaces due to transition layers, inter-diffusion or graduated het-
erotransitions. Up to now DXS has frequently been observed in the XRR mode
[1–10]. First measurements of DXS in the diffraction mode have been reported
recently [11, 12]. DXS by multilayers enables one to characterise the lateral cor-
relation properties of interfaces similar to DXS by surfaces. Moreover it allows
to detect vertical roughness replication from interface to interface. DXS at graz-
ing incidence occurs under condition of simultaneous intense specular reflection.
This gives rise to strong effects of multiple scattering [5, 7, 8, 10, 12–14]. That
is why semi-dynamical methods such as the distorted wave Born approxima-
tion (DWBA) are more appropriate to explain the DXS features than kinematical
treatments.

This chapter intends to give an introduction into theoretical and experimental
aspects of x-ray reflection by solid multilayers with rough interfaces, illustrated by
various examples. We start in Sect. 6.2 with a short presentation of rough multilayers
and of the notations used in this chapter.

In Sect. 6.3 we will introduce the experimental set-up and usual experimental
scans and in the following sections we apply the results of the Chaps. 3 and 4 on
multilayered samples with different types of interface correlation properties. There
we discuss typical features of the reflection curves and reciprocal space maps by
various experimental examples. Afterwards, we mention the investigation of rough-
ness by surface-sensitive diffraction methods and at the end we study the reflectivity
by intentionally laterally structured multilayers (gratings).

Throughout the chapter the reciprocal space representation of the optical poten-
tial and the scattering processes allows us to outline the scattering principles in a
geometrical way. The basic principles of it are summarised in the appendix.
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6.2 Description of Rough Multilayers

The scattering potential of a sample can be represented by the polarisability χ(r),
by the refractive index n(r) as well as by the dielectric function ε(r). In classical
optics it is common to use n(r) or ε(r), x-ray optics uses also δ (r) = 1 − n(r).
In order to pronounce similarities in the procedures and expressions for all x-ray
scattering methods, thus reflection and diffraction, we preferred to use in this chapter
the polarisability χ(r). We recall the relation between χ and δ

χ(r) = −2δ (r) . (6.1)

Furthermore, we will make use of the optical potential defined by

V (r) = −k2
0χ(r) , (6.2)

where k0 = 2π/λ is the vacuum wave vector and λ is the wavelength of the scattered
radiation

χ(r) =
N

∑
j=1

χ j(r) . (6.3)

We represent χ(r) of the multilayer by the polarisability of the individual layers
(see Fig. 6.1).

In order to distinguish between the interface properties of the layers and their vol-
ume properties, each layer is presented by the product of the volume polarisability
χ∞ j(r) and the layer size (shape) function Ω j(r)

χ j(r) = χ∞ j(r)Ω j(r) . (6.4)

X-ray reflection methods measure the scattered intensity in the region near the origin
of reciprocal space (000). There, only the mean polarisability plays a role and we can
replace χ∞ j(r) by the zero-order Fourier component χ0 j(r) which is not sensitive
to crystalline properties.

Fig. 6.1 The schematic
set-up of an “ideal” planar
multilayer (left). Its optical
potential is characterised by
the polarisability depth
profile (right)
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6.2.1 Ideal Planar Multilayers

Let us first deal with a laterally extended “ideal” multilayer with sharp and smooth
interfaces. Then χ id

0 j(r) will be constant within each “ideal” layer. The layer size
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(shape) function of a smooth layer with sharp interfaces is the difference of two
Heaviside functions corresponding to the upper and lower interfaces,

Ω id
j (r) = H(z−Z j)−H(z−Z j+1) . (6.5)

Sharp interfaces do not allow any overlapping of neighbouring layers; thus Ω id
j (r) =

1 predicts Ω id
k (r) = 0 for all other layers k �= j.

6.2.2 Multilayers with Rough Interfaces

Similar to the smooth multilayer we express the polarisability by the sum of the
individual layer contributions

χ(r) =
N

∑
j=1

χ0 j Ω j(r) . (6.6)

We will further consider vertically layered structures with a random defect struc-
ture, which we assume to be laterally statistically homogeneous. We concentrate
on defects, which vary the layer shape and interface sharpness Ω j(r) (interdiffu-
sion and roughness) in contrast to those influencing the layer volume properties χ∞ j

(porosity, inclusions).
Interdiffusion and graduated heterotransition between neighbouring layers pro-

duce vertically graduated interfaces. Then Ω j(r) can have all values between 1 and
0. The layer is defined within the region Ω j(r) �= 0. We allow an intermixing of
neighbouring layers only, in order to keep the layer sequence. We define here by in-
terface roughness the random profile of locally sharp interfaces. The vertical shift of
the actual interface position with respect to its mean position is characterised by the
displacement function z j(r‖) = Z j(r‖)−Z j of each interface, Fig. 6.2(a), modifying
the actual layer size function,

Ω j(r) = H
(
z− [Z j + z j(r‖)]

)
−H

(
z− [Z j+1 + z j+1(r‖)]

)
(6.7)

(a) (b)

zj(r )

r

zj(r )
r

Zj
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r
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Zj

Fig. 6.2 Notation of the interface displacements and schematical representation of the correlation
function of one (a) and of two interfaces (b)
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and the actual layer thickness is t j(r‖) = t j + z j+1(r‖)− z j(r‖), where the “ideal”
thickness is t j = Z j+1 −Z j.

6.2.3 Correlation Properties of Different Interfaces

Correlation properties of single rough interfaces have been studied in Chap. 2. There
were introduced the probability density of heights p1(z) and lateral height–height
correlation function Czz′(r‖,r‖′) =

〈
z(r‖)z(r‖′)

〉
for one interface, i.e. for a substrate.

In this section, we will treat the correlation properties between different interfaces
of a multilayer. We introduce the two-dimensional probability density of two inter-
faces, Fig. 6.2(b),

p2(z j,z
′
k) = p

(
z j(r‖),zk(r‖

′)
)

(6.8)

and height–height correlation function

Cjk(r‖ − r‖
′) =

〈
z j(r‖)zk(r‖

′)
〉

. (6.9)

Usually the perfection of interfaces in multilayers is essentially influenced by the
quality of the substrate or buffer surface. The surface defects can be replicated in
growth direction. Different replication behaviours have been observed, depending
on the material system, layer set-up and the growth conditions. The following repli-
cation model has been proposed in [15]: (1) during the growth of the jth layer, the
roughness profile z j+1(r‖) of the lower interface is partially replicated and (2) other
defects, an intrinsic roughness Δ j(r‖), are induced by imperfections of the growth
process

z j(r‖) = Δ j(r‖)+
∫

dr‖
′ z j+1(r‖

′)a j(r‖ − r‖
′)

= Δ j(r‖)+ z j+1(r‖)⊗a j(r‖), (6.10)

where ⊗ denotes a convolution product. Here a non-random replication function
a j(r‖) has been introduced, determining the “degree of memory” of the interface at
the top for the roughness profile at the bottom interface. If the replication function
is zero, the upper interface of a layer “forgets” the interface profile at the layer bot-
tom and its profile is entirely determined by the intrinsic roughness (no replication).
Identical profile replication is achieved for zero intrinsic roughness and full repli-
cation (a j(r‖) equals the delta function). Other cases are discussed in detail in [15]
and will win our interest within the discussion of the experimental results.

In later sections we will use the Fourier transformation of the interface correlation
functions

C̃ jk(q‖) =
∫

dR‖Cjk(R‖)eiq‖R‖ =
〈
z̃ j(q‖)z̃

∗
k(q‖)

〉
(6.11)

with
z̃ j(q‖) = Δ̃ j(q‖)+ z̃ j+1(q‖) ã j(q‖) . (6.12)
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In the following we neglect any statistical influence of the interface profile
z j+1(r‖) on the intrinsic roughness Δ j(r‖). Also the intrinsic roughness of differ-
ent interfaces shall be statistically independent. Then we find the recursion formula
for the Fourier transform of the correlation function

C̃ jk(q‖) = C̃ j+1,k+1(q‖) ã j(q‖) ãk(q‖)+δ jk K̃ j(q‖) , (6.13)

where K̃ j(q‖) is the Fourier transform of the correlation function of the intrinsic
roughness

Kj(r‖ − r‖
′) =

〈
Δ j(r‖)Δ j(r‖

′)
〉

. (6.14)

If we assume for all layers the same replication function a(r‖) and the same
intrinsic roughness Δ(r‖) (replicated substrate roughness zN(r‖), for instance) we
get the explicit expressions for the Fourier transforms of the in-plane correlation
function

C̃j j(q‖) = C̃NN(q‖)
[
ã(q‖)

]2(N− j) + K̃(q‖)

[
ã(q‖)

]2(N− j−1)−1[
ã(q‖)

]2 −1
(6.15)

(C̃NN(Q‖) is the correlation function of the substrate) and of the inter-plane corre-
lation function

C̃k≥ j(q‖) = C̃kk(q‖)
[
ã(q‖)

](k− j)
. (6.16)

The physical meaning of the particular terms in (6.15) is obvious. The first term
on the right-hand side represents the influence of the substrate surface modified by
the replication function, the second term is due to the intrinsic roughness of the
layers beneath the layer j.

Knowing C̃ j j(q‖) we can calculate the mean square roughness σ2
j of the jth

interface:
σ2

j =
〈
z2

j(r‖)
〉

=
∫

dq‖ C̃ j j(q‖) . (6.17)

6.3 Set-Up of X-Ray Reflectivity Experiments

In this section we outline the experimental set-up to investigate the fine structure
of the reflected intensity pattern in vicinity of the origin of reciprocal space (000)
under conditions of small angles of incidence and exit with respect to the sample
surface.

6.3.1 Experimental Set-Up

A conventional x-ray reflectometer is drawn in Fig. 6.3. The x-ray source (a conven-
tional x-ray tube or a synchrotron) emits a more or less divergent and polychromatic
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Monochromator

Sample

Analyser

Detector

Detector

X-ray source αi
αf

Fig. 6.3 Schematic set-up of an x-ray reflectometer (source, monochromator, sample, slits and
detector) and of a triple-crystal-like diffractometer (source, monochromator, sample, analyser and
detector)

beam. The monochromator (a crystal or a multilayer mirror) and entrance slits pro-
duce a sufficiently monochromatic and parallel beam, hitting the sample surface
under the incident angle θin. Its angular divergence is characterised by the spatial
angle ΔΩin. The sample is mounted on a goniometer, which allows one to change
the incident angle θin by the rotation ω . The x-rays are reflected (scattered) by the
sample. The coherently reflected beam leaves the sample in specular direction (un-
der the exit (final) angle θsc = θsc in the plane of incidence). Due to roughness there
occurs diffuse scattering into the upper half-space of the sample. A detector rotates
around the sample and measures the flux of photons (in units of counts per second)
through the detector window, which defines the spatial angle interval ΔΩdet around
a certain spatial angle Ωsc (sufficiently defined by θsc in the coplanar case). If we
suppose a perfectly monochromatic and parallel incident beam of intensity I0 then
the idealised flux through the detector window is related with the differential scat-
tering cross section by

J = I0

∫
dσ = I0

∫ Ωsc+ΔΩdet/2

Ωsc−ΔΩdet/2

(
dσ
dΩ

)
dΩ . (6.18)

Taking the divergence and the intensity profile of the incident beam into account,
we obtain

J =
∫
ΔΩin

dΔΩin I0(ΔΩin)
∫ Ωsc+ΔΩdet/2

Ωsc−ΔΩdet/2

dσ(Ωin +ΔΩin,Ω)
dΩ

dΩ . (6.19)

Actually, in the case of a large sample, the detector slits select another angular in-
terval for each point on the illuminated sample area. That can be overcome replacing
the detector slits by an analyser (also a perfect crystal or a multilayer mirror) in front
of the detector similar to a triple-crystal diffractometer (TCD). The monochroma-
tor is the “first crystal”, the sample the “second crystal” and the analyser the “third
crystal”. The flux measured by the TCD is

J =
∫
ΔΩin

dΔΩin I0(ΔΩin)
∫

dΩ
dσ(Ωin +ΔΩin,Ω)

dΩ
D(Ω −Ωsc) , (6.20)

where D(ΔΩ) is the reflectivity of the analyser.
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6.3.2 Experimental Scans

Mapping the measured flux for different angles of incidence and exit, we can plot the
measured scattering pattern in angular space, J (Ωin,Ωsc), or by three reciprocal
space coordinates and one angular coordinate of the sample, e.g. J (ksc − kin,θin).
Restricting ourselves on coplanar reflection (ksc,kin and the surface normal are in
the same plane), the angular representation J (θin,θsc) and the reciprocal space
representation J (q) with the scattering vector q = ksc − kin are equivalent.

The principal rotations of a (coplanar) TCD are as follows:

1. The rotation 2θ of the detector arrangement in the coplanar scattering plane
around the sample: 2θ measures the scattering angle (2θ = θin +θsc), the varia-
tion of 2θ changes θsc (Δ2θ = Δθsc).

2. The rotation ω of the sample around the same axis: θin = ω , θsc = 2θ −ω , a
variation of ω changes simultaneously θsc and θin (Δω = Δθin = −Δθsc).

Different experimental scans can be performed by coupling both rotations. In
Fig. 6.4 the most usual scans are illustrated in real and reciprocal space. They are
given as follows:

Detector scan or 222θθθ -scan. The incident wave vector kin opens out the Ewald
sphere ε. If we keep the angle of incidence fixed (ω = const) and rotate the
detector arrangement, we move in reciprocal space along the Ewald sphere ε.
ωωω-Scan or constant qqq-scan. The ω-scan rotates the Ewald sphere around the
origin of reciprocal space. Fixing the scattering angle 2θ , we fix the modulus
of the scattering vector. Then the ω-scan represents a constant q-scan since we
move in reciprocal space on a circle of radius q = |q| around the origin.

Qz

QII

KS

K0

Q

vac

2Θ – scan

ε

Θ / 2Θ – scan 

ω –scan

QZ QII

K0

KS

ω 

Δω /Δ2Θ 

ε0
εs

2Θ 

Fig. 6.4 Illustration of the experimental scans in the reciprocal space. Right figure shows the en-
largement around its origin, where x-ray reflection takes place. The 2θ -scan (detector scan) follows
the Ewald circle of the incident wave. The ω-scan represents rocking scan, which is transversal for
XRR. For 2ω = 2θ it is a qz-scan with q‖ = 0 (specular scan)
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ΔΔΔθθθ/ΔΔΔ222θθθ -Scan or radial scans. Rotating the sample and the detector arrange-
ment in a ratio Δω/Δ2θ = 1/2, we drive the TCD in reciprocal space in radial
direction from the origin of reciprocal space.
θθθ/222θθθ -Scan on the qqqzzz axis or specular scan. This special radial scan with ω/2θ
= 1/2 keeps the condition θin = θsc and performs a qz-scan at qx = 0. This ex-
perimental mode is also called specular scan, since the detector selects always
the specularly reflected beam.
qqqxxx-Scan and qqqzzz-scan. These scans go parallel to the qx and qz axes at fixed qz

and qx positions, respectively.

Sometimes it is useful to measure a reciprocal space map, i.e. to measure the
map of the scattered intensity by combining different scans, e.g. measuring a series
of ω-scans (rocking scans) in the interval from ω=0 to ω=2θ for varying 2θ . Us-
ing a position-sensitive detector (PSD), one would detect PSD spectra for different
omega positions.

The angular region investigated by a reflection experiment is limited by the hori-
zon of the sample. The limiting cases for grazing incidence (θin = 0) and grazing
exit (θsc = 0) are illustrated in Fig. 6.5. The situation in reciprocal space is repre-
sented by the two limiting half-spheres ε0 and εs.

Grazing incidence

K0

KS
0

Grazing exit

K0

KS

S

Fig. 6.5 Situation of grazing incidence (left) and grazing exit (right) in reciprocal and real space

X-ray reflection experiments are usually realised at very small scattering angles.
In Fig. 6.4(right) we show the introduced experimental scans in the x-ray reflection
mode and their restrictions due to the sample horizon. Especially the ω-scans are
narrowed down. In the accessible region of reflection, i.e. near the origin of the
reciprocal space, they perform approximately a transversal scan (q‖-scan).

6.4 Specular X-Ray Reflection

In this section we discuss some theoretical and experimental examples of coherent
specular x-ray reflection by layered structures with the aim to show typical features
created by different surface roughness point properties. The coherent scattering in-
tensity is concentrated along the specular rod. That means, the appropriate experi-
mental scan is the specular or θ/2θ -scan.
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6.4.1 Roughness with a Gaussian Interface Distribution Function

6.4.1.1 Single Surface

The predominant number of samples have been successfully characterised assuming
a Gaussian probability density of the interface roughness profile (see (2.19))

p1(z) =
1

σ
√

2π
e−z2/2σ2

. (6.21)

In this case, as shown in Chap. 3, Eq. (3.115), we obtain for a single surface (e.g.
a substrate) the amplitude ratio of dynamic reflection [16, 17]

rcoh
dyn = rflat

dyn e−2kz,0kz,1σ2
(6.22)

with the amplitude ratio of the flat substrate being the dynamical Fresnel reflection
coefficient of the substrate surface rflat

dyn = (kz,0−kz,1)/(kz,0+kz,1), see Eq. (3.80).
The ratio of kinematical reflection coefficients is (Eq. (3.116))

rcoh
kin = rflat

kin e−2k2
z,0σ

2
(6.23)

with the kinematical Fresnel reflection coefficient of the surface rflat
kin = q2

c/4q2
z ,

Eq. (3.103).
Both the kinematical and the dynamical Fresnel reflection coefficients are mul-

tiplied with a diminution factor containing the r.m.s. roughness σ in the exponent.
The kinematical diminution factor decreases with the square of the scattering vec-
tor qz, which is proportional to the angle of incidence. Its form resembles the static
Debye–Waller factor. The dynamical diminution factor contains the product of the
scattering vector in vacuum qz,0 and that in the medium qz,1. The angular depen-
dence of the diminution factors in the dynamical and the kinematical theory differs
substantially for small angles near the critical angle of total external reflection θc,
see Fig. 6.6. Neglecting absorption, the scattering vector qz,1 becomes purely imag-
inary below θc. Consequently there is no influence of roughness on the reflectivity
in this angular range within the dynamical description. At large incident angles both
diminution factors coincide.

A more detailed discussion of both formulae (6.22) and (6.23) is given in
[13]. There the contribution of the incoherent scattering to the specular direction
has been studied by means of second-order DWBA, showing its dependence on
the lateral correlation length Λ . Concluding therefrom, the specularly reflected
intensity can be described by the “dynamical” equation (6.22) for short Λ be-
low 1μm. For larger Λ the kinematical formula (6.23) with rflat

kin becomes more
appropriate.

Surface roughness of numberless samples of amorphous, polycrystalline and
monocrystalline material systems has been studied by SXR. In Fig. 6.7 we plotted
one experimental example, the reflectivity of a rough GaAs substrate.
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Fig. 6.6 The coherent reflectivity of a rough Si surface. In the left panel the reflectivity of a flat
surface (dashed) is compared with that for the roughness σ =1 nm, calculated by the “dynamical”
theory (6.22) (full) and the kinematical theory (6.23) (dotted). The kinematical reflectivity diverges
at grazing incidence. The “dynamical” curve coincides nearly with that of the flat surface below
the critical angle θc. In the subfigure, the dashed line represents the coherent reflectivity of a rough
surface calculated with dynamical Fresnel reflection coefficient and kinematical diminution factor.
Thus the reflectivity decreases also below θc. In the right figure, influence of different roughness,
calculated by dynamical formulae, is demonstrated. Close to θc (see subfigure), no essential change
is observed

Fig. 6.7 Measured (points)
and calculated (line)
reflectivity curves of a GaAs
substrate, σ = 12 Å [18]. In
the inset the mean coverage
of the surface is plotted
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6.4.1.2 Multilayer

Conventional SXR simulation and fit programs are today based on a multilayer
model with independent r.m.s. roughness profiles of each interface supposing a
Gaussian probability density. This leads to effective Fresnel reflection and trans-
mission coefficients (Eq. 3.115):

r j, j+1 = rflat
j, j+1e−2kz, jkz, j+1σ2

j+1 and t j, j+1 = tflat
j, j+1e(kz, j−kz, j+1)2σ2

j+1/2 (6.24)

for each interface. The influence on the transmission function is rather small ac-
cording to the small difference in the vertical scattering vector components of the
layers. However, the interface reflection is exponentially diminished by roughness,
creating a strong change in the interference pattern. The effect of interface rough-
ness versus surface roughness is shown in Fig. 6.8. The surface roughness mainly
decreases the specular intensity of the whole curve progressively with qz, where
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Fig. 6.8 Calculation of the specular reflectivity of a single layer (20 nm tungsten) on a substrate
(sapphire) for different r.m.s. roughness and diminution factors. (a) Dynamical diminution factor.
From the upper to the lower curve: without roughness, interface roughness 0.5 nm, surface rough-
ness 0.5 nm, both surface and interface roughnesses 0.5 nm. Surface roughness yields a faster decay
of the reflectivity, while interface roughness attenuates the peaks. (b) Different diminution factors.
Surface roughness 1.2 nm and interface roughness 0.3 nm calculated for the kinematical “slow”
roughness (lower curve), dynamical “rapid” roughness (middle curve) and without roughness (up-
per curve)

the interface roughness gives rise to a progressive dampening of the interference
fringes (thickness oscillations). However, locally the variation in the Fresnel coef-
ficients can cause more pronounced oscillations, too. In Fig. 6.9 we plotted the ex-
perimental and simulated curves of a magnetic rare earth/transition metal multilayer
(Cr/TbFe2/W on sapphire Al2O3), grown by laser ablation deposition. It shows a
quite complicated non-regular interference pattern. A good agreement with the sim-
ulation was realised by considering a thin oxide film at the sample surface.

Fig. 6.9 Measurement
(points) and the fit (full curve)
of the specular reflectivity of
a Cr/TbFe2/W
multilayer [19]. We
determined the thicknesses
(34.6 nm W, 4.8 nm TbFe2,
50.5 nm Cr, 3 nm oxidised Cr)
and the roughnesses (0.2 nm
above sapphire, 2.0 nm W,
0.9 nm TbFe2, 2.2 nm Cr)
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6.4.1.3 Periodic Multilayer

The main feature of the specular scans of a periodic multilayer is the multi-
layer Bragg peaks, giving evidence for the vertical periodicity, see Fig. 6.10 and
Sect. 6.A.2.
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Fig. 6.10 Specular reflection by an “ideal” periodic multilayer—calculated curves for a [GaAs
(13 nm)/AlAs (7 nm)] superlattice with 10 periods on a GaAs substrate, flat interfaces (no rough-
ness). (a) Comparison of the dynamical theory (full curve) with the kinematical theory. The kine-
matical multilayer Bragg peaks correspond to the positions of the satellites of the (000) RLP. The
curve diverges at low incident angles. The dynamical calculation shows the plateau of total ex-
ternal reflection below the critical angle. Due to refraction the multilayer Bragg peaks are shifted
to larger angles. The first multilayer Bragg peak broadening is caused by multiple reflection (ex-
tinction effect). (b) Comparison of the dynamical theory with the semi-dynamical approximation
(single-reflection approximation [18]). The satellite positions of all Bragg peaks coincide, also the
shape and intensities except for the intense Bragg peaks

The intensity ratio of the Bragg peaks depends on the layer set-up within the
multilayer period. The difference in the electron density determines the Fresnel co-
efficients, and the thickness ratio of the layers characterises the phase relations of
the reflected waves of different interfaces. The laterally averaged gradual interface
profile caused by interdiffusion or interface roughness leads to a damping mainly
of the multilayer Bragg peaks progressively with qz, whereas the roughness of the
sample surface reduces the intensity of the whole curve. This is demonstrated in
Fig. 6.11.

In Fig. 6.12 we plotted the measured SXR curves of an epitaxial CdTe/CdMnTe
superlattice on a CdZnTe substrate. Due to the low contrast of the electron density of
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Fig. 6.11 Simulation of coherent reflectivity of a [GaAs (7 nm)/AlAs (15 nm)]10× periodic mul-
tilayer with no roughness (full curve) or 1 nm roughness of surface (dashed lower curve) or of all
interfaces (dotted)
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Fig. 6.12 Measured and
calculated specular
reflectivity of a [CdTe (14.2
nm)/CdMnTe (2.5 nm)]20×
superlattice on CdZnTe [20].
In the subfigure, the
roughness is represented by
an effective MnTe
concentration depth profile

10−1

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

re
fle

ct
iv

ity

angle of incidence [deg]

0

0.25

0.5

0.75

1

0 4 8 12 16

M
nT

e 
ef

fe
ct

iv
e

co
nc

en
tr

at
io

n

z position [nm]

Pure
CdTe

Pure
CdTe10−2

10−3

10−4

10−5

10−6

both layer materials the first-order Bragg peak appears only as a very weak hump on
the slope of the surface. The other Bragg peaks have a shape similar to a resonance
line. From the best fit we obtain the mean compositional profile.

6.4.1.4 Increasing and Decreasing Roughness in Multilayers

The influence of roughness increasing or decreasing during the growth from the sub-
strate towards the surface can be described by the use of the roughness replication
model introduced in Sect. 6.2.

We start the layer growth from a substrate with a Gaussian surface roughness
profile,

CNN(r‖ − r‖
′) = σ2

N e
−
( |r‖−r‖

′|
ΛN

)2

. (6.25)

For the non-random replication function in (6.10) we choose for all layers a Gaus-
sian function

a(r‖ − r‖
′) =

1
2πL2 e−

|r‖−r‖
′|2

2L2 . (6.26)

The factor L determines the loss of memory from interface to interface. This
choice arises from the aim to explain the different limiting cases of roughness repli-
cation models by one class of functions. It is not supported by any physical reason.
However, the model allowed to describe measured curves of SXR and NSXR show-
ing good agreement [8, 15].

We assume the intrinsic correlation function (6.13) of all interfaces

K(r‖ − r‖
′) = (Δσ)2 e−

( |r‖−r‖
′|

ΔΛ

)2

. (6.27)

Now we continue as in Sect. 6.2. The Fourier transform of the in-plane correla-
tion function is under these assumptions
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C̃ j j(q) =
1
2
(σNΛN)2 e−

(qΛ ′
j)

2

2 +
1
2
(ΔσΔΛ)2

N−1

∑
k= j

e−
(qΛ ′

k)2

4 , (6.28)

where we have denoted

Λ ′
j =
√
Λ 2

N +4L2(N − j) . (6.29)

The inter-plane correlation is then simply given by

C̃ j≥k(q) = C̃ j j(q)e−
(qL)2

2 ( j−k) . (6.30)

We obtain the mean square roughness of the jth interface

σ2
j =

∫
dqC̃j j(q) = σ2

N
Λ 2

N

Λ ′2
j

+(ΔσΔΛ)2
N−1

∑
k= j

1

Λ ′2
k

. (6.31)

Let us see what does it give for some limiting cases of the model:

1. Identical interface roughness is achieved with maximum replication and no in-
trinsic roughness: L = 0 and Δσ = 0. Consequently σ j = σN , and all interfaces
reproduce the profile of the substrate surface, z j(x) = zN(x).

2. Increasing roughness towards the free surface is obtained by maximum replica-
tion and a non-zero intrinsic roughness (L = 0 and Δσ > 0). From (6.28) and
(6.31) we find

σ2
j = σ2

N +(Δσ)2 (N − j) , (6.32)

describing the roughening during the growth.
3. Partial replication and no intrinsic roughness (L > 0 and Δσ = 0) leads to de-

creasing r.m.s. roughness towards the free surface (smoothing of the multilayer
during growth), described by

σ2
j =

σ2
N

1+4
(

L
ΛN

)2(N − j)
. (6.33)

4. No replication occurs for diverging L, where a(r‖− r‖
′) goes to zero. The rough-

ness profile of each interface is independent.

