
The Physics of Structural Phase Transitions

Second Edition



Springer
New York
Berlin
Heidelberg
Hong Kong
London
Milan
Paris
Tokyo



Minoru Fujimoto

The Physics of Structural
Phase Transitions

Second Edition

With 95 Figures

1 3



Minoru Fujimoto
Department of Physics
University of Guelph
Guelph, Ontario
Canada, N1H 6C7

PACS: 64.70

Library of Congress Cataloging-in-Publication Data
Fujimoto, Minoru.

The physics of structural phase transitions / Minoru Fujimoto.–[2nd ed.].
p. cm.

Includes bibliographical references.
ISBN 0-387-40716-2 (alk. paper)

1. Phase transformations (Statistical physics) 2. Crystals. 3. Lattice dynamics. I. Title.
QC175.16.P5F85 2003
530.4′14–dc21 2003054317

ISBN 0-387-40716-2 Printed on acid-free paper.

c© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10951286

springeronline.com



To the memory of Professor M. Takéwaki
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Preface to the Second Edition

In the first edition, I discussed physical principles for structural phase transi-
tions with applications to representative crystals. Although published nearly
6 years ago, the subject matter is so fundamental in solid states and I am
convinced that this book should be revised in a textbook form to introduce
the principles beyond the traditional theory of ideal crystals.

Solid-state physics of perfect crystals is well established, and lattice imper-
fections are treated as minor perturbations. The basic theories are adequate
for most problems in stable crystals, whereas in real systems, disrupted trans-
lational symmetry plays a fundamental role, as revealed particularly in spon-
taneous structural changes. In their monograph Dynamical Theory of Crystal
Lattices, Born and Huang have pointed out that a long-wave excitation of the
lattice is essential in anisotropic crystals under internal or external stresses,
although their theory had never been tested until recent experiments where
neutron scattering and magnetic resonance anomalies were interpreted with
the long-wave approximation. Also, the timescale of observations is significant
for slow processes during structural changes, whereas such a timescale is usu-
ally regarded as infinity in statistical mechanics, and the traditional theory
has failed to explain transition anomalies. Although emphasized in the first
edition, I have revised the whole text in the spirit of Born and Huang for
logical introduction of these principles to structural phase transitions. Deal-
ing with thermodynamics of stressed crystals, the content of this edition will
hopefully be a supplement to their original treatise on lattice dynamics in
light of new experimental evidence.

We realize that in practical crystals, a collective excitation plays a signif-
icant role in the ordering process in conjunction with lattice imperfections,
being characterized by a propagating mode with the amplitude and phase.
Such internal variables are essential for the thermodynamic description of
crystals under stresses, for which I wish to establish the logical foundation,
instead of a presumptive explanation.

Constituting a basic theme in this book, the collective motion of dynami-
cal variables is mathematically a nonlinear problem, where the idea of solitons
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casts light on the concept of local fields, in expressing the intrinsic mechanism
of distant order involved in the collective motion in a wide range of tempera-
ture. While rather primitive at the present stage, I believe that this method
leads us in a correct direction for nonlinear processes, along which structural
phase transitions can be elucidated in further detail. I have therefore spent a
considerable number of pages to discuss the basic mathematics for nonlinear
physics.

I thank Professor E. J. Samuelsen for correcting my error in the first edition
regarding the discovery of the central peak.

Mississauga, Ontario M. Fujimoto
September 2003



Preface to the First Edition

Structural phase transitions constitute a fascinating subject in solid state
physics, where the problem related to lattice stability is a difficult one, but
challenging to statistical principles for equilibrium thermodynamics. Guided
by the Landau theory and the soft mode concept, many experimental stud-
ies have been performed on a variety of crystalline systems, while theoretical
concepts acquired mainly from isotropic systems are imposed on structural
changes in crystals. However, since the mean-field approximation has been
inadequate for critical regions, existing theories need to be modified to deal
with local inhomogeneity and incommensurate aspects, and which are dis-
cussed with the renormalization group theory in recent works. In contrast,
there are many experimental results that are left unexplained, some of which
are even necessary to be evaluated for their relevance to intrinsic occurrence.
Under these circumstances, I felt that the basic concepts introduced early
on need to be reviewed for better understanding of structural problems in
crystals.

Phase transitions in crystals should, in principle, be the interplay between
order variables and phonons. While it has not been seriously discussed so
far, I have found that an idea similar to charge-density-wave condensates is
significant for ordering phenomena in solids. I was therefore motivated to
write this monograph, where basic concepts for structural phase transitions
are reviewed in light of the Peierls idea. I have written this book for readers
with basic knowledge of solid state physics at the level of Introduction to
Solid State Physics by C. A. Kittel. In this monograph, the basic physics of
continuous phase transitions is discussed, referring to experimental evidence,
without being biased by existing theoretical models. Since many excellent
review articles are available, this book is not another comprehensive review
of experimental results. While emphasizing basic concepts, the content is by
no means theoretical, and this book can be used as a textbook or reference
material for extended discussions in solid state physics.

The book is divided into two parts for convenience. In Part One, I discuss
basic elements for continuous structural changes to introduce the model of
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pseudospin condensates, and in Part Two various methods of investigation are
discussed, thereby revealing properties of condensates. In Chapter 10, work
on representative systems is summarized to conclude the discussion, where
the results can be interpreted in light of fluctuating condensates.

I am enormously indebted to many of my colleagues who helped me in
writing this book. I owe a great deal to S. Jerzak, J. Grindley, G. Leibrandt,
D. E. Sullivan, H. –G. Unruh, G. Schaack, J. Stankowski, W. Windsch, A.
Janner and E. de Boer for many constructive criticisms and encouragements.
Among them, Professor Windsch took time to read through an early version
of the manuscript, and gave me valuable comments and advice; Professor
Unruh kindly provided me with photographs of discommensuration patterns in
K2ZnCl4 systems; and Dr. Jerzak helped me to obtain information regarding
(NH4)2SO4 and RbH3(SeO3)2, and to whom I express my special gratitude.
Finally I thank my wife Haruko for her continuous encouragement during my
writing, without which this book could not have been completed.

“It was like a huge wall!” said a blind man.
“Oh, no! It was like a big tree.” said another blind man.
“You are both wrong! It was like a large fan!” said another.
Listening to these blind people, the Lord said, “Alas! None of you have
seen the elephant!”

From East-Indian Folklore.

A Remark on Bracket Notations

Somewhat unconventional bracket notations are used in this monograph.
While the notations 〈Q〉 and 〈Q〉s generally signify the spatial average of a
distributed quantity Q over a crystal, the notation 〈Q〉t indicates the temporal
average over the timescale to of observation.

In Chapters 8 and 9, the bra and ket of a vector quantity v, i.e. 〈v| and |v〉,
respectively, are used to express the corresponding row and column matrices in
three-dimensional space to fascilitate matrix calculations. Although confusing
at a glance with conventional notations in quantum theory, I do not think
such use of brackets is of any inconvenience for discussions in this book.

Guelph, Ontario M. Fujimoto
April 1996
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A structural phase transition can take place in a crystal when some dis-
tortion or reorientation in the active groups is collectively developed, which
is characterized macroscopically by a change in lattice symmetry. Landau de-
fined the order parameter in terms of irreducible representations of the sym-
metry element signifying the structural change, whereas the origin for phase
transitions can be attributed to a physical change in the active group. Being
considered as ordering phenomena in crystals, structural phase transitions
should, in principle, be closely related to a spontaneous deformation in the
lattice. We can therefore consider the interplay between active groups and
their hosting lattice, which is responsible for a structural change at a spe-
cific thermodynamic condition. On the other hand, Cochran introduced the
concept of soft phonons to deal with lattice stability, which was, nevertheless,
deduced from two competing interactions of polar order variables in his model
ionic crystal.

Although generally acceptable, there is still some confusion about these
concepts when applied to structural problems as originally implied. There-
fore, I have reconsidered their physical implications in practical crystals, so
that critical anomalies observed by various experiments can be interpreted
in terms of these interacting counterparts participating in phase transitions.
It is also a significant fact that critical phenomena are so slow in timescale
that observed results showed anomalies often conflicting with their thermody-
namic interpretation. Generally, observed anomalies depend on the timescale
of experiments, which is, nevertheless, considered as infinity in most statisti-
cal arguments based on the ergodic hypothesis. In reviewing thermodynamic
concepts, we therefore pay specific attention to the timescale of observation,
which is competitive with the characteristic time for critical fluctuations.

In Chapter 1, thermodynamic principles for isotropic media are reviewed
for structural problems, whereas in Chapter 2, statistical concepts for ordering
processes are reconsidered for typical order-disorder phenomena. In Chapter
3, classical pseudospins are proposed for binary structural transformations in
crystals, where their anisotropic correlations in low dimensions are discussed
for the singular behavior at transition points. The role played by soft phonons
is discussed in Chapter 4, where the concept of condensates is introduced for
the critical region, representing complexes of pseudospins and soft phonons.
In Chapter 5, dynamics of condensates and their nonlinear character in the
ordering process are discussed in relation to long-range order developing with
decreasing temperature. The soliton is a promising concept for ordering pro-
cesses, and hence the related mathematics is sketched in some detail, although
the application to structural problems is still in its infancy at the present stage.
Although constituting a recent topic of nonlinear physics, actual ordering pro-
cesses are, by far, more complex than a simplified mathematical model can
explain.



1

Thermodynamical Principles and the Landau
Theory

1.1 Introduction

Basically phase transitions can be interpreted within the scope of thermo-
dynamics, although precise knowledge of the transition mechanism is essen-
tial for critical regions. In most books of thermodynamics [1, 2, 3] phase
equilibria in isotropic media are discussed at some length as simple ex-
amples, while structural phase transitions in crystals are complex and de-
scribed only in sketchy manner [4, 5]. In nature, there are also many other
types of phase transitions, e.g. conductor-to-insulator transitions, normal-to-
superconducting phase transitions in metals, orientational ordering of macro-
molecules in nematic liquid crystals, and so on. Although depending on micro-
scopic mechanisms in individual systems, Ehrenfest [6] classified phase tran-
sitions in terms of derivatives of the thermodynamical potential that exhibit
discontinuous changes at transition temperatures Tc. The second-order phase
transition, among others, characterized by a continuous change of the Gibbs
potential at Tc is of particular interest, as the problem is related to a funda-
mental subject of lattice stability, if considering crystals within his classifica-
tion scheme. In this chapter, we discuss a continuous phase transition in light
of thermodynamical principles, although critical anomalies and a subsequent
domain structure in an ordered phase cannot be elucidated properly, hence
pertaining to an area beyond the limit of classical thermodynamics.

Landau [7] formulated a thermodynamical theory of continuous phase tran-
sitions in binary systems, which is sketched in Section 1.5. In his theory, a
single variable called the order parameter emerges at Tc, signifying the or-
dered phase by its nonzero values that are related by inversion symmetry. He
proposed that the variation of the Gibbs potential below Tc is expressed by
a power series of the order parameter, implying that ordering is essentially
a nonlinear process. Although well-accepted for a uniform phase, the order
parameter should be redefined for anisotropic systems; in addition, critical
anomalies cannot be explained by the Landau theory. The failure can partly
be attributed to the fact that the theory ignores inhomogeneity in critical
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states due to distributed spontaneous strains in otherwise uniform crystals.
Landau recognized such shortcomings in his abstract theory and suggested
including spatial derivatives of the order parameter for an improved descrip-
tion of phase transitions. In such a revised Landau expansion, for example,
an additional Lifshitz term composed of such derivatives can be responsible
for lattice modulation. However, even in such a revised theory, it is still not
clear if anomalies arise from a dynamical behavior of the order parameter.

Needless to say, phase transitions are phenomena in a macroscopic scale.
In a noncritical phase away from Tc if sufficiently uniform, thermodynamical
properties can be described by the ergodic average over distributed micro-
scopic variables, representing the order parameter. In contrast, the critical
region is dictated by short-range correlations among those variables in slow
motion, for which the ensemble average is obviously inadequate. Whereas in a
modified theory known as the Landau-Ginzburg theory [8] derivatives of the
order parameter express the spatial inhomogeneity, critical anomalies cannot
be fully explained due partly to time-dependent fluctuations. At the present
stage where a reliable model has yet to be established for the transition mech-
anism, the thermodynamical approach still provides a first approximate step
toward the problem. Experimentally, on the other hand, it is a prerequisite to
identify the order variable in a given system in terms of constituent ions and
molecules, whereas their behavior in anisotropic lattices needs to be visualized
from observed results.

This chapter is devoted to reviewing relevant thermodynamical principles,
thereby the primary account of phase transitions can be dealt with, although
the Landau theory has only limited access to anisotropic systems. In view of
the presence of many articles on liquid and magnetic systems, particularly an
excellent monograph by Stanley [9], our discussion on isotropic systems here
can be limited to minimum necessity.

1.2 Phase Equilibria in Isotropic Systems

Thermodynamical properties of an isotropic and chemically pure substance
can be described by the Gibbs potential G(p, T ), where the pressure p and the
temperature T are external variables representing the surroundings in equi-
librium with it. It is noted that such a substance in equilibrium is uniform, as
G(p, T ) is specified only by these variables. Conversely, however, as evident
from liquid vapor equilibrium, the substance may not necessarily be homoge-
neous under a given p-T condition, thus, such a condensing system should be
described with two potentials, G1 and G2, to represent these phases individu-
ally. In fact, these phases can coexist in equilibrium in a certain range of p and
T , being maintained by exchanging heat and mass. Accordingly, these Gibbs
potentials of coexisting phases should be involved in different internal mech-
anisms specified by the numbers of constituent particles N1 and N2 while p
and T remain as common external variables. On the other hand, for a crystal,
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the structural detail should specify the Gibbs potential, although insignificant
for thermal properties, as discussed later. Hence, the knowledge of isotropic
equilibria provides a useful guideline for structural phase transitions.

The thermodynamical equilibrium under a given p-T condition is deter-
mined by minimizing the Gibbs potential. For a two-phase system, we min-
imize the total Gibbs function G = G1 + G2, where G1 = G1(N1, p, T ) and
G2 = G2(N2, p, T ), namely

dG = 0 and N1 + N2 = N = constant.

Therefore, the phase equilibrium can be specified by(
∂G1

∂N1

)
p,T

=
(

∂G2

∂N2

)
p,T

.

Here the derivative µ = (∂G/∂N)p,T is called the chemical potential, which
is the same as the Gibbs potential per particle. Using chemical potentials for
the two phases, the equilibrium condition can be expressed as

µ1(p, T ) = µ2(p, T ), (1.1)

indicating that p and T for the phase equilibria are not independent. As
illustrated in Fig. 1.1, the two phases are represented graphically by areas
separated by the curve given by (1.1), on which at all points (p, T ), the phases
are in equilibrium.

Comparing phase equilibria at two proximate temperatures T and T + δT
on the equilibrium line, we expect a pressure difference δp = (dp/dT )δT
between them, corresponding to the small temperature difference δT � T .
The slope dp/dT of the curve can be obtained from arbitrary variations δp
and δT at a point (p, T ), for which we consider that the chemical potential is
continuous across the line in arbitrary manner, that is,

δµ1(p, T ) = δµ2(p, T ), (1.2)

where

δµ1(p, T ) =

[(
∂µ1

∂T

)
p

+
(

∂µ1

∂p

)
T

(
dp

dT

)]
δT =

[
−s1 + v1

(
dp

dT

)]
δT

and

δµ2(p, T ) =
[
−s2 + v2

(
dp

dT

)]
δT for δp = 0.

Here, si = −(∂µi/∂T )p and vi = (∂µi/∂p)T are specific entropies and volumes
of the phases i = 1 and 2, respectively. From (1.2) we can derive the Clausius-
Clapayron relation

dp/dT =
(s1 − s2)
(v1 − v2)

=
∆s

∆v
, (1.3)
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Fig. 1.1. A phase diagram of H2O, where the chemical potentials µsol, µliq and
µvap of ice, liquid water and vapor phases, respectively, are shown in the p-T plane.
The phase boundary between ice and water is not exactly vertical, but with a large
negative slope. The equilibrium line between water and vapor is terminated at the
critical point (pc, Tc).

where ∆s and ∆v signify the structure difference between phases 1 and 2;
i.e. the finite entropy difference corresponds to the latent heat per particle
L = T∆s, and the finite volume difference indicates a packing difference.
Equation (1.3) determines the rate at which the equilibrium pressure varies
with the equilibrium temperature in the p-T diagram.

As an example, the reciprocal rate dT/dp determines the variation of the
transition temperature with pressure, which is positive for liquid-vapor tran-
sitions because vvapor � vliquid, where the latent heat is always absorbed by
the vapor. Also notable is that the boiling point of liquid rises with increas-
ing pressure, whereas, applying (1.3) to a liquid-solid transition, the freezing
temperature can either rise or fall, depending on the sign of ∆v during solid-
ification.

We can derive a useful expression for the vapor pressure of liquid by inte-
grating (1.3). Ignoring very small vliquid as compared with much larger vvapor,
the vapor pressure can be determined from the differential equation

dvvapor

dT
=

L

Tvvapor
=

Lpvapor

kBT 2 ,

where the vapor is assumed to obey the ideal gas law, i.e. vvapor = kBT/pvapor,
where kB is the Boltzmann constant. Assuming, further, that L is independent
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of temperature, the above equation can be easily integrated and

pvapor = po exp
(

− L

kBT

)
,

where the constant of integration po corresponds to the pressure of an ideal
gas, namely pvapor = po, if L = 0. From this result, it is clear that for such an
ideal vapor, the vapor pressure remains constant during isothermal conden-
sation, providing a useful physical supplement to the van der Waals isotherm
to delineate the mathematical conjecture in the equation of state (see Section
1.4).

1.3 Phase Diagrams and Metastable States

With the aid of a phase diagram, it is instructive to see how chemical potentials
of two coexisting phases behave in the vicinity of their equilibrium. For a
uniform substance, the Gibbs potential G can be used, but for two or more
phases in equilibrium, chemical potentials are more convenient because of
(1.1). Normally, the chemical potential µ is a continuous function of p and T ,
as shown by a smooth mathematical surface in the three-dimensional µ-p-T
space of Fig. 1.2. Therefore, for liquid-vapor equilibrium, such surfaces of two
phases should intersect in a curve, along which the two chemical potentials
take an equal value. The two phases can generally coexist, whereas at arbitrary
points other than those on the equilibrium line, only one of these phases with
a lower value of µ can be stable.

For a simple isotropic substance like water, exhibiting three phases, i.e.
solid, liquid and vapor, these phase surfaces may intersect in pair to give
three equilibrium curves in the µ-p-T space. However, if a point lying on all
three surfaces or eqilibrium lines can be found, these three phases can coexist
at such a point called the triple point (Fig. 1.3). Usually, a phase diagram is
drawn in two dimensions for convenience, e.g. with two variables p and T at
a constant µ, corresponding to the three-dimensional µ-p-T surface projected
on the p-T plane. Similar projections can also be obtained on the µ-p and
µ-T planes, providing useful phase diagrams at constant T and at constant p
conditions, respectively.

Although intersecting curves in phase diagrams represent accessible equi-
librium states, it is important to realize that in practical systems, there are
always so-called metastable states, which are represented, for example, by
a point x on the extention of a constant µ-line in Fig. 1.3. Deviated from
the vapor-liquid equilibrium curve, hence unstable thermodynamically, such
a metastable state can often be observed as if it were stable. For instance,
a vapor can be compressed to a pressure higher than the vapor pressure, if
there are no appreciable nuclei for initiating condensation. Although rather
vaguely defined, the “nuclei” expresses the presence of unavoidable impuri-
ties in practical systems, playing a significant role in condensation. Such a
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Fig. 1.2. Chemical potential surfaces µ1(p, T ) and µ2(p, T ) for two phases in equi-
librium, that is represented by the intersection A. . . c.p. shown by the thick broken
line, where c.p. is the critical point. The points B and D are possible metastable
states at a constant p.

Fig. 1.3. The triple point Tt and the critical point Tc in a system of three phases.
The point x on the extension of the solid vapor equilibrium line represents a super-
saturated state.

metastable vapor, called supersaturated, is unstable against external distur-
bance like shock waves, resulting in sudden condensation.

The nature of a metastable state can be discussed with a phase diagram.
Figure 1.4b shows a µ-T diagram, where µ-curves 1 and 2 are crossing at
a temperature Tx while p is kept constant. It is noted that such a crossing
point is uniquely specified by the chemical potential µ, whereas the transition
between two phases is generally discontinuous in terms of the Gibbs potential
G.

In Fig. 1.4b for a µ-p diagram, drawn as µ2 < µ1 for T < Tx, the state y
on the µ1-curve is unstable in this region. However, such a state y below Tx
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Fig. 1.4. Equilibrium of two phases: (a) a phase diagram at a constant T , where
the intersection px is the equilibrium pressure, (b) a diagram at a constant p, where
Tx is the equilibrium temperature.

may be observed as metastable if the temperature Ty is not much different
from Tx. On the other hand, the phase 1 is stable at temperatures above Tx.
When the phase 1 represents a vapor phase stable at high temperatures, it
can be supersaturated when the temperature is lowered to below the boiling
point. Conversely, liquid 2 can be superheated when heated upward from a
lower temperature through Tx. In this case, superheated liquid is metastable
above Tx.

The stability of a metastable phase depends on rather ill-defined “nuclei”
existing in the given system. Although extrinsic in nature, such nuclei are
essential for phase transitions to occur, which are thermodynamically irre-
versible. Impurities and lattice defects in a crystalline solid play a role similar
to nuclei in a condensing system, being essential for domain formation in the
ordering process.

The slope of a µ-curve in a µ-p diagram represents the specific volume
v = (∂µ/∂p)T , which is always positive (Fig. 1.4a). Therefore, the stable
phase can be specified by a smaller v in this case, i.e. vliquid < vvapor. In
solid-liquid equilibrium, either phase can be stable, depending on which phase
has a smaller specific volume. In vapor-liquid and vapor-solid transitions, in
contrast, the vapor phase, as characterized by a larger v, is obviously stable
at all temperatures above transitions. In a µ-T diagram, on the other hand,
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the slope of an equilibrium curve is determined by the specific entropy, −s =
(∂µ/∂T )p, which is negative as shown in Fig. 1.4b. In this diagram, the stable
phase is always specified by a larger entropy.

A transition from liquid to vapor begins to occur when vliquid is increased
by heating under a constant p. On the other hand, vapor starts to change to
liquid if vvapor decreases with increasing p under a constant T . The liquid in
the former case needs to be further heated beyond the threshold for complete
vaporization, whereas the vapor in the latter case be further pressurized untill
all vapor molecules condense. Thus, two phases can coexist until one phase
is completely transformed to the other. However, when the limit of vvapor →
vliquid is achieved, the two phases cannot be distinguished, where the state
of substance is called critical. The critical state can be specified by a point
(pc, Tc) in the p-T diagram, where pc and Tc are referred to as critical pressure
and critical temperature, respectively. It is noted at a critical point that the
rate dp/dT cannot be determined from the Clausius-Clapayron equation, and
so the equilibrium curve must be terminated there, as illustrated in Fig. 1.1.

Microscopically however, vvapor and vliquid may not be equal at the crit-
ical point if molecular clusters of a finite size are responsible for initiating
condensation. In this case, vvapor − vliquid = ∆v is not zero at the critical
point, at which a latent work, −pc∆v, is required for completing condensa-
tion. In this context, the transition cannot be continuous, although it can
be considered approximately as second-order if ∆v is negligible. In addition,
the size of a molecular cluster is unknown, due perhaps to diverse nucleation
processes. Nevertheless, it is evident from opalescent experiments that such
liquid droplets can actually be observed at the threshold of condensation in
some systems, where the droplet size should be of the order of the wavelength
of scattered light. For details, interested readers are referred to Stanley’s book
[9].

In the above argument, the transition temperature Tx is not a unique
parameter for isotropic phase transitions, as it depends also on the vapor
pressure p. On the other hand, a phase transition in solids is normally observed
under ambient atmospheric pressure around 1 atm.Hg, where the properties
are virtually unchanged by p, and, hence, Tc is regarded as characteristic for
a structural change. In some cases however, such a transition temperature Tc
can be hypothetical if Tc appears higher than the melting point of the crystal,
where the real transition may be observed under a pressure p higher than
1 atm.

1.4 The van der Waals Equation of State

Thermodynamical properties of a real gas can be described adequately by the
van der Waals equation of state, which is capable of explaining the significant
feature of a classical gas, namely condensation, at least qualitatively. Although
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approximate, it is instructive to see how the theory can deal with condensation
phenomena as a first-order phase transition.

A real gas is distinct from an ideal gas obeying the Boyle-Charles law in
that finite attractive molecular interactions and nonzero molecular volume
are taken into account in deriving the equation of state. Qualitatively, attrac-
tive molecular forces should reduce the vapor pressure from that of an ideal-
ized gas, where such forces are completely ignored. Van der Waals considered
molecular interactions as averaged over long ranges, which were expressed in
the form proportional to 1/V 2. Accordingly, the effective pressure is given by
p+a/V 2, where p is the external pressure and a is a constant of the constituent
molecule. Thus, we realize that in the van der Waals theory, molecular inter-
actions are evaluated in the mean-field approximation. Further, the volume
for molecular motion cannot be considered as equal to the container volume,
but is one from which the total molecular volume should be subtracted. Gas
molecules are very small objects in a large container, but the total molecular
volume is not negligible particularly at a high density of condensing gas. He
expressed the effective gas volume by V − b, where V is the container volume
and b is another constant of the constituent.

The van der Waals equation is written for 1 mole of a gas as(
p +

a

V 2

)
(V − b) = RT, (1.4)

where R = 8.314 joule/deg/mol is the gas constant. Values of the constants
a and b are tabulated for representative gases in many standard books of
thermodynamics (See e.g. ref 2). To discuss the general feature of van der
Waals isotherms in a p-T diagram, we rewrite (1.4) in the algebraic form

V 3 − b + RT

p
V 2 +

a

b
V +

ab

p
= 0. (1.4a)

This cubic equation has either one or three real roots for given external
variables p and T . Figure 1.5 shows p-V curves at various temperatures, known
as van der Waals isotherms, among which a particular one at T = Tc has a
point of inflection at (pc, Tc) determined by a horizontal tangent. Mathemati-
cally, for all isotherms at temperatures above Tc, (1.4a) has only one real root
V at a given p above pc, whereas for those below Tc three real intersections V1,
V2 and V3 occur with a horizontal line of a given p below pc. The isotherms
for T > Tc represent clearly uniform states signified by p and V , whereas
those for T < Tc may be interpreted for the condensing state consisting of
two distinct vapor and liquid phases. However, we realize that there are some
mathematical conjectures in (1.4a), conflicting with physical realities.

First, we notice that the isotherm, as represented by (1.4), will change
continuously between the two categories when the temperature varies through
Tc. The three roots below Tc become equal to Vc, when the critical point is
approached from below. Therefore, in the limit of T → Tc, (1.4b) should be



14 1 Thermodynamical Principles and the Landau Theory

Fig. 1.5. Van der Waals’ isotherms for vapor liquid equilibria in a p-T diagram.
At Tc, liquid and vapor phases are in critical equilibrium, specified at c.p. by pc

and Tc. At temperatures below Tc, the two phases are represented by chemical
potentials µ(A) and µ(E), respectively, coexisting at all points on the horizontal line
AE at a constant vapor pressure po. The figure shows that po can be determined as
area(ABC) = area(CDE).

written as
(V − Vc)3 = 0,

indicating that

3Vc = b +
RTc

pc
, 3V 2

c =
a

pc
and V 3

c =
ab

pc
.

Therefore, critical values pc, Vc and Tc are all determined by the molecular
constants a and b; that is

pc =
a

27b2 , Vc = 3b and Tc =
8a

27b2 . (1.5)

Using these results, we can confirm that(
∂p

∂V

)
T=Tc

= 0 and
(

∂2p

∂V 2

)
T=Tc

= 0,

which are the requirements for the inflection point with horizontal tangent at
T = Tc.

It is realized that such a continuity of the van der Waals isotherm at
Tc originates from the mean-field assumption for the molecular interaction,
thereby the whole system is regarded as homogeneous. However, this is con-
tradictory to the presence of two phases, i.e., liquid droplets coexisting with
vapor at the threshold of condensation.
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Second, the thermodynamical inequality(
∂p

∂V

)
T

< 0. (1.6)

must be obeyed by all isothermal p-V curves, expressing the fact that the
pressure should always decrease with increasing volume. However, in contra-
diction to the inequality (1.6), van der Waals isotherms below Tc indicate
that the part marked BD in Fig. 1.5 has a positive slope, which is clearly a
mathematical conjecture involved in the van der Waals theory.

Using the Clausius-Clapayron equation, we showed in Section 1.2 that
the vapor pressure should remain constant during isothermal condensation.
Assuming such a vapor pressure po, all real states between B and D should
therefore be found on the straight horizontal line p = po instead of the curved
BD with a positive slope. On this part of an isotherm at T , all points on
the straight line EA should represent equilibrium states of the vapor-liquid
mixture at po and T , where the states E and A are interpreted as the beginning
and final stages of condensation, and at a point P in-between we consider
coexisting phases of the mixture.

When the vapor is compressed from a state Y along an isotherm below
Tc, condensation begins to form liquid at E. On further compressing to P,
more liquid is formed, coexisting with vapor under a constant po. At this
stage, we consider that vliquid is unchanged, whereas vvapor changes as V is
reduced from V3 by compressing the vapor. Representing the two phases by
Gibbs potentials Gvapor and Gliquid, we can write the following relation for
the condensation process.

Gvapor(E) = Gvapor(P) + Gliquid(P) − po(V3 − VP),

where
lim
P→A

Gvapor(P) = 0 and lim
P→A

Gliquid(P) = Gliquid(A)

for isothermal compression at T , so that we have the relation

Gliquid(A) = Gvapor(A) + po(V3 − V1). (1.7)

Assuming, on the other hand, that the van der Waals equation is accept-
able over the entire region of isotherms for T < Tc, we may write a therma-
dynamical relation

G(p, T ) = G(po, T ) −
∫ P

E

(
∂G

∂V

)
T

dV = Gvapor(E) −
∫ P

E
pdV.

Therefore, in the limit of P → A, we can write

Gliquid(A) = Gvapor(E) −
∫ A

E
pdV = Gvapor(E) − po(V3 − V1), (1.8)



16 1 Thermodynamical Principles and the Landau Theory

suggesting that the areas ABC and CDE above and below the horizontal line
p = po are considered as equal but with opposite signs. At T = Tc in particular,
V3 = V1 and, hence, Gliquid(Tc) = Gvapor(Tc) from (1.8), confirming that the
transition at Tc is continuous, whereas below Tc, transitions are discontinuous
by the amount of work po(V3 − V1). Using chemical potentials and numbers
of molecules in these phases, the Gibbs functions are expressed as

Gvapor(P) = Nvapor(P)µvapor(P) − po(V3 − VP)

and
Gliquid(P) = Nliquid(P)µliquid(P).

It is noted that Nliquid = N at state A, and Nvapor = N at state E, so that
Gliquid(A) = Nµliquid(A) and Gvapor(E) = Nµvapor(E). Hence, µvapor(E) =
µliquid(A) on the straight equilibrium line in Fig. 1.5, whereas the correspond-
ing Gibbs potentials at E and A are discontinuous by po(V3 − V1) on this
straight isotherm. Known as the Maxwell equal-area construction, it is clear
that the horizontal line p = po has been drawn as consistent with the equilib-
rium condition (1.1) derived thermodynamically.

In the van der Waals equation, the molecular interaction in a gas phase
is considered in the mean-field approximation. It is a logical assumption that
gas molecules are in random motion, whereas molecules are in near order in
the condensed phase, which is, however, a physical addendum to the equation
of state for interpreting the equation of state. Also assumed is that the liq-
uid phase is regarded as uniform, as specified by a parameter vliquid. In this
theory, the mixed phase is characterized in terms of ∆v = vvapor − vliquid at
temperatures close to Tc, which may be regarded as the order parameter for
the transition between these phases. However, these assumptions are clearly
too simplified to deal with the “critical region,” for which a more detailed de-
scription is obviously required. Nevertheless, even in this approximation, the
corresponding specific density difference ∆ρ, where ρ = 1/v, is more practical
than ∆v, and so we can define

η = ∆ρ = ρliquid − ρvapor ≈ ρliquid (1.9)

as the order parameter. As remarked, such a definition is valid for a uniform
state, and, hence, acceptable in the mean-field accuracy for the mixed state
below Tc. Being essential for phase transitions in general, the order parameter
as such is usually defined as

η = ρorder − ρdisorder ≈ ρorder

and it is appropriate to consider the liquid phase as ordered and the vapor
phase as disordered.

For an isotropic liquid phase, the Gibbs potential can be expressed as a
function of the order parameter η, i.e., G = G(η). The order parameter de-
fined as (1.9) is an internal variable for a condensed phase, signifying molecular
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interactions. Nevertheless, the Gibbs potential of a condensing liquid is deter-
mined by the surrounding vapor in equilibrium, where the order parameter
represents the response of the system to heat transfer from the surroundings
and to an external compression. In the former case, such an η is a thermo-
dynamic variable, as determined by external T , whereas in the latter it is a
mechanical variable, implying that the liquid condenses as the vapor is com-
pressed at p. Also, it is noted that η may not necessarily be defined as positive
for binary order in solids while defined as a positive variable in (1.9).

1.5 Second-Order Phase Transitions and the Landau
Theory

1.5.1 The Ehrenfest Classification

In Fig. 1.4b, equilibrium between different phases under a constant p condi-
tion was illustrated in a µ-T plane. Here, two chemical potential curves, µ1(T )
and µ2(T ), intersect at a temperature Tx, at which the slopes are generally
unequal, i.e., (∂µ1/∂T )p �= ∂µ2/∂T )p. Such a discontinuity in the slope at
Tx corresponds to a finite change in entropy ∆s = s1 − s2 at Tx, signify-
ing a latent heat Tx∆s for the transition. On the other hand, in Fig. 1.4a
where two µ-curves intersect at a point px under a constant T , the discon-
tinuity in the slope (∂µ/∂p)T at Tx characterizes the transition in the µ-p
diagram. In this case, an amount of external work −px∆v is required for a
mass transfer between the two phases, as discussed for the van der Waals the-
ory. Figure 1.6 shows the behavior of such isotherms in the µ-p diagram when
the critical region is approached from below Tx. Characterized by discontinu-
ous first-order derivatives (∂µ/∂p)T , transitions at pressure po are called the
first order, whereas at the critical point pc, the transition is continuous, where
the two phases cannot be distinguished by the first derivatives. However, the

Fig. 1.6. Two-phase equilibria in the µ-p plane at different temperatures, showing
the behavior of the intersection A (= E in Fig. 1.5) between µ1(p) and µ2(p), when
c.p. is approached, indicating that transitions are discontinuous, except at c.p.
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two phases can be distinguished in principle if higher-than-first-order deriva-
tives of Gibbs potentials are unequal at pc. Ehrenfest called such transitions
as second- and higher-order phase transitions, depending on the order of the
lowest nonvanishing derivative.

Figure 1.7a illustrates such a transition in a µ-T diagram that is signified
by a common tangent at Tc. However, if the curvatures at Tc are unequal,
one of these phases can always be more stable than the other on both sides
of Tc, hence representing no phase transitions. On the other hand, if we con-
sider a system of a “single” phase at all temperatures, instead of two, we can
show that Ehrenfest’s criterion for the second-order phase transition can be
fulfilled mathematically. In such a single-phase system, the transition should
be spontaneous and characterized by a discontinuous change in curvature at
Tc, i.e., ∆(∂2µ/∂T 2)p,T=Tc �= 0, and ∆(∂µ/∂T )p,T=Tc = 0. However, for such
a system, the number of constituents is constant and insignificant, and so the

Fig. 1.7. The second-order phase transition illustrated in the µ-T diagram (a) when
interpreted as two phases are in equilibrium, and in the G-T diagram (b) when
interpreted as a continuous change in the entropy S with a discontinuous curvature
at Tc, as indicated by two circles of different radii.
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transition can be described in terms of the Gibbs function; that is

∆
(

∂G

∂T

)
p

= 0 and ∆
(

∂2G

∂T 2

)
p

�= 0 at T = Tc. (1.10)

Denoting the Gibbs potential under a constant p as Go(T ) for T > Tc, the
second-order transition to G(T ) on lowering temperature can be expressed as

G(T ) = Go(Tc) − ∆G(Tc − T ).

where

∆G(Tc − T ) = Go(Tc) − G(T ) = 1
2 (∂2∆G/∂T 2)T=Tc(Tc − T )2 + . . . . (1.11)

Here, the first-order term of Tc − T is absent in the expansion because
∆(∂G/∂T )p = 0 at T = Tc, where the leading term proportional to (Tc − T )2

represents a change of the curvature at Tc that corresponds physically to
discontinuity in the heat capacity ∆Cp.

Although the above argument is acceptable for interpreting the second-
order phase transition, observed anomalies in the critical region are by no
means as simple as the above simple theory can explain. In addition, although
higher-than-second-order terms may dominate the expansion of (1.11), there is
no supporting evidence from practical systems so far reported in the literature.
In this context, we only need to consider second-order transitions. Also, it is
interesting to note that metastable states do not exist in second-order phase
transitions, as characterized experimentally by the absence of hysteresis.

1.5.2 The Landau Theory

Typically, the second-order phase transition can be found in systems under-
going order-disorder phase transitions, for which the order parameter η is
characterized by an inversion mechanism. Although defined as a scalar in
an isotropic system, η, as such, can be a vector quantity if related to the
directional displacement of active species in the crystalline system. Thermo-
dynamic properties as a whole do not reflect the domain structure that arises
from the intrinsic inversion mechanism, although they can respond to an ap-
plied field or stress. For example, ordered states in a binary system can be
twofold under no external action due to inversion or reflection symmetry, for
which thermodynamic properties represented by the Gibbs potential are in-
variant by inversion or reflection of η in the mirror plane; that is,

G(η) = G(−η). (1.12)

Landau further postulated for a binary system that the Gibbs potential can
be expanded into an infinite power series of η, which is expressed as

G(η) = Go + 1
2Aη2 + 1

4Bη4 + 1
6Cη6 + . . . , (1.13)
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where Go = G(Tc) and the coefficients A, B, C . . . are normally smooth
functions of temperature. Here, it is noted that odd-power terms are not
included in the expansion, because of the invariance requirement (1.12).

Emerging at Tc, the magnitude of η is infinitesimal at temperatures close
to Tc, and the series expansion in (1.13) can be truncated at the quartic term
1
4Bη4 for the critical region without losing accuracy. Therefore, at near Tc,
the order parameter can be determined by minimizing the truncated Gibbs
potential

G(η) = Go + 1
2Aη2 + 1

4Bη4 (1.12a)

In this case, the order parameter in thermal equilibrium can be determined
from

∂G

∂η
= Aη + Bη3 = η(A + Bη2) = 0,

yielding simple solutions; i.e., either

η = 0, (1.14a)

or

η = ±
(

−A

B

)1/2

(1.14b)

near the critical temperature. The solution η = 0 of (1.14a) is the value of
the order parameter in the disordered state above Tc, where the minimum of
G(η) occurs at η = 0, as characterized by A > 0 and B = 0 at Tc. On the
other hand, the other solution (1.14b) can be real if A < 0 and B > 0 and
assigned to the ordered phase below Tc.

In the disordered phase, the Gibbs potential is expressed by G(η) = 1
2Aη2,

where the equilibrium is given by η = 0, giving stability against fluctuating
order, which is warranted by a positive A. In contrast, the factor A changes
to a negative value below Tc from positive above Tc, so that the equilbrium is
no longer at η = 0, shifting to ηo = ±(−A/B)1/2 determined with a positive
potential 1

4Bη4 that emerges at Tc. As will be discussed later, such a quartic
potential is related to correlations among microscopic order variables.

For the coefficient A changing signs at Tc, Landau has given the expression

A = A′(T − Tc) where A′ > 0, (1.15)

giving A > 0 and A < 0 for T > Tc and T > Tc. On the other hand, the coef-
ficient B is zero and positive in the ranges above and below Tc, respectively.
Accordingly, the equilibrium value of the order parameter ηo is expressed as

ηo = 0 for T > Tc, (1.16a)

and
ηo = ±{(A′/B)(Tc − T )}1/2 for T < Tc. (1.16b)
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Fig. 1.8. Changes of the Gibbs potential G(η) in the vicinity of Tc: from a parabolic
above Tc to a double-well potential below Tc, where the equilibrium is specified by
η = 0 and η = ±ηo, respectively.

In Fig. 1.8, such Gibbs potential curves are sketched as a function of η in the
vicinity of Tc, showing that the equilibrium is at η = 0 above Tc, but shifting
continuously to ±ηo with decreasing temperature below Tc.

If a system is regarded macroscopically as homogeneous, the internal inter-
actions can be evaluated with the mean-field approximation. Nevertheless, as
a consequence of binary symmetry (1.12), the ordered phase is spontaneously
separated into two domains below Tc of equal volume in most cases, behaving
like two phases of opposite polarizations. Although properties of domains, as
represented by the Gibbs potentials G(±ηo) are identical, we cannot explain
thermodynamically how an intermingling state of opposite sublattices occurs
as alternative cases. In addition, it is significant that these oppositely polarized
domains are transformable from one to another by an external field or stress.
As discussed later for a magnetic system, such a transformation is analogous
to vapor-liquid transitions that occur by compressing or decompressing the
vapor. Such a conversion is first order and irreversible, as interactions with
extrinsic agents such as lattice defects cause energy loss during a hysteresis cy-
cle. When the order parameter is a responsive variable to an external action,
the domain conversion can be utilized for testing theories in single-domain
samples.

The parabolic temperature-dependence expressed by (1.16b) is a conse-
quence of the mean-field hypothesis. In the critical region, the observed tem-
perature dependence of ηo was not quite as described by (1.16b) but often
close to parabolic toward Tc. Nevertheless, it is a usual practice to employ
the thermodynamical approach where observed deviations from mean-field
predictions can be analyzed with an empirical temperature dependence

ηo ∝ (Tc − T )β.

Here, the exponent β represents a deviation from the mean-field value 1
2 . In

contemporary theory [10], the value of β is attributed to the dimensionality
of order variables, although its physical implication is not clear. Practically,
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Fig. 1.9. Critical anomalies in a second-order phase transition observed (a) in the
specific heat Cp (λ anomaly), (b) the squared order parameter η2 (a deviation from
a parabolic η(Tc −T ), and (c) the susceptibility (a Curie-Weiss anomaly). Here, the
broken lines indicate predictions by the mean-field theory.

a curve for η2
o plotted against T in the range below Tc shows a significant

deviation from a straight line for β = 1
2 , intersecting the base line ηo = 0

at a temperature To that is substantially higher than known value of Tc, as
illustrated in Fig. 1.9b. In practice, the deviation Tc − To = ∆T is considered
as a measure for criticality in the region close to Tc.

In the Landau theory, the entropy and heat capacity of an ordering system
can be calculated by the relation S = −(∂G/∂T )p, which is continuous at Tc,
namely

S(T > Tc) = S(Tc) and S(T < Tc) = S(Tc) +
A′2

2B
(Tc − T ).

Therefore, in the limit of T → Tc, we have S(T > Tc) = S(T < Tc). On the
other hand, the heat capacity is twofold at Tc, as seen from

Cp(Tc) = −
[
T

(
∂S

∂T

)
p

]
T=Tc

= 0 whereas Cp(Tc) = −A′2Tc

2B
,

as calculated with the above S for T > Tc and for T < Tc, respectively.
Therefore, the discontinuity in the specific heat is given by ∆Cp = A′2Tc/B
at Tc in the mean-field approximation.

However, such a discontinuity ∆Cp as shown in Fig. 1.9a has never been
observed in any continuous phase transitions, indicating that the Landau the-
ory fails in the critical region. Figure 1.10 is a typically observed heat-capacity
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Fig. 1.10. The heat capacity of β-brass, showing a typical λ anomaly in the vicinity
of Tc. (From F. C. Nix and W. Shockley, Rev. Mod. Phys. 10, 1 (1938).)

curve, characterized by a sharp rise, as Tc is approached from above, followed
by a gradual decrease with decreasing temperature. Resembling the Greek
letter λ, such a specific heat curve is considered as characteristic of order-
disorder systems, e.g., β-brass [11]. However, lacking of a proper explanation,
observed λ-anomalies can also be expressed by another set of exponents;

Cp(T > Tc) ∝ (T − Tc)−α and Cp(T < Tc) ∝ (Tc − T )−α′
.

These empirical exponents, α, α′, and β together with others for response
functions, constitute the basis of the scaling theory.

The thermodynamical theory with the truncated Gibbs potential is valid
for a weakly ordered state except in the critical region. Although the quartic
term is essential below Tc, its implication is limited to mean-field accuracy.
The transition is continuous at To in the mean-field theory, but, practically,
it is not as simple as implied by the Landau theory. In the noncritical region
below Tc, the long-range order dominates the ordering process, where it is
nonlinear, as expressed by higher terms in the Landau expansion (1.13). In
practice, the presence of anomalies make it uncertain whether such a transition
is continuous or discontinuous. However, as Blinc and Zeks [12] have pointed
out, the Landau expansion truncated at the term Cη6, for example, may
lead to a first-order transition if B < 0 and C > 0. Apart from the physical
interpretation of these coefficients, their argument is not inconsistent with
the present one. If the order parameter emerges abruptly at Tc with a finite
magnitude, the transition should be of first order in any case.
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1.6 Susceptibilities and the Weiss Field

Depending on the physical nature, the order parameter may interact with an
applied field or stress F . If such an external F is applied, the crystal can
be ordered to some extent even above Tc, for which the Gibbs potential is
no longer invariant under inversion, i.e. G(η) �= G(−η), as signified by the
interaction term ∓αηF , where α is a positive constant. In this case domain
volumes can be unequal, depending on the strength of F , and the transition
between two domains cannot be continuous. On the other hand, if F = 0,
the function G(η) is invariant for inversion and the transition is continuous,
where domains for ±η occupy exactly each one-half of the crystal volume. In
this section we discuss the effect of a weak F for a small value of η in the
region close to Tc.

These ±η can be assigned to domains under F , which are approximately
related by inversion as in the Landau theory, and we can consider the sus-
ceptibility for expressing the linear response of domains to the applied F . On
the other hand, for a finite magnitude of η, Weiss considered that the internal
field Fint is essential for the singular behavior of the susceptibility, from which
the transition temperature Tc can be determined.

1.6.1 Susceptibility of an Order Parameter

In the presence of F , we can write the Gibbs potentials for two domains as

G(±η) = Go + 1
2Aη2 + 1

4Bη4 ∓ αηF, (1.17)

which is truncated at η4 for small η, considering F as a sufficiently weak
perturbation. Obviously, the system of dipolar η is forced to be ordered by
F to some extent, even though no correlations can be effective above Tc.
Accordingly, the transition becomes diffuse in a system under F , where no
clear-cut transition temperature can be found. Nevertheless, the equilibrium
under a given F can be determined by minimizing G(±η) of (1.17) with
respect to η; namely the equation

∂G(±η)
∂η

= A(±η) + B(±η)3 ∓ αF = 0

should be solved for the equilibrium value of η. Ignoring further the term
Bη3 for a small η, we can immediately obtain expressions for the response at
temperatures very close to Tc; that is,

χ = αη/F = (α2/A′)/(T − Tc) and χ(α2/A′)/(Tc − T ) (1.18)

for T > Tc and T < Tc, respectively, which are known as the Curie-Weiss
law. The susceptibility χ goes to infinity as Tc is approached, which should
be observed with a very small applied field F ≈ 0, thereby identifying the
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transition as second order. On the other hand, the responses below and above
Tc should be different in principle, because of the correlation term B below Tc
that was ignored in the above derivation of (1.18). In addition, in the critical
region, the observed χ does not obey the Curie-Weiss law, as shown in Fig.
1.9c, where the failure of the mean-field approximation is evident. Empirically
observed 1/χ can be expressed by critical exponents γ and γ′ as

1/χ ∝ (T − Tc)γ and 1/χ ∝ (Tc − T )γ′
,

in the regions above and below Tc, respectively. The exponents γ and γ′ are
both equal to 1 in the mean-field approximation.

1.6.2 The Weiss Field in a Ferromagnetic Domain

A real gas condenses at temperatures below Tc, which is related to the molec-
ular constants a and b, according to the van der Waals theory. The transfor-
mation between vapor and liquid at a constant T < Tc can be performed by
an external work (1.7). For a binary phase transition, the Landau theory gives
only an approximate description, leaving the origin of the transition tempera-
ture Tc unexplained. For a magnetic system, Weiss introduced the concept of
molecular field to express the average magnetic interactions in a crystal, which
was considered as responsible for a singular behavior of the susceptibility. He
postulated the presence of an internal field expressed by

B int = λM (1.19a)

in a uniformly magnetized magnet, where the magnetization M is the order
parameter, and λ is called the Weiss constant. Later Heisenberg proposed the-
oretically that microscopic magnetic interactions originate from a quantum-
mechanical exchange mechanism between adjacent magnetic ions in the crys-
tal. According to his theory, such magnetic interactions are expressed as the
correlation energy −∑i

∑
j Jijs i.s j, where Jij is the exchange integral between

two ions i and j, representing the magnitude of correlation between the spins
s i and s j. Writing this expression as −∑i s i.(

∑
j Jijs j), the sum

∑
j Jijs j can

be interpreted as the instantaneous local field B int(i) at the spin s i. We can
therefore define the spatial average 〈B int(i)〉s = 〈∑i(

∑
j Jijs j)/N〉s = λ〈M i〉s,

where N is the total number of spins, as the internal magnetic field B int in the
mean-field approximation. Using the macroscopic magnetization M defined
by 〈M i〉s, the Weiss field can be expressed as B int = λM . In fact, this is
the expression of B int including the long-range contributions, although the
Heisenberg formula is originally for spin correlations in short ranges. The in-
ternal field B int can be expressed more generally by a power series of M as
in the Landau theory.

In the presence of an applied field Bo, the spin s i is considered to be in the
effective field Bo + B int, so that the Weiss relation (1.19a) can be modified
as

M = χo(Bo + B int) (1.19b)
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where χo is the paramagnetic susceptibility that obeys the Curie law

χo = C/T (C is the Curie constant),

giving the basic response from uncorrelated spins. Nevertheless, combining
these relations, the magnetic susceptibility can be expressed by

χo = M/Bo = C/(T − Cλ) = C/(T − To), (1.20)

which is the Curie-Weiss law for T > To, where To = Cλ represents the
transition temperature in the mean-field application. Thus, the linear Weiss
field (1.19a) may be considered as responsible for the singular behavior of
magnetization M at T = To.

Although logical, the Weiss field B int defined by (1.19a) and (1.19b) may
remain as a conjecture, unless substantiated in experiments. In ferroelectric
crystals, an internal electric field can be considered by analogy, which was in
fact detected using polar molecular probes. In this context, the Weiss field
should be considered as real in a magnetized crystal. As related to a nonzero
constant λ, To can be interpreted as related to a minimum spin cluster com-
bined with short-range correlations, which is analogous to a liquid droplet
for initial condensation of a gas. In Chapter 3, we will consider that second-
order phase transitions are initiated with such ordered clusters formed with
minimum correlations.

It is significant that the Weiss fields, +B int and −B int, are related to +M
and −M in opposite domains, respectively, whereas the external field Bo is
applied to the whole crystal. Therefore, the Gibbs potentials of these domains
in Bo can be written as

G+ = Go − (+M ).(+B int + Bo) and G− = Go − (−M ).(−B int + Bo),

where Go is the potential for Bo = 0 and, hence,

G+ − G− = −2M .Bo. (1.21)

Analogous to (1.8) for condensation, relation (1.21) describes a “phase transi-
tion” between two domains of magnetization M , which can be performed by
the external work −M .Bo. Depending on M , a magnetized body can there-
fore become to a single domain under a sufficiently strong applied field Bo.
In fact, (1.21) expresses the empirical fact that the total energy for domain
transformation consists of −M .Bo minus −(−M ).Bo on these domains, if
assuming that no energies are required to move domain walls. It is significant
that domains can be switched in soft magnets by applying an external field
Bo, although difficult in hard (permanent) magnets where domains are locked
in the crystal by lattice defects. At the critical temperature Tc, the transition
is thermodynamically second-order because G+ = G− if Bo = 0. In contrast,
for T < Tc the domain conversion is a first-order transition, as shown in Fig.
1.11 for an idealized ferromagnet.
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Fig. 1.11. Comparison of magneitization curves of a soft ferromagnet without an
external field and with a weak applied field Bo. The transition is generally sharp
with Bo = 0, but becomes diffuse with Bo �= 0. Varying Bo magnetic domains behave
like two phases in a first-order equilibrium, converting between A and B.

1.7 Critical Anomalies, Beyond Classical
Thermodynamics

In the critical region of a second-order phase transition, observed anomalies
cannot be explained by thermodynamical principles, as indicated by appre-
ciable deviations from the mean-field theory in all experimental results. We
can attribute these anomalies to correlated order variables [13], in spite of
unknown dynamical origin for fluctuations. However, at this stage, it may be
worth speculating about what could be responsible for critical anomalies be-
fore proceeding with arguments beyond the limit of classical thermodynamics.

Corresponding to thermodynamic equilibrium at the minimum of the
Gibbs potential, it is logical to consider internal fluctuations that may arise
from inside the system in equilibrium with the surroundings at given p and
T . It is noted that the order parameter η at parabolic minima of the Gibbs
potential G(η) can be subjected to a harmonic motion rather than random
fluctuations. In addition, such a change in η should be described in terms of
a space-time variation in the lattice structure, where ∆G can be expressed as
a function of δη = η − (0,±ηo). For a small deviation δη, we can write

∆G(δη) = G(η) − G(0) = 1
2Aδη2, A = A′(T − To) for T > To,

and

∆G(δη ± ηo) = 1
2A(δη ± ηo)

2, A = A′(To − T ) for T < To.

Corresponding to these excitations ∆G, the kinetic energy 1
2m(dδη/dt)2 can

be considered, where m is the effective mass. Therefore, we may define the
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characteristic frequency by ϖ = (A/m)1/2 of the oscillator. Using Landau’s
expression for A, the frequency of such harmonic fluctuations can be expressed
as

ϖ> ∝ (T − To)1/2 and ϖ< ∝ (To − T )1/2, (1.22)

for T > To and T < To, signifying the phase transition by these softening fre-
quencies as ϖ> and ϖ<, respectively. In fact, such fluctuations can be related
to the interaction with the lattice undergoing a symmetry change, for which
Cochran has proposed soft modes (See Chapter 4). Consider that the average
of ∆G over a short timescale to of observation can be detected; that is

〈∆G〉t = t−1
o

∫ to

o
∆Gdt, (1.23)

is nonzero and detectable if ϖto < 1, and otherwise vanishes for a long to. The
softening frequency ϖ can become very low, when To is approached, so that
the characterstic time τ = 2π/ϖ of fluctuations becomes competitive with to,
giving rise to detectable 〈∆G〉t [14]. Such a nonzero avarage 〈∆G〉t can be
considered for critical anomalies, in which the spatial profile of fluctuations
should be explicit. Consequently, the crystal appears to be inhomogeneous,
when the temporal fluctuations are slowed down.

Landau [7] recognized such nature of critical fluctuations and described
the spatial inhomogeneity in terms of distributed Gibbs potentials,

〈∆G〉t =
∑

i
〈∆gi〉t,

which represents the average of local 〈∆gi〉t at a position i. At each position
i, he considered a small but sufficiently large volume to consider a meaningful
macroscopic average, thereby the substance is regarded as inhomogeneous,
being specified by local pressure pi and temperature Ti. For a nonzero ∆gi,
these pi and Ti should be different from p and T of the surroundings, and we
can write the relation

∆gi = gi(pi, Ti) − gi(p, T ) ≥ −(Ti − T )∆si + (pi − p)∆vi,

where ∆si is a change in the local entropy and ∆vi is the corresponding small
change in volume at i. Here, the inequality expresses that such a process for
local entropy production is irreversible. Judging from an observed symmetry
change at the transition, a lattice excitation should be involved in such an
intrinsic mechanism for entropy production.

At this point, it should be emphasized that critical fluctuations in the
second-order phase transitions are not in the same category as random ther-
modynamic fluctuations that are caused generally by fluctuating external vari-
ables, ∆p and ∆T . In normal states of a crystal, such thermodynamic fluctu-
ations are so small that its thermal properties are well described by ergodic
averages, whereas critical fluctuations, in contrast, should be associated with
the spatial deformation of the lattice, which is not ergodic, thereby making



1.8 Remarks on Critical Exponents 29

the system mechanically inhomogeneous. According to recent investigations,
critical fluctuations are by no means of random type but are found to be
sinusoidal in character.

1.8 Remarks on Critical Exponents

In Landau’s thermodynamical interpretation, critical anomalies can be ex-
pressed by the spatial average of distributed Gibbs potentials locally deviated
from equilibrium. Signified by a long timescale τ, the critical fluctuation is
so slow in the region close to Tc that the spatial profile becomes explicit if
observed in the timescale to ≤ τ. Under the circumstances, it is not possible to
describe the anomalies in thermodynamical terms, because they are related to
the deformed lattice in the critical region, as will be discussed later in Chapter
3. Nevertheless, observed anomalies of η, χ and Cp are empirically analyzed in
thermodynamic terms with critical exponents on ∆T = Tc − T , as expressed
by

η ∝ (∆T )β,

χ> ∝ (−∆T )−γ, χ< ∝ (∆T )−γ′
,

and
Cp> ∝ (−∆T )−α, Cp< ∝ (∆T )−α′

.

These exponential expressions are intended to deal with anomalies within
the framework of thermodynamics, for which no rigorous justification can be
made, hence remaining hypothetical. By hypothetical, we mean that a lead-
ing mechanism is to be sought for prevailing phase transitions. Although the
physical implication is not clear, these formula are simple enough to express
deviations from mean-field predictions with these critical exponents. Never-
theless, there are some universal relations among these exponents in various
systems, constituting the basis of the scaling theory for phase transitions.

In the scaling theory, the spatial inhomogeneity is scaled down to renor-
malized units by grouping microscopic variables at lattice sites, so that the
dimensionality of ordering can be taken into account in principle, similar to
the short-range interactions for clusters in a given anisotropic crystals (See
Chapter 3). By doing so, the system can be regarded as quasi-uniform, allow-
ing to describe phase transitions thermodynamically. On the other hand, we
consider collective modes of variables that arise from ordered clusters in short
ranges, whereas the scaling approach appears to be a little too näıve to deal
with anisotropic correlations in practical crystals. Instead of relying on the
mathematical hypothesis, we prefer to consider the crystallographic model of
short-range correlations as an appropriate alternative in our discussions on
structural phase transitions. The scaling theory constitutes a highly topical
theoretical objective in modern statistical physics, although we do not discuss
it in this monograph.
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Order Variables, Their Correlations and
Statistics: the Mean-Field Theory

2.1 Order Variables

In Chapter 1, we defined the order parameter as a macroscopic variable that
signifies phase transitions. Originating from microscopic variables σm attached
to ions or molecules active at lattice sites m, their ensemble average can be
considered to represent the macroscopic order parameter η. Needless to say,
such an average is meaningful only if the system is regarded as sufficiently
uniform. In addition, if varying as functions of space-time coordinates at a long
wavelength, such variables σm may not be subjected to statistical averaging
in an inhomogeneous state of crystals.

In a disordered phase above Tc, these σm are generally in fast random mo-
tion, so that the time average 〈σm〉t vanishes at each lattice site. In contrast,
below Tc, these variables are in slow correlated motion, where 〈σm〉t averaged
over the timescale of observation may take a variety of values distributed
over the crystal. Furthermore, at temperatures close to Tc, the crystal is not
fully ordered and topologically inhomogeneous, as illustrated in Fig. 2.1, lead-
ing to either domains or a sublattice structure with decreasing temperature.
Therefore, the ensemble average is valid only if calculated at least for such
a subsystem, instead of the whole crystal. Needless to say, observed results
should be so interpreted as related to the observing condition.

Although the active group should be identified in a given system, the vari-
able σm is not always evident from the chemical formula or unit-cell struc-
ture, except for a few simple cases. Pending identification of σm, as is often
the case, one has to investigate their dynamical behavior in the critical re-
gion. For structural phase transitions, these variables σm in collective motion
play a significant role, constituting a main objective in our studies. We shall
hereafter call microscopic σm the order variable to distinguish it from the
corresponding macroscopic order parameter η.
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Fig. 2.1. Schematic ordered phases of a binary system in two dimensions, where
states of constituents are shown by open and filled circles: (a) ordered phase consist-
ing of intermingling sublattices, and (b) ordered phase of two “opposite” domains.
Domain boundaries are shown by broken lines.

In the statistical approach, the relation between η and σm may be written
in the spatial average

η =
∑

m
〈σm〉t/N (2.1a)

of 〈σm〉t in a subsystem of N lattice sites, provided that σm are uncorrelated
or only weakly correlated. On the other hand, when locally correlated, the
time average should be first calculated for a cluster of correlated σm, which
is then averaged over the lattice space in the subsystem; namely,

η = 〈ηi〉s =
∑

i
ηi/N

′ where ηi =
〈∑

cluster
σm

〉
t
, (2.1b)

and N′ the number of clusters. Although unspecified, if such correlated clus-
ters are predominant, the state of the subsystem is regarded as thermodynami-
cally uniform, as postulated in the renormalization group theory. Nevertheless,
the crystal is generally inhomogeneous during the ordering process, for which
we need precise knowledge of correlated σm in collective motion.

Ordering processes in crystals are considerably more complex than in
isotropic media, since the strained lattice plays a hidden role [15]. The col-
lective mode of σm varies at a slow rate, as inferred from critical anomalies
observed in experiments with different timescales. Processes in solid states are
generally slow, but timescales of observation are not as seriously considered as
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in the critical region. In this chapter, we review existing statistical theories on
binary systems, which are discussed in light of a slow variation. In solid-states,
values of 〈σm〉t are usually calculated by using probabilities at sites m, which
are in fact a valid concept in fast processes, where the timescale is assumed
as infinity with the ergodic hypothesis that is the basis for statistical theories
of random processes.

2.2 Probabilities, Short- and Long-Range Correlations,
and the Mean-Field Approximation

2.2.1 Probabilities

In a binary alloy AB such as Cu-Zn (β-brass), spontaneous atomic ordering
takes place as the temperature is lowered through Tc, due to diffusive atomic
rearrangement among lattice sites. If such a rearrangement rate is sufficiently
fast, as compared with the timescale of observation, we can interpret σm as
defined by the relation

σm = pm(A) − pm(B) (2.2)

and
pm(A) + pm(B) = 1, (2.3)

where pm(A) and pm(B) represent probabilities for the site m to be occupied
by an atom A and by B, respectively. Subject to realistic observations, we are,
in fact, uncertain whether the rearrangement process occurs at a sufficiently
fast rate. Considering thermal rearrangements of individual atoms, the pro-
cess can be sufficiently fast, but very slow if they are in collective motion.
Nevertheless, sufficiently fast rearrangements and a long timescale of obser-
vation are assumed for traditional statistical theories to support the probably
concept.

In a disordered phase where atoms are uncorrelated, these probabilities
can take only two values, either 1 or 0: for example, if the site m is occupied
by an atom A, pm(A) = 1, otherwise = 0. In this case, we can also write
pm(B) = 0 or 1, referring to an atom B at a site m. These probabilities in
a disordered state are independent of m if all lattice sites are occupied by
either A or B, and no vacant sites in the crystal. Below Tc, on the other
hand, due to atomic correlations, different sites m and n are not indepen-
dently occupied, for which the probabilities pm(A) and pm(B) related by (2.2)
and (2.3) can take virtually any continuous values between 1 and 0, because
of various atomic arrangements in the neighboring sites around the site m.
Accordingly, these probabilities and variable σm can be considered as contin-
uous functions of space-time coordinates, which are called classical variables
to distinguish them from quantum-mechanical variables such as spins. It is
noted that quantum-mechanical variables are characterized by discrete values
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if uncorrelated, although behaving like classical variables if they are heavily
correlated.

Signified by such probabilities, order variables σm in slow motion are vir-
tually quasi-static, being distributed over lattice sites, although varying at a
sufficiently fast rate for time averaging. The order parameter η can then be
calculated by (2.1a) as a spatial average called the mean-field average. Need-
less to say, such a mean-field average is meaningful only if the spatial variance
for distribution is sufficiently small. The validity of such an order parameter
is evaluated by the correlation function defined by

Γ(rmn) = 〈(σm − η)(σn − η)〉 = 〈σmσn〉 − η2δmn, (2.4)

where rmn is the distance between σm and σn, and for the last expression we
have used the relations 〈σm〉 = 〈σn〉 = η. Here, δmn is the Kronecker delta,
whose value is 1 for m = n, and otherwise it is 0 for m �= n. For complete
disorder, Γ(rmn) = 0 for all pairs for m �= n, meaning that σmσn = 0 for no
correlations.

On the other hand, the correlation function Γ(rmn) is nonzero for all pairs
in an ordering process, where the product σmσn should be significant. There-
fore, the correlation energy can be expressed as proportional to σmσn; that
is

Emn = −Jmnσmσn, (2.5)

where the coefficient Jmn is a function of the distance rmn, representing the
magnitude of correlation between σm and σn. For convenience, the negative
sign attached to (2.5) expresses the stable arrangement of σm and σn, which
are correlated at a lower energy. Although assumed for a correlated pair, (2.5)
can also be derived directly for a simple system with short-range energies, as
shown next.

Writing interaction energies between two atoms at sites m and n as
εAB(m, n), εAA(m, n) and so forth, the short-range interaction energy Em for
σm can be expressed in terms of probabilities defined by (2.2) and (2.3),
namely

Em =
∑

n
Emn =

∑
n
[pm(A)εAA(m, n)pn(A) + pm(B)εBB(m, n)pn(B)

+pm(A)εAB(m, n)pn(B) + pm(B)εBA(m, n)pn(A)], (2.6)

Considering that only interactions between nearest neighbors are essential,
(2.6) can be simplified, particularly for a cubic lattice where rmn are all equal,
and hence the site specification (m,n) can be omitted from εAB, εAA and εBB
in (2.6). Further, using (2.2) and (2.3), these probabilities can be replaced by
order variables σm and σn; namely

pm(A) = 1
2 (1 + σm), pm(B) = 1

2 (1 − σm)

and
pn(B) = 1

2 (1 + σn), pn(A) = 1
2 (1 − σn).
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Substituting these relations in Emn, we have

Emn = 1
2 (2εAB + εA + εB)
+ 1

4 (εAA − εBB)(σm + σn)
+ 1

4 (2εAB − εAA − εBB)σmσn

= const. − K(σm + σn) − Jσmσn, (2.7)

where
K = 1

4 (εAA − εBB) and J = 1
4 (εAA + εBB − 2εAB).