We compare here the experimental example of two periodic Si/Nb multilay-
ers, grown by magnetosputtering for superconductivity studies. The multilayer is
deposited on a Si substrate with a thick SiO2 layer and an Al buffer layer. The
roughness of the buffer layer depends on its thickness and influences the quality
of the interfaces. Two samples of different Al thickness have been investigated and
the results are shown in Fig. 6.13. The multilayer periodicity generates the multi-
layer Bragg peaks or reflection satellites, which are dampened by interface rough-
ness. The roughness of the substrate and the buffer layers has less influence on the



250 T. Baumbach and P. Mikulı́k

Fig. 6.13 Measurement
(points) and simulation (full
curve) of the specular
reflectivity of a periodic
Nb/Si multilayer of 10
periods [19]. (a) Sample A,
fitted by the model of
constant roughness,
(b) sample B, fitted by the
model of increasing
roughness
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reflection pattern. Sample A can be fitted by a roughness model of constant r.m.s.
roughness for all interfaces. The peak widths of the first intense Bragg peak is broad-
ened by extinction due to dynamical multiple scattering. For all higher order Bragg
peaks we observe a narrower (kinematical) peak width. The satellite reflections of
sample B are also rapidly damped, indicating a large interface roughness. Besides
the widths of the peaks increases with qz. That cannot be explained by model 1.
The satellite intensities and shape can be successfully reproduced by supposing in-
creasing roughness according to (6.32). Due to their increased roughness, the upper
layers near the surface contribute with decreasing effective Fresnel coefficients to
the reflected wave. Within the Bragg position the contributions of all interfaces are
still in phase; however, slightly away from the Bragg condition the contribution of
interfaces near the substrate and those near the sample surface do not cancel com-
pletely, giving rise to the peak broadening.

6.4.2 Stepped Surfaces

The surface morphology of monocrystalline samples can also be described by a
discrete surface probability distribution following the concept of terraces or small
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Fig. 6.14 Multilayer with
random two-level islands z1

z2

z

d

x

separated islands. In the simplest case, the two-level surface consists of randomly
placed islands of uniform height d, so that the displacement z(r‖) has two possible
values z1 and z2 = d + z1 with the corresponding probabilities p1 and p2 = 1− p1,
see Fig. 6.14 [21]. The surface probability distribution function p(z) for this case
writes

p(z) = p1δ (z1)+ p2δ (z2) . (6.34)

Since
〈
z(r‖)

〉
= 0, then Z1 =−p2d and Z2 = p1d. The mean square roughness is

σ2 = p1Z2
1 + p2Z2

2 = p1 p2d2 (6.35)

and the characteristic function (2.10) is

χ(qz) = e−iqzd p2

(
p1 + p2 eiqzd

)
. (6.36)

Putting this in the formulae for the reflected amplitude ratio of rough surfaces,
we get the amplitude ratio of kinematical specular reflection

rcoh
kin = e−iqzd p2

(
p1r0,1 + p2r1,2eiqzd

)
. (6.37)

A surface region perturbed in this way acts as a thin, homogeneous layer form-
ing an upper and a lower interface with the Fresnel reflection coefficients p1r0,1

and p2r1,2. They give rise to interference fringes which represent the height d
(Fig. 6.15).

The example of a thin surface layer of porous silicon fits approximately this sim-
ple model, if its thickness is smaller than the vertical correlation lengths of the crys-
tallites (Fig. 6.16(a)) [22]. Since the surface “layer” density is quite different from
that of the substrate, we can observe two critical angles θ1 and θ2. The second one,
θ2, corresponds to silicon, the first one, θ1, to the averaged surface region. Above
θ1 the wave can penetrate into the perturbed surface region; however, total exter-
nal reflection occurs at the “interface” with the non-perturbed region. That is why
very intense fringes appear in this region between θ1 and θ2, which drop rapidly
above θ2. The whole curve is similar to that of a homogeneous layer of much less
density or to that of a surface grating. In the fitted curves a small Gaussian de-
viation of the actual displacement around the z1 and z2 has been supposed, which
leads to roughness diminution factors of the Fresnel reflection coefficients similar to
(6.24).
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Fig. 6.15 Coherent reflectivity of a two-level surface calculated within the kinematical theory for
two values of the probability p1 and the step height d = 5 nm (left) and for two values of d and a
symmetrical probability distribution p1 = p2 = 0.5 (right)

6.4.3 Reflection by “Virtual Interfaces” Between Porous Layers

Porous silicon layers are fabricated by electrochemical etching in a mono-crystalline
silicon wafer. By a variation of the anode voltage, multilayers of modulated porosity
can be produced. Following our division of the layer polarisability we can distin-
guish between the porous layer volume and the size of the layer of equal porosity.
The interface between two layers of different porosities is not a microscopic laterally
continuous and sharp interface between two media of different densities, but an in-
terface of two degrees of porosity. According to the coherent approach (used also in
Sect. 3.4) we take for the coherent reflection an effective averaged refractive index
into account. Layers of statistically homogeneous porosity are assumed. We treat
the slow “roughness” of the transition between two layers of different porosities by
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Fig. 6.16 Measured (full) and fitted (dashed) reflectivity curves of a thin porous silicon surface
layer (a) and of a porous silicon double layer (b) on silicon substrate [22]. Positions θ1,θ2 are the
critical angles of the porous layer and the substrate, respectively

a Gaussian probability function. Same results are obtained by introducing a grad-
uated transition of porosity from layer to layer. An experimental example is given
in Fig. 6.16(b) for a double-layer sample [22]. The thickness of the surface layer
is much smaller than that of the buried layer. The fast oscillating fringes represent
the total thickness. The fringe amplitude is modulated by a period, which corre-
sponds approximately to the thickness of the surface layer. It has been found from
the simulation that the interface between the two layers of different porosities is
much sharper than the interface with the substrate (which is the end front of the
etching process).

The occurrence of the modulation of thickness oscillations in Fig. 6.16(b) is a
direct proof for the validity of the coherent scattering approach. Between the two
porous layers there is nowhere a real roughly smooth lateral interface between two
media. Nevertheless the x-rays are specularly reflected at this “microscopically non-
existent interface” showing all features of the continuum theory of dynamical reflec-
tion by multilayers.

6.5 Non-Specular X-Ray Reflection

In this section we use the incoherent scattering approach (2) within the DWBA
(Chap. 4) and derive some explicit expressions for the incoherent scattering cross
section for x-ray reflection by rough multilayers. We discuss the main features
of the scattering patterns illustrated by experimental examples. The representation
of the scattering in reciprocal space allows a simple interpretation of the findings by
the various scattering processes. We will treat samples with interfaces having a
Gaussian roughness profile, diffuse scattering from terraced interfaces and finally
non-coplanar diffuse scattering.
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6.5.1 Interfaces with a Gaussian Roughness Profile

We will deal with interfaces having a Gaussian roughness profile. We start with the
scattering from a single surface. Then we continue with a multilayer showing the
effects of different roughness replication as well as dynamical scattering effects on
reciprocal space maps.

6.5.1.1 Single Surface

First we will deal with surfaces of a Gaussian probability distribution. The pair
probability distribution function is in the stationary case (see [1, 23–25], for in-
stance)

p2(z,z′) =
1

2π
√

σ4 −C2
zz(r‖ − r‖′)

exp

{
−

z2 + z′2 − 2zz′
σ2 Czz(r‖ − r‖

′)

2σ2[1− 1
σ4 C2

zz(r‖ − r‖′)]

}
(6.38)

with the two-dimensional characteristic function

χzz′(q,q′) = 〈ei(qz−q′z′)〉 = e−σ2(q2+q′2)/2 eqq′Czz(r‖−r‖
′) . (6.39)

One correlation function, which has been successfully applied to interpret the ex-
perimental findings, follows from similarities between the description of interfaces
with fractal roughness properties and the Brownian motion, if we replace the lateral
position by time. Supposing a behaviour like [1, 24]

〈[
z(r‖)− z(r‖

′)
]2〉= A |r‖ − r‖

′|2h , 0 < h ≤ 1 , (6.40)

leads together with
〈[

z(r‖)− z(r‖
′)
]2〉= 2σ2 −2Czz(r‖ − r‖

′) (6.41)

to a correlation function, which only depends on the distance |r‖ − r‖
′|. The so-

called Hurst factor h describes the jagged shape of the interface, determining the
fractal dimension D of the interface, D = 3− h. For h = 1 the fractal dimension is
2 and corresponds to the topological dimension of an interface (without a fractal
structure). This function diverges for large distance |r‖ − r‖

′|. Thus it is suitable to
introduce a cut-off radius ξ . Below ξ the correlation function shall approximately
behave like (6.40), but above it should converge to zero. A function with such a
behaviour is

Czz(r‖,r‖
′) = 〈z(r‖) · z(r‖′)〉 = σ2 e−(|r‖−r‖

′|/ξ)2h

. (6.42)

The cut-off radius represents the lateral correlation length of the interface. Let
us now determine the incoherent cross section for a surface with such properties.
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Using Eq. (4.47) we find for the incoherent scattering cross section of a single rough
surface within the full DWBA

dσincoh = dΩ
k4

0

16π2

∣∣∣t in
0,1

∣∣∣2 ∣∣tsc
0,1

∣∣2 Q̃1 (6.43)

with the covariance function (4.D28)

Q̃1 = A |n2
1 −n2

0|2
e−

1
2σ

2(q2
z,1+q

∗2
z,1)

|qz,1|2
(6.44)

×
∫

A
d(r‖ − r‖

′)eiq‖(r‖−r‖
′)
[
e|q1z|2Czz(r‖−r‖

′) −1
]

,

where A is the area of integration, which means the illuminated surface of the sam-
ple. The result can be interpreted as follows: the incident wave transmits through the
surface considered by the Fresnel transmission coefficients. This “distorted wave”
is diffusely scattered by the surface disturbance. Thus the non-specularly reflected
intensity depends on the r.m.s. roughness and is proportional to the Fourier trans-
form of [

e|q1z|2Czz(r‖−r‖
′) −1

]
.

Taking the correlation function (6.42), we have Czz(r‖ − r‖
′) < σ2. For small

roughness or small qz fulfilling (σqz)2 � 1, we can approximate (6.42) by the first
two terms of its Taylor series and obtain finally

dσincoh = dΩ
k4

0A|n2
1 −n2

0|2
16π2 |t in

01|2|tsc
01|2 e−

1
2σ

2
(

q2
z,1+q

∗2
z,1

)
C̃(q‖) , (6.45)

i.e. an expression, which is proportional to the Fourier transform of the correlation
function.

The according kinematical expressions are found by setting the transmission co-
efficients equal to 1 and substituting the scattering vectors in the medium qz,1 by the
scattering vectors in vacuum, qz.

6.5.1.2 Multilayer with No Vertical Roughness Replication

In the case of independent roughness profiles of all different interfaces we have the
replication function am(r‖) = 0 (L → ∞ in (6.26)). There is no inter-plane correla-
tion, that is why only the in-plane correlation functions have to be considered. We
can proceed for each interface like in the case of a single surface described above.
However, now we take four scattering processes (corresponding to downwards and
upwards propagating incident and scattered waves), see (4.D27), into account in-
stead of one in (6.43). Consequently, we consider 4× 4 covariance functions for
each interface. The incoherent scattering cross section adds up the contribution of
all single interfaces
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(
dσ
dΩ

)
incoh

=
k4

0

16π2

N

∑
j=0
∑
±
∑
±
∑
±
∑
±

(6.46)

Uj(±kinz, j,Z j)Uj(±kscz, j,Z j)Uj(±k
∗
inz, j,Z j)Uj(±k

∗
scz, j,Z j)

Q̃ j j(±kinz, j ± kscz, j,±kinz, j ± kscz, j)

with

Q̃ j j(qz,q
′
z) =

A |χ0 j+1 −χ0 j|2
qz(q′z)∗

e
− 1

2σ
2
j

[
q2

z +(q′z)
∗2
]

(6.47)

×
∫

A
d(r‖ − r‖

′)eiq‖(r‖−r‖
′)
(

eqz(q′z)
∗Cj j(r‖−r‖

′) −1
)

,

where we have used the polarisabilities χ0 j+1−χ0, j=n2
j+1−n2

j instead of the optical

indices. Assuming the same in-plane correlation functions for all interfaces the Q̃ j j

of different interfaces differ only by the scattering vectors and the differences of
polarisability.

Figure 6.17 shows a measurement and fit of an ω-scan from a single-layer
sample.

Fig. 6.17 Measurement
(points) and fit (full line,
shifted down 2×) of an
ω-scan at 2Θ = 2.63◦ single
layer W (11.1 nm) on Si
substrate
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6.5.1.3 Multilayer with Partial Vertical Roughness Replication

In the case of partial vertical roughness replication also the covariance functions of
scattering at different interfaces have to be included. We get (cf. (4.55), (4.56) and
(4.D28), (4.D29))

(
dσ
dΩ

)
incoh

=
k4

0

16π2

N

∑
j=0

N

∑
k=0
∑
±
∑
±
∑
±
∑
±

(6.48)

Uj(±kinz, j,Z j)Uj(±kscz, j,Z j)Uk(±k∗inz,k,Zk)Uk(±k∗scz,k,Zk)

Q̃ jk(±kinz, j ± kscz, j,±kinz,k ± kscz,k)

with the covariance function (see Fig. 6.18)
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Fig. 6.18 Illustration
considering the covariance
function Q̃ jk(qz,q′z) of one
scattering process qz at the
interface j and another
scattering process q′z at the
interface k

K0 K0
Ks

Q̃ jk(qz,q
′
z) =

A(χ0 j+1 −χ0 j)(χ0k+1 −χ0k)∗

qz(q′z)∗
e−

1
2 [σ2

j q2
z +σ2

k (q′z)∗2]

×
∫

A
d(r‖ − r‖

′)eiq‖(r‖−r‖
′)
(

eqz(q′z)
∗Cjk(r‖−r‖

′) −1
)

. (6.49)

Here σ j and σk are the r.m.s. roughnesses of the corresponding interfaces deter-
mined by (6.31), Cjk are their inter-plane correlation functions. Restricting ourselves
on small roughness (σqz)2 � 1, we can make approximations similar to (6.45) us-
ing the Fourier transform of the correlation functions C̃ jk(Q‖) obtained in Sect. 6.4,
Eqs. (6.28) and (6.30).

The treatment of the corresponding expressions of the simpler DWBA for mul-
tilayers (p. 180) is straightforward. It neglects the influence of specular interface
reflection on the diffuse scattering. Only the primary scattering processes are taken
into account.

6.5.2 The Main Scattering Features of Non-Specular Reflection
by Rough Multilayers

Let us give an overview of the main features in the non-specular reflected intensities
and discuss their physical origin. The diffuse x-ray scattering (DXS) pattern is char-
acterised by the transmitted/reflected wave amplitudes Uj(±kz) of the incident and
final wave fields in the layers and by the 16 covariances of the scattering processes,
Q̃ jk(qz,q′z) for each pair of interfaces j,k. We want to study the features of the DXS
pattern under the aspect whether they are particularities of scattering by the rough-
ness profiles, caused by the correlation properties, or of the excited non-perturbed
wave amplitudes. In other words, we want to distinguish between effects of the ran-
dom disturbance potential and the non-perturbed potential. The latter effects do not
depend on the statistical roughness properties, we call them dynamical scattering
effects.

6.5.2.1 Resonant Diffuse Scattering

First we investigate the influence of the interface roughness correlation. One es-
sential characteristic caused by the inter-plane correlation is the so-called reso-
nant diffuse scattering (RDS). We simplify the discussion of this phenomenon by
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introducing a simpler model of vertical roughness correlation [26], where the inter-
plane correlation function Cjk depends on the in-plane correlation function Cll ,
l = max( j,k) of the lower interface, by

Cjk(r‖ − r‖
′) = Cll(r‖ − r‖

′)e−|Z j−Zk|/Λ⊥ . (6.50)

In this phenomenological model the vertical correlation of the roughness profiles
is limited by a vertical correlation lengthΛ⊥. The model does not explain the effects
of smoothening and roughening studied in Sect. 6.4, since it neglects the interdepen-
dence of the r.m.s. roughness and the lateral correlation length (6.30). However, it
makes the calculation and the discussion simpler. In Fig. 6.19 we see some cal-
culated reciprocal space maps of the diffusely scattered intensity for a GaAs/AlAs
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Fig. 6.19 Reciprocal space maps of the diffusely scattered intensity calculated for a [GaAs
(7 nm)/AlAs (15 nm)]10× multilayer using the DWBA method and the simpler replication model
(6.50) [18]. All the interfaces have the same r.m.s. roughness 1 nm, the correlation lengths 50 nm
and different vertical correlation lengths Λ⊥. Upper left panel: no replication, Λ⊥ = 0. Upper right
panel: full replication, Λ⊥ = ∞. Bottom left panel: Λ⊥ = 100 nm. Bottom right panel: full repli-
cation, Λ⊥ = ∞, calculated by the simpler DWBA. The full lines represent the arcs of the Ewald
spheres for the limiting cases of θin = 0 and θsc = 0. The RDS disappear, if the roughness profiles
are not replicated (upper left panel). Bragg-like resonance lines are visible in all maps calculated
by the full DWBA. They are not reproduced by the simpler DWBA (bottom right panel)
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superlattice assuming this vertical replication model. All the interfaces have the
same r.m.s. roughness σ = 1 nm, and the lateral correlation length Λ = 50 nm. It
shows the cases of no replication, partial replication and full replication. In the
first case all interfaces scatter independently, the diffuse intensities of all individual
interfaces superpose. The other two cases give rise to scattering with partial coher-
ence, the resonant diffuse scattering. It occurs due to the vertical replication of the
roughness profiles of different interfaces. The partial phase coherence of the waves
diffusely scattered from different interfaces leads to a concentration of the scat-
tered intensity in narrow sheets. These sheets of resonant diffuse scattering intersect
the specular rod in the multilayer Bragg peaks. Neglecting refraction the sheets
would be horizontally oriented with the centre fulfilling the one-dimensional Bragg
conditions

qz = k0 (sinθin + sinθsc) =
2π m
DML

, (6.51)
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Fig. 6.20 Measured reciprocal space maps (top). Left map: periodic multilayer [Si (3.0 nm)/Nb
(5.8 nm)] 10× starting from a rough Si substrate of σ = 0.46 nm and with interface roughness
decreasing towards the free surface [19]. Right map: periodic multilayer with the set-up corre-
sponding to that of Fig. 6.19 with interface roughness increasing towards the free surface [8]. Left
schema: the reciprocal space representation of diffuse scattering by a multilayer with interface
roughness replication. The essential features are (1) the multilayer truncation rod through the RLP
(000) with the multilayer satellite peaks and (2) horizontal sheets crossing the TR in the satellite
positions
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schematised in Fig. 6.20, which is the case in a kinematical treatment. Due to the
angle-dependent refraction of x-rays the sheets are curved forming “RDS bananas”
following the modified Bragg law

〈qz〉ML = k0

(√
sin2 θin + 〈χ0〉ML +

√
sin2 θsc + 〈χ0〉ML

)
=

2π m
DML

, (6.52)

where 〈χ0〉ML = ∑N
j=1 χ0 j/DML is the mean polarisability of the multilayer period

and 〈qz〉ML = qz
(
θin,θsc,〈χ0〉ML

)
the mean scattering vector in the medium. The

length of the RDS bananas in qx direction is inversely proportional to some effective
correlation length Λeff depending on the correlation length Λ j of the interfaces. If all
interfaces have the same correlation length, Λeff would equal Λ j. The widths of the
RDS bananas in qz direction represent the degree of replication. In the simple model
it depends inversely on Λ⊥ and for large Λ⊥ on the total thickness of the multilayer.
The sheets disappear if there is no vertical replication, Λ⊥ = 0, turning into a broad
vertical maximum similar to that for a single surface. The RDS bananas have no
dynamical nature, their existence is not related with any kind of multiple scattering.
They are also produced by the kinematical theory and the simpler DWBA.

RDS has been experimentally observed at amorphous, polycrystalline as well as
epitaxial multilayers as it is shown in Fig. 6.20. The RDS sheets are clearly visible,
bent is due to the refraction. Their existence and narrow vertical width give evidence
for full roughness replication in both samples.

6.5.2.2 Dynamical Scattering Effects

One typical dynamical feature is known from NSXR by rough surfaces. The so-
called Yoneda wings arise if the incident or the exit angle equals the critical angle,
θin/sc = θc. The wings are generated by the enhancement of the transmitted wave
amplitude at the inner sample surface, Fig. 6.17. In the case of a single-layer struc-
ture interference fringes can also be created due to the waveguide behaviour of the
two interfaces in the layer structure. In general, this behaviour can produce dynam-
ical fringes in ω-scans as well as in 2θ -scans.

In the case of periodic multilayers we call them Bragg-like resonance lines, since
the amplitudes of the reflected waves exhibit a maximum if the incident or exit wave
fulfils the refraction-corrected Bragg law

k0

√
sin2 θin/sc + 〈χ0〉 =

π min/sc

DML
, (6.53)

where min,msc are integers. It is easy to prove that the zero-order Bragg-like reso-
nances are identical with the Yoneda wings. The resonance lines have a particular
maximum, the so-called Bragg-like peak (BL), where the incident and exit waves
are simultaneously in Bragg condition and the Bragg-like resonances intersect, that
is at the positions
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Qz,minnsc =
√

(min2π/D)2 − k2
0 〈χ0〉+

√
(msc2π/D)2 − k2

0 〈χ0〉,

Q‖,minmsc =
√

k2
0 − (min2π/D)2 + k2

0 〈χ0〉+
√

k2
0 − (msc2π/D)2 + k2

0 〈χ0〉.
(6.54)

The existence of the Yoneda wings, dynamic fringes and Bragg-like peaks is of
completely dynamical origin. They occur independent of the actual interface cor-
relation function. However, their form and intensity are influenced by the interface
correlation.

In the case of vertically replicated roughness we see with (6.52), (6.53) and (6.54)
that all Bragg-like peaks of an even number min+msc are situated on RDS sheets,
Fig. 6.21. These Bragg-like peaks are very pronounced with respect to the others.
That can be interpreted by the concept of Umweganregung (excitation of a reflection
by another reflection), well known from x-ray diffraction and outlined in Fig. 6.22.

Fig. 6.21 The schema of
the positions of the Bragg-
like peaks (points) and the
RDS bananas (grey areas).
The numbers denote the
orders min and msc of the
Bragg-like peaks according to
(6.54). The dotted lines denote
the positions of the Yoneda
wings. The full lines are
Bragg-like resonance lines,
corresponding to min/sc = 4
and 5
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Fig. 6.22 Generation of Bragg-like peaks on the RDS sheets and interpretation by the concept
of Umweganregung. On the left side, both the incident and final non-perturbed states fulfil the
Bragg condition (6.53). Simultaneously all four diffuse scattering processes are in the situation
of resonant diffuse scattering (6.52). On the right side, the situation of RDS (6.52) is fulfilled for
the primary scattering process. The incident wave is out of Bragg condition, consequently also the
final state is out of Bragg condition. Additionally all three secondary diffuse scattering processes
are out of resonance
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In our experimental map of Fig. 6.20 the Yoneda wings and the Bragg-like res-
onances are well resolved. Along the RDS sheets we observe intense Bragg-like
peaks. All the features are reproduced by the calculation using the full DWBA treat-
ment for multilayers.

Not always it is possible and necessary to measure a full well-resolved map. In
general ω-scans at different qz and offset-scans or 2θ -scans are employed. Already
one offset-scan or 2θ -scan is sufficient to give evidence for vertical replication.

6.5.3 Stepped Surfaces and Interfaces

The model of islands of nearly uniform height discussed in Sect. 6.4.2 is the sim-
plest case for a discrete stepped n-level surface. An infinite number of levels exist
at a terraced surface, see Fig. 6.23, which is mostly the case of multilayers grown
on slightly miscut substrates [27–29]. The miscut angle α equals the mean ratio of
the step height 〈h〉 and the terrace widths 〈L〉: α = 〈h〉/〈L〉. The lateral correlation
properties of such a stepped surface are determined by the conditional probability
p(Δx,z) giving the probability of displacement z for two surface points with the dis-
tance Δx. The two-dimensional characteristic function χzz′ of such a stair-like sur-
face can be described based on the approach of stationary random processes [21].
Using (6.47) one can calculate the covariance function Q̃ and with (6.46) the differ-
ential scattering cross section for the diffuse scattering by the stair-like surface. In
[27] the gamma distribution of order M has been supposed for the distribution of the
terrace widths L

p(L) =
1

Γ (M)

(
M
〈L〉

)M

e
−ML

〈L〉 LM−1, (6.55)

with the dispersion of the distribution

σ2
L =

〈L〉2

M
. (6.56)
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Fig. 6.23 (left) Model of a step-like surface. (right) Illustration of the stair-like interface pattern in
the superlattice and the corresponding fine structure in the reciprocal space
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The terrace length was described by a similar distribution. The step height
between the terraces h was assumed to be normally distributed with the dis-
persion σh. For such a model the correlation function and the two-dimensional
characteristic function have been calculated [27] and implemented in the expres-
sions of the DWBA. The terrace size and its statistical distribution can be de-
termined by transversal scans in reciprocal space or by ω-scans. In Fig. 6.24
the DXS intensity has been calculated for a terraced surface of GaAs with a
slight miscut of 0.3◦. Between the Yoneda wings there occur maxima, which
are equidistant in reciprocal space and their distance is inversely proportional to
the mean terrace size. The positions of these maxima correspond to the grating
satellites of a mean surface grating with the lateral grating period DG. The DXS
peaks are broadened with increasing dispersion of the terrace lengths and the step
height.

Growing an epitaxial layer on a miscut substrate, the staircase profile can be
replicated from the substrate/layer interface to the sample surface. In a superlattice
on off-oriented substrates, the staircase profile can be replicated from interface to
interface [28, 29]. The direction of the replication may be inclined with respect to
the growth direction (see Fig. 6.23). For simplicity we suppose first laterally uniform
terrace lengths and perfect interface replication, giving the recursion formulae for
the layer size functions

Ω j(r) ≈Ω j−2(r +DSLẑ+D‖x̂) , (6.57)

where D‖ is the lateral shift of the stair-like pattern during the growth of one
superlattice period (here we assume a bilayer superlattice period). Such a two-
dimensionally periodic morphological superstructure creates a two-dimensional fine
structure, similar to later discussed multilayer surface gratings. In this case the
whole reflected intensity would be concentrated along so-called grating trunca-
tion rods perpendicular to the sample surface, representing the lateral periodicity.
Each truncation rod would contain the multilayer Bragg peaks due to the multilayer

Fig. 6.24 ω-Scans of a 3◦ miscut GaAs surface. (a) Calculation for different terrace sizes and (b)
for different dispersions of the terrace size [27]
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periodicity. An inclined replication direction of the interface profile creates inclined
branches of multilayer Bragg peaks. All are shown schematically in Fig. 6.23. In re-
ality there will be a rather partial interface replication, characterised by an effective
replication length Λ⊥. In the Gaussian roughness model (discussed in Sect. 6.5.1)
the vertical replication in the periodic multilayer caused horizontal bananas of res-
onant diffuse scattering, crossing the multilayer Bragg peaks in the specular scan.
In the present case of the lateral correlation of the interface steps similar horizontal
sheets appear. However, they are, in addition, horizontally structured by lateral DXS
maxima, which indicate the laterally and vertically correlated stair-like interfaces,
see Fig. 6.25.

As a result a two-dimensionally structured pattern of resonant diffuse scattering
is obtained with longitudinal DXS satellites due to the superlattice periodicity and
transversal DXS satellites

δqx ≈
2π
〈L〉av

, (6.58)

which represent the more or less periodic lateral morphological order of the inter-
faces. Both together form longitudinal stripes perpendicular to the mean sample sur-
face, which remind us of the grating truncation rods of multilayer surface gratings
(see Sect. 6.7). Considering the qz-dependence of the diffuse intensity one observes
that the envelope of the intensity follows with its maximum the direction of the
terrace orientation. However, the simultaneous existence of large terraces formed
by step bunching and atomic scale micro-terraces can modify the DXS pattern (see
Fig. 6.26) [27–29].

The investigation of step-like interface morphology by interface-sensitive diffrac-
tion methods is briefly discussed in Sect. 6.6.

Fig. 6.25 Calculated map for
a (7 nm GaAs/15 nm
AlAs)10× superlattice grown
on a 0.5◦ miscut GaAs
substrate. Averaged terrace
distance is 〈L〉=500 nm and
interface steps are fully
replicated at 40◦.
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Fig. 6.26 Measured ω-scan of a GaInAs/GaAs/GaAsP/GaAs multilayer (dots) and its fit by the
theory using a single type of steps (full), and two sets of the steps (dashed) [27]. The left-hand
figure shows a possible microscopic structure of terraces

6.5.4 Non-Coplanar NSXR

XRR in coplanar geometry is most common and simple to realise with conven-
tional diffractometers and reflectometers. The intensity distribution is resolved in
the qx/qz-plane which contains the surface normal. The region in the qx/qz-plane
accessible by coplanar reflection geometry is restricted by the Ewald spheres for the
limiting cases of grazing incidence and grazing exit, which represent the horizon
of the sample surface. Especially for small values of qz the measurable lateral mo-
mentum transfer decreases and consequently the information is cut about roughness
with small lateral dimensions of nanoscopic scale.

By the use of a non-coplanar scattering geometry this limitation has been over-
come [10, 30, 31]. The equipment requires monochromatic beam collimated in two
directions, which can be provided by synchrotron radiation sources. First experi-
ments used the set-up of a small angle scattering instrument with a well-collimated
beam and a two-dimensional position-sensitive detector. Other set-ups are based on
surface diffraction instruments, working usually in a strongly non-coplanar (graz-
ing incidence diffraction) geometry, see Fig. 6.27. The detection of the diffusely
scattered intensity up to a parallel momentum transfer of 1 Å−1 enables to study
the correlation properties up to a few Å. The diffusely scattered intensity is usu-
ally drawn in a double logarithmic scale. Fitting the asymptotic intensity decay with
increasing Q‖ by a power law, the Hurst factor introduced in Sect. 6.5.1 can be deter-
mined with good precision, wherefrom one can conclude on the validity of different
growth models.

Figure 6.28(a) shows measured θsc-scans of an amorphous W/Si superlattice for
different q‖. They cross the RDS sheets indicated by roman numbers. For increasing
q‖ the width of the RDS sheets increases and finally the resonant diffuse scattering
disappears, indicating a reduction of the vertical replication length L for the higher
frequencies of the roughness profile. In Fig. 6.28(b), the decrease of the intensity of
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Fig. 6.27 Schema of
non-coplanar x-ray
reflectivity set-up [30]
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Fig. 6.28 Measurement of non-specular x-ray reflectivity of an amorphous W/Si superlattice.
(a) θsc-Scans for different q‖ [10]. Intersections with the RDS sheets are indicated by roman num-
bers. (b) Intensity profile of the first RDS sheet [30]

the first RDS sheet is plotted. The measurements prove the validity of a logarithmic
scaling behaviour as predicted by the Edward–Wilkinson equation [32].

6.6 Interface Roughness in Surface-Sensitive
Diffraction Methods

In the case of epitaxial multilayers, surface and interface roughness can also be
studied by surface-sensitive x-ray diffraction methods such as grazing incidence
diffraction (GID) and strongly asymmetric x-ray diffraction (SAXRD). Besides re-
flection at the interfaces there occurs diffraction by the layer lattices. The principles
of diffraction by rough multilayers are similar to those described in more detail for
x-ray reflection. All used theoretical treatments can be extended.

The polarisability of each layer can be developed in a Fourier series after its
reciprocal lattice vectors



6 X-Ray Reflectivity by Rough Multilayers 267

χ layer
j (r) =∑

g
χ̃g, j(r)e−igr . (6.59)

Measuring the intensity pattern of a Bragg reflection with the reciprocal lattice
vector h in a conventional diffraction geometry (so-called two-beam case) only the
Fourier components with the indices h, −h and 0 are of importance.

Crystal truncation rods through each reciprocal lattice point characterise the
structure amplitude of a crystalline layer. All truncation rods of a periodic multi-
layer contain the fine structure of equidistant superlattice satellites similar to the
schema in Fig. 6.20.

The non-perturbed wave field of diffraction by a planar epitaxial multilayer under
conditions of grazing incidence consists in each plane layer of eight plane waves for
each polarisation

Epl
j (r) =

4

∑
n=1

[
T n

j e−ik0‖r‖e−ikn
0z, j(z−Z j) +Rn

j e−ikh‖r‖e−ikn
hz, j(z−Z j)

]
Ω pl

j (z) (6.60)

with the rough interface shape function Ω pl
j (z) = H(z− [Z j + z j])−H(z−Z j). For

superlattices with rough interfaces the layer disturbance includes the variation of the
Fourier components of the polarisability and the lattice displacement Δu(r) due to
the lattice deformation created by the interface roughness profile. In layer j,

ΔχBlayer
j (r) = ∑

g=0,−h,h

Δχg, j(r)e−igr with (6.61)

Δχg, j(r) =
[
χg, j

(
eigΔu(r) −1

)
+Δχg, j eigΔu(r)

]
eigu0(z)Ω pl

j (z) .

Similar to x-ray reflection by the rough interfaces the disturbances give rise to
diffuse scattering. The number of possible diffuse scattering processes between two
non-perturbed states at one interface, see (4.D23), increases up to 64. Fortunately a
certain number of them is almost negligible. If the roughness profile is replicated,
the diffusely scattered intensity is concentrated in horizontal sheets of resonant dif-
fuse scattering crossing the crystal truncation rods in the position of the diffraction
satellites. Their origin arises now from partially coherent diffraction and reflection
by the interface disturbances. For weak strain the covariance functions are formally
quite similar to (6.49) found for x-ray reflection

Q̃mnop
jk =

AΔχg, j(Δχg′,k)∗

δqmn
z, j (δqop

z,k)
∗

∫
s
d(r‖ − r‖

′)eiq‖(r‖−r‖
′) (6.62)

×
[
χz j ,zk(δqmn

z, j ,(δqop
z,k)

∗)−χz j(δqmn
z, j )χzk((δqop

z,k)
∗)
]

,

however now with the reduced scattering vectors of the corresponding scattering
process in the layers, which depend on the local reciprocal lattice vectors in the
layers by δqz, j = qz, j −gz, j.
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Fig. 6.29 Diffuse x-ray scattering by rough interfaces in the strongly asymmetric diffraction mode.
Left: schematic situation in reciprocal space. Right: reciprocal space map of (113) diffraction of a
GaAs/AlAs superlattice for λ = 1.47 Å. The coherent crystal truncation rod (CTR) is crossed by
horizontal RDS sheets, indicating correlated roughness. The sheets are laterally not limited by the
experimental geometry

In Fig. 6.29 the scattering geometry in reciprocal space and the corresponding
experimental results of strongly asymmetric diffraction by a GaAs/AlAs superlat-
tice are shown. The measured sheets of resonant diffuse scattering (RDS) of the
diffraction mode are clearly visible. It is an advantage of the AXRD measurements
that the RDS sheets are not limited by the sample horizon, in contrast to coplanar
XRR. So the full range of momentum transfer can be detected in a coplanar scatter-
ing geometry.

The application of x-ray diffraction methods is limited on epitaxial structures.
On the other hand, x-ray reflection experiments are less successful for many semi-
conductor systems due to the missing contrast in the electron density modulation.
Thus the choice of suitable Bragg reflections allows increasing the contrast between
the layers in the diffraction mode.

GID, a non-coplanar surface-sensitive diffraction method, was successfully ap-
plied for the measurement of RDS by rough multilayers in [12].

Beside Gaussian roughness correlation behaviour, the step-like interface mor-
phology was also investigated by various diffraction methods. In Fig. 6.30 we
show the measured 200-reciprocal space map of a GaInAs/GaAs/GaAsP/GaAs-
superlattice on a 2◦ off-oriented GaAs substrate, measured by grazing incidence
diffraction. This reflection is highly sensitive for the morphological ordering, since
the scattering contrast of the corresponding Fourier components of the susceptibility
is much larger than that in the above-discussed reflection mode. Similar to Figs. 6.23
and 6.25, the diffuse scattering is concentrated in stripes, resonant diffuse scattering
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Fig. 6.30 Diffuse x-ray
scattering by stepped
interfaces in the grazing
incidence diffraction mode.
Reciprocal space map of
(02̄0) diffraction of a GaInAs/
GaAs/GaAsP/GaAs
multilayer on a 2◦
off-oriented [001]-substrate.
The axes are normalised in
crystallographic units (HKL)

along so-called grating truncation rods, which are perpendicular to the averaged
surface. The grating rods are therefore inclined with respect to the crystallographic
orientation, which is simultaneously the orientation of the terraces. Each grating rod
contains multilayer Bragg peaks. The Bragg peaks of the same vertical order but of
different grating rods form branches which are inclined with respect to the sample
surface according to the inclination of the morphological interface replication via
the surface normal. The envelope maximum of the diffuse scattering follows the
001-direction, which is the orientation of the terraces.

6.7 X-Ray Reflection from Multilayer Gratings

In this section we discuss the calculation of the x-ray reflection from multilayer
gratings (MLGs), Fig. 6.31. Gratings are etched into planar multilayers so that their
lateral structure is formed by wires distributed equidistantly with period d along
the surface. We focus the present study mainly on the short-period gratings with
the periodicity at about micrometers, which are of most interest in semiconductor
physics.

The part etched out (dips between wires) can be several hundred nanometers
deep. Thus these structures can be considered as a special case of huge deterministic
roughness or as an artificial lateral one-dimensional crystals contrary to the crystals

Fig. 6.31 A sketch of a
multilayer grating with a fan
consisting of four
diffracted–reflected waves

d
da db
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periodic in all three directions. Thus the reflectivity from gratings can be treated
by approximate as well as rigorous methods [19, 33–39], thus making possible to
treat and compare the adequateness of various approximations. In this section, we
formulate the approximate perturbative treatment by the kinematical theory and by
DWBA and compare them to the exact dynamical calculation. We determine the
region of validity of DWBA and we show that the correct choice of the eigenstates
can lead to good results even when the perturbed potential is present in the most
volume of the sample, contrary to the small roughness of interfaces.

6.7.1 Theoretical Treatments

MLG possesses the translation symmetry so that it is fully sufficient to determine
its susceptibility χ(r) in one period

(
− d

2 ≤ x ≤ d
2

)
only. Therefore we first describe

it for any of the layer j. The period consists of two parts (wires) namely a j and
b j (for the case of an etched grating, one of the parts is the air). We denote their
susceptibilities χa

j ,χb
j and their widths da

j = Γj d, db
j = (1−Γj)d with 0 ≤ Γj ≤ 1.

We introduce the shape function Ω a1
j (r) of the material a j in the period. It equals

unity inside the volume occupied by the material a j and it is zero elsewhere, see
Fig. 6.32. Then the susceptibility of one period is

χ1
j (r) = χa

j Ω a1
j (x,z)+χb

j

(
1−Ω a1

j (x,z)
)

. (6.63)

By Ω̃ a1,h
j (qz) we denote the two-dimensional Fourier transform of the shape

function of one period.
Because of the presence of two types of interfaces, horizontal and vertical ones,

different theories treat the respective reflectivities using different approximations.
Further, we mean by the single-scattering approaches those related to the lateral
diffraction case. We treat separately the perturbative (single-scattering) and rigorous
dynamical (multiple-scattering) theories.

Fig. 6.32 Notation of the
variables describing a laterally
structured layer

d

zj

tj

db
j = (1 − Γj)dda

j = Γjd

Ωa
j = 1

aj bj
zj+1

Ωa
j = 0

6.7.1.1 Perturbative Treatments

MLG is periodic along the axis x̂ with the lateral periodicity d, Fig. 6.31. Then the
scattering potential V (r) of the sample, as defined in Sect. 6.2, can be given as a
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convolution of the scattering potential of one period V 1(r) (defined in the interval
− d

2 ≤ x ≤ d
2 ) with a periodic arrangement of δ -functions

V (r) = V 1(r)⊗∑
n
δ (x−nd) . (6.64)

Its Fourier transform is a product of two terms (A denotes the sample area)

Ṽ (q) =
∫

drV (r)eiqr =
A
d

Ṽ 1(qx,qz) · ∑
h= 2π

d m

δqx,h δqy,0 . (6.65)

The second (summation) term expresses the reciprocal lattice of the grating,
which are grating truncation rods (GTRs) in Qz direction positioned equidistantly
along the axis qx at points qx = hm = 2π

d m, where m is an integer (see Fig. 6.33).
The first term Ṽ 1 is the Fourier transform of the potential in one period, behaving
like an envelop function for the wave fields associated with the GTRs.

In a multilayer grating, the potential of one period V 1(r) is the sum of the po-
tentials of individual layers V 1

j (r), and similarly for their two-dimensional Fourier
transforms Ṽ 1

j (h,qz). The latter separates into the zeroth component proportional
to the laterally averaged susceptibility and the discrete Fourier components propor-
tional to the susceptibility contrast

Ṽ 1
j (h,qz) =

{
−K2 d

∫
dzχ0 j(z)eiqzz for h = 0 ,

−K2 (χa
j −χb

j )Ω̃
a1,h
j (qz) for h �= 0 .

(6.66)

Now we will consider the scattering from the sample we characterised generally
above. We first determine the directions Kh of scattered waves. We use the principles
for the Ewald construction, discussed in Appendix 6.A, which state that the wave
vector end-points lay at the intersection of the sample reciprocal lattice and the
Ewald sphere of the incident wave. Thus the incident wave is scattered into the
fan of reflected and transmitted waves associated with each GTR, see Figs. 6.31
and 6.35.

Qx

Kh

Qx

h

Qx

)c()b()a( Qz QzQz

OOO

Fig. 6.33 Schematical drawing of the reciprocal space maxima of a laterally periodic grating
etched into a periodic multilayer. The “Bragg” sheets are parallel to the qx axis in the kinematical
treatment (a), whereas they are curved and shifted upwards in the DWBA (b) and dynamical (c)
calculations due to refraction. In addition, subfigure (c) illustrates the multiple-scattering interac-
tion among wave fields of the simultaneously excited GTRs which is taken into account within the
dynamical theory



272 T. Baumbach and P. Mikulı́k

Further, we calculate the reflection amplitudes. Scattering potential of MLG is
deterministic and thus the reflection amplitude of all GTRs comes from the coherent
scattering only (even though into non-specular directions). It is expressed similar
to the coherent specular reflection amplitude of rough MLs calculated by DWBA.
Using the formalism from Appendix 4.D, the amplitude at the sample surface is
Rh(Kh) = T0h/2iKhzA. The scattering matrix element T0h = 〈Eh|V (r)|E0〉 can be
decomposed into the sum over the individual layer contributions τh

j . The sample

reflectivity along GTR h is finally |Rh|2 Khz/Kz.
The reflection amplitude then depends on the approximation used in the eval-

uation of the scattering matrix element. We discuss briefly the calculation by the
kinematical theory and by the first-order DWBA applying the approach of Sects.
4.D.2 and 4.D.3, respectively.

6.7.1.2 Kinematical Calculation

Kinematical theory is equivalent to the first Born approximation [36, 37], thus cal-
culating the scattering process as the single-scattering transition of the incident vac-
uum plane wave |E0〉 = e−iK0r into the diffracted vacuum plane wave |Eh〉 = e−iKhr,
see Fig. 6.35(a). The scattering matrix element for one period and one layer is pro-
portional to the Fourier transform of the layer potential in one period (with the
scattering vector Qh = Kh −K0)

τh
j = 〈e−iKhr|V 1

j (r)|e−iK0r〉 = Ṽ 1
j (h,Qhz). (6.67)

According to (6.66), we can see that the Fourier transform for h=0 is deter-
mined by the profile of laterally averaged susceptibility. Thus the specular reflec-
tivity profile coincides with a kinematical reflection from laterally averaged planar
multilayer and the specular reflectivity curve exhibits the same features as those cal-
culated in the framework of the kinematical theory and the stationary phase method
(SPM) [19, 39]. (SPM helps to avoid the Fraunhofer approximation which is not
suitable for laterally extended samples).

Considering the intensity of the non-specular truncation rods (h�=0), the scatter-
ing matrix contribution is

τh
j = −k2

0(χa
j −χb

j ) · Ω̃
a1,h
j (Qhz) . (6.68)

By calculating the kinematical scattering integral by the stationary phase method
we generalise the kinematical Fresnel reflection coefficient for lateral diffraction
case

rh,kin
j, j+1 =

k2
0

(
χ̃h

j − χ̃h
j+1

)

2KhzQhz
. (6.69)

For specular reflection it perfectly coincides with the kinematical Fresnel reflec-
tion coefficient for planar multilayers r0,kin

j, j+1 = k2
0

(
χ0, j−χ0, j+1

)
/Q2

z , cf. (3.103), as
we said above.
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As all the kinematical theories, also in the present case the effects of absorption
and refraction are not comprised. Thus the kinematical intensity is much larger than
unity below the critical angle and it diverges for the specular scan at the origin
of the reciprocal space. Further, the kinematical period of oscillations of an MLG
converges slowly to that calculated by a theory including the refraction.

Let us figure out the positions of maxima of a periodic multilayer grating using a
reciprocal space schema, Fig. 6.33. They lay on the intersections of the grating trun-
cation rods (reciprocal lattice of the grating represents the lateral periodicity) and
the sheets passing through the ML maxima on the specular truncation rod (which
represents the vertical periodicity).

6.7.1.3 Calculation by DWBA

MLG potential V (r) into two parts, see Fig. 6.34. We choose the ideal (unperturbed)
potential V A(r) as that of a planar laterally averaged multilayer and thus calculate
the eigenstates |EA

K〉, see (4.D19), according to (3.59). For the simplicity of further
treatment we restrict ourselves to the rectangular gratings only [40]. From (6.65)
and (6.66) it follows that the ideal potential V A

j is constant in each etched layer,
V A

j (r) = Ṽ 1
j (0,0)/dt j, while the perturbed potential V B(r) = V (r)−V A(r) is the

sum of non-zero Fourier components, V B
j (r) = ∑h �=0 Ṽ 1

j (h,0)eihx/dt j.
Consequently the scattering element of the perturbed potential does not intervene

into the specular term

τh=0
j = 〈EA

0 |V A
j |E0〉+ 〈EA

0 |V B
j |EA

0 〉 . (6.70)

The specular reflection amplitude from the whole MLG then equals the (dy-
namically) calculated reflection from the laterally averaged multilayer. From this it
clearly follows that this DWBA considers multiple scattering between the horizontal
interfaces of averaged layers by using the dynamical Fresnel reflection coefficients,
but neglects the influence of multiple scattering by the vertical side walls.

The amplitude of the wave scattered into a non-specular GTR h �= 0 is

τh
j = 〈EA

h |V B
j |EA

0 〉 . (6.71)

The contribution of each laterally structured layer consists of four terms

τh
j = −K2

(
Tkh, j S

11
j Tk0, j +Tkh, j S

12
j Rk0, j +Rkh, j S

21
j Tk0, j +Rkh, j S

22
j Rk0, j

)
, (6.72)

Fig. 6.34 Splitting of the
MLG potential V(r) into an
ideal and perturbed part

source

VA(r) VB(r)V(r)

detector

= +

We follow the basis of the DWBA as treated for the roughness and we split the
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Fig. 6.35 Single-scattering approaches, i.e. kinematical (a) and DWBA (b), calculate the diffracted
field as a single-scattering process from GTR 0 to a GTR h, while the multiple-scattering ap-
proaches (c) take the contributions from all the GTRs into account

where the amplitudes Tk j , Rk j are equal to Uj(±kz, j) in (3.60) and the layer struc-

ture factor (4.D13) is Smn
j = S j(qmn

j ) =
(
χa

j − χb
j

)
Ω̃ a1

qmn
x, j

(−qmn
z, j ). The four scattering

wave vectors q11
j , . . . ,q22

j are defined as in the case of diffuse scattering, see (4.D23)
and Fig. 6.40. We draw them in the reciprocal space schema in Fig. 6.35(b) while
demonstrating there the single-scattering character of the diffraction from the inci-
dent to the diffracted wave fields.

Because the eigenstates of the ideal potential are calculated using the usual dy-
namical matrix formalism for specular reflectivity from a planar multilayer, thus the
effects of absorption and refraction are taken into account. Then the maxima of a
periodic multilayer grating, Fig. 6.33(b), lay on the intersection of the truncation
rods and the refraction-curved sheets passing through the maxima on the specular
truncation rod.

6.7.1.4 Multiple-Scattering Treatment by the Dynamical Theory

The dynamical theory treats the reflection from a multilayer grating by rigorously
solving the wave equation under the condition of a one-dimensional periodicity

χ(r) = χ0(z)+∑
h

χ̃h(z)e−ihx . (6.73)

There are miscellaneous approaches found in the literature, reviewed, e.g. in [19,
39]. Their formulation comes from the optics of visible light [33], while they have
been applied in XRR only for surface gratings [38] using integral Rayleigh–Maystre
formulae. XRR from multilayered gratings is studied deeply in [19, 39] using matrix
modal method. Dynamical theory takes into account the multiple scattering among
the wave fields (each consisting of pair of a transmitted and reflected wave), which
are associated with all truncation rods, including the real as well as evanescent GTRs
as shown in Fig. 6.35(c).

Using a convenient matrix formalism similar to that for planar multilayers, the
generalisation of the Fresnel coefficients for lateral diffraction case, compare (3.80)
and (3.82), has been found [19, 39]
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rhg
j, j+1 =

kh
z, j − kg

z, j+1

kh
z, j + kg

z, j+1

and thg
j, j+1 =

2kh
z, j

kh
z, j+1 + kg

z, j+1

. (6.74)

Here, the indices h and g relate the transmission and reflection processes to si-
multaneous diffraction between wave fields of two GTRs h and g. Wave vectors
kh of scattered waves do not point to a spherical Ewald sphere, but to a so-called
dispersion surface like in dynamical theory of x-ray diffraction.

In the dynamical theory the energy is conserved. Therefore a strong wave field
corresponding to a certain GTR can influence significantly the intensity profile of
another GTR. This may be the case, for instance, in the angular region where the
wave field of the first GTR changes from evanescent to real (near the intersection
of the Ewald sphere with the GTR +1, see Fig. 6.33(c)). There the specular inten-
sity can be enhanced with respect to the specular intensity of an averaged planar
multilayer.

6.7.2 Discussion

For the following discussion we will consider short period rectangular gratings (pe-
riod around 1μm) and the wavelength at about 1 Å. Since we already mentioned
that the kinematical theory does not involve the refraction, which is of crucial im-
portance in XRR, we will further devote our discussion to the comparison of DWBA
to the dynamical theory. We choose the ratio Γ of the wire width with respect to the
period one half. Then we can find truncation rods of three types:

Specular truncation rod (h = 0). Here, the DWBA and dynamical theory give the
same profiles, except for the known angular region of the enhanced interaction with
GTR +1 as discussed earlier.

Weak, kinematically forbidden truncation rods (h is even). The associated Fourier
coefficients are zero, and therefore single-scattering theories, including the
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Fig. 6.36 Calculation of the odd-order GTRs for a GaAs surface grating (thickness 300 nm) for
period of (a) 0.8μm and (b) 5μm for wavelength 1.54 Å. In the former case, DWBA gives the
same results as the dynamical theory. In the latter case the multiple scattering starts to be important
and DWBA of the first order gives only approximative result
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kinematical one and DWBA, predict zero intensity for them. Thus these GTRs are
excited by multiple scattering in the etched layers and consequently their profiles
can be calculated by the dynamical theory or by higher order DWBA.

Strong truncation rods (h is odd). Here, both DWBA and dynamical theory co-
incide, see Fig. 6.36(a). The good coincidence depends on the force of the dynami-
cal interaction between diffracted wave fields. There are more GTRs excited in the
Ewald sphere of the incident wave for large periods or small wavelengths, thus the
dynamical effects will be enhanced and DWBA starts to be only approximative, see
Fig. 6.36(b). We found possible to formulate a condition separating the two cases
using a two-beam approximation of the dynamical theory [19].
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Fig. 6.37 (a), (b) Measurement and fit of GTRs –1, 0 and +2 from a [W (1.5 nm)/Si (6.23 nm)]10×
multilayer grating (lateral period 780 nm, wire width to period ratio 0.7) [41]. The measured recip-
rocal space map (c) shows the coherent intensity scattered into GTRs and the diffuse (incoherent)
intensity concentrated in sheets of resonant diffuse scattering, which indicates vertically correlated
roughness
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6.7.3 Reflectivity from Rough Multilayer Gratings

The influence of interface roughness on grating reflectivity can be studied within
all three theoretical treatments discussed earlier. Within the matrix approach of the
dynamical theory [19, 39], the generalised Fresnel coefficients (6.74) corrected for
roughness were found formally similar to those for rough planar multilayers (6.24)

rhg
j, j+1 = rhg,flat

j, j+1 e−2kh
z, jk

g
z, j+1σ

2
j+1 and thg

j, j+1 = thg,flat
j, j+1 e(kh

z, j−kg
z, j+1)2σ2

j+1/2 . (6.75)

Roughness in gratings decreases the scattered intensity for the incidence angles
even below the critical angle. Furthermore, there is different sensitivity to the sur-
face and interface roughnesses for weak and strong GTRs, respectively. Finally
we can notice that the kinematical reflection coefficients (6.69) are attenuated by

e−Q2
hzσ

2
j+1/2 similar to (3.116).

In Fig. 6.37 we show XRR results of a periodic W/Si multilayer grating. Struc-
tural parameters (lateral periodicity and wires width, layer thicknesses and interface
roughnesses) of the sample were obtained by fitting the measured GTR profiles em-
ploying the dynamical theory for rough gratings.

Finally, the calculation (by DWBA) of the diffuse scattering from MLGs, such as
simulation of the map in Fig. 6.37(c), is even more tricky procedure which requires
the preliminary calculation of the eigenstates either using the DWBA for perfect
MLG or the dynamical theory.
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6.A Appendix: Reciprocal Space Constructions for Reflectivity

In some of the previous chapters in the book, the reciprocal space representation
was used for drawing the experimental scattering geometry: experimental scans
and inaccessible regions for coplanar reflectivity (Figs. 6.4 and 6.5). In addition,
throughout this chapter we use the reciprocal space to describe graphically the scat-
tering events of x-ray reflection. Since this approach may not be common to the
reader who is not accustomed to that representation, we give here some schematic
interpretations of the reflection by multilayers in reciprocal space, which help in
finding the intuition for an easy understanding of the scattering features in a simple
geometrical way. We start by the interpretation of fundamental laws of reflection
and refraction at interfaces. We relate the reflection curves of thin films and peri-
odic multilayers to their particular reciprocal space features and discuss multiple
scattering as it is considered within the treatment by a DWBA.
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The idea to represent x-ray scattering by reciprocal space constructions has
been introduced by P.P. Ewald in the early stage of the dynamical theory of x-ray
diffraction. The goal is to relate the directions of the scattered waves and the sym-
metry of the sample represented by the Fourier transform of the crystal lattice and/or
the shape function of the scatterers. Ewald (reciprocal space) construction visualises
two basic physical principles:

1. Energy conservation. X-ray reflection is an elastic scattering process, conserving
the wave vector length. Then the end-points of all scattered waves can lay only
on the Ewald sphere of the radius of the wave vector length, Fig. 6.38(a).