Here, the parameter J represents the magnitude of binary correlations with
the nearest neighbors, corresponding to Jmn in (2.5). On the other hand, the
factor K can be zero, if εAA = εBB, as in most binary systems, while K ≈ 0
for alloys of similar atoms for which εAA ≈ εBB, and hence the term of K
is generally insignificant. The first constant term in (2.7) is independent of
order variables, and hence insignificant. In this way, the equation (2.7) has
been confirmed as essentially the same as (2.5).

2.2.2 The Concept of a Mean Field

Order variables σm in crystals were defined as statistical variables, using occu-
pation probabilities at lattice sites, as given by (2.2). Correlations among these
variables at lattice sites are basically molecular interactions in short-ranges,
which can be interpreted in terms of probabilities for like or unlike arrange-
ments of atoms, although their ranges are not specified in (2.7). Nevertheless,
writing

Em = −σm

(∑
n
Jmnσn

)
,

the quantity
∑

n Jmnσn = Fm can be considered as the internal field acting on
σm when summed over effective ranges of rmn, i.e. Em = −σmFm. Taking dis-
tances rmn for the nearest and next-nearest neighbors, the correlation energy
Em is called the short-range interaction energy at m. Statistically, we may
proceed to calculate the time average 〈Fm〉t as the effective local field at site
m below Tc. Then, the spatial average of these 〈Fm〉t can be calculated over the
whole subsystem to obtain the effective macroscopic field. In the mean-field
approximation, such a long-range average can be considered as a meaning-
ful quantity for a system that obeys thermodynamic principles. An ordered
system can therefore be characterized by the presence of such a macroscopic
internal field F = 〈Fm〉s =

∑
m〈Fm〉t/N in mean-field approximation.

We can also express such probabilities by long-range averages, that is

p(A) = 〈pm(A)〉s and p(B) = 〈pm(B)〉s,
for which the relation p(A) + p(B) = 1 holds at all sites. For a binary system,
the order parameter can be defined for the two subsystems as

η1 = η = p(A) − p(B)



36 2 Order Variables, Their Correlations and Statistics: the Mean-Field Theory

and
η2 = −η = p(B) − p(A).

It is noted in general that 1 ≥ η1 ≥ 0 and 0 ≥ η2 ≥ −1, where 1 ≥ p(A),
p(B) ≥ 0. For complete disorder, η1 = η2 = 0, and so p(A) = p(B) = 1

2 . On
the other hand, for complete order, η1 = 1 and η2 = −1, which correspond
to p(A) = 1, p(B) = 0 and p(B) = 1, p(A) = 0, respectively.

If long-range correlations are significant, the binary ordering in an alloy
AB can simply be interpreted in terms of average probabilities p(A) and p(B)
in the mean-field accuracy. If J > 0, two attracting unlike atoms at shortest
distances lower the interaction energy by −J , whereas repelling like pairs are
unstable by the amount +J in the same domain. On the other hand, two in-
termingling sublattices can be stabilized in anti-ordered crystal. In the former
case, considering only nearest neighbors, the average number of interacting A-
B and B-A pairs can be expressed by 2Nzp(A)p(B), where z is the number of
lattice sites in the shortest distance and N = 1

2N is the total number of sites
in each domain. Therefore, the number of unlike pairs and the corresponding
interaction energy are given by

NAB = 2Np(A)p(B) = 1
2Nz(1 − η2)

and the total ordering energy is

E = E1 + E2 = const. + 2J{ 1
2Nz(1 − η2)} = const. + 1

2NzJ(1 − η2), (2.8)

which are consistent with NAB = 1
2Nz and E = const. + 1

2NzJ in the disor-
dered state for η = 0. It is interesting to note that in complete order, η = ±1
determined from NAB = 0, E = const., and the energy difference between
ordered and disordered states, i.e. − 1

2NzJ , represents the amount of macro-
scopic energy lowered from the disordered state. During the ordering process,
the energy resulted from partial order is therefore given by the η-dependent
term in (2.8), i.e.

∆E = − 1
2NzJη2, (2.9)

which is negative in both domains, representing the correlation energy aver-
aged in the mean-field approximation. Bragg and Williams used (2.9) for their
statistical theory of binary alloys, as outlined in Section 2.3.

In the mean-field approximation, mutual interaction energies are averaged
in space of the entire system, which is represented by a single internal variable
η. Although inadequate for the critical region, the dynamical response to an
applied field or stress F can be estimated as due to the energy −αηF , where
α is a constant. By analogy with the Weiss field in a ferromagnet, we rewrite
(2.9) by using the effective internal field Fint as

∆E = −αηFint,

where

Fint =
(

NzJ

2α

)
η (2.10)
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with the factor α used for adjusting units. Like the magnetic Weiss field B int =
λM , the field Fint is not directly measurable under normal circumstances.
However, it is significant that such Fint can be combined with an external field
F , when dealing with the response of order variables to F . In this context, the
Weiss field is not a mere theoretical concept, but representing a real internal
field in an ordered phase. In fact, as will be discussed in Chapter 9, the
internal electric field Fint in some ferroelectric crystals was detected by dipolar
paramagnetic probes in magnetic resonance experiments.

2.3 Statistical Mechanics of an Order-Disorder
Transition

The long-range order is a concept first introduced by Bragg and Williams in
their statistical theory of binary alloys. They considered that thermal prop-
erties of a partially ordered alloy can be specified by the order parameter η
and the macroscopic correlation energy −E(η), postulating that the ordering
system is a canonical ensemble governed by statistical principles. Statisti-
cally, correlated A-B pairs at the nearest-neighbor sites are responsible for
such an ordered state, which occurs in a large number of combinations g(η).
Such a large “degeneracy” of the energy −E(η) corresponds to the entropy
S(η) = kB ln g(η) under a constant-volume condition, and we minimize the
Helmholtz free energy F (η) = E(η) − TS(η) to obtain the equilibrium value
of η at a given temperature T .

In a single-domain crystal, in order for N lattice sites to be occupied by
either A or B atoms with no vacancies, the combination number is given by

g(η) =
(

N
Np(A)

)(
N

Np(B)

)
=
(

1
1
2 (1 + η)

)(
1

1
2 (1 − η)

)
.

The free energy can be expressed with the partition function

Z(η) = Z(0)g(η) exp(1
2NzJη2/kBT ),

as
F (η) = −kBT lnZ(η) = E(η) − kBT ln g(η).

From the condition (∂F/∂η)V = 0, we obtain

∂

∂η

{
lnZ(0) + ln g(η) + 1

2
NzJη2

kBT

}
= 0.

Using the Stirling formula for a large N , the term ln g(η) can be evaluated
approximately using

∂ ln g(η)
∂η

= −N

2
ln

1 + η
1 − η

.
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Hence, the equilibrium order parameter at T can be determined from the
equation

zJ

kBT
η = ln

1 + η
1 − η

,

or
η = tanh

zJη
zkBT

. (2.11)

Equation (2.11) can be solved graphically by finding the intersection be-
tween the straight line

y =
zJ

2kBT
η

and the curve
η = tanh y

in the η-y plane, as illustrated in Fig. 2.2a. Here, we note that if 2kBT/zJ ≥ 1,
only the origin η = 0 is the intersection, whereas for 2kBT/zJ < 1, another
intersection is found at η in the range 0 < η ≤ 1, representing partial order
with the limit of η → 1 as complete order. In this diagram, the transition

Fig. 2.2. (a) Graphical solutions for the spontaneous order parameter. The straight
line y = (zJ/2kBT )η intersects the curve η = tanh y at a point A to give a real
solution η �= 0 if T > Tc, whereas the only intersection is η = 0, if T < Tc. (b)
Graphical solutions for ferromagnetic order. The intersection B is always present
between the straight line y = (T/Tc)η − ηo and the curve η = tanh y below Tc, but
no solution above Tc.
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between disordered to ordered states can be specified as 2kBTc/zJ = 1, where
the unit slope at the origin gives the transition temperature Tc, namely

Tc = zJ/2kB. (2.12a)

Writing y = (T/Tc)η, from (2.11) we have

T

Tc
η = tanh−1 η ≈ η + η3/3

for a small η, from which an approximate relation

η2 ≈ 3(Tc − T )
Tc

for T < Tc (2.12b)

can be derived. Hence for a small η, the order parameter shows a parabolic
temperature-dependence, which is a consequence of the mean-field approxi-
mation.

The heat capacity for ordering can be calculated easily with the above
results; that is

CV =
∂E(η)

∂T
=

dE

dη
· dη
dT

= (−NzJη)
(

− 3
2Tcη

)
= 3NkB,

when Tc is approached closely from below. In the disordered phase, CV = 0
as η = 0, and, hence, the discontinuity at Tc is ∆CV = 3NkB.

2.4 The Ising Model for Spin-Spin Correlations

In ferromagnetic crystals, internal magnetic interactions are quantum me-
chanical, and expressed by the Heisenberg exchange energy between spins sm
and sn, i.e.

Hmn = −2Jmnsm.sn, (2.13)

where Jmn is the exchange integral between unpaired electrons of magnetic
ions (3d electrons in iron-group ions) at lattice sites m and n. In a uniaxial
magnetic crystal characterized by the unique z axis, the spin vectors are pri-
marily in precession at a constant frequency ωm around the axis z, keeping
the components smz constant all the time, provided that the spin-spin interac-
tions due to the terms smxsnx + smysny in (2.13) are treated as perturbations.
In this case, known as the random phase approximation, the spin-spin correla-
tions are described by the time average 〈Hmn〉t calculated over the timescale
to of observation. Namely,

〈Hmn〉t = −2Jmn[smzsnz + 〈smxsnx + smysny〉t],
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where the second term vanishes if 2π/ωm and 2π/ωn are both shorter than to.
It is noted that if these precessions can be assumed at random in phase, we
can write in the zero order

〈Hmn〉t = −2Jmnsmzsnz, (2.14)

where only z components of spin vectors are significant. Known as the Ising
model [16], (2.14) is essentially due to random phases in spin precessions,
where smz can be related to probabilities for two quantum states ± 1

2 of a
spin at site m, analogous to the classical binary variable for ordering. Rep-
resenting occupation probabilities of the spin states, such an interpretation
of spin components smz provides a useful classification of magnetic ordering
in various types, antiferro-, ferri-, spiral- and other kinds of order. Although
unspecified in the above, we have considered that the origin for a unique z-
axis is generally attributed to the significant magnetic anisotropy in a given
crystal.

Here, we have discussed the Ising model for a simplified ferromagnetic sys-
tem, but the idea for such an Ising spin can be applied to other binary systems
as well. For example, in binary alloys where diffusive atomic rearrangements
are responsible for ordering, Ising’s spins can be used for the statistical de-
scription. At a site m, the classical spin variable smz can be specified by the
state

|m〉 = am| + 1
2 〉 + bm| − 1

2 〉, (2.15a)

where | ± 1
2 〉 are the wavefunctions for an uncorrelated spin sm, and the

coefficients am and bm are normalized as

am
2 + bm

2 = 1. (2.15b)

In this case, am
2 and bm

2 are interpreted as the probabilities for the site m
to be occupied by + 1

2 and − 1
2 spins, i.e. p(+ 1

2 ) and p(− 1
2 ), respectively. We

can therefore define the order variable by

σm = am
2 − bm

2. (2.15c)

Assuming nearest-neighbor interactions, the short-range interaction energy is
expressed as

Em =
∑

n
〈m, n| < |Hmn〉t|m,n〉

= −2J
∑

n
[am

2an
2〈+ + |smzsnz| + +〉 + bm

2bn
2〈− − |smzsnz| − −〉

+am
2bn

2〈+ − |smzsnz| + −〉 + bm
2an

2〈− + |smzsnz| − +〉],

where we have considered z = 8 and Jmn = J for a cubic lattice. For spins 1
2 ,

these matrix elements are

〈+ + |smzsnz| + +〉 = 〈− − |smzsnz| − −〉 = 1
4
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and
〈+ − |smzsnz| + −〉 = 〈− + |smzsnz| − +〉 = − 1

4 ,

hence

Em = −2J
∑

n
[ 14 (am

2an
2 + bm

2bn
2) − 1

4 (am
2bn

2 + bm
2an

2)]

= −2J
∑

n
[ 14 (am

2 − bm
2)(an

2 − bn
2)] = − 1

2σm

∑
n
Jσn.

Replacing the factor 1
2J by 2Jmn, we can write Emn = −Jmnσmσn, which

is identical to (2.5). In contrast to the spin smz with two states | ± 1
2 〉, the

binary order variable σm is characterized by two values of probabilities ±1,
and called the pseudospin.

Considering the sum Fm =
∑

n Jσn for the local field at a site m, and the
spatial average Fint = 〈Fm〉 represents the the intermal field at all sites in the
crystal in the mean-field approximation. Therefore,

〈Em〉 = − 1
2NFint

〈∑
m

σm

〉
= − 1

2NFintη,

where
Fint =

〈
J
∑

n
σn

〉
= Jη. (2.16)

The internal ordering energy in each of two domains can then be expressed
by the identical formula, that is

E1(η) = E2(−η) = 〈Em〉 = − 1
2NJη2 = − 1

4NJη2.

Accordingly, the internal energy of the whole crystal is

E = E1(η) + E2(−η) = −1
2NJη2.

In conventional notations, smz = 1
2σm, the magnetic moment and the internal

magnetic field are expressed as µm = gβsmz and Bmz = (2/gβ)〈Fm〉, thereby
writing E = −MBint, where Bint is the Weiss field and M is the macroscopic
magnetization. Although derived from magnetic spins with random phase ap-
proximation, the Ising spin σm defined by (2.15c) can be conveniently used to
describe any binary correlations, whenever probabilities matter.

2.5 The Role of the Weiss Field in an Ordering Process

In the mean-field approximation, spontaneous ordering signified by η can be
considered as induced by the Weiss internal field Fint, both η and Fint emerg-
ing at To, whose magnitudes increase with decreasing temperature. Although
derived specifically for binary alloys, (2.11) can be modified with binary prob-
abilities p(±1) for Ising’s spin states ±1 that can be expressed by the Boltz-
mann statistics, as shown below. Considering the internal field Fint of (2.10)
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where α is set equal to 1 for simplicity, (2.11) is written as

η = tanh
[

zJ

2kBT
η
]

= tanh
(

Fint

kBT

)

=
[
exp

(
+

Fint

kBT

)
− exp

(
− Fint

kBT

)]/
Z,

where

Z = exp
(

+
Fint

kBT

)
+ exp

(
− Fint

kBT

)
is the partition function for energies ±Fint of the Ising spin σ = ±1 in the field
Fint. Hence, in the mean-field theory, the order parameter η is determined by
the difference of the Boltzmann probabilities p(+1) = Z−1 exp(+Fint/kBT )
and p(−1) = Z−1 exp(−Fint/kBT ) for these states, i.e. η = p(+1) − p(−1) =
〈σm〉s. It is notable that in the mean-field approximation the spatial average is
determined by the thermal average of pseudospin energy in the internal field
Fint, although Fint may remain as a conjecture unless supported by experi-
mental evidence.

In a uniaxial ferromagnet, the order parameter is given by the average of
pseudospins, i.e. η = 〈σm〉s, and the internal energy is − 1

2NzJη2. Applying
a magnetic field Bo, the internal energy in each domain can be written as

E1(+η) = −1
2N1zJη2 − N1(gβη)Bo

and
E2(−η) = −1

2N2zJη2 + N2(gβη)Bo,

where N1 and N2 are not equal to 1
2N . Therefore, we can write the internal

energies per order variable as ε+ = E1(+η)/N1 and ε− = E2(−η)/N2; that
is,

ε+ = − 1
2zJ − gβBo and ε− = − 1

2zJ + gβBo.

We may consider the probabilities for these states as given by the Boltzmann
statistics, i.e.

p(+1) = Z−1 exp
(

− ε+

kBT

)
and p(−1) = Z−1 exp

(
− ε−

kBT

)
,

where

Z = exp
(

− ε+

kBT

)
+ exp

(
− ε−

kBT

)
.

Accordingly,
p(+1)
p(−1)

= exp
zJη + 2gβBo

kBT
=

1 + η
1 − η

,

where the last expression was derived from the definition of p(±1) in Section
2.2. From this relation, we obtain

η = tanh
1
2zJη + gβBo

kBT
, (2.17)
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which is the equation to be solved for η in the field Bo. Equation (2.17) can
be solved for η in exactly the same manner as (2.11), by finding graphically
the intersection between the straight line

y =
(

zJ

2kBT

)
η +

gβBo

kBT

and the curve y = tanh−1 η. Writing zJ/2kB = Tc as defined in (2.12a), these
are reexpressed as

η =
(

T

Tc

)
y − gβBo

kBT
and η = tanh y. (2.18)

Figure 2.2b illustrates these intersecting lines in the η-y plane, where the
straight one at T = Tc intersects the η axis at ηo = −gβBo/kBTc, which
is numerically very small in practical cases. For example, for β = 1 Bohr’s
magneton, assuming Bo = 3 weber/m2 at Tc ∼ 103K in a typical ferromagnet,
ηo is only of the order of 10−2. It is noted that in the presence of Bo (2.18)
has always a real solution at all temperatures, and hence there is no critical
temperature, although η is singular at Tc if Bo = 0.

Above Tc, when the temperature is close to Tc, we can set y ≈ η and
T = Tc in (2.18), and obtain

η =
T

Tc
η − gβBo

kBTc
,

which is the Curie-Weiss formula as written in the form

χ =
Ngβ
2Bo

· η =
C

T − Tc
, where C =

Ng2β2

2kB
.

While substantiated only in ferroelectric crystals, from the above discussion
we have the reason to believe that the Weiss field is a real internal field in the
mean-field accuracy in ordered magnetic crystals as well.

We have so far reviewed statistical theories of binary ordering with the
mean-field approximation, which can be described in terms of the Ising spin
σm located at a lattice site m. It is noted that such statistical variables defined
at lattice points may not necessarily be periodic functions of the lattice if
their correlations are insignificant. Furthermore, in the mean-field theory, all
σm are represented by the spatial average 〈σm〉s, making the crystal of a
uniform substance, thereby their ordering appears to have nothing to do with
the lattice structure. In this section, we have in fact shown that binary values
of the 〈σm〉s are determined the Boltzmann probabilities, implying that the
ordering is a thermal process at a given temperature. Although the role of
lattice is implicit in the statistical argument, we realize that the thermal
accessibility of these states should be attributed to random collisions with
phonons, thereby contributing to the free energy as expressed by TdS under
a constant-volume condition.
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On the other hand, the failure of the mean-field theory in the critical region
signifies that the ordering process is slow in the timescale of observation,
where the probability cannot be a meaningful concept. Instead, in so-called
displacive systems, collective displacements prevail in the critical region, as
will be discussed in Chapter 3. Unlike the Ising spin σm for probabilities, such
displacement vectors at lattice sites can violate translational symmetry of the
lattice, generating strains if they are correlated incommensurately and, hence,
responsible for a symmetry change at Tc. Below Tc, the free energy should,
therefore, change by an internal mechanical work dW , resulting in the ordered
crystal with a deformed lattice.

In the lattice dynamical theory, it is known that in normal crystals, there
are three independent acoustic modes at long wavelengths, in addition to
a large number of high-frequency modes, representing thermal vibrations of
the lattice. In this context, these lattice modes in different categories can
be responsible for a change of the Gibbs free energy under given external
variables p and T , where mechanical and thermal contributions are expressed
by the terms dW and TdS, respectively. We discuss such order variables in
displacive systems in Chapter 3.
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Collective Modes of Pseudospins in Displacive
Crystals and the Born-Huang Theory

3.1 Displacive Crystals

In a stable crystal, constituent ions or molecules are arranged at regular lattice
sites, whereas thermodynamic properties reflect on the lattice symmetry only
implicitly. Represented by a unit cell, an idealized crystal is regarded as macro-
scopically uniform, provided that surfaces and lattice defects are insignificant.
For such a “perfect” crystal, the thermodynamical Gibbs potential can be ex-
pressed primarily as a function of external variables, p and T , as in isotropic
systems. On the other hand, a structural transition between crystalline phases
is characterized by a symmetry change, which, however, does not constitute by
itself the responsible transition mechanism. Many crystals undergoing phase
transitions exhibit reconstructive structural changes, whereas in some phase
transitions, active ions or parts of active groups displace their positions con-
tinuously from regular lattice sites. Thus, thermodynamically, reconstructive
transitions are first order, whereas displacive ones are second order. Normally,
in the former cases, symmetries in the two phases above and below Tc are not
necessarily related, whereas in the latter continuous transitions, two phases
are related, inviting theoretical interest in regard to structural instability.

In a displacive system, the structural change is signified by spontaneous
linear or angular displacements of active ions or groups at the transition tem-
perature Tc. At the transition threshold, the active groups begin to exhibit
such displacements, whose magnitudes increase with decreasing temperature,
as evidenced from diffuse X-ray diffraction [19] and magnetic resonance results
[20], [21]. In a continuous phase transition, such displacements are believed to
occur collectively, resulting in a change of macroscopic symmetry.

Perovskite crystals provide typical examples of displacive phase transi-
tions. Given the chemical formula ABO3, the unit cell in the normal phase
consists of an octahedral complex BO6

2− surrounded by eight A2+ ions at
corners of the cubic cell, as shown in Fig. 3.1a. Crystals of the perovskite
family are rich in types of structural change, exhibiting a variety of displace-
ment schemes. For example, in the ferroelectric phase transition of BaTiO3 at
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Fig. 3.1. Unit cells in the perovskite structure: (a) the normal phase, (b) linear
ionic displacements along the C4 axis in BaTiO3, and (c) a rigid-body rotation of
TiO2−

6 octahedra around the C4 axis in SrTiO3 crystals.

405K, the structural change is signified by an off-center displacement of the
central Ti4+ ion along the C4 axis parallel to one of the cubic axes (Fig. 3.1b).
For the phase transition of SrTiO3 at 105K, on the other hand, a rotational
displacement of TiO6

2− around a C4 axis is responsible (Fig. 2.1c).
Known as a binary transition, the low-temperature phase is character-

ized by two opposite directions of the order parameter, which are related by
inversion or reflection on the mirror plane in the crystal. Accordingly, the
corresponding microscopic order variable can be specified by σmz = ±1 of a
classical vector sm, when those at different lattice sites are not correlated.
In the above examples, σmz represents linear displacements of Ti4+ along ±z
directions in BaTiO3, and small-angle rotations ±δϕ around the z axis in
SrTiO3. Although defined as a scalar in the Landau theory, directional dis-
placements as order variables are vectors in the lattice. For such a vector order
variable sm, a local potential V (sm) changes at Tc, whereas the corresponding
change in the Gibbs potential ∆G is given by the spatial average 〈V (sm)〉s.

In the normal phase T > Tc, ∆G should be zero, whereas the Gibbs
potential G is contributed by distributed local potential where the minimum
is at sm = 0; that is,

V>(sm) = 1
2axσmx

2 + 1
2ayσmy

2 + 1
2azσmz

2 (3.1a)

with positive coefficients, providing the lattice with stability at sm = (σmx,
σmy, σmz) = 0; hence, 〈V>(sm)〉t = 0. Accordingly, the normal phase is char-
acterized by 〈sm〉t = 0 and 〈sm.sn〉t = 0. Here, it is noted that the local
symmetry axes x, y and z are not necessarily the same as the lattice symme-
try axes in general.

On the other hand, below Tc, for such a displacement sm, the minimum
of the local potential is no longer at the origin, but shifting to new positions
say σmz = ±σo on the z axis, or at angles ±δϕo of twist around z in the local
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Fig. 3.2. Local crystalline potentials in a quasi-two-dimentional lattice. (a) a
paraboloidal V> above Tc; (b) a double-well paraboloidal V< below Tc.

potential. Therefore, such a potential for T < Tc can be written as

V<(sm) = 1
2axσmx

2 + 1
2ayσmy

2 + 1
2azσmz

2 + 1
4bzσmz

4, (3.1b)

where az < 0 and bz > 0, whereas ax and ay are unchanged from (3.1a).
Figures 3.2a and 3.2b illustrate such potentials V> and V< for ay = 0, and
there are two minima in V< at σmz = ±σo = ±(−az/bz)1/2, representing
positions in static equilibrium, similar to curves in Fig. 1.8. Dynamically, we
can therefore consider fluctuations in the vicinity of ±σo as well as between
+σo and −σo, while their physical origin is unspecified. The latter can essen-
tially be quantum-mechanical tunneling, although characterized as a classical
jumping over the central barrier in some cases. If these variables sm and sn at
different sites m and n are correlated, we have the relation sm.sn �= 0, result-
ing in collective displacements, where interactions between nearest neighbors
are particularly significant. In a long timescale, we can define probabilities
pm(+σo) and pm(−σo) for the variable sm to be at one of the minima +σo or
another −σo by writing

σmz

σo
= pm(+σo) − pm(−σo), where pm(+σo) + pm(−σo) = 1. (3.2)
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For uncorrelated pseudospins, we have

〈σmz〉t = 0 and 〈p(+σo)〉s = 〈p(−σo)〉s = 1
2 .

Further, when correlated, the transversal components σmx and σmy can
also be significant in this model for a classical motion of sm whose dimension-
ality in the crystal space matters. Considering a continuous motion in the xz
plane, for instance, the direction of sm can be signified by an angle θm from
the z axis, and so

σmz = σo cos θm and σmx = σo sin θm,

where

cos θm = pm(+σo) − pm(−σo) and sin θm = {2pm(+σo)pm(−σo)}1/2.

In this description the angle θm varies from one site to another, indicating
that these correlated sm are in collective motion in the lattice. Nevertheless
it is noted that the local potentials are invariant for inversion of the classical
pseudospin sm → −sm. The displacive phase transition can be signified by the
outset of nonzero correlations 〈sm.sn〉t for collective sm at Tc, at which the
local potentials V<(sm) and V<(sn) begin to show a quartic anharmonicity as
given by the last term in (3.1b), being responsible for the correlation between
displacements at sites m and n.

However, depending on the timescale of observation, a slow classical dis-
placement vector may not be subjected to thermal probabilities, for which
the Ising spin is not an adequate model. By analogy with the Heisenberg ex-
change interaction, for correlations between such displacements, we postulate
the Hamiltonian

Hmn = −Jmnsm.sn (3.3a)

where Jmn represents the correlation between classical pseudospins sm and
sn at sites m and n. It is noted that all components of a displacement vector
are significant for the correlation energy (3.3a), in contrast to an Ising spin
that is signified only by its z component.

A classical pseudospin vector is often signified by its direction, while the
amplitude is considered as a small constant at a given temperature. Writing
sm = σoem in this case, where em is the unit vector along sm, the correlation
energy (3.3a) can be expressed as

Hmn = −σo
2Jmnem.en. (3.3b)

Here, although written by analogy with the exchange integral, the correlation
parameter Jmn cannot be evaluated from the first principle. Nevertheless, it is
temperature dependent in crystals, and there are some intervening ions and
molecules between sm and sn, making its evaluation difficult. For such sm
representing active groups, the sign of Jmn is more significant than the magni-
tude for the binary arrangement in crystals; either in parallel or antiparallel.
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In the following discussions, we postulate the equations (3.3a) and (3.3b) for
pseudospin correlations responsible for structural phase transitions, leaving
values of Jmn to empirical evaluation.

3.2 The Landau Criterion for Classical Fluctuations

Located at regular lattice points in a crystal, the displacive variables sm can
be a periodic function of the lattice period. On the other hand, we must con-
sider the fact that such distributed finite displacements sm violate the lattice
symmetry locally, resulting in appreciable strains in the lattice. If occurring
with a finite amplitude in a long timescale, the lattice should be distorted in
principle, destabilizing the structure. Born and Huang [18] discussed strained
crystals theoretically, although structural instability during phase transitions
was not their primary concern. However, it is a serious matter for sponta-
neous structural changes and, therefore, we must discuss it in light of their
theory (Section 3.4). In this section, before dealing with the theoretical impli-
cation, we discuss the Landau criterion [7] for a classical order variable, which
is instructive for us to proceed to the problem of interactions between order
variables and the hosting lattice in relation to the structural stability.

It is noted that in a distorted crystal, such dynamical displacements could
take place at very low frequencies, being characterized as acoustic excitations
at long wavelengths. If these waves become stationary, the crystal appears
to be inhomogeneous due to unevenly distributed densities. Landau realized
such spatial inhomogeneity in stressed crystals [7], which was described as
consisting of many small volumes dV (r , t) at a position r , where thermody-
namic properties are deviated from equilibrium. In his description, the vari-
ation of classical order variables can arise from a density deviation defined
by ∆ρ(r , t) = dσ(r , t)/dV , which is determined by distributed thermody-
namic probabilities ∆p(r , t) = po −p(r , t), where po is referred to the uniform
distribution in the undistorted crystal. Consequently, a negative distributed
entropy per volume can be considered for distributed probabilities −∆p as
expressed by the Boltzmann relation

∆s(r , t) = kB ln{p(r , t)/po} = kB ln[{1 − ∆p(r , t)}/po].

Assuming ∆p/po � 1, the decrease in entropy ∆s(r , t) is at most of the order
of kB, providing a heat energy Tc∆s = kBTc transferred to the lattice at Tc,
consequently causing an excitation ∆ε(r , t) in the crystal. We note at this
stage that such an energy transfer process should be irreversible thermody-
namically, hence we can write an inequality

∆ε(r , t) ≤ Tc∆s(r , t) = kBTc. (3.4)

Unlike in the normal phase, the lattice is thus excited under a critical condition
due to displacive ordering. Further, it is noted that such a negative entropy
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production as caused by varying local volume dVi(r , t) should be associated
with the work −pidVi, which essentially originates from spontaneous local
stresses in the lattice.

On the other hand, classically such an excitation energy ∆ε can be de-
scribed as related to a decay of the collective order variable s(r , t); that is,

∂s
∂t

= −s
τ
, (3.5)

implying that the ordering energy is relaxed presumably to the lattice ex-
citation in this case. Nevertheless, such an energy transfer ∆ε is basically
quantum mechanical, although the classical decay (3.5) should be interpreted
in the limit of h̄ → 0. Denoting the Hamiltonian density for the responsible
interaction between s and the lattice by H, the quantum-mechanical order
variable operator sop should obey the Heisenberg equation

ih̄

〈
∂sop

∂t

〉
t
= 〈[H, sop]〉t, (3.6)

where the time derivative in the classical approach should be evaluated by
the average over the relaxation time interval ∆τ, allowing one to replace
〈∂sop/∂t〉t by ∂s/∂t in (3.5). From (3.6) we arrive at the uncertainty re-
lation [17] for small variations ∆s and ∆ε in classical variables s(r , t) and
ε(r , t), respectively; that is,

∆ε∆s ∼ h̄

〈
∂s
∂t

〉
t
∼ − h̄s

τ
. (3.7)

It is noted that (3.7) is identical to the conventional uncertainty relation
τ∆ε ∼ h̄, provided that ∆s/s ≈ 1. Combining these equations, Landau wrote
the relation

τTc � h̄/kB ∼ 10−11(secK), (3.8a)

suggesting that such a timescale τ in (3.8a) justifies the classical nature of
s at Tc, where the fluctuation ∆s can be infinitesimal, signifying that s
is a classical variable. While thermally inaccessible, such a small classical
excitation as ∆ε < kBT should be originated from an internal mechanical work
in the stressed lattice, which is non-ergodic as will be discussed in Section 3.4,
and hence in contradiction to Landau’s thermal mechanism. According to the
lattice dynamical theory, such a small ∆ε should be related to an acoustic
excitation.

In contrast, for a quantum mechanical s, ∆s should be of a finite mag-
nitude, and so s/∆s < 1 for a small s, for which ∆ε should be in excess of
thermal energy kBT . Therefore, for quantum-mechanical systems the conven-
tional criterion

∆ε ≥ kBTc or τTc ≤ h̄/kB (3.8b)
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should be applied, being specified by ∆ε larger than the thermal energy at
Tc.

According to (3.8a), at around Tc = 200K fluctuations can be considered
as classical, if τ � 0.5×10−13sec. For example, in displacive phase transitions
in perovskites in the range of 100K < Tc < 200K, the value of τ is estimated
to be of the order of 10−11sec., so that the order variables is classical. On
the other hand, for proton-tunneling in hydrogen-bonding crystals, with the
estimated relaxation time τ ∼ 10−13sec. at Tc ∼ 122K, τTc gives ∼ 10−11,
which is the limit of the criterion (3.8a). It is well known that phase transi-
tions in hydrogen-bonding crystals are quantum-mechanical and of first-order
thermodynamically, due to discontinuous proton rearrangements at Tc, as will
be discussed in Chapter 10.

3.3 Quantum-Mechanical Pseudospins and their
Correlations

A particle tunneling through a double-well potential between the two minima
requires an energy, depending on the height and width of the central barrier,
where the motion is by no means classical. For such double-minimum poten-
tials placed at lattice sites, correlations with the nearest neighbors should be-
come significant in the packed crystal structure, shifting minima to off-center
positions, as determined by the quartic energy emerging in the lattice at Tc. In
this context, pseudospin correlations should be closely related to anharmonic
potentials. On the other hand, correlated pseudospins in collective motion can
be described as classical, although quantum-mechanical pseudospins are valid
in crystals as long as they are uncorrelated. Nevertheless, the quantum na-
ture of a pseudospin is basic, and hence we outline the model in this section,
following Blinc and Zeks [12], prior to discussing their correlated motion.

A particle tunneling through the central barrier V in a double-well po-
tential is signified by identical energies εo in the two wells, which is then
perturbed by V . The unpertubed energy is doubly degenerate, and given as
the ground state of the Schrödinger equation

Hmϕm = εoϕm,

where Hm is the Hamiltonian of the unperturbed particle at the site m. In
this case, the eigenstate εo is invariant by inversion that is expressed by a
matrix

σmz =
(

1 0
0 −1

)
, (3.9)

where the index z is referred to the tunneling direction in this case, while we
can leave it unspecified for the general argument. The operators Hm and σmz
are commutable, i.e. [Hm, σmz] = 0, and hence σmz can be regarded as the
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variable with eigenvalues ±1, specifying inversion-related degenerate states of
the ground energy εo.

With the perturbation potential V turned on, the degeneracy can be re-
moved, separating the ground energy εo into two levels ε± = εo ± 1

2V , cor-
responding to symmetric and antisymmetric combinations of wavefunctions
ϕmL and ϕmR, i.e.

ψm+ = (ϕmL + ϕmR)/21/2 and ψm− = (ϕmL − ϕmR)/21/2. (3.10a)

Here, the indexes L and R refer to the left and right minima, respectively,
of the potential V<(σmz). In the second quantization scheme, the functions
ϕmL and ϕmR and their conjugates ϕmL

∗ and ϕmR
∗ are annihilation and cre-

ation operators of a particle at the left and the right minima of the site m,
respectively. Therefore, we can write the normalization relation

ψm+
∗ψm+ + ψm−

∗ψm− = ϕmL
∗ϕmL + ϕmR

∗ϕmR = 1. (3.10b)

Here, the products ϕmL
∗ϕmL and ϕmR

∗ϕmR represent probability densities
at the left and right minima, respectively, by which we can define the order
variable as

σmz = ϕmL
∗ϕmL − ϕmR

∗ϕmR = ψm+
∗ψm+ − ψm−

∗ψm−. (3.11a)

For an uncorrelated particle, probabilities at the left and right minima are the
same, and so σmz = 0. Combining ϕmL, ϕmR and conjugates in the following,
we can also define

σmx = ϕmL
∗ϕmR + ϕmR

∗ϕmL (3.11b)

and
σmy = ϕmL

∗ϕmR − ϕmR
∗ϕmL, (3.11c)

which are found to satisfy the commutation relations

[σmx, σmy] = iσmz, [σmy, σmz] = iσmx and [σmz, σmx] = iσmy. (3.12)

Therefore, these three quantities σmx, σmy and σmz are considered to be com-
ponents of a quantum-mechanical pseudospin vector sm. When σmz is diago-
nalized as in (3.9), the transversal components are expressed by matrices

σmx =
(

0 1
1 0

)
and σmy =

(
0 −i
i 0

)
,

which are responsible for transitional motion between left and right minima,
and the Hamiltonian of a uncorrelated particle can then be expressed a

Hm = εm+ψm+
∗ψm+ + εm−ψm−

∗ψm−
= εo(ψm+

∗ψm+ + ψm−
∗ψm−) − 1

2V (ψm+
∗ψm+ − ψm−

∗ψm−)

= εo − 1
2V σmz. (3.13)
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For correlated pseudospins, we further consider interaction potentials vmn
between different sites m and n that are expressed as a 4 × 4 density matrix
(ψmα

∗ψnβ), where α and β represent ± states of pseudospins. Consequently,
the short-range correlations can be determined by

H′
m =

∑
n
H′

mn =
∑

n

∑
αβγδ

〈ψmα
∗ψmβ|vmn|ψnγ

∗ψnδ〉, (3.14)

consisting of 16 interaction terms, which can be simplified by using pseudospin
components, namely

ψm+
∗ψm+ = 1

2 (ϕmL
∗ϕmL + ϕmR

∗ϕmR + ϕmL
∗ϕmR + ϕmR

∗ϕmL)

= 1
2 (1 + σmx),

ψm+
∗ψm− = 1

2 (ϕmL
∗ϕmL − ϕmR

∗ϕmR − ϕmL
∗ϕmR + ϕmR

∗ϕmL)

= 1
2 (σmz − σmy), etc.,

and for the term 〈ψmα
∗ψmβ|vmn|ψnγ

∗ψnδ〉 abbreviated by vαβγδ, we have sym-
metric relations

v++−− = v−−++, v+−+− = v−+−+ = v−++−,

but all other asymmetric elements, such as v++−+, vanish. Applying these
results to sm and sm+1, the short-range energy can be expressed as

H′
m,m+1 = −Jm,m+1σmzσm+1,z − Km,m+1σmxσm+1,x, (3.15a)

where

Jm,m+1 = 4v+−+− and Km,m+1 = 2v+−+− − v++++ − v−−−−. (3.15b)

The total Hamiltonian for two interacting pseudospins σm and σm+1 is there-
fore written as

H = Hm + Hm+1 + H′
m,m+1

= εo − Ω(σmz + σm+1,z) (3.15c)
−Jm,m+1σmzσm+1,z − Km,m+1σmxσm+1,x, (3.15d)

where
Ω = 1

2V + v++++ − v−−−− ≈ 1
2V.

Equations (3.15cd) is the Hamiltonian for two interacting quantum-mechanical
particles sm and sm+1 with their correlation energy. For a proton tunneling
system, Blinc and Zeks [12] showed that the terms Ω and Km,m+1 are negli-
gibly small as compared with Jm,m+1, and H is dominated by the correlation
term Jm,m+1σmzσm+1,z for the Ising model. Nevertheless, the Ising term signi-
fies statistically both quantum and classical correlations, whereas transversal
components σmx and σm+1,x may play a different role in dynamical correla-
tions.
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From the quantum-mechanical treatment of correlations, the variable σmz
defined by (3.11a) represents the density difference between left and right
minima of the double-well potential. However, in a linear chain, no asymmetry
expressed by nonzero σmz can occur, unless these σmz are heavily correlated in
the domain structure or under an externally applied field. On the other hand,
statistically a nonzero 〈σmz〉 was attributed to unequal thermal probabilities
of binary states, as discussed in Chapter 2, where the collective feature was
not taken into consideration.

3.4 The Born-Huang Theory and Structural Ordering in
Crystals

Born and Huang [18] discussed the general theory of strained crystals, in
which they have shown theoretically that the crystal structure cannot be
deformed uniformly, because the lattice stability is maintained with internal
and applied stresses, where distributed strains are generally associated with a
lattice excitation at a long wavelength. In spite of their prediction, the theory
had never been tested experimentally, until such an excitation was detected
in recent magnetic resonance experiments in the critical region of structural
changes. (See Chapters 7 and 9 for the experimental detail.)

For thermal stability of a crystal, they have proposed two conditions: (1)
the constituent atoms and molecules should all be in mechanical equilibrium
in the lattice, and (2) their configuration should be determined for vanishing
stresses. The first condition (1) can normally be set for the lattice potential to
be at the minimum, but more importantly the lattice stability cannot be war-
ranted by condition (1) only. Although condition (1) is sufficient in practice
for a stable crystal, condition (2) is necessary for the stability of a stressed
crystal. When the potential is expanded into power series of displacements,
anharmonic terms of at least the fourth order become significant for dynamic
distortion, whereas the harmonic second-order terms are necessary for main-
taining lattice stability. Condition (2) is generally required for a crystal as a
whole to have a stable structure under stresses and, as the result, a lattice
excitation emerges at a long wavelength. As applied to crystals undergoing
structural phase transitions, the quartic potential emerging at Tc is considered
as the logical consequence of the Born-Huang theory.

Noting that order variables sm represent parts of the active groups in a
crystal, the center-of-mass coordinates should also be displaced by um from
the regular site m to offset strains due to displacements sm. Assuming that
in the critical region these sm and um are linearly related for the local equi-
librium at each site m, we may write

sm ≈ A.um (3.16)

for small amplitudes, where A is generally a tensor quantity. However, the
condition (3.16) may not be exact at all sites, unless their characteristic wave-
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lengths match with each other closely in phase. The displacement um varies
from one site to another in the long-wave approximation, according to the
Born-Huang theory. These sm and um are correlated below Tc as given by
(3.16), so that the net strain energy can be expressed by

W =
∑

mn
Jmn(sm − A.um).(sn − A.un).

This W should be set as equal to zero to fulfill the condition (2) for the
distorted structure in equilibrium at a given temperature. We can write W as

W = Wσ + Wu + w,

where

Wσ =
∑

mn
Jmnsm.sn, (3.17a)

Wu =
∑

mn
Jmnum.A−1A.un (3.17b)

and
w = −

∑
mn

Jmn(sm.A.un + um.A−1.sn). (3.17c)

It is realized that Wu for a modified lattice is a function of space coordinates
due to the spatial variation of um. In the long-wave approximation, the dis-
placements um = (u1,u2,u3) can be considered as a continuous function of
normal lattice points rm, and so we expand um into a power series of lattice
distortion r − rm = δr = (δr1, δr2, δr3); that is

ui =
∑

j

(
∂ui

∂rj

)
δrj + 1

2

∑
jk

δrj

(
∂2ui

∂rj∂rk

)
δrk + . . . . (3.18)

Using (3.18) into (3.17b), we arrive at an expression for the lattice energy

Wu =
∑

ij
Dijδrj +

∑
ijk

Eijkδrjδrk +
∑

ijkl
Bijklδriδrjδrkδrl + . . . . (3.19)

Here, the quartic terms of Bijkl represent strain energy due to lattice fluc-
tuations δr , whereas the terms of Dij and Eijk express the lattice energy
in distorted structure due to δr during ordering process. The significance of
such anharmonicity is expressed in the expansion (1.13) of the Landau theory,
which is in fact consistent with the modified lattice potential by displacements
sm in adiabatic approximation [18] (see Appendix). Cowley considered the
quartic lattice potential for softening a lattice mode, as will be discussed in
Chapter 4. Later, we also discuss anisotropic quartic potentials for symmetry
conversion at Tc.

Applying the Born-Huang condition (2) for a stress-free crystal as given
by the condition W = 0, the structural phase transition can be signified as
follows:

Wσ = 0, Wu = 0, w = 0 in the normal phase above Tc (3.20a)
Wσ + Wu + w = 0 in the critical region (3.20b)

Wσ + Wu → 0, w → 0 in the noncritical phase below Tc. (3.20c)
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Ordering in crystals can be attributed to a combined property of pseudospins
and the lattice, exhibiting temperature-dependent anomalies. Aside from the
temperature dependence, sm and um are primarily independent unless w �= 0,
so that it is not surprising to see experimental results that appear to be incom-
patible with one another. Namely, when observing sm, the phase transition
is signified by the outset of pseudospin correlations, whereas in terms of um
the presence of soft modes characterizes a structural change. Nevertheless, as
inspired by the Born-Huang theory, we consider a coupling w as described by
(3.16), which plays an essential role in the critical region.

Accordingly, our experimental task is threefold. First, we have to verify
that the threshold of a phase transition is signified by the outset of “minimum
pseudospin correlations” in a periodic lattice (Sections 3.5 and 3.6). Second,
we wish to obtain evidence that a collective pseudospin mode can interact
with a lattice mode in near-phase relation to obtain a significant coupling
w (Section 4.1). Third, we investigate the role played by quartic potentials
for structural transformations (Section 4.4). These problems should be dis-
cussed in light of the fluctuating interaction w given by (3.16) to establish the
coherent view of structural transitions.

3.5 Collective Pseudospin Modes in Displacive Systems

In the critical region of a displacive transition, the collective pseudospin mode
can be expressed by a Fourier transform of the classical variables sm with
periodic boundaries, i.e. sm =

∑
q sq exp i(q .rm − ωt), i.e. a linear combi-

nation of sq, where q are wavevectors, expressing spatial forms of sinusoidal
correlations. Generally, there are many values of q that satisfy the bound-
ary conditions, but we are only interested in a particular wavevector for the
minimum correlation energy among sm to signify the collective mode at the
threshold of ordering.

Being a real quantity in a crystal idealized with periodic boundary condi-
tions, the vector sm can be written at a given time t as

sm = exp(−iϖt){sq exp(+iq .rm) + s−q exp(−iq .rm)}
= exp(−iϖt){sq exp(iq .rm) + sq

∗ exp(iq .rm)∗},

where the relation
sq

∗ = s−q, (3.21a)

indicates that there are always two running waves at wavevectors ±q in oppo-
site directions with an equal amplitude. Here ϖ is the characteristic frequency,
corresponding to the wavevector q at the minimum correlation energy. If the
amplitude σo is considered as constant in temperature and only the direction
is significant, we can write

eq
∗ = e−q, (3.22a)
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and
e±q =

∑
m

em exp{−i(±q .rm − ϖtm)}. (3.22b)

In this case, the short-range interactions can be calculated from

Hmn = −Jmnσ2
oem.en, where en = e±q exp i(∓q .rn + ϖtn),

and its time average can be expressed as

〈Hm〉t =
∑

n
〈Hmn〉t = −σo

2Γt

∑
n
Jmn exp{iq .(rm − rn)}eq.e−q,

where

Γt = (2to)−1
∫ to

−to

exp{−iϖ(tm − tn)}d(tm − tn) =
sin ϖto

ϖto
(3.23)

is the time correlation function within the timescale to of observation. The
value of Γt is less than 1 but close to 1 if ϖto < 1, providing a condition
for spatial fluctuations to be revealed experimentally. Otherwise, the value of
〈Hmn〉t is averaged out and undetectable for ϖto > 1.

Assuming Γt ∼ 1, which is valid for a slow variation, the observable short-
range energy at a site m can be expressed as

〈Hm〉t = −σo
2eq.e−qJm(q), (3.24a)

where
Jm(q) =

∑
n
Jmn exp iq .(rm − rn). (3.24b)

The correlation energy 〈Hm〉t should be minimized to obtain the threshold to
the critical region, which can be calculated from the equation

gradqJm(q) = 0. (3.25)

The quantity Jm(q) can be determined for interactions at short distances
|rm − rn|, extending to the nearest and next-nearest neighbors, regardless of
the site m. Therefore omitting m from Jm(q), we can write it as J(q) for
the short-range interaction. In Section 3.6, we obtain expressions for J(q) for
representative lattices as examples for such calculations.

Of further importance is that these eq and e−q are unit vectors, and,
hence, subjected to the normalization condition in the reciprocal space, we
have the relation

N =
∑

q
eq

∗.eq, (3.26a)

where N is the number of pseudospins per volume of the system. If specific
wavevectors ±q to minimize the function J(q) can be found for a given system,
as shown in Section 3.6, we can use these ±q in (3.26a); that is,

N = eq
∗.eq + e−q

∗.e−q = 2eq.e−q. (3.26b)
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On the other hand, the normalization condition in the crystal space is

N =
∑

m
em

∗.em =
∑

q,−q
eq.e−q exp[i{q − (−q)}.rm]

= 2eq.e−q + eq
2 exp(2iq .rm) + e−q

2 exp(−2iq .rm),

which should be identical to (3.26b). Therefore, we have the identity

e2
q exp(2iq .rm) + e2

−q exp(−2iq .rm) = 0, (3.27)

at all lattice sites m. This can be satisfied by either

eq
2 = e−q

2 = 0 (3.28a)

or
exp(2iq .rm) = exp(−2iq .rm) = 0, (3.28b)

which should be held in addition to (3.27). In order for the relation (3.28b) to
be independent of m, the vector q should be either 0 or ± 1

2G, where G is a
translational vector in the reciprocal lattice, corresponding to ferrodistortive
or antiferrodistortive collective mode, respectively. In these cases, the arrange-
ments are commensurate with the lattice period, signifying a stable long-range
order. In contrast, (3.28a) signifies an arrangement that varies with a vector
q = (qx, qy, qz) such that

e2
qx + e2

qy + e2
qz = 0

in the reciprocal space. Assuming eqy = 0, for example, we obtain eqx = ±ieqz.
Transforming into the crystal space, the corresponding displacement vector
em can be expressed by components

emx = cos φm, emy = ± sin φm and emz = 0,

where φm = q .rm + ϖt+ φo is the phase for propagation with an arbitrary φo.
In this case, the wavevector q gives a periodic variation in the crystal space,
which can be independent of the lattice period along the z direction. Called
incommensurate in this case, |q | is irrational with respect to the reciprocal
lattice vector G. In the long-wave approximation, the phase φm is considered
as a continuous variable in the crystal, so that the coordinate may be written
as r instead of rm. Although arbitrary at each site m, the phase constant φo
is insignificant in this approximation if the phase variable φ = φ(r) is defined
for the continuous r , varying in the range 0 ≤ φ ≤ 2π in repetition. We
realize that such a sinusoidal variation is only detectable in the timescale to
for ϖto ≤ 1, otherwise averaged out and undetectable. In the critical region,
the condition ϖto ≈ 1 is fulfilled for most microscopic observations.

We have remarked that the sign of the correlation parameter Jmn is signif-
icant for the stable pseudospin arrangement, for which the correlation energy
Hmn must take negative values. In the reciprocal lattice, the same principle
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applies to (3.24a), whose sign is determined by J(q)eq.e−q. In a binary sys-
tem, the order variable sq = σoeq must be subjected to inversion symmetry,
so that eq = −e−q under a spatial inversion r → −r . Therefore, noting that
eq.e−q = −1, the sign of J(q) in (3.24a) must be negative to obtain stable
arrangements for the ±q modes.

3.6 Examples of Collective Pseudospin Modes

In the theory of magnetism, “the method of minimum correlations” has been
used for classifying magnetic ordering, such as ferromagnetic, antiferromag-
netic, spiral spin arrangements and others [22]. Here, we apply the same
method to representative displacive systems to see if such a collective pseu-
dospin mode for minimum correlations can really be derived from (3.25). In
fact, in recent magnetic resonance experiments, modulated structures were
observed in practical systems as calculated with this principle, in spite of
unknown correlation parameters in J(q). We may therefore postulate that
the structural transition can be initiated spontaneously with such a collec-
tive pseudospin mode. In this section, phase transitions in perovskites and
in organic calcium chloride crystals, particularly tris-sarcosine calcium chlo-
ride (TSCC), are selected as model systems for the present argument, because
rather comprehensive experimental data are readily available in the literature,
which allow us to interpret critical anomalies in light of calculated correlations.

3.6.1 Strontium Titanate and Related Perovskites

Structural phase transitions in perovskite crystals provide typical examples
of displacive systems, where the model of classical fluctuations can explain
their collective motion of pseudospins. In the ferroelectric phase transition of
BaTiO3, the lattice symmetry changes from cubic to tetragonal, when the
constituent Ti4+ and O− ions displace along one of the cubic axes. Naturally
grown perovskite crystals are thus “twinned” and hence considered as ferroe-
lastic below Tc, being characterized by three differently oriented tetragonal
domains, whereas single-domain samples can be cut from twinned crystals for
studying the phase transition. Denoting displacements of the central Ti4+,
two O− on the tetragonal z axis and four O− in the xy plane of an octahe-
dral TiO3 complex by u+, u− and u′

−, respectively, the order variable can be
expressed in a long timescale as related to

σmz ∝ (u+ − 2u− − 4u′
−)m,

at a site m, with respect to the z axis that is taken along the cubic a axis.
Noting that σmz and σ−mz are related by inversion, the order variable can be
defined statistically as the z component of a vector sm, i.e.

σmz = pm(+z) − pm(−z),
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Fig. 3.3. The pseudospin arrangement in a perovskite lattice in the bc plane. The
square of broken lines indicates the range of the short-range interactions proposed
for collective motion at the threshold of phase transitions.

where pm(±z) are probabilities for binary states of σmz.
On the other hand, the structural change in SrTiO3 crystals is considered

to arise from axial rotation of TiO6
2− octahedra, like rigid bodies. Letting

δθ± be small rotational angles in opposite sense around the z axis, the order
variable can also be defined statistically as a vector with the z component:

σmz ∝ (δθ+ − δθ−)m,

where δθ± represent probabilities for angular displacements ±δθ.
In Fig. 3.3 shown is the arrangement of such pseudospins in the bc plane of

a perovskite crystal, where significant short-range correlations are conceivable
between sm and six sn in the nearest-neighbor sites and between sm and eight
sn in the next nearest-neighbor sites, for which the interaction parameters are
denoted by J and J ′, respectively. Considering such a cluster of pseudospins
at each site m, the short-range correlations can be expressed for +q and
−q modes, for which the interaction parameter J(q) should be minimized to
determine a specific q at the threshold of the critical region in this system.
The function J(q) in (3.24b) can be expressed explicitly for the nearest and
next-nearest interactions as

J(q) = 2J{cos(qaa) + cos(qbb) + cos(qcc)}
+J ′{cos(qbb) cos(qcc) + cos(qcc) cos(qaa) + cos(qaa) cos(qbb)}.



3.6 Examples of Collective Pseudospin Modes 61

Differentiating with respect to qa, qb and qc, the minimum of J(q) can be
determined by solving the equations

sin(qaa){J + 2J ′ cos(qbb) + 2J ′ cos(qcc)} = 0,

sin(qbb){J + 2J ′ cos(qcc) + 2J ′ cos(qaa)} = 0

and
sin(qcc){J + 2J ′ cos(qaa) + 2J ′ cos(qbb)} = 0,

which give solutions as follows:

(i) sin(qaa) = sin(qbb) = sin(qcc) = 0,
(ii.1) sin(qaa) = 0, cos(qbb) = cos(qcc) = −(1 − J/2J ′)
(ii.2) sin(qbb) = 0, cos(qcc) = cos(qaa) = −(1 − J/2J ′)
(ii.3) sin(qcc) = 0, cos(qbb) = cos(qaa) = −(1 − J/2J ′)
(iii.1) cos(qaa) = 0, cos(qbb) = cos(qcc) = −J/2J ′

(iii.2) cos(qbb) = 0, cos(qcc) = cos(qaa) = −J/2J ′

(iii.3) cos(qcc) = 0, cos(qaa) = cos(qbb) = −J/2J ′.

Solution (i) gives the wavevector q1 with components

q1a = (π/a)l, q1b = (π/b)m, q1c = (π/c)n,

where l, m and n take 0 or plus integers. In these calculations, only the mag-
nitude |q | is significant for the function J(q) in (3.24b). Hence, the calculated
wavevector q1 for positive angles gives a commensurate arrangement with the
lattice vector G, and J(q1) = 6J + 12J ′, where pseudospins are all parallel.

Solution (ii.1) indicates that the q2a is rational in the reciprocal unit a∗,
whereas q2b and q2c are irrational in the units of b∗ and c∗, provided that
|1 − J ′/2J ′| < 1. Thus, the wavevector q2 for Solution (ii.1) gives an incom-
mensurate arrangement of pseudospins in the bc plane, while commensurate
in the a direction. For convenience, we can rewrite these components as

q2a = la∗ (l = 0, or half integers),
q2b =

( 1
2 − δb

)
b∗ and q2c =

( 1
2 − δc

)
c∗,

where δb and δc are so-called incommensurate parameters in the b and c
directions, respectively. Corresponding to q2, we have J(q2) = 2J − 4J ′ −
J2/J ′, which should be negative for the mode to give a lower correlation
energy below Tc.

Solution (iii.1) also give a two-dimensional incommensurate arrangement
in the bc plane, if |J/2J ′| < 1, while commensurate in the a direction, and
J(q3) = −J2/2J ′ < 0 for J ′ > 0. Solutions (ii) and (iii) are very similar,
although giving different correlation energies, both being incommensurate in
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two dimensions while commensurate in the perpendicular direction. Exper-
imentally, observed anomalies in perovskite crystals exhibited such features
consistent with these calculated results, as discussed in Chapter 10.

In fact, the structural change in perovskites is known as from cubic to
tetragonal, whereas we calculated for an orthorhombic case in the above.
Considering for example the displacement along the c axis, the wavevectors of
types (ii) and (iii) are characterized by qa and qb, which are identical in the
tetragonal structure. Therefore, a binary domain structure may logically be
expected in the low-temperature phase, for which some evidence was exhibited
in magnetic resonance anomalies from SrTiO3 crystals, as discussed in Section
10.1.

3.6.2 Tris-Sacosine Calcium Chloride and Related Crystals

Tris-sarcosine calcium chloride (TSCC) with the formula unit (sarcosine)3
CaCl2, where sarcosine is H3C-NH2-CH2COOH, crystallizes in an orthorhom-
bic structure. At room-temperature, TSCC crystals exhibit twinning due
to the pseudostructure that strains the structure. Ferroelastic domains in
twinned crystals can be easily identified by viewing through a pair of crossed
polarizers [23]. A single-domain sample can then be cut out of a naturally
grown crystal for studies of the ferroelectric phase transition at 120K, leading
to the ordered phase polarized along the b axis. TSCC crystals offer a pro-
totype example of uniaxial structural phase transitions, characterized by the
loss of mirror symmetry on the b plane below Tc.

Figure 3.4a illustrates the molecular arrangement in TSCC at room tem-
perature, which was determined by Ashida et al. [24] from their X-ray studies.
In this figure, quasi-mirror symmetry on the b plane is clearly visible in the
quasi-triginal structure. Nakamura et al. [25] confirmed from their diffuse X-
ray results near Tc that the active group is the Ca(sarcosine)6 complex, where
the Ca2+ ion is surrounded near-octahedrally by six carbonyl oxygens, as
shown in Fig. 3.4b.

Figure 3.5 shows the pseudospin lattice in the bc plane of TSCC abstracted
from Fig. 3.4a, where we consider correlations with the nearest neighbors along
the a, d and c directions and with the next-nearest neighbors along the b axis,
although the perpendicular interaction Ja to the plane is not shown. For such
a cluster of pseudospins, the function J(q) can be written as

J(q) = 2Ja cos(qaa) + 2Jb cos(qbb) + 2Jc cos(qcc) + 8Jd cos
( 1

2qbb
)
cos
( 1

2qcc
)
,

(3.29)
where the lattice constant b is larger than a ≈ c, according to the X-ray data
[24]. Solutions of the equation (3.25) for this J(q) can be specified by the
following wavevector components

(i) q1a = (π/a)l, q1b = (π/b)m, q1c = (π/c)n;
(ii) q2a = (π/a)l, cos

( 1
2q2bb

)
= −Jd/2Jb, q2c = (2π/c)n;

(iii) q3a = (π/a)l, q3b = (π/b)m, cos
( 1

2q3cc
)

= −Jd/2Jb,
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Fig. 3.4. (a) The molecular arrangement in the normal (ferroelastic) phase in TSCC
crystals; (b) the ligand structure in Ca2+(sarcosine)6 complexes in TSCC.

where l, m and n are zero or positive integers.
Solution (i) represents a commensurate pseudospin arrangement, for which

J(q1) = 2Ja + 2Jb + 2Jc.

Assuming that it is negative, the commensurate pseudospin mode q1 can be
stable, which, however, cannot be verified unless such a state is identified.

On the other hand, Solutions (ii) and (iii) give incommensurate arrange-
ments in the b and c directions if | − Jd/2Jb| < 1. The ferroelectric phase
transition in TSCC exhibits the unique axis of polarization along the b axis,
for which Solution (ii) should be an obvious choice. In this case, the function
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Fig. 3.5. The pseudospin lattice proposed for TSCC crystals, as viewed along the
a axis. The short-range correlations at the transition threshold are indicated by the
range shown by broken lines.

J(q) can be written as

J(q2) = 2Ja + 2Jb + 2Jc − 8Jd
2/Jb,

which should be negative for stability of the mode q2. For one-dimensional
correlations along the b direction, we can assume that Ja = Jc = 0 in J(q2),
which can then be written as

J(q2) = 2Jb{1 − (Jd/2Jb)2},

depending on the value of Jd which can vary in the range 0 ≤ Jd ≤ Jb. We can
consider that a change Jd → 2Jb describes the approach to complete order.
The complete ferroelectric order is established by lowering the temperature
in TSCC, where the ordering mechanism can logically be attributed to the
temperature-dependent Jd.

Aside from the origin for variable Jd, the vector em for q2 can be expressed
as

ema = 0, emb = cos φm and emc = ± sin φm,

where φm = q2bym + φo is the phase of sinusoidal propagation along the b
axis, as verified by Fujimoto et al. [21] from observed electron paramagnetic
resonance (EPR) anomalies in Mn2+ spectra in the critical region of TSCC.

Although only short-range correlations were considered in the above, the
parameter Jd can also depend on the long-range dipolar interactions that are
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temperature dependent. Judging from the EPR results, pseudospin correla-
tions in TSCC are primarily due to Jb in the one-dimensional chain in the b di-
rection, but are modified by the interchain interaction Jd. For one-dimensional
charge-density waves in a uniaxial conductor, Lee et al. [27] proposed a model
similar to Jd in TSCC. Considering that the phase φ represents an angle be-
tween the vector s and the chain direction geometrically, they wrote a dipolar
interaction between such chains σo exp iφ1 and σo exp iφ2 as

−J12s1.s2 = −J12σo
2 cos(φ1 − φ2),

where J12 is a scalar parameter that depends on the interchain distance. It is
noted that the interaction is maximum if φ1 −φ2 = 0, although it is zero when
φ1 − φ2 = 1

2π, suggesting a phase shift in neighboring-chain interactions that
can be vary with temperature. Applying this model to the TSCC structure
illustrated by Fig. 3.5, we may consider that the parameter Jd is temperature
dependent, and that two adjacent chains sm(1) and sm+1/2(2) are signified
by a phase difference 1

2π at the threshold of the transition. In this context, we
can express the interchain phase difference as φ1 − φ2 = ( 1

2 − δb)π, where δb
is the temperature-dependent incommensurate parameter.

Solution (ii) represents generally a collective mode of pseudospins (or
spins) in one-dimensional chain, in which the nearest-neighbor ferrodistortive
interaction Jb is counteracted by eight interchain interactions Jd (or two next-
nearest antiferrodistortive interaction). In (3.29), we can write 1

2qbb = ϕ, and
cos( 1

2qcc) = 1,

J(ϕ) = 2Ja + 2Jc + 2Jb cos(2ϕ) + 8Jd cos ϕ, (3.30)

which is a well-known formula for a linear chain model of collective pseu-
dospin vectors. If the vectors are transversally rotatable around the b axis,
the collecive mode can be described as a spiral distribution of the spin vectors
[28, 29].

3.7 The Variation Principle and the Weiss Singularity

We have considered order variables emerging at Tc with infinitesimal ampli-
tude, which are in collective motion as initiated by minimum correlations.
With lowering the temperature, their amplitudes increase due to increasing
long-range order. Although weak, such long-range interactions exist in the
critical region, but are not easily evaluated. Nevertheless, responding to an
applied field, the susceptibility shows a singular behavior near Tc in the mean-
field approximation, for which the averaged local field, called the Weiss field,
is considered responsible. Although introduced as a theoretical concept, the
Weiss field behaves as if applied externally, as the Curie-Weiss law of the sus-
ceptibility can be derived as a response to the combined internal and applied
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fields. In this section, we show that such local fields can also be derived by
the variation principle applied to the correlation energy.

In a pseudospin system in equilibrium at a given temperature, the correla-
tion energy should take a minimum value, around which the pseudospin mode
can fluctuate. We consider that the correlation energy

H = −
∑

m

∑
n
Jmnsm.sn, (i)

where correlations beyond the short-range can also be included in the sum-
mation. The energy in (i) can include all the correlations of this type in the
system, and the effect of long-range correlations can be discussed with this
expression H. Applying the variation principle to (i) for all correlations of
the same type, equilibrium can be obtained by minimizing H for arbitrary
variations δsm and δsn, for which the magnitude σo is assumed as constant
of a given temperature; that is,

sm
2 = sn

2 = σo
2 = const. (ii)

For the stationary state, the variation of (i) is

δH = −
∑

m
δsm.

(∑
n
Jmnsn

)
−
∑

n

(∑
m

Jmnsm

)
.δσn = 0,

and from (ii)
sm.δsm = sn.δsn = 0.

For arbitrary variations δsm and δsn, we can write relations

−
∑

n
Jmnsn + λmsm = 0 and −

∑
m

Jmnsm + λnsn = 0,

where λm and λn are constants called the Lagrange multipliers. Here, we note
that the quantity

Fm =
∑

n
Jmnsn = λmsm (3.31)

represents the effective local field at site m due to all distant sn interacting
with sm, regardless of distances. Equation (3.31) indicates that sm is propor-
tional to Fm which increases with increasing order. If sm is considered like
an electric dipole moment, the correlation energy Hm expresses an energy for
sm to be in the field Fm; that is,

Hm = −sm.Fm. (3.32)

The mean-field average of Fm, called the Weiss field, is defined as

F = 〈Fm〉s =
(∑

m
Fm

)
/N,

where N is the number of pseudospins in the crystal. The above variational
argument applies in principle to any stage of collective motion, where the am-
plitude σo is finite, arising from the long-range field Fm. Nonetheless, the am-
plitude σo is infinitesimal at the transition threshold Tc, becoming finite due
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to the mean-field average 〈Fm〉s of long-range interactions. In the mean-field
approximation, the susceptibility shows a singularity with vanishing 〈Fm〉s at
To, which is experimentally found higher than Tc.

For a collective mode of sm with finite amplitudes, the internal Weiss
field Fm is present in the crystal as if a real field, although not directly
measurable under normal circumstances. On the other hand, in susceptibility
measurements, we can obtain the response of such a collective mode to the
effective field composed of the internal Weiss field plus an applied field.