2. Momentum conservation except of a reciprocal lattice vector if the diffraction
condition is fulfilled. This reflects the symmetry properties of the sample.

In this book we use Ewald construction for the illustration of the reflection by
layers and multilayers, including the wave vectors in the vacuum and medium.

6.A.1 Reflection from Planar Surfaces and Interfaces

Let us discuss the reflection and refraction laws in reciprocal space, Fig. 6.38, by
using Ewald construction. The wave propagation in the vacuum and media is de-
termined by the different lengths of the wave vectors. In case of a homogeneous
half-space of a slightly absorbing medium with a flat surface or planar layers with
smooth interfaces their reciprocal space structure is defined by a so-called trunca-
tion rod passing through the origin and normal to the surface (i.e. it usually coincides
with the axis qz). We call the truncation rod through the origin of the reciprocal
space here as specular rod, since it defines the conditions for specular reflection.
It intersects the vacuum Ewald sphere εvac of the incident wave k0 in two points,
which pin down the wave vectors of the reflected wave kr and the transmitted wave
in the vacuum, see subfigure (a). Therefrom we obtain the law of reflection—the re-
flected wave makes the same angle with the surface as the incident one. The Ewald
construction with the specular rod represents the symmetry of the sample and the
scattering process, which permits a momentum transfer only along the qz direction
(along the surface normal).

Inside a layer j of a multilayer (or in a substrate) the wave vectors are determined

1. by the dispersion relation k j = n jk0 giving the radius of the Ewald sphere within
the medium ε j,

2. by the continuity of the lateral wave vector components at the interface.

These two conditions lead to the Snell’s law (also refraction law) for the trans-
mitted wave as outlined in subfigures (b), (c) and (d). The tie points Tj and R j of
the transmitted and reflected waves in the layer j, respectively, are located at the
intersections of the specular rod and the “inner” Ewald sphere ε j. For x-rays n < 1
(χ < 0), thus three distinct cases may happen in each layer. Case (b) marks the re-
fraction law above the critical angle: two waves, reflected kr j and transmitted kt j,
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Fig. 6.38 Graphical representation of the laws of reflection and refraction by an interface by means
of the Ewald construction. (a) The law of reflection, (b)–(d) Snell’s law: (b) above, (c) at and
(d) below the critical angle. Below the critical angle the lateral component of k is larger than the
radius of the Ewald sphere of the medium j, thus it has purely imaginary kz component (neglecting
absorption) and the wave is called evanescent

propagate in the layer. Case (c) visualises the situation at the critical angle for total
external reflection in the layer. There is one tie point Tc j only and the wave in the
layer propagates parallel to the interface, k j = k‖. Case (d) interprets the genera-
tion of the evanescent wave in the layer, propagating parallel to the interface and
exponentially damped perpendicular to it.

According to the Fresnel formulae, see (3.80) and (3.82), the reflected and trans-
mitted wave amplitudes depend exclusively on the complex wave vectors of the
media bordering the interface.



280 T. Baumbach and P. Mikulı́k

6.A.2 Periodic Multilayer

Reciprocal lattice of a periodic multilayer, Fig. 6.39(a), is a set of points positioned
equidistantly along the qz axis, subfigure (c). Thus the “super-periodicity” in real
space causes a periodic fine structure along the specular rod, and we find so-called
multilayer Bragg peaks on the specular reflectivity curve, see Fig. 6.11, for instance.

Following from Fig. 6.38, the refraction in the layers causes a shift of the actual
multilayer Bragg peaks with respect to the position of the reciprocal lattice points.
This is shown by the comparison between the kinematical the dynamical reflection
curve of a smooth multilayer in Fig. 6.10. The position of the kinematical Bragg
peaks coincides exactly with the reciprocal lattice points.

The finite total multilayer thickness gives rise to additional side maxima, so-
called Kiessig fringes between the multilayer Bragg peaks (not shown in the figure).
There are p−2 maxima in between two Bragg peaks for a flat multilayer with p
periods.

Reciprocal lattice of a laterally periodic multilayer grating etched into a planar
periodic multilayer is shown in Fig. 6.33. The lateral periodicity gives rise to a
grating rod pattern. The grating rods are equidistantly positioned along the direction
of patterning with the specular rod in the centre.

QZ

Q
II

z

DSL

2 DSL

000

(a) (b) (c)

Fig. 6.39 Schematic set-up of a periodic multilayer: (a) in real space, (b) the polarisability profile,
and (c) in reciprocal space

6.A.3 Reciprocal Space Representation of DWBA

The formulae for the calculation of the first-order DWBA have been derived in
Chap. 4. Here, we show the graphical representation of the corresponding scatter-
ing events. Each of the two eigenstates of the unperturbed potential V A consists of
a transmitted and reflected wave T = U(+kz), R = U(−kz). The four wave vector
transfers q11, . . . , q22 defined by (4.D23) and corresponding to (ksc‖ − kin‖,±ksc,z

±kin,z) in (4.47), (4.56) or (6.48) are represented in the reciprocal space by the four
intervening scattering processes. They are schematically drawn in Fig. 6.40. We
call the first (transmission–transmission) term the primary scattering process q11

j ,
since it is directly excited by the incident wave and it corresponds to the measured
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scattering vector in vacuum q = ksc −kin. The other three terms are secondary scat-
tering processes. They are of purely dynamical nature, called Umweganregung (de-
tour or non-direct excitation), which occurs exclusively due to multiple scattering
(direct or non-direct excitations).

The division of the perturbed potential V B into the layer disturbances V B
j allowed

to represent the scattering in terms of structure factors S j, Eq. (4.D13), an advantage
usually reserved for the kinematical theory. The contribution of one scattering pro-
cess in a single layer to the amplitude reflected by the whole sample depends on the
structure factor of the layer disturbance and on the amplitudes of the participating
waves.

Reciprocal space representation of the scattering processes in the Born ap-
proximation, DWBA and dynamical theory for reflection by gratings is shown in
Fig. 6.35.
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Fig. 6.40 Schematic representation of the four x-ray reflection processes in real space (left) and
in the reciprocal space (right) of the first-order DWBA. The full circles denote the dynamical
reflection and transmission in the ideal multilayer, open circles indicate the diffuse scattering due to
the interface roughness. The process with the indices 11 is the primary scattering process, described
also by the kinematical approximation. The other three are processes of Umweganregung
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14. Baumbach, G.T., Holý, V., Pietsch, U., Gailhanou, M.: Physica B 198, 249, (1994) 236
15. Spiller, E., Stearns, D., Krumrey, M.: J. Appl. Phys. 74, 107 (1993) 239, 248
16. Croce, P., Névot, L.: Revue Phys. Appl. 11, 113 (1976) 244
17. Névot, L., Croce, P.: Revue Phys. Appl. 15, 761 (1980) 244
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Chapter 7
Grazing Incidence Small-Angle X-Ray
Scattering from Nanostructures

R. Lazzari

7.1 Introduction

Since its first use in the late 1930s, bulk small-angle scattering of X-rays or neutrons
[1, 2] has become a well-established technique to probe density inhomogeneities at
length scales greater than the interatomic distances. This tool is particularly used
in the soft condensed matter community where brittleness of the sample made of
organic molecules such as polymers or liquid crystals hampers the use of elec-
tron microscopy techniques. However, for a long time, its extension to the study
of surfaces or interfaces suffered from the lack of surface sensitivity in transmis-
sion geometry as the signal is directly proportional to the scattering volume. More
dramatically, the surface signal may be reduced to an unmeasurable quantity ow-
ing to (i) the small cross section for surface scattering, (ii) photoelectric absorption
by the substrate and (iii) bulk scattering from defects. All these problems can be
overcome by using the grazing incidence geometry rather than the transmission one
and by taking advantage of the brilliance and coherence of synchrotron radiation.
By selecting an incidence angle on the sample surface close and even below the
angle of total external reflection of X-rays (see Sect. 3.1.1), the wavefield penetra-
tion depth is considerably decreased down to a few nanometers thus enhancing the
surface or subsurface signal compared to the volume one. Any discontinuity in the
local electronic density (surface roughness, islands, inclusions, particles, clusters,
etc.) scatters either the transmitted or the reflected beam. For incidence below the
angle of total external reflection, the evanescent refracted wave is confined to the top
layer and provides a considerable enhancement of surface sensitivity. Owing to the
involved distances of the nanometer order, the grazing incidence small-angle X-ray
scattering (GISAXS) is collected close to the origin of the reciprocal space around
the specularly reflected beam at small angles.

For morphological studies, GISAXS offers practical advantages over conven-
tional microscopies:
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• As a non-invasive technique, the beam-induced damage and complex sample
preparations are avoided at variance to transmission electron microscopy (TEM)

• By varying the angle of incidence, depth sensitivity from surface to buried inter-
faces up to a few hundreds of nanometers can be achieved contrary to near-field
microscopies

• The statistical average over the illuminated surface is intrinsic to X-rays, thus
giving a picture of the mean scattering particle that is, in other respects, charac-
terized by many ensemble measurements

• The use of photons does not suffer from charge build-up for insulating samples
• With synchrotron radiation, multi-wavelength measurements close to an absorp-

tion edge allow to enhance the signal coming from a specific element through the
anomalous component of its atomic form factor (see Sect. 1.4.6)

• The technique can be used in situ to monitor time-dependent phenomena (at
roughly the second time scale) in various environments from ultra-high vacuum
to gas or vapor atmospheres.

To weight up the pro and the cons, the main technique drawbacks are

• The flatness and low roughness of the sample are prerequisite for valuable mea-
surements

• The preferable use of synchrotron radiation to have reasonable counting time
• Like for all scattering techniques, extracting morphological parameters implies

data analysis in reciprocal space with an account of dynamical effects.

The first GISAXS experiments were carried out 15 years ago during the Ph.D.
thesis of I. Levine in the group of J.B. Cohen [3, 4]. This came naturally after the
birth of surface X-ray crystallography by Eisenberg and Marra [5, 6] 10 years before
and with the advent of dedicated synchrotron sources. However, the tour de force of
this pioneer work was the use of a rotating anode connected to a vacuum deposition
chamber to study the growth of gold aggregates on glass as function of coverage,
annealing time and temperature. Data collection for one GISAXS pattern took 1 or
2 hours with a position-sensitive detector! Only scattering patterns parallel to the
sample surface were analyzed in terms of correlation distance between islands and
of Porod radius. It was observed that the island spacing exhibits a linear dependence
on island size during deposition. The main conclusion of this first in situ study
was that the island mobility dominates mass transfer during the annealing process
and that usual coarsening models are not adequate. Concomitantly, the group of
Naudon [7] started the study of Guinier–Preston zone of Al–Ag alloy with a similar
experimental set-up. Their initial goal was to examine clustering near surface as
compared to bulk using as a probe the evanescent X-ray refracted wave.

Thereafter, it was realized that the full potential of this technique can be achieved
when a synchrotron source with its inherent properties of high flux, collimation
and multi-wavelength availability is combined with 2D detectors [8]. Thus, there
was a surge of available beamlines with set-ups dedicated to GISAXS studies. It
was quickly understood that this surface morphology-sensitive technique can be
combined efficiently with grazing incidence diffraction, a technique sensitive to the
atomic scale arrangement. The research topics covered a wide range of systems:
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• Islands on surfaces either metals aggregates (Ag/MgO(100) [9]) or semiconduc-
tors quantum dots (Ge/Si [10], InAs/GaAs(001) [11])

• Discontinuous semiconductors superlattices (quantum dots and wires of SiGe/Si
[12–15] or Ge in C [16]) or metallic multilayers in insulating matrices
(Co–Al2O3 [17], Au–C [18], Fe–BN [19])

• Nanocermets or buried aggregates in matrices obtained by sputtering (C–Ag [20],
Pt–Al2O3 [21])

• Soft condensed matters topics from polymer dewetting [22, 23], diblock copoly-
mers [24] to surfactant mesophase templates [25–28].

However, since the work of Levine, except annealing, only a few surveys were
performed during the sample elaboration process [3, 9, 29, 30]. The latest experimen-
tal developments are directed toward ultra-small-angle scattering (GIUSAXS) [31],
the use of neutrons for light organic elements (GISANS) [23], micro-focalization
[32, 33] to probe inhomogeneous samples, in situ measurements [28, 30, 34, 35] and
anomalous GISAXS [36].

As a subset of diffuse scattering, GISAXS theoretical treatment benefited from
the development of the distorted wave Born approximation (DWBA) (see Chap. 4).
Even if the theoretical background developed in bulk small-angle scattering is of
great use, the specificities due to the grazing incidence have to be accounted for; it is
not only the incident beam that is scattered as in transmission geometry but also the
reflected and transmitted waves. Even though the DWBA treatment of scattering was
established for a long time in quantum mechanics [37], two seminal works of Vine-
yard [38] and Sinha [39] introduced this concept in the field of X-ray scattering from
rough surface. DWBA was thereafter generalized to multilayers [40, 41] or multi-
layer gratings [42], to x-ray fluorescence at grazing incidence [43, 44], to magnetic
diffuse scattering of x-ray [45, 46], to diffuse and small-angle scattering [47, 48].

As each different sample morphology leads to a different GISAXS patterns, an
on-purpose analysis methodology and model have to be developed for analyzing
data. In a very restrictive way, this chapter will be mainly devoted to the use and
the theory of GISAXS technique, as it was historically developed, for probing the
size, shape and spatial organization of nanostructures (islands, inclusions, particles,
clusters, etc.). The goal of this chapter is to give a feeling of the most used ap-
proximation. An emphasis will be put on (i) the calculation of the scattering cross
section from density inhomogeneities accounting for the surface-induced multiple
scattering effects and (ii) the interplay between coherent and diffuse scattering for
size-distributed samples. A few selected examples, without any claim of exhaus-
tiveness, will be given in the field of hard and soft condensed matter in order to
illustrate the potentiality of the GISAXS technique. A free GISAXS analysis soft-
ware [50] encompassing most of the material developed in this chapter is available
from http://www.insp.jussieu.fr.

7.2 The GISAXS Scattering Geometry

A typical GISAXS experiment is illustrated in Fig. 7.1; it consists in measuring the
diffuse scattering around the specularly reflected beam at fixed incidence angle θin
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Fig. 7.1 Principle of a GISAXS experiment. An x-ray beam of wavevector kin impinges on the
sample surface under a grazing incidence θin and is reflected and transmitted by the smooth surface
but also scattered along ksc in the directions (ψ,θsc) by the surface or subsurface roughness or
density heterogeneities. The specular rod is often hidden by a beam-stop in experimental conditions

upon sample rotation ω around its normal. The scattering angles (ψ,θsc) are related
to the wavevector transfer q = ksc −kin through

qx = k0[cos(θsc)cos(ψ)− cos(θin)]

qy = k0[cos(θsc)sin(ψ)]

qz = k0[sin(θsc)+ sin(θin)]. (7.1)

In a conventional GISAXS experiment, the recorded data as function of (ψ,θsc)
are labeled and analyzed as a map of the (q‖ = qy,q⊥ = qz) reciprocal plane. This
is affordable if the forward wavevector transfer qx is negligible or, in other words,
if the curvature of the Ewald sphere can be reasonably neglected which is not ob-
vious for long-range ordered systems. Putting some figures in Eq. (7.1) leads to
λ = 0.1 nm, θin = θsc = 0.1◦ andΨ = 0.5◦ to qx = 2.410−3 nm−1, qy = 0.54 nm−1,
qz = 0.21 nm−1. A typical GISAXS pattern is made of two sharp peaks due to the
transmitted and specularly reflected beams, of an intense specular rod and of diffuse
scattering. The z = 0 sample surface is called the horizon while an enhancement of
scattering, the so-called Yoneda peak (see Sect. 4.3.1) [52], is found at an exit angle
θsc close to the angle of total external reflection θc.

In conventional X-ray reflectivity (see Fig. 7.2), the intensity of the reflected
beam is recorded as function of the incident angle by integrating a small angular
slice around ψ = 0 (θ ,2θ scan). As only the perpendicular wavevector transfer qz

is involved, the measurement is sensitive to the perpendicular profile of index of
refraction (see Chap. 3). An off-specular scan, obtained for example by rocking the
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θsc= θin

Ψ=0

z

θin

z

θin fixed θsc,Ψ

θsc= θ0–Δθ
Ψ=0

z

θin= θ0+Δθ

a) Reflectivity

b) Off-specular
scan

c) GISAXS

Fig. 7.2 Experimental scans performed to probe surface roughness: (a) reflectivity measurement,
(b) off-specular x-ray reflectivity, (c) GISAXS

sample,1 gives access to a wavevector transfer in the surface plane qx and allows
to probe length scale parallel to the surface. Most often, a GISAXS experiment
does not consider the specular reflection or the specular rod and focuses only on
the diffuse scattering. One advantage of GISAXS over off-specular reflectivity in
the plane of incidence is to probe in-plane roughness along Ψ at a fixed scattering
depth [51] (see Sect. 4.4.1), i.e., θin,θsc = Cte.

7.3 Scattering from Density Inhomogeneities in DWBA:
The Case of Isolated Particles

The exact Green function formalism of diffuse scattering was developed in Chap. 4
as well as the several approximations, i.e., Born and distorted wave Born approxima-
tions which allow to obtain tractable expressions of the scattering cross section. The
scattering from roughness, either of a single surface or multilayers, was previously
treated in Chap. 6. The goal of this part is to give practical applications of DWBA in
the case of surface or subsurface nanostructures like densities inhomogeneities made
of particles. The generic term of “particle” encompasses inclusions in a matrix, is-
lands on surfaces or holes in a substrate with a well-defined geometrical shape.

1 The limitation due to the sample surface with off-specular reflectivity measurements disappears
in the GISAXS geometry.
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Fig. 7.3 Schematic layout of the particle morphologies: (a) islands on a substrate; (b) islands on
an overlayer; (c) holes in a substrate; (d) inclusions in a matrix; (e) inclusions below an overlayer;
(f) inclusions in an overlayer; (e) holes in an overlayer. t is the thickness of the overlayer and d the
burying depth of the inclusions (t,d ≥)

It will be shown that the effective form factor of a particle involves a four event-
scattering process including the reflection and refraction of waves at interfaces. The
problem of particle assemblies is the topic of the next section. The morphological
cases sketched in Fig. 7.3 will be handled:

• Islands supported on a substrate
• Layer of inclusions in a matrix or holes with defined shapes in a surface
• Inclusions or holes in an overlayer on substrate

These morphologies of densities inhomogeneities are quite restrictive but give an
overview of the treatment of small-angle scattering from particles in terms of form
factor.

In the first Born approximation, the cross section of a particle is, apart from pref-
actors, nothing else than the Fourier transform of its shape. However, if the incoming
θin or outgoing θsc angles are close to the critical angle of total external reflection
θc as it is the case in a GISAXS experiment, better results are obtained with the
semi-dynamical treatment of scattering of the DWBA. This first-order perturbation
theory [37, 39] needs to define a reference state which is chosen according to the
sample morphology and a perturbation potential which is the particle; of course,
advantage is taken by calculating the reference wavefields for flat interfaces (see
Chap. 4). The problem is restricted to one single scattering particle, collective ef-
fects being treated in the next section. Polarization effects will be dropped out as
they induce minor correction of the fourth order in the scattering angles.

7.3.1 Islands on a Substrate

The problem is simplified by considering only one island on an infinite smooth sur-
face [48]. To calculate the scattering, the starting point is the reflection–refraction of
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a plane wave on a perfectly smooth surface. The Helmholtz propagation equation is
reduced to a scalar one for the amplitude of the electric field E(r) in s-polarization:

[
∇2 + k2

0n2(r)
]

E(r) = 0. (7.2)

k0 = 2π/λ is the vacuum wavevector. To work out the perturbation formalism, the
dielectric constant is decomposed according to

n2(r) = n2
0(z)+(n2

i −1)S(r). (7.3)

n0(z) is the index of refraction of the unperturbed system, i.e., for z > 0, n0(z) = 1
and for z < 0, n0(z) = ns = 1 − δs − iβs is the index of the substrate. δn2(r) =
(n2

i − 1)S(r) is the scattering perturbation induced by the island of index ni = 1−
δi− iβi and of shape S(r). S(r) is one inside the island and zero outside. For the bare
substrate, the wavefield in reciprocal space is given by the Fresnel functions:

Eref(r,kin) = EinEPW
1 (kinz,0,z)e−ik‖.r‖ ,

with EPW
1 (kinz,0,z) =

{
e−ikinz,0z + rin

0,1eikinz,0z for z > 0

tin
0,1e−ikinz,1z for z < 0

(7.4)

k‖ is the component of the wavevector parallel to the surface while kinz,0 =

−
√

k2
0 − k2

‖ and kinz,1 = −
√

k2
0n2

s − k2
‖ are the components perpendicular to the sur-

face, respectively, in vacuum and in the substrate, the second one resulting from the
Snell–Descartes second law. The introduced Fresnel coefficients in reflection r0,1 or
in transmission t0,1 (see Sect. 3.1) are given by

rin
0,1 =

kinz,0 − kinz,1

kinz,0 + kinz,1
, tin

0,1 =
2kinz,0

kinz,0 + kinz,1
. (7.5)

As explained in Chap. 4, the far-field Green function Edet(R,r′) needed for the
DWBA perturbation treatment is evaluated in vacuum while the unperturbed state is
the reflected–refracted waves Eref(r,kin), Eq. (4.17):

Edet(R,r′) =
k2

0 exp(−ik0R)
4πε0R

EPW
1 (−kscz,z

′)eiksc‖.r
′
‖ . (7.6)

nsc = ksc/k0 gives the direction of the detector. Putting Eqs. (7.4, 7.5 and 7.6) in the
equation giving the amplitude of the scattered field and using the expression of the
perturbation induced by the island Eq. (7.3), one obtains the total field to first order:

Esc(r,kin,ksc) = Eref(r,kin)+

k2
0 exp(−ik0R)

4πR
Ein
(
n2

i −1
)∫

dreiq‖.r‖EPW
1 (−kscz,0,z)S(r)EPW

1 (kinz,0,z).

(7.7)

Using the expression of EPW
1 (Eq. (7.4)), the differential scattering cross section

per particle and per unit area in an out-specular direction obtained through the flux
of Poynting vector reads
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(
dσ
dΩ

)
incoh

=
k4

0

16π2

∣∣n2
i −1

∣∣2 ∣∣F (q‖,kinz,0,kscz,0)
∣∣2 . (7.8)

The DWBA island form factor F (q‖,kinz,0,kscz,0) is defined through

F (q‖,kinz,0,kscz,0) = F(q‖,kscz,0 − kinz,0)+ rsc
0,1F(q‖,−kscz,0 − kinz,0)

+rin
0,1F(q‖,kscz,0 + kinz,0)+ rin

0,1rsc
0,1F(q‖,−kscz,0 + kinz,0). (7.9)

q = ksc −kin is the wavevector transfer and F(q) the Fourier transform of the parti-
cle shape known as the form factor:

F(q) =
∫

S(r)
dreiq.r. (7.10)

The diagrammatic interpretation of the DWBA calculation is depicted on Fig. 7.4.
Four scattering events with different effective wavevector transfers qeff

z = ±kscz

± kinz on the island interfere coherently. The first one, the classical Born term, in-
volves a direct scattering by the island. The other ones introduce the possibility of a
reflection of either the incident or the scattered waves on the flat substrate surface.
The island form factors calculated with the appropriated vertical wavevector trans-
fers are weighted by the Fresnel reflection coefficients, either in incidence rin

0,1(kzin)
or in emergence rsc

0,1(kzsc). The sharp variation of these coefficients close to the sub-
strate critical angle of total external refection θc (see Fig. 3.3) leads to an enhance-
ment of the scattered intensity known as the Yoneda peak [52] around θsc = θc. The
maximum of diffuse scattering is observed close to the critical angle θc. A notice-
able point is that the classical wavevector transfer q is not enough to fully describe
the scattering contrary to the first Born approximation. Indeed, in this case, the cross
section is limited to the first term of Eq. (7.9) as the Green function and the electric
field are simply evaluated in vacuum.

A typical example of DWBA form factor is given in Fig. 7.5 for a cylinder. At
θsc = θc, an enhancement of intensity, known as the Yoneda peak [52], is found
whose shape is driven by θin and the index of refraction of the substrate. In DWBA,
the interference fringes2 of the Born form factor F(q‖,qz) are smeared out by the

Term 1 : k fz–k iz Term 2 : k fz+kiz Term 3 : –k fz–kiz Term 4 : –k fz+kiz

ki kf

θin θsc

)(θr in
in
01 )(θr sc

sc
01 )(θr in

in
01 )(θr sc

sc
01

z

Fig. 7.4 The four scattering events and their associated vertical wavevector transfers in the case of
the DWBA form factor of an island. From [48]

2 These fringes are analogous the Kiessig fringes observed in reflectivity.
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Fig. 7.5 Typical DWBA form
factor of a cylindrical island
Eq. (7.9) as function of the
exit angle θsc for various
incident angles θin. Also
added the classical Born form
factor for two incident angles
θin = θc,2θc. The parameters
are δs = 5.10−6,βs = 2.10−8.
The intensities are normalized
by the volume of the
scattering particle
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coherent interference between the four scattering events. Furthermore, the θsc loca-
tion of the minima becomes dependant on the incident angle θin and no more simply
related to the height of the islands as it would be expected in the Born approxima-
tion. However, the fringes spacing is still simply related to the particle height. Except
close to the critical angle θsc = θc, because of the steep decrease of rsc

0,1 with θsc,
two terms dominate the DWBA form factor (see Fig. 7.6): the Born term and that
involving a reflection of the incident wave before scattering. As expected, the Born
approximation prevails in the range θin,θsc � θc.

Some morphological modifications of the substrate can be accounted for very
simply in Eq. (7.8) by modifying the Fresnel reflectivities. If the substrate is cov-
ered by a continuous overlayer of thickness t (case b of Fig. 7.3), the reflection
coefficient of Eqs. (7.9) has to be modified accordingly (Sect. 3.2.4). Also for sub-
strate roughness of wavelength higher than that induced by the islands (to avoid
interferences between the scattered waves), the Croce–Névot factor (Sect. 3.A.3)
can be introduced to reduce the substrate reflectivity [49].

θin = 2θc
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201612840
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Fig. 7.6 The modulus squared of the various components involved in the cylinder DWBA form
factor shown in Fig. 7.5. The symbols (circles, uptriangles, downtriangles, squares) correspond,
respectively, to the four scattering events of Fig. 7.4 from left to right
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7.3.2 Particles Buried in a Substrate or Holes with Well-Defined
Shapes in Substrate

The case of a particle (or more generally a buried density fluctuation) buried at a
distance d under the smooth surface of a substrate (see Fig. 7.3-d) is handled in a
very similar way as the case of an island. The perturbation potential is now given
by the difference of dielectric constant between the inclusion of shape S(r) and
the substrate, i.e., δn2(r) = (n2

i −n2
s )S(r). The eigenstates of scattering are still the

Fresnel solutions of the propagation equation, Eq. (7.4), and the Green function
that is in vacuum, Eq. (7.6). The difference with the previous case comes from the
integration in the scattering cross section that is limited to z < 0 thus involving the
transmitted part of the Fresnel field. The final result is given by

(
dσ
dΩ

)
incoh

=
k4

0

16π2

∣∣n2
i −n2

s

∣∣2 ∣∣F (q‖,kinz,0,kscz,0)
∣∣2 , (7.11)

F (q‖,kinz,0,kscz,0) = tin
0,1tsc

0,1F(q‖,kscz,1 − kinz,1)eid(kscz,1−kinz,1).