The collective mode can be conveniently expressed by the Fourier trams-
forms s±q, i.e.

sm = N−1/2{s−q exp(iq .rm) + sq exp(−iq .rm)},

where the time factor exp(−iϖt) is omitted, because the spatial variation
expressed by s±q is significant and explicit under the condition ϖto ≤ 1.
Corresponding to sm, we can write

Fm = N−1/2{F−q exp(iq .rm) + F q exp(−iq .rm)},

where

F±q =N−1/2
∑

m
Fm exp(±iq .rm)= N−1/2

∑
m

(∑
n
Jmnsn) exp(±iq .rm

)
.

= N−1
∑

mn
Jmn exp{±iq .(rm − rn)}s±q = Jlong(q)s±q,

which is considered as the long-range field acting on the collective mode s±q,
prevailing over the short-range correlations at temperatures below Tc. There-
fore, in the presence of an external field E , the internal field is effectively the
resultant E + F±q, so that we can write

s±q = χo(E + F±q) =
C

T
{E + Jlong(q)s±q},

where χo = C/T is the static susceptibility of uncorrelated pseudospins. From
this, we can derive the Curie-Weiss law for the collective modes s±q.:

χq = σ±q/E = C/{T − To(q)}, To(q) = CJlong(q),

which is independent of the sign of q . It is noted that this expression of χq

is exactly the same as the static Curie-Weiss formula, so that it does not
distinguish the collective mode sq from uncorrelated pseudospins sm.

Although by the mean-field approximation, the Weiss field is significant in
the noncritical region below To, where the long-range correlations dominates.
The collective pseudospins below Tc are in a propagating mode at a long
wavelength, as signified by the phase variable φ = q .r−ϖt+φo for a continuum
crystal, in which r and t are space-time coordinates. If the amplitude σo is
infinitesimal, the speed of propagation v = ϖ/q is constant, whereas the speed
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for a finite σo is no longer constant of time, because the propagation is forced
to be modified by the internal field F q(φ). By hydrodynamical analogy, we
can consider s(φ) as if associated with a one-dimensional flow of liquid-like
material that can be represented by the density s∗.s, for which we can write
the equation

∂v/∂t + v∂v/∂x = −α∂Fq/∂x

for the speed v = v(x, t) that is not constant in the presence of Fq �= 0,
where α is constant. In this case, the term v∂v/∂x on the left makes the
flow typically nonlinear. The mathematical detail are discussed in Chapter 5,
where we can show that the amplitude increases with increasing internal field
Fq of long-range correlations.



4

Soft Modes, Lattice Anharmonicity and
Pseudospin Condensates in the Critical Region

4.1 The Critical Modulation

At the threshold of the critical region, pseudospins are in collective motion
at a specific wavevector for minimum correlations, as described in Chapter
3. On the other hand, Cochran [30] and Anderson [31] proposed considering
soft modes with characteristic frequencies, that diminish toward the transi-
tion temperature Tc, causing lattice instability. Experimentally, pseudospin
modes were observed in magnetic resonance anomalies, and soft modes were
recognized in light- and neutron-scattering measurements.

Pseudospins and soft phonons are primarily independent in the harmonic
approximation. Therefore, if excitations in these constituents are exclusively
observed, the experimental results from these variables are seemingly incom-
patible with one another. Whereas the critical anomalies can be attributed to
lattice anharmonicity, the phase transition is recognized from the singular be-
havior of pseudospin correlations. Nevertheless, representing the same phase
transition, pseudospins and soft phonons should interact in higher order, and
the resulting anomalies should be interpreted in light of the Born-Huang the-
ory as related to the coupling w for vanishing strains.

When a collective pseudospin mode s±q occurs at a specific q of a long
wavelength, the hosting crystal should be deformed in principle, where a lat-
tice excitation u±q′ is induced by the coupling sm = A.um at each site m,
and sm and um can be effectively in near-phase in the critical region. Such a
phase-matching condition given by (3.16) can be expressed in the reciprocal
space with the Fourier transforms between s±q and u±q at Tc. Writing

sm = {s−q exp(iq .rm) + s+q exp(−iq .rm)} exp(−iϖt)

and
um = {u−q′ exp(iq ′.rm) + u+q′ exp(−iq ′.rm)} exp(−iωt),

for (3.16), these Fourier transforms are related by

s±q = A.u±q′ exp i{±(q ′ − q).rm − (ω − ϖ)t},
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indicating that both sm and um are amplitude modulated in the critical region,
as described by

±∆q = q ′ − q and ∓ ∆ω = ϖ − ω. (4.1)

Here, attached double signs are chosen for convenience in neutron inelastic
scattering experiments, where the conservation laws for inelastic scattering
demand that the wavevector difference (±∆q) are related to the loss and gain
of lattice energies (∓h̄∆ω). As will be explained in Chapter 6, anomalous
scattering intensities of neutrons can be expressed in terms of distributed
phases ∆φm = ±(∆q .rm − ∆ω.t), as allowed by (4.1), at each site.

It is noted that ∆q may not necessarily be small, whereas ∆ω is very small
in practice. For the present problem in crystals, such wavevector exchanges
between pseudospins and phonons can be expressed as

±∆q + G = q ′ − q ,

where G is the reciprocal lattice vector, corresponding to the repeat period of
the lattice. Therefore, the problem can always be reduced to the center of the
Brillouin zone, i.e. G = 0, at which ±∆q = q ′−q represent small fluctuations.
In practical crystals however, obstacles may exist against propagation in the
crystal at nonlattice points G i, where the translational symmetry is disrupted
[32]. Such obstacles can be lattice imperfections, aperiodic structures or any
other defects, at which the vector G i is irrational in the reciprocal lattice. In
such a practical crystal, the relation (4.1) can be modified as

q ′ − (q + G i) = ±∆q , (4.2)

suggesting the presence of small fluctuations ±∆q in the vicinity of the irra-
tional point G i.

Nevertheless, considering an imperfection-free crystal expressed by G i = 0,
for simplicity, illustrated in Fig. 4.1 are one-dimensional chains of active
groups that are indicated by squares, in which hypothetical mass particles are
located to represent displacive pseudospins sm. Such displacements sm do not
generally occur in the same way as um, because sm can represent only a part
of the active group at site m, whereas um occurs associated with the squared
group of a heavier mass, being distinguishable mechanically with regard to
different masses. Such sketches are helpful for interpreting more complicated
cases as well. For the purpose of illustration, a transversal vibrational mode of
um of a long wavelength near Tc is shown in Fig. 4.1a, assuming that sm = 0,
whereas in Fig. 4.1b shown is the displacement mode sm, assuming um = 0.
Figure 4.1c shows two waves sm and um, when occurring out of phase, and A
is assumed as a scalar.

It is important to realize that such sinusoidal fluctuations as specified by
(4.1) or (4.2) are detectable in such a short timescale to that ∆ω.to ≤ 1,
otherwise averaged out in a long timescale to. In fact, such a condition is ful-
filled in most microscopic experiments of diffraction, scattering and magnetic
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Fig. 4.1. A one-dimensional model for collective displacements. (a) normal displace-
ments at a long wavelength; (b) a transversal pseudospin mode in a rigid lattice, (c)
the same pseudospin mode in a deformed lattice.

resonance under the critical condition characterized by a very low frequency
∆ω.

The coupling w in (3.16) for phase matching between sm and um is anal-
ogous to the coupling between a charge-density wave (CDW) and a periodic
lattice distortion (PLD) proposed by Peierls [33] for one-dimensional con-
ductors. Such a coupled object as CDW-PLD is generally referred to as a
condensate, and we apply a similar concept to the critical region. Related to
the wavevector fluctuations ±∆q , we can consider the kinetic energy of fluc-
tuating pseudospins h̄2∆q2/2m = h̄∆ω for energy exchanges with the soft
lattice mode, where m is the effective mass of a condensate.

The soft mode was a hypothetical concept, when introduced originally for
lattice instability. In dielectric spectra observed in the critical region, absorp-
tion peaks are considered to represent soft modes, but such an interpretation
is based on the assumption that sm represents the phonon mode. Although
signifying the displacive mechanism, pseudospin waves per se do not fully
represent the distorted structure. Nevertheless, in traditional theories, pseu-
dospins and phonons were assumed as identical for simplifying arguments.

4.2 The Lyddane-Sachs-Teller Relation

Critical fluctuations are a major objective for the investigation on structural
phase transitions, for which susceptibility measurements at various frequencies
yield significant information on the dynamical nature of order variables. The
Lyddane-Sachs-Teller (LST) formula describes a general relation between the
dielectric response and measuring frequencies, although derived from a sim-
plified model for a uniaxial ferroelectric crystal. Although the polarization
arises from ionic displacements, they assumed no distinction between sm and
um in their theory, namely sm = um in (3.16). Accordingly, such fluctuations
as described by ∆q and ∆ω do not emerge in the LST theory. On the other
hand, a uniaxial crystal, characterized by a specific direction of polarization z,
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is considered, in which longitudinal vibrational displacements uL play a role
distinct from transversal displacements uT.

Assuming that the order variable um = sm represents local polarization
p(r , t) in the long-wave approximation, the electric field at r and t is expressed
as

E(r , t) = {E−q exp(iq .r) + E q exp(−iq .r)} exp(−iωt), (4.3)

which is considered as synchronizing with the harmonic displacement

u(r , t) = {u−q exp(iq .r) + uq exp(−iq .r)} exp(−iωt), (4.4)

as consistent with (3.31), whereas the related lattice deformation is implicit
with this assumption.

The electric displacement u(r , t) occurs along the unique direction z to
cause polarization, which is also induced by the longitudinal component EL
of the applied field, namely

PL = εo(b′uL + αEL), (4.5a)

where b′ is a proportionality factor and α is the ionic polarizability. In transver-
sal directions, on the other hand, a polarization occurs only by an applied
transversal field ET, and so we can write

PT = εoαET. (4.5b)

We derive a dynamic response function of such a displacive system against
an applied time-dependent electric field E(t) = EL +ET. The lattice exhibits
a sinusoidal excitation to meet the stress-free condition, as described by the
linear equation

∂2u/∂t2 − v2∇2u = bE(t), (4.6)

where v is the speed of propagation in the crystal, b = e/m is a constant of
the mode u, and the damping is ignored for simplicity. In (4.6) for a forced
oscillation, bE(t) is an effective electrical force, consisting of those originating
from the interaction between the lattice and ionic charges in the crystal, and
with the applied field. In this case, the problem is essentially nonlinear, but
the linear equation (4.6) provides only solutions accurate at small amplitudes
of these electric fields. Nevertheless, in (4.5a) the effect of long-range order is
expressed in the mean-field accuracy by the constant b′. Further, it is impor-
tant that in such a uniaxial system, the response function can be calculated
for a longitudinal field EL as well as for a transversal field ET separately, and
we discuss it following the textbook by Elliott and Gibson [34].

For dielectric studies, we normally use low frequencies, at which the rate
∂ET/∂t is negligible, so that curl ET ≈ 0. Therefore, applying “curl” to (4.6),
we obtain the relation for the transversal displacement uT,

curl(∂2uT/∂t2 − v2∇2uT) = 0. (4.7)
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For a sinusoidal displacement along the z direction (unit vector k), we can
write

uT(z, t) = (uT+ + uT−) exp(−iωTt), where uT± = uTo exp(±iqz)k,

and
curluT± = iq × uT±.

Therefore, from (4.7) we obtain

(±iq × k)uT±(−ωT
2 + ϖ2) = 0, where ϖ = vq.

Because q × uT± �= 0, we obtain ωT = ϖ for the transversal mode.
On the other hand, in a longitudinal field EL the spatial variation of

displacements should be significant, and so we apply “div” to (4.6) for uL±,

div(∂2uL±/∂t2 − ϖ2uL±) = bdivEL.

Here, from the Maxwell equations we note that divDL = 0, and so EL =
−P/εo. Using (4.5a), divEL = −div(b′uL± + αEL) and, therefore,

divEL = −b′divuL±/(1 + α),

with which the wave equation for uL± is written as

∂2uL±/∂t2 + {ϖ2 + bb′/(1 + α)}uL± = 0.

The characteristic frequency ωL for the longitudinal mode can thus be ob-
tained as

ωL
2 = ϖ2 + bb′/(1 + α). (4.8)

We notice that the difference between ωL and ωT = ϖ arises clearly from the
nonvanishing factor bb′, signifying a nonzero coupling between p and u along
the unique z axis.

The dielectric behavior of polar pseudospins as observed at an arbitrary
frequency ω can be described in terms of the response function ε(ω) that is
defined as follows. From (4.6) and (4.5a), we have

(ϖ2 − ω2)uL± = bEL, and P = εo{α + bb′/(ϖ2 − ω2)}EL.

Hence,

DL = ε(ω)EL = εoEL + P = εo{α + bb′/(ϖ2 − ω2)}EL,

where
ε(ω) = εo{1 + α + bb′/(ϖ2 − ω2)}.

Writing
ε(∞) = εo(1 + α) and ε(0) = ε(∞) + bb′/ϖ2, (4.9a)
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we obtain the dielectric function in general form

ε(ω) = ε(∞) + {ε(0) − ε(∞)}/{1 − (ω/ϖ)2}. (4.9b)

From (4.9b) and (4.8), it is noted that the function ε(ω) shows specific be-
haviors

ε(ωT) = ±∞ and ε(ωL) = 0 (4.10)

at ω = ωT and ωL, respectively. Fig. 4.2 shows a sketch of ε(ω), where there
is a forbidden gap between ε(0) and ε(∞). The frequencies ωL and ωT are
characteristic for the pseudospin mode that is coupled with an optic lattice
mode. From (4.8), (4.9a) and (4.9b) in the above argument, we can derive the
equation

ωL
2/ωT

2 = ε(0)/ε(∞), (4.11)

which is known as the Lyddane–Sachs–Teller (LST) relation.
The ferroelectric phase transition is characterized by the static Curie-Weiss

law at zero frequency:
ε(0) = C/(T − To),

therefore from the LST relation, we can state that

ωT
2 = ϖ2 ∝ (T − To),

Fig. 4.2. A sketch of a dielectric function ε(ω) in a uniaxial polar crystal, where
ε(ωL) = 0 and ε(ωT) = ±∞.
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indicating that the transversal frequency is softened in the mean-field approx-
imation, as To is approached from above. According to the LST relation, the
mode softening occurs toward the Curie-Weiss singularity at To. It is also
noted that in the Landau theory, the coefficient A in the Gibbs potential is
given by A′(T − To), and, hence, G(η) ∝ 1

2ϖ2η2, thereby allowing one to
consider that η in equilibrium is characterized by zero frequency, i.e. ϖ = 0
at T = To.

The LST formula is widely used for analyzing dielectric results. It is re-
alized, however, that the distinction between two displacements uq and pq is
clearly made by b′ �= 0, although their proportionality relation yields no such
coupling w as proposed by (3.16). Signifying the nature of order variables p,
the Curie-Weiss law is valid in the limit of b′ → 0, and the amplitude |p| is
infinitesimal in the harmonic approximation.

4.3 Long-Range Interactions and the Cochran Theory

Although inadequate for the critical region, the mean-field theory of distant
interactions is capable of predicting a phase transition with respect to their
average, playing the decisive role in determining the transition temperature
To. The Weiss field signifies emerging long-range correlations at To, which is
responsible for the singular behavior of the susceptibility in the mean-field
approximation. On the other hand, Cochran [30] introduced the concept of
soft modes whose characteristic frequency diminishes to zero as the transition
temperature is approached. Although such a soft mode is predictable from
the LST relation, the softening mechanism should be found with the effective
field in conjunction with lattice anharmonicity, as will be discussed later.
Using a simplified model of ionic crystals, Cochran showed that the singularity
can arise from the short-range correlations as competitive with long-range
interactions in the critical region.

In his model of an ionic crystal, an electric polarization appears when con-
stituent ions are displaced from normal positions. A pair of charges (+e,−e)
can effectively be generated, if an ion (+e) is displaced from its regular lat-
tice site, and the crystal structure remains unchanged. If a postive ion +e at
a site m and a negative charge −e at an adjacent site m′ are displaced by
um and −um′ by an applied field E , respectively, an electric dipole moment
pm = e(um −um′) is generated in the neutral crystal. If the wavelength of an
applied field E is sufficiently long compared with the lattice constant, such
a dipole moment formed at m and m′ sites in a short ionic distance may
be regarded as located at the same site m. Cochran assumed that the field
of these dipoles is uniform over all ionic sites and wrote his equation for a
uniformly polarized crystal. In his theory for a one-dimensional ferroelectric,
further significant is the local Weiss field that is considered as proportional to
the macroscopic polarization P , when ions are displaced longitudinally along
the unique axis. In addition, he considered the internal Lorentz field P/3εo
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due to classical dipole-dipole interactions in the direction of an applied field
E.

For positive and negative ions, the transversal displacements uT+ and uT−
are driven by the transversally applied field ET combined with the Lorentz
field, and so the equations of motion can be written as

m+∂2uT+/∂t2 + C(uT+ − uT−) = e(ET + PT/3εo)

and
m−∂2uT−/∂t2 + C(uT− − uT+) = −e(ET + PT/3εo),

respectively, where C is the elastic constant in the binding force between ionic
masses m+ and m−. These equations can be combined for the transversal
dipole moment pT = e(uT+ − uT−), and we have

m∂2pT/∂t2 + CpT = e2(ET + PT/3εo),

where m = m+m−/(m+ + m−) is the reduced mass of the ion pair. This
equation can also be expressed in terms of the macroscopic polarization PT =
vpT , where v is the number of these ion pairs per unit volume.

m∂2PT/∂t2 + CPT = (e2/v)(ET + PT/3εo). (4.12a)

Therefore, we can express the transversal electric susceptibility as

χT(ω) = PT/ET = (e2/v)/{C − (e2/3εov) − mω2},

where a singularity occurs at a frequency

mω2 = mωT
2 = C − (e2/3εov). (4.12b)

On the other hand for the longitudinal mode, the motion is driven by the
Weiss field plus the Lorentz field as well as an applied field EL, so that the
equation of motion is given by

m∂2PL/∂t2 + CPL = (e2/v)(EL + PL/εo + PL/3εo), (4.13a)

from which the singularity in the longitudinal susceptibility could be deter-
mined by

mωL
2 = C + 2e2/3εov. (4.13b)

It is noted that from (4.12b) ωT can be equal to 0, if C = e2/3εov, whereas
from (4.13b) ωL cannot vanish. Cochran called such ωT the soft frequency,
because one can derive the expression ωT

2 ∝ (T − To) from the LST theorem
combined with the Curie-Weiss law for εo ∝ (T − To)−1. The elastic constant
C can be correctly interpreted as related to the short-range correlations of
order variables, as long as the displacement um is considered to represent
the order variable pm. In this case, owing to (4.12b) in the Cochran theory,
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the transversal mode softening can be attributed to short-range correlations
competing with the long-range interaction.

The Cochran theory is abstract, where the short-range interaction is con-
sidered only in the mean-field accuracy, whereas the Lorentz field represents
classical dipolar interactions in polar crystals. In his theory, the temporal
fluctuations in dielectric polarization exhibits a singularity when these inter-
actions are competing.

4.4 The Quartic Anharmonic Potential in the Critical
Region

Inspired by the Born-Huang theory, we discussed in Section 3.4 the strain-
strain coupling between pseudospins and the hosting lattice, which we consider
is responsible for fluctuations in the lattice structure. If we paid attention only
to pseudospins in the critical region, ordering inevitably strains the lattice,
resulting in a structural change. In Cochran’s theory, a structural instability
is attributed to a softening vibrational mode, which was nevertheless derived
from dipolar forces counteracting ionic correlations. On the other hand, Cow-
ley showed that the phonon frequency may shift with temperature when scat-
tered by anharmonic lattice potentials. In his theory, such anharmonicity was
not particularly regarded as related to critical fluctuations. Nevertheless, he
showed that anharmonic potentials can play a significant role in scattering
phonons in a crystal.

In fact, in the Landau theory, the Gibbs potential below To is expressed as
a power series of the order parameter, where the quartic term 1

4Bη4 emerging
at the transition temperature is essentially due to correlations expressed in
mean-field accuracy. Using the relation (3.16) between sm and um and be-
tween their Fourier transforms, the quartic term in the Landau expansion can
be written as

1
4Bη4 = 1

4B
(∑

m
sm

)4/
N = 1

4 (B/N)
∑

qq′q′′q′′ uquq′uq′′uq′′′ , (4.14a)

to which the conservation rule

q + q ′ + q ′′ + q ′′′ = 0 (4.14b)

must be applied to obtain a secular average of fluctuating potentials. We
have written (4.14a) in terms of displacements uq, which are, however, rather
indirect variables to specify strains in the deformed lattice. Although the
deviations δrm of normal lattice points rm should be used as expressed in
(3.18), we use um instead of δrm; nevertheless, by doing so, we can reduce
the number of necessary notations without losing generality. In the following
discussions, we consider that the displacement um in the active group at site m
represents the deformed structure, unless we encounter with a serious conflict.
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4.4.1 The Cowley Theory of Mode Softening

At the threshold of a binary transition, a lattice displacement wave u(r , t)
should occur spontaneously at specific wavevectors q ′ = q ± ∆q and at fre-
quencies ω = ϖ ∓ ∆ω, as expressed by

u(r , t)=u−q′ exp i(q ′.r − ϖt) + uq′ exp i(−q ′.r + ϖt)
=u−q′ exp i(q ′.r − ∆ω.t) exp(−iωt) + uq′ exp i(−q ′.r + ∆ω.t) exp iωt.

Writing u∓q′ exp±i(q ′.r −∆ω.t) = u±q′(r ; q ′,∆ω) = u±q′(t) for brevity, the
wave u(r , t) can be expressed conveniently to deal with the temporal variation
as

u(r , t) = u−q′(t) exp(−iωt) + u+q′(t) exp(iωt),

implying that at a given r , the amplitudes u±q′(t) are modulated at ∆q and
∆ω. In an ionic crystal, the driving force can be considered effectively as an
electric field E±q′ related to s±q′(t) as in (3.31). Therefore, for such u±q′(t)
we can write the dynamic equation

d2u±q′

dt2
+ γ

du±q′

dt
+ ϖ(q ′)2u±q′ =

e

m
E±q′ exp(±iωt), (4.15)

where γ is the damping constant, ϖ(q ′) is the characteristic frequency at q ′,
and e/m is the effective charge/mass ratio for the lattice modes u±q′ .

Cowley [35] considered anharmonic potentials as scatterers of lattice waves
u±q′(t), for which cubic and quartic potentials were calculated as significant
perturbations. He derived the expression for the characteristic frequency of
the perturbed oscillator. The calculation was standard but lengthy, so that
we only quote his theoretical results. Those readers who are interested in the
derivation are referred to Ref. [35].

In the foregoing, the unprimed q was used for pseudospins, however, here
we use the same q for the lattice mode that constitutes the subject for dis-
cussion in this section. Normally the equation (4.15) is written for the lattice
response to E±q, for which Cowley showed that the damping constant can
be effectively replaced by a complex factor γ = Γ − iΦ, as the consequence of
anharmonic perturbations, namely

u±(r ; q ,∆ω) = (e/m)E±q/{−ω2 + (Φ − iΓ)ω(q) + ϖ(q)2}
= (e/m)E±q/{−ω2 + iΓω(q) + ϖ(q ,∆ω)2},

where
ϖ(q, ∆ω)2 = ϖ(q)2 + ω{Φ(q ,∆ω) − 2iΓ(q ,∆ω)}, (4.16)

expresses the square of the characteristic frequency of the perturbed lattice
mode. Here, Φ(q ,∆ω) and Γ(q ,∆ω) were evaluated by the perturbation cal-
culation of the anharmonic potentials (4.14a), for which Cowley has derived
the following expressions:

Φ(q ,∆ω) = Φo(q) + Φ1(q) + Φ2(q ,∆ω),
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where

Φo(q) =
∂ϖ(q)
∂V

∆V = −ϖ(q)kBT

{
φ′′′(ro)2

φ′′(ro)3

}
< 0,

Φ1(q) = ϖ(q)kBT
φ′′′′(ro)
8φ′′(ro)

=
h̄

Nϖ(q)

∑
q′

(2n′ + 1)
2ω′ V4(−q , q : q ′,−q ′). (4.17a)

and

2Γ(q ,∆ω) = Φ2(q ,∆ω) =
πh̄

16Nϖ(q)

∑
q′,q′′

|V3(q ; q ′, q ′′)|2
ω′ω′′

×[(n′ + n′′ + 1)]{−δ(ω + ω′ + ω′′) + δ(ω − ω′ − ω′′)}
−(n′ − n′′){−δ(ω − ω′ + ω′′) + δ(ω + ω′ − ω′′)}]. (4.18a)

Here, Φo and Φ1 are expressed in terms of derivatives of the interatomic
potential φ(ro) in the high-temperature approximation. Corresponding to the
wavevectors q ′ and q ′′, the frequencies are written in the above expressions
as ω′ and ω′′, respectively. Notice that Φo = 0 under a constant volume
condition and insignificant, whereas Φ1 is determined by the quartic potential
V4 as related to a phonon scattering

q + (−q) ↔ q ′ + (−q ′), (4.17b)

and Φ2 = Γ is due to the cubic potential V3 for a dissipative scattering

q → q ′ + q ′′. (4.18b)

Therefore, for the response function of u±(r ; q ,∆ω), the temperature-depend-
ent frequency shift should be involved in Φ1 for nondissipative phonon-
scattering processes (4.17b), whereas the damping is due to Φ2 = 2Γ for
dissipative processes (4.18b). It is noted that in the expression (4.17a) the
sum over the states q ′ is proportional to the temperature T , if evaluated in
the high-temperature approximation. For the process (4.17b), the perturbed
characteristic frequency by Φ is given by

ϖ(q ,∆ω)2 = ϖ(q)2 + ϖ(q)Φ1(q) ∓ ∆ωΦ1(q).

For q = 0, this gives, in particular,

ϖ(0,∆ω)2 = ϖ(0)2 + ϖΦ1(0) ∓ ∆ωΦ1(0)
= {ϖ(0) + 1

2Φ1(0)}2 + {∓∆ωΦ1(0) − 1
4Φ1(0)2},

which can be equal to zero if ϖ(0) = − 1
2Φ1(0) and ∆ω = ± 1

4Φ1(0), i.e.
ϖ(0) = ± 1

2∆ω. This means that the terminal frequency of the soft mode at
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q = 0 is determined by ∆ω, which is an acceptable conjecture in the mean-field
approximation. We can consider that these conditions for ϖ(0,∆ω) = 0 are
met at the transition temperature To in the mean-field accuracy. Furthermore,
in the first expression for ϖ(0,∆ω)2, the second and third terms on the right,
i.e.,

ϖΦ1(0) ∓ ∆ωΦ1(0) = ω±Φ1(0) ≈ ∓∆ωΦ1(0)

is proportional to T in the vicinity of ω ≈ 0. It is interesting that the phases
above and below To can be distinguished by −∆ω and +∆ω, respectively, if
these signs are chosen as consistent to the wavevector transfer, referring to
the energy flow direction into and out of the soft mode. In this context, it is
logical to write ω±Φ1(0) = ∓A′T near ω = 0, where A′ changes signs from
positive and negative.

Although ϖ(0,∆ω)2 is zero at To, the small discontinuity of ϖ(0) = ± 1
2∆ω

signifies switching a stable thermal mode above To to a unstable mode below
To, so that we can write ϖ(0)2 = ±A′To in the limit of T → To. Summarizing
these arguments, the soft mode frequencies are expressed as

ϖ(0,∆ω)2 = A′(T − To) for T > To, (4.19a)

and
ϖ(0,∆ω)2 = A′(To − T ) for T < To, (4.19b)

representing the temperature dependences of the frequency ϖ(0,∆ω) in the
mean-field approximations.

In the Cowley theory, anharmonic potentials were considered as pertur-
bations, giving rise to the temperature-dependent frequency. However, the
critical region is not sufficiently described in this approximation, where To is
only a mean-field parameter for the phase transition.

4.4.2 Symmetry Change at a Continuous Phase Transition

In the foregoing, we considered a quartic potential in one dimension along the
unique axis, and obtained expressions for softening frequencies (4.19a) and
(4.19b). However, the structural change is signified by a change of lattice sym-
metry, for which a quartic potential with transversal coordinates should also
be considered as responsible in three-dimensional crystals. Experimentally,
symmetry changes were clearly noticed in the soft-mode spectra observed in
the cell-doubling phase transition in SrTiO3 at 105K and in the ferroelectric
phase transition in tris-sarcosine calcium chloride (TSCC) at 130K, as shown
in Fig. 4.3 and 4.4, respectively. In the former transition, neutron inelastic
scattering experiments were performed at various points on the Brillouin-zone
boundaries, whereas in the latter infrared and Raman studies at the zone cen-
ter showed scattering anomalies as related to the soft modes. In TSCC, the
loss of mirror symmetry at the ferroelectric phase transition was evident from
the soft modes observed above and below Tc. In this subsection, we discuss
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Fig. 4.3. Phonon frequencies as a function of temperature near Tc = 130K in
the ferroelectric phase transition of TSCC crystals. Data by Raman and infra-red
experiments are marked by (◦, •) and (▲, ×), respectively. (From J. F. Scott, Raman
Spectroscopy of Structural Phase Transitions, in Structural Phase Transitions I,
edited by K. A. Müller and H. Thomas, Springer Verlag, Heidelberg (1981).)

the role of quartic potentials that can be responsible for observed changes in
soft-mode spectra at Tc in these typical examples.

As a consequence of displacements uq, additional lattice potentials appear
that can be expressed by

V = 1
2A
∑

q,q′ uq.uq′ + 1
4B
∑

q,q′,q′′,q′′′ uquq′uq′′uq′′′ ,

Fig. 4.4. Phonon energy vs. temperature near Tc = 105K in SrTiO3. Data: ▲ Cowley
et al.; • Fleury et al.; ◦ and Shirane et al. (From J. Feder and E. Pytte, Phys. Rev.
B1, 4805 (1970).)
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where conservation relations q + q ′ = 0 and q + q ′ + q ′′ + q ′′′ = 0 hold for
the first and second terms, respectively, so that V can be regarded as secular
perturbations. For simplicity, damping and higher-order terms are excluded
from V . The first harmonic term in V keeps the distorted lattice structure
in a stable condition, whereas the second quartic term can be considered as
responsible for a possible transformation of lattice symmetry. At room tem-
perature, TSCC crystals are monoclinic and in a ferroelastic phase, where
the mirror b plane can be easily identified in each domain crystal by viewing
through crossed optical polarizers. For convenience, we take the z axis per-
pendicular to the b plane, and the x axis along the a direction in the mirror
plane. With respect to the rectangular xyz reference system, the potentials V
of B2u and A1 symmetries can be written as

V (B2u) = 1
2Auz

2 + 1
4Buz

4 and V (A1) = 1
2Aux

2 + 1
4Bux

4;

However, these are not quite independent, when V consists of additional terms
mixing these modes under critical conditions.

For the symmetry change B2u → A1 in the critical region, we consider a
phonon-scattering process

{qz + (−q−z)}k → {q′
x + (−q′

−x)}i + {(−q′
z) + q′

z}k,

to which the corresponding change in displacements is expressed as

u = ±uzk for T > Tc → u′ = ±u′
xi ∓ u′

zk for T < Tc,

permitting these two modes to mix. Considering that ux and uz constitute the
basis of the irreducible representation of the symmetry element, the vector u′

can be expressed as a linear combination;

u′ = cxu′
x + czu′

z, where cx
2 + cz

2 = 1,

and, hence,
u′2 = c2

xu
′2
x + c2

zu
′2
z .

Using these notations, the potential Vc in the critical region can be assumed
as

Vc = 1
2Au′2 + 1

4Bu′2u′2
z ,

= 1
2A(c2

xu
′2
x + c2

zu
′2
z ) + 1

4B(c2
xu

′2
x + c2

zu
′2
z )u′2

z

= c2
xVc(A1) + c2

zVc(B2u),

where

Vc(A1) = 1
2Au′2

x + 1
4Bu′2

x u′2
z and Vc(B2u) = 1

2Au′2
z + 1

4Bu′2
z u′2

z

are the potentials for A1 and B2u modes mixed in quartic terms. However, we
can consider that u′2

z approaches to the mean-field average 〈u′2
z 〉 = −A/B with
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decreasing temperature. Accordingly, toward the noncritical region below Tc,
these potentials approach

V (A1) = 1
4Au′2

x and V (B2u) = −A2/4B,

giving stability to the lattice modes A1 and B2u below Tc. However, associ-
ated with pseudospins in B2u symmetry, the frequency of u′

z mode becomes
virtually zero at temperatures below Tc, while the frequency of the u′

x mode
becomes higher with decreasing temperature. Accordingly, the parabolic po-
tential V (A1) below Tc is characterized by the factor 1

2A, in contrast to A of
V (B2u) above Tc. Therefore, the soft mode frequency below To is described
as

ϖ(0,∆ω)2 = 2A′(To − T ) (4.20)

in the mean-field approximation. As compared with (4.19a) for T > To, the
factor 2 in (4.20) for T < To is well recognized in the experimental curves in
Figs. 4.3 and 4.4, reflecting the particular symmetry change at the structural
transitions.

4.5 Observation of Soft-Mode Spectra

At the threshold of a displacive phase transition, pseudospins are in collec-
tive motion, interacting with the lattice mode at a low excitation energy near
a specific point in the Brillouin zone. Such an interaction in near phase is
responsible for sinusoidal modulation of the pseudospin mode characterized
by a small wavevector ∆q and frequency ∆ω. Thermodynamically, specified
by a minimum of the Gibbs potential, the equilibrium shifts with decreasing
temperature by a quartic anharmonicity that has emerged at Tc. Hence, fluc-
tuations δG at the minimum Gibbs potential can be expressed as related to
∆q and ∆ω;

δG = 1
2mϖ(∆q ,∆ω)2δη2, (4.21)

where m is the effective mass, indicating harmonic variation with the charac-
teristic frequency

ϖ(∆q, ∆ω)2 = ϖ(0,∆ω)2 + κ∆q2 (4.22)

for a small ∆ω and ∆q . Here, the parameter κ corresponds to the kinetic
energy of fluctuations. Considering symmetry change at the transition, the
factors A′ in (4.20) are not the same at temperatures above and below Tc.
Therefore, rewriting these constants as A′

>, κ> and A′
<, κ<, respectively, we

have
ϖ>(∆q, ∆ω)2 = A′

>(T − To) + κ>∆q2 (4.22a)

and
ϖ<(∆q, ∆ω)2 = A′

<(T − To) + κ<∆q2 (4.22b)
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It is noted that these expressions can be applied to neutron inelastic scat-
tering experiments, where soft modes can be detected as anomalies in scat-
tering intensities at a fixed value of ∆q . However, unless scattering angles
are scanned, we expect no information for breaking spatial symmetry from
intensity anomalies. Leaving the problem of spatial fluctuations to later dis-
cussions, here we outline how soft modes can be detected in usual scattering
experiments at a constant q .

The critical region is signified by long-wave fluctuations at ∆q . In a simple
dielectric crystal as discussed by Cochran, we may consider sm ≈ pm =
e(u+ −u−)m. In the phase transition at G = 0, we may write simply ∆q = q
for small fluctuations, and the Fourier transform p±q can be considered as
driven by the internal field E±q due to correlations with distant pm. In an
applied field E , responding to the effective field E ′

±q = E +E±q, the singular
behavior of p±q can be studied from the susceptibility in the limit of E → 0.
For such a dipolar oscillation in the crystal, the equation of motion of p±q

can be written as

d2p±q

dt2
+ γ

dp±q

dt
+ ϖ2p±q =

e2

m
E ′

±q exp(−iωt).

The susceptibility can then be defined as

χ±q(ω) = χ′
±q(ω) − iχ′′

±q(ω) = lim
E→0

(p±q/E
′
±q)

= p±q/E±q = (e2/m)/(ϖ2 − ω2 + iγω), (4.23)

in which the wavevector q is a fixed parameter and implicit, exhibiting pri-
marily the temporal behavior. The real and imaginary parts of χ±q(ω) are

χ±q
′(ω) = (e2/m)(ϖ2 − ω2)/{(ϖ2 − ω2)2 + γ2ω2} (4.23a)

and
χ±q

′′(ω) = (e2/m)γω/{(ϖ2 − ω2)2 − γ2ω2}. (4.23b)

These are the basic formulas for dielectric analysis of the soft mode, whose
characteristic frequency ϖ can be identified from the peak of χ′′

±q(ω) or from
the inflection point of χ′

±q(ω), that occurs at ω = ϖ if damping can be ne-
glected, i.e. γ < ϖ−1 (underdamped), otherwise these parts show a relaxational
decay (overdamped).

For a phase transition at a nonlattice point G i �= 0, soft modes can nor-
mally be observed by neutron inelastic scattering, because the wavevector of
thermal neutrons are comparable with lattice constants. In fact, neutrons are
scattered by heavy nuclei (or magnetic spins) occupying lattice points, serv-
ing as ideal probes for phonon spectra. By virtue of a finite G i comparable
in magnitude with the wavevector of neutrons, such a vector determines the
scattering geometry as required by the conservation law of wavevectors. For
instance, for scattering at a zone-boundary point G i = 1

2G, we consider an ex-
act scattering geometry of K 2 −K 1 = 1

2G, where the energy relation is given
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by ε2 − ε1 = εo ∓∆ε. Here K 1, ε1 and K 2, ε2 are wavevectors and energies of
incident and scattered neutrons, respectively, and εo is the lattice excitation
energy associated with 1

2G. At the fixed geometry, phase fluctuations are ex-
pected as related to loss and gain of the neutron energy ∓∆ω during inelastic
scattering process. The scattering intensity is generally expressed by the time
average of correlated amplitudes of scattered neutrons;

I
( 1

2G,∆ε
)

=
〈
A1/2G

∗A1/2G

〉
t =

〈∑
mn

A1/2G,m
∗A1/2G,n

〉
t

= I
( 1

2G, 0
)

+
〈∑

m�=n
A1/2G,m

∗A1/2G,n

〉
t
,

where
I( 1

2G, 0) =
〈∑

m
A1/2G,m

∗A1/2G,m

〉
t
.

The quantity A1/2G,m is called the scattering amplitude from the nucleus at a
site m and the total scattering amplitude is given by

A1/2G ∝
∑

m
um exp i[−(ε2 − ε1 − εo ± ∆ε)tm/h̄]

=
∑

m
um exp i[(ω2 − ω1 − ωo)tm] exp i(±∆ω.tm),

where these energies are expressed in frequencies ω1,2 = ε1,2/h̄ and ωo = εo/h̄.
Writing

um exp i[(ω2 − ω1 − ωo)tm] = uo,

we obtain
A1/2G ∝ uo(t) exp(−i∆ω.t) + uo(t) exp(i∆ω.t).

Therefore, the scattering anomaly can be expressed as

∆I( 1
2G,∆ω) = I( 1

2G,∆ω) − I( 1
2G, 0)

= 2�〈uo(t)∗.uo(t′)〉t.
Considering that uo and uo

∗ are driven by effective fields F o exp(∓i∆ω.t)
originating from the coupling with pseudospins, the equations of motion can
be written as

d2uo

dt2
+ γ

duo

dt
+ ϖ2uo = F o exp(−i∆ω.t)

and
d2uo

∗

dt2
+ γ

duo
∗

dt
+ ϖ2uo = F o

∗ exp(i∆ωt)

where the steady solutions are determined from

(−∆ω2 + ϖ2 ∓ iγ∆ω)|uo| = |F o|.
Accordingly,

�〈uo
∗.uo〉t = |uo|2〈cos ∆ω(t − t′)〉t

= |F o|2〈cos ∆ω(t − t′)〉tγ∆ω/[(ϖ2 − ∆ω2) + γ2∆ω2],
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Fig. 4.5. Phonon energy in K2SeO4 measured by neutron inelastic scattering at
G i = 0.7a∗. Curves 1, 2, 3 and 4 were obtained at 250, 175, 145 and 130K, respec-
tively. (From M. Iizumi, J. D. Axe, G. Shirane and K. Shimaoka, Phys. Rev. B15,
4392 (1977).)

where 〈cos ∆ω(t − t′)〉t = sin(∆ω.to)/(∆ω.to) is the time correlation function
Γt defined in (3.23), which is evaluated in the timescale to of observation.
The value of Γt is close to 1 in the critical region, where ∆ω.to < 1 for
the impact time for neutron scattering. �〈uo

∗.uo〉t is proportional to the
imaginary part of the susceptibility χ′′(∆ω) defined in (4.23b), and hence the
scattering anomaly at 1

2G is expressed by

∆I( 1
2G,∆ω) = 2|F o|2χ′′

1/2G(∆ω), (4.24)

allowing one to identify the soft frequency from the peak of scattering anoma-
lies that occur when ∆ω = ϖ.

Although neutron inelastic scattering at the Brillouin-zone boundary was
discussed in the above, the argument is also valid for scattering at an arbitrary
point G i. Figures 4.5 and 4.6a show typical examples of such soft modes, which
were observed for orthorhombic K2SeO4 crystals at G i = 0.7a∗, as well as
scattering results at the zone boundaries in SrTiO3 and KMnF3. Another
example of a soft mode shown in Fig. 4.6b is ferroelectric anomalies observed
from dielectric spectra of ε′(ω) in TSCC by Sawada and Horioka, which were
interpreted as mixed with zero-frequency anomalies as discussed in the next
section.

The susceptibility represents the linear response of the order variable mode
to the mean field that grows with increasing correlations. Soft modes should
always be observed when approaching the critical temperature of a “contin-
uous” structural change, where a quartic potential emerges originating from
the fluctuating lattice potential.
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Fig. 4.6. (a) Soft-mode spectra from SrTiO3 and KMnO3. (From S. M. Shapiro,
J. D. Axe, G. Shirane and T. Riste, Phys. Rev. B6, 4332 (1972).); (b) Oscillator-
relaxator behavior in the dielectric response from TSCC near Tc = 130K. (From A.
Sawada and M. Horioka, Jpn. J. Appl. Phys. 24-2, 390 (1985).)

4.6 The Central Peak

It was discovered that phonon susceptibility curves observed in practical crys-
tals exhibited another anomalous absorption near zero frequency, in addition
to a temperature-dependent soft mode, as shown in Fig. 4.6a. Being signif-
icantly sharp, such a zero-frequency peak, called the central peak, attracted
many investigations in spite of its unidentified origin. Riste and his cowork-
ers [36] discovered such a central peak in the phonon spectrum from the
cell-doubling phase transition of SrTiO3 crystals at temperatures close to Tc.
Shapiro et al. [37] further investigated the central peak phenomenon in other
systems as well, and published the spectra as shown in Fig. 4.6a. Such an
absorption line at zero frequency signifies a relaxation to the lattice, which



88 4 Soft Modes, Lattice Anharmonicity and Pseudospin Condensates

is likely due to some imperfections, although the origin cannot be positively
identified from such a featureless decay. Besides, the measured relaxation time
is typically of the order of 10−9 sec, which is often the limit of instrumental
resolution. In dielectric studies of the ferroelectric phase transition in TSCC,
Sawada and Horioka [38] analyzed the dielectric spectra in terms of a coupling
between the soft lattice mode and the central peak, thereby interpreting the
anomalies as a decay of the lattice mode when the frequency approaches to
zero.

Damping occurs normally with anharmonic potentials of an odd power
in the lattice potential, which are associated with strains in the crystal. In
contrast, the decay at zero frequency signifies the presence of another mech-
anism, due presumably to lattice imperfections. We can therefore consider
the damping mechanism for the lattice mode uq, due not only to damping to
lattice strains but also to an additional relaxational mode vq, in the equation
of motion driven by an effective driving field F q, namely

d2uq

dt2
+ γ

duq

dt
+ γ′ dvq

dt
+ ϖ2uq = Fq exp(−iωt),

where the mode vq obeys the relaxational equation

dvq

dt
+

vq

τ
= F q exp(−iωt),

where τ is the relaxation time of vq. Assuming that the coupling between
these modes is simply given by vq = cuq, the steady-state solutions of these
equations can be expressed as

uqo(−ω2 − iωγ + ϖ2) − iωγ′vqo = F q,

Therefore, the susceptibility for uq is given by

χq(ω) = 1/{ϖ2 − ω2 − iωγ − icγ′Fqωτ/(1 − iωτ)},

or by letting cγ′Fq = δ2 for convenience we have the formula for a so-called
coupled oscillator-relaxator:

χq(ω) = 1/{ϖ2 − ω2 − iωγ − δ2ωτ/(1 − iωτ)}. (4.25)

Particularly, if the conditions γ � δ2τ and ϖ � τ−1 are fulfilled [39], the
imaginary part of (4.25) can be shown to be

χ′′
q (ω) =

ω
ϖ2 − ω2

δ2

ϖ2
τ′

1 + ω2τ′2 +

(
1 − δ2

ϖ2

)
ϖγ

(ϖ2 − ω2)2 + ω2γ2 , (4.26)

where
τ′−1 = τ−1/(1 − δ2/ϖ2).
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The second term in (4.26) represents an absorption due to a soft mode at
ω = ϖ, whereas the first one shows a relaxation of Debye’s type that becomes
prominent at ω = δ. A notable feature of the formula (4.26) is that the soft
mode is terminated at a nonzero frequency ϖ = δ, which is then taken over
by the relaxation mode. The dielectric dispersion spectra of TSCC in Fig.
4.6b are dominated by a relaxational mode. In SrTiO3, from the observed
plot shown in Fig. 4.7 it is not immediately evident if the linear extrapolation
of ϖ2 toward Tc indicates a small non-zero δ2, however the estimated value
agrees in the order of magnitude with the value obtained from the correspond-
ing anomalies in EPR spectra. For TSCC, Sawada and Horioka reported that
δ = 0.6 cm−1 and τ = 0.9 s were estimated from dielectric measurements at
Tc +6K, whereas Fujimoto and his collaborators [21] evaluated the soft-mode
frequency as the order of 20GHz. Although not in sufficient agreement, the
soft mode appears to have a non-zero terminal frequency in these experimen-
tal results, indicating a finite coupling δ between the soft and relaxational
modes. Thus, lattice imperfections are considered to play a significant role in
structural transformations, although their mechanism cannot be revealed in
detail from observed central peaks.

4.7 Symmetry-Breaking Fluctuations in Binary Phase
Transitions

Thermodynamically, critical fluctuations can be described by (4.21), where
a variation of the Gibbs potential δG occurs around the equilibrium, arising
from momentum-energy exchanges between pseudospins and soft phonons.
The critical fluctuations are thus sinusoidal in space-time characterized by
∆q and ∆ω or described by the fluctuating phase. Therefore, as signified
in part by ±∆q , the spatial variation in the critical region can be revealed

Fig. 4.7. A plot of the squared soft-mode frequency ϖ2 vs. T − Tc, from neutron
inelastic scattering from SrTiO3 at G i = (1/2, 1/2, 3/2).
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by scanning q in scattering experiments or by sampling the condensate with
magnetic resonance probes.

Caused by the coupling w with a lattice mode in near phase, binary pseu-
dospins fluctuate around (±q ,∓ω), for which the corresponding kinetic ener-
gies can be written as

ε(q ± ∆q) = (h̄2/2m)(q ± ∆q)2, ε(−q ± ∆q) = (h̄2/2m)(−q ± ∆q)2.

Here, ±∆q and the corresponding energy variation ε(q ±∆q)−ε(q) = ∓h̄∆ω
are due to the interaction with the lattice mode. Therefore, the pseudospin
modes are described by

sq±∆q = sq exp i{(q ± ∆q).r − (ω ± ∆ω)t},

s−q±∆q = s−q exp i{(−q ± ∆q).r + (ω ± ∆ω)t},

where the amplitudes are written as sq and s−q, respectively.
A binary crystal system is signified by reflection symmetry on the mir-

ror plane that is identifiable crystallographically. The pseudospin modes
propagating in opposite directions are therefore reflected with respect to
the mirror plane, and these amplitudes should be related by the condition
s(r) → −s(−r). Owing to the sinusoidal nature, the inversion r → −r in
the crystal space is equivalent to the wavevector inversion q → −q in the re-
ciprocal space. At temperatures below Tc, the inversion symmetry is violated
by forming two opposite domains that are related to broken reflection symme-
try for these pseudospin modes. Therefore, the inversion relation sq → −s−q

should be applied to these amplitudes.
We note that these fluctuating kinetic energies are identical if ∆q = 0,

i.e. ε(q) = ε(−q), and hence for breaking reflection symmetry it is necessary
to identify asymmetrical fluctuations between +∆q and −∆q . Also noted is
that inversion of pseudospins is primarily independent of the hosting harmonic
lattice, so that such fluctuations should be related to anharmonic interactions.

Writing that K = ±q ∓∆q for convenience, the kinetic energies of fluctu-
ations ε(±K ) = h̄2K 2/2m are plotted against ±K in Fig. 4.8. Emphasized
by the enlarged central portion, two parabolic curves for ε(K ) and ε(−K )
intersect at K = 0, at which ε(0) = ε(q) = ε(−q) = h̄2q2/2m for ∆q = 0.
On the other hand, if a perturbing potential exists at K = 0, these two states
can no longer be independent, allowing fluctuations to describe by combined
states. Being a familiar level-crossing problem, such a degeneracy at K = 0
can be lifted by a perturbing anharmonic potential.

Using ± signs for ∆q and ∆ω defined as in (4.1), the perturbed pseudospin
mode s(x, t) in the vicinity of K = 0 can be expressed by a linear combination
of two propagating modes at K = ±q ∓∆q and ∆ε = h̄∆ω. Here, taking the
direction of propagation x as perpendicular to the mirror plane, the fluctuating
mode can be expressed as

s(x, t) = c+so exp i(Kx − ∆ω.t) + c−so exp i(−Kx + ∆ω.t)
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Fig. 4.8. (a) Critical spatial fluctuations near the minimum condensate energies at
K = ±k; (b) a magnified view of the circled part in (a) showing an energy gap at
K = 0 due to a perturbing quartic potential.

or
s(φ) = c+so exp(iφ) + c−so exp(−iφ), (4.27)

where Kx−∆ω.t = φ is the phase of fluctuations in the vicinity of K = 0. The
coefficients c+ and c− are mixing constants that are normalized as c2

++c2
− = 1.

For a small value of K, being a continuous function of x and t, the phase φ can
be considered to take continuous angles in the range 0 ≤ φ ≤ 2π in repetition.

Corresponding to the pseudospin mode, the fluctuating lattice energy can
generally be expressed as

δU = 1
2AuKu−K + 1

2κ
(

∂uK

∂x

)(
∂u−K

∂x

)

+ 1
4B
∑

K,−K
uKu−K

∑
K′,−K′ uK′u−K′ , (4.28)

where the first and second terms represent the potential and kinetic energies
for harmonic distortion, and the third one is anharmonic in the fourth order.
For such a quartic potential, we only need to consider the phonon scattering,
K + (−K) → K ′ + (−K ′), to obtain a secular perturbation, as in the Cowley
theory. If the phonon scattering (K ′,−K ′) is regarded as independent from
the scattering (K, −K), the factor

∑
K′,−K′ uK′u−K′ in the quartic energy
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can be replaced by the mean-field average 〈u2
K′〉, which is given by −A/B

with coefficients in Landau’s expansion. Known as the Wick approximation,
such an approximation allows one to make the calculation simpler, reducing
the perturbation to quardratic one. As the result, the quartic potential energy
can be expressed as

δUp = − 1
4A
∑

K,−K′ uKu−K , (4.28a)

excluding all other terms in the vicinity of K = 0. It is noted that the same
approximation was used in Subsection 4.4.2 for the symmetry change in the
ferroelectric phase transition in TSCC.

Writing (4.28a) with indexes K = q ± ∆q explicitly, we have

δUp = − 1
4A[uq±∆q

∗uq±∆q + u−q±∆q
∗u−q±∆q

+uq+∆q
∗u−q+∆q + uq−∆q

∗u−q−∆q

+uq+∆q
∗u−q−∆q + uq−∆q

∗u−q+∆q

+u−q+∆q
∗uq+∆q + u−q−∆q

∗uq−∆q

+u−q−∆q
∗uq+∆q + u−q+∆q

∗uq−∆q],

where uq+∆q = uo exp i{(q+∆q)x−(ϖ+∆ω)t}, uq−∆q = uo exp i{(q−∆q)x−
(ϖ − ∆ω)t}, and so forth. Considering only those terms for ±q ∓ ∆q modes,
the fluctuation potential energy can be expressed as

δUp = − 1
4Au2

o[2 + 4 cos(2qx) + 2 cos{2(q + ∆q)x − 2∆ω.t}
+ 2 cos{2(q − ∆q)x + 2∆ω.t}].

Clearly, only the last two terms can be effective for the phase matching with
the perturbed pseudospin s(x, t) of (4.27) in the vicinity of K = 0. For the
pseudospin modes at K = 0, we can select the partial potential Vp(2φ) in phase
with the quartic lattice potential δUp signified by the phase 2φ = 2(Kx −
∆ω.t). Thus, we arrive at the perturbing potential energy for s(φ) at K = 0:

V (φ) = C∆o cos 2φ, (4.29)

for which ∆o cos 2φ can be regarded as an effective displacement due to the
quartic strains and C is a constant proportionality factor.

For the unperturbed modes s(φ) and s(−φ) with degenerated energies at
K = 0, we calculate the matrix element of V (φ):

∫ 2π

0
s(φ)∗V (φ)s(−φ)dφ

/∫ 2π

0
dφ =

C∆o

2π

∫ 2π

0
exp(−2iφ) cos(2φ)dφ

=
C∆o

2π

∫ π

0
cos2(2φ)dφ =

C

8π
∆o.
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Writing C ′ = C/8π for brevity, for the energy ε(φ) = ε(−φ) = h̄2q2/2m at
K = 0, the degeneracy will be lifted as calculated with the secular equation∣∣∣∣∣ ε(φ) − ε C ′∆o

C ′∆o ε(−φ) − ε

∣∣∣∣∣ = 0.

Solving this equation, we obtain

ε = ε± = 1
2{ε(φ) + ε(−φ)} ± [ 14{ε(φ) − ε(−φ)}2 − (C ′∆o)2

]1/2

= h̄2q2/2m ± C ′∆o, (4.30)

which gives an energy gap ε+−ε− = 2C ′∆o at K = 0. Corresponding to these
energies ε± separated by 2C ′∆o, the pseudospin modes of (4.27) are given by
symmetric and antisymmetric combinations of s(±φ), i.e. 1

2{s(φ) ± s(−φ)}.
It is noted that these energies are unchanged by reflection of these combined
modes, where the mixing constants c+ and c− in (4.27) are ±1, as determined
by the normalization condition c2

+ + c2
− = 1. Thus the normalized functions

can be expressed as

s±(φ) = 1
2{s(φ) ± s(π − φ)} = 1

2{s(φ) ∓ s(−φ)}, (4.31)

which are then assigned to the perturbed levels ε±, respectively. The antisym-
metric s−(φ) represents the lower level ε−, and symmetric s+(φ) is for the
upper level ε+, being expressed as proportional to cos φ and sin φ, which are
traditionally called the phase and amplitude modes.

It is noted that the reflection symmetry constitutes a subgroup of the
symmetry group of a binary crystal, whereas the lattice structure remains un-
changed under the space-time reversal (x, t) → (−x,−t) or the phase reversal
φ → −φ. Being represented by combined s and u, energies ε± of the perturbed
condensate should also be associated with the symmetric and antisymmetric
combinations of lattice modes u±, i.e.

u±(φ) = 1
2{u(φ) ± u(−φ)} ∝ cos φ and sin φ, (4.32)

and, hence, are assigned to the combinations of (s−, u+) and (s+, u−), which
are characterized by cos φ and sin φ, respectively. A condensate is a combined
object, where s+ and s− exchange momentum and energy with the lattice
modes u− and u+, respectively. In neutron-scattering experiments, anomalies
are primarily related to a symmetry change in the lattice mode u∓ in the
energy states ε±, whereas those in magnetic resonance are due to breaking
reflection symmetry exhibited by the pseudospin mode s±. The mirror sym-
metry is not violated in s+ and u− of the sin φ mode in the upper energy
ε+ that is not quite stable at φ = 0. We might as well call these fluctuation
modes of a condensate as cos φ- and sin φ-modes to avoid confusion with the
traditional nomenclatures, phase and amplitude modes.
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We note in the above argument that the state ε+ of the sin φ mode is un-
stable at φ = 0, whereas ε− of the cos φ mode fluctuates between two minima
at φ = ± 1

2π. The argument is correct in idealized crystals, however in practice
we cannot disregard other kinds of potential that may play a significant role in
stabilizing condensates. In fact, in a uniform applied electric field, the asym-
metrical sin φ mode can be stabilized at φ = ± 1

2π, thereby converting sin φ
to cos φ. Experimentally it is confirmed that such an asymmetrical potential
originates from the internal long-range field in a ferroelectric domain or from
applying externally electric field (see Section 5.2).

The collective pseudospin mode s(φ) is an internal variable, and the macro-
scopic properties of the critical region are generally specified by distributed
phases φ as f(s)dφ. It is more practical to express such a distribution of pseu-
dospin amplitudes in the range between σ and σ + dσ, instead of the phase
between φ and φ + dφ. For a cos-mode, the variable φ can be converted to σ
by the relation dσ = σo(− sin φ)dφ, hence by letting σ/σo = ξ = cos φ, we can
write dφ = −dξ/(1 − ξ2)1/2. In this context, the density function is expressed
as f(σ)dξ/(1 − ξ2)1/2, which becomes infinite as ξ → ±1, or σ → σo, thereby
visualizing binary phase fluctuations between ± 1

2π. On the other hand, for
the sin φ mode σ/σo = sin φ, we have dξ = cos φdφ and dφ = dξ/ξ, where
the density is centered in the vicinity of ξ = 0. In Part Two, we will dis-
cuss these fluctuations in detail in relation to observed quantities in practical
experiments.

Such a spatial profile of the sinusoidal fluctuations is thus observable,
if the characteristic time 2π/∆ω are sufficiently long as compared with the
timescale to of experiments. In fact, ∆ω is typically of the order of 1011Hz,
which is slightly higher than conventional magnetic resonance frequencies, and
the reciprocal impact time in neutron scattering is shorter than ∆ω, so that
such spatial fluctuations can be explicit in these observations of critical states.

Neutron inelastic scattering experiments by Bernard and his coworkers [41]
on the phase transition in β-ThBr4 crystals at 81K (Fig. 4.9a) and biphenyl
crystals at 41.5K are the examples among others, where two modes of fluc-
tuations u+ and u− were clearly resolved in the critical regions. Fig. 4.9b
shows another example for critical fluctuation modes observed near the ferro-
electric phase transition in K2SeO4 crystals at 95K, which were identified in
Raman scattering experiments by Wada and his group [41]. In their studies,
the sin φ mode of lattice fluctuations was not observed, because presumably,
order variables were not associated with the Raman active mode in the range
between 95 and 129K. The two fluctuation modes in phonon- and pseudospin
measurements are compared in the sketch shown in Fig. 4.10. In spite of these
experimental results, the origin of central peaks was not positively identified,
although the condensate model is regarded as a valid model.
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Fig. 4.9. (a) The phonon dispersion curve in ThBr4 crystals at 81K, showing re-
solved amplitude and phase modes. (From L. Bernard, R. Currat, P. Delanoye, C.
M. E. Zeyen, S. Hubert and Kouchkovsky, J. Phys. C16, 433 (1983).) (b) Phonon
energy curve observed by Raman scattering from K2SeO3. The phase between Ti

and Tc is incommensurate, and the phase below Tc is ferroelectric. (From M. Wada,
H. Uwe, A. Sawada, Y. Ishibashi, Y. Takagi and T. Sakudo, J. Phys. Soc. Japan,
43, 544 (1977).)

4.8 Macroscopic Observation of a Binary Phase
Transition; l-anomaly of the Specific Heat

A significant feature of pseudospin condensates is their thermal stability, for
which the soft mode of low damping is considered as responsible, whereas the
collective pseudospin mode is observable in a short timescale to ≤ 2π/ϖ. It is
noted that near a phase transition at the order of 100K, such a low-energy
excitation signifies mechanical strains in the lattice structure, which cannot
be subjected to statistical arguments based on the ergodic hypothesis. Sharing
primarily no thermal energies with the crystal, such a nonergodic excitation
is not thermally accessible, although underdamped soft modes indicate a slow
energy transfer between condensates and their surroundings. In this context,
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Fig. 4.10. Phonon dispersion curves and the corresponding pseudospin variation.
The amplitude and phase modes are indicated by a and p.

the Gibbs free energy can be taken as a legitimate thermodynamic potential,
because the volume of a crystal may not be constant under internal stresses.
The threshold of a phase transition is dominated by short-range correlations,
where the condensates are in mechanical equilibrium with the lattice strains. It
is noted that the specific heat of such a system is measured with a considerably
longer timescale than the characteristic time 2π/ϖ of condensates.

In Section 4.7, the fluctuating mode s(±φ) was considered as perturbed by
spontaneous strains expressed by an effective displacement ∆(φ) = ∆o cos φ.
As derived from the lattice strain energy in (4.28), the corresponding internal
strain energy δUstrain must be considered as the “sink” for the ordering energy,
although thermally almost isolated from the rest of the crystal. In terms of
the strains ∆K(φ), the fluctuating macroscopic energy δUstrain can be written
as

δUstrain = − 1
2α
∑

K
∆K(φ)∆K′(φ′), (4.33)

where

∆K = ∆o cos 2φ, ∆′
K = ∆o cos 2φ′,

φ = Kx − Ωt and φ′ = Kx′ − Ωt′.

Here, K = q ± ∆q, Ω = ϖ ∓ ∆ω, and α is the proportionality constant,
therefore,

δUstrain = − 1
2α∆2

o cos 2φ cos 2φ′.
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As indicated by (4.31) and (4.32), critical space-time fluctuations are ob-
served in two independent modes as cos φ and sin φ at constant Ω and constant
K. In the trigonometric formula 2 cos 2φ cos 2φ = cos 2(φ + φ′) + cos 2(φ − φ′),
we notice that the first term depends on the average phase φo = 1

2 (φ + φ′),
that is however constant and hence insignificant. On the other hand, the
second cosine term determined by cos 2Ω(t − t′) at x = x′ leads to the
unvanishing time average 1

2 , if integrated over a long timescale, and for
thermal observation the space-time average of δUstrain can be expressed as
〈δUstrain〉t = −(1/4)α∆2

o+const. Hence, we can write the corresponding strain
energy of the lattice as

Wu = 1
4A∆2

o + const., (4.34)

where A is a constant after adjusting the magnitude to the macroscopic Wu.
We consider that the fluctuating pseudospin mode exchanges the energies
±h̄∆ω with Wu that can be interpreted as the internal “heat sink”.

In (4.30), correlation energies of collective pseudospins are expressed in
two separate modes of kinetic energies ε±(φ). For the fluctuating wavevector
K = qo ∓ ∆q, (4.30) can be written as

ε±(qo ∓ K, ∆o) = ε±(±∆q, ∆o) = 1
2 (Xo + X) ± (XoX + C ′2∆2

o)
1/2,

where the abbreviations Xo = h̄2q2
o/m and X = h̄2K2/m are used for conve-

nience. It is noted that this equation was derived at fixed space time coordi-
nates (x, t), while the wavevector q or K fluctuates.

The Gibbs free energy of a system of pseudospins and the lattice strains
can be written as

G± =
∫ +qo

−qo

〈ε±(qo ∓ K, ∆o)〉t dK

2π
+ Wu,

which can be minimized with respect to ∆o independently for the two states
of a condensate in thermal equilibrium with the surroundings. For the lower
state, we can write

dG−
d∆o

= 2
∫ qo

o
(dε−/d∆o)

dK

π
+

dWu

d∆o
= 0,

where
dε−
d∆o

= − C ′2∆o

(XoX + C ′2∆2
o)1/2 .

Writing XoX = ξ2, where ξ = (h̄2/m)Kqo, we have dK = (qo/Xo)dξ, and so∫ qo

0

dK

(XoX + C ′2∆2
o)1/2 =

qo

Xo

∫ Xo

0

dξ
(ξ2 + C ′2∆2

o)1/2
=

qo

Xo
sinh−1 Xo

C ′∆o
,

and hence the equilibrium condition can be expressed as

1
2A∆o −

(
2C ′2m∆o

πh̄2qo

)
sinh−1 h̄2q2

o

mC ′∆o
= 0.
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From this relation, the strain amplitude ∆o in equilibrium can be determined
from

h̄2q2
o

mC ′∆o
= sinh

(−h̄2qoπA

4mC ′∆o

)
,

or

|C ′|∆o ≈
(

2h̄2q2
o

m

)
exp

(−h̄2qoπA

4mC ′2

)
,

if the argument of the sinh-function is larger than 1. We can derive the same
conclusion from minimizing the function G+. Thus, the Gibbs free energy of
a binary system exhibits a discontinuity 2C ′∆o at Tc.

The specific heat curve measured with varying temperature showed an
anomaly characterized by a shape of the Greek letter “lambda”, so called the
λ-anomaly, as illustrated in Fig. 1.10. With the condensate model, a sharp rise
of the curve at Tc, as approached from above, can be interpreted as “sudden”
appearance of the discontinuity ∆G = 2C ′∆o due to the outset of correlated
motion, and hence (∆Cp)Tc = ∞, whereas a gradual tail below Tc signifies
the slow ordering process in and below the critical region.

In the non-critical region below Tc, the ordering process should be consis-
tent with the temperature-dependence of the order parameter for a long-range
order, i.e., η ∝ (To − T )1/2. We may therefore consider the temperature-
dependent Weiss field Eint as responsible for the gradual change in the spe-
cific heat curve. As will be analyzed in detail in Section 5.9, we can con-
sider that the pseudospin energy is transferred stepwise to the lattice as
∆σEint(T ) ∝ ∆T in the soliton potential, representing deformed levels of
the structure. Therefore, the change in the Gibbs potential below Tc for a
temperature step ∆T can be expressed as

∆G< = −2C ′∆ − α
{

∆σEint(T )
∆T

}
∆T,

and hence

G<(T ) = −2C ′∆o(To − T ) − α
(

∆σ
∆T

)∫ T

To

EintdT

where α is a constant related to previously defined α in (1.17). Assuming
Eint ∝ (To−T )1/2, and writing k for the front factor of the integral to simplify
the expression, we obtain

∆Cp =
(

∂∆G<

∂T

)
p

= 2C ′∆o + 1
2k/(To − T )1/2,

which agrees at least qualitatively with the gradual tail in observed curves, ex-
cept that it becomes infinity as T → To instead of the transition temperature
Tc. Presumably, in the critical region the distributed Eint is responsible for the
anomaly between To and Tc. Nevertheless, using a empirical critical exponent
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α′, we may write ∆Cp ∝ (Tc − T )−α′
for observed anomalous curves, where

Eint ∝ η(Tc − T )β can be considered to cover the region between To and Tc
with the exponents α′ and β. Hence, we have a relationship β−1 = −α′, which
gives specifically α′ = β = 1

2 and Tc = To in the mean-field approximation.



5

Dynamics of Pseudospins Condensates and the
Long-Range Order

5.1 Imperfections in Practical Crystals

In the critical region, pseudospin condensates are in sinusoidal modes of fluc-
tuations expressed as σo cos φ and σo sin φ, where the amplitude σo is in-
finitesimal at the threshold, and the phase φ = ∆q.x + ∆ω.t + φo represents
the propagation at a speed v = ∆ω/∆q along a specific direction x in an
anisotropic crystal. In idealized crystals, the phase constant φo is left unde-
termined, unless a boundary condition is imposed at space-time coordinates
(xo, to) of a lattice site. It is noted that observing small ∆q and ∆ω by light-
and neutron-scattering experiments does not fully substantiate pseudospin
condensates unless the scatterers are duly identified. By magnetic resonance
sampling, on the other hand, collective pseudospins in slow motion can be
visualized, yielding a credible image of condensates in the laboratory frame
of reference.

Real crystals are by no means “perfect” because of the presence of surfaces
and unavoidable imperfections, which violate the lattice periodicity. Of course,
we may assume practical crystals to be perfect, if observing with probes at
sufficiently higher kinetic energies than the depth of imperfection potentials.
Nevertheless, for a low-energy condensate, such lattice imperfections can be
significant obstacles for propagation, thereby immobilizing (pinning) conden-
sates in their vicinity. Being stationary in crystals as pinned by imperfections,
condensates can be observed in quality crystals with a sufficiently low de-
fect density. The quality ferroelectric crystals of this kind, for example, can
be evaluated by values of coersive force in the hysteresis curve for dielectric
polarization.

Although existing in various types in practical crystals, the most significant
role played by imperfections is that the lattice periodicity is only disrupted
at their sites, as described by a model of a point imperfection, and in quality
crystals, lattice defects can be considered primarily of this type. Although
a perfect crystal is only a theoretical model, such point defects are essential
for pinning condensates, which nevertheless allows us to study the nature of
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condensates in relation to a given lattice structure. Pinned condensates con-
stitute primarily a subject for experimental investigation of structural phase
transitions.

5.2 The Pinning Potential

In this section, we consider only the critical region where the propagating
mode of collective pseudospins is sinusoidal in character. A stationary point
defect at a lattice site r i can be represented by local field F (r −r i) at a point
r close to r i, reflecting symmetry at the defect site, constituting a subgroup of
the point group of the crystal. We assume that such a field F (r−r i) interacting
with a pseudospin σj at a site r j (j �= i) represents the local distortion of
the lattice. Considering correlations between pseudospins along a particular
direction x in an anisotropic crystal, the attractive potential V (x, t;xi) for a
collective pseudospin mode at the defect site xi can be expressed by

dV (x, t;xi) = −σ(φ)F (x − xi)dx.

Further, we consider that the field F is symmetrical with respect to the defect
center xi; that is

F (x − xi) = F (xi − x), (5.1)

although the defect symmetry can be lower in general if the coordinate xi can
shift from the original lattice point in the vicinity of a vacant site. In addition,
we may assume that the field is highly localized in the vicinity of xi, and hence
we can write

F (x − xi) = Fδ(x − xi), (5.2)

where the delta function signifies a localized field at x = xi with a strength
F . We can then define the pinning potential at xi and t by the integral
− ∫ {∂V (x, t;xi)/∂x}dx. For binary sin- and cos-modes, we define pinning
potentials

VA(xi, t) = −
∫

σoF sin(∆q.x − ∆ω.t + φo)δ(x − xi)dx

and
VP(xi, t) = −

∫
σoF cos(∆q.x − ∆ω.t + φo)δ(x − xi)dx,

respectively. Using (5.1), these pinning potentials can be expressed as

VA(xi, t) = −σoF sin(∆q.xi − ∆ω.t + φo)
and (5.3)

VP(xi, t) = −σoF cos(∆q.xi − ∆ω.t + φo).

These phases φi are distributed in the crystal, since the defect coordinates xi
are randomly distributed. However, it is noted that the spatial phases ∆q.xi
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are virtually continuous because of small ∆q and random xi, so that φi can
be regarded as a continuous variable in the whole angular range in repetition.
Accordingly, instead of distributed φi in a system of pinned condensates we
may use the continuous phase variable

φ = ∆q.x − ∆ω.t + φo (5.4)

where 0 ≤ φ ≤ 2π. With such a continuous φ as defined in (5.4), the pinning
potentials can be expressed by

VA(φ) = −Vo sin φ and VP(φ) = −Vo cos φ, (5.5)

where we set Vo = σoF , for brevity. Normally, for symmetrical defects ex-
pressed by (5.1), VP(0) = −Vo < 0, where a condensate in the cos mode can
be stablilized at φ = 0, and the sin mode is unstable at φ = 0, and VA(0) = 0.

On the other hand, when pinned by asymmetrical defects, the pinning po-
tentials are VA( 1

2π) = −Vo and VP( 1
2π) = 0, and, hence, the sin mode can

be stabilized at φ = 1
2π. In fact, the normal defect is represented by a sym-

metrical potential, whereas an external field E can be considered to provide
such an asymmetric potential −σoE, hence giving an equilibrium at φ = 1

2π.
Thus, an external electric field causes a significant effect for ferroelectric phase
transitions, as polar ordering can be induced in addition to the spontaneous
mechanism. It is interesting to note that the internal field of long-range order
may provide such an asymmetrical potential, showing a behavior similar to
E.

Dynamically, a pinned phase mode σP(φ) at symmetrical defects should
fluctuate in an oscillatory motion around the equilibrium φ = 0, for which the
restoring force

fR = −∂VP(φ)
∂x

= −∆q
∂VP(φ)

∂φ
= −∆qV o sin φ

is responsible. Therefore, for a small phase variation δφ = φ−0 in the vicinity
of φ = 0, the pinning potential can be written as

VP(δφ) ≈ Vo + 1
2Vo(δφ)2,

which can be responsible for dynamic fluctuations of a pinned condensate.
Obviously, such a fluctuation δφ should be originated from the phonon inter-
action in the condensates.

Rice [42] discussed such an oscillatory motion of a charge-density-wave
condensate in the presence of an applied electric field E = Eo exp(−iωt), and
derived the susceptibility formula. Assuming that Eo represents the amplitude
of an applied field at the wavevector q and of negligible damping for simplicity,
the equation of motion in the potential Vo = 1

2mω2
o(δφ)2 can be written as

m

∆q

d2(δφ)
dt2

+
mω2

o

∆q
δφ = eEo exp(−iωt),



104 5 Dynamics of Pseudospins Condensates and the Long-Range Order

where m and e are effective mass and charge of the CDW-condensate. Writing
δφ = (δφ)o exp(−iωt), the steady solution gives the susceptibility

χ(ω) = (δφ)o/Eo = (e/m)/(ω2
o − ω2), (5.6)

representing the dielectric response of the pinned condensate, which shows a
singularity at ω = ωo. Pawlacyk et al. [43] discovered a very low-frequency
mode of fluctuations at ωo = 0.1GHz in the dielectric spectra from TSCC
crystals near Tc ∼ 130K, which was clearly different from the soft-mode fre-
quency of the order of 20GHz.

Supported by experimental evidence, such a pinning potential as a func-
tion of the internal variation δφ permits a thermodynamical description of
fluctuations in terms of a dynamic Gibbs function G(δφ), i.e.

G(δφ) =
∫ L

0

[ 1
2κ{∂σ(δφ)/∂t}2 + V (δφ)

]
(dx/L), (5.7a)

where κ is related to the kinetic constant proportional to the inverse mass of
a condensate and L is the length of integration.

In the critical region of a ferroelectric phase transition, an applied static
electric field E will modify the pinning scheme of condensates, where the
sin mode σA(δφ) can also be pinned. In the vicinity of φ = 0, the pinning
potentials can be expressed as

VP(δφ, E) = −Vo cos(δφ) − σo

∫
E cos(δφ)dx

and
VA(δφ, E) = −σo

∫
E sin(δφ)dx.

For a uniform applied field E = −dV/dx = −∆qdV/dφ, where the potential
function V is antisymmetric with respect to φ and x, in contrast to symmetric
defect potentials. Hence the first integral vanishes, because∫

E cos(δφ)dx = −
∫ (

dV

dφ

)
cos(δφ)dφ = −

∫
dV cos(δφ)

= −∆V cos(δφ) − (−∆V ) cos(−δφ) = 0,

whereas the second integral is not zero;∫
E sin(δφ)dx = −∆V sin(δφ) − (−∆V ) sin(−δφ) = −2∆V sin(δφ).

Here, 2∆V = −2(E/∆q)δφ represents the potential difference between the
phase limits ±δφ in these integrals. Therefore, although VP(δφ, E) is virtually
unchanged by a weak field E on, these pinning potentials can be written as

VA(δφ, E) = −2σo∆V cos( 1
2π ± δφ) and VP(δφ, E) = −2σo∆V cos(δφ),

(5.8)
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signifying that the pinning equilibrium for the sin mode is also established at
φ = 1

2π. Such a sine mode behaves like a cos mode, after shifting the phase
by 1

2π. With increasing E, such a VA(δφ, E) becomes indistinguishable from
VP(δφ), because these equilibrium phases 1

2π and 0 are both in the same range
between 0 and 2π. In any case, σA can be identified with a weak applied field E,
although its lineshape is featureless. The experimental detail for such a field
pinning will be discussed in Chapter 9. The Gibbs function for fluctuating
σA,P in an applied field E can be written as

GA,P(δφ, E) =
∫ L

0

[
1
2κ
{

∂σA,P (δφ)
∂t

}2

+ VA,P(δφ, E)

]
dx

L
, (5.7b)

For amplitude and phase modes, such Gibbs functions can be minimized in-
dependently, and where the dynamic fluctuations are described as a harmonic
phase variation δφ.

5.3 The Lifshitz Condition for Incommensurate
Fluctuations

In Chapters 3 and 4, we discussed modulated structures of collective pseu-
dospins, originating from competing short-range correlations, although it was
uncertain if such a structure constitutes a macroscopic phase. Nevertheless, if
a state specified by the single continuous variable s(φ) is stable at a given tem-
perarure and pressure, the crystal should be considered in a thermodynamic
phase [45], for which the Gibbs potential G(s(φ)) is expressed as a function
of s, p and T . There are examples of modulated phases among real crystal
systems, where pinned pseudospins exhibit a stationary modulated structure
incommensurate with the lattice period. In principle, such a modulated struc-
ture is time dependent due to interactions with the lattice, but is observed as
if steadily modulated in the crystal space in a short timescale.

Incommensurate fluctuations were first observed at microwave frequen-
cies in the critical region of the ferroelectric phase transition of TSCC [21],
whereas stable incommensurate crystal phases had been known in other sys-
tems, for which Lifshitz formulated the thermodynamical criterion. In this
section, we discuss the Lifshitz condition for incommensurability, which can
be derived from correlated pseudospins, although the origin for fluctuations
was unspecified in the Lifshitz argument.

Normally, the variable s(φ) is subjected to phase fluctuations in crystals,
when immobilized by a pinning potential. Apart from the origin, such fluctu-
ations can be described as due to correlations among pseudospins themselves.
Considering the sinusoidal pseudospin mode s(φ) = so exp iφ, the correlations
are predominantly between different phases φ1 and φ2, whereas the amplitude
so is unchanged under constant p and T . Thus, the fluctuating phase difference
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φ1−φ2 is significant in the specific direction x, whereas so is virtually infinites-
imal in the critical region. We calculate the corresponding density correlations
due to significant interference s∗(φ1)s(φ2) between “nonlattice points” x1 and
x2, when observed in a timescale to ≤ t1 − t2. Therefore, the free energy of
pseudospins should be characterized by an additional term GL determined
by such density correlations. He proposed to consider GL ∝ 〈s∗(φ1)s(φ2)〉t,
which is calculated as the time average over the timescale to.

For a one-dimensional correlations along x, such correlations can be writ-
ten as

〈s∗(φ1)s(φ2)〉t = s2
o

〈∑
± exp{(±i∆q)(x2 − x1)} exp{(∓i∆ω)(t2 − t1)}

〉
t
,

in which the time correlation factor can be expressed as

Γt = 〈exp{∓i∆ω(t2 − t1)}〉t = t−1
o

∫ to

0
cos(∆ω.τ)dτ =

sin(to∆ω)
to∆ω

,

where the variable τ = t2 − t1 is in the range 0 ≤ τ ≤ to
Because of time-reversal symmetry, the function Γt is real, and the value

is almost equal to 1 if the condition to∆ω � 1 is fulfilled. Signified as “slow”
in this case, such binary correlations yields a quasi-static condition, being
dominated by the symmetrical spatial correlation factor cos{∆q(x2 − x1)}. It
is noted however that such a spatial correlation function for regular lattice
points vanishes if x2 − x1 = integer × lattice constant, whereas it is nonzero
if otherwise, and observable for nonlattice points, provided that to∆ω � 1.
In this case, the fluctuations are revealed as incommensurate.

Denoting small deviations from a regular lattice point x as x1 = x − δx
and x2 = x+δx, where |δx| < a, the lattice constant, the correlation function
can be written as

Γ(δx) = 〈{s(x1, t1) − s(x, t)}∗{s(x2, t2) − s(x, t)}〉t
=
〈

s∗(x, t)
∂s(x, t)

∂x
− s(x, t)

∂s∗(x, t)
∂x

〉
t
dx,

where the quantity in the brackets < . . . > must be nonzero for Γ(dx) to
express nonvanishing correlations for dx �= 0. Obviously, if dx = 0, Γ(0) =
0 regardless of the quantity in the bracket. Lifshitz has proposed that the
incommensurability is assured if the Gibbs potential has an extra term GL
proportional to Γ(δx), namely

GL = (iD/2)
∫ L

o

〈
s∗ ∂s

∂x
− s

∂s∗

∂x

〉
t

dx

L
, (5.9)

and GL �= 0 is called the Lifshitz condition for incommensurability. Here, the
coefficient iD/2 in (5.9) is defined to include δx, and the factor 1

2 i is set for
convenience. In the above, a continuum crystal is assumed, which is valid in
the long-wave approximation.
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Although the equilibrium can be specified by the free energy in Landau’s
expansion, the dynamic Gibbs function for the fluctuating state should consist
of the kinetic energy for propagation as well as the correlation term GL. Thus
the dynamic Gibbs function can be expressed as

G(s) = G(0) +
∫ L

0

〈
1
2a|s|2 + 1

4b|s|4 + 1
2κ
∣∣∣∣∂s
∂x

∣∣∣∣
2
〉
t

dx

L
+ GL, (5.10)

where κ = mc2
o and co the speed of propagation. Assuming that Γt = 1 for

brevity, (5.10) can be written for s = so exp iφ as

G(so, φ) = G(0) +
∫ L

0

[
1
2as2

o + 1
4bs4

o + 1
2κ
(

dso

dx

)2

+ 1
2κs2

o

(
dφ
dx

)2
+ Ds2

o

(
dφ
dx

)]
dx

L
.

The pseudospin system can be in equilibrium with the lattice excitation.
When the lattice counterpart is expressed by GS, the thermal equilibrium can
be determined by d{G(s) + GS} = 0, where GS is primarily independent of
s. Therefore, the equilibrium values of so and φ can be obtained by solving
the equations ∂G/∂so = 0 and ∂G/∂φ = 0 simultaneously:

aso + bs3
o + κ

(
d2so

dx2

)
+ κso

(
dφ
dx

)2
+ 2Dso

(
dφ
dx

)
= 0 (i)

and {
κs2

o

(
dφ
dx

)
+ Ds2

o

}(
d
dφ

)(
dφ
dx

)
= 0. (ii)

From the equation (ii), we see immediately that

dφ
dx

= −D

κ
= q,

indicating that the wavevector is generally irrational, as D and κ are parame-
ters unrelated to the lattice periodicity and primarily temperature dependent.
The term κ(d2so/dx2) in (i) is very small and negligible, so that

s2
o = −(a − D2/κ)/b,

indicating that the amplitude so is temperature dependent and, indeed, a
function of temperature and pressure in practical systems. Although the origin
is unspecified in the above argument, the coupling with the soft mode is
responsible for incommensurate fluctuations.
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5.4 A Pseudopotential for Condensate Locking and
Commensurate Modulation

Pseudospins represent active groups occupying regular lattice points, hence
their collective motion should be sensitive to any subtle change deviating from
the regular periodic structure. We discussed point defects disrupting trans-
lational symmetry in Section 5.1; there is another significant case of pseudo
structure for a structural transformation. A pseudo structure may not be
clearly detected by crystallographic observation, as is often too small to be
resolved by X-ray diffraction. Nevertheless, pseudospin fluctuations may be
stabilized by such a pseudo structure when the wavelength becomes compa-
rable with the repeat unit in the pseudo structure, being responsible for a
commensurate lattice modulation. Such transitions from an incommensurate
phase to a commensurately modulated phase as occurring at particular tem-
peratures Ti have been found among practical systems, which are characterized
by a change of continuous phase variables φ to discrete angles.

A simple example of pseudo potentials is screw symmetry due to successive
rotations of active groups along a direction. Typically, such screw symmetry is
observed in twofold or threefold screw axis, along which constituent molecules
rotate by π or 2π/3 in succession over two or three unit cells, respectively.
Accordingly, in these cases, the repeat unit of pseudo symmetry can be two or
three times longer than the regular lattice constant. Such an incommensurate-
to-commensurate phase transition is considered for phase matching between
phases of a pseudospin mode and a screw potential in the same direction.

Obviously an excitation energy is involved in such a modulated structure,
for which a pseudolattice potential Um with an m-fold screw axis along a
specific crystallographic axis, say the b axis, is considered to be responsible.
In the pseudopotential Um for active groups at each site p between two ends
of the unit, transversal vectors u⊥p can be considered for successive rotation-
translation along the axis, namely

u⊥p = u⊥o exp iθp, where θp = ±2π
m

p and p = 1, 2, . . .,m. (5.11)

The pseudopotential for screw symmetry can therefore be expressed as

Um ∝
∑

±p
u⊥p =

∑
±p

uo{exp(iθp) + exp(−iθp)},

or
Um ∝ 2uo

∑
p
cos θp = Uo

∑
p
cos(Gbxp),

where
Gb = b∗/m and xp = pb.

The potential Um is characterized by m maxima as specified by successive ro-
tations θp at xp, as given by (5.11). Accordingly, applying the phase matching
rule to this case, the phase φ of a pseudospin mode can be locked into the
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phase of Um, when mφ becomes equal to the phase Gbxp, i.e. φ = 2πp/m,
p = 0, 1, . . .,m − 1.

For a collective pseudospin mode we consider a potential Vm, as related to
the lattice distorting potential Um, thereby phase matching between s and Vm
can take place at a specific temperature Ti. In this context, for exact phase
matching we can consider the potential Vm as proportional to cos(mφ), and
write

Vm(φ) = ρ{sm + (sm)∗}/m =
(

2ρ
m

)
σm

o cos(mφ), (5.12)

where ρ is constant. The incommensurate pseudospin mode s(φ) is therefore
perturbed by the pseudopotential Vm(φ) as the temperature is lowered through
Ti, where the dynamic Gibbs function for s(φ) can be expressed as

G(s) =
∫

dx

L

{
1
2as(φ)2 + 1

4bs(φ)4 + 1
2κ
∣∣∣∣∂s(φ)

∂x

∣∣∣∣
2

+ Vm(φ)

}
. (5.13)

It is realized that such a collective pseudospin mode is a nonergodic vari-
able, hence, the temperature dependence should be attributed to long-range
correlations, as will be discussed in Section 5.6. Therefore, representing ther-
modynamic properties, the variables σo and φ in the Gibbs function should
be related to the temperature, but implicit in (5.13). Nevertheless, the Gibbs
potential of (5.13) can be written as

G(σo, φ) =
∫

dx

L

{
1
2aσ2

o + 1
4bσ4

o + 1
2κ
(

∂σo

∂x

)2

+ 1
2κ
(

∂φ
∂x

)2
+
(

2ρ
m

)
σm

o cos(mφ)

}
.

Using the variation principle, the function G(σo, φ) can be minimized for ther-
mal equilibrium against arbitrary variations δσo and δφ, for which the equa-
tions ∂G/∂σo = 0 and ∂G/∂φ = 0 are to be solved simultaneously; that is,

aσo + bσ3
o + 2ρσm−1

o cos(mφ) + κσo

(
dφ
dx

)2
+ κ

(
d2σo

dx2

)
= 0

and

κσ2
o
d2φ
dx2 + 2ρσm

o sin(mφ) = 0. (5.14a)

Using the abbreviations ψ = mφ and ζ = (2mρ/κ)σm−2
o , the second equation

can be expressed as
d2ψ
dx2 − ζ sin ψ = 0, (5.14b)

which is known as the sine-Gordon equation. Integrating (5.14a) once, we
have

1
2κσ2

o

(
dφ
dx

)2
+ Vm(φ) = const., (5.14c)
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representing the energy relation between s(φ) and the pseudo-potential Um.
It is noted that the kinetic energy of phase fluctuation given by the first
term in (5.14c) originates from an energy exchange between Vm and Um at
Ti, although remaining implicit in the above, and only φ is considered for the
phase transition.

The sine-Gordon equation describes a nonlinear motion with a finite am-
plitude σo, depending on the magnitude ρ of the pseudopotential. Frank and
van der Merwe [46] discussed such a dynamical problem, and their results can
be used for the present problem of nonlinear fluctuations. Following Böttiger’s
textbook [47], we write (5.14c) in the form

1
2 (dψ/dx)2 − ζ cos ψ = E, (5.15)

where E is the integration constant of (5.14b), which can be determined by
values of ψ and dψ/dx specified at a point x = xo, analogous to initial condi-
tions for a “pendulum.” Here, E and ζ represent the energy and the potential
height, respectively, in a reduced scale. Such a classical motion is oscillatory
with a finite amplitude if E < ζ, whereas it is nonoscillatory if E ≥ ζ. In the
former case, the mode ψ is stabilized by the potential −ζ cos ψ in phase with
the pseudoperiod, whereas in the latter case, the potential is no obstacle for
free propagation.

The solution of (5.15) can be expressed in terms of an elliptic integral

x − xo =
∫ ψ

0
[2(E + ζ cos ψ)]−1/2dψ,

which can be rewritten in the standard form as

x − xo =

(
ζ1/2

κ

)∫ φ

o
(1 − κ2 sin2 Θ)dΘ, (5.16)

where
κ2 = 2ζ/(E + ζ)

is the squared modulus κ of the elliptic integral and Θ = 1
2ψ. The lower limit

of the integral corresponds to Θ = 0, and the upper limit designated as ϕ is
the value of Θ at a given x. The integral of (5.16) can also be expressed in
the reversed form

sin ϕ = sn
κ(x − xo)

ζ1/2 . (5.17)

It is clear from (5.16) and (5.17) that x − xo varies periodically, as the angle
ϕ varies in sin ϕ, if the modulus is in the range 0 < κ < 1, otherwise x − xo
is not periodic for κ ≥ 1. Correspondingly, the lock-in phase transition at
temperature Ti can be specified as occurring at E = ζ or κ = 1 between the
phases described by E < ζ and E > ζ. Denoting the specific angle ϕ at Ti as
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Fig. 5.1. Graphical illustration for kink solutions of the sine-Gordon equation plot-
ted against x − xo for m = 5, p = 0, 1, 2, 3, 4. The “wavelength” Λ is defined as a
distance between adjacent kinks with same derivatives.

θ, the phase transition can be described by the “kink” solution of (5.15); that
is,

sin θ = tanh{(x − xo)/ζ1/2},

for which

θ = sin−1[tanh{(x − xo)/ζ1/2} + θp, where θp = pπ, p = 0, 1, 2, . . .,m − 1.

Therefore, as illustrated in Fig. 5.1, such transitions occur if s(φ) are trapped
in the potential Vm(φ), as indicated by m kinks at θp = 0, π, 2π, . . ., (m− 1)π,
or by the relation mφp = ψp = 2θp at φp = 2πp/m. In fact, these discrete kinks
σ(φp) were observed in K2ZnCl4 and Rb2ZnCl4 crystals as discommensuration
lines, which can be explained by a simplified one-dimensional model at least
qualitatively.

For such a modulated structure characterized by these kinks, it is useful
to define the distance between kinks as Λ(κ), which is expressed from (5.16)
as

κΛ(κ)/ζ1/2 = 2
∫ π

2

0
(1 − κ2 sin2 Θ)dΘ

The integral on the right, known as Jacobi’s complete elliptic integral, is usu-
ally written as K(κ) and, hence, κΛ(κ)/ζ1/2 = 2K(κ). Here, the parameter
Λ(κ) is similar to the wavelength in a sinusoidal wave, representing the repeat
length in the elliptical wave. Figure 5.1 shows numerical plots of the peri-
odic elliptic function for p = 1, 2, 3 and 4, for the purpose of mathematical
illustration.
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In the above argument, we assumed exact phase matching between the
pseudospin mode and the pseudolattice potential Um for an incommensurate-
to-commensurate phase transition. In practice, however, their coupling may
not be exactly in phase, resulting in a small phase mismatch as observed
in transition anomalies at Ti. In neutron inelastic scattering experiments,
the pseudolattice potential, as perturbed by such a coupling with the pseu-
dospin mode, exhibits a phase shift from the unperturbed potential Ump =
Uo cos Gbxp as expressed by

U ′
mp = Uo cos(Gbxp − ∆φp),

where the observed phase shift ∆φp in the pth discommensuration line is
usually written by the incommensurate parameter δp as

∆φp = φpδp = (2πp/m)δp. (5.18)

Parameters δp determined from observed shifts represent incommensurate
fluctuations effectively.

Although one-dimensional correlations is a valid assumption in anisotropic
crystals, experimentally the model must be evaluated on sample crystals of
good quality that are characterized by a small defect density. For phase-locking
phase transitions in K2ZnCl4 and Rb2ZnCl4 crystals, Pan and Unruh [48] re-
ported laminar patterns of discommensuration lines that were recorded by
transmission electron microscopy (TEM). The photographs in Fig. 5.2a show
patterns of soliton stripes, so called by these authors, of lines along the b axis
in a plates of K2ZnCl4. Such patterns of discommensuration lines are inter-
pretable primarily with the one-dimensional theory, although observed details,
such as “splitting” and “vortex”-like behaviors of lines and so forth in dark
fields of electron diffraction (Fig. 5.2c), require further explanation beyond
the model of one-dimensional correlations. Among photographs published in
ref. [48], it is also notable that isolated groups of three stripes (Fig. 5.2b)
may be interpreted as arising from the pseudopotential V3(φ). Further noted
is that these lines are terminated at “vortexes,” which may be attributed to
unknown pinning mechanisms in the crystal. Also interesting in their obser-
vation is a fine doublet structure on each line, which appears as related to
broken mirror symmetry at the threshold of the polar phase. Generally, in
these experiments, pseudospin modes appear in variety of ways, depending on
types and densities of the imperfections, while their intrinsic nature can only
be revealed in high-quality crystals.

5.5 Propagation of a Collective Pseudospin Mode

The critical region of binary phase transitions is dominated by slow fluctu-
ations in phase reversal φ ↔ −φ, whereas the collective pseudospins s(φ)
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Fig. 5.2. (a) A dark-field image from satellite reflections from (100) plane of a
K2ZnCl4 crystal at 205K showing discommensuration stripes parallel to the b direc-
tion. (b) A dark-field micrograph at 208K. In the circled area, discommensuration
lines are evident in the pair structure. (c) The “vortex” of three pairs of discom-
mensuration lines, where a splitting of outer pairs is visible, is seen in these photos
displayed from right to left obtained with increasing time of electron irradiation.
(From H.-G. Unruh, J. Phys. Cond. Matter 2, 323 (1990).)
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represent a propagating mode in each domain, exhibiting a nonlinear charac-
ter with decreasing temperature. While such a complex problem cannot be
simply elucidated by a solution of one equation, we consider, as the first step,
the problem of propagation of the collective pseudospin mode in a domain
of a good quality crystal characterized with sufficiently low defect density,
where no significant obstacles for propagation are present. Originating from
minimum correlation energies at the transition threshold, a collective mode
emerges at infinitesimal amplitude, which however increases to finite magni-
tudes with increasing correlations, as the temperature is lowered. At a given
temperature below Tc, the collective pseudospins are in propagating motion
in a low dimension in anisotropic crystals, exhibiting a nonlinear character.

The collective mode can generally be described by the expression s =
sof(φ), propagating in a direction specified by the phase φ, although the
amplitude so and phase φ are constant at a given temperature. Observed
thermodynamic quantities showed temperature dependences as expressed by
empirical exponents on (Tc −T ), for which the responsible mechanism has not
been verified as yet. Nevertheless, we discuss, as the first step, the dynamics
of correlated pseudospins in one dimension with no obstructing potentials,
using the long-wave approximation. At a given temperature, the motion is
described primarily by the phase φ at a finite amplitude, while we leave the
temperature-dependence to later discussions.

Here, for a displacive system, we consider that a pseudospin at each lattice
site m is in a potential Vm = 1

2asm
2 + 1

4bsm
4 perturbed by the correlation

potential −∑n Jmnsmsn in one-dimension along a direction x. It is noted
that such binary correlation energies at the site m can be re-expressed as∑

n �=m
Jmnsmsn = 1

2

∑
n�=m

Jmn(sm − sn)2 −
∑

n
Jmns2

n,

where the first term on the right is predominant, while the second one is just
a constant at a given temperature in the mean-field accuracy. In this case, for
correlations between the nearest neighbors m and n, we can consider that a
displacement sm − sn = (∂s/∂x)m(xm − xn) in the long-wave approximation
and, hence, the interaction behaves as if elastic. Therefore, disregarding the
constant term, we can write

Vm,m±1 = 1
2C
∑

m
{(sm+1 − sm)2 + (sm − sm−1)2}.

With such interactions, the Hamiltonian can be written for a chain crystal as

H =
∑

n

(
p2
m

2m
+ Vm + Vm,m±1

)
,

where m is the effective mass of a pseudospin. Krumshansl and Schrieffer [49],
Aubry [50] and many other investigators discussed the dynamics of an infinite
number of particles m of a chain crystal with H, which can be expressed in a



5.5 Propagation of a Collective Pseudospin Mode 115

long-wave approximation by an integral of the Hamiltonian density H, namely
H = L−1

∫ L

o HdL, where

H =
p(x, t)2

2m
+ V {σ(x, t)} + 1

2mc2
o{∂σ(x, t)/∂x}2,

V {σ(x, t)} = 1
2aσ(x, t)2 + 1

4bσ(x, t)4

and co = (2LC/m)1/2 is the speed of propagation. Here, for the constants a
and b, we consider a > 0 and b = 0 for T > Tc, whereas a < 0 and b > 0 for
T < Tc, to be consistent with the Landau theory. Here, the momentum p(x, t)
is canonically conjugate to σ(x, t) and related to the Hamiltonian density
H = H(σ, ∂σ/∂x) by the canonical transformations

dp

dt
= −∂H

∂σ
− ∂

∂x

{
∂H

∂
(

∂σ
∂x

)
}

and
dσ
dt

=
∂H
∂p

,

thereby obtaining the equation for propagation for T < Tc

m

(
∂2

∂t2
− c2

o
∂2

∂x2

)
σ(x, t) = −∂V

∂σ
= −aσ − bσ3. (5.19a)

This equation can be reduced to the ordinary differential equation

d2Y

dφ2 + Y − Y 3 = 0, (5.19b)

by using rescaled variables,

Y =
σ
σo

and φ = k(x − vt), (5.19c)

where

σo =
( |a|

b

)1/2

,

k2 =
|a|

m(c2
o − v2)

=
k2
o

1 − v2/c2
o

(5.19d)

and

k2
o =

|a|
mc2

o
.

It is noted here that v = co and ko = 0 at the transition temperature Tc,
whereas v < co and k ≥ ko characterize the phase below Tc. Writing ω = vk
for the frequency, from the parameter k defined by the second expression in
(5.19d) we obtain the dispersion relation

ω2 = c2
o(k

2 − k2
o). (5.19e)
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Such a dispersive property is a characteristic feature of a nonlinear propaga-
tion, playing an essential role for the collective pseudospins below Tc, as will be
discussed for the soliton potential. Following Landau, we may consider that
the parameter a changes signs when passing through the transition, where
a = 0 specifies T = Tc. Hence, to be consistent with the soft-mode theory,
k = ko corresponds to ω = 0. It is interesting to note that such a nonzero ko
determines a initial modulation at Tc, otherwise k = 0 causes no modulated
structure.

Although soluble analytically, (5.19b) can be simply solved for a small
amplitude, ignoring Y 3. In this case, the linear equation

d2Y

dφ2 + Y = 0

has a sinusoidal solution

Y = Yo sin(φ + φo),

where φo is a phase constant, and Yo is the infinitesimal amplitude.
On the other hand, (5.19b) can be analytically solved for a finite Y , using

Jacobi’s elliptic function. Integrating (5.19b) once, we obtain

2
(

dY

dφ

)2
= (λ2 − Y 2)(µ2 − Y 2), (5.20)

where
λ2 = 1 − (1 − α2)1/2 and µ2 = 1 + (1 − α2)1/2.

Here the integration constant α = (dY/dφ)φ=0 represents the slope of Y =
Y (φ) at φ = 0, which can take a variety of values, depending on the amplitude
σo, as seen from Fig. 5.3. Integrating (5.20) once more, the phase φ can be
expressed by an integral called the elliptic integral of the first kind ; that is,

µφ/21/2 =
∫ ξ1

0
[(1 − ξ2)(1 − κ2ξ2)]−1/2dξ, (5.21a)

where ξ = Y/λ, and κ = λ/µ is the modulus, and the phase φ can be deter-
mined by the upper limit of the integral specified by ξ = ξ1. The parameters
λ, µ, κ and α all depend on (dY/dφ)φ=0, which can be determined by σo, and
so these are all temperature-dependent parameters. It is convenient to express
λ and µ in terms of the modulus κ

λ =
21/2κ

(1 + κ2)1/2 and µ =
21/2

(1 + κ2)1/2 .

The reverse form of (5.21a) is written as

ξ = sn(µφ/21/2), (5.21b)
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Fig. 5.3. Numerical plots of Y = λsn(2−1/2µφ) for various values of the modulus κ.

which is the elliptic sn-function. Defining the angular variable Θ by ξ = sin Θ,
(5.21a) can be written as

µφ1/21/2 =
∫ Θ1

0
(1 − κ2 sin2 Θ)dΘ,

where the upper limit Θ1 is specified by the relation ξ1 =sin Θ1 =sn(µφ1/21/2).
Therefore, we can write the relation

σ1 = λσo sin Θ1 = λσosn
µφ1

21/2 , (5.22)

which allows us to consider that σ1 is the longitudinal component of the
classical vector s with an amplitude λσo, making an angle 1

2π − Θ1 = θ with
the chain direction, as illustrated in Figs. 5.4a and 5.4b. In this interpretation,
σ1 grows as λ increases from 0 to 1 with temperature and the direction of s
rotates by θ while propagating along the x axis.

As shown in Fig. 5.3, Jacobi’s sn-function is periodic for the modulus in
the range 0 < κ < 1, although it is not periodic in the specific case κ = 1.
The period can be expressed as 4K(κ), where

K(κ) =
∫ π

2

0
(1 − κ2 sin2 Θ)−1/2dΘ (5.23)

is the complete elliptic integral. In the process for κ to approach 0, κ → 0 (or
λ → 0 and µ = 21/2) corresponds to a periodic solution, whereas for the other
extreme case of κ = 1 (λ = µ = 1), (5.21b) takes the specific form

Y = tanh
φ

21/2 , (5.24)



118 5 Dynamics of Pseudospins Condensates and the Long-Range Order

Fig. 5.4. (a) A pseudospin mode in a quasi-one-dimensional lattice; (b) pseu-
dospin vectors in a collective mode; (c) longitudinal components σ1 as given by
Y = σ1/σo = tanh(2−1/2φ); (d) transversal components σ⊥/σo = sech2(2−1/2φ).

which varies between −1 and +1 at φ = 0 as shown in Fig. 5.4c, representing
a kink of the pseudospin variable, that is consistent with mirror reflection on
the plane of φ = 0 perpenducular to the x axis. Such a plane at the kink may
be considered a domain boundary.

The above theory falls short in other aspects of domain formation in real
crystals. In order for a planar domain boundary to be represented by φ = 0,
interchain correlations should be considered as significant, which is, however,
disregarded in the one dimensional theory. In addition, the pinning mechanism
by random defects discussed in Section 5.1 should be revised for the present
argument of domain boundaries.

On the other hand, for a classical displacement s its transversal component
should be considered as significant for interchain correlations. In addition to
the longitudinal component σ1 = λσo cos θ in (5.22), we consider the transver-
sal component σ⊥ = λσo sin θ that is defined as

σ⊥(φ) = λσocn
µφ
21/2 for 0 < κ < 1,

and
σ⊥(φ) = σo sech

φ
21/2 in the limit of κ = 1.

Corresponding to σ1 shown in Fig. 5.4c for κ = 1, the transversal σ⊥ repre-
sents a solitary pulse as shown in Fig. 5.4d. Being prominent in the vicinity
of φ = 0 where φ changes from −1 to +1, the classical vector s reverses its
direction, for which a certain amount of energy is obviously required. As-
suming that σ⊥ can take all directions perpendicular to the x axis with an
equal probability, the energy required for reversing s can be expressed as
proportional to πk2σ⊥2, where k is the wavevector of propagation. The field
Fs(φ) or the corresponding potential Vs(φ) = −dFs/dx proportional to k2σ⊥2
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should be involved in reversing the propagating pulse of σ⊥. Hence, writing
Vs(φ) ∝ −k2 sech2(φ/21/2), we obtain Fs ∝ tanh(φ/21/2) ∝ σ1, which may be
interpreted as an internal field defined in Chapter 3 by (3.31). Thus, known as
the soliton in nonlinear dynamics, the potential Vs(φ) may be considered as
representing the internal field due, essentially, to short-range correlations in
the chain, but including those with distant pseudospins as well, if contributed
by dipolar interactions as in ferroelectric crystals.

Generally, for 0 < κ < 1, the direction of s is reversed in a region of the nar-
row domain wall, for which we can consider a potential Vs(φ) = −πk2σ⊥2 ∝
−cn2(µφ/21/2) is responsible as related to σ⊥, which is notably periodic and
incommensurate in the lattice. In Sections 5.8 and 5.9, we will discuss the
temperature dependence of Vs(φ) in conjunction with the long-range order.

5.6 A Hydrodynamic Model for Pseudospin Propagation

The linear chain model discussed in the previous section is capable of explain-
ing dynamical aspects of correlated pseudospins, however their temperature
dependent amplitudes cannot be explained, unless additional long-range cor-
relations are taken into account. The quartic potential 1

4bσ4 emerging at the
outset of a phase transition at Tc is considered in this model, although rep-
resenting only short-range interactions. As a result, the finite amplitude is
expressed in terms of a undetermined value of the modulus κ, wheras the
continuous phase φ in the range 0 ≤ φ ≤ 2π describes propagation through a
crystal, being characterized by a constant speed v of propagation at a given
temperature.

Equation (3. 31) derived by the variation principle is valid for the pseu-
dospin s(φ) at any space-time (x, t) in the crystal, for which the relation
λs(φ) = F (φ) signifies the in-phase relation between s(φ) and the correspond-
ing internal field F (φ). On the other hand, if the pseudospins are responsive
to an applied field E , this relation should be revised as

λs(φ′) = F (φ) + E , (5.25)

where the phase φ is shifted to φ′. Therefore, we can write

E = λ{(s(φ′) − s(φ)} = λ
(

∂s
∂φ

)
δφ, (5.26)

implying that an external field E changes the amplitude by λδs, accompany-
ing with the phase shift δφ.

In a polar phase, the ordered state at a temperature T is characterized
by an internal electric field E int of long-range dipolar order. Assuming such a
local field E int as if applied externally, we may expect a phase shift in s(φ) as
in (5.26), if E int is substituted for E . Although E int is not distinguishable from
an applied E experimentally, the temperature dependent amplitude of s(φ′) in
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the polar state must be attributed to the net effective field F (φ)+E int where
E int is temperature dependent. At this point, we note that the phase velocity
in φ′ cannot be the same as in the phase φ, and is temperature dependent.

We considered in Section 5.5 that the transversal component σ⊥ is asso-
ciated with the soliton potential, and that the nonlinear character of a pseu-
dospin vector s(φ) arises from correlations in the chain as well as between
neighboring chains. With this in mind, we proceed to a hydrodynamical de-
scription with the pseudospin density, s∗.s = σ1

2 + σ⊥2 = ρo.
While ρo is constant at a given temperature, the components σ1 = σ1(x, t)

and σ⊥ = σ⊥(z, t;x) vary along the x direction, depending on the effective
internal field. In this case, the effective field F (φ′) = F (φ) + E int can be ex-
pressed by longitudinal and transversal components, F‖ and F⊥ per volume
in the hydrodynamical model, exerting these component forces on the cor-
responding pseudospin densities ρ‖ = σ1

2 and ρ⊥ = σ⊥2, respectively. We
consider a steady flow of “fluid” of a density ρo through a cylindrical pipe of
a flexible cross section, where the density is modulated by the internal field
F (φ′).

First, the speed of propagation v = v(x, t) cannot be constant in the
presence of F‖(x, t) and is modified by the force proportional to −∂F‖/∂x;

∂v

∂t
+ v

∂v

∂x
= −

(
1
ρo

)
∂F‖
∂x

. (i)

Second, the law of continuity should be applied to the longitudinal flow, be-
cause there is no transversal flow. Therefore, we have the equation of conti-
nuity

∂ρ‖
∂t

+
∂

∂x
vρ‖ = 0. (ii)

Third, for the transversal deviation, we assume that the density ρ⊥ is in
restoring motion with F⊥ along a perpendicular direction z at any point x,
for which the equation of motion for ρ⊥(z) at a given x can be written as

∂2ρ⊥
∂t2

+ α(ρ⊥ − ρo) = F⊥, (iii)

where α is an elastic restoring constant in transversal directions.
Equation (i) is typically nonlinear because of the term v(∂v/∂x), whereas

(ii) and (iii) are linear equations. We assume that the nonlinearity is a weak
perturbation, which can therefore be ignored in the first approximation where
the equation (i) is linearized. In the following, analogous to a classical example
of fluid through a flexible pipe discussed in Lamb’s textbook [51], we can
derive the Korteweg-deVries equation from (i), (ii) and (iii) combined. In the
classical vector model, |s| is constant at a given temperature while distributed
densities between x and z directions vary along the x axis, as restricted by
ρ‖ + ρ⊥ = ρo. In this case, we may consider that ρ‖ = ρ(x) and ρ⊥ = ρ(z)
are independent functions of x and z, respectively, whereas |ρ‖| = |ρ⊥| = ρo



5.6 A Hydrodynamic Model for Pseudospin Propagation 121

if calculated at x and x + 1
2λ. Accordingly, we can write F‖ = F (x) and

F⊥ = F (z), whose amplitudes are the same Fo in order to be consistent with
(3.31). Using reduced variables, x′ = α1/2x, t′ = α1/2t, ρ′ = (ρ − ρo)/ρo and
F ′ = F/ρo, the linearized equations can be written as

∂ρ′

∂t′
+

∂v

∂x′ = 0,

∂v

∂t′
− ∂F ′

∂x′ = 0 (iv)

and
∂2ρ′

∂t′2
+ ρ′ = F ′.

Considering that the unperturbed propagation in the reduced space-time
(x′, t′) is sinusoidal and proportional to exp i(kx′ − ωt′), we can obtain from
the set of equations (iv) the dispersion relation

ω2 =
k2

(1 + k2)
,

where the frequency ω is approximately expressed for a small k as

ω ≈ k − 1
2k3 (v)

In this case, the factor exp i{k(x′ − t′) − 1
2k3t′} allows us to consider a

monochromatic variation in the first approximation, which is then modified by
the factor exp(−i1

2k3t′). Defining new variables ξ = k(x′ − t′) and τ = 1
2k3t′,

the space-time coordinates (x′, t′) can be transformed to the variables (ξ, τ)
by performing the differentiations

∂

∂x′ = k
∂

∂ξ
and

∂

∂t′
= −k

∂

∂ξ
+ 1

2k3 ∂

∂τ
, (vi)

which will be used for calculating the nonlinear perturbation.
For the perturbed flow, the nonlinear terms are retained in the reduced

form in equations (i) and (ii), which are written as

∂v

∂t′
+ v

∂v

∂x′ +
∂F ′

∂x′ = 0 (i′)

and
∂ρ′

∂t′
+

∂v

∂x′ +
∂(ρ′v)
∂x′ = 0, (ii′)

respectively. The linear equation (iii) is also simplified with reduced variables
as

∂2ρ′

∂t′2
+ ρ′ = F ′. (iii′)
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Equations (i′), (ii′) and (iii′) can now be transformed to (ξ, τ) by (vi),
resulting in

−∂v

∂ξ
+ 1

2k2 ∂v

∂τ
+ v

∂v

∂ξ
+

∂F ′

∂ξ
= 0,

−∂ρ′

∂ξ
+ 1

2k2 ∂ρ′

∂τ
+

∂v

∂ξ
+

∂(ρ′v)
∂ξ

= 0

(i′′)

(ii′′)

and

F ′ = ρ′ + k2 ∂2ρ′

∂ξ2 − k4 ∂2ρ′

∂ξ∂τ
+ 1

4k6 ∂2ρ′

∂τ2 . (iii′′)

Although ρ′ and F ′ are the variables emerging at the transition threshold,
the speed v starts from the threshold value vo, all varying as functions of ξ and
τ with decreasing temperature. Therefore, the nonlinearity developing with
decreasing temperature can be described by ρ′, F ′ and v′ that are expressed
in power series of k2. Assuming that

ρ′ = k2ρ′
1 + k4ρ′

2 + . . . . . . . . .,

F ′ = k2F ′
1 + k4F ′

2 + . . . . . . . . .

and
v = vo + k2v1 + k4v2 + . . . . . . . . .,

we expand the equations (i′′), (ii′′) and (iii′′) into a series of k2, where the
relations among these asymptotic coefficients can be obtained from terms of
the same power.

Comparing, first, the factors proportional to k2, we obtain

−∂ρ′
1

∂ξ
+

∂v1

∂ξ
= 0,

−∂v1

∂ξ
+

∂F ′
1

∂ξ
= 0

and
F ′

1 = ρ′
1.

Integrating these equations, we have the relation

F ′
1 = ρ′

1 = v1 + ϕ(τ), (vii)

where ϕ(τ) is an arbitrary function of τ. Comparing, next, terms proportional
to k4, we obtain

−∂ρ′
2

∂ξ
+ 1

2
∂ρ′

1

∂τ
+

∂v2

∂ξ
+

∂(ρ1v1)
∂ξ

= 0,

−∂v2

∂ξ
+ 1

2
∂v1

∂τ
+ v1

∂v1

∂ξ
+

∂F2

∂ξ
= 0
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and

F ′
2 = ρ′

2 +
∂2ρ′

1

∂ξ2 .

We can eliminate ρ′
2, v2 and F ′

2 from these equations, arriving at the equation
for v1 and ρ′

1: (
∂v1

∂τ
+ 3v1

∂v1

∂ξ
+

∂3v′
1

∂ξ3

)
+ ϕ

∂v1

∂ξ
+

∂ϕ
∂τ

= 0

and (
∂ρ′

1

∂τ
+ 3ρ′

1
∂ρ′

1

∂ξ
+

∂3ρ′
1

∂ξ3

)
− ϕ

∂ρ′
1

∂ξ
− ∂ϕ

∂τ
= 0.

Because of (vii), the two terms in the brackets on the left of these equations
become equal and opposite, so that both v1 and ρ′

1 satisfy the same differential
equation

∂V ′
1

∂τ
+ 3V ′

1
∂V ′

1

∂ζ
+

∂3V ′
1

∂ζ3 = 0, (5.27)

where, for convenience, we use the same symbol V ′
1 to represent v1 or ρ′

1,
and arrive at (5.27) that is known as the Korteweg-deVries equation. Here, in
(5.27) the variable ξ is replaced by ζ, as necessitated by another requirement
for the function ϕ(τ) that satisfies the equation

ϕ
∂V ′

1

∂ξ
+

∂ϕ
∂τ

= 0.

This can be satisfied by another transformation ζ = ξ+3
∫

ϕ(τ)dτ. It is noted
from (vii) that the internal field F ′

1 can also be determined as a solution of
(5.27).

We have shown in the above that these quantities developed as propor-
tional to k2 are all determined by the Korteweg-deVries equation that can
be solved analytically, as discussed in the next section. The solution shows
a particle-like behavior, and therefore is called a soliton. Although derived
mathematically, the Korteweg-deVries equation gives physically significant
solutions for nonlinear propagation up to the order k2, as described by the
potential k2V ′

1 , the density deviation k2ρ′
1 and the corresponding speed of

propagation vo+k2v1 in the asymptotic approach. Applying to condensates in
crystals, the lattice is stressed by the potential k2V1, which should be incorpo-
rated in the Born-Huang theory. We shall therefore refer to the corresponding
lattice potential as the soliton potential.

It is noted that such a nonlinearity may also arise from a dissipative mech-
anism, instead of a dispersive character. However, the above approximation
suffices for the present problem of correlations and, therefore, we discuss the
Korteweg-deVries equation in the following sections, leaving the more general
nonlinear problems to reference books on nonlinear physics (see, e.g., refs.
[51]).
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5.7 The Korteweg-deVries Equation

5.7.1 General Derivation

The soliton theory is a relatively recent topic in nonlinear physics. Although
oscillatory phenomena are essentially nonlinear, the excitation in small am-
plitude is described in most cases by a linear equation of the Sturm-Liouville
type. In general, the nonlinearity becomes significant with increasing exci-
tation energy, as described by propagation in a soliton potential. Although
derived for correlated pseudospins, the Korteweg-deVries equation can be ob-
tained for many other applications, sharing common features among them.
Mathematically, the problem can be characterized by finding a potential for
keeping the eigenvalues unchanged. In this subsection, we discuss in general
mathematical terms how such a potential as governed by the Korteweg-deVries
equation evolves in a nonlinear process.

Consider a function y(x) that satisfies a differential equation of the Strum-
Liouville type:

D2y(x) = εoy(x),

where D = ∂/∂x is a differential operator and εo is a eigenvalue. In this
case, the eigenfunction y(x) represents a propagating wave corresponding to
the eigenvalue εo. On the other hand, in the presence of a potential V (x, τ),
where τ is the evolving parameter, the differential equation is

Ly(x, τ) = [D2 − V (x, τ)]y(x, τ) = ε(τ)y(x, τ), (5.28)

where L = D2 − V (x, τ) is the operator in the potential, for which the eigen-
value ε(τ) varies as a function of the parameter τ and should normally be
different from εo. Here, we consider the problem of finding such a potential
V (x, τ) that keeps the eigenvalue unchanged, i.e. ε = εo or ∂ε/∂τ = 0. Ap-
plying this to a physical problem, the variable τ may be interpreted as “real
time” for the potential V (x, τ) to evolve; however, the origin for evolution
is left unspecified in the meantime. In the following discussion, we express
differential coefficients in the indexed form, e.g. yτ = ∂y/∂τ, fxx = ∂2y/∂x2,
etc., while retaining the symbol Dy = ∂y/∂x for a specific spatial derivative
for convenience.

We first consider for (5.28) to be modified with varying τ in such a way
that the condition ετ = 0 is satisfied. In this case, the function y(x) is assumed
to change in space, corresponding to yτ, in such a manner that

yτ = By, (5.29)

where the operator B is primarily proportional to D in the absence of V (x, τ),
representing a linear propagation, but will be modified as higher-order op-
erators D2, D3 and so forth are included to obtain nonlinear propagation.
Differentiating (5.28) with respect to τ, we obtain

∂(Ly)
∂τ

= Lτy + Lyτ = −Vτy + LBy,
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while
∂

∂τ
(λy) = ετy + εyτ = ετy + εBy = ετy + BLy.

Therefore,

(−Vτ + [L, B])y = ετy, where [L, B] = LB − BL,

from which we obtain the basic equation to be solved for the potential V ; that
is, for ετ = 0,

(−Vτ + [L, B])y = 0. (5.30)

Consider B1 = cD in (5.29) and (5.30), as the simplest example for linear
propagation,

[L, B1]y = L(B1y) − B1(Ly) = (D2 − V )(cDy) − (cD)(Vxx − V y)
= 2cxD2y + cxxDy + cVxy,

which is just equal to cVxy if c is a constant. In this case, (5.30) can simply be
written as −Vτ+cVx = 0, so that the solution of (5.30) is given as V = V (x−cτ)
and y = y(x − cτ). Therefore, V and y remain unchanged by a translation
x → x− cτ, so that this result is of no particular interest, as it represents only
linear translation.

Next, we consider an operator B2 = aD2 + cD + b, where a and b are
functions of x and τ, while c remains constant as in B1. By a similar calculation
however, we obtain from B2 the same potential V = V (x − cτ) as derived
from B1. Therefore, to deal with a nonlinear effect, we should consider B3 =
aD3 + cD + b for a possible evolving potential V with τ:

[L, B3]y = (2cx + 3aVx)D2y + (cxx + 2bx + 3aVxx)Dy + (bxx + aVxxx + cVx)y.

For such a potential V , we set the coefficients of D2y and Dy equal to zero
and obtain differential equations that c and b can satisfy. Assuming a to be
constant, we integrate these, arriving at

c = −3
2
aV + C and b = −3

4
aVx + B,

where C and B are constants of integration. As the result, we can write that

[L, B3]y =
[ 1
4a(Vxxx − 6V Vx) + CVx

]
y.

Using this result in (5.30),

1
4a(Vxxx − 6V Vx)y + (CVx − Vτ)y = 0,

where C can be selected to be zero by transforming (x, τ) to (x′, τ) = (x −
ατ, τ), so that the second term on the left is expressed essentially as −Vτy.
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Thus, we arrive at the following differential equation for a potential V (x−ατ);
that is, by letting a = −4, we have

Vτ − 6V Vx + Vxxx = 0, (5.31)

which is a standard form of the Korteweg-deVries equation.
Equation (5.29) describes the evolving function y(x, τ) in the Korteweg-

deVries potential V (x, τ);

yτ = (−4D3 + 6V D + 3Vx + B)y,

where the constant B can be eliminated by a suitable choice of α in the phase
x − ατ for further simplification. It is noted that the modified propagation
is characterized by the eigenvalue εo and, hence, the wave equation for the
function y(x − ατ) is written as

yxx − V y = εoy. (5.32)

Clearly, the wavevector k for propagation depends on the value of α, implying
that the speed of propagation in the potential field V is different from the
“potential-free space.” Although a higher-order evolution of V (x− ατ) is pos-
sible in the above derivation, the operator B3 is adequate for most nonlinear
problems, for which the Korteweg-deVries potential plays an essential role.

5.7.2 Solutions of the Korteweg-deVries Equation

It is significant that the equation (5.31) is analytically soluble for a one-
dimensional soliton potential. First, the Korteweg-deVries equation has been
derived for a propagating potential V = V (x − ατ), which is noted to be
closely associated with the wave equation (5.32). Therefore, Vτ = −αVx and
the equation (5.31) can be written as

−αVx − 6V Vx + Vxxx = 0.

Reexpressing it in the form

−αVx − 6
2
dV 2

dx
+

dVxx

dx
= 0,

which is integrated immediately as

Vxx = 3V 2 + αV + 1
2a,

where 1
2a is the constant of integration. Multiplying by Vx, we can integrate

it once more and obtain

V 2
x = 4V 3 + αV 2 + aV + b,
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Fig. 5.5. Schematic curves for −V 2
x vs. f , showing an oscillatory solution (A) and

a solitary solution (B) of the Korteweg-deVries equation.

where b is another integration constant that should be chosen as positive. The
algebraic expression on the right side can be rewritten by using a new variable
defined by V = −f , for convenience, as

V 2
x = −4(f − f1)(f − f2)(f − f3),

where f1, f2 and f3 are real roots of the cubic equation V 2
x = 0 and, hence,

f1 + f2 + f3 = 1
4α. Assuming f1 < f2 ≤ f3, positive V 2

x is restricted to the
range f1 ≤ f ≤ f2, as illustrated in Fig. 5.5. To deal with this range of V 2

z ,
we use another variable g defined by f3 − f = g and

V 2
x = 4g(f3 − f1 − g)(f3 − f2 − g).

Since g > 0 in this range, we can introduce a new variable ξ by writing
g = (f3 − f2)ξ

2, and obtain

ξ2
x = (f3 − f1)(1 − ξ2)(1 − κ2ξ2),

where
κ2 =

f3 − f2

f3 − f1
. (5.33)

The front factor (f3−f1) in ξ2
x can be dropped by further redefining the phase

variable φ = (f3 − f1)1/2(x − ατ), and obtain

ξ2
φ = (1 − ξ2)(1 − κ2ξ2),

where

φ =
∫ ξ

0
[(1 − ξ2)(1 − κ2ξ2)]1/2dξ and ξ = sn(φ, κ)

are the Jacobi elliptical integral and elliptic function, respectively, character-
ized by the modulus κ given by (5.33). By definition, the modulus is in the
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range 0 ≤ κ ≤ 1, where at the limits κ = 0 and 1 that are determined by
f3 = f2 and f2 = f1, respectively, the elliptic functions become specifically
sin φ and tanh φ. Except for the limit κ = 1, the sn-function is periodic with
the period

4K(κ) = 4
∫ 1

0
[(1 − ξ2)(1 − κ2ξ2)]−1/2dξ.

The potential as a solution of the Korteweg-deVries equation is therefore
written in terms of the variable z = x − ατ as

−V (z, κ) = f(z) = f3 − g(z) = f3 − (f3 − f2)sn2[(f3 − f1)1/2z, κ], (5.34a)

which is oscillatory between f2 and f3 with period 4K(κ)/(f3 − f2)1/2. Ex-
cluding the constant term, the potential V (x, κ) can be expressed simply as

V (x, κ) = k2κ2sn2(kx − vτ, κ), (5.34b)

where the wavevector k = (f3 − f1)1/2 is used, with the modulus κ and
the speed of propagation v = αk. The potential is periodic with the period
4K(κ)/κk, but becomes nonoscillatory in the limit κ = 1; that is,

V (z) = k2 sech2(kx − vτ, 1).

As shown in Fig. 5.5, κ = 1 occurs when f1 = f2, where the curve of V 2
x has a

tangent along the horizontal axis. On the other hand, if κ → 0, f3 −f2 = k2κ2

becomes infinitesimal, and the potential approaches zero, namely

V (x, τ) = k2κ2 cos2(kx − vτ) → 0.

Returning to the problem of hydrodynamic flow of the density ρ = s∗.s
in Section 5.6, the soliton potential is actually given by k2V ′

1 , where V ′
1 satis-

fies the Korteweg-deVries equation. The factor f3 − f2 is proportional to k2,
representing the amplitude of the potential Vo(k), which can, therefore, be
expressed as

V (z, κ) = −Vo(k)cn2(kx − vτ, κ) for 0 < κ < 1, (5.35)

except for the constant term.

5.8 Soliton Potentials and the Long-Range Order

It is noted that the foregoing mathematical results are compatible with what
was physically discussed for pseudospin propagation in Section 5.5. As re-
marked, the intrinsic Weiss field F due to short-range and long-range corre-
lations signify the ordering process, for which the variable τ in the Korteweg-
deVries equation can be considered as the real time for evolving order. How-
ever, such a time τ may remain as conjectural unless growing order is de-
lineated in terms of decreasing temperature. In equilibrium, the pseudospin
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variable s(x − ατ) should be in phase with the internal field E int, and hence
the propagation should be dictated by the soliton potential V that represents
E int. Therefore, the wave equation for s can be written as(

∂2

∂τ2 − α2 ∂2

∂x2 − εo

)
s(x − ατ) = −gradσV (x − ατ),

Here, the potential V (x−ατ) generally expressed as proportional to cn2(z, κ),
where z = x − ατ, is determined by the Korteweg-deVries equation.

The functions cn2(z, κ) and sn2(z, κ) are periodic, consisting of infinite
number of identical potential valleys periodically separated by 2K(κ), as
shown in Fig. 5.7. Although approximately sinusoidal for a small κ, such
a potential curve for 0 < κ < 1, called the cnoidal potential, consists of
periodically repeated peaks that are generally incommensurate with the lat-
tice period. The separation between these peaks increases as κ → 1, and the
cnoidal curve approaches a single-peak potential expressed as proportional to
sech2(z, 1) in the limit κ → 1. In such an incommensurate potential V (z, κ) for
0 < κ < 1, the pseudospin wave can be “stabilized” in phase with the cnoidal
period at a discrete negative eigenvalue, whereas it is free propagating for
positive and continuous eigenvalues.

Mathematically, the function sn2(z, κ) can be expressed by a series

2κ2sn2(z, κ) = −2a
∑m=+∞

m=−∞ sech2(a1/2x − cxm) + const, (5.36)

where

a = π2/4K ′(κ)2, c = πK(κ)/K ′(κ) and K ′(κ) = K[(1 − κ)1/2],

indicating that each well of the periodic sn2(z, κ) at x = xm can be replaced
approximately by such a sech2 curve. For the derivation of (5.36), interested
readers are referred to a standard textbook on the elliptic functions. The
formula in (5.36) is quoted from the textbook by Toda “Introduction to elliptic
functions” [52].

For a given κ < 1, there are some overlaps between neighboring sech2

peaks, whereas the overlaps diminish as κ approaches 1, i.e. a → 1, c → ∞. In
this context, the cnoidal potential can be logically replaced by a periodic lat-
tice of sech2 potentials, where the finite overlaps are perturbations, resulting
in a band structure of eigenvalues for stabilized pseudospin waves.

Physically, in a polar crystal, we realize that the dipolar field of long-
range order Edip may drive s(z, κ) stabilized in the potential V (z, κ) out to
s(z′, κ′) in another potential V (z′, κ′) by shifting the phase and increasing
the amplitude, as described by (5.25) and (5.26). We can consider that the
energy −∆s.Edip is transferred to the surroundings of the condensate if the
temperature is lowered, thus reducing the pseudospin energy by the internal
field Edip. It is noted that this postulate is consistent to the classical argu-
ment for work to magnetize a magnet (See Becker’s textbook, Theory of Heat,
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pp. 9–11, ref. [14]). The wave s(z, κ) can be more stabilized with decreasing
temperature by periodic potentials with wider separations 2K(κ) at a larger
κ and, thus, ordering can progress with increasing amplitudes of s(z, κ) and
Edip. The field Edip can be assumed as arising from random dipolar orienta-
tions of neighboring pseudospin chains, and so the temperature dependence
of an ordering process can be explained by the statistical principle. Using
(5.25), such an energy transfer at a given T can be expressed as proportional
to −s.∆s ≈ −∆( 1

2sdip
2), where sdip ∝ Edip represents the dipolar contribu-

tion to s. With this interpretation, the basic mathematical problem can be
reduced to obtaining eigenstates in a sech2 potential well.

5.9 Mode Stabilization by the Eckart Potential

The soliton potential V (z, κ) evolves as a consequence of nonlinear order-
ing, where the modulus κ varies as a function of temperature as related to
dipolar order. Equation (5.36) shows that the soliton potential V (z, κ) =
−2κ2sn2(z, κ) is equivalent to a periodic array of potential −2a sech2(a1/2x −
cxm), so that the problem can be reduced to each elemental sech2 potential
known as the Eckart potential.

The Eckart potential is generally expressed in the form

V (z) = −Vo sech2(z/d), (5.37)

where the parameter d is introduced to express the width 2d of the peak, and
Vo represents the depth of the potential.

The wave equation for a pseudospin mode σ(z) can be written as

d2σ(z)
dz2 + {ε − V (z)}σ(z) = 0, (5.38)

where the eigenvalue ε should be negative for a stable mode and, hence, it is
convenient to write ε = −µ2. Replacing z/d in (5.37) by z, µ and Vo can be
further simplified with the relations β2 = µ2d2 and vo = Vod

2, and (5.38) can
be rewritten as

d2σ(z)
dz2 + (−β2 + vo sech2 z)σ(z) = 0, (5.39)

which is a differential equation familiar in Mathematical Physics, and the
solution can be expressed in a hypergeometric series.

Following the book by Morse and Feshbach [53], we transform (5.39) to the
standard form of the hypergeometric equation. Letting σ(z) = Ay(z) sechβ z,
(5.39) can be expressed in terms of the function y(z), i.e.

d2y

dz2 − 2β(tanh z)
dy

dz
+ (vo − β2 − β)(sech2 z)y = 0,
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which is further rewritten with another argument ζ = 1
2 (1 − tanh z) as

ζ(1 − ζ)
d2y

dζ2 + (1 + β)(1 − 2ζ)
dy

dζ
+ (vo − β2 − β)y = 0.

The hypergeometric equation is expressed with parameters a, b and c that
are defined by the relations

a + b = 2c − 1,

where
c = 1 + β and ab = −vo + β2 − β, (i)

or solving these for a, b and c, we have

a,b = 1
2 + β ± (vo + 1

4 )1/2. (ii)

With these parameters a, b and c, the hypergeometric equation in the stan-
dard form is

ζ(1 − ζ)
d2y

dζ2 + [c − (a + b + 1)ζ]
dy

dζ
− aby = 0. (5.40)

We are, in fact, interested in a finite solution for ζ → 0 or z → ∞, for which
the function y(ζ) can be expanded into a series:

y(ζ) = F (a,b, c; ζ) = 1 + (ab/1!c)ζ + [a(a + 1)b(b + 1)/2!c(c + 1)]ζ2 + . . .,

Among the solution of (5.39) given by

σ(z) = A sechβ zF (a,b, c; ζ),

we are interested in the limiting cases for ζ → 0 and ζ → 1 for physical
interpretation. In the former case, corresponding to ζ → 0, we have z → ∞
and y(ζ) → 1 and, hence

[σ(z)]z→+∞ → A × 2β exp(−βz),

whereas in the other limit of ζ → 1, we have z → −∞ and the hypergeometric
function converges to 1. For these solutions, the following identity formula can
be used conveniently:

F (a,b, c; ζ) = [Γ(c)Γ(c − a − b)/Γ(c − a)Γ(c − b)]F (a,b,a + b − c + 1; ζ)
+(1 − ζ)c−a−b[Γ(c)]Γ(a + b − c)/Γ(a)Γ(b)]
×F (c − a, c − b, c − a − b + 1; 1 − ζ),

where Γ(. . .) are so-called gamma functions. Here, we only quote necessary
mathematical results, referring interested readers to refs. [51] and [53] for the
detail.
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Noting that sechβz ≈ 2β exp(+βz), (1 − ζ)c−a−b ≈ exp(−βz) and
F (. . . ; 1 − ζ) → 1,

[σ(z)]z→−∞ → A × 2β × [{Γ(c)Γ(c − a − b)/Γ(c − a)Γ(c − b)} exp(+βz)]
+{Γ(c)Γ(a + b − c)/Γ(a)Γ(b)} exp(−βz)]

∝ {Γ(c)Γ(a + b − c)/Γ(a)Γ(b)} × exp(+ikz)
+{Γ(c − a − b)Γ(a)Γ(b)/Γ(a + b − c)Γ(c − a)Γ(c − b)}
× exp(−ikz)].