The cross section is weighted by the transmission coefficients, either in reflection
or in transmission (see Sect. 4.3.1) which lead to the Yoneda peak. These latter
are a signature of the source–observer reciprocity theorem of wave propagation;
they would be absent in the first Born approximation. The particle form factor Eq.
(7.11) is calculated for the wavevector transfer evaluated inside the substrate and
multiplied by a phase factor which accounts for the propagation and attenuation of
the waves along their paths to the particle or to the substrate. Some morphological
characteristics of the substrate like a covering homogeneous layer (see Fig. 7.3-e)
or an uncorrelated roughness can also be accounted for in the transmission prefactor
coefficients.

This treatment is also relevant for the case of holes with well-defined shapes
characterized by a function S(r). The contrast of dielectric constant is given by
δn2(r) = (n2

s − 1)S(r); the phase factor is useless (d = 0) if the particle form fac-
tor Eq. (7.10) as calculated in the forthcoming section Sect. 7.3.5 (see Fig. 7.9) is
replaced by F(qx,−qy,−qz), i.e., if the trihedron linked to the particle has its z-axis
inverted. Nothing allows to distinguish between scattering from holes or true in-
clusions (except the phase factor in Eq. (7.11)) as it is expected from the Babinet
principle in optics.

7.3.3 Holes or Particles Encapsulated in a Layer on Substrate

The morphology under consideration is made of particles or holes in an overlayer of
thickness t and index of refraction nl = 1−δl − iβl on a bulk substrate (see Fig. 7.3-
f,g). The inclusions are buried at a distance d from the top interface. The solution of
the propagation equation Eq. (7.2) with the following index of refraction:
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n0(z) =

⎧⎨
⎩

1 if z > 0
nl if −t < z < 0
ns if z < −t

(7.12)

is given by a set of upward and downward propagating waves (see Sect. 3.2.1):

Eref(r,kin) = EinEPW
1 (kinz,0,z)e−ik‖.r‖ , with (7.13)

EPW
1 (kinz,0,z) =

⎧⎨
⎩

A+
0 eikinz,0z +A−

0 e−ikinz,0z for z > 0
A+

1 eikinz,1z +A−
1 e−ikinz,1z for −t < z < 0,

A+
2 eikinz,2z for z < −t

(7.14)

where kinz, j( j = 0,1,2) = −
√

n2
j k

2
0 − k2

‖ is the perpendicular component of the

wavevector in each media (vacuum, layer, substrate). Matching the boundaries con-
ditions (continuity of the field and of its first derivative) leads to the expressions
of the coefficients A±

j as function of the reflection rin
i, j and transmission tin

i, j of each
interface (Eq. (7.5)). The only useful ones for the DWBA scattering cross section
are those inside the layer normalized by the incident wave coefficient A+

0 :

A−
1

A−
0

= Ã−
1 =

tin
0,1

1+ rin
0,1rin

1,2e2ikinz,1t , (7.15)

A+
1

A−
0

= Ã+
1 =

tin
0,1rin

1,2e2ikinz,1t

1+ rin
0,1rin

1,2e2ikinz,1t . (7.16)

The perturbation in the case of inclusions (index ni and shape S(r)) is given by
δn2(r) = (n2

i − n2
l )S(r) and exists only inside the layer. The Fresnel unperturbed

state solution in the far-field Green function leads to the scattering cross section per
unit area: (

dσ
dΩ

)
incoh

=
k4

0

16π2

∣∣n2
i −n2

l

∣∣2 ∣∣F (q‖,kinz,kscz)
∣∣2 . (7.17)

Once again an effective form factor has been introduced:

F (q‖,kinz,0,kscz,0)

= Ã−
1 (kinz,1)Ã−

1 (−kscz,1)ei(+kscz,1−kinz,1)dF(q‖,+kscz,1 − kinz,1)

+Ã+
1 (kinz,1)Ã−

1 (−kscz,1)ei(+kscz,1+kinz,1)dF(q‖,+kscz,1 + kinz,1)

+Ã−
1 (kinz,1)Ã+

1 (−kscz,1)ei(−kscz,1−kinz,1)dF(q‖,−kscz,1 − kinz,1)

+Ã+
1 (kinz,1)Ã+

1 (−kscz,1)ei(−kscz,1+kinz,1)dF(q‖,−kscz,1 + kinz,1).
(7.18)

The diagrammatic picture of Eq. (7.18) is depicted in Fig. 7.7. The inclusion
gives rise to four different scattering events with different wavevector transfers:
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Fig. 7.7 The four terms involved in the DWBA form factor of an inclusion in a layer on a substrate
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Fig. 7.8 The DWBA form factor of cylindrical holes of height H in a layer of thickness t = 3.4H
which is (a) less or more (b) refringent than the substrate. The curves are plotted against the exit
angle θsc for various incident angle θin. The intensities are normalized by the hole volume and the
angle by the critical angle of the substrate θc,s



7 Grazing Incidence Small-Angle X-Ray Scattering from Nanostructures 295

qe f f
z = ±kscz,1 ± kinz,1 which correspond to a scattering from an upward or down-

ward to an upward or downward propagating waves. Once again, it appears that
the wavevector transfer qz alone is insufficient to fully characterize the scattering
process. Contrary to the case of an island, the involved wavevectors are those in-
side the layer. Each term is multiplied by a phase factor accounting from the path
of these waves to the interfaces (vacuum-layer or layer-substrate) and by a reflec-
tion Ã−

1 or transmission Ã+
1 coefficients for the incident or scattered waves. Ã−

1 , Ã+
1

(Eq. 7.16) include the reflection at the bottom interface r1,2 and the transmission
at the top interface t0,1, plus what is equivalent to Fabry–Pérot interference term
1+ rin

0,1rin
1,2e2ikinz,1t leading to layer thickness interference fringes.

Holes (Fig. 7.3-g) in a layer is only a special case of inclusions if the right con-
trast of dielectric constant n2

l − 1 is used. The previous expression of the DWBA
form factor is usable if the burying depth d = 0 and the particle form factor F(q‖,qz)
is calculated with the z-axis of the trihedron associated to the hole oriented down-
ward (see Fig. 7.9).

Figure 7.8 shows an example of such form factor of holes. The dynamical effects
are more complex than for a single interface. The two superimposed frequencies
of beating are due to the hole depth H and to the layer thickness t. The higher the
incident angle θin the sharper the fringes of the layer as the probed depth and the
sensitivity to the substrate–layer interface are greater. In the case of a layer less
refringent than the substrate (δs > δl) (Fig. 7.8-b), the incident wave or the time-
inverted wave starts to penetrate first in the layer and then in the substrate yielding
a kind of double Yoneda peak.

7.3.4 General Concluding Remarks

As a general rule at small angles [1], the incoherent scattering cross section is pro-
portional to the contrast of dielectric constant between the scatterer and the em-
bedding medium. Indeed, the obtained prefactors are |n2

i −1|2 for island (Eq. (7.8)),
|n2

i −n2
s |2 or |1−n2

s |2 for inclusions or holes in a substrate (Eq. (7.11)) and |n2
i −n2

l |2
or |1−n2

l |2 for inclusions or holes in a layer.
As introduced in Chap. 1, the above DWBA formalism is also suitable to the

case of neutron scattering (GISANS) if the Thomson scattering length is replaced
by the Fermi pseudopotential scattering length of neutrons in the expression of the
refraction index n = 1−2π/k2

0 〈ρ〉bat . Moreover, the energy dispersive behavior for
X-rays are implicitly included in the refraction index through the anomalous terms
bat = re( f + f ′ + f ′′).

For very shallow angles θin,θsc ≤ θc, all the effective perpendicular wavevector
transfers ±kscz,0−1 ± kinz,0−1 of Eq. (7.9) for islands Eq. (7.18) or inclusions in a
layer Eq. (7.18) are small. Therefore, the form factor is close to F(q‖,0) and can be
factorized. For islands, one obtains
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F (q‖,kinz,kscz) � F(q‖,0)(1+ rsc
0,1 + rin

0,1 + rsc
0,1rin

0,1)

= F(q‖,0)(1+ rin
0,1)(1+ rsc

0,1)

= F(q‖,0)tin
0,1tsc

0,1. (7.19)

A similar result is obtained for inclusions in a layer. Whatever the morphology
is, at θin,θsc ≤ θc, the dynamical scattering effects in the perpendicular direction are
driven by the transmission functions inside the substrate as in the case of inclusions
in a substrate Eq. (7.11).

The semi-dynamical treatment of scattering of DWBA is necessary only if θin

or θsc are close the critical angle θc of the materials. Well above this value, all
the reflection coefficients that decrease at least as 1/θ 4

in,sc are negligible while the
transmission ones reach their final value 1. Therefore, within this limit, the Born
approximation or the simple kinematical treatment of scattering is valid. The anal-
ysis is thus considerably simplified as the particle form factor is given only by the
Fourier transform of its shape. However, working at grazing incidence θin and exit
θsc angles not only reduces the bulk background but also enhances the surface sig-
nal in absolute value (see Fig. 7.5). For inclusions in a non-absorbing substrate, at
θin = θsc = θc, tin

0,1(θc) = tsc
0,1(θc) = 2 and kscz,1 = kinz,1 = 0:

F (q‖,k
c
inz,k

c
scz) = 4F(q‖,0). (7.20)

The waves are exactly traveling parallel to the surface. For islands, as rin
0,1 =

rsc
0,1 = 1,

F (q‖,k
c
inz,k

c
scz) = F(q‖,2kc

z)+F(q‖,0)+F(q‖,0)+F(q‖,−2kc
z). (7.21)

The enhancement is slightly lower than for inclusions.

7.3.5 Form Factor Expressions of Simple Geometrical Shapes

7.3.5.1 The Form Factor Expressions

When particles have a well-defined shape, it is possible to calculate analytically
their form factor F(q) (Eq. (7.10)) by using symmetry.

The cartesian frame linked to each particle is defined with its origin at the bot-
tom of the object,3 its z-axis oriented upward and it x-axis along one side of the
particle. The herein library of shapes as well as the geometrical parameters are all
defined in Fig. 7.9. The form factors F(q), the volume V , the surface seen from
top S and the radius Rpa obtained by rotating the object around its z-axis are the
following:

3 This convention find its meaning when evaluating the mean form factors.
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• parallelepiped:

Fpa(q,R,H) = 4R2Hsinc(qxR)sinc(qyR)sinc(qzH/2)eiqzH/2,

Vpa = 4R2H, Spa = 4R2, Rpa =
√

2R. (7.22)

• box:

Fbox(q,R,W,H) = 4RWHsinc(qxR)sinc(qyW )sinc(qzH/2)eiqzH/2,

Vbox = 4RWH, Sbox = 4RW, Rbox =
√

R2 +W 2. (7.23)

• square basis pyramid:

Fpy(q,R,H,α) =
∫ H

0
4R2

z sinc(qxRz)sinc(qyRz)eiqzz dz,

Rz = R− z/ tan(α), H/R < tan(α),

Vpy =
4
3

tan(α)

[
R3 −

(
R− H

tan(α)

)3
]

, Spy = 4R2, Rpy =
√

2R;

Fpy(q,R,H,α) =
H

qxqy

×
{

cos[(qx −qy)R]K1 + sin[(qx −qy)R]K2

−cos[(qx +qy)R]K3 − sin[(qx +qy)R]K4
}

,

K1 = sinc(q1H)eiq1H + sinc(q2H)e−iq2H ,

K2 = −isinc(q1H)eiq1H + isinc(q2H)e−iq2H ,

K3 = sinc(q3H)eiq3H + sinc(q4H)e−iq4H ,

K4 = −isinc(q3H)eiq3H + isinc(q4H)e−iq4H ,

q1 =
1
2

[
qx −qy

tan(α)
+qz

]
, q2 =

1
2

[
qx −qy

tan(α)
−qz

]
,

q3 =
1
2

[
qx +qy

tan(α)
+qz

]
, q4 =

1
2

[
qx +qy

tan(α)
−qz

]
. (7.24)
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• in-plane anisotropic pyramid:

Fanpy(q,R,W,H,α) =
∫ H

0
4RzWzsinc(qxRz)sinc(qyWz)eiqzz dz,

Rz = R− z/ tan(α), Wz = W − z/ tan(α),

H/R < tan(α), W/R < tan(α), (7.25)

Vanpy = 4

[
WRH − H2(R+W )

2tan(α)
+

H3

3 tan2(α)

]
, Sanpy = 4RW,

Ranpy =
√

R2 +W 2,

Fanpy(q,R,W,H,α) =
H

qxqy

×
{

cos[qxR−qyW ]K1 + sin[qxR−qyW ]K2

−cos[qxR+qyW ]K3 − sin[qxR+qyW ]K4
}

,

K1 = sinc(q1H)eiq1H + sinc(q2H)e−iq2H ,

K2 = −isinc(q1H)eiq1H + isinc(q2H)e−iq2H ,

K3 = sinc(q3H)eiq3H + sinc(q4H)e−iq4H ,

K4 = −isinc(q3H)eiq3H + isinc(q4H)e−iq4H ,

q1 =
1
2

[
qx −qy

tan(α)
+qz

]
, q2 =

1
2

[
qx −qy

tan(α)
−qz

]
,

q3 =
1
2

[
qx +qy

tan(α)
+qz

]
, q4 =

1
2

[
qx +qy

tan(α)
−qz

]
. (7.26)

• cubooctahedron:

Fcu(q,R,H1,H2,α) = eiqzH [Fpy(qx,−qy,−qz,R,H,α)

+ Fpy(qx,qy,qz,R,rHH,α)] ,

H/R < tan(α), rHH/R < tan(α), (7.27)

Vcu =
4
3

tan(α)

[
2R3 −

(
R− H

tan(α)

)3

−
(

R− HrH

tan(α)

)3
]

,

Scu = 4R2, Rcu =
√

2R.
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• prism with threefold symmetry:

Fpr3(q,R,H) =
2
√

3e−iqyR/
√

3

qx(q2
x −3q2

y)

[
qxeiqyR

√
3 −qx cos(qxR)

− i
√

3qy sin(qxR)
]
× sinc(qzH/2)eiqzH/2,

Vpr3 =
√

3R2H, Spr3 =
√

3R2, Rpr3 =
2√
3

R. (7.28)

• tetrahedron:

Fte(q,R,H,α) =
2
√

3
qx(q2

x −3q2
y)

∫ H

0
e−iqyRz/

√
3
[
qxeiqyRz

√
3 −qx cos(qxRz)

×− i
√

3qy sin(qxRz)
]

eiqzzd z,

Rz = R−
√

3/ tan(α)z, H/R < tan(α)/
√

3,

Vte =
1
3

tan(α)

⎡
⎣R3 −

(
R−

√
3H

tan(α)

)3
⎤
⎦ , Ste =

√
3R2, Rte =

2√
3

R;

Fte(q,R,H,α) =
H√

3qx(q2
x −3q2

y)
eiqzR tan(α)/

√
3
{
−(qx +

√
3qy)

sinc(q1H)eiq1L +(−qx +
√

3qy)sinc(q2H)e−iq2L +2qxsinc(q3H)eiq3L
}

,

q1 =
1
2

[√
3qx −qy

tan(α)
−qz

]
, q2 =

1
2

[√
3qx +qy

tan(α)
+qz

]
,

q3 =
1
2

[
2qy

tan(α)
−qz

]
, L =

2tan(α)R√
3

−H. (7.29)

• prism with sixfold symmetry:

Fpr6(q,R,H) =
4
√

3
3q2

y −q2
x

[
q2

yR2sinc(qxR/
√

3)sinc(qyR)+ cos(2qxR/
√

3) ,

−cos(qyR)cos(qxR/
√

3)
]

sinc(qzH/2)eiqzH/2,

Vpr6 = 2
√

3R2H, Spr6 = 2
√

3R2, Rpr6 =
2√
3

R. (7.30)
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• cone with sixfold symmetry:

Fco6(q,R,H) =
4
√

3
3q2

y −q2
x
×
∫ H

0

[
q2

yR2
z sinc(qxRz/

√
3)sinc(qyRz)

+cos(2qxRz/
√

3)− cos(qyRz)cos(qxRz/
√

3)
]

eiqzzd z,

Rz = R− z/ tan(α), H/R < tan(α),

Vco6 =
2tan(α)√

3

[
R3 −

(
R− H

tan(α)

)3
]

, Sco6 = 2
√

3R2, Rco6 =
2√
3

R.

(7.31)

• cylinder:

Fcy(q,R,H) = 2πR2H
J1(q‖R)

q‖R
sinc(qzH/2)eiqzH/2,

q‖ =
√

q2
x +q2

y ,

Vcy = πR2H, Scy = πR2, Rcy = R. (7.32)

• ellipsoidal cylinder:

Fell(q,R,W,H,α) = 2πRWH
J1(γ)
γ

sinc(qzH/2)eiqzH/2,

γ =
√

(qxR)2 +(qyW )2,

Vell = πRWH, Sanpy = πRW, Ranpy =
√

R2 +W 2. (7.33)

• cone:

Fco(q,R,H,α) =
∫ H

0
2πR2

z

J1(q‖Rz)
q‖Rz

eiqzz dz,

q‖ =
√

q2
x +q2

y , Rz = R− z/ tan(α), H/R < tan(α), (7.34)

Vco =
π
3

tan(α)

[
R3 −

(
R− H

tan(α)

)3
]

, Sco = πR2, Rco = R.

• full sphere:

Ff sp(q,R) = 4πR3 sin(qR)−qRcos(qR)
(qR)3 eiqzR,

Vf sp =
4
3
πR3, S f sp = πR2, R f sp = R. (7.35)
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• full spheroid:

Ff sph(q,R,H) = eiqzH/2
∫ H/2

0
4πR2

z

J1(q‖Rz)
q‖Rz

cos(qzz)dz,

q‖ =
√

q2
x +q2

y , Rz = R

√
1−4

z2

H2 ,

Vf sph =
4
3
πR2H, S f sph = πR2, R f sph = R. (7.36)

• truncated sphere:

Fsp(q,R,H) = eiqz(H−R)
∫ H

R−H
2πR2

z

J1(q‖Rz)
q‖Rz

eiqzz dz,

q‖ =
√

q2
x +q2

y , Rz =
√

R2 − z2, 0 < H/R < 2,

Vsp = πR3

[
2
3

+
H −R

R
− 1

3

(
H −R

R

)3
]

,

Ssp =
{
πR2 if H > R
π(2RH −H2) if H < R

, Rsp =
{

R if H > R√
2RH −H2 if H < R

(7.37)

• hemi-spheroid:

Fhsphe(q,R,W,H) = 2π
∫ H

0
RzWz

J1(γ)
γ

eiqzz dz,

Rz = R

√
1−
( z

H

)2
,Wz = W

√
1−
( z

H

)2
,

γ =
√

(qxRz)2 +(qyWz)2,

Vhsphe =
2
3
πRWH, Shsphe = πRW, Rhsphe =

√
R2 +W 2. (7.38)

sinc(x) = sin(x)/x is the cardinal sine and J1(x) is the Bessel function of first or-
der [53].
If the island frame makes an angle ζ with the impinging beam, it is necessary to ap-
ply a rotation matrix R(ζ ) to the wavevector transfer q before applying the above
formulae:

R(ζ )q =

⎛
⎝ cos(ζ ) sin(ζ ) 0

−sin(ζ ) cos(ζ ) 0
0 0 1

⎞
⎠
⎛
⎝ qx

qy

qz

⎞
⎠ . (7.39)
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7.3.5.2 Scattering Anisotropy of the Form Factor

Rod of Scattering by Facets

Since it is the Fourier transform of the particle shape, the form factor F(q) contains
the symmetry of the object and displays interference fringes that are characteristics
of the particle sizes. For polyhedrons, it is shown in [54] that the volume integral in
F(q) can be reduced to a surface integral over the facets or even a line integral along
the edges. In particular, rods of scattering appear in the direction perpendicular to
facets, if any. The widths of these rods are inversely proportional to the facet areas
while their tilt with respect to the specular rod gives the angle between the substrate
plane and the facet normals. As shown in Fig. 7.10 for a tetrahedron, these rods
appear when, in the plane of the substrate, the impinging beam is parallel to the
particle edge. At the extreme limit, these rods are parallel to the substrate plane for
particle shapes which are invariant by translation along z-axis like parallelepiped or
cylinder.

Experimental scattering patterns (Fig. 7.11) from Ge quantum dots grown on
Si(100) are displayed in Fig. 7.11. The data analysis showed that the particles have
a size of 50 nm and are separated by 135 nm. An annealing allowed to enlarge the
size of the {311} lateral facets. Rod of scattering are clearly observed with a tilt
of 26± 1◦ from the substrate (100) orientation; this corresponds to {311} planes
in cubic system. The shape of this rod can be modulated with the incident angle.
Below the critical angle of the substrate (θin = 0.1◦ < θc = 0.2◦), they point at the
specularly reflected beam just below the Yoneda peak; above θc, i.e., θin = 0.4◦, they
point at the direct beam position while for θin = θc = 0.2◦, the rods are splitted. This
can be rationalized if the various scattering terms in the DWBA island form factor
(Fig. 7.4) are considered. As shown in Fig. 7.6, for θsc > θc, two terms dominate
the form factor, the Born term with qe f f

z = kscz − kinz and the term involving the
reflection of the incident beam on the substrate with qe f f

z = kscz + kinz. They point
respectively toward kscz = kinz < 0, i.e., the reciprocal space origin and toward kscz =
−kinz > 0, i.e., the specular position (see Fig. 7.1). The relative weight of these two
scattering terms is given by rin

0,1(θin); therefore the second one is strongly damped
for θin > θc.

The Friedel Rule in Grazing Incident Geometry [48]

In a scattering experiment, the phase factor is lost and only the modulus square form
factor is recorded. As a result, the scattering is centrosymmetrical dσ/dΩ(q) =
dσ/dΩ(−q), a fact known as the Friedel rule in X-ray diffraction [55, 56]. This
means that, in a bulk small-angle scattering experiment, a rotation of the particle by
180◦ around the perpendicular to the incoming beam does not change the scattering
pattern. The sixfold symmetry of the in-plane (qz = 0) BA form factor of a tetrahe-
dron shown in Fig. 7.12-a demonstrates that, with conventional bulk scattering, dis-
tinguishing between three-and sixfold particles is impossible. This phase problem
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Fig. 7.10 DWBA form factor of a full tetrahedral island for several azimuthal ζ orientations of the
beam. The angle α is those between (111) planes in cubic system (α = 70.53◦). The simulation
parameters are λ = 0.1 nm, R = 5 nm, θin = θc, δ = 5.10−6,β = 2.10−8. The signal is normalized
by the particle volume and displayed on a logarithmic scale

is due to the lack of wavevector transfer qz in the direction parallel to the threefold
symmetry. In a grazing incidence geometry, this is not the case and an azimuthal
rotation by 180◦ of the sample leads to a different scattering pattern as, even within
the Born approximation, dσ/dΩ(q‖,qz) �= dσ/dΩ(−q‖,qz). The Friedel rule will
be checked only through a combined rotation and reflection at the x− y plane. The
threefold symmetry of a tetrahedron is thus recovered as shown in Fig. 7.12-b when
a small wavevector transfer is added in the perpendicular direction. However, it is
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Fig. 7.11 GISAXS patterns from Ge islands grown on Si(001) (equivalent thickness 1 nm) and
annealed at 900 K for 15 min. The photon energy was set to 10 keV. The beam is aligned along the
〈110〉 direction of silicon. The angle of incidence θin is given in figure while θc ∼ 0.2◦. Adapted
from [80]
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Fig. 7.12 (qx,qy) maps of the form factor of a full tetrahedron within (a) BA at qz = 0, θin = θsc=0;
(b) BA at qz = 0.4 nm−1, θin = θsc = θc; (c) DWBA at qz = 0.4 nm−1, θin = θsc = θc. Same
simulation parameters as in Fig. 7.10

not possible to determine the symmetry of any kind of particle. For instance, the up-
down symmetry of a threefold prism results in a sixfold scattering pattern. Within
the DWBA, the situation for an tetrahedral island is complicated by the superposi-
tion of the four scattering terms but the conclusions are close to those obtained in
BA as four different wavevector transfers are involved qe f f

z = ±kscz ± kinz. How-
ever, if θin,θsc are close to zero, the weighting reflectivities involved in Eq. (7.9) are
close to one; this limit corresponds to a direct transmission of the beam through the
island and leads again to applicability of Friedel rule upon azimuthal rotation.

7.3.5.3 The Core–Shell Particles

The core–shell particle is made of a core of shape Sco(r) of index of refraction
nco = 1− δco − iβco and a shell of shape Ssh(r) of thickness tsh and of index of
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refraction nsh = 1− δsh − iβsh. Its form factor in the DWBA formalism is deduced
from the expression of the perturbation potential:

δn2(r) = δn2
coSco(r)+δn2

sh [Ssh(r)−Sco(r)] , (7.40)

where

• δn2
co = n2

co −1,δn2
sh = n2

sh −1 for islands

• δn2
co = n2

co −n2
s ,δn2

sh = n2
sh −n2

s for inclusions in a substrate

• δn2
co = 1−n2

s ,δn2
sh = n2

sh −n2
s for holes in a substrate surface

• δn2
co = n2

co −n2
l ,δn2

sh = n2
sh −n2

l for inclusions in layer

• δn2
co = 1−n2

l ,δn2
sh = n2

sh −n2
l for holes in layer

Therefore, the scattering cross sections Eqs. (7.8, 7.11, 7.17) are unmodified if
the following effective form factor is used:

F (q‖,kinz,ksc,z) = Fco(q‖,kinz,ksc,z)

+τ
[
Fsh(q‖,kinz,ksc,z)−Fco(q‖,kinz,ksc,z)

]
(7.41)

with τ = δn2
sh/δn2

co. τ measures the contrast induced by the difference of dielectric
constant between the core and the shell.

7.4 Scattering from Collections of Particles

Up to now, only single isolated particle has been considered as a source of scatter-
ing. Its scattering cross section has been evaluated within the DWBA for various
geometries (islands, inclusions or holes in a substrate or in layer). To proceed
with a collection of particles, the multiple scattering between particles will be ne-
glected and a simple hypothesis of additivity in the scattering potential δn2(r)
will be made. In other words, the incident wave and the scattered wave by one
particle are supposed to be unperturbed by the other particles. The limitations of
such hypothesis will be commented in the following. The particles are supposed
to lie in the same plane as the main topic of this chapter is the use of graz-
ing incidence geometry to enhance surface or subsurface out-of-specular scatter-
ing. The case of particles distributed in 3D will be dropped out on purpose. The
formalism developed in the following can be found in many standard text books
on crystallography [1, 2, 55, 56] or in the field of non-crystallized materials or
bulk small-angle scattering. The only specificity comes from the 2D treatment
of the problem.
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7.4.1 The Scattering Cross Section: The Particle–Particle Partial
Pair Correlation Functions

7.4.1.1 General Formalism: Coherent, Incoherent Scattering
and Specular Rod

Consider a set of N � 1 particles labeled by an index i with shapes Si(r) located at
r‖,i. The scattering potential that comes into play in the DWBA is written as follows:

δn2(r) = δn2
ge

N

∑
i=1

Si(r)⊗δ (r− r‖,i), (7.42)

where δn2
ge(r) is the contrast of dielectric constant which depends on the considered

morphology (Fig. 7.3). Using the previous analysis in terms of DWBA form factor,
the decoupling between the parallel and perpendicular scattering directions and the
linearity of the potential allow to write the differential cross section per particle(

dσ
dΩ

)
part

as

(
dσ
dΩ

)
tot

=
k4

0

16π2 |δn2
ge|2N

(
dσ
dΩ

)
part

,

(
dσ
dΩ

)
part

=
1
N

∣∣∣∣∣
N

∑
i=1

Fi(q‖,kinz,kscz)eiq‖.r‖,i

∣∣∣∣∣
2

. (7.43)

After having isolated the self term, Eq. (7.43) reads

N

(
dσ
dΩ

)
part

=
N

∑
i=1

∣∣Fi(q‖,kinz,kscz)
∣∣2

+
N

∑
i=1

N

∑
j=1(i �= j)

Fi(q‖,kinz,kscz)F ∗
j (q‖,kinz,kscz)eiq‖.(r‖,i−r‖, j).