From this result, with regard to the waves exp(±ikz), we can define the re-
flection and transmission coefficients as

R = Γ(c − a − b)Γ(a)Γ(b)/Γ(a + b − c)Γ(c − a)Γ(c − b)

and
T = Γ(a)Γ(b)/Γ(c)Γ(a + b − c),

respectively. Here, the factor Γ(c − a)Γ(c − b) in the denominator of R plays
a significant role for reflection, because by the definitions (i) and (ii), that is

Γ(c−a)Γ(c−b) = Γ( 1
2 +(vo + 1

4 )1/2)Γ( 1
2 −(vo + 1

4 )1/2) = π/ cos[π(vo + 1
4 )1/2],

and, hence,
R ∝ cos[π(vo + 1

4 )1/2].

Thus, the reflection coefficient R can be equal to zero if

(vo + 1
4 )1/2 = n + 1

2 , or vo = n(n + 1), (iii)

where n = 1, 2, . . .. On the other hand, the gamma functions Γ(a) and Γ(b)
have singularities at a,b = 0,−1,−2, . . ., as illustrated in Fig. 5.6, and, hence,
both R and T can be signified by “poles” in the complex plane when

1
2 + β ± (vo + 1

4 )1/2 = −m where m = 0, 1, 2, . . .

Because there is no reflected wave under this condition, we must consider only
poles above the real axis, namely

β = ikd = (n + 1
2 ) − (m + 1

2 ) = n − m, (iv)

for which values of m should be limited to

m = 0, 1, . . .,n − 1. (v)

Summarizing the above argument, the differential equation (5.38) for R =
0, representing the pseudospin wave stabilized by the potential V (z), can be
written as

d2σ(z)
dz2 + [−(n − m)2 + n(n + 1) sech2 z]σ(z) = 0, (5.41)
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Fig. 5.6. Curves of the gamma function Γ(z) showing discontinuities at z =
0, −1, −2, . . . .

in which the eigenvalues and the potential depth are both discrete, as specified
by (iv) and (v), and (iii). The wave σ(z) is stable at discrete eigenvalues n−m,
for which the potential depth is given by −n(n + 1) sech2 z.

Obviously, n = 0 represents no stabilized wave, for which no Eckart’s
potential is required, but signifying the transition threshold at Tc, at which
the dipolar field of long-range order is yet insignificant. For n > 0, (5.41) can
be modified as

d2σ(z)
dz2 + {−βp

2 + n(n + 1) sech2 z}σ(z) = 0, (5.42)

where βp = n − m = n, n − 1, . . . from (v); hence the eigenvalues βp can be
specified by p = n, n − 1, . . . . For instance, β1 = 1 for n = 1, β2 = 2, 1 for
n = 2, and so on, signifying energy levels of σ(z) stabilized in the potential
−n(n + 1) sech2 z. Expressing the pseudospin mode stabilized at a state p as
σp(z), we have equations

d2σp

dz2 + {−β2
p + n(n + 1) sech2 z}σp = 0

and
d2σp+1

dz2 + {−β2
p+1 + (n + 1)(n + 2) sech2 z}σp+1 = 0.

In these equations, the soliton potential increases by (∆Vo)∆p=1 =
−2(n + 1) sech2 z, as βp is lowered by ∆p = 1 from a substate p to p + 1. The
total number of such jumps is 1

2n, in order for the mode at n to be stabilized in
the potential −V (n). Figure 5.7 illustrates potentials V (n) for n ≈ 0 and n = 1,
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2 and 3, where the eigenvalues of stabilized σp are shown. The soliton poten-
tial V (n) can therefore be considered as composed of 1

2n fragmental poten-
tials (∆Vo)∆p=1, and we obtain −V (n) = (∆Vo)∆p=1 ×n = −n(n+1) sech2 z.
Therefore, the eigenvalue decreases stepwise, when the energy (∆Vo)∆p=1 is
fragmentally transferred to the lattice, resulting in the stepwise increase in
the local Weiss field.

Fig. 5.7. Incommensurate cnoidal soliton potentials V (z, n) = −n(n + 1)sn2z,
stabilizing pseudospin waves σ(z, n) at negative eigenvalues. The potential is nearly
sinusoidal at n ∼ 0, while each well at n > 0 can be replaced by Eckart potentials
−n(n+1) sech2 z approximately. In this approximation, eigenvalues p = n−m, where
m = 0, 1, . . . , n− 1, are shown here by horizontal levels in these wells, but should be
broadened into bands due to overlaps between Eckart potentials.

It is logical to consider that stepwise changes between levels given by
the soliton potential (∆Vo)∆p=1 is due to “de-excitation” by the field Edip,
thereby transferring the energy (∆Vo)∆p=1 = ∆s.Edip to the lattice, where
∆s ≈ ∆sdip = Edip/λ. Assuming random orientation of ∆sdip, we can con-
sider the statistical average of ∆sdip.Edip that is proportional to 〈∆s2

dip〉 ∝
kB(Tp −Tp+1), using the equipartion theorem for the ergodic quantity ∆sdip,
and write

(∆Vo)∆p=1 ∝ cp(Tp − Tp+1),
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and
V (n) =

∑
p
(∆Vo)∆p ∝

∑
p
cp(Tp − Tp+1). (5.43)

Assuming cp is constant of p, we obtain V (n) ∝ To − T , which is consis-
tent with 〈∆sdip〉 ∝ (To − T )1/2, using To in the Landau theory. It is noted
that the mechanism postulated here is also consistent with Cowley’s theory
of phonon scattering by the quartic potential (subsection 4.4.1) at least in the
region close to To. Although simplified by separating the dipolar part ∆sdip
from s in a polar crystal, the argument encompasses a nonpolar case where
a stable modulated structure can exist. With this postulate, the actual tran-
sition temperature Tc defined for minimum correlations is clearly lower than
To, indicating that Edip is meaningful only at temperatures lower than To.

In the soliton potential V (z, κ) for κ ≤ 1, levels n of stabilized σ(z, κ)
are broadened into a band structure due to overlap between adjacent Eckart
wells. Hence, such a broadened structure in the cnoidal potentials allows a
view for pseudospin modes to fluctuate thermally. Besides, considering planar
domain boundaries signified by κ ≤ 1 in practical crystals, the interchain
correlations for κ ≤ 1 should also be considered in order for Edip to fluctuate
randomly. Assuming that ∆sdip.Edip is the dominant temperature-dependent
interaction energy in the non-critical region, the broad tail of the specific heat
below Tc can be explained as previously discussed in Section 4.8. It appears
to be correct that owing to the ergodic Edip ordering can progress thermally
beyond the critical region.

One of the significant aspects of the soliton theory is that the unit repre-
sented by (∆Vo)∆p=1 behaves like an independent particle, so that the system
may be viewed as a gas consisting of such soliton particles. Such a nature of
soliton particles can be verified mathematically by the “two-soliton solution”
of the Korteweg-deVries equation [48], however accepting this implication, we
shall not go into the complex mathematical detail. Nevertheless, it is notable
that such a soliton gas can certainly be regarded as a quasi-ergodic system
that can be in thermal equilibrium with the lattice at a given T , for which
the relation between s(φ) and T , if written properly, serves as the “equation
of state” of the ordering system.
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Experimental Studies
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Structural phase transitions in crystals are complex phenomena, originat-
ing from an interplay between order variables and their hosting lattice. In the
harmonic approximation, basic excitations in these subsystems are indepen-
dent of each other, so that it may not be surprising to see that experimental
results exclusively from these subsystems appear often to be incompatible
with the other. For example, some ferroelectric phase transitions are dis-
placive on the basis of soft-mode results, whereas dipolar ordering signifies
the polar phase below the transition temperature Tc. However, neither view
per se can deal with critical anomalies that are essentially due to interactions
between order variables and soft phonons. In this context, such a traditional
classification as displacive or order-disorder is not quite logical, unless critical
anomalies are properly elucidated.

In Chapter 4, we discussed the order-variable condensate prevailing in the
critical region. The condensate is a mobile object of a long life, owing to low
damping of soft modes on both sides of Tc, whereas collective pseudospin
variables at and just below Tc are signified by phase fluctuations between
binary states in partial order. Such collective fluctuations are very slow in the
timescale of microwave measurements for example, so that the crystal appears
as quasi-statically modulated, whereas only the temporal profile of motion can
be revealed from the phonon spectra.

Being represented by a pseudospin mode of a long wavelength, the con-
densate can be expressed in the form σof(φ), where the amplitude σo and the
phase φ are both functions of temperature. Therefore, experimental studies
should be focused on the dynamics of the collective motion, whereas in ther-
mal experiments only quantities averaged over the crystal can be detected in
the long timescale. The nature of φ can be investigated by light and neutron
inelastic scattering, whereas spatially distributed peudospin amplitudes can
be visualized within short timescales of magnetic resonance sampling and of
inelastic impacts of neutrons showing anomalies in the scattered intensity. Nu-
clear spin relaxation analysis can provide evidence for the coupling between
pseudospins and soft phonons, and dielectric and Brillouin light-scattering
experiments yield useful information about condensate dynamics in crystals.
Needless to say, these data are complementary and should be combined to
elucidate the nature of condensates in the critical region.

The internal Weiss field is a significant concept for interpreting ordering
processes in noncritical regions, while remaining theoretical in most cases
except for a few, yielding indirect information of the transition mechanism.
On the other hand, we can consider it as the driving force for ordering, as
formulated in the mean-field accuracy. Nevertheless, a more precise approach
is required for dealing with the critical region.

In Part Two, principles of these basic measurements are outlined, and pub-
lished experimental results from representative systems are discussed in light
of the condensate model. Because there are many articles reviewing experi-
mental results in the literature, we only need to discuss selected phase tran-
sitions where soft-mode and magnetic resonance studies were already carried
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out for critical anomalies. In Chapter 10, some structural phase transitions
of different categories from the displacive mechanism are briefly discussed for
comparison, which are nevertheless helpful for better understanding of the
collective mechanism during structural changes.



6

Diffuse X-ray Diffraction and Neutron Inelastic
Scattering from Modulated Crystals

6.1 Modulated Crystals

An idealized crystal of infinite arrays of ions and molecules can be consid-
ered as macroscopically uniform. In equilibrium at a given pressure p and
temperature T , thermodynamical properties of a uniform crystal can be de-
scribed by the Gibbs potential G(p, T ), for which the lattice structure can be
specified only by an implicit parameter. Although surfaces and lattice defects
are not entirely ignorable, bulk properties prevail in a large crystal, as signi-
fied by internal translational symmetry with periodic boundary conditions. In
a crystal undergoing a structural change, on the other hand, crystal phases
above and below the transition temperature Tc are primarily so idealized in
the first approximation, whereas in the transition region, the crystal becomes
spontaneously inhomogeneous due to locally violated lattice symmetry, for
which no adequate thermodynamical description has so far been presented.
Subjected to diffraction experiments however, such a spontaneously modified
crystal shows a modulated structure.

The periodic structure of an idealized crystal is characterized by three basic
translational vectors a1, a2 and a3 along the symmetrical axes, in which a
continuous periodic function f(r) at a position r is invariant under a basic
translation

R = n1a1 + n2a2 + n3a3, (6.1a)

where n1, n2 and n3 are integers specifying a lattice point. For such a function,
we have a relation

f(r) = f(r + R). (6.1b)

A perfect crystal can also be characterized by the Fourier transform g(k) that
is defined by

g(k) =
∫

f(r) exp(−ik .r)d3r or f(r) =
∫

g(k) exp(ik .r)d3k . (6.2)
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Combining (6.1b) and (6.2), we obtain the relation exp(ik .R) = 1 at all lattice
points R, so that the vector k cannot be continuous, taking discrete values
k = G to satisfy G.R = 2π×integer. Such a vector G represents a translation
in the reciprocal lattice; that is,

G = ha1
∗ + ka2

∗ + la3
∗, (6.3a)

where

a1
∗ = (2π/Ω)(a2 ×a3), a2

∗ = (2π/Ω)(a3 ×a1) and a3
∗ = (2π/Ω)(a1 ×a2)

are the basic translational vectors in the reciprocal lattice, and Ω=(a1,a2,a3)
is the unit-cell volume in the crystal. Here h, k, and l are integral numbers,
indexing lattice points in the reciprocal space. Thus, all unit cells are identical
in a uniform crystal, where the macroscopic uniformity is represented by the
invariance of functions f(r) and g(k) in the normal and reciprocal lattices,
respectively. Corresponding to (6.1b) for the normal lattice, we can write

g(k) = g(k + G) (6.3b)

in the reciprocal lattice.
In a modulated crystal, the order variable cannot be a periodic function in

the lattice translation, but its Fourier transform can be periodic with regard
to a nonlattice point G i in the reciprocal lattice. Such a point G i cannot be
specified by integral indexes, among which at least one, for example, h should
be irrational in the unit of a1

∗, indicating an incommensurate modulation
along the symmetry axis a1. In this case, the lattice modulation can alter-
natively be specified by a vector Q from the nearest reciprocal lattice point
G:

Q = G i − G = ma4
∗, (6.4)

where the index m represents a modulation at G i in a suitably defined unit
a4

∗. Thus, such a one-dimensional modulation can be expressed by four in-
dexes (h, k, l, m) in the reciprocal lattice. De Wolff and his co-workers [54] have
developed a group-theoretical method to deal with a multidimensional space
with such a wavevector, which they called a superspace. Their supergroup the-
ory is mathematically suitable for such aperiodic crystals that are reported
in recent literature. Nevertheless, our primary objective in this monograph
is to investigate the role played by disrupted translational symmetry in real
crystals; hence, we stay in the traditional scheme composed of a reciprocal
lattice (a1

∗,a2
∗,a3

∗) plus an additional modulation vector a4
∗.

A lattice modulation at an irrational vector Q implies the presence of an
excitation energy ε(Q) in a given crystal. Considering that such an excitation
occurs in an ordering process in the crystal, ε(Q) must be offset by distorting
the lattice structure under the equilibrium condition. Therefore, for a mod-
ulated crystal, it is important to obtain values of Q and the corresponding
ε(Q). In inelastic neutron scattering experiments, the scattering geometry can
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normally be arranged in such a way that K o −K = Q , where K o and K are
the wavevectors of incident and scattered neutron beams, respectively, and
the value of Q can be determined for the maximum intensity of scattered
neutrons. On the other hand, ε(Q) can be obtained from the phonon spec-
tra at Q in the scattering geometry. In contrast, from unmodulated crystals
where Q = 0, a collimated X-ray beam exhibits a diffraction pattern, reflect-
ing from well-defined crystal planes specified by a rational G, thus providing
the method of structural analysis.

6.2 The Bragg Law of X-ray Diffraction

In this section, the principle of the Bragg diffraction from an ideal crystal is
outlined, prior to discussing modulated crystals. A collimated X-ray beam,
when falling onto a crystal, shows a diffraction pattern characteristic of the
three-dimensional structure, which can then be analyzed with the concept
of reflection by a large number of parallel crystal planes G. The interaction
between X-ray photons and orbiting electrons can be interpreted in classical
terms as elastic collisions that signify no loss of X-ray energy upon impact;
hence, the lattice structure remains virtually intact.

A regular crystal structure can be considered geometrically as composed
of many sets of parallel planes of identical atoms. It is noted that such a
group of parallel planes can be specified by the common normal vector n of
a unit length, which can be shown as parallel to the reciprocal lattice vector
G. Denoting an arbitrary lattice point on a crystal plane by R, and the
distance between adjacent planes by d = dn , the equation of the plane can
be expressed as

n .(R − d) = 0;

hence,
n .R = n .d = d.

In this case, it is obvious that n ‖ G and hence G = (2π/d)× integer, because
of the relation G.R = 2π × integer, and the gap between adjacent planes can
be calculated as

1
d

=

[(
h

a1

)2

+
(

k

a2

)2

+
(

l

a3

)2
]1/2

. (6.5)

The Bragg law of X-ray diffraction can be derived with the classical theory
of radiation, using the conservation laws of energy and momentum for the
photon impact with a crystal plane. These laws manifest that X-ray behaves
like an optical beam obeying the reflection law, for which geometrical crystal
planes are a useful concept. As is clear from the following theory, the vector
G parallel to n represents a “crystal momentum”, so that the Bragg law

K − K o = G where |K | = |K o| (6.6)
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Fig. 6.1. A schematic diagram for the Bragg diffraction in two dimensions. Two
diffracted rays of wavevectors K and K ′ with a path difference d cos θ. These rays
interfere constructively, when d cos θ = 1/2λ × integer.

can be interpreted for momentum conservation for elastic impact. Typically
the lattice constant is of the order of 5 Å; hence, the X-ray energy for diffrac-
tion estimated by (6.6) should be of the order of 10 ∼ 50 keV. While excited
to higher atomic levels by impact, these electrons fall subsequently down to
the ground level by emitting photons of the same energy as for the excitation.
In contrast, heavy nuclei forming the lattice remain unchanged during im-
pact. Figure 6.1 illustrates X-ray diffraction as interpreted with the concept
of crystal planes.

The rigorous radiation theory is complex, but the result can be interpreted
as simplified for a distant point of observation. The incident X-ray beam can
be represented by a plane wave E = Eo exp i(K o.r − ωt), that interacts with
a target ion located at a point ro and at a time to, inducing an oscillating
electric dipole moment

dp ∝ ρ(ro)d3roEo exp i(K o.ro − ωto)

in the volume element d3ro of the target charge cloud, where ρ(ro) is the
charge density. Such an induced oscillatory dipole moment radiates a spherical
wave at the wavevector K , whose amplitude observed at a distant point r �
ro is proportional to exp i{K .(r − ro) − ω(t − to)}/|r − ro|. Therefore, the
scattered amplitude at r can be expressed by

Ao ∝
∫

d3roρ(ro)Eo exp i(K o.ro− ωto) exp i[K .(r − ro) − ω(t − to)]/|r − ro|

≈ Eo[
∫

d3roρ(ro)][exp i(K .r − ωt)/r] exp i{(K o − K ).ro},
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where we considered the approximation |r−ro| ∼ r for r � ro. The scattering
amplitude relative to the incident Eo can then be defined as

Ao/Eo =
∫

ρ(ro) exp i(K o − K ).rod3ro,

to which the conservation law (6.6) gives a maximum amplitude that is nearly
equal to 1 for a small |ro|, i.e. exp(−iG.ro) ≈ 1 and, hence, the reflection law
can be applied to a crystal plane signified by the vector G, as if it is a rigid
reflector.

In practice, a collimated beam strikes a finite area of the crystal plane,
where there are a number of scatterers at rom near lattice points Rom(m =
1, 2, . . . ,p), reflecting X-ray photons in phase. Therefore, such reflections
should be in constructive interference, as expressed by the total amplitude
Ao =

∑
m Aom, and the practical scattering amplitude is given by

Ao/Eo =
∑

m
fm(G) exp(−iG.Rm), (6.7a)

where
fm(G) =

∫
ρ(rom) exp(−iG.rom)d3rom. (6.7b)

While fm(G) defined by (6.7b) is called the atomic scattering factor, we
realize that these charge densities ρ(rom) are overlapped, giving a substantial
overestimate of Ao when calculated with (6.7a). It is therefore logical to cal-
culate reflections from all atoms spread in the target area. Using a delocalized
coordinate vector s, Aom is expressed as

Aom/Eo =
∫

ρ(s) exp(−iG.s)d3s

=
∫

ρ(s − rom) exp(−iG.(s − rom)d3(s − rom) × exp(−iG.rom)

= fm(G) exp(−iG.rom).

In this case, the quantity

S(G) =
∑

m
fm(G) exp(−iG.rom) (6.8)

is called the structural form factor, and is expressed in terms of indexes h, k
and l of the vector G representing the specific group of parallel crystal planes.
Writing for instance rom = xma1 + yma2 + zma3,

S(G) =
∑

m
fm(G) exp

{
2πi

Ω
(xmh + ymk + zml)

}
. (6.8a)

The electric field of scattered X-ray at a distance r � ro is expressed as

EG(r) = r−1EoS(G) exp i(K .r − ωt),
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where the relative intensity I(G) is given by

I(G)/Io(G) = EG
∗(r)EG(G)/E2

o = r−2S∗(G)S(G), (6.9)

indicating that the diffraction intensity from crystal planes G is determined
by the structure factor S(G).

Up to this point, crystal planes are considered as rigid reflectors for X-
ray, but in reality the crystal is in thermal motion and its effects should be
considered for observed diffraction. Assuming a simple harmonic vibration for
each constituent, the scattered intensity (6.9) is modified by the Debye-Waller
factor, as explained below.

Writing the position of a constituent scatterer as ro(t) = ro +u(t), where
u(t) is the instantaneous displacement from the equilibrium position ro, u(t)
obeys a harmonic oscillator equation in the Einstein model of solids. In this
assumption, 〈u(t)〉 = 0 and 〈r(t)〉 = ro, and for small displacements the
exponential factor in EG(r) can be expanded as

〈exp iG.ro(t)〉 = exp iG.ro[1 − 1
2 〈|G.u(t)|2〉 + . . ..],

where the second term on the right side can be replaced by

〈|G.u(t)|2〉 = 1
3G2〈u(t)2〉,

if the fluctuations can be assumed as isotropic in three-dimensional crystals.
Hence the scattering intensity ratio between thermal and rigid crystals given
by (6.9) is expressed by

I(G)/Io(G) = exp
{− 1

3G2〈u(t)2〉} ,

which is called the Debye-Waller factor. In the Einstein model, the average
〈u(t)2〉 can be evaluated by the equipartition theorem that is applied to a
harmonic oscillator of a mass M , i.e. 1

2Mω2〈u(t)2〉 = (3/2)kBT , and the
Debye-Waller factor W is given by

W = exp(−kBTG2/Mω2). (6.10)

This implies that the scattering intensity decreases with increasing tempera-
ture and that the diffraction from crystal planes at low G shows less thermal
broadening than from those of higher G.

6.3 Diffuse Diffraction from Weakly Modulated Crystals

In a modulated crystal at an irrational vector Q , the original lattice period-
icity is modified; hence, unit cells are not all identical. Accordingly the vector
G i = G + Q does not represent crystal planes. If, however, |Q | � |G|, X-
ray diffraction exhibit anisotropically broadened patterns or satellite spots in
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some cases, where the concept of a crystal plane is acceptable approximately.
On the other hand, for a phase transition at the Brillouin-zone boundary or
at a nonlattice point, where |Q | is not small, the X-ray diffraction is not a
logical method, and neutron inelastic scattering provides a direct method for
studying such modulated crystals.

Binary structural changes at the center Q = 0 or at the zone boundary
Q = 1

2G in the Brillouin zone exhibit anomalies near transition temperatures
that are interpreted as small fluctuations between q and −q . As evidenced by
soft modes observed in the critical region, such fluctuations are considered as
arising from momentum and energy exchanges between order variables and
soft phonons in condensates. Figures 6.2a and 6.2b illustrate scatterings of
X-ray and neutrons at the zone center and boundary, respectively, where the
direction of q is unspecified. In fact, such fluctuations as represented by a
small q are significant in the critical region, and we first discuss diffuse X-ray
diffraction experiments from weakly modulated crystals at Q = 0, leaving
strongly modulated cases to neutron-scattering studies in Section 6.5.

The conservation laws for X-ray scattering at Q = 0 from a binary crystal
can be written as

K o − K = G ± q (6.11a)

and
ε(K o) − ε(K ) = ∓∆ε(q), (6.11b)

where ε(G) = 0 represents the ground state of the crystal and ε(K o) and ε(K )
are X-ray energies before and after the impact. In the following, the Bragg
theory in Section 6.2 is modified by writing ω = ε(K o)/h̄, ω′ = ε(K )/h̄ and
ω−ω′ = ∓∆ω, replacing energies in (6.11b) by frequencies. In these notations,
the scattered amplitude can be expressed as

Ao/Eo

∝
∫

d3roρ(ro){exp i(K o.ro − ωto)}[exp i{K .(r − ro) − ω′(t − to)}]/|r − ro|

≈
∫

d3roρ(ro)[exp i(K .r − ω′t)/r] exp i{(K o − K ).ro − (ω − ω′).to}.

Using the conservation laws (6.11ab), the field EG(r) of a scattered beam at
a distant point r is expressed as

EG(r)/Eo ∝
[
exp i(K .r − ω′t)

r

]

×
∑

m
[f(G + q) exp i(q .Rm − ∆ω.to)

+ f(G − q) exp i(−q.Rm + ∆ω.to)], (6.12)

where
f(G ± q) =

∫
d3roρ(ro) exp i(G ± q).ro. (6.13)
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Fig. 6.2. (a) The Bragg diffraction K o = K + G, where G is a lattice translation
vector. (b) Scattering by a nonlattice vector G i = G +Q , where Q in a modulation
vector. The small vector q represents fluctuations in a modulated lattice.

Here, f(+q) = f(−q) at G = 0, and f(G + q) ≈ f(G − q) ≈ f(G) for
G �= 0, and the scattering intensity can be expressed by

I(G ± q)/Io = r−2|f(G)|2
∑

mn
[exp i{q.(Rm − Rn) − ∆ω(tom − ton)}

+ exp i{−q.(Rm − Rn) + ∆ω(tom − ton)}]
= I(G)/Io + 2r−2|f(G)|2

×
∑

m�=n
cos{q.(Rm − Rn) − ∆ω(tom − ton)}, (6.14)

where q .(Rm−Rn)−∆ω(tom−ton) = φ represents the phase of fluctuations on
the crystal plane G, and the second term is responsible for intensity anomalies.
The observed intensity is determined by the average of (6.14) over a random
time tom−ton = τ for photon impacts, resulting in zero anomalies if ∆ω.τ � 1,
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otherwise unvanished for ∆ω < 1/τ, where τ is distributed, whose limit at
the long end may be regarded as the timescale to of measurement. In this
case, ∆ω < 1/to clearly determines observable fluctuations, where Rm − Rn
can specify a continuous spatial range along a specific direction x. Combining
these space-time fluctuations, the phase φ is a continuous variable in the range
between 0 and 2π in repetition. Taking such a time average of (6.14), we have

〈∆I(G)〉t
Io

=
〈I(G ± q) − I(G)〉t

Io
= 2r−2|f(G)|2(1/S)

∫
〈cos φ(x, τ)〉tdS,

(6.15)
where S is the effective area for X-ray impact on the plane of G, hence the
integral represents the spatial average of 〈cos φ(x, τ)〉t.

Assuming that S is a rectangular area LxLy, the average in (6.15) can be
evaluated as

(1/S)
∫

〈cos φ(x, τ)〉tdS = (t−1
o

∫ t0

0
dτ)(Lx

−1
∫ Lx

0
cos φdx)(Ly

−1
∫ Ly

0
dy),

where

L−1
x

∫
cos φdx = (qLx)−1

∫
cos φdφ = (qLx)−1(sin φ2 − sin φ1)

= (2/∆φ) sin(∆φ/2) cos φ

and

Ly
−1
∫ Ly

0
dy = 1.

Here, ∆φ = φ2−φ1 = qLx and the average phase φ = 1
2 (φ1+φ2) depend on the

X-ray beam, whereas φ is random and continuous in the range 0 ≤ φ ≤ 2π.
Letting φ = qx − ∆ω.τ, where 0 ≤ τ ≤ to, the above time average can be
calculated as

t−1
o

∫
cos φdτ =

[
sin 1

2∆ω.to( 1
2∆ω.to

)
]

cos
(
qx − 1

2∆ω.to
)
.

Therefore, the observable intensity anomaly in a diffraction pattern can be
expressed as

〈∆I(G)〉t/Io =

[
sin
( 1

2∆φ
)( 1

2∆φ
) sin

( 1
2∆ω.to

)( 1
2∆ω.to

)
]

cos ϕ, (6.16)

where ϕ = qx− 1
2∆ω.to is a redefined phase angle in the range 0 ≤ ϕ ≤ 2π. By

virtue of the formula limθ→0(sin θ/θ) → 1, these front factors in the square
brackets are practically equal to 1 for small values of ∆φ and ∆ω.to. The
condition ∆ω.to < 1 is significant in particular for such a spatial phase distri-
bution of ∆φ to be visualized in timescale to. Diffraction anomalies similar to
the above can also be expected in phase transitions at zone-boundaries, but
at arbitrary points in the Brillouin zone such anomalies are detectable only in
neutron inelastic scattering experiments, as will be discussed in Section 6.5.
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6.4 The Laue Formula and Diffuse Diffraction from
Perovskites

Phase transitions at irrational points G i in the Brillouin zone cannot be
subjected to X-ray studies in principle, whereas the diffraction method can
be applied to some specific cases of crystals undergoing transitions to low-
dimensional order. In perovskite crystals, structural phase transitions from
cubic to tetragonal phases can be regarded as two-dimensional order in planes
perpendicular to the tetragonal axis, if related to one-dimensional correlations
along each of the two symmetry directions. If this view is correct, such a plane
acts as a modulated crystal plane below the transition temperature, resulting
in intensity anomalies in Bragg diffraction.

We first discussed pseudospin correlations in perovskites in Chapter 3,
leading to two incommensurate directions perpendicular to the tetragonal
axis in the low-temperature phase. Indeed, diffuse diffraction was observed in
X-ray studies by Comes et al. [19], as shown by the diffraction photograph
from NaNbO3 at 700◦C in Fig. 6.3. Müller and his co-workers [20] reported
the corresponding anomalies in magnetic resonance lines from SrTiO3 at 105K
that can be interpreted as modulated in two independent directions. In this
section, we show that such a diffuse diffraction pattern can be explained with

Fig. 6.3. A photograph of a two-dimensional diffuse-diffraction pattern from a
perovskite NiNbO3 at 700◦C. (From R. Comes, R. Currat, F. Desnoyer, M. Lambert
and A.M.Quittet, Ferroelectrics 12, 3 (1976).)
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a model of two fluctuating one-dimensional condensates that are mutually
perpendicular.

We first consider that correlated pseudospins are periodically placed along
the axis of the repeat unit a1, being active for a structural change. In this
model, for pseudospins located at r i = na1 where n is an integer, we can de-
fine the reciprocal vector G = ha1

∗ where a1
∗.a1 = 2π, which, however, does

not represent crystal planes when these pseudospins are only linearly corre-
lated. The scattered radiation originates from the dipole moments along a1,
as induced by incident radiation. Considering the incident radiation perpen-
dicular to a1, i.e. K o⊥a1, scattered beams can be observed in constructive or
destructive interference in any direction K on the conical surface of an apex
angle θ1 from the axis, namely K .a1 = (2πa1/λ) cos θ1, if θ1 satisfies either
a1 cos θ1 = λ integer or a1 cos θ1 = 1

2λ× integer, respectively. Such a scattered
flux of X-ray beams can be detected on a photographic plate if placed per-
pendicular to K o, on which an image of symmetric hyperbola is obtained, as
illustrated in Fig. 6.4. In three dimensions, hyperbola of scattered beams from
two perpendicular lines of dipoles intersect on the plate, exhibiting a charac-
terstic pattern of diffuse diffraction. In X-ray crystallography, this method of
analysis is known as the Laue construction of diffraction patterns.

Using the Laue method for a perovskite crystal, the incident X-ray beam
is set parallel to one of the cubic axes, e.g. K o ‖ a3, and diffraction cones are
considered around the a1 and a2 axes individually. In perovskites, diffraction
spots are generally identified by a set of indexes (h + 1

2 , k + 1
2 , l), indicating

that the phase transition occurs at the M-point of the Brillouin zone, and the
diffuse diffraction spots and hyperbolic lines from NaNbO3 crystals observed
at 700◦C are clear evidence for the two one-dimensional correlations that are
primarily independent along the a1 and a2 axes. However, these are related
by inversion symmetry, as implied by the magnetic resonance anomalies in
[110] direction (ref. [20]).

The Laue condition for constructive interference can be written as

a1 cos θ1 = hλ

for correlated pseudospins on the a1 axis, namely (2π/λ) cos θ1 = 2πh/a1,
which can then be reexpressed as |K | cos θ1 = ha1

∗ = G1. Hence, the wavevec-
tor K has components K‖ = G1 and K⊥⊥a1, and the scattering from such
a linear chain in binary fluctuations can be signified by the structural form
factor

f(G1 ± q) =
∫

d3roρ(ro) exp i(G1 ± q)ro.

Here, assuming q � G1 for weak modulation, we have f(G1 ± q) ≈ f(G1).
In Fig. 6.4b, such fluctuations of scattered X-rays are illustrated by shaded
areas along the vectors K and ∆K . Considering temporal fluctuations as well,
we can obtain the intensity anomalies of a beam scattered from a group of
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Fig. 6.4. (a) The Laue diffraction from a one-dimensional lattice along the a1

direction. X-ray beam ⊥a1. (b) Diffreaction from a fluctuating one-dimensional
lattice.

identical pseudospins as

I(G1 ± q) − I(G1) ∝ Io

∑
m�=n

cos{q(xm − xn) − ∆ω(tom − ton)},

where the phase q(xm −xn)−∆ω(tom − ton) can be considered as continuous.
Averaging this with respect to the distributed position x = xom − xon at
random time tom−ton = τ of impact in the range 0 < x < L and −to < τ < to,
respectively, the observed anomaly can be expressed as

〈∆I(G1)〉/Io =
[
sin(qL)

qL

] [
sin(∆ω.to)

∆ω.to

]
cos ϕ,

where 0 ≤ ϕ ≤ 2π and L represents the size of the X-ray beam. As in the
previous argument, the condition ∆ω.to ≤ 1 is essential for the anomaly to
be observed in the timescale to.
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6.5 Neutron Inelastic Scattering

Arising from a singularity in order variable correlations, a structural phase
transition occurs at a specific temperature Tc, corresponding to minimum of
the correlation energies. Such a singular behavior can occur not only at the
center in the Brillouin zone Q = 0 but also at a specific irrational wavevec-
tor Qc �= 0, where the corresponding energy ε(Qc) is nonzero. In the latter
case, being likely associated with pseudosymmetry emerging at a particular
temperature, fluctuations are observed from interactions in the condensate,
and responsible for anomalies at wavevectors near Qc. The phase transition
in K2SeO4 crystals at Tc = 130K is a typical example in this category for
Qc �= 0, where so-called phonon-dispersion curves ε = ε(Q) were observed at
temperatures near 130K as shown in Fig. 4.5, where there is a notable dip at
Qc ∼ 2a∗/3 when the temperature Tc is approached.

Such a transition vector Qc is comparable with the wavevector of thermal
neutrons, so that the energy fluctuation around ε(Qc) can be studied by neu-
tron inelastic scattering experiments. In neutron scattering, the wavevector
and the related energy are observed as an excitation in the “phonon spectra”,
where the minimum of ε = ε(Qc) signifies the phase transition. Hence, in the
vicinity of ε(Qc) critical anomalies can be interpreted as fluctuations due to
interactions with pseudospins in the lattice, namely ε(Q) = ε(Qc) ∓ ∆ε and
Q = Qc±q . On the other hand, incident neutrons can either lose or gain their
kinetic energies during impact, so that scattered neutrons in the direction of
Q at ε(Q) should be modulated at ∓q ′ and ±∆ε′. Denoted by “primes”, these
modulated quantities in scattered neutrons represent phonon fluctuations, and
we can drop these primes from the following calculation to minimize the num-
ber of notations, but retaining these signs for the momentum-energy exchange
in the critical region.

The conservation laws for neutron inelastic scattering can be expressed as

K o − K = G i ± q (6.17a)

and
E(K o) − E(K ) = ε(G i ± q) = ∓∆ε(q) (6.17b)

in the reciprocal space, where G i = G + Qc and ∆ε(q) can be expressed as
1
2κq2, representing the kinetic energy of fluctuations if |q | < |G i|.

The basic experimental arrangement for neutron inelastic scattering is
sketched in Fig. 6.5, which is called a triple-axis spectrometer. Thermally mod-
erated neutrons from a nuclear reactor are admitted to a monochromator with
a crystal (A) of a known lattice constant d, whereby the wavelength λo for
the experiment can be selected by adjusting the angle θ of reflection in the
Bragg constructive relation 2d sin θ = nλo. A sample crystal is mounted on
the rotatable goniometer that is placed in the cryostat (B). The wavelength λ
of scattered neutrons can then be analyzed by the analyzer crystal (C) with
a known lattice constant d′. Here, also by using the formula n′λ = 2d′ sin θ′
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Fig. 6.5. A triple-axis neutron spectrometer.

for the crystal C, λ can be calculated from the measured angle θ′. At a given
temperature, the spatial fluctuations can be analyzed from scattered inten-
sities as the function of G i that determines the scattering geometry. On the
other hand, the temporal profile can be studied from the scattered intensity
at G i, exhibiting the response to neutron impact.

Similar to the atomic scattering factor for X-ray diffraction, neutron inelas-
tic scattering experiments determine the density fluctuation of in distributed
scatterers, i.e., magnetic spins or heavy nuclei. We therefore write the scat-
tering amplitude by a scatterer at a site m in the vicinity of G i as

nm(G i ± q) = no(G i ± q) exp i{(G i ± q).rm ∓ (∆ε/h̄)tom}
= (exp iG i.rm)no(G i ± q) exp i(±q .rm ∓ ∆ω.tom),

where ∆ω = ∆ε/h̄. Here, it is noted that for a small |q |, no(G i + q) ≈
no(G i − q), whereas in the critical region, as discussed in Chapter 4, |q | may
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not be small, and the binary fluctuations consist of symmetric and antisym-
metric modes between +q and −q . The scattering intensity can therefore be
calculated as

I(G i ± q) ∝
〈∑

m

∑
n
[n∗

m(G i+ q)nn(G i+ q)+ n∗
m(G i − q)nn(G i − q)]

〉
t

=
〈∑

m
|nm(G i ± q)|2

〉
t

+
〈∑

m�=n
[n∗

m(G i + q)nn(G i + q) + n∗
m(G i − q)nn(G i − q)]

〉
t
.

Therefore, the second term in this expression should be responsible for anoma-
lies from the normal intensities determined by the first one. The intensity
anomalies are thus expressed as

∆I(G i ± q) ∝
∑

m�=n
exp iG i.(rm − rn)

×[|no(G i + q)|2 exp i{q .(rm − rn) − ∆ω(tom − ton)}
+|no(G i − q)|2 exp i{−q .(rm − rn) + ∆ω(tom − ton)}]〉t,

which should be symmetrical with regard to indexes m and n. Hence, for this
expression we define variables r = rm − rn and τ = tom − ton, which can be
considered as continuous variables. Expanding the density factors as

|no(G i ± q)|2 = |no(G i)|2 ± 2iq . gradr |no(G i)|2,
we obtain the expression

∆I(G i) ∝
[∫

|no(G i)|2 cos(G i.r)d3r
]

〈cos φ〉t

+2
[∫

q . gradr |no(G i)|2 cos(G i.r)d3r
]

〈sin φ〉t.

Using abbreviations A and P for these bracketed quantities, the anomalies
can be written in a short form

∆I = ∆IA + ∆IP , where ∆IA = A〈cos φ〉t and ∆IP = P 〈sin φ〉t.
(6.18a)

Here, the time-averages can be evaluated with respect to the timescale to of
observation, as in (6.16):

〈sin φ, cos φ〉t =
sin( 1

2∆ω.to)
( 1
2∆ω.to)

(sin ϕ, cos ϕ), 0 ≤ ϕ ≤ 2π. (6.18b)

Writing time-averaged front factors in (6.18b) as At and Pt, (6.18a) can be
reexpressed in terms of ϕ, instead of φ:

∆IA = At cos ϕ and ∆IP = Pt sin ϕ. (6.18c)
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Fig. 6.6. Anomalous intensities of neutron inelastic scattering. A: amplitude mode,
P : phase mode. (a) density of states; (b) intensity anomalies vs. phonon energy.

The anomalies in (6.18ac) exhibit characteric symmetry properties of critical
fluctuations, that can be observed explicitly, if the condition ∆ω.to ∼ 1 is
fulfilled.

Expressed as functions of the phase ϕ, these ∆IA and ∆IP are dis-
tributed, and so the actual scattering intensities are described as f(∆IA)dϕ
and f(∆IP)dϕ between ϕ and ϕ + dϕ, where the functional form f is unspec-
ified. Therefore, we convert the variable ϕ to ∆IA and obtain

f(∆IA)dϕ = f(∆IA)
(

dϕ
d∆IA

)
d∆IA = f(∆IA)d∆IA/| sin ϕ|,

and
f(∆IP)dϕ = f(∆IP)d∆IP/| cos ϕ|.

Writing ∆IA/At = x = cos ϕ and ∆IP/Pt = y = sin ϕ for brevity, we express
these fluctuation lineshapes in convenient forms for the amplitude and phase
modes as

f(∆IA)dϕ = f(Atx)dx/(1 − x2)1/2 (6.19a)
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and
f(∆IP)dϕ = f(Pty)dy/(1 − y2)1/2 = f(Pty)dy/x. (6.19b)

Figure 6.6 illustrates these lineshapes for amplitude and phase modes,
which are simulated for experiments where the scattering was measured
against the transfer energy ±∆ε. Characterized by cos and sin functions,
respectively, the distributed intensities of the former are spread between two
edges, while peaked at the center x = 0 in the latter, and clearly distinguish-
able in some observed spectra. Figure 6.7 shows such intensity anomalies re-
ported by Schulhof and his collaborators [55] near the Néel temperature TN
of antoferromagnetic MnF2 crystals, whereas Fig. 6.8 was obtained from one-
dimensional magnet CsNiF3 by Pinn and Fender [56]. Two fluctuating modes
are clearly evidenced in these results, although these authors called these sin
and cos modes the phase and amplitude modes. However their assignments re-
fer to the lattice, whereas neutrons are scattered from magnetic spins; hence,
the semantic difference from our definition given in Chapter 4 is not conflict-

Fig. 6.7. Anomalous neutron scattering intensities from MnF2 at the Neél temper-
ature TN: (a) q ‖ [001], (b) q ‖ [100].
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Fig. 6.8. Anomalous intensity distribution of unpolarized and polarized neu-
tron scattering from magnetic spin waves in CsNiF3 crystals. (From R. Pinn and
B.E.F.Fender, Phys. Today, 38, 47, (1985).)

ing in identifying the modes. It is noted that the intensity ratio between two
modes depended on the scattering geometry with respect to crystal orienta-
tions, indicating that anisotropic fluctuations are signified by the directions
of wavevectors ±q and the gradient of the density square |no(G i)|2. Further
notable is that in CsNiF3 the peak heights in the cos mode are unequal, for
which asymmetric domain structure may be considered as responsible.
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Light Scattering and Dielectric Studies on
Structural Phase Transitions

7.1 Raman Scattering Studies on Structural Transitions

For structural phase transitions, neutron inelastic scattering is a straightfor-
ward method for investigating the energy-momentum exchange in pseudospin
condensates in the critical region. In unmodulated crystals however, the scat-
tering geometry K o = K ± q for a small q requires a very small scattering
angle, making experiments extremely impractical. Instead, using intense co-
herent light beam from a laser oscillator, we can observe scattered light in en-
hanced intensity in the right-angle direction of scattering, i.e. K o⊥K , thereby
keeping the detector out of direct radiation. Such scattering occurs not only
from optical transitions in specific ions interacting with optical phonons, but
also with an acoustic excitation in a crystal as a whole at such a wavevector
Q as in the relation K o − K = ±Q , as shown in Fig. 7.1. In the former
case, perturbed by optical lattice modes, the soft mode may be identified
among transitions induced by the electric field of light if the ion is involved
in a condensate. In the latter, critical fluctuations can be studied from the
phonon wavevector Q , if modulated by a specific Qc at the transition thresh-
old through a complex electro-elastic coupling in the crystal, although optical
transitions are primarily induced by the electric field of light, independent of
elastic properties.

For light-scattering experiments, it is a common practice to observe scat-
tering in right-angle directions by scanning the frequency of light to reveal the
temporal profile of critical fluctuations. Scattered light from a polar crystal
is modulated by either optic or acoustic phonons, which are called Raman
or Brillouin scatterings, respectively. In such light-scattering studies, the ex-
perimental objective is to determine the critical frequency ϖ of condensates,
while in the Brillouin scattering, the characteristic wavevector Qc can be
determined from the specific scattering geometry. In these experiments, the
sample crystal is rotated around a known axis for scattering in the spectrom-
eter. We first review the principle of Raman scattering in this section, and
then discuss the Brillouin scattering in Section 7.2.
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Fig. 7.1. The wavevector relation for right-angle scattering, ±K = K o ∓ Q .

Consider that an optical transition is induced by light between the ground
state “0” and an excited state “1” of an ion associated with a pseudospin
condensate. In the critical region, these ionic states can be perturbed by the
soft mode, although always perturbed by an acoustic excitation at Q in the
light scattering process ∆K = ±Q . Nevertheless, Placzek [57] discussed the
general problem of ionic states perturbed by optic phonons in the lattice with
adiabatic approximation, and his results can be directly transferred to the
present Raman scattering problem. Following his theory, we write wavefunc-
tions of these ionic states as

ψo = ϕoχn and ψ1 = ϕ1χn,

where ϕo and ϕ1 are wavefunctions of unperturbed ionic states 0 and 1, re-
spectively, and χn represents vibrational state n of the lattice. For the ionic
Hamiltonian H, we have Hϕo = εoϕo and Hϕ1 = ε1ϕ1, for which the lat-
tice is considered as a perturbation represented by a harmonic oscillator at
a single frequency ω in the Einstein model. Here, the frequency can be the
characteristic frequency ϖ of the soft mode, if Q ‖ Qc near the transition
threshold.

Assuming the lattice quantum h̄ω is sufficiently smaller than the ionic
excitation energy ε1 − εo at a given temperature, the external electric field
E cos Ωt of coherent light polarizes the ionic states, inducing an electric dipole
moment p. We consider that the vector E of incident light has a direction
fixed in the crystal and that such a linearly polarized field can be decomposed
to two circularly polarized components in opposite directions:

E cos Ωt = 1
2E+ exp(iΩt) + 1

2E− exp(−iΩt).

For this problem, the Schrödinger equation can be written as

[H − 1
2p.E+ exp(iΩt) − 1

2p.E− exp(−iΩt)]Ψ = ih̄∂Ψ/∂t, (7.1)
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where the perturbed wavefunction in the ground state is given by

Ψo = ψo exp{−i(εo + nh̄ω)t/h̄}
+{ψo+ exp(iΩt) + ψo− exp(−iΩt)} exp{−i(εo + nh̄ω)t/h̄}.

Here, the first term is for the unperturbed ground state and the second one is
for corrections due to the perturbation. In the first-order approximation, the
functions ψo± are related to ψo by

{H − (εo + nh̄ω) ± h̄Ω}ψo± = p.E±ψo, (7.2)

representing the ground state energies ε± = εo+(n±1)h̄ω that are polarized by
circular fields E± coupled with non-vanishing matrix elements 〈ψo±|p|ψo〉. In
the following calculation, we abbreviate these elements as 〈±|p|0〉 for brevity.
In this approximation ε±−εo = ±h̄ω � ε1−εo, so that the ionic state “0” can
be considered as degenerate in the zero order, where the vibrational functions
χn, χn+1 and χn−1 form a complete orthonormal set. Omitting n from χn,

ψo = ϕoχo and ψo± = ϕo(c+χ+ + c−χ−) + coψo,

where
c± = 〈±|p|0〉.E±/h̄(±ω ± Ω). (7.3)

In the perturbed ground state, the time-dependent dipole moment induced
by the field E cos Ωt can be calculated as∫

Ψo
∗p(t)Ψodv =

∫
ψo

∗p(t)ψodv

+ exp(iΩt)
∫

[ψo〈+|p|0〉ψo−
∗ + ψo

∗〈0|p|+〉ψo+]dv

+ exp(−iΩt)
∫

[ψo
∗〈0|p|−〉ψo− + ψo〈0|p|−〉ψo+

∗]dv

= 〈0|p|0〉co + exp(iΩt)[〈+|p|0〉c1
∗ + 〈0|p|+〉c+]

+ exp(−iΩt)[〈0|p|−〉c− + 〈0|p|−〉c+
∗],

where dv is the volume element for integration. The first term in the last
expression represents a permanent dipole moment if exists, whereas the sec-
ond and third ones are induced dipole moments by E±, respectively. The
components of the dipole moment can be written conveniently as

pi(t) = 〈0|pi|0〉 +
∑

j
{αij(Ω)E+j exp(iΩt) + αij(−Ω)E−j exp(−iΩt)}, (7.4a)

where

αij(Ω) = 〈0|pi|+〉〈+|pj|0〉/h̄(ω + Ω) + 〈0|pj|+〉〈+|pi|0〉/h̄(ω − Ω)
+〈0|pi|−〉〈−|pj|0〉/h̄(−ω + Ω) + 〈0|pj|−〉〈−|pi|0〉/h̄(−ω − Ω).

(7.4b)
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Here, these elements αij(Ω) constitute the polarizability tensor with respect to
coordinate axes i, j = x, y in the plane of E±. It is noted that these elements
are related as

αij(Ω) = αij
∗(Ω) and αij(Ω) = αji

∗(Ω). (7.5)

The first relation indicates that these components are all real quantities,
whereas the second one states that the tensor αij(Ω) is Hermitian.

Similar expressions can be written for the upper ionic state, i.e.

Ψ1 = exp{−i(ε1 + nh̄ω)/h̄}[ψ1+ exp(iΩt) + ψ1− exp(−iΩt)],

where
ψ1± = 〈±|p|1〉.E±/h̄(±ω ± Ω).

For Raman transitions between states 0 and 1, we need to calculate matrix
elements for ∆n = ±1 and 0. We consider an induced emission from the state
ψ1 to the ground state Ψo, where the transition probability can be calculated
from the matrix element∫

Ψo
∗pψ1dv = exp(iε10t/h̄)

∫
dv[co

∗(ψo
∗pψ1)

+c+
∗(ψ+

∗pψ1) + c−∗(ψ−
∗pψ1))

= co
∗ exp(iε10t/h̄)

∫
ψo

∗pψ1dv

+[〈0|p∗|±〉〈±|p|0〉/h̄(±ω + Ω)]E+ exp i(Ω ± ε10t/h̄)
+[〈0|p∗|±〉〈±|p|0〉/h̄(±ω − Ω)]E− exp i(−Ω ± ε10t/h̄), (7.6)

where ε10 = ε1 −εo. The first term in (7.6) gives the transition matrix for Ω =
ω10 = ε10/h̄, for which ∆n = 0, whereas the second and third ones are for the
Raman transitions Ω = ω10 ± ω, corresponding to ∆n = ±1. It is noted that
the quantities in the square brackets in the last expression are elements of the
polarizability tensor αij(Ω), which should be nonzero for observable Raman
transitions. The satellites at ω10 − ω and ω10 + ω are traditionally referred
to as Stokes and anti-Stokes lines, respectively, as illustrated in Fig. 7.2a. A
typical Raman spectrometer is shown schematically in Fig. 7.2b, where the
double (or triple) grating is the essential part to perform automatic frequency
scanning in high resolution.

In the Placzek theory, it is too näıve to consider that the lattice frequency
of the Einstein model represents the soft mode, whereas the phonon vector
Q does not necessarily represent the soft mode. However, if Raman satellites
show temperature-dependent frequency shifts; that is, if ω = |Ω − ω10| is
proportional to (T − Tc)β or (Tc − T )β′

, the corresponding scattering should
be originated from the geometry for Q ‖ Qc. To find such Raman lines near
Tc, their temperature-dependence should be detected, implicating the soft
mode, even if the active group is not positively identified. We have shown such



7.1 Raman Scattering Studies on Structural Transitions 163

Fig. 7.2. (a) Raman scattering with an optical excitation 0 → 1. (b) A typical
layout for a laser Raman spectrometer.

Raman observations of soft modes in Figs. 4.3 and 4.4 for phase transitions in
TSCC and K2SeO4, respectively. Figure 7.3 shows another example of Raman
measurements published by Toledano and his coworkers [58] on the ferroelastic
phase transition in crystals of the lanthanum phosphate family.

The above argument can basically be for unmodulated crystals, unless
critical fluctuations are considered for scattering at Qc. In this case, although
much slower than the decay rate of optically excited ionic states, critical fluc-
tuations could be explicitly observed in Raman spectra at temperatures very
close to Tc, provided that these sidelines are separated from the main transi-
tion for ∆n = 0.

Although often difficult to resolve in the critical region, the intensities of
Raman lines at noncritical temperatures depend on the polarizability tensor
αij at Ω = ω10 ± ϖ, whose nonzero values signify the Raman activities. In
a modulated crystal, scattered intensities are modified anisotropically with
regard to the direction of modulation, but not easily analyzed from Raman
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Fig. 7.3. An example of a structural phase transition as observed by a Raman
scattering. The temperature dependence of soft-phonon energies in the ferroelastic
phase transition of LaP5O14 and La0.5Nd0.5P5O14 determined by Raman scattering.
(From P.S.Peercy, 5th Int. Conf. Raman Spectroscopy, p. 571 (1976); J.C. Toledano,
E. Errandonea, and I.P. Jaguin, Solid state Comm. 20, 905 (1976).)

spectra. The intensity anomalies should be expressed by those terms in (7.6),
that are proportional to Raman-active products pipj in the critical region.
Assuming a linear chain model for ordering, the induced dipole moment can be
modulated as proportional to σ(φ); that is, δp1 ∝ σ(φ), whereas δp2, δp3 = 0,
if assuming δp1 parallel to Qc, and E± are in the plane perpendicular to E .
In such cases, we can generally write

δαij = Cijσ(φ) + Dijσ2(φ), 0 ≤ φ ≤ 2π, (7.7)

with which intensity anomalies may be analyzed. The coefficients Cij and
Dij are tabulated for instance in the book of Wilson, Decius and Cross [59].
Scattered intensities can be formulated with the classical radiation theory,
as shown in the next section, although no such serious analyses have so far
been reported in the literature. Scott published two review articles [60, 61],
summarizing Raman results from various structural phase transitions.

7.2 Rayleigh and Brillouin Scatterings

Light scattering from some liquids shows evidence for induced dielectric fluc-
tuations, where the Rayleigh scattering is due to random fluctuations in the
density, and the Brillouin scattering occurs in conjunction with an acoustic
excitation in the liquid. Similar light scattering can take place in a transpar-
ent dielectric crystal as well, where the Brillouin scattering is caused by an
acoustic excitation at a wavevector Q in the lattice. If involved in the struc-
tural change, a specific wavevector Qc accompanies a softening frequency ϖ,
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which can be detected with a specific scattering geometry ∆K = Q ‖ Qc.
The phonon wavelength is comparable with that of visible light in dielectric
crystals, so that the scatterings can always take place with anisotropic phonon
excitations ±Q . Nevertheless, we look for a specific Qc together with a soft-
ening frequency ϖ in light scattering experiments when Tc is approached. In
practice, however, being dominated by elastic Rayleigh scattering, the critical
anomalies may not be revealed in the Brilluoin lines, as in the case of Raman
scattering.

Macroscopically, light scattering occurs primarily with dielectric fluctua-
tions δχ(r , t) as induced in a crystal by the electric field Eo exp i(K o.r −ωot)
of light, whereas the phonon excitation originates from electro-acoustic na-
ture of dielectric crystals. Taking a space-time point (ro, to) of interaction,
the induced polarization per volume of a crystal can be expressed as

δP(ro, to) = εoδχ(ro, to)Eo exp i(K o.ro − ωoto), (7.8)

which then reradiate scattering waves. Here, δχ represents an induced vari-
ation in the dielectric susceptibility at ωo, which should be signified by a
softening frequency ϖ if Q ‖ Qc. If this is the case, we can write

δχ ∝ σ(ro, t).

Similar to X-ray diffraction, the electric field of the scattered light at a distant
point r at time t can be expressed as

E(r , t) ≈ r−1 exp i(K .r − ωt)
∫ ∫

εoδχ(ro, to)Eo

× exp i{(K o − K ).ro − (ωo − ω)to}d3rodto. (7.9)

Clearly, elastic scattering, called Rayleigh scattering, can take place in all
directions, as (7.9) is maximum when |K | = |K o| and ω = ωo. Denoting
the scattering angle as ϕ from the relation K o.ro = (2πro/λ) cos ϕ, we have
(K o − K ).ro = (2πro/λ) cos2( 1

2ϕ) for elastic scattering. In this case, the
scattered intensity IR(K ) ∝ E∗(r , t).E(r , t) can be calculated from (7.9), for
which Rayleigh has obtained the formula

IR(K )
Io(K o)

∝
(

2π2v2

r2λ4

)
δχ2(1 + cos2 ϕ) for ro � λ, (7.10)

where the two terms on the right are contributed by E⊥ and E‖ components,
respectively, referring to the plane of (K ,K o). Although occurring in all di-
rections, when measured particularly at the right angle ϕ = 1

2π, Rayleigh
scattering is plane polarized with intensity proportional to λ−4.

The Brillouin scattering is inelastic, where the photon energy changes from
h̄ωo to h̄ω, and the corresponding wavevector changes from K o to K , and
the differences ∆ω(Q) = ∓(ωo − ω) and K o − K = ±Q originate from
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interactions with the lattice mode. It is noted that such an inelastic change
for scattered waves can be attributed essentially to electroacoustic properties
of the crystal, so that the acoustic excitation at ±Q and ∓∆ω should be
interpreted as caused by the “stress field” associated with Eo at (ro, to).
Denoted here by double signs, these changes are independent of each other,
so that two scatterings are observed at ω = ωo ±∆ω(Q) with frequency shifts
±∆ω(Q). The intensities of these Brillouin lines are given by

IB(K ,±Q) ∝ r−2E2
o

∫ ∫
δχ∗(r ′

o, t
′
o)δχ(ro, to)

× exp[±iQ .(r ′
o− ro)− (ωo ± ∆ω)(t′o− to)]d3(r ′

o− ro)d(t′o− to).

Here, it is noted that the double integral is the Fourier transform of the binary
correlations δχ∗(r ′

o, t
′
o)δχ(ro, to), and the Brillouin intensities are written as

IB(K ,±Q) ∝ r−2E2
o〈δχ∗(K ,±Q)δχ(K ,±Q)〉t

= r−2E2
oτ−1

∫ τ

o
δχ∗(K ,±Q)δχ(K ,±Q)dt. (7.11)

Similar to Raman spectra, these two Brillouin lines at ∓∆ω(Q) are referred
to as Stokes- and anti-Stokes lines, respectively.

Although (7.8) expresses an electric polarization induced by the electric
field of light at (ro, to), the Brillouin scattering in dielectric crystals is caused
by a stress field due to electro-elastic excitations. We consider an effective
electric field Eo, representing the complex nature of the crystal. Further, for
scattering experiments, we use linearly polarized light that is composed of two
oppositely circulating component fields. Therefore, we can write the following
equations for these circular polarizations δP±(ro, t):{

d2

dt2
+ γ

d
dt

+ (ωo ± ϖ)2
}

δP±(ro, t)= εoδχ±(ro, t)
[ 1
2Eo exp i(Ko.ro ∓ ωt)

]
,

where 1
2Eo exp iK o.ro = E ′(ro) is regarded as the effective field. Letting

δP±(ro, t) = δP±(ro) exp(∓iωt), we can obtain the steady-state solution
that can be expressed as the susceptibility

εoδχ±(ro) = δP±(ro)/E ′(ro) = {−ω2 ∓ iωγ + (ωo ± ϖ)2}−1.

Therefore, the dielectric correlations at ro can be given by

δχ+
∗(ro, t

′
o)δχ+

∗(ro, to) + δχ−
∗(ro, t

′
o)δχ−(ro, to)

= {|δχ+(ro)|2 + |δχ−(ro)|2} exp{∓iω(t′o − to)}.

Using this result, the Brillouin intensities are given as proportional to

δχ∗(K ,±Qc)δχ(K ,±Q) ∝ 2iωγ
{(ωo ± ϖ)2 − ω2}2 + ω2γ2

×
∫ ∫

exp{∓iω(t′o − to)} exp{±Qc.(r
′
o − ro) − (ωo ± ϖ)(t′o − to)}

×d3(r ′
o − ro)d3(t′o − to). (7.12)
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Considering a one-dimensional collective mode of pseudospins along the
direction of r ′

o −ro, which we call the x direction, the spatial phase Qc.(r ′
o −

ro) = φs(x) is a continuous angle 0 ≤ φs ≤ 2π. We further note that (ωo ±
ϖ) − ω = ±δω represent frequency fluctuations near the Brillouin lines, and,
hence, the anomalous intensities in the critical region are expressed as

IB(K ,±Qc) ∝ ωγ
{ωo ± ϖ)2}2 + ω2γ2

×
∫

dx(2τ)−1
∫ +τ

−τ
(sin, cos)(φs ± δω.t)dt,

where t = t′o − to is the time for temporal fluctuations. Redefine the phase
φ of fluctuations by φ = φs ± δω.t, where 0 ≤ φ ≤ 2π, we expect anomalous
lineshapes characterized by cos φ and sin φ, as in neutron inelastic scattering.
Experimentally, the soft mode can be observed from ±ϖ shifting with tem-
perature, but the critical broadening should be observable under an extreme
condition for minimizing Rayleigh intensities.

Figure 7.4a shows the Brillouin spectra, accompanying the Rayleigh line
at νR, where the Brillouin shift is measured as ∆ν = νB ± νR. For a general
scattering geometry at the scattering angle δ, as illustrated in Fig. 7.4b for
|K o| = |K |, the phonon vector can be expressed as

|Q | = 2|K o| sin
( 1

2δ
)
.

Writing ∆ω = v|Q | and |K o| = n/c, where n is the optical index of refraction,
and v and c the speeds of sound and light in crystals,the Brillouin shift can

Fig. 7.4. (a) Rayleigh (R) and Brillouin (B) lines in a Brillouin spectrum. (b) A
scattering geometry close to right-angle scattering.
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be expressed as

∆ω/ωo =
(

2nv

c

)
sin
( 1

2δ
)
. (7.13)

Here, v/c ≈ 10−5; hence, the Brillouin shift is typically of the order of 10−5 if
considering that δ = 1

2π. Accordingly, with light of the wavelength λ = 5000 Å,
the phonon shift in a typical transparent crystals is of the order of 10GHz.
The Brillouin shift is normally measured as a frequency shift, representing
the sound velocity in crystals. Therefore, it can be compared with results of
ultrasound measurements to confirm the consistency.

Hikita and his collaborators [62] carried out light-scattering and ultra-
sonic studies on the ferroelectric phase transition in TSCC crystals, reporting
that Brillouin lines showed temperature-dependent shifts in all directions of
symmetric axes near 130K, where the ultrasound velocity exhibited anoma-
lous dispersion. They consider a linear coupling between the polarization and
anisotropic phonons to explain observed anomalies, which, nevertheless, ap-
peared to be complicated by electroacoustic properties of TSCC crystals.

7.3 Dielectric Relaxation

Dielectric properties of ionic crystals cannot be discussed separately from
their elastic properties because of their electroelastic coupling. Although the
Brillouin scattering is basically for the acoustic response from soft modes,
dielectric experiments are directly for the electric response from pseudospins
in polar crystals.

The motion of dipolar ions in a crystal is slow, as characterized by the
relaxation time, representing the time for returning to thermal equilibrium. If
measured at a sufficiently low frequency, dipole carriers can move in near phase
with an applied electric field, although the motion is significantly hindered
in solid states. Being predominantly relaxational, the collective mode shows
even a slower response due to heavier mass than individual dipole carriers.
Therefore, dielectric studies on collective carriers should be carried out at
low frequencies, constituting a major objective for experimental work in the
critical region.

Dielectric experiments are normally performed in a capacitive device with
an applied oscillating field Do exp(−iωt) due to a uniformly distributed charge
density on the plates. It is noted that a sample crystal is deformed by dielectric
displacements that occur as related to an acoustic excitation at a long wave-
length. Therefore, even in the uniform field of Do exp(−iωt), the induced di-
electric polarization is distributed as P = Po exp i(q .r−ωt), so that the inter-
nal electric field cannot be uniform, and expressed as E = Eo exp i(q .r −ωt).
In this context, the electric susceptibility defined by P = εoχ(ω)E is signi-
fied by the redefined quantity χq(ω) = χ(ω) exp iq .r in Po = εoχq(ω)Eo,
although the wavevector q is insignificant for dielectric measurements at a
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small |q |. Hence, we can deal with the effective susceptibility χq(ω) defined
by P = εoχqEo exp(−iωt), representing the response function to the uniform
applied field D = εoEo exp(−iωt). The equation of motion of a condensate
composed of a collective pseudospin σq(t) can therefore be written generally
as

m

(
d2σq

dt2
+ γ

dσq

dt
+ ϖ2σq

)
= eEqo exp(−iωt), (7.14)

where m and e are the effective mass and charge, respectively, of the conden-
sate, and γ is the damping constant. Here, ϖ is the characteristic frequency
and mϖ2 = k represents the restoring force constant. For the steady-state so-
lution of (7.14), we let σq = σqo exp(−iωt) and obtain the complex response
function of a resonant type

χq(ω) = σqo/Eqo =
e/m

(−ω2 − iγω + ϖ2)
, (7.15)

indicating dispersion in the real part and maximum absorption in the imagi-
nary part at ω = ϖ.

However, owing to a large effective mass of the condensate, the kinetic
energy of fluctuations is negligible, so that with the prevailing damping effect,
the equation of motion can be written as

γ
dσq

dt
+ kσq = (e/m)Eqo exp(−iωt). (7.16)

The steady-state solution is given by

χq(ω) =
e/m

(k − iωγ)
=

e/mk

(1 − iωτ)
, (7.17)

where τ = γ/k is the relaxation time, and (7.17) is known as the Debye
relaxation.

Such relaxation phenomena as (7.16) dominate dielectric properties of the
collective pseudospins in the critical region. Corresponding to the susceptibil-
ity, the relaxational dielectric function can be expressed as

εq(ω) = εo(1 + α) +
εoe/mk

1 − iωτ
, (7.18)

where the constant α is the polarizability of the condensate.
As remarked, the wavevector q is only an implicit parameter, playing

no significant role in normal dielectric measurements. However, below Tc of
a phase transition, the dielectric properties are signified by collective pseu-
dospins in unknown size, although characterized th the wavevector q , chang-
ing as a function of temperature. Therefore, we retain the notation εq(ω) in
the following discussion. At a temperature T below Tc, condesates signified by
q appear to become further correlated, as observed with an oscillating field
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at a frequency ω, and for extreme cases at ω = ∞ and ω = 0, εq(ω) have
specific values given by

εq(∞) = εo(1 + α) and εq(0) = εq(∞) + εo(e/mk), (7.19)

representing uncorrelated dipoles and correlated condensates, respectively.
Although derived for oscillatory motion, the LST formula (4.10) should

be revised for the relaxational function of (7.18). We notice that there are
specific frequencies that characterize the relaxational εq(ω): first, there is a
frequency ωL for εq(ωL) = 0, that is, from (7.18)

iωLτ = εq(0)/εq(∞),

and second, εq(ω) has a pole at ω = ωP, namely iωPτ = 1. Therefore, we can
write

ωL/ωP = εq(0)/εq(∞), (7.20)

analogous to the LST relation for an oscillatory mode. Applying (7.20) to a
ferroelectric phase transition, where the Curie-Weiss law ε(0) ∝ |T − Tc|−1

can be used for the response to the transversal electric field Eo on both sides
of Tc, the relaxation time τ is shown as temperature-dependent, i.e.

τ ∝ |T − Tc|−1, (7.21)

which is known as critical slowing down. Using notations in (7.19), the equa-
tion (7.18) can be re-expressed as

εq(ω) − εq(∞) =
εq(0) − εq(∞)

1 − iωτ
=

Sq

1 − iωτ
, (7.18a)

where Sq = εq(0) − εq(∞) is a constant for the dielectric condensate at a
wavevector q that should depend on T .

For the Debye relaxator , the relaxation formula (7.18a) can be used for
interpreting observed critical anomalies exhibited in dielectric measurements
performed at various frequencies. In view of an energy loss during a cycle
of variation, it is convenient to consider the frequency ω and the dielectric
function εq(ω) are complex for the mathematical argument. Namely, we write
εq(ω) = ε′

q(ω) + iε′′
q (ω) for the complex frequency ω = ω′ − iω′′. From the

complex expression of (7.18a), we obtain that

ε′
q(ω) = εq(∞) +

εq(0) − εq(∞)
1 + ω2τ2

and
ε′′
q (ω) = {εq(0) − εq(∞)} ωτ

1 + ω2τ2 .

Eliminating ωτ from these expressions, we can derive the equation

[ε′
q(ω) − 1

2{εq(0) + εq(∞)}]2 + ε′′
q (ω)2 = 1

4{εq(0) − εq(∞)}2, (7.22)
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Fig. 7.5. The Cole-Cole diagram for a dielectric relaxation of the Debye type:
ε(ω) = ε′(ω) − jε′′(ω).

that represents a circle in the plane of ε′ vs. ε′′ centered at the point
A[ 12{εq(0) + εq(∞)}, 0] with the radius r = 1

2{εq(0) − εq(∞)}. However, these
dielectric components are positive, so that, as shown in Fig. 7.5, we consider a
semicircle above the real axis to examine (7.22), which is known as the Cole-
Cole plot. The maximum point P(0, ε′′

q (max)) in such a plot is determined
by ε′′

q = r, corresponding to ωτ = 1. Therefore, we consider the frequency
ω = iωP on the imaginary axis, and write the relation iωPτ = 1, which was
indeed defined for the relaxational LST relation (7.20). Hence, the imaginary
part of ω at P determined on the Cole-Cole plot, i.e. ω′′

P can give direct in-
formation about the relaxation time from τ = 1/ω′′

P, which should depend on
q at temperature below Tc.

Needless to say, it is important to obtain supporting evidence for such col-
lective species to exist in the critical region, as characterized by a constant τ.
Unruh and his group obtained such evidence from their dielectric experiments
on the ferroelectric phase transition of TSCC crystals. They observed a se-
ries of Cole-Cole semicircles plotted with various frequencies, indicating that
these are related to the effective mass and relaxation time that are functions
of temperatures. In such dielectric experiments, it is important to realize that
the semicircular curve of ε(ω) in the range 0 < ω < ∞ signifies a cluster of
collective pseudospins observed at various frequencies ω, where the constants
εq(0) and εq(∞) can be interpreted as reflecting collective behaviors of con-
densates that are observed at ω = 0 and ω = ∞, respectively. We can consider
the relaxational mode for slow collective motion of dipolar pseudospins in the
critical region, whereas the oscillational mode represents generally uncoupled
pseudospins in the lattice. Although attributed to masses of dipolar carriers,
the image of collective modes is not at all clear dynamically. Nevertheless,
these different modes are considered for clustered dipoles under an applied
oscillatory electric field, as discussed already in Chapter 4.

In the critical region, binary modes of fluctuations σP and σA are present,
both being signified by q . However, in a dielectric observation these polar
modes are pinned at φ = 0 and 1

2π, respectively, where the electric fields
are considered as Eo cos ωt and Eo sin ωt. Therefore, we can write relaxatinal
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equations for binary fluctuations in phase and amplitude modes, i.e

γ
dσP

dt
+ kσP =

e

m
Eo cos ωt and γ

dσA

dt
+ kσA =

e

m
Eo sin ωt.

Using complex notations, σq = σP + iσA = σo exp iφ = σqo exp(−iωt), where
σqo = σo exp iqx, these equations are combined as

γ
dσq

dt
+ kσq =

e

m
Eqo exp(−iωt).

In any case, the steady-state solution is expressed as

σq = σqo exp(−iωt) where σqo =
e

m

Eqo

k − iωγ
=

eEqo/mk

1 − iωτ
,

as in (7.17), but these relaxational modes are indintinguishable in dielectric
measurements.

On the other hand, as Tc is approached from above, the structural change
of the lattice is signified by the soft lattice mode with the characteristic fre-
quency ϖ, for which the equation of motion is written generally as

d2uq

dt2
+ γ

duq

dt
+ ϖ2uq =

e

m
Eqo exp(−iωt).

In the critical region, assuming that these displacements in the lattice and
pseudospins are coupled as uq ∝ σq, the oscillational energy is dissipated via
interactions with the relaxational σq, in addition to direct damping γ into the
lattice. In this context, the constant γ can be replaced by γ+δ(dσq/dt), where
δ is the coupling between the oscillator and the relaxator, for which we have
already derived the following susceptibility formula

χq(ω) =
[

ϖ2 − ω2 − iωγ − δ
e

m
Eqo

ωτ
1 + iωτ

]−1

,

where the factor δ(e/m)Eo was replaced by δ2 in (4.25) for brevity. In Section
4.6, we showed that χ′′

q (ω) consists of a resonant absorption at ω = ϖ and
a relaxational absorption at ω = 0, provided that γ � δ2τ and ϖτ � 1. In
practice however, the separation of these modes may not so simple because
the resonant mode is often overdamped, appearing as if relaxational.

In practical crystals with defects, we cannot rule out a possible contribu-
tion to χ′′

q (ω) due to the oscillatory behavior of pinned condensates at very low
frequencies, as discussed in Section 5.2, so that the absorption in the vicinity
of zero frequency, which is the central peak, is not easily interpretable.

7.4 Dielectric Spectra in the Ferroelectric Phase
Transition of TSCC

Among many dielectric experiments on structural phase transitions, the ferro-
electric phase transition in TSCC crystals has been most extensively studied.
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Kozlov and his group [63] found in their experiments with a submillimeter-
wave technique that typical soft-mode spectra in TSCC were underdamped
to temperatures close to Tc, while Deguchi and his coworkers [64] observed a
relaxational mode at uhf frequencies in the critical region, showing the critical
relaxation characterized by a slowing-down behavior. Sawada and Horioka [38]
observed dielectric responses of resonant and relaxational types at microwave
frequencies that coexisted at temperatures near Tc (= 163K). Petzelt, Ko-
zlov and Volkov [65] attempted to generalize the oscillator-relaxator model to
cover many ferroelectric systems including TSCC, however it was unsuccessful
with only submillimeter-frequency data. Their results, as shown in Fig. 7.6,
indicate clear evidence for an underdamped soft-mode to about 50GHz, which
was, in fact, the low-frequency limit of their backward-wave oscillator, and not
sufficiently close to the critical region. As demonstrated by Sawada and his co-
worker, more significant information about the critical state are expected at
lower frequencies, whereas the central peak problem needs to be properly de-
lineated in terms of the intrinsic mechanism. These authors obtained dielectric
anomalies in ε′(ω) from TSCC, as shown in Fig. 4.6b, exhibiting relaxational

Fig. 7.6. Real and imaginary parts of the complex dielectric function ε(ω) in TSCC
measured at submillimeter-wave frequencies. (From A. A. Kozlov, J. P. Scott, G. E.
Feldkamp and J. Petzelt, Phys. Rev. B28, 255 (1983).)
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behavior at high microwave frequencies 35 and 24GHz, which were analyzed
with the oscillator-relaxator formula (4.25).

Pawlaczyk and Unruh [66] carried out dielectric measurements on TSCC
in a wide low-frequency range between 6GHz and 0.1kHz in the critical region
of the ferroelectric phase transition. Confirming the earlier results of Decuchi
et al., their relaxation studies were performed on high-quality samples char-
acterized by low values of the internal bias field (Eb ∼ 15 V/cm), where
the results were subjected to the Cole-Cole analysis. Figures 7.7a and 7.7b
summarize their observation of dielectric behaviors above and below Tc, re-
spectively, with added microwave results from [38] for comparison. It is noticed
that the plots above Tc are hardly considered as semi-circular, but resemble a
circlular curve in the low-frequency region. The deviation from a semicircle in
the high-frequency side should be attributed partly to the oscillatory nature
of dielectric responses. On the other hand, the plots in Fig. 7.7b consist of
two semi-circles in different size, indicated as mode I and mode II, showing
a marked difference from plots in Fig. 7.7a. The transition temperature was
determined as Tc = 130.7K from the changing over in the ε′ vs. ε′′ plots ob-
served in these high-quality crystals. Clearly, these discrete dielectric modes
I and II are signified by different wavevectors, indicating that clusters exist
with differences in size and densities depending on temperature. Such a varia-
tion can be speculated by the model for clusters stabilized in a simple cnoidal
potential as discussed in Section 5.9, although the details are yet to be worked
out.

In Fig. 7.7b, it is appreciable that the low-frequency limit of mode I coin-
cides with the high-frequency limit of mode II within experimental accuracy,
i.e.

εI(0) = εII(∞), (7.23)

which allows us to interpret that these modes represent dielectric responses
from stepwise clustering in succession. Whereas mode I may be regarded as
due to uncorrelated pseudospins, these responses represent collective clusters
in finite size characterized by different constants, (SI, τI) and (SII, τII). We
can therefore write

ε(ω) = εI(ω) + εII(ω) =
SI

(1 − iωτI)
+

SII

(1 − iωτII)
+ const., (7.24)

where

SI = εI(0) − εI(∞), SII = εII(0) − εII(∞) and εI(0) = εII(∞).

Equation (7.23) was in fact introduced by Petersson [67] for dealing with lat-
tice defects, although it may be applied to double relaxations in the present
case, assuming the coexistence of independent clusters of correlated pseu-
dospins in the critical region. Nevertheless, the effect of a pinning potential
originating from lattice defects cannot be ignored, and dynamic pinning fluctu-
ations were discussed in Section 5.2. For mode II, it may be more appropriate
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Fig. 7.7. Cole-Cole plots of ε(ω) in the critical region of the ferroelectric phase
transition in TSCC. (From Cz. Pawlaczyk, H.-G. Unruh and J. Petzelt, Phys. Stat.
Sol. (b) 136,435 (1986); M. Fujimoto, Cz. Pawlaczyk and H.-G. Unruh, Phys. Mag.
60, 919 (1989).)
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Fig. 7.8. (a) Critical slowing-down exhibited by the “relaxation mode I” in TSCC.
(From Cz. Pawlaczyk, H.-G. Unruh and J. Petzelt, Phys. Stat. Sol. (b)136, 435
(1986).) (b) Pinning frequencies fo of the phase mode vs. temperature in TSCC,
determined from anomalous line-broadening of an Mn2+ line. (From M. Fujimoto,
Cz. Pawlaczyk and H.-G. Unruh, Phil. Mag. 60, 919 (1989).)

to write the relaxation equation as

1
τI

dσII

dt
+ ω2

oσII =
e

m
Eo exp(−iωt),

where ω2
o = k/m, and we can consider that the effective relaxation time for

Mode II is given by
τII = 1/(ω2

oτI). (7.25)

Using measured values of τI and τII, the value of ωo can be estimated from
using (7.24). Summarizing such analysis of the dielectric data of Fig. 7.7b,
Fig. 7.8 shows a plot of the pinning frequency ωo against the temperature
below Tc, indicating an interesting curve with the terminal frequency fo =
ωo/2π ∼ 50Hz, which is an acceptable value for pinned domain wall in TSCC
[44].
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The Spin-Hamiltonian and Magnetic
Resonance Spectroscopy

In this chapter, principles of magnetic resonance are outlined for those readers
who are not familiar with experimental practice in this field of spectroscopy. In
my opinion, spin-Hamiltonian parameters are generally complicated for non-
specialists, and, hence, the basic concepts are reviewed to minimum necessity
for the problem of phase transitions. Although usable only in nonconducting
and nonmagnetic materials, the magnetic resonance provides a unique method
for studying ordering processes in three-dimensional crystals. Nevertheless,
those who are already familiar with the language of magnetic resonance can
skip this chapter to proceed to the next one for modulated crystals.

8.1 Introduction

Active groups responsible for a structural transformation in crystals cannot
be identified only from energy-momentum exchanges in inelastic neutron- and
light-scattering experiments. Although inferable from the chemical composi-
tion in simple cases, active groups for structural changes can be identified
logically from diffuse X-ray diffraction results. On the other hand, nuclear
and paramagnetic probes embedded in a crystal can be utilized for sampling
condensates, providing information about a structural change if the probe is
associated with the active group. In a modulated system, the spectra exhibit
anomalous lineshapes originating from the modulated structure. Sampling by
magnetic resonance probes offers a unique technique for obtaining information
about the local structural change in three dimensions, whereas other methods
can deal basically with dynamical aspects of condensates. Being complemen-
tary to scattering and dielectric experiments, magnetic resonance sampling is
indispensable for investigating the nature of condensates during a structural
change.

Primarily, the magnetic resonance can be applied only to nonmagnetic
and nonconducting crystals, where probes with spins higher than 1

2 are useful
for detecting a distortional change in the local potential. In addition, when
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the Larmor frequency ωL is comparable with the characteristic frequency of
critical fluctuations of the order of 1010 ∼ 1011Hz, the spectra exhibit anoma-
lies reflecting the nature of fluctuations. For conventional magnetic resonance
experiments, the Larmor frequency ωL is in the range of 5 ∼ 35GHz for
paramagnetic probes, whereas of 1 ∼ 20MHz for nuclear probes. Critical fluc-
tuations are generally slow in the timescale to = 2π/ωL, so that their spatial
profile can be obtained from the observed lineshape. Moreover, comparative
studies at different microwave frequencies can be carried out for further infor-
mation about the slow dynamics of condensates. In spite of these advantages,
however, the chemical compatibility of magnetic probes with a given crystal
structure is a significant factor in such experiments. Therefore, it is a usual
practice to perform experiments with as many usable probes as possible to
obtain reliable results by comparative studies. Although it is not always pos-
sible to find a suitable probe, the method is a useful one with a limited choice
of probes.

With diffuse X-ray data, magnetic resonance of a suitable probe provides
a direct method for identifying active species for a structural change. Sam-
pling a modulated structure by magnetic probes, one can determine the basic
features of pseudospin condensate in the form σ = σof(φ), where σo and φ are
the amplitude and phase of modulation, respectively. In nuclear magnetic res-
onance, we can further obtain evidence for equilibrium between pseudospins
and phonons in terms of the spin-lattice relaxation time T1.

Magnetic resonance is a well-established method of investigation for many
problems in condensed matter, although properties of paramagnetic ions in
crystals are a little too sophisticated to analyze, when expressed in terms of
spin-Hamiltonian parameters. However, the three-dimensional tensor charac-
ter of these parameters is very informative for structural studies, and, there-
fore, we discuss the relevant principles prior to Chapter 9 where the modula-
tion effect is described by modulated spin-Hamiltonian parameters.

8.2 Principles of Magnetic Resonance and Relaxation

We consider nuclear and electronic magnetic moments that are carried by
atomic nuclei and paramagnetic ions, respectively, in crystals. We assume
that these probes are situated at fixed lattice sites in crystals. Although dif-
fusive migration through the lattice cannot be ruled out in some case, these
microscopic magnetic moments are considered to be stationary at their lat-
tice sites, while freely rotatable. In the presence of a uniform magnetic field
Bo, the torque m × Bo is responsible for changing the direction of magnetic
moments m, as described by the equation of motion

dL
dt

= m × Bo, (8.1)

where L = γ−1m is the angular momentum and γ is the gyromagnetic ratio.
Considering that Bo is parallel to the z axis, the steady-state solution of (8.1)
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Fig. 8.1. (a) Magnetic resonance of a classical spin S . (b) Magnetic resonance of a
quantum-mechanical spin S = 1/2.

is given by
µz = µ cos θ = constant (8.2a)

and
µ⊥ = µ sin θ exp iϕ, where ϕ = γBot. (8.2b)

Here, θ and ϕ are polar and azimuthal angles of m with regard to the z axis,
as illustrated in Fig. 8.1a. Equations (8.2a) and (8.2b) describe the motion of
m in precession around Bo at the angular frequency ωL = γBo, known as the
Larmor frequency.

Magnetic resonance occurs when a circularly rotating magnetic field B⊥ =
B1 cos(ωt + ϕo), where ϕo is a phase constant, is applied in perpendicular
direction to the z axis. The energy associated with the rotating field B1 is
absorbed by m, if B⊥ and µ⊥ are in phase, and the condition

ω = ωL = γBo, (8.3)

is fulfilled. Called the magnetic resonance condition, (8.3) signifies that the
precession of m changes by increasing µ⊥ and decreasing µz. Such a resonance
phenomenon can be described conveniently in the frame of reference that
is rotating at the frequency ωL around the z axis, where the resonance is
characterized by the polar angle θ increased by ∆θ in the zx meridian plane.
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Although describing an isolated magnetic moment in the above, the res-
onant condition in a macroscopic material must be revised for a system of
a large number of moments that are in precession with random phases. In
a uniform crystal, all unit cells are identical and, hence, all microscopic mo-
ments located at lattice points behave exactly in the same way with respect to
the applied uniform field Bo, however the phases are at random without the
rotating field B1. The macroscopic magnetization M at resonance should be
associated with distributed microscopic moments m in the crystal, but dynam-
ically their precession is all synchronized by the applied B1. It is noted that
the motion of m is determined by external magnetic fields, although considered
as independent of the crystalline environment.

We can, therefore, assume that Mz = const. and 〈M⊥〉 = 0 in the absence
of B1, whereas in the presence of a rotating field B1 at resonance ω = ωL,
these m are forced to be synchronized by B1. Nevertheless, such a synchronous
motion will return to individual motion in random phases in a characteristic
time T2 after B1 is removed. Bloch [68] proposed a relaxational process for
M⊥, and wrote the equations

dM⊥/dt = −M⊥
T2

, and Mz = Mo = χBo, (8.4)

where χ is the susceptibility of the system of m, and such a relaxation time
T2 is called the spin-spin relaxation time, for which in a simple spin system,
magnetic dipolar interactions among these m are responsible. Here, Mo repre-
sents the value of the magnetization in thermal equilibrium. It is noted that
the magnitude of dipolar interactions ∆B should be less than B1, in order for
such a description to be valid; that is

1
T2

= γ∆B � γB1, (8.5)

is the necessary condition for the Bloch precession, and is generally referred
to as the condition for a slow passage. This means that the characteristic fre-
quency of phase fluctuations 1/T2 should be lower than the driving frequency
ωL of B1, sharing the same principle as slow critical fluctuations at ϖ that
is observable within a timescale to if ϖto ≤ 1. In fact, the value of ∆B is
of the order of 10G in typical diluted paramagnetic systems, giving rise to
T2 ∼ 10−8s, whereas for a typical system of nuclear moments ∆B ∼ 1G and
so T2 ∼ 10−4s. Hence, the condition (8.7) is generally met for many electronic
systems exhibiting well-resolved spectra, as well as most nuclear systems.

It is also noted that Mz is not constant during the process for reaching Mo
in thermal equilibrium. For this thermal process, he wrote another relaxational
equation

dMz

dt
= −Mz − Mo

T1
, (8.6)

where T1 is called the spin-lattice relaxation time.
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Taking these two relaxation mechanisms into account, Bloch expressed the
macroscopic equation of motion as

dM±
dt

± iBoM± +
M±
T2

= −iγB1Mz exp(∓iωt)

and (8.7)
dMz

dt
+

Mz − Mo

T1
= 1

2 iγBo{M+ exp(−iωt) + M− exp(iωt).

In these equations (8.7), known as the Bloch equations, the transversal M±
represent the rotating components of M , being synchronized with the rotating
fields B1 exp(∓iωt).

The Bloch equations have a steady-state solution. Under a slow-passage
condition, the dynamical process can be described by such a solution at least
approximately. In a steady state signified by dMz/dt = 0, Mz accompanies
transversal rotating components M±, which are expressed in the laboratory
frame of reference as

M± = γB1Mz exp(∓iωt)/(∓ω + γBo + i/T2).

Using this result in the solutions (8.6), we obtain

Mz

Mo
=

1 + (ω − ωL)2T2
2

1 + (ω − ωL)2T2
2 + γ2B2

1T1T2
(8.8a)

and
M±
Mo

=
{(ω − ωL)T2 + i}γB1T2 exp(∓iωt)

1 + (ω − ωL)2T2
2 + γ2B2

1T1T2
. (8.8b)

If (γB1T1T2)2 � 1, from (8.8a) we have Mz ≈ Mo at ω = ωL, in which case
the tilting angle θ of M from the z axis can be calculated from

tan θ =
M±
Mo

≈ γB1T2

1 + (ω − ωL)2T2
2
.

The high-frequency susceptibility is defined by writing

M± = χ(ω)B1 exp(∓iωt) and Mo = χoBo,

and
χ(ω)

χo
=

γB1T2{(ω − ωL)T2 + i}
1 + (ω − ωL)2T2

2 + (γB1T1T2)2
.

The real and imaginary parts of this complex susceptibility are therefore ex-
pressed as

χ′(ω)
χo

=
ωL(ω − ωL)

(ω − ωL)2 + δω2 + γ2B2
1T1δω

and
χ′′(ω)

χo
=

ωLδω
(ω − ωL)2 + δω2 + γ2B2

1T1δω
,
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respectively, where δω = 1/T2. The function χ′′(ω) becomes maximum at
ω = ωL, where

χ′′(ωL)/χo ≈ ωL/δω, if γ2B2
1T1 � δω. (8.9)

It is noted that the value of χ′′ (ωL) is substantially larger than χo if δω � ωL,
giving a sharp resonance at ω = ωL.

Microscopically, the magnetic resonance can be interpreted by quantum
mechanics where a system of ionic or nuclear magnetic moments absorbs ra-
diation quanta from the applied high-frequency field. Considering the angular
momentum L = h̄l as specified by the quantum number l , the magnetic mo-
ment is given by m = γh̄l and the energy levels for the precession in a static
field Bo are discrete as εm = −βBom, where β = γh̄. These energies are spec-
ified by the magnetic quantum number, m = l, l − 1, . . .,−l, and separated
by an equal difference εm − εm−1 = βBo. Being proportional to Bo, such an
energy difference can be adjusted exactly to the radiation energy h̄ω, so that
the resonance condition is expressed by h̄ω = βBo, namely ω = γBo = ωL.
Here, unlike in classical theory, the quantum number l can take either inte-
gers or half-integers, and the magnetic resonance condition can be generally
written as

h̄ω = gβoBo, (8.10)

where the gyromagnetic ratio γ for a quantum number l is replaced by gβo.
Here, βo is called the Bohr magneton and g is the Lande factor, which is equal
to 2 for l = 1

2 , referring to an electron in an s-state. Half-integral angular
momenta arise from orbital electrons with intrinsic spins, which are coupled
in ionic states, whose magnetic moments are expressed by the Landé factor g.

The resonance condition (8.10) was obtained in the above microscopic
argument, where such relaxation processes as in the Bloch theory are ignored.
First, as described by T2, the resonant frequency ωL cannot be sharply defined
due to interactions among magnetic moments in the system. The effect of an
oscillating field B1 must be interpreted as causing transitions between the
discrete energy levels, as described in terms of transition probabilities induced
by B1 in quantum theory. Taking the spin-spin interactions into consideration,
induced transitions are distributed as described by the probability wm,m+1dω
between ω and ω + dω, for which

wm,m+1 = 1
2πh̄−2B2

1 |µm,m+1|2f(ω),

where µm,m+1 represents an off-diagonal matrix element of m between states
m and m + 1, and f(ω) = T−1

2 is called the shape function normalized as∫
f(ω)dω = 1. Under conventional experimental conditions, the frequency ω

is in the ranges of radio and microwaves, so that the transitions are dominated
by those induced by B1, and the probability for spontaneous transition is
negligible.

Second, a macroscopic system of a large number of magnetic moments
in a uniform field Bo is considered to be in equilibrium with the applied
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radiation energy of an oscillating field B1. Figure 8.1b illustrates a simple case
of m = ± 1

2 , where the two energy levels ε±1/2 are populated by the Boltzmann
statistics, namely N±1/2 = No exp(−ε±1/2/kBT ). Assume that ε+1/2 < ε−1/2,
and N+1/2 > N−1/2, which allows absorption of radiation quanta h̄ω when
ω = ωL. The average “pumpimg” rate per cycle is expressed as〈

dW

dt

〉
t
= w+−(h̄ωL)(N

+1
2

− N− 1
2
)

= w+−(h̄ωL)N
+1

2
{1 − exp(−h̄ωL/kBT )}

≈ w+−(h̄ωL)N
+1

2
(h̄ωL/kBT )

= N
+1

2
(πω2

LB2
1/kBT )|µ+−|2f(ωL),

which is equivalent to the macroscopic expression〈
dW

dt

〉
t
= 1

2ωLχ′′(ωL)B2
1 ,

and hence
χ′′(ωL) = N

+1
2

πωL|µ+−|2f(ωL)/kBT. (8.11)

The result indicates that the magnetic resonance absorption can be apprecia-
ble at lower temperatures due to a higher population difference.

Although interpretable simply as described in the above quantum theory,
the observation of magnetic resonance in a system of magnetic moments must
be interpreted macroscopically, where the magnetization M is the basic quan-
tity to be described with two relaxation times T1 and T2. At resonance, the
system must be in equilibrium with radiation quanta from the high-frequency
field B1 at a given temperature T . The process can be described by the rate
equation for the population difference n = N+1/2 − N−1/2:

d(n − no)
dt

= − (n − no)
T1

,

where no is the value of n with no radiation at T , and is identical to (8.5).
On the other hand, the relaxation process described by T2 of (8.4) can be
interpreted as the time for microscopic moments in Larmor precessions in
random phases at T to become in phase with the applied B1 after being
switched on or to return to random when switched off.

8.3 Magnetic Resonance Spectrometers

Magneticmagnetic resonance spectrometers resonance is signified by a maxi-
mum absorption of radiation energy of the oscillating field B1 at ω = γBo in
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Fig. 8.2. (a) A radio-frequency resonator consisting of a capacitor C and an inductor
L with a sample crystal. B1 represents magnetic rf lines. (b) A microwave resonator.
A sample can be placed at a position (e.g. the center of the resonator box) where
the microwave field B1 has maximum amplitude. The iris is adjustable for a desired
value of the quality factor Q.

a uniform magnetic field Bo. Therefore, for a system of magnetic moments of
known γ, the resonance experiments can be performed either scanning ω at
a constant Bo, or scanning Bo at a fixed ω. Although theoretically a trivial
matter, the latter arrangement is more practical than the former and therefore
used in most spectrometers with conventional laboratory magnets that pro-
duce a uniform field up to about 15kG. With such a magnet, the frequency
is in the range 1 ∼ 100MHz for nuclear resonance, whereas microwaves in
the frequency range 5 ∼ 40GHz are conventional for paramagnetic resonance
experiments.

Further, for experiments on samples in small size, it is practical to observe
magnetic resonance at a fixed position in a resonator where B1 is at maxi-
mum strength. At radio frequencies, a sample is placed in a resonator of an
inductance Lo connected with a capacitor C, where the tuning frequency is
given by ω = (LoC)−1/2, as illustrated in Fig. 8.2a. At microwave frequen-
cies, on the other hand, a sample can be placed inside a cavity resonator at a
maximum B1 of the standing wave, as shown in Fig. 8.2b. At such a position,
the sample occupies a finite partial volume Vs of the inductor, so that the
resonant frequency depends generally on the sample volume.

When a sample is placed in such a resonator, the inductance can be ex-
pressed as

L = (1 + χ)Lo = (1 + χ′)Lo − iχ′′Lo,
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where the value of the susceptibility χ = χ′ − iχ′′ depends on the sample
volume. The impedance of a “loaded” resonator can therefore be expressed
by

Z = R + iωL + 1/iωC = R + ωχ′′Lo + iω(1 + χ′)Lo − i/ωC,

where R is the effective resistance and ωχ′′Lo represents the energy loss due to
magnetic resonance. The resonant frequency can approximately be determined
by letting the imaginary part zero, i.e. ω2

o = 1/(1 + χ′)LoC. Assuming that
the field B1 is practically uniform over the sample volume, the susceptibility
can be expressed as (Vs/Vm)χ, where Vm is the effective volume for maximum
B1. The volume ratio α = Vs/Vm is called the filling factor, which is less than
1 in practical resonators.

In practical applications, the energy loss in a resonator can be described
in terms of the quality factor Q that is defined by

1/Q = (total energy loss/energy stored) per cycle,

which is compared with the factor Qo of the unloaded resonator. The elec-
tromagnetic energy stored per cycle is given by ω( 1

2µoB1
2Vm)/Qo, and the

energy loss due to magnetic resonance is 1
2ωLµoχ′′(ωL)B12Vs. Therefore, the

energy loss at resonance ω = ωL is expressed by a fractional change in the
quality factor:

∆Q

Qo
=

Qo − Q

Qo
= αχ′′(ωL),

being proportional to the imaginary part of χ(ωL). In practical observation,
∆Q/Qo is deterimed from χ′′(Bo) by impedance measurements at a constant
ωL, while Bo is scanned around ωL/γ. Figure 8.3 shows a block diagram of
a typical magnetic resonance spectrometer consisting of an impedance bridge,
where the impedance Z(B) of a sample resonator is compared with a reference
impedance Zo. In the vicinity of a magnetic resonance, the sample impedance
can be expressed by

Z(ω) = R + ωLχ′′Lo + iωL(1 + χ′)Lo

(
ω

ωL
− ωL

ω

)
.

In such a bridge, reflected waves from Z(B) and Zo can be balanced either
in phase or out of phase, so that the detector signal is related to χ′′ or χ′,
respectively, namely for Bo = ωL/γ ± ∆Bo, we have the detector signal that
is proportional either to

R + ωLLoχ′′(∆Bo) or 2Lo{1 + χ′(∆Bo)}γBo.

Although independently measurable, these χ′′ and χ′ are related by the
Kramers-Krönig formula, and so only one of these is sufficient for magnetic
resonance to be detected.
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Fig. 8.3. A block diagram of a microwave bridge spectrometer.

8.4 The Crystalline Potential

Magnetic probes for studying structural phase transitions should preferably be
of a spin larger than 1

2 , although requiring a very complex spectral analysis,
depending on the magnitude of the applied field Bo. As will be explained
in Chapter 9, the effect of lattice modulation can be discussed in the first-
order accuracy, offering sufficient information in many applications. We could
carry out spectral analysis in full, which may, however, be unnecessary for
structural studies. In the following sections, the method for spin-Hamiltonians
in normal crystals is outlined, prior to discussing modulated crystals by means
of magnetic resonance parameters.

In normal crystals, the electronic state of a paramagnetic probe with un-
paired spins can be described primarily by the total orbital and spin angular
momenta, L and S , which are perturbed by the surroundings at the probe site
represented by a crystalline potential. Known as the Russell-Saunders scheme
in atomic spectroscopy, such a description of ions in crystals is adequate for
“transition elements” commonly used as magnetic resonance probes.

Orbiting around a nucleus at a lattice site, electrons in the ion are consid-
ered as perturbed by a crystalline potential that is expressed by power series
of coordinates (x, y, z) with respect to the local lattice symmetry. In an or-
thorhombic crystal, for example, the crystalline potential can be expressed in
the lowest order as a quadratic form

V (x, y, z) = Ax2 + By2 + Cz2,
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where the relation A + B + C = 0 holds for the coefficients A, B and C,
because any static potential V must satisfy the Laplace equation ∆V = 0. A
uniaxial case of tetragonal or trigonal symmetry can be specified as A = B,
and, hence, C = −2A, for which the potential is given by

V (x, y, z) = A(x2 + y2 − 2z2) = A(r2 − 3z2),

where r2 = x2 + y2 + z2, being uniaxial along the z direction.
Another example is the quartic potential

V (x, y, z) = D(x4 + y4 + z4),

representing cubic symmetry in the lowest order. For cubic symmetry, we can
write a quardratic potential A(x2 + y2 + z2), which is just equal to Ar2, and
hence, it does not represent a crystalline potential. Only a deviation from
spherical symmetry is essential for the crystalline potential; hence, a cubic
potential should be quartic in the lowest order.

Further, to be consistent with the crystal symmetry, x, y and z should be
taken as parallel to symmetry axes a, b and c of the crystal, if only one probe
can be accommodated in a unit cell. On the other hand, if there are two or
more crystallographically equivalent sites for a probe, these x, y and z for the
crystalline potential at the site must be chosen as related consistently to the
symmetry of the probe site. The concept of a crystalline potential was founded
by Bethe’s work in 1929, which has since been refined for applications to many
solid-state problems. For magnetic problems, Abragam and Pryce [69] have
laid the foundation for the method of spin Hamiltonians, providing the basic
formulation for magnetic resonance spectroscopy.

8.5 The Zeeman Energy and the g Tensor

Reflecting local symmetry that is orthorhombic in most cases, the crystalline
potential can often be signified by a unique axis, allowing a simplified anal-
ysis. In such a case, the orbital angular momentum L can be considered as
quantized along the unique axis, resulting in the perturbed ionic energy that
is split into several levels. In a quadratic potential where the constant A is
greater than kBT , the ground state is well separated from upper levels, and
hence the magnetic moment can be described as related to the spin angular
momentum S only, resulting in a doubly-degenerate ground state. In such a
case, the orbital momentum L is said quenched by the crystalline potential,
and such a spin-degenerated ground state is called the Kramers doublet.

For a magnetic probe of the doublet ground level, we have to further con-
sider the role played by the spin-orbit coupling λL.S , where λ is a parameter
of the order of 100 ∼ 800 cm−1 for iron-group elements, which gives rise to
a significant interaction between S and the crystal field. Although typically
smaller than the crystalline field splitting, the ground state ψo separated from
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an excited state ψε is perturbed by λL.S in the second-order that is signi-
fied by the off-diagonal elements

∫
ψε

∗L⊥ψodv, resulting in the perturbed
wavefunction ψ′ expressed by

ψ′ = ψo +
∑

ε

λ
∆ε

(∫
ψo

∗L⊥ψεdv

)
ψε,

where ∆ε is the energy gap between the excited and ground states. In this
case, the Zeeman energy of the ion in an applied uniform field Bo is given
effectively by

HZ = −me.Bo,

where
me = −β

∫
ψ′∗(geS)ψ′dv,

β = eh̄/2mec = −0.927 × 0−20 emu known as the Bohr magneton, and
ge = 2.0023 the Landé factor of a free electron. For such a magnetic mo-
ment modified by the spin-orbit coupling in a crystalline potential, we first
consider a case where Bo is applied parallel to the z axis of the crystalline
potential, that is Bo ‖ z. In this case, the perturbation originates from the
off-diagonal element of L⊥, i.e.

∫
ψε

∗L⊥ψodv = 2 exp(i∆εt/h̄), and only the
component µez can be stationary. The effective gz factor in the Zeeman energy
can therefore be expressed as

HZ = βgzSzBo where gz = ge

(
1 +

2λ
∆ε

)
. (8.12a)

For Bo applied parallel to x or y axis, we consider that L⊥ = Ly + iLz or
Lz + iLx, respectively, for the perpturbing spin-orbit coupling, and we obtain
similar expressions of Zeeman energies, namely

HZ = βgxSxBo or = βgySyBo,

where

gx = gy = ge

(
1 − λ

∆ε

)
. (8.12b)

If Bo is applied in a general direction n , the effective g factor behaves as a
tensor quantity g, and the Zeeman energy can be written as

HZ = βS .g.Bo. (8.13a)

In (8.13a), the vectors S and Bo can be considered mathematically as row and
column matrices, respectively, in order to accommodate g of a 3 × 3 matrix
in the product form. To facilitate such a matrix calculation, it is convenient
to write (8.13a) as

HZ = β〈S |g|Bo〉, (8.13b)
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which will be used in the following discussion. The matrix product as in (8.13b)
can be considered as a scalar product of row and column vectors. For instance,
the product (8.13b) may be interpreted either that the effective magnetic mo-
ment −β〈S |g is in precession around |Bo〉, or that the spin 〈S | is in precession
around the effective magnetic field g|Bo〉. Experimentally, the former is con-
venient, because Bo provides a convenient reference direction that is fixed
in the laboratory frame. On the other hand, the crystal field axes are also a
convenient crystallographic reference, in which the direction n of the static
field Bo is expressed as Bo = Bon and the effective field to quantize S can
be defined as B ′ = g.Bo. Using the relation

〈B ′|B ′〉 = B2
o〈n |gĝ|n〉,

we can define
B′ = gnBo where g2

n = 〈n |ĝg|n〉, (8.14)

where ĝ expresses a “transposed matrix” of g. Physically g is a symmetrical
tensor, so that ĝg is identical to g2. The Zeeman energy in a field Bo|n〉 can
therefore be expressed as

HZ = βgnSnBo, (8.15)

implying that the magnetic moment is effectively given by βgnSn. Equation
(8.15) is a convenient formula for magnetic resonance, in which the spin S is
quantized along the direction n , while the gn-factor is modified as related to
the axes of the squared tensor g2 of (8.14). It is significant that the symmetry
axes of the crystalline potential can be determined by the principal axes of
g2, which can be obtained by a coordinate transformation to the principal
form from the experimentally determined quadratic 〈n |g2|n〉.

In a usual magnetic resonance practice, spectra are recorded for various
directions of Bo, when a sample crystal is rotated around a crystallographic
axis (in practice, Bo is rotated in a laboratory frame where a sample is fixed),
so that a set of three elliptical angular variations of g2

n showing a sinusoidal
curve can be obtained in symmetry planes independently. Fitting these vari-
ations to the equation of an ellipse gii

2ni
2 + 2gij

2ninj + gjj
2nj

2 = ge
2, we can

evaluate three on-axis elements gii
2 and three off-axis elements gij for the 3×3

symmetrical tensor g2, which can then be diagonalized numerically to deter-
mine the principal axes, X, Y and Z, with zero off-diagonal elements; namely
in the principal form, the variation of gn

2 can be expressed as

g2
n = g2

Xn2
X + g2

Yn2
Y + g2

Zn2
Z and n2

X + n2
Y + n2

Z = 1,

where (nX, nY, nZ) represents the direction cosines of n with respect to X, Y
and Z. The principal values gX, gY and gZ of g should all be positive, which
are directly determined from gX

2, gY
2 and gZ

2.
A significant feature of the g tensor is

trace g = gX + gY + gZ = 3ge, (8.16a)
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as confirmed from (8.12a) and (8.12b). It is noted that deviations from the
free-electron value ge = 2.0023 are significant measure of the symmetry in the
crystalline potential, and so we determine experimentally the tensor ∆g =
g − gee, where e is the unit tensor (eij = δij). By this definition, it is clear
that

trace ∆g = 0. (8.16b)

As will be discussed later, these equations (8.16a) and (8.16b) are impor-
tant formula for a three-dimensional analysis of observed Zeeman terms.

8.6 The Fine Structure

In Section 8.5, we discussed the spin-orbit coupling that perturbs the ionic
ground state in Zeeman levels, where the g factor is modified by the crystalline
potential. Due to quenching by the crystal potential, the orbital momentum
becomes insignificant in the first order; however, the anisotropic g shift arises
from λL.S in the second order, reflecting the symmetry of the crystalline
potential.

In addition, the spin-orbit coupling will deform the charge cloud in the sec-
ond order, which is particularly significant for ions in non-S states. Classically,
such a charge deformation represents an electric quadrupole moment induced
in the crystalline potential, which is quantum mechanically calculated from
the second-order perturbation of the spin-orbit coupling. The quadrupole en-
ergy of an ion induced in the crystalline potential is generally referred to as
the fine structure in magnetic resonance spectroscopy.

The spin-orbit coupling in a crystalline potential can generally be written
as

HLS = λ(LXSX + LYSY + LZSZ) (8.17)

with respect to the principal axes X, Y and Z, where the coupling constant λ
is assumed to remain isotropic as in a unperturbed ion. In the crystal field,
the orbital angular momentum L “quenched” in the first order and, hence,
the second-order energy of HLS can be calculated as

E
(2)
LS =

λ2

∆ε

∑
ij

SiSj

{(∫
ψo

∗Liψεdv

)(∫
ψε

∗Ljψodv

)}
,

that is determined by non-vanishing off-diagonal elements of L between the
ground state and the excited state separated by ∆ε. It is noted that ELS

(2)

is a quadratic form with respect to the spin components SX, SY and SZ and,
therefore, expressed as

E
(2)
LS =

∑
ij

SiDijSj = 〈S |D|S〉, (8.18a)

where

Dij =
λ2

∆ε

(∫
ψo

∗Liψεdv

)(∫
ψε

∗Ljψodv

)
(8.18b)
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are elements of the fine-structure tensor D.
In (8.18b), we notice that Dij = Dji by definition and, hence, D is a

symmetrical tensor that is further characterized as traceless. We have

trace D =
∑

i
Dii = (λ2/∆ε)

∑
i
〈0|Li

∗|ε〉〈ε|Li|0〉 = (λ2/∆ε)
∑

i
〈0|Li

∗Li|0〉,

which can be verified as vanishing, regardless of the value of L; hence

trace D = 0. (8.19)

Transforming a D tensor to the principal form, we can express (8.19) as

DX + DY + DZ = 0, (8.19a)

which is held for the diagonal elements. Therefore, in a uniaxial crystal field,
we have specific relations DX = DY and DZ = −2DX, and the fine-structure
energy can be expressed by

〈S |D|S〉 = DX(S2
X + S2

Y) + DZS2
Z = − 1

2DZ(S2 − S2
Z) + DZS2

Z

= 1
2DZ{3S2

Z − S(S + 1)}, (8.20)

where S2 = S2
X + S2

Y + S2
Z. The fine structure is therefore determined ef-

fectively by the spin S and the component SZ, which however vanishes if
S = SZ = 1

2 . The principal directions signify the symmetry of an ionic charge
cloud deformed by the crystalline potential. Being consistent with the clas-
sical argument, a charge cloud represented by (8.20) can be interpreted as
non-spherically deformed and is expressed in terms of an electric quardrupole
moment in the second-order approximation.

Similar to the g2 tensor, (8.18a) is generally proportional to a quadratic
form 〈n|D|n〉 with respect to the direction |n〉 of the applied field Bo. For
example, when Bo is on the plane XZ, the magnitude Dn changes along an
elliptic locus against the direction |n〉, if the crystal is rotated around the b
axis in a uniform field Bo, indicating an elliptically deformed charge on this
plane, as shown in Fig. 8.4a. The charge cloud is deviated either positively or
negatively from otherwise circular along the X and Z axes, being expressed
by an electric quadrupole moment. In three-dimensional measurements, such
elliptic loci can be obtained on three symmetry planes, representing projec-
tions of the ellipsoidal charge. In Fig. 8.4b, the elliptical variation on the ab
plane is illustrated.

For magnetic resonance of a paramagnetic ion, we have so far considered
a strong applied field Bo, along which the electronic spin S is quantized,
representing the local symmetry at the site of a magnetic probe. However, in
practice, the tensor ∆g and D may show different symmetries, depending on
the strength of an applied field Bo. Therefore, we write more generally

H = HZ + HF = β〈S |g|Bo〉 + 〈S ′|D|S ′〉. (8.21)
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Fig. 8.4. (a) An ellipsoidal deformation of an electronic charge due to a crystalline
potential, resulting in the fine structure in the spin-Hamiltonian. (b) An elliptic cross
section between the ellipsoid of the bilinear 〈n|D|n〉 and a plane of observation, where
the applied field Bo is rotated.

If the Zeeman term HZ is larger than the fine-structure energy HF, the spin S
is in precession around the effective field |B ′〉 = g|Bo〉 = gnBo|n〉, whereas
the spin vector |S ′〉 in HF is quantized effectively along Bo|n〉 and, hence,
expressed as |S ′〉 = |S〉/gn = (Sn/gn)g|n〉. Accordingly, (8.21) is expressed
effectively as

H = βgnSnBo + D′
nS2

n, (8.22)

where
D′

n = 〈n |gDg|n〉/g2
n. (8.23)

However, basically both ∆g and D tensors are originated from the spin-orbit
coupling mechanism in a crystalline potential, and hence characterized as
coaxial, if HF > HZ, in particular. Accordingly, we write D′ = gDg/gn

2 =
g2D/g2

n in (8.23), for which the principal axes X, Y and Z are often considered
as common for g and D tensors. Referring to these common axes, (8.23) can
be expressed as

g2
nDn = g2

XDX + g2
YDY + g2

ZDZ. (8.24)

Eigenvalues of the spin-Hamiltonian (8.22) are determined by the magnetic
quantum number MS for the spin state Sn:

E(MS) = gnβBoMS + D′
nM2

S , (8.25)

where D′
n is such an effective fine-structure parameter as defined above for

the direction |n〉, and the magnetic resonance occurs when the selection rule
∆MS = ±1 is fulfilled between these energy levels; namely the resonance
conditions are given by

h̄ω = E(MS + 1) − E(MS) = gnβBo + D′
n(2MS + 1), (8.26)
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showing the basic resonance line h̄ω = gnβBo between spin levels MS = ± 1
2 ,

plus a ladder of lines that are equally spaced by D′
n.

On the other hand, if HF � HZ, the spin S can conveniently be quantized
along the direction for the largest principal value of D, and HZ is considered
as a perturbation. In this case, the first-order calculation is generally not
accurate, and the perturbation calculation should be carried out to a higher
order. Generally it is too complicated to extract structural information from
g and D calculated in high-order from observed spectra. Experimentally, it is
preferable to select probes for easier interpretation in such a case; therefore,
we do not continue our spectroscopic discussion beyond this point, leaving it
to general references for magnetic resonance spectroscopy. Nevertheless, such
a low-field analysis is required in some applications, e.g. Zeeman studies of a
nuclear quadrupole resonance and of triplet states in molecular probes.

8.7 Hyperfine Interactions and Forbidden Transitions

For magnetic resonance spectra, the interaction between the electronic mag-
netic moment me and nuclear magnetic moments mn located within the elec-
tronic orbital yields often useful structural information. Called the hyperfine
interaction, such an interaction arises from the quantum-mechanical “contact”
mechanism, known as the Fermi interaction, as well as the classical “dipole-
dipole” interaction when the electron is orbiting at a finite distance r from
the nucleus. Combining these two mechanisms, the hyperfine interaction can
be expressed as

HHF = (8π/3)|ψ(0)|2me.mn + {me.mn/r−3 − 3(me.r)(m.rn)/r−5}, (8.27)

where the first Fermi interaction term is essential for an s-electron that has a
finite density |ψ(0)|2 at the nucleus, and the second dipolar term represents
a dipole-dipole interaction between me and mn at a finite distance r . Using
direction cosines (l, m, n) for the vector r with respect to the fixed position
of mn, the hyperfine interaction energy can be written as

HHF = (8π/3)|ψ(0)|2〈me|mn〉 + 〈me|Ad|mn〉,
where

Ad = r−3

⎛
⎝ 1 − 3l2 −3lm −3nl

−3m 1 − 3m2 −3mn,
−3ln −3nm 1 − 3n2

⎞
⎠

which is a traceless tensor, i.e. trace Ad = 0, because of the relation l2 +m2 +
n2 = 1. Writing the Fermi term as Af = (8π/9)|ψ(0)|2E, where E = (δij),
(8.27) can be expressed as

HHF = 〈me|A|mn〉 where A = Af + Ad
and

trace A = (8π/3)|ψ(0)|2.
(8.28)
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Fig. 8.5. Magnetic dipole interaction between an electronic moment me and a nu-
clear moment mn at a distance r. The effective magnetic field at mn is composed of
the field of the electron Be and an applied field Bo.

Because of HHF � HZ in usual cases, we consider that me = −gnβS is
primarily quantized in the direction of an applied field Bo = Bo|n〉, where
the Bohr magneton β is expressed as positive. Therefore, the hyperfine energy
in the strong field approximation can be expressed as

HHF = −βγh̄〈S |g.A|I 〉,

allowing one to interpret that the nuclear moment γh̄|I 〉 is in precession around
the magnetic field 〈Be| = β〈S |gA that originates from the orbiting electron
at the position of the nucleus. In fact, the applied field 〈Bo| also contribute
to such a field for nuclear precession, although the magnitude Bo may be
significantly small as compared with the hyperfine field 〈Be| in some cases.
Generally, for the nuclear motion, the effective field is given by the vector sum
〈Bhf | = 〈Be| + 〈Bo|, as shown in Fig. 8.5. In this case, the hyperfine energy
can be expressed in the first-order approximation as

E
(1)
HF = −γh̄〈Bhf |I 〉 = −γh̄Bhfm

′,

where
Bhf = Bo + βM〈n |ĝÂAg|n〉1/2

and m′ is the nuclear spin quantum number with respect to the effective
hyperfine field 〈Bhf |.

If Bhf ≈ Be, the hyperfine energy is written as

E
(1)
HP = −KnMm′, (8.29)

where
g2
nβ2K2

n = 〈n |ĝÂAg|n〉.
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Here, the coefficient Kn is in units of energy, where the factor γh̄ is included
in the definition of the tensor A. For convenience in magnetic resonance for
scanning the external field, it is desirable to express Kn in units of magnetic
field, for which Kn (energy) is replaced by Kn (field)/gnβ, resulting in the
expression

Kn = 〈n |ĝÂAg|n〉1/2 (in field unit), (8.30)

which is usually called the hyperfine splitting.
Unlike g and D tensors characterized by the crystalline field, the symmetry

of the A tensor are generally determined by the nuclear location with respect
to the electron. Therefore, unless the nucleus is at the center of the crystal
field, the tensor A is related to symmetry axes at the nuclear site, which is
different from g and D. Nevertheless, in practical analysis, we determine the
tensor g2 and the hyperfine splitting tensor ĝÂAg = g2A2 from observed
spectra, and then proceed to numerical calculation of the squared tensor A2

to obtain the tensor A. Examples of practical tensor analysis are shown in
later discussions.

In the above description, the electronic and nuclear spins are in precession
primarily at frequencies, ωε = gnβBo/h̄ and ωn = γBhf , independently around
Bo and Bhf , respectively. These frequencies are very different in a given field
Bo, so that these magnetic resonances can be independently observed, as
indicated by the selection rules

∆M = ±1, ∆m′ = 0 and ∆M = 0, ∆m′ = ±1,

for electronic and nuclear transitions, respectively.
For a coupled electron-nuclear system, the spin-Hamiltonian is expressed

as
H = gnβSnBo + S2

n〈n |D′|n〉 + Sn〈n |A|I 〉 − γI .Bo.

In magnetic resonance experiments, the direction |n〉 of Bo can often be
referred to the principal directions X, Y and Z of the crystal field, for which
the tensors g2 and D′ are diagonalized.

Expressing |n〉 by polar and azimuthal angles θ and ϕ, H can be written
as

H = gnβBoSZ + 1
2D′{S2

n − S(S + 1)/3}(3 cos2 θ − 1)

+D′(SZSX + SXSZ) cos θ sin θ + 1
4D′(S2

+ + S2
−) sin2 θ(KnSZ − γBo)I ′

n,

(8.31)

in which the nuclear spin I ′
n is quantized along the combined field Bhf com-

posed of the electronic spin field Be and the external field Bo. It is significant
that in (8.31) the eigenvalue of H is determined only by Sn if θ = 0 and 1

2π;
namely when Bo is parallel to the principal direction either Z or X; in all
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other directions, H depends on other components of Sn as well. When Bo ‖ Z
and X, the eigenvalues of H can be expressed in the first-order accuracy as

EZ(M,m′) = gZβBoM + 2D′M2 + (KZM − γBo)m′ for n ‖ Z

and

EX(M,m′) = gXβBoM − D′M2 + (KXM − γBo)m′ for n ‖ X,

for which the electronic magnetic transitions between M = + 1
2 and − 1

2 , i.e.
∆M = ±1, are allowed, accompanying hyperfine energies proportional to m′,
where m′ is the nuclear spin quantum number in the effective hyperfine field
Bhf .

In contrast, for 0 < θ < 1
2π, energy eigenvalues En are significantly con-

tributed by the second-order perturbations due to cross products of the terms
in D′ and Kn, consisting of (SZS+)(S−I ′

+), (SZS−)(S+I ′
−) and so forth, where

these coefficients are of the order of (D′Kn/Zeeman energy). According to
Abragam and Bleaney [70], such terms can be reduced to

(3D′Kn sin 2θ/4gnβBo)(I ′
n+ + I ′

n−){S2
Z − S(S + 1)/3},

if D′ < gnβBo, which includes operators connecting different hyperfine lev-
els, e.g. by mixing a nuclear state |m′〉 with |m′ ± 1〉 with the amounts
of order of 3D′ sin 2θ/4gnβBo, resulting in so-called forbidden transitions
(∆M = ±1,∆m′ = ±1). The intensities of these forbidden transitions rel-
ative to the allowed transitions (∆M = ±1,∆m′ = 0) are given by the square
of this mixing constant. Because of the factor sin2(2θ) in the relative intensi-
ties, such forbidden lines vanish at θ = 0 and 1

2π, while they are maximum at
θ = 1

4π. As will be discussed in Chapter 9 for Mn2+spectra from BCCD crys-
tals, this result provides a useful method for determining principal directions,
while such forbidden lines are easily identified by diminishing intensities when
the direction is close to the principal axes.

Forbidden nuclear transitions are not only given by ∆m′ = ±1 but also
by ∆m′ = ±2, as related to other cross-products, such as D′S+

2(KnS−I ′
+)2

and D′S2
−(KnS+I ′

−)2, in the second-order perturbation. Forbidden lines for
∆m′ = ±2 occur in the range 0 < θ < 1

2π with an angular dependence
different from ∆m′ = ±1, exhibiting very complex spectra. However, the
forbidden lines for ∆m′ = ±1 are identifiable in the vicinity of the principal
axes, whereas those lines for ∆m′ = ±2 are not easily identified. All forbidden
lines appear in comparable intensities in the vicinity of θ = 1

4π depending on
the strength of Bo, making the spectral analysis almost impossible.

Although fully discussed by Bleaney and his group, the complete analysis
is not always necessary for studying modulation effects, as will be discussed in
Chapter 9. In a modulated crystal, principal directions of magnetic probes are
spatially distributed, providing useful information about the lattice modula-
tion. The hyperfine tensor A is also useful for studying modulation schemes,
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as characterized by a change in the distinctive direction. Normally, a hyperfine
tensor A from an off-center nucleus in the ligand, known also as a superfine
interaction, can be used for analyzing the lattice modulation.



9

Magnetic Resonance Sampling and Nuclear
Spin Relaxation Studies on Modulated Crystals

9.1 Paramagnetic Probes in a Modulated Crystal

In normal crystals characterized by translational symmetry, magnetic impu-
rity probes distributed among lattice sites are all identical, exhibiting the same
spectra, whereas in a modulated phase, unit cells are not exactly identical,
resulting in inhomogeneously broadened magnetic resonance lines as related
to the type of lattice modulation.

Doped with a small quantity of impurity ions, such probes in a crystal can
be assumed as randomly distributed among lattice sites, thereby showing a
weak diluted paramagnetism. For studies of phase transitions, these probes
should be associated with active groups in the crystal, otherwise remaining as
insensitive to the structural change. Furthermore, we are aware of properties
of a doped crystal that are only weakly modified, where such impurities allow
us to study the intrinsic dynamics of pseudospins. The electronic wavefunction
in outer orbits extends to the surroundings, hence serving as a more sensitive
probe than a nuclear spin at a lattice site. On the other hand, nuclear spins
larger than 1

2 can also interact with the surroundings through the quadrupole
energy, which should also be informative about the local structural change.

In practice, ions of transition-group elements are commonly used for dop-
ing crystals, serving as useful probes, if showing well-resolved magnetic res-
onance spectra. However, it is realized that such probes accompany charge
defects in the lattice if the impurity charge is different from the ionic charge
at the lattice site, making the situation more complex than necessary. Irradi-
ated crystals can also be used for that purpose, because damaged constituents,
namely free radicals, are paramagnetic. In any case, we have to consider the
physical compatibility of probes with the properties of undoped crystals.

In a nonmagnetic crystal, the spin S of a probe ion is coupled with the
oribital moment L, which determines the spin orientation in the crystal, al-
though L is quenched by the lattice in the first order. In a modulated lattice,
the spin motion is further modified by the pseudospin vector s(φ) and, hence,
the spin is denoted by S ′ that is quantized along a direction different from S
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in the unmodulated crystal. We assume that the local quantization is modified
by a transforming matrix a that is written as

S ′ = a.S , (9.1)

where a = 1 + 〈σ|e expresses that the local distortion tensor e = (eij) is
modulated with the site-dependent order variable 〈σ|. The tensor e represents
the basic strains for distorting the crystal structure, whereas the unit tensor
1 given by the Kronecker delta δij keeps the unit cell undistorted.

A displacive binary phase transition is characterized by specific displace-
ments e and −e of the pseudospin, that is s = ±σoe . The unit vector e
specifies the inversion of s in a crystal undergoing a structural change, where
the unit cell can generally contain even number of pseudospin sites. On the
other hand, if the unit cell has only one pseudospin site, e should occur along
a symmetry axis of the crystal.

Representing local deformation, the tensor elements eij are generally de-
fined as composed of symmetric and antisymmetric components: that is,

(eij) = 1
2 (eij + eji) + 1

2 (eij − eji),

where the first and second terms on the right side represent local directional
and orientational changes, respectively, in the cell structure. In a displacive
crystals, these occur exclusively, namely either one represents the basic mode
of distortion, and the corresponding strains in the unit cell are significant for
the structural change.

If the symmetric components of eij vanish,

eij = −eji (9.2)

indicates that the tensor e is antisymmetric, and the crystal is locally strained
by a pure rotational twist as determined by the second term, for which the
off-diagonal elements eij are essential. On the other hand, if symmetrical, i.e.
eij = eji, the second term vanishes, and the deformation is characterized by
the diagonal elements e11, e22 and e33 in the principal form. In this case,
the deformation is characterized by a volume change, for which the expansion
coefficient α can be defined by

α = 1 + (e11 + e22 + e33).

The condition
trace e = 0 (9.3)

signifies the specific case characterized by no volume change.

9.2 The spin-Hamiltonian in Modulated Crystals

For sampling pseudospin condensates in a modulated crystal, we can write
the spin-Hamiltonian H’ of a paramagnetic probe as

H′ = −β〈S ′|g|Bo〉 + 〈S ′|D|S ′〉 + 〈S ′|A|I 〉,
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where 〈S ′| represents the modified spin vector by a modulated structure,
giving H′ different from H in the unmodulated crystal.

Assuming (9.1), H′ can be separated into two terms as

H′ = H + H1,

where
H = −β〈S |g|Bo〉 + 〈S |D|S〉 + 〈S |A|I 〉

expresses the unmodulated spin-Hamiltonian, whereas

H1 = −σβ〈S |ê.g|Bo〉 (9.4a)

+σ〈S |ê.D + D.e|S〉 + σ2〈S |ê.D.e|S〉 (9.4b)

+σ〈S |ê.A|I 〉 (9.4c)

represents effects of modulation. In these expressions, we set e = e .e for
local strains at a probe site, while D should be written as D′ according to
the definition given in Section 8.6. However, we use the same D to reduce the
number of notations, whereas for observable coefficients in experiments, we do
not need to distinguish D′ from D. In normal crystals, the electronic spin 〈S |
can be quantized along the external field 〈Bo|, while the nuclear spin 〈I | is
quantized effectively in the field of fine structure. For practical applications,
it is convenient to use the quantum numbers M and m referring to these
fields.

The equations (9.4a), (9.4b) and (9.4c) express modulation effects, for
which H1 consists of terms proportional to σ and σ2, whose coefficients do
not vanish in general because of the strain tensor e. In the following, these
modulation terms are discussed individually for magnetic resonance spectra
observed in the critical regions.

9.2.1 The g Tensor Anomaly

In a strong applied field Bo = Bon , the Zeeman energy of a paramagnetic ion
can be expressed in terms of the stationary spin component Sn with respect to
Bo. If the crystal becomes modulated, the effective magnetic moment β〈S |g′

can be considered as quantized along Bo, and hence its steady component can
be expressed as g′

nβ〈Sn| = g′
nβM〈n |. Here, g′

n represents the effective g-factor
in the modulated crystal. In the first-order approximation, the Zeeman energy
can therefore be expressed as

E′
Z
(1) = EZ

(1) + E1Z
(1) = −g′

nβBoM,

where the modulated g′
n is determined by

g′
n
2 = 〈n|g′2|n〉 = 〈n|â.g2.a|n〉,
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where a = 1 + 〈s|e. Therefore, the effect of modulation is calculated from

g′2
n = g2

n + σ〈n|ê.g2 + g2.e|n〉 + σ2〈n|ê.g2.e|n〉, where g2
n = 〈n|g2|n〉,

Here, the two additional terms proportional to σ and σ2 are generally nonzero,
if the tensor e has asymmetric off-diagonal elements.

The threshold of binary ordering can be identified in magnetic resonance
lines that split into two components at Tc as related to inversion symmetry
of σ; that is,

g′
n(±σo)2 = gn(0)2 ± σo〈n|ê.g2 + g2.e|n〉 + σ2

o〈n|ê.g2.e|n〉,
and, hence, we can write

g′
n(+σ)2 − g′

n(−σ)2 = 2σ(φ)〈n|ê.g2 + g2.e|n〉
in the critical region, where the pseudospin σ(φ) is a function of the phase φ,
fluctuating between +σ and −σ in phase- and in amplitude-modes. Therefore,
such distributed g are responsible for the gn-anomaly that is expressed by

∆gn = g′
n(+σ) − g′

n(−σ),

being spread around the center

gn = 1
2{g′

n(+σ) + g′
n(−σ)}.

Accordingly, we can write the following expressions for the fluctuating cos and
sin modes:

∆gn = cn cos φ and cn sin φ, (9.5)

where
cn = σo〈n|ê.g2 + g2.e|n〉/gn. (9.6)

It is noted that the anomalies ∆gn signified by the factor cn is proportional
to σo, whereas the term of σ2 is cancelled out, allowing one to identify the
binary transition in terms of inversion symmetry.

For a one-dimensional modulation along an x direction, the phase φ repre-
sents propagation of σ, i.e. φ = ∆q.x−∆ω.t+φo, although the equations (9.5)
suggest that these pseudospin modes σ are pinned by the anharmonic quartic
potential, and the phase is distributed in the range 0 ≤ φ ≤ 2π. In magnetic
resonance experiments, such sampling results of σ should be interpreted as
time averages of cos φ and sin φ over the timescale to = 2π/ωL, which do not
vanish if ∆ω.to ≤ 1. Letting the spatial part of the phase as φs = ∆q.x + φo
for brevity,

〈cos φ〉t = (1/to)
∫ to

0
cos(φs − ∆ω.t)dt

=
sin(∆ω.to)
(∆ω.to)

cos{φs − ∆ω(t + 1
2 to)}
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and

〈sin φ〉t = (1/to)
∫ to

o
sin(φs − ∆ω.t)dt

=
[
sin(∆ω.to)

∆ω.to

]
sin{φs − ∆ω(t + 1

2 to)}.

Here, the mathematical formula lim∆ωt→0{sin(∆ω.to)/(∆ω.to)} = 1 suggests
that the observed amplitude is reduced by the factor in the square brackets,
that is numerically close to 1 if 2π/∆ω ≤ to. In this case, the observed g-
anomaly due to the sinusoidal variation can be interpreted as proportional
to the fluctuating σ with the reduced amplitude σo sin(∆ω.to)/(∆ω.to) and
phase φs − ∆ω(t − 1

2 to).
The factor cn given by (9.6) must be nonzero to obtain such a g anomaly.

It is noted that for a pure rotational e, cn vanishes when the direction |n〉 is
parallel to one of the principal g tensor axes, but is nonzero in all other direc-
tions. For a pure dilatational e, on the other hand, such anomalies are expected
only along the axes. Furthermore, the anomaly depends on the timescale to
of observation and, hence, ∆ω for critical fluctuations can be estimated if
comparing such ∆gn observed at different Larmor frequencies.

The Zeeman energies of magnetic probes are thus distributed in the critical
region, resulting in broad resonance lines in magnetic resonance experiments.
The two modes of fluctuations, as characterized by cos φ and sin φ, are inde-
pendent under critical conditions. Experimentally, it is significant that binary
fluctuations can be explicitly in the cos-mode, leading to domain formation
on lowering the temperature. On the other hand, the sin-mode vanishes with
long-range order.

In magnetic resonance, the anomaly ∆gn arises from fluctuations in the
resonance frequency at a constant resonance field Bo, i.e.

h̄∆ωn = β∆gnBo.