(7.44)

The star symbol points out to the complex conjugate.
If the system is ergodic, the ensemble average can be replaced by a configura-

tional average over the “coherent domains” that are size limited either by the inci-
dent beam coherence (divergence and wavelength spread) or by the finite aperture of
the detector (see Sect. 2.3). The position disorder and the substitution disorder, i.e.,
shape and morphological parameter disorder, can be separated by sorting out parti-
cles, over the typical size of the coherent domain Scoh, in class of size and shape α
whose probability of occurrence is pα . Moreover, the discrete sum over the positions
can be replaced by a continuous one thanks to the reduced (or normalized) partial
pair correlation functions gαβ (r‖,α ,r‖,β ) between particles of class α and β . Both
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previously introduced concepts rely on the statistical limit hypothesis. The coherent
domain Scoh is supposed to be sufficiently large to define the statistical quantities pα
and gαβ (r‖,α ,r‖,β ). However, the illuminated area A is assumed to contain so much
coherent domain Scoh to average out the speckle behavior. If those hypothesis are
reasonably fulfilled (see Sect. 2.4), one ends up with

(
dσ
dΩ

)
part

= ∑
α

pα
∣∣Fα(q‖,kinz,kscz)

∣∣2

+
n2

S

N ∑
α
∑
β �=α

pα pβFα(q‖,kinz,kscz)F ∗
β (q‖,kinz,kscz)

∫ ∫
A

dr‖,αdr‖,βgαβ (r‖,α ,r‖,β )eiq‖.(r‖,α−r‖,β ), (7.45)

where nS = N/A is the number of particles per surface unit. n2
S pα pβgαβ (r‖,α ,r‖,β )

dr‖,αdr‖,β counts the number per unit surface of couples of particles of kinds (α,β )
located at (r‖,α ,r‖,β ). The constraint i �= j of Eq. (7.44) is implicitly included in the
partial pair correlation functions through a hard core type effect. Usually, the varia-
tions of the number of particles around its mean value are singled out by subtracting
1 to gαβ (r‖,α ,r‖,β ).

With the hypothesis of spatial homogeneity, the pair correlation function depends
only on the relative position of the scatterers: gαβ (r‖,α ,r‖,β ) = gαβ (r‖,β −r‖,α). Eq.
(7.45) can be rewritten as

(
dσ
dΩ

)
part

= N
∣∣〈F (q‖ = 0,kinz,kscz)

〉∣∣2 δ (q‖)+Φ0(q‖,kinz,kscz)

+ ∑
β �=α

pα pβFα(q‖,kinz,kscz)F ∗
β (q‖,kinz,kscz)Sαβ (q‖),

(7.46)

Φ0(q‖,kinz,kscz) =
〈∣∣F (q‖,kinz,kscz)

∣∣2〉− ∣∣〈F (q‖,kinz,kscz)
〉∣∣2 , (7.47)

Sαβ (q‖) = 1+nS

∫
A

(
gαβ (r‖)−1

)
eiq‖.r‖dr‖. (7.48)

The brackets 〈. . .〉 stand for the average over the distribution of particle kind.
Sαβ (q‖), the Fourier transform of the partial pair correlation functions, are known
as the partial interference functions. The Faber–Ziman definition of the gαβ was
used although other definitions are found in the literature [57]. The scattering cross
section was decomposed in to three terms :

(i) The specular rod in δ (q‖) (see below).
(ii) An incoherent term Φ0(q‖,kinz,kscz) including the effect of size and shape

fluctuations along the sample surface. It is worth noting that its counterpart in
neutron crystallography is the incoherent scattering due to the isotopic effects
on the nucleus scattering lengths.
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(iii) A coherent term (third term of Eq. (7.46)). “Coherent” means that the waves
scattered by each particle are allowed to partially interfere. With our 2D ge-
ometry of a plane of particles, this interference appears along the substrate
surface.

7.4.1.2 The Specular Rod

The name of “specular rod” is used in this chapter instead of “coherent scattering”
as previously introduced in Chap. 4 to avoid any confusion with the terminology
of small-angle scattering, namely the third term of Eq. (7.46). The intensity of the

specular rod N
〈∣∣F (q‖ = 0, kinz,kscz)|2

〉
δ (q‖) is directly proportional to the num-

ber of scatterers N and to the value of mean form factor at origin. Thus, this term
is orders of magnitude more intense than the diffuse scattering and is often not
measured experimentally in GISAXS because of limited detector dynamic. The in-
troduction of a Dirac peak N δ (q‖) as a result of the integral nS

∫
A eiq‖.r‖dr‖ is valid

only in the limit of infinite coherent domain size. In fact, experimentally, all the
sources of loss of coherence (monochromator resolution, beam divergence, detector
acceptance, sample macroscopic curvature, etc.) contribute to the finite width of the
specular rod. On a formal point of view, the specular rod can be reintroduced in the
interference function [50, 58] but the simulation of its shape is difficult as it relies on
the knowledge of the main sources of coherence loss. That is why this rod is usually
integrated with slit aperture for reflectivity measurements.
Within the DWBA, Eq. (7.46) gives the integrated intensity of the specular rod in
terms of the particle form factor. Moreover, on this specular rod, the specularly
reflected beam should be added. Using the notations of Sect. 3.2.1, its intensity is
Asin2(α f )

∣∣A+
0 (kinz,0)

∣∣2 [39], A+
0 being calculated with the formalism of Parratt [59]

or of the matrix method for stratified media (see Sect. 3.2.1).

7.4.1.3 Decoupling and Local Monodisperse Approximations

Besides the fact that the size–shape distributions can be reduced to a small number
of parameters, the practical use of Eq. (7.46) implies the statistical knowledge of
the whole system, in particular that of all the partial pair correlation functions. The
correlations between the kinds of the scatterers and their relative positions included
in gαβ (r‖) are difficult to rationalize. The same problem is found for scattering
from correlated roughnesses in multilayers (see Chap. 6). Approximations are thus
needed.

Decoupling Approximation

In the decoupling approximation (DA) [1], such correlations are ignored and gαβ (r‖)
is supposed to be independent of the scatterer kind: gαβ (r‖)= g(r‖). DA is equivalent
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to an unrestricted disorder. For instance, this hypothesis is justified for isotopic dis-
order in the field of neutron scattering. For particles, this approximation is restricted
to dilute systems. A factorization becomes possible in Eq. (7.46):

(
dσ
dΩ

)
part

= Φ0(q‖)+
∣∣〈F (q‖,kinz,kscz)

〉∣∣2 S(q‖), (7.49)

S(q‖) = 1+nS

∫
A

(
g(r‖)−1

)
eiq‖.r‖dr‖. (7.50)

S(q‖), the so-called total interference function, is the Fourier transform of the par-
ticle position autocorrelation function irrespective of the kind of the particle. Ex-
pression and properties of the pair correlation and interference functions will be
the topic of Sect. 7.4.3. The first numerical applications of DA were carried out by
Kotlarchyk and Chen [60].

Local Monodisperse Approximation

This hypothesis widely used in the literature assumes that the system is made of
locally monodisperse domains that interfere incoherently. The particle–particle pair
correlation function can vary from domain to domain. In other words, the surround-
ing of each particle is supposed to be made of particles of the same size and shape in
such a way that the particle kind varies slowly across the sample but with a spatial
wavelength lower than the coherence of the beam. The cross section reads

(
dσ
dΩ

)
part

=
〈∣∣Fα(q‖,kinz,kscz)

∣∣2 Sα(q‖)
〉

. (7.51)

This approximation known as the local monodisperse approximation (LMA) [61,
62] works nicely on a point of view of data analysis because partial correlation
between particles can be reintroduced in each domain. But, one have to bear in mind
that LMA relies on a unphysical description of most of the experimental systems.
Upon a progressive increase of the size correlation between neighboring particles, a
continuous transition from DA to LMA is obtained [63].

7.4.2 Size and Shape Distribution Effects: The Mean Scattering
Form Factors

7.4.2.1 General Case

To perform the average in Eqs. (7.46, 7.47, 7.51), it is compulsory to define all the
morphological parameters νi,(i = 1, . . . ,n) that characterize the particles and their
joint probability distribution p(ν1, . . . ,νn):
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〈∣∣F (q‖,kinz,kscz)
∣∣2〉=

∫
. . .
∫

p(ν1, . . . ,νn)
∣∣F (q‖,kinz,kscz,ν1, . . . ,νn)

∣∣2 dν1 . . .dνn,

(7.52)∣∣〈F (q‖,kinz,kscz)
〉∣∣2 =∣∣∣∣

∫
. . .

∫
p(ν1, . . . ,νn)F (q‖,kinz,kscz,ν1, . . . ,νn)dν1 . . .dνn

∣∣∣∣
2

.

(7.53)

For instance, as defined previously in Fig. 7.9, νi = R,H,W,ζ . On a practical
point of view, the parameters νi are often assumed to be independent p(ν1, . . . ,νn) =
p(ν1) . . . p(νn).

The general influence of the size distribution is illustrated in the case of cylin-

ders in Fig. 7.13 on the quantities
〈
|F(q)|2

〉
, |〈F(q)〉|2 and Φ0(q) =

〈
|F(q)|2

〉
−

|〈F(q)〉|2 normalized by the mean volume 〈V 〉 of the size-distributed particles.
Sharp fringes of destructive interference are observed for monodisperse particles
at values which are specific to the particle shape and size either along the parallel or
the perpendicular direction [64]. Their position correspond to the zero of the Bessel
cardinal J1(x)/x or sine cardinal sin(x)/x functions (see Sect. 7.3.5.1). These fringes

are smoothed upon increasing the size distribution for
〈
|F(q)|2

〉
through a transfer

of intensity from the lobes to the minima. On the contrary, |〈F(q)〉|2 still shows
sharp minima but with a faster damping of the intensity with increasing wavevector
transfer. It is worth noticing that the incoherent scattering Φ0(q) peaks at q‖ = 0.
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Fig. 7.13 Influence of the polydispersity on the Born form factor of a cylinder: (a)
〈∣∣F(q‖R)

∣∣2〉,

(b)
∣∣〈F(q‖R)

〉∣∣2, (c) incoherent scattering Φ0(q‖R) =
〈∣∣F(q‖R)

∣∣2〉− ∣∣〈F(q‖R)
〉∣∣2. The gaussian

size distribution has an increasing standard deviation width σR/R = 0,0.1,0.2,0.3 as shown in the
inset of (a)
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7.4.2.2 Asymptotic Behavior of the Form Factor: the Porod
and Guinier Limits

Guinier Limit

For uncorrelated particles Sαβ (q‖) = 1, the scattering cross section Eq. (7.46) is

given only by the mean particle form factor
∣∣〈F (q‖,kinz,kscz)

〉∣∣2. Within this limit
of independent particles, the Guinier law [1, 2] deals with the asymptotic behavior
of the scattered intensity at small wavevector transfer. It allows to get a characteristic
size known as gyration radius Rg along a given direction. Let’s consider the case of
bulk small-angle scattering from an isolated fixed particle and let’s suppose that the
wavevector transfer q tends toward zero:

|F(q)|2 =
∫

S(r)

∫
S(r′)

eiq(r−r′)drdr′
q→0
� V 2 − 1

2

∫
S(r)

∫
S(r′)

[
q.(r− r′)

]2
drdr′.

(7.54)
The center of mass G of the particle defined by

∫
S(r)

(r− rG)dr = 0 (7.55)

allows to recast the scalar product in Eq. (7.54):

[
q.(r− r′)

]2 = [q.(r− rG)]2 +
[
q.(r′ − rG)

]2 −2 [q.(r− rG)]
[
q.(r′ − rG)

]
. (7.56)

By definition of rG, the cross-product disappears upon integration. If the
wavevector transfer q tends toward zero along a constant unitary vector n, Eq. (7.56)
reads

|F(q)|2
q→0
� V 2(1−q2R2

g) �V 2e−q2R2
g , (7.57)

where R2
g is the inertia moment of the particle with respect to the plane Π per-

pendicular to n and going through the gravity center G of the particle. R2
g is

defined by

R2
g =

1
V

∫
V

d2[M(r),Π ]dr. (7.58)

In size-distributed samples, if the Guinier limit (q2R2
g � 1) is valid for each class

α of particles, Eq. (7.57) is still valid but with the average inertia moment
〈
R2

g

〉
.

A complexity arises in GISAXS compared to standard SAXS because of (i)
the anisotropy of particles between the parallel and the perpendicular directions
and (ii) the refraction–reflection of the incoming and scattered beams at interfaces.
In other words, as the particle form factor in GISAXS is not a simple Fourier
transform, the validity of the Guinier law under grazing incidence is question-
able; this is all the more relevant than the analysis being hindered along the z-
direction by the Yoneda peak. For instance, the transmission functions tin

0,1tsc
0,1 used

as prefactors in the inclusion particle form factor Eq. (7.11) tends toward zero at
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small θin and θsc. The validity along the direction parallel to interfaces is justi-
fied, stricto sensu, if the particle shape is invariant along the z-axis as for cylinders.
The DWBA form factor can hence be separated into two independent components
F (q‖,kinz,kscz) = F‖(q‖)F⊥(kinz,kscz); the Guinier law can thus be applied safely
to F‖. However, one should keep in mind that, in that case, such a parallel gyration
radius results from a surface and not a volume integral as in Eq. (7.58).

Porod Limit

In bulk small-angle scattering, the Porod limit uses the integral of scattered intensity
over all the reciprocal space and its asymptotic behavior at high-q to get the average
volume/surface ratio of the particles [1, 2].

If the set of particles is characterized by a loss of long range order, the partial
pair correlation functions and the partial interference functions tend toward one at
long distance and high wavevector transfer. From Eq. (7.46), one sees that

lim
ψ,θsc→+∞

(
dσ
dΩ

)
part

(q‖,kinz,kscz) =
〈∣∣F (q‖,kinz,kscz)

∣∣2〉 . (7.59)

The signal in the high-angle scattering range is dominated by the mean cross
section per particle. For size-distributed samples, further insight can be gained by
studying, on logarithmic plot, the slope of the form factor in high q‖ and qz range.
This quantity is not hindered by the refraction effects as in this wavevector range the
Born Approximation is valid. A decrease in power law q−n

‖ and q−m
z is observed [64],

with an exponent n,m that depends on the degree of sharpness of the particle. The
case of cylinder shape is easily tractable in an analytical way. As its form factor Eq.
(7.32) can be decomposed along the two directions

Fcy(q,R,H) = Fcy(q‖,R)Fcy(qz,H),

Fcy(q‖,R) = πR2 J1(q‖R)
q‖R

; Fcy(qz,H) = Hsinc(qzH/2), (7.60)

the asymptotic behavior4 is given by

〈∣∣Fcy(q‖,R)
∣∣2〉 q‖→+∞

� 2

πq3
‖

〈
Rcos2(q‖R−3π/4)

〉

=
1

πq3
‖

(
〈R〉−

〈
Rsin(2q‖R)

〉)
, (7.61)

〈∣∣Fcy(qz,H)
∣∣2〉 =

4
q2

z

〈
sin2(qzH/2)

〉
=

2
q2

z
(1−〈cos(qzH)〉) . (7.62)

4 J1(x)
x→+∞�

√
2
πx cos(x− 3π

4 )
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As the size distribution p(x) are bounded functions of x, the Fourier transform
over the size distributions that appear in Eqs. (7.61 and 7.62) tend toward zero at
high-q value. The exponents are n = 3,m = 2. The asymptotic regime is reached
when these characteristic function, i.e., ∼

〈
Rsin(2q‖R)

〉
and ∼ 〈cos(qzH)〉 are neg-

ligible compared to the constant factor 〈R〉 or 1. If σR,H is a typical standard devia-
tion of the size distribution, as a rule of thumb, these oscillations of the form factor
are sufficiently damped as σRq‖ � 1 and σHqz � 1. Other straightforward cases are
the full sphere (Eq. (7.35)) n = m = 4 or the parallelepiped (Eq. (7.22)) n = m = 2. It
is important to keep in mind that n,m depends, of course, on the shape of the particle
(for a truncated sphere, the exponents depend on the truncation ratio; n = 4,m = 2
for an hemisphere), but also on the coupling between the size parameters ν (Eq.
(7.52)) and on the in-plane orientational average ζ (Eq. (7.39)). Randomly oriented
parallelepipeds give n = 3 like for cylinders!

To conclude, on a practical point of view, as recording data far away in recip-
rocal space gives a signal that decreases as power law, the Porod analysis is often
hampered by the noise level. Furthermore, determining Porod dimensions through
the ratio of the Porod constant and the invariants [1, 2] (i.e., the integral of the in-
tensity over reciprocal space) is quite difficult in GISAXS, because of the inherent
anisotropy between the two main directions. Only approximate results can be ob-
tained in return with many unjustified hypothesis [65, 66].

7.4.3 Some Models of Interference Functions

Providing simple models for partial interference functions Eq. (7.48) is far from
being an easy task and requires a considerable knowledge of the structure of the
system. However, DA and LMA allow to reduce the problem to that of the total
interference function. Three useful cases will be briefly summarized since a full
treatment can be found in standard crystallography text books [55, 56]:

(i) highly disordered systems described by an isotropic pair correlation function
(ii) ordered lattice with defects
(iii) lattice with loss of long range order in one or two directions for which the

paracrystal treatment is relevant

7.4.3.1 Highly Disordered Case

Highly disordered system of particles are statistically described by the reduced total
pair correlation function g(r‖). The hypothesis of homogeneity reduces the depen-
dence of g(r‖) to the relative positions of the objects r‖. As nSg(r‖) is the number
of particles per surface unit located at r‖ knowing that there is one object at origin,
the autocorrelation function of the particle positions gpp(r‖) (irrespective of their
sizes) is given in terms of g(r‖) by
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gpp(r‖) =
1
N

〈
∑
i, j

δ (r‖ − r‖,i + r‖, j)

〉
= δ (r‖)+nSg(r‖). (7.63)

The term i = j, i.e., the particle at origin is isolated through δ (r‖). Since long
range order is lacking, g(r‖) tends toward one when r‖ → +∞. Therefore, the oscil-
lating part of g(r‖) around this limit can be singled out as it contains all the structural
information:

gpp(r‖) = δ (r‖)+nS +nS[g(r‖)−1]. (7.64)

The divergence found in the Fourier transform of the previous expression (i.e.,
the interference function S(q‖)) is thus cured:

S(q‖) = 1+Nδ (q‖)+nS

∫
A

[
g(r‖)−1

]
eiq‖.r‖dr‖. (7.65)

Nδ (q‖) is broadened upon folding with the limited coherence of the beam. This
coherent scattering leading to the specular rod is often dropped out in the total inter-
ference function. For isotropic systems, g(r‖) and S(q‖) depend only on the modulus
r‖,q‖ and are linked in two dimensions through an Hankel transform:

S(q‖) = 1+2πnS

∫ ∞

0
[g(r‖)−1]J0

(
r‖q‖
)

r‖dr‖,

g(r‖) = 1+
1

2πnS

∫ ∞

0
[S(q‖)−1]J0

(
r‖q‖
)

q‖dq‖. (7.66)

g(r‖) and S(q‖) are related to the partial pair correlation functions gαβ (r‖) and
the partial interference functions Sαβ (q‖) by substituting in Eq. (7.46) the particle
shape by a Dirac peak and the particle form factor Fα :

g(r‖) = ∑
α,β

pα pβgαβ (r‖), S(q‖) = ∑
α,β

pα pβSαβ (q‖). (7.67)

The Dirac contribution at origin was ignored in the previous equation. The g(r‖)
and S(q‖) curves are made of broader and broader peaks whose positions are linked
to the mean distance D between scatterers; as they are normalized functions, their
limit r‖,q‖ →+∞ is equal to one. However, any functions with such features are not
necessarily valid since g(r‖) should be an autocorrelation function (S(q‖) > 0). The
analytical build-up of such functions is quite difficult as it relies on a knowledge
of the types of “interactions” that are responsible for the observed morphology.
Approximations were developed in the field of thermodynamics of gazes or glasses
to determine them from the interaction potential between particles [67]. Figure 7.14
illustrates such calculations for monodisperse particles of diameter σ0 that do not
overlap in two dimensions. Even this simple hard core constraints induces a short-
range structuring at the preferential distance σ0 upon increasing the coverage. It is
worth noticing that, apart from the excluded coherent term, S(q‖ = 0) is finite. This
value is given by the statistical fluctuations of the number of particles in the probed
area [55].
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Fig. 7.14 (a) Pair correlation function and (b) interference function of particles of diameter σ0
interacting through an hard core potential as function of the coverage η = nSπσ2

0 /4. From [50]

7.4.3.2 Ordered Lattices with Defects

The Lattice

A lattice of particles is defined by two basis vectors a,b and a pattern made of
several particles linked to each lattice site. The interference function Eq. (7.65) is
made of sharp Bragg rods extending perpendicular to the surface and located at the
nodes of the reciprocal lattice defined through the two vectors:

a∗ = 2π
b×n

a. [b×n]
, b∗ = 2π

n×a
b. [n×a]

, (7.68)

where n is the normal to the surface and × the vector product. Even if scattering is
performed at small angles, the curvature of the Ewald sphere finds its importance
when diffraction from super lattice is involved.

The Rod Shape in the Interference Function

If the lattice is perfect, the rods are Dirac peaks. Defects of any kinds, finite-size
effects and limited coherence length of the beam induce an homogeneous broaden-
ing of these rods. All over the reciprocal space, the shapes of the rods depend on
the underlying models of disorders. Accounting for this broadening can be done in
an efficient and effective way (as it is done for reflections in powder diffraction) by
folding the lattice sites with simple rod shapes S (q‖) like gaussian or lorentzian:

S(q‖) =∑
n
∑
m

S (q‖ −na∗ −mb∗). (7.69)

The rod does not follow necessarily the symmetry of the lattice and its width is
inversely proportional to the involved coherence lengths [50].
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The Unit Cell Structure Factor

The scattering unit in the case of a regular lattice is a pattern made of Np particles
located at r‖,k within the unit cell (a,b). The associated unit cell structure factor is

FC(q‖,kinz,kscz) =
Np

∑
k=1

Fk(q‖,kinz,kscz)eiq‖.r‖,k . (7.70)

Taking the configuration average of the previous equation leads to the same ques-
tioning as in Sect. 7.4.1 about correlations between the particles and their locations
inside the unit cell. Neglecting them corresponds to the decoupling approximation.
By denoting 〈. . .〉S and 〈. . .〉P, the average over the particle sizes and over the intra-
cell position, this hypothesis leads to

〈
FC(q‖,kinz,kscz)

〉
=

〈
Np

∑
k=1

〈
Fk(q‖,kinz,kscz)

〉
S

eiq‖.r‖,k

〉

P

. (7.71)

By introducing the fluctuations δr‖,k of the kth-particle position around its mean
value r0

‖,k (
〈
δr‖,k

〉
P

= 0) and after an expansion of the exponential term to second
order in displacement, the classical Debye–Waller factor appears:

〈
FC(q‖,kinz,kscz)

〉
=

Np

∑
k=1

〈
Fk(q‖,kinz,kscz)

〉
S

e
iq‖.r

0
‖,k e−Wk(q‖)/2, (7.72)

where Wk(q‖) =
〈
(q‖.δr‖,k)2

〉
P

= q‖Bkq‖. Bk is the symmetric tensor of the stan-
dard deviations of the particle displacements. The other mean form factor involved
in Eqs. (7.46 and 7.47) can be expressed as

〈∣∣FC(q‖,kinz,kscz)
∣∣2〉 =

Np

∑
k=1

〈∣∣FC(q‖,kinz,kscz)
∣∣2〉

S

+
Np

∑
k,l=,1(k �=l)

〈
Fk(q‖,kinz,kscz)F ∗

l (q‖,kinz,kscz)
〉

S

×e
iq‖.(r

0
‖,k−r0

‖,l)
{

e−Wk(q‖)/2 + e−Wl(q‖)/2 −1
}

.

(7.73)

By gathering Eqs. (7.72 and 7.73) in Eqs. (7.46 and 7.47), the cross section reads
(

dσ
dΩ

)
part

= Φ0(q‖,kinz,kscz)+S(q‖)SC(q‖,kinz,kscz), (7.74)
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Φ0(q‖,kinz,kscz) =
1

Np

Np

∑
k=1

{〈∣∣Fk(q‖,kinz,kscz)
∣∣2〉

S

−
∣∣∣〈Fk(q‖,kinz,kscz)

〉
S

∣∣∣2 e−Wk(q‖)
}

, (7.75)

SC(q‖,kinz,kscz) =
1

Np

∣∣∣∣∣
Np

∑
k=1

〈
Fk(q‖,kinz,kscz)

〉
S

e
iq‖.r

0
‖,k e−Wk(q‖)/2

∣∣∣∣∣
2

.

(7.76)

The lattice interference function S(q‖) is weighted by the average unit cell struc-
ture factor SC(q‖,kinz,kscz) with a decrease of the Bragg rod intensities through a
Debye–Waller factor. This intensity lost in the Bragg peaks is recovered spread all
over the reciprocal space in the incoherent scattering term Φ0(q‖,kinz,kscz).
Within the local monodisperse approximation, the domains that interfere incoher-
ently are made of a lattice with monodisperse particles at fixed positions in the unit
cell. This is equivalent to weight the lattice site with a average structure factor that
accounts for size and Debye–Waller disorders:

(
dσ
dΩ

)
part

= S(q‖)SC(q‖,kinz,kscz), (7.77)

SC(q‖,kinz,kscz) =
1

Np

Np

∑
k=1

∣∣∣∣
√〈∣∣Fk(q‖,kinz,kscz)

∣∣2〉
S
e

iq‖.r
0
‖,k e−Wk(q‖)/2

∣∣∣∣
2

.

(7.78)

7.4.3.3 The Paracrystal

The paracrystal model was mainly developed in the early 1950s by Hosemann [68]
and coworkers before the publication of a comprehensive book [69]. Even if the
paracrystal is based on an underlying lattice of nodes, the long range order is pro-
gressively destroyed in a cumulative way. This so-called second kind disorder [55]5

induces a broadening of the Bragg reflections with wavevector transfer.
The analytical treatment of the paracrystal is easily handled in 1D. The site–site

autocorrelation function g(x) of the 1D paracrystal is calculated by taking advantage
on the folding product through the knowledge of the statistics of the distances be-
tween neighboring sites p(x). After putting the first site at origin, the second one is
put at a distance x with a density probability p(x) that is peaked at a mean value D.
The third one is added at a distance y from the second site using the same rule. Thus,
its probability density for a distance x from origin is the product p(y)× p(x− y) in-
tegrated over all the possible intermediate distances y; this is nothing else than the

5 The first kind of disorder, introduced in the previous section, keeps the sharpness of the Bragg
peaks everywhere in reciprocal space as long as an average lattice can be defined.
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convolution product p(x)⊗ p(x). A straightforward generalization to all the sites
yields for x > 0

g+(x) = p(x)+ p(x)⊗ p(x)+ p(x)⊗ p(x)⊗ p(x)+ · · · (7.79)

The total pair correlation function is given by g(x) = δ (x)+g+(x)+g−(x), where
g−(x) = g+(−x). For the folding products giving simple product in reciprocal space,
the total interference function reads

S(q)= 1+P(q)+P(q)·P(q)+P(q)·P(q)·P(q) · · ·+c.c.= Re

[
1+P(q)
1−P(q)

]
,

(7.80)

where P(q) is the 1D Fourier transform of the site–site spacing probability p(x).
Finite-size effects can be introduced by truncating the previous sum [70]. A useful
example is given by the gaussian paracrystal for which the statistics is normal:

p(x) =
1

σ
√

2π
exp

[
− (x−D)2

σ2

]
, P(q) = exp

[
πq2σ2]exp[iqD]. (7.81)

The resulting Hosemann scattering function

S(q) =
1−φ(q)2

1+φ(q)2 −2φ(q)cos(qD)
, φ(q) = exp

[
πq2σ2] (7.82)

shows broader and broader reflections upon increasing the width σ of the site spac-
ing distribution (see Fig. 7.15). At the extreme limit, as a result of the cumulative
disorder, only one broad peak remains in the interference function.