Writing νn = cnσoβBo/h,

∆νc = νn cos φ and ∆νs = νn sin φ,

for the cos and sin modes, respectively.
These formula are directly applicable to magnetic resonance spectra by

scanning frequency at a constant Bo. Theoretically, the absorption intensity
is expressed as a function of distributed φ in the form f(φ)dφ, whereas, exper-
imentally, the resonance is observed with varying ∆νc and ∆νs in this case.
Therefore, for these fluctuating modes, we can write

fc(φ)dφ =
Fc(∆νc)d∆νc

|d∆νc/dφ| =
Fc(∆νc)d∆νc

|νn sin φ| =
Fc(∆νc)d∆νc

(ν2
n − ∆ν2

c)1/2

and

fs(φ)dφ =
Fs(∆νs)d∆νs

|d∆νs/dφ| =
Fs(∆νs)d∆νs

|νn cos φ| =
Fs(∆νs)d∆νs

|∆νs| .
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Fig. 9.1. (a) The first curve shows density distributions of anomalous magnetic
resonance frequencies ∆ν ∝ σ in the phase mode (P) and in the amplitude mode (A).
The second and third ones are the corresponding magnetic resonance lineshapes of P
and A modes, respectively, as observed with magnetic field scanning. (b) Magnetic
resonance anomaly for ∆ν = aσ+bσ2. The top curve shows a density distribution in
frequency scan, and the bottom the corresponding resonance line by magnetic-field
scan.

In the cos mode, the density of distributed intensities has two edge singulari-
ties at ∆νc = ±νn corresponding to φ = 0 and π, whereas in the sin-mode the
density is characterized by a singularity at ∆νs = 0 for φ = 1

2π.
In Chapter 6 we discussed the intensity anomalies in neutron inelastic

scattering illustrated in Fig. 6.6. In magnetic resonance experiments, the static
field Bo is modulated additionally at a low frequency for recording spectra,
so that the spectrum is displayed as proportional to the derivative dχ′′/dBo.
Such anomalous spectra detectable with a conventional spectrometer are also
shown in Fig. 9.1a.

A binary structural phase transition is signified by anomalies arising from
fluctuations in cos- and sin-modes. It is significant that such anomalies are
anisotropic, as indicated by ∆gn depending on the direction of Bo. The binary
splitting ∆gn signifies fluctuations between σ and −σ, in a symmetry plane
where the mirror symmetry is violated, for which the experimental detail will
be discussed in Section 9.3. In practice, however, such gn-anomalies are too
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small to measure in sufficient accuracy, whereas similar anomalies in hyperfine
and fine-structure splittings are larger for accurate analyses.

9.2.2 The Hyperfine Structure Anomaly

The magnetic hyperfine Hamiltonian in a modulated crystal can be written
as

HHF = βγ〈S ′
n|A|I 〉 + γ〈Bo|I 〉,

which expresses the nuclear spin motion in the combined field of the electronic
spin and the external field Bo. Usually, the first term prevails in the hyperfine
structure with a negligible contribution of the second term; hence, we consider
only the first one for spectral analysis, where the tensor A can be redefined
including the factor γ:

HHF = β〈Sn|g.A|I 〉,
and eigenvalues of HHF are given in the first order by

EHF
(1) = KnMm,

where
K2

n = β2〈n|g2.A2|n〉.
Here, the hyperfine splitting factor Kn is expressed in energy units, whereas
for magnetic resonance experiments at a constant microwave frequency, it is
expressed in field units for convenience; Kn in energy units divided by gnβ.
Replacing Kn by gnβKn in the above expression, the first-order hyperfine
energy can be written as

EHF
(1) = gnβKnMm, where K2

n = 〈n|g2.A2|n〉/g2
n.

Defining further C = (g/gn).A for brevity, the tensor C represents a directly
measurable splitting from observed magnetic resonance spectra.

The modulated hyperfine splitting can then be expressed similar to the
modulated g′; that is,

K ′
n
2 = 〈n|â.C2.a|n〉

= 〈n|C2|n〉 + σ〈n|ê.C2 + C2.e|n〉 + σ2〈n|ê.C2e|n〉.

In the critical region, we can write

K ′
n
2 − K2

n = 2σ〈n|ê.C2 + C2.e|n〉, (9.7a)

for a binary splitting that is proportional to σ. Therefore, hyperfine anomalies
in a binary phase transition can be related directly to fluctuations in cos and
sin modes. As discussed for g anomalies, the sin-mode gives a featureless single
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line, whereas the cos-mode signifies distributed lines between two edges with
a separation

∆Kn = K ′
n − Kn = (σo/Kn)〈n|ê.C2 + C2e|n〉, Kn = 1

2 (K ′
n + Kn). (9.7b)

It is interesting that ∆Kn = 0 when Bo is applied parallel to the axis of
an antisymmetric tensor e, which may correspond to the axis for librational
fluctuations of active groups, as will be discussed in the next section for the
VO2+ spectra in BCCD crystals.

9.2.3 The Fine-Structure Anomaly

The modulated fine structure shows an anomaly of different type from ∆gn
and ∆Kn. In the critical region, the former is observed in a quardratic form
with respect to the direction n , whereas in the latter, the square tensors g2

and C2 are involved in line splitting below the transition temperature.
In the strong-field approximation, the fine-structure Hamiltonian in a nor-

mal crystal can be written as 〈Sn|D′|Sn〉, where 〈Sn| = Sn〈n |. On the other
hand, in a modulated crystal, the spin S of a probe is modified as |S ′

n〉 = a|Sn〉
and, hence, the Hamiltonian is modified as

H′
F = 〈S ′

n|D′|S ′
n〉 = 〈Sn|â.D′.a|Sn〉.

As previously mentioned, we use in the following the unprimed notation D for
the fine structure tensor and write

H′
F = HF + σ〈Sn|ê.D + D.e|Sn〉 + σ2〈Sn|ê.D.e|Sn〉. (9.8)

Normally, these fine-structure terms are greater than the hyperfine term, giv-
ing a dominant contribution to spectra of probes of S > 1

2 , where the mod-
ulation effects are described by those two terms proportional to σ and σ2 in
(9.8). Therefore, the first-order eigenvalues of H′

F are given by

E′
F

(1) = EF
(1) + (anσ + bnσ2)M2, (9.9a)

where
an = 〈n|ê.D + D.e|n〉 and bn = 〈n|ê.D.e|n〉.

Setting hyperfine interactions aside, the magnetic resonance condition in this
case can be written as

hν = E′
n(M + 1) − E′

n(M) = g′
nβBo + (Dn + ∆Dn)(2M + 1), (9.9b)

where
∆Dn = anσ + bnσ2,

indicating that the fine-structure anomaly is enhanced in transition lines at
larger ±M as multiplied by the factor 2M +1. Equation (9.9c) can be applied
to any directions of Bo, whereas for binary splitting we consider

∆Dn = 2anσ
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just as discussed for ∆gn and ∆Kn, identifying the mirror plane geometrically
by the shape of anomalies. In all directions other than in the mirror plane,
transition anomalies in the magnetic resonance parameters are characterized
by σ and σ2.

In the latter case, the anomaly observed at ±M can be expressed for a cos
mode as

∆νn = ν1(n) cos φ + ν2(n) cos2 φ, (9.10a)

where

ν1(n) = (2M + 1)σoan/h and ν2(n) = (2M + 1)σobn/h.

In this case, the intensity distribution is described by the density of resonance
frequencies

1
(dφ/d∆νn)

=
[{

ν2
1

2ν2
+ ∆νn

}
{ν2

1 − (ν2 − ∆νn)2}
]−1

, (9.10b)

which is characterized by three singularities at ν2 ± ν1 and −ν2
1/2ν2 as illus-

trated in Fig. 9.1b for ν2 > ν1. If, on the other hand, ν2 < ν1, the lineshape
is similar to that in Fig. 9.1a.

Emerging at the threshold of the critical region, cos- and sin-modes are
modified by local fields E of long-range correlations on decreasing temper-
ature. For one-dimensional correlations, the sin mode will be stabilized by
shifting the phase by 1

2π to join the cos mode, as discussed in Section 5.2,
while such a cos-mode turns out to be an elliptical mode cnφ′, where φ′ is
temperature dependent while in the range 0 ≤ φ′ ≤ 2π. Although the ellip-
tical variation can be observed as distributed resonances between the edge
frequencies, the anomalies are most appreciable in the sinusoidal variation at
temperatures very close to Tc.

9.3 Structural Phase Transitions in TSCC and BCCD
Crystals as Studied by Paramagnetic Resonance Spectra

The nature of structural phase transitions cannot be sufficiently analyzed
by only one anomalous spectrum at Tc. Signified by the outset of collective
pseudospin modes, transition anomalies should arise from a three-dimensional
structural change in the lattice. Related to the loss of a symmetry element,
the structural deformation should be explicit in magnetic resonance anomalies.
However, the fine structure of spins larger than 1

2 are often too complex to ex-
tract information of the collective pseudospin σ, unless allowed transitions are
all identified in every direction of the applied field 〈Bo|. On the other hand, for
S = 1

2 , it is necessary for the hyperfine tensor A to be anisotropic, in order to
obtain structural information. Phase transitions in TSCC and betaine calcium
chloride dehydrate (BCCD) crystals were thoroughly investigated systems by
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magnetic resonance spectra, where the modulated structures in the critical
regions were analyzed in light of the condensate model. In TSCC crystals, the
spectra show anomalies at the ferroelectric phase transition at 130K, giving a
visual example for growing domains, in which the long-range field along the
b axis was identified. On the other hand, BCCD crystals exhibit successive
structural changes under ambient pressure, among which the modulated phase
is characterized by the absence of long-range order. In this section, we summa-
rize these results as examples for the modulated spin-Hamiltonian, providing
a useful guideline for investigating transition processes in other systems.

9.3.1 The Ferroelectric Phase Transition in TSCC Crystals

(i) The Active Complex

TSCC crystals can be doped with a variety of paramagnetic impurities, such
as Mn2+, Cr3+, Fe3+ and VO2+, substituting for the Ca2+ ion at the center of
a double pyramidal complex coordinated by six sarcosine molecules in near-
tetrahedral symmetry, as illustrated in Fig. 3.4 [26]. Unlike divalent Mn2+and
VO2+, trivalent impurities Cr3+ and Fe3+ accompany charge defects that
are associated with one of the carboxyl groups of sarcosine molecules lying in
the mirror plane, on which two long-range internal fields in opposite directions
are related with reflection symmetry below Tc. On the other hand, the dipolar
axes of VO2+ ions are associated with one of the six ligand sarcocines with
an equal probability, giving an internal electric field at the Ca2+ site in the
polar phase of TSCC crystals.

(ii) Breaking Mirror Symmetry at the Ferroelectric Phase Transition

Mn2+ impurities in TSCC at room temperature show relatively simple spectra
under the magnetic resonance condition, where the spin-Hamiltonian consists
of the Zeeman energy, the fine structure-energy, and the hyperfine energy with
a 55Mn nucleus (I = 5/2) in decreasing order of magnitudes. The gnfactor and
the hyperfine structure due to 55Mn (I = 5/2) are isotropic and, hence, not
suitable for studying the structural change, whereas the fine-structure tensor
is very anisotropic and, thus, useful for detecting the symmetry violation in
the lattice at and below Tc. A simple resonance condition (8.26) can be applied
in this case to determine Dn as a function of the direction |n〉 of Bo.

Figure 9.2 shows a representative Mn2+ spectrum from TSCC for Bo ‖ a.
The angular dependences of Dn in three symmetry planes, ab, bc and ca, as
observed at a temperature above Tc, are shown by solid curves in Fig. 9.3.
On lowering the temperature below Tc however, the lines in the ab and bc
planes split into two, as shown by dotted lines in Fig. 9.3, whereas in the
mirror plane ca, the spectra remain virtually unchanged. The splitting in
the bc plane is large among others, particularly in the direction 45◦ between
the b and c, as indicated by 1-2, where the transition was observed with the
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Fig. 9.2. A representative Mn2+ spectrum in TSCC, characterized by a well-
resolved fine structure of five allowed transitions M → M + 1 with six hyperfine
lines ∆m = 0 on each.

Fig. 9.3. Angular variations of the fine-structure splitting in Mn2+ spectra in TSCC
below Tc. The anomaly was largest between the b and c axes, as indicated by 1 − 2.

largest separation, whereas the splitting in the ab plane is small, and no such
splitting was recognized in the mirror plane ac. The splitting in the bc and ab
planes signifies two opposite condensates, which can be considered as “seeds”
of domains related by the mirror reflection on the b plane, being consistent
with the symmetry change at Tc. Noting that the splitting in the bc plane is
sensitive to such a binary relation between +σo and −σo, the temperature
dependence was studied, particularly at 45◦ in the bc plane. Writing

∆Dn+ = +anσo + bnσ2
o and ∆Dn− = −anσo + bnσ2

o,
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the observed splitting given by ∆Dn+ − ∆Dn− can be expressed as entirely
proportional to σ, as the terms of σ2 are canceled [21]. Therefore,

∆Dn = (∆Dn+) − (∆Dn−) = 2anσ (9.11)

represents critical fluctuations between condensates for ±σ if σ can be written
as

σ = σo cos φ and σo sin φ

for the cos and sin modes of fluctuations, respectively, where 0 ≤ φ ≤ 2π.
Below Tc, the sinusoidal variation of σ changes to elliptical, as modified

by the internal field Eint of long-range correlations, although at the threshold,
the sin mode can be stabilized by a weak external field E, converting it to a
cos mode. The noncritical region is dominated by the phase mode modified
by Eint, which is expressed as elliptic σosn(µφ/21/2), where 0 ≤ φ ≤ 2π;
σo ∝ κ/(1+κ2)1/2 and µ = 21/2/(1+κ2)1/2. Here, the phase φ is not the same
as in the critical region, varying as a function of temperature. Nevertheless,
the timescale to of magnetic resonance, i.e. to = 2π/ωL, plays an essential role
for sampling, and the observed splitting (9.11) should be expressed by the
time average

∆Dn = 2anσo〈sn(µφ/21/2)〉t,
where

〈sn(µφ/21/2)〉t = t−1
o

∫ to

0
sn{µ(∆qx − ∆ωt)}dt. (9.12)

The value of (9.12) is determined by the average phase φ̄ = ∆qx − ∆ω.to of
distributed pseudospins, which does not vanish if ∆ω.to ≤ 1. For such a phase
mode, the magnetic resonance frequencies are distributed as νn = Anσ(φ̄)
in the range 0 ≤ φ̄ ≤ 2π, whose spatial distribution can be evaluated in
terms of the distributed off-axis angle θ of a classical vector s defined by
sin θ = sn(µφ̄/21/2). The broadened magnetic resonances can, therefore, be
expressed as νn = ν1n sin θ, where Anσo = ν1n is called the edge frequency.
By definition, we have

(µ/21/2)dφ̄/dθ = (1 − κ2 sin2 θ)−1/2,

Writing ν1n − νn = ∆νn,

(µ/21/2)(dφ̄/d∆νn) = 1/[ν1n(1 − sin2 θ)1/2(1 − κ2 sin2 θ)1/2],

or
dφ̄/d∆νn = λν1n/[21/2(ν2

1n − ∆ν2
n)1/2{(ν1n/κ)2 − ∆ν2

n}1/2].

Therefore, in the limit κ → 1, we obtain the density distribution given by

(dφ̄/d∆νn)κ→1 = λν1n/2(ν2
1n − ∆ν2

n),

which is characterized by two edges +ν1n and −ν1n. The distribution between
the edges is less than the sinusoidal case, diminishing as κ → 1, and the
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spectrum shows no appreciable difference from two independent lines in this
limit.

For a very small κ in the critical region characterized by no appreciable
long-range field, observed fine-structure anomalies ∆Dn show the symmetry-
breaking fluctuations that can be evaluated with the integral

〈cos φ̄〉t = t−1
o

∫ to

0
(cos(∆q.x − ∆ω.t + φo)dt = α(to) cos(∆q.x − ∆ω.t + φo),

where
α(to) = sin(∆ω.to)/(∆ω.to) and t = t + 1

2 to.

Applying this to the transition M = 3/2 → 5/2, for example, the edge fre-
quency is expressed as

ν1n(to) = 4α(to)σoan/h, (9.13)

indicating that the edge separation depends on the timescale to of experiments
[21]. At standard microwave frequencies, 9.2 and 35GHz, the edge separation
of critical fluctuations is proportional to the factor α(to) in (9.13), which is
determined by ωL. Accordingly, the higher is Larmor frequency, the wider the
edge separation. At these frequencies, critical anomalies in the Mn2+ spectra
exhibited different separations in different shape as illustrated in Fig. 9.4.
The characteristic frequency ∆ω in the critical region is comparable with
measuring Larmor frequencies ωL, where the observed anomaly at 35GHz
was characterized by a wider edge separation than at 9.2GHz.

The critical fluctuations are sinusoidal in the limit κ → 0, and Fig. 9.5
shows examples of simulated spectra at small values of κ, which were numeri-
cally fitted to observed ones, allowing to estimate values of κ at temperatures
close to Tc. Figure 9.6 demonstrates that the polar sin-mode (marked “a”)
in the critical region can be converted to a cos mode (marked p and p′) by
applying a weak electric field E externally. We can therefore postulate that
the sin mode diminishes spontaneously with increasing long-range field Eint
below Tc.

(iii) The Long-Range Weiss Field in Ferroelectric TSCC.

The presence of an internal field of long-range order was not explicit in the
Mn2+ spectra in the noncritical region. In VO2+-doped crystals, the ferro-
electric phase transition cannot be critical due to the electric field of dipolar
impurity ions, thus, the transition is first order. Therefore, it is not surprising
to see the absence of critical anomalies in the VO2+ spectra.

The ordering progresses with decreasing temperature, due essentially to
the long-range dipolar field Edip that behaves as if applied externally. In the
presence of an applied field F , the total internal field F + Edip should be
considered to act on the pseudospin mode s at a temperature below Tc and,
therefore,

λs = F + Edip.
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Fig. 9.4. Critical anomalies below Tc of the ferroelectric phase transition in TSCC
observed from the separation between the hyperfin lines in the bc plane, i.e., Bo ‖
(90◦, 45◦, 45◦). At 9.2 and 35GHz, these anomalies showed different patterns.

For binary order in the ferroelectric phase of TSCC, this relation can be
written for two domains as

±λσ = F ± Edip.

For sampling the variables ±σ with dipolar VO2+ impurities, we can uti-
lize the electric dipole moment µ of the VO2+ molecule, which is associated
with ±σ at random positions. The dipole µ can be oriented by these internal
fields F ± Edip at energies −µ(F ± Edip) with the Boltzmann probabilities
exp{µ(F ± Edip)/kBT}, respectively. In TSCC crystals, the VO2+ spectra
showed splitting into two lines below Tc with the intensity ratio varying with
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Fig. 9.5. Anomalous lineshapes numerically simulated by the equation σ =
σoλsn(µφ/21/2) with κ = 0.4 and 0.6. These lines could be fitted to observed ones
at temperatures ∆T = 0.4 and 1.4K, respectively.

Fig. 9.6. Effects of a weak applied electric field on an observed anomalous line
at 130.3K, showing that the central amplitude mode (marked a) splits into two
(marked p′

1 and p′
2) with applying a weak electric field E = 0.6kV/cm, joining into

the outside components p1 and p2 in phase mode on increasing E to 2.5kV/cm.

temperature, as shown in Fig. 9.7a. We can, thus, interpret the observed
intensity ratio as determined by Edip. Under the noncritical condition, this
assumption is consistent with the statistical theory of binary order, as dis-
cussed in Chapter 2. In this analysis, the intensity ratio rn = I−/I+ between
these lines of VO2+ spectra below Tc is given by

rn = exp
µ(F + Edip)

kBT

/
exp

µ(F − Edip)
kBT

= exp
2µEdip

kBT
,

therefore,
|Edip| ∝ |T ln rn|. (9.14)

Using (9.14), the temperature dependence of Edip can be evaluated experi-
mentally from rn for any direction of Bo as a function of temperature, and
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Fig. 9.7. (a) Representative VO2+ spectra for Bo ‖ b in paraelectric and ferroelectric
phases of TSCC. The spectrum is composed of types I and II in different symmetries,
and the spectrum II splits below Tc into two. (b) Angular variation of the 51V-
hyperfine splitting Kn for Bo in the bc plane of TSCC.

Fig. 9.8 shows the results from TSCC. Using VO2+ probes and NH+
3 radicals,

the presence of Eint was also confirmed in other systems, for example, ferro-
electric triglycine sulphate (TGS) crystals [71] and the ferrielectric phase of
(NH4)2SO4 crystals [72, 73], respectively. For binary ferroelectric systems, we
can generally write |Eint| ∝ (Tc − T )1/2 in the mean-field approximation and,
hence, the internal field related to long-range correlations can be regarded as
a valid concept substantiated by resonance experiments [74].

In the following, we review the published magnetic resonance spectra of
VO2+ impurities. The ground state of the unpaired (3d)1-electron in a VO2+

ion is an S-state (L = 0), and the gn factor is anisotropic in the uniaxial
structure, and there is no fine structure because of the spin S = 1

2 . On the
other hand, the hyperfine interaction with the 51V nucleus (I = 5/2) is very
anisotropic, reflecting uniaxial symmetry of the diatomic molecule. The mag-
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Fig. 9.8. Temperature dependences of T ln r and ∆Kb below Tc in VO2+-doped
TSCC.

netic resonance condition can therefore be expressed as

h̄ω = gnβBo + gnβKnMm,

or in terms of resonance fields Bn = h̄ω/gnβ

Bn(M) = Bo + KnMm.

Figure 9.7a shows representative spectra of VO2+ at temperatures above
and below Tc, where all allowed transitions for ∆M = ±1 and ∆m = 0
are indicated by the “stick” diagram. In these electronic transitions, nuclear
magnetic quantum numbers m = −5/2,−3/2, . . ., 5/2 are unchanged, but the
hyperfine separations are unequal due to the second-order contributions. The
value of Kn can be determined from the separations between adjacent hyper-
fine lines, where the second-order contributions proportional to (Knm/Bo)2

are canceled between the lines for +m and −m.
In the spectrum at −155◦C, additional lines appeared as related to pro-

gressing binary order. Figure 9.7b shows the anisotropic hyperfine splitting
Kn observed from a crystal rotated in the bc plane, in which the splitting
is plotted against angles of rotation in two kinds of VO2+ spectra marked
I and II showing different symmetries. The overall pattern (of the angular
dependence) is near trigonal, and the observed spectra are consistent to the
molecular arrangement in Fig. 3.4a. By symmetry, we can consider that the
VO2+ spectra of type I are equivalent to Mn2+ spectra, whereas no analogy
was found between the VO2+ of type II and Mn2+.
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Table 9.1. 51V hyperfine tensors for VO2+ complexes observed at 22.5◦C in an-
nealed crystals of TSCC

Spectrum Principal valuesa Direction cosinesb

II 185.0 (0.624, ±0.673, ±0.396)
70.0 (0.329, ±0.233, ∓0.915)
68.5 (0.710, ∓0.701, ±0.072)

I 190.0 (0.622, 0, ± 0.783)
74.6 (0, ±1, 0)
68.1 (−0.783, 0, ±0.622)

a unit in gauss, b reference axes: orthorhombic a, b, and c.

To determine the hyperfine tensors K , we require angular dependences of
Kn in the other planes ac and ab as well. In Fig. 9.9 the results are summarized
together with that in the bc plane for numerical calculation. Table 9.1 shows
the results for the 51V hyperfine tensors of spectra I and II at room temper-
ature, which are both characterized by unique axes for the largest principal
values of almost equal magnitudes. The principal values were virtually un-
changed, whereas their directions changed with temperature. It is reasonable
to assume that such unique directions represent the dipole axis of VO2+(I)
and VO2+(II) at different sites.

Below Tc, these spectra showed small additional splittings ∆Kn, as seen
in the spectra in Fig. 9.7a. It is realized that ∆Kn and the intensity ratio rn
are both temperature dependent, showing practically identical variations as

Fig. 9.9. Angular dependences of the 51V hyperfine splitting Kn in VO2+ spectra
I and II in all symmetry planes of TSCC.
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Fig. 9.10. Unique directions of the VO2+ complex in TSCC, as determined from
VO2+ spectra in TSCC: (a) A view in the symmetry frame of reference above Tc.
(b) Changes in the ferroelectric axes below Tc: a view with respect to the mirror
plane.

proportional to (Tc − T )1/2 within experimental errors, as shown in Fig. 9.8,
which is consistent with the mean-field theory of a binary variable. Further-
more, with decreasing temperature below Tc, these unique hyperfine directions
shifted by a small angle θ toward the crystallographic b direction, on which
the internal field E lies, allowing one to consider that VO2+ dipoles are in the
potential −µE cos θ, as illustrated in Fig. 9.10. The temperature dependence
of the hyperfine anomaly ∆Kn can therefore be interpreted geometrically as
proportional to µ cos θ = λσocn{φ/(1 + κ2)1/2}, while κ = 1 in the noncritical
region, where the angle θ is related to local strains in the lattice. Such dis-
tributed local strains signify two opposite “microdomains” or small ordered
regions during the ordering process.

9.3.2 Structural Phase Transitions in BCCD Crystals

Orthorhombic crystals of (betaine)-CaCl22H2O known as BCCD, where the
betaine is an organic amino acid (CH3)3NCH2COOH, exhibit successive struc-
tural phase transitions under the atmospheric pressure in the range between
the normal phase above 164K and the ferroelectric phase below 45K. Rother
and his coworkers [75] first observed dielectric anomalies at these transitions,
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Fig. 9.11. Successive phase transitions in BCCD crystals: phases I1 and I2 are
incommensurate, and soft modes were identified when the transition theresholds are
approached from above, whereas C1, C2, C3 and C4 are commensurate, for which
values of fractional parameters δ are indicated.

suggesting that a polar mechanism is involved in these sequential structural
changes. Brill and Ehses [76] carried out an X-ray study on BCCD crystals and
found that there are seven modulated phases between 164 and 45K, which are
characterized by the wavevector Qc = δ(T )c∗, where c∗ is the unit translation
in the reciprocal lattice. Figure 9.11 illustrates the successive phase transi-
tions in BCCD crystals, where values of the parameter δ(T ) are indicated
as suggested by the X-ray results of [76]. Using a submillimeter technique,
Volkov and his collaborators [77] observed underdamped soft modes near the
threshold of these incommensurate phases, which were later confirmed by Ao
and Schaack [78] as of B2u symmetry by their infra-red measurements. The
molecular arrangement in BCCD at room temperature was determined by
Brill, Schildkamp and Spilker [79], who reported the presence of appreciable
librational fluctuations of Ca-(betaine)2 complexes in the b plane. Figure 9.12
shows the unit-cell structure sketched after their X-ray results.

According to the X-ray results [79], the Ca-(betaine)2 complex in BCCD
crystals is asymmetrical with regard to two -COOH groups of ligand betaine
molecules: O(1) in one of the betaines and O(2) in the other are not related by
inversion. If the asymmetrical structure fluctuates between these two betaines
as related by inversion in the b plane, these complexes along the b axis should
be correlated with each other, resulting in collective fluctuations during the
structural change to the next phase. Evidenced by VO2+ sampling, the active
group is predominantly in slow librational motion between inversion-related
structures.

Placing a pseudospin variable at each Ca2+ site, we can consider a chain
of these variables in a BCCD crystal, which is similar to TSCC, although the
correlation directions for Jd and Jc may not be exactly on the bc plane, as
inferred from the diagram in Fig. 9.12. However, assuming that the correla-
tions in the bc plane are the primary mechanism, we can simplify the corre-
lation scheme for the normal-to-incommensurate phase transition (N → I1).
Although unverified yet, out-of-plane correlations associated with Jd may be
significant for subsequent transitions below phase I1. Assuming such a model,
the modulated pseudospin mode is characterized by an irrational wavevector
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Fig. 9.12. Molecular arrangement in BCCD crystals in the ac plane. Betaine
molecules are planar, lying in the ac plane. Each Ca+ ion is coordinated by O(1)
and O(2) of the ligand betaines and two Cl− and two OH2, where the two protons
are out of the ac plane.

kc determined by the relation cos(kcc) = −Jd/Jc if | − Jd/Jc| < 1, which is
considered as temperature-dependent. We can then write the relation

kc = {1 − δ(T )}c∗ where Qc = δ(T )c∗.

(i) VO2+ Spectra

Diatomic VO2+ molecules are useful probes for studying the behavior of pseu-
dospins in BCCD at least at the first transition from the normal phase N to
the incommensurate I1. The transition from N to I1 was clearly observed
in VO2+-doped crystals; however, subsequent transitions were not identified
in the spectra, which could be attributed to a lattice modification by the
electric dipole moment of VO2+. Nevertheless, binary fluctuations in phase
I1 were clearly identified in the VO2+ spectra by typical magnetic resonance
anomalies. In fact, no critical region was found in VO2+-doped TSCC crystals,
whereas in the incommensurate phase I1 of BCCD crystals, anomalous VO2+

lines were observed at all temperatures, indicating that there is no significant
long-range internal electric field in this phase.

Figure 9.13 shows representative VO2+spectra in the magnetic resonance
at 9.2 and 35GHz, observed at temperatures above and below the critical
temperature Ti = 164K. Considerably different lineshapes observed at these
microwave frequencies can be attributed to the fluctuation frequency ∆ω ob-
served differently at these Larmor frequencies ωL. It is also noticed that in-
tensities and linewidths of eight hyperfine components exhibit an appreciable
variation from one line to another even at temperatures above Ti, depending
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Fig. 9.13. Representative VO2+ spectra in BCCD for Bo ‖ b, observed at 9.2GHz
and 35GHz in the normal and the first incommensurate phases.

on the quantum number m of the 51V nucleus. Such a variation can be at-
tributed to random librational fluctuations of betaine molecules, as discussed
by Brill et al. with their X-ray results at room temperature, turning into
binary fluctuations below Ti.

In the normal phase, the g and 51A tensors were coaxial with well-defined
principal values [80, 81]. Crystallographically, there are four independent
unique directions for a VO2+ ion to take in the unit cell, which are symmet-
rical with respect to the b direction. Therefore, VO2+ impurities exhibit two
magnetically equivalent spectra, when Bo is applied in the symmetry planes
(100), (010) and (001), whereas for Bo ‖ b, the four complexes showed identical
spectra, as shown in Fig. 9.13. Below Ti, the anomalous line is characterized
by symmetrically separated edge frequencies, between which the resonance
frequencies are distributed sinusoidally. Observed anomalies in BCCD were
temperature dependent, as shown in Fig. 9.14, where increasing short-range
correlations were recognized to some extent, but not as significant as in fer-
roelectric TSCC.

At the resonance fields given by Bn(M) = Bo + Knm, the spectral lines
are broadened as

∆Bn(m) = ∆Bo + m∆Kn,

where ∆Bo = −(∆gn/gn)Bo and m∆Kn is the hyperline anomaly. Therefore
the edge separations at hyperfine lines are not the same but different, at
different nuclear quantum number m. Replacing ∆Bo by (∆gn/gn)Bo, we
have

∆Bn(m) = −(Bo/gn)∆gn + m∆Kn. (9.15)
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Fig. 9.14. Anomalous temperature-dependent splitting of a hyperfine line of VO2+

spectra in the incommensurate phase of BCCD.

Therefore, the edge separation is contributed by fluctuations ∆gn and ∆Kn.
Figure 9.15 illustrated such anomalies, where the stick diagram shows how
∆gn and ∆Kn contribute to ∆Bn(m) on these hyperfine lines.

Fig. 9.15. (a) Interpretation of the anomalous hyperfine structure of VO2+ spec-
tra from BCCD. Illustrated are anomalies ∆gn and ∆Kn, resulting in broadenings
sketched in (b) at the bottom.
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Fig. 9.16. Angular variations of Kn, (∆Kn)edge and (∆gn)edge determined by the
equation (9.14) in the symmetry planes of BCCD at 130K.

In the VO2+ spectra in phase I1 of BCCD, angular variations of Kn, ∆gn
and ∆Kn can be calculated from spectra analyzed as in Fig. 9.15, and plot-
ted separately, as shown in Fig. 9.16. It is interesting to note that there are
directions n for ∆gn and ∆Kn to change signs in these projections, which
are consistent in three planes of rotation within experimental errors. Such a
specific direction n for no anomalies can be interpreted as the librational axis
in phase I1. Table 9.2 shows the magnetic resonance data of VO2+ in BCCD
obtained at 170K and at 9.2GHz [80, 81], in which calculated librational di-
rections are shown.

In liquids, free VO2+ ions are tumbling in random fashion, from which
Rogers and Pake [82] observed unequal hyperfine intensities similar to VO2+

spectra in BCCD. In liquids, lines were symmetrically broadened, whereas the
VO2+ spectra in phase I1 exhibited an anomalous lineshape. The librational
axis identified in phase I1 should be associated with the symmetry change in
crystal.
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Table 9.2. The g and 51V hyperfine tensors of VO2+ in the first incommmensurate
phase of BCCD at 140K.

Principal valuesa Direction cosinesb

g K

2.0315 135 (+0.559, ∓0.581, ±0.592) (−0.559, ∓0.581, ±0.592)
1.9538 75 (−0.511, ∓0.624, ∓0.591) (+0.511, ∓0.624, ∓0.591)
1.9623 22 (−0.831, ∓0.324, ±0.453) (+0.831, ∓0.324, ±0.453)

Librational axes (+0.600, ±0.375, ±0.707) (−0.600, ±0.375, ±0.707)
a Unit for K in gauss. b Reference axes: orthorhombic a, b and c.

(ii) Transition Anomalies in Mn2+ Spectra

The Mn2+ spectra in BCCD crystals are dominated by a large fine structure in
the high-field condition, whereas the 55Mn hyperfine interaction is isotropic.
In such a case, it is difficult to carry out a precision analysis on allowed
transition lines because of a large number of forbidden lines in off-symmetry
directions of the applied field. On the other hand, the principal directions
of the D tensor can be easily identified, as characterized by the absence of
forbidden lines, where the phase transition anomalies can be studied. Figure
9.17 shows a representative Mn2+ spectrum when the direction of Bo was
close to the unique tensor axis, where allowed transitions ∆M = ±1 are
predominant, consisting of six equally spaced 55Mn hyperfine lines on each.
Although weak in intensities, forbidden lines appear in the central part of the
spectrum, allowed transition lines from one of the impurity sites are widely
spread out, whereas those from the other site are squeezed toward lower fields.

Fig. 9.17. A Mn2+ spectrum from BCCD at room temperature, when Bo is applied
in the direction 45◦ from the a axis in the ab plane, showing all allowed transitions
are well resolved from one impurity site, whereas lines from the other are crammed
in the area of site 2.
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Fig. 9.18. The center group of allowed transitions (1/2, −1/2) in the Mn2+ spec-
tra in N, I1 and I2 phases of BCCD, where the commensurate phase C1 was not
distinguishable in the spetra.

In the former Mn2+ spectrum, those allowed lines at m = ±5/2 at the highest
and lowest fields are well isolated from forbidden lines, permitting one to
observe phase transition anomalies.

Also significant is that a change in the librational fluctuations at Ti can
directly be detected in the central transitions (− 1

2 → + 1
2 ), although unrelated

to the fine-structure splitting Dn. Figure 9.18 illustrates such allowed lines at
the center of the spectrum observed at temperatures above and below Ti,
which are compared with those in the second incommensurate phase I2. At
160.2K, emerged forbidden lines are clearly resolved between strong allowed
lines, indicating that the librational motion of the Mn2+ complex is slowed
down below Ti, fluctuating between binary states of rotation, which is further
slowed down exhibiting noticeable shifts ±∆g in phase I2. As indicated by
the stick diagram, the fluctuation amplitude is virtually unchanged in the
transition I1 → I2.
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Fig. 9.19. The low-field group of allowed Mn2+ transitions (−3/2, −5/2) in succes-
sive phases of BCCD.

(iii) Anomalies in the Low-Field Mn2+ Lines (−5/2 → −3/2) for Bo ‖ c

Although exhibiting complicated spectra, properties of Mn2+-doped BCCD
crystals are not much modified as in VO2+-doped crystals, because all the
successive phase transitions below Ti are identifiable in the Mn2+ spec-
tra. These successive transitions were recognized in the electronic resonance
(−5/2 → −3/2) in low fields, which is isolated from other lines in the direc-
tion Bo ‖c. Figure 9.19 shows a variety of lineshapes observed in the successive
phases with decreasing temperature. It is noted that six 55Mn hyperfine lines
in the normal phase N begin to show an anomalously broadened fine structure,
exhibiting successively different shapes from one phase to another below Ti. In
the incommensulate phases I1 and I2, the lineshape observed in this direction
of Bo is similar to the simulated line in Fig. 9.1b, signifying fluctuations of
the type expressed by (9.10a), arising from terms proportional to σ and σ2,
where the phase φ is continuously distributed in the range 0 ≤ φ ≤ 2π. The
edge distribution in phase I2 appear to be slightly better resolved than in I1,
although similar in these two phases. On the other hand, phases C1 and C2
are commensurate, where φ is locked in discrete values specified by φ = Qcx,
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where Qc = δ(T )c∗ and x = c × integer. According to Brill and Ehses [76],
δ(C1) = 2/7, δ(C2) = 1

4 , and hence, these discrete phases are π/7, 2π/7, 3π/7,
4π/7 and 5π/7 in C1, and π/4 in C2 between edges 0 and π of symmetrical
discommensuration lines, and there should be a single line (p) of asymmet-
rical fluctuations. In the magnetic resonance spectra so far analyzed, each
hyperfine line was noticeably resolved into multiple lines, but the resolution
was not sufficient to verify the theoretical consequences, for which we need to
look into other directions of Bo for further studies. Nevertheless, transitions
from I1 to C1 and from I2 and C2 are incommensurate-to-commensurate phase
transitions, for which different types of collective mode should be respnsible.
The Mn2+ spectra below 100K were even more complicated, suggesting that
the impurity complex is locked into further restricted mechanisms.

9.4 Nuclear Quadrupole Relaxation in Incommensurate
Phases

Nuclear spin probes can also be used for sampling pseudospin condensates
for structural phase transitions, because a nuclear spin I > 1

2 can interact
with the lattice via the quadrupole energy. The quadrupole interaction can
be expressed as HQ = 〈I|QT|I〉, where Q is the nuclear quadrupole moment
tensor and T = ∇E is the electric field gradient tensor at the nuclear site. In
a modulated crystal, the nuclear spin in a condensate should be modified as
|I ′〉 = a|I〉, where a = 1 + σe, and so the quadrupole energy is modulated as
H′

Q = 〈I ′|QT|I ′〉, which can be written as

H′
Q = HQ + σ〈I|êQT + QTe|I〉 + σ2〈I|êQTe|I〉.

With this H′
Q, the threshold of a binary phase transition at Tc should be

described by antisymmetric fluctuations for breaking symmetry σ → −σ in a
specific direction of the applied field, as well as symmetric fluctuations of a
pinned σ.

In breaking inversion symmetry, the anomaly should be described by

∆HQ = H′
Q(+σ) − H′

Q(−σ) = 2σ〈I|ê(QT + (QT)e|I〉 = 2σ〈I|Q|I〉(êT + T̂e),

where the nuclear quadrupole tensor Q is symmetrical, and therefore, sep-
arated in the last expression from the other tensors that are related to the
surroundings. The gradient tensor T in a crystal is also symmetrical, and,
hence, these product tensors of e and T

σ(êT + Tê) = 2σēT, where ē = 1
2 (ê + e),

represents the distorted field gradient at the nuclear site during ordering pro-
cess. It is noticed that such transition anomalies can be significant only if e is
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a symmetrical tensor, for which ē �= 0. Otherwise for an antisymmetric e, and
no quadrupole anomalies can be expected in this case.

In nuclear magnetic resonance experiments, the nuclear moment is quan-
tized along the direction |n〉 of an applied field Bo, if the Zeeman energy
HZ = γh̄Bo is greater than H′

Q, otherwise |I〉 should be quantized along the
nuclear quadrupole axis. In a pure quadupole resonance for I > 1

2 , H′
Q is

the dominant term, and radiation energies are absorbed by the nucleus via
non-vanishing elements of 〈m|I|m′〉, where m′ − m = ∆m = ±1 and ±2. The
transitions ∆m = ±1 and ±2 occur when the r.f. magnetic field B1 is ap-
plied perpendicular to the static field Bo, as in ordinary magnetic resonance
at a high field. It is a common practice that the pure quadrupole resonance
(PQR) experiments are performed in a weak applied field Bo, to observe these
magnetic transitions for ∆m = ±1 and ±2, as identified by nuclear magnetic
quantum numbers m.

Further, to detect anomalies ∆H′
Q, the critical fluctuations σ should be in

symmetrical cos mode, for which ωL ≤ ∆ω. As discussed for paramagnetic
resonance, the sin mode of fluctuations is also detectable in principle, but is
indistinguishable from the resonance line from unmodulated crystals.

In the condensate model, it is significant to deal with energy exchanges
between the collective pseudospin mode and the corresponding lattice excita-
tion. When the pseudospin mode is subjected to a nuclear quadrupole reso-
nance experiment, the absorbed radiation energy should be exchanged with
an excitation in the lattice counterpart, acting as the “primary” energy sink.
It is noted that such an energy transfer should be recognized as the nuclear
quadrupole relaxation through the tensor T′ = eT+Te, where the nuclear spin
relaxation time T∗

1 should be anomalous and shorter than the ordinary spin-
lattice relaxation time T1 to the surroundings. In nuclear magnetic resonance
spectroscopy, it is a common practice to measure such a relaxation time at
resonance conditions.

The quadrupole interaction arises from the electrostatic interaction of a
charge cloud deformed by a field gradient and, hence, the product tensor QT′

should be traceless, and ∆H′
Q is a quardratic form of components of the spin

vector |I〉. Expressing the spin vector by components Iz and Ix ± iIy in the
frame of reference fixed in the crystal, we can write

∆H′
Q = σ

∑
∆m

T ′
−∆mQ∆m,

where corresponding to transitions ∆m = 0, ±1 and ±2 for Bo ‖ z, we have
expressions

T ′
o = T ′

zz, T ′
±1 = T ′

xz ± iT ′
yz, T ′

±2 = 1
2 (T ′

xx − T ′
yy) ± iT ′

xy,

Q0 = A(3I2
z − I2), Q±1 = A(IzI± + I±Iz), Q±2 = I2

±

and
A = e2Q/4I(2I − 1).
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Here, the parameter Q is known as the nuclear quadrupole moment.
The nuclear spin energy contributed by the perturbation ∆H′

Q in a crystal
is secular in the second order, as these Q∆m multiplied by T−∆m for these ∆m
are time-independent. Considering that the operator T′ provides a pathway
for the change in nuclear spin energies to flow into a specific lattice excitation,
such a second-order contribution of ∆H′

Q should represent the internal energy
exchange process in the condensate.

Although calculated for a nuclear probe located at specific space-time co-
ordinates in principle, such an energy exchange can be considered at all lattice
sites for relaxation processes, whose temporal profile is specified by the relax-
ation time T∗, and the spatial modulation is described by the factor σ in
∆H′

Q. In the critical region, such a relaxation measurement confirm the direct
nuclear energy transfer process to soft modes in the condensate, which is ex-
pressed by the second-order energy ∆E(2) = |∆H′

Q|2/h̄∆ω, where ∆ω is the
fluctuation frequency of the pseudospin variable s. Because the quadrupole
moment tensor Q is a nuclear property, whereas the tensor T represents the
soft lattice mode in the condensate model, such a nuclear relaxation repre-
sents the temporal behavior of the product sT. Accordingly, we can define the
quadrupole relaxation time T∗

1 by the relation 1/T∗
1 = ∆E(2)/h̄. Signified by

two fluctuation modes of s, such a nuclear relaxation can take place in two
independent paths; hence, we can write

1/T1
∗ = 1/T1A

∗ + 1/T1P
∗, (9.16)

where

1/T1A
∗ ∝ 〈σ2

A

∑
∆m

T ′
∆m

∗T ′
∆m exp(i∆ω.t)〉t = σ2

oA sin2 φ(
∑

∆m
J∆m)

and
1/T1P

∗ ∝ σ2
oP cos2 φ(

∑
∆m

J∆m).

Here, the average time correlation t−1
o
∫

T∆m′∗T∆m
′ exp(i∆ω.t)dt over the

timescale to is addreviated as J∆m. It is noted that the amplitudes σoA and
σoP are equal at the transition threshold, although staying nearly constant in
an incommensurate phase if there is no significant long-range order. Thus, we
arrive at the simple formula

1/T1
∗ ∝ σ2

oA sin2 φ + σ2
oP cos2 φ, (9.17)

where the spatial phase φ of corrections, 0 ≤ φ ≤ 2π, signifies the anomalous
nuclear-spin relation time in the critical region.

Blinc and his co-workers [83-86] have derived the relation (9.17) originally
for analyzing 14N-spin-lattice relaxation rate in the incommensurate phase
of {N(CH3)4}2ZnCl4 crystals at 14◦C. Figures 9.20a and 9.20b show their
results of 14N-resonance experiments, where observed T∗

1 are plotted against
distributed resonance frequencies. Figure 9.20c shows the numerical simula-
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Fig. 9.20. (a) An anomalous 14N-nuclear magnetic resonance line from the incom-
mensurate phase of a [N(CH3)4]2ZnCl4 crystal. (From S. Zumer and R. Blinc, J.
Phys. C14, 465 (1981).) (b) Observed reciprocal relaxation time distributed in the
range 3.0 ∼ 8.7kHz. (c) Calculated from the amplitude mode and the phase mode
with an equal proportion. The net contribution (thick line) resembles the observed
T1−1 .

tion with appropriate values of σoA and σoP to fit to (9.16). We consider
that the result signifies the energy exchange in the condensate, which was in
fact proposed for the critical region and incommensurate phases. Blinc [87]
published an extensive review article of nuclear relaxation studies of various
systems undergoing structural phase transitions.

Although generally considered in a modulated phase, the two fluctuation
modes are not always recognized, because the crystal may be modified by a
local electric field of long-range order as in ferroelectric critical regions. It is
interesting to see a similar effect in a CDW-state of Rb0.3MoO3, although in a
different category. Segransan and his co-workers [88] carried out a 87Rb-NMR
experiment, showing that the modulated resonance line of pinned CDW con-
densates can be converted to free-running condensates by increasing electric
current through the system. Figure 9.21 shows their results, which is simi-
lar to two coexisting modes of fluctuations in the incommensurate phase of
{N(CH3)4}2Rb2ZnCl4.
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Fig. 9.21. Electric current “pinning-dipinning” phenomenon observed in a 87Rb
NMR of the CDW state in Rb0.3MoO3. The central line appeared with increasing
current, as observed in the NMR spectrum at 80.17 MHz. (From P. Segransan, A.
Jánossy, C. Berther, J. Mercus and P. Buraud, Phys. Rev. Lett. 56, 1654 (1986).)
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Structural Phase Transitions in Miscellaneous
Systems

In Chapter 9, transition anomalies in TSCC and BCCD crystals were dis-
cussed as examples of magnetic resonance spectra interpreted with the con-
cept of order variable condensates. In this chapter, we look at other systems of
interest in light of knowledge obtained from these examples to see how much
of their transition mechanism can be elucidated with available experimental
results. Whereas the principles for binary systems discussed in Part One are
a useful guideline, phase transitions in crystals are of such an enormous va-
riety that there is no established prototype other than the binary model at
the present stage. In the meantime, we focus our attention on representative
systems so far studied extensively, to conclude our discussions.

10.1 Cell-Doubling Transitions in Oxide Perovskites

Crystals of the oxide-perovskite family designated by the chemical formula
ABO3, where A = K, Sr, Ba, Ca, . . . and B = Ta, Ti, Al, Pb and so forth, are
rich in types of displacement that are attributed to the outset of collective mo-
tion of octahedral units BO2−

6 in the lattice. For titanium-oxide perovskites,
substituting paramagnetic probes for the central Ti ions, the magnetic reso-
nance spectra reflect the nature of the collective displacements in the critical
region when the properties of crystals are not substantially modified at a low
density of impurities. Such a model of the active group can be applied as
a prototype to interpret structural transformations in other systems as well;
hence, we summarize essential features of oxide perovskites in this section.

The structural change in SrTiO3 crystals at Tc = 105K can be recognized
by a symmetry change from cubic to tetragonal, as the temperature is lowered
through Tc, at which the unit cell is doubled in size. Three elastic domains are
formed below Tc, which are characterized by tetragonal distortion along each
of the symmetry axes. In the tetragonal domain, the phase is signified by unit
cells in size of twice the original unit, indicating an alternate arrangement
of oppositely rotated TiO2−

6 complexes, as illustrated for a SrTiO3 crystal
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Fig. 10.1. Molecular arrangements in SrTiO3 crystals. (a) Librational displacements
±ϕ (on the left insert) and the arrangement in the normal phase, (b) the phase below
105K.

in Fig. 10.1. From magnetic resonance spectra of Fe3+ ions substituted for
Ti4+, von Waldkirch, Müller and Berlinger [89] identified such an ordered
state specified by a rotational angle ϕ of the TiO2+

6 around the C4 axis, as
indicated in the figure, where a tetragonal distortion along the c direction is
shown specifically.

In fact, Fe3+ spectra in perovskites were complicated by an oxygen de-
fect near the impurity site, which is usually designated Fe3+-Vo. In such an
Fe3+-Vo complex, the charge cloud is distorted along the impurity-vacancy
axis, which was identified by the unique direction characterized by the largest
fine-structure splitting. Müller and his collaborators observed such spectra
from Fe3+-doped SrTiO3 crystals at the resonance frequency 24GHz and ob-
tained results interpreted by the angular displacement ϕ of TiO2−

6 , showing
temperature dependences in various directions of Bo below Tc. Observed tran-
sition anomalies were very anisotropic as summarized in Fig. 10.2, which are
characterized by considerable broadenings in two symmetry directions, while
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Fig. 10.2. Transition anomalies in Fe3+ spectra from SrTiO3. (a) Linewidths, (b) an
anomalous splitting for Bo ‖ [101] at 105K, (c) temperature-dependence of Da ∝ ϕ2.

virtually unchanged on the tetragonal axis. In a crystal tetragonal along the
b direction, the anomalous widths in the a and c directions at 140K were
nearly four times as large as those in the b direction (Fig. 10.2a). In addition,
a Fe3+-Vo line for Bo ‖ [101] showed an anomalous splitting below Tc, which
was appreciable at temperatures very close to Tc (Fig. 10.2b).

In the condensate model, such an anomaly can be attributed to binary
fluctuations in phase mode between different wavevectors along symmetry
axes, e.g. qa and qc, so that the phase transition can be interpreted as two-
dimensional in the b plane. On the other hand, the transition is characterized
at 1

2G in the reciprocal space, i.e. a point on the Brillouin-zone boundary;
hence, it is not of the same character as in one-dimensional transitions ob-
served at the zone center G = 0. The anomalous line shown in Fig. 10.2b sug-
gests that there should be clusters in two different types signified by wavevec-
tors

qa = (δaa
∗, 1

2b∗, 0) and qc = (0, 1
2b, δcc

∗),

where δa and δc are incommensurate parameters along the a and c directions,
respectively. In terms of the fine structure, we can consider binary fluctuations
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between

∆Dn(+σ) = anσ + bnσ2, and ∆Dn(−σ) = −anσ + bnσ2

for the observed anomaly for n ‖ [101], leading to two domains separated
by the (101̄) plane with decreasing temperature. In this specific direction of
Bo, the resonance line begin to separate into two at Tc, while fluctuating
between them. Hence, Dn(+) = Dn(−) exactly at Tc, but the fluctuations
between them start immediately below Tc. The binary fluctuations can thus
be described by

∆Dn = ∆Dn(+) − ∆Dn(−) = 2anσ,

where σ is either in phase mode or amplitude mode across the crystal plane
(101̄).

Noting that reported anomalous broadenings along the a and c axes are
not equal, we can consider spontaneous stresses in the crystal, making these
domain volumes slightly asymmetrical. In this case, the fluctuations are pre-
dominantly in phase mode, i.e. σ = σo cos φ, thereby explaining the observed
anomalies in the [101] direction, provided that the factor an is nonzero.

For Bo applied in parallel to the a axis, on the other hand, the broadening
can be due to either one of ∆Dn(+) or ∆Dn(−), where the term of bnσ2 can
be significant, because the factor a[100] can vanish for rotational fluctuations
around the principal axis parallel to the a axis. In the mean-field approxima-
tion, the order parameter is proportional to the rotational angle ϕ around a
C4 axis, and therefore we can write

〈∆D[100]〉 ∝ 〈ϕ2〉 ∝ To − T,

Figure 10.2c shows a plot of observed linewidths and estimated mean-field
average of 〈ϕ2〉 in perovskites as a function of temperature, which are linear
in a wide range close to Tc, although exhibiting a significant deviation in the
critical region Tc > T > 0.9Tc.

On the basis of the above argument, the plane (101̄) in tetragonal SrTiO3
crystals can be interpreted as the boundary between two domains, which
are signified as binary order that is primarily considered as one-dimensional
along the [100] and [001] directions. The unit-cell size is doubled in these
domains as illustrated Fig. 10.1b, whereas on the (101̄) plane the angular
displacements of TiO2−

6 octahedra around the b direction change directions of
rotation all in phase, constituting the domain boundary. The order-variable
is therefore a vector s ‖ b, signifying the domains by ±s. Accordingly, the
asymmetry in magnetic resonance linewidths between a and c directions in
Fig. 10.2a can be attributed to such domain volumes in the sample crystals,
although left unexplained in the original report. Nevertheless, the linear chains
of pseudospins along the a and c axes are out-of-phase, constituting the basis
of the binary order in two-dimension.

It is interesting that the above interpretation of critical anomalies in
SrTiO3 crystals is consistent with diffuse X-ray diffraction patterns (Fig. 6.3)
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from NiNbO3 at 700◦C reported by Comes et al. [19], although from the X-ray
results, we can only substantiate that these one-dimensional fluctuations are
primarily independent.

10.2 The Incommensurate Phase in β-Thorium
Tetrabromide

Crystals of β-thorium tetrachloride, ThBr4, exhibit a structural change from
normal to incommensurate phases at Ti ≈ 95K, which was discovered first
with Raman studies [90], and then followed by neutron inelastic experiments.
Bernard and his group [40] performed neutron experiments on β-ThBr4 and
found a well-defined soft mode from the phonon dispersion curve showing a
dip at Qc = 0.310c∗ in the Q ‖ c scattering geometry, which was resolved in
two branches at the bottom.

Emery, Hubert and Fayet [91] carried out magnetic resonance studies on
β-ThBr4 crystals doped with Gd3+ probes substituting for Th4+ ions, and
they identified the active group as related to rotational angles ±ϕ around the
4̄ symmetry axis z. These authors reported various types of anomalous broad-
ening of Gd3+ lines in the incommensurate phase, depending on the direction
of the applied field. Furthermore, using Pa4+ probes in place of Th4+, Zwa-
nenburg and de Boer [92] observed anomalous g factor and hyperfine splitting
in this phase. Evidenced by these results, the active group can be considered
as related to two coupled adjacent Th4+ ions. These Th4+ ions are related
by inversion along a direction perpendicular to the z axis, where each ion is
surrounded by four Br− ions in the shortest distances, and alternately ar-
ranged with two additional Br− ions in between, as shown in Fig. 10.3a. We
can assign two inversion-related pseudospins, σ1 and σ2 to Th4+ ions in the
complex, signifying the chain of active groups along the 4̄ axis. Such a linear
chain is characterized by 180◦ screw symmetry, where the nearest-neighbor
interactions Jc between σ1 and σ2 can be competitive with correlations J ′

c
between two Br− tetrahedral adjacent to each one of these pseudospins, as
illustrated in Fig. 10.3b. Therefore, the phase below Tc can be incommensu-
rate along the z axis, if signified by an irrational wavevector Qc arising from
competing correlations Jc and J ′

c.
In their neutron inelastic scattering experiments, Bernard et al. [40] found

that the phonon-dispersion curve was split into two branches at 81K, as shown
in Fig. 4.9a, implying that fluctuations in the collective pseudospin motion are
in phase and amplitude modes. For those pseudospins related by 180◦ screw
symmetry, we write σ1 = eq exp iφ and σ2 = eq exp i(φ + π), where the phase
angle φ = Qcz − ωc.t is continuous in the long-wave approximation along the
z direction taken on the 4̄ axis, and the short-range correlation energy can be
expressed as

E = −Jcσ1(0){σ1(2Qcc) + σ1(−2Qcc)} − J ′
cσ1(0){σ2(Qcc) + σ2(−Qcc)}
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Fig. 10.3. (a) Molecular arrangement in β-ThBr4 crystals. (b) The pseudospin
arrangement for the short-range correlations, where ⊕ and • indicate opposite pseu-
dospins in the cluster perpendicular to the c axis.

= −J(Qc)e−QeQ,

where
J(Qc) = 4Jc cos(2Qcc) + 4J ′

c cos(Qcc + π).

Here, we have ignored correlations in the a and b directions where pseudospins
are arranged commensurately. Setting the differentiated J(Qc) with respect
to Qc equal to zero, we obtain the relation

−2Jc sin(2Qcc) + J ′
c sin(Qcc) = 0,

which determines the specific real value of the incommensurate wavevector
Qc, i.e.

cos(Qcc) = J ′
c/4Jc,

provided that |J ′
c/4Jc| < 1. On the other hand, for a commensurate distri-

bution, Qc = nπ/2c, where n is an integer, or cos(Qcc) = 1 and the nearest
correlation |J ′

c| should be equal to 4|Jc|.
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Fig. 10.4. Magnetic resonance anomalies in the incommensurate phase of ThBr4
crystals. (a) Bo ‖ [001], (b) Bo ‖ [110] and (c) Bo ‖ [100]. (From J. Emery, S. Hubert
and J. C. Fayet, J. Physique 46, 2099 (1985).)

In such a modulated lattice, the collective pseudospin mode can fluctuate
as σ± = e± exp i{(±Qc ∓ ∆q)z − (ωc ± ∆ω)t}, owing to the interaction with
soft phonons. It is noted that σ+ = σ− at ∆q = ±Qc, and this degeneracy
can be lifted if there is a periodic lattice potential V = Vo cos 2Qcz that
originates from the quartic anharmonicity in the chain structure. As the result,
two independent modes eQ cos φ and eQ sin φ occur, where φ = ∆q.z ± ∆ω.t
represents the fluctuations at ∆q and ∆ω in the vicinity of Qc and ωc.

Figure 10.4a shows the anomalies in Gd3+ spectra observed by Emery and
his collaborators [91] for Bo ‖ [001] in the critical region of β-ThBr4 below
95◦K. In these Gd3+ spectra, the two modes of fluctuations are evident, where
the intensity of the sine mode diminishes with decreasing temperatures, as
indicated by the sequence of 1-2-3-4 in the figure. The phase transition at
95◦K is of a cell-doubling type, for which the nearest correlation J ′

c should be
positive. In the incommensurate phase of ThBr4crystals, the long-range field
is much weaker than in ferroelectric TSCC, as evident in the observed results;
hence, the thermodynamic state below 95◦K remains incommensurate. The
spectrum for Bo ‖ [110] in Fig. 10.4b shows that the cos mode dominates the
incommensurate phase, where the fine-structure parameter is proportional to
σ, whereas Fig. 10.4c shows the anomalous line in the [100] direction which is
contributed by σ and σ2 terms.
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Fig. 10.5. Anomalous resonance lines of Pa4+ spectra in ThBr4 at 4.2K. The line-
shape of each hyperfine line can be explained in terms of ∆gn and ∆Kn, similar to
VO2+ spectra in BCCD.

In contrast to trivalent Gd3+, tetravalent Pa4+(5f1, I(231Pa) = 3/2) ions
accompany no charge defects when substituted for Th4+. Having only one
electron in the 5f -orbit, the magnetic resonance spectra are characterized by
the Zeeman energy, and hyperfine and nuclear quadrupole interactions. Ex-
periments on Pa-doped ThBr4crystals were performed at liquid-helium tem-
peratures, because the resonance lines were too broad to be resolved at tem-
peratures above 20K. At 4.2◦K, observed Pa4+ spectra showed anomalous
splitting in hyperfine lines in all directions of Bo, which were assigned to
“two impurity sites” in the unit cell in the ordered phase. Characterized by
separated edges, the lattice is modulated approximately as proportional to
σ = σo cos φ (0 < φ < 2π) at 4.2K, as shown in Fig. 10.5, where forbidden
lines are very weak in this specific direction. From observed Gd3+ spectra
in the room-temperature phase, the impurity site is just one in the unit cell
of ThBr4, whereas two such anomalous Pa4+ sites in the low-temperature
phase should be related by inversion symmetry between ±σ of incommen-
surate condensates. Zwanenburg et al. analyzed the Pa4+ spectra with the
spin-Hamiltonian

H = β〈S|g|Bo〉 + 〈S|A|I〉 + 〈I|QT|I〉 − γ〈I|Bo〉
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in the strong-field approximation. Experimentally, the g and A tensors in
ThBr4crystals were found to have common principal axes, with the unique
axis parallel to the crystallographic c axis. The principal values reported by
the authors are

gc = 1.76, g⊥ = 1.05; Ac = 695 × 10−4, A⊥ = 430 × 10−4cm−1,

and in such large anisotropic hyperfine tensors, incommensurate fluctuations
are clearly evident, similar to VO2+ spectra in the incommensurate phase of
BCCD.

10.3 Phase Transitions in Deuterated Biphenyl Crystals

Molecular crystals of biphenyl (C12H10) are utilized primarily as host crystals
for phosphorescent naphthalene and phenanthrene molecules in triplet states.
For a general reference on optical and magnetic experiments on triplet states,
interested readers are referred to Molecular Spectroscopy of Triplet States by
McGlynn et al. [93]. Huchison and his group [94] performed extensive magnetic
resonance studies on triplet states of small aromatic molecules accommodated
in various organic host crystals. Cullick and Gerkin [95] reported phase tran-
sitions in deuterated biphenyl crystals (C12D10) at 40K and 15K, which were
first discovered in their magnetic resonance studies on phosphorescent triplet
states of phenanthrene and naphthalene molecules as impurities.

According to Hirota and Hutchison [96], the phosphorescent time of uv-
excited diphenyl crystals is of the order of 5 ∼ 10sec at 77K, and even longer
at lower temperatures, which is sufficiently long to observe magnetic resonance
of these excited molecules in triplet states. The triplet state of an aromatic
molecule is due to two excited π-electrons that are characterized by the dipole-
dipole interaction with parallel spins; hence the ground state is the triplet
3S-state where L = 0 and S = 1 [93]. The dipole-dipole interaction can be
expressed as a fine structure 〈S|D|S〉 for the triplet spin S = 1, where D is a
traceless tensor. Hutchison and Mangum [94] showed that the excited guest
molecules are oriented in host crystals in the same way as the host molecule
C12H10, being signified by two independent principal directions of the D tensor
in the unit cell. The fine-structure energy can be written in the principal form
as

HF = DxSx
2 + DySy

2 + DzSz
2 where Dx + Dy + Dz = 0,

and the principal axes (x, y, z) are taken to be consistent with molecular sym-
metry, as shown in Fig. 10.6b. The crystal structure of biphenyl is sketched
in Fig. 10.6a. Using the traceless feature of D, HF can be expressed in terms
of two independent parameters D and E; that is,

HF = DSz
2 + E(Sx

2 − Sy
2)
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Fig. 10.6. (a) Molecular arrangement in biphenyl crystals. (b) The principal axes X,
Y and Z can be set in common with the guest molecule phenantherene and the host
molecule biphenyl. (c) The phonon-dispersion curve obtained by neutron inelastic
scattering experiments. (d) Incommensuration parameters in the phases II and III
of the host crystals. (From Cailleau, in Incommensurate Phases in Dielectrics, Vol.
2, pp. 72–100, ed. R. Blinc and A. P. Levanyuk (North-Holland, Amsterdam, 1986).)

where
D = (3/2)Dz and E = 1

2 (Dx − Dy).

Because of large values of D and E of the order of 0.1 and 0.01 cm−1

respectively, the fine structure plays a dominant role in a magnetic resonance
experiment using a conventional laboratory magnet, and the spin-Hamiltonian
is expressed as

H = β〈S|g|Bo〉 + HF + HHF,

where the Zeeman energy is comparable with HF, and the last term HHF rep-
resents hyperfine interactions with protons in the molecule C12H10, although
negligible in deuterated C12D10. Because of large D and E, it is not quite
adequate to consider HF as a perturbation to the Zeeman energy in Bo. It is
therefore logical to consider the Zeeman term together with the diagonal term
of HF for the unperturbed state, which is then perturbed by the off-diagonal
elements of HF. In the zero field Bo = 0, the two separated energy levels,
e1,2 and e3 due to D, called zero-field splitting, are signified by the electronic
quantum numbers M = ±1 and 0. On the other hand, the degeneracy of e1,2
for M = ±1 is lifted by an applied magnetic field Bo, resulting in three energy
levels e1, e2 and e3, among which transitions are determined by ei − ej = hν
(microwave quanta).
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According to Hutchison and Mangum [94], these energy levels for Bo ap-
plied parallel to the principal directions are expressed as follows:

for Bo ‖ z, e1,2 = D + (tan αz)E ± gzβBo where tan 2αz = E/gzβBo,

and e3 = 0,

for Bo ‖ x, e1,2 = 1
2 (D + E)(1 − tan αx) ± gxβBo where

tan 2αx = − 1
2 (D + E)/gxβBo, and e3 = D − E,

for Bo ‖ y, e1,2 = 1
2 (D − E)(1 − tan 2αy) ± gyβBo where

tan 2αy = 1
2 (D − E)/gyβBo, and e3 = D + E.

Figure 10.7a shows these energy levels plotted against Bo, where two allowed
magnetic dipole transitions at a fixed microwave frequency are indicated by
vertical arrows. Values of D, E and the principal g can be determined from
the sets of observed transitions.

Cullick and Gerkin [95] studied triplet spectra from phenanthrene-d10 and
naphthalene-d8 molecules in host crystals of biphenyl-d10 in the temperature
range between 5K and 80K, and found that these fine-structure parameters
and zero-field splittings were temperature dependent, and that anomalous
splitting and discontinuities were observed at about 42K and 15K, respec-
tively. The temperature dependence is generally attributed to librational fluc-
tuations around the molecular x axis, whereas discontinuous changes of the
fine structure were considered as arising from structural changes in the host
crystal. Cailleau et al. [98] carried out neutron inelastic scattering experi-
ment on biphenyl crystals, and found soft phonons in phase and amplitude
modes near the transition temperature T1 = 36K. They also reported that
the diffraction accompanied a strong first satellite reflection at 20K, indicat-
ing the presence of an intrinsic excitation. The soft mode is clear evidence for
order variable condensates in C12H10 crystals, which should be responsible
for the magnetic resonance anomaly from the triplet molecules in C12D10 at
T1 = 42K. Also noticeable is that line broadening in deuterated crystals ob-
served by Cullick et al. appeared to be “anomalous” due to fluctuating σ, as
seen from Fig. 10.7c. The anomaly in the zero-field splitting in biphenyl crys-
tals at 42K can be interpreted as arising from a slow modulation, whereas the
four resolved peaks between 42K and 15K in Fig. 10.7b were not identifiable
by this model.

It is conceivable that phenyl molecules in librational motion are highly
correlated in the crystal. Judging from the structure shown in Fig. 10.6a,
correlations between similarly oriented molecules and those between dissimilar
ones can be competitive along the c direction, resulting in incommensurate
arrangements. From the neutron results, the incommensurability parameters
can be expressed as

q II = ±(δaa∗ − δcc∗) + 1
2 (1 − δb)b∗ in phase II (36K ∼ 20K)
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Fig. 10.7. (a) Energy levels of an excited triplet molecule in the magnetic field. Ar-
rows indicate magnetic resonance transitions at a constant frequency. The diagrams
(1) and (2) are drawn for different signs of the zero-field splitting constant. (b) Tem-
perature dependence of the parameter D − E observed from triplet phenantherene-
d10 in phase II of biphenyl crystals. (c) Magnetic resonance anomalies observed at
microwave frequency 4419MHz, (1) at 42.3K, (2) at 41.5K and (3) at 40.5K. (From
A. S. Cullick and R. E. Gerkin, Chem. Phys. 23, 217 (1977).)

and
q III = 1

2 (1 − δb)b∗ in phase III (< 20K),

where these δ could be estimated from the short-range correlation parameters
if known.

10.4 Successive Phase Transitions in A2BX4 Family
Crystals

Crystals of the formula unit A2BX4 exhibit successive phase transitions from
normal to incommensurate and then to commensurate phases, ending at an
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Fig. 10.8. Molecular arrangement in K2SeO4 in the ac plane, where the cell is
divided into three layers 1, 2 and 3 perpendicular to the b axis, whose projections
are shown for each layer. Here, open and shaded circles indicate crystallographically
inequivalent Kα and Kβ, respectively. Three units along the a direction are approx-
imately equal to the wavelength of modulation. (From M. Iizumi, J. D. Axe and G.
Shirane, Phys. Rev. B15, 4392 (1977).)

ordered phase that is known as ferroelectric in some systems. A variety of
inorganic crystals belong to this category, including crystals where the ion
A+ can be K+, Rb+, NH+

4 , N(CH3)+4 , and so forth, and the tetragonal group
BX2−

4 can be SO4
2−, SeO4

2−, ZnCl42−, BeF4
2−, and so forth. These crystals

are isomorphous, showing commonly cascade phase transitions and “twinning”
in some cases [99].

In (NH4)2SO4 crystals, for example, the orthorhombic structure of the
room–temperature phase is strained, resulting in a structure composed of
three differently oriented ferroelastic domains, exhibiting a ferrielectric struc-
tural change at 223K [100]. On the other hand, K2SeO4 crystals are also
strained at room temperature, but the phase below 129K is characterized
as incommensurate. In these systems, pseudosymmetry is commonly found,
as related to tetrahedral BX2−

4 ions and crystallographically inequivalent A+

ions at α and β sites, as shown in Fig. 10.8 [101]. The twinned structure in
(NH4)2SO4 is signified by temperature-dependent pseudohexagonal symmetry
along the a axis, as illustrated in Fig. 10.9 [99]. In each domain, tetrahedral
BX2−

4 groups are related by 3̄ screw symmetry along the sliding direction par-
allel to the a axis, as shown in Fig. 10.8 for K2SeO4 [101]. It is considered
that such pseudosymmetry plays a significant role for successive structural
transformations in these systems.
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Fig. 10.9. Arrangement of SO42 -ions in (NH4)2SO4 crystals in the bc plane in the
room temperature phase. (From A. Sawada, Y. Makita and Y. Takagi, J. Phys. Soc.
Japan 42, 1918 (1977).)

Iizumi and his co-workers [101] carried out extensive neutron inelastic
scattering studies on structural changes in K2SeO4 crystals. The results
showed that the transition at 129K is a normal-to-incommensurate structural
change, which is not characterized by the loss of a macroscopic symmetry
element, while the mirror symmetry on the ac plane is locally violated. Below
Ti = 129K, K+ ions are displaced out of the mirror plane, and tetrahedral
SeO4

2− groups are rotated around the c axis, whereas in isomorphous crystals
of K2ZnCl4, the rotational axis of ZnCl42− is slightly tilted from the c axis in
the mirror ac plane. In K2SeO4, a soft mode was observed near q ∼ (1/3)a∗ at
about 130K, for which these authors showed that for one-phonon scattering
the responsible normal mode can be characterized by librational fluctuations
of SeO4

2− tetrahedrons around the b axis, accompanying linear displacements
of K+

α and K+
β along the c direction. In the observed phonon dispersion curve

shown in Fig. 4.5, the dip in the vicinity of G i = 0.7a∗ implies the soft mode,
whose incommensurate wavevector can be written as

qa = 1
3 (1 − δ)a∗.

Therefore, the order variable can be characterized by a phase variable φ = qax
for spatial variation. The inelastic neutron scattering takes place primarily by
the collective motion of heavy anions SeO4

2− accompanying displacements of
K+ ions. The crystal structure below 129K is characterized by the 3 screw
symmetry along the a axis. Therefore, we can consider that the symmetric
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Fig. 10.10. Temperature variation of an anomalous resonance line of VO2+ spectra
from a K2SO4 crystal. (From M. Fukui and R. Abe, J. Phys. Soc. Japan 12, 3942
(1982).)

mode of fluctuations σ = σo cos qx along the a direction can be pinned by
the pseudopotential V3 ∝ cos(3qax), when q ∼ qa (see Section 5.4). In fact,
symmetry of V3 is consistent with threefold ferroelastic domains that are quasi-
trigonally related with respect to the a axis, along which the binary variable
σ exhibits inversion symmetry.

While ferroelastic at room temperature, crystals of ammonium sulfate
show a ferrielectric structural change at 223K, where the polar state is charac-
terized by two unequal polar sublattices [100]. It is conceivable that reorienta-
tions of crystallographically inequivalent (NH+

4 )α and (NH+
4 )β are responsible

for the ferrielectricity in (NH4)2SO4, as verified by Fujimoto et al. [102] in
their magnetic resonance experiment.

Fukui and Abe [103] performed magnetic resonance studies on a VO2+-
doped K2SeO4 crystal, and observed anomalous lineshapes distinguishing the
incommensurate phase from the following commensurate phase below 89K.
These authors reported temperature-dependent anomalies in the 51V hyper-
fine line at a lowest resonance field, as shown in Fig. 10.10, where the lineshape
are interpretable with the formula ∆ν = ν1σ + ν2σ2, where σ = σo cos φ,
thereby showing that σ is the primary variable. The phases above and be-
low Ti can be clearly distinguished by continuous and discrete angle φ in the
range 0 ≤ φ ≤ 2π, respectively, indicating that the phase transition at 89K
is a phase-locking phenomenon by the pseudopotential V3. Numerically they
simulated those lineshapes below 89K by discrete angles φ = 0, π/3 and 2π/3,
as given by (5.18), using empirical value of the phase shift δa∗ equivalent to
25◦, substantiating the proposed mechanism.

The behavior of BX4
2− groups was studied in Rb2ZnCl4 and related crys-

tals with paramagnetic Mn2+ and SeO−
3 probes substituted for B2+ and



246 10 Structural Phase Transitions in Miscellaneous Systems

BX4
2− in A2BX4, respectively. Using Mn2+ probes, Fayet and his group

[104-107] studied the modulated phase in Rb2ZnCl4 crystals, and Fukui et
al. [108] and Kobayashi et al. [109] performed similar experiments on the
[N(CH3)4]2ZnCl4 system, reporting results similar to Mn2+anomalies from
the incommensurate phase in BCCD. Among these reports, Pezeril et al.
[104] identified the incommensurate phase from forbidden lines associated
with (− 1

2 → + 1
2 ) transitions in Mn2+ spectra, and interpreted anoma-

lies on (3/2 → 5/2) lines as due to frequency fluctuations described by
∆ν = ν1σ + ν2σ2.

The incommensurate-commensurate transition is phase locking of σ(φ)
by a pseudopotential, where we can expect discommensuration effects in the
magnetic resonance spectra. Although no such evidence has been found in
magnetic resonance studies, Unruh and his group [48] have reported such
discommensuration lines at Ti = 205K in K2ZnCl4 crystals recorded by the
transmission electron microscopy. The presence of an incommensurate phase
in crystals of A+ = K+ and Rb+ can be attributed to the absence of long-
range order. On the other hand, ammonium sulfate is unique among others,
in that the internal electric field makes no critical region at the transition.

Blinc and his co-workers [110] measured the electric field gradient tensor at
87Rb nuclei in incommensurate phases of Rb2ZnCl4 and Rb2ZnBr4 crystals,
showing that the lineshape of the (1

2 → − 1
2 ) transition in 87Rb-quadrupole

resonance spectra was analyzable with the fluctuation formula ∆ν = ν1σ +
ν2σ2, depending on the direction of applied field Bo. Blinc et al. [83, 84] also
reported a line due to what they called “floating” condensates, in addition
to the pinned modulation near Ti of Rb2ZnBr4. Although observable in the
NMR timescale in principle, such floating condensates can be identified as an
amplitude mode.

10.5 Incommensurate Phases in RbH3(SeO3)2 and
Related Crystals

Orthorhombic crystals of RbH3(SeO3)2 undergo a ferroelectric phase transi-
tion at about Tc = 153K, where the symmetry changes to monoclinic with
the ferroelectric axis along the b direction. Many experimental studies [111]
have been performed on this system since Levanyuk and Sannikov [112] pre-
dicted the presence of an incommensurate phase. Indeed, the incommensurate
phase was later verified experimentally at temperatures below Ti that was just
above Tc, although reported values of Tc depended apparently on the sample
quality. Such transitions in sequence are considered as arising from primary
and secondary order variables as in (NH4)2SO4. In fact, the primary order
variable was convincingly identified in these experimental studies, whereas
the secondary variable can be considered from observed dielectric anomalies
at Tc, below which the phase is only weakly polarized. For deuterated crystals
RbD3(SeO3)2, the incommensurate phase was confirmed by X-ray diffraction
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Fig. 10.11. (a) Molecular arrangement in the low temperature phase of
RbH3(SeO3)2 crystals. (From H. Grimm and W. J. Fitzgerald, Acta Cryst. A34,
268 (1978).) (b) A pseudospin chain model in RbH3(SeO3)2.

studies by Makita and Suzuki [113], and the soft-mode vector was analyzed
by Grimm and Fitzgerald [114] for the crystal structure below Tc.

Structures of RbH3(SeO3)2 crystals at room temperature and in the fer-
roelectric phase were studied by a number of groups [115], showing that in
the unit cell there are two SeO3

2− and three hydrogen bonds that are crys-
tallographically inequivalent. Those SeO3

2− groups of one kind, denoted by
SeO3(I), are linked together via hydrogen bonds in one type, forming a chain
along the c axis, whereas SeO3(II) of the other kind form another chain along
the a axis with hydrogen bonds of the second type. Parallel chains of SeO3(I)
and SeO3(II) are in separate planes perpendicular to the b axis, being linked
across via hydrogen bonds of the third kind. In this structure, each Rb+

ion is coordinated by four SeO+
3 ions in the ac planes and by a SeO3(II)

along the b direction. Figure 10.11a shows the crystal structure in the low-
temperature phase sketched after the neutron work by Grimm et al., where a
layer of SeO3(II) ions is sandwiched between layers of SeO3(I) and Rb ions.
According to Shuvalov and his co-workers [116], the order variable is related
to a reorientation of deformed SeO3

2− groups, for which the protons play no
significant role.

In the crystal structure shown in Fig. 10.11a, each Rb+ ion is at the center
of a rectangle of four SeO3(I) ions, coordinated by a SeO3(II) at the apex of
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Fig. 10.12. Temperature changes of Cr3+ resonance lines from RbH3(SeO3)2 crys-
tals. (a) From M. Fukui, C. Takahashi and R. Abe, Ferroelectrics 36, 315 (1981).
(b) From S. Waplack, S. Jerzak, J. Stankowski and L. A. Shuvalov, Physica 106B,
251 (1981).

a pyramid formed by these five SeO3
2− ions. Such Rb+-(SeO3

2−)5 complexes
are arranged in a zigzag chain in the bc plane, being linked with the layer of
SeO3(II), as illustrated in Fig. 10.11b. Waplak et al. [117] and Fukui et al.
[118] investigated independently the behavior of these pyramidal complexes
by magnetic resonance studies using Cr3+ probes substituted for Rb+ ions,
and they identified the primary order variable for the incommensurate phase
as related to the collective mode of these Rb complexes along the c axis.
Although their results were not fully analyzed, the phase transitions at Ti
and Tc were evident from the temperature-dependent Cr3+ spectra, which
are shown in Figs. 10.12a and 10.12b, respectively.

In such a chain of Rb complexes as in Fig. 10.11b, Cr3+ probes were used
to evaluate the short-range correlation scheme in RbH3(SeO3)2 crystals, while
the order variable σ(φ) can be defined from the observed D-tensor anomaly
∆Dn. As predicted, the phase φ describes the incommensure distribution of
deformed SeO3

2− along the c direction. In the spectra of Fig. 10.12a, the
anomaly can be explained as ∆Dc ∝ Acσ, although the direction of the applied
field was unspecified. The temperature variation indicates that the phase φ is
continuous but showing discommensuration lines toward Tc, as seen from Fig.
10.12b.

For the incommensurate phase between Ti and Tc, two competing cor-
relations along the c direction can be considered for the interaction scheme
of Fig. 10.11b. Placing pseudospins σ at each Rb position, the short-range
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correlations between the nearest neighbors on the chain can be expressed as

E(q) = −2σo
2eq.e−qJ1(q).

Considering the next nearest neighbors as in the bc plane, as indicated in Fig.
10.11b, we can include these additional interactions, i.e.

E(q) = −4σo
2eq.e−q[J1 cos(qcc) + J ′ cos(qbb) cos( 1

2qcc) + J2 cos(qbb)],

which can be minimized with respect to q for the initial cluster for the phase
transition at Ti. Disregarding all other short-range interactions, we set qb = 0
and obtain

cos( 1
2qcc) = −J ′/4J1,

which gives the incommensurate qc along the c axis, provided that |−J ′/4J1| <
1.

Pending experimental results, the pseudospin can be expressed by a clas-
sical vector with components σb and σc ∝ cos φ. In this case, σb can be
considered as the secondary order variable, because its finite amplitude vio-
lates the mirror reflection symmetry of the SeO3(II) plane. However, if the
quasi mirror plane is not fully represented by σb, such a view may not be
compatible with the soft layer mode proposed by Grimm et al. It is noted
that the phase below Tc may not be necessarily ferroelectric if such a mirror
plane is not verified.

10.6 Phase Transitions in (NH4)2SO4 and NH4AlF4

Crystallographically, ammonium sulfate crystals belong to a group of A2BX4
type, sharing some features in common with others in the group, in that
order variables are primarily related to orientation of heavy group BX4

2−.
However, (NH4)2SO4 is unique among them, because pyramidal NH+

4 ions
exhibit another collective behavior below 223K, being associated with the
secondary ordering in the ferrielectric phase.

Magnetic resonance studies on the structural change in (NH4)2SO4 were
performed using VO+

2 impurities [73] and with NH+
3 radicals in irradiated

crystals [74][119]. In these works, the behavior of NH+
4 ions was sampled by

VO2+ and NH+
3 , whereas SO−

3 and SeO−
3 radicals in irradiated crystals were

utilized to study the role of heavier SO2−
4 ions. However, the pseudosym-

metry arising from near-trigonally oriented SO−
4 groups was not significantly

reflected on the spectra of SO−
3 and SeO−

3 [120], although considered as respon-
sible for breaking trigonal symmetry of the normal lattice [99]. On the other
hand, NH+

3 spectra from irradiated crystals were informative about NH+
4 ions

occupying distinct sites α and β. According to the normal-mode analysis for
K2SeO4 by Iizumi et al. [101], the librational change of SeO2+

4 orientations
around the c axis accompanies displacements of K+

α and K+
β out of the ab
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Fig. 10.13. Orientational arrangements of NH+
4 ions in (NH4)2SO4 crystals at above

and below −50◦ C are compared in these diagrams, where SO2−
4 ions are omitted for

clarity. The crystallographic inequivalence between (NH4)α and (NH4)β is indicated
by thick and thin circles. Arrows inside of these circles show direction of the 14N-
hyperfine tensor axis determined by magnetic resonance of NH3+ radicals. (From
M. Fujimoto, L. A. Dressel and T. J. Yu, J. Phys. Chem. Solids 38, 97 (1977).)

plane; hence, by analogy, similar displacements of (NH+
4 )α and (NH+

4 )β may
be considered in (NH4)2SO4. If this is the case, the orientation of a distorted
NH+

4 ion can be represented by the 14N-hyperfine axis of a NH+
3 probe, yield-

ing information about NH+
4 ordering in the ferrielectric phase. By virtue of

different α and β sites, sublattices of (NH+
4 )α and (NH+

4 )β can be considered
as polar sublattices in the ferrielectric phase below 223K. The arrangement of
NH+

4 ions in such sublattices is sketched in Fig. 10.13 based on the magnetic
resonance results of NH+

3 [102].
The phase transition in NH4AlF4 crystals at 155K belongs categorically

to a different group than (NH4)2SO4; however, there is a common feature
regarding the NH+

4 order that is induced by the collective arrangement of
heavier negative ions in the critical condition. Fayet carried out magnetic
resonance studies [121] on NH4AlF4 crystals, using Fe3+ impurities, where the
phase transition showed dual characters; namely order-disorder with respect
to NH+

4 ions and diplacive due to continuous displacements of AlF−
4 groups.

The crystal structure of NH4AlF4 at 155K consists of two-dimensional
layers of NH+

4 ions and of bipyramidal AlF6 groups, which are alternately
stacked up along the crystallographic c axis, as illustrated in Figs. 10.14a and
10.14b, when viewed in the ab plane and from a direction perpendicular to
the c axis, respectively. In these figures, NH+

4 ions indicated by triangles are
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Fig. 10.14. Molecular arrangement in NH4AlF4 crystals. (a) the structure in a layer
parallel to the ab plane. (b) alternate stack of layers of NH+

4 and AlF3−
6 perpendicular

to the c axis. (From J. C. Fayet, Helv. Physica Acta 58, 76 (1985).)

oriented in opposite directions parallel to the c axis, to which ±1 states of
a pseudospin can be assigned. On the other hand, each AlF6 octahedron is
coordinated by eight NH+

4 in either state of + or −, and Fayet suggested that
the ordered arrangement of eight NH+

4 should be related to small angles of
rotation ±ϕ of the AlF6 octahedron around the c axis.

Magnetic resonance spectra of Fe3+ substituted for Al3+ ions were charac-
terized by a uniaxial fine structure energy 〈n|D|n〉 with respect to the direction
|n〉 of the applied field Bo, where the unique tensor direction represents the
axis of AlF6 rotation. In the normal phase the Fe3+ spectra are characterized
by one impurity site per unit cell while splitting into two components below
Tc, as shown by Fig. 10.15. The linewidths were very broad due to unresolved
superfine interactions with six 19F nuclei (I = 1

2 ) in the ligand, showing, how-
ever, a resolved structure in certain direction. In this direction, the spectrum
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Fig. 10.15. Magnetic resonance anomalies in Fe3+ spectra from NH4AlF4 for Bo ‖
[110] at and below 250K. (From J. C. Fayet, Helv. Physica Acta 58, 76 (1985).)

consists of a single line with diminishing intensity at a slow rate with de-
creasing temperature, on which a doublet in anomalous shape is superposed.
Similar to the cell-doubling transition in SrTiO3 at 105K, the result suggests
that the phase transition in NH4AlF4 is binary in two-dimensional ordering.
On the other hand, if the transition is first order, the single line may represent
the normal phase.

The short-range cluster for such a displacive mechanism can be specu-
lated as related to librational correlations between adjacent AlF6 complexes,
marked 1 and 2, along the x direction (and the same in the y direction), and
between those marked 1 and 3 along the a axis (and the same along the b
axis), as shown in Fig. 10.14a. Denoting these correlation parameters by J
and J ′, respectively, we can express the condition for minimum correlations
as

cos(qxd) = cos(qyd) = −(1 + J/2J ′),

which are soluble for qx and qy if 0 > J/2J ′ > −1. If this is the case, we can
obtain order variables specified by wavevectors qx and qy in the ab plane, just
as in perovskite crystals.

Noting that the observed spectrum is similar to the anomalous line from
in SrTiO3 (Fig. 10.2b), the anomalies in Fig. 10.15 can be described by ∆D ∝
2σ which is considered as related to binary fluctuations between σa and σb
that are opposite in phase in this direction in the ab plane. In this case,
alternate rotations of AlF6 complexes along the x and y directions are related
by inversion in the (110) plane, which can be considered as responsible for the
anomalies in Fig. 10.15a. The normal-to-incommensurate phase transition in
NH4AlF4 crystals should therefore be binary in two dimensions.
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According to ref. [121], librational displacements of AlF6 are coupled with
NH+

4 ordering at the transition temperature. Fayet’s experiment was per-
formed on AlF6, giving direct support of a displacive view of the phase tran-
sition. Nevertheless, if magnetic probes sensitive to NH+

4 ions were selected,
the experiment might yield results in favor of order-disorder.

10.7 Proton Ordering in Hydrogen-Bonded Crystals

For classical pseudospins, the threshold of a phase transition is signified by the
minimum correlation energy at Tc, where order variables emerge with nonzero
amplitudes in a collective form. On the other hand, in a quantum-mechanical
system as in hydrogen-bonded crystals, the ground state of a proton-bonded
negative ionic group may be degenerate in relation to the proton arrange-
ment, leading to a disordered state if they are not correlated spatially in the
lattice [122]. In fact, such a case has not been found other than quantum liq-
uids, besides these groups cannot be quite independent in crystalline states.
If correlated at a slow rate, the order variable associated with the group may
behave like a classical variable, resulting in significant strains in the lattice.
Assuming that such “intersite” correlations are negligible, the proton interac-
tions in each group may appear explicitly in the observed spectra, which are
not, however, informative about the symmetry change in phase transitions.

In traditional arguments, the order-disorder phenomenon occurs thermally,
independent of the hosting lattice; hence, in hydrogen-bonded crystals, phase
transitions can be characterized by the absence of soft modes. Normally, ther-
mal proton rearrangements can take place only as a part of the system, where
the lattice structure may be considered to be intact. On the other hand, if
lattice strains matter, protons in ordered arrangements should interact with
an acoustic excitation. In this context, the traditional order-disorder theory
cannot deal phase transitions characterized by a symmetry change.

Potassium dihydrogen phosphate KH2PO4 crystals, called KDP, exhibit a
ferroelectric phase transition at 122K, for which Slater [123] and Takagi [124]
proposed a simple model of proton ordering, although no hint was given at
the spontaneous polarization below Tc. Nevertheless, their model was consid-
ered as a prototype of order-disorder because of its simple nature. On the
other hand, in their Raman studies of KDP, Kaminov and Damen [125] found
an intense temperature-dependent response overdamped in the low-frequency
range, as shown in Fig. 10.16, where the observed lineshape was fitted to
the damped harmonic oscillator equation with the characteristic frequency,
ωo ∝ (T − Tc)1/2, and a constant damping factor, behaving like the Debye
relaxation. It is not certain from their result whether such an overdamped soft
mode can be coupled with proton ordering. Hence, the transition mechanism
remains still controversial.

In Fig. 10.17, the active group in KDP crystals is sketched, for which Slater
and Takagi proposed a model of thermal statistics for proton arrangements.
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Fig. 10.16. Broad phonon spectra observed in KDP crystals. (From I. P. Kaminov
and T. C. Damen, Phys. Rev. Lett. 20, 1105 (1968).)

In this model a PO3−
4 group is surrounded by four neighboring PO3−

4 ions,
which are linked together via four hydrogen bonds. In Fig. 10.17b, we consider
that four protons 1, 2, 3 and 4 are all close to the central PO3−

4 in the ground
state, whereas 14 excited states are related to the locations of protons in
these four hydrogen-bonds. Among the excited states, the first level ε1 is
due to four configurations where two of these protons, either in bonds (1,
3) or in bonds (2, 4), are near the central PO3−

4 , whereas the second level

Fig. 10.17. (a) Proton configuration in the vicinity of PO43 -ion in KDP crystals.
(b) The Slater-Takagi model.
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ε2 is related to three near protons, and the third one ε3 corresponds to all
four protons in the direct proximity or in distant locations, as illustrated in
Fig. 10.17b. At Tc = 122K, the energy separations between proton states
can be significantly greater than kBTc, so that the order variable associated
with the cluster of PO3−

4 plus four protons is quantum-mechanical, according
to the Landau criterion discussed in Section 3.2. In this case, these proton
states are governed by Boltzmann probabilities, provided that these groups are
uncorrelated in the crystal. In this model, the proton energies can, therefore,
be considered thermally accessible, in contrast to the displacive crystals where
the displacement is induced in a strained lattice.

Using the Slater-Takagi model, the statistical calculation shows that the
transition temperature to the ferroelectric phase is determined by

kBTc = ε1 ln 2,

suggesting that clusters at the energy ε1 for the proton configuration are
significant at the transition threshold. It is noted that in this model the energy
ε1 is doubly degenerate with regard to inversion in the c direction; hence, the
phase transition can be described by such a binary variable.

Although the actual transition mechanism cannot be found easily, it is
believed that the proton ordering constitutes a part of the mechanism, as
described by the Slater-Takagi model, for which there were some experimen-
tal studies. Magnetic resonance experiments on irradiated KH2AsO4 crystals,
which are isomorphous to KDP, were carried out by two research groups led
by Blinc [126] and McDowell [127], using AsO4

4− radicals as probes. Although
these workers claimed that no significant change in the properties of KH2AsO4
was recognized by irradiation, in which paramagnetic AsO4

4− exhibited reso-
nance spectra, showing the ferroelectric phase transition at 97K. The AsO4

4−

spectra from irradiated KDP crystals may not exactly simulate the phase tran-
sition in KDP; however, the 75As nucleus of spin I = 3/2 exhibited a large hy-
perfine splitting and additional small hyperfine splittings due to two protons,
indirectly substantiating the Slater-Takagi model for KDP. It is noted that the
proton hyperfine structure is sensitive for studying the proton arrangements.
McDowell and his associates [127] performed ENDOR (electron-nuclear dou-
ble resonance) experiments at 4.2K to study the model and determined the
interaction tensors with two near protons and two far protons with greater
accuracy than EPR spectra. In conventional EPR experiments, far proton in-
teractions were too small to detect, while the temperature-dependence was
not studied in the ENDOR measurement. Figure 10.18a shows a representa-
tive EPR spectrum from irradiated KH2AsO4 crystals reported in ref. [126],
where the proton structure in 1:2:1 intensity ratio was barely resolved on the
75As-hyperfine lines, although giving convincing evidence for two equivalent
protons in the low temperature phase. In the ENDOR spectra, the structure
was observed not only in better accuracy, but also a small additional structure
caused by two far protons were revealed. Figure 10.18b shows the tempera-
ture dependence of the near proton lines reported in ref. [126], changing from
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Fig. 10.18. (a) A magnetic resonance spectrrm of AsO4−
4 radicals at 4.2K from

irradiated KH2AsO4 crystals. The lines marked 1, 2, . . . , 8 are spectra of AsO4
4− at

two inequivalent sites in the unit cell, whereas those marked + are due to unidentified
species. (From N. S. Dalal, J. A. Hebden, D. E. Kennedy and C. A. McDowell, J.
Chem. Phys. 66, 4425 (1977).) (c) Temperature dependence of the proton hyperfine
structure in the spectra of AsO4−

4 in KH2AsO4. (From R. Blinc, P. Cevc and M.
Schara, Phys. Rev. 159, 411 (1967).)

1:4:6:4:1 pattern to 1:2:1 near about 220K. This EPR result demonstrates
that four protons in the group are equivalent in the high-temperature phase,
while two at low temperature, substantiating the essential feature of the the-
oretical model together with the ENDOR result. It is realized that such a
proton arrangement should be a slow process at low temperature, so that is
timescale is a significant factor for observing the dynamics. Nevertheless, the
model is substantiated, although the transition mechanism was not fully re-
vealed in these magnetic resonance experiments. On the other hand, collective
displacements of PO3−

4 ions appears to be a significant part of the transition
mechanism, judging from the light-scattering results [125].



Epilogue

Macroscopically, structural phase transitions are characterized by a change in
lattice symmetry. In second-order transitions, the loss of a symmetry element
signifies the strained lattice, where a displacive mechanism is consequent on
the symmetry change. I, therefore, discussed mainly displacive phase transi-
tions in this book.

Although known theoretically, the Born-Huang principle came to my at-
tention only after I witnessed the evidence in stressed and spontaneously mod-
ulated crystals. Guided by their principle, I discussed the critical region due
to spontaneous strains, pending experimental evidence. The role played by a
deformed lattice is explicit in observed anomalies, which are totally different
from those arising from random fluctuations.

One of my objectives was to establish the physical origin for a collective
classical pseudospins that can be expressed as σof(φ). In fact, it was taken
for granted in many theoretical works, leading to one-dimensional analyses
of experimental results. Although considered for mathematical simplification,
I felt it was a little too näıve to rely on such a formula for complex transi-
tion phenomena in three-dimensional crystals. On the other hand, anisotropic
molecular correlations give rise to a quasi-one-dimensional pseudospin mode
in the crystal as specified in the phase φ, which can, therefore, be justified in
the limited applications.

Also, the presence of a unique axis was assumed in many works, which was
found generally acceptable in anisotropic crystals. Consequently, in this book
one-dimensional ordering was mainly discussed for practical applications. Nev-
ertheless, critical anomalies are most explicit in one dimension, whereas less
explicit in two and higher dimensions, which I should have discussed with ap-
propriate examples. In fact, we came across two-dimensional fluctuations in
crystals undergoing cell-doubling phase transitions as witnessed in the tetrag-
onal phase of SrTiO3, and perhaps in NH2AlF4 as well. I could have discussed
it in Chapter 3 using the incommensurate condition e±q

2 = 0 for displacement
vector e±q, in which vectors (eqx = ±ieqy, eqz) and (∓ie−qx = e−qy,−e−qz)
can be assigned for breaking tetragonal symmetry along the z direction. I
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believe that such an interpretation paves the way to further studies on the
structural transformation mechanism beyond one-dimensional arguments.

We have postulated that the critical temperature Tc is determined by
minimum correlations of displacive variables. Such correlated variables may,
however, be associated with a precursory process above Tc, as we have seen
among practical systems. The ferroelectric phase transition in BaTiO3 crys-
tals, for example, is still controversial, since anomalies observed by different
experiments showed results incompatible with one another, indicating that
such transitions may not be purely displacive. Different timescales may be
involved in observed anomalies; however, it is not surprising that such a pre-
cursory process as in BaTiO3 may exist in general, for which further investi-
gations are necessary, particularly, at lower frequencies than the characteristic
fluctuations.

The soliton potential for pseudospin propagation is an acceptable con-
cept for relating it with the deformed crystal structure. With the condensate
model, we can explain its finite amplitude σo, for which the long-range order
is responsible. However, the long-range interactions should be partly involed
in a random mechanism of phase transitions, in order to account for the tem-
perature dependence.



Appendix

The Adiabatic Approximation

For critical anomalies at structural phase transitions of second order, we have
considered the interaction between order variables and the lattice, as implied
by the lattice dynamical theory in Born-Huang’s monograph [18]. We have
in fact utilized their physical implication, while the theory was too formal to
be modified for the problem of structural transformations. Nevertheless, the
theory showed that anharmonicity arises from the lattice if perturbed adiabat-
ically by fluctuating order variables, whose states are modulated along with
nuclear displacements. On the other hand, in the non-adiabatic case, the or-
der variable is primarily independent of the nuclear motion, but subjected to
random agitation by thermal phonons. Although dynamically defined in the
Born theory, the word “adiabatic” can be literally applied to thermodynam-
ics of crystalline states. As the nuclear system represents the lattice, states of
the order variables can be determined statistically if the interaction is non-
adiabatic, otherwise representing classical displacements from lattice points
under the adiabatic condition. The lattice structure should be unchanged un-
der a constant volume condition. Hence, thermodynamically, a lattice struc-
ture is primarily deformable by an adiabatic interaction with order variables
or external stresses. While interested readers can be referred to their original
monograph, we review in this appendix the Born–Huang theory, as modified
for a spontaneous structural change between crystalline phases, to show that
anharminic potentials emerge as a consequence of condensate fluctuations.

For displacive ordering, we have considered a variable associated with a
displacement in an active complex, which is an adequate model at least for
phase transitions in perovskite crystals. Such displacive order variables are
considered as primarily independent of the lattice of heavier active groups,
provided that the correlation energies are negligible compared with the ther-
mal energy kBT . However, if characterized by discrete energy levels with a
gap greater than kBT , order variables are “quantum-mechanical” according
to Landau’s categories. In a binary system, such an order variable can be
described in terms of probabilities in the Boltzmann statistics, which are ex-
pressed effectively by ±1 states of an Ising spin. On the other hand, arriving at
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the minimum correlation energy at a transition threshold Tc with decreasing
temperature, a lattice distortion begins to occur adiabatically.

Dynamically, the order variable and the active complex are distinguishable
in terms of their masses and, hence, their interactions can be asymptotically
evaluated in terms of the parameter κ defined as

κ = (m/M)1/4, (A.1)

where m and M are effective masses. Assuming that their interaction U
emerges at the threshold temperature Tc, we analyse it with the approxi-
mation, known as the Born-Oppenheimer approximation. In this case, the
composite system can be described primarily by fluctuating kinetic energies,
namely

Kσ = −(h̄2/2m)
∑

i
(∂2/∂x2

i ) and KL = −(h̄2/2M)
∑

i
(∂2/∂X2

i ),

and the interaction potential U between them is expressed as a function of xi
and Xi. Here, we consider that the interaction U takes place in one-dimension
along xi and Xi direction. As discussed in Chapter 3, this assumption is gener-
ally acceptable for anisotropic systems. Further, if Kσ > KL, the Hamiltonian
of the order variable system Ho = Kσ + U is regarded as perturbed by KL,
that is

H = Ho + KL, where Ho = Ho(x, ∂/∂x, X). (A.2)

To solve this perturbation problem, we can use asymptotic expansions with
respect to the small parameter κ introduced by (A.1), and write

KL = κ4H1(∂/∂X), where H1(∂/∂X) = −
∑

i
(h̄2/2m)(∂2/∂X2

i ).

The Hamiltonian H in (A.2) can then be expressed as

H = Ho + κ4H1 (A.3)

for which the Schrödinger equation is

(H − E(X))ψ(x, X) = 0, (A.4)

considering the nuclear coordinate X as a parameter. We assume that the
equation (A.4) is solved for the wave function of ϕ(x, X) at an arbitrary fixed
position of the active group X, i.e.,

(Ho − εo(X))ϕn(x, X) = 0, (A.5)

where n is the quantum number of the order variable. Assuming that the
function εo(X) has been obtained at a certain configuration Xo, the equation
(A.4) can be written in terms of a small displacement κu of an active group
from Xo, i.e.,

X = Xo + κu. (A.6)



The Adiabatic Approximation 261

Expanding ϕn(x, X) asymptotically into a power series

ϕn(x, X) = ϕn(x, Xo + κu) = ϕ(0)
n + κϕ(1)

n + κ2ϕ(2)
n + . . . , (A.7)

and the eigenvalues are also expressed as

εn(X) = εn(Xo + κu) = ε(0)
n + κε(1)

n + κ2ε(2)
n + . . . , (A.8)

where the coefficients {ϕ(r)
n , ε(r)

n }, (r = 1, 2, . . .) are proportional to ur. We can
also write

Ho(x, ∂/∂x, X) = Ho(x, ∂/∂x, Xo + κu)

= H(0)
o + κH(1)

o + κ2H(2)
o + . . . (A.9)

where these H(r)
o are operators with respect to x, and homogeneous functions of

ur. Substituting these expansions into (A.5), we obtain the following equations
from each power of κr, i.e.

(H(0)
o − ε(0)

n )ϕ(0)
n = 0, (A.10a)

(H(0)
o − ε(0)

n )ϕ(1)
n = −(H(1)

o − ε(1)
n )ϕ(0)

n , (A.10b)

(H(0)
o − ε(0)

n )ϕ(2)
n = −(H(1)

o − ε(1)
n )ϕ(1)

n = −(H(2)
o − ε(2)

n )ϕ(0)
n , (A.10c)

. . . . . .

Since ∂/∂X = (1/κ)(∂/∂u), the kinetic energy KL can be expressed as

KL = κ4H1 = κ2H(2)
1 where H(2)

1 = −
∑

(h̄2/2m)(∂2/∂u2).

Combining this with the unperturbed expansion Ho of (A.9), the perturbed
Hamiltonian H can be written as

H = H(0)
o + κH(1)

o + κ2(H(2)
o + H(2)

1 ) + κ3H(3)
o + . . .. (A.11)

Here, we consider that coefficients from different expansions in these terms
of κ(r) are the same order of magnitude in the region where ψ(x, u) does not
vanish, and solve (A4) by the usual perturbation method. Thus, we write

E = ε(0)
n + κE(1)

n + κ2E(2)
n + . . .. (A.12)

and
ψ = ψ(0)

n + κψ(1)
n + κ2

nψ(2)
n + . . . , (A.13)

where E
(r)
n for the energy eigenvalue E should be contant, being independent

of u, unlike ϕ(r)
n . Using (A.19) and (A.11) into (A.4), we obtain the following

successive equations

(H(0)
o − ε(0)

n )ψ(0)
n = 0, (A.14a)

(H(0)
o − ε(0)

n )ψ(1)
n = −(H(1)

o − E(1)
n )ψ(0)

n , (A.14b)

(H(0)
o − ε(0)

n )ψ(2)
n = −(H(1)

o − E(1)
n )ψ(1)

n

−(H(2)
o + H(2)

1 − E(2)
n )ψ(0)

n , (A.14c)
. . . . . .



262 The Adiabatic Approximation

From the homogeneous differential equation (A.14a), we have ψ(0)
n ∼

χ(0)(Xo)ϕ(0)
n (x, Xo) as the zero-order solution, where χ(0)(Xo) can be an ar-

bitrary factor that depends on Xo. However, for the perturbed wave function
of the zeroth order, we can write

ψ(0)
n (x, u) = χ(0)(u)ϕ(0)

n (x), (A.15)

where χ(0)(u) is a function of u, to be determined in the following by higher
order calculations. The inhomogeneous equation (A.14b) can be solved if the
right side is orthogonal to ϕ(0)

n , i.e.∫
ψ(0)

n (x)(H(1)
o − E(1)

n )ψ(0)
o (x, u)dx

= χ(0)
∫

ϕ(0)
n (x)(H(1)

o − E(1)
n )ϕ(0)

n (x)dx = 0,

whereas from the inhomogeneous (A.10b), we obtain∫
ϕ(0)

n (x)(H(1)
o − ε(1)

n )ϕ(0)
n dx = 0.

Therefore, we have ε(1)
n = E

(1)
n . By definition of the Taylor expansion, we can

express ε(1)
n = (∂εn/∂Xo)u, which should be equal to zero, if Xo represents

the equilibrium configuration of complexes. The eigenvalue E and, hence, E
(1)
n

must be constant and independent of u, and therefore we obtain E
(1)
n = 0.

Using this result from (A.14b) and (A.10b), we find that a particular solution
of the inhomgeneous equation is given by χ(0)(u)ϕ(1)

n (u). To this, we may add
any solution of the corresponding homogeneous equation, so that the general
solution for r = 1 can be expressed as

ψ(1)
n (x, u) = χ(0)(u)ϕ(1)

n (x, u) + χ(1)(u)ϕ(0)
n (x). (A.16)

Using this expression for ψ(1)
n and E

(1)
n = 0 in (A.14c),

(H(0)
o − ε(0)

n )ψ(2)
n = −H(1)

o χ(0)ϕ(1)
n − (H(2)

o + H(1)
1 − E(2)

n )χ(0)ϕ(0)
n − H(1)

o χ(1)ϕ(0)
n .

(A.17)
The third and first terms on the right side can be replaced, respectively, by
χ(1) times Hoϕ(0)

n in (A.10b) for E
(1)
n = 0 and by χ(0) times H(1)

o ϕ(1)
n derived

from (A.10c) likewise, resulting in the expression

(H(0)
o − ε(0)

n )(ϕ(2)
n − χ(0)ϕ(2)

n − χ(1)ϕ(1)
n ) = −(H(2)

1 + ε(2)
n − E(2)

n )χ(0)ϕ(2)
n .

This equation is soluble if∫
ϕ(0)

n (H(2)
1 + ε(2)

n − E(2)
n )χ(0)ϕ(0)

n dx = 0,
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which is nevertheless satisfied because the integrand is independent of x, and
hence

(H(2)
1 + ε(2)

n − E(2)
n )χ(0)(u) = 0. (A.18)

It is noted that (A.18) is the equation determining the nuclear motion, for
which κ2H1 and κ2ε(2)

n (u) represent the kinetic and potential energies in this
approximation. Since ε(2)

n (u) is a quadratic function of u, (A.18) describes
harmonic vibrations of the lattice in accuracy up to the first-order of κ, which
is known as the harmonic approximation.

The authors showed the mathematical procedure to obtain solutions in
higher-order accuracy. However, here, we only quote results of the second-
order calculation that gives the adiabatic approximation. For the detail, in-
terested readers are referred to the original literature. They showed that the
second-order term of the wave function has the form

ψ(2)
n (x, u) = χ(0)(u)ϕ(2)

n (x, u) + χ(1)(u)ϕ(1)
n (x, u) + χ(2)(u)ϕ(0)

n (x), (A.19)

where the functions χ(1) and χ(2) satisfy the differential equations:

(H(2)
1 + ε(2)

n − E(2)
n )χ(1)(u) = −(ε(3)

n − E(3)
n )χ(0)(u)

and

(H(2)
1 + ε(2)

n − E(2)
n )χ(2)(u) = −(ε(3)

n − E(3)
n )χ(1)(u) − (ε(4)

n + C − E(4)
n )χ(0)(u),

where C is a constant. Using (A.15), (A.16) and (A.19), for the approximation
up to κ2, we can write

ψn(x, u) = ψ(0)
n + κψ(1)

n + κ2ψ(2)
n

= χ(0){ϕ(0)
n (x) + κϕ(1)

n (x, u) + κ2ϕ(2)
n (x, u)}

+κχ(1)(u){ϕ(0)
n (x) + κϕ(1)

n (x, u)} + κ2χ(2)(u)ϕ(0)
n (x)

= {χ(0)(u) + κχ(1)(u) + κ2χ(2)(u)}ϕn(x, X). (A.20)

In this approximation, the wavefunction (A.20) has a simple interpretation,
indicating that the order variable and the nucleus are independent. We say
that these are interacting adiabatically, and this approximation to the order of
κ2 is called the adiabatic approximation. Applying this to a periodic lattice of
identical complexes, the order variable may be modulated along with nuclear
displacements, for which we should have a responsible agent.

In the adiabatic approximation, the effective potential for nuclear motion
can be derived from the effective Hamiltionan

κ2H(2)
1 + κ2ε(2)

n (u) + κ3ε(3)
n (u) + κ4[ε(4)

n (u) + C], (A.21)

which was taken up to κ4 or to the fourth power of the nuclear displacement
for discussions in Chapter 4.
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The asymptotic analysis is discussed in detail in ref. [18], however the re-
sults are complicated and no physical significance was implemented beyond
harmonic and adiabatic approximations. Therefore, in this appendix, no fur-
ther discussion is continued to higher-order calculations.

The above theory is purely mechanical, while the temperature-dependence
must be sought from an additional thermally accessible mechanism. In fact,
for a soft mode, Cowley [35] considered phonon scattering processes by the
terms ε(3)

n (u) and ε(4)
n (u), for which the phonon densities were considered

statistically with the high-temperature approximation. Experimentally, such
processes can be described as thermal relaxation from the interaction catego-
rized dynamically in the adiabatic approximation.

Further, it is noted that the condition ε(1)
n = 0 assumed in the above

argument is related to symmetric variations of u. However, such displacement
cannot be symmetrical if there are anti-symmetric potentials in a crystal;
either applied externally or due to an internal origin. For the latter case,
we have considered an internal field of long-range correlations, as discussed
in Chapters 4 and 5. In any case, an acoustic excitation u(x, t) at a long
wavelength should occur adiabatically, which is an essential excitation for
maintaining thermodynamic stability of the lattice, as proposed originally by
Born and Huang.
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(1984).
[76] W. Brill and K. H. Ehses, Jpn. J. Appl. Phys. 24 (Suppl. 24-2), 826

(1985).
[77] A. A. Volkov, Yu G. Goncharov, G. V. Kozlov, J.Albers and J. Petzelt,

JETP 44, 606 (1986).
[78] R. Ao and G. Schaack, Ind. J. Pure Appl. Phys., Raman Diamond Ju-

bilee (1988).
[79] W. Brill, W. Schilkamp and J. Spilker, Z. Kristallogr. 172, 281 (1985).
[80] M. Fujimoto and Y. Kotake, J. Chem. Phys. 90, 532 (1989).
[81] M. Fujimoto and Y. Kotake, J. Chem. Phys. 91, 6671 (1989).
[82] R. N. Rogers and G. E. Pake, J. Chem. Phys. 33, 1107 (1960).
[83] B. W. van Beest, A. Janner and R. Blinc, J. Phys. C16, 5409 (1983).
[84] R. Blinc, D. C. Allion, P. Prelovsek and V. Rutar, Phys. Rev. Lett. 50,

67 (1983).
[85] R. Blinc, F. Milia, B. Topic and S. Zumer, Phys. Rev B29, 4173 (1984).
[86] R. Blinc, S. Zuzinic, V. Rutar, J. Seliger and S. Zumer, Phys. Rev. Lett.

44, 609 (1980).
[87] R. Blinc, Phys. Rep. 79, 331 (1981).
[88] P. Segransan, A. Janossy, C. Berthier, J. Mercus and P. Butaud, Phys.

Rev. Lett. 56, 1854 (1986).
[89] Th. von Waldkirch, K. A. Müller and W. Berlinger, Phys. Rev. B5, 4324

(1972); ibid. 1052 (1973).
[90] S. Hubert, P. Dalanoye, S. Lefrant, M. Lepostollec and M. Hussonios,

J. Solid State Chem. 36, 36 (1981).
[91] J. Emery, S. Hubert and J. C. Fayet, J. Physique Lett. 45, 693 (1983);

J. Pjysique 46, 2099 (1985).
[92] G. Zwanenburg, Thesis Catholic Univ. Nijmegen 1990
[93] S. P. McGlynn, T. Azumi and M. Kinoshita, Molecular Spectroscopy of

Triplet States (Prentice Hall, Englewood Cliffs, 1969).
[94] C. A. Hutchison, Jr. and B. W. Mangum, J. Chem. Phys. 29, 952 (1958);

ibid 34, 908 (1961):
R. W. Brandon, R. E. Gerkin and C. A. Hutchison, Jr., J. Chem. Phys.
41, 3717 (1964):
R. W. Brandon, G. L. Cross, C. E. Davoust, C. A. Hutuchison, Jr., B.
E. Kohler and R. Sibley, J. Chem. Phys. 43, 2006 (1965).

[95] A. S. Cullick and R. E. Gerkin, Chem. Phys. 23, 217 (1977).
[96] N. Hirota and C. A. Hutchison, Jr., J. Chem. Phys. 42, 2869 (1965).



References 269

[97] A. W. Hornig and J. S. Hyde, Mol. Phys. 6, 33 (1963).
[98] H. Cailleau, J. C. Messager, F. Moussa, F. Bugant, C. M. E. Zeyen and

C. Vettier, Ferroelectrics 67, 3 (1986);
H. Cailleau, F. Moussa, C. M. E. Zeyen and J. Bouillot, J. Physique
Coll. 42, 704 (1981).

[99] Y. Makita, A. Sawada and Y. Takagi, J. Phys. Soc. Japan 41, 167 (1976).
[100] H. –G. Unruh, Solid State Comm., 8 1951 (1970).
[101] M. Iizumi, J. D. Axe and G. Shirane, Phys. Rev. B15, 4392 (1977).
[102] M. Fujimoto, L. A. Dressel and T. J. Yu, J. Phys. Chem. Solids, 38, 97

(1977).
[103] M. Fukui and R. Abe, J. Phys. Soc. Japan, 51, 3942 (1982).
[104] M. Pezeril, J. Emery and J. C. Fayet, J. Physique Lett. 41, 499 (1980).
[105] M. Pezeril and J. C. Fayet, J. Physique Lett. 43, 267 (1982).
[106] A. Kaziba, M. Pezeril, J. Emery and J. C. Fayet, J. Physique Lett. 46,

387 (1985).
[107] A. Kaziba and J. C. Fayet, J. Physique 47, 239 (1986).
[108] M. Fukui and R. Abe, Jpn. J. Appl. Phys. 20, L-533 (1981); I. Suzuki,

K. Tsuchida, M. Fukui and R. Abe, ibid. 20, L-840 (1981).
[109] T. Kobayashi, M. Suhara and M. Machida, Phase Trans. 4, 281 (1984).
[110] R. Blinc, D. C. Ailion, J. Dolinsek and S. Zumer, Phys. Rev. Lett. 50,

67 (1983).
[111] L. Aa. Shuvalov, N. R. Ivanov, N. V. Gordeyeva and L. F. Kirpichnikova,

Soviet Phys. Crystallgr. 14, 554 (1970);
K. Gesi, K. Ozawa and Y. Makita, Jpn. J. Appl. Phys. 12, 1963 (1973).

[112] A. P. Levanyuk and D. G. Sannikov, Soviet Phys. Solid State 12, 1418
(1971).

[113] Y. Makita and S. Suzuki, J. Phys. Soc. Japan, 36, 1215 (1974).
[114] H. Grimm and W. J. Fitzgerald, Acta Cryst. A34, 268 (1978).
[115] A. B. Tovbis, T. S. Davydova and V. I. Simonov, Soviet Phys. Crystral-

logr. 17,81 (1972).
R. Tellgren, D. Armed and R. Luminga, J. Solid State Chem. 6, 250
(1975).

[116] L. A. Shuvalov, N. R. Ivanov, N. V. Gordeyeva and L. F. Kirpichnikova,
Phys. Lett. A33, 490 (1970).

[117] S. Waplak, S. Jerzak, J. Stankowski and L. A. Shuvalov, Physica 106B,
251 (1981).

[118] M. Fukui, C. Takahashi and R. Abe, Ferroelectrics 36, 315 (1981).
[119] N. Shibata, R. Abe and I. Suzuki, J. Phys. Soc. Japan 41, 2011 (1976);

R. Abe and N. Shibata, J. Phys. Soc. Japan 43, 1308 (1977).
[120] S. Jerzak, private communication
[121] J. C. Fayet, Helv. Physica Acta 58, 76 (1985).
[122] R. M. Stratt, J. Chem. Phys. 84, 2315 (1985).
[123] J. C. Slater, J. Chem. Phys. 9, 16 (1941).
[124] Y. Takagi, J. Phys. Soc. Japan, 3, 271 (1948).
[125] I. P. Kaminov and T. C. Damen, Phys. Rev. Lett. 20, 1105 (1968).



270 References

[126] R. Blinc, P. Cvec and M. Schara, Phys. Rev. 159, 411 (1967).
[127] N. S. Dalal, C. A. McDowell and R. Srinivasan, Chem. Phys. Lett. 4,

97 (1969); Phys. Rev. Lett. 25, 823 (1970); Mol. Phys. 24, 1051 (1972).
N. S. Dalal and C. A. McDowell, Phys. Rev. B5, 1074 (1972).
N. S. Dalal, J. A. Hebden and C. A. McDowell, J. Chem. Phys. 62, 4404
(1974).



Index

Acoustic excitation, 54
acoustic mode, 159, 165

Active group
of ions or molecules in crystals, 3, 31,

45, 55, 238
Allowed transitions

in magnetic resonance, 196, 223
AMMONIUM ALUNIUM TETRAFLU-

ORIDE, NH4AlF4, 249
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of critical fluctuations, 90, 93
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Anharmonic lattice potential, 54, 77,
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quartic potential, 77, 79, 82
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Anomalous intensity distribution

intensity anomalies, 155–158
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Aperiodic crystals, 70, 142
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asymptotic coefficient, 122
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Atomic form factor, 145
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EPR anomalies, 218–224
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crystal structure, 235
EPR anomalies, 237–238
phase transition, 235
pseudospin correlations, 235, 236

Binary systems
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binary correlations, 34
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phase transitions, 39
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law of X-ray diffraction, 143
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Brillouin scattering, 164
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Brillouin-zone boundary, 84
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Charge density wave (CDW), 71
coupling with periodic lattice
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Cell-doubling phase transition, 84, 231
EPR anomalies, 233
pseudospin mode, 233
soft mode, 86, 89
structural phase transition, 232
two-dimensional ordering, 233
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in dielectric spectra from TSCC, 87
in neutron inelastic scattering from
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in oscillator-relaxator model, 88

CESIUM NICKEL FLUORIDE,
CsNiF3

anomalous neutron inelastic
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Chemical potentials, 7

for phase equilibria, 7
Classical thermodynamics, 5
Classical fluctuations, 49

Landau’s criterion, 50
displacement vector, 56

Classical variable, 49, 50
Clausius-Clapayron

equation for phase equilibria, 7
Cluster

molecular cluster, 12, 60
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Cochran, W.
theory of soft modes, 75

Cole-Cole plot
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Collective motion, collective mode
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Commensurate

commensurate phase, 108
commensurate modulation, 108

Condensates, 71
pinned condensates, 101
locking of, 108
macroscopic properties, 95
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pinning potential for, 102
propagation of, 112
thermal stability of, 95

Contact hyperfine interaction
Fermi’s interaction, 193

Continuous phase transition, 17
Correlations, 20

binary correlation, 34
correlation function, 34
correlation energy, 34
spin-spin correlation, 39

Complete elliptic integral, 117, 128
Complex dielectric function, 169
Coupled oscillator-relaxator, 88
Cowley, R.A.

anharmonic lattice potentials, 78
temperature-dependent frequency, 79
lattice mode softening, 80

Critical, 12
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critical exponents, 21, 29
critical fluctuations, 29
critical modulation, 69–70
critical point, 17
critical pressure, 12
critical region, 16, 77
critical slowing-down, 170
critical state, 12
critical temperature, 12

Crystal field, crystalline potential, 186
cubic field, potential, 187
orthorhombic field, potential, 186
quadratic potential, 186
quartic potential, 187
tetragonal, orthorhombic field, 186
uniaxial field, potential, 187

Crystal plane, 143
Crystal structure

irreducible representation, 3
symmetry elements, group of, 3
screw symmetry, 108
translational symmetry, 56, 141
unit cell, symmetry of, 200

Curie, P.
Curie’s law, 26
Curie constant, 26

Curie-Weiss law
of magnetic susceptibility, 25
Curie-Weiss anomaly, 22

Debye, P.
Debye relaxation, 169
Debye relaxator, 171

Debye-Waller factor, 146
Defect potential, 102
Dielectric

dielectric fluctuations, 166
dielectric function, 169
dielectric relaxation, 168
dielectric response, 72
dielectric slowing down, 170

Diffuse
phase transitions, 146
X-ray diffraction, 150–151

Dimensionality, 48
Dipolar interaction, 65, 182, 193

dipolar field, 194
dipole-dipole interaction, 195, 239

Discommensuration lines, 113
Disordered states

complete disorder, 36
partial disorder, 36

Dispersion
dispersion relation, 86, 115, 121
dispersive system, 123

Displacement
binary displacement, 93
classical displacement, 48
displacement vector, 48

Displacive
displacive crystals, 46
displacive phase transitions, 233

Dissipative system, 123
Domain

binary domains, 26
domain walls, 26
domain boundary, 234, 251

Doping
by impurities, 199
by irradiation, 199

Double-well potential, 51, 114

Eckart, C.
Eckart’s potential, 130
scattering from Echart potential, 131

Edges
edge frequencies, 206, 211
edge separation, 206, 211

Ehrenfest, P.
Ehrenfest classification, 17
first-order phase transition, 17
second-order phase transition, 18

Elliptic functions
Jacobi’s elliptic functions, 116, 127

Elliptic integral, 116
complete elliptic integral, 117, 128

Ensemble
statistical ensemble, 31
ensemble average, 31

Equilibrium
equilibrium curve, equilibrium line, 7,

9
mechanical equilibrium, 54
phase equilibrium, 6
thermodynamic equilibrium, 97

Ergode hypothesis, 33, 95
ergodic average, 6
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ergodic variable, 50

Fermi, E.
contact (hyperfine) interaction, 193

Ferrielectric phase, 214, 245
Ferrodisportive, antiferrodistortive, 58
Ferroelectric phase

in BaTiO3, 45
in BCCD, 217
in TSCC, 173, 208

Ferromagnetic phase, 25
ferromagnetic domains, 26
spontaneous magnetization, 26

Field pinning, 104
Filling factors, 185
Fine structure, 190

fine-structure anomaly, 206
fine-structure splitting, 206
fine-structure tensor, 191

First-order phase transition, 17
Fluctuations

classical fluctuations, 69
incommemsutate fluctuation, 105
random fluctuations, 29
random-phase fluctuations, 39
sinusoidal fluctuations, 29
spatial fluctuation, 28, 57
temporal fluctuation, 28, 57
thermodynamic fluctuations, 28

Forbidden transitions
in magnetic resonance, 196, 223

Flourier transform, 56
Free radicals, 199, 249, 255

Gamma function, 131
Gibbs, W.

equilibrium condition, 7, 107
thermodynamical potential (func-

tion), 7, 107
g tensor, 188

anomalous g tensor, 201
g-factor, 189

Harmonic approximation, 263
Heat capacity, specific heat

λ-anomaly, 22, 98
Heisenberg, W.

classical spin, 40
exchange interaction, 39

uncertainty principle, 50
Helmholtz, H.L.F.

equilibrium condition, 37
free energy, 37

Homogeneous, homogeneity
homogeneous state, 6

Hydrodynamic model
of pseudospin flow, 120
one-dimensional flow, 120

Hydrogen-bonding crystals, 253
Hyperfine

hyperfine anomaly, 205
hyperfine interaction, 193
hyperfine splitting, 195
hyperfine tensor, 195
ligand hyperfine interaction, 219

Hypergeometric
differential equation, 131
hypergeometric function, 131

Hysteresis, 21, 174

Ideal gas law, 8
Impedance, 185

complex impedance, 185
real and imaginary parts of, 185
impedance bridge, 185

Impurities
paramagnetic impurities, 199

Incommensurability, 105
Lifshitz’ condition, 106

Incommensurate-to-commensurate
phase transition, 108

Incommensurate
incommensurate phase, 105
incommensurate parameter, 112

Inelastic scattering
of light, 159, 166
of neutrons, 153

Inhomogeneous state
topologically inhomogeneous state,

31–32
Internal field

internal Weiss field, 25, 41, 66
Inversion

inversion operator, 51
inversion symmetry, 19, 47, 90

Ising
Ising model, 39–40
Ising spin, 40
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Jacobi, K.G.J.
Jacobi’s elliptic functions, 116

Kink, kink solution
of a nonlinear equation, 118

Korteweg-deVries’s equation, 124
one soliton solution, 128
two-soliton solution, 135
oscillatory solution, 128
propagating solution, 128

Light scattering
Brillouin scattering, 166
Raman scattering, 159
Rayleigh scattering, 164–165
light scattering spectrometer, 163

Long-range interactions, 75, 128
Lorentz field, 75
Lyddane-Sachs-Teller (LST) relation,

71

Magnetic dipole-dipole interaction, 180
Magnetic resonance

electron paramagnetic resonance
(EPR), 184

electron-nuclear double resonance
(ENDOR), 255

magnetic resonance condition, 179
magnetic resonance sampling, 199
magnetic resonance spectrometers,

183
nuclear magnetic resonance (NMR),

184
nuclear quadrupole resonance (NQR),

226
nuclear spin relaxation, 228

Magnetic dipole transition
allowed transition, 196
forbidden transition, 196
induced transition, 182
spontaneous transition, 182

MANGANESE FLUORIDE MnF2

anomalous neutron scattering
intensity, 157

central peak, soft mode, 87
Maxwell’s equal-area construction, 16
Mean field theory

mean-field approximation, 13, 31
mean-field average, 35

Metastable state, 9
Mirror plane, 46

reflection from a mirror plane, 46
mirror symmetry, 90, 208

Modulated
modulated phase, 70, 105
modulated structure, 141

Modulus, 116, 127
Molecular field

Weiss’ molecular field, 25
Molecular volume, 13

NAPHTHALENE
triplet state, 239

[N(CH3)4]2ZnCl4
anomalous 14N NMR line, 229

Neutron inelastic scattering
anomalous scattering intensities, 156
triple-axis neutron spectrometer, 154

Nonlinear equation, 115, 120
asymptotic expansion, 122
linearization of, 121

Normalization, 57, 82, 93
Normal phase, 45, 218

One-dimensional chain lattice, 114
One-dimensional order, 257
Optic mode, 159
Optic phonons, 159
Ordered state

long-range order, 35
ordering process, 32
partial order, 36, 38
short-range order, 35
threshold of, 56

Order-disorder transition
in binary alloys, 37

Order parameter, 16, 31
Order variable, 31
Oscillator-relaxator model, 88

Packing, 8
Pauli, W.

Pauli matrices, 51, 52
Peierls, R.

charge density waves (CDW), 71
periodic lattice distortion (PLD), 71

Perfect crystal (Ideal crystal)
periodic boundary condition, 141
periodic structure, 141
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translational symmetry, 141
Phase diagram, 9
Phase equilibrium, 6
Phase matching, 112
Phase reversal

in a collective pseudospin mode, 93
Phase mode (phason), 93
Phase transitions

critical region, 69
Landau’s theory of, 19
symmetry changes, 82

PHENANTHRENE, 239
magnetic resonance anomaly from

triplet-state spectrum, 242
Pinning

by defect potential, 101–102
field pinning, 104
pinning potential, 102

Placzek
theory of ionic states in crystals, 160

Polar (polarized) phase (See Ferroelec-
tric phase)

Polarizability tensor, 162
POTASSIUM DIHYDROGEN

SULFATE (KDP)
crystal structure, 254
phase transitions, 253
proton ordering, 254
proton hyperfine structure, 256

POTASSIUM SELENATE, K2SeO4

crystal structure, 243
modulated structure, 244
phase transition, 94
phonon dispersion, 86

POTASSIUM SULFATE, K2SO4

EPR anomaly, 247
POTASSIUM ZINC CHLORIDE,

K2ZnCl4
discommensuration lines, 112–113

Principal axes, values, 191
Proton tunneling, 51
Pseudopotential, 108

pseudo lattice, 108
pseudosymmetry, 108

Pseudospin, 41
collective mode of, 56
pseudospin vector, 48
pseudospin correlations, 48

Quality factor, 185
Quantum mechanical

spin-spin interaction, 39, 53
tunnelling, 51

Quartic potential (See Crystal field)
Quenching

of orbital angular momentum, 187

Raman scattering, 159
Stokes, anti-Stokes lines, 162
Raman active, 163

Random phase approximation, 40
Rayleigh scattering (See light scattering)
Reconstructive phase transistion, 45
Reflection

coefficient, 132
on a crystal plane, 144

Relaxation
dielectric relaxation, 89
relaxation time, 180
spin-spin relaxation, 180
spin-lattice relaxation, 180
quadrupole relaxation, 225
nuclear spin relaxation, 228

Resonator
microwave resonator, 184
rf resonator, 184

Rice, M.J.
theory of pinned CDW-PLD

condensate, 103
Rotation

rigid body rotation, 46
RUBIDIUM HYDROGEN SELENITE,

RbH3(SeO3)2
crystal structure, 247
EPR spectra, 248
pseudospin interactions, 249

Scaling theory, 29
Scattering amplitude, 155

scattering geometry, 153
Screw symmetry, 108
Second-order phase transition, 18
Short-range order

short-range correlation, 34
Sine-Gordon equation, 110
Singularity

in Curie-Weiss’s susceptibility, 26, 65
Weiss’ singularity, 65
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Slater-Takagi’s model, 255
Slow passage, 180
Small angle scattering, 159
SODIUM NIOBATE, NaNbO3, 150

soft mode in, 28, 75
overdamped, underdamped soft

mode, 173
Solition, 119, 123

soliton potential, 123
soliton stripes, 112
soliton gas, 135

Spin Hamiltonian, 187
Spin-orbit coupling, 187
Strong-field approximation, 191
Stressed crystalline state

antisymmetric distortion, 200
symmetric distortion, 200
external stress, field, 119
lattice stability, 54
internal stress, field, 119

STRONTIUM TITANATE, SrTiO3

cell-doubling phase transition, 231
crystal structure, 232
EPR anomalies, 233
pseudospin correlations, 59
soft mode, 87

Structural form factor, 145
Sublattice

intermingling sublattices, 32
ferrielectric sublattices, 245

Successive phase transitions, 218
Superheated liquid, 11
Supersaturated vapor, 10
Superspace group, 142
Sturum-Liouville

type of differential equations, 124
Susceptibility

of order variables, 24
dynamic susceptibility (response

function), 73
Symmetry

defect symmetry, 102
symmetry breaking, 89

Tensor analysis
of Hamiltonian parameters, 189

Thermal stability
of pseudospin condensates, 95

Thermodynamic inequality, 15

Time correlation (function), 57
Timescale

of fluctuations, 57, 70
of observations, 57, 70

Transmission coefficient, 132
Transmission electron microscopy

(TEM), 112
TRIGYCINE SULFATE (TGS), 214

internal dipolar field, 214
Triple-axis neutron spectrometer, 154
Triple point, 9
Triplet state

of uv excited aromatic molecules, 239
TRIS-SARCOSINE CALCIUM

CHLORIDE (TSCC), 62
critical slowing down, 176
crystal structure, 62
dielectric anomalies, 87, 174–175
dielectric spectra, 88, 175
ferroelectric phase transition, 210
critical fluctuations, 211
long-range order, 213
mirror symmetry breaking, 210–211
pseudospin correlations, 62
soft mode, 81

Tunneling
in a double-well potential, 51
proton-tunnelling, 254

Two-dimensional order, 234, 257

Uniaxial crystals
one-dimensional magnet, 158
uniaxial system, 75, 257

Van der Waals, J.D.
equation of state, 13
isotherm, 14

Vapor pressure, 9

Weiss, P.
Curie-Weiss law, 26
Weiss singularity, 65
molecular field, 26

Wick’s approximation, 92

X-ray diffraction, 143

Zeeman energy, 189
Zero-field splitting, 240