The generalization to higher dimensions is far from being simple except for the
perfect paracrystal. This latter relies on a set of lattice vectors with fully independent
position statistics [69]. However, the perfect paracrystal constraints the unit cells
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Fig. 7.15 (a) Pair correlation function and (b) interference function of a 1D gaussian paracrystal
for various values of the variance of site spacing distribution. From [50]
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to be parallelograms6 and the associated Fourier transform generate a too intense
scattering at low wavevector transfer that is cured only with finite-size effects.

7.4.4 DA, LMA or Beyond?

7.4.4.1 Differences Between LMA and DA

Scattering from polydispersed systems of particles are most of the time analyzed
within DA and LMA as they offer two tractable expressions for the scattering cross
section. However, one has to bear in mind that they give an oversimplified view of
the morphology. The DA supposes that the particles are positioned in a way that
is completely independent of their kinds (shape, sizes, etc.). The LMA assumes a
more stringent correlation, i.e., each particle is surrounded, within the coherence
length of the X-ray beam, by objects of the same kind giving rise to an incoherent
interference between homogeneous domains.
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Fig. 7.16 Scattering from a polydispersed collection of cylinders on a paracrystalline chain as a
function of q‖ (qz = 0): LMA scattering with the same S(q‖) in each domain (thick line) and DA
scattering (thin line) (shifted down by one decade for clarity). The size distribution is normal with

〈R〉/D = σD/D = 0.29, σR/〈R〉 = 0.3. Also shown are the mean form factor
〈∣∣F (q‖)

∣∣2〉 (line

with square), the incoherent term Φ0(q‖) =
〈∣∣F (q‖)

∣∣2〉− ∣∣〈F (q‖)
〉∣∣2 (line with circle) and the

interference function (dotted line – right scale). The intensity have been normalized by the value〈∣∣F (q‖ = 0)
∣∣2〉=

〈
|V |2
〉

. The specular rod is not shown

6 For instance, the sixfold symmetry is not recovered with a perfect gaussian paracrystal based on
two vectors at 120◦ [75]
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For disordered system, the scattering at high wavevector transfer is dominated
only by the particle form factor since the interference function tends toward one.
Within this limit, both approximations give similar results.7 The differences shows
up close and below the correlation peak as shown in Fig. 7.16. Close to the ori-

gin, the DA signal is dominated by the incoherent term Φ0(q‖) =
〈∣∣F (q‖)

∣∣2〉−∣∣〈F (q‖)
〉∣∣2 while the LMA signal is lower. It is worth noticing that the location of

the maximum of intensity, the so-called correlation peak, is shifted toward low q‖
value compared to the maximum of the interference function because of the prod-
uct with the form factor. Therefore, the correlation peak position gives only a rough
estimate of the interparticle distance [50, 64].

7.4.4.2 Toward the Account of Correlations Between Particles:
the 1D Size-Spacing Correlation Approximation

In concentrated systems, the DA breakdowns because of correlations. For instance,
in the case of islands on surface, the bigger the particles the farther apart they are
because their capture area scales with their size. The analysis of some transmission
electron micrographs for Pd islands on MgO (see Sect. 7.6.1 and [64]) has given
clear evidence of a lack of correlation between sizes but pointed out a correlation be-
tween the island radius and the distance to its first neighbor. The expected scattering
computed from the microscopy results yielded to a reduction of the scattered inten-
sity as compared to the DA just below the correlation peak while LMA reproduced
the experimental results only with an ad hoc interference function. The key point is
to reintroduce some correlations between particle sizes and distances. This can be
done in LMA by linking the size of the particles in each monodisperse domain to
the interference function parameters [61, 62]. A more subtle approach called scaling
approximation (SA) was developed by Gazzillo and coworkers [76, 77]. The idea is
to obtain all the partial pair correlation functions gαβ (r‖) used in Eq. (7.46) from a
suitable scaling of that of a monodisperse system. For high particle concentration,
the efficiency of SA was tested with success against the exact scattering solution of
the only one tractable polydisperse case, namely the hard core interacting particles
in 3D [78, 79]. However, to our knowledge, the method was never really applied
to actual data analysis. On a practical point of view, whatever the approximations,
the obtained morphological parameters are valid if one takes care to fit properly the
high-q range even to the detriment of a good fit of the correlation peak.

Some attempts to rationalize the problem of getting the partial interference
functions at least for 3D particles aligned in one dimension have been made in
[58, 63, 71]. The main interest of this analytical model is to highlight the influence
of such correlations. Basically, the particles are aligned along a chain with a spacing
from particle to particle that depends on statistical way on their relative sizes. The
idea of this size-spacing correlation approximation (SSCA) is to take advantage of

7 Despite the fall in signal/noise ratio, this points out the importance of reliable measurements far
in the reciprocal space where the sensitivity to the form factor is by far the better.
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the folding properties of the scattering density autocorrelation function within the
cumulative paracrystal model. As the perpendicular r⊥ (or z) and the parallel r‖
(or y) directions behave independently, the analysis is obtained only by using the
simple Fourier transform, the DWBA scattering cross section being recovered upon
replacing the simple particle form factor by the DWBA one (see Sect. 7.3).

The autocorrelation function of the scattering volume c+
ρρ(r‖,r⊥) (see

Sect. 7.4.3) for r‖ ≥ 0 is calculated step by step along the chain from the knowledge
of (i) the joint density probability p(α0, . . . ,αn) of having a sequence of particles of
kind α0, . . . ,αn along the chain and (ii) the conditional density probability of having
an algebraic distance dn between the particles n− 1 and n knowing the sequence
α0, . . . ,αn, i.e., Pn(dn/[α0, . . . ,αn]):

C+
ρρ(r‖,r⊥) = c0

ρρ(r‖,r⊥)+ c+
ρρ(r‖,r⊥), (7.83)

c0
ρρ(r‖,r⊥) =

∫
p(α0){S0(−y,−z,α0)⊗S0(y,z,α0)⊗δ (y)}(r‖,r⊥)dα0,

(7.84)

c+
ρρ(r‖,r⊥) =

∫∫
p(α0,α1){S0(−y,−z,α0)

⊗ S1(y,z,α1)⊗P1(y/[α0,α1])}(r‖,r⊥)dα0dα1

+
∫∫∫

p(α0,α1,α2){S0(−y,−z,α0)⊗S2(y,z,α2)

⊗ P1(y/[α0,α1])⊗P2(y/[α0,α1,α2])}(r‖,r⊥)dα0dα1dα2 + · · ·
(7.85)

⊗ is the folding product in space and as previously introduced, S (y,z,α) is the
shape function of the particle of kind α . Indeed, the probability of having a given
distance d between the origin and the nth particle is the product of all the proba-
bilities of the intermediate distances between particles before the nth summed over
such distances; the constraint that the sum of such distances is d shows that the
required probability is the folding product of all the intermediate distance probabil-
ities. After having introduced Pn(q‖/[α0, . . . ,αn]), the Fourier transform along the
chain of P(dn/[α0, . . . ,αn]), the scattered intensity per particle is obtained from the
total autocorrelation function Cρρ(r‖,r⊥) = c0

ρρ(r‖,r⊥)+ c+
ρρ(r‖,r⊥)+ c−ρρ(r‖,r⊥)

(c−ρρ(r‖,r⊥) = c+
ρρ(−r‖,−r⊥)) by simple Fourier transform:

(
dσ
dΩ

)
part

= z̃0(q⊥)δ (q‖)+
∫

p(α0)
∣∣F0(α0,q‖,q⊥)

∣∣2 dα0

+2Real

{∫∫
p(α0,α1)F ∗

0 (q‖,q⊥,α0)F1(q‖,q⊥,α1)

P1(q‖/[α0,α1])dα0dα1

+
∫∫∫

p(α0,α1,α2)F ∗
0 (q‖,q⊥,α0)F2(q‖,q⊥,α2)P1(q‖/[α0,α1])

P2(q‖/[α0,α1,α2])dα0dα1dα2 + . . .

}
. (7.86)
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A divergence proportional to the size of the system appears at q‖ = 0 where all
the particles scatter exactly in phase. It is proportional to V 2(α,q⊥), the q‖ = 0 limit
of the form factor which reduces to the volume of the particle at q⊥ = 0.

The obtained formula is quite general, whatever the correlations between parti-
cles are. However, to go further on, a complete lack of correlation between sizes
of neighbors will be assumed: p(α0, . . . ,αn) = p(α0) . . . p(αn) (see [63] for the
influence of such correlations). But, to account for an excluded volume effect, the
distance between two neighbors is supposed to depend linearly on their respective
sizes R‖(αi) along the chain direction. This size-spacing correlation approximation
(SSCA) is included into Pn(dn/[α0, . . . ,αn]) through

∫ +∞

−∞
dnPn(dn/[α0, . . . ,αn])ddn = D+κ

[
ΔR‖(αn−1)+ΔR‖(αn)

]
, (7.87)

with ΔR‖(αi) = R‖(αi)−
〈
R‖(α)

〉
. D and

〈
R‖(α)

〉
are, respectively, the average

distance along the chain between particles irrespective of their sizes and the parallel
average radius. This gives in reciprocal space:

Pn(q‖/[α0, . . . ,αn]) = φ(q‖)e
iq‖Deiκq‖[ΔR‖(αn−1)+ΔR‖(αn)]. (7.88)

κ is the size-spacing coupling parameter. κ > 0 corresponds to repelling particles. It
is worth noticing that in the κ = 0 limit, Eq. (7.88) gives the statistic of the classical
paracrystal in reciprocal space φ(q‖)e

iq‖D. The introduction of these two approxi-
mations in Eq. (7.86) yields

(
dσ
dΩ

)
part

= z̃0(q⊥)δ (q‖)+
∣∣〈F (q‖,q⊥)

〉∣∣2 +2Real

{
+∞

∑
n=1

Γn(q‖,q⊥)

}
,

(7.89)

Γn(q‖,q⊥) = φ n(q‖)exp(inq‖D)
∫

. . .
∫

p(α0) . . . p(αn)F ∗(q‖,q⊥,α0)

×F (q‖,q⊥,αn)× exp

[
iκq‖

(
ΔR‖(α0)+2

n−1

∑
k=1

ΔR‖(αk)+ΔR‖(αn)

)]

dα0 . . .dαn.

The geometric series allows to carry out the summation in Eq. (7.89):
(

dσ
dΩ

)
part

= z̃0(q⊥)δ (q‖)+
∣∣〈F (q‖,q⊥)

〉∣∣2

+2Real

{
F̃κ(q‖,q⊥)F̃ ∗κ(q‖,q⊥)

Ωκ(q‖)
p̃2κ(q‖)

[
1−Ωκ(q‖)

]
}

,

(7.90)

Ωκ(q‖) = p̃2κ(q‖)φ(q‖)e
iq‖D. (7.91)
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The characteristic function of the particle kind distribution evaluated along the
parallel size distribution was introduced in the previous equation:

p̃κ(q‖) =
∫

p(α)eiκq‖ΔR‖(α)dα. (7.92)

F̃κ(q‖) defined as

F̃κ(q‖,q⊥) =
∫

p(α)F (q‖,q⊥,α)eiκq‖ΔR‖(α)dα (7.93)

is a generalization of the average particle form factor (obtained for κ = 0). Notice
that in Eq. (7.90) the complex conjugate is applied to the particle form factor before
the average over α (Eq. (7.93)).
The total interference function S(q‖) follows from Eq. (7.90) upon replacement of
the particle shape by a Dirac peak, i.e., the particle form factor F (q‖,q⊥,α) by one:

S(q‖) = 1+2Real

{
p̃2
κ(q‖)Ωκ(q‖)

p̃2κ(q‖)
[
1−Ωκ(q‖)

]
}

. (7.94)

If κ = 0, F̃κ(q‖,q⊥) =
〈
F (q‖,q⊥,α)

〉
and p̃2κ(q‖) = 1. Thus, Eq. (7.90) re-

duces to the DA (Eq. (7.49)) with an interference function given by the Hosemann
1D paracrystal (Eq. (7.82)). The specular q‖ = 0 can also be included in Eq. (7.89)
through finite-size effects or correlation length limitation [58]. Through an expan-
sion around q‖ = 0, it is possible to demonstrate [58] that the scattering cross section
reaches a minimum for a special κ0 value:

κ0(q⊥) =
1
2

D

σ2
R‖

〈
F (q‖ = 0,q⊥)ΔR‖(α)

〉
〈
F (q‖ = 0,q⊥)

〉 (7.95)

with σ2
R‖

=
〈(

R‖ −
〈
R‖
〉)2
〉

.

Equation (7.90) is illustrated in Figs. 7.17 and 7.18 for DA, LMA and SSCA with
fixed particle aspect ratio or fixed height. As expected for disordered systems, the
different approximations give an equivalent result well above the correlation peak
where the scattering is given only by the particle form factor. The main differences
show up at and below the correlation peak, i.e., the maximum of the scattered in-
tensity. The size-spacing correlation induces a shape modification of the correlation
peak and a shift of its position that depend on the coupling parameter κ . Even if the
particle density is constant for all the approximations, at variance to DA or LMA,
the SSCA peak position qp

‖ does not give a direct measurement of the particle den-

sity using D � 2π/qp
‖ as expected from Eqs. (7.50 and 7.51). At κ = κ0, a dip of

scattering shows up below the correlation peak while at higher or lower κ value, the

curves are dominated only by the mean particle form factor
〈∣∣F (q‖)

∣∣2〉. Within

this limit, the particles can be said to be “uncorrelated” and the Guinier analysis
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Fig. 7.17 Scattered intensity within the SSCA from a 1D chain of correlated cylinders at qz = 0.
The form factor is calculated in the Born approximation. The set of simulation parameters is the
same as that of Fig. 7.16 with H/R = 1. Various models of calculations have been used for the sake
of comparison: DA, LMA, SSCA. For SSCA, the coupling parameter has been set to multiple of

the special κ0 value (see text). The left scale has been normalized by
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.

Adapted from [71]

is valid (see Sect. 7.4.2). To some extent, this complex behavior can be explained
through the expansion of the scattering cross section along the partial interference
functions Sαβ (q‖) Eq. (7.48) (see [58, 63]). The behavior along q‖ is all the more
complicated than it depends on the dimensionality of the scatterer. For instance, the
(q‖,qz) scattering of a cylinder chain (Fig. 7.18) is different along the chain axis if
the particles have an constant aspect ratio H/R or a constant height as the particle
shape involved in F̃κ(q‖,q⊥) (Eq. (7.93)) scales either with R3

‖ or with R2
‖. An in-

teresting feature (Fig. 7.18-c) is the tilt of the perpendicular scattering lobes of the
cylinder shape. While the perpendicular and the parallel directions behave indepen-
dently for the cylinder form factor, at variance to DA and LMA, the SSCA leads to
a coupling in the scattering pattern between both directions. At constant aspect ratio
and for κ > 0, on a statistical point of view, the bigger particles that scatter closer
to the origin in qz are farther apart and thus scatter closer to the origin along q‖. The
reverse is true for the smaller ones thus leading to a tilt of the scattering lobes.
The main drawback of the SSCA is its 1D treatment of the partial interference func-
tion as compared to 2D or 3D real systems. It is difficult to weight up the degree of
approximation made but SSCA seems to catch the most important physical aspects
of scattering by dense collection of particles. An example of analysis applied to is-
lands on a surface can be found in [71]. A generalization to 2D at least using the
perfect paracrystal theory [69] is possible.
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7.4.5 Dynamical Scattering and DWBA Limitations:
The Graded Interface

To calculate the incoherent scattering cross section in Sects. 7.3 and 7.4, particles
have been taken as perturbation of the wavefields reflected and refracted at flat in-
terfaces and advantage has been taken of the linearity of the scattering potential to
treat the problem of set of particles. But, for instance in the case of islands, upon
increasing the particle coverage, multiple scattering and absorption are expected to
become important, in particular when the incidence θin and exit θsc angles are close
to the critical angle as the path of the beams are considerably increased inside the
layer of particles. Improvement of the DWBA treatment can be obtained by using as
a starting point of the perturbation Eref the wavefields inside the graded interface ob-
tained after averaging along the surface the profile of electronic density that includes
the particle layer itself. In this way, multiple scattering of the primarily scattered
wave without change of parallel wavevector (i.e., only in the specular direction)
is exactly included. The result is expected to be better than using flat interfaces
because the scattering potential has a zero mean when averaged along the surface
(see Sect. 4.3.4).
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The method will be illustrated for islands on a flat surface [58] (see Sect. 7.3.1) by
using the results of Sect. 7.3.3. A generalization to all the morphologies of Fig. 7.3
is straightforward. An analogous treatment of scattering from roughness in multi-
layered systems can also be found in Chap. 6. Let us call ñ2

0(z) the average dielectric
constant perpendicular to the surface:

ñ2
0(z) =

⎧⎪⎨
⎪⎩

1 if z > t

ñ2
l (z) = n2

i
A

∫
A∑ j S j(r‖ − r‖, j,z)dr‖ if 0 < z < t

n2
s if z < 0

(7.96)

where t is the thickness of the island layer (i.e., the limit with vacuum) and S j(r‖−
r‖, j,z) the shape of the particle located at r‖, j. The z-dependence of the unperturbed
wavefield is similar to the case of a single layer Eq. (7.14) (see Chap. 3):

EPW
l (kinz,0,z) =

⎧⎪⎪⎨
⎪⎪⎩

Ã+
0 eikinz,0z + e−ikinz,0z for z > t

Ã+
1 (z)eikinz,1(z)z + Ã−

1 (z)e−ikinz,1(z)z for 0 < z < t

Ã−
2 e−ikinz,2z for z < 0

(7.97)

but with the amplitudes of the upward and downward waves Ã±
1 (z) that vary contin-

uously across the layer as kinz(z) = −
√

ñ2
l (z)k

2
0 − k2

‖. These amplitudes can be cal-

culated in a discrete way using the Abelès’ matrix method developed in Sect. 3.2.1
for the reflectivity of multilayers. The perturbation potential δn2(r) measures the
departure from ñ0(z) due to either the islands or the holes in between:

δn2(r‖,z) = [n2
i − ñ2

l (z)]∑
j

S j(r‖ − r‖, j,z)+ [1− ñ2
l (z)]Shole(r‖,z). (7.98)

The shape factor for vacuum between islands is nothing else than the inverse
fingerprint of the island Shole(r‖,z) = Θ(z)−Θ(z− t)−∑i Si(r‖ − r‖,i,z), Θ(z)
being the step function (Θ(z) = 0 for z < 0 and Θ(z) = 1 for z > 0). Thus

δn2(r‖,z) = [n2
i −1]∑

j
S j(r‖ − r‖, j,z)+ [1− ñ2

l (z)][Θ(z)−Θ(z− t)]. (7.99)

The second term can be dropped out as, once inserted in the DWBA cross section
due to the lack of r‖ dependence, it gives a singular term at origin δ (q‖); in fact,
only the contrast between island and vacuum scatters. Moreover, the additivity in
the perturbation induced by the islands used in Sect. 7.4 can still be used. After
having put the Fresnel wavefield of the graded interface (Eq. (7.97)) in the far-field
Green function, one ends up with an expression analogous to Eq. (7.8) or Eq. (7.18)
but with a more complex effective form factor:
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F (q‖,kiz,k f z) =
∫

dr‖eir‖.q‖
∫

dzS (r‖,z)

×
{

Ã−
1 [kinz,1(z)]Ã−

1 [−kscz,1(z)]ei[+kscz,1(z)−kinz,1(z)]z

+ Ã+
1 [kinz,1(z)]Ã−

1 [−kscz,1(z)]ei[+kscz,1(z)+kinz,1(z)]z

+ Ã−
1 [kinz,1(z)]Ã+

1 [−kscz,1(z)]ei[−kscz,1(z)−kinz,1(z)]z

+ Ã+
1 [kinz,1,(z)]Ã+

1 [−kscz,1(z)]ei[−kscz,1(z)+kinz,1(z)]z
}

. (7.100)

The above form factor includes in a continuous way the propagation effects in-
side the embedding profile of refraction index ñ0(z). In each particle slice, four
scattering events from and to upward or downward propagating waves take place.
For isolated particles, ñ0(z) � n0(z), kz,0 � kz,1,Ã+

1 � Ã+
0 and Ã−

1 � Ã−
0 � r01: Eq.

(7.9) is recovered.
The form factor of a layer of monodisperse spheres on a substrate is given in

Fig. 7.19 as function of coverageΘ = πR2ns and θin. For a full sphere, the profile of
refraction index is parabolic. Compared to the cross section of an isolated particle
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angle θc. The BA scattering has been added for comparison. Adapted from [58]
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Θ = 0 coverage, i.e., Eq. (7.9), two main conclusions can be drawn from the form
factor calculated using the graded interface Eq. (7.100). Firstly, the Yoneda peak
shape is highly sensitive to the total coverage because the evanescent waves and the
absorption are affected by the particle layer. Secondly, the location and sharpness of
the minima of the interference fringes depend in tremendous way on the coverage,
or more generally on the embedding profile of refraction index.

7.5 Experimental Considerations in GISAXS

Even though the pioneer work of Levine [3, 4] was performed using a rotating anode,
most of the GISAXS set-ups have been developed on various synchrotron sources
to take advantage of the source brilliance, of the low divergence and of the multi-
wavelength availability. Typically, the X-ray beam delivered by a wiggler, an undu-
lator or a bending magnet is low band pass energy filtered by a mirror before being
monochromatized and focused on the sample. Sets of horizontal and vertical slits
are used to define the narrowest beam. As the scattered intensity decreases rapidly
upon moving away from the origin of reciprocal space, making measurements with
the highest dynamical range and the lowest background is mandatory to deduce
correctly morphological parameters from correlated systems of particles. Scatter-
ing and absorbtion from air in particular for low-energy X-rays is avoided by using
evacuated pipes along the X-ray path or pipes filled with helium. Great care should
be taken to avoid any parasitic low-angle scattering by the beamline components.
Thus, to remove slit scattering, each set of slits is associated with guard slits with
an aperture slightly higher than the beam size.

The sample is mounted on a goniometric head specially designed to align the
sample with its surface quasi-parallel to the X-ray beam. In particular for bending
magnets, a lower beam divergence is achieved in the vertical plane. Thus, the surface
is set vertical or horizontal accordingly to the desired best resolution in qy or qz that
fits the beam divergence. However, for liquid sample, the beam has to be deflected
by a mirror on the horizontal sample. Owing to the grazing incidence geometry, the
illuminated area, the so-called footprint, is a stripe with a length equal to the sample
size and a width given by the beam size, which is typically a few hundreds of mi-
crons. Special set-up design allowed to increase the lateral resolution by around two
orders of magnitude in order to probe inhomogeneous sample with micro-focused
beams [32, 33]. Footprint down to 5×300 μm2 in the (y−x) direction were achieved
using beam defined by a 5 μm pinhole. In the grazing geometry, the beam coherence
length is considerably increased up to a few microns by the projection effect along
the surface. The in-plane symmetry is studied by rotating the sample around its nor-
mal (azimuthal rotation ω) while keeping constant the incident angle θin. Thus, as
qz �= 0, the full symmetry of 3D objects can be assessed in contrast to conventional
SAXS where qz = 0 [48].

The scattered beam is collected either (i) along ψ or θsc on a position sensitive
detector or (ii) on a bidimensional detector as an image plate or a CCD camera
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which is placed a few meters downstream. With 2D detector, several corrections
have to applied before data analysis: (i) background subtraction, (ii) flat field (i.e.,
pixel response linearity), (iii) reference if any and (iv) camera distortion. As sev-
eral decades of intensity separate the diffuse scattering from the direct beam and the
specular rod, a motorized beam-stop allows to keep the detector in its linear range
by suppressing the direct and reflected beam. The out-of-plane θsc and in-plane an-
gle ψ are limited to a few degrees (i.e., the small angle range) leading to a smallest
accessible dimension d‖ ∼ λ/sin(Ψ) or d⊥ ∼ λ/sin(θsc) of around a nanometer.
Going above becomes the field of grazing incidence diffraction from atomic scale
arrangements with more specialized diffractometer design. The highest accessible
parallel dimension is dictated by the X-ray wavelength, the lateral beam size, the di-
vergence of the primary beam and the size and location of the beam-stop. Typically,
Ψmin ∼ 0.05◦ and dmax

‖ ∼ 100 nm. Experimental set-ups derived from bulk ultra-
small-angle scattering with large sample-detector distance (several meters) in addi-
tion to an increased collimation by entrance slits allowed to extend the qy-resolution
of the in-plane characteristic length up to several microns [31]. Nearly, two orders
of magnitudes [72] can be gained compared to standard GISAXS. Compared to
USAXS, the GIUSAXS advantage is that in reflection geometry, the direct and the
reflected beams are shifted allowing to avoid, in some cases, the use of beam-stops.
Moreover, using grazing incidence increases the in-plane coherence length of the
beam due the projection onto the sample surface. However, in terms of resolution
with conventional GISAXS set-ups, it has been shown that higher distances (few
hundred of nanometers) on nanostructured surfaces can be probed by taking advan-
tage of the forward wavevector transfer qx [73].

To perform GISAXS during sample preparation, for instance the growth of ag-
gregates on a surface, the sample environment has to be made compatible with the
constraints of low background scattering. An all in-vacuum set-up connected to a
molecular beam epitaxy chamber with all the surface preparation and deposition
facilities has been thoroughly described in [34]. In the same spirit, a reactor for in
operando studies [35] of catalysts has been developed.

7.6 Examples of GISAXS Experiments in Hard Condensed
Matter: Islands on Surfaces

7.6.1 Metal/Oxide Island Growth: The Pd/MgO(001) Case

The crystalline growth on surfaces is a field of physics and chemistry and has long
attracted attention not only on fundamental point of view but also for the numer-
ous potential applications of thin films. One challenge is the in situ monitoring of
the surface morphology upon growth conditions (temperature, flux of deposition,
substrate state, gaseous environment). Apart from a better control of the elabora-
tion process, this can give some clues about the microscopic mechanisms involved
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during the growth (adsorption, diffusion, coalescence, etc.) through a comparison
with suitable theoretical models. Even if microscopy techniques give straightfor-
ward information, the lengthy acquisition time, the growth interruption, the local
view, the insulating character and the preparation of the sample set some limits
to the surveys. This is particularly true in the case of metal deposited on insulat-
ing substrates where the growth proceeds through 3D islands. This is known as the
Volmer–Weber mechanism. The capability of GISAXS to tackle the growth problem
is obvious if the technique is applied in situ.

Pg/MgO(100) model catalyst growth has been thoroughly studied with GISAXS
in situ during vapor deposition in ultra-high vacuum from the very beginning of the
growth to the coalescence at various temperatures. A dedicated experimental set-
up has been developed for such experiments [34] at ESRF (European Synchrotron
Radiation Facility). Large Z-elements on low-density substrate are very good can-
didates for such GISAXS studies. This is illustrated in Fig. 7.20 where a set of
GISAXS patterns are shown at various coverage during growth on a substrate kept
at 650 K. Upon deposition, two scattering lobes separated by the beam-stop shrinks
toward the origin of reciprocal space; in direct space, this means that all the charac-
teristics distances increase that is to say the islands get bigger and their spacing D
increases. Around 0.5 nm of equivalent thickness, interference fringes (up to third
order) along the perpendicular direction θsc ∼ qz show up indicating flat top islands.
At the same time, a scattering rod tilted by 54.7◦ from the normal when the beam is

[110][110]

[110][110] 200 nm200 nm

0.1 nm 0.2 nm 0.3 nm

0. 5 nm 0.6 nm 1 nm

1.5 nm 2 nm 3 nm
54.7°

[110][110]

[110][110] 200 nm200 nm

[110][110]

[110][110]

[110][110]

[110][110][110][110] 200 nm200 nm

0.1 nm 0.2 nm 0.3 nm

0. 5 nm 0.6 nm 1 nm

1.5 nm 2 nm 3 nm
54.7°

0.1 nm 0.2 nm 0.3 nm

0. 5 nm 0.6 nm 1 nm

1.5 nm 2 nm 3 nm

0.1 nm 0.2 nm 0.3 nm

0. 5 nm 0.6 nm 1 nm

1.5 nm 2 nm 3 nm
54.7°

30
0

30

d/2

h

D

S
iz

es
(

nm
)

Film thickness ( nm)

a) b)

c)

ψψψψ

θθθθsc

Fig. 7.20 (a) Experimental GISAXS patterns of Pd nanoislands grown by vapor deposition on
MgO(100) kept at 650 K. The equivalent deposited film thickness is given in figure. The scattering
patterns that extend up to 3◦ in ψ and θsc are displayed on a logarithmic color scale. The x-ray
beam was oriented along the [110]MgO direction. Note the rise up of a scattering rod from the
island facets above 0.5 nm. (b) Electron microscopy image (250×250 nm) after carbon replica of
the last deposit 2.8 nm. (c) Evolution of the mean island morphological parameters with the amount
of deposited material as deduced from GISAXS analysis: D (diamond) island spacing, d (square)
island diameter, h (circle) island height. From [30]
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aligned along the [110]MgO direction demonstrates that the islands display (111) lat-
eral facets. The facetting is driven by the cube on cube epitaxy ((100)Pd ‖ (100)MgO

with [100]Pd ‖ [100]MgO). An analysis of the scattering pattern was undertaken with
several shapes compatible with the island facetting. The best results were obtained
with truncated cubooctahedron (top panel of Fig. 7.21), the sensitivity to the shape
coming mainly from the high q‖ range.

This finding is compatible with the ex situ transmission electron microscopy
(TEM) plane view of the final deposit (see Fig. 7.20-b). An example of analysis
is shown in Fig. 7.21 for the 1.5 nm thick deposit. Four intensity cross sections (two
for each main azimuths with one along the Yoneda peak the other along the per-
pendicular direction at the position of the correlation peak) were simultaneously

Θ=54.7°

ψ∼ Q//

θσχ ∼ Q⊥

Θ=54.7°

Exp. ω= [110]

Exp. ω= [100]

Simulation

Simulation

Θ=54.7°Θ=54.7°Θ=54.7°

ψ∼ Q//

θσχ ∼ Q⊥

Θ=54.7°Θ=54.7°

dh (100)

(111)

h100

Exp. ω= [110]

Exp. ω= [100]

Simulation

Simulation

Fig. 7.21 Experimental (left column) and simulated (right column) GISAXS pattern for a 1.5 nm
thick Pd/MgO(100) deposit for two azimuthal sample orientations (top images: beam along
[110]MgO; down images: beam along [100]MgO). The particles were modeled by truncated cu-
booctahedron. The scattering rod tilted by 54.7◦ is due to (111)Pd side facets; it shows up
only along the [110]MgO azimuth because of the cube on cube epitaxy (100)MgO ‖ (100)Pd with
[100]MgO ‖ [100]Pd. From [30]
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fitted. The simulation was performed using DWBA for islands with size dispersed
truncated cubooctahedron and with an interference function adjusted on the TEM
micrographs. LMA instead of DA was used. The size distributions were log-normal
for the in-plane radius R while the height H was normally distributed. The obtained
parameters 2R = 12.6 nm, σR(FWHM) = 6 nm, D = 21 nm, h001 = 5.8 nm and
h = 7.9 nm allow to reproduce the main features of the GISAXS patterns, i.e., (i)
the four order of magnitude in the scattered intensity, (ii) the facet scattering rod
for the beam along [110]MgO direction only and (iii) the perpendicular interference
fringes. It is worth noticing that the specular rod was not included in the simulation.
Such fit applied all along the growth gives the evolution of the mean morphological
parameters as shown in Fig. 7.20-c. Three regimes in the island spacing can be dis-
tinguished: nucleation when the island density increases, particle growth at constant
island density and coalescence. It is interesting to notice that the particle aspect ratio
d/2R ∼ 0.62 (height over lateral size) keeps constant until the coalescence regime;
at this growth temperature, the islands are close to the equilibrium shape given by
the Wulff–Kaishew construction. The adhesion energy β = 1.12 J/m2 between the
metal and the oxide can be deduced in one shot from the GISAXS morphological
parameters; otherwise, such a determination would need lengthy TEM plane view
and cross section micrographs.

Another example of analysis from [64] is shown in Fig. 7.22. The same interface
is under concern but elaborated at a lower temperature T = 550 K; surface diffusion
is slowed down and the islands are less faceted than at T = 650 K as seen by mi-
croscopy (Fig. 7.22-a). As the GISAXS 2D patterns keep constant upon substrate
azimuthal rotation, the chosen shape for the analysis was a truncated sphere; other
shapes were unable to reproduce the intensity decrease in the high-q range. The use
of LMA was mandatory to reproduce the exact shape of scattering in the parallel di-
rection. DA produced a two-intense intensity below the correlation peak that is not
observed in the experiments. A close agreement between the GISAXS results and
ex situ TEM was obtained ensuring the capability of the scattering to get accurate
morphological parameters.

7.6.2 Self-Organized Growth of Aggregates:
The Co/Au(111) Case

The field of research on organized nanostructures obtained via natural
self-organization or surface nanopatterning is very active as the potential applica-
tions are numerous to replace top-down techniques of integration by bottom-up ones
in the field of microelectronic. As a scattering technique, GISAXS is very sensitive
to the early beginnings of spatial organization of nanostructures; the sharpening of
the interference function peaks can be used as a monitoring tool to achieve the best
organization while scanning the growth parameters.

The archetype of self-organized growth Co/Au(111) was studied in situ with
GISAXS [74]. The (111) face of gold displays a complex surface reconstruction
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Fig. 7.22 (a) Transmission electron microcopy image of a 0.9 nm thick Pg/MgO(100) deposit
grown at 550 K. (b) Experimental and simulated GISAXS patterns on logarithmic color scale. (c)
Cuts of intensity along the qy ∼ ψ (left) and qz ∼ θsc (right) as indicated on the 2D experimental
patterns. The symbols correspond to the simulated signal with truncated spheres while the contin-
uous line corresponds to the experiment. The found parameters were 〈R〉= 1.66 nm, D = 6.17 nm,
〈H〉 = 2.06 nm, σR(FWHM) = 1.3 nm as compared to TEM results: RT EM = 2±0.4 nm, DT EM =
7.9±1 nm, σR(FWHM) = 1.3. From [64]
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Fig. 7.23 (a) Scanning tunneling microscopy images of 0.4 ML of Co on the herringbone re-
construction of Au(111). Rows of cobalt dots appears on the (150× 150 nm) large-scale image.
The rectangular super-cell (Λ ∼ 7nm,κ ∼ 17nm) shown on the left image contains two dots and
is aligned along the [112]Au and [110]Au. (b) GISAXS pattern with the beam aligned along two
orthogonal directions. Sharp scattering rods (arrows on figure) up to second order appears when
the intra-row order is probed. On the contrary, the cumulative inter-rows order leads to broader
peaks. Note the appearing of a sharp rod (tilted arrow) from an other variant on the right image.
(c) Representation of the reciprocal space of a 2D lattice. From [74]

known as the herringbone reconstruction (see Fig. 7.23-a). On the growth point of
view, the nucleation of Co dots takes place at the elbow of the reconstruction; a
network of nanoparticles is obtained with a nanometer scale rectangular unit cell
oriented along the [110]Au and [112]Au directions. The symmetry 2 of the recon-
struction combined with the threefold symmetry of the substrate leads to three vari-
ants rotated by 120◦ depending on the terraces. The typical GISAXS patterns of
Fig. 7.23-b were acquired after the growth of 0.4 monolayers (ML) of Co. Com-
pared to standard nucleation and growth (see Sect. 7.6.1), sharp scattering rod are
visible when the beam is aligned along one of the super-cell edge. Even second-
order diffraction is visible when the beam is along [110]Au . The reciprocal space
is a 2D lattice of rods that intersects the Ewald sphere (see Fig. 7.23-c). Indeed as
the Co dots are very flat (two atomic layers), the form factor decreases very slowly
along the perpendicular direction. It is worth noticing that the curvature of the Ewald
sphere or, in other words, the forward wavevector transfer qx cannot be neglected
at all; by rotating the sample, it is possible to see the rods intersecting the Ewald
sphere in an out-of-plane (θsc �= 0) location while in the perfect alignment condi-
tions, the rods are tangent to the Ewald sphere. However, the rod shape depends
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on the azimuth. For a beam aligned along [112]Au, the narrow diffraction rods con-
vey a long range order with a domain size (evaluated from the inverse of the peak
width) of around 300 nm. This intra-dot-row order contrasts with the inter-row spac-
ing fluctuations linked to variation of the intrinsic period of the reconstruction. This
cumulative or liquid-like disorder (see microscopy on Fig. 7.23-a) yields broader
peaks.

By rotating the sample, a full X-ray super-cell crystallography at the nanometer
scale was undertaken to quantitatively characterize the degree of order in this sys-
tem [36]. In agreement with scanning tunneling microscopy, the unit cell chosen
for the simulations was rectangular with a pattern made of two triangular islands
rotated by 180◦ (see Fig. 7.24-c). The three variants were included in the simula-
tion. The particle radius was normally distributed while its height was kept constant
around two atomic layers. The centering of the unit cell was fitted as its varies all
along the growth. The unit cell edges were allowed to fluctuate in the framework
of the perfect 2D paracrystal. Refraction effects were included in the DWBA. The
fit results for the previously introduced images are shown in Fig. 7.24-a as well as
the simulated GISAXS patterns for two special azimuths. The main result is that the
degree of position disorder remains constant until the coalescence; it is in fact fully
determined by the substrate itself.

The last feature is the reminiscence of a sharp scattering rods well above the static
coalescence of the dots (up to nine monolayers) while STM topography tends to
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Fig. 7.24 (a) Fits within the DWBA along the intensity cuts on the two previously shown images
for a 0.4 ML Co deposit on Au(111). (b) Simulated GISAXS images with the found morphological
parameters. (c) Unit cell used for the GISAXS fits filled with two triangular islands rotated by 180◦.
The used lattice is a 2D paracrystal with three domains rotated by 120◦ to account for the three
variants. From [36] with permission
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smooth out [74]. This demonstrates that the GISAXS signal is sensitive to a nanos-
tructuration buried in the Co layer and inaccessible to STM measurements. Both
periodic strain field inside the gold substrate and a periodic array of Co grain bound-
aries are possible tracks of explanations. An anomalous GISAXS experiment at the
K-edge of Co [36] has demonstrated that, within the error bars, the signal comes
from the cobalt layer, thus corroborating the model of scattering from periodic grain
boundaries.

7.7 Soft Condensed Matter GISAXS Studies: A Nanometer
Scale Crystallographic Study of Self-Organization
in Templated Silica Thin Films

Since the pioneering work of Mobil researchers, surfactants are used as supra-
molecular templates to self-assemble inorganic precursors such as silica. The ap-
proach takes benefit from the tendency of amphilic organic molecules (surfactants)
to self-organize in liquid media into complex 1D, 2D or 3D supramolecular aggre-
gates in the 1–50 nm range as function of the concentration. The synthesis of a great
variety of new nanomaterials through condensation of the precursors in the organic
template has been extended to the fabrication of mesoporous thin films. Various
morphologies with a good long range order have been obtained (lamella, hexago-
nal, cubic and 3D hexagonal structures). In the case of thin films, the procedure
of evaporation-induced self-assembly (EISA) during dip-coating or spin-coating is
often used. But, despite the potential utility of such films in various applications
(sensors, membranes, catalysts, etc.), little is known on the kinetics of the organi-
zation and the degree of ordering inside the film during the sol-condensation and
the interplay with external parameters such as the evaporation rate or the external
humidity. Microscopy techniques are only able to characterize the final product of-
ten after the removal of the organic materiel (such as after a thermal treatment of
calcination). GISAXS appears as an ideal tool to probe such an organization pro-
cess in thin films owing to its sensitivity to buried interfaces and to ordering at the
nanometer scale.

The role of humidity (RH) during the formation of templated silica thin films
have been monitored in real time [28] on a film (∼ 100 nm) formed by evapora-
tion of a sol containing surfactant and silica precursor on a silicon substrate. The
sample was kept in a x-ray compatible cell in which the water partial pressure is
controlled by flowing humid or dry nitrogen. The EISA process and the effects of
RH cycles were followed by acquiring sequences of GISAXS patterns on a CCD
detector (Fig. 7.25) located at 0.735 m from the sample. The measurements were
performed on a liquid spectrometer at NSLS (National Synchrotron Light Source,
USA); the sample is kept horizontal and the beam is deflected by Ge monochroma-
tor and impinges at an incident angle close to the critical angle of the substrate.
Pattern Fig. 7.25-a displays only the specular rod hidden by the beam-stop and
corresponds to a disordered dilute phase. After complete solvent evaporation, the
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Fig. 7.25 Evolution of GISAXS patterns during the transformation of the sol liquid film to the
structured mesophases. (a) Liquid film, (b) 2D hexagonal phase (RH = 0.4), (c) 2D hexagonal phase
and onset of the cubic phase, (d) 2D hexagonal + cubic phases at RH = 0.8, (e) 2D hexagonal +
cubic phases at RH = 0.3, (f) 2D hexagonal + cubic phases at RH = 0.8. The wavevectors transfers
are given on figure. From [28]

pattern is typical of a 2D hexagonal phase [25, 27] of p6m symmetry made of cylin-
drical micelles aligned parallel to the substrate; of course, the sample is in-plane
polycrystalline. However, at this stage, the film is still modulable and sensitive to
a water uptake induced by the relative humidity. Raising RH from 0.4 to 0.8 trans-
forms the 2D hexagonal phase to a cubic Pm3n phase. Indeed, the penetration of
water molecules between surfactant headgroups transform cylindrical micelles into
spherical ones. The cubic scattering patterns consists of three concentric circles on
which the (200)cub, (210)cub and (211)cub Bragg reflections are aligned. This cu-
bic phase is stable upon reduction of RH up to 0.3 with average cubic parameters
a = b = c = 8.96 nm. This phase is located on top of the film as demonstrated by
varying the incident angle and thus the probed depth. At variance, the hexagonal
one located at the bottom region is much more sensitive to RH and distorts. The
hexagonal phase distortion can be quantified by following the (10)hex and (01)hex

Bragg reflections shown in Fig. 7.25. While at the beginning the hexagonal phase
is characterized by a unique lattice parameter ahex = 8.29 nm, it is more convenient
to introduce a face-centered rectangular unit cell (see Fig. 7.26) defined by param-
eters b and c such that the reflections (11)rec is equivalent to (10)hex and (02)rec

to (01)hex. These parameters b,c and the distortion η = (
√

3− c/b)/
√

3 defined
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Fig. 7.26 Drawing of the hexagonal and rectangular face-centered unit cells. Evolution of the
lattice parameters b,c as function of time and cycles of RH. From [28]

as the departure of c/b from its
√

3 hexagonal value as function of RH are given
in Fig. 7.26. A special care has to be taken to unfold the refraction effect in order
to extract correctly the c parameter. An irreversible behavior on the b parameter is
observed after the first humidity cycle (up to 250 s in Fig. 7.26). Both parameters
b and c increase (from 7.4 to 8.5 nm for c, from 4.2 to 4.8 nm for b) in such a way
that there is no overall distortion of the unit cell (η ∼ 0). This correspond roughly
to an uptake of two monolayers of water molecules per micelle. After this transient
state with an exponential temporal behavior, the b parameter is pinned and the film
can only swell in the perpendicular direction but with a reduced flexibility due to
aging of the silica network. Thickness measurements showed that it is the entire
film that evolves demonstrating a quick intrusion of water molecules through the
porous channels or through the grain boundaries. As the condensation of the silica
network should be isotropic, this anisotropic behavior on the lattice parameters is
related to patchwork of randomly oriented domains made of cylindrical micelle do-
mains parallel to the substrate. The in-plane mosaicity hinders the dilatation along
the substrate while the film/vapor interface introduces a degree of freedom in the
perpendicular direction.
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Main Notation Used in This Book

z Direction normal to the surface
x,y Directions in the plane of the surface
‖ Used to describe a component parallel to the

interface plane
xOz Plane of incidence
j Label of layer. Numbering of layers goes from 0

(upper medium) to N the last layer. s is the substrate
Z j Average location of the j−1, j interface
z j(x,y) Fluctuations of the interface location around Z j

k Wave-vector
kin, kr, ktr, ksc Incident, reflected, transmitted and scattered wave vectors
kin z, j z component of the incident wavevector in the jth layer
kz, j when unambiguous
q Wave vector transfer
q Modulus of the wave vector transfer
qx, q‖, qz Components of the wave vector
u Scattering direction
r, t Reflection and transmission coefficients in amplitude
R,T Intensity reflection and transmission coefficients
r j−1, j Reflection coefficient in amplitude when passing from

medium j−1 to medium j
t j−1, j Transmission coefficient in amplitude when passing from

medium j−1 to medium j
E Electric field
êin, êsc Polarisation vectors of the incident and scattered fields
B Magnetic field
j Current density
P Electric polarisation
A Vector potential
S Poynting’s vector
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344 Main Notation Used in This Book

A±
j Amplitude of the upwards and downwards propagating

electric fields in layer j
U(±kin z, j,z) A±

j e±kin z, jz

M Transfer matrix
pn n-point probability distribution
σ rms roughness. σ2 = 〈z2〉
Czz(x1,x2,y1,y2) Height–height correlation function

Also denoted 〈z(x1,y1)z(x2,y2)〉
g(r) 2σ2 −2Czz(x1,x2,y1,y2)
G Green function

G Green tensor (electromagnetic case)

ei(ωt−k.r) waves are used except in Chap. 5 devoted to neutron reflectivity (see
Sect. 1.2.1 for details related to the conventions used in this book, and Sect. 5.1
for the notation used in Chap. 5).

Table 7.1 Typical length scales for x-ray reflectivity experiments

Definition Value

Wavelength λ 1Å
Scattering length b re = 2.818×10−15 m

for 1 electron
Extinction length Le = λ

2π|n−1| 1μm

Longitudinal coherence length λ 2/δλ 1μm
Incidence slit opening 0.1mm
Detector slit opening

normal to the plane of incidence (y) hy 10 mm
Detector slit opening

in the plane of incidence (x) hx 0.1–1 mm
Sample-to-detector distance L 1m
Transverse coherence length λ/Δθy 10nm

normal to the plane of incidence (y) with Δθy = hy/L
(when fixed by the detector)

Transverse coherence length λ/(θΔθ) 100μm
in the plane of incidence with Δθx = hx/L for θ = 10mrad
projected on the surface (x)
(when fixed by the detector)

Illuminated area (0.1mm/θ)×
(length × width) (1–10 mm)

Absorption length μ = λ/4πβ 0.1–1 mm
for β = 10−7–10−8



Index

Absorption, 26
photoelectric, 38

Absorption edge, 38
Angle of incidence, 88
Anomalous scattering, 30, 295
Atomic form factor, 29
Atomic scattering factor, 29
Autocorrelation function, 314, 318, 322

Background subtraction, 162
Born approximation, 107, 177

first, 55, 79, 141
scattering cross-section, 141

planar interface, 81
scattering cross-section, 79
self-affine surface, 82
single rough interface, 80

Born development, 54
Boundary conditions, 100
Bragg-like peaks, 260
Broadening, peak, 250

Central limit theorem, 65
Characteristic function, 63

two-dimensional, 254
Classical electron radius, 347
Coherence domains, 72

detector angular resolution, 70
GISAXS, 309
x-ray experiment, 72
Young’s holes experiment, 67

Coherent and incoherent scattering, 77, 80, 83,
145, 151, 307

Compton
effect, 26
wavelentgth, 33

Correlated roughness, see Replicated
roughness

Correlation function, 62, 63
Gaussian, 66
self-affine surface with cutoff, 66
self-affine surface, fractal surface, 66

Correlation length
lateral, 254
vertical, 258

Covariance, 176
function, 178, 255, 256, 267

Critical angle, 88
Croce–Névot factors, 116
Cross-section

absorption, 9
total, 9

Current density, 6

DA (decoupling approximation), 309, 320
Debye–Waller, 317, 318
Debye–Waller factor, 116
Density fluctuations, liquid surface, 147
Density inhomogeneities, 67

in a multilayer, 151
particles, 287

Detector scan, 154
Diffuse scattering, 253

resonant, 268
Dipolar approximation, 33
Dispersion correction, 30
Dispersion relations, 44
Distorted wave Born approximation (DWBA),

145, 178, 255, 273, 280
dipole source, 136
second order, 115
simpler, 180, 257
stratified media, 149

345
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DWBA (distorted wave born approximation)
buried particle, 292
graded interface, 326
hole, 292
island, 288
isolated particle, 287
particle in a layer, 292

Dynamical scattering effects, 257, 260
Dynamical theory, 107

Elastic scattering, 26
Electric dipole, field, 138
Energy conservation, 56
Energy density, 6
Ergodicity, 62, 72
Evanescent wave, 147, 279
Ewald construction, 278
Ewald sphere, 278, 286, 316, 335
Experimental setup, 241

GISAXS, 329
Extinction

length, 22
theorem, 26

Facets, 303, 332
Far-field approximation, 69
Faraday rotation, 53
Flow, 6
Fluorescence, 26, 38

yield, 38
Flux, 6, 241

density, 6
Form factor

asymptotic behavior, 312
buried particle or hole, 292
core-shell, 306
definition, 290
Fourier transforms, 296
graded interface, 327
island, 290
mean values, 310
particle in a layer, 293

Fractal dimension, 254
Fresnel

coefficients
attenuated, 244, 245, 277
for gratings, 274

equations, 91
formulas, 192
reflectivity, 91

Friedel rule, 303

Gaussian roughness, 254
Gaussian variates

characteristic functions, 65
height probability distribution, 65
two-points probability distribution, 65

GISANS, 295
GISAXS

chapter, 283
experimental setup, 329
experiments on mesoporous thin films, 337
experiments on metal/oxide growth, 330
scattering geometry, 285
self-organized growth, 333

Graded interface, 326
Grating truncation rods, 271
Gratings, 269
Grazing incidence diffraction, 266
Green function, 10, 136–140

determination using the reciprocity theorem,
136

multilayer, 139
single interface, 139
in vacuum, 138

Green tensor, 136
See also Green function, 136

Guinier limit, 312
Gyration radius, 312

Hankel transform, 315
Height–height correlation function, 238

intrinsic, 248
of two interfaces, 239

Helmholtz equation, 4, 89, 189
Hosemann function, 319
Hurst exponent, 254

Index of refraction
neutrons, 190
x-rays, 69, 87

Inelastic scattering, 26
Integral equation (for the electric field), 136
Intensity, 6
Interference function

models, 314
partial, 307
total, 314

Kinematical theory, 107, 177, 272
Kramers–Kronig relations, 44

Lattice, 316
Law of reflection, 278
Layer form factor, 177
Layer size function, 237
Layer structure factor, 177



Index 347

LMA (local monodisperse approximation),
310, 320

Lorentz electron radius , 28

Magnetic circular dichroism, 54
Magnetic scattering (x-rays)

non-resonant, 47
resonant, 47

Matrix method, 99
Multilayer

DWBA, 149
graded interface, 326
Green function, 139
periodic, 246, 280
surface scattering

Born approximation, 173

Nanostructure, 285
Non-coplanar reflectivity, 265
Non-specular reflection, 253

Optical potential, see scattering potential
Optical theorem, 17, 56

Pair correlation function
partial, 307
total, 314

Pair probability distribution, 239, 254
Paracrystal, 318
Particle shape, 296
Patterson function, 109
Peak broadening, 250
Peaks, Bragg-like, 260
Penetration depth, 97
Perturbed potential, 176, 273
Polarisability, 237
Porod exponent, 313
Porod limit, 313
Porous samples, 252
Power spectrum, 63, 66
Poynting vector, 7, 70
Probability distribution

height, 60
particle size, 310

Propagation equation (electric field), 134

Quadrupolar terms, 33

Raman effect, 26
Raman scattering, 35

resonant, 35
Rayleigh scattering, 30
Rayleigh theory, 114
Reciprocal lattice, 278, 316

Reciprocal space construction, see Ewald
construction

Reciprocity theorem
determination of Green functions, 136

Reflection
non-specular, 253
specular, 243

Reflection coefficient, 101
Reflectivity, 88

effects of surface scattering, 158
non-coplanar, 265
specular, 93

Refractive index
neutrons, 190
x-rays, 69, 87

Replicated roughness, 256
Resolution function, 154
Resonant diffuse scattering, 257, 260, 268
Rocking curve, 153
Rod of scattering, see Scattering, facets
Root mean square height (RMS height), 62
Roughness, 112

Gaussian, 244
intrinsic, 239
replicated, 239, 249, 257

Scans, experimental, 242
Scattered field, 69

exact integral equation, 69, 140
Scattering

buried particle, 292
core–shell particle, 305
density inhomogeneities, 287
facets, 303
hole, 292
island, 288
single scattering, multiple scattering, 55

Scattering cross-section, 111
Born approximation, 80
coherent, 176
collection of particles, 307
differential, 9, 69, 134, 175
first Born approximation, 141
incoherent, 176
isolated particle, 287
total, 9

Scattering depth, 287
Scattering length, 8
Scattering potential, 176
Schrödinger equation, 135
Setup, experimental, 241
Single interface, Green function, 139
Snell’s law, 278
Speckle, 73
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Specular reflection, 243
Specular rod, 309
SSCA (size-spacing correlation approxima-

tion), 321
Standing waves, 147
Stepped surfaces, 250, 262, 268
Stratified media, 67

DWBA, 149
graded interface, 326
See also Multilayer, 139

Structure factor, 317
Surface scattering

Born approximation, 79
effects on reflectivity, 158
geometry, 68
scattered intensity, 154

Susceptibility, see Polarisability

Templeton anisotropic scattering, 47
Terraced surfaces, see Stepped surfaces
Thomson scattering, 28
Transfer matrices, 100
Transition operator, 175
Transmission coefficient, 101

Umweganregung, 261, 281
Unperturbed potential, 176, 273

Wavevector transfer, 286
White lines, 38
Wiener–Kintchine theorem, 63

Yoneda peak, 149, 256, 260, 290, 292, 329
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